2015-10-01 Steven G. Kargl <kargl@gcc.gnu.org>
[official-gcc.git] / gcc / sese.h
blob0b2db8d0332d3a735dfae9f9f4a886ad666d7964
1 /* Single entry single exit control flow regions.
2 Copyright (C) 2008-2015 Free Software Foundation, Inc.
3 Contributed by Jan Sjodin <jan.sjodin@amd.com> and
4 Sebastian Pop <sebastian.pop@amd.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #ifndef GCC_SESE_H
23 #define GCC_SESE_H
25 typedef hash_map<tree, tree> parameter_rename_map_t;
27 /* A Single Entry, Single Exit region is a part of the CFG delimited
28 by two edges. */
29 typedef struct sese_s
31 /* Single ENTRY and single EXIT from the SESE region. */
32 edge entry, exit;
34 /* Parameters used within the SCOP. */
35 vec<tree> params;
37 /* Parameters to be renamed. */
38 parameter_rename_map_t *parameter_rename_map;
40 /* Loops completely contained in the SCOP. */
41 bitmap loops;
42 vec<loop_p> loop_nest;
44 /* Are we allowed to add more params? This is for debugging purpose. We
45 can only add new params before generating the bb domains, otherwise they
46 become invalid. */
47 bool add_params;
48 } *sese;
50 #define SESE_ENTRY(S) (S->entry)
51 #define SESE_ENTRY_BB(S) (S->entry->dest)
52 #define SESE_EXIT(S) (S->exit)
53 #define SESE_EXIT_BB(S) (S->exit->dest)
54 #define SESE_PARAMS(S) (S->params)
55 #define SESE_LOOPS(S) (S->loops)
56 #define SESE_LOOP_NEST(S) (S->loop_nest)
57 #define SESE_ADD_PARAMS(S) (S->add_params)
59 extern sese new_sese (edge, edge);
60 extern void free_sese (sese);
61 extern void sese_insert_phis_for_liveouts (sese, basic_block, edge, edge);
62 extern void build_sese_loop_nests (sese);
63 extern edge copy_bb_and_scalar_dependences (basic_block, sese, edge,
64 vec<tree> , bool *);
65 extern struct loop *outermost_loop_in_sese (sese, basic_block);
66 extern tree scalar_evolution_in_region (sese, loop_p, tree);
67 extern bool invariant_in_sese_p_rec (tree, sese);
69 /* Check that SESE contains LOOP. */
71 static inline bool
72 sese_contains_loop (sese sese, struct loop *loop)
74 return bitmap_bit_p (SESE_LOOPS (sese), loop->num);
77 /* The number of parameters in REGION. */
79 static inline unsigned
80 sese_nb_params (sese region)
82 return SESE_PARAMS (region).length ();
85 /* Checks whether BB is contained in the region delimited by ENTRY and
86 EXIT blocks. */
88 static inline bool
89 bb_in_region (basic_block bb, basic_block entry, basic_block exit)
91 #ifdef ENABLE_CHECKING
93 edge e;
94 edge_iterator ei;
96 /* Check that there are no edges coming in the region: all the
97 predecessors of EXIT are dominated by ENTRY. */
98 FOR_EACH_EDGE (e, ei, exit->preds)
99 dominated_by_p (CDI_DOMINATORS, e->src, entry);
101 #endif
103 return dominated_by_p (CDI_DOMINATORS, bb, entry)
104 && !(dominated_by_p (CDI_DOMINATORS, bb, exit)
105 && !dominated_by_p (CDI_DOMINATORS, entry, exit));
108 /* Checks whether BB is contained in the region delimited by ENTRY and
109 EXIT blocks. */
111 static inline bool
112 bb_in_sese_p (basic_block bb, sese region)
114 basic_block entry = SESE_ENTRY_BB (region);
115 basic_block exit = SESE_EXIT_BB (region);
117 return bb_in_region (bb, entry, exit);
120 /* Returns true when STMT is defined in REGION. */
122 static inline bool
123 stmt_in_sese_p (gimple *stmt, sese region)
125 basic_block bb = gimple_bb (stmt);
126 return bb && bb_in_sese_p (bb, region);
129 /* Returns true when NAME is defined in REGION. */
131 static inline bool
132 defined_in_sese_p (tree name, sese region)
134 gimple *stmt = SSA_NAME_DEF_STMT (name);
135 return stmt_in_sese_p (stmt, region);
138 /* Returns true when LOOP is in REGION. */
140 static inline bool
141 loop_in_sese_p (struct loop *loop, sese region)
143 return (bb_in_sese_p (loop->header, region)
144 && bb_in_sese_p (loop->latch, region));
147 /* Returns the loop depth of LOOP in REGION. The loop depth
148 is the same as the normal loop depth, but limited by a region.
