1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
32 #include "hard-reg-set.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
44 #include "typeclass.h"
47 #include "langhooks.h"
50 #include "tree-iterator.h"
51 #include "tree-pass.h"
52 #include "tree-flow.h"
56 #include "diagnostic.h"
57 #include "ssaexpand.h"
59 /* Decide whether a function's arguments should be processed
60 from first to last or from last to first.
62 They should if the stack and args grow in opposite directions, but
63 only if we have push insns. */
67 #ifndef PUSH_ARGS_REVERSED
68 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
69 #define PUSH_ARGS_REVERSED /* If it's last to first. */
75 #ifndef STACK_PUSH_CODE
76 #ifdef STACK_GROWS_DOWNWARD
77 #define STACK_PUSH_CODE PRE_DEC
79 #define STACK_PUSH_CODE PRE_INC
84 /* If this is nonzero, we do not bother generating VOLATILE
85 around volatile memory references, and we are willing to
86 output indirect addresses. If cse is to follow, we reject
87 indirect addresses so a useful potential cse is generated;
88 if it is used only once, instruction combination will produce
89 the same indirect address eventually. */
92 /* This structure is used by move_by_pieces to describe the move to
94 struct move_by_pieces_d
103 int explicit_inc_from
;
104 unsigned HOST_WIDE_INT len
;
105 HOST_WIDE_INT offset
;
109 /* This structure is used by store_by_pieces to describe the clear to
112 struct store_by_pieces_d
118 unsigned HOST_WIDE_INT len
;
119 HOST_WIDE_INT offset
;
120 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
);
125 static unsigned HOST_WIDE_INT
move_by_pieces_ninsns (unsigned HOST_WIDE_INT
,
128 static void move_by_pieces_1 (rtx (*) (rtx
, ...), enum machine_mode
,
129 struct move_by_pieces_d
*);
130 static bool block_move_libcall_safe_for_call_parm (void);
131 static bool emit_block_move_via_movmem (rtx
, rtx
, rtx
, unsigned, unsigned, HOST_WIDE_INT
);
132 static tree
emit_block_move_libcall_fn (int);
133 static void emit_block_move_via_loop (rtx
, rtx
, rtx
, unsigned);
134 static rtx
clear_by_pieces_1 (void *, HOST_WIDE_INT
, enum machine_mode
);
135 static void clear_by_pieces (rtx
, unsigned HOST_WIDE_INT
, unsigned int);
136 static void store_by_pieces_1 (struct store_by_pieces_d
*, unsigned int);
137 static void store_by_pieces_2 (rtx (*) (rtx
, ...), enum machine_mode
,
138 struct store_by_pieces_d
*);
139 static tree
clear_storage_libcall_fn (int);
140 static rtx
compress_float_constant (rtx
, rtx
);
141 static rtx
get_subtarget (rtx
);
142 static void store_constructor_field (rtx
, unsigned HOST_WIDE_INT
,
143 HOST_WIDE_INT
, enum machine_mode
,
144 tree
, tree
, int, alias_set_type
);
145 static void store_constructor (tree
, rtx
, int, HOST_WIDE_INT
);
146 static rtx
store_field (rtx
, HOST_WIDE_INT
, HOST_WIDE_INT
, enum machine_mode
,
147 tree
, tree
, alias_set_type
, bool);
149 static unsigned HOST_WIDE_INT
highest_pow2_factor_for_target (const_tree
, const_tree
);
151 static int is_aligning_offset (const_tree
, const_tree
);
152 static void expand_operands (tree
, tree
, rtx
, rtx
*, rtx
*,
153 enum expand_modifier
);
154 static rtx
reduce_to_bit_field_precision (rtx
, rtx
, tree
);
155 static rtx
do_store_flag (tree
, rtx
, enum machine_mode
);
157 static void emit_single_push_insn (enum machine_mode
, rtx
, tree
);
159 static void do_tablejump (rtx
, enum machine_mode
, rtx
, rtx
, rtx
);
160 static rtx
const_vector_from_tree (tree
);
161 static void write_complex_part (rtx
, rtx
, bool);
163 /* Record for each mode whether we can move a register directly to or
164 from an object of that mode in memory. If we can't, we won't try
165 to use that mode directly when accessing a field of that mode. */
167 static char direct_load
[NUM_MACHINE_MODES
];
168 static char direct_store
[NUM_MACHINE_MODES
];
170 /* Record for each mode whether we can float-extend from memory. */
172 static bool float_extend_from_mem
[NUM_MACHINE_MODES
][NUM_MACHINE_MODES
];
174 /* This macro is used to determine whether move_by_pieces should be called
175 to perform a structure copy. */
176 #ifndef MOVE_BY_PIECES_P
177 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
178 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
179 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
182 /* This macro is used to determine whether clear_by_pieces should be
183 called to clear storage. */
184 #ifndef CLEAR_BY_PIECES_P
185 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
186 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
187 < (unsigned int) CLEAR_RATIO (optimize_insn_for_speed_p ()))
190 /* This macro is used to determine whether store_by_pieces should be
191 called to "memset" storage with byte values other than zero. */
192 #ifndef SET_BY_PIECES_P
193 #define SET_BY_PIECES_P(SIZE, ALIGN) \
194 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
195 < (unsigned int) SET_RATIO (optimize_insn_for_speed_p ()))
198 /* This macro is used to determine whether store_by_pieces should be
199 called to "memcpy" storage when the source is a constant string. */
200 #ifndef STORE_BY_PIECES_P
201 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
202 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
203 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
206 /* This array records the insn_code of insns to perform block moves. */
207 enum insn_code movmem_optab
[NUM_MACHINE_MODES
];
209 /* This array records the insn_code of insns to perform block sets. */
210 enum insn_code setmem_optab
[NUM_MACHINE_MODES
];
212 /* These arrays record the insn_code of three different kinds of insns
213 to perform block compares. */
214 enum insn_code cmpstr_optab
[NUM_MACHINE_MODES
];
215 enum insn_code cmpstrn_optab
[NUM_MACHINE_MODES
];
216 enum insn_code cmpmem_optab
[NUM_MACHINE_MODES
];
218 /* Synchronization primitives. */
219 enum insn_code sync_add_optab
[NUM_MACHINE_MODES
];
220 enum insn_code sync_sub_optab
[NUM_MACHINE_MODES
];
221 enum insn_code sync_ior_optab
[NUM_MACHINE_MODES
];
222 enum insn_code sync_and_optab
[NUM_MACHINE_MODES
];
223 enum insn_code sync_xor_optab
[NUM_MACHINE_MODES
];
224 enum insn_code sync_nand_optab
[NUM_MACHINE_MODES
];
225 enum insn_code sync_old_add_optab
[NUM_MACHINE_MODES
];
226 enum insn_code sync_old_sub_optab
[NUM_MACHINE_MODES
];
227 enum insn_code sync_old_ior_optab
[NUM_MACHINE_MODES
];
228 enum insn_code sync_old_and_optab
[NUM_MACHINE_MODES
];
229 enum insn_code sync_old_xor_optab
[NUM_MACHINE_MODES
];
230 enum insn_code sync_old_nand_optab
[NUM_MACHINE_MODES
];
231 enum insn_code sync_new_add_optab
[NUM_MACHINE_MODES
];
232 enum insn_code sync_new_sub_optab
[NUM_MACHINE_MODES
];
233 enum insn_code sync_new_ior_optab
[NUM_MACHINE_MODES
];
234 enum insn_code sync_new_and_optab
[NUM_MACHINE_MODES
];
235 enum insn_code sync_new_xor_optab
[NUM_MACHINE_MODES
];
236 enum insn_code sync_new_nand_optab
[NUM_MACHINE_MODES
];
237 enum insn_code sync_compare_and_swap
[NUM_MACHINE_MODES
];
238 enum insn_code sync_lock_test_and_set
[NUM_MACHINE_MODES
];
239 enum insn_code sync_lock_release
[NUM_MACHINE_MODES
];
241 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
243 #ifndef SLOW_UNALIGNED_ACCESS
244 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
247 /* This is run to set up which modes can be used
248 directly in memory and to initialize the block move optab. It is run
249 at the beginning of compilation and when the target is reinitialized. */
252 init_expr_target (void)
255 enum machine_mode mode
;
260 /* Try indexing by frame ptr and try by stack ptr.
261 It is known that on the Convex the stack ptr isn't a valid index.
262 With luck, one or the other is valid on any machine. */
263 mem
= gen_rtx_MEM (VOIDmode
, stack_pointer_rtx
);
264 mem1
= gen_rtx_MEM (VOIDmode
, frame_pointer_rtx
);
266 /* A scratch register we can modify in-place below to avoid
267 useless RTL allocations. */
268 reg
= gen_rtx_REG (VOIDmode
, -1);
270 insn
= rtx_alloc (INSN
);
271 pat
= gen_rtx_SET (VOIDmode
, NULL_RTX
, NULL_RTX
);
272 PATTERN (insn
) = pat
;
274 for (mode
= VOIDmode
; (int) mode
< NUM_MACHINE_MODES
;
275 mode
= (enum machine_mode
) ((int) mode
+ 1))
279 direct_load
[(int) mode
] = direct_store
[(int) mode
] = 0;
280 PUT_MODE (mem
, mode
);
281 PUT_MODE (mem1
, mode
);
282 PUT_MODE (reg
, mode
);
284 /* See if there is some register that can be used in this mode and
285 directly loaded or stored from memory. */
287 if (mode
!= VOIDmode
&& mode
!= BLKmode
)
288 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
289 && (direct_load
[(int) mode
] == 0 || direct_store
[(int) mode
] == 0);
292 if (! HARD_REGNO_MODE_OK (regno
, mode
))
295 SET_REGNO (reg
, regno
);
298 SET_DEST (pat
) = reg
;
299 if (recog (pat
, insn
, &num_clobbers
) >= 0)
300 direct_load
[(int) mode
] = 1;
302 SET_SRC (pat
) = mem1
;
303 SET_DEST (pat
) = reg
;
304 if (recog (pat
, insn
, &num_clobbers
) >= 0)
305 direct_load
[(int) mode
] = 1;
308 SET_DEST (pat
) = mem
;
309 if (recog (pat
, insn
, &num_clobbers
) >= 0)
310 direct_store
[(int) mode
] = 1;
313 SET_DEST (pat
) = mem1
;
314 if (recog (pat
, insn
, &num_clobbers
) >= 0)
315 direct_store
[(int) mode
] = 1;
319 mem
= gen_rtx_MEM (VOIDmode
, gen_rtx_raw_REG (Pmode
, 10000));
321 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
322 mode
= GET_MODE_WIDER_MODE (mode
))
324 enum machine_mode srcmode
;
325 for (srcmode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); srcmode
!= mode
;
326 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
330 ic
= can_extend_p (mode
, srcmode
, 0);
331 if (ic
== CODE_FOR_nothing
)
334 PUT_MODE (mem
, srcmode
);
336 if ((*insn_data
[ic
].operand
[1].predicate
) (mem
, srcmode
))
337 float_extend_from_mem
[mode
][srcmode
] = true;
342 /* This is run at the start of compiling a function. */
347 memset (&crtl
->expr
, 0, sizeof (crtl
->expr
));
350 /* Copy data from FROM to TO, where the machine modes are not the same.
351 Both modes may be integer, or both may be floating, or both may be
353 UNSIGNEDP should be nonzero if FROM is an unsigned type.
354 This causes zero-extension instead of sign-extension. */
357 convert_move (rtx to
, rtx from
, int unsignedp
)
359 enum machine_mode to_mode
= GET_MODE (to
);
360 enum machine_mode from_mode
= GET_MODE (from
);
361 int to_real
= SCALAR_FLOAT_MODE_P (to_mode
);
362 int from_real
= SCALAR_FLOAT_MODE_P (from_mode
);
366 /* rtx code for making an equivalent value. */
367 enum rtx_code equiv_code
= (unsignedp
< 0 ? UNKNOWN
368 : (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
));
371 gcc_assert (to_real
== from_real
);
372 gcc_assert (to_mode
!= BLKmode
);
373 gcc_assert (from_mode
!= BLKmode
);
375 /* If the source and destination are already the same, then there's
380 /* If FROM is a SUBREG that indicates that we have already done at least
381 the required extension, strip it. We don't handle such SUBREGs as
384 if (GET_CODE (from
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (from
)
385 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from
)))
386 >= GET_MODE_SIZE (to_mode
))
387 && SUBREG_PROMOTED_UNSIGNED_P (from
) == unsignedp
)
388 from
= gen_lowpart (to_mode
, from
), from_mode
= to_mode
;
390 gcc_assert (GET_CODE (to
) != SUBREG
|| !SUBREG_PROMOTED_VAR_P (to
));
392 if (to_mode
== from_mode
393 || (from_mode
== VOIDmode
&& CONSTANT_P (from
)))
395 emit_move_insn (to
, from
);
399 if (VECTOR_MODE_P (to_mode
) || VECTOR_MODE_P (from_mode
))
401 gcc_assert (GET_MODE_BITSIZE (from_mode
) == GET_MODE_BITSIZE (to_mode
));
403 if (VECTOR_MODE_P (to_mode
))
404 from
= simplify_gen_subreg (to_mode
, from
, GET_MODE (from
), 0);
406 to
= simplify_gen_subreg (from_mode
, to
, GET_MODE (to
), 0);
408 emit_move_insn (to
, from
);
412 if (GET_CODE (to
) == CONCAT
&& GET_CODE (from
) == CONCAT
)
414 convert_move (XEXP (to
, 0), XEXP (from
, 0), unsignedp
);
415 convert_move (XEXP (to
, 1), XEXP (from
, 1), unsignedp
);
424 gcc_assert ((GET_MODE_PRECISION (from_mode
)
425 != GET_MODE_PRECISION (to_mode
))
426 || (DECIMAL_FLOAT_MODE_P (from_mode
)
427 != DECIMAL_FLOAT_MODE_P (to_mode
)));
429 if (GET_MODE_PRECISION (from_mode
) == GET_MODE_PRECISION (to_mode
))
430 /* Conversion between decimal float and binary float, same size. */
431 tab
= DECIMAL_FLOAT_MODE_P (from_mode
) ? trunc_optab
: sext_optab
;
432 else if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
))
437 /* Try converting directly if the insn is supported. */
439 code
= convert_optab_handler (tab
, to_mode
, from_mode
)->insn_code
;
440 if (code
!= CODE_FOR_nothing
)
442 emit_unop_insn (code
, to
, from
,
443 tab
== sext_optab
? FLOAT_EXTEND
: FLOAT_TRUNCATE
);
447 /* Otherwise use a libcall. */
448 libcall
= convert_optab_libfunc (tab
, to_mode
, from_mode
);
450 /* Is this conversion implemented yet? */
451 gcc_assert (libcall
);
454 value
= emit_library_call_value (libcall
, NULL_RTX
, LCT_CONST
, to_mode
,
456 insns
= get_insns ();
458 emit_libcall_block (insns
, to
, value
,
459 tab
== trunc_optab
? gen_rtx_FLOAT_TRUNCATE (to_mode
,
461 : gen_rtx_FLOAT_EXTEND (to_mode
, from
));
465 /* Handle pointer conversion. */ /* SPEE 900220. */
466 /* Targets are expected to provide conversion insns between PxImode and
467 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
468 if (GET_MODE_CLASS (to_mode
) == MODE_PARTIAL_INT
)
470 enum machine_mode full_mode
471 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode
), MODE_INT
);
473 gcc_assert (convert_optab_handler (trunc_optab
, to_mode
, full_mode
)->insn_code
474 != CODE_FOR_nothing
);
476 if (full_mode
!= from_mode
)
477 from
= convert_to_mode (full_mode
, from
, unsignedp
);
478 emit_unop_insn (convert_optab_handler (trunc_optab
, to_mode
, full_mode
)->insn_code
,
482 if (GET_MODE_CLASS (from_mode
) == MODE_PARTIAL_INT
)
485 enum machine_mode full_mode
486 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode
), MODE_INT
);
488 gcc_assert (convert_optab_handler (sext_optab
, full_mode
, from_mode
)->insn_code
489 != CODE_FOR_nothing
);
491 if (to_mode
== full_mode
)
493 emit_unop_insn (convert_optab_handler (sext_optab
, full_mode
, from_mode
)->insn_code
,
498 new_from
= gen_reg_rtx (full_mode
);
499 emit_unop_insn (convert_optab_handler (sext_optab
, full_mode
, from_mode
)->insn_code
,
500 new_from
, from
, UNKNOWN
);
502 /* else proceed to integer conversions below. */
503 from_mode
= full_mode
;
507 /* Make sure both are fixed-point modes or both are not. */
508 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode
) ==
509 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode
));
510 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode
))
512 /* If we widen from_mode to to_mode and they are in the same class,
513 we won't saturate the result.
514 Otherwise, always saturate the result to play safe. */
515 if (GET_MODE_CLASS (from_mode
) == GET_MODE_CLASS (to_mode
)
516 && GET_MODE_SIZE (from_mode
) < GET_MODE_SIZE (to_mode
))
517 expand_fixed_convert (to
, from
, 0, 0);
519 expand_fixed_convert (to
, from
, 0, 1);
523 /* Now both modes are integers. */
525 /* Handle expanding beyond a word. */
526 if (GET_MODE_BITSIZE (from_mode
) < GET_MODE_BITSIZE (to_mode
)
527 && GET_MODE_BITSIZE (to_mode
) > BITS_PER_WORD
)
534 enum machine_mode lowpart_mode
;
535 int nwords
= CEIL (GET_MODE_SIZE (to_mode
), UNITS_PER_WORD
);
537 /* Try converting directly if the insn is supported. */
538 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
541 /* If FROM is a SUBREG, put it into a register. Do this
542 so that we always generate the same set of insns for
543 better cse'ing; if an intermediate assignment occurred,
544 we won't be doing the operation directly on the SUBREG. */
545 if (optimize
> 0 && GET_CODE (from
) == SUBREG
)
546 from
= force_reg (from_mode
, from
);
547 emit_unop_insn (code
, to
, from
, equiv_code
);
550 /* Next, try converting via full word. */
551 else if (GET_MODE_BITSIZE (from_mode
) < BITS_PER_WORD
552 && ((code
= can_extend_p (to_mode
, word_mode
, unsignedp
))
553 != CODE_FOR_nothing
))
555 rtx word_to
= gen_reg_rtx (word_mode
);
558 if (reg_overlap_mentioned_p (to
, from
))
559 from
= force_reg (from_mode
, from
);
562 convert_move (word_to
, from
, unsignedp
);
563 emit_unop_insn (code
, to
, word_to
, equiv_code
);
567 /* No special multiword conversion insn; do it by hand. */
570 /* Since we will turn this into a no conflict block, we must ensure
571 that the source does not overlap the target. */
573 if (reg_overlap_mentioned_p (to
, from
))
574 from
= force_reg (from_mode
, from
);
576 /* Get a copy of FROM widened to a word, if necessary. */
577 if (GET_MODE_BITSIZE (from_mode
) < BITS_PER_WORD
)
578 lowpart_mode
= word_mode
;
580 lowpart_mode
= from_mode
;
582 lowfrom
= convert_to_mode (lowpart_mode
, from
, unsignedp
);
584 lowpart
= gen_lowpart (lowpart_mode
, to
);
585 emit_move_insn (lowpart
, lowfrom
);
587 /* Compute the value to put in each remaining word. */
589 fill_value
= const0_rtx
;
591 fill_value
= emit_store_flag (gen_reg_rtx (word_mode
),
592 LT
, lowfrom
, const0_rtx
,
595 /* Fill the remaining words. */
596 for (i
= GET_MODE_SIZE (lowpart_mode
) / UNITS_PER_WORD
; i
< nwords
; i
++)
598 int index
= (WORDS_BIG_ENDIAN
? nwords
- i
- 1 : i
);
599 rtx subword
= operand_subword (to
, index
, 1, to_mode
);
601 gcc_assert (subword
);
603 if (fill_value
!= subword
)
604 emit_move_insn (subword
, fill_value
);
607 insns
= get_insns ();
614 /* Truncating multi-word to a word or less. */
615 if (GET_MODE_BITSIZE (from_mode
) > BITS_PER_WORD
616 && GET_MODE_BITSIZE (to_mode
) <= BITS_PER_WORD
)
619 && ! MEM_VOLATILE_P (from
)
620 && direct_load
[(int) to_mode
]
621 && ! mode_dependent_address_p (XEXP (from
, 0)))
623 || GET_CODE (from
) == SUBREG
))
624 from
= force_reg (from_mode
, from
);
625 convert_move (to
, gen_lowpart (word_mode
, from
), 0);
629 /* Now follow all the conversions between integers
630 no more than a word long. */
632 /* For truncation, usually we can just refer to FROM in a narrower mode. */
633 if (GET_MODE_BITSIZE (to_mode
) < GET_MODE_BITSIZE (from_mode
)
634 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode
),
635 GET_MODE_BITSIZE (from_mode
)))
638 && ! MEM_VOLATILE_P (from
)
639 && direct_load
[(int) to_mode
]
640 && ! mode_dependent_address_p (XEXP (from
, 0)))
642 || GET_CODE (from
) == SUBREG
))
643 from
= force_reg (from_mode
, from
);
644 if (REG_P (from
) && REGNO (from
) < FIRST_PSEUDO_REGISTER
645 && ! HARD_REGNO_MODE_OK (REGNO (from
), to_mode
))
646 from
= copy_to_reg (from
);
647 emit_move_insn (to
, gen_lowpart (to_mode
, from
));
651 /* Handle extension. */
652 if (GET_MODE_BITSIZE (to_mode
) > GET_MODE_BITSIZE (from_mode
))
654 /* Convert directly if that works. */
655 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
658 emit_unop_insn (code
, to
, from
, equiv_code
);
663 enum machine_mode intermediate
;
667 /* Search for a mode to convert via. */
668 for (intermediate
= from_mode
; intermediate
!= VOIDmode
;
669 intermediate
= GET_MODE_WIDER_MODE (intermediate
))
670 if (((can_extend_p (to_mode
, intermediate
, unsignedp
)
672 || (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (intermediate
)
673 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode
),
674 GET_MODE_BITSIZE (intermediate
))))
675 && (can_extend_p (intermediate
, from_mode
, unsignedp
)
676 != CODE_FOR_nothing
))
678 convert_move (to
, convert_to_mode (intermediate
, from
,
679 unsignedp
), unsignedp
);
683 /* No suitable intermediate mode.
684 Generate what we need with shifts. */
685 shift_amount
= build_int_cst (NULL_TREE
,
686 GET_MODE_BITSIZE (to_mode
)
687 - GET_MODE_BITSIZE (from_mode
));
688 from
= gen_lowpart (to_mode
, force_reg (from_mode
, from
));
689 tmp
= expand_shift (LSHIFT_EXPR
, to_mode
, from
, shift_amount
,
691 tmp
= expand_shift (RSHIFT_EXPR
, to_mode
, tmp
, shift_amount
,
694 emit_move_insn (to
, tmp
);
699 /* Support special truncate insns for certain modes. */
700 if (convert_optab_handler (trunc_optab
, to_mode
, from_mode
)->insn_code
!= CODE_FOR_nothing
)
702 emit_unop_insn (convert_optab_handler (trunc_optab
, to_mode
, from_mode
)->insn_code
,
707 /* Handle truncation of volatile memrefs, and so on;
708 the things that couldn't be truncated directly,
709 and for which there was no special instruction.
711 ??? Code above formerly short-circuited this, for most integer
712 mode pairs, with a force_reg in from_mode followed by a recursive
713 call to this routine. Appears always to have been wrong. */
714 if (GET_MODE_BITSIZE (to_mode
) < GET_MODE_BITSIZE (from_mode
))
716 rtx temp
= force_reg (to_mode
, gen_lowpart (to_mode
, from
));
717 emit_move_insn (to
, temp
);
721 /* Mode combination is not recognized. */
725 /* Return an rtx for a value that would result
726 from converting X to mode MODE.
727 Both X and MODE may be floating, or both integer.
728 UNSIGNEDP is nonzero if X is an unsigned value.
729 This can be done by referring to a part of X in place
730 or by copying to a new temporary with conversion. */
733 convert_to_mode (enum machine_mode mode
, rtx x
, int unsignedp
)
735 return convert_modes (mode
, VOIDmode
, x
, unsignedp
);
738 /* Return an rtx for a value that would result
739 from converting X from mode OLDMODE to mode MODE.
740 Both modes may be floating, or both integer.
741 UNSIGNEDP is nonzero if X is an unsigned value.
743 This can be done by referring to a part of X in place
744 or by copying to a new temporary with conversion.
746 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
749 convert_modes (enum machine_mode mode
, enum machine_mode oldmode
, rtx x
, int unsignedp
)
753 /* If FROM is a SUBREG that indicates that we have already done at least
754 the required extension, strip it. */
756 if (GET_CODE (x
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (x
)
757 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))) >= GET_MODE_SIZE (mode
)
758 && SUBREG_PROMOTED_UNSIGNED_P (x
) == unsignedp
)
759 x
= gen_lowpart (mode
, x
);
761 if (GET_MODE (x
) != VOIDmode
)
762 oldmode
= GET_MODE (x
);
767 /* There is one case that we must handle specially: If we are converting
768 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
769 we are to interpret the constant as unsigned, gen_lowpart will do
770 the wrong if the constant appears negative. What we want to do is
771 make the high-order word of the constant zero, not all ones. */
773 if (unsignedp
&& GET_MODE_CLASS (mode
) == MODE_INT
774 && GET_MODE_BITSIZE (mode
) == 2 * HOST_BITS_PER_WIDE_INT
775 && CONST_INT_P (x
) && INTVAL (x
) < 0)
777 HOST_WIDE_INT val
= INTVAL (x
);
779 if (oldmode
!= VOIDmode
780 && HOST_BITS_PER_WIDE_INT
> GET_MODE_BITSIZE (oldmode
))
782 int width
= GET_MODE_BITSIZE (oldmode
);
784 /* We need to zero extend VAL. */
785 val
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
788 return immed_double_const (val
, (HOST_WIDE_INT
) 0, mode
);
791 /* We can do this with a gen_lowpart if both desired and current modes
792 are integer, and this is either a constant integer, a register, or a
793 non-volatile MEM. Except for the constant case where MODE is no
794 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
797 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
798 || (GET_MODE_CLASS (mode
) == MODE_INT
799 && GET_MODE_CLASS (oldmode
) == MODE_INT
800 && (GET_CODE (x
) == CONST_DOUBLE
801 || (GET_MODE_SIZE (mode
) <= GET_MODE_SIZE (oldmode
)
802 && ((MEM_P (x
) && ! MEM_VOLATILE_P (x
)
803 && direct_load
[(int) mode
])
805 && (! HARD_REGISTER_P (x
)
806 || HARD_REGNO_MODE_OK (REGNO (x
), mode
))
807 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode
),
808 GET_MODE_BITSIZE (GET_MODE (x
)))))))))
810 /* ?? If we don't know OLDMODE, we have to assume here that
811 X does not need sign- or zero-extension. This may not be
812 the case, but it's the best we can do. */
813 if (CONST_INT_P (x
) && oldmode
!= VOIDmode
814 && GET_MODE_SIZE (mode
) > GET_MODE_SIZE (oldmode
))
816 HOST_WIDE_INT val
= INTVAL (x
);
817 int width
= GET_MODE_BITSIZE (oldmode
);
819 /* We must sign or zero-extend in this case. Start by
820 zero-extending, then sign extend if we need to. */
821 val
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
823 && (val
& ((HOST_WIDE_INT
) 1 << (width
- 1))))
824 val
|= (HOST_WIDE_INT
) (-1) << width
;
826 return gen_int_mode (val
, mode
);
829 return gen_lowpart (mode
, x
);
832 /* Converting from integer constant into mode is always equivalent to an
834 if (VECTOR_MODE_P (mode
) && GET_MODE (x
) == VOIDmode
)
836 gcc_assert (GET_MODE_BITSIZE (mode
) == GET_MODE_BITSIZE (oldmode
));
837 return simplify_gen_subreg (mode
, x
, oldmode
, 0);
840 temp
= gen_reg_rtx (mode
);
841 convert_move (temp
, x
, unsignedp
);
845 /* STORE_MAX_PIECES is the number of bytes at a time that we can
846 store efficiently. Due to internal GCC limitations, this is
847 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
848 for an immediate constant. */
850 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
852 /* Determine whether the LEN bytes can be moved by using several move
853 instructions. Return nonzero if a call to move_by_pieces should
857 can_move_by_pieces (unsigned HOST_WIDE_INT len
,
858 unsigned int align ATTRIBUTE_UNUSED
)
860 return MOVE_BY_PIECES_P (len
, align
);
863 /* Generate several move instructions to copy LEN bytes from block FROM to
864 block TO. (These are MEM rtx's with BLKmode).
866 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
867 used to push FROM to the stack.
869 ALIGN is maximum stack alignment we can assume.
871 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
872 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
876 move_by_pieces (rtx to
, rtx from
, unsigned HOST_WIDE_INT len
,
877 unsigned int align
, int endp
)
879 struct move_by_pieces_d data
;
880 rtx to_addr
, from_addr
= XEXP (from
, 0);
881 unsigned int max_size
= MOVE_MAX_PIECES
+ 1;
882 enum machine_mode mode
= VOIDmode
, tmode
;
883 enum insn_code icode
;
885 align
= MIN (to
? MEM_ALIGN (to
) : align
, MEM_ALIGN (from
));
888 data
.from_addr
= from_addr
;
891 to_addr
= XEXP (to
, 0);
894 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
895 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
897 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
904 #ifdef STACK_GROWS_DOWNWARD
910 data
.to_addr
= to_addr
;
913 = (GET_CODE (from_addr
) == PRE_INC
|| GET_CODE (from_addr
) == PRE_DEC
914 || GET_CODE (from_addr
) == POST_INC
915 || GET_CODE (from_addr
) == POST_DEC
);
917 data
.explicit_inc_from
= 0;
918 data
.explicit_inc_to
= 0;
919 if (data
.reverse
) data
.offset
= len
;
922 /* If copying requires more than two move insns,
923 copy addresses to registers (to make displacements shorter)
924 and use post-increment if available. */
925 if (!(data
.autinc_from
&& data
.autinc_to
)
926 && move_by_pieces_ninsns (len
, align
, max_size
) > 2)
928 /* Find the mode of the largest move... */
929 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
930 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
931 if (GET_MODE_SIZE (tmode
) < max_size
)
934 if (USE_LOAD_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_from
)
936 data
.from_addr
= copy_addr_to_reg (plus_constant (from_addr
, len
));
937 data
.autinc_from
= 1;
938 data
.explicit_inc_from
= -1;
940 if (USE_LOAD_POST_INCREMENT (mode
) && ! data
.autinc_from
)
942 data
.from_addr
= copy_addr_to_reg (from_addr
);
943 data
.autinc_from
= 1;
944 data
.explicit_inc_from
= 1;
946 if (!data
.autinc_from
&& CONSTANT_P (from_addr
))
947 data
.from_addr
= copy_addr_to_reg (from_addr
);
948 if (USE_STORE_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_to
)
950 data
.to_addr
= copy_addr_to_reg (plus_constant (to_addr
, len
));
952 data
.explicit_inc_to
= -1;
954 if (USE_STORE_POST_INCREMENT (mode
) && ! data
.reverse
&& ! data
.autinc_to
)
956 data
.to_addr
= copy_addr_to_reg (to_addr
);
958 data
.explicit_inc_to
= 1;
960 if (!data
.autinc_to
&& CONSTANT_P (to_addr
))
961 data
.to_addr
= copy_addr_to_reg (to_addr
);
964 tmode
= mode_for_size (MOVE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
965 if (align
>= GET_MODE_ALIGNMENT (tmode
))
966 align
= GET_MODE_ALIGNMENT (tmode
);
969 enum machine_mode xmode
;
971 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
973 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
974 if (GET_MODE_SIZE (tmode
) > MOVE_MAX_PIECES
975 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
978 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
981 /* First move what we can in the largest integer mode, then go to
982 successively smaller modes. */
986 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
987 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
988 if (GET_MODE_SIZE (tmode
) < max_size
)
991 if (mode
== VOIDmode
)
994 icode
= optab_handler (mov_optab
, mode
)->insn_code
;
995 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
996 move_by_pieces_1 (GEN_FCN (icode
), mode
, &data
);
998 max_size
= GET_MODE_SIZE (mode
);
1001 /* The code above should have handled everything. */
1002 gcc_assert (!data
.len
);
1008 gcc_assert (!data
.reverse
);
1013 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
1014 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
1016 data
.to_addr
= copy_addr_to_reg (plus_constant (data
.to_addr
,
1019 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
1026 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
1034 /* Return number of insns required to move L bytes by pieces.
1035 ALIGN (in bits) is maximum alignment we can assume. */
1037 static unsigned HOST_WIDE_INT
1038 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l
, unsigned int align
,
1039 unsigned int max_size
)
1041 unsigned HOST_WIDE_INT n_insns
= 0;
1042 enum machine_mode tmode
;
1044 tmode
= mode_for_size (MOVE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
1045 if (align
>= GET_MODE_ALIGNMENT (tmode
))
1046 align
= GET_MODE_ALIGNMENT (tmode
);
1049 enum machine_mode tmode
, xmode
;
1051 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
1053 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
1054 if (GET_MODE_SIZE (tmode
) > MOVE_MAX_PIECES
1055 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
1058 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
1061 while (max_size
> 1)
1063 enum machine_mode mode
= VOIDmode
;
1064 enum insn_code icode
;
1066 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
1067 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
1068 if (GET_MODE_SIZE (tmode
) < max_size
)
1071 if (mode
== VOIDmode
)
1074 icode
= optab_handler (mov_optab
, mode
)->insn_code
;
1075 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
1076 n_insns
+= l
/ GET_MODE_SIZE (mode
), l
%= GET_MODE_SIZE (mode
);
1078 max_size
= GET_MODE_SIZE (mode
);
1085 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1086 with move instructions for mode MODE. GENFUN is the gen_... function
1087 to make a move insn for that mode. DATA has all the other info. */
1090 move_by_pieces_1 (rtx (*genfun
) (rtx
, ...), enum machine_mode mode
,
1091 struct move_by_pieces_d
*data
)
1093 unsigned int size
= GET_MODE_SIZE (mode
);
1094 rtx to1
= NULL_RTX
, from1
;
1096 while (data
->len
>= size
)
1099 data
->offset
-= size
;
1103 if (data
->autinc_to
)
1104 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
1107 to1
= adjust_address (data
->to
, mode
, data
->offset
);
1110 if (data
->autinc_from
)
1111 from1
= adjust_automodify_address (data
->from
, mode
, data
->from_addr
,
1114 from1
= adjust_address (data
->from
, mode
, data
->offset
);
1116 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
1117 emit_insn (gen_add2_insn (data
->to_addr
,
1118 GEN_INT (-(HOST_WIDE_INT
)size
)));
1119 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_from
< 0)
1120 emit_insn (gen_add2_insn (data
->from_addr
,
1121 GEN_INT (-(HOST_WIDE_INT
)size
)));
1124 emit_insn ((*genfun
) (to1
, from1
));
1127 #ifdef PUSH_ROUNDING
1128 emit_single_push_insn (mode
, from1
, NULL
);
1134 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
1135 emit_insn (gen_add2_insn (data
->to_addr
, GEN_INT (size
)));
1136 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_from
> 0)
1137 emit_insn (gen_add2_insn (data
->from_addr
, GEN_INT (size
)));
1139 if (! data
->reverse
)
1140 data
->offset
+= size
;
1146 /* Emit code to move a block Y to a block X. This may be done with
1147 string-move instructions, with multiple scalar move instructions,
1148 or with a library call.
1150 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1151 SIZE is an rtx that says how long they are.
1152 ALIGN is the maximum alignment we can assume they have.
1153 METHOD describes what kind of copy this is, and what mechanisms may be used.
1155 Return the address of the new block, if memcpy is called and returns it,
1159 emit_block_move_hints (rtx x
, rtx y
, rtx size
, enum block_op_methods method
,
1160 unsigned int expected_align
, HOST_WIDE_INT expected_size
)
1168 case BLOCK_OP_NORMAL
:
1169 case BLOCK_OP_TAILCALL
:
1170 may_use_call
= true;
1173 case BLOCK_OP_CALL_PARM
:
1174 may_use_call
= block_move_libcall_safe_for_call_parm ();
1176 /* Make inhibit_defer_pop nonzero around the library call
1177 to force it to pop the arguments right away. */
1181 case BLOCK_OP_NO_LIBCALL
:
1182 may_use_call
= false;
1189 align
= MIN (MEM_ALIGN (x
), MEM_ALIGN (y
));
1191 gcc_assert (MEM_P (x
));
1192 gcc_assert (MEM_P (y
));
1195 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1196 block copy is more efficient for other large modes, e.g. DCmode. */
1197 x
= adjust_address (x
, BLKmode
, 0);
1198 y
= adjust_address (y
, BLKmode
, 0);
1200 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1201 can be incorrect is coming from __builtin_memcpy. */
1202 if (CONST_INT_P (size
))
1204 if (INTVAL (size
) == 0)
1207 x
= shallow_copy_rtx (x
);
1208 y
= shallow_copy_rtx (y
);
1209 set_mem_size (x
, size
);
1210 set_mem_size (y
, size
);
1213 if (CONST_INT_P (size
) && MOVE_BY_PIECES_P (INTVAL (size
), align
))
1214 move_by_pieces (x
, y
, INTVAL (size
), align
, 0);
1215 else if (emit_block_move_via_movmem (x
, y
, size
, align
,
1216 expected_align
, expected_size
))
1218 else if (may_use_call
)
1219 retval
= emit_block_move_via_libcall (x
, y
, size
,
1220 method
== BLOCK_OP_TAILCALL
);
1222 emit_block_move_via_loop (x
, y
, size
, align
);
1224 if (method
== BLOCK_OP_CALL_PARM
)
1231 emit_block_move (rtx x
, rtx y
, rtx size
, enum block_op_methods method
)
1233 return emit_block_move_hints (x
, y
, size
, method
, 0, -1);
1236 /* A subroutine of emit_block_move. Returns true if calling the
1237 block move libcall will not clobber any parameters which may have
1238 already been placed on the stack. */
1241 block_move_libcall_safe_for_call_parm (void)
1243 #if defined (REG_PARM_STACK_SPACE)
1247 /* If arguments are pushed on the stack, then they're safe. */
1251 /* If registers go on the stack anyway, any argument is sure to clobber
1252 an outgoing argument. */
1253 #if defined (REG_PARM_STACK_SPACE)
1254 fn
= emit_block_move_libcall_fn (false);
1255 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn
? NULL_TREE
: TREE_TYPE (fn
)))
1256 && REG_PARM_STACK_SPACE (fn
) != 0)
1260 /* If any argument goes in memory, then it might clobber an outgoing
1263 CUMULATIVE_ARGS args_so_far
;
1266 fn
= emit_block_move_libcall_fn (false);
1267 INIT_CUMULATIVE_ARGS (args_so_far
, TREE_TYPE (fn
), NULL_RTX
, 0, 3);
1269 arg
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
1270 for ( ; arg
!= void_list_node
; arg
= TREE_CHAIN (arg
))
1272 enum machine_mode mode
= TYPE_MODE (TREE_VALUE (arg
));
1273 rtx tmp
= FUNCTION_ARG (args_so_far
, mode
, NULL_TREE
, 1);
1274 if (!tmp
|| !REG_P (tmp
))
1276 if (targetm
.calls
.arg_partial_bytes (&args_so_far
, mode
, NULL
, 1))
1278 FUNCTION_ARG_ADVANCE (args_so_far
, mode
, NULL_TREE
, 1);
1284 /* A subroutine of emit_block_move. Expand a movmem pattern;
1285 return true if successful. */
1288 emit_block_move_via_movmem (rtx x
, rtx y
, rtx size
, unsigned int align
,
1289 unsigned int expected_align
, HOST_WIDE_INT expected_size
)
1291 rtx opalign
= GEN_INT (align
/ BITS_PER_UNIT
);
1292 int save_volatile_ok
= volatile_ok
;
1293 enum machine_mode mode
;
1295 if (expected_align
< align
)
1296 expected_align
= align
;
1298 /* Since this is a move insn, we don't care about volatility. */
1301 /* Try the most limited insn first, because there's no point
1302 including more than one in the machine description unless
1303 the more limited one has some advantage. */
1305 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1306 mode
= GET_MODE_WIDER_MODE (mode
))
1308 enum insn_code code
= movmem_optab
[(int) mode
];
1309 insn_operand_predicate_fn pred
;
1311 if (code
!= CODE_FOR_nothing
1312 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1313 here because if SIZE is less than the mode mask, as it is
1314 returned by the macro, it will definitely be less than the
1315 actual mode mask. */
1316 && ((CONST_INT_P (size
)
1317 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
1318 <= (GET_MODE_MASK (mode
) >> 1)))
1319 || GET_MODE_BITSIZE (mode
) >= BITS_PER_WORD
)
1320 && ((pred
= insn_data
[(int) code
].operand
[0].predicate
) == 0
1321 || (*pred
) (x
, BLKmode
))
1322 && ((pred
= insn_data
[(int) code
].operand
[1].predicate
) == 0
1323 || (*pred
) (y
, BLKmode
))
1324 && ((pred
= insn_data
[(int) code
].operand
[3].predicate
) == 0
1325 || (*pred
) (opalign
, VOIDmode
)))
1328 rtx last
= get_last_insn ();
1331 op2
= convert_to_mode (mode
, size
, 1);
1332 pred
= insn_data
[(int) code
].operand
[2].predicate
;
1333 if (pred
!= 0 && ! (*pred
) (op2
, mode
))
1334 op2
= copy_to_mode_reg (mode
, op2
);
1336 /* ??? When called via emit_block_move_for_call, it'd be
1337 nice if there were some way to inform the backend, so
1338 that it doesn't fail the expansion because it thinks
1339 emitting the libcall would be more efficient. */
1341 if (insn_data
[(int) code
].n_operands
== 4)
1342 pat
= GEN_FCN ((int) code
) (x
, y
, op2
, opalign
);
1344 pat
= GEN_FCN ((int) code
) (x
, y
, op2
, opalign
,
1345 GEN_INT (expected_align
1347 GEN_INT (expected_size
));
1351 volatile_ok
= save_volatile_ok
;
1355 delete_insns_since (last
);
1359 volatile_ok
= save_volatile_ok
;
1363 /* A subroutine of emit_block_move. Expand a call to memcpy.
