ada: Rename Is_Constr_Subt_For_UN_Aliased flag
[official-gcc.git] / gcc / fortran / dependency.cc
blob94647032ab534274e9f34662e0f073ca65abfde7
1 /* Dependency analysis
2 Copyright (C) 2000-2023 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* dependency.cc -- Expression dependency analysis code. */
22 /* There's probably quite a bit of duplication in this file. We currently
23 have different dependency checking functions for different types
24 if dependencies. Ideally these would probably be merged. */
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "gfortran.h"
30 #include "dependency.h"
31 #include "constructor.h"
32 #include "arith.h"
33 #include "options.h"
35 /* static declarations */
36 /* Enums */
37 enum range {LHS, RHS, MID};
39 /* Dependency types. These must be in reverse order of priority. */
40 enum gfc_dependency
42 GFC_DEP_ERROR,
43 GFC_DEP_EQUAL, /* Identical Ranges. */
44 GFC_DEP_FORWARD, /* e.g., a(1:3) = a(2:4). */
45 GFC_DEP_BACKWARD, /* e.g. a(2:4) = a(1:3). */
46 GFC_DEP_OVERLAP, /* May overlap in some other way. */
47 GFC_DEP_NODEP /* Distinct ranges. */
50 /* Macros */
51 #define IS_ARRAY_EXPLICIT(as) ((as->type == AS_EXPLICIT ? 1 : 0))
53 /* Forward declarations */
55 static gfc_dependency check_section_vs_section (gfc_array_ref *,
56 gfc_array_ref *, int);
58 /* Returns 1 if the expr is an integer constant value 1, 0 if it is not or
59 def if the value could not be determined. */
61 int
62 gfc_expr_is_one (gfc_expr *expr, int def)
64 gcc_assert (expr != NULL);
66 if (expr->expr_type != EXPR_CONSTANT)
67 return def;
69 if (expr->ts.type != BT_INTEGER)
70 return def;
72 return mpz_cmp_si (expr->value.integer, 1) == 0;
75 /* Check if two array references are known to be identical. Calls
76 gfc_dep_compare_expr if necessary for comparing array indices. */
78 static bool
79 identical_array_ref (gfc_array_ref *a1, gfc_array_ref *a2)
81 int i;
83 if (a1->type == AR_FULL && a2->type == AR_FULL)
84 return true;
86 if (a1->type == AR_SECTION && a2->type == AR_SECTION)
88 gcc_assert (a1->dimen == a2->dimen);
90 for ( i = 0; i < a1->dimen; i++)
92 /* TODO: Currently, we punt on an integer array as an index. */
93 if (a1->dimen_type[i] != DIMEN_RANGE
94 || a2->dimen_type[i] != DIMEN_RANGE)
95 return false;
97 if (check_section_vs_section (a1, a2, i) != GFC_DEP_EQUAL)
98 return false;
100 return true;
103 if (a1->type == AR_ELEMENT && a2->type == AR_ELEMENT)
105 if (a1->dimen != a2->dimen)
106 gfc_internal_error ("identical_array_ref(): inconsistent dimensions");
108 for (i = 0; i < a1->dimen; i++)
110 if (gfc_dep_compare_expr (a1->start[i], a2->start[i]) != 0)
111 return false;
113 return true;
115 return false;
120 /* Return true for identical variables, checking for references if
121 necessary. Calls identical_array_ref for checking array sections. */
123 static bool
124 are_identical_variables (gfc_expr *e1, gfc_expr *e2)
126 gfc_ref *r1, *r2;
128 if (e1->symtree->n.sym->attr.dummy && e2->symtree->n.sym->attr.dummy)
130 /* Dummy arguments: Only check for equal names. */
131 if (e1->symtree->n.sym->name != e2->symtree->n.sym->name)
132 return false;
134 else
136 /* Check for equal symbols. */
137 if (e1->symtree->n.sym != e2->symtree->n.sym)
138 return false;
141 /* Volatile variables should never compare equal to themselves. */
143 if (e1->symtree->n.sym->attr.volatile_)
144 return false;
146 r1 = e1->ref;
147 r2 = e2->ref;
149 while (r1 != NULL || r2 != NULL)
152 /* Assume the variables are not equal if one has a reference and the
153 other doesn't.
154 TODO: Handle full references like comparing a(:) to a.
157 if (r1 == NULL || r2 == NULL)
158 return false;
160 if (r1->type != r2->type)
161 return false;
163 switch (r1->type)
166 case REF_ARRAY:
167 if (!identical_array_ref (&r1->u.ar, &r2->u.ar))
168 return false;
170 break;
172 case REF_COMPONENT:
173 if (r1->u.c.component != r2->u.c.component)
174 return false;
175 break;
177 case REF_SUBSTRING:
178 if (gfc_dep_compare_expr (r1->u.ss.start, r2->u.ss.start) != 0)
179 return false;
181 /* If both are NULL, the end length compares equal, because we
182 are looking at the same variable. This can only happen for
183 assumed- or deferred-length character arguments. */
185 if (r1->u.ss.end == NULL && r2->u.ss.end == NULL)
186 break;
188 if (gfc_dep_compare_expr (r1->u.ss.end, r2->u.ss.end) != 0)
189 return false;
191 break;
193 case REF_INQUIRY:
194 if (r1->u.i != r2->u.i)
195 return false;
196 break;
198 default:
199 gfc_internal_error ("are_identical_variables: Bad type");
201 r1 = r1->next;
202 r2 = r2->next;
204 return true;
207 /* Compare two functions for equality. Returns 0 if e1==e2, -2 otherwise. If
208 impure_ok is false, only return 0 for pure functions. */
211 gfc_dep_compare_functions (gfc_expr *e1, gfc_expr *e2, bool impure_ok)
214 gfc_actual_arglist *args1;
215 gfc_actual_arglist *args2;
217 if (e1->expr_type != EXPR_FUNCTION || e2->expr_type != EXPR_FUNCTION)
218 return -2;
220 if ((e1->value.function.esym && e2->value.function.esym
221 && e1->value.function.esym == e2->value.function.esym
222 && (e1->value.function.esym->result->attr.pure || impure_ok))
223 || (e1->value.function.isym && e2->value.function.isym
224 && e1->value.function.isym == e2->value.function.isym
225 && (e1->value.function.isym->pure || impure_ok)))
227 args1 = e1->value.function.actual;
228 args2 = e2->value.function.actual;
230 /* Compare the argument lists for equality. */
231 while (args1 && args2)
233 /* Bitwise xor, since C has no non-bitwise xor operator. */
234 if ((args1->expr == NULL) ^ (args2->expr == NULL))
235 return -2;
237 if (args1->expr != NULL && args2->expr != NULL)
239 gfc_expr *e1, *e2;
240 e1 = args1->expr;
241 e2 = args2->expr;
243 if (gfc_dep_compare_expr (e1, e2) != 0)
244 return -2;
246 /* Special case: String arguments which compare equal can have
247 different lengths, which makes them different in calls to
248 procedures. */
250 if (e1->expr_type == EXPR_CONSTANT
251 && e1->ts.type == BT_CHARACTER
252 && e2->expr_type == EXPR_CONSTANT
253 && e2->ts.type == BT_CHARACTER
254 && e1->value.character.length != e2->value.character.length)
255 return -2;
258 args1 = args1->next;
259 args2 = args2->next;
261 return (args1 || args2) ? -2 : 0;
263 else
264 return -2;
267 /* Helper function to look through parens, unary plus and widening
268 integer conversions. */
270 gfc_expr *
271 gfc_discard_nops (gfc_expr *e)
273 gfc_actual_arglist *arglist;
275 if (e == NULL)
276 return NULL;
278 while (true)
280 if (e->expr_type == EXPR_OP
281 && (e->value.op.op == INTRINSIC_UPLUS
282 || e->value.op.op == INTRINSIC_PARENTHESES))
284 e = e->value.op.op1;
285 continue;
288 if (e->expr_type == EXPR_FUNCTION && e->value.function.isym
289 && e->value.function.isym->id == GFC_ISYM_CONVERSION
290 && e->ts.type == BT_INTEGER)
292 arglist = e->value.function.actual;
293 if (arglist->expr->ts.type == BT_INTEGER
294 && e->ts.kind > arglist->expr->ts.kind)
296 e = arglist->expr;
297 continue;
300 break;
303 return e;
307 /* Compare two expressions. Return values:
308 * +1 if e1 > e2
309 * 0 if e1 == e2
310 * -1 if e1 < e2
311 * -2 if the relationship could not be determined
312 * -3 if e1 /= e2, but we cannot tell which one is larger.
