ada: Rename Is_Constr_Subt_For_UN_Aliased flag
[official-gcc.git] / gcc / ada / sem_ch4.adb
blob64aa9a84e605540bb867b3812e5f16d73096c22f
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 4 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2023, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Accessibility; use Accessibility;
27 with Aspects; use Aspects;
28 with Atree; use Atree;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Einfo.Entities; use Einfo.Entities;
32 with Einfo.Utils; use Einfo.Utils;
33 with Elists; use Elists;
34 with Errout; use Errout;
35 with Exp_Util; use Exp_Util;
36 with Itypes; use Itypes;
37 with Lib; use Lib;
38 with Lib.Xref; use Lib.Xref;
39 with Namet; use Namet;
40 with Namet.Sp; use Namet.Sp;
41 with Nlists; use Nlists;
42 with Nmake; use Nmake;
43 with Opt; use Opt;
44 with Output; use Output;
45 with Restrict; use Restrict;
46 with Rident; use Rident;
47 with Rtsfind; use Rtsfind;
48 with Sem; use Sem;
49 with Sem_Aux; use Sem_Aux;
50 with Sem_Case; use Sem_Case;
51 with Sem_Cat; use Sem_Cat;
52 with Sem_Ch3; use Sem_Ch3;
53 with Sem_Ch6; use Sem_Ch6;
54 with Sem_Ch8; use Sem_Ch8;
55 with Sem_Dim; use Sem_Dim;
56 with Sem_Disp; use Sem_Disp;
57 with Sem_Dist; use Sem_Dist;
58 with Sem_Eval; use Sem_Eval;
59 with Sem_Res; use Sem_Res;
60 with Sem_Type; use Sem_Type;
61 with Sem_Util; use Sem_Util;
62 with Sem_Warn; use Sem_Warn;
63 with Stand; use Stand;
64 with Sinfo; use Sinfo;
65 with Sinfo.Nodes; use Sinfo.Nodes;
66 with Sinfo.Utils; use Sinfo.Utils;
67 with Snames; use Snames;
68 with Style; use Style;
69 with Tbuild; use Tbuild;
70 with Uintp; use Uintp;
71 with Warnsw; use Warnsw;
73 package body Sem_Ch4 is
75 -- Tables which speed up the identification of dangerous calls to Ada 2012
76 -- functions with writable actuals (AI05-0144).
78 -- The following table enumerates the Ada constructs which may evaluate in
79 -- arbitrary order. It does not cover all the language constructs which can
80 -- be evaluated in arbitrary order but the subset needed for AI05-0144.
82 Has_Arbitrary_Evaluation_Order : constant array (Node_Kind) of Boolean :=
83 (N_Aggregate => True,
84 N_Assignment_Statement => True,
85 N_Entry_Call_Statement => True,
86 N_Extension_Aggregate => True,
87 N_Full_Type_Declaration => True,
88 N_Indexed_Component => True,
89 N_Object_Declaration => True,
90 N_Pragma => True,
91 N_Range => True,
92 N_Slice => True,
93 N_Array_Type_Definition => True,
94 N_Membership_Test => True,
95 N_Binary_Op => True,
96 N_Subprogram_Call => True,
97 others => False);
99 -- The following table enumerates the nodes on which we stop climbing when
100 -- locating the outermost Ada construct that can be evaluated in arbitrary
101 -- order.
103 Stop_Subtree_Climbing : constant array (Node_Kind) of Boolean :=
104 (N_Aggregate => True,
105 N_Assignment_Statement => True,
106 N_Entry_Call_Statement => True,
107 N_Extended_Return_Statement => True,
108 N_Extension_Aggregate => True,
109 N_Full_Type_Declaration => True,
110 N_Object_Declaration => True,
111 N_Object_Renaming_Declaration => True,
112 N_Package_Specification => True,
113 N_Pragma => True,
114 N_Procedure_Call_Statement => True,
115 N_Simple_Return_Statement => True,
116 N_Has_Condition => True,
117 others => False);
119 -----------------------
120 -- Local Subprograms --
121 -----------------------
123 procedure Analyze_Concatenation_Rest (N : Node_Id);
124 -- Does the "rest" of the work of Analyze_Concatenation, after the left
125 -- operand has been analyzed. See Analyze_Concatenation for details.
127 procedure Analyze_Expression (N : Node_Id);
128 -- For expressions that are not names, this is just a call to analyze. If
129 -- the expression is a name, it may be a call to a parameterless function,
130 -- and if so must be converted into an explicit call node and analyzed as
131 -- such. This deproceduring must be done during the first pass of overload
132 -- resolution, because otherwise a procedure call with overloaded actuals
133 -- may fail to resolve.
135 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id);
136 -- Analyze a call of the form "+"(x, y), etc. The prefix of the call is an
137 -- operator name or an expanded name whose selector is an operator name,
138 -- and one possible interpretation is as a predefined operator.
140 procedure Analyze_Overloaded_Selected_Component (N : Node_Id);
141 -- If the prefix of a selected_component is overloaded, the proper
142 -- interpretation that yields a record type with the proper selector
143 -- name must be selected.
145 procedure Analyze_User_Defined_Binary_Op (N : Node_Id; Op_Id : Entity_Id);
146 -- Procedure to analyze a user defined binary operator, which is resolved
147 -- like a function, but instead of a list of actuals it is presented
148 -- with the left and right operands of an operator node.
150 procedure Analyze_User_Defined_Unary_Op (N : Node_Id; Op_Id : Entity_Id);
151 -- Procedure to analyze a user defined unary operator, which is resolved
152 -- like a function, but instead of a list of actuals, it is presented with
153 -- the operand of the operator node.
155 procedure Analyze_One_Call
156 (N : Node_Id;
157 Nam : Entity_Id;
158 Report : Boolean;
159 Success : out Boolean;
160 Skip_First : Boolean := False);
161 -- Check one interpretation of an overloaded subprogram name for
162 -- compatibility with the types of the actuals in a call. If there is a
163 -- single interpretation which does not match, post error if Report is
164 -- set to True.
166 -- Nam is the entity that provides the formals against which the actuals
167 -- are checked. Nam is either the name of a subprogram, or the internal
168 -- subprogram type constructed for an access_to_subprogram. If the actuals
169 -- are compatible with Nam, then Nam is added to the list of candidate
170 -- interpretations for N, and Success is set to True.
172 -- The flag Skip_First is used when analyzing a call that was rewritten
173 -- from object notation. In this case the first actual may have to receive
174 -- an explicit dereference, depending on the first formal of the operation
175 -- being called. The caller will have verified that the object is legal
176 -- for the call. If the remaining parameters match, the first parameter
177 -- will rewritten as a dereference if needed, prior to completing analysis.
179 procedure Check_Misspelled_Selector
180 (Prefix : Entity_Id;
181 Sel : Node_Id);
182 -- Give possible misspelling message if Sel seems likely to be a mis-
183 -- spelling of one of the selectors of the Prefix. This is called by
184 -- Analyze_Selected_Component after producing an invalid selector error
185 -- message.
187 procedure Find_Arithmetic_Types
188 (L, R : Node_Id;
189 Op_Id : Entity_Id;
190 N : Node_Id);
191 -- L and R are the operands of an arithmetic operator. Find consistent
192 -- pairs of interpretations for L and R that have a numeric type consistent
193 -- with the semantics of the operator.
195 procedure Find_Comparison_Equality_Types
196 (L, R : Node_Id;
197 Op_Id : Entity_Id;
198 N : Node_Id);
199 -- L and R are operands of a comparison or equality operator. Find valid
200 -- pairs of interpretations for L and R.
202 procedure Find_Concatenation_Types
203 (L, R : Node_Id;
204 Op_Id : Entity_Id;
205 N : Node_Id);
206 -- For the four varieties of concatenation
208 procedure Find_Boolean_Types
209 (L, R : Node_Id;
210 Op_Id : Entity_Id;
211 N : Node_Id);
212 -- Ditto for binary logical operations
214 procedure Find_Negation_Types
215 (R : Node_Id;
216 Op_Id : Entity_Id;
217 N : Node_Id);
218 -- Find consistent interpretation for operand of negation operator
220 function Find_Primitive_Operation (N : Node_Id) return Boolean;
221 -- Find candidate interpretations for the name Obj.Proc when it appears in
222 -- a subprogram renaming declaration.
224 procedure Find_Unary_Types
225 (R : Node_Id;
226 Op_Id : Entity_Id;
227 N : Node_Id);
228 -- Unary arithmetic types: plus, minus, abs
230 procedure Check_Arithmetic_Pair
231 (T1, T2 : Entity_Id;
232 Op_Id : Entity_Id;
233 N : Node_Id);
234 -- Subsidiary procedure to Find_Arithmetic_Types. T1 and T2 are valid types
235 -- for left and right operand. Determine whether they constitute a valid
236 -- pair for the given operator, and record the corresponding interpretation
237 -- of the operator node. The node N may be an operator node (the usual
238 -- case) or a function call whose prefix is an operator designator. In
239 -- both cases Op_Id is the operator name itself.
241 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id);
242 -- Give detailed information on overloaded call where none of the
243 -- interpretations match. N is the call node, Nam the designator for
244 -- the overloaded entity being called.
246 function Junk_Operand (N : Node_Id) return Boolean;
247 -- Test for an operand that is an inappropriate entity (e.g. a package
248 -- name or a label). If so, issue an error message and return True. If
249 -- the operand is not an inappropriate entity kind, return False.
251 procedure Operator_Check (N : Node_Id);
252 -- Verify that an operator has received some valid interpretation. If none
253 -- was found, determine whether a use clause would make the operation
254 -- legal. The variable Candidate_Type (defined in Sem_Type) is set for
255 -- every type compatible with the operator, even if the operator for the
256 -- type is not directly visible. The routine uses this type to emit a more
257 -- informative message.
259 function Has_Possible_User_Defined_Literal (N : Node_Id) return Boolean;
260 -- Ada 2022: if an operand is a literal, it may be subject to an
261 -- implicit conversion to a type for which a user-defined literal
262 -- function exists. During the first pass of type resolution we do
263 -- not know the context imposed on the literal, so we assume that
264 -- the literal type is a valid candidate and rely on the second pass
265 -- of resolution to find the type with the proper aspect. We only
266 -- add this interpretation if no other one was found, which may be
267 -- too restrictive but seems sufficient to handle most proper uses
268 -- of the new aspect. It is unclear whether a full implementation of
269 -- these aspects can be achieved without larger modifications to the
270 -- two-pass resolution algorithm.
272 function Possible_Type_For_Conditional_Expression
273 (T1, T2 : Entity_Id) return Entity_Id;
274 -- Given two types T1 and T2 that are _not_ compatible, return a type that
275 -- may still be used as the possible type of a conditional expression whose
276 -- dependent expressions, or part thereof, have type T1 and T2 respectively
277 -- during the first phase of type resolution, or Empty if such a type does
278 -- not exist.
280 -- The typical example is an if_expression whose then_expression is of a
281 -- tagged type and whose else_expresssion is of an extension of this type:
282 -- the types are not compatible but such an if_expression can be legal if
283 -- its expected type is the 'Class of the tagged type, so the function will
284 -- return the tagged type in this case. If the expected type turns out to
285 -- be something else, including the tagged type itself, then an error will
286 -- be given during the second phase of type resolution.
288 procedure Remove_Abstract_Operations (N : Node_Id);
289 -- Ada 2005: implementation of AI-310. An abstract non-dispatching
290 -- operation is not a candidate interpretation.
292 function Try_Container_Indexing
293 (N : Node_Id;
294 Prefix : Node_Id;
295 Exprs : List_Id) return Boolean;
296 -- AI05-0139: Generalized indexing to support iterators over containers
297 -- ??? Need to provide a more detailed spec of what this function does
299 function Try_Indexed_Call
300 (N : Node_Id;
301 Nam : Entity_Id;
302 Typ : Entity_Id;
303 Skip_First : Boolean) return Boolean;
304 -- If a function has defaults for all its actuals, a call to it may in fact
305 -- be an indexing on the result of the call. Try_Indexed_Call attempts the
306 -- interpretation as an indexing, prior to analysis as a call. If both are
307 -- possible, the node is overloaded with both interpretations (same symbol
308 -- but two different types). If the call is written in prefix form, the
309 -- prefix becomes the first parameter in the call, and only the remaining
310 -- actuals must be checked for the presence of defaults.