1364 Return the return value from memcpy, 0 otherwise. */
1367 emit_block_move_via_libcall (rtx dst
, rtx src
, rtx size
, bool tailcall
)
1369 rtx dst_addr
, src_addr
;
1370 tree call_expr
, fn
, src_tree
, dst_tree
, size_tree
;
1371 enum machine_mode size_mode
;
1374 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1375 pseudos. We can then place those new pseudos into a VAR_DECL and
1378 dst_addr
= copy_to_mode_reg (Pmode
, XEXP (dst
, 0));
1379 src_addr
= copy_to_mode_reg (Pmode
, XEXP (src
, 0));
1381 dst_addr
= convert_memory_address (ptr_mode
, dst_addr
);
1382 src_addr
= convert_memory_address (ptr_mode
, src_addr
);
1384 dst_tree
= make_tree (ptr_type_node
, dst_addr
);
1385 src_tree
= make_tree (ptr_type_node
, src_addr
);
1387 size_mode
= TYPE_MODE (sizetype
);
1389 size
= convert_to_mode (size_mode
, size
, 1);
1390 size
= copy_to_mode_reg (size_mode
, size
);
1392 /* It is incorrect to use the libcall calling conventions to call
1393 memcpy in this context. This could be a user call to memcpy and
1394 the user may wish to examine the return value from memcpy. For
1395 targets where libcalls and normal calls have different conventions
1396 for returning pointers, we could end up generating incorrect code. */
1398 size_tree
= make_tree (sizetype
, size
);
1400 fn
= emit_block_move_libcall_fn (true);
1401 call_expr
= build_call_expr (fn
, 3, dst_tree
, src_tree
, size_tree
);
1402 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
1404 retval
= expand_normal (call_expr
);
1409 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1410 for the function we use for block copies. The first time FOR_CALL
1411 is true, we call assemble_external. */
1413 static GTY(()) tree block_move_fn
;
1416 init_block_move_fn (const char *asmspec
)
1422 fn
= get_identifier ("memcpy");
1423 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
1424 const_ptr_type_node
, sizetype
,
1427 fn
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
, fn
, args
);
1428 DECL_EXTERNAL (fn
) = 1;
1429 TREE_PUBLIC (fn
) = 1;
1430 DECL_ARTIFICIAL (fn
) = 1;
1431 TREE_NOTHROW (fn
) = 1;
1432 DECL_VISIBILITY (fn
) = VISIBILITY_DEFAULT
;
1433 DECL_VISIBILITY_SPECIFIED (fn
) = 1;
1439 set_user_assembler_name (block_move_fn
, asmspec
);
1443 emit_block_move_libcall_fn (int for_call
)
1445 static bool emitted_extern
;
1448 init_block_move_fn (NULL
);
1450 if (for_call
&& !emitted_extern
)
1452 emitted_extern
= true;
1453 make_decl_rtl (block_move_fn
);
1454 assemble_external (block_move_fn
);
1457 return block_move_fn
;
1460 /* A subroutine of emit_block_move. Copy the data via an explicit
1461 loop. This is used only when libcalls are forbidden. */
1462 /* ??? It'd be nice to copy in hunks larger than QImode. */
1465 emit_block_move_via_loop (rtx x
, rtx y
, rtx size
,
1466 unsigned int align ATTRIBUTE_UNUSED
)
1468 rtx cmp_label
, top_label
, iter
, x_addr
, y_addr
, tmp
;
1469 enum machine_mode iter_mode
;
1471 iter_mode
= GET_MODE (size
);
1472 if (iter_mode
== VOIDmode
)
1473 iter_mode
= word_mode
;
1475 top_label
= gen_label_rtx ();
1476 cmp_label
= gen_label_rtx ();
1477 iter
= gen_reg_rtx (iter_mode
);
1479 emit_move_insn (iter
, const0_rtx
);
1481 x_addr
= force_operand (XEXP (x
, 0), NULL_RTX
);
1482 y_addr
= force_operand (XEXP (y
, 0), NULL_RTX
);
1483 do_pending_stack_adjust ();
1485 emit_jump (cmp_label
);
1486 emit_label (top_label
);
1488 tmp
= convert_modes (Pmode
, iter_mode
, iter
, true);
1489 x_addr
= gen_rtx_PLUS (Pmode
, x_addr
, tmp
);
1490 y_addr
= gen_rtx_PLUS (Pmode
, y_addr
, tmp
);
1491 x
= change_address (x
, QImode
, x_addr
);
1492 y
= change_address (y
, QImode
, y_addr
);
1494 emit_move_insn (x
, y
);
1496 tmp
= expand_simple_binop (iter_mode
, PLUS
, iter
, const1_rtx
, iter
,
1497 true, OPTAB_LIB_WIDEN
);
1499 emit_move_insn (iter
, tmp
);
1501 emit_label (cmp_label
);
1503 emit_cmp_and_jump_insns (iter
, size
, LT
, NULL_RTX
, iter_mode
,
1507 /* Copy all or part of a value X into registers starting at REGNO.
1508 The number of registers to be filled is NREGS. */
1511 move_block_to_reg (int regno
, rtx x
, int nregs
, enum machine_mode mode
)
1514 #ifdef HAVE_load_multiple
1522 if (CONSTANT_P (x
) && ! LEGITIMATE_CONSTANT_P (x
))
1523 x
= validize_mem (force_const_mem (mode
, x
));
1525 /* See if the machine can do this with a load multiple insn. */
1526 #ifdef HAVE_load_multiple
1527 if (HAVE_load_multiple
)
1529 last
= get_last_insn ();
1530 pat
= gen_load_multiple (gen_rtx_REG (word_mode
, regno
), x
,
1538 delete_insns_since (last
);
1542 for (i
= 0; i
< nregs
; i
++)
1543 emit_move_insn (gen_rtx_REG (word_mode
, regno
+ i
),
1544 operand_subword_force (x
, i
, mode
));
1547 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1548 The number of registers to be filled is NREGS. */
1551 move_block_from_reg (int regno
, rtx x
, int nregs
)
1558 /* See if the machine can do this with a store multiple insn. */
1559 #ifdef HAVE_store_multiple
1560 if (HAVE_store_multiple
)
1562 rtx last
= get_last_insn ();
1563 rtx pat
= gen_store_multiple (x
, gen_rtx_REG (word_mode
, regno
),
1571 delete_insns_since (last
);
1575 for (i
= 0; i
< nregs
; i
++)
1577 rtx tem
= operand_subword (x
, i
, 1, BLKmode
);
1581 emit_move_insn (tem
, gen_rtx_REG (word_mode
, regno
+ i
));
1585 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1586 ORIG, where ORIG is a non-consecutive group of registers represented by
1587 a PARALLEL. The clone is identical to the original except in that the
1588 original set of registers is replaced by a new set of pseudo registers.
1589 The new set has the same modes as the original set. */
1592 gen_group_rtx (rtx orig
)
1597 gcc_assert (GET_CODE (orig
) == PARALLEL
);
1599 length
= XVECLEN (orig
, 0);
1600 tmps
= XALLOCAVEC (rtx
, length
);
1602 /* Skip a NULL entry in first slot. */
1603 i
= XEXP (XVECEXP (orig
, 0, 0), 0) ? 0 : 1;
1608 for (; i
< length
; i
++)
1610 enum machine_mode mode
= GET_MODE (XEXP (XVECEXP (orig
, 0, i
), 0));
1611 rtx offset
= XEXP (XVECEXP (orig
, 0, i
), 1);
1613 tmps
[i
] = gen_rtx_EXPR_LIST (VOIDmode
, gen_reg_rtx (mode
), offset
);
1616 return gen_rtx_PARALLEL (GET_MODE (orig
), gen_rtvec_v (length
, tmps
));
1619 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1620 except that values are placed in TMPS[i], and must later be moved
1621 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1624 emit_group_load_1 (rtx
*tmps
, rtx dst
, rtx orig_src
, tree type
, int ssize
)
1628 enum machine_mode m
= GET_MODE (orig_src
);
1630 gcc_assert (GET_CODE (dst
) == PARALLEL
);
1633 && !SCALAR_INT_MODE_P (m
)
1634 && !MEM_P (orig_src
)
1635 && GET_CODE (orig_src
) != CONCAT
)
1637 enum machine_mode imode
= int_mode_for_mode (GET_MODE (orig_src
));
1638 if (imode
== BLKmode
)
1639 src
= assign_stack_temp (GET_MODE (orig_src
), ssize
, 0);
1641 src
= gen_reg_rtx (imode
);
1642 if (imode
!= BLKmode
)
1643 src
= gen_lowpart (GET_MODE (orig_src
), src
);
1644 emit_move_insn (src
, orig_src
);
1645 /* ...and back again. */
1646 if (imode
!= BLKmode
)
1647 src
= gen_lowpart (imode
, src
);
1648 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1652 /* Check for a NULL entry, used to indicate that the parameter goes
1653 both on the stack and in registers. */
1654 if (XEXP (XVECEXP (dst
, 0, 0), 0))
1659 /* Process the pieces. */
1660 for (i
= start
; i
< XVECLEN (dst
, 0); i
++)
1662 enum machine_mode mode
= GET_MODE (XEXP (XVECEXP (dst
, 0, i
), 0));
1663 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (dst
, 0, i
), 1));
1664 unsigned int bytelen
= GET_MODE_SIZE (mode
);
1667 /* Handle trailing fragments that run over the size of the struct. */
1668 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
1670 /* Arrange to shift the fragment to where it belongs.
1671 extract_bit_field loads to the lsb of the reg. */
1673 #ifdef BLOCK_REG_PADDING
1674 BLOCK_REG_PADDING (GET_MODE (orig_src
), type
, i
== start
)
1675 == (BYTES_BIG_ENDIAN
? upward
: downward
)
1680 shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
1681 bytelen
= ssize
- bytepos
;
1682 gcc_assert (bytelen
> 0);
1685 /* If we won't be loading directly from memory, protect the real source
1686 from strange tricks we might play; but make sure that the source can
1687 be loaded directly into the destination. */
1689 if (!MEM_P (orig_src
)
1690 && (!CONSTANT_P (orig_src
)
1691 || (GET_MODE (orig_src
) != mode
1692 && GET_MODE (orig_src
) != VOIDmode
)))
1694 if (GET_MODE (orig_src
) == VOIDmode
)
1695 src
= gen_reg_rtx (mode
);
1697 src
= gen_reg_rtx (GET_MODE (orig_src
));
1699 emit_move_insn (src
, orig_src
);
1702 /* Optimize the access just a bit. */
1704 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (src
))
1705 || MEM_ALIGN (src
) >= GET_MODE_ALIGNMENT (mode
))
1706 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
1707 && bytelen
== GET_MODE_SIZE (mode
))
1709 tmps
[i
] = gen_reg_rtx (mode
);
1710 emit_move_insn (tmps
[i
], adjust_address (src
, mode
, bytepos
));
1712 else if (COMPLEX_MODE_P (mode
)
1713 && GET_MODE (src
) == mode
1714 && bytelen
== GET_MODE_SIZE (mode
))
1715 /* Let emit_move_complex do the bulk of the work. */
1717 else if (GET_CODE (src
) == CONCAT
)
1719 unsigned int slen
= GET_MODE_SIZE (GET_MODE (src
));
1720 unsigned int slen0
= GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)));
1722 if ((bytepos
== 0 && bytelen
== slen0
)
1723 || (bytepos
!= 0 && bytepos
+ bytelen
<= slen
))
1725 /* The following assumes that the concatenated objects all
1726 have the same size. In this case, a simple calculation
1727 can be used to determine the object and the bit field
1729 tmps
[i
] = XEXP (src
, bytepos
/ slen0
);
1730 if (! CONSTANT_P (tmps
[i
])
1731 && (!REG_P (tmps
[i
]) || GET_MODE (tmps
[i
]) != mode
))
1732 tmps
[i
] = extract_bit_field (tmps
[i
], bytelen
* BITS_PER_UNIT
,
1733 (bytepos
% slen0
) * BITS_PER_UNIT
,
1734 1, NULL_RTX
, mode
, mode
);
1740 gcc_assert (!bytepos
);
1741 mem
= assign_stack_temp (GET_MODE (src
), slen
, 0);
1742 emit_move_insn (mem
, src
);
1743 tmps
[i
] = extract_bit_field (mem
, bytelen
* BITS_PER_UNIT
,
1744 0, 1, NULL_RTX
, mode
, mode
);
1747 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1748 SIMD register, which is currently broken. While we get GCC
1749 to emit proper RTL for these cases, let's dump to memory. */
1750 else if (VECTOR_MODE_P (GET_MODE (dst
))
1753 int slen
= GET_MODE_SIZE (GET_MODE (src
));
1756 mem
= assign_stack_temp (GET_MODE (src
), slen
, 0);
1757 emit_move_insn (mem
, src
);
1758 tmps
[i
] = adjust_address (mem
, mode
, (int) bytepos
);
1760 else if (CONSTANT_P (src
) && GET_MODE (dst
) != BLKmode
1761 && XVECLEN (dst
, 0) > 1)
1762 tmps
[i
] = simplify_gen_subreg (mode
, src
, GET_MODE(dst
), bytepos
);
1763 else if (CONSTANT_P (src
))
1765 HOST_WIDE_INT len
= (HOST_WIDE_INT
) bytelen
;
1773 gcc_assert (2 * len
== ssize
);
1774 split_double (src
, &first
, &second
);
1781 else if (REG_P (src
) && GET_MODE (src
) == mode
)
1784 tmps
[i
] = extract_bit_field (src
, bytelen
* BITS_PER_UNIT
,
1785 bytepos
* BITS_PER_UNIT
, 1, NULL_RTX
,
1789 tmps
[i
] = expand_shift (LSHIFT_EXPR
, mode
, tmps
[i
],
1790 build_int_cst (NULL_TREE
, shift
), tmps
[i
], 0);
1794 /* Emit code to move a block SRC of type TYPE to a block DST,
1795 where DST is non-consecutive registers represented by a PARALLEL.
1796 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1800 emit_group_load (rtx dst
, rtx src
, tree type
, int ssize
)
1805 tmps
= XALLOCAVEC (rtx
, XVECLEN (dst
, 0));
1806 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1808 /* Copy the extracted pieces into the proper (probable) hard regs. */
1809 for (i
= 0; i
< XVECLEN (dst
, 0); i
++)
1811 rtx d
= XEXP (XVECEXP (dst
, 0, i
), 0);
1814 emit_move_insn (d
, tmps
[i
]);
1818 /* Similar, but load SRC into new pseudos in a format that looks like
1819 PARALLEL. This can later be fed to emit_group_move to get things
1820 in the right place. */
1823 emit_group_load_into_temps (rtx parallel
, rtx src
, tree type
, int ssize
)
1828 vec
= rtvec_alloc (XVECLEN (parallel
, 0));
1829 emit_group_load_1 (&RTVEC_ELT (vec
, 0), parallel
, src
, type
, ssize
);
1831 /* Convert the vector to look just like the original PARALLEL, except
1832 with the computed values. */
1833 for (i
= 0; i
< XVECLEN (parallel
, 0); i
++)
1835 rtx e
= XVECEXP (parallel
, 0, i
);
1836 rtx d
= XEXP (e
, 0);
1840 d
= force_reg (GET_MODE (d
), RTVEC_ELT (vec
, i
));
1841 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), d
, XEXP (e
, 1));
1843 RTVEC_ELT (vec
, i
) = e
;
1846 return gen_rtx_PARALLEL (GET_MODE (parallel
), vec
);
1849 /* Emit code to move a block SRC to block DST, where SRC and DST are
1850 non-consecutive groups of registers, each represented by a PARALLEL. */
1853 emit_group_move (rtx dst
, rtx src
)
1857 gcc_assert (GET_CODE (src
) == PARALLEL
1858 && GET_CODE (dst
) == PARALLEL
1859 && XVECLEN (src
, 0) == XVECLEN (dst
, 0));
1861 /* Skip first entry if NULL. */
1862 for (i
= XEXP (XVECEXP (src
, 0, 0), 0) ? 0 : 1; i
< XVECLEN (src
, 0); i
++)
1863 emit_move_insn (XEXP (XVECEXP (dst
, 0, i
), 0),
1864 XEXP (XVECEXP (src
, 0, i
), 0));
1867 /* Move a group of registers represented by a PARALLEL into pseudos. */
1870 emit_group_move_into_temps (rtx src
)
1872 rtvec vec
= rtvec_alloc (XVECLEN (src
, 0));
1875 for (i
= 0; i
< XVECLEN (src
, 0); i
++)
1877 rtx e
= XVECEXP (src
, 0, i
);
1878 rtx d
= XEXP (e
, 0);
1881 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), copy_to_reg (d
), XEXP (e
, 1));
1882 RTVEC_ELT (vec
, i
) = e
;
1885 return gen_rtx_PARALLEL (GET_MODE (src
), vec
);
1888 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1889 where SRC is non-consecutive registers represented by a PARALLEL.
1890 SSIZE represents the total size of block ORIG_DST, or -1 if not
1894 emit_group_store (rtx orig_dst
, rtx src
, tree type ATTRIBUTE_UNUSED
, int ssize
)
1897 int start
, finish
, i
;
1898 enum machine_mode m
= GET_MODE (orig_dst
);
1900 gcc_assert (GET_CODE (src
) == PARALLEL
);
1902 if (!SCALAR_INT_MODE_P (m
)
1903 && !MEM_P (orig_dst
) && GET_CODE (orig_dst
) != CONCAT
)
1905 enum machine_mode imode
= int_mode_for_mode (GET_MODE (orig_dst
));
1906 if (imode
== BLKmode
)
1907 dst
= assign_stack_temp (GET_MODE (orig_dst
), ssize
, 0);
1909 dst
= gen_reg_rtx (imode
);
1910 emit_group_store (dst
, src
, type
, ssize
);
1911 if (imode
!= BLKmode
)
1912 dst
= gen_lowpart (GET_MODE (orig_dst
), dst
);
1913 emit_move_insn (orig_dst
, dst
);
1917 /* Check for a NULL entry, used to indicate that the parameter goes
1918 both on the stack and in registers. */
1919 if (XEXP (XVECEXP (src
, 0, 0), 0))
1923 finish
= XVECLEN (src
, 0);
1925 tmps
= XALLOCAVEC (rtx
, finish
);
1927 /* Copy the (probable) hard regs into pseudos. */
1928 for (i
= start
; i
< finish
; i
++)
1930 rtx reg
= XEXP (XVECEXP (src
, 0, i
), 0);
1931 if (!REG_P (reg
) || REGNO (reg
) < FIRST_PSEUDO_REGISTER
)
1933 tmps
[i
] = gen_reg_rtx (GET_MODE (reg
));
1934 emit_move_insn (tmps
[i
], reg
);
1940 /* If we won't be storing directly into memory, protect the real destination
1941 from strange tricks we might play. */
1943 if (GET_CODE (dst
) == PARALLEL
)
1947 /* We can get a PARALLEL dst if there is a conditional expression in
1948 a return statement. In that case, the dst and src are the same,
1949 so no action is necessary. */
1950 if (rtx_equal_p (dst
, src
))
1953 /* It is unclear if we can ever reach here, but we may as well handle
1954 it. Allocate a temporary, and split this into a store/load to/from
1957 temp
= assign_stack_temp (GET_MODE (dst
), ssize
, 0);
1958 emit_group_store (temp
, src
, type
, ssize
);
1959 emit_group_load (dst
, temp
, type
, ssize
);
1962 else if (!MEM_P (dst
) && GET_CODE (dst
) != CONCAT
)
1964 enum machine_mode outer
= GET_MODE (dst
);
1965 enum machine_mode inner
;
1966 HOST_WIDE_INT bytepos
;
1970 if (!REG_P (dst
) || REGNO (dst
) < FIRST_PSEUDO_REGISTER
)
1971 dst
= gen_reg_rtx (outer
);
1973 /* Make life a bit easier for combine. */
1974 /* If the first element of the vector is the low part
1975 of the destination mode, use a paradoxical subreg to
1976 initialize the destination. */
1979 inner
= GET_MODE (tmps
[start
]);
1980 bytepos
= subreg_lowpart_offset (inner
, outer
);
1981 if (INTVAL (XEXP (XVECEXP (src
, 0, start
), 1)) == bytepos
)
1983 temp
= simplify_gen_subreg (outer
, tmps
[start
],
1987 emit_move_insn (dst
, temp
);
1994 /* If the first element wasn't the low part, try the last. */
1996 && start
< finish
- 1)
1998 inner
= GET_MODE (tmps
[finish
- 1]);
1999 bytepos
= subreg_lowpart_offset (inner
, outer
);
2000 if (INTVAL (XEXP (XVECEXP (src
, 0, finish
- 1), 1)) == bytepos
)
2002 temp
= simplify_gen_subreg (outer
, tmps
[finish
- 1],
2006 emit_move_insn (dst
, temp
);
2013 /* Otherwise, simply initialize the result to zero. */
2015 emit_move_insn (dst
, CONST0_RTX (outer
));
2018 /* Process the pieces. */
2019 for (i
= start
; i
< finish
; i
++)
2021 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (src
, 0, i
), 1));
2022 enum machine_mode mode
= GET_MODE (tmps
[i
]);
2023 unsigned int bytelen
= GET_MODE_SIZE (mode
);
2024 unsigned int adj_bytelen
= bytelen
;
2027 /* Handle trailing fragments that run over the size of the struct. */
2028 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
2029 adj_bytelen
= ssize
- bytepos
;
2031 if (GET_CODE (dst
) == CONCAT
)
2033 if (bytepos
+ adj_bytelen
2034 <= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
2035 dest
= XEXP (dst
, 0);
2036 else if (bytepos
>= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
2038 bytepos
-= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0)));
2039 dest
= XEXP (dst
, 1);
2043 enum machine_mode dest_mode
= GET_MODE (dest
);
2044 enum machine_mode tmp_mode
= GET_MODE (tmps
[i
]);
2046 gcc_assert (bytepos
== 0 && XVECLEN (src
, 0));
2048 if (GET_MODE_ALIGNMENT (dest_mode
)
2049 >= GET_MODE_ALIGNMENT (tmp_mode
))
2051 dest
= assign_stack_temp (dest_mode
,
2052 GET_MODE_SIZE (dest_mode
),
2054 emit_move_insn (adjust_address (dest
,
2062 dest
= assign_stack_temp (tmp_mode
,
2063 GET_MODE_SIZE (tmp_mode
),
2065 emit_move_insn (dest
, tmps
[i
]);
2066 dst
= adjust_address (dest
, dest_mode
, bytepos
);
2072 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
2074 /* store_bit_field always takes its value from the lsb.
2075 Move the fragment to the lsb if it's not already there. */
2077 #ifdef BLOCK_REG_PADDING
2078 BLOCK_REG_PADDING (GET_MODE (orig_dst
), type
, i
== start
)
2079 == (BYTES_BIG_ENDIAN
? upward
: downward
)
2085 int shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
2086 tmps
[i
] = expand_shift (RSHIFT_EXPR
, mode
, tmps
[i
],
2087 build_int_cst (NULL_TREE
, shift
),
2090 bytelen
= adj_bytelen
;
2093 /* Optimize the access just a bit. */
2095 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (dest
))
2096 || MEM_ALIGN (dest
) >= GET_MODE_ALIGNMENT (mode
))
2097 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
2098 && bytelen
== GET_MODE_SIZE (mode
))
2099 emit_move_insn (adjust_address (dest
, mode
, bytepos
), tmps
[i
]);
2101 store_bit_field (dest
, bytelen
* BITS_PER_UNIT
, bytepos
* BITS_PER_UNIT
,
2105 /* Copy from the pseudo into the (probable) hard reg. */
2106 if (orig_dst
!= dst
)
2107 emit_move_insn (orig_dst
, dst
);
2110 /* Generate code to copy a BLKmode object of TYPE out of a
2111 set of registers starting with SRCREG into TGTBLK. If TGTBLK
2112 is null, a stack temporary is created. TGTBLK is returned.
2114 The purpose of this routine is to handle functions that return
2115 BLKmode structures in registers. Some machines (the PA for example)
2116 want to return all small structures in registers regardless of the
2117 structure's alignment. */
2120 copy_blkmode_from_reg (rtx tgtblk
, rtx srcreg
, tree type
)
2122 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (type
);
2123 rtx src
= NULL
, dst
= NULL
;
2124 unsigned HOST_WIDE_INT bitsize
= MIN (TYPE_ALIGN (type
), BITS_PER_WORD
);
2125 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0;
2126 enum machine_mode copy_mode
;
2130 tgtblk
= assign_temp (build_qualified_type (type
,
2132 | TYPE_QUAL_CONST
)),
2134 preserve_temp_slots (tgtblk
);
2137 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2138 into a new pseudo which is a full word. */
2140 if (GET_MODE (srcreg
) != BLKmode
2141 && GET_MODE_SIZE (GET_MODE (srcreg
)) < UNITS_PER_WORD
)
2142 srcreg
= convert_to_mode (word_mode
, srcreg
, TYPE_UNSIGNED (type
));
2144 /* If the structure doesn't take up a whole number of words, see whether
2145 SRCREG is padded on the left or on the right. If it's on the left,
2146 set PADDING_CORRECTION to the number of bits to skip.
2148 In most ABIs, the structure will be returned at the least end of
2149 the register, which translates to right padding on little-endian
2150 targets and left padding on big-endian targets. The opposite
2151 holds if the structure is returned at the most significant
2152 end of the register. */
2153 if (bytes
% UNITS_PER_WORD
!= 0
2154 && (targetm
.calls
.return_in_msb (type
)
2156 : BYTES_BIG_ENDIAN
))
2158 = (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
) * BITS_PER_UNIT
));
2160 /* Copy the structure BITSIZE bits at a time. If the target lives in
2161 memory, take care of not reading/writing past its end by selecting
2162 a copy mode suited to BITSIZE. This should always be possible given
2165 We could probably emit more efficient code for machines which do not use
2166 strict alignment, but it doesn't seem worth the effort at the current
2169 copy_mode
= word_mode
;
2172 enum machine_mode mem_mode
= mode_for_size (bitsize
, MODE_INT
, 1);
2173 if (mem_mode
!= BLKmode
)
2174 copy_mode
= mem_mode
;
2177 for (bitpos
= 0, xbitpos
= padding_correction
;
2178 bitpos
< bytes
* BITS_PER_UNIT
;
2179 bitpos
+= bitsize
, xbitpos
+= bitsize
)
2181 /* We need a new source operand each time xbitpos is on a
2182 word boundary and when xbitpos == padding_correction
2183 (the first time through). */
2184 if (xbitpos
% BITS_PER_WORD
== 0
2185 || xbitpos
== padding_correction
)
2186 src
= operand_subword_force (srcreg
, xbitpos
/ BITS_PER_WORD
,
2189 /* We need a new destination operand each time bitpos is on
2191 if (bitpos
% BITS_PER_WORD
== 0)
2192 dst
= operand_subword (tgtblk
, bitpos
/ BITS_PER_WORD
, 1, BLKmode
);
2194 /* Use xbitpos for the source extraction (right justified) and
2195 bitpos for the destination store (left justified). */
2196 store_bit_field (dst
, bitsize
, bitpos
% BITS_PER_WORD
, copy_mode
,
2197 extract_bit_field (src
, bitsize
,
2198 xbitpos
% BITS_PER_WORD
, 1,
2199 NULL_RTX
, copy_mode
, copy_mode
));
2205 /* Add a USE expression for REG to the (possibly empty) list pointed
2206 to by CALL_FUSAGE. REG must denote a hard register. */
2209 use_reg (rtx
*call_fusage
, rtx reg
)
2211 gcc_assert (REG_P (reg
) && REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
2214 = gen_rtx_EXPR_LIST (VOIDmode
,
2215 gen_rtx_USE (VOIDmode
, reg
), *call_fusage
);
2218 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2219 starting at REGNO. All of these registers must be hard registers. */
2222 use_regs (rtx
*call_fusage
, int regno
, int nregs
)
2226 gcc_assert (regno
+ nregs
<= FIRST_PSEUDO_REGISTER
);
2228 for (i
= 0; i
< nregs
; i
++)
2229 use_reg (call_fusage
, regno_reg_rtx
[regno
+ i
]);
2232 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2233 PARALLEL REGS. This is for calls that pass values in multiple
2234 non-contiguous locations. The Irix 6 ABI has examples of this. */
2237 use_group_regs (rtx
*call_fusage
, rtx regs
)
2241 for (i
= 0; i
< XVECLEN (regs
, 0); i
++)
2243 rtx reg
= XEXP (XVECEXP (regs
, 0, i
), 0);
2245 /* A NULL entry means the parameter goes both on the stack and in
2246 registers. This can also be a MEM for targets that pass values
2247 partially on the stack and partially in registers. */
2248 if (reg
!= 0 && REG_P (reg
))
2249 use_reg (call_fusage
, reg
);
2253 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2254 assigment and the code of the expresion on the RHS is CODE. Return
2258 get_def_for_expr (tree name
, enum tree_code code
)
2262 if (TREE_CODE (name
) != SSA_NAME
)
2265 def_stmt
= get_gimple_for_ssa_name (name
);
2267 || gimple_assign_rhs_code (def_stmt
) != code
)
2274 /* Determine whether the LEN bytes generated by CONSTFUN can be
2275 stored to memory using several move instructions. CONSTFUNDATA is
2276 a pointer which will be passed as argument in every CONSTFUN call.
2277 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2278 a memset operation and false if it's a copy of a constant string.
2279 Return nonzero if a call to store_by_pieces should succeed. */
2282 can_store_by_pieces (unsigned HOST_WIDE_INT len
,
2283 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
),
2284 void *constfundata
, unsigned int align
, bool memsetp
)
2286 unsigned HOST_WIDE_INT l
;
2287 unsigned int max_size
;
2288 HOST_WIDE_INT offset
= 0;
2289 enum machine_mode mode
, tmode
;
2290 enum insn_code icode
;
2298 ? SET_BY_PIECES_P (len
, align
)
2299 : STORE_BY_PIECES_P (len
, align
)))
2302 tmode
= mode_for_size (STORE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
2303 if (align
>= GET_MODE_ALIGNMENT (tmode
))
2304 align
= GET_MODE_ALIGNMENT (tmode
);
2307 enum machine_mode xmode
;
2309 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
2311 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
2312 if (GET_MODE_SIZE (tmode
) > STORE_MAX_PIECES
2313 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
2316 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
2319 /* We would first store what we can in the largest integer mode, then go to
2320 successively smaller modes. */
2323 reverse
<= (HAVE_PRE_DECREMENT
|| HAVE_POST_DECREMENT
);
2328 max_size
= STORE_MAX_PIECES
+ 1;
2329 while (max_size
> 1)
2331 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2332 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
2333 if (GET_MODE_SIZE (tmode
) < max_size
)
2336 if (mode
== VOIDmode
)
2339 icode
= optab_handler (mov_optab
, mode
)->insn_code
;
2340 if (icode
!= CODE_FOR_nothing
2341 && align
>= GET_MODE_ALIGNMENT (mode
))
2343 unsigned int size
= GET_MODE_SIZE (mode
);
2350 cst
= (*constfun
) (constfundata
, offset
, mode
);
2351 if (!LEGITIMATE_CONSTANT_P (cst
))
2361 max_size
= GET_MODE_SIZE (mode
);
2364 /* The code above should have handled everything. */
2371 /* Generate several move instructions to store LEN bytes generated by
2372 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2373 pointer which will be passed as argument in every CONSTFUN call.
2374 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2375 a memset operation and false if it's a copy of a constant string.
2376 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2377 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2381 store_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
,
2382 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
),
2383 void *constfundata
, unsigned int align
, bool memsetp
, int endp
)
2385 struct store_by_pieces_d data
;
2389 gcc_assert (endp
!= 2);
2394 ? SET_BY_PIECES_P (len
, align
)
2395 : STORE_BY_PIECES_P (len
, align
));
2396 data
.constfun
= constfun
;
2397 data
.constfundata
= constfundata
;
2400 store_by_pieces_1 (&data
, align
);
2405 gcc_assert (!data
.reverse
);
2410 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
2411 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
2413 data
.to_addr
= copy_addr_to_reg (plus_constant (data
.to_addr
,
2416 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
2423 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
2431 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2432 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2435 clear_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
, unsigned int align
)
2437 struct store_by_pieces_d data
;
2442 data
.constfun
= clear_by_pieces_1
;
2443 data
.constfundata
= NULL
;
2446 store_by_pieces_1 (&data
, align
);
2449 /* Callback routine for clear_by_pieces.
2450 Return const0_rtx unconditionally. */
2453 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED
,
2454 HOST_WIDE_INT offset ATTRIBUTE_UNUSED
,
2455 enum machine_mode mode ATTRIBUTE_UNUSED
)
2460 /* Subroutine of clear_by_pieces and store_by_pieces.
2461 Generate several move instructions to store LEN bytes of block TO. (A MEM
2462 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2465 store_by_pieces_1 (struct store_by_pieces_d
*data ATTRIBUTE_UNUSED
,
2466 unsigned int align ATTRIBUTE_UNUSED
)
2468 rtx to_addr
= XEXP (data
->to
, 0);
2469 unsigned int max_size
= STORE_MAX_PIECES
+ 1;
2470 enum machine_mode mode
= VOIDmode
, tmode
;
2471 enum insn_code icode
;
2474 data
->to_addr
= to_addr
;
2476 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
2477 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
2479 data
->explicit_inc_to
= 0;
2481 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
2483 data
->offset
= data
->len
;
2485 /* If storing requires more than two move insns,
2486 copy addresses to registers (to make displacements shorter)
2487 and use post-increment if available. */
2488 if (!data
->autinc_to
2489 && move_by_pieces_ninsns (data
->len
, align
, max_size
) > 2)
2491 /* Determine the main mode we'll be using. */
2492 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2493 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
2494 if (GET_MODE_SIZE (tmode
) < max_size
)
2497 if (USE_STORE_PRE_DECREMENT (mode
) && data
->reverse
&& ! data
->autinc_to
)
2499 data
->to_addr
= copy_addr_to_reg (plus_constant (to_addr
, data
->len
));
2500 data
->autinc_to
= 1;
2501 data
->explicit_inc_to
= -1;
2504 if (USE_STORE_POST_INCREMENT (mode
) && ! data
->reverse
2505 && ! data
->autinc_to
)
2507 data
->to_addr
= copy_addr_to_reg (to_addr
);
2508 data
->autinc_to
= 1;
2509 data
->explicit_inc_to
= 1;
2512 if ( !data
->autinc_to
&& CONSTANT_P (to_addr
))
2513 data
->to_addr
= copy_addr_to_reg (to_addr
);
2516 tmode
= mode_for_size (STORE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
2517 if (align
>= GET_MODE_ALIGNMENT (tmode
))
2518 align
= GET_MODE_ALIGNMENT (tmode
);
2521 enum machine_mode xmode
;
2523 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
2525 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
2526 if (GET_MODE_SIZE (tmode
) > STORE_MAX_PIECES
2527 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
2530 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
2533 /* First store what we can in the largest integer mode, then go to
2534 successively smaller modes. */
2536 while (max_size
> 1)
2538 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2539 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
2540 if (GET_MODE_SIZE (tmode
) < max_size
)
2543 if (mode
== VOIDmode
)
2546 icode
= optab_handler (mov_optab
, mode
)->insn_code
;
2547 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
2548 store_by_pieces_2 (GEN_FCN (icode
), mode
, data
);
2550 max_size
= GET_MODE_SIZE (mode
);
2553 /* The code above should have handled everything. */
2554 gcc_assert (!data
->len
);
2557 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2558 with move instructions for mode MODE. GENFUN is the gen_... function
2559 to make a move insn for that mode. DATA has all the other info. */
2562 store_by_pieces_2 (rtx (*genfun
) (rtx
, ...), enum machine_mode mode
,
2563 struct store_by_pieces_d
*data
)
2565 unsigned int size
= GET_MODE_SIZE (mode
);
2568 while (data
->len
>= size
)
2571 data
->offset
-= size
;
2573 if (data
->autinc_to
)
2574 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
2577 to1
= adjust_address (data
->to
, mode
, data
->offset
);
2579 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
2580 emit_insn (gen_add2_insn (data
->to_addr
,
2581 GEN_INT (-(HOST_WIDE_INT
) size
)));
2583 cst
= (*data
->constfun
) (data
->constfundata
, data
->offset
, mode
);
2584 emit_insn ((*genfun
) (to1
, cst
));
2586 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
2587 emit_insn (gen_add2_insn (data
->to_addr
, GEN_INT (size
)));
2589 if (! data
->reverse
)
2590 data
->offset
+= size
;
2596 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2597 its length in bytes. */
2600 clear_storage_hints (rtx object
, rtx size
, enum block_op_methods method
,
2601 unsigned int expected_align
, HOST_WIDE_INT expected_size
)
2603 enum machine_mode mode
= GET_MODE (object
);
2606 gcc_assert (method
== BLOCK_OP_NORMAL
|| method
== BLOCK_OP_TAILCALL
);
2608 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2609 just move a zero. Otherwise, do this a piece at a time. */
2611 && CONST_INT_P (size
)
2612 && INTVAL (size
) == (HOST_WIDE_INT
) GET_MODE_SIZE (mode
))
2614 rtx zero
= CONST0_RTX (mode
);
2617 emit_move_insn (object
, zero
);
2621 if (COMPLEX_MODE_P (mode
))
2623 zero
= CONST0_RTX (GET_MODE_INNER (mode
));
2626 write_complex_part (object
, zero
, 0);
2627 write_complex_part (object
, zero
, 1);
2633 if (size
== const0_rtx
)
2636 align
= MEM_ALIGN (object
);
2638 if (CONST_INT_P (size
)
2639 && CLEAR_BY_PIECES_P (INTVAL (size
), align
))
2640 clear_by_pieces (object
, INTVAL (size
), align
);
2641 else if (set_storage_via_setmem (object
, size
, const0_rtx
, align
,
2642 expected_align
, expected_size
))
2645 return set_storage_via_libcall (object
, size
, const0_rtx
,
2646 method
== BLOCK_OP_TAILCALL
);
2652 clear_storage (rtx object
, rtx size
, enum block_op_methods method
)
2654 return clear_storage_hints (object
, size
, method
, 0, -1);
2658 /* A subroutine of clear_storage. Expand a call to memset.