313 REAL and COMPLEX constants are only compared for equality
314 or inequality; if they are unequal, -2 is returned in all cases. */
317 gfc_dep_compare_expr (gfc_expr *e1, gfc_expr *e2)
319 int i;
321 if (e1 == NULL && e2 == NULL)
322 return 0;
323 else if (e1 == NULL || e2 == NULL)
324 return -2;
326 e1 = gfc_discard_nops (e1);
327 e2 = gfc_discard_nops (e2);
329 if (e1->expr_type == EXPR_OP && e1->value.op.op == INTRINSIC_PLUS)
331 /* Compare X+C vs. X, for INTEGER only. */
332 if (e1->value.op.op2->expr_type == EXPR_CONSTANT
333 && e1->value.op.op2->ts.type == BT_INTEGER
334 && gfc_dep_compare_expr (e1->value.op.op1, e2) == 0)
335 return mpz_sgn (e1->value.op.op2->value.integer);
337 /* Compare P+Q vs. R+S. */
338 if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_PLUS)
340 int l, r;
342 l = gfc_dep_compare_expr (e1->value.op.op1, e2->value.op.op1);
343 r = gfc_dep_compare_expr (e1->value.op.op2, e2->value.op.op2);
344 if (l == 0 && r == 0)
345 return 0;
346 if (l == 0 && r > -2)
347 return r;
348 if (l > -2 && r == 0)
349 return l;
350 if (l == 1 && r == 1)
351 return 1;
352 if (l == -1 && r == -1)
353 return -1;
355 l = gfc_dep_compare_expr (e1->value.op.op1, e2->value.op.op2);
356 r = gfc_dep_compare_expr (e1->value.op.op2, e2->value.op.op1);
357 if (l == 0 && r == 0)
358 return 0;
359 if (l == 0 && r > -2)
360 return r;
361 if (l > -2 && r == 0)
362 return l;
363 if (l == 1 && r == 1)
364 return 1;
365 if (l == -1 && r == -1)
366 return -1;
370 /* Compare X vs. X+C, for INTEGER only. */
371 if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_PLUS)
373 if (e2->value.op.op2->expr_type == EXPR_CONSTANT
374 && e2->value.op.op2->ts.type == BT_INTEGER
375 && gfc_dep_compare_expr (e1, e2->value.op.op1) == 0)
376 return -mpz_sgn (e2->value.op.op2->value.integer);
379 /* Compare X-C vs. X, for INTEGER only. */
380 if (e1->expr_type == EXPR_OP && e1->value.op.op == INTRINSIC_MINUS)
382 if (e1->value.op.op2->expr_type == EXPR_CONSTANT
383 && e1->value.op.op2->ts.type == BT_INTEGER
384 && gfc_dep_compare_expr (e1->value.op.op1, e2) == 0)
385 return -mpz_sgn (e1->value.op.op2->value.integer);
387 /* Compare P-Q vs. R-S. */
388 if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_MINUS)
390 int l, r;
392 l = gfc_dep_compare_expr (e1->value.op.op1, e2->value.op.op1);
393 r = gfc_dep_compare_expr (e1->value.op.op2, e2->value.op.op2);
394 if (l == 0 && r == 0)
395 return 0;
396 if (l > -2 && r == 0)
397 return l;
398 if (l == 0 && r > -2)
399 return -r;
400 if (l == 1 && r == -1)
401 return 1;
402 if (l == -1 && r == 1)
403 return -1;
407 /* Compare A // B vs. C // D. */
409 if (e1->expr_type == EXPR_OP && e1->value.op.op == INTRINSIC_CONCAT
410 && e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_CONCAT)
412 int l, r;
414 l = gfc_dep_compare_expr (e1->value.op.op1, e2->value.op.op1);
415 r = gfc_dep_compare_expr (e1->value.op.op2, e2->value.op.op2);
417 if (l != 0)
418 return l;
420 /* Left expressions of // compare equal, but
421 watch out for 'A ' // x vs. 'A' // x. */
422 gfc_expr *e1_left = e1->value.op.op1;
423 gfc_expr *e2_left = e2->value.op.op1;
425 if (e1_left->expr_type == EXPR_CONSTANT
426 && e2_left->expr_type == EXPR_CONSTANT
427 && e1_left->value.character.length
428 != e2_left->value.character.length)
429 return -2;
430 else
431 return r;
434 /* Compare X vs. X-C, for INTEGER only. */
435 if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_MINUS)
437 if (e2->value.op.op2->expr_type == EXPR_CONSTANT
438 && e2->value.op.op2->ts.type == BT_INTEGER
439 && gfc_dep_compare_expr (e1, e2->value.op.op1) == 0)
440 return mpz_sgn (e2->value.op.op2->value.integer);
443 if (e1->expr_type != e2->expr_type)
444 return -3;
446 switch (e1->expr_type)
448 case EXPR_CONSTANT:
449 /* Compare strings for equality. */
450 if (e1->ts.type == BT_CHARACTER && e2->ts.type == BT_CHARACTER)
451 return gfc_compare_string (e1, e2);
453 /* Compare REAL and COMPLEX constants. Because of the
454 traps and pitfalls associated with comparing
455 a + 1.0 with a + 0.5, check for equality only. */
456 if (e2->expr_type == EXPR_CONSTANT)
458 if (e1->ts.type == BT_REAL && e2->ts.type == BT_REAL)
460 if (mpfr_cmp (e1->value.real, e2->value.real) == 0)
461 return 0;
462 else
463 return -2;
465 else if (e1->ts.type == BT_COMPLEX && e2->ts.type == BT_COMPLEX)
467 if (mpc_cmp (e1->value.complex, e2->value.complex) == 0)
468 return 0;
469 else
470 return -2;
474 if (e1->ts.type != BT_INTEGER || e2->ts.type != BT_INTEGER)
475 return -2;
477 /* For INTEGER, all cases where e2 is not constant should have
478 been filtered out above. */
479 gcc_assert (e2->expr_type == EXPR_CONSTANT);
481 i = mpz_cmp (e1->value.integer, e2->value.integer);
482 if (i == 0)
483 return 0;
484 else if (i < 0)
485 return -1;
486 return 1;
488 case EXPR_VARIABLE:
489 if (are_identical_variables (e1, e2))
490 return 0;
491 else
492 return -3;
494 case EXPR_OP:
495 /* Intrinsic operators are the same if their operands are the same. */
496 if (e1->value.op.op != e2->value.op.op)
497 return -2;
498 if (e1->value.op.op2 == 0)
500 i = gfc_dep_compare_expr (e1->value.op.op1, e2->value.op.op1);
501 return i == 0 ? 0 : -2;
503 if (gfc_dep_compare_expr (e1->value.op.op1, e2->value.op.op1) == 0
504 && gfc_dep_compare_expr (e1->value.op.op2, e2->value.op.op2) == 0)
505 return 0;
506 else if (e1->value.op.op == INTRINSIC_TIMES
507 && gfc_dep_compare_expr (e1->value.op.op1, e2->value.op.op2) == 0
508 && gfc_dep_compare_expr (e1->value.op.op2, e2->value.op.op1) == 0)
509 /* Commutativity of multiplication; addition is handled above. */
510 return 0;
512 return -2;
514 case EXPR_FUNCTION:
515 return gfc_dep_compare_functions (e1, e2, false);
517 default:
518 return -2;
523 /* Return the difference between two expressions. Integer expressions of
524 the form
526 X + constant, X - constant and constant + X
528 are handled. Return true on success, false on failure. result is assumed
529 to be uninitialized on entry, and will be initialized on success.
532 bool
533 gfc_dep_difference (gfc_expr *e1, gfc_expr *e2, mpz_t *result)
535 gfc_expr *e1_op1, *e1_op2, *e2_op1, *e2_op2;
537 if (e1 == NULL || e2 == NULL)
538 return false;
540 if (e1->ts.type != BT_INTEGER || e2->ts.type != BT_INTEGER)
541 return false;
543 e1 = gfc_discard_nops (e1);
544 e2 = gfc_discard_nops (e2);
546 /* Initialize tentatively, clear if we don't return anything. */
547 mpz_init (*result);
549 /* Case 1: c1 - c2 = c1 - c2, trivially. */
551 if (e1->expr_type == EXPR_CONSTANT && e2->expr_type == EXPR_CONSTANT)
553 mpz_sub (*result, e1->value.integer, e2->value.integer);
554 return true;
557 if (e1->expr_type == EXPR_OP && e1->value.op.op == INTRINSIC_PLUS)
559 e1_op1 = gfc_discard_nops (e1->value.op.op1);
560 e1_op2 = gfc_discard_nops (e1->value.op.op2);
562 /* Case 2: (X + c1) - X = c1. */
563 if (e1_op2->expr_type == EXPR_CONSTANT
564 && gfc_dep_compare_expr (e1_op1, e2) == 0)
566 mpz_set (*result, e1_op2->value.integer);
567 return true;
570 /* Case 3: (c1 + X) - X = c1. */
571 if (e1_op1->expr_type == EXPR_CONSTANT
572 && gfc_dep_compare_expr (e1_op2, e2) == 0)
574 mpz_set (*result, e1_op1->value.integer);
575 return true;
578 if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_PLUS)
580 e2_op1 = gfc_discard_nops (e2->value.op.op1);
581 e2_op2 = gfc_discard_nops (e2->value.op.op2);
583 if (e1_op2->expr_type == EXPR_CONSTANT)
585 /* Case 4: X + c1 - (X + c2) = c1 - c2. */
586 if (e2_op2->expr_type == EXPR_CONSTANT
587 && gfc_dep_compare_expr (e1_op1, e2_op1) == 0)
589 mpz_sub (*result, e1_op2->value.integer,
590 e2_op2->value.integer);
591 return true;
593 /* Case 5: X + c1 - (c2 + X) = c1 - c2. */
594 if (e2_op1->expr_type == EXPR_CONSTANT
595 && gfc_dep_compare_expr (e1_op1, e2_op2) == 0)
597 mpz_sub (*result, e1_op2->value.integer,
598 e2_op1->value.integer);
599 return true;
602 else if (e1_op1->expr_type == EXPR_CONSTANT)
604 /* Case 6: c1 + X - (X + c2) = c1 - c2. */
605 if (e2_op2->expr_type == EXPR_CONSTANT
606 && gfc_dep_compare_expr (e1_op2, e2_op1) == 0)
608 mpz_sub (*result, e1_op1->value.integer,
609 e2_op2->value.integer);
610 return true;
612 /* Case 7: c1 + X - (c2 + X) = c1 - c2. */
613 if (e2_op1->expr_type == EXPR_CONSTANT
614 && gfc_dep_compare_expr (e1_op2, e2_op2) == 0)
616 mpz_sub (*result, e1_op1->value.integer,
617 e2_op1->value.integer);
618 return true;
623 if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_MINUS)
625 e2_op1 = gfc_discard_nops (e2->value.op.op1);
626 e2_op2 = gfc_discard_nops (e2->value.op.op2);