150 Example:
152 loop_0
153 loop_1
156 <- region start
159 loop_2
163 <- region end
166 loop_0 does not exist in the region -> invalid
167 loop_1 exists, but is not completely contained in the region -> depth 0
168 loop_2 is completely contained -> depth 1 */
170 static inline unsigned int
171 sese_loop_depth (sese region, loop_p loop)
173 unsigned int depth = 0;
175 while (loop_in_sese_p (loop, region))
177 depth++;
178 loop = loop_outer (loop);
181 return depth;
184 /* Splits BB to make a single entry single exit region. */
186 static inline sese
187 split_region_for_bb (basic_block bb)
189 edge entry, exit;
191 if (single_pred_p (bb))
192 entry = single_pred_edge (bb);
193 else
195 entry = split_block_after_labels (bb);
196 bb = single_succ (bb);
199 if (single_succ_p (bb))
200 exit = single_succ_edge (bb);
201 else
203 gimple_stmt_iterator gsi = gsi_last_bb (bb);
204 gsi_prev (&gsi);
205 exit = split_block (bb, gsi_stmt (gsi));
208 return new_sese (entry, exit);
211 /* Returns the block preceding the entry of a SESE. */
213 static inline basic_block
214 block_before_sese (sese sese)
216 return SESE_ENTRY (sese)->src;
221 /* A single entry single exit specialized for conditions. */
223 typedef struct ifsese_s {
224 sese region;
225 sese true_region;
226 sese false_region;
227 } *ifsese;
229 extern void if_region_set_false_region (ifsese, sese);
230 extern ifsese move_sese_in_condition (sese);
231 extern edge get_true_edge_from_guard_bb (basic_block);
232 extern edge get_false_edge_from_guard_bb (basic_block);
233 extern void set_ifsese_condition (ifsese, tree);
235 static inline edge
236 if_region_entry (ifsese if_region)
238 return SESE_ENTRY (if_region->region);
241 static inline edge
242 if_region_exit (ifsese if_region)
244 return SESE_EXIT (if_region->region);
247 static inline basic_block
248 if_region_get_condition_block (ifsese if_region)
250 return if_region_entry (if_region)->dest;
253 /* Free and compute again all the dominators information. */
255 static inline void
256 recompute_all_dominators (void)
258 mark_irreducible_loops ();
259 free_dominance_info (CDI_DOMINATORS);
260 calculate_dominance_info (CDI_DOMINATORS);
262 free_dominance_info (CDI_POST_DOMINATORS);
263 calculate_dominance_info (CDI_POST_DOMINATORS);
266 typedef struct gimple_poly_bb
268 basic_block bb;
269 struct poly_bb *pbb;
271 /* Lists containing the restrictions of the conditional statements
272 dominating this bb. This bb can only be executed, if all conditions
273 are true.
275 Example:
277 for (i = 0; i <= 20; i++)
281 if (2i <= 8)
285 So for B there is an additional condition (2i <= 8).
287 List of COND_EXPR and SWITCH_EXPR. A COND_EXPR is true only if the
288 corresponding element in CONDITION_CASES is not NULL_TREE. For a
289 SWITCH_EXPR the corresponding element in CONDITION_CASES is a
290 CASE_LABEL_EXPR. */
291 vec<gimple *> conditions;
292 vec<gimple *> condition_cases;
293 vec<data_reference_p> data_refs;
294 } *gimple_poly_bb_p;
296 #define GBB_BB(GBB) (GBB)->bb
297 #define GBB_PBB(GBB) (GBB)->pbb
298 #define GBB_DATA_REFS(GBB) (GBB)->data_refs
299 #define GBB_CONDITIONS(GBB) (GBB)->conditions
300 #define GBB_CONDITION_CASES(GBB) (GBB)->condition_cases
302 /* Return the innermost loop that contains the basic block GBB. */
304 static inline struct loop *
305 gbb_loop (gimple_poly_bb_p gbb)
307 return GBB_BB (gbb)->loop_father;
310 /* Returns the gimple loop, that corresponds to the loop_iterator_INDEX.
311 If there is no corresponding gimple loop, we return NULL. */
313 static inline loop_p
314 gbb_loop_at_index (gimple_poly_bb_p gbb, sese region, int index)
316 loop_p loop = gbb_loop (gbb);
317 int depth = sese_loop_depth (region, loop);
319 while (--depth > index)
320 loop = loop_outer (loop);
322 gcc_assert (sese_contains_loop (region, loop));
324 return loop;
327 /* The number of common loops in REGION for GBB1 and GBB2. */
329 static inline int
330 nb_common_loops (sese region, gimple_poly_bb_p gbb1, gimple_poly_bb_p gbb2)
332 loop_p l1 = gbb_loop (gbb1);
333 loop_p l2 = gbb_loop (gbb2);
334 loop_p common = find_common_loop (l1, l2);
336 return sese_loop_depth (region, common);
339 /* Return true when DEF can be analyzed in REGION by the scalar
340 evolution analyzer. */
342 static inline bool
343 scev_analyzable_p (tree def, sese region)
345 loop_p loop;
346 tree scev;
347 tree type = TREE_TYPE (def);
349 /* When Graphite generates code for a scev, the code generator
350 expresses the scev in function of a single induction variable.
351 This is unsafe for floating point computations, as it may replace
352 a floating point sum reduction with a multiplication. The
353 following test returns false for non integer types to avoid such
354 problems. */
355 if (!INTEGRAL_TYPE_P (type)
356 && !POINTER_TYPE_P (type))
357 return false;
359 loop = loop_containing_stmt (SSA_NAME_DEF_STMT (def));
360 scev = scalar_evolution_in_region (region, loop, def);
362 return !chrec_contains_undetermined (scev)
363 && (TREE_CODE (scev) != SSA_NAME
364 || !defined_in_sese_p (scev, region))
365 && (tree_does_not_contain_chrecs (scev)
366 || evolution_function_is_affine_p (scev));
369 #endif