2659 Return the return value of memset, 0 otherwise. */
2662 set_storage_via_libcall (rtx object
, rtx size
, rtx val
, bool tailcall
)
2664 tree call_expr
, fn
, object_tree
, size_tree
, val_tree
;
2665 enum machine_mode size_mode
;
2668 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2669 place those into new pseudos into a VAR_DECL and use them later. */
2671 object
= copy_to_mode_reg (Pmode
, XEXP (object
, 0));
2673 size_mode
= TYPE_MODE (sizetype
);
2674 size
= convert_to_mode (size_mode
, size
, 1);
2675 size
= copy_to_mode_reg (size_mode
, size
);
2677 /* It is incorrect to use the libcall calling conventions to call
2678 memset in this context. This could be a user call to memset and
2679 the user may wish to examine the return value from memset. For
2680 targets where libcalls and normal calls have different conventions
2681 for returning pointers, we could end up generating incorrect code. */
2683 object_tree
= make_tree (ptr_type_node
, object
);
2684 if (!CONST_INT_P (val
))
2685 val
= convert_to_mode (TYPE_MODE (integer_type_node
), val
, 1);
2686 size_tree
= make_tree (sizetype
, size
);
2687 val_tree
= make_tree (integer_type_node
, val
);
2689 fn
= clear_storage_libcall_fn (true);
2690 call_expr
= build_call_expr (fn
, 3,
2691 object_tree
, integer_zero_node
, size_tree
);
2692 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
2694 retval
= expand_normal (call_expr
);
2699 /* A subroutine of set_storage_via_libcall. Create the tree node
2700 for the function we use for block clears. The first time FOR_CALL
2701 is true, we call assemble_external. */
2703 tree block_clear_fn
;
2706 init_block_clear_fn (const char *asmspec
)
2708 if (!block_clear_fn
)
2712 fn
= get_identifier ("memset");
2713 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
2714 integer_type_node
, sizetype
,
2717 fn
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
, fn
, args
);
2718 DECL_EXTERNAL (fn
) = 1;
2719 TREE_PUBLIC (fn
) = 1;
2720 DECL_ARTIFICIAL (fn
) = 1;
2721 TREE_NOTHROW (fn
) = 1;
2722 DECL_VISIBILITY (fn
) = VISIBILITY_DEFAULT
;
2723 DECL_VISIBILITY_SPECIFIED (fn
) = 1;
2725 block_clear_fn
= fn
;
2729 set_user_assembler_name (block_clear_fn
, asmspec
);
2733 clear_storage_libcall_fn (int for_call
)
2735 static bool emitted_extern
;
2737 if (!block_clear_fn
)
2738 init_block_clear_fn (NULL
);
2740 if (for_call
&& !emitted_extern
)
2742 emitted_extern
= true;
2743 make_decl_rtl (block_clear_fn
);
2744 assemble_external (block_clear_fn
);
2747 return block_clear_fn
;
2750 /* Expand a setmem pattern; return true if successful. */
2753 set_storage_via_setmem (rtx object
, rtx size
, rtx val
, unsigned int align
,
2754 unsigned int expected_align
, HOST_WIDE_INT expected_size
)
2756 /* Try the most limited insn first, because there's no point
2757 including more than one in the machine description unless
2758 the more limited one has some advantage. */
2760 rtx opalign
= GEN_INT (align
/ BITS_PER_UNIT
);
2761 enum machine_mode mode
;
2763 if (expected_align
< align
)
2764 expected_align
= align
;
2766 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
2767 mode
= GET_MODE_WIDER_MODE (mode
))
2769 enum insn_code code
= setmem_optab
[(int) mode
];
2770 insn_operand_predicate_fn pred
;
2772 if (code
!= CODE_FOR_nothing
2773 /* We don't need MODE to be narrower than
2774 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2775 the mode mask, as it is returned by the macro, it will
2776 definitely be less than the actual mode mask. */
2777 && ((CONST_INT_P (size
)
2778 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
2779 <= (GET_MODE_MASK (mode
) >> 1)))
2780 || GET_MODE_BITSIZE (mode
) >= BITS_PER_WORD
)
2781 && ((pred
= insn_data
[(int) code
].operand
[0].predicate
) == 0
2782 || (*pred
) (object
, BLKmode
))
2783 && ((pred
= insn_data
[(int) code
].operand
[3].predicate
) == 0
2784 || (*pred
) (opalign
, VOIDmode
)))
2787 enum machine_mode char_mode
;
2788 rtx last
= get_last_insn ();
2791 opsize
= convert_to_mode (mode
, size
, 1);
2792 pred
= insn_data
[(int) code
].operand
[1].predicate
;
2793 if (pred
!= 0 && ! (*pred
) (opsize
, mode
))
2794 opsize
= copy_to_mode_reg (mode
, opsize
);
2797 char_mode
= insn_data
[(int) code
].operand
[2].mode
;
2798 if (char_mode
!= VOIDmode
)
2800 opchar
= convert_to_mode (char_mode
, opchar
, 1);
2801 pred
= insn_data
[(int) code
].operand
[2].predicate
;
2802 if (pred
!= 0 && ! (*pred
) (opchar
, char_mode
))
2803 opchar
= copy_to_mode_reg (char_mode
, opchar
);
2806 if (insn_data
[(int) code
].n_operands
== 4)
2807 pat
= GEN_FCN ((int) code
) (object
, opsize
, opchar
, opalign
);
2809 pat
= GEN_FCN ((int) code
) (object
, opsize
, opchar
, opalign
,
2810 GEN_INT (expected_align
2812 GEN_INT (expected_size
));
2819 delete_insns_since (last
);
2827 /* Write to one of the components of the complex value CPLX. Write VAL to
2828 the real part if IMAG_P is false, and the imaginary part if its true. */
2831 write_complex_part (rtx cplx
, rtx val
, bool imag_p
)
2833 enum machine_mode cmode
;
2834 enum machine_mode imode
;
2837 if (GET_CODE (cplx
) == CONCAT
)
2839 emit_move_insn (XEXP (cplx
, imag_p
), val
);
2843 cmode
= GET_MODE (cplx
);
2844 imode
= GET_MODE_INNER (cmode
);
2845 ibitsize
= GET_MODE_BITSIZE (imode
);
2847 /* For MEMs simplify_gen_subreg may generate an invalid new address
2848 because, e.g., the original address is considered mode-dependent
2849 by the target, which restricts simplify_subreg from invoking
2850 adjust_address_nv. Instead of preparing fallback support for an
2851 invalid address, we call adjust_address_nv directly. */
2854 emit_move_insn (adjust_address_nv (cplx
, imode
,
2855 imag_p
? GET_MODE_SIZE (imode
) : 0),
2860 /* If the sub-object is at least word sized, then we know that subregging
2861 will work. This special case is important, since store_bit_field
2862 wants to operate on integer modes, and there's rarely an OImode to
2863 correspond to TCmode. */
2864 if (ibitsize
>= BITS_PER_WORD
2865 /* For hard regs we have exact predicates. Assume we can split
2866 the original object if it spans an even number of hard regs.
2867 This special case is important for SCmode on 64-bit platforms
2868 where the natural size of floating-point regs is 32-bit. */
2870 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
2871 && hard_regno_nregs
[REGNO (cplx
)][cmode
] % 2 == 0))
2873 rtx part
= simplify_gen_subreg (imode
, cplx
, cmode
,
2874 imag_p
? GET_MODE_SIZE (imode
) : 0);
2877 emit_move_insn (part
, val
);
2881 /* simplify_gen_subreg may fail for sub-word MEMs. */
2882 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
2885 store_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0, imode
, val
);
2888 /* Extract one of the components of the complex value CPLX. Extract the
2889 real part if IMAG_P is false, and the imaginary part if it's true. */
2892 read_complex_part (rtx cplx
, bool imag_p
)
2894 enum machine_mode cmode
, imode
;
2897 if (GET_CODE (cplx
) == CONCAT
)
2898 return XEXP (cplx
, imag_p
);
2900 cmode
= GET_MODE (cplx
);
2901 imode
= GET_MODE_INNER (cmode
);
2902 ibitsize
= GET_MODE_BITSIZE (imode
);
2904 /* Special case reads from complex constants that got spilled to memory. */
2905 if (MEM_P (cplx
) && GET_CODE (XEXP (cplx
, 0)) == SYMBOL_REF
)
2907 tree decl
= SYMBOL_REF_DECL (XEXP (cplx
, 0));
2908 if (decl
&& TREE_CODE (decl
) == COMPLEX_CST
)
2910 tree part
= imag_p
? TREE_IMAGPART (decl
) : TREE_REALPART (decl
);
2911 if (CONSTANT_CLASS_P (part
))
2912 return expand_expr (part
, NULL_RTX
, imode
, EXPAND_NORMAL
);
2916 /* For MEMs simplify_gen_subreg may generate an invalid new address
2917 because, e.g., the original address is considered mode-dependent
2918 by the target, which restricts simplify_subreg from invoking
2919 adjust_address_nv. Instead of preparing fallback support for an
2920 invalid address, we call adjust_address_nv directly. */
2922 return adjust_address_nv (cplx
, imode
,
2923 imag_p
? GET_MODE_SIZE (imode
) : 0);
2925 /* If the sub-object is at least word sized, then we know that subregging
2926 will work. This special case is important, since extract_bit_field
2927 wants to operate on integer modes, and there's rarely an OImode to
2928 correspond to TCmode. */
2929 if (ibitsize
>= BITS_PER_WORD
2930 /* For hard regs we have exact predicates. Assume we can split
2931 the original object if it spans an even number of hard regs.
2932 This special case is important for SCmode on 64-bit platforms
2933 where the natural size of floating-point regs is 32-bit. */
2935 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
2936 && hard_regno_nregs
[REGNO (cplx
)][cmode
] % 2 == 0))
2938 rtx ret
= simplify_gen_subreg (imode
, cplx
, cmode
,
2939 imag_p
? GET_MODE_SIZE (imode
) : 0);
2943 /* simplify_gen_subreg may fail for sub-word MEMs. */
2944 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
2947 return extract_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0,
2948 true, NULL_RTX
, imode
, imode
);
2951 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2952 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2953 represented in NEW_MODE. If FORCE is true, this will never happen, as
2954 we'll force-create a SUBREG if needed. */
2957 emit_move_change_mode (enum machine_mode new_mode
,
2958 enum machine_mode old_mode
, rtx x
, bool force
)
2962 if (push_operand (x
, GET_MODE (x
)))
2964 ret
= gen_rtx_MEM (new_mode
, XEXP (x
, 0));
2965 MEM_COPY_ATTRIBUTES (ret
, x
);
2969 /* We don't have to worry about changing the address since the
2970 size in bytes is supposed to be the same. */
2971 if (reload_in_progress
)
2973 /* Copy the MEM to change the mode and move any
2974 substitutions from the old MEM to the new one. */
2975 ret
= adjust_address_nv (x
, new_mode
, 0);
2976 copy_replacements (x
, ret
);
2979 ret
= adjust_address (x
, new_mode
, 0);
2983 /* Note that we do want simplify_subreg's behavior of validating
2984 that the new mode is ok for a hard register. If we were to use
2985 simplify_gen_subreg, we would create the subreg, but would
2986 probably run into the target not being able to implement it. */
2987 /* Except, of course, when FORCE is true, when this is exactly what
2988 we want. Which is needed for CCmodes on some targets. */
2990 ret
= simplify_gen_subreg (new_mode
, x
, old_mode
, 0);
2992 ret
= simplify_subreg (new_mode
, x
, old_mode
, 0);
2998 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
2999 an integer mode of the same size as MODE. Returns the instruction
3000 emitted, or NULL if such a move could not be generated. */
3003 emit_move_via_integer (enum machine_mode mode
, rtx x
, rtx y
, bool force
)
3005 enum machine_mode imode
;
3006 enum insn_code code
;
3008 /* There must exist a mode of the exact size we require. */
3009 imode
= int_mode_for_mode (mode
);
3010 if (imode
== BLKmode
)
3013 /* The target must support moves in this mode. */
3014 code
= optab_handler (mov_optab
, imode
)->insn_code
;
3015 if (code
== CODE_FOR_nothing
)
3018 x
= emit_move_change_mode (imode
, mode
, x
, force
);
3021 y
= emit_move_change_mode (imode
, mode
, y
, force
);
3024 return emit_insn (GEN_FCN (code
) (x
, y
));
3027 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3028 Return an equivalent MEM that does not use an auto-increment. */
3031 emit_move_resolve_push (enum machine_mode mode
, rtx x
)
3033 enum rtx_code code
= GET_CODE (XEXP (x
, 0));
3034 HOST_WIDE_INT adjust
;
3037 adjust
= GET_MODE_SIZE (mode
);
3038 #ifdef PUSH_ROUNDING
3039 adjust
= PUSH_ROUNDING (adjust
);
3041 if (code
== PRE_DEC
|| code
== POST_DEC
)
3043 else if (code
== PRE_MODIFY
|| code
== POST_MODIFY
)
3045 rtx expr
= XEXP (XEXP (x
, 0), 1);
3048 gcc_assert (GET_CODE (expr
) == PLUS
|| GET_CODE (expr
) == MINUS
);
3049 gcc_assert (CONST_INT_P (XEXP (expr
, 1)));
3050 val
= INTVAL (XEXP (expr
, 1));
3051 if (GET_CODE (expr
) == MINUS
)
3053 gcc_assert (adjust
== val
|| adjust
== -val
);
3057 /* Do not use anti_adjust_stack, since we don't want to update
3058 stack_pointer_delta. */
3059 temp
= expand_simple_binop (Pmode
, PLUS
, stack_pointer_rtx
,
3060 GEN_INT (adjust
), stack_pointer_rtx
,
3061 0, OPTAB_LIB_WIDEN
);
3062 if (temp
!= stack_pointer_rtx
)
3063 emit_move_insn (stack_pointer_rtx
, temp
);
3070 temp
= stack_pointer_rtx
;
3075 temp
= plus_constant (stack_pointer_rtx
, -adjust
);
3081 return replace_equiv_address (x
, temp
);
3084 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3085 X is known to satisfy push_operand, and MODE is known to be complex.
3086 Returns the last instruction emitted. */
3089 emit_move_complex_push (enum machine_mode mode
, rtx x
, rtx y
)
3091 enum machine_mode submode
= GET_MODE_INNER (mode
);
3094 #ifdef PUSH_ROUNDING
3095 unsigned int submodesize
= GET_MODE_SIZE (submode
);
3097 /* In case we output to the stack, but the size is smaller than the
3098 machine can push exactly, we need to use move instructions. */
3099 if (PUSH_ROUNDING (submodesize
) != submodesize
)
3101 x
= emit_move_resolve_push (mode
, x
);
3102 return emit_move_insn (x
, y
);
3106 /* Note that the real part always precedes the imag part in memory
3107 regardless of machine's endianness. */
3108 switch (GET_CODE (XEXP (x
, 0)))
3122 emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3123 read_complex_part (y
, imag_first
));
3124 return emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3125 read_complex_part (y
, !imag_first
));
3128 /* A subroutine of emit_move_complex. Perform the move from Y to X
3129 via two moves of the parts. Returns the last instruction emitted. */
3132 emit_move_complex_parts (rtx x
, rtx y
)
3134 /* Show the output dies here. This is necessary for SUBREGs
3135 of pseudos since we cannot track their lifetimes correctly;
3136 hard regs shouldn't appear here except as return values. */
3137 if (!reload_completed
&& !reload_in_progress
3138 && REG_P (x
) && !reg_overlap_mentioned_p (x
, y
))
3141 write_complex_part (x
, read_complex_part (y
, false), false);
3142 write_complex_part (x
, read_complex_part (y
, true), true);
3144 return get_last_insn ();
3147 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3148 MODE is known to be complex. Returns the last instruction emitted. */
3151 emit_move_complex (enum machine_mode mode
, rtx x
, rtx y
)
3155 /* Need to take special care for pushes, to maintain proper ordering
3156 of the data, and possibly extra padding. */
3157 if (push_operand (x
, mode
))
3158 return emit_move_complex_push (mode
, x
, y
);
3160 /* See if we can coerce the target into moving both values at once. */
3162 /* Move floating point as parts. */
3163 if (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
3164 && optab_handler (mov_optab
, GET_MODE_INNER (mode
))->insn_code
!= CODE_FOR_nothing
)
3166 /* Not possible if the values are inherently not adjacent. */
3167 else if (GET_CODE (x
) == CONCAT
|| GET_CODE (y
) == CONCAT
)
3169 /* Is possible if both are registers (or subregs of registers). */
3170 else if (register_operand (x
, mode
) && register_operand (y
, mode
))
3172 /* If one of the operands is a memory, and alignment constraints
3173 are friendly enough, we may be able to do combined memory operations.
3174 We do not attempt this if Y is a constant because that combination is
3175 usually better with the by-parts thing below. */
3176 else if ((MEM_P (x
) ? !CONSTANT_P (y
) : MEM_P (y
))
3177 && (!STRICT_ALIGNMENT
3178 || get_mode_alignment (mode
) == BIGGEST_ALIGNMENT
))
3187 /* For memory to memory moves, optimal behavior can be had with the
3188 existing block move logic. */
3189 if (MEM_P (x
) && MEM_P (y
))
3191 emit_block_move (x
, y
, GEN_INT (GET_MODE_SIZE (mode
)),
3192 BLOCK_OP_NO_LIBCALL
);
3193 return get_last_insn ();
3196 ret
= emit_move_via_integer (mode
, x
, y
, true);
3201 return emit_move_complex_parts (x
, y
);
3204 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3205 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3208 emit_move_ccmode (enum machine_mode mode
, rtx x
, rtx y
)
3212 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3215 enum insn_code code
= optab_handler (mov_optab
, CCmode
)->insn_code
;
3216 if (code
!= CODE_FOR_nothing
)
3218 x
= emit_move_change_mode (CCmode
, mode
, x
, true);
3219 y
= emit_move_change_mode (CCmode
, mode
, y
, true);
3220 return emit_insn (GEN_FCN (code
) (x
, y
));
3224 /* Otherwise, find the MODE_INT mode of the same width. */
3225 ret
= emit_move_via_integer (mode
, x
, y
, false);
3226 gcc_assert (ret
!= NULL
);
3230 /* Return true if word I of OP lies entirely in the
3231 undefined bits of a paradoxical subreg. */
3234 undefined_operand_subword_p (const_rtx op
, int i
)
3236 enum machine_mode innermode
, innermostmode
;
3238 if (GET_CODE (op
) != SUBREG
)
3240 innermode
= GET_MODE (op
);
3241 innermostmode
= GET_MODE (SUBREG_REG (op
));
3242 offset
= i
* UNITS_PER_WORD
+ SUBREG_BYTE (op
);
3243 /* The SUBREG_BYTE represents offset, as if the value were stored in
3244 memory, except for a paradoxical subreg where we define
3245 SUBREG_BYTE to be 0; undo this exception as in
3247 if (SUBREG_BYTE (op
) == 0
3248 && GET_MODE_SIZE (innermostmode
) < GET_MODE_SIZE (innermode
))
3250 int difference
= (GET_MODE_SIZE (innermostmode
) - GET_MODE_SIZE (innermode
));
3251 if (WORDS_BIG_ENDIAN
)
3252 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
3253 if (BYTES_BIG_ENDIAN
)
3254 offset
+= difference
% UNITS_PER_WORD
;
3256 if (offset
>= GET_MODE_SIZE (innermostmode
)
3257 || offset
<= -GET_MODE_SIZE (word_mode
))
3262 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3263 MODE is any multi-word or full-word mode that lacks a move_insn
3264 pattern. Note that you will get better code if you define such
3265 patterns, even if they must turn into multiple assembler instructions. */
3268 emit_move_multi_word (enum machine_mode mode
, rtx x
, rtx y
)
3275 gcc_assert (GET_MODE_SIZE (mode
) >= UNITS_PER_WORD
);
3277 /* If X is a push on the stack, do the push now and replace
3278 X with a reference to the stack pointer. */
3279 if (push_operand (x
, mode
))
3280 x
= emit_move_resolve_push (mode
, x
);
3282 /* If we are in reload, see if either operand is a MEM whose address
3283 is scheduled for replacement. */
3284 if (reload_in_progress
&& MEM_P (x
)
3285 && (inner
= find_replacement (&XEXP (x
, 0))) != XEXP (x
, 0))
3286 x
= replace_equiv_address_nv (x
, inner
);
3287 if (reload_in_progress
&& MEM_P (y
)
3288 && (inner
= find_replacement (&XEXP (y
, 0))) != XEXP (y
, 0))
3289 y
= replace_equiv_address_nv (y
, inner
);
3293 need_clobber
= false;
3295 i
< (GET_MODE_SIZE (mode
) + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
;
3298 rtx xpart
= operand_subword (x
, i
, 1, mode
);
3301 /* Do not generate code for a move if it would come entirely
3302 from the undefined bits of a paradoxical subreg. */
3303 if (undefined_operand_subword_p (y
, i
))
3306 ypart
= operand_subword (y
, i
, 1, mode
);
3308 /* If we can't get a part of Y, put Y into memory if it is a
3309 constant. Otherwise, force it into a register. Then we must
3310 be able to get a part of Y. */
3311 if (ypart
== 0 && CONSTANT_P (y
))
3313 y
= use_anchored_address (force_const_mem (mode
, y
));
3314 ypart
= operand_subword (y
, i
, 1, mode
);
3316 else if (ypart
== 0)
3317 ypart
= operand_subword_force (y
, i
, mode
);
3319 gcc_assert (xpart
&& ypart
);
3321 need_clobber
|= (GET_CODE (xpart
) == SUBREG
);
3323 last_insn
= emit_move_insn (xpart
, ypart
);
3329 /* Show the output dies here. This is necessary for SUBREGs
3330 of pseudos since we cannot track their lifetimes correctly;
3331 hard regs shouldn't appear here except as return values.
3332 We never want to emit such a clobber after reload. */
3334 && ! (reload_in_progress
|| reload_completed
)
3335 && need_clobber
!= 0)
3343 /* Low level part of emit_move_insn.
3344 Called just like emit_move_insn, but assumes X and Y
3345 are basically valid. */
3348 emit_move_insn_1 (rtx x
, rtx y
)
3350 enum machine_mode mode
= GET_MODE (x
);
3351 enum insn_code code
;
3353 gcc_assert ((unsigned int) mode
< (unsigned int) MAX_MACHINE_MODE
);
3355 code
= optab_handler (mov_optab
, mode
)->insn_code
;
3356 if (code
!= CODE_FOR_nothing
)
3357 return emit_insn (GEN_FCN (code
) (x
, y
));
3359 /* Expand complex moves by moving real part and imag part. */
3360 if (COMPLEX_MODE_P (mode
))
3361 return emit_move_complex (mode
, x
, y
);
3363 if (GET_MODE_CLASS (mode
) == MODE_DECIMAL_FLOAT
3364 || ALL_FIXED_POINT_MODE_P (mode
))
3366 rtx result
= emit_move_via_integer (mode
, x
, y
, true);
3368 /* If we can't find an integer mode, use multi words. */
3372 return emit_move_multi_word (mode
, x
, y
);
3375 if (GET_MODE_CLASS (mode
) == MODE_CC
)
3376 return emit_move_ccmode (mode
, x
, y
);
3378 /* Try using a move pattern for the corresponding integer mode. This is
3379 only safe when simplify_subreg can convert MODE constants into integer
3380 constants. At present, it can only do this reliably if the value
3381 fits within a HOST_WIDE_INT. */
3382 if (!CONSTANT_P (y
) || GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
3384 rtx ret
= emit_move_via_integer (mode
, x
, y
, false);
3389 return emit_move_multi_word (mode
, x
, y
);
3392 /* Generate code to copy Y into X.
3393 Both Y and X must have the same mode, except that
3394 Y can be a constant with VOIDmode.
3395 This mode cannot be BLKmode; use emit_block_move for that.
3397 Return the last instruction emitted. */
3400 emit_move_insn (rtx x
, rtx y
)
3402 enum machine_mode mode
= GET_MODE (x
);
3403 rtx y_cst
= NULL_RTX
;
3406 gcc_assert (mode
!= BLKmode
3407 && (GET_MODE (y
) == mode
|| GET_MODE (y
) == VOIDmode
));
3412 && SCALAR_FLOAT_MODE_P (GET_MODE (x
))
3413 && (last_insn
= compress_float_constant (x
, y
)))
3418 if (!LEGITIMATE_CONSTANT_P (y
))
3420 y
= force_const_mem (mode
, y
);
3422 /* If the target's cannot_force_const_mem prevented the spill,
3423 assume that the target's move expanders will also take care
3424 of the non-legitimate constant. */
3428 y
= use_anchored_address (y
);
3432 /* If X or Y are memory references, verify that their addresses are valid
3435 && (! memory_address_p (GET_MODE (x
), XEXP (x
, 0))
3436 && ! push_operand (x
, GET_MODE (x
))))
3437 x
= validize_mem (x
);
3440 && ! memory_address_p (GET_MODE (y
), XEXP (y
, 0)))
3441 y
= validize_mem (y
);
3443 gcc_assert (mode
!= BLKmode
);
3445 last_insn
= emit_move_insn_1 (x
, y
);
3447 if (y_cst
&& REG_P (x
)
3448 && (set
= single_set (last_insn
)) != NULL_RTX
3449 && SET_DEST (set
) == x
3450 && ! rtx_equal_p (y_cst
, SET_SRC (set
)))
3451 set_unique_reg_note (last_insn
, REG_EQUAL
, y_cst
);
3456 /* If Y is representable exactly in a narrower mode, and the target can
3457 perform the extension directly from constant or memory, then emit the
3458 move as an extension. */
3461 compress_float_constant (rtx x
, rtx y
)
3463 enum machine_mode dstmode
= GET_MODE (x
);
3464 enum machine_mode orig_srcmode
= GET_MODE (y
);
3465 enum machine_mode srcmode
;
3467 int oldcost
, newcost
;
3468 bool speed
= optimize_insn_for_speed_p ();
3470 REAL_VALUE_FROM_CONST_DOUBLE (r
, y
);
3472 if (LEGITIMATE_CONSTANT_P (y
))
3473 oldcost
= rtx_cost (y
, SET
, speed
);
3475 oldcost
= rtx_cost (force_const_mem (dstmode
, y
), SET
, speed
);
3477 for (srcmode
= GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode
));
3478 srcmode
!= orig_srcmode
;
3479 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
3482 rtx trunc_y
, last_insn
;
3484 /* Skip if the target can't extend this way. */
3485 ic
= can_extend_p (dstmode
, srcmode
, 0);
3486 if (ic
== CODE_FOR_nothing
)
3489 /* Skip if the narrowed value isn't exact. */
3490 if (! exact_real_truncate (srcmode
, &r
))
3493 trunc_y
= CONST_DOUBLE_FROM_REAL_VALUE (r
, srcmode
);
3495 if (LEGITIMATE_CONSTANT_P (trunc_y
))
3497 /* Skip if the target needs extra instructions to perform
3499 if (! (*insn_data
[ic
].operand
[1].predicate
) (trunc_y
, srcmode
))
3501 /* This is valid, but may not be cheaper than the original. */
3502 newcost
= rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
), SET
, speed
);
3503 if (oldcost
< newcost
)
3506 else if (float_extend_from_mem
[dstmode
][srcmode
])
3508 trunc_y
= force_const_mem (srcmode
, trunc_y
);
3509 /* This is valid, but may not be cheaper than the original. */
3510 newcost
= rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
), SET
, speed
);
3511 if (oldcost
< newcost
)
3513 trunc_y
= validize_mem (trunc_y
);
3518 /* For CSE's benefit, force the compressed constant pool entry
3519 into a new pseudo. This constant may be used in different modes,
3520 and if not, combine will put things back together for us. */
3521 trunc_y
= force_reg (srcmode
, trunc_y
);
3522 emit_unop_insn (ic
, x
, trunc_y
, UNKNOWN
);
3523 last_insn
= get_last_insn ();
3526 set_unique_reg_note (last_insn
, REG_EQUAL
, y
);
3534 /* Pushing data onto the stack. */
3536 /* Push a block of length SIZE (perhaps variable)
3537 and return an rtx to address the beginning of the block.
3538 The value may be virtual_outgoing_args_rtx.
3540 EXTRA is the number of bytes of padding to push in addition to SIZE.
3541 BELOW nonzero means this padding comes at low addresses;
3542 otherwise, the padding comes at high addresses. */
3545 push_block (rtx size
, int extra
, int below
)
3549 size
= convert_modes (Pmode
, ptr_mode
, size
, 1);
3550 if (CONSTANT_P (size
))
3551 anti_adjust_stack (plus_constant (size
, extra
));
3552 else if (REG_P (size
) && extra
== 0)
3553 anti_adjust_stack (size
);
3556 temp
= copy_to_mode_reg (Pmode
, size
);
3558 temp
= expand_binop (Pmode
, add_optab
, temp
, GEN_INT (extra
),
3559 temp
, 0, OPTAB_LIB_WIDEN
);
3560 anti_adjust_stack (temp
);
3563 #ifndef STACK_GROWS_DOWNWARD
3569 temp
= virtual_outgoing_args_rtx
;
3570 if (extra
!= 0 && below
)
3571 temp
= plus_constant (temp
, extra
);
3575 if (CONST_INT_P (size
))
3576 temp
= plus_constant (virtual_outgoing_args_rtx
,
3577 -INTVAL (size
) - (below
? 0 : extra
));
3578 else if (extra
!= 0 && !below
)
3579 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3580 negate_rtx (Pmode
, plus_constant (size
, extra
)));
3582 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3583 negate_rtx (Pmode
, size
));
3586 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT
), temp
);
3589 #ifdef PUSH_ROUNDING
3591 /* Emit single push insn. */
3594 emit_single_push_insn (enum machine_mode mode
, rtx x
, tree type
)
3597 unsigned rounded_size
= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
3599 enum insn_code icode
;
3600 insn_operand_predicate_fn pred
;
3602 stack_pointer_delta
+= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
3603 /* If there is push pattern, use it. Otherwise try old way of throwing
3604 MEM representing push operation to move expander. */
3605 icode
= optab_handler (push_optab
, mode
)->insn_code
;
3606 if (icode
!= CODE_FOR_nothing
)
3608 if (((pred
= insn_data
[(int) icode
].operand
[0].predicate
)
3609 && !((*pred
) (x
, mode
))))
3610 x
= force_reg (mode
, x
);
3611 emit_insn (GEN_FCN (icode
) (x
));
3614 if (GET_MODE_SIZE (mode
) == rounded_size
)
3615 dest_addr
= gen_rtx_fmt_e (STACK_PUSH_CODE
, Pmode
, stack_pointer_rtx
);
3616 /* If we are to pad downward, adjust the stack pointer first and
3617 then store X into the stack location using an offset. This is
3618 because emit_move_insn does not know how to pad; it does not have
3620 else if (FUNCTION_ARG_PADDING (mode
, type
) == downward
)
3622 unsigned padding_size
= rounded_size
- GET_MODE_SIZE (mode
);
3623 HOST_WIDE_INT offset
;
3625 emit_move_insn (stack_pointer_rtx
,
3626 expand_binop (Pmode
,
3627 #ifdef STACK_GROWS_DOWNWARD
3633 GEN_INT (rounded_size
),
3634 NULL_RTX
, 0, OPTAB_LIB_WIDEN
));
3636 offset
= (HOST_WIDE_INT
) padding_size
;
3637 #ifdef STACK_GROWS_DOWNWARD
3638 if (STACK_PUSH_CODE
== POST_DEC
)
3639 /* We have already decremented the stack pointer, so get the
3641 offset
+= (HOST_WIDE_INT
) rounded_size
;
3643 if (STACK_PUSH_CODE
== POST_INC
)
3644 /* We have already incremented the stack pointer, so get the
3646 offset
-= (HOST_WIDE_INT
) rounded_size
;
3648 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
, GEN_INT (offset
));
3652 #ifdef STACK_GROWS_DOWNWARD
3653 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3654 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
3655 GEN_INT (-(HOST_WIDE_INT
) rounded_size
));
3657 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3658 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
3659 GEN_INT (rounded_size
));
3661 dest_addr
= gen_rtx_PRE_MODIFY (Pmode
, stack_pointer_rtx
, dest_addr
);
3664 dest
= gen_rtx_MEM (mode
, dest_addr
);
3668 set_mem_attributes (dest
, type
, 1);
3670 if (flag_optimize_sibling_calls
)
3671 /* Function incoming arguments may overlap with sibling call
3672 outgoing arguments and we cannot allow reordering of reads
3673 from function arguments with stores to outgoing arguments
3674 of sibling calls. */
3675 set_mem_alias_set (dest
, 0);
3677 emit_move_insn (dest
, x
);
3681 /* Generate code to push X onto the stack, assuming it has mode MODE and
3683 MODE is redundant except when X is a CONST_INT (since they don't
3685 SIZE is an rtx for the size of data to be copied (in bytes),
3686 needed only if X is BLKmode.
3688 ALIGN (in bits) is maximum alignment we can assume.
3690 If PARTIAL and REG are both nonzero, then copy that many of the first
3691 bytes of X into registers starting with REG, and push the rest of X.
3692 The amount of space pushed is decreased by PARTIAL bytes.
3693 REG must be a hard register in this case.
3694 If REG is zero but PARTIAL is not, take any all others actions for an
3695 argument partially in registers, but do not actually load any
3698 EXTRA is the amount in bytes of extra space to leave next to this arg.
3699 This is ignored if an argument block has already been allocated.
3701 On a machine that lacks real push insns, ARGS_ADDR is the address of
3702 the bottom of the argument block for this call. We use indexing off there
3703 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3704 argument block has not been preallocated.
3706 ARGS_SO_FAR is the size of args previously pushed for this call.
3708 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3709 for arguments passed in registers. If nonzero, it will be the number
3710 of bytes required. */
3713 emit_push_insn (rtx x
, enum machine_mode mode
, tree type
, rtx size
,
3714 unsigned int align
, int partial
, rtx reg
, int extra
,
3715 rtx args_addr
, rtx args_so_far
, int reg_parm_stack_space
,
3719 enum direction stack_direction
3720 #ifdef STACK_GROWS_DOWNWARD
3726 /* Decide where to pad the argument: `downward' for below,
3727 `upward' for above, or `none' for don't pad it.
3728 Default is below for small data on big-endian machines; else above. */
3729 enum direction where_pad
= FUNCTION_ARG_PADDING (mode
, type
);
3731 /* Invert direction if stack is post-decrement.
3733 if (STACK_PUSH_CODE
== POST_DEC
)
3734 if (where_pad
!= none
)
3735 where_pad
= (where_pad
== downward
? upward
: downward
);
3740 || (STRICT_ALIGNMENT
&& align
< GET_MODE_ALIGNMENT (mode
)))
3742 /* Copy a block into the stack, entirely or partially. */
3749 offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
3750 used
= partial
- offset
;
3752 if (mode
!= BLKmode
)
3754 /* A value is to be stored in an insufficiently aligned
3755 stack slot; copy via a suitably aligned slot if
3757 size
= GEN_INT (GET_MODE_SIZE (mode
));
3758 if (!MEM_P (xinner
))
3760 temp
= assign_temp (type
, 0, 1, 1);
3761 emit_move_insn (temp
, xinner
);
3768 /* USED is now the # of bytes we need not copy to the stack
3769 because registers will take care of them. */
3772 xinner
= adjust_address (xinner
, BLKmode
, used
);
3774 /* If the partial register-part of the arg counts in its stack size,
3775 skip the part of stack space corresponding to the registers.
3776 Otherwise, start copying to the beginning of the stack space,
3777 by setting SKIP to 0. */
3778 skip
= (reg_parm_stack_space
== 0) ? 0 : used
;
3780 #ifdef PUSH_ROUNDING
3781 /* Do it with several push insns if that doesn't take lots of insns
3782 and if there is no difficulty with push insns that skip bytes
3783 on the stack for alignment purposes. */
3786 && CONST_INT_P (size
)
3788 && MEM_ALIGN (xinner
) >= align
3789 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size
) - used
, align
))
3790 /* Here we avoid the case of a structure whose weak alignment
3791 forces many pushes of a small amount of data,
3792 and such small pushes do rounding that causes trouble. */
3793 && ((! SLOW_UNALIGNED_ACCESS (word_mode
, align
))
3794 || align
>= BIGGEST_ALIGNMENT
3795 || (PUSH_ROUNDING (align
/ BITS_PER_UNIT
)
3796 == (align
/ BITS_PER_UNIT
)))
3797 && PUSH_ROUNDING (INTVAL (size
)) == INTVAL (size
))
3799 /* Push padding now if padding above and stack grows down,
3800 or if padding below and stack grows up.
3801 But if space already allocated, this has already been done. */
3802 if (extra
&& args_addr
== 0
3803 && where_pad
!= none
&& where_pad
!= stack_direction
)
3804 anti_adjust_stack (GEN_INT (extra
));
3806 move_by_pieces (NULL
, xinner
, INTVAL (size
) - used
, align
, 0);
3809 #endif /* PUSH_ROUNDING */
3813 /* Otherwise make space on the stack and copy the data
3814 to the address of that space. */
3816 /* Deduct words put into registers from the size we must copy. */
3819 if (CONST_INT_P (size
))
3820 size
= GEN_INT (INTVAL (size
) - used
);
3822 size
= expand_binop (GET_MODE (size
), sub_optab
, size
,
3823 GEN_INT (used
), NULL_RTX
, 0,
3827 /* Get the address of the stack space.
3828 In this case, we do not deal with EXTRA separately.
3829 A single stack adjust will do. */
3832 temp
= push_block (size
, extra
, where_pad
== downward
);
3835 else if (CONST_INT_P (args_so_far
))
3836 temp
= memory_address (BLKmode
,
3837 plus_constant (args_addr
,
3838 skip
+ INTVAL (args_so_far
)));
3840 temp
= memory_address (BLKmode
,
3841 plus_constant (gen_rtx_PLUS (Pmode
,
3846 if (!ACCUMULATE_OUTGOING_ARGS
)
3848 /* If the source is referenced relative to the stack pointer,
3849 copy it to another register to stabilize it. We do not need
3850 to do this if we know that we won't be changing sp. */
3852 if (reg_mentioned_p (virtual_stack_dynamic_rtx
, temp
)
3853 || reg_mentioned_p (virtual_outgoing_args_rtx
, temp
))
3854 temp
= copy_to_reg (temp
);
3857 target
= gen_rtx_MEM (BLKmode
, temp
);
3859 /* We do *not* set_mem_attributes here, because incoming arguments
3860 may overlap with sibling call outgoing arguments and we cannot
3861 allow reordering of reads from function arguments with stores
3862 to outgoing arguments of sibling calls. We do, however, want
3863 to record the alignment of the stack slot. */
3864 /* ALIGN may well be better aligned than TYPE, e.g. due to
3865 PARM_BOUNDARY. Assume the caller isn't lying. */
3866 set_mem_align (target
, align
);
3868 emit_block_move (target
, xinner
, size
, BLOCK_OP_CALL_PARM
);
3871 else if (partial
> 0)
3873 /* Scalar partly in registers. */
3875 int size
= GET_MODE_SIZE (mode
) / UNITS_PER_WORD
;
3878 /* # bytes of start of argument
3879 that we must make space for but need not store. */
3880 int offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
3881 int args_offset
= INTVAL (args_so_far
);
3884 /* Push padding now if padding above and stack grows down,
3885 or if padding below and stack grows up.
3886 But if space already allocated, this has already been done. */
3887 if (extra
&& args_addr
== 0
3888 && where_pad
!= none
&& where_pad
!= stack_direction
)
3889 anti_adjust_stack (GEN_INT (extra
));
3891 /* If we make space by pushing it, we might as well push
3892 the real data. Otherwise, we can leave OFFSET nonzero
3893 and leave the space uninitialized. */
3897 /* Now NOT_STACK gets the number of words that we don't need to
3898 allocate on the stack. Convert OFFSET to words too. */
3899 not_stack
= (partial
- offset
) / UNITS_PER_WORD
;
3900 offset
/= UNITS_PER_WORD
;
3902 /* If the partial register-part of the arg counts in its stack size,
3903 skip the part of stack space corresponding to the registers.
3904 Otherwise, start copying to the beginning of the stack space,
3905 by setting SKIP to 0. */
3906 skip
= (reg_parm_stack_space
== 0) ? 0 : not_stack
;
3908 if (CONSTANT_P (x
) && ! LEGITIMATE_CONSTANT_P (x
))
3909 x
= validize_mem (force_const_mem (mode
, x
));
3911 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3912 SUBREGs of such registers are not allowed. */
3913 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
3914 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_INT
))
3915 x
= copy_to_reg (x
);
3917 /* Loop over all the words allocated on the stack for this arg. */
3918 /* We can do it by words, because any scalar bigger than a word
3919 has a size a multiple of a word. */
3920 #ifndef PUSH_ARGS_REVERSED
3921 for (i
= not_stack
; i
< size
; i
++)
3923 for (i
= size
- 1; i
>= not_stack
; i
--)
3925 if (i
>= not_stack
+ offset
)
3926 emit_push_insn (operand_subword_force (x
, i
, mode
),
3927 word_mode
, NULL_TREE
, NULL_RTX
, align
, 0, NULL_RTX
,
3929 GEN_INT (args_offset
+ ((i
- not_stack
+ skip
)
3931 reg_parm_stack_space
, alignment_pad
);
3938 /* Push padding now if padding above and stack grows down,
3939 or if padding below and stack grows up.