628 if (e1_op2->expr_type == EXPR_CONSTANT)
630 /* Case 8: X + c1 - (X - c2) = c1 + c2. */
631 if (e2_op2->expr_type == EXPR_CONSTANT
632 && gfc_dep_compare_expr (e1_op1, e2_op1) == 0)
634 mpz_add (*result, e1_op2->value.integer,
635 e2_op2->value.integer);
636 return true;
639 if (e1_op1->expr_type == EXPR_CONSTANT)
641 /* Case 9: c1 + X - (X - c2) = c1 + c2. */
642 if (e2_op2->expr_type == EXPR_CONSTANT
643 && gfc_dep_compare_expr (e1_op2, e2_op1) == 0)
645 mpz_add (*result, e1_op1->value.integer,
646 e2_op2->value.integer);
647 return true;
653 if (e1->expr_type == EXPR_OP && e1->value.op.op == INTRINSIC_MINUS)
655 e1_op1 = gfc_discard_nops (e1->value.op.op1);
656 e1_op2 = gfc_discard_nops (e1->value.op.op2);
658 if (e1_op2->expr_type == EXPR_CONSTANT)
660 /* Case 10: (X - c1) - X = -c1 */
662 if (gfc_dep_compare_expr (e1_op1, e2) == 0)
664 mpz_neg (*result, e1_op2->value.integer);
665 return true;
668 if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_PLUS)
670 e2_op1 = gfc_discard_nops (e2->value.op.op1);
671 e2_op2 = gfc_discard_nops (e2->value.op.op2);
673 /* Case 11: (X - c1) - (X + c2) = -( c1 + c2). */
674 if (e2_op2->expr_type == EXPR_CONSTANT
675 && gfc_dep_compare_expr (e1_op1, e2_op1) == 0)
677 mpz_add (*result, e1_op2->value.integer,
678 e2_op2->value.integer);
679 mpz_neg (*result, *result);
680 return true;
683 /* Case 12: X - c1 - (c2 + X) = - (c1 + c2). */
684 if (e2_op1->expr_type == EXPR_CONSTANT
685 && gfc_dep_compare_expr (e1_op1, e2_op2) == 0)
687 mpz_add (*result, e1_op2->value.integer,
688 e2_op1->value.integer);
689 mpz_neg (*result, *result);
690 return true;
694 if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_MINUS)
696 e2_op1 = gfc_discard_nops (e2->value.op.op1);
697 e2_op2 = gfc_discard_nops (e2->value.op.op2);
699 /* Case 13: (X - c1) - (X - c2) = c2 - c1. */
700 if (e2_op2->expr_type == EXPR_CONSTANT
701 && gfc_dep_compare_expr (e1_op1, e2_op1) == 0)
703 mpz_sub (*result, e2_op2->value.integer,
704 e1_op2->value.integer);
705 return true;
709 if (e1_op1->expr_type == EXPR_CONSTANT)
711 if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_MINUS)
713 e2_op1 = gfc_discard_nops (e2->value.op.op1);
714 e2_op2 = gfc_discard_nops (e2->value.op.op2);
716 /* Case 14: (c1 - X) - (c2 - X) == c1 - c2. */
717 if (gfc_dep_compare_expr (e1_op2, e2_op2) == 0)
719 mpz_sub (*result, e1_op1->value.integer,
720 e2_op1->value.integer);
721 return true;
728 if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_PLUS)
730 e2_op1 = gfc_discard_nops (e2->value.op.op1);
731 e2_op2 = gfc_discard_nops (e2->value.op.op2);
733 /* Case 15: X - (X + c2) = -c2. */
734 if (e2_op2->expr_type == EXPR_CONSTANT
735 && gfc_dep_compare_expr (e1, e2_op1) == 0)
737 mpz_neg (*result, e2_op2->value.integer);
738 return true;
740 /* Case 16: X - (c2 + X) = -c2. */
741 if (e2_op1->expr_type == EXPR_CONSTANT
742 && gfc_dep_compare_expr (e1, e2_op2) == 0)
744 mpz_neg (*result, e2_op1->value.integer);
745 return true;
749 if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_MINUS)
751 e2_op1 = gfc_discard_nops (e2->value.op.op1);
752 e2_op2 = gfc_discard_nops (e2->value.op.op2);
754 /* Case 17: X - (X - c2) = c2. */
755 if (e2_op2->expr_type == EXPR_CONSTANT
756 && gfc_dep_compare_expr (e1, e2_op1) == 0)
758 mpz_set (*result, e2_op2->value.integer);
759 return true;
763 if (gfc_dep_compare_expr (e1, e2) == 0)
765 /* Case 18: X - X = 0. */
766 mpz_set_si (*result, 0);
767 return true;
770 mpz_clear (*result);
771 return false;
774 /* Returns 1 if the two ranges are the same and 0 if they are not (or if the
775 results are indeterminate). 'n' is the dimension to compare. */
777 static int
778 is_same_range (gfc_array_ref *ar1, gfc_array_ref *ar2, int n)
780 gfc_expr *e1;
781 gfc_expr *e2;
782 int i;
784 /* TODO: More sophisticated range comparison. */
785 gcc_assert (ar1 && ar2);
787 gcc_assert (ar1->dimen_type[n] == ar2->dimen_type[n]);
789 e1 = ar1->stride[n];
790 e2 = ar2->stride[n];
791 /* Check for mismatching strides. A NULL stride means a stride of 1. */
792 if (e1 && !e2)
794 i = gfc_expr_is_one (e1, -1);
795 if (i == -1 || i == 0)
796 return 0;
798 else if (e2 && !e1)
800 i = gfc_expr_is_one (e2, -1);
801 if (i == -1 || i == 0)
802 return 0;
804 else if (e1 && e2)
806 i = gfc_dep_compare_expr (e1, e2);
807 if (i != 0)
808 return 0;
810 /* The strides match. */
812 /* Check the range start. */
813 e1 = ar1->start[n];
814 e2 = ar2->start[n];
815 if (e1 || e2)
817 /* Use the bound of the array if no bound is specified. */
818 if (ar1->as && !e1)
819 e1 = ar1->as->lower[n];
821 if (ar2->as && !e2)
822 e2 = ar2->as->lower[n];
824 /* Check we have values for both. */
825 if (!(e1 && e2))
826 return 0;
828 i = gfc_dep_compare_expr (e1, e2);
829 if (i != 0)
830 return 0;
833 /* Check the range end. */
834 e1 = ar1->end[n];
835 e2 = ar2->end[n];
836 if (e1 || e2)
838 /* Use the bound of the array if no bound is specified. */
839 if (ar1->as && !e1)
840 e1 = ar1->as->upper[n];
842 if (ar2->as && !e2)
843 e2 = ar2->as->upper[n];
845 /* Check we have values for both. */
846 if (!(e1 && e2))
847 return 0;
849 i = gfc_dep_compare_expr (e1, e2);
850 if (i != 0)
851 return 0;
854 return 1;
858 /* Some array-returning intrinsics can be implemented by reusing the
859 data from one of the array arguments. For example, TRANSPOSE does
860 not necessarily need to allocate new data: it can be implemented
861 by copying the original array's descriptor and simply swapping the
862 two dimension specifications.
864 If EXPR is a call to such an intrinsic, return the argument
865 whose data can be reused, otherwise return NULL. */
867 gfc_expr *
868 gfc_get_noncopying_intrinsic_argument (gfc_expr *expr)
870 if (expr->expr_type != EXPR_FUNCTION || !expr->value.function.isym)
871 return NULL;
873 switch (expr->value.function.isym->id)
875 case GFC_ISYM_TRANSPOSE:
876 return expr->value.function.actual->expr;
878 default:
879 return NULL;
884 /* Return true if the result of reference REF can only be constructed
885 using a temporary array. */
887 bool
888 gfc_ref_needs_temporary_p (gfc_ref *ref)
890 int n;
891 bool subarray_p;
893 subarray_p = false;
894 for (; ref; ref = ref->next)
895 switch (ref->type)
897 case REF_ARRAY:
898 /* Vector dimensions are generally not monotonic and must be
899 handled using a temporary. */
900 if (ref->u.ar.type == AR_SECTION)
901 for (n = 0; n < ref->u.ar.dimen; n++)
902 if (ref->u.ar.dimen_type[n] == DIMEN_VECTOR)
903 return true;
905 subarray_p = true;
906 break;
908 case REF_SUBSTRING:
909 /* Within an array reference, character substrings generally
910 need a temporary. Character array strides are expressed as
911 multiples of the element size (consistent with other array
912 types), not in characters. */
913 return subarray_p;
915 case REF_COMPONENT:
916 case REF_INQUIRY:
917 break;
920 return false;
924 static bool
925 gfc_is_data_pointer (gfc_expr *e)
927 gfc_ref *ref;
929 if (e->expr_type != EXPR_VARIABLE && e->expr_type != EXPR_FUNCTION)
930 return 0;
932 /* No subreference if it is a function */
933 gcc_assert (e->expr_type == EXPR_VARIABLE || !e->ref);
935 if (e->symtree->n.sym->attr.pointer)
936 return 1;
938 for (ref = e->ref; ref; ref = ref->next)
939 if (ref->type == REF_COMPONENT && ref->u.c.component->attr.pointer)
940 return 1;
942 return 0;
946 /* Return true if array variable VAR could be passed to the same function
947 as argument EXPR without interfering with EXPR. INTENT is the intent
948 of VAR.
950 This is considerably less conservative than other dependencies
951 because many function arguments will already be copied into a
952 temporary. */
954 static int
955 gfc_check_argument_var_dependency (gfc_expr *var, sym_intent intent,
956 gfc_expr *expr, gfc_dep_check elemental)
958 gfc_expr *arg;
960 gcc_assert (var->expr_type == EXPR_VARIABLE);
961 gcc_assert (var->rank > 0);
963 switch (expr->expr_type)
965 case EXPR_VARIABLE:
966 /* In case of elemental subroutines, there is no dependency
967 between two same-range array references. */
968 if (gfc_ref_needs_temporary_p (expr->ref)
969 || gfc_check_dependency (var, expr, elemental == NOT_ELEMENTAL))
971 if (elemental == ELEM_DONT_CHECK_VARIABLE)
973 /* Too many false positive with pointers. */
974 if (!gfc_is_data_pointer (var) && !gfc_is_data_pointer (expr))
976 /* Elemental procedures forbid unspecified intents,
977 and we don't check dependencies for INTENT_IN args. */
978 gcc_assert (intent == INTENT_OUT || intent == INTENT_INOUT);
980 /* We are told not to check dependencies.