312 function Try_Indirect_Call
313 (N : Node_Id;
314 Nam : Entity_Id;
315 Typ : Entity_Id) return Boolean;
316 -- Similarly, a function F that needs no actuals can return an access to a
317 -- subprogram, and the call F (X) interpreted as F.all (X). In this case
318 -- the call may be overloaded with both interpretations.
320 procedure wpo (T : Entity_Id);
321 pragma Warnings (Off, wpo);
322 -- Used for debugging: obtain list of primitive operations even if
323 -- type is not frozen and dispatch table is not built yet.
325 ------------------------
326 -- Ambiguous_Operands --
327 ------------------------
329 procedure Ambiguous_Operands (N : Node_Id) is
330 procedure List_Operand_Interps (Opnd : Node_Id);
332 --------------------------
333 -- List_Operand_Interps --
334 --------------------------
336 procedure List_Operand_Interps (Opnd : Node_Id) is
337 Nam : Node_Id := Empty;
338 Err : Node_Id := N;
340 begin
341 if Is_Overloaded (Opnd) then
342 if Nkind (Opnd) in N_Op then
343 Nam := Opnd;
345 elsif Nkind (Opnd) = N_Function_Call then
346 Nam := Name (Opnd);
348 elsif Ada_Version >= Ada_2012 then
349 declare
350 It : Interp;
351 I : Interp_Index;
353 begin
354 Get_First_Interp (Opnd, I, It);
355 while Present (It.Nam) loop
356 if Has_Implicit_Dereference (It.Typ) then
357 Error_Msg_N
358 ("can be interpreted as implicit dereference", Opnd);
359 return;
360 end if;
362 Get_Next_Interp (I, It);
363 end loop;
364 end;
366 return;
367 end if;
369 else
370 return;
371 end if;
373 if Opnd = Left_Opnd (N) then
374 Error_Msg_N
375 ("\left operand has the following interpretations", N);
376 else
377 Error_Msg_N
378 ("\right operand has the following interpretations", N);
379 Err := Opnd;
380 end if;
382 List_Interps (Nam, Err);
383 end List_Operand_Interps;
385 -- Start of processing for Ambiguous_Operands
387 begin
388 if Nkind (N) in N_Membership_Test then
389 Error_Msg_N ("ambiguous operands for membership", N);
391 elsif Nkind (N) in N_Op_Eq | N_Op_Ne then
392 Error_Msg_N ("ambiguous operands for equality", N);
394 else
395 Error_Msg_N ("ambiguous operands for comparison", N);
396 end if;
398 if All_Errors_Mode then
399 List_Operand_Interps (Left_Opnd (N));
400 List_Operand_Interps (Right_Opnd (N));
401 else
402 Error_Msg_N ("\use -gnatf switch for details", N);
403 end if;
404 end Ambiguous_Operands;
406 -----------------------
407 -- Analyze_Aggregate --
408 -----------------------
410 -- Most of the analysis of Aggregates requires that the type be known, and
411 -- is therefore put off until resolution of the context. Delta aggregates
412 -- have a base component that determines the enclosing aggregate type so
413 -- its type can be ascertained earlier. This also allows delta aggregates
414 -- to appear in the context of a record type with a private extension, as
415 -- per the latest update of AI12-0127.
417 procedure Analyze_Aggregate (N : Node_Id) is
418 begin
419 if No (Etype (N)) then
420 if Nkind (N) = N_Delta_Aggregate then
421 declare
422 Base : constant Node_Id := Expression (N);
424 I : Interp_Index;
425 It : Interp;
427 begin
428 Analyze (Base);
430 -- If the base is overloaded, propagate interpretations to the
431 -- enclosing aggregate.
433 if Is_Overloaded (Base) then
434 Get_First_Interp (Base, I, It);
435 Set_Etype (N, Any_Type);
437 while Present (It.Nam) loop
438 Add_One_Interp (N, It.Typ, It.Typ);
439 Get_Next_Interp (I, It);
440 end loop;
442 else
443 Set_Etype (N, Etype (Base));
444 end if;
445 end;
447 else
448 Set_Etype (N, Any_Composite);
449 end if;
450 end if;
451 end Analyze_Aggregate;
453 -----------------------
454 -- Analyze_Allocator --
455 -----------------------
457 procedure Analyze_Allocator (N : Node_Id) is
458 Loc : constant Source_Ptr := Sloc (N);
459 Sav_Errs : constant Nat := Serious_Errors_Detected;
460 E : Node_Id := Expression (N);
461 Acc_Type : Entity_Id;
462 Type_Id : Entity_Id;
463 P : Node_Id;
464 C : Node_Id;
465 Onode : Node_Id;
467 begin
468 -- Deal with allocator restrictions
470 -- In accordance with H.4(7), the No_Allocators restriction only applies
471 -- to user-written allocators. The same consideration applies to the
472 -- No_Standard_Allocators_Before_Elaboration restriction.
474 if Comes_From_Source (N) then
475 Check_Restriction (No_Allocators, N);
477 -- Processing for No_Standard_Allocators_After_Elaboration, loop to
478 -- look at enclosing context, checking task/main subprogram case.
480 C := N;
481 P := Parent (C);
482 while Present (P) loop
484 -- For the task case we need a handled sequence of statements,
485 -- where the occurrence of the allocator is within the statements
486 -- and the parent is a task body
488 if Nkind (P) = N_Handled_Sequence_Of_Statements
489 and then Is_List_Member (C)
490 and then List_Containing (C) = Statements (P)
491 then
492 Onode := Original_Node (Parent (P));
494 -- Check for allocator within task body, this is a definite
495 -- violation of No_Allocators_After_Elaboration we can detect
496 -- at compile time.
498 if Nkind (Onode) = N_Task_Body then
499 Check_Restriction
500 (No_Standard_Allocators_After_Elaboration, N);
501 exit;
502 end if;
503 end if;
505 -- The other case is appearance in a subprogram body. This is
506 -- a violation if this is a library level subprogram with no
507 -- parameters. Note that this is now a static error even if the
508 -- subprogram is not the main program (this is a change, in an
509 -- earlier version only the main program was affected, and the
510 -- check had to be done in the binder).
512 if Nkind (P) = N_Subprogram_Body
513 and then Nkind (Parent (P)) = N_Compilation_Unit
514 and then No (Parameter_Specifications (Specification (P)))
515 then
516 Check_Restriction
517 (No_Standard_Allocators_After_Elaboration, N);
518 end if;
520 C := P;
521 P := Parent (C);
522 end loop;
523 end if;
525 -- Ada 2012 (AI05-0111-3): Analyze the subpool_specification, if
526 -- any. The expected type for the name is any type. A non-overloading
527 -- rule then requires it to be of a type descended from
528 -- System.Storage_Pools.Subpools.Subpool_Handle.
530 -- This isn't exactly what the AI says, but it seems to be the right
531 -- rule. The AI should be fixed.???
533 declare
534 Subpool : constant Node_Id := Subpool_Handle_Name (N);
536 begin
537 if Present (Subpool) then
538 Analyze (Subpool);
540 if Is_Overloaded (Subpool) then
541 Error_Msg_N ("ambiguous subpool handle", Subpool);
542 end if;
544 -- Check that Etype (Subpool) is descended from Subpool_Handle
546 Resolve (Subpool);
547 end if;
548 end;
550 -- Analyze the qualified expression or subtype indication
552 if Nkind (E) = N_Qualified_Expression then
553 Acc_Type := Create_Itype (E_Allocator_Type, N);
554 Set_Etype (Acc_Type, Acc_Type);
555 Find_Type (Subtype_Mark (E));
557 -- Analyze the qualified expression, and apply the name resolution
558 -- rule given in 4.7(3).
560 Analyze (E);
561 Type_Id := Etype (E);
562 Set_Directly_Designated_Type (Acc_Type, Type_Id);
564 -- A qualified expression requires an exact match of the type,
565 -- class-wide matching is not allowed.
567 -- if Is_Class_Wide_Type (Type_Id)
568 -- and then Base_Type
569 -- (Etype (Expression (E))) /= Base_Type (Type_Id)
570 -- then
571 -- Wrong_Type (Expression (E), Type_Id);
572 -- end if;
574 -- We don't analyze the qualified expression itself because it's
575 -- part of the allocator. It is fully analyzed and resolved when
576 -- the allocator is resolved with the context type.
578 Set_Etype (E, Type_Id);
580 -- Case where allocator has a subtype indication
582 else
583 -- If the allocator includes a N_Subtype_Indication then a
584 -- constraint is present, otherwise the node is a subtype mark.
585 -- Introduce an explicit subtype declaration into the tree
586 -- defining some anonymous subtype and rewrite the allocator to
587 -- use this subtype rather than the subtype indication.
589 -- It is important to introduce the explicit subtype declaration
590 -- so that the bounds of the subtype indication are attached to
591 -- the tree in case the allocator is inside a generic unit.
593 -- Finally, if there is no subtype indication and the type is
594 -- a tagged unconstrained type with discriminants, the designated
595 -- object is constrained by their default values, and it is
596 -- simplest to introduce an explicit constraint now. In some cases
597 -- this is done during expansion, but freeze actions are certain
598 -- to be emitted in the proper order if constraint is explicit.
600 if Is_Entity_Name (E) and then Expander_Active then
601 Find_Type (E);
602 Type_Id := Entity (E);
604 if Is_Tagged_Type (Type_Id)
605 and then Has_Defaulted_Discriminants (Type_Id)
606 and then not Is_Constrained (Type_Id)
607 then
608 declare
609 Constr : constant List_Id := New_List;
610 Loc : constant Source_Ptr := Sloc (E);
611 Discr : Entity_Id := First_Discriminant (Type_Id);
613 begin
614 while Present (Discr) loop
615 Append (Discriminant_Default_Value (Discr), Constr);
616 Next_Discriminant (Discr);
617 end loop;
619 Rewrite (E,
620 Make_Subtype_Indication (Loc,
621 Subtype_Mark => New_Occurrence_Of (Type_Id, Loc),
622 Constraint =>
623 Make_Index_Or_Discriminant_Constraint (Loc,
624 Constraints => Constr)));
625 end;
626 end if;
627 end if;
629 if Nkind (E) = N_Subtype_Indication then
630 declare
631 Def_Id : Entity_Id;
632 Base_Typ : Entity_Id;
634 begin
635 -- A constraint is only allowed for a composite type in Ada
636 -- 95. In Ada 83, a constraint is also allowed for an
637 -- access-to-composite type, but the constraint is ignored.
639 Find_Type (Subtype_Mark (E));
640 Base_Typ := Entity (Subtype_Mark (E));
642 if Is_Elementary_Type (Base_Typ) then
643 if not (Ada_Version = Ada_83
644 and then Is_Access_Type (Base_Typ))
645 then
646 Error_Msg_N ("constraint not allowed here", E);
648 if Nkind (Constraint (E)) =
649 N_Index_Or_Discriminant_Constraint
650 then
651 Error_Msg_N -- CODEFIX
652 ("\if qualified expression was meant, " &
653 "use apostrophe", Constraint (E));
654 end if;
655 end if;
657 -- Get rid of the bogus constraint:
659 Rewrite (E, New_Copy_Tree (Subtype_Mark (E)));
660 Analyze_Allocator (N);
661 return;
662 end if;
664 -- In GNATprove mode we need to preserve the link between
665 -- the original subtype indication and the anonymous subtype,
666 -- to extend proofs to constrained access types. We only do
667 -- that outside of spec expressions, otherwise the declaration
668 -- cannot be inserted and analyzed. In such a case, GNATprove
669 -- later rejects the allocator as it is not used here in
670 -- a non-interfering context (SPARK 4.8(2) and 7.1.3(10)).
672 if Expander_Active
673 or else (GNATprove_Mode and then not In_Spec_Expression)
674 then
675 Def_Id := Make_Temporary (Loc, 'S');
677 declare
678 Subtype_Decl : constant Node_Id :=
679 Make_Subtype_Declaration (Loc,
680 Defining_Identifier => Def_Id,
681 Subtype_Indication => Relocate_Node (E));
682 begin
683 Insert_Action (E, Subtype_Decl);
685 -- Handle unusual case where Insert_Action does not
686 -- analyze the declaration. Subtype_Decl must be
687 -- preanalyzed before call to Process_Subtype below.