3940 But if space already allocated, this has already been done. */
3941 if (extra
&& args_addr
== 0
3942 && where_pad
!= none
&& where_pad
!= stack_direction
)
3943 anti_adjust_stack (GEN_INT (extra
));
3945 #ifdef PUSH_ROUNDING
3946 if (args_addr
== 0 && PUSH_ARGS
)
3947 emit_single_push_insn (mode
, x
, type
);
3951 if (CONST_INT_P (args_so_far
))
3953 = memory_address (mode
,
3954 plus_constant (args_addr
,
3955 INTVAL (args_so_far
)));
3957 addr
= memory_address (mode
, gen_rtx_PLUS (Pmode
, args_addr
,
3959 dest
= gen_rtx_MEM (mode
, addr
);
3961 /* We do *not* set_mem_attributes here, because incoming arguments
3962 may overlap with sibling call outgoing arguments and we cannot
3963 allow reordering of reads from function arguments with stores
3964 to outgoing arguments of sibling calls. We do, however, want
3965 to record the alignment of the stack slot. */
3966 /* ALIGN may well be better aligned than TYPE, e.g. due to
3967 PARM_BOUNDARY. Assume the caller isn't lying. */
3968 set_mem_align (dest
, align
);
3970 emit_move_insn (dest
, x
);
3974 /* If part should go in registers, copy that part
3975 into the appropriate registers. Do this now, at the end,
3976 since mem-to-mem copies above may do function calls. */
3977 if (partial
> 0 && reg
!= 0)
3979 /* Handle calls that pass values in multiple non-contiguous locations.
3980 The Irix 6 ABI has examples of this. */
3981 if (GET_CODE (reg
) == PARALLEL
)
3982 emit_group_load (reg
, x
, type
, -1);
3985 gcc_assert (partial
% UNITS_PER_WORD
== 0);
3986 move_block_to_reg (REGNO (reg
), x
, partial
/ UNITS_PER_WORD
, mode
);
3990 if (extra
&& args_addr
== 0 && where_pad
== stack_direction
)
3991 anti_adjust_stack (GEN_INT (extra
));
3993 if (alignment_pad
&& args_addr
== 0)
3994 anti_adjust_stack (alignment_pad
);
3997 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4001 get_subtarget (rtx x
)
4005 /* Only registers can be subtargets. */
4007 /* Don't use hard regs to avoid extending their life. */
4008 || REGNO (x
) < FIRST_PSEUDO_REGISTER
4012 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4013 FIELD is a bitfield. Returns true if the optimization was successful,
4014 and there's nothing else to do. */
4017 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize
,
4018 unsigned HOST_WIDE_INT bitpos
,
4019 enum machine_mode mode1
, rtx str_rtx
,
4022 enum machine_mode str_mode
= GET_MODE (str_rtx
);
4023 unsigned int str_bitsize
= GET_MODE_BITSIZE (str_mode
);
4028 if (mode1
!= VOIDmode
4029 || bitsize
>= BITS_PER_WORD
4030 || str_bitsize
> BITS_PER_WORD
4031 || TREE_SIDE_EFFECTS (to
)
4032 || TREE_THIS_VOLATILE (to
))
4036 if (!BINARY_CLASS_P (src
)
4037 || TREE_CODE (TREE_TYPE (src
)) != INTEGER_TYPE
)
4040 op0
= TREE_OPERAND (src
, 0);
4041 op1
= TREE_OPERAND (src
, 1);
4044 if (!operand_equal_p (to
, op0
, 0))
4047 if (MEM_P (str_rtx
))
4049 unsigned HOST_WIDE_INT offset1
;
4051 if (str_bitsize
== 0 || str_bitsize
> BITS_PER_WORD
)
4052 str_mode
= word_mode
;
4053 str_mode
= get_best_mode (bitsize
, bitpos
,
4054 MEM_ALIGN (str_rtx
), str_mode
, 0);
4055 if (str_mode
== VOIDmode
)
4057 str_bitsize
= GET_MODE_BITSIZE (str_mode
);
4060 bitpos
%= str_bitsize
;
4061 offset1
= (offset1
- bitpos
) / BITS_PER_UNIT
;
4062 str_rtx
= adjust_address (str_rtx
, str_mode
, offset1
);
4064 else if (!REG_P (str_rtx
) && GET_CODE (str_rtx
) != SUBREG
)
4067 /* If the bit field covers the whole REG/MEM, store_field
4068 will likely generate better code. */
4069 if (bitsize
>= str_bitsize
)
4072 /* We can't handle fields split across multiple entities. */
4073 if (bitpos
+ bitsize
> str_bitsize
)
4076 if (BYTES_BIG_ENDIAN
)
4077 bitpos
= str_bitsize
- bitpos
- bitsize
;
4079 switch (TREE_CODE (src
))
4083 /* For now, just optimize the case of the topmost bitfield
4084 where we don't need to do any masking and also
4085 1 bit bitfields where xor can be used.
4086 We might win by one instruction for the other bitfields
4087 too if insv/extv instructions aren't used, so that
4088 can be added later. */
4089 if (bitpos
+ bitsize
!= str_bitsize
4090 && (bitsize
!= 1 || TREE_CODE (op1
) != INTEGER_CST
))
4093 value
= expand_expr (op1
, NULL_RTX
, str_mode
, EXPAND_NORMAL
);
4094 value
= convert_modes (str_mode
,
4095 TYPE_MODE (TREE_TYPE (op1
)), value
,
4096 TYPE_UNSIGNED (TREE_TYPE (op1
)));
4098 /* We may be accessing data outside the field, which means
4099 we can alias adjacent data. */
4100 if (MEM_P (str_rtx
))
4102 str_rtx
= shallow_copy_rtx (str_rtx
);
4103 set_mem_alias_set (str_rtx
, 0);
4104 set_mem_expr (str_rtx
, 0);
4107 binop
= TREE_CODE (src
) == PLUS_EXPR
? add_optab
: sub_optab
;
4108 if (bitsize
== 1 && bitpos
+ bitsize
!= str_bitsize
)
4110 value
= expand_and (str_mode
, value
, const1_rtx
, NULL
);
4113 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
,
4114 build_int_cst (NULL_TREE
, bitpos
),
4116 result
= expand_binop (str_mode
, binop
, str_rtx
,
4117 value
, str_rtx
, 1, OPTAB_WIDEN
);
4118 if (result
!= str_rtx
)
4119 emit_move_insn (str_rtx
, result
);
4124 if (TREE_CODE (op1
) != INTEGER_CST
)
4126 value
= expand_expr (op1
, NULL_RTX
, GET_MODE (str_rtx
), EXPAND_NORMAL
);
4127 value
= convert_modes (GET_MODE (str_rtx
),
4128 TYPE_MODE (TREE_TYPE (op1
)), value
,
4129 TYPE_UNSIGNED (TREE_TYPE (op1
)));
4131 /* We may be accessing data outside the field, which means
4132 we can alias adjacent data. */
4133 if (MEM_P (str_rtx
))
4135 str_rtx
= shallow_copy_rtx (str_rtx
);
4136 set_mem_alias_set (str_rtx
, 0);
4137 set_mem_expr (str_rtx
, 0);
4140 binop
= TREE_CODE (src
) == BIT_IOR_EXPR
? ior_optab
: xor_optab
;
4141 if (bitpos
+ bitsize
!= GET_MODE_BITSIZE (GET_MODE (str_rtx
)))
4143 rtx mask
= GEN_INT (((unsigned HOST_WIDE_INT
) 1 << bitsize
)
4145 value
= expand_and (GET_MODE (str_rtx
), value
, mask
,
4148 value
= expand_shift (LSHIFT_EXPR
, GET_MODE (str_rtx
), value
,
4149 build_int_cst (NULL_TREE
, bitpos
),
4151 result
= expand_binop (GET_MODE (str_rtx
), binop
, str_rtx
,
4152 value
, str_rtx
, 1, OPTAB_WIDEN
);
4153 if (result
!= str_rtx
)
4154 emit_move_insn (str_rtx
, result
);
4165 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4166 is true, try generating a nontemporal store. */
4169 expand_assignment (tree to
, tree from
, bool nontemporal
)
4174 /* Don't crash if the lhs of the assignment was erroneous. */
4175 if (TREE_CODE (to
) == ERROR_MARK
)
4177 result
= expand_normal (from
);
4181 /* Optimize away no-op moves without side-effects. */
4182 if (operand_equal_p (to
, from
, 0))
4185 /* Assignment of a structure component needs special treatment
4186 if the structure component's rtx is not simply a MEM.
4187 Assignment of an array element at a constant index, and assignment of
4188 an array element in an unaligned packed structure field, has the same
4190 if (handled_component_p (to
)
4191 || TREE_CODE (TREE_TYPE (to
)) == ARRAY_TYPE
)
4193 enum machine_mode mode1
;
4194 HOST_WIDE_INT bitsize
, bitpos
;
4201 tem
= get_inner_reference (to
, &bitsize
, &bitpos
, &offset
, &mode1
,
4202 &unsignedp
, &volatilep
, true);
4204 /* If we are going to use store_bit_field and extract_bit_field,
4205 make sure to_rtx will be safe for multiple use. */
4207 to_rtx
= expand_normal (tem
);
4213 if (!MEM_P (to_rtx
))
4215 /* We can get constant negative offsets into arrays with broken
4216 user code. Translate this to a trap instead of ICEing. */
4217 gcc_assert (TREE_CODE (offset
) == INTEGER_CST
);
4218 expand_builtin_trap ();
4219 to_rtx
= gen_rtx_MEM (BLKmode
, const0_rtx
);
4222 offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
4223 #ifdef POINTERS_EXTEND_UNSIGNED
4224 if (GET_MODE (offset_rtx
) != Pmode
)
4225 offset_rtx
= convert_to_mode (Pmode
, offset_rtx
, 0);
4227 if (GET_MODE (offset_rtx
) != ptr_mode
)
4228 offset_rtx
= convert_to_mode (ptr_mode
, offset_rtx
, 0);
4231 /* A constant address in TO_RTX can have VOIDmode, we must not try
4232 to call force_reg for that case. Avoid that case. */
4234 && GET_MODE (to_rtx
) == BLKmode
4235 && GET_MODE (XEXP (to_rtx
, 0)) != VOIDmode
4237 && (bitpos
% bitsize
) == 0
4238 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
4239 && MEM_ALIGN (to_rtx
) == GET_MODE_ALIGNMENT (mode1
))
4241 to_rtx
= adjust_address (to_rtx
, mode1
, bitpos
/ BITS_PER_UNIT
);
4245 to_rtx
= offset_address (to_rtx
, offset_rtx
,
4246 highest_pow2_factor_for_target (to
,
4250 /* Handle expand_expr of a complex value returning a CONCAT. */
4251 if (GET_CODE (to_rtx
) == CONCAT
)
4253 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from
))))
4255 gcc_assert (bitpos
== 0);
4256 result
= store_expr (from
, to_rtx
, false, nontemporal
);
4260 gcc_assert (bitpos
== 0 || bitpos
== GET_MODE_BITSIZE (mode1
));
4261 result
= store_expr (from
, XEXP (to_rtx
, bitpos
!= 0), false,
4269 /* If the field is at offset zero, we could have been given the
4270 DECL_RTX of the parent struct. Don't munge it. */
4271 to_rtx
= shallow_copy_rtx (to_rtx
);
4273 set_mem_attributes_minus_bitpos (to_rtx
, to
, 0, bitpos
);
4275 /* Deal with volatile and readonly fields. The former is only
4276 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4278 MEM_VOLATILE_P (to_rtx
) = 1;
4279 if (component_uses_parent_alias_set (to
))
4280 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
4283 if (optimize_bitfield_assignment_op (bitsize
, bitpos
, mode1
,
4287 result
= store_field (to_rtx
, bitsize
, bitpos
, mode1
, from
,
4288 TREE_TYPE (tem
), get_alias_set (to
),
4293 preserve_temp_slots (result
);
4299 else if (TREE_CODE (to
) == MISALIGNED_INDIRECT_REF
)
4301 enum machine_mode mode
, op_mode1
;
4302 enum insn_code icode
;
4303 rtx reg
, addr
, mem
, insn
;
4305 reg
= expand_expr (from
, NULL_RTX
, VOIDmode
, EXPAND_NORMAL
);
4306 reg
= force_not_mem (reg
);
4308 mode
= TYPE_MODE (TREE_TYPE (to
));
4309 addr
= expand_expr (TREE_OPERAND (to
, 0), NULL_RTX
, VOIDmode
,
4311 addr
= memory_address (mode
, addr
);
4312 mem
= gen_rtx_MEM (mode
, addr
);
4314 set_mem_attributes (mem
, to
, 0);
4316 icode
= movmisalign_optab
->handlers
[mode
].insn_code
;
4317 gcc_assert (icode
!= CODE_FOR_nothing
);
4319 op_mode1
= insn_data
[icode
].operand
[1].mode
;
4320 if (! (*insn_data
[icode
].operand
[1].predicate
) (reg
, op_mode1
)
4321 && op_mode1
!= VOIDmode
)
4322 reg
= copy_to_mode_reg (op_mode1
, reg
);
4324 insn
= GEN_FCN (icode
) (mem
, reg
);
4329 /* If the rhs is a function call and its value is not an aggregate,
4330 call the function before we start to compute the lhs.
4331 This is needed for correct code for cases such as
4332 val = setjmp (buf) on machines where reference to val
4333 requires loading up part of an address in a separate insn.
4335 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4336 since it might be a promoted variable where the zero- or sign- extension
4337 needs to be done. Handling this in the normal way is safe because no
4338 computation is done before the call. The same is true for SSA names. */
4339 if (TREE_CODE (from
) == CALL_EXPR
&& ! aggregate_value_p (from
, from
)
4340 && COMPLETE_TYPE_P (TREE_TYPE (from
))
4341 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from
))) == INTEGER_CST
4342 && ! (((TREE_CODE (to
) == VAR_DECL
|| TREE_CODE (to
) == PARM_DECL
)
4343 && REG_P (DECL_RTL (to
)))
4344 || TREE_CODE (to
) == SSA_NAME
))
4349 value
= expand_normal (from
);
4351 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4353 /* Handle calls that return values in multiple non-contiguous locations.
4354 The Irix 6 ABI has examples of this. */
4355 if (GET_CODE (to_rtx
) == PARALLEL
)
4356 emit_group_load (to_rtx
, value
, TREE_TYPE (from
),
4357 int_size_in_bytes (TREE_TYPE (from
)));
4358 else if (GET_MODE (to_rtx
) == BLKmode
)
4359 emit_block_move (to_rtx
, value
, expr_size (from
), BLOCK_OP_NORMAL
);
4362 if (POINTER_TYPE_P (TREE_TYPE (to
)))
4363 value
= convert_memory_address (GET_MODE (to_rtx
), value
);
4364 emit_move_insn (to_rtx
, value
);
4366 preserve_temp_slots (to_rtx
);
4372 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
4373 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
4376 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4378 /* Don't move directly into a return register. */
4379 if (TREE_CODE (to
) == RESULT_DECL
4380 && (REG_P (to_rtx
) || GET_CODE (to_rtx
) == PARALLEL
))
4385 temp
= expand_expr (from
, NULL_RTX
, GET_MODE (to_rtx
), EXPAND_NORMAL
);
4387 if (GET_CODE (to_rtx
) == PARALLEL
)
4388 emit_group_load (to_rtx
, temp
, TREE_TYPE (from
),
4389 int_size_in_bytes (TREE_TYPE (from
)));
4391 emit_move_insn (to_rtx
, temp
);
4393 preserve_temp_slots (to_rtx
);
4399 /* In case we are returning the contents of an object which overlaps
4400 the place the value is being stored, use a safe function when copying
4401 a value through a pointer into a structure value return block. */
4402 if (TREE_CODE (to
) == RESULT_DECL
&& TREE_CODE (from
) == INDIRECT_REF
4403 && cfun
->returns_struct
4404 && !cfun
->returns_pcc_struct
)
4409 size
= expr_size (from
);
4410 from_rtx
= expand_normal (from
);
4412 emit_library_call (memmove_libfunc
, LCT_NORMAL
,
4413 VOIDmode
, 3, XEXP (to_rtx
, 0), Pmode
,
4414 XEXP (from_rtx
, 0), Pmode
,
4415 convert_to_mode (TYPE_MODE (sizetype
),
4416 size
, TYPE_UNSIGNED (sizetype
)),
4417 TYPE_MODE (sizetype
));
4419 preserve_temp_slots (to_rtx
);
4425 /* Compute FROM and store the value in the rtx we got. */
4428 result
= store_expr (from
, to_rtx
, 0, nontemporal
);
4429 preserve_temp_slots (result
);
4435 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
4436 succeeded, false otherwise. */
4439 emit_storent_insn (rtx to
, rtx from
)
4441 enum machine_mode mode
= GET_MODE (to
), imode
;
4442 enum insn_code code
= optab_handler (storent_optab
, mode
)->insn_code
;
4445 if (code
== CODE_FOR_nothing
)
4448 imode
= insn_data
[code
].operand
[0].mode
;
4449 if (!insn_data
[code
].operand
[0].predicate (to
, imode
))
4452 imode
= insn_data
[code
].operand
[1].mode
;
4453 if (!insn_data
[code
].operand
[1].predicate (from
, imode
))
4455 from
= copy_to_mode_reg (imode
, from
);
4456 if (!insn_data
[code
].operand
[1].predicate (from
, imode
))
4460 pattern
= GEN_FCN (code
) (to
, from
);
4461 if (pattern
== NULL_RTX
)
4464 emit_insn (pattern
);
4468 /* Generate code for computing expression EXP,
4469 and storing the value into TARGET.
4471 If the mode is BLKmode then we may return TARGET itself.
4472 It turns out that in BLKmode it doesn't cause a problem.
4473 because C has no operators that could combine two different
4474 assignments into the same BLKmode object with different values
4475 with no sequence point. Will other languages need this to
4478 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4479 stack, and block moves may need to be treated specially.
4481 If NONTEMPORAL is true, try using a nontemporal store instruction. */
4484 store_expr (tree exp
, rtx target
, int call_param_p
, bool nontemporal
)
4487 rtx alt_rtl
= NULL_RTX
;
4488 int dont_return_target
= 0;
4490 if (VOID_TYPE_P (TREE_TYPE (exp
)))
4492 /* C++ can generate ?: expressions with a throw expression in one
4493 branch and an rvalue in the other. Here, we resolve attempts to
4494 store the throw expression's nonexistent result. */
4495 gcc_assert (!call_param_p
);
4496 expand_expr (exp
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
4499 if (TREE_CODE (exp
) == COMPOUND_EXPR
)
4501 /* Perform first part of compound expression, then assign from second
4503 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
4504 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
4505 return store_expr (TREE_OPERAND (exp
, 1), target
, call_param_p
,
4508 else if (TREE_CODE (exp
) == COND_EXPR
&& GET_MODE (target
) == BLKmode
)
4510 /* For conditional expression, get safe form of the target. Then
4511 test the condition, doing the appropriate assignment on either
4512 side. This avoids the creation of unnecessary temporaries.
4513 For non-BLKmode, it is more efficient not to do this. */
4515 rtx lab1
= gen_label_rtx (), lab2
= gen_label_rtx ();
4517 do_pending_stack_adjust ();
4519 jumpifnot (TREE_OPERAND (exp
, 0), lab1
);
4520 store_expr (TREE_OPERAND (exp
, 1), target
, call_param_p
,
4522 emit_jump_insn (gen_jump (lab2
));
4525 store_expr (TREE_OPERAND (exp
, 2), target
, call_param_p
,
4532 else if (GET_CODE (target
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (target
))
4533 /* If this is a scalar in a register that is stored in a wider mode
4534 than the declared mode, compute the result into its declared mode
4535 and then convert to the wider mode. Our value is the computed
4538 rtx inner_target
= 0;
4540 /* We can do the conversion inside EXP, which will often result
4541 in some optimizations. Do the conversion in two steps: first
4542 change the signedness, if needed, then the extend. But don't
4543 do this if the type of EXP is a subtype of something else
4544 since then the conversion might involve more than just
4545 converting modes. */
4546 if (INTEGRAL_TYPE_P (TREE_TYPE (exp
))
4547 && TREE_TYPE (TREE_TYPE (exp
)) == 0
4548 && GET_MODE_PRECISION (GET_MODE (target
))
4549 == TYPE_PRECISION (TREE_TYPE (exp
)))
4551 if (TYPE_UNSIGNED (TREE_TYPE (exp
))
4552 != SUBREG_PROMOTED_UNSIGNED_P (target
))
4554 /* Some types, e.g. Fortran's logical*4, won't have a signed
4555 version, so use the mode instead. */
4557 = (signed_or_unsigned_type_for
4558 (SUBREG_PROMOTED_UNSIGNED_P (target
), TREE_TYPE (exp
)));
4560 ntype
= lang_hooks
.types
.type_for_mode
4561 (TYPE_MODE (TREE_TYPE (exp
)),
4562 SUBREG_PROMOTED_UNSIGNED_P (target
));
4564 exp
= fold_convert (ntype
, exp
);
4567 exp
= fold_convert (lang_hooks
.types
.type_for_mode
4568 (GET_MODE (SUBREG_REG (target
)),
4569 SUBREG_PROMOTED_UNSIGNED_P (target
)),
4572 inner_target
= SUBREG_REG (target
);
4575 temp
= expand_expr (exp
, inner_target
, VOIDmode
,
4576 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
4578 /* If TEMP is a VOIDmode constant, use convert_modes to make
4579 sure that we properly convert it. */
4580 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
)
4582 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
4583 temp
, SUBREG_PROMOTED_UNSIGNED_P (target
));
4584 temp
= convert_modes (GET_MODE (SUBREG_REG (target
)),
4585 GET_MODE (target
), temp
,
4586 SUBREG_PROMOTED_UNSIGNED_P (target
));
4589 convert_move (SUBREG_REG (target
), temp
,
4590 SUBREG_PROMOTED_UNSIGNED_P (target
));
4594 else if (TREE_CODE (exp
) == STRING_CST
4595 && !nontemporal
&& !call_param_p
4596 && TREE_STRING_LENGTH (exp
) > 0
4597 && TYPE_MODE (TREE_TYPE (exp
)) == BLKmode
)
4599 /* Optimize initialization of an array with a STRING_CST. */
4600 HOST_WIDE_INT exp_len
, str_copy_len
;
4603 exp_len
= int_expr_size (exp
);
4607 str_copy_len
= strlen (TREE_STRING_POINTER (exp
));
4608 if (str_copy_len
< TREE_STRING_LENGTH (exp
) - 1)
4611 str_copy_len
= TREE_STRING_LENGTH (exp
);
4612 if ((STORE_MAX_PIECES
& (STORE_MAX_PIECES
- 1)) == 0)
4614 str_copy_len
+= STORE_MAX_PIECES
- 1;
4615 str_copy_len
&= ~(STORE_MAX_PIECES
- 1);
4617 str_copy_len
= MIN (str_copy_len
, exp_len
);
4618 if (!can_store_by_pieces (str_copy_len
, builtin_strncpy_read_str
,
4619 CONST_CAST(char *, TREE_STRING_POINTER (exp
)),
4620 MEM_ALIGN (target
), false))
4625 dest_mem
= store_by_pieces (dest_mem
,
4626 str_copy_len
, builtin_strncpy_read_str
,
4627 CONST_CAST(char *, TREE_STRING_POINTER (exp
)),
4628 MEM_ALIGN (target
), false,
4629 exp_len
> str_copy_len
? 1 : 0);
4630 if (exp_len
> str_copy_len
)
4631 clear_storage (adjust_address (dest_mem
, BLKmode
, 0),
4632 GEN_INT (exp_len
- str_copy_len
),
4641 /* If we want to use a nontemporal store, force the value to
4643 tmp_target
= nontemporal
? NULL_RTX
: target
;
4644 temp
= expand_expr_real (exp
, tmp_target
, GET_MODE (target
),
4646 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
),
4648 /* Return TARGET if it's a specified hardware register.
4649 If TARGET is a volatile mem ref, either return TARGET
4650 or return a reg copied *from* TARGET; ANSI requires this.
4652 Otherwise, if TEMP is not TARGET, return TEMP
4653 if it is constant (for efficiency),
4654 or if we really want the correct value. */
4655 if (!(target
&& REG_P (target
)
4656 && REGNO (target
) < FIRST_PSEUDO_REGISTER
)
4657 && !(MEM_P (target
) && MEM_VOLATILE_P (target
))
4658 && ! rtx_equal_p (temp
, target
)
4659 && CONSTANT_P (temp
))
4660 dont_return_target
= 1;
4663 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4664 the same as that of TARGET, adjust the constant. This is needed, for
4665 example, in case it is a CONST_DOUBLE and we want only a word-sized
4667 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
4668 && TREE_CODE (exp
) != ERROR_MARK
4669 && GET_MODE (target
) != TYPE_MODE (TREE_TYPE (exp
)))
4670 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
4671 temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
4673 /* If value was not generated in the target, store it there.
4674 Convert the value to TARGET's type first if necessary and emit the
4675 pending incrementations that have been queued when expanding EXP.
4676 Note that we cannot emit the whole queue blindly because this will
4677 effectively disable the POST_INC optimization later.
4679 If TEMP and TARGET compare equal according to rtx_equal_p, but
4680 one or both of them are volatile memory refs, we have to distinguish
4682 - expand_expr has used TARGET. In this case, we must not generate
4683 another copy. This can be detected by TARGET being equal according
4685 - expand_expr has not used TARGET - that means that the source just
4686 happens to have the same RTX form. Since temp will have been created
4687 by expand_expr, it will compare unequal according to == .
4688 We must generate a copy in this case, to reach the correct number
4689 of volatile memory references. */
4691 if ((! rtx_equal_p (temp
, target
)
4692 || (temp
!= target
&& (side_effects_p (temp
)
4693 || side_effects_p (target
))))
4694 && TREE_CODE (exp
) != ERROR_MARK
4695 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4696 but TARGET is not valid memory reference, TEMP will differ
4697 from TARGET although it is really the same location. */
4698 && !(alt_rtl
&& rtx_equal_p (alt_rtl
, target
))
4699 /* If there's nothing to copy, don't bother. Don't call
4700 expr_size unless necessary, because some front-ends (C++)
4701 expr_size-hook must not be given objects that are not
4702 supposed to be bit-copied or bit-initialized. */
4703 && expr_size (exp
) != const0_rtx
)
4705 if (GET_MODE (temp
) != GET_MODE (target
)
4706 && GET_MODE (temp
) != VOIDmode
)
4708 int unsignedp
= TYPE_UNSIGNED (TREE_TYPE (exp
));
4709 if (dont_return_target
)
4711 /* In this case, we will return TEMP,
4712 so make sure it has the proper mode.
4713 But don't forget to store the value into TARGET. */
4714 temp
= convert_to_mode (GET_MODE (target
), temp
, unsignedp
);
4715 emit_move_insn (target
, temp
);
4717 else if (GET_MODE (target
) == BLKmode
4718 || GET_MODE (temp
) == BLKmode
)
4719 emit_block_move (target
, temp
, expr_size (exp
),
4721 ? BLOCK_OP_CALL_PARM
4722 : BLOCK_OP_NORMAL
));
4724 convert_move (target
, temp
, unsignedp
);
4727 else if (GET_MODE (temp
) == BLKmode
&& TREE_CODE (exp
) == STRING_CST
)
4729 /* Handle copying a string constant into an array. The string
4730 constant may be shorter than the array. So copy just the string's
4731 actual length, and clear the rest. First get the size of the data
4732 type of the string, which is actually the size of the target. */
4733 rtx size
= expr_size (exp
);
4735 if (CONST_INT_P (size
)
4736 && INTVAL (size
) < TREE_STRING_LENGTH (exp
))
4737 emit_block_move (target
, temp
, size
,
4739 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
4742 /* Compute the size of the data to copy from the string. */
4744 = size_binop (MIN_EXPR
,
4745 make_tree (sizetype
, size
),
4746 size_int (TREE_STRING_LENGTH (exp
)));
4748 = expand_expr (copy_size
, NULL_RTX
, VOIDmode
,
4750 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
));
4753 /* Copy that much. */
4754 copy_size_rtx
= convert_to_mode (ptr_mode
, copy_size_rtx
,
4755 TYPE_UNSIGNED (sizetype
));
4756 emit_block_move (target
, temp
, copy_size_rtx
,
4758 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
4760 /* Figure out how much is left in TARGET that we have to clear.
4761 Do all calculations in ptr_mode. */
4762 if (CONST_INT_P (copy_size_rtx
))
4764 size
= plus_constant (size
, -INTVAL (copy_size_rtx
));
4765 target
= adjust_address (target
, BLKmode
,
4766 INTVAL (copy_size_rtx
));
4770 size
= expand_binop (TYPE_MODE (sizetype
), sub_optab
, size
,
4771 copy_size_rtx
, NULL_RTX
, 0,
4774 #ifdef POINTERS_EXTEND_UNSIGNED
4775 if (GET_MODE (copy_size_rtx
) != Pmode
)
4776 copy_size_rtx
= convert_to_mode (Pmode
, copy_size_rtx
,
4777 TYPE_UNSIGNED (sizetype
));
4780 target
= offset_address (target
, copy_size_rtx
,
4781 highest_pow2_factor (copy_size
));
4782 label
= gen_label_rtx ();
4783 emit_cmp_and_jump_insns (size
, const0_rtx
, LT
, NULL_RTX
,
4784 GET_MODE (size
), 0, label
);
4787 if (size
!= const0_rtx
)
4788 clear_storage (target
, size
, BLOCK_OP_NORMAL
);
4794 /* Handle calls that return values in multiple non-contiguous locations.
4795 The Irix 6 ABI has examples of this. */
4796 else if (GET_CODE (target
) == PARALLEL
)
4797 emit_group_load (target
, temp
, TREE_TYPE (exp
),
4798 int_size_in_bytes (TREE_TYPE (exp
)));
4799 else if (GET_MODE (temp
) == BLKmode
)
4800 emit_block_move (target
, temp
, expr_size (exp
),
4802 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
4803 else if (nontemporal
4804 && emit_storent_insn (target
, temp
))
4805 /* If we managed to emit a nontemporal store, there is nothing else to
4810 temp
= force_operand (temp
, target
);
4812 emit_move_insn (target
, temp
);
4819 /* Helper for categorize_ctor_elements. Identical interface. */
4822 categorize_ctor_elements_1 (const_tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
4823 HOST_WIDE_INT
*p_elt_count
,
4826 unsigned HOST_WIDE_INT idx
;
4827 HOST_WIDE_INT nz_elts
, elt_count
;
4828 tree value
, purpose
;
4830 /* Whether CTOR is a valid constant initializer, in accordance with what
4831 initializer_constant_valid_p does. If inferred from the constructor
4832 elements, true until proven otherwise. */
4833 bool const_from_elts_p
= constructor_static_from_elts_p (ctor
);
4834 bool const_p
= const_from_elts_p
? true : TREE_STATIC (ctor
);
4839 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor
), idx
, purpose
, value
)
4844 if (TREE_CODE (purpose
) == RANGE_EXPR
)
4846 tree lo_index
= TREE_OPERAND (purpose
, 0);
4847 tree hi_index
= TREE_OPERAND (purpose
, 1);
4849 if (host_integerp (lo_index
, 1) && host_integerp (hi_index
, 1))
4850 mult
= (tree_low_cst (hi_index
, 1)
4851 - tree_low_cst (lo_index
, 1) + 1);
4854 switch (TREE_CODE (value
))
4858 HOST_WIDE_INT nz
= 0, ic
= 0;
4861 = categorize_ctor_elements_1 (value
, &nz
, &ic
, p_must_clear
);
4863 nz_elts
+= mult
* nz
;
4864 elt_count
+= mult
* ic
;
4866 if (const_from_elts_p
&& const_p
)
4867 const_p
= const_elt_p
;
4874 if (!initializer_zerop (value
))
4880 nz_elts
+= mult
* TREE_STRING_LENGTH (value
);
4881 elt_count
+= mult
* TREE_STRING_LENGTH (value
);
4885 if (!initializer_zerop (TREE_REALPART (value
)))
4887 if (!initializer_zerop (TREE_IMAGPART (value
)))
4895 for (v
= TREE_VECTOR_CST_ELTS (value
); v
; v
= TREE_CHAIN (v
))
4897 if (!initializer_zerop (TREE_VALUE (v
)))
4908 if (const_from_elts_p
&& const_p
)
4909 const_p
= initializer_constant_valid_p (value
, TREE_TYPE (value
))
4916 && (TREE_CODE (TREE_TYPE (ctor
)) == UNION_TYPE
4917 || TREE_CODE (TREE_TYPE (ctor
)) == QUAL_UNION_TYPE
))
4920 bool clear_this
= true;
4922 if (!VEC_empty (constructor_elt
, CONSTRUCTOR_ELTS (ctor
)))
4924 /* We don't expect more than one element of the union to be
4925 initialized. Not sure what we should do otherwise... */
4926 gcc_assert (VEC_length (constructor_elt
, CONSTRUCTOR_ELTS (ctor
))
4929 init_sub_type
= TREE_TYPE (VEC_index (constructor_elt
,
4930 CONSTRUCTOR_ELTS (ctor
),
4933 /* ??? We could look at each element of the union, and find the
4934 largest element. Which would avoid comparing the size of the
4935 initialized element against any tail padding in the union.
4936 Doesn't seem worth the effort... */
4937 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor
)),
4938 TYPE_SIZE (init_sub_type
)) == 1)
4940 /* And now we have to find out if the element itself is fully
4941 constructed. E.g. for union { struct { int a, b; } s; } u
4942 = { .s = { .a = 1 } }. */
4943 if (elt_count
== count_type_elements (init_sub_type
, false))
4948 *p_must_clear
= clear_this
;
4951 *p_nz_elts
+= nz_elts
;
4952 *p_elt_count
+= elt_count
;
4957 /* Examine CTOR to discover:
4958 * how many scalar fields are set to nonzero values,
4959 and place it in *P_NZ_ELTS;
4960 * how many scalar fields in total are in CTOR,
4961 and place it in *P_ELT_COUNT.
4962 * if a type is a union, and the initializer from the constructor
4963 is not the largest element in the union, then set *p_must_clear.
4965 Return whether or not CTOR is a valid static constant initializer, the same
4966 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
4969 categorize_ctor_elements (const_tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
4970 HOST_WIDE_INT
*p_elt_count
,
4975 *p_must_clear
= false;
4978 categorize_ctor_elements_1 (ctor
, p_nz_elts
, p_elt_count
, p_must_clear
);
4981 /* Count the number of scalars in TYPE. Return -1 on overflow or
4982 variable-sized. If ALLOW_FLEXARR is true, don't count flexible
4983 array member at the end of the structure. */
4986 count_type_elements (const_tree type
, bool allow_flexarr
)
4988 const HOST_WIDE_INT max
= ~((HOST_WIDE_INT
)1 << (HOST_BITS_PER_WIDE_INT
-1));
4989 switch (TREE_CODE (type
))
4993 tree telts
= array_type_nelts (type
);
4994 if (telts
&& host_integerp (telts
, 1))
4996 HOST_WIDE_INT n
= tree_low_cst (telts
, 1) + 1;
4997 HOST_WIDE_INT m
= count_type_elements (TREE_TYPE (type
), false);
5000 else if (max
/ n
> m
)
5008 HOST_WIDE_INT n
= 0, t
;
5011 for (f
= TYPE_FIELDS (type
); f
; f
= TREE_CHAIN (f
))
5012 if (TREE_CODE (f
) == FIELD_DECL
)
5014 t
= count_type_elements (TREE_TYPE (f
), false);
5017 /* Check for structures with flexible array member. */
5018 tree tf
= TREE_TYPE (f
);
5020 && TREE_CHAIN (f
) == NULL
5021 && TREE_CODE (tf
) == ARRAY_TYPE
5023 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf
))
5024 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf
)))
5025 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf
))
5026 && int_size_in_bytes (type
) >= 0)
5038 case QUAL_UNION_TYPE
:
5045 return TYPE_VECTOR_SUBPARTS (type
);
5049 case FIXED_POINT_TYPE
:
5054 case REFERENCE_TYPE
:
5069 /* Return 1 if EXP contains mostly (3/4) zeros. */
5072 mostly_zeros_p (const_tree exp
)
5074 if (TREE_CODE (exp
) == CONSTRUCTOR
)
5077 HOST_WIDE_INT nz_elts
, count
, elts
;
5080 categorize_ctor_elements (exp
, &nz_elts
, &count
, &must_clear
);
5084 elts
= count_type_elements (TREE_TYPE (exp
), false);
5086 return nz_elts
< elts
/ 4;
5089 return initializer_zerop (exp
);
5092 /* Return 1 if EXP contains all zeros. */
5095 all_zeros_p (const_tree exp
)
5097 if (TREE_CODE (exp
) == CONSTRUCTOR
)
5100 HOST_WIDE_INT nz_elts
, count
;
5103 categorize_ctor_elements (exp
, &nz_elts
, &count
, &must_clear
);
5104 return nz_elts
== 0;
5107 return initializer_zerop (exp
);
5110 /* Helper function for store_constructor.
5111 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5112 TYPE is the type of the CONSTRUCTOR, not the element type.
5113 CLEARED is as for store_constructor.
5114 ALIAS_SET is the alias set to use for any stores.
5116 This provides a recursive shortcut back to store_constructor when it isn't
5117 necessary to go through store_field. This is so that we can pass through
5118 the cleared field to let store_constructor know that we may not have to
5119 clear a substructure if the outer structure has already been cleared. */
5122 store_constructor_field (rtx target
, unsigned HOST_WIDE_INT bitsize
,
5123 HOST_WIDE_INT bitpos
, enum machine_mode mode
,
5124 tree exp
, tree type
, int cleared
,
5125 alias_set_type alias_set
)
5127 if (TREE_CODE (exp
) == CONSTRUCTOR
5128 /* We can only call store_constructor recursively if the size and
5129 bit position are on a byte boundary. */
5130 && bitpos
% BITS_PER_UNIT
== 0
5131 && (bitsize
> 0 && bitsize
% BITS_PER_UNIT
== 0)
5132 /* If we have a nonzero bitpos for a register target, then we just
5133 let store_field do the bitfield handling. This is unlikely to
5134 generate unnecessary clear instructions anyways. */
5135 && (bitpos
== 0 || MEM_P (target
)))
5139 = adjust_address (target
,
5140 GET_MODE (target
) == BLKmode
5142 % GET_MODE_ALIGNMENT (GET_MODE (target
)))
5143 ? BLKmode
: VOIDmode
, bitpos
/ BITS_PER_UNIT
);
5146 /* Update the alias set, if required. */
5147 if (MEM_P (target
) && ! MEM_KEEP_ALIAS_SET_P (target
)
5148 && MEM_ALIAS_SET (target
) != 0)
5150 target
= copy_rtx (target
);
5151 set_mem_alias_set (target
, alias_set
);
5154 store_constructor (exp
, target
, cleared
, bitsize
/ BITS_PER_UNIT
);
5157 store_field (target
, bitsize
, bitpos
, mode
, exp
, type
, alias_set
, false);
5160 /* Store the value of constructor EXP into the rtx TARGET.
5161 TARGET is either a REG or a MEM; we know it cannot conflict, since
5162 safe_from_p has been called.