981 We do it, however, and issue a warning in case we find one.
982 If a dependency is found in the case
983 elemental == ELEM_CHECK_VARIABLE, we will generate
984 a temporary, so we don't need to bother the user. */
986 if (var->expr_type == EXPR_VARIABLE
987 && expr->expr_type == EXPR_VARIABLE
988 && strcmp(var->symtree->name, expr->symtree->name) == 0)
989 gfc_warning (0, "INTENT(%s) actual argument at %L might "
990 "interfere with actual argument at %L.",
991 intent == INTENT_OUT ? "OUT" : "INOUT",
992 &var->where, &expr->where);
994 return 0;
996 else
997 return 1;
999 return 0;
1001 case EXPR_ARRAY:
1002 /* the scalarizer always generates a temporary for array constructors,
1003 so there is no dependency. */
1004 return 0;
1006 case EXPR_FUNCTION:
1007 if (intent != INTENT_IN)
1009 arg = gfc_get_noncopying_intrinsic_argument (expr);
1010 if (arg != NULL)
1011 return gfc_check_argument_var_dependency (var, intent, arg,
1012 NOT_ELEMENTAL);
1015 if (elemental != NOT_ELEMENTAL)
1017 if ((expr->value.function.esym
1018 && expr->value.function.esym->attr.elemental)
1019 || (expr->value.function.isym
1020 && expr->value.function.isym->elemental))
1021 return gfc_check_fncall_dependency (var, intent, NULL,
1022 expr->value.function.actual,
1023 ELEM_CHECK_VARIABLE);
1025 if (gfc_inline_intrinsic_function_p (expr))
1027 /* The TRANSPOSE case should have been caught in the
1028 noncopying intrinsic case above. */
1029 gcc_assert (expr->value.function.isym->id != GFC_ISYM_TRANSPOSE);
1031 return gfc_check_fncall_dependency (var, intent, NULL,
1032 expr->value.function.actual,
1033 ELEM_CHECK_VARIABLE);
1036 return 0;
1038 case EXPR_OP:
1039 /* In case of non-elemental procedures, there is no need to catch
1040 dependencies, as we will make a temporary anyway. */
1041 if (elemental)
1043 /* If the actual arg EXPR is an expression, we need to catch
1044 a dependency between variables in EXPR and VAR,
1045 an intent((IN)OUT) variable. */
1046 if (expr->value.op.op1
1047 && gfc_check_argument_var_dependency (var, intent,
1048 expr->value.op.op1,
1049 ELEM_CHECK_VARIABLE))
1050 return 1;
1051 else if (expr->value.op.op2
1052 && gfc_check_argument_var_dependency (var, intent,
1053 expr->value.op.op2,
1054 ELEM_CHECK_VARIABLE))
1055 return 1;
1057 return 0;
1059 default:
1060 return 0;
1065 /* Like gfc_check_argument_var_dependency, but extended to any
1066 array expression OTHER, not just variables. */
1068 static int
1069 gfc_check_argument_dependency (gfc_expr *other, sym_intent intent,
1070 gfc_expr *expr, gfc_dep_check elemental)
1072 switch (other->expr_type)
1074 case EXPR_VARIABLE:
1075 return gfc_check_argument_var_dependency (other, intent, expr, elemental);
1077 case EXPR_FUNCTION:
1078 other = gfc_get_noncopying_intrinsic_argument (other);
1079 if (other != NULL)
1080 return gfc_check_argument_dependency (other, INTENT_IN, expr,
1081 NOT_ELEMENTAL);
1083 return 0;
1085 default:
1086 return 0;
1091 /* Like gfc_check_argument_dependency, but check all the arguments in ACTUAL.
1092 FNSYM is the function being called, or NULL if not known. */
1094 bool
1095 gfc_check_fncall_dependency (gfc_expr *other, sym_intent intent,
1096 gfc_symbol *fnsym, gfc_actual_arglist *actual,
1097 gfc_dep_check elemental)
1099 gfc_formal_arglist *formal;
1100 gfc_expr *expr;
1102 formal = fnsym ? gfc_sym_get_dummy_args (fnsym) : NULL;
1103 for (; actual; actual = actual->next, formal = formal ? formal->next : NULL)
1105 expr = actual->expr;
1107 /* Skip args which are not present. */
1108 if (!expr)
1109 continue;
1111 /* Skip other itself. */
1112 if (expr == other)
1113 continue;
1115 /* Skip intent(in) arguments if OTHER itself is intent(in). */
1116 if (formal && intent == INTENT_IN
1117 && formal->sym->attr.intent == INTENT_IN)
1118 continue;
1120 if (gfc_check_argument_dependency (other, intent, expr, elemental))
1121 return 1;
1124 return 0;
1128 /* Return 1 if e1 and e2 are equivalenced arrays, either
1129 directly or indirectly; i.e., equivalence (a,b) for a and b
1130 or equivalence (a,c),(b,c). This function uses the equiv_
1131 lists, generated in trans-common(add_equivalences), that are
1132 guaranteed to pick up indirect equivalences. We explicitly
1133 check for overlap using the offset and length of the equivalence.
1134 This function is symmetric.
1135 TODO: This function only checks whether the full top-level
1136 symbols overlap. An improved implementation could inspect
1137 e1->ref and e2->ref to determine whether the actually accessed
1138 portions of these variables/arrays potentially overlap. */
1140 bool
1141 gfc_are_equivalenced_arrays (gfc_expr *e1, gfc_expr *e2)
1143 gfc_equiv_list *l;
1144 gfc_equiv_info *s, *fl1, *fl2;
1146 gcc_assert (e1->expr_type == EXPR_VARIABLE
1147 && e2->expr_type == EXPR_VARIABLE);
1149 if (!e1->symtree->n.sym->attr.in_equivalence
1150 || !e2->symtree->n.sym->attr.in_equivalence|| !e1->rank || !e2->rank)
1151 return 0;
1153 if (e1->symtree->n.sym->ns
1154 && e1->symtree->n.sym->ns != gfc_current_ns)
1155 l = e1->symtree->n.sym->ns->equiv_lists;
1156 else
1157 l = gfc_current_ns->equiv_lists;
1159 /* Go through the equiv_lists and return 1 if the variables
1160 e1 and e2 are members of the same group and satisfy the
1161 requirement on their relative offsets. */
1162 for (; l; l = l->next)
1164 fl1 = NULL;
1165 fl2 = NULL;
1166 for (s = l->equiv; s; s = s->next)
1168 if (s->sym == e1->symtree->n.sym)
1170 fl1 = s;
1171 if (fl2)
1172 break;
1174 if (s->sym == e2->symtree->n.sym)
1176 fl2 = s;
1177 if (fl1)
1178 break;
1182 if (s)
1184 /* Can these lengths be zero? */
1185 if (fl1->length <= 0 || fl2->length <= 0)
1186 return 1;
1187 /* These can't overlap if [f11,fl1+length] is before
1188 [fl2,fl2+length], or [fl2,fl2+length] is before
1189 [fl1,fl1+length], otherwise they do overlap. */
1190 if (fl1->offset + fl1->length > fl2->offset
1191 && fl2->offset + fl2->length > fl1->offset)
1192 return 1;
1195 return 0;
1199 /* Return true if there is no possibility of aliasing because of a type
1200 mismatch between all the possible pointer references and the
1201 potential target. Note that this function is asymmetric in the
1202 arguments and so must be called twice with the arguments exchanged. */
1204 static bool
1205 check_data_pointer_types (gfc_expr *expr1, gfc_expr *expr2)
1207 gfc_component *cm1;
1208 gfc_symbol *sym1;
1209 gfc_symbol *sym2;
1210 gfc_ref *ref1;
1211 bool seen_component_ref;
1213 if (expr1->expr_type != EXPR_VARIABLE
1214 || expr2->expr_type != EXPR_VARIABLE)
1215 return false;
1217 sym1 = expr1->symtree->n.sym;
1218 sym2 = expr2->symtree->n.sym;
1220 /* Keep it simple for now. */
1221 if (sym1->ts.type == BT_DERIVED && sym2->ts.type == BT_DERIVED)
1222 return false;
1224 if (sym1->attr.pointer)
1226 if (gfc_compare_types (&sym1->ts, &sym2->ts))
1227 return false;
1230 /* This is a conservative check on the components of the derived type
1231 if no component references have been seen. Since we will not dig
1232 into the components of derived type components, we play it safe by
1233 returning false. First we check the reference chain and then, if
1234 no component references have been seen, the components. */
1235 seen_component_ref = false;
1236 if (sym1->ts.type == BT_DERIVED)
1238 for (ref1 = expr1->ref; ref1; ref1 = ref1->next)
1240 if (ref1->type != REF_COMPONENT)
1241 continue;
1243 if (ref1->u.c.component->ts.type == BT_DERIVED)
1244 return false;
1246 if ((sym2->attr.pointer || ref1->u.c.component->attr.pointer)
1247 && gfc_compare_types (&ref1->u.c.component->ts, &sym2->ts))
1248 return false;
1250 seen_component_ref = true;
1254 if (sym1->ts.type == BT_DERIVED && !seen_component_ref)
1256 for (cm1 = sym1->ts.u.derived->components; cm1; cm1 = cm1->next)
1258 if (cm1->ts.type == BT_DERIVED)
1259 return false;
1261 if ((sym2->attr.pointer || cm1->attr.pointer)
1262 && gfc_compare_types (&cm1->ts, &sym2->ts))
1263 return false;
1267 return true;
1271 /* Return true if the statement body redefines the condition. Returns
1272 true if expr2 depends on expr1. expr1 should be a single term
1273 suitable for the lhs of an assignment. The IDENTICAL flag indicates
1274 whether array references to the same symbol with identical range
1275 references count as a dependency or not. Used for forall and where