688 Preanalyze (Subtype_Decl);
689 end;
691 if Sav_Errs /= Serious_Errors_Detected
692 and then Nkind (Constraint (E)) =
693 N_Index_Or_Discriminant_Constraint
694 then
695 Error_Msg_N -- CODEFIX
696 ("if qualified expression was meant, use apostrophe!",
697 Constraint (E));
698 end if;
700 E := New_Occurrence_Of (Def_Id, Loc);
701 Rewrite (Expression (N), E);
702 end if;
703 end;
704 end if;
706 Type_Id := Process_Subtype (E, N);
707 Acc_Type := Create_Itype (E_Allocator_Type, N);
708 Set_Etype (Acc_Type, Acc_Type);
709 Set_Directly_Designated_Type (Acc_Type, Type_Id);
710 Check_Fully_Declared (Type_Id, N);
712 -- Ada 2005 (AI-231): If the designated type is itself an access
713 -- type that excludes null, its default initialization will
714 -- be a null object, and we can insert an unconditional raise
715 -- before the allocator.
717 -- Ada 2012 (AI-104): A not null indication here is altogether
718 -- illegal.
720 if Can_Never_Be_Null (Type_Id) then
721 declare
722 Not_Null_Check : constant Node_Id :=
723 Make_Raise_Constraint_Error (Sloc (E),
724 Reason => CE_Null_Not_Allowed);
726 begin
727 if Expander_Active then
728 Insert_Action (N, Not_Null_Check);
729 Analyze (Not_Null_Check);
731 elsif Warn_On_Ada_2012_Compatibility then
732 Error_Msg_N
733 ("null value not allowed here in Ada 2012?y?", E);
734 end if;
735 end;
736 end if;
738 -- Check for missing initialization. Skip this check if the allocator
739 -- is made for a special return object or if we already had errors on
740 -- analyzing the allocator since, in that case, these are very likely
741 -- cascaded errors.
743 if not Is_Definite_Subtype (Type_Id)
744 and then not For_Special_Return_Object (N)
745 and then Serious_Errors_Detected = Sav_Errs
746 then
747 if Is_Class_Wide_Type (Type_Id) then
748 Error_Msg_N
749 ("initialization required in class-wide allocation", N);
751 else
752 if Ada_Version < Ada_2005
753 and then Is_Limited_Type (Type_Id)
754 then
755 Error_Msg_N ("unconstrained allocation not allowed", N);
757 if Is_Array_Type (Type_Id) then
758 Error_Msg_N
759 ("\constraint with array bounds required", N);
761 elsif Has_Unknown_Discriminants (Type_Id) then
762 null;
764 else pragma Assert (Has_Discriminants (Type_Id));
765 Error_Msg_N
766 ("\constraint with discriminant values required", N);
767 end if;
769 -- Limited Ada 2005 and general nonlimited case.
770 -- This is an error, except in the case of an
771 -- uninitialized allocator that is generated
772 -- for a build-in-place function return of a
773 -- discriminated but compile-time-known-size
774 -- type.
776 else
777 if Is_Rewrite_Substitution (N)
778 and then Nkind (Original_Node (N)) = N_Allocator
779 then
780 declare
781 Qual : constant Node_Id :=
782 Expression (Original_Node (N));
783 pragma Assert
784 (Nkind (Qual) = N_Qualified_Expression);
785 Call : constant Node_Id := Expression (Qual);
786 pragma Assert
787 (Is_Expanded_Build_In_Place_Call (Call));
788 begin
789 null;
790 end;
792 else
793 Error_Msg_N
794 ("uninitialized unconstrained allocation not "
795 & "allowed", N);
797 if Is_Array_Type (Type_Id) then
798 Error_Msg_N
799 ("\qualified expression or constraint with "
800 & "array bounds required", N);
802 elsif Has_Unknown_Discriminants (Type_Id) then
803 Error_Msg_N ("\qualified expression required", N);
805 else pragma Assert (Has_Discriminants (Type_Id));
806 Error_Msg_N
807 ("\qualified expression or constraint with "
808 & "discriminant values required", N);
809 end if;
810 end if;
811 end if;
812 end if;
813 end if;
814 end if;
816 if Is_Abstract_Type (Type_Id) then
817 Error_Msg_N ("cannot allocate abstract object", E);
818 end if;
820 Set_Etype (N, Acc_Type);
822 -- If this is an allocator for the return stack, then no restriction may
823 -- be violated since it's just a low-level access to the primary stack.
825 if Nkind (Parent (N)) = N_Object_Declaration
826 and then Is_Entity_Name (Object_Definition (Parent (N)))
827 and then Is_Access_Type (Entity (Object_Definition (Parent (N))))
828 then
829 declare
830 Pool : constant Entity_Id :=
831 Associated_Storage_Pool
832 (Root_Type (Entity (Object_Definition (Parent (N)))));
834 begin
835 if Present (Pool) and then Is_RTE (Pool, RE_RS_Pool) then
836 goto Leave;
837 end if;
838 end;
839 end if;
841 if Has_Task (Designated_Type (Acc_Type)) then
842 Check_Restriction (No_Tasking, N);
843 Check_Restriction (Max_Tasks, N);
844 Check_Restriction (No_Task_Allocators, N);
845 end if;
847 -- Check restriction against dynamically allocated protected objects
849 if Has_Protected (Designated_Type (Acc_Type)) then
850 Check_Restriction (No_Protected_Type_Allocators, N);
851 end if;
853 -- AI05-0013-1: No_Nested_Finalization forbids allocators if the access
854 -- type is nested, and the designated type needs finalization. The rule
855 -- is conservative in that class-wide types need finalization.
857 if Needs_Finalization (Designated_Type (Acc_Type))
858 and then not Is_Library_Level_Entity (Acc_Type)
859 then
860 Check_Restriction (No_Nested_Finalization, N);
861 end if;
863 -- Check that an allocator of a nested access type doesn't create a
864 -- protected object when restriction No_Local_Protected_Objects applies.
866 if Has_Protected (Designated_Type (Acc_Type))
867 and then not Is_Library_Level_Entity (Acc_Type)
868 then
869 Check_Restriction (No_Local_Protected_Objects, N);
870 end if;
872 -- Likewise for No_Local_Timing_Events
874 if Has_Timing_Event (Designated_Type (Acc_Type))
875 and then not Is_Library_Level_Entity (Acc_Type)
876 then
877 Check_Restriction (No_Local_Timing_Events, N);
878 end if;
880 -- If the No_Streams restriction is set, check that the type of the
881 -- object is not, and does not contain, any subtype derived from
882 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
883 -- Has_Stream just for efficiency reasons. There is no point in
884 -- spending time on a Has_Stream check if the restriction is not set.
886 if Restriction_Check_Required (No_Streams) then
887 if Has_Stream (Designated_Type (Acc_Type)) then
888 Check_Restriction (No_Streams, N);
889 end if;
890 end if;
892 if not Is_Library_Level_Entity (Acc_Type) then
893 Check_Restriction (No_Local_Allocators, N);
894 end if;
896 <<Leave>>
897 if Serious_Errors_Detected > Sav_Errs then
898 Set_Error_Posted (N);
899 Set_Etype (N, Any_Type);
900 end if;
901 end Analyze_Allocator;
903 ---------------------------
904 -- Analyze_Arithmetic_Op --
905 ---------------------------
907 procedure Analyze_Arithmetic_Op (N : Node_Id) is
908 L : constant Node_Id := Left_Opnd (N);
909 R : constant Node_Id := Right_Opnd (N);
911 Op_Id : Entity_Id;
913 begin
914 Set_Etype (N, Any_Type);
915 Candidate_Type := Empty;
917 Analyze_Expression (L);
918 Analyze_Expression (R);
920 -- If the entity is already set, the node is the instantiation of a
921 -- generic node with a non-local reference, or was manufactured by a
922 -- call to Make_Op_xxx. In either case the entity is known to be valid,
923 -- and we do not need to collect interpretations, instead we just get
924 -- the single possible interpretation.
926 if Present (Entity (N)) then
927 Op_Id := Entity (N);
929 if Ekind (Op_Id) = E_Operator then
930 Find_Arithmetic_Types (L, R, Op_Id, N);
931 else
932 Add_One_Interp (N, Op_Id, Etype (Op_Id));
933 end if;
935 -- Entity is not already set, so we do need to collect interpretations
937 else
938 Op_Id := Get_Name_Entity_Id (Chars (N));
939 while Present (Op_Id) loop
940 if Ekind (Op_Id) = E_Operator
941 and then Present (Next_Entity (First_Entity (Op_Id)))
942 then
943 Find_Arithmetic_Types (L, R, Op_Id, N);
945 -- The following may seem superfluous, because an operator cannot
946 -- be generic, but this ignores the cleverness of the author of
947 -- ACVC bc1013a.
949 elsif Is_Overloadable (Op_Id) then
950 Analyze_User_Defined_Binary_Op (N, Op_Id);
951 end if;
953 Op_Id := Homonym (Op_Id);
954 end loop;
955 end if;
957 Operator_Check (N);
958 Check_Function_Writable_Actuals (N);
959 end Analyze_Arithmetic_Op;
961 ------------------
962 -- Analyze_Call --
963 ------------------
965 -- Function, procedure, and entry calls are checked here. The Name in
966 -- the call may be overloaded. The actuals have been analyzed and may
967 -- themselves be overloaded. On exit from this procedure, the node N
968 -- may have zero, one or more interpretations. In the first case an
969 -- error message is produced. In the last case, the node is flagged
970 -- as overloaded and the interpretations are collected in All_Interp.
972 -- If the name is an Access_To_Subprogram, it cannot be overloaded, but
973 -- the type-checking is similar to that of other calls.
975 procedure Analyze_Call (N : Node_Id) is
976 Actuals : constant List_Id := Parameter_Associations (N);
977 Loc : constant Source_Ptr := Sloc (N);
978 Nam : Node_Id;
979 X : Interp_Index;
980 It : Interp;
981 Nam_Ent : Entity_Id := Empty;
982 Success : Boolean := False;
984 Deref : Boolean := False;
985 -- Flag indicates whether an interpretation of the prefix is a
986 -- parameterless call that returns an access_to_subprogram.
988 procedure Check_Writable_Actuals (N : Node_Id);
989 -- If the call has out or in-out parameters then mark its outermost
990 -- enclosing construct as a node on which the writable actuals check
991 -- must be performed.
993 function Name_Denotes_Function return Boolean;
994 -- If the type of the name is an access to subprogram, this may be the
995 -- type of a name, or the return type of the function being called. If
996 -- the name is not an entity then it can denote a protected function.
997 -- Until we distinguish Etype from Return_Type, we must use this routine
998 -- to resolve the meaning of the name in the call.
1000 procedure No_Interpretation;
1001 -- Output error message when no valid interpretation exists
1003 ----------------------------
1004 -- Check_Writable_Actuals --
1005 ----------------------------
1007 -- The identification of conflicts in calls to functions with writable
1008 -- actuals is performed in the analysis phase of the front end to ensure
1009 -- that it reports exactly the same errors compiling with and without
1010 -- expansion enabled. It is performed in two stages:
1012 -- 1) When a call to a function with out-mode parameters is found,
1013 -- we climb to the outermost enclosing construct that can be
1014 -- evaluated in arbitrary order and we mark it with the flag
1015 -- Check_Actuals.
1017 -- 2) When the analysis of the marked node is complete, we traverse
1018 -- its decorated subtree searching for conflicts (see function
1019 -- Sem_Util.Check_Function_Writable_Actuals).
1021 -- The unique exception to this general rule is for aggregates, since
1022 -- their analysis is performed by the front end in the resolution
1023 -- phase. For aggregates we do not climb to their enclosing construct:
1024 -- we restrict the analysis to the subexpressions initializing the
1025 -- aggregate components.
1027 -- This implies that the analysis of expressions containing aggregates
1028 -- is not complete, since there may be conflicts on writable actuals
1029 -- involving subexpressions of the enclosing logical or arithmetic
1030 -- expressions. However, we cannot wait and perform the analysis when
1031 -- the whole subtree is resolved, since the subtrees may be transformed,
1032 -- thus adding extra complexity and computation cost to identify and
1033 -- report exactly the same errors compiling with and without expansion
1034 -- enabled.