5163 CLEARED is true if TARGET is known to have been zero'd.
5164 SIZE is the number of bytes of TARGET we are allowed to modify: this
5165 may not be the same as the size of EXP if we are assigning to a field
5166 which has been packed to exclude padding bits. */
5169 store_constructor (tree exp
, rtx target
, int cleared
, HOST_WIDE_INT size
)
5171 tree type
= TREE_TYPE (exp
);
5172 #ifdef WORD_REGISTER_OPERATIONS
5173 HOST_WIDE_INT exp_size
= int_size_in_bytes (type
);
5176 switch (TREE_CODE (type
))
5180 case QUAL_UNION_TYPE
:
5182 unsigned HOST_WIDE_INT idx
;
5185 /* If size is zero or the target is already cleared, do nothing. */
5186 if (size
== 0 || cleared
)
5188 /* We either clear the aggregate or indicate the value is dead. */
5189 else if ((TREE_CODE (type
) == UNION_TYPE
5190 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
5191 && ! CONSTRUCTOR_ELTS (exp
))
5192 /* If the constructor is empty, clear the union. */
5194 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
5198 /* If we are building a static constructor into a register,
5199 set the initial value as zero so we can fold the value into
5200 a constant. But if more than one register is involved,
5201 this probably loses. */
5202 else if (REG_P (target
) && TREE_STATIC (exp
)
5203 && GET_MODE_SIZE (GET_MODE (target
)) <= UNITS_PER_WORD
)
5205 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
5209 /* If the constructor has fewer fields than the structure or
5210 if we are initializing the structure to mostly zeros, clear
5211 the whole structure first. Don't do this if TARGET is a
5212 register whose mode size isn't equal to SIZE since
5213 clear_storage can't handle this case. */
5215 && (((int)VEC_length (constructor_elt
, CONSTRUCTOR_ELTS (exp
))
5216 != fields_length (type
))
5217 || mostly_zeros_p (exp
))
5219 || ((HOST_WIDE_INT
) GET_MODE_SIZE (GET_MODE (target
))
5222 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
5226 if (REG_P (target
) && !cleared
)
5227 emit_clobber (target
);
5229 /* Store each element of the constructor into the
5230 corresponding field of TARGET. */
5231 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, field
, value
)
5233 enum machine_mode mode
;
5234 HOST_WIDE_INT bitsize
;
5235 HOST_WIDE_INT bitpos
= 0;
5237 rtx to_rtx
= target
;
5239 /* Just ignore missing fields. We cleared the whole
5240 structure, above, if any fields are missing. */
5244 if (cleared
&& initializer_zerop (value
))
5247 if (host_integerp (DECL_SIZE (field
), 1))
5248 bitsize
= tree_low_cst (DECL_SIZE (field
), 1);
5252 mode
= DECL_MODE (field
);
5253 if (DECL_BIT_FIELD (field
))
5256 offset
= DECL_FIELD_OFFSET (field
);
5257 if (host_integerp (offset
, 0)
5258 && host_integerp (bit_position (field
), 0))
5260 bitpos
= int_bit_position (field
);
5264 bitpos
= tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 0);
5271 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset
,
5272 make_tree (TREE_TYPE (exp
),
5275 offset_rtx
= expand_normal (offset
);
5276 gcc_assert (MEM_P (to_rtx
));
5278 #ifdef POINTERS_EXTEND_UNSIGNED
5279 if (GET_MODE (offset_rtx
) != Pmode
)
5280 offset_rtx
= convert_to_mode (Pmode
, offset_rtx
, 0);
5282 if (GET_MODE (offset_rtx
) != ptr_mode
)
5283 offset_rtx
= convert_to_mode (ptr_mode
, offset_rtx
, 0);
5286 to_rtx
= offset_address (to_rtx
, offset_rtx
,
5287 highest_pow2_factor (offset
));
5290 #ifdef WORD_REGISTER_OPERATIONS
5291 /* If this initializes a field that is smaller than a
5292 word, at the start of a word, try to widen it to a full
5293 word. This special case allows us to output C++ member
5294 function initializations in a form that the optimizers
5297 && bitsize
< BITS_PER_WORD
5298 && bitpos
% BITS_PER_WORD
== 0
5299 && GET_MODE_CLASS (mode
) == MODE_INT
5300 && TREE_CODE (value
) == INTEGER_CST
5302 && bitpos
+ BITS_PER_WORD
<= exp_size
* BITS_PER_UNIT
)
5304 tree type
= TREE_TYPE (value
);
5306 if (TYPE_PRECISION (type
) < BITS_PER_WORD
)
5308 type
= lang_hooks
.types
.type_for_size
5309 (BITS_PER_WORD
, TYPE_UNSIGNED (type
));
5310 value
= fold_convert (type
, value
);
5313 if (BYTES_BIG_ENDIAN
)
5315 = fold_build2 (LSHIFT_EXPR
, type
, value
,
5316 build_int_cst (type
,
5317 BITS_PER_WORD
- bitsize
));
5318 bitsize
= BITS_PER_WORD
;
5323 if (MEM_P (to_rtx
) && !MEM_KEEP_ALIAS_SET_P (to_rtx
)
5324 && DECL_NONADDRESSABLE_P (field
))
5326 to_rtx
= copy_rtx (to_rtx
);
5327 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
5330 store_constructor_field (to_rtx
, bitsize
, bitpos
, mode
,
5331 value
, type
, cleared
,
5332 get_alias_set (TREE_TYPE (field
)));
5339 unsigned HOST_WIDE_INT i
;
5342 tree elttype
= TREE_TYPE (type
);
5344 HOST_WIDE_INT minelt
= 0;
5345 HOST_WIDE_INT maxelt
= 0;
5347 domain
= TYPE_DOMAIN (type
);
5348 const_bounds_p
= (TYPE_MIN_VALUE (domain
)
5349 && TYPE_MAX_VALUE (domain
)
5350 && host_integerp (TYPE_MIN_VALUE (domain
), 0)
5351 && host_integerp (TYPE_MAX_VALUE (domain
), 0));
5353 /* If we have constant bounds for the range of the type, get them. */
5356 minelt
= tree_low_cst (TYPE_MIN_VALUE (domain
), 0);
5357 maxelt
= tree_low_cst (TYPE_MAX_VALUE (domain
), 0);
5360 /* If the constructor has fewer elements than the array, clear
5361 the whole array first. Similarly if this is static
5362 constructor of a non-BLKmode object. */
5365 else if (REG_P (target
) && TREE_STATIC (exp
))
5369 unsigned HOST_WIDE_INT idx
;
5371 HOST_WIDE_INT count
= 0, zero_count
= 0;
5372 need_to_clear
= ! const_bounds_p
;
5374 /* This loop is a more accurate version of the loop in
5375 mostly_zeros_p (it handles RANGE_EXPR in an index). It
5376 is also needed to check for missing elements. */
5377 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, index
, value
)
5379 HOST_WIDE_INT this_node_count
;
5384 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
5386 tree lo_index
= TREE_OPERAND (index
, 0);
5387 tree hi_index
= TREE_OPERAND (index
, 1);
5389 if (! host_integerp (lo_index
, 1)
5390 || ! host_integerp (hi_index
, 1))
5396 this_node_count
= (tree_low_cst (hi_index
, 1)
5397 - tree_low_cst (lo_index
, 1) + 1);
5400 this_node_count
= 1;
5402 count
+= this_node_count
;
5403 if (mostly_zeros_p (value
))
5404 zero_count
+= this_node_count
;
5407 /* Clear the entire array first if there are any missing
5408 elements, or if the incidence of zero elements is >=
5411 && (count
< maxelt
- minelt
+ 1
5412 || 4 * zero_count
>= 3 * count
))
5416 if (need_to_clear
&& size
> 0)
5419 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
5421 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
5425 if (!cleared
&& REG_P (target
))
5426 /* Inform later passes that the old value is dead. */
5427 emit_clobber (target
);
5429 /* Store each element of the constructor into the
5430 corresponding element of TARGET, determined by counting the
5432 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), i
, index
, value
)
5434 enum machine_mode mode
;
5435 HOST_WIDE_INT bitsize
;
5436 HOST_WIDE_INT bitpos
;
5438 rtx xtarget
= target
;
5440 if (cleared
&& initializer_zerop (value
))
5443 unsignedp
= TYPE_UNSIGNED (elttype
);
5444 mode
= TYPE_MODE (elttype
);
5445 if (mode
== BLKmode
)
5446 bitsize
= (host_integerp (TYPE_SIZE (elttype
), 1)
5447 ? tree_low_cst (TYPE_SIZE (elttype
), 1)
5450 bitsize
= GET_MODE_BITSIZE (mode
);
5452 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
5454 tree lo_index
= TREE_OPERAND (index
, 0);
5455 tree hi_index
= TREE_OPERAND (index
, 1);
5456 rtx index_r
, pos_rtx
;
5457 HOST_WIDE_INT lo
, hi
, count
;
5460 /* If the range is constant and "small", unroll the loop. */
5462 && host_integerp (lo_index
, 0)
5463 && host_integerp (hi_index
, 0)
5464 && (lo
= tree_low_cst (lo_index
, 0),
5465 hi
= tree_low_cst (hi_index
, 0),
5466 count
= hi
- lo
+ 1,
5469 || (host_integerp (TYPE_SIZE (elttype
), 1)
5470 && (tree_low_cst (TYPE_SIZE (elttype
), 1) * count
5473 lo
-= minelt
; hi
-= minelt
;
5474 for (; lo
<= hi
; lo
++)
5476 bitpos
= lo
* tree_low_cst (TYPE_SIZE (elttype
), 0);
5479 && !MEM_KEEP_ALIAS_SET_P (target
)
5480 && TREE_CODE (type
) == ARRAY_TYPE
5481 && TYPE_NONALIASED_COMPONENT (type
))
5483 target
= copy_rtx (target
);
5484 MEM_KEEP_ALIAS_SET_P (target
) = 1;
5487 store_constructor_field
5488 (target
, bitsize
, bitpos
, mode
, value
, type
, cleared
,
5489 get_alias_set (elttype
));
5494 rtx loop_start
= gen_label_rtx ();
5495 rtx loop_end
= gen_label_rtx ();
5498 expand_normal (hi_index
);
5499 unsignedp
= TYPE_UNSIGNED (domain
);
5501 index
= build_decl (EXPR_LOCATION (exp
),
5502 VAR_DECL
, NULL_TREE
, domain
);
5505 = gen_reg_rtx (promote_mode (domain
, DECL_MODE (index
),
5507 SET_DECL_RTL (index
, index_r
);
5508 store_expr (lo_index
, index_r
, 0, false);
5510 /* Build the head of the loop. */
5511 do_pending_stack_adjust ();
5512 emit_label (loop_start
);
5514 /* Assign value to element index. */
5516 fold_convert (ssizetype
,
5517 fold_build2 (MINUS_EXPR
,
5520 TYPE_MIN_VALUE (domain
)));
5523 size_binop (MULT_EXPR
, position
,
5524 fold_convert (ssizetype
,
5525 TYPE_SIZE_UNIT (elttype
)));
5527 pos_rtx
= expand_normal (position
);
5528 xtarget
= offset_address (target
, pos_rtx
,
5529 highest_pow2_factor (position
));
5530 xtarget
= adjust_address (xtarget
, mode
, 0);
5531 if (TREE_CODE (value
) == CONSTRUCTOR
)
5532 store_constructor (value
, xtarget
, cleared
,
5533 bitsize
/ BITS_PER_UNIT
);
5535 store_expr (value
, xtarget
, 0, false);
5537 /* Generate a conditional jump to exit the loop. */
5538 exit_cond
= build2 (LT_EXPR
, integer_type_node
,
5540 jumpif (exit_cond
, loop_end
);
5542 /* Update the loop counter, and jump to the head of
5544 expand_assignment (index
,
5545 build2 (PLUS_EXPR
, TREE_TYPE (index
),
5546 index
, integer_one_node
),
5549 emit_jump (loop_start
);
5551 /* Build the end of the loop. */
5552 emit_label (loop_end
);
5555 else if ((index
!= 0 && ! host_integerp (index
, 0))
5556 || ! host_integerp (TYPE_SIZE (elttype
), 1))
5561 index
= ssize_int (1);
5564 index
= fold_convert (ssizetype
,
5565 fold_build2 (MINUS_EXPR
,
5568 TYPE_MIN_VALUE (domain
)));
5571 size_binop (MULT_EXPR
, index
,
5572 fold_convert (ssizetype
,
5573 TYPE_SIZE_UNIT (elttype
)));
5574 xtarget
= offset_address (target
,
5575 expand_normal (position
),
5576 highest_pow2_factor (position
));
5577 xtarget
= adjust_address (xtarget
, mode
, 0);
5578 store_expr (value
, xtarget
, 0, false);
5583 bitpos
= ((tree_low_cst (index
, 0) - minelt
)
5584 * tree_low_cst (TYPE_SIZE (elttype
), 1));
5586 bitpos
= (i
* tree_low_cst (TYPE_SIZE (elttype
), 1));
5588 if (MEM_P (target
) && !MEM_KEEP_ALIAS_SET_P (target
)
5589 && TREE_CODE (type
) == ARRAY_TYPE
5590 && TYPE_NONALIASED_COMPONENT (type
))
5592 target
= copy_rtx (target
);
5593 MEM_KEEP_ALIAS_SET_P (target
) = 1;
5595 store_constructor_field (target
, bitsize
, bitpos
, mode
, value
,
5596 type
, cleared
, get_alias_set (elttype
));
5604 unsigned HOST_WIDE_INT idx
;
5605 constructor_elt
*ce
;
5609 tree elttype
= TREE_TYPE (type
);
5610 int elt_size
= tree_low_cst (TYPE_SIZE (elttype
), 1);
5611 enum machine_mode eltmode
= TYPE_MODE (elttype
);
5612 HOST_WIDE_INT bitsize
;
5613 HOST_WIDE_INT bitpos
;
5614 rtvec vector
= NULL
;
5616 alias_set_type alias
;
5618 gcc_assert (eltmode
!= BLKmode
);
5620 n_elts
= TYPE_VECTOR_SUBPARTS (type
);
5621 if (REG_P (target
) && VECTOR_MODE_P (GET_MODE (target
)))
5623 enum machine_mode mode
= GET_MODE (target
);
5625 icode
= (int) optab_handler (vec_init_optab
, mode
)->insn_code
;
5626 if (icode
!= CODE_FOR_nothing
)
5630 vector
= rtvec_alloc (n_elts
);
5631 for (i
= 0; i
< n_elts
; i
++)
5632 RTVEC_ELT (vector
, i
) = CONST0_RTX (GET_MODE_INNER (mode
));
5636 /* If the constructor has fewer elements than the vector,
5637 clear the whole array first. Similarly if this is static
5638 constructor of a non-BLKmode object. */
5641 else if (REG_P (target
) && TREE_STATIC (exp
))
5645 unsigned HOST_WIDE_INT count
= 0, zero_count
= 0;
5648 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
5650 int n_elts_here
= tree_low_cst
5651 (int_const_binop (TRUNC_DIV_EXPR
,
5652 TYPE_SIZE (TREE_TYPE (value
)),
5653 TYPE_SIZE (elttype
), 0), 1);
5655 count
+= n_elts_here
;
5656 if (mostly_zeros_p (value
))
5657 zero_count
+= n_elts_here
;
5660 /* Clear the entire vector first if there are any missing elements,
5661 or if the incidence of zero elements is >= 75%. */
5662 need_to_clear
= (count
< n_elts
|| 4 * zero_count
>= 3 * count
);
5665 if (need_to_clear
&& size
> 0 && !vector
)
5668 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
5670 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
5674 /* Inform later passes that the old value is dead. */
5675 if (!cleared
&& !vector
&& REG_P (target
))
5676 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
5679 alias
= MEM_ALIAS_SET (target
);
5681 alias
= get_alias_set (elttype
);
5683 /* Store each element of the constructor into the corresponding
5684 element of TARGET, determined by counting the elements. */
5685 for (idx
= 0, i
= 0;
5686 VEC_iterate (constructor_elt
, CONSTRUCTOR_ELTS (exp
), idx
, ce
);
5687 idx
++, i
+= bitsize
/ elt_size
)
5689 HOST_WIDE_INT eltpos
;
5690 tree value
= ce
->value
;
5692 bitsize
= tree_low_cst (TYPE_SIZE (TREE_TYPE (value
)), 1);
5693 if (cleared
&& initializer_zerop (value
))
5697 eltpos
= tree_low_cst (ce
->index
, 1);
5703 /* Vector CONSTRUCTORs should only be built from smaller
5704 vectors in the case of BLKmode vectors. */
5705 gcc_assert (TREE_CODE (TREE_TYPE (value
)) != VECTOR_TYPE
);
5706 RTVEC_ELT (vector
, eltpos
)
5707 = expand_normal (value
);
5711 enum machine_mode value_mode
=
5712 TREE_CODE (TREE_TYPE (value
)) == VECTOR_TYPE
5713 ? TYPE_MODE (TREE_TYPE (value
))
5715 bitpos
= eltpos
* elt_size
;
5716 store_constructor_field (target
, bitsize
, bitpos
,
5717 value_mode
, value
, type
,
5723 emit_insn (GEN_FCN (icode
)
5725 gen_rtx_PARALLEL (GET_MODE (target
), vector
)));
5734 /* Store the value of EXP (an expression tree)
5735 into a subfield of TARGET which has mode MODE and occupies
5736 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5737 If MODE is VOIDmode, it means that we are storing into a bit-field.
5739 Always return const0_rtx unless we have something particular to
5742 TYPE is the type of the underlying object,
5744 ALIAS_SET is the alias set for the destination. This value will
5745 (in general) be different from that for TARGET, since TARGET is a
5746 reference to the containing structure.
5748 If NONTEMPORAL is true, try generating a nontemporal store. */
5751 store_field (rtx target
, HOST_WIDE_INT bitsize
, HOST_WIDE_INT bitpos
,
5752 enum machine_mode mode
, tree exp
, tree type
,
5753 alias_set_type alias_set
, bool nontemporal
)
5755 HOST_WIDE_INT width_mask
= 0;
5757 if (TREE_CODE (exp
) == ERROR_MARK
)
5760 /* If we have nothing to store, do nothing unless the expression has
5763 return expand_expr (exp
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
5764 else if (bitsize
>= 0 && bitsize
< HOST_BITS_PER_WIDE_INT
)
5765 width_mask
= ((HOST_WIDE_INT
) 1 << bitsize
) - 1;
5767 /* If we are storing into an unaligned field of an aligned union that is
5768 in a register, we may have the mode of TARGET being an integer mode but
5769 MODE == BLKmode. In that case, get an aligned object whose size and
5770 alignment are the same as TARGET and store TARGET into it (we can avoid
5771 the store if the field being stored is the entire width of TARGET). Then
5772 call ourselves recursively to store the field into a BLKmode version of
5773 that object. Finally, load from the object into TARGET. This is not
5774 very efficient in general, but should only be slightly more expensive
5775 than the otherwise-required unaligned accesses. Perhaps this can be
5776 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5777 twice, once with emit_move_insn and once via store_field. */
5780 && (REG_P (target
) || GET_CODE (target
) == SUBREG
))
5782 rtx object
= assign_temp (type
, 0, 1, 1);
5783 rtx blk_object
= adjust_address (object
, BLKmode
, 0);
5785 if (bitsize
!= (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (target
)))
5786 emit_move_insn (object
, target
);
5788 store_field (blk_object
, bitsize
, bitpos
, mode
, exp
, type
, alias_set
,
5791 emit_move_insn (target
, object
);
5793 /* We want to return the BLKmode version of the data. */
5797 if (GET_CODE (target
) == CONCAT
)
5799 /* We're storing into a struct containing a single __complex. */
5801 gcc_assert (!bitpos
);
5802 return store_expr (exp
, target
, 0, nontemporal
);
5805 /* If the structure is in a register or if the component
5806 is a bit field, we cannot use addressing to access it.
5807 Use bit-field techniques or SUBREG to store in it. */
5809 if (mode
== VOIDmode
5810 || (mode
!= BLKmode
&& ! direct_store
[(int) mode
]
5811 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
5812 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
)
5814 || GET_CODE (target
) == SUBREG
5815 /* If the field isn't aligned enough to store as an ordinary memref,
5816 store it as a bit field. */
5818 && ((((MEM_ALIGN (target
) < GET_MODE_ALIGNMENT (mode
))
5819 || bitpos
% GET_MODE_ALIGNMENT (mode
))
5820 && SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (target
)))
5821 || (bitpos
% BITS_PER_UNIT
!= 0)))
5822 /* If the RHS and field are a constant size and the size of the
5823 RHS isn't the same size as the bitfield, we must use bitfield
5826 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
5827 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)), bitsize
) != 0))
5832 /* If EXP is a NOP_EXPR of precision less than its mode, then that
5833 implies a mask operation. If the precision is the same size as
5834 the field we're storing into, that mask is redundant. This is
5835 particularly common with bit field assignments generated by the
5837 nop_def
= get_def_for_expr (exp
, NOP_EXPR
);
5840 tree type
= TREE_TYPE (exp
);
5841 if (INTEGRAL_TYPE_P (type
)
5842 && TYPE_PRECISION (type
) < GET_MODE_BITSIZE (TYPE_MODE (type
))
5843 && bitsize
== TYPE_PRECISION (type
))
5845 tree op
= gimple_assign_rhs1 (nop_def
);
5846 type
= TREE_TYPE (op
);
5847 if (INTEGRAL_TYPE_P (type
) && TYPE_PRECISION (type
) >= bitsize
)
5852 temp
= expand_normal (exp
);
5854 /* If BITSIZE is narrower than the size of the type of EXP
5855 we will be narrowing TEMP. Normally, what's wanted are the
5856 low-order bits. However, if EXP's type is a record and this is
5857 big-endian machine, we want the upper BITSIZE bits. */
5858 if (BYTES_BIG_ENDIAN
&& GET_MODE_CLASS (GET_MODE (temp
)) == MODE_INT
5859 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (temp
))
5860 && TREE_CODE (TREE_TYPE (exp
)) == RECORD_TYPE
)
5861 temp
= expand_shift (RSHIFT_EXPR
, GET_MODE (temp
), temp
,
5862 size_int (GET_MODE_BITSIZE (GET_MODE (temp
))
5866 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5868 if (mode
!= VOIDmode
&& mode
!= BLKmode
5869 && mode
!= TYPE_MODE (TREE_TYPE (exp
)))
5870 temp
= convert_modes (mode
, TYPE_MODE (TREE_TYPE (exp
)), temp
, 1);
5872 /* If the modes of TEMP and TARGET are both BLKmode, both
5873 must be in memory and BITPOS must be aligned on a byte
5874 boundary. If so, we simply do a block copy. Likewise
5875 for a BLKmode-like TARGET. */
5876 if (GET_MODE (temp
) == BLKmode
5877 && (GET_MODE (target
) == BLKmode
5879 && GET_MODE_CLASS (GET_MODE (target
)) == MODE_INT
5880 && (bitpos
% BITS_PER_UNIT
) == 0
5881 && (bitsize
% BITS_PER_UNIT
) == 0)))
5883 gcc_assert (MEM_P (target
) && MEM_P (temp
)
5884 && (bitpos
% BITS_PER_UNIT
) == 0);
5886 target
= adjust_address (target
, VOIDmode
, bitpos
/ BITS_PER_UNIT
);
5887 emit_block_move (target
, temp
,
5888 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
5895 /* Store the value in the bitfield. */
5896 store_bit_field (target
, bitsize
, bitpos
, mode
, temp
);
5902 /* Now build a reference to just the desired component. */
5903 rtx to_rtx
= adjust_address (target
, mode
, bitpos
/ BITS_PER_UNIT
);
5905 if (to_rtx
== target
)
5906 to_rtx
= copy_rtx (to_rtx
);
5908 MEM_SET_IN_STRUCT_P (to_rtx
, 1);
5909 if (!MEM_KEEP_ALIAS_SET_P (to_rtx
) && MEM_ALIAS_SET (to_rtx
) != 0)
5910 set_mem_alias_set (to_rtx
, alias_set
);
5912 return store_expr (exp
, to_rtx
, 0, nontemporal
);
5916 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5917 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5918 codes and find the ultimate containing object, which we return.
5920 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5921 bit position, and *PUNSIGNEDP to the signedness of the field.
5922 If the position of the field is variable, we store a tree
5923 giving the variable offset (in units) in *POFFSET.
5924 This offset is in addition to the bit position.
5925 If the position is not variable, we store 0 in *POFFSET.
5927 If any of the extraction expressions is volatile,
5928 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5930 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
5931 Otherwise, it is a mode that can be used to access the field.
5933 If the field describes a variable-sized object, *PMODE is set to
5934 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
5935 this case, but the address of the object can be found.
5937 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
5938 look through nodes that serve as markers of a greater alignment than
5939 the one that can be deduced from the expression. These nodes make it
5940 possible for front-ends to prevent temporaries from being created by
5941 the middle-end on alignment considerations. For that purpose, the
5942 normal operating mode at high-level is to always pass FALSE so that
5943 the ultimate containing object is really returned; moreover, the
5944 associated predicate handled_component_p will always return TRUE
5945 on these nodes, thus indicating that they are essentially handled
5946 by get_inner_reference. TRUE should only be passed when the caller
5947 is scanning the expression in order to build another representation
5948 and specifically knows how to handle these nodes; as such, this is
5949 the normal operating mode in the RTL expanders. */
5952 get_inner_reference (tree exp
, HOST_WIDE_INT
*pbitsize
,
5953 HOST_WIDE_INT
*pbitpos
, tree
*poffset
,
5954 enum machine_mode
*pmode
, int *punsignedp
,
5955 int *pvolatilep
, bool keep_aligning
)
5958 enum machine_mode mode
= VOIDmode
;
5959 bool blkmode_bitfield
= false;
5960 tree offset
= size_zero_node
;
5961 tree bit_offset
= bitsize_zero_node
;
5963 /* First get the mode, signedness, and size. We do this from just the
5964 outermost expression. */
5965 if (TREE_CODE (exp
) == COMPONENT_REF
)
5967 tree field
= TREE_OPERAND (exp
, 1);
5968 size_tree
= DECL_SIZE (field
);
5969 if (!DECL_BIT_FIELD (field
))
5970 mode
= DECL_MODE (field
);
5971 else if (DECL_MODE (field
) == BLKmode
)
5972 blkmode_bitfield
= true;
5974 *punsignedp
= DECL_UNSIGNED (field
);
5976 else if (TREE_CODE (exp
) == BIT_FIELD_REF
)
5978 size_tree
= TREE_OPERAND (exp
, 1);
5979 *punsignedp
= (! INTEGRAL_TYPE_P (TREE_TYPE (exp
))
5980 || TYPE_UNSIGNED (TREE_TYPE (exp
)));
5982 /* For vector types, with the correct size of access, use the mode of
5984 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 0))) == VECTOR_TYPE
5985 && TREE_TYPE (exp
) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)))
5986 && tree_int_cst_equal (size_tree
, TYPE_SIZE (TREE_TYPE (exp
))))
5987 mode
= TYPE_MODE (TREE_TYPE (exp
));
5991 mode
= TYPE_MODE (TREE_TYPE (exp
));
5992 *punsignedp
= TYPE_UNSIGNED (TREE_TYPE (exp
));
5994 if (mode
== BLKmode
)
5995 size_tree
= TYPE_SIZE (TREE_TYPE (exp
));
5997 *pbitsize
= GET_MODE_BITSIZE (mode
);
6002 if (! host_integerp (size_tree
, 1))
6003 mode
= BLKmode
, *pbitsize
= -1;
6005 *pbitsize
= tree_low_cst (size_tree
, 1);
6008 /* Compute cumulative bit-offset for nested component-refs and array-refs,
6009 and find the ultimate containing object. */
6012 switch (TREE_CODE (exp
))
6015 bit_offset
= size_binop (PLUS_EXPR
, bit_offset
,
6016 TREE_OPERAND (exp
, 2));
6021 tree field
= TREE_OPERAND (exp
, 1);
6022 tree this_offset
= component_ref_field_offset (exp
);
6024 /* If this field hasn't been filled in yet, don't go past it.
6025 This should only happen when folding expressions made during
6026 type construction. */
6027 if (this_offset
== 0)
6030 offset
= size_binop (PLUS_EXPR
, offset
, this_offset
);
6031 bit_offset
= size_binop (PLUS_EXPR
, bit_offset
,
6032 DECL_FIELD_BIT_OFFSET (field
));
6034 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6039 case ARRAY_RANGE_REF
:
6041 tree index
= TREE_OPERAND (exp
, 1);
6042 tree low_bound
= array_ref_low_bound (exp
);
6043 tree unit_size
= array_ref_element_size (exp
);
6045 /* We assume all arrays have sizes that are a multiple of a byte.
6046 First subtract the lower bound, if any, in the type of the
6047 index, then convert to sizetype and multiply by the size of
6048 the array element. */
6049 if (! integer_zerop (low_bound
))
6050 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
6053 offset
= size_binop (PLUS_EXPR
, offset
,
6054 size_binop (MULT_EXPR
,
6055 fold_convert (sizetype
, index
),
6064 bit_offset
= size_binop (PLUS_EXPR
, bit_offset
,
6065 bitsize_int (*pbitsize
));
6068 case VIEW_CONVERT_EXPR
:
6069 if (keep_aligning
&& STRICT_ALIGNMENT
6070 && (TYPE_ALIGN (TREE_TYPE (exp
))
6071 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0))))
6072 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0)))
6073 < BIGGEST_ALIGNMENT
)
6074 && (TYPE_ALIGN_OK (TREE_TYPE (exp
))
6075 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp
, 0)))))
6083 /* If any reference in the chain is volatile, the effect is volatile. */
6084 if (TREE_THIS_VOLATILE (exp
))
6087 exp
= TREE_OPERAND (exp
, 0);
6091 /* If OFFSET is constant, see if we can return the whole thing as a
6092 constant bit position. Make sure to handle overflow during
6094 if (host_integerp (offset
, 0))
6096 double_int tem
= double_int_mul (tree_to_double_int (offset
),
6097 uhwi_to_double_int (BITS_PER_UNIT
));
6098 tem
= double_int_add (tem
, tree_to_double_int (bit_offset
));
6099 if (double_int_fits_in_shwi_p (tem
))
6101 *pbitpos
= double_int_to_shwi (tem
);
6102 *poffset
= offset
= NULL_TREE
;
6106 /* Otherwise, split it up. */
6109 *pbitpos
= tree_low_cst (bit_offset
, 0);
6113 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6114 if (mode
== VOIDmode
6116 && (*pbitpos
% BITS_PER_UNIT
) == 0
6117 && (*pbitsize
% BITS_PER_UNIT
) == 0)
6125 /* Given an expression EXP that may be a COMPONENT_REF, an ARRAY_REF or an
6126 ARRAY_RANGE_REF, look for whether EXP or any nested component-refs within
6127 EXP is marked as PACKED. */
6130 contains_packed_reference (const_tree exp
)
6132 bool packed_p
= false;
6136 switch (TREE_CODE (exp
))
6140 tree field
= TREE_OPERAND (exp
, 1);
6141 packed_p
= DECL_PACKED (field
)
6142 || TYPE_PACKED (TREE_TYPE (field
))
6143 || TYPE_PACKED (TREE_TYPE (exp
));
6151 case ARRAY_RANGE_REF
:
6154 case VIEW_CONVERT_EXPR
:
6160 exp
= TREE_OPERAND (exp
, 0);
6166 /* Return a tree of sizetype representing the size, in bytes, of the element
6167 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6170 array_ref_element_size (tree exp
)
6172 tree aligned_size
= TREE_OPERAND (exp
, 3);
6173 tree elmt_type
= TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)));
6175 /* If a size was specified in the ARRAY_REF, it's the size measured
6176 in alignment units of the element type. So multiply by that value. */
6179 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6180 sizetype from another type of the same width and signedness. */
6181 if (TREE_TYPE (aligned_size
) != sizetype
)
6182 aligned_size
= fold_convert (sizetype
, aligned_size
);
6183 return size_binop (MULT_EXPR
, aligned_size
,
6184 size_int (TYPE_ALIGN_UNIT (elmt_type
)));
6187 /* Otherwise, take the size from that of the element type. Substitute
6188 any PLACEHOLDER_EXPR that we have. */
6190 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type
), exp
);
6193 /* Return a tree representing the lower bound of the array mentioned in
6194 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6197 array_ref_low_bound (tree exp
)
6199 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
6201 /* If a lower bound is specified in EXP, use it. */
6202 if (TREE_OPERAND (exp
, 2))
6203 return TREE_OPERAND (exp
, 2);
6205 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6206 substituting for a PLACEHOLDER_EXPR as needed. */
6207 if (domain_type
&& TYPE_MIN_VALUE (domain_type
))
6208 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type
), exp
);
6210 /* Otherwise, return a zero of the appropriate type. */
6211 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp
, 1)), 0);
6214 /* Return a tree representing the upper bound of the array mentioned in
6215 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6218 array_ref_up_bound (tree exp
)
6220 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
6222 /* If there is a domain type and it has an upper bound, use it, substituting
6223 for a PLACEHOLDER_EXPR as needed. */
6224 if (domain_type
&& TYPE_MAX_VALUE (domain_type
))
6225 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type
), exp
);
6227 /* Otherwise fail. */
6231 /* Return a tree representing the offset, in bytes, of the field referenced
6232 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
6235 component_ref_field_offset (tree exp
)
6237 tree aligned_offset
= TREE_OPERAND (exp
, 2);
6238 tree field
= TREE_OPERAND (exp
, 1);
6240 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
6241 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
6245 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6246 sizetype from another type of the same width and signedness. */
6247 if (TREE_TYPE (aligned_offset
) != sizetype
)
6248 aligned_offset
= fold_convert (sizetype
, aligned_offset
);
6249 return size_binop (MULT_EXPR
, aligned_offset
,
6250 size_int (DECL_OFFSET_ALIGN (field
) / BITS_PER_UNIT
));
6253 /* Otherwise, take the offset from that of the field. Substitute
6254 any PLACEHOLDER_EXPR that we have. */
6256 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field
), exp
);
6259 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
6261 static unsigned HOST_WIDE_INT
6262 target_align (const_tree target
)
6264 /* We might have a chain of nested references with intermediate misaligning
6265 bitfields components, so need to recurse to find out. */
6267 unsigned HOST_WIDE_INT this_align
, outer_align
;
6269 switch (TREE_CODE (target
))
6275 this_align
= DECL_ALIGN (TREE_OPERAND (target
, 1));
6276 outer_align
= target_align (TREE_OPERAND (target
, 0));
6277 return MIN (this_align
, outer_align
);
6280 case ARRAY_RANGE_REF
:
6281 this_align
= TYPE_ALIGN (TREE_TYPE (target
));
6282 outer_align
= target_align (TREE_OPERAND (target
, 0));
6283 return MIN (this_align
, outer_align
);
6286 case NON_LVALUE_EXPR
:
6287 case VIEW_CONVERT_EXPR
:
6288 this_align
= TYPE_ALIGN (TREE_TYPE (target
));
6289 outer_align
= target_align (TREE_OPERAND (target
, 0));
6290 return MAX (this_align
, outer_align
);
6293 return TYPE_ALIGN (TREE_TYPE (target
));
6298 /* Given an rtx VALUE that may contain additions and multiplications, return
6299 an equivalent value that just refers to a register, memory, or constant.
6300 This is done by generating instructions to perform the arithmetic and
6301 returning a pseudo-register containing the value.
6303 The returned value may be a REG, SUBREG, MEM or constant. */
6306 force_operand (rtx value
, rtx target
)
6309 /* Use subtarget as the target for operand 0 of a binary operation. */
6310 rtx subtarget
= get_subtarget (target
);
6311 enum rtx_code code
= GET_CODE (value
);
6313 /* Check for subreg applied to an expression produced by loop optimizer. */
6315 && !REG_P (SUBREG_REG (value
))
6316 && !MEM_P (SUBREG_REG (value
)))
6319 = simplify_gen_subreg (GET_MODE (value
),
6320 force_reg (GET_MODE (SUBREG_REG (value
)),
6321 force_operand (SUBREG_REG (value
),
6323 GET_MODE (SUBREG_REG (value
)),
6324 SUBREG_BYTE (value
));
6325 code
= GET_CODE (value
);
6328 /* Check for a PIC address load. */
6329 if ((code
== PLUS
|| code
== MINUS
)
6330 && XEXP (value
, 0) == pic_offset_table_rtx
6331 && (GET_CODE (XEXP (value
, 1)) == SYMBOL_REF
6332 || GET_CODE (XEXP (value
, 1)) == LABEL_REF
6333 || GET_CODE (XEXP (value
, 1)) == CONST
))
6336 subtarget
= gen_reg_rtx (GET_MODE (value
));
6337 emit_move_insn (subtarget
, value
);
6341 if (ARITHMETIC_P (value
))
6343 op2
= XEXP (value
, 1);
6344 if (!CONSTANT_P (op2
) && !(REG_P (op2
) && op2
!= subtarget
))
6346 if (code
== MINUS
&& CONST_INT_P (op2
))
6349 op2
= negate_rtx (GET_MODE (value
), op2
);
6352 /* Check for an addition with OP2 a constant integer and our first
6353 operand a PLUS of a virtual register and something else. In that
6354 case, we want to emit the sum of the virtual register and the
6355 constant first and then add the other value. This allows virtual
6356 register instantiation to simply modify the constant rather than
6357 creating another one around this addition. */
6358 if (code
== PLUS
&& CONST_INT_P (op2
)
6359 && GET_CODE (XEXP (value
, 0)) == PLUS
6360 && REG_P (XEXP (XEXP (value
, 0), 0))
6361 && REGNO (XEXP (XEXP (value
, 0), 0)) >= FIRST_VIRTUAL_REGISTER
6362 && REGNO (XEXP (XEXP (value
, 0), 0)) <= LAST_VIRTUAL_REGISTER
)
6364 rtx temp
= expand_simple_binop (GET_MODE (value
), code
,
6365 XEXP (XEXP (value
, 0), 0), op2
,
6366 subtarget
, 0, OPTAB_LIB_WIDEN
);
6367 return expand_simple_binop (GET_MODE (value
), code
, temp
,
6368 force_operand (XEXP (XEXP (value
,
6370 target
, 0, OPTAB_LIB_WIDEN
);
6373 op1
= force_operand (XEXP (value
, 0), subtarget
);
6374 op2
= force_operand (op2
, NULL_RTX
);
6378 return expand_mult (GET_MODE (value
), op1
, op2
, target
, 1);
6380 if (!INTEGRAL_MODE_P (GET_MODE (value
)))
6381 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
6382 target
, 1, OPTAB_LIB_WIDEN
);
6384 return expand_divmod (0,
6385 FLOAT_MODE_P (GET_MODE (value
))
6386 ? RDIV_EXPR
: TRUNC_DIV_EXPR
,
6387 GET_MODE (value
), op1
, op2
, target
, 0);
6389 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
6392 return expand_divmod (0, TRUNC_DIV_EXPR
, GET_MODE (value
), op1
, op2
,
6395 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
6398 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
6399 target
, 0, OPTAB_LIB_WIDEN
);
6401 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
6402 target
, 1, OPTAB_LIB_WIDEN
);
6405 if (UNARY_P (value
))
6408 target
= gen_reg_rtx (GET_MODE (value
));
6409 op1
= force_operand (XEXP (value
, 0), NULL_RTX
);
6416 case FLOAT_TRUNCATE
:
6417 convert_move (target
, op1
, code
== ZERO_EXTEND
);
6422 expand_fix (target
, op1
, code
== UNSIGNED_FIX
);
6426 case UNSIGNED_FLOAT
:
6427 expand_float (target
, op1
, code
== UNSIGNED_FLOAT
);
6431 return expand_simple_unop (GET_MODE (value
), code
, op1
, target
, 0);
6435 #ifdef INSN_SCHEDULING
6436 /* On machines that have insn scheduling, we want all memory reference to be
6437 explicit, so we need to deal with such paradoxical SUBREGs. */
6438 if (GET_CODE (value
) == SUBREG
&& MEM_P (SUBREG_REG (value
))
6439 && (GET_MODE_SIZE (GET_MODE (value
))
6440 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value
)))))
6442 = simplify_gen_subreg (GET_MODE (value
),
6443 force_reg (GET_MODE (SUBREG_REG (value
)),
6444 force_operand (SUBREG_REG (value
),
6446 GET_MODE (SUBREG_REG (value
)),
6447 SUBREG_BYTE (value
));
6453 /* Subroutine of expand_expr: return nonzero iff there is no way that
6454 EXP can reference X, which is being modified. TOP_P is nonzero if this
6455 call is going to be used to determine whether we need a temporary
6456 for EXP, as opposed to a recursive call to this function.