1276 statements. Also used with functions returning arrays without a
1277 temporary. */
1280 gfc_check_dependency (gfc_expr *expr1, gfc_expr *expr2, bool identical)
1282 gfc_actual_arglist *actual;
1283 gfc_constructor *c;
1284 int n;
1286 /* -fcoarray=lib can end up here with expr1->expr_type set to EXPR_FUNCTION
1287 and a reference to _F.caf_get, so skip the assert. */
1288 if (expr1->expr_type == EXPR_FUNCTION
1289 && strcmp (expr1->value.function.name, "_F.caf_get") == 0)
1290 return 0;
1292 if (expr1->expr_type != EXPR_VARIABLE)
1293 gfc_internal_error ("gfc_check_dependency: expecting an EXPR_VARIABLE");
1295 /* Prevent NULL pointer dereference while recursively analyzing invalid
1296 expressions. */
1297 if (expr2 == NULL)
1298 return 0;
1300 switch (expr2->expr_type)
1302 case EXPR_OP:
1303 n = gfc_check_dependency (expr1, expr2->value.op.op1, identical);
1304 if (n)
1305 return n;
1306 if (expr2->value.op.op2)
1307 return gfc_check_dependency (expr1, expr2->value.op.op2, identical);
1308 return 0;
1310 case EXPR_VARIABLE:
1311 /* The interesting cases are when the symbols don't match. */
1312 if (expr1->symtree->n.sym != expr2->symtree->n.sym)
1314 symbol_attribute attr1, attr2;
1315 gfc_typespec *ts1 = &expr1->symtree->n.sym->ts;
1316 gfc_typespec *ts2 = &expr2->symtree->n.sym->ts;
1318 /* Return 1 if expr1 and expr2 are equivalenced arrays. */
1319 if (gfc_are_equivalenced_arrays (expr1, expr2))
1320 return 1;
1322 /* Symbols can only alias if they have the same type. */
1323 if (ts1->type != BT_UNKNOWN && ts2->type != BT_UNKNOWN
1324 && ts1->type != BT_DERIVED && ts2->type != BT_DERIVED)
1326 if (ts1->type != ts2->type || ts1->kind != ts2->kind)
1327 return 0;
1330 /* We have to also include target-target as ptr%comp is not a
1331 pointer but it still alias with "dt%comp" for "ptr => dt". As
1332 subcomponents and array access to pointers retains the target
1333 attribute, that's sufficient. */
1334 attr1 = gfc_expr_attr (expr1);
1335 attr2 = gfc_expr_attr (expr2);
1336 if ((attr1.pointer || attr1.target) && (attr2.pointer || attr2.target))
1338 if (check_data_pointer_types (expr1, expr2)
1339 && check_data_pointer_types (expr2, expr1))
1340 return 0;
1342 return 1;
1344 else
1346 gfc_symbol *sym1 = expr1->symtree->n.sym;
1347 gfc_symbol *sym2 = expr2->symtree->n.sym;
1348 if (sym1->attr.target && sym2->attr.target
1349 && ((sym1->attr.dummy && !sym1->attr.contiguous
1350 && (!sym1->attr.dimension
1351 || sym2->as->type == AS_ASSUMED_SHAPE))
1352 || (sym2->attr.dummy && !sym2->attr.contiguous
1353 && (!sym2->attr.dimension
1354 || sym2->as->type == AS_ASSUMED_SHAPE))))
1355 return 1;
1358 /* Otherwise distinct symbols have no dependencies. */
1359 return 0;
1362 /* Identical and disjoint ranges return 0,
1363 overlapping ranges return 1. */
1364 if (expr1->ref && expr2->ref)
1365 return gfc_dep_resolver (expr1->ref, expr2->ref, NULL, identical);
1367 return 1;
1369 case EXPR_FUNCTION:
1370 if (gfc_get_noncopying_intrinsic_argument (expr2) != NULL)
1371 identical = 1;
1373 /* Remember possible differences between elemental and
1374 transformational functions. All functions inside a FORALL
1375 will be pure. */
1376 for (actual = expr2->value.function.actual;
1377 actual; actual = actual->next)
1379 if (!actual->expr)
1380 continue;
1381 n = gfc_check_dependency (expr1, actual->expr, identical);
1382 if (n)
1383 return n;
1385 return 0;
1387 case EXPR_CONSTANT:
1388 case EXPR_NULL:
1389 return 0;
1391 case EXPR_ARRAY:
1392 /* Loop through the array constructor's elements. */
1393 for (c = gfc_constructor_first (expr2->value.constructor);
1394 c; c = gfc_constructor_next (c))
1396 /* If this is an iterator, assume the worst. */
1397 if (c->iterator)
1398 return 1;
1399 /* Avoid recursion in the common case. */
1400 if (c->expr->expr_type == EXPR_CONSTANT)
1401 continue;
1402 if (gfc_check_dependency (expr1, c->expr, 1))
1403 return 1;
1405 return 0;
1407 default:
1408 return 1;
1413 /* Determines overlapping for two array sections. */
1415 static gfc_dependency
1416 check_section_vs_section (gfc_array_ref *l_ar, gfc_array_ref *r_ar, int n)
1418 gfc_expr *l_start;
1419 gfc_expr *l_end;
1420 gfc_expr *l_stride;
1421 gfc_expr *l_lower;
1422 gfc_expr *l_upper;
1423 int l_dir;
1425 gfc_expr *r_start;
1426 gfc_expr *r_end;
1427 gfc_expr *r_stride;
1428 gfc_expr *r_lower;
1429 gfc_expr *r_upper;
1430 gfc_expr *one_expr;
1431 int r_dir;
1432 int stride_comparison;
1433 int start_comparison;
1434 mpz_t tmp;
1436 /* If they are the same range, return without more ado. */
1437 if (is_same_range (l_ar, r_ar, n))
1438 return GFC_DEP_EQUAL;
1440 l_start = l_ar->start[n];
1441 l_end = l_ar->end[n];
1442 l_stride = l_ar->stride[n];
1444 r_start = r_ar->start[n];
1445 r_end = r_ar->end[n];
1446 r_stride = r_ar->stride[n];
1448 /* If l_start is NULL take it from array specifier. */
1449 if (l_start == NULL && IS_ARRAY_EXPLICIT (l_ar->as))
1450 l_start = l_ar->as->lower[n];
1451 /* If l_end is NULL take it from array specifier. */
1452 if (l_end == NULL && IS_ARRAY_EXPLICIT (l_ar->as))
1453 l_end = l_ar->as->upper[n];
1455 /* If r_start is NULL take it from array specifier. */
1456 if (r_start == NULL && IS_ARRAY_EXPLICIT (r_ar->as))
1457 r_start = r_ar->as->lower[n];
1458 /* If r_end is NULL take it from array specifier. */
1459 if (r_end == NULL && IS_ARRAY_EXPLICIT (r_ar->as))
1460 r_end = r_ar->as->upper[n];
1462 /* Determine whether the l_stride is positive or negative. */
1463 if (!l_stride)
1464 l_dir = 1;
1465 else if (l_stride->expr_type == EXPR_CONSTANT
1466 && l_stride->ts.type == BT_INTEGER)
1467 l_dir = mpz_sgn (l_stride->value.integer);
1468 else if (l_start && l_end)
1469 l_dir = gfc_dep_compare_expr (l_end, l_start);
1470 else
1471 l_dir = -2;
1473 /* Determine whether the r_stride is positive or negative. */
1474 if (!r_stride)
1475 r_dir = 1;
1476 else if (r_stride->expr_type == EXPR_CONSTANT
1477 && r_stride->ts.type == BT_INTEGER)
1478 r_dir = mpz_sgn (r_stride->value.integer);
1479 else if (r_start && r_end)
1480 r_dir = gfc_dep_compare_expr (r_end, r_start);
1481 else
1482 r_dir = -2;
1484 /* The strides should never be zero. */
1485 if (l_dir == 0 || r_dir == 0)
1486 return GFC_DEP_OVERLAP;
1488 /* Determine the relationship between the strides. Set stride_comparison to
1489 -2 if the dependency cannot be determined
1490 -1 if l_stride < r_stride
1491 0 if l_stride == r_stride
1492 1 if l_stride > r_stride
1493 as determined by gfc_dep_compare_expr. */
1495 one_expr = gfc_get_int_expr (gfc_index_integer_kind, NULL, 1);
1497 stride_comparison = gfc_dep_compare_expr (l_stride ? l_stride : one_expr,
1498 r_stride ? r_stride : one_expr);
1500 if (l_start && r_start)
1501 start_comparison = gfc_dep_compare_expr (l_start, r_start);
1502 else
1503 start_comparison = -2;
1505 gfc_free_expr (one_expr);
1507 /* Determine LHS upper and lower bounds. */
1508 if (l_dir == 1)
1510 l_lower = l_start;
1511 l_upper = l_end;
1513 else if (l_dir == -1)
1515 l_lower = l_end;
1516 l_upper = l_start;
1518 else
1520 l_lower = NULL;
1521 l_upper = NULL;
1524 /* Determine RHS upper and lower bounds. */
1525 if (r_dir == 1)
1527 r_lower = r_start;
1528 r_upper = r_end;
1530 else if (r_dir == -1)
1532 r_lower = r_end;
1533 r_upper = r_start;
1535 else
1537 r_lower = NULL;
1538 r_upper = NULL;
1541 /* Check whether the ranges are disjoint. */
1542 if (l_upper && r_lower && gfc_dep_compare_expr (l_upper, r_lower) == -1)
1543 return GFC_DEP_NODEP;
1544 if (r_upper && l_lower && gfc_dep_compare_expr (r_upper, l_lower) == -1)
1545 return GFC_DEP_NODEP;
1547 /* Handle cases like x:y:1 vs. x:z:-1 as GFC_DEP_EQUAL. */
1548 if (l_start && r_start && gfc_dep_compare_expr (l_start, r_start) == 0)
1550 if (l_dir == 1 && r_dir == -1)
1551 return GFC_DEP_EQUAL;
1552 if (l_dir == -1 && r_dir == 1)
1553 return GFC_DEP_EQUAL;
1556 /* Handle cases like x:y:1 vs. z:y:-1 as GFC_DEP_EQUAL. */
1557 if (l_end && r_end && gfc_dep_compare_expr (l_end, r_end) == 0)
1559 if (l_dir == 1 && r_dir == -1)
1560 return GFC_DEP_EQUAL;
1561 if (l_dir == -1 && r_dir == 1)
1562 return GFC_DEP_EQUAL;
1565 /* Handle cases like x:y:2 vs. x+1:z:4 as GFC_DEP_NODEP.
1566 There is no dependency if the remainder of
1567 (l_start - r_start) / gcd(l_stride, r_stride) is
1568 nonzero.
1569 TODO:
1570 - Cases like a(1:4:2) = a(2:3) are still not handled.