1036 procedure Check_Writable_Actuals (N : Node_Id) is
1037 begin
1038 if Comes_From_Source (N)
1039 and then Present (Get_Subprogram_Entity (N))
1040 and then Has_Out_Or_In_Out_Parameter (Get_Subprogram_Entity (N))
1041 then
1042 -- For procedures and entries there is no need to climb since
1043 -- we only need to check if the actuals of this call invoke
1044 -- functions whose out-mode parameters overlap.
1046 if Nkind (N) /= N_Function_Call then
1047 Set_Check_Actuals (N);
1049 -- For calls to functions we climb to the outermost enclosing
1050 -- construct where the out-mode actuals of this function may
1051 -- introduce conflicts.
1053 else
1054 declare
1055 Outermost : Node_Id := Empty; -- init to avoid warning
1056 P : Node_Id := N;
1058 begin
1059 while Present (P) loop
1060 -- For object declarations we can climb to the node from
1061 -- its object definition branch or from its initializing
1062 -- expression. We prefer to mark the child node as the
1063 -- outermost construct to avoid adding further complexity
1064 -- to the routine that will later take care of
1065 -- performing the writable actuals check.
1067 if Has_Arbitrary_Evaluation_Order (Nkind (P))
1068 and then Nkind (P) not in
1069 N_Assignment_Statement | N_Object_Declaration
1070 then
1071 Outermost := P;
1072 end if;
1074 -- Avoid climbing more than needed
1076 exit when Stop_Subtree_Climbing (Nkind (P))
1077 or else (Nkind (P) = N_Range
1078 and then
1079 Nkind (Parent (P)) not in N_In | N_Not_In);
1081 P := Parent (P);
1082 end loop;
1084 Set_Check_Actuals (Outermost);
1085 end;
1086 end if;
1087 end if;
1088 end Check_Writable_Actuals;
1090 ---------------------------
1091 -- Name_Denotes_Function --
1092 ---------------------------
1094 function Name_Denotes_Function return Boolean is
1095 begin
1096 if Is_Entity_Name (Nam) then
1097 return Ekind (Entity (Nam)) = E_Function;
1098 elsif Nkind (Nam) = N_Selected_Component then
1099 return Ekind (Entity (Selector_Name (Nam))) = E_Function;
1100 else
1101 return False;
1102 end if;
1103 end Name_Denotes_Function;
1105 -----------------------
1106 -- No_Interpretation --
1107 -----------------------
1109 procedure No_Interpretation is
1110 L : constant Boolean := Is_List_Member (N);
1111 K : constant Node_Kind := Nkind (Parent (N));
1113 begin
1114 -- If the node is in a list whose parent is not an expression then it
1115 -- must be an attempted procedure call.
1117 if L and then K not in N_Subexpr then
1118 if Ekind (Entity (Nam)) = E_Generic_Procedure then
1119 Error_Msg_NE
1120 ("must instantiate generic procedure& before call",
1121 Nam, Entity (Nam));
1122 else
1123 Error_Msg_N ("procedure or entry name expected", Nam);
1124 end if;
1126 -- Check for tasking cases where only an entry call will do
1128 elsif not L
1129 and then K in N_Entry_Call_Alternative | N_Triggering_Alternative
1130 then
1131 Error_Msg_N ("entry name expected", Nam);
1133 -- Otherwise give general error message
1135 else
1136 Error_Msg_N ("invalid prefix in call", Nam);
1137 end if;
1138 end No_Interpretation;
1140 -- Start of processing for Analyze_Call
1142 begin
1143 -- Initialize the type of the result of the call to the error type,
1144 -- which will be reset if the type is successfully resolved.
1146 Set_Etype (N, Any_Type);
1148 Nam := Name (N);
1150 if not Is_Overloaded (Nam) then
1152 -- Only one interpretation to check
1154 if Ekind (Etype (Nam)) = E_Subprogram_Type then
1155 Nam_Ent := Etype (Nam);
1157 -- If the prefix is an access_to_subprogram, this may be an indirect
1158 -- call. This is the case if the name in the call is not an entity
1159 -- name, or if it is a function name in the context of a procedure
1160 -- call. In this latter case, we have a call to a parameterless
1161 -- function that returns a pointer_to_procedure which is the entity
1162 -- being called. Finally, F (X) may be a call to a parameterless
1163 -- function that returns a pointer to a function with parameters.
1164 -- Note that if F returns an access-to-subprogram whose designated
1165 -- type is an array, F (X) cannot be interpreted as an indirect call
1166 -- through the result of the call to F.
1168 elsif Is_Access_Subprogram_Type (Base_Type (Etype (Nam)))
1169 and then
1170 (not Name_Denotes_Function
1171 or else Nkind (N) = N_Procedure_Call_Statement
1172 or else
1173 (Nkind (Parent (N)) /= N_Explicit_Dereference
1174 and then Is_Entity_Name (Nam)
1175 and then No (First_Formal (Entity (Nam)))
1176 and then not
1177 Is_Array_Type (Etype (Designated_Type (Etype (Nam))))
1178 and then Present (Actuals)))
1179 then
1180 Nam_Ent := Designated_Type (Etype (Nam));
1181 Insert_Explicit_Dereference (Nam);
1183 -- Selected component case. Simple entry or protected operation,
1184 -- where the entry name is given by the selector name.
1186 elsif Nkind (Nam) = N_Selected_Component then
1187 Nam_Ent := Entity (Selector_Name (Nam));
1189 if Ekind (Nam_Ent) not in E_Entry
1190 | E_Entry_Family
1191 | E_Function
1192 | E_Procedure
1193 then
1194 Error_Msg_N ("name in call is not a callable entity", Nam);
1195 Set_Etype (N, Any_Type);
1196 return;
1197 end if;
1199 -- If the name is an Indexed component, it can be a call to a member
1200 -- of an entry family. The prefix must be a selected component whose
1201 -- selector is the entry. Analyze_Procedure_Call normalizes several
1202 -- kinds of call into this form.
1204 elsif Nkind (Nam) = N_Indexed_Component then
1205 if Nkind (Prefix (Nam)) = N_Selected_Component then
1206 Nam_Ent := Entity (Selector_Name (Prefix (Nam)));
1207 else
1208 Error_Msg_N ("name in call is not a callable entity", Nam);
1209 Set_Etype (N, Any_Type);
1210 return;
1211 end if;
1213 elsif not Is_Entity_Name (Nam) then
1214 Error_Msg_N ("name in call is not a callable entity", Nam);
1215 Set_Etype (N, Any_Type);
1216 return;
1218 else
1219 Nam_Ent := Entity (Nam);
1221 -- If not overloadable, this may be a generalized indexing
1222 -- operation with named associations. Rewrite again as an
1223 -- indexed component and analyze as container indexing.
1225 if not Is_Overloadable (Nam_Ent) then
1226 if Present
1227 (Find_Value_Of_Aspect
1228 (Etype (Nam_Ent), Aspect_Constant_Indexing))
1229 then
1230 Replace (N,
1231 Make_Indexed_Component (Sloc (N),
1232 Prefix => Nam,
1233 Expressions => Parameter_Associations (N)));
1235 if Try_Container_Indexing (N, Nam, Expressions (N)) then
1236 return;
1237 else
1238 No_Interpretation;
1239 end if;
1241 else
1242 No_Interpretation;
1243 end if;
1245 return;
1246 end if;
1247 end if;
1249 -- Operations generated for RACW stub types are called only through
1250 -- dispatching, and can never be the static interpretation of a call.
1252 if Is_RACW_Stub_Type_Operation (Nam_Ent) then
1253 No_Interpretation;
1254 return;
1255 end if;
1257 Analyze_One_Call (N, Nam_Ent, True, Success);
1259 -- If the nonoverloaded interpretation is a call to an abstract
1260 -- nondispatching operation, then flag an error and return.
1262 if Is_Overloadable (Nam_Ent)
1263 and then Is_Abstract_Subprogram (Nam_Ent)
1264 and then not Is_Dispatching_Operation (Nam_Ent)
1265 then
1266 Nondispatching_Call_To_Abstract_Operation (N, Nam_Ent);
1267 return;
1268 end if;
1270 -- If this is an indirect call, the return type of the access_to
1271 -- subprogram may be an incomplete type. At the point of the call,
1272 -- use the full type if available, and at the same time update the
1273 -- return type of the access_to_subprogram.
1275 if Success
1276 and then Nkind (Nam) = N_Explicit_Dereference
1277 and then Ekind (Etype (N)) = E_Incomplete_Type
1278 and then Present (Full_View (Etype (N)))
1279 then
1280 Set_Etype (N, Full_View (Etype (N)));
1281 Set_Etype (Nam_Ent, Etype (N));
1282 end if;
1284 -- Overloaded call
1286 else
1287 -- An overloaded selected component must denote overloaded operations
1288 -- of a concurrent type. The interpretations are attached to the
1289 -- simple name of those operations.
1291 if Nkind (Nam) = N_Selected_Component then
1292 Nam := Selector_Name (Nam);
1293 end if;
1295 Get_First_Interp (Nam, X, It);
1296 while Present (It.Nam) loop
1297 Nam_Ent := It.Nam;
1298 Deref := False;
1300 -- Name may be call that returns an access to subprogram, or more
1301 -- generally an overloaded expression one of whose interpretations
1302 -- yields an access to subprogram. If the name is an entity, we do
1303 -- not dereference, because the node is a call that returns the
1304 -- access type: note difference between f(x), where the call may
1305 -- return an access subprogram type, and f(x)(y), where the type
1306 -- returned by the call to f is implicitly dereferenced to analyze
1307 -- the outer call.
1309 if Is_Access_Type (Nam_Ent) then
1310 Nam_Ent := Designated_Type (Nam_Ent);
1312 elsif Is_Access_Type (Etype (Nam_Ent))
1313 and then
1314 (not Is_Entity_Name (Nam)
1315 or else Nkind (N) = N_Procedure_Call_Statement)
1316 and then Ekind (Designated_Type (Etype (Nam_Ent)))
1317 = E_Subprogram_Type
1318 then
1319 Nam_Ent := Designated_Type (Etype (Nam_Ent));
1321 if Is_Entity_Name (Nam) then
1322 Deref := True;
1323 end if;
1324 end if;
1326 -- If the call has been rewritten from a prefixed call, the first
1327 -- parameter has been analyzed, but may need a subsequent
1328 -- dereference, so skip its analysis now.
1330 if Is_Rewrite_Substitution (N)
1331 and then Nkind (Original_Node (N)) = Nkind (N)
1332 and then Nkind (Name (N)) /= Nkind (Name (Original_Node (N)))
1333 and then Present (Parameter_Associations (N))
1334 and then Present (Etype (First (Parameter_Associations (N))))
1335 then
1336 Analyze_One_Call
1337 (N, Nam_Ent, False, Success, Skip_First => True);
1338 else
1339 Analyze_One_Call (N, Nam_Ent, False, Success);
1340 end if;
1342 -- If the interpretation succeeds, mark the proper type of the
1343 -- prefix (any valid candidate will do). If not, remove the
1344 -- candidate interpretation. If this is a parameterless call
1345 -- on an anonymous access to subprogram, X is a variable with
1346 -- an access discriminant D, the entity in the interpretation is
1347 -- D, so rewrite X as X.D.all.
1349 if Success then
1350 if Deref
1351 and then Nkind (Parent (N)) /= N_Explicit_Dereference
1352 then
1353 if Ekind (It.Nam) = E_Discriminant
1354 and then Has_Implicit_Dereference (It.Nam)
1355 then
1356 Rewrite (Name (N),
1357 Make_Explicit_Dereference (Loc,
1358 Prefix =>
1359 Make_Selected_Component (Loc,
1360 Prefix =>
1361 New_Occurrence_Of (Entity (Nam), Loc),
1362 Selector_Name =>
1363 New_Occurrence_Of (It.Nam, Loc))));
1365 Analyze (N);
1366 return;
1368 else
1369 Set_Entity (Nam, It.Nam);
1370 Insert_Explicit_Dereference (Nam);
1371 Set_Etype (Nam, Nam_Ent);
1372 end if;
1374 else
1375 Set_Etype (Nam, It.Typ);
1376 end if;
1378 elsif Nkind (Name (N)) in N_Function_Call | N_Selected_Component
1379 then
1380 Remove_Interp (X);
1381 end if;
1383 Get_Next_Interp (X, It);
1384 end loop;
1386 -- If the name is the result of a function call, it can only be a
1387 -- call to a function returning an access to subprogram. Insert
1388 -- explicit dereference.