6458 It is always safe for this routine to return zero since it merely
6459 searches for optimization opportunities. */
6462 safe_from_p (const_rtx x
, tree exp
, int top_p
)
6468 /* If EXP has varying size, we MUST use a target since we currently
6469 have no way of allocating temporaries of variable size
6470 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
6471 So we assume here that something at a higher level has prevented a
6472 clash. This is somewhat bogus, but the best we can do. Only
6473 do this when X is BLKmode and when we are at the top level. */
6474 || (top_p
&& TREE_TYPE (exp
) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp
))
6475 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) != INTEGER_CST
6476 && (TREE_CODE (TREE_TYPE (exp
)) != ARRAY_TYPE
6477 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)) == NULL_TREE
6478 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)))
6480 && GET_MODE (x
) == BLKmode
)
6481 /* If X is in the outgoing argument area, it is always safe. */
6483 && (XEXP (x
, 0) == virtual_outgoing_args_rtx
6484 || (GET_CODE (XEXP (x
, 0)) == PLUS
6485 && XEXP (XEXP (x
, 0), 0) == virtual_outgoing_args_rtx
))))
6488 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
6489 find the underlying pseudo. */
6490 if (GET_CODE (x
) == SUBREG
)
6493 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
6497 /* Now look at our tree code and possibly recurse. */
6498 switch (TREE_CODE_CLASS (TREE_CODE (exp
)))
6500 case tcc_declaration
:
6501 exp_rtl
= DECL_RTL_IF_SET (exp
);
6507 case tcc_exceptional
:
6508 if (TREE_CODE (exp
) == TREE_LIST
)
6512 if (TREE_VALUE (exp
) && !safe_from_p (x
, TREE_VALUE (exp
), 0))
6514 exp
= TREE_CHAIN (exp
);
6517 if (TREE_CODE (exp
) != TREE_LIST
)
6518 return safe_from_p (x
, exp
, 0);
6521 else if (TREE_CODE (exp
) == CONSTRUCTOR
)
6523 constructor_elt
*ce
;
6524 unsigned HOST_WIDE_INT idx
;
6527 VEC_iterate (constructor_elt
, CONSTRUCTOR_ELTS (exp
), idx
, ce
);
6529 if ((ce
->index
!= NULL_TREE
&& !safe_from_p (x
, ce
->index
, 0))
6530 || !safe_from_p (x
, ce
->value
, 0))
6534 else if (TREE_CODE (exp
) == ERROR_MARK
)
6535 return 1; /* An already-visited SAVE_EXPR? */
6540 /* The only case we look at here is the DECL_INITIAL inside a
6542 return (TREE_CODE (exp
) != DECL_EXPR
6543 || TREE_CODE (DECL_EXPR_DECL (exp
)) != VAR_DECL
6544 || !DECL_INITIAL (DECL_EXPR_DECL (exp
))
6545 || safe_from_p (x
, DECL_INITIAL (DECL_EXPR_DECL (exp
)), 0));
6548 case tcc_comparison
:
6549 if (!safe_from_p (x
, TREE_OPERAND (exp
, 1), 0))
6554 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
6556 case tcc_expression
:
6559 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
6560 the expression. If it is set, we conflict iff we are that rtx or
6561 both are in memory. Otherwise, we check all operands of the
6562 expression recursively. */
6564 switch (TREE_CODE (exp
))
6567 /* If the operand is static or we are static, we can't conflict.
6568 Likewise if we don't conflict with the operand at all. */
6569 if (staticp (TREE_OPERAND (exp
, 0))
6570 || TREE_STATIC (exp
)
6571 || safe_from_p (x
, TREE_OPERAND (exp
, 0), 0))
6574 /* Otherwise, the only way this can conflict is if we are taking
6575 the address of a DECL a that address if part of X, which is
6577 exp
= TREE_OPERAND (exp
, 0);
6580 if (!DECL_RTL_SET_P (exp
)
6581 || !MEM_P (DECL_RTL (exp
)))
6584 exp_rtl
= XEXP (DECL_RTL (exp
), 0);
6588 case MISALIGNED_INDIRECT_REF
:
6589 case ALIGN_INDIRECT_REF
:
6592 && alias_sets_conflict_p (MEM_ALIAS_SET (x
),
6593 get_alias_set (exp
)))
6598 /* Assume that the call will clobber all hard registers and
6600 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
6605 case WITH_CLEANUP_EXPR
:
6606 case CLEANUP_POINT_EXPR
:
6607 /* Lowered by gimplify.c. */
6611 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
6617 /* If we have an rtx, we do not need to scan our operands. */
6621 nops
= TREE_OPERAND_LENGTH (exp
);
6622 for (i
= 0; i
< nops
; i
++)
6623 if (TREE_OPERAND (exp
, i
) != 0
6624 && ! safe_from_p (x
, TREE_OPERAND (exp
, i
), 0))
6630 /* Should never get a type here. */
6634 /* If we have an rtl, find any enclosed object. Then see if we conflict
6638 if (GET_CODE (exp_rtl
) == SUBREG
)
6640 exp_rtl
= SUBREG_REG (exp_rtl
);
6642 && REGNO (exp_rtl
) < FIRST_PSEUDO_REGISTER
)
6646 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
6647 are memory and they conflict. */
6648 return ! (rtx_equal_p (x
, exp_rtl
)
6649 || (MEM_P (x
) && MEM_P (exp_rtl
)
6650 && true_dependence (exp_rtl
, VOIDmode
, x
,
6651 rtx_addr_varies_p
)));
6654 /* If we reach here, it is safe. */
6659 /* Return the highest power of two that EXP is known to be a multiple of.
6660 This is used in updating alignment of MEMs in array references. */
6662 unsigned HOST_WIDE_INT
6663 highest_pow2_factor (const_tree exp
)
6665 unsigned HOST_WIDE_INT c0
, c1
;
6667 switch (TREE_CODE (exp
))
6670 /* We can find the lowest bit that's a one. If the low
6671 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
6672 We need to handle this case since we can find it in a COND_EXPR,
6673 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
6674 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
6676 if (TREE_OVERFLOW (exp
))
6677 return BIGGEST_ALIGNMENT
;
6680 /* Note: tree_low_cst is intentionally not used here,
6681 we don't care about the upper bits. */
6682 c0
= TREE_INT_CST_LOW (exp
);
6684 return c0
? c0
: BIGGEST_ALIGNMENT
;
6688 case PLUS_EXPR
: case MINUS_EXPR
: case MIN_EXPR
: case MAX_EXPR
:
6689 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
6690 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
6691 return MIN (c0
, c1
);
6694 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
6695 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
6698 case ROUND_DIV_EXPR
: case TRUNC_DIV_EXPR
: case FLOOR_DIV_EXPR
:
6700 if (integer_pow2p (TREE_OPERAND (exp
, 1))
6701 && host_integerp (TREE_OPERAND (exp
, 1), 1))
6703 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
6704 c1
= tree_low_cst (TREE_OPERAND (exp
, 1), 1);
6705 return MAX (1, c0
/ c1
);
6710 /* The highest power of two of a bit-and expression is the maximum of
6711 that of its operands. We typically get here for a complex LHS and
6712 a constant negative power of two on the RHS to force an explicit
6713 alignment, so don't bother looking at the LHS. */
6714 return highest_pow2_factor (TREE_OPERAND (exp
, 1));
6718 return highest_pow2_factor (TREE_OPERAND (exp
, 0));
6721 return highest_pow2_factor (TREE_OPERAND (exp
, 1));
6724 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
6725 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 2));
6726 return MIN (c0
, c1
);
6735 /* Similar, except that the alignment requirements of TARGET are
6736 taken into account. Assume it is at least as aligned as its
6737 type, unless it is a COMPONENT_REF in which case the layout of
6738 the structure gives the alignment. */
6740 static unsigned HOST_WIDE_INT
6741 highest_pow2_factor_for_target (const_tree target
, const_tree exp
)
6743 unsigned HOST_WIDE_INT talign
= target_align (target
) / BITS_PER_UNIT
;
6744 unsigned HOST_WIDE_INT factor
= highest_pow2_factor (exp
);
6746 return MAX (factor
, talign
);
6749 /* Return &VAR expression for emulated thread local VAR. */
6752 emutls_var_address (tree var
)
6754 tree emuvar
= emutls_decl (var
);
6755 tree fn
= built_in_decls
[BUILT_IN_EMUTLS_GET_ADDRESS
];
6756 tree arg
= build_fold_addr_expr_with_type (emuvar
, ptr_type_node
);
6757 tree arglist
= build_tree_list (NULL_TREE
, arg
);
6758 tree call
= build_function_call_expr (fn
, arglist
);
6759 return fold_convert (build_pointer_type (TREE_TYPE (var
)), call
);
6763 /* Subroutine of expand_expr. Expand the two operands of a binary
6764 expression EXP0 and EXP1 placing the results in OP0 and OP1.
6765 The value may be stored in TARGET if TARGET is nonzero. The
6766 MODIFIER argument is as documented by expand_expr. */
6769 expand_operands (tree exp0
, tree exp1
, rtx target
, rtx
*op0
, rtx
*op1
,
6770 enum expand_modifier modifier
)
6772 if (! safe_from_p (target
, exp1
, 1))
6774 if (operand_equal_p (exp0
, exp1
, 0))
6776 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
6777 *op1
= copy_rtx (*op0
);
6781 /* If we need to preserve evaluation order, copy exp0 into its own
6782 temporary variable so that it can't be clobbered by exp1. */
6783 if (flag_evaluation_order
&& TREE_SIDE_EFFECTS (exp1
))
6784 exp0
= save_expr (exp0
);
6785 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
6786 *op1
= expand_expr (exp1
, NULL_RTX
, VOIDmode
, modifier
);
6791 /* Return a MEM that contains constant EXP. DEFER is as for
6792 output_constant_def and MODIFIER is as for expand_expr. */
6795 expand_expr_constant (tree exp
, int defer
, enum expand_modifier modifier
)
6799 mem
= output_constant_def (exp
, defer
);
6800 if (modifier
!= EXPAND_INITIALIZER
)
6801 mem
= use_anchored_address (mem
);
6805 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6806 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6809 expand_expr_addr_expr_1 (tree exp
, rtx target
, enum machine_mode tmode
,
6810 enum expand_modifier modifier
)
6812 rtx result
, subtarget
;
6814 HOST_WIDE_INT bitsize
, bitpos
;
6815 int volatilep
, unsignedp
;
6816 enum machine_mode mode1
;
6818 /* If we are taking the address of a constant and are at the top level,
6819 we have to use output_constant_def since we can't call force_const_mem
6821 /* ??? This should be considered a front-end bug. We should not be
6822 generating ADDR_EXPR of something that isn't an LVALUE. The only
6823 exception here is STRING_CST. */
6824 if (CONSTANT_CLASS_P (exp
))
6825 return XEXP (expand_expr_constant (exp
, 0, modifier
), 0);
6827 /* Everything must be something allowed by is_gimple_addressable. */
6828 switch (TREE_CODE (exp
))
6831 /* This case will happen via recursion for &a->b. */
6832 return expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
, modifier
);
6835 /* Recurse and make the output_constant_def clause above handle this. */
6836 return expand_expr_addr_expr_1 (DECL_INITIAL (exp
), target
,
6840 /* The real part of the complex number is always first, therefore
6841 the address is the same as the address of the parent object. */
6844 inner
= TREE_OPERAND (exp
, 0);
6848 /* The imaginary part of the complex number is always second.
6849 The expression is therefore always offset by the size of the
6852 bitpos
= GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp
)));
6853 inner
= TREE_OPERAND (exp
, 0);
6857 /* TLS emulation hook - replace __thread VAR's &VAR with
6858 __emutls_get_address (&_emutls.VAR). */
6859 if (! targetm
.have_tls
6860 && TREE_CODE (exp
) == VAR_DECL
6861 && DECL_THREAD_LOCAL_P (exp
))
6863 exp
= emutls_var_address (exp
);
6864 return expand_expr (exp
, target
, tmode
, modifier
);
6869 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6870 expand_expr, as that can have various side effects; LABEL_DECLs for
6871 example, may not have their DECL_RTL set yet. Expand the rtl of
6872 CONSTRUCTORs too, which should yield a memory reference for the
6873 constructor's contents. Assume language specific tree nodes can
6874 be expanded in some interesting way. */
6875 gcc_assert (TREE_CODE (exp
) < LAST_AND_UNUSED_TREE_CODE
);
6877 || TREE_CODE (exp
) == CONSTRUCTOR
6878 || TREE_CODE (exp
) == COMPOUND_LITERAL_EXPR
)
6880 result
= expand_expr (exp
, target
, tmode
,
6881 modifier
== EXPAND_INITIALIZER
6882 ? EXPAND_INITIALIZER
: EXPAND_CONST_ADDRESS
);
6884 /* If the DECL isn't in memory, then the DECL wasn't properly
6885 marked TREE_ADDRESSABLE, which will be either a front-end
6886 or a tree optimizer bug. */
6887 gcc_assert (MEM_P (result
));
6888 result
= XEXP (result
, 0);
6890 /* ??? Is this needed anymore? */
6891 if (DECL_P (exp
) && !TREE_USED (exp
) == 0)
6893 assemble_external (exp
);
6894 TREE_USED (exp
) = 1;
6897 if (modifier
!= EXPAND_INITIALIZER
6898 && modifier
!= EXPAND_CONST_ADDRESS
)
6899 result
= force_operand (result
, target
);
6903 /* Pass FALSE as the last argument to get_inner_reference although
6904 we are expanding to RTL. The rationale is that we know how to
6905 handle "aligning nodes" here: we can just bypass them because
6906 they won't change the final object whose address will be returned
6907 (they actually exist only for that purpose). */
6908 inner
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
6909 &mode1
, &unsignedp
, &volatilep
, false);
6913 /* We must have made progress. */
6914 gcc_assert (inner
!= exp
);
6916 subtarget
= offset
|| bitpos
? NULL_RTX
: target
;
6917 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
6918 inner alignment, force the inner to be sufficiently aligned. */
6919 if (CONSTANT_CLASS_P (inner
)
6920 && TYPE_ALIGN (TREE_TYPE (inner
)) < TYPE_ALIGN (TREE_TYPE (exp
)))
6922 inner
= copy_node (inner
);
6923 TREE_TYPE (inner
) = copy_node (TREE_TYPE (inner
));
6924 TYPE_ALIGN (TREE_TYPE (inner
)) = TYPE_ALIGN (TREE_TYPE (exp
));
6925 TYPE_USER_ALIGN (TREE_TYPE (inner
)) = 1;
6927 result
= expand_expr_addr_expr_1 (inner
, subtarget
, tmode
, modifier
);
6933 if (modifier
!= EXPAND_NORMAL
)
6934 result
= force_operand (result
, NULL
);
6935 tmp
= expand_expr (offset
, NULL_RTX
, tmode
,
6936 modifier
== EXPAND_INITIALIZER
6937 ? EXPAND_INITIALIZER
: EXPAND_NORMAL
);
6939 result
= convert_memory_address (tmode
, result
);
6940 tmp
= convert_memory_address (tmode
, tmp
);
6942 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
6943 result
= gen_rtx_PLUS (tmode
, result
, tmp
);
6946 subtarget
= bitpos
? NULL_RTX
: target
;
6947 result
= expand_simple_binop (tmode
, PLUS
, result
, tmp
, subtarget
,
6948 1, OPTAB_LIB_WIDEN
);
6954 /* Someone beforehand should have rejected taking the address
6955 of such an object. */
6956 gcc_assert ((bitpos
% BITS_PER_UNIT
) == 0);
6958 result
= plus_constant (result
, bitpos
/ BITS_PER_UNIT
);
6959 if (modifier
< EXPAND_SUM
)
6960 result
= force_operand (result
, target
);
6966 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
6967 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6970 expand_expr_addr_expr (tree exp
, rtx target
, enum machine_mode tmode
,
6971 enum expand_modifier modifier
)
6973 enum machine_mode rmode
;
6976 /* Target mode of VOIDmode says "whatever's natural". */
6977 if (tmode
== VOIDmode
)
6978 tmode
= TYPE_MODE (TREE_TYPE (exp
));
6980 /* We can get called with some Weird Things if the user does silliness
6981 like "(short) &a". In that case, convert_memory_address won't do
6982 the right thing, so ignore the given target mode. */
6983 if (tmode
!= Pmode
&& tmode
!= ptr_mode
)
6986 result
= expand_expr_addr_expr_1 (TREE_OPERAND (exp
, 0), target
,
6989 /* Despite expand_expr claims concerning ignoring TMODE when not
6990 strictly convenient, stuff breaks if we don't honor it. Note
6991 that combined with the above, we only do this for pointer modes. */
6992 rmode
= GET_MODE (result
);
6993 if (rmode
== VOIDmode
)
6996 result
= convert_memory_address (tmode
, result
);
7001 /* Generate code for computing CONSTRUCTOR EXP.
7002 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7003 is TRUE, instead of creating a temporary variable in memory
7004 NULL is returned and the caller needs to handle it differently. */
7007 expand_constructor (tree exp
, rtx target
, enum expand_modifier modifier
,
7008 bool avoid_temp_mem
)
7010 tree type
= TREE_TYPE (exp
);
7011 enum machine_mode mode
= TYPE_MODE (type
);
7013 /* Try to avoid creating a temporary at all. This is possible
7014 if all of the initializer is zero.
7015 FIXME: try to handle all [0..255] initializers we can handle
7017 if (TREE_STATIC (exp
)
7018 && !TREE_ADDRESSABLE (exp
)
7019 && target
!= 0 && mode
== BLKmode
7020 && all_zeros_p (exp
))
7022 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
7026 /* All elts simple constants => refer to a constant in memory. But
7027 if this is a non-BLKmode mode, let it store a field at a time
7028 since that should make a CONST_INT or CONST_DOUBLE when we
7029 fold. Likewise, if we have a target we can use, it is best to
7030 store directly into the target unless the type is large enough
7031 that memcpy will be used. If we are making an initializer and
7032 all operands are constant, put it in memory as well.
7034 FIXME: Avoid trying to fill vector constructors piece-meal.
7035 Output them with output_constant_def below unless we're sure
7036 they're zeros. This should go away when vector initializers
7037 are treated like VECTOR_CST instead of arrays. */
7038 if ((TREE_STATIC (exp
)
7039 && ((mode
== BLKmode
7040 && ! (target
!= 0 && safe_from_p (target
, exp
, 1)))
7041 || TREE_ADDRESSABLE (exp
)
7042 || (host_integerp (TYPE_SIZE_UNIT (type
), 1)
7043 && (! MOVE_BY_PIECES_P
7044 (tree_low_cst (TYPE_SIZE_UNIT (type
), 1),
7046 && ! mostly_zeros_p (exp
))))
7047 || ((modifier
== EXPAND_INITIALIZER
|| modifier
== EXPAND_CONST_ADDRESS
)
7048 && TREE_CONSTANT (exp
)))
7055 constructor
= expand_expr_constant (exp
, 1, modifier
);
7057 if (modifier
!= EXPAND_CONST_ADDRESS
7058 && modifier
!= EXPAND_INITIALIZER
7059 && modifier
!= EXPAND_SUM
)
7060 constructor
= validize_mem (constructor
);
7065 /* Handle calls that pass values in multiple non-contiguous
7066 locations. The Irix 6 ABI has examples of this. */
7067 if (target
== 0 || ! safe_from_p (target
, exp
, 1)
7068 || GET_CODE (target
) == PARALLEL
|| modifier
== EXPAND_STACK_PARM
)
7074 = assign_temp (build_qualified_type (type
, (TYPE_QUALS (type
)
7075 | (TREE_READONLY (exp
)
7076 * TYPE_QUAL_CONST
))),
7077 0, TREE_ADDRESSABLE (exp
), 1);
7080 store_constructor (exp
, target
, 0, int_expr_size (exp
));
7085 /* expand_expr: generate code for computing expression EXP.
7086 An rtx for the computed value is returned. The value is never null.
7087 In the case of a void EXP, const0_rtx is returned.
7089 The value may be stored in TARGET if TARGET is nonzero.
7090 TARGET is just a suggestion; callers must assume that
7091 the rtx returned may not be the same as TARGET.
7093 If TARGET is CONST0_RTX, it means that the value will be ignored.
7095 If TMODE is not VOIDmode, it suggests generating the
7096 result in mode TMODE. But this is done only when convenient.
7097 Otherwise, TMODE is ignored and the value generated in its natural mode.
7098 TMODE is just a suggestion; callers must assume that
7099 the rtx returned may not have mode TMODE.
7101 Note that TARGET may have neither TMODE nor MODE. In that case, it
7102 probably will not be used.
7104 If MODIFIER is EXPAND_SUM then when EXP is an addition
7105 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7106 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7107 products as above, or REG or MEM, or constant.
7108 Ordinarily in such cases we would output mul or add instructions
7109 and then return a pseudo reg containing the sum.
7111 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7112 it also marks a label as absolutely required (it can't be dead).
7113 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7114 This is used for outputting expressions used in initializers.
7116 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7117 with a constant address even if that address is not normally legitimate.
7118 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7120 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7121 a call parameter. Such targets require special care as we haven't yet
7122 marked TARGET so that it's safe from being trashed by libcalls. We
7123 don't want to use TARGET for anything but the final result;
7124 Intermediate values must go elsewhere. Additionally, calls to
7125 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7127 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7128 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7129 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7130 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7133 static rtx
expand_expr_real_1 (tree
, rtx
, enum machine_mode
,
7134 enum expand_modifier
, rtx
*);
7137 expand_expr_real (tree exp
, rtx target
, enum machine_mode tmode
,
7138 enum expand_modifier modifier
, rtx
*alt_rtl
)
7141 rtx ret
, last
= NULL
;
7143 /* Handle ERROR_MARK before anybody tries to access its type. */
7144 if (TREE_CODE (exp
) == ERROR_MARK
7145 || (TREE_CODE (TREE_TYPE (exp
)) == ERROR_MARK
))
7147 ret
= CONST0_RTX (tmode
);
7148 return ret
? ret
: const0_rtx
;
7151 if (flag_non_call_exceptions
)
7153 rn
= lookup_expr_eh_region (exp
);
7155 /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't throw. */
7157 last
= get_last_insn ();
7160 /* If this is an expression of some kind and it has an associated line
7161 number, then emit the line number before expanding the expression.
7163 We need to save and restore the file and line information so that
7164 errors discovered during expansion are emitted with the right
7165 information. It would be better of the diagnostic routines
7166 used the file/line information embedded in the tree nodes rather
7168 if (cfun
&& EXPR_HAS_LOCATION (exp
))
7170 location_t saved_location
= input_location
;
7171 input_location
= EXPR_LOCATION (exp
);
7172 set_curr_insn_source_location (input_location
);
7174 /* Record where the insns produced belong. */
7175 set_curr_insn_block (TREE_BLOCK (exp
));
7177 ret
= expand_expr_real_1 (exp
, target
, tmode
, modifier
, alt_rtl
);
7179 input_location
= saved_location
;
7183 ret
= expand_expr_real_1 (exp
, target
, tmode
, modifier
, alt_rtl
);
7186 /* If using non-call exceptions, mark all insns that may trap.
7187 expand_call() will mark CALL_INSNs before we get to this code,
7188 but it doesn't handle libcalls, and these may trap. */
7192 for (insn
= next_real_insn (last
); insn
;
7193 insn
= next_real_insn (insn
))
7195 if (! find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
)
7196 /* If we want exceptions for non-call insns, any
7197 may_trap_p instruction may throw. */
7198 && GET_CODE (PATTERN (insn
)) != CLOBBER
7199 && GET_CODE (PATTERN (insn
)) != USE
7200 && (CALL_P (insn
) || may_trap_p (PATTERN (insn
))))
7201 add_reg_note (insn
, REG_EH_REGION
, GEN_INT (rn
));
7209 expand_expr_real_1 (tree exp
, rtx target
, enum machine_mode tmode
,
7210 enum expand_modifier modifier
, rtx
*alt_rtl
)
7212 rtx op0
, op1
, op2
, temp
, decl_rtl
;
7215 enum machine_mode mode
;
7216 enum tree_code code
= TREE_CODE (exp
);
7218 rtx subtarget
, original_target
;
7220 tree context
, subexp0
, subexp1
;
7221 bool reduce_bit_field
;
7222 gimple subexp0_def
, subexp1_def
;
7224 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
7225 ? reduce_to_bit_field_precision ((expr), \
7230 type
= TREE_TYPE (exp
);
7231 mode
= TYPE_MODE (type
);
7232 unsignedp
= TYPE_UNSIGNED (type
);
7234 ignore
= (target
== const0_rtx
7235 || ((CONVERT_EXPR_CODE_P (code
)
7236 || code
== COND_EXPR
|| code
== VIEW_CONVERT_EXPR
)
7237 && TREE_CODE (type
) == VOID_TYPE
));
7239 /* An operation in what may be a bit-field type needs the
7240 result to be reduced to the precision of the bit-field type,
7241 which is narrower than that of the type's mode. */
7242 reduce_bit_field
= (!ignore
7243 && TREE_CODE (type
) == INTEGER_TYPE
7244 && GET_MODE_PRECISION (mode
) > TYPE_PRECISION (type
));
7246 /* If we are going to ignore this result, we need only do something
7247 if there is a side-effect somewhere in the expression. If there
7248 is, short-circuit the most common cases here. Note that we must
7249 not call expand_expr with anything but const0_rtx in case this
7250 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
7254 if (! TREE_SIDE_EFFECTS (exp
))
7257 /* Ensure we reference a volatile object even if value is ignored, but
7258 don't do this if all we are doing is taking its address. */
7259 if (TREE_THIS_VOLATILE (exp
)
7260 && TREE_CODE (exp
) != FUNCTION_DECL
7261 && mode
!= VOIDmode
&& mode
!= BLKmode
7262 && modifier
!= EXPAND_CONST_ADDRESS
)
7264 temp
= expand_expr (exp
, NULL_RTX
, VOIDmode
, modifier
);
7266 temp
= copy_to_reg (temp
);
7270 if (TREE_CODE_CLASS (code
) == tcc_unary
7271 || code
== COMPONENT_REF
|| code
== INDIRECT_REF
)
7272 return expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
7275 else if (TREE_CODE_CLASS (code
) == tcc_binary
7276 || TREE_CODE_CLASS (code
) == tcc_comparison
7277 || code
== ARRAY_REF
|| code
== ARRAY_RANGE_REF
)
7279 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
, modifier
);
7280 expand_expr (TREE_OPERAND (exp
, 1), const0_rtx
, VOIDmode
, modifier
);
7283 else if (code
== BIT_FIELD_REF
)
7285 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
, modifier
);
7286 expand_expr (TREE_OPERAND (exp
, 1), const0_rtx
, VOIDmode
, modifier
);
7287 expand_expr (TREE_OPERAND (exp
, 2), const0_rtx
, VOIDmode
, modifier
);
7294 if (reduce_bit_field
&& modifier
== EXPAND_STACK_PARM
)
7297 /* Use subtarget as the target for operand 0 of a binary operation. */
7298 subtarget
= get_subtarget (target
);
7299 original_target
= target
;
7305 tree function
= decl_function_context (exp
);
7307 temp
= label_rtx (exp
);
7308 temp
= gen_rtx_LABEL_REF (Pmode
, temp
);
7310 if (function
!= current_function_decl
7312 LABEL_REF_NONLOCAL_P (temp
) = 1;
7314 temp
= gen_rtx_MEM (FUNCTION_MODE
, temp
);
7319 /* ??? ivopts calls expander, without any preparation from
7320 out-of-ssa. So fake instructions as if this was an access to the
7321 base variable. This unnecessarily allocates a pseudo, see how we can
7322 reuse it, if partition base vars have it set already. */
7323 if (!currently_expanding_to_rtl
)
7324 return expand_expr_real_1 (SSA_NAME_VAR (exp
), target
, tmode
, modifier
, NULL
);
7326 gimple g
= get_gimple_for_ssa_name (exp
);
7328 return expand_expr_real_1 (gimple_assign_rhs_to_tree (g
), target
,
7329 tmode
, modifier
, NULL
);
7331 decl_rtl
= get_rtx_for_ssa_name (exp
);
7332 exp
= SSA_NAME_VAR (exp
);
7333 goto expand_decl_rtl
;
7337 /* If a static var's type was incomplete when the decl was written,
7338 but the type is complete now, lay out the decl now. */
7339 if (DECL_SIZE (exp
) == 0
7340 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp
))
7341 && (TREE_STATIC (exp
) || DECL_EXTERNAL (exp
)))
7342 layout_decl (exp
, 0);
7344 /* TLS emulation hook - replace __thread vars with
7345 *__emutls_get_address (&_emutls.var). */
7346 if (! targetm
.have_tls
7347 && TREE_CODE (exp
) == VAR_DECL
7348 && DECL_THREAD_LOCAL_P (exp
))
7350 exp
= build_fold_indirect_ref (emutls_var_address (exp
));
7351 return expand_expr_real_1 (exp
, target
, tmode
, modifier
, NULL
);
7354 /* ... fall through ... */
7358 decl_rtl
= DECL_RTL (exp
);
7360 gcc_assert (decl_rtl
);
7361 decl_rtl
= copy_rtx (decl_rtl
);
7363 /* Ensure variable marked as used even if it doesn't go through
7364 a parser. If it hasn't be used yet, write out an external
7366 if (! TREE_USED (exp
))
7368 assemble_external (exp
);
7369 TREE_USED (exp
) = 1;
7372 /* Show we haven't gotten RTL for this yet. */
7375 /* Variables inherited from containing functions should have
7376 been lowered by this point. */
7377 context
= decl_function_context (exp
);
7378 gcc_assert (!context
7379 || context
== current_function_decl
7380 || TREE_STATIC (exp
)
7381 /* ??? C++ creates functions that are not TREE_STATIC. */
7382 || TREE_CODE (exp
) == FUNCTION_DECL
);
7384 /* This is the case of an array whose size is to be determined
7385 from its initializer, while the initializer is still being parsed.
7388 if (MEM_P (decl_rtl
) && REG_P (XEXP (decl_rtl
, 0)))
7389 temp
= validize_mem (decl_rtl
);
7391 /* If DECL_RTL is memory, we are in the normal case and the
7392 address is not valid, get the address into a register. */
7394 else if (MEM_P (decl_rtl
) && modifier
!= EXPAND_INITIALIZER
)
7397 *alt_rtl
= decl_rtl
;
7398 decl_rtl
= use_anchored_address (decl_rtl
);
7399 if (modifier
!= EXPAND_CONST_ADDRESS
7400 && modifier
!= EXPAND_SUM
7401 && !memory_address_p (DECL_MODE (exp
), XEXP (decl_rtl
, 0)))
7402 temp
= replace_equiv_address (decl_rtl
,
7403 copy_rtx (XEXP (decl_rtl
, 0)));
7406 /* If we got something, return it. But first, set the alignment
7407 if the address is a register. */
7410 if (MEM_P (temp
) && REG_P (XEXP (temp
, 0)))
7411 mark_reg_pointer (XEXP (temp
, 0), DECL_ALIGN (exp
));
7416 /* If the mode of DECL_RTL does not match that of the decl, it
7417 must be a promoted value. We return a SUBREG of the wanted mode,
7418 but mark it so that we know that it was already extended. */
7420 if (REG_P (decl_rtl
)
7421 && GET_MODE (decl_rtl
) != DECL_MODE (exp
))
7423 enum machine_mode pmode
;
7425 /* Get the signedness used for this variable. Ensure we get the
7426 same mode we got when the variable was declared. */
7427 pmode
= promote_mode (type
, DECL_MODE (exp
), &unsignedp
,
7428 (TREE_CODE (exp
) == RESULT_DECL
7429 || TREE_CODE (exp
) == PARM_DECL
) ? 1 : 0);
7430 gcc_assert (GET_MODE (decl_rtl
) == pmode
);
7432 temp
= gen_lowpart_SUBREG (mode
, decl_rtl
);
7433 SUBREG_PROMOTED_VAR_P (temp
) = 1;
7434 SUBREG_PROMOTED_UNSIGNED_SET (temp
, unsignedp
);
7441 temp
= immed_double_const (TREE_INT_CST_LOW (exp
),
7442 TREE_INT_CST_HIGH (exp
), mode
);
7448 tree tmp
= NULL_TREE
;
7449 if (GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
7450 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
7451 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FRACT
7452 || GET_MODE_CLASS (mode
) == MODE_VECTOR_UFRACT
7453 || GET_MODE_CLASS (mode
) == MODE_VECTOR_ACCUM
7454 || GET_MODE_CLASS (mode
) == MODE_VECTOR_UACCUM
)
7455 return const_vector_from_tree (exp
);
7456 if (GET_MODE_CLASS (mode
) == MODE_INT
)
7458 tree type_for_mode
= lang_hooks
.types
.type_for_mode (mode
, 1);
7460 tmp
= fold_unary (VIEW_CONVERT_EXPR
, type_for_mode
, exp
);
7463 tmp
= build_constructor_from_list (type
,
7464 TREE_VECTOR_CST_ELTS (exp
));
7465 return expand_expr (tmp
, ignore
? const0_rtx
: target
,
7470 return expand_expr (DECL_INITIAL (exp
), target
, VOIDmode
, modifier
);
7473 /* If optimized, generate immediate CONST_DOUBLE
7474 which will be turned into memory by reload if necessary.
7476 We used to force a register so that loop.c could see it. But
7477 this does not allow gen_* patterns to perform optimizations with
7478 the constants. It also produces two insns in cases like "x = 1.0;".
7479 On most machines, floating-point constants are not permitted in
7480 many insns, so we'd end up copying it to a register in any case.
7482 Now, we do the copying in expand_binop, if appropriate. */
7483 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp
),
7484 TYPE_MODE (TREE_TYPE (exp
)));
7487 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp
),
7488 TYPE_MODE (TREE_TYPE (exp
)));
7491 /* Handle evaluating a complex constant in a CONCAT target. */
7492 if (original_target
&& GET_CODE (original_target
) == CONCAT
)
7494 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (TREE_TYPE (exp
)));
7497 rtarg
= XEXP (original_target
, 0);
7498 itarg
= XEXP (original_target
, 1);
7500 /* Move the real and imaginary parts separately. */
7501 op0
= expand_expr (TREE_REALPART (exp
), rtarg
, mode
, EXPAND_NORMAL
);
7502 op1
= expand_expr (TREE_IMAGPART (exp
), itarg
, mode
, EXPAND_NORMAL
);
7505 emit_move_insn (rtarg
, op0
);
7507 emit_move_insn (itarg
, op1
);
7509 return original_target
;
7512 /* ... fall through ... */
7515 temp
= expand_expr_constant (exp
, 1, modifier
);
7517 /* temp contains a constant address.
7518 On RISC machines where a constant address isn't valid,
7519 make some insns to get that address into a register. */
7520 if (modifier
!= EXPAND_CONST_ADDRESS
7521 && modifier
!= EXPAND_INITIALIZER
7522 && modifier
!= EXPAND_SUM
7523 && ! memory_address_p (mode
, XEXP (temp
, 0)))
7524 return replace_equiv_address (temp
,
7525 copy_rtx (XEXP (temp
, 0)));
7530 tree val
= TREE_OPERAND (exp
, 0);
7531 rtx ret
= expand_expr_real_1 (val
, target
, tmode
, modifier
, alt_rtl
);
7533 if (!SAVE_EXPR_RESOLVED_P (exp
))
7535 /* We can indeed still hit this case, typically via builtin
7536 expanders calling save_expr immediately before expanding
7537 something. Assume this means that we only have to deal
7538 with non-BLKmode values. */
7539 gcc_assert (GET_MODE (ret
) != BLKmode
);
7541 val
= build_decl (EXPR_LOCATION (exp
),
7542 VAR_DECL
, NULL
, TREE_TYPE (exp
));
7543 DECL_ARTIFICIAL (val
) = 1;
7544 DECL_IGNORED_P (val
) = 1;
7545 TREE_OPERAND (exp
, 0) = val
;
7546 SAVE_EXPR_RESOLVED_P (exp
) = 1;
7548 if (!CONSTANT_P (ret
))
7549 ret
= copy_to_reg (ret
);
7550 SET_DECL_RTL (val
, ret
);
7557 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == LABEL_DECL
)
7558 expand_goto (TREE_OPERAND (exp
, 0));
7560 expand_computed_goto (TREE_OPERAND (exp
, 0));
7564 /* If we don't need the result, just ensure we evaluate any
7568 unsigned HOST_WIDE_INT idx
;
7571 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
7572 expand_expr (value
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
7577 return expand_constructor (exp
, target
, modifier
, false);
7579 case MISALIGNED_INDIRECT_REF
:
7580 case ALIGN_INDIRECT_REF
:
7583 tree exp1
= TREE_OPERAND (exp
, 0);
7585 if (modifier
!= EXPAND_WRITE
)
7589 t
= fold_read_from_constant_string (exp
);
7591 return expand_expr (t
, target
, tmode
, modifier
);
7594 op0
= expand_expr (exp1
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
7595 op0
= memory_address (mode
, op0
);
7597 if (code
== ALIGN_INDIRECT_REF
)
7599 int align
= TYPE_ALIGN_UNIT (type
);
7600 op0
= gen_rtx_AND (Pmode
, op0
, GEN_INT (-align
));
7601 op0
= memory_address (mode
, op0
);
7604 temp
= gen_rtx_MEM (mode
, op0
);
7606 set_mem_attributes (temp
, exp
, 0);
7608 /* Resolve the misalignment now, so that we don't have to remember
7609 to resolve it later. Of course, this only works for reads. */
7610 if (code
== MISALIGNED_INDIRECT_REF
)
7615 gcc_assert (modifier
== EXPAND_NORMAL
7616 || modifier
== EXPAND_STACK_PARM
);
7618 /* The vectorizer should have already checked the mode. */
7619 icode
= optab_handler (movmisalign_optab
, mode
)->insn_code
;
7620 gcc_assert (icode
!= CODE_FOR_nothing
);
7622 /* We've already validated the memory, and we're creating a
7623 new pseudo destination. The predicates really can't fail. */
7624 reg
= gen_reg_rtx (mode
);
7626 /* Nor can the insn generator. */
7627 insn
= GEN_FCN (icode
) (reg
, temp
);
7636 case TARGET_MEM_REF
:
7638 struct mem_address addr
;
7640 get_address_description (exp
, &addr
);
7641 op0
= addr_for_mem_ref (&addr
, true);
7642 op0
= memory_address (mode
, op0
);
7643 temp
= gen_rtx_MEM (mode
, op0
);
7644 set_mem_attributes (temp
, TMR_ORIGINAL (exp
), 0);
7651 tree array
= TREE_OPERAND (exp
, 0);
7652 tree index
= TREE_OPERAND (exp
, 1);
7654 /* Fold an expression like: "foo"[2].
7655 This is not done in fold so it won't happen inside &.
7656 Don't fold if this is for wide characters since it's too
7657 difficult to do correctly and this is a very rare case. */
7659 if (modifier
!= EXPAND_CONST_ADDRESS
7660 && modifier
!= EXPAND_INITIALIZER
7661 && modifier
!= EXPAND_MEMORY
)
7663 tree t
= fold_read_from_constant_string (exp
);
7666 return expand_expr (t
, target
, tmode
, modifier
);
7669 /* If this is a constant index into a constant array,
7670 just get the value from the array. Handle both the cases when
7671 we have an explicit constructor and when our operand is a variable
7672 that was declared const. */
7674 if (modifier
!= EXPAND_CONST_ADDRESS
7675 && modifier
!= EXPAND_INITIALIZER
7676 && modifier
!= EXPAND_MEMORY
7677 && TREE_CODE (array
) == CONSTRUCTOR
7678 && ! TREE_SIDE_EFFECTS (array
)
7679 && TREE_CODE (index
) == INTEGER_CST
)
7681 unsigned HOST_WIDE_INT ix
;
7684 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array
), ix
,
7686 if (tree_int_cst_equal (field
, index
))
7688 if (!TREE_SIDE_EFFECTS (value
))
7689 return expand_expr (fold (value
), target
, tmode
, modifier
);
7694 else if (optimize
>= 1
7695 && modifier
!= EXPAND_CONST_ADDRESS
7696 && modifier
!= EXPAND_INITIALIZER
7697 && modifier
!= EXPAND_MEMORY
7698 && TREE_READONLY (array
) && ! TREE_SIDE_EFFECTS (array
)
7699 && TREE_CODE (array
) == VAR_DECL
&& DECL_INITIAL (array
)
7700 && TREE_CODE (DECL_INITIAL (array
)) != ERROR_MARK
7701 && targetm
.binds_local_p (array
))
7703 if (TREE_CODE (index
) == INTEGER_CST
)
7705 tree init
= DECL_INITIAL (array
);
7707 if (TREE_CODE (init
) == CONSTRUCTOR
)
7709 unsigned HOST_WIDE_INT ix
;
7712 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init
), ix
,
7714 if (tree_int_cst_equal (field
, index
))
7716 if (TREE_SIDE_EFFECTS (value
))
7719 if (TREE_CODE (value
) == CONSTRUCTOR
)
7721 /* If VALUE is a CONSTRUCTOR, this
7722 optimization is only useful if
7723 this doesn't store the CONSTRUCTOR
7724 into memory. If it does, it is more
7725 efficient to just load the data from
7726 the array directly. */
7727 rtx ret
= expand_constructor (value
, target
,
7729 if (ret
== NULL_RTX
)
7733 return expand_expr (fold (value
), target
, tmode
,
7737 else if(TREE_CODE (init
) == STRING_CST
)
7739 tree index1
= index
;
7740 tree low_bound
= array_ref_low_bound (exp
);
7741 index1
= fold_convert (sizetype
, TREE_OPERAND (exp
, 1));
7743 /* Optimize the special-case of a zero lower bound.