1573 #define IS_CONSTANT_INTEGER(a) ((a) && ((a)->expr_type == EXPR_CONSTANT) \
1574 && (a)->ts.type == BT_INTEGER)
1576 if (IS_CONSTANT_INTEGER (l_stride) && IS_CONSTANT_INTEGER (r_stride)
1577 && gfc_dep_difference (l_start, r_start, &tmp))
1579 mpz_t gcd;
1580 int result;
1582 mpz_init (gcd);
1583 mpz_gcd (gcd, l_stride->value.integer, r_stride->value.integer);
1585 mpz_fdiv_r (tmp, tmp, gcd);
1586 result = mpz_cmp_si (tmp, 0L);
1588 mpz_clear (gcd);
1589 mpz_clear (tmp);
1591 if (result != 0)
1592 return GFC_DEP_NODEP;
1595 #undef IS_CONSTANT_INTEGER
1597 /* Check for forward dependencies x:y vs. x+1:z and x:y:z vs. x:y:z+1. */
1599 if (l_dir == 1 && r_dir == 1 &&
1600 (start_comparison == 0 || start_comparison == -1)
1601 && (stride_comparison == 0 || stride_comparison == -1))
1602 return GFC_DEP_FORWARD;
1604 /* Check for forward dependencies x:y:-1 vs. x-1:z:-1 and
1605 x:y:-1 vs. x:y:-2. */
1606 if (l_dir == -1 && r_dir == -1 &&
1607 (start_comparison == 0 || start_comparison == 1)
1608 && (stride_comparison == 0 || stride_comparison == 1))
1609 return GFC_DEP_FORWARD;
1611 if (stride_comparison == 0 || stride_comparison == -1)
1613 if (l_start && IS_ARRAY_EXPLICIT (l_ar->as))
1616 /* Check for a(low:y:s) vs. a(z:x:s) or
1617 a(low:y:s) vs. a(z:x:s+1) where a has a lower bound
1618 of low, which is always at least a forward dependence. */
1620 if (r_dir == 1
1621 && gfc_dep_compare_expr (l_start, l_ar->as->lower[n]) == 0)
1622 return GFC_DEP_FORWARD;
1626 if (stride_comparison == 0 || stride_comparison == 1)
1628 if (l_start && IS_ARRAY_EXPLICIT (l_ar->as))
1631 /* Check for a(high:y:-s) vs. a(z:x:-s) or
1632 a(high:y:-s vs. a(z:x:-s-1) where a has a higher bound
1633 of high, which is always at least a forward dependence. */
1635 if (r_dir == -1
1636 && gfc_dep_compare_expr (l_start, l_ar->as->upper[n]) == 0)
1637 return GFC_DEP_FORWARD;
1642 if (stride_comparison == 0)
1644 /* From here, check for backwards dependencies. */
1645 /* x+1:y vs. x:z. */
1646 if (l_dir == 1 && r_dir == 1 && start_comparison == 1)
1647 return GFC_DEP_BACKWARD;
1649 /* x-1:y:-1 vs. x:z:-1. */
1650 if (l_dir == -1 && r_dir == -1 && start_comparison == -1)
1651 return GFC_DEP_BACKWARD;
1654 return GFC_DEP_OVERLAP;
1658 /* Determines overlapping for a single element and a section. */
1660 static gfc_dependency
1661 gfc_check_element_vs_section( gfc_ref *lref, gfc_ref *rref, int n)
1663 gfc_array_ref *ref;
1664 gfc_expr *elem;
1665 gfc_expr *start;
1666 gfc_expr *end;
1667 gfc_expr *stride;
1668 int s;
1670 elem = lref->u.ar.start[n];
1671 if (!elem)
1672 return GFC_DEP_OVERLAP;
1674 ref = &rref->u.ar;
1675 start = ref->start[n] ;
1676 end = ref->end[n] ;
1677 stride = ref->stride[n];
1679 if (!start && IS_ARRAY_EXPLICIT (ref->as))
1680 start = ref->as->lower[n];
1681 if (!end && IS_ARRAY_EXPLICIT (ref->as))
1682 end = ref->as->upper[n];
1684 /* Determine whether the stride is positive or negative. */
1685 if (!stride)
1686 s = 1;
1687 else if (stride->expr_type == EXPR_CONSTANT
1688 && stride->ts.type == BT_INTEGER)
1689 s = mpz_sgn (stride->value.integer);
1690 else
1691 s = -2;
1693 /* Stride should never be zero. */
1694 if (s == 0)
1695 return GFC_DEP_OVERLAP;
1697 /* Positive strides. */
1698 if (s == 1)
1700 /* Check for elem < lower. */
1701 if (start && gfc_dep_compare_expr (elem, start) == -1)
1702 return GFC_DEP_NODEP;
1703 /* Check for elem > upper. */
1704 if (end && gfc_dep_compare_expr (elem, end) == 1)
1705 return GFC_DEP_NODEP;
1707 if (start && end)
1709 s = gfc_dep_compare_expr (start, end);
1710 /* Check for an empty range. */
1711 if (s == 1)
1712 return GFC_DEP_NODEP;
1713 if (s == 0 && gfc_dep_compare_expr (elem, start) == 0)
1714 return GFC_DEP_EQUAL;
1717 /* Negative strides. */
1718 else if (s == -1)
1720 /* Check for elem > upper. */
1721 if (end && gfc_dep_compare_expr (elem, start) == 1)
1722 return GFC_DEP_NODEP;
1723 /* Check for elem < lower. */
1724 if (start && gfc_dep_compare_expr (elem, end) == -1)
1725 return GFC_DEP_NODEP;
1727 if (start && end)
1729 s = gfc_dep_compare_expr (start, end);
1730 /* Check for an empty range. */
1731 if (s == -1)
1732 return GFC_DEP_NODEP;
1733 if (s == 0 && gfc_dep_compare_expr (elem, start) == 0)
1734 return GFC_DEP_EQUAL;
1737 /* Unknown strides. */
1738 else
1740 if (!start || !end)
1741 return GFC_DEP_OVERLAP;
1742 s = gfc_dep_compare_expr (start, end);
1743 if (s <= -2)
1744 return GFC_DEP_OVERLAP;
1745 /* Assume positive stride. */
1746 if (s == -1)
1748 /* Check for elem < lower. */
1749 if (gfc_dep_compare_expr (elem, start) == -1)
1750 return GFC_DEP_NODEP;
1751 /* Check for elem > upper. */
1752 if (gfc_dep_compare_expr (elem, end) == 1)
1753 return GFC_DEP_NODEP;
1755 /* Assume negative stride. */
1756 else if (s == 1)
1758 /* Check for elem > upper. */
1759 if (gfc_dep_compare_expr (elem, start) == 1)
1760 return GFC_DEP_NODEP;
1761 /* Check for elem < lower. */
1762 if (gfc_dep_compare_expr (elem, end) == -1)
1763 return GFC_DEP_NODEP;
1765 /* Equal bounds. */
1766 else if (s == 0)
1768 s = gfc_dep_compare_expr (elem, start);
1769 if (s == 0)
1770 return GFC_DEP_EQUAL;
1771 if (s == 1 || s == -1)
1772 return GFC_DEP_NODEP;
1776 return GFC_DEP_OVERLAP;
1780 /* Traverse expr, checking all EXPR_VARIABLE symbols for their
1781 forall_index attribute. Return true if any variable may be
1782 being used as a FORALL index. Its safe to pessimistically
1783 return true, and assume a dependency. */
1785 static bool
1786 contains_forall_index_p (gfc_expr *expr)
1788 gfc_actual_arglist *arg;
1789 gfc_constructor *c;
1790 gfc_ref *ref;
1791 int i;
1793 if (!expr)
1794 return false;
1796 switch (expr->expr_type)
1798 case EXPR_VARIABLE:
1799 if (expr->symtree->n.sym->forall_index)
1800 return true;
1801 break;
1803 case EXPR_OP:
1804 if (contains_forall_index_p (expr->value.op.op1)
1805 || contains_forall_index_p (expr->value.op.op2))
1806 return true;
1807 break;
1809 case EXPR_FUNCTION:
1810 for (arg = expr->value.function.actual; arg; arg = arg->next)
1811 if (contains_forall_index_p (arg->expr))
1812 return true;
1813 break;
1815 case EXPR_CONSTANT:
1816 case EXPR_NULL:
1817 case EXPR_SUBSTRING:
1818 break;
1820 case EXPR_STRUCTURE:
1821 case EXPR_ARRAY:
1822 for (c = gfc_constructor_first (expr->value.constructor);
1823 c; gfc_constructor_next (c))
1824 if (contains_forall_index_p (c->expr))
1825 return true;
1826 break;
1828 default:
1829 gcc_unreachable ();
1832 for (ref = expr->ref; ref; ref = ref->next)
1833 switch (ref->type)
1835 case REF_ARRAY:
1836 for (i = 0; i < ref->u.ar.dimen; i++)
1837 if (contains_forall_index_p (ref->u.ar.start[i])
1838 || contains_forall_index_p (ref->u.ar.end[i])
1839 || contains_forall_index_p (ref->u.ar.stride[i]))
1840 return true;
1841 break;
1843 case REF_COMPONENT:
1844 break;
1846 case REF_SUBSTRING:
1847 if (contains_forall_index_p (ref->u.ss.start)
1848 || contains_forall_index_p (ref->u.ss.end))
1849 return true;
1850 break;
1852 default:
1853 gcc_unreachable ();
1856 return false;
1859 /* Determines overlapping for two single element array references. */
1861 static gfc_dependency
1862 gfc_check_element_vs_element (gfc_ref *lref, gfc_ref *rref, int n)
1864 gfc_array_ref l_ar;
1865 gfc_array_ref r_ar;
1866 gfc_expr *l_start;
1867 gfc_expr *r_start;
1868 int i;
1870 l_ar = lref->u.ar;
1871 r_ar = rref->u.ar;
1872 l_start = l_ar.start[n] ;
1873 r_start = r_ar.start[n] ;
1874 i = gfc_dep_compare_expr (r_start, l_start);
1875 if (i == 0)
1876 return GFC_DEP_EQUAL;
1878 /* Treat two scalar variables as potentially equal. This allows
1879 us to prove that a(i,:) and a(j,:) have no dependency. See
1880 Gerald Roth, "Evaluation of Array Syntax Dependence Analysis",
1881 Proceedings of the International Conference on Parallel and
1882 Distributed Processing Techniques and Applications (PDPTA2001),
1883 Las Vegas, Nevada, June 2001. */
1884 /* However, we need to be careful when either scalar expression
1885 contains a FORALL index, as these can potentially change value
1886 during the scalarization/traversal of this array reference. */
1887 if (contains_forall_index_p (r_start) || contains_forall_index_p (l_start))
1888 return GFC_DEP_OVERLAP;
1890 if (i > -2)
1891 return GFC_DEP_NODEP;
1893 return GFC_DEP_EQUAL;
1896 /* Callback function for checking if an expression depends on a
1897 dummy variable which is any other than INTENT(IN). */
1899 static int
1900 callback_dummy_intent_not_in (gfc_expr **ep,
1901 int *walk_subtrees ATTRIBUTE_UNUSED,
1902 void *data ATTRIBUTE_UNUSED)
1904 gfc_expr *e = *ep;
1906 if (e->expr_type == EXPR_VARIABLE && e->symtree
1907 && e->symtree->n.sym->attr.dummy)
1908 return e->symtree->n.sym->attr.intent != INTENT_IN;
1909 else
1910 return 0;
1913 /* Auxiliary function to check if subexpressions have dummy variables which
1914 are not intent(in).