1390 if Nkind (Nam) = N_Function_Call then
1391 Insert_Explicit_Dereference (Nam);
1392 end if;
1394 if Etype (N) = Any_Type then
1396 -- None of the interpretations is compatible with the actuals
1398 Diagnose_Call (N, Nam);
1400 -- Special checks for uninstantiated put routines
1402 if Nkind (N) = N_Procedure_Call_Statement
1403 and then Is_Entity_Name (Nam)
1404 and then Chars (Nam) = Name_Put
1405 and then List_Length (Actuals) = 1
1406 then
1407 declare
1408 Arg : constant Node_Id := First (Actuals);
1409 Typ : Entity_Id;
1411 begin
1412 if Nkind (Arg) = N_Parameter_Association then
1413 Typ := Etype (Explicit_Actual_Parameter (Arg));
1414 else
1415 Typ := Etype (Arg);
1416 end if;
1418 if Is_Signed_Integer_Type (Typ) then
1419 Error_Msg_N
1420 ("possible missing instantiation of "
1421 & "'Text_'I'O.'Integer_'I'O!", Nam);
1423 elsif Is_Modular_Integer_Type (Typ) then
1424 Error_Msg_N
1425 ("possible missing instantiation of "
1426 & "'Text_'I'O.'Modular_'I'O!", Nam);
1428 elsif Is_Floating_Point_Type (Typ) then
1429 Error_Msg_N
1430 ("possible missing instantiation of "
1431 & "'Text_'I'O.'Float_'I'O!", Nam);
1433 elsif Is_Ordinary_Fixed_Point_Type (Typ) then
1434 Error_Msg_N
1435 ("possible missing instantiation of "
1436 & "'Text_'I'O.'Fixed_'I'O!", Nam);
1438 elsif Is_Decimal_Fixed_Point_Type (Typ) then
1439 Error_Msg_N
1440 ("possible missing instantiation of "
1441 & "'Text_'I'O.'Decimal_'I'O!", Nam);
1443 elsif Is_Enumeration_Type (Typ) then
1444 Error_Msg_N
1445 ("possible missing instantiation of "
1446 & "'Text_'I'O.'Enumeration_'I'O!", Nam);
1447 end if;
1448 end;
1449 end if;
1451 elsif not Is_Overloaded (N)
1452 and then Is_Entity_Name (Nam)
1453 then
1454 -- Resolution yields a single interpretation. Verify that the
1455 -- reference has capitalization consistent with the declaration.
1457 Set_Entity_With_Checks (Nam, Entity (Nam));
1458 Generate_Reference (Entity (Nam), Nam);
1460 Set_Etype (Nam, Etype (Entity (Nam)));
1461 else
1462 Remove_Abstract_Operations (N);
1463 end if;
1464 end if;
1466 -- Check the accessibility level for actuals for explicitly aliased
1467 -- formals when a function call appears within a return statement.
1468 -- This is only checked if the enclosing subprogram Comes_From_Source,
1469 -- to avoid issuing errors on calls occurring in wrapper subprograms
1470 -- (for example, where the call is part of an expression of an aspect
1471 -- associated with a wrapper, such as Pre'Class).
1473 if Nkind (N) = N_Function_Call
1474 and then Comes_From_Source (N)
1475 and then Present (Nam_Ent)
1476 and then In_Return_Value (N)
1477 and then Comes_From_Source (Current_Subprogram)
1478 then
1479 declare
1480 Form : Node_Id;
1481 Act : Node_Id;
1482 begin
1483 Act := First_Actual (N);
1484 Form := First_Formal (Nam_Ent);
1486 while Present (Form) and then Present (Act) loop
1487 -- Check whether the formal is aliased and if the accessibility
1488 -- level of the actual is deeper than the accessibility level
1489 -- of the enclosing subprogram to which the current return
1490 -- statement applies.
1492 -- Should we be checking Is_Entity_Name on Act? Won't this miss
1493 -- other cases ???
1495 if Is_Explicitly_Aliased (Form)
1496 and then Is_Entity_Name (Act)
1497 and then Static_Accessibility_Level
1498 (Act, Zero_On_Dynamic_Level)
1499 > Subprogram_Access_Level (Current_Subprogram)
1500 then
1501 Error_Msg_N ("actual for explicitly aliased formal is too"
1502 & " short lived", Act);
1503 end if;
1505 Next_Formal (Form);
1506 Next_Actual (Act);
1507 end loop;
1508 end;
1509 end if;
1511 if Ada_Version >= Ada_2012 then
1513 -- Check if the call contains a function with writable actuals
1515 Check_Writable_Actuals (N);
1517 -- If found and the outermost construct that can be evaluated in
1518 -- an arbitrary order is precisely this call, then check all its
1519 -- actuals.
1521 Check_Function_Writable_Actuals (N);
1523 -- The return type of the function may be incomplete. This can be
1524 -- the case if the type is a generic formal, or a limited view. It
1525 -- can also happen when the function declaration appears before the
1526 -- full view of the type (which is legal in Ada 2012) and the call
1527 -- appears in a different unit, in which case the incomplete view
1528 -- must be replaced with the full view (or the nonlimited view)
1529 -- to prevent subsequent type errors. Note that the usual install/
1530 -- removal of limited_with clauses is not sufficient to handle this
1531 -- case, because the limited view may have been captured in another
1532 -- compilation unit that defines the current function.
1534 if Is_Incomplete_Type (Etype (N)) then
1535 if Present (Full_View (Etype (N))) then
1536 if Is_Entity_Name (Nam) then
1537 Set_Etype (Nam, Full_View (Etype (N)));
1538 Set_Etype (Entity (Nam), Full_View (Etype (N)));
1539 end if;
1541 Set_Etype (N, Full_View (Etype (N)));
1543 -- If the call is within a thunk, the nonlimited view should be
1544 -- analyzed eventually (see also Analyze_Return_Type).
1546 elsif From_Limited_With (Etype (N))
1547 and then Present (Non_Limited_View (Etype (N)))
1548 and then
1549 (Ekind (Non_Limited_View (Etype (N))) /= E_Incomplete_Type
1550 or else Is_Thunk (Current_Scope))
1551 then
1552 Set_Etype (N, Non_Limited_View (Etype (N)));
1554 -- If there is no completion for the type, this may be because
1555 -- there is only a limited view of it and there is nothing in
1556 -- the context of the current unit that has required a regular
1557 -- compilation of the unit containing the type. We recognize
1558 -- this unusual case by the fact that unit is not analyzed.
1559 -- Note that the call being analyzed is in a different unit from
1560 -- the function declaration, and nothing indicates that the type
1561 -- is a limited view.
1563 elsif Ekind (Scope (Etype (N))) = E_Package
1564 and then Present (Limited_View (Scope (Etype (N))))
1565 and then not Analyzed (Unit_Declaration_Node (Scope (Etype (N))))
1566 then
1567 Error_Msg_NE
1568 ("cannot call function that returns limited view of}",
1569 N, Etype (N));
1571 Error_Msg_NE
1572 ("\there must be a regular with_clause for package & in the "
1573 & "current unit, or in some unit in its context",
1574 N, Scope (Etype (N)));
1576 Set_Etype (N, Any_Type);
1577 end if;
1578 end if;
1579 end if;
1580 end Analyze_Call;
1582 -----------------------------
1583 -- Analyze_Case_Expression --
1584 -----------------------------
1586 procedure Analyze_Case_Expression (N : Node_Id) is
1587 Expr : constant Node_Id := Expression (N);
1588 First_Alt : constant Node_Id := First (Alternatives (N));
1590 First_Expr : Node_Id := Empty;
1591 -- First expression in the case where there is some type information
1592 -- available, i.e. there is not Any_Type everywhere, which can happen
1593 -- because of some error.
1595 Second_Expr : Node_Id := Empty;
1596 -- Second expression as above
1598 Wrong_Alt : Node_Id := Empty;
1599 -- For error reporting
1601 procedure Non_Static_Choice_Error (Choice : Node_Id);
1602 -- Error routine invoked by the generic instantiation below when
1603 -- the case expression has a non static choice.
1605 procedure Check_Next_Expression (T : Entity_Id; Alt : Node_Id);
1606 -- Check one interpretation of the next expression with type T
1608 procedure Check_Expression_Pair (T1, T2 : Entity_Id; Alt : Node_Id);
1609 -- Check first expression with type T1 and next expression with type T2
1611 package Case_Choices_Analysis is new
1612 Generic_Analyze_Choices
1613 (Process_Associated_Node => No_OP);
1614 use Case_Choices_Analysis;
1616 package Case_Choices_Checking is new
1617 Generic_Check_Choices
1618 (Process_Empty_Choice => No_OP,
1619 Process_Non_Static_Choice => Non_Static_Choice_Error,
1620 Process_Associated_Node => No_OP);
1621 use Case_Choices_Checking;
1623 -----------------------------
1624 -- Non_Static_Choice_Error --
1625 -----------------------------
1627 procedure Non_Static_Choice_Error (Choice : Node_Id) is
1628 begin
1629 Flag_Non_Static_Expr
1630 ("choice given in case expression is not static!", Choice);
1631 end Non_Static_Choice_Error;
1633 ---------------------------
1634 -- Check_Next_Expression --
1635 ---------------------------
1637 procedure Check_Next_Expression (T : Entity_Id; Alt : Node_Id) is
1638 Next_Expr : constant Node_Id := Expression (Alt);
1640 I : Interp_Index;
1641 It : Interp;
1643 begin
1644 if Next_Expr = First_Expr then
1645 Check_Next_Expression (T, Next (Alt));
1646 return;
1647 end if;
1649 -- Loop through the interpretations of the next expression
1651 if not Is_Overloaded (Next_Expr) then
1652 Check_Expression_Pair (T, Etype (Next_Expr), Alt);
1654 else
1655 Get_First_Interp (Next_Expr, I, It);
1656 while Present (It.Typ) loop
1657 Check_Expression_Pair (T, It.Typ, Alt);
1658 Get_Next_Interp (I, It);
1659 end loop;
1660 end if;
1661 end Check_Next_Expression;
1663 ---------------------------
1664 -- Check_Expression_Pair --
1665 ---------------------------
1667 procedure Check_Expression_Pair (T1, T2 : Entity_Id; Alt : Node_Id) is
1668 Next_Expr : constant Node_Id := Expression (Alt);
1670 T : Entity_Id;
1672 begin
1673 if Covers (T1 => T1, T2 => T2)
1674 or else Covers (T1 => T2, T2 => T1)
1675 then
1676 T := Specific_Type (T1, T2);
1678 elsif Is_User_Defined_Literal (First_Expr, T2) then
1679 T := T2;
1681 elsif Is_User_Defined_Literal (Next_Expr, T1) then
1682 T := T1;
1684 else
1685 T := Possible_Type_For_Conditional_Expression (T1, T2);
1687 if No (T) then
1688 Wrong_Alt := Alt;
1689 return;
1690 end if;
1691 end if;
1693 if Present (Next (Alt)) then
1694 Check_Next_Expression (T, Next (Alt));
1695 else
1696 Add_One_Interp (N, T, T);
1697 end if;
1698 end Check_Expression_Pair;
1700 -- Local variables
1702 Alt : Node_Id;
1703 Exp_Type : Entity_Id;
1704 Exp_Btype : Entity_Id;
1705 I : Interp_Index;
1706 It : Interp;
1707 Others_Present : Boolean;
1709 -- Start of processing for Analyze_Case_Expression
1711 begin
1712 Analyze_And_Resolve (Expr, Any_Discrete);
1713 Check_Unset_Reference (Expr);
1714 Exp_Type := Etype (Expr);
1715 Exp_Btype := Base_Type (Exp_Type);
1717 Set_Etype (N, Any_Type);
1719 Alt := First_Alt;
1720 while Present (Alt) loop
1721 if Error_Posted (Expression (Alt)) then
1722 return;
1723 end if;
1725 Analyze_Expression (Expression (Alt));
1727 if Etype (Expression (Alt)) /= Any_Type then
1728 if No (First_Expr) then
1729 First_Expr := Expression (Alt);
1731 elsif No (Second_Expr) then
1732 Second_Expr := Expression (Alt);
1733 end if;
1734 end if;
1736 Next (Alt);
1737 end loop;
1739 -- Get our initial type from the first expression for which we got some
1740 -- useful type information from the expression.