7745 We convert the low_bound to sizetype to avoid some problems
7746 with constant folding. (E.g. suppose the lower bound is 1,
7747 and its mode is QI. Without the conversion,l (ARRAY
7748 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
7749 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
7751 if (! integer_zerop (low_bound
))
7752 index1
= size_diffop (index1
, fold_convert (sizetype
,
7755 if (0 > compare_tree_int (index1
,
7756 TREE_STRING_LENGTH (init
)))
7758 tree type
= TREE_TYPE (TREE_TYPE (init
));
7759 enum machine_mode mode
= TYPE_MODE (type
);
7761 if (GET_MODE_CLASS (mode
) == MODE_INT
7762 && GET_MODE_SIZE (mode
) == 1)
7763 return gen_int_mode (TREE_STRING_POINTER (init
)
7764 [TREE_INT_CST_LOW (index1
)],
7771 goto normal_inner_ref
;
7774 /* If the operand is a CONSTRUCTOR, we can just extract the
7775 appropriate field if it is present. */
7776 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == CONSTRUCTOR
)
7778 unsigned HOST_WIDE_INT idx
;
7781 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (TREE_OPERAND (exp
, 0)),
7783 if (field
== TREE_OPERAND (exp
, 1)
7784 /* We can normally use the value of the field in the
7785 CONSTRUCTOR. However, if this is a bitfield in
7786 an integral mode that we can fit in a HOST_WIDE_INT,
7787 we must mask only the number of bits in the bitfield,
7788 since this is done implicitly by the constructor. If
7789 the bitfield does not meet either of those conditions,
7790 we can't do this optimization. */
7791 && (! DECL_BIT_FIELD (field
)
7792 || ((GET_MODE_CLASS (DECL_MODE (field
)) == MODE_INT
)
7793 && (GET_MODE_BITSIZE (DECL_MODE (field
))
7794 <= HOST_BITS_PER_WIDE_INT
))))
7796 if (DECL_BIT_FIELD (field
)
7797 && modifier
== EXPAND_STACK_PARM
)
7799 op0
= expand_expr (value
, target
, tmode
, modifier
);
7800 if (DECL_BIT_FIELD (field
))
7802 HOST_WIDE_INT bitsize
= TREE_INT_CST_LOW (DECL_SIZE (field
));
7803 enum machine_mode imode
= TYPE_MODE (TREE_TYPE (field
));
7805 if (TYPE_UNSIGNED (TREE_TYPE (field
)))
7807 op1
= GEN_INT (((HOST_WIDE_INT
) 1 << bitsize
) - 1);
7808 op0
= expand_and (imode
, op0
, op1
, target
);
7813 = build_int_cst (NULL_TREE
,
7814 GET_MODE_BITSIZE (imode
) - bitsize
);
7816 op0
= expand_shift (LSHIFT_EXPR
, imode
, op0
, count
,
7818 op0
= expand_shift (RSHIFT_EXPR
, imode
, op0
, count
,
7826 goto normal_inner_ref
;
7829 case ARRAY_RANGE_REF
:
7832 enum machine_mode mode1
, mode2
;
7833 HOST_WIDE_INT bitsize
, bitpos
;
7835 int volatilep
= 0, must_force_mem
;
7836 tree tem
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
7837 &mode1
, &unsignedp
, &volatilep
, true);
7838 rtx orig_op0
, memloc
;
7840 /* If we got back the original object, something is wrong. Perhaps
7841 we are evaluating an expression too early. In any event, don't
7842 infinitely recurse. */
7843 gcc_assert (tem
!= exp
);
7845 /* If TEM's type is a union of variable size, pass TARGET to the inner
7846 computation, since it will need a temporary and TARGET is known
7847 to have to do. This occurs in unchecked conversion in Ada. */
7850 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
7851 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
7853 && modifier
!= EXPAND_STACK_PARM
7854 ? target
: NULL_RTX
),
7856 (modifier
== EXPAND_INITIALIZER
7857 || modifier
== EXPAND_CONST_ADDRESS
7858 || modifier
== EXPAND_STACK_PARM
)
7859 ? modifier
: EXPAND_NORMAL
);
7862 = CONSTANT_P (op0
) ? TYPE_MODE (TREE_TYPE (tem
)) : GET_MODE (op0
);
7864 /* If we have either an offset, a BLKmode result, or a reference
7865 outside the underlying object, we must force it to memory.
7866 Such a case can occur in Ada if we have unchecked conversion
7867 of an expression from a scalar type to an aggregate type or
7868 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
7869 passed a partially uninitialized object or a view-conversion
7870 to a larger size. */
7871 must_force_mem
= (offset
7873 || bitpos
+ bitsize
> GET_MODE_BITSIZE (mode2
));
7875 /* If this is a constant, put it in a register if it is a legitimate
7876 constant and we don't need a memory reference. */
7877 if (CONSTANT_P (op0
)
7879 && LEGITIMATE_CONSTANT_P (op0
)
7881 op0
= force_reg (mode2
, op0
);
7883 /* Otherwise, if this is a constant, try to force it to the constant
7884 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
7885 is a legitimate constant. */
7886 else if (CONSTANT_P (op0
) && (memloc
= force_const_mem (mode2
, op0
)))
7887 op0
= validize_mem (memloc
);
7889 /* Otherwise, if this is a constant or the object is not in memory
7890 and need be, put it there. */
7891 else if (CONSTANT_P (op0
) || (!MEM_P (op0
) && must_force_mem
))
7893 tree nt
= build_qualified_type (TREE_TYPE (tem
),
7894 (TYPE_QUALS (TREE_TYPE (tem
))
7895 | TYPE_QUAL_CONST
));
7896 memloc
= assign_temp (nt
, 1, 1, 1);
7897 emit_move_insn (memloc
, op0
);
7903 rtx offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
,
7906 gcc_assert (MEM_P (op0
));
7908 #ifdef POINTERS_EXTEND_UNSIGNED
7909 if (GET_MODE (offset_rtx
) != Pmode
)
7910 offset_rtx
= convert_to_mode (Pmode
, offset_rtx
, 0);
7912 if (GET_MODE (offset_rtx
) != ptr_mode
)
7913 offset_rtx
= convert_to_mode (ptr_mode
, offset_rtx
, 0);
7916 if (GET_MODE (op0
) == BLKmode
7917 /* A constant address in OP0 can have VOIDmode, we must
7918 not try to call force_reg in that case. */
7919 && GET_MODE (XEXP (op0
, 0)) != VOIDmode
7921 && (bitpos
% bitsize
) == 0
7922 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
7923 && MEM_ALIGN (op0
) == GET_MODE_ALIGNMENT (mode1
))
7925 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
7929 op0
= offset_address (op0
, offset_rtx
,
7930 highest_pow2_factor (offset
));
7933 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
7934 record its alignment as BIGGEST_ALIGNMENT. */
7935 if (MEM_P (op0
) && bitpos
== 0 && offset
!= 0
7936 && is_aligning_offset (offset
, tem
))
7937 set_mem_align (op0
, BIGGEST_ALIGNMENT
);
7939 /* Don't forget about volatility even if this is a bitfield. */
7940 if (MEM_P (op0
) && volatilep
&& ! MEM_VOLATILE_P (op0
))
7942 if (op0
== orig_op0
)
7943 op0
= copy_rtx (op0
);
7945 MEM_VOLATILE_P (op0
) = 1;
7948 /* The following code doesn't handle CONCAT.
7949 Assume only bitpos == 0 can be used for CONCAT, due to
7950 one element arrays having the same mode as its element. */
7951 if (GET_CODE (op0
) == CONCAT
)
7953 gcc_assert (bitpos
== 0
7954 && bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)));
7958 /* In cases where an aligned union has an unaligned object
7959 as a field, we might be extracting a BLKmode value from
7960 an integer-mode (e.g., SImode) object. Handle this case
7961 by doing the extract into an object as wide as the field
7962 (which we know to be the width of a basic mode), then
7963 storing into memory, and changing the mode to BLKmode. */
7964 if (mode1
== VOIDmode
7965 || REG_P (op0
) || GET_CODE (op0
) == SUBREG
7966 || (mode1
!= BLKmode
&& ! direct_load
[(int) mode1
]
7967 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
7968 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
7969 && modifier
!= EXPAND_CONST_ADDRESS
7970 && modifier
!= EXPAND_INITIALIZER
)
7971 /* If the field isn't aligned enough to fetch as a memref,
7972 fetch it as a bit field. */
7973 || (mode1
!= BLKmode
7974 && (((TYPE_ALIGN (TREE_TYPE (tem
)) < GET_MODE_ALIGNMENT (mode
)
7975 || (bitpos
% GET_MODE_ALIGNMENT (mode
) != 0)
7977 && (MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode1
)
7978 || (bitpos
% GET_MODE_ALIGNMENT (mode1
) != 0))))
7979 && ((modifier
== EXPAND_CONST_ADDRESS
7980 || modifier
== EXPAND_INITIALIZER
)
7982 : SLOW_UNALIGNED_ACCESS (mode1
, MEM_ALIGN (op0
))))
7983 || (bitpos
% BITS_PER_UNIT
!= 0)))
7984 /* If the type and the field are a constant size and the
7985 size of the type isn't the same size as the bitfield,
7986 we must use bitfield operations. */
7988 && TYPE_SIZE (TREE_TYPE (exp
))
7989 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
7990 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)),
7993 enum machine_mode ext_mode
= mode
;
7995 if (ext_mode
== BLKmode
7996 && ! (target
!= 0 && MEM_P (op0
)
7998 && bitpos
% BITS_PER_UNIT
== 0))
7999 ext_mode
= mode_for_size (bitsize
, MODE_INT
, 1);
8001 if (ext_mode
== BLKmode
)
8004 target
= assign_temp (type
, 0, 1, 1);
8009 /* In this case, BITPOS must start at a byte boundary and
8010 TARGET, if specified, must be a MEM. */
8011 gcc_assert (MEM_P (op0
)
8012 && (!target
|| MEM_P (target
))
8013 && !(bitpos
% BITS_PER_UNIT
));
8015 emit_block_move (target
,
8016 adjust_address (op0
, VOIDmode
,
8017 bitpos
/ BITS_PER_UNIT
),
8018 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
8020 (modifier
== EXPAND_STACK_PARM
8021 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
8026 op0
= validize_mem (op0
);
8028 if (MEM_P (op0
) && REG_P (XEXP (op0
, 0)))
8029 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
8031 op0
= extract_bit_field (op0
, bitsize
, bitpos
, unsignedp
,
8032 (modifier
== EXPAND_STACK_PARM
8033 ? NULL_RTX
: target
),
8034 ext_mode
, ext_mode
);
8036 /* If the result is a record type and BITSIZE is narrower than
8037 the mode of OP0, an integral mode, and this is a big endian
8038 machine, we must put the field into the high-order bits. */
8039 if (TREE_CODE (type
) == RECORD_TYPE
&& BYTES_BIG_ENDIAN
8040 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
8041 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (op0
)))
8042 op0
= expand_shift (LSHIFT_EXPR
, GET_MODE (op0
), op0
,
8043 size_int (GET_MODE_BITSIZE (GET_MODE (op0
))
8047 /* If the result type is BLKmode, store the data into a temporary
8048 of the appropriate type, but with the mode corresponding to the
8049 mode for the data we have (op0's mode). It's tempting to make
8050 this a constant type, since we know it's only being stored once,
8051 but that can cause problems if we are taking the address of this
8052 COMPONENT_REF because the MEM of any reference via that address
8053 will have flags corresponding to the type, which will not
8054 necessarily be constant. */
8055 if (mode
== BLKmode
)
8057 HOST_WIDE_INT size
= GET_MODE_BITSIZE (ext_mode
);
8060 /* If the reference doesn't use the alias set of its type,
8061 we cannot create the temporary using that type. */
8062 if (component_uses_parent_alias_set (exp
))
8064 new_rtx
= assign_stack_local (ext_mode
, size
, 0);
8065 set_mem_alias_set (new_rtx
, get_alias_set (exp
));
8068 new_rtx
= assign_stack_temp_for_type (ext_mode
, size
, 0, type
);
8070 emit_move_insn (new_rtx
, op0
);
8071 op0
= copy_rtx (new_rtx
);
8072 PUT_MODE (op0
, BLKmode
);
8073 set_mem_attributes (op0
, exp
, 1);
8079 /* If the result is BLKmode, use that to access the object
8081 if (mode
== BLKmode
)
8084 /* Get a reference to just this component. */
8085 if (modifier
== EXPAND_CONST_ADDRESS
8086 || modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
8087 op0
= adjust_address_nv (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
8089 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
8091 if (op0
== orig_op0
)
8092 op0
= copy_rtx (op0
);
8094 set_mem_attributes (op0
, exp
, 0);
8095 if (REG_P (XEXP (op0
, 0)))
8096 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
8098 MEM_VOLATILE_P (op0
) |= volatilep
;
8099 if (mode
== mode1
|| mode1
== BLKmode
|| mode1
== tmode
8100 || modifier
== EXPAND_CONST_ADDRESS
8101 || modifier
== EXPAND_INITIALIZER
)
8103 else if (target
== 0)
8104 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
8106 convert_move (target
, op0
, unsignedp
);
8111 return expand_expr (OBJ_TYPE_REF_EXPR (exp
), target
, tmode
, modifier
);
8114 /* All valid uses of __builtin_va_arg_pack () are removed during
8116 if (CALL_EXPR_VA_ARG_PACK (exp
))
8117 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp
);
8119 tree fndecl
= get_callee_fndecl (exp
), attr
;
8122 && (attr
= lookup_attribute ("error",
8123 DECL_ATTRIBUTES (fndecl
))) != NULL
)
8124 error ("%Kcall to %qs declared with attribute error: %s",
8125 exp
, identifier_to_locale (lang_hooks
.decl_printable_name (fndecl
, 1)),
8126 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
))));
8128 && (attr
= lookup_attribute ("warning",
8129 DECL_ATTRIBUTES (fndecl
))) != NULL
)
8130 warning_at (tree_nonartificial_location (exp
),
8131 0, "%Kcall to %qs declared with attribute warning: %s",
8132 exp
, identifier_to_locale (lang_hooks
.decl_printable_name (fndecl
, 1)),
8133 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
))));
8135 /* Check for a built-in function. */
8136 if (fndecl
&& DECL_BUILT_IN (fndecl
))
8138 gcc_assert (DECL_BUILT_IN_CLASS (fndecl
) != BUILT_IN_FRONTEND
);
8139 return expand_builtin (exp
, target
, subtarget
, tmode
, ignore
);
8142 return expand_call (exp
, target
, ignore
);
8146 if (TREE_OPERAND (exp
, 0) == error_mark_node
)
8149 if (TREE_CODE (type
) == UNION_TYPE
)
8151 tree valtype
= TREE_TYPE (TREE_OPERAND (exp
, 0));
8153 /* If both input and output are BLKmode, this conversion isn't doing
8154 anything except possibly changing memory attribute. */
8155 if (mode
== BLKmode
&& TYPE_MODE (valtype
) == BLKmode
)
8157 rtx result
= expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
,
8160 result
= copy_rtx (result
);
8161 set_mem_attributes (result
, exp
, 0);
8167 if (TYPE_MODE (type
) != BLKmode
)
8168 target
= gen_reg_rtx (TYPE_MODE (type
));
8170 target
= assign_temp (type
, 0, 1, 1);
8174 /* Store data into beginning of memory target. */
8175 store_expr (TREE_OPERAND (exp
, 0),
8176 adjust_address (target
, TYPE_MODE (valtype
), 0),
8177 modifier
== EXPAND_STACK_PARM
,
8182 gcc_assert (REG_P (target
));
8184 /* Store this field into a union of the proper type. */
8185 store_field (target
,
8186 MIN ((int_size_in_bytes (TREE_TYPE
8187 (TREE_OPERAND (exp
, 0)))
8189 (HOST_WIDE_INT
) GET_MODE_BITSIZE (mode
)),
8190 0, TYPE_MODE (valtype
), TREE_OPERAND (exp
, 0),
8194 /* Return the entire union. */
8198 if (mode
== TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))))
8200 op0
= expand_expr (TREE_OPERAND (exp
, 0), target
, VOIDmode
,
8203 /* If the signedness of the conversion differs and OP0 is
8204 a promoted SUBREG, clear that indication since we now
8205 have to do the proper extension. */
8206 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))) != unsignedp
8207 && GET_CODE (op0
) == SUBREG
)
8208 SUBREG_PROMOTED_VAR_P (op0
) = 0;
8210 return REDUCE_BIT_FIELD (op0
);
8213 op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, mode
,
8214 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
);
8215 if (GET_MODE (op0
) == mode
)
8218 /* If OP0 is a constant, just convert it into the proper mode. */
8219 else if (CONSTANT_P (op0
))
8221 tree inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
8222 enum machine_mode inner_mode
= TYPE_MODE (inner_type
);
8224 if (modifier
== EXPAND_INITIALIZER
)
8225 op0
= simplify_gen_subreg (mode
, op0
, inner_mode
,
8226 subreg_lowpart_offset (mode
,
8229 op0
= convert_modes (mode
, inner_mode
, op0
,
8230 TYPE_UNSIGNED (inner_type
));
8233 else if (modifier
== EXPAND_INITIALIZER
)
8234 op0
= gen_rtx_fmt_e (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
, mode
, op0
);
8236 else if (target
== 0)
8237 op0
= convert_to_mode (mode
, op0
,
8238 TYPE_UNSIGNED (TREE_TYPE
8239 (TREE_OPERAND (exp
, 0))));
8242 convert_move (target
, op0
,
8243 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))));
8247 return REDUCE_BIT_FIELD (op0
);
8249 case VIEW_CONVERT_EXPR
:
8252 /* If we are converting to BLKmode, try to avoid an intermediate
8253 temporary by fetching an inner memory reference. */
8255 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
8256 && TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))) != BLKmode
8257 && handled_component_p (TREE_OPERAND (exp
, 0)))
8259 enum machine_mode mode1
;
8260 HOST_WIDE_INT bitsize
, bitpos
;
8265 = get_inner_reference (TREE_OPERAND (exp
, 0), &bitsize
, &bitpos
,
8266 &offset
, &mode1
, &unsignedp
, &volatilep
,
8270 /* ??? We should work harder and deal with non-zero offsets. */
8272 && (bitpos
% BITS_PER_UNIT
) == 0
8274 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)), bitsize
) == 0)
8276 /* See the normal_inner_ref case for the rationale. */
8279 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
8280 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
8282 && modifier
!= EXPAND_STACK_PARM
8283 ? target
: NULL_RTX
),
8285 (modifier
== EXPAND_INITIALIZER
8286 || modifier
== EXPAND_CONST_ADDRESS
8287 || modifier
== EXPAND_STACK_PARM
)
8288 ? modifier
: EXPAND_NORMAL
);
8290 if (MEM_P (orig_op0
))
8294 /* Get a reference to just this component. */
8295 if (modifier
== EXPAND_CONST_ADDRESS
8296 || modifier
== EXPAND_SUM
8297 || modifier
== EXPAND_INITIALIZER
)
8298 op0
= adjust_address_nv (op0
, mode
, bitpos
/ BITS_PER_UNIT
);
8300 op0
= adjust_address (op0
, mode
, bitpos
/ BITS_PER_UNIT
);
8302 if (op0
== orig_op0
)
8303 op0
= copy_rtx (op0
);
8305 set_mem_attributes (op0
, TREE_OPERAND (exp
, 0), 0);
8306 if (REG_P (XEXP (op0
, 0)))
8307 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
8309 MEM_VOLATILE_P (op0
) |= volatilep
;
8315 op0
= expand_expr (TREE_OPERAND (exp
, 0),
8316 NULL_RTX
, VOIDmode
, modifier
);
8318 /* If the input and output modes are both the same, we are done. */
8319 if (mode
== GET_MODE (op0
))
8321 /* If neither mode is BLKmode, and both modes are the same size
8322 then we can use gen_lowpart. */
8323 else if (mode
!= BLKmode
&& GET_MODE (op0
) != BLKmode
8324 && GET_MODE_SIZE (mode
) == GET_MODE_SIZE (GET_MODE (op0
))
8325 && !COMPLEX_MODE_P (GET_MODE (op0
)))
8327 if (GET_CODE (op0
) == SUBREG
)
8328 op0
= force_reg (GET_MODE (op0
), op0
);
8329 op0
= gen_lowpart (mode
, op0
);
8331 /* If both modes are integral, then we can convert from one to the
8333 else if (SCALAR_INT_MODE_P (GET_MODE (op0
)) && SCALAR_INT_MODE_P (mode
))
8334 op0
= convert_modes (mode
, GET_MODE (op0
), op0
,
8335 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))));
8336 /* As a last resort, spill op0 to memory, and reload it in a
8338 else if (!MEM_P (op0
))
8340 /* If the operand is not a MEM, force it into memory. Since we
8341 are going to be changing the mode of the MEM, don't call
8342 force_const_mem for constants because we don't allow pool
8343 constants to change mode. */
8344 tree inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
8346 gcc_assert (!TREE_ADDRESSABLE (exp
));
8348 if (target
== 0 || GET_MODE (target
) != TYPE_MODE (inner_type
))
8350 = assign_stack_temp_for_type
8351 (TYPE_MODE (inner_type
),
8352 GET_MODE_SIZE (TYPE_MODE (inner_type
)), 0, inner_type
);
8354 emit_move_insn (target
, op0
);
8358 /* At this point, OP0 is in the correct mode. If the output type is
8359 such that the operand is known to be aligned, indicate that it is.
8360 Otherwise, we need only be concerned about alignment for non-BLKmode
8364 op0
= copy_rtx (op0
);
8366 if (TYPE_ALIGN_OK (type
))
8367 set_mem_align (op0
, MAX (MEM_ALIGN (op0
), TYPE_ALIGN (type
)));
8368 else if (STRICT_ALIGNMENT
8370 && MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode
))
8372 tree inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
8373 HOST_WIDE_INT temp_size
8374 = MAX (int_size_in_bytes (inner_type
),
8375 (HOST_WIDE_INT
) GET_MODE_SIZE (mode
));
8377 = assign_stack_temp_for_type (mode
, temp_size
, 0, type
);
8378 rtx new_with_op0_mode
8379 = adjust_address (new_rtx
, GET_MODE (op0
), 0);
8381 gcc_assert (!TREE_ADDRESSABLE (exp
));
8383 if (GET_MODE (op0
) == BLKmode
)
8384 emit_block_move (new_with_op0_mode
, op0
,
8385 GEN_INT (GET_MODE_SIZE (mode
)),
8386 (modifier
== EXPAND_STACK_PARM
8387 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
8389 emit_move_insn (new_with_op0_mode
, op0
);
8394 op0
= adjust_address (op0
, mode
, 0);
8399 case POINTER_PLUS_EXPR
:
8400 /* Even though the sizetype mode and the pointer's mode can be different
8401 expand is able to handle this correctly and get the correct result out
8402 of the PLUS_EXPR code. */
8403 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
8404 if sizetype precision is smaller than pointer precision. */
8405 if (TYPE_PRECISION (sizetype
) < TYPE_PRECISION (type
))
8406 exp
= build2 (PLUS_EXPR
, type
,
8407 TREE_OPERAND (exp
, 0),
8409 fold_convert (ssizetype
,
8410 TREE_OPERAND (exp
, 1))));
8413 /* Check if this is a case for multiplication and addition. */
8414 if ((TREE_CODE (type
) == INTEGER_TYPE
8415 || TREE_CODE (type
) == FIXED_POINT_TYPE
)
8416 && (subexp0_def
= get_def_for_expr (TREE_OPERAND (exp
, 0),
8419 tree subsubexp0
, subsubexp1
;
8420 gimple subsubexp0_def
, subsubexp1_def
;
8421 enum tree_code this_code
;
8423 this_code
= TREE_CODE (type
) == INTEGER_TYPE
? NOP_EXPR
8424 : FIXED_CONVERT_EXPR
;
8425 subsubexp0
= gimple_assign_rhs1 (subexp0_def
);
8426 subsubexp0_def
= get_def_for_expr (subsubexp0
, this_code
);
8427 subsubexp1
= gimple_assign_rhs2 (subexp0_def
);
8428 subsubexp1_def
= get_def_for_expr (subsubexp1
, this_code
);
8429 if (subsubexp0_def
&& subsubexp1_def
8430 && (top0
= gimple_assign_rhs1 (subsubexp0_def
))
8431 && (top1
= gimple_assign_rhs1 (subsubexp1_def
))
8432 && (TYPE_PRECISION (TREE_TYPE (top0
))
8433 < TYPE_PRECISION (TREE_TYPE (subsubexp0
)))
8434 && (TYPE_PRECISION (TREE_TYPE (top0
))
8435 == TYPE_PRECISION (TREE_TYPE (top1
)))
8436 && (TYPE_UNSIGNED (TREE_TYPE (top0
))
8437 == TYPE_UNSIGNED (TREE_TYPE (top1
))))
8439 tree op0type
= TREE_TYPE (top0
);
8440 enum machine_mode innermode
= TYPE_MODE (op0type
);
8441 bool zextend_p
= TYPE_UNSIGNED (op0type
);
8442 bool sat_p
= TYPE_SATURATING (TREE_TYPE (subsubexp0
));
8444 this_optab
= zextend_p
? umadd_widen_optab
: smadd_widen_optab
;
8446 this_optab
= zextend_p
? usmadd_widen_optab
8447 : ssmadd_widen_optab
;
8448 if (mode
== GET_MODE_2XWIDER_MODE (innermode
)
8449 && (optab_handler (this_optab
, mode
)->insn_code
8450 != CODE_FOR_nothing
))
8452 expand_operands (top0
, top1
, NULL_RTX
, &op0
, &op1
,
8454 op2
= expand_expr (TREE_OPERAND (exp
, 1), subtarget
,
8455 VOIDmode
, EXPAND_NORMAL
);
8456 temp
= expand_ternary_op (mode
, this_optab
, op0
, op1
, op2
,
8459 return REDUCE_BIT_FIELD (temp
);
8464 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8465 something else, make sure we add the register to the constant and
8466 then to the other thing. This case can occur during strength
8467 reduction and doing it this way will produce better code if the
8468 frame pointer or argument pointer is eliminated.
8470 fold-const.c will ensure that the constant is always in the inner
8471 PLUS_EXPR, so the only case we need to do anything about is if
8472 sp, ap, or fp is our second argument, in which case we must swap
8473 the innermost first argument and our second argument. */
8475 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == PLUS_EXPR
8476 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 1)) == INTEGER_CST
8477 && TREE_CODE (TREE_OPERAND (exp
, 1)) == VAR_DECL
8478 && (DECL_RTL (TREE_OPERAND (exp
, 1)) == frame_pointer_rtx
8479 || DECL_RTL (TREE_OPERAND (exp
, 1)) == stack_pointer_rtx
8480 || DECL_RTL (TREE_OPERAND (exp
, 1)) == arg_pointer_rtx
))
8482 tree t
= TREE_OPERAND (exp
, 1);
8484 TREE_OPERAND (exp
, 1) = TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
8485 TREE_OPERAND (TREE_OPERAND (exp
, 0), 0) = t
;
8488 /* If the result is to be ptr_mode and we are adding an integer to
8489 something, we might be forming a constant. So try to use
8490 plus_constant. If it produces a sum and we can't accept it,
8491 use force_operand. This allows P = &ARR[const] to generate
8492 efficient code on machines where a SYMBOL_REF is not a valid
8495 If this is an EXPAND_SUM call, always return the sum. */
8496 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
8497 || (mode
== ptr_mode
&& (unsignedp
|| ! flag_trapv
)))
8499 if (modifier
== EXPAND_STACK_PARM
)
8501 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == INTEGER_CST
8502 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
8503 && TREE_CONSTANT (TREE_OPERAND (exp
, 1)))
8507 op1
= expand_expr (TREE_OPERAND (exp
, 1), subtarget
, VOIDmode
,
8509 /* Use immed_double_const to ensure that the constant is
8510 truncated according to the mode of OP1, then sign extended
8511 to a HOST_WIDE_INT. Using the constant directly can result
8512 in non-canonical RTL in a 64x32 cross compile. */
8514 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp
, 0)),
8516 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 1))));
8517 op1
= plus_constant (op1
, INTVAL (constant_part
));
8518 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8519 op1
= force_operand (op1
, target
);
8520 return REDUCE_BIT_FIELD (op1
);
8523 else if (TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
8524 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
8525 && TREE_CONSTANT (TREE_OPERAND (exp
, 0)))
8529 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
,
8530 (modifier
== EXPAND_INITIALIZER
8531 ? EXPAND_INITIALIZER
: EXPAND_SUM
));
8532 if (! CONSTANT_P (op0
))
8534 op1
= expand_expr (TREE_OPERAND (exp
, 1), NULL_RTX
,
8535 VOIDmode
, modifier
);
8536 /* Return a PLUS if modifier says it's OK. */
8537 if (modifier
== EXPAND_SUM
8538 || modifier
== EXPAND_INITIALIZER
)
8539 return simplify_gen_binary (PLUS
, mode
, op0
, op1
);
8542 /* Use immed_double_const to ensure that the constant is
8543 truncated according to the mode of OP1, then sign extended
8544 to a HOST_WIDE_INT. Using the constant directly can result
8545 in non-canonical RTL in a 64x32 cross compile. */
8547 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp
, 1)),
8549 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
8550 op0
= plus_constant (op0
, INTVAL (constant_part
));
8551 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8552 op0
= force_operand (op0
, target
);
8553 return REDUCE_BIT_FIELD (op0
);
8557 /* No sense saving up arithmetic to be done
8558 if it's all in the wrong mode to form part of an address.
8559 And force_operand won't know whether to sign-extend or
8561 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8562 || mode
!= ptr_mode
)
8564 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8565 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8566 if (op0
== const0_rtx
)
8568 if (op1
== const0_rtx
)
8573 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8574 subtarget
, &op0
, &op1
, modifier
);
8575 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
8578 /* Check if this is a case for multiplication and subtraction. */
8579 if ((TREE_CODE (type
) == INTEGER_TYPE
8580 || TREE_CODE (type
) == FIXED_POINT_TYPE
)
8581 && (subexp1_def
= get_def_for_expr (TREE_OPERAND (exp
, 1),
8584 tree subsubexp0
, subsubexp1
;
8585 gimple subsubexp0_def
, subsubexp1_def
;
8586 enum tree_code this_code
;
8588 this_code
= TREE_CODE (type
) == INTEGER_TYPE
? NOP_EXPR
8589 : FIXED_CONVERT_EXPR
;
8590 subsubexp0
= gimple_assign_rhs1 (subexp1_def
);
8591 subsubexp0_def
= get_def_for_expr (subsubexp0
, this_code
);
8592 subsubexp1
= gimple_assign_rhs2 (subexp1_def
);
8593 subsubexp1_def
= get_def_for_expr (subsubexp1
, this_code
);
8594 if (subsubexp0_def
&& subsubexp1_def
8595 && (top0
= gimple_assign_rhs1 (subsubexp0_def
))
8596 && (top1
= gimple_assign_rhs1 (subsubexp1_def
))
8597 && (TYPE_PRECISION (TREE_TYPE (top0
))
8598 < TYPE_PRECISION (TREE_TYPE (subsubexp0
)))
8599 && (TYPE_PRECISION (TREE_TYPE (top0
))
8600 == TYPE_PRECISION (TREE_TYPE (top1
)))
8601 && (TYPE_UNSIGNED (TREE_TYPE (top0
))
8602 == TYPE_UNSIGNED (TREE_TYPE (top1
))))
8604 tree op0type
= TREE_TYPE (top0
);
8605 enum machine_mode innermode
= TYPE_MODE (op0type
);
8606 bool zextend_p
= TYPE_UNSIGNED (op0type
);
8607 bool sat_p
= TYPE_SATURATING (TREE_TYPE (subsubexp0
));
8609 this_optab
= zextend_p
? umsub_widen_optab
: smsub_widen_optab
;
8611 this_optab
= zextend_p
? usmsub_widen_optab
8612 : ssmsub_widen_optab
;
8613 if (mode
== GET_MODE_2XWIDER_MODE (innermode
)
8614 && (optab_handler (this_optab
, mode
)->insn_code
8615 != CODE_FOR_nothing
))
8617 expand_operands (top0
, top1
, NULL_RTX
, &op0
, &op1
,
8619 op2
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
,
8620 VOIDmode
, EXPAND_NORMAL
);
8621 temp
= expand_ternary_op (mode
, this_optab
, op0
, op1
, op2
,
8624 return REDUCE_BIT_FIELD (temp
);
8629 /* For initializers, we are allowed to return a MINUS of two
8630 symbolic constants. Here we handle all cases when both operands
8632 /* Handle difference of two symbolic constants,
8633 for the sake of an initializer. */
8634 if ((modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
8635 && really_constant_p (TREE_OPERAND (exp
, 0))
8636 && really_constant_p (TREE_OPERAND (exp
, 1)))
8638 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8639 NULL_RTX
, &op0
, &op1
, modifier
);
8641 /* If the last operand is a CONST_INT, use plus_constant of
8642 the negated constant. Else make the MINUS. */
8643 if (CONST_INT_P (op1
))
8644 return REDUCE_BIT_FIELD (plus_constant (op0
, - INTVAL (op1
)));
8646 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode
, op0
, op1
));
8649 /* No sense saving up arithmetic to be done
8650 if it's all in the wrong mode to form part of an address.
8651 And force_operand won't know whether to sign-extend or
8653 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8654 || mode
!= ptr_mode
)
8657 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8658 subtarget
, &op0
, &op1
, modifier
);
8660 /* Convert A - const to A + (-const). */
8661 if (CONST_INT_P (op1
))
8663 op1
= negate_rtx (mode
, op1
);
8664 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
8670 /* If this is a fixed-point operation, then we cannot use the code
8671 below because "expand_mult" doesn't support sat/no-sat fixed-point
8673 if (ALL_FIXED_POINT_MODE_P (mode
))
8676 /* If first operand is constant, swap them.
8677 Thus the following special case checks need only
8678 check the second operand. */
8679 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == INTEGER_CST
)
8681 tree t1
= TREE_OPERAND (exp
, 0);
8682 TREE_OPERAND (exp
, 0) = TREE_OPERAND (exp
, 1);
8683 TREE_OPERAND (exp
, 1) = t1
;
8686 /* Attempt to return something suitable for generating an
8687 indexed address, for machines that support that. */
8689 if (modifier
== EXPAND_SUM
&& mode
== ptr_mode
8690 && host_integerp (TREE_OPERAND (exp
, 1), 0))
8692 tree exp1
= TREE_OPERAND (exp
, 1);
8694 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
,
8698 op0
= force_operand (op0
, NULL_RTX
);
8700 op0
= copy_to_mode_reg (mode
, op0
);
8702 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode
, op0
,
8703 gen_int_mode (tree_low_cst (exp1
, 0),
8704 TYPE_MODE (TREE_TYPE (exp1
)))));
8707 if (modifier
== EXPAND_STACK_PARM
)
8710 /* Check for multiplying things that have been extended
8711 from a narrower type. If this machine supports multiplying
8712 in that narrower type with a result in the desired type,
8713 do it that way, and avoid the explicit type-conversion. */
8715 subexp0
= TREE_OPERAND (exp
, 0);
8716 subexp1
= TREE_OPERAND (exp
, 1);
8717 subexp0_def
= get_def_for_expr (subexp0
, NOP_EXPR
);
8718 subexp1_def
= get_def_for_expr (subexp1
, NOP_EXPR
);
8719 top0
= top1
= NULL_TREE
;
8721 /* First, check if we have a multiplication of one signed and one
8722 unsigned operand. */
8724 && (top0
= gimple_assign_rhs1 (subexp0_def
))
8726 && (top1
= gimple_assign_rhs1 (subexp1_def
))
8727 && TREE_CODE (type
) == INTEGER_TYPE
8728 && (TYPE_PRECISION (TREE_TYPE (top0
))
8729 < TYPE_PRECISION (TREE_TYPE (subexp0
)))
8730 && (TYPE_PRECISION (TREE_TYPE (top0
))
8731 == TYPE_PRECISION (TREE_TYPE (top1
)))
8732 && (TYPE_UNSIGNED (TREE_TYPE (top0
))
8733 != TYPE_UNSIGNED (TREE_TYPE (top1
))))
8735 enum machine_mode innermode
8736 = TYPE_MODE (TREE_TYPE (top0
));
8737 this_optab
= usmul_widen_optab
;
8738 if (mode
== GET_MODE_WIDER_MODE (innermode
))
8740 if (optab_handler (this_optab
, mode
)->insn_code
!= CODE_FOR_nothing
)
8742 if (TYPE_UNSIGNED (TREE_TYPE (top0
)))
8743 expand_operands (top0
, top1
, NULL_RTX
, &op0
, &op1
,
8746 expand_operands (top0
, top1
, NULL_RTX
, &op1
, &op0
,
8753 /* Check for a multiplication with matching signedness. If
8754 valid, TOP0 and TOP1 were set in the previous if
8757 && TREE_CODE (type
) == INTEGER_TYPE
8758 && (TYPE_PRECISION (TREE_TYPE (top0
))
8759 < TYPE_PRECISION (TREE_TYPE (subexp0
)))
8760 && ((TREE_CODE (subexp1
) == INTEGER_CST
8761 && int_fits_type_p (subexp1
, TREE_TYPE (top0
))
8762 /* Don't use a widening multiply if a shift will do. */
8763 && ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (subexp1
)))
8764 > HOST_BITS_PER_WIDE_INT
)
8765 || exact_log2 (TREE_INT_CST_LOW (subexp1
)) < 0))
8768 && (TYPE_PRECISION (TREE_TYPE (top1
))
8769 == TYPE_PRECISION (TREE_TYPE (top0
))
8770 /* If both operands are extended, they must either both
8771 be zero-extended or both be sign-extended. */
8772 && (TYPE_UNSIGNED (TREE_TYPE (top1
))
8773 == TYPE_UNSIGNED (TREE_TYPE (top0
)))))))
8775 tree op0type
= TREE_TYPE (top0
);
8776 enum machine_mode innermode
= TYPE_MODE (op0type
);
8777 bool zextend_p
= TYPE_UNSIGNED (op0type
);
8778 optab other_optab
= zextend_p
? smul_widen_optab
: umul_widen_optab
;
8779 this_optab
= zextend_p
? umul_widen_optab
: smul_widen_optab
;
8781 if (mode
== GET_MODE_2XWIDER_MODE (innermode
))
8783 if (optab_handler (this_optab
, mode
)->insn_code
!= CODE_FOR_nothing
)
8785 if (TREE_CODE (subexp1
) == INTEGER_CST
)
8786 expand_operands (top0
, subexp1
, NULL_RTX
, &op0
, &op1
,
8789 expand_operands (top0
, top1
, NULL_RTX
, &op0
, &op1
,
8793 else if (optab_handler (other_optab
, mode
)->insn_code
!= CODE_FOR_nothing
8794 && innermode
== word_mode
)
8797 op0
= expand_normal (top0
);
8798 if (TREE_CODE (subexp1
) == INTEGER_CST
)
8799 op1
= convert_modes (innermode
, mode
,
8800 expand_normal (subexp1
), unsignedp
);
8802 op1
= expand_normal (top1
);
8803 temp
= expand_binop (mode
, other_optab
, op0
, op1
, target
,
8804 unsignedp
, OPTAB_LIB_WIDEN
);
8805 hipart
= gen_highpart (innermode
, temp
);
8806 htem
= expand_mult_highpart_adjust (innermode
, hipart
,
8810 emit_move_insn (hipart
, htem
);
8811 return REDUCE_BIT_FIELD (temp
);
8815 expand_operands (subexp0
, subexp1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8816 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
8818 case TRUNC_DIV_EXPR
:
8819 case FLOOR_DIV_EXPR
:
8821 case ROUND_DIV_EXPR
:
8822 case EXACT_DIV_EXPR
:
8823 /* If this is a fixed-point operation, then we cannot use the code
8824 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8826 if (ALL_FIXED_POINT_MODE_P (mode
))
8829 if (modifier
== EXPAND_STACK_PARM
)
8831 /* Possible optimization: compute the dividend with EXPAND_SUM
8832 then if the divisor is constant can optimize the case
8833 where some terms of the dividend have coeffs divisible by it. */
8834 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8835 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8836 return expand_divmod (0, code
, mode
, op0
, op1
, target
, unsignedp
);
8841 case TRUNC_MOD_EXPR
:
8842 case FLOOR_MOD_EXPR
:
8844 case ROUND_MOD_EXPR
:
8845 if (modifier
== EXPAND_STACK_PARM
)
8847 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8848 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8849 return expand_divmod (1, code
, mode
, op0
, op1
, target
, unsignedp
);
8851 case FIXED_CONVERT_EXPR
:
8852 op0
= expand_normal (TREE_OPERAND (exp
, 0));
8853 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8854 target
= gen_reg_rtx (mode
);
8856 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 0))) == INTEGER_TYPE
8857 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))))
8858 || (TREE_CODE (type
) == INTEGER_TYPE
&& TYPE_UNSIGNED (type
)))
8859 expand_fixed_convert (target
, op0
, 1, TYPE_SATURATING (type
));
8861 expand_fixed_convert (target
, op0
, 0, TYPE_SATURATING (type
));
8864 case FIX_TRUNC_EXPR
:
8865 op0
= expand_normal (TREE_OPERAND (exp
, 0));
8866 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8867 target
= gen_reg_rtx (mode
);
8868 expand_fix (target
, op0
, unsignedp
);
8872 op0
= expand_normal (TREE_OPERAND (exp
, 0));
8873 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8874 target
= gen_reg_rtx (mode
);
8875 /* expand_float can't figure out what to do if FROM has VOIDmode.