1917 static bool
1918 dummy_intent_not_in (gfc_expr **ep)
1920 return gfc_expr_walker (ep, callback_dummy_intent_not_in, NULL);
1923 /* Determine if an array ref, usually an array section specifies the
1924 entire array. In addition, if the second, pointer argument is
1925 provided, the function will return true if the reference is
1926 contiguous; eg. (:, 1) gives true but (1,:) gives false.
1927 If one of the bounds depends on a dummy variable which is
1928 not INTENT(IN), also return false, because the user may
1929 have changed the variable. */
1931 bool
1932 gfc_full_array_ref_p (gfc_ref *ref, bool *contiguous)
1934 int i;
1935 int n;
1936 bool lbound_OK = true;
1937 bool ubound_OK = true;
1939 if (contiguous)
1940 *contiguous = false;
1942 if (ref->type != REF_ARRAY)
1943 return false;
1945 if (ref->u.ar.type == AR_FULL)
1947 if (contiguous)
1948 *contiguous = true;
1949 return true;
1952 if (ref->u.ar.type != AR_SECTION)
1953 return false;
1954 if (ref->next)
1955 return false;
1957 for (i = 0; i < ref->u.ar.dimen; i++)
1959 /* If we have a single element in the reference, for the reference
1960 to be full, we need to ascertain that the array has a single
1961 element in this dimension and that we actually reference the
1962 correct element. */
1963 if (ref->u.ar.dimen_type[i] == DIMEN_ELEMENT)
1965 /* This is unconditionally a contiguous reference if all the
1966 remaining dimensions are elements. */
1967 if (contiguous)
1969 *contiguous = true;
1970 for (n = i + 1; n < ref->u.ar.dimen; n++)
1971 if (ref->u.ar.dimen_type[n] != DIMEN_ELEMENT)
1972 *contiguous = false;
1975 if (!ref->u.ar.as
1976 || !ref->u.ar.as->lower[i]
1977 || !ref->u.ar.as->upper[i]
1978 || gfc_dep_compare_expr (ref->u.ar.as->lower[i],
1979 ref->u.ar.as->upper[i])
1980 || !ref->u.ar.start[i]
1981 || gfc_dep_compare_expr (ref->u.ar.start[i],
1982 ref->u.ar.as->lower[i]))
1983 return false;
1984 else
1985 continue;
1988 /* Check the lower bound. */
1989 if (ref->u.ar.start[i]
1990 && (!ref->u.ar.as
1991 || !ref->u.ar.as->lower[i]
1992 || gfc_dep_compare_expr (ref->u.ar.start[i],
1993 ref->u.ar.as->lower[i])
1994 || dummy_intent_not_in (&ref->u.ar.start[i])))
1995 lbound_OK = false;
1996 /* Check the upper bound. */
1997 if (ref->u.ar.end[i]
1998 && (!ref->u.ar.as
1999 || !ref->u.ar.as->upper[i]
2000 || gfc_dep_compare_expr (ref->u.ar.end[i],
2001 ref->u.ar.as->upper[i])
2002 || dummy_intent_not_in (&ref->u.ar.end[i])))
2003 ubound_OK = false;
2004 /* Check the stride. */
2005 if (ref->u.ar.stride[i]
2006 && !gfc_expr_is_one (ref->u.ar.stride[i], 0))
2007 return false;
2009 /* This is unconditionally a contiguous reference as long as all
2010 the subsequent dimensions are elements. */
2011 if (contiguous)
2013 *contiguous = true;
2014 for (n = i + 1; n < ref->u.ar.dimen; n++)
2015 if (ref->u.ar.dimen_type[n] != DIMEN_ELEMENT)
2016 *contiguous = false;
2019 if (!lbound_OK || !ubound_OK)
2020 return false;
2022 return true;
2026 /* Determine if a full array is the same as an array section with one
2027 variable limit. For this to be so, the strides must both be unity
2028 and one of either start == lower or end == upper must be true. */
2030 static bool
2031 ref_same_as_full_array (gfc_ref *full_ref, gfc_ref *ref)
2033 int i;
2034 bool upper_or_lower;
2036 if (full_ref->type != REF_ARRAY)
2037 return false;
2038 if (full_ref->u.ar.type != AR_FULL)
2039 return false;
2040 if (ref->type != REF_ARRAY)
2041 return false;
2042 if (ref->u.ar.type == AR_FULL)
2043 return true;
2044 if (ref->u.ar.type != AR_SECTION)
2045 return false;
2047 for (i = 0; i < ref->u.ar.dimen; i++)
2049 /* If we have a single element in the reference, we need to check
2050 that the array has a single element and that we actually reference
2051 the correct element. */
2052 if (ref->u.ar.dimen_type[i] == DIMEN_ELEMENT)
2054 if (!full_ref->u.ar.as
2055 || !full_ref->u.ar.as->lower[i]
2056 || !full_ref->u.ar.as->upper[i]
2057 || gfc_dep_compare_expr (full_ref->u.ar.as->lower[i],
2058 full_ref->u.ar.as->upper[i])
2059 || !ref->u.ar.start[i]
2060 || gfc_dep_compare_expr (ref->u.ar.start[i],
2061 full_ref->u.ar.as->lower[i]))
2062 return false;
2065 /* Check the strides. */
2066 if (full_ref->u.ar.stride[i] && !gfc_expr_is_one (full_ref->u.ar.stride[i], 0))
2067 return false;
2068 if (ref->u.ar.stride[i] && !gfc_expr_is_one (ref->u.ar.stride[i], 0))
2069 return false;
2071 upper_or_lower = false;
2072 /* Check the lower bound. */
2073 if (ref->u.ar.start[i]
2074 && (ref->u.ar.as
2075 && full_ref->u.ar.as->lower[i]
2076 && gfc_dep_compare_expr (ref->u.ar.start[i],
2077 full_ref->u.ar.as->lower[i]) == 0))
2078 upper_or_lower = true;
2079 /* Check the upper bound. */
2080 if (ref->u.ar.end[i]
2081 && (ref->u.ar.as
2082 && full_ref->u.ar.as->upper[i]
2083 && gfc_dep_compare_expr (ref->u.ar.end[i],
2084 full_ref->u.ar.as->upper[i]) == 0))
2085 upper_or_lower = true;
2086 if (!upper_or_lower)
2087 return false;
2089 return true;
2093 /* Finds if two array references are overlapping or not.
2094 Return value
2095 1 : array references are overlapping, or identical is true and
2096 there is some kind of overlap.
2097 0 : array references are identical or not overlapping. */
2099 bool
2100 gfc_dep_resolver (gfc_ref *lref, gfc_ref *rref, gfc_reverse *reverse,
2101 bool identical)
2103 int n;
2104 int m;
2105 gfc_dependency fin_dep;
2106 gfc_dependency this_dep;
2107 bool same_component = false;
2109 this_dep = GFC_DEP_ERROR;
2110 fin_dep = GFC_DEP_ERROR;
2111 /* Dependencies due to pointers should already have been identified.
2112 We only need to check for overlapping array references. */
2114 while (lref && rref)
2116 /* The refs might come in mixed, one with a _data component and one
2117 without. Look at their next reference in order to avoid an
2118 ICE. */
2120 if (lref && lref->type == REF_COMPONENT && lref->u.c.component
2121 && strcmp (lref->u.c.component->name, "_data") == 0)
2122 lref = lref->next;
2124 if (rref && rref->type == REF_COMPONENT && rref->u.c.component
2125 && strcmp (rref->u.c.component->name, "_data") == 0)
2126 rref = rref->next;
2128 /* We're resolving from the same base symbol, so both refs should be
2129 the same type. We traverse the reference chain until we find ranges
2130 that are not equal. */
2131 gcc_assert (lref->type == rref->type);
2132 switch (lref->type)
2134 case REF_COMPONENT:
2135 /* The two ranges can't overlap if they are from different
2136 components. */
2137 if (lref->u.c.component != rref->u.c.component)
2138 return 0;
2140 same_component = true;
2141 break;
2143 case REF_SUBSTRING:
2144 /* Substring overlaps are handled by the string assignment code
2145 if there is not an underlying dependency. */
2146 return (fin_dep == GFC_DEP_OVERLAP) ? 1 : 0;
2148 case REF_ARRAY:
2149 /* Coarrays: If there is a coindex, either the image differs and there
2150 is no overlap or the image is the same - then the normal analysis
2151 applies. Hence, return early if either ref is coindexed and more
2152 than one image can exist. */
2153 if (flag_coarray != GFC_FCOARRAY_SINGLE
2154 && ((lref->u.ar.codimen
2155 && lref->u.ar.dimen_type[lref->u.ar.dimen]
2156 != DIMEN_THIS_IMAGE)
2157 || (rref->u.ar.codimen
2158 && lref->u.ar.dimen_type[lref->u.ar.dimen]
2159 != DIMEN_THIS_IMAGE)))
2160 return 1;
2161 if (lref->u.ar.dimen == 0 || rref->u.ar.dimen == 0)
2163 /* Coindexed scalar coarray with GFC_FCOARRAY_SINGLE. */
2164 if (lref->u.ar.dimen || rref->u.ar.dimen)
2165 return 1; /* Just to be sure. */
2166 fin_dep = GFC_DEP_EQUAL;
2167 break;
2170 if (ref_same_as_full_array (lref, rref))
2171 return identical;
2173 if (ref_same_as_full_array (rref, lref))
2174 return identical;
2176 if (lref->u.ar.dimen != rref->u.ar.dimen)
2178 if (lref->u.ar.type == AR_FULL)
2179 fin_dep = gfc_full_array_ref_p (rref, NULL) ? GFC_DEP_EQUAL
2180 : GFC_DEP_OVERLAP;
2181 else if (rref->u.ar.type == AR_FULL)
2182 fin_dep = gfc_full_array_ref_p (lref, NULL) ? GFC_DEP_EQUAL
2183 : GFC_DEP_OVERLAP;
2184 else
2185 return 1;