1742 if No (First_Expr) then
1743 return;
1744 end if;
1746 -- The expression must be of a discrete type which must be determinable
1747 -- independently of the context in which the expression occurs, but
1748 -- using the fact that the expression must be of a discrete type.
1749 -- Moreover, the type this expression must not be a character literal
1750 -- (which is always ambiguous).
1752 -- If error already reported by Resolve, nothing more to do
1754 if Exp_Btype = Any_Discrete or else Exp_Btype = Any_Type then
1755 return;
1757 -- Special case message for character literal
1759 elsif Exp_Btype = Any_Character then
1760 Error_Msg_N
1761 ("character literal as case expression is ambiguous", Expr);
1762 return;
1763 end if;
1765 -- If the case expression is a formal object of mode in out, then
1766 -- treat it as having a nonstatic subtype by forcing use of the base
1767 -- type (which has to get passed to Check_Case_Choices below). Also
1768 -- use base type when the case expression is parenthesized.
1770 if Paren_Count (Expr) > 0
1771 or else (Is_Entity_Name (Expr)
1772 and then Ekind (Entity (Expr)) = E_Generic_In_Out_Parameter)
1773 then
1774 Exp_Type := Exp_Btype;
1775 end if;
1777 -- The case expression alternatives cover the range of a static subtype
1778 -- subject to aspect Static_Predicate. Do not check the choices when the
1779 -- case expression has not been fully analyzed yet because this may lead
1780 -- to bogus errors.
1782 if Is_OK_Static_Subtype (Exp_Type)
1783 and then Has_Static_Predicate_Aspect (Exp_Type)
1784 and then In_Spec_Expression
1785 then
1786 null;
1788 -- Call Analyze_Choices and Check_Choices to do the rest of the work
1790 else
1791 Analyze_Choices (Alternatives (N), Exp_Type);
1792 Check_Choices (N, Alternatives (N), Exp_Type, Others_Present);
1794 if Exp_Type = Universal_Integer and then not Others_Present then
1795 Error_Msg_N
1796 ("case on universal integer requires OTHERS choice", Expr);
1797 return;
1798 end if;
1799 end if;
1801 -- RM 4.5.7(10/3): If the case_expression is the operand of a type
1802 -- conversion, the type of the case_expression is the target type
1803 -- of the conversion.
1805 if Nkind (Parent (N)) = N_Type_Conversion then
1806 Set_Etype (N, Etype (Parent (N)));
1807 return;
1808 end if;
1810 -- Loop through the interpretations of the first expression and check
1811 -- the other expressions if present.
1813 if not Is_Overloaded (First_Expr) then
1814 if Present (Second_Expr) then
1815 Check_Next_Expression (Etype (First_Expr), First_Alt);
1816 else
1817 Set_Etype (N, Etype (First_Expr));
1818 end if;
1820 else
1821 Get_First_Interp (First_Expr, I, It);
1822 while Present (It.Typ) loop
1823 if Present (Second_Expr) then
1824 Check_Next_Expression (It.Typ, First_Alt);
1825 else
1826 Add_One_Interp (N, It.Typ, It.Typ);
1827 end if;
1829 Get_Next_Interp (I, It);
1830 end loop;
1831 end if;
1833 -- If no possible interpretation has been found, the type of the wrong
1834 -- alternative doesn't match any interpretation of the FIRST expression.
1836 if Etype (N) = Any_Type and then Present (Wrong_Alt) then
1837 Second_Expr := Expression (Wrong_Alt);
1839 if Is_Overloaded (First_Expr) then
1840 if Is_Overloaded (Second_Expr) then
1841 Error_Msg_N
1842 ("no interpretation compatible with those of previous "
1843 & "alternative",
1844 Second_Expr);
1845 else
1846 Error_Msg_N
1847 ("type incompatible with interpretations of previous "
1848 & "alternative",
1849 Second_Expr);
1850 Error_Msg_NE
1851 ("\this alternative has}!",
1852 Second_Expr,
1853 Etype (Second_Expr));
1854 end if;
1856 else
1857 if Is_Overloaded (Second_Expr) then
1858 Error_Msg_N
1859 ("no interpretation compatible with type of previous "
1860 & "alternative",
1861 Second_Expr);
1862 Error_Msg_NE
1863 ("\previous alternative has}!",
1864 Second_Expr,
1865 Etype (First_Expr));
1866 else
1867 Error_Msg_N
1868 ("type incompatible with that of previous alternative",
1869 Second_Expr);
1870 Error_Msg_NE
1871 ("\previous alternative has}!",
1872 Second_Expr,
1873 Etype (First_Expr));
1874 Error_Msg_NE
1875 ("\this alternative has}!",
1876 Second_Expr,
1877 Etype (Second_Expr));
1878 end if;
1879 end if;
1880 end if;
1881 end Analyze_Case_Expression;
1883 ---------------------------
1884 -- Analyze_Concatenation --
1885 ---------------------------
1887 procedure Analyze_Concatenation (N : Node_Id) is
1889 -- We wish to avoid deep recursion, because concatenations are often
1890 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
1891 -- operands nonrecursively until we find something that is not a
1892 -- concatenation (A in this case), or has already been analyzed. We
1893 -- analyze that, and then walk back up the tree following Parent
1894 -- pointers, calling Analyze_Concatenation_Rest to do the rest of the
1895 -- work at each level. The Parent pointers allow us to avoid recursion,
1896 -- and thus avoid running out of memory.
1898 NN : Node_Id := N;
1899 L : Node_Id;
1901 begin
1902 Candidate_Type := Empty;
1904 -- The following code is equivalent to:
1906 -- Set_Etype (N, Any_Type);
1907 -- Analyze_Expression (Left_Opnd (N));
1908 -- Analyze_Concatenation_Rest (N);
1910 -- where the Analyze_Expression call recurses back here if the left
1911 -- operand is a concatenation.
1913 -- Walk down left operands
1915 loop
1916 Set_Etype (NN, Any_Type);
1917 L := Left_Opnd (NN);
1918 exit when Nkind (L) /= N_Op_Concat or else Analyzed (L);
1919 NN := L;
1920 end loop;
1922 -- Now (given the above example) NN is A&B and L is A
1924 -- First analyze L ...
1926 Analyze_Expression (L);
1928 -- ... then walk NN back up until we reach N (where we started), calling
1929 -- Analyze_Concatenation_Rest along the way.
1931 loop
1932 Analyze_Concatenation_Rest (NN);
1933 exit when NN = N;
1934 NN := Parent (NN);
1935 end loop;
1936 end Analyze_Concatenation;
1938 --------------------------------
1939 -- Analyze_Concatenation_Rest --
1940 --------------------------------
1942 -- If the only one-dimensional array type in scope is String,
1943 -- this is the resulting type of the operation. Otherwise there
1944 -- will be a concatenation operation defined for each user-defined
1945 -- one-dimensional array.
1947 procedure Analyze_Concatenation_Rest (N : Node_Id) is
1948 L : constant Node_Id := Left_Opnd (N);
1949 R : constant Node_Id := Right_Opnd (N);
1950 Op_Id : Entity_Id := Entity (N);
1951 LT : Entity_Id;
1952 RT : Entity_Id;
1954 begin
1955 Analyze_Expression (R);
1957 -- If the entity is present, the node appears in an instance, and
1958 -- denotes a predefined concatenation operation. The resulting type is
1959 -- obtained from the arguments when possible. If the arguments are
1960 -- aggregates, the array type and the concatenation type must be
1961 -- visible.
1963 if Present (Op_Id) then
1964 if Ekind (Op_Id) = E_Operator then
1965 LT := Base_Type (Etype (L));
1966 RT := Base_Type (Etype (R));
1968 if Is_Array_Type (LT)
1969 and then (RT = LT or else RT = Base_Type (Component_Type (LT)))
1970 then
1971 Add_One_Interp (N, Op_Id, LT);
1973 elsif Is_Array_Type (RT)
1974 and then LT = Base_Type (Component_Type (RT))
1975 then
1976 Add_One_Interp (N, Op_Id, RT);
1978 -- If one operand is a string type or a user-defined array type,
1979 -- and the other is a literal, result is of the specific type.
1981 elsif
1982 (Root_Type (LT) = Standard_String
1983 or else Scope (LT) /= Standard_Standard)
1984 and then Etype (R) = Any_String
1985 then
1986 Add_One_Interp (N, Op_Id, LT);
1988 elsif
1989 (Root_Type (RT) = Standard_String
1990 or else Scope (RT) /= Standard_Standard)
1991 and then Etype (L) = Any_String
1992 then
1993 Add_One_Interp (N, Op_Id, RT);
1995 elsif not Is_Generic_Type (Etype (Op_Id)) then
1996 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1998 else
1999 -- Type and its operations must be visible
2001 Set_Entity (N, Empty);
2002 Analyze_Concatenation (N);
2003 end if;
2005 else
2006 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2007 end if;
2009 else
2010 Op_Id := Get_Name_Entity_Id (Name_Op_Concat);
2011 while Present (Op_Id) loop
2012 if Ekind (Op_Id) = E_Operator then
2014 -- Do not consider operators declared in dead code, they
2015 -- cannot be part of the resolution.
2017 if Is_Eliminated (Op_Id) then
2018 null;
2019 else
2020 Find_Concatenation_Types (L, R, Op_Id, N);
2021 end if;
2023 else
2024 Analyze_User_Defined_Binary_Op (N, Op_Id);
2025 end if;
2027 Op_Id := Homonym (Op_Id);
2028 end loop;
2029 end if;
2031 Operator_Check (N);
2032 end Analyze_Concatenation_Rest;
2034 ------------------------------------
2035 -- Analyze_Comparison_Equality_Op --
2036 ------------------------------------
2038 procedure Analyze_Comparison_Equality_Op (N : Node_Id) is
2039 Loc : constant Source_Ptr := Sloc (N);
2040 L : constant Node_Id := Left_Opnd (N);
2041 R : constant Node_Id := Right_Opnd (N);
2043 Op_Id : Entity_Id;
2045 begin
2046 Set_Etype (N, Any_Type);
2047 Candidate_Type := Empty;
2049 Analyze_Expression (L);
2050 Analyze_Expression (R);
2052 -- If the entity is set, the node is a generic instance with a non-local
2053 -- reference to the predefined operator or to a user-defined function.
2054 -- It can also be an inequality that is expanded into the negation of a
2055 -- call to a user-defined equality operator.
2057 -- For the predefined case, the result is Boolean, regardless of the
2058 -- type of the operands. The operands may even be limited, if they are
2059 -- generic actuals. If they are overloaded, label the operands with the
2060 -- compare type if it is present, typically because it is a global type
2061 -- in a generic instance, or with the common type that must be present,
2062 -- or with the type of the formal of the user-defined function.
2064 if Present (Entity (N)) then
2065 Op_Id := Entity (N);
2067 if Ekind (Op_Id) = E_Operator then
2068 Add_One_Interp (N, Op_Id, Standard_Boolean);
2069 else
2070 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2071 end if;
2073 if Is_Overloaded (L) then
2074 if Ekind (Op_Id) = E_Operator then
2075 Set_Etype (L,
2076 (if Present (Compare_Type (N))
2077 then Compare_Type (N)
2078 else Intersect_Types (L, R)));
2079 else
2080 Set_Etype (L, Etype (First_Formal (Op_Id)));
2081 end if;
2082 end if;
2084 if Is_Overloaded (R) then
2085 if Ekind (Op_Id) = E_Operator then
2086 Set_Etype (R,
2087 (if Present (Compare_Type (N))
2088 then Compare_Type (N)
2089 else Intersect_Types (L, R)));
2090 else
2091 Set_Etype (R, Etype (Next_Formal (First_Formal (Op_Id))));
2092 end if;
2093 end if;
2095 else
2096 Op_Id := Get_Name_Entity_Id (Chars (N));
2098 while Present (Op_Id) loop
2099 if Ekind (Op_Id) = E_Operator then
2100 Find_Comparison_Equality_Types (L, R, Op_Id, N);
2101 else
2102 Analyze_User_Defined_Binary_Op (N, Op_Id);
2103 end if;
2105 Op_Id := Homonym (Op_Id);
2106 end loop;
2107 end if;
2109 -- If there was no match and the operator is inequality, this may be
2110 -- a case where inequality has not been made explicit, as for tagged
2111 -- types. Analyze the node as the negation of an equality operation.
2112 -- This cannot be done earlier because, before analysis, we cannot rule
2113 -- out the presence of an explicit inequality.
2115 if Etype (N) = Any_Type and then Nkind (N) = N_Op_Ne then
2116 Op_Id := Get_Name_Entity_Id (Name_Op_Eq);
2118 while Present (Op_Id) loop
2119 if Ekind (Op_Id) = E_Operator then
2120 Find_Comparison_Equality_Types (L, R, Op_Id, N);
2121 else
2122 Analyze_User_Defined_Binary_Op (N, Op_Id);
2123 end if;
2125 Op_Id := Homonym (Op_Id);
2126 end loop;
2128 if Etype (N) /= Any_Type then
2129 Op_Id := Entity (N);
2131 Rewrite (N,
2132 Make_Op_Not (Loc,
2133 Right_Opnd =>
2134 Make_Op_Eq (Loc,
2135 Left_Opnd => Left_Opnd (N),
2136 Right_Opnd => Right_Opnd (N))));
2138 Set_Entity (Right_Opnd (N), Op_Id);
2139 Analyze (N);
2140 end if;
2141 end if;
2143 Operator_Check (N);
2144 Check_Function_Writable_Actuals (N);
2145 end Analyze_Comparison_Equality_Op;
2147 ----------------------------------
2148 -- Analyze_Explicit_Dereference --
2149 ----------------------------------
2151 procedure Analyze_Explicit_Dereference (N : Node_Id) is
2152 Loc : constant Source_Ptr := Sloc (N);
2153 P : constant Node_Id := Prefix (N);
2154 T : Entity_Id;
2155 I : Interp_Index;
2156 It : Interp;
2157 New_N : Node_Id;
2159 function Is_Function_Type return Boolean;
2160 -- Check whether node may be interpreted as an implicit function call
2162 ----------------------
2163 -- Is_Function_Type --
2164 ----------------------
2166 function Is_Function_Type return Boolean is
2167 I : Interp_Index;
2168 It : Interp;
2170 begin
2171 if not Is_Overloaded (N) then
2172 return Ekind (Base_Type (Etype (N))) = E_Subprogram_Type
2173 and then Etype (Base_Type (Etype (N))) /= Standard_Void_Type;
2175 else
2176 Get_First_Interp (N, I, It);
2177 while Present (It.Nam) loop
2178 if Ekind (Base_Type (It.Typ)) /= E_Subprogram_Type
2179 or else Etype (Base_Type (It.Typ)) = Standard_Void_Type
2180 then
2181 return False;
2182 end if;
2184 Get_Next_Interp (I, It);
2185 end loop;
2187 return True;
2188 end if;
2189 end Is_Function_Type;
2191 -- Start of processing for Analyze_Explicit_Dereference
2193 begin
2194 -- In formal verification mode, keep track of all reads and writes
2195 -- through explicit dereferences.
2197 if GNATprove_Mode then
2198 SPARK_Specific.Generate_Dereference (N);
2199 end if;
2201 Analyze (P);
2202 Set_Etype (N, Any_Type);
2204 -- Test for remote access to subprogram type, and if so return
2205 -- after rewriting the original tree.
2207 if Remote_AST_E_Dereference (P) then
2208 return;
2209 end if;
2211 -- Normal processing for other than remote access to subprogram type
2213 if not Is_Overloaded (P) then
2214 if Is_Access_Type (Etype (P)) then
2216 -- Set the Etype
2218 declare
2219 DT : constant Entity_Id := Designated_Type (Etype (P));
2221 begin
2222 -- An explicit dereference is a legal occurrence of an
2223 -- incomplete type imported through a limited_with clause, if
2224 -- the full view is visible, or if we are within an instance
2225 -- body, where the enclosing body has a regular with_clause
2226 -- on the unit.
2228 if From_Limited_With (DT)
2229 and then not From_Limited_With (Scope (DT))
2230 and then
2231 (Is_Immediately_Visible (Scope (DT))
2232 or else
2233 (Is_Child_Unit (Scope (DT))
2234 and then Is_Visible_Lib_Unit (Scope (DT)))
2235 or else In_Instance_Body)
2236 then
2237 Set_Etype (N, Available_View (DT));
2239 else
2240 Set_Etype (N, DT);
2241 end if;
2242 end;
2244 elsif Etype (P) /= Any_Type then
2245 Error_Msg_N ("prefix of dereference must be an access type", N);
2246 return;
2247 end if;
2249 else
2250 Get_First_Interp (P, I, It);
2251 while Present (It.Nam) loop
2252 T := It.Typ;
2254 if Is_Access_Type (T) then
2255 Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
2256 end if;
2258 Get_Next_Interp (I, It);
2259 end loop;
2261 -- Error if no interpretation of the prefix has an access type
2263 if Etype (N) = Any_Type then
2264 Error_Msg_N
2265 ("access type required in prefix of explicit dereference", P);
2266 Set_Etype (N, Any_Type);
2267 return;
2268 end if;
2269 end if;
2271 if Is_Function_Type
2272 and then Nkind (Parent (N)) /= N_Indexed_Component
2274 and then (Nkind (Parent (N)) /= N_Function_Call
2275 or else N /= Name (Parent (N)))
2277 and then (Nkind (Parent (N)) /= N_Procedure_Call_Statement
2278 or else N /= Name (Parent (N)))
2280 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
2281 and then (Nkind (Parent (N)) /= N_Attribute_Reference
2282 or else
2283 (Attribute_Name (Parent (N)) /= Name_Address
2284 and then
2285 Attribute_Name (Parent (N)) /= Name_Access))
2286 then
2287 -- Name is a function call with no actuals, in a context that
2288 -- requires deproceduring (including as an actual in an enclosing
2289 -- function or procedure call). There are some pathological cases
2290 -- where the prefix might include functions that return access to
2291 -- subprograms and others that return a regular type. Disambiguation
2292 -- of those has to take place in Resolve.
2294 New_N :=
2295 Make_Function_Call (Loc,
2296 Name => Make_Explicit_Dereference (Loc, P),
2297 Parameter_Associations => New_List);
2299 -- If the prefix is overloaded, remove operations that have formals,
2300 -- we know that this is a parameterless call.
2302 if Is_Overloaded (P) then
2303 Get_First_Interp (P, I, It);
2304 while Present (It.Nam) loop
2305 T := It.Typ;
2307 if No (First_Formal (Base_Type (Designated_Type (T)))) then
2308 Set_Etype (P, T);
2309 else
2310 Remove_Interp (I);
2311 end if;
2313 Get_Next_Interp (I, It);
2314 end loop;
2315 end if;
2317 Rewrite (N, New_N);
2318 Analyze (N);
2320 elsif not Is_Function_Type
2321 and then Is_Overloaded (N)
2322 then
2323 -- The prefix may include access to subprograms and other access
2324 -- types. If the context selects the interpretation that is a
2325 -- function call (not a procedure call) we cannot rewrite the node
2326 -- yet, but we include the result of the call interpretation.
2328 Get_First_Interp (N, I, It);
2329 while Present (It.Nam) loop
2330 if Ekind (Base_Type (It.Typ)) = E_Subprogram_Type
2331 and then Etype (Base_Type (It.Typ)) /= Standard_Void_Type
2332 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
2333 then
2334 Add_One_Interp (N, Etype (It.Typ), Etype (It.Typ));
2335 end if;
2337 Get_Next_Interp (I, It);
2338 end loop;
2339 end if;
2341 -- A value of remote access-to-class-wide must not be dereferenced
2342 -- (RM E.2.2(16)).
2344 Validate_Remote_Access_To_Class_Wide_Type (N);
2345 end Analyze_Explicit_Dereference;
2347 ------------------------
2348 -- Analyze_Expression --
2349 ------------------------
2351 procedure Analyze_Expression (N : Node_Id) is
2352 begin
2353 -- If the expression is an indexed component that will be rewritten
2354 -- as a container indexing, it has already been analyzed.
2356 if Nkind (N) = N_Indexed_Component
2357 and then Present (Generalized_Indexing (N))
2358 then
2359 null;
2361 else
2362 Analyze (N);
2363 Check_Parameterless_Call (N);
2364 end if;
2365 end Analyze_Expression;
2367 -------------------------------------
2368 -- Analyze_Expression_With_Actions --
2369 -------------------------------------
2371 procedure Analyze_Expression_With_Actions (N : Node_Id) is
2373 procedure Check_Action_OK (A : Node_Id);
2374 -- Check that the action A is allowed as a declare_item of a declare
2375 -- expression if N and A come from source.
2377 ---------------------
2378 -- Check_Action_OK --
2379 ---------------------
2381 procedure Check_Action_OK (A : Node_Id) is
2382 begin
2383 if not Comes_From_Source (N) or else not Comes_From_Source (A) then
2385 -- If, for example, an (illegal) expression function is
2386 -- transformed into a "vanilla" function then we don't want to
2387 -- allow it just because Comes_From_Source is now False. So look
2388 -- at the Original_Node.
2390 if Is_Rewrite_Substitution (A) then
2391 Check_Action_OK (Original_Node (A));
2392 end if;
2394 return; -- Allow anything in generated code
2395 end if;
2397 case Nkind (A) is
2398 when N_Object_Declaration =>
2399 if Nkind (Object_Definition (A)) = N_Access_Definition then
2400 Error_Msg_N
2401 ("anonymous access type not allowed in declare_expression",
2402 Object_Definition (A));
2403 end if;
2405 if Aliased_Present (A) then
2406 Error_Msg_N ("ALIASED not allowed in declare_expression", A);
2407 end if;
2409 if Constant_Present (A)
2410 and then not Is_Limited_Type (Etype (Defining_Identifier (A)))
2411 then
2412 return; -- nonlimited constants are OK
2413 end if;
2415 when N_Object_Renaming_Declaration =>
2416 if Present (Access_Definition (A)) then
2417 Error_Msg_N
2418 ("anonymous access type not allowed in declare_expression",
2419 Access_Definition (A));
2420 end if;
2422 if not Is_Limited_Type (Etype (Defining_Identifier (A))) then
2423 return; -- ???For now; the RM rule is a bit more complicated
2424 end if;
2426 when N_Pragma =>
2427 declare
2428 -- See AI22-0045 pragma categorization.
2429 subtype Executable_Pragma_Id is Pragma_Id
2430 with Predicate => Executable_Pragma_Id in
2431 -- language-defined executable pragmas
2432 Pragma_Assert | Pragma_Inspection_Point
2434 -- GNAT-defined executable pragmas
2435 | Pragma_Assume | Pragma_Debug;
2436 begin
2437 if Get_Pragma_Id (A) in Executable_Pragma_Id then
2438 return;
2439 end if;
2440 end;
2442 when others =>
2443 null; -- Nothing else allowed
2444 end case;
2446 -- We could mention pragmas in the message text; let's not.
2447 Error_Msg_N ("object renaming or constant declaration expected", A);
2448 end Check_Action_OK;
2450 A : Node_Id;
2451 EWA_Scop : Entity_Id;
2453 -- Start of processing for Analyze_Expression_With_Actions
2455 begin
2456 -- Create a scope, which is needed to provide proper visibility of the
2457 -- declare_items.
2459 EWA_Scop := New_Internal_Entity (E_Block, Current_Scope, Sloc (N), 'B');
2460 Set_Etype (EWA_Scop, Standard_Void_Type);
2461 Set_Scope (EWA_Scop, Current_Scope);
2462 Set_Parent (EWA_Scop, N);
2463 Push_Scope (EWA_Scop);
2465 -- If this Expression_With_Actions node comes from source, then it
2466 -- represents a declare_expression; increment the counter to take note
2467 -- of that.
2469 if Comes_From_Source (N) then
2470 In_Declare_Expr := In_Declare_Expr + 1;
2471 end if;
2473 A := First (Actions (N));
2474 while Present (A) loop
2475 Analyze (A);
2476 Check_Action_OK (A);
2477 Next (A);
2478 end loop;
2480 Analyze_Expression (Expression (N));
2481 Set_Etype (N, Etype (Expression (N)));
2482 End_Scope;
2484 if Comes_From_Source (N) then
2485 In_Declare_Expr := In_Declare_Expr - 1;
2486 end if;
2487 end Analyze_Expression_With_Actions;
2489 ---------------------------
2490 -- Analyze_If_Expression --
2491 ---------------------------
2493 procedure Analyze_If_Expression (N : Node_Id) is
2494 Condition : constant Node_Id := First (Expressions (N));
2496 Then_Expr : Node_Id;
2497 Else_Expr : Node_Id;
2499 procedure Check_Else_Expression (T : Entity_Id);
2500 -- Check one interpretation of the THEN expression with type T
2502 procedure Check_Expression_Pair (T1, T2 : Entity_Id);
2503 -- Check THEN expression with type T1 and ELSE expression with type T2
2505 ---------------------------
2506 -- Check_Else_Expression --
2507 ---------------------------
2509 procedure Check_Else_Expression (T : Entity_Id) is
2510 I : Interp_Index;
2511 It : Interp;
2513 begin
2514 -- Loop through the interpretations of the ELSE expression
2516 if not Is_Overloaded (Else_Expr) then
2517 Check_Expression_Pair (T, Etype (Else_Expr));
2519 else
2520 Get_First_Interp (Else_Expr, I, It);
2521 while Present (It.Typ) loop
2522 Check_Expression_Pair (T, It.Typ);
2523 Get_Next_Interp (I, It);
2524 end loop;
2525 end if;
2526 end Check_Else_Expression;
2528 ---------------------------
2529 -- Check_Expression_Pair --
2530 ---------------------------
2532 procedure Check_Expression_Pair (T1, T2 : Entity_Id) is
2533 T : Entity_Id;
2535 begin
2536 if Covers (T1 => T1, T2 => T2)
2537 or else Covers (T1 => T2, T2 => T1)
2538 then
2539 T := Specific_Type (T1, T2);
2541 elsif Is_User_Defined_Literal (Then_Expr, T2) then
2542 T := T2;
2544 elsif Is_User_Defined_Literal (Else_Expr, T1) then
2545 T := T1;
2547 else
2548 T := Possible_Type_For_Conditional_Expression (T1, T2);
2550 if No (T) then
2551 return;
2552 end if;
2553 end if;
2555 Add_One_Interp (N, T, T);
2556 end Check_Expression_Pair;
2558 -- Local variables
2560 I : Interp_Index;
2561 It : Interp;
2563 -- Start of processing for Analyze_If_Expression
2565 begin
2566 -- Defend against error of missing expressions from previous error
2568 if No (Condition) then
2569 Check_Error_Detected;
2570 return;
2571 end if;
2573 Set_Etype (N, Any_Type);
2575 Then_Expr := Next (Condition);
2577 if No (Then_Expr) then
2578 Check_Error_Detected;
2579 return;
2580 end if;
2582 Else_Expr := Next (Then_Expr);
2584 -- Analyze and resolve the condition. We need to resolve this now so
2585 -- that it gets folded to True/False if possible, before we analyze
2586 -- the THEN/ELSE branches, because when analyzing these branches, we
2587 -- may call Is_Statically_Unevaluated, which expects the condition of
2588 -- an enclosing IF to have been analyze/resolved/evaluated.
2590 Analyze_Expression (Condition);
2591 Resolve (Condition, Any_Boolean);
2593 -- Analyze the THEN expression and (if present) the ELSE expression. For
2594 -- them we delay resolution in the normal manner because of overloading.
2596 Analyze_Expression (Then_Expr);
2598 if Present (Else_Expr) then
2599 Analyze_Expression (Else_Expr);
2600 end if;
2602 -- RM 4.5.7(10/3): If the if_expression is the operand of a type
2603 -- conversion, the type of the if_expression is the target type
2604 -- of the conversion.
2606 if Nkind (Parent (N)) = N_Type_Conversion then
2607 Set_Etype (N, Etype (Parent (N)));
2608 return;
2609 end if;
2611 -- Loop through the interpretations of the THEN expression and check the
2612 -- ELSE expression if present.
2614 if not Is_Overloaded (Then_Expr) then
2615 if Present (Else_Expr) then
2616 Check_Else_Expression (Etype (Then_Expr));
2617 else
2618 Set_Etype (N, Etype (Then_Expr));
2619 end if;
2621 else
2622 Get_First_Interp (Then_Expr, I, It);
2623 while Present (It.Typ) loop
2624 if Present (Else_Expr) then
2625 Check_Else_Expression (It.Typ);
2626 else
2627 Add_One_Interp (N, It.Typ, It.Typ);
2628 end if;
2630 Get_Next_Interp (I, It);
2631 end loop;
2632 end if;
2634 -- If no possible interpretation has been found, the type of the
2635 -- ELSE expression does not match any interpretation of the THEN
2636 -- expression.
2638 if Etype (N) = Any_Type then
2639 if Is_Overloaded (Then_Expr) then
2640 if Is_Overloaded (Else_Expr) then
2641 Error_Msg_N
2642 ("no interpretation compatible with those of THEN expression",
2643 Else_Expr);
2644 else
2645 Error_Msg_N
2646 ("type of ELSE incompatible with interpretations of THEN "
2647 & "expression",
2648 Else_Expr);
2649 Error_Msg_NE
2650 ("\ELSE expression has}!", Else_Expr, Etype (Else_Expr));
2651 end if;
2653 else
2654 if Is_Overloaded (Else_Expr) then
2655 Error_Msg_N
2656 ("no interpretation compatible with type of THEN expression",
2657 Else_Expr);
2658 Error_Msg_NE
2659 ("\THEN expression has}!", Else_Expr, Etype (Then_Expr));
2660 else
2661 Error_Msg_N
2662 ("type of ELSE incompatible with that of THEN expression",
2663 Else_Expr);
2664 Error_Msg_NE
2665 ("\THEN expression has}!", Else_Expr, Etype (Then_Expr));
2666 Error_Msg_NE
2667 ("\ELSE expression has}!", Else_Expr, Etype (Else_Expr));
2668 end if;
2669 end if;
2670 end if;
2671 end Analyze_If_Expression;
2673 ------------------------------------
2674 -- Analyze_Indexed_Component_Form --
2675 ------------------------------------
2677 procedure Analyze_Indexed_Component_Form (N : Node_Id) is
2678 P : constant Node_Id := Prefix (N);
2679 Exprs : constant List_Id := Expressions (N);
2680 Exp : Node_Id;
2681 P_T : Entity_Id;
2682 E : Node_Id;
2683 U_N : Entity_Id;
2685 procedure Process_Function_Call;
2686 -- Prefix in indexed component form is an overloadable entity, so the
2687 -- node is very likely a function call; reformat it as such. The only
2688 -- exception is a call to a parameterless function that returns an
2689 -- array type, or an access type thereof, in which case this will be
2690 -- undone later by Resolve_Call or Resolve_Entry_Call.
2692 procedure Process_Indexed_Component;
2693 -- Prefix in indexed component form is actually an indexed component.
2694 -- This routine processes it, knowing that the prefix is already
2695 -- resolved.
2697 procedure Process_Indexed_Component_Or_Slice;
2698 -- An indexed component with a single index may designate a slice if
2699 -- the index is a subtype mark. This routine disambiguates these two
2700 -- cases by resolving the prefix to see if it is a subtype mark.
2702 procedure Process_Overloaded_Indexed_Component;
2703 -- If the prefix of an indexed component is overloaded, the proper
2704 -- interpretation is selected by the index types and the context.
2706 ---------------------------
2707 -- Process_Function_Call --
2708 ---------------------------
2710 procedure Process_Function_Call is
2711 Loc : constant Source_Ptr := Sloc (N);
2712 Actual : Node_Id;
2714 begin
2715 Change_Node (N, N_Function_Call);
2716 Set_Name (N, P);
2717 Set_Parameter_Associations (N, Exprs);
2719 -- Analyze actuals prior to analyzing the call itself
2721 Actual := First (Parameter_Associations (N));
2722 while Present (Actual) loop
2723 Analyze (Actual);
2724 Check_Parameterless_Call (Actual);
2726 -- Move to next actual. Note that we use Next, not Next_Actual
2727 -- here. The reason for this is a bit subtle. If a function call
2728 -- includes named associations, the parser recognizes the node
2729 -- as a call, and it is analyzed as such. If all associations are
2730 -- positional, the parser builds an indexed_component node, and
2731 -- it is only after analysis of the prefix that the construct
2732 -- is recognized as a call, in which case Process_Function_Call
2733 -- rewrites the node and analyzes the actuals. If the list of
2734 -- actuals is malformed, the parser may leave the node as an
2735 -- indexed component (despite the presence of named associations).
2736 -- The iterator Next_Actual is equivalent to Next if the list is
2737 -- positional, but follows the normalized chain of actuals when
2738 -- named associations are present. In this case normalization has
2739 -- not taken place, and actuals remain unanalyzed, which leads to
2740 -- subsequent crashes or loops if there is an attempt to continue
2741 -- analysis of the program.
2743 -- IF there is a single actual and it is a type name, the node
2744 -- can only be interpreted as a slice of a parameterless call.
2745 -- Rebuild the node as such and analyze.
2747 if No (Next (Actual))
2748 and then Is_Entity_Name (Actual)
2749 and then Is_Type (Entity (Actual))
2750 and then Is_Discrete_Type (Entity (Actual))
2751 and then not Is_Current_Instance (Actual)
2752 then
2753 Replace (N,
2754 Make_Slice (Loc,
2755 Prefix => P,
2756 Discrete_Range =>
2757 New_Occurrence_Of (Entity (Actual), Loc)));
2758 Analyze (N);
2759 return;
2761 else
2762 Next (Actual);
2763 end if;
2764 end loop;
2766 Analyze_Call (N);
2767 end Process_Function_Call;
2769 -------------------------------
2770 -- Process_Indexed_Component --
2771 -------------------------------
2773 procedure Process_Indexed_Component is
2774 Exp : Node_Id;
2775 Array_Type : Entity_Id;
2776 Index : Node_Id;
2777 Pent : Entity_Id := Empty;
2779 begin
2780 Exp := First (Exprs);
2782 if Is_Overloaded (P) then
2783 Process_Overloaded_Indexed_Component;
2785 else
2786 Array_Type := Etype (P);
2788 if Is_Entity_Name (P) then
2789 Pent := Entity (P);
2790 elsif Nkind (P) = N_Selected_Component
2791 and then Is_Entity_Name (Selector_Name (P))
2792 then
2793 Pent := Entity (Selector_Name (P));
2794 end if;
2796 -- Prefix must be appropriate for an array type, taking into
2797 -- account a possible implicit dereference.
2799 if Is_Access_Type (Array_Type) then
2800 Error_Msg_NW
2801 (Warn_On_Dereference, "?d?implicit dereference", N);
2802 Array_Type := Implicitly_Designated_Type (Array_Type);
2803 end if;
2805 if Is_Array_Type (Array_Type) then
2807 -- In order to correctly access First_Index component later,
2808 -- replace string literal subtype by its parent type.
2810 if Ekind (Array_Type) = E_String_Literal_Subtype then
2811 Array_Type := Etype (Array_Type);
2812 end if;
2814 elsif Present (Pent) and then Ekind (Pent) = E_Entry_Family then
2815 Analyze (Exp);
2816 Set_Etype (N, Any_Type);
2818 if not Has_Compatible_Type (Exp, Entry_Index_Type (Pent)) then
2819 Error_Msg_N ("invalid index type in entry name", N);
2821 elsif Present (Next (Exp)) then
2822 Error_Msg_N ("too many subscripts in entry reference", N);
2824 else
2825 Set_Etype (N, Etype (P));
2826 end if;
2828 return;
2830 elsif Is_Record_Type (Array_