8876 So give it the correct mode. With -O, cse will optimize this. */
8877 if (GET_MODE (op0
) == VOIDmode
)
8878 op0
= copy_to_mode_reg (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))),
8880 expand_float (target
, op0
,
8881 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))));
8885 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
,
8886 VOIDmode
, EXPAND_NORMAL
);
8887 if (modifier
== EXPAND_STACK_PARM
)
8889 temp
= expand_unop (mode
,
8890 optab_for_tree_code (NEGATE_EXPR
, type
,
8894 return REDUCE_BIT_FIELD (temp
);
8897 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
,
8898 VOIDmode
, EXPAND_NORMAL
);
8899 if (modifier
== EXPAND_STACK_PARM
)
8902 /* ABS_EXPR is not valid for complex arguments. */
8903 gcc_assert (GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
8904 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
);
8906 /* Unsigned abs is simply the operand. Testing here means we don't
8907 risk generating incorrect code below. */
8908 if (TYPE_UNSIGNED (type
))
8911 return expand_abs (mode
, op0
, target
, unsignedp
,
8912 safe_from_p (target
, TREE_OPERAND (exp
, 0), 1));
8916 target
= original_target
;
8918 || modifier
== EXPAND_STACK_PARM
8919 || (MEM_P (target
) && MEM_VOLATILE_P (target
))
8920 || GET_MODE (target
) != mode
8922 && REGNO (target
) < FIRST_PSEUDO_REGISTER
))
8923 target
= gen_reg_rtx (mode
);
8924 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8925 target
, &op0
, &op1
, EXPAND_NORMAL
);
8927 /* First try to do it with a special MIN or MAX instruction.
8928 If that does not win, use a conditional jump to select the proper
8930 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
8931 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
, unsignedp
,
8936 /* At this point, a MEM target is no longer useful; we will get better
8939 if (! REG_P (target
))
8940 target
= gen_reg_rtx (mode
);
8942 /* If op1 was placed in target, swap op0 and op1. */
8943 if (target
!= op0
&& target
== op1
)
8950 /* We generate better code and avoid problems with op1 mentioning
8951 target by forcing op1 into a pseudo if it isn't a constant. */
8952 if (! CONSTANT_P (op1
))
8953 op1
= force_reg (mode
, op1
);
8956 enum rtx_code comparison_code
;
8959 if (code
== MAX_EXPR
)
8960 comparison_code
= unsignedp
? GEU
: GE
;
8962 comparison_code
= unsignedp
? LEU
: LE
;
8964 /* Canonicalize to comparisons against 0. */
8965 if (op1
== const1_rtx
)
8967 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8968 or (a != 0 ? a : 1) for unsigned.
8969 For MIN we are safe converting (a <= 1 ? a : 1)
8970 into (a <= 0 ? a : 1) */
8971 cmpop1
= const0_rtx
;
8972 if (code
== MAX_EXPR
)
8973 comparison_code
= unsignedp
? NE
: GT
;
8975 if (op1
== constm1_rtx
&& !unsignedp
)
8977 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8978 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8979 cmpop1
= const0_rtx
;
8980 if (code
== MIN_EXPR
)
8981 comparison_code
= LT
;
8983 #ifdef HAVE_conditional_move
8984 /* Use a conditional move if possible. */
8985 if (can_conditionally_move_p (mode
))
8989 /* ??? Same problem as in expmed.c: emit_conditional_move
8990 forces a stack adjustment via compare_from_rtx, and we
8991 lose the stack adjustment if the sequence we are about
8992 to create is discarded. */
8993 do_pending_stack_adjust ();
8997 /* Try to emit the conditional move. */
8998 insn
= emit_conditional_move (target
, comparison_code
,
9003 /* If we could do the conditional move, emit the sequence,
9007 rtx seq
= get_insns ();
9013 /* Otherwise discard the sequence and fall back to code with
9019 emit_move_insn (target
, op0
);
9021 temp
= gen_label_rtx ();
9022 do_compare_rtx_and_jump (target
, cmpop1
, comparison_code
,
9023 unsignedp
, mode
, NULL_RTX
, NULL_RTX
, temp
);
9025 emit_move_insn (target
, op1
);
9030 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
,
9031 VOIDmode
, EXPAND_NORMAL
);
9032 if (modifier
== EXPAND_STACK_PARM
)
9034 temp
= expand_unop (mode
, one_cmpl_optab
, op0
, target
, 1);
9038 /* ??? Can optimize bitwise operations with one arg constant.
9039 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
9040 and (a bitwise1 b) bitwise2 b (etc)
9041 but that is probably not worth while. */
9043 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
9044 boolean values when we want in all cases to compute both of them. In
9045 general it is fastest to do TRUTH_AND_EXPR by computing both operands
9046 as actual zero-or-1 values and then bitwise anding. In cases where
9047 there cannot be any side effects, better code would be made by
9048 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
9049 how to recognize those cases. */
9051 case TRUTH_AND_EXPR
:
9052 code
= BIT_AND_EXPR
;
9057 code
= BIT_IOR_EXPR
;
9061 case TRUTH_XOR_EXPR
:
9062 code
= BIT_XOR_EXPR
;
9068 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type
))
9069 || (GET_MODE_PRECISION (TYPE_MODE (type
))
9070 == TYPE_PRECISION (type
)));
9075 /* If this is a fixed-point operation, then we cannot use the code
9076 below because "expand_shift" doesn't support sat/no-sat fixed-point
9078 if (ALL_FIXED_POINT_MODE_P (mode
))
9081 if (! safe_from_p (subtarget
, TREE_OPERAND (exp
, 1), 1))
9083 if (modifier
== EXPAND_STACK_PARM
)
9085 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
,
9086 VOIDmode
, EXPAND_NORMAL
);
9087 temp
= expand_shift (code
, mode
, op0
, TREE_OPERAND (exp
, 1), target
,
9089 if (code
== LSHIFT_EXPR
)
9090 temp
= REDUCE_BIT_FIELD (temp
);
9093 /* Could determine the answer when only additive constants differ. Also,
9094 the addition of one can be handled by changing the condition. */
9101 case UNORDERED_EXPR
:
9109 temp
= do_store_flag (exp
,
9110 modifier
!= EXPAND_STACK_PARM
? target
: NULL_RTX
,
9111 tmode
!= VOIDmode
? tmode
: mode
);
9115 /* Although TRUTH_{AND,OR}IF_EXPR aren't present in GIMPLE, they
9116 are occassionally created by folding during expansion. */
9117 case TRUTH_ANDIF_EXPR
:
9118 case TRUTH_ORIF_EXPR
:
9121 || modifier
== EXPAND_STACK_PARM
9122 || ! safe_from_p (target
, exp
, 1)
9123 /* Make sure we don't have a hard reg (such as function's return
9124 value) live across basic blocks, if not optimizing. */
9125 || (!optimize
&& REG_P (target
)
9126 && REGNO (target
) < FIRST_PSEUDO_REGISTER
)))
9127 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
9130 emit_move_insn (target
, const0_rtx
);
9132 op1
= gen_label_rtx ();
9133 jumpifnot (exp
, op1
);
9136 emit_move_insn (target
, const1_rtx
);
9139 return ignore
? const0_rtx
: target
;
9141 case TRUTH_NOT_EXPR
:
9142 if (modifier
== EXPAND_STACK_PARM
)
9144 op0
= expand_expr (TREE_OPERAND (exp
, 0), target
,
9145 VOIDmode
, EXPAND_NORMAL
);
9146 /* The parser is careful to generate TRUTH_NOT_EXPR
9147 only with operands that are always zero or one. */
9148 temp
= expand_binop (mode
, xor_optab
, op0
, const1_rtx
,
9149 target
, 1, OPTAB_LIB_WIDEN
);
9153 case STATEMENT_LIST
:
9155 tree_stmt_iterator iter
;
9157 gcc_assert (ignore
);
9159 for (iter
= tsi_start (exp
); !tsi_end_p (iter
); tsi_next (&iter
))
9160 expand_expr (tsi_stmt (iter
), const0_rtx
, VOIDmode
, modifier
);
9165 /* A COND_EXPR with its type being VOID_TYPE represents a
9166 conditional jump and is handled in
9167 expand_gimple_cond_expr. */
9168 gcc_assert (!VOID_TYPE_P (TREE_TYPE (exp
)));
9170 /* Note that COND_EXPRs whose type is a structure or union
9171 are required to be constructed to contain assignments of
9172 a temporary variable, so that we can evaluate them here
9173 for side effect only. If type is void, we must do likewise. */
9175 gcc_assert (!TREE_ADDRESSABLE (type
)
9177 && TREE_TYPE (TREE_OPERAND (exp
, 1)) != void_type_node
9178 && TREE_TYPE (TREE_OPERAND (exp
, 2)) != void_type_node
);
9180 /* If we are not to produce a result, we have no target. Otherwise,
9181 if a target was specified use it; it will not be used as an
9182 intermediate target unless it is safe. If no target, use a
9185 if (modifier
!= EXPAND_STACK_PARM
9187 && safe_from_p (original_target
, TREE_OPERAND (exp
, 0), 1)
9188 && GET_MODE (original_target
) == mode
9189 #ifdef HAVE_conditional_move
9190 && (! can_conditionally_move_p (mode
)
9191 || REG_P (original_target
))
9193 && !MEM_P (original_target
))
9194 temp
= original_target
;
9196 temp
= assign_temp (type
, 0, 0, 1);
9198 do_pending_stack_adjust ();
9200 op0
= gen_label_rtx ();
9201 op1
= gen_label_rtx ();
9202 jumpifnot (TREE_OPERAND (exp
, 0), op0
);
9203 store_expr (TREE_OPERAND (exp
, 1), temp
,
9204 modifier
== EXPAND_STACK_PARM
,
9207 emit_jump_insn (gen_jump (op1
));
9210 store_expr (TREE_OPERAND (exp
, 2), temp
,
9211 modifier
== EXPAND_STACK_PARM
,
9219 target
= expand_vec_cond_expr (exp
, target
);
9224 tree lhs
= TREE_OPERAND (exp
, 0);
9225 tree rhs
= TREE_OPERAND (exp
, 1);
9226 gcc_assert (ignore
);
9228 /* Check for |= or &= of a bitfield of size one into another bitfield
9229 of size 1. In this case, (unless we need the result of the
9230 assignment) we can do this more efficiently with a
9231 test followed by an assignment, if necessary.
9233 ??? At this point, we can't get a BIT_FIELD_REF here. But if
9234 things change so we do, this code should be enhanced to
9236 if (TREE_CODE (lhs
) == COMPONENT_REF
9237 && (TREE_CODE (rhs
) == BIT_IOR_EXPR
9238 || TREE_CODE (rhs
) == BIT_AND_EXPR
)
9239 && TREE_OPERAND (rhs
, 0) == lhs
9240 && TREE_CODE (TREE_OPERAND (rhs
, 1)) == COMPONENT_REF
9241 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs
, 1)))
9242 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs
, 1), 1))))
9244 rtx label
= gen_label_rtx ();
9245 int value
= TREE_CODE (rhs
) == BIT_IOR_EXPR
;
9246 do_jump (TREE_OPERAND (rhs
, 1),
9249 expand_assignment (lhs
, build_int_cst (TREE_TYPE (rhs
), value
),
9250 MOVE_NONTEMPORAL (exp
));
9251 do_pending_stack_adjust ();
9256 expand_assignment (lhs
, rhs
, MOVE_NONTEMPORAL (exp
));
9261 if (!TREE_OPERAND (exp
, 0))
9262 expand_null_return ();
9264 expand_return (TREE_OPERAND (exp
, 0));
9268 return expand_expr_addr_expr (exp
, target
, tmode
, modifier
);
9271 /* Get the rtx code of the operands. */
9272 op0
= expand_normal (TREE_OPERAND (exp
, 0));
9273 op1
= expand_normal (TREE_OPERAND (exp
, 1));
9276 target
= gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp
)));
9278 /* Move the real (op0) and imaginary (op1) parts to their location. */
9279 write_complex_part (target
, op0
, false);
9280 write_complex_part (target
, op1
, true);
9285 op0
= expand_normal (TREE_OPERAND (exp
, 0));
9286 return read_complex_part (op0
, false);
9289 op0
= expand_normal (TREE_OPERAND (exp
, 0));
9290 return read_complex_part (op0
, true);
9293 expand_resx_expr (exp
);
9296 case TRY_CATCH_EXPR
:
9298 case EH_FILTER_EXPR
:
9299 case TRY_FINALLY_EXPR
:
9300 /* Lowered by tree-eh.c. */
9303 case WITH_CLEANUP_EXPR
:
9304 case CLEANUP_POINT_EXPR
:
9306 case CASE_LABEL_EXPR
:
9312 case PREINCREMENT_EXPR
:
9313 case PREDECREMENT_EXPR
:
9314 case POSTINCREMENT_EXPR
:
9315 case POSTDECREMENT_EXPR
:
9318 /* Lowered by gimplify.c. */
9322 return get_exception_pointer ();
9325 return get_exception_filter ();
9328 /* Function descriptors are not valid except for as
9329 initialization constants, and should not be expanded. */
9337 expand_label (TREE_OPERAND (exp
, 0));
9341 expand_asm_expr (exp
);
9344 case WITH_SIZE_EXPR
:
9345 /* WITH_SIZE_EXPR expands to its first argument. The caller should
9346 have pulled out the size to use in whatever context it needed. */
9347 return expand_expr_real (TREE_OPERAND (exp
, 0), original_target
, tmode
,
9350 case REALIGN_LOAD_EXPR
:
9352 tree oprnd0
= TREE_OPERAND (exp
, 0);
9353 tree oprnd1
= TREE_OPERAND (exp
, 1);
9354 tree oprnd2
= TREE_OPERAND (exp
, 2);
9357 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9358 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9359 op2
= expand_normal (oprnd2
);
9360 temp
= expand_ternary_op (mode
, this_optab
, op0
, op1
, op2
,
9368 tree oprnd0
= TREE_OPERAND (exp
, 0);
9369 tree oprnd1
= TREE_OPERAND (exp
, 1);
9370 tree oprnd2
= TREE_OPERAND (exp
, 2);
9373 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9374 op2
= expand_normal (oprnd2
);
9375 target
= expand_widen_pattern_expr (exp
, op0
, op1
, op2
,
9380 case WIDEN_SUM_EXPR
:
9382 tree oprnd0
= TREE_OPERAND (exp
, 0);
9383 tree oprnd1
= TREE_OPERAND (exp
, 1);
9385 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9386 target
= expand_widen_pattern_expr (exp
, op0
, NULL_RTX
, op1
,
9391 case REDUC_MAX_EXPR
:
9392 case REDUC_MIN_EXPR
:
9393 case REDUC_PLUS_EXPR
:
9395 op0
= expand_normal (TREE_OPERAND (exp
, 0));
9396 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9397 temp
= expand_unop (mode
, this_optab
, op0
, target
, unsignedp
);
9402 case VEC_EXTRACT_EVEN_EXPR
:
9403 case VEC_EXTRACT_ODD_EXPR
:
9405 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
9406 NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9407 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9408 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
, unsignedp
,
9414 case VEC_INTERLEAVE_HIGH_EXPR
:
9415 case VEC_INTERLEAVE_LOW_EXPR
:
9417 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
9418 NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9419 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9420 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
, unsignedp
,
9426 case VEC_LSHIFT_EXPR
:
9427 case VEC_RSHIFT_EXPR
:
9429 target
= expand_vec_shift_expr (exp
, target
);
9433 case VEC_UNPACK_HI_EXPR
:
9434 case VEC_UNPACK_LO_EXPR
:
9436 op0
= expand_normal (TREE_OPERAND (exp
, 0));
9437 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9438 temp
= expand_widen_pattern_expr (exp
, op0
, NULL_RTX
, NULL_RTX
,
9444 case VEC_UNPACK_FLOAT_HI_EXPR
:
9445 case VEC_UNPACK_FLOAT_LO_EXPR
:
9447 op0
= expand_normal (TREE_OPERAND (exp
, 0));
9448 /* The signedness is determined from input operand. */
9449 this_optab
= optab_for_tree_code (code
,
9450 TREE_TYPE (TREE_OPERAND (exp
, 0)),
9452 temp
= expand_widen_pattern_expr
9453 (exp
, op0
, NULL_RTX
, NULL_RTX
,
9454 target
, TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))));
9460 case VEC_WIDEN_MULT_HI_EXPR
:
9461 case VEC_WIDEN_MULT_LO_EXPR
:
9463 tree oprnd0
= TREE_OPERAND (exp
, 0);
9464 tree oprnd1
= TREE_OPERAND (exp
, 1);
9466 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9467 target
= expand_widen_pattern_expr (exp
, op0
, op1
, NULL_RTX
,
9469 gcc_assert (target
);
9473 case VEC_PACK_TRUNC_EXPR
:
9474 case VEC_PACK_SAT_EXPR
:
9475 case VEC_PACK_FIX_TRUNC_EXPR
:
9476 mode
= TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0)));
9479 case COMPOUND_LITERAL_EXPR
:
9481 /* Initialize the anonymous variable declared in the compound
9482 literal, then return the variable. */
9483 tree decl
= COMPOUND_LITERAL_EXPR_DECL (exp
);
9485 /* Create RTL for this variable. */
9486 if (!DECL_RTL_SET_P (decl
))
9488 if (DECL_HARD_REGISTER (decl
))
9489 /* The user specified an assembler name for this variable.
9491 rest_of_decl_compilation (decl
, 0, 0);
9496 return expand_expr_real (decl
, original_target
, tmode
,
9504 /* Here to do an ordinary binary operator. */
9506 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
9507 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
9509 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9511 if (modifier
== EXPAND_STACK_PARM
)
9513 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
,
9514 unsignedp
, OPTAB_LIB_WIDEN
);
9516 return REDUCE_BIT_FIELD (temp
);
9518 #undef REDUCE_BIT_FIELD
9520 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
9521 signedness of TYPE), possibly returning the result in TARGET. */
9523 reduce_to_bit_field_precision (rtx exp
, rtx target
, tree type
)
9525 HOST_WIDE_INT prec
= TYPE_PRECISION (type
);
9526 if (target
&& GET_MODE (target
) != GET_MODE (exp
))
9528 /* For constant values, reduce using build_int_cst_type. */
9529 if (CONST_INT_P (exp
))
9531 HOST_WIDE_INT value
= INTVAL (exp
);
9532 tree t
= build_int_cst_type (type
, value
);
9533 return expand_expr (t
, target
, VOIDmode
, EXPAND_NORMAL
);
9535 else if (TYPE_UNSIGNED (type
))
9538 if (prec
< HOST_BITS_PER_WIDE_INT
)
9539 mask
= immed_double_const (((unsigned HOST_WIDE_INT
) 1 << prec
) - 1, 0,
9542 mask
= immed_double_const ((unsigned HOST_WIDE_INT
) -1,
9543 ((unsigned HOST_WIDE_INT
) 1
9544 << (prec
- HOST_BITS_PER_WIDE_INT
)) - 1,
9546 return expand_and (GET_MODE (exp
), exp
, mask
, target
);
9550 tree count
= build_int_cst (NULL_TREE
,
9551 GET_MODE_BITSIZE (GET_MODE (exp
)) - prec
);
9552 exp
= expand_shift (LSHIFT_EXPR
, GET_MODE (exp
), exp
, count
, target
, 0);
9553 return expand_shift (RSHIFT_EXPR
, GET_MODE (exp
), exp
, count
, target
, 0);
9557 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
9558 when applied to the address of EXP produces an address known to be
9559 aligned more than BIGGEST_ALIGNMENT. */
9562 is_aligning_offset (const_tree offset
, const_tree exp
)
9564 /* Strip off any conversions. */
9565 while (CONVERT_EXPR_P (offset
))
9566 offset
= TREE_OPERAND (offset
, 0);
9568 /* We must now have a BIT_AND_EXPR with a constant that is one less than
9569 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
9570 if (TREE_CODE (offset
) != BIT_AND_EXPR
9571 || !host_integerp (TREE_OPERAND (offset
, 1), 1)
9572 || compare_tree_int (TREE_OPERAND (offset
, 1),
9573 BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
) <= 0
9574 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset
, 1), 1) + 1) < 0)
9577 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
9578 It must be NEGATE_EXPR. Then strip any more conversions. */
9579 offset
= TREE_OPERAND (offset
, 0);
9580 while (CONVERT_EXPR_P (offset
))
9581 offset
= TREE_OPERAND (offset
, 0);
9583 if (TREE_CODE (offset
) != NEGATE_EXPR
)
9586 offset
= TREE_OPERAND (offset
, 0);
9587 while (CONVERT_EXPR_P (offset
))
9588 offset
= TREE_OPERAND (offset
, 0);
9590 /* This must now be the address of EXP. */
9591 return TREE_CODE (offset
) == ADDR_EXPR
&& TREE_OPERAND (offset
, 0) == exp
;
9594 /* Return the tree node if an ARG corresponds to a string constant or zero
9595 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
9596 in bytes within the string that ARG is accessing. The type of the
9597 offset will be `sizetype'. */
9600 string_constant (tree arg
, tree
*ptr_offset
)
9602 tree array
, offset
, lower_bound
;
9605 if (TREE_CODE (arg
) == ADDR_EXPR
)
9607 if (TREE_CODE (TREE_OPERAND (arg
, 0)) == STRING_CST
)
9609 *ptr_offset
= size_zero_node
;
9610 return TREE_OPERAND (arg
, 0);
9612 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == VAR_DECL
)
9614 array
= TREE_OPERAND (arg
, 0);
9615 offset
= size_zero_node
;
9617 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == ARRAY_REF
)
9619 array
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 0);
9620 offset
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 1);
9621 if (TREE_CODE (array
) != STRING_CST
9622 && TREE_CODE (array
) != VAR_DECL
)
9625 /* Check if the array has a nonzero lower bound. */
9626 lower_bound
= array_ref_low_bound (TREE_OPERAND (arg
, 0));
9627 if (!integer_zerop (lower_bound
))
9629 /* If the offset and base aren't both constants, return 0. */
9630 if (TREE_CODE (lower_bound
) != INTEGER_CST
)
9632 if (TREE_CODE (offset
) != INTEGER_CST
)
9634 /* Adjust offset by the lower bound. */
9635 offset
= size_diffop (fold_convert (sizetype
, offset
),
9636 fold_convert (sizetype
, lower_bound
));
9642 else if (TREE_CODE (arg
) == PLUS_EXPR
|| TREE_CODE (arg
) == POINTER_PLUS_EXPR
)
9644 tree arg0
= TREE_OPERAND (arg
, 0);
9645 tree arg1
= TREE_OPERAND (arg
, 1);
9650 if (TREE_CODE (arg0
) == ADDR_EXPR
9651 && (TREE_CODE (TREE_OPERAND (arg0
, 0)) == STRING_CST
9652 || TREE_CODE (TREE_OPERAND (arg0
, 0)) == VAR_DECL
))
9654 array
= TREE_OPERAND (arg0
, 0);
9657 else if (TREE_CODE (arg1
) == ADDR_EXPR
9658 && (TREE_CODE (TREE_OPERAND (arg1
, 0)) == STRING_CST
9659 || TREE_CODE (TREE_OPERAND (arg1
, 0)) == VAR_DECL
))
9661 array
= TREE_OPERAND (arg1
, 0);
9670 if (TREE_CODE (array
) == STRING_CST
)
9672 *ptr_offset
= fold_convert (sizetype
, offset
);
9675 else if (TREE_CODE (array
) == VAR_DECL
)
9679 /* Variables initialized to string literals can be handled too. */
9680 if (DECL_INITIAL (array
) == NULL_TREE
9681 || TREE_CODE (DECL_INITIAL (array
)) != STRING_CST
)
9684 /* If they are read-only, non-volatile and bind locally. */
9685 if (! TREE_READONLY (array
)
9686 || TREE_SIDE_EFFECTS (array
)
9687 || ! targetm
.binds_local_p (array
))
9690 /* Avoid const char foo[4] = "abcde"; */
9691 if (DECL_SIZE_UNIT (array
) == NULL_TREE
9692 || TREE_CODE (DECL_SIZE_UNIT (array
)) != INTEGER_CST
9693 || (length
= TREE_STRING_LENGTH (DECL_INITIAL (array
))) <= 0
9694 || compare_tree_int (DECL_SIZE_UNIT (array
), length
) < 0)
9697 /* If variable is bigger than the string literal, OFFSET must be constant
9698 and inside of the bounds of the string literal. */
9699 offset
= fold_convert (sizetype
, offset
);
9700 if (compare_tree_int (DECL_SIZE_UNIT (array
), length
) > 0
9701 && (! host_integerp (offset
, 1)
9702 || compare_tree_int (offset
, length
) >= 0))
9705 *ptr_offset
= offset
;
9706 return DECL_INITIAL (array
);
9712 /* Generate code to calculate EXP using a store-flag instruction
9713 and return an rtx for the result. EXP is a comparison.
9715 If TARGET is nonzero, store the result there if convenient.
9717 Return zero if there is no suitable set-flag instruction
9718 available on this machine.
9720 Once expand_expr has been called on the arguments of the comparison,
9721 we are committed to doing the store flag, since it is not safe to
9722 re-evaluate the expression. We emit the store-flag insn by calling
9723 emit_store_flag, but only expand the arguments if we have a reason
9724 to believe that emit_store_flag will be successful. If we think that
9725 it will, but it isn't, we have to simulate the store-flag with a
9726 set/jump/set sequence. */
9729 do_store_flag (tree exp
, rtx target
, enum machine_mode mode
)
9732 tree arg0
, arg1
, type
;
9734 enum machine_mode operand_mode
;
9737 rtx subtarget
= target
;
9739 arg0
= TREE_OPERAND (exp
, 0);
9740 arg1
= TREE_OPERAND (exp
, 1);
9742 /* Don't crash if the comparison was erroneous. */
9743 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
9746 type
= TREE_TYPE (arg0
);
9747 operand_mode
= TYPE_MODE (type
);
9748 unsignedp
= TYPE_UNSIGNED (type
);
9750 /* We won't bother with BLKmode store-flag operations because it would mean
9751 passing a lot of information to emit_store_flag. */
9752 if (operand_mode
== BLKmode
)
9755 /* We won't bother with store-flag operations involving function pointers
9756 when function pointers must be canonicalized before comparisons. */
9757 #ifdef HAVE_canonicalize_funcptr_for_compare
9758 if (HAVE_canonicalize_funcptr_for_compare
9759 && ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 0))) == POINTER_TYPE
9760 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))))
9762 || (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 1))) == POINTER_TYPE
9763 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 1))))
9764 == FUNCTION_TYPE
))))
9771 /* Get the rtx comparison code to use. We know that EXP is a comparison
9772 operation of some type. Some comparisons against 1 and -1 can be
9773 converted to comparisons with zero. Do so here so that the tests
9774 below will be aware that we have a comparison with zero. These
9775 tests will not catch constants in the first operand, but constants
9776 are rarely passed as the first operand. */
9778 switch (TREE_CODE (exp
))
9787 if (integer_onep (arg1
))
9788 arg1
= integer_zero_node
, code
= unsignedp
? LEU
: LE
;
9790 code
= unsignedp
? LTU
: LT
;
9793 if (! unsignedp
&& integer_all_onesp (arg1
))
9794 arg1
= integer_zero_node
, code
= LT
;
9796 code
= unsignedp
? LEU
: LE
;
9799 if (! unsignedp
&& integer_all_onesp (arg1
))
9800 arg1
= integer_zero_node
, code
= GE
;
9802 code
= unsignedp
? GTU
: GT
;
9805 if (integer_onep (arg1
))
9806 arg1
= integer_zero_node
, code
= unsignedp
? GTU
: GT
;
9808 code
= unsignedp
? GEU
: GE
;
9811 case UNORDERED_EXPR
:
9840 /* Put a constant second. */
9841 if (TREE_CODE (arg0
) == REAL_CST
|| TREE_CODE (arg0
) == INTEGER_CST
9842 || TREE_CODE (arg0
) == FIXED_CST
)
9844 tem
= arg0
; arg0
= arg1
; arg1
= tem
;
9845 code
= swap_condition (code
);
9848 /* If this is an equality or inequality test of a single bit, we can
9849 do this by shifting the bit being tested to the low-order bit and
9850 masking the result with the constant 1. If the condition was EQ,
9851 we xor it with 1. This does not require an scc insn and is faster
9852 than an scc insn even if we have it.
9854 The code to make this transformation was moved into fold_single_bit_test,
9855 so we just call into the folder and expand its result. */
9857 if ((code
== NE
|| code
== EQ
)
9858 && TREE_CODE (arg0
) == BIT_AND_EXPR
&& integer_zerop (arg1
)
9859 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
9861 tree type
= lang_hooks
.types
.type_for_mode (mode
, unsignedp
);
9862 return expand_expr (fold_single_bit_test (code
== NE
? NE_EXPR
: EQ_EXPR
,
9864 target
, VOIDmode
, EXPAND_NORMAL
);
9867 if (! get_subtarget (target
)
9868 || GET_MODE (subtarget
) != operand_mode
)
9871 expand_operands (arg0
, arg1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
9874 target
= gen_reg_rtx (mode
);
9876 /* Try a cstore if possible. */
9877 return emit_store_flag_force (target
, code
, op0
, op1
,
9878 operand_mode
, unsignedp
, 1);
9882 /* Stubs in case we haven't got a casesi insn. */
9884 # define HAVE_casesi 0
9885 # define gen_casesi(a, b, c, d, e) (0)
9886 # define CODE_FOR_casesi CODE_FOR_nothing
9889 /* Attempt to generate a casesi instruction. Returns 1 if successful,
9890 0 otherwise (i.e. if there is no casesi instruction). */
9892 try_casesi (tree index_type
, tree index_expr
, tree minval
, tree range
,
9893 rtx table_label ATTRIBUTE_UNUSED
, rtx default_label
,
9894 rtx fallback_label ATTRIBUTE_UNUSED
)
9896 enum machine_mode index_mode
= SImode
;
9897 int index_bits
= GET_MODE_BITSIZE (index_mode
);
9898 rtx op1
, op2
, index
;
9899 enum machine_mode op_mode
;
9904 /* Convert the index to SImode. */
9905 if (GET_MODE_BITSIZE (TYPE_MODE (index_type
)) > GET_MODE_BITSIZE (index_mode
))
9907 enum machine_mode omode
= TYPE_MODE (index_type
);
9908 rtx rangertx
= expand_normal (range
);
9910 /* We must handle the endpoints in the original mode. */
9911 index_expr
= build2 (MINUS_EXPR
, index_type
,
9912 index_expr
, minval
);
9913 minval
= integer_zero_node
;
9914 index
= expand_normal (index_expr
);
9916 emit_cmp_and_jump_insns (rangertx
, index
, LTU
, NULL_RTX
,
9917 omode
, 1, default_label
);
9918 /* Now we can safely truncate. */
9919 index
= convert_to_mode (index_mode
, index
, 0);
9923 if (TYPE_MODE (index_type
) != index_mode
)
9925 index_type
= lang_hooks
.types
.type_for_size (index_bits
, 0);
9926 index_expr
= fold_convert (index_type
, index_expr
);
9929 index
= expand_normal (index_expr
);
9932 do_pending_stack_adjust ();
9934 op_mode
= insn_data
[(int) CODE_FOR_casesi
].operand
[0].mode
;
9935 if (! (*insn_data
[(int) CODE_FOR_casesi
].operand
[0].predicate
)
9937 index
= copy_to_mode_reg (op_mode
, index
);
9939 op1
= expand_normal (minval
);
9941 op_mode
= insn_data
[(int) CODE_FOR_casesi
].operand
[1].mode
;
9942 op1
= convert_modes (op_mode
, TYPE_MODE (TREE_TYPE (minval
)),
9943 op1
, TYPE_UNSIGNED (TREE_TYPE (minval
)));
9944 if (! (*insn_data
[(int) CODE_FOR_casesi
].operand
[1].predicate
)
9946 op1
= copy_to_mode_reg (op_mode
, op1
);
9948 op2
= expand_normal (range
);
9950 op_mode
= insn_data
[(int) CODE_FOR_casesi
].operand
[2].mode
;
9951 op2
= convert_modes (op_mode
, TYPE_MODE (TREE_TYPE (range
)),
9952 op2
, TYPE_UNSIGNED (TREE_TYPE (range
)));
9953 if (! (*insn_data
[(int) CODE_FOR_casesi
].operand
[2].predicate
)
9955 op2
= copy_to_mode_reg (op_mode
, op2
);
9957 emit_jump_insn (gen_casesi (index
, op1
, op2
,
9958 table_label
, !default_label
9959 ? fallback_label
: default_label
));
9963 /* Attempt to generate a tablejump instruction; same concept. */
9964 #ifndef HAVE_tablejump
9965 #define HAVE_tablejump 0
9966 #define gen_tablejump(x, y) (0)
9969 /* Subroutine of the next function.
9971 INDEX is the value being switched on, with the lowest value
9972 in the table already subtracted.
9973 MODE is its expected mode (needed if INDEX is constant).
9974 RANGE is the length of the jump table.
9975 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
9977 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
9978 index value is out of range. */
9981 do_tablejump (rtx index
, enum machine_mode mode
, rtx range
, rtx table_label
,
9986 if (INTVAL (range
) > cfun
->cfg
->max_jumptable_ents
)
9987 cfun
->cfg
->max_jumptable_ents
= INTVAL (range
);
9989 /* Do an unsigned comparison (in the proper mode) between the index
9990 expression and the value which represents the length of the range.
9991 Since we just finished subtracting the lower bound of the range
9992 from the index expression, this comparison allows us to simultaneously
9993 check that the original index expression value is both greater than
9994 or equal to the minimum value of the range and less than or equal to
9995 the maximum value of the range. */
9998 emit_cmp_and_jump_insns (index
, range
, GTU
, NULL_RTX
, mode
, 1,
10001 /* If index is in range, it must fit in Pmode.
10002 Convert to Pmode so we can index with it. */
10004 index
= convert_to_mode (Pmode
, index
, 1);
10006 /* Don't let a MEM slip through, because then INDEX that comes
10007 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
10008 and break_out_memory_refs will go to work on it and mess it up. */
10009 #ifdef PIC_CASE_VECTOR_ADDRESS
10010 if (flag_pic
&& !REG_P (index
))
10011 index
= copy_to_mode_reg (Pmode
, index
);
10014 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
10015 GET_MODE_SIZE, because this indicates how large insns are. The other
10016 uses should all be Pmode, because they are addresses. This code
10017 could fail if addresses and insns are not the same size. */
10018 index
= gen_rtx_PLUS (Pmode
,
10019 gen_rtx_MULT (Pmode
, index
,
10020 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE
))),
10021 gen_rtx_LABEL_REF (Pmode
, table_label
));
10022 #ifdef PIC_CASE_VECTOR_ADDRESS
10024 index
= PIC_CASE_VECTOR_ADDRESS (index
);
10027 index
= memory_address (CASE_VECTOR_MODE
, index
);
10028 temp
= gen_reg_rtx (CASE_VECTOR_MODE
);
10029 vector
= gen_const_mem (CASE_VECTOR_MODE
, index
);
10030 convert_move (temp
, vector
, 0);
10032 emit_jump_insn (gen_tablejump (temp
, table_label
));
10034 /* If we are generating PIC code or if the table is PC-relative, the
10035 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
10036 if (! CASE_VECTOR_PC_RELATIVE
&& ! flag_pic
)
10041 try_tablejump (tree index_type
, tree index_expr
, tree minval
, tree range
,
10042 rtx table_label
, rtx default_label
)
10046 if (! HAVE_tablejump
)
10049 index_expr
= fold_build2 (MINUS_EXPR
, index_type
,
10050 fold_convert (index_type
, index_expr
),
10051 fold_convert (index_type
, minval
));
10052 index
= expand_normal (index_expr
);
10053 do_pending_stack_adjust ();
10055 do_tablejump (index
, TYPE_MODE (index_type
),
10056 convert_modes (TYPE_MODE (index_type
),
10057 TYPE_MODE (TREE_TYPE (range
)),
10058 expand_normal (range
),
10059 TYPE_UNSIGNED (TREE_TYPE (range
))),
10060 table_label
, default_label
);
10064 /* Nonzero if the mode is a valid vector mode for this architecture.
10065 This returns nonzero even if there is no hardware support for the
10066 vector mode, but we can emulate with narrower modes. */
10069 vector_mode_valid_p (enum machine_mode mode
)
10071 enum mode_class mclass
= GET_MODE_CLASS (mode
);
10072 enum machine_mode innermode
;
10074 /* Doh! What's going on? */
10075 if (mclass
!= MODE_VECTOR_INT
10076 && mclass
!= MODE_VECTOR_FLOAT
10077 && mclass
!= MODE_VECTOR_FRACT
10078 && mclass
!= MODE_VECTOR_UFRACT
10079 && mclass
!= MODE_VECTOR_ACCUM
10080 && mclass
!= MODE_VECTOR_UACCUM
)
10083 /* Hardware support. Woo hoo! */
10084 if (targetm
.vector_mode_supported_p (mode
))
10087 innermode
= GET_MODE_INNER (mode
);
10089 /* We should probably return 1 if requesting V4DI and we have no DI,
10090 but we have V2DI, but this is probably very unlikely. */
10092 /* If we have support for the inner mode, we can safely emulate it.
10093 We may not have V2DI, but me can emulate with a pair of DIs. */
10094 return targetm
.scalar_mode_supported_p (innermode
);
10097 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
10099 const_vector_from_tree (tree exp
)
10104 enum machine_mode inner
, mode
;
10106 mode
= TYPE_MODE (TREE_TYPE (exp
));
10108 if (initializer_zerop (exp
))
10109 return CONST0_RTX (mode
);
10111 units
= GET_MODE_NUNITS (mode
);
10112 inner
= GET_MODE_INNER (mode
);
10114 v
= rtvec_alloc (units
);
10116 link
= TREE_VECTOR_CST_ELTS (exp
);
10117 for (i
= 0; link
; link
= TREE_CHAIN (link
), ++i
)
10119 elt
= TREE_VALUE (link
);
10121 if (TREE_CODE (elt
) == REAL_CST
)
10122 RTVEC_ELT (v
, i
) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt
),
10124 else if (TREE_CODE (elt
) == FIXED_CST
)
10125 RTVEC_ELT (v
, i
) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt
),
10128 RTVEC_ELT (v
, i
) = immed_double_const (TREE_INT_CST_LOW (elt
),
10129 TREE_INT_CST_HIGH (elt
),
10133 /* Initialize remaining elements to 0. */
10134 for (; i
< units
; ++i
)
10135 RTVEC_ELT (v
, i
) = CONST0_RTX (inner
);
10137 return gen_rtx_CONST_VECTOR (mode
, v
);
10139 #include "gt-expr.h"