2186 break;
2189 /* Index for the reverse array. */
2190 m = -1;
2191 for (n = 0; n < lref->u.ar.dimen; n++)
2193 /* Handle dependency when either of array reference is vector
2194 subscript. There is no dependency if the vector indices
2195 are equal or if indices are known to be different in a
2196 different dimension. */
2197 if (lref->u.ar.dimen_type[n] == DIMEN_VECTOR
2198 || rref->u.ar.dimen_type[n] == DIMEN_VECTOR)
2200 if (lref->u.ar.dimen_type[n] == DIMEN_VECTOR
2201 && rref->u.ar.dimen_type[n] == DIMEN_VECTOR
2202 && gfc_dep_compare_expr (lref->u.ar.start[n],
2203 rref->u.ar.start[n]) == 0)
2204 this_dep = GFC_DEP_EQUAL;
2205 else
2206 this_dep = GFC_DEP_OVERLAP;
2208 goto update_fin_dep;
2211 if (lref->u.ar.dimen_type[n] == DIMEN_RANGE
2212 && rref->u.ar.dimen_type[n] == DIMEN_RANGE)
2213 this_dep = check_section_vs_section (&lref->u.ar,
2214 &rref->u.ar, n);
2215 else if (lref->u.ar.dimen_type[n] == DIMEN_ELEMENT
2216 && rref->u.ar.dimen_type[n] == DIMEN_RANGE)
2217 this_dep = gfc_check_element_vs_section (lref, rref, n);
2218 else if (rref->u.ar.dimen_type[n] == DIMEN_ELEMENT
2219 && lref->u.ar.dimen_type[n] == DIMEN_RANGE)
2220 this_dep = gfc_check_element_vs_section (rref, lref, n);
2221 else
2223 gcc_assert (rref->u.ar.dimen_type[n] == DIMEN_ELEMENT
2224 && lref->u.ar.dimen_type[n] == DIMEN_ELEMENT);
2225 this_dep = gfc_check_element_vs_element (rref, lref, n);
2226 if (identical && this_dep == GFC_DEP_EQUAL)
2227 this_dep = GFC_DEP_OVERLAP;
2230 /* If any dimension doesn't overlap, we have no dependency. */
2231 if (this_dep == GFC_DEP_NODEP)
2232 return 0;
2234 /* Now deal with the loop reversal logic: This only works on
2235 ranges and is activated by setting
2236 reverse[n] == GFC_ENABLE_REVERSE
2237 The ability to reverse or not is set by previous conditions
2238 in this dimension. If reversal is not activated, the
2239 value GFC_DEP_BACKWARD is reset to GFC_DEP_OVERLAP. */
2241 /* Get the indexing right for the scalarizing loop. If this
2242 is an element, there is no corresponding loop. */
2243 if (lref->u.ar.dimen_type[n] != DIMEN_ELEMENT)
2244 m++;
2246 if (rref->u.ar.dimen_type[n] == DIMEN_RANGE
2247 && lref->u.ar.dimen_type[n] == DIMEN_RANGE)
2249 if (reverse)
2251 /* Reverse if backward dependence and not inhibited. */
2252 if (reverse[m] == GFC_ENABLE_REVERSE
2253 && this_dep == GFC_DEP_BACKWARD)
2254 reverse[m] = GFC_REVERSE_SET;
2256 /* Forward if forward dependence and not inhibited. */
2257 if (reverse[m] == GFC_ENABLE_REVERSE
2258 && this_dep == GFC_DEP_FORWARD)
2259 reverse[m] = GFC_FORWARD_SET;
2261 /* Flag up overlap if dependence not compatible with
2262 the overall state of the expression. */
2263 if (reverse[m] == GFC_REVERSE_SET
2264 && this_dep == GFC_DEP_FORWARD)
2266 reverse[m] = GFC_INHIBIT_REVERSE;
2267 this_dep = GFC_DEP_OVERLAP;
2269 else if (reverse[m] == GFC_FORWARD_SET
2270 && this_dep == GFC_DEP_BACKWARD)
2272 reverse[m] = GFC_INHIBIT_REVERSE;
2273 this_dep = GFC_DEP_OVERLAP;
2277 /* If no intention of reversing or reversing is explicitly
2278 inhibited, convert backward dependence to overlap. */
2279 if ((!reverse && this_dep == GFC_DEP_BACKWARD)
2280 || (reverse && reverse[m] == GFC_INHIBIT_REVERSE))
2281 this_dep = GFC_DEP_OVERLAP;
2284 /* Overlap codes are in order of priority. We only need to
2285 know the worst one.*/
2287 update_fin_dep:
2288 if (identical && this_dep == GFC_DEP_EQUAL)
2289 this_dep = GFC_DEP_OVERLAP;
2291 if (this_dep > fin_dep)
2292 fin_dep = this_dep;
2295 /* If this is an equal element, we have to keep going until we find
2296 the "real" array reference. */
2297 if (lref->u.ar.type == AR_ELEMENT
2298 && rref->u.ar.type == AR_ELEMENT
2299 && fin_dep == GFC_DEP_EQUAL)
2300 break;
2302 /* Exactly matching and forward overlapping ranges don't cause a
2303 dependency. */
2304 if (fin_dep < GFC_DEP_BACKWARD && !identical)
2305 return 0;
2307 /* Keep checking. We only have a dependency if
2308 subsequent references also overlap. */
2309 break;
2311 case REF_INQUIRY:
2312 if (lref->u.i != rref->u.i)
2313 return 0;
2315 break;
2317 default:
2318 gcc_unreachable ();
2320 lref = lref->next;
2321 rref = rref->next;
2324 /* Assume the worst if we nest to different depths. */
2325 if (lref || rref)
2326 return 1;
2328 /* This can result from concatenation of assumed length string components. */
2329 if (same_component && fin_dep == GFC_DEP_ERROR)
2330 return 1;
2332 /* If we haven't seen any array refs then something went wrong. */
2333 gcc_assert (fin_dep != GFC_DEP_ERROR);
2335 if (identical && fin_dep != GFC_DEP_NODEP)
2336 return 1;
2338 return fin_dep == GFC_DEP_OVERLAP;
2341 /* Check if two refs are equal, for the purposes of checking if one might be
2342 the base of the other for OpenMP (target directives). Derived from
2343 gfc_dep_resolver. This function is stricter, e.g. indices arr(i) and
2344 arr(j) compare as non-equal. */
2346 bool
2347 gfc_omp_expr_prefix_same (gfc_expr *lexpr, gfc_expr *rexpr)
2349 gfc_ref *lref, *rref;
2351 if (lexpr->symtree && rexpr->symtree)
2353 /* See are_identical_variables above. */
2354 if (lexpr->symtree->n.sym->attr.dummy
2355 && rexpr->symtree->n.sym->attr.dummy)
2357 /* Dummy arguments: Only check for equal names. */
2358 if (lexpr->symtree->n.sym->name != rexpr->symtree->n.sym->name)
2359 return false;
2361 else
2363 if (lexpr->symtree->n.sym != rexpr->symtree->n.sym)
2364 return false;
2367 else if (lexpr->base_expr && rexpr->base_expr)
2369 if (gfc_dep_compare_expr (lexpr->base_expr, rexpr->base_expr) != 0)
2370 return false;
2372 else
2373 return false;
2375 lref = lexpr->ref;
2376 rref = rexpr->ref;
2378 while (lref && rref)
2380 gfc_dependency fin_dep = GFC_DEP_EQUAL;
2382 if (lref && lref->type == REF_COMPONENT && lref->u.c.component
2383 && strcmp (lref->u.c.component->name, "_data") == 0)
2384 lref = lref->next;
2386 if (rref && rref->type == REF_COMPONENT && rref->u.c.component
2387 && strcmp (rref->u.c.component->name, "_data") == 0)
2388 rref = rref->next;
2390 gcc_assert (lref->type == rref->type);
2392 switch (lref->type)
2394 case REF_COMPONENT:
2395 if (lref->u.c.component != rref->u.c.component)
2396 return false;
2397 break;
2399 case REF_ARRAY:
2400 if (ref_same_as_full_array (lref, rref))
2401 break;
2402 if (ref_same_as_full_array (rref, lref))
2403 break;
2405 if (lref->u.ar.dimen != rref->u.ar.dimen)
2407 if (lref->u.ar.type == AR_FULL
2408 && gfc_full_array_ref_p (rref, NULL))
2409 break;
2410 if (rref->u.ar.type == AR_FULL
2411 && gfc_full_array_ref_p (lref, NULL))
2412 break;
2413 return false;
2416 for (int n = 0; n < lref->u.ar.dimen; n++)
2418 if (lref->u.ar.dimen_type[n] == DIMEN_VECTOR
2419 && rref->u.ar.dimen_type[n] == DIMEN_VECTOR
2420 && gfc_dep_compare_expr (lref->u.ar.start[n],
2421 rref->u.ar.start[n]) == 0)
2422 continue;
2423 if (lref->u.ar.dimen_type[n] == DIMEN_RANGE
2424 && rref->u.ar.dimen_type[n] == DIMEN_RANGE)
2425 fin_dep = check_section_vs_section (&lref->u.ar, &rref->u.ar,
2427 else if (lref->u.ar.dimen_type[n] == DIMEN_ELEMENT
2428 && rref->u.ar.dimen_type[n] == DIMEN_RANGE)
2429 fin_dep = gfc_check_element_vs_section (lref, rref, n);
2430 else if (rref->u.ar.dimen_type[n] == DIMEN_ELEMENT
2431 && lref->u.ar.dimen_type[n] == DIMEN_RANGE)
2432 fin_dep = gfc_check_element_vs_section (rref, lref, n);
2433 else if (lref->u.ar.dimen_type[n] == DIMEN_ELEMENT
2434 && rref->u.ar.dimen_type[n] == DIMEN_ELEMENT)
2436 gfc_array_ref l_ar = lref->u.ar;
2437 gfc_array_ref r_ar = rref->u.ar;
2438 gfc_expr *l_start = l_ar.start[n];
2439 gfc_expr *r_start = r_ar.start[n];
2440 int i = gfc_dep_compare_expr (r_start, l_start);
2441 if (i == 0)
2442 fin_dep = GFC_DEP_EQUAL;
2443 else
2444 return false;
2446 else
2447 return false;
2448 if (n + 1 < lref->u.ar.dimen
2449 && fin_dep != GFC_DEP_EQUAL)
2450 return false;
2453 if (fin_dep != GFC_DEP_EQUAL
2454 && fin_dep != GFC_DEP_OVERLAP)
2455 return false;
2457 break;
2459 default:
2460 gcc_unreachable ();
2462 lref = lref->next;
2463 rref = rref->next;
2466 return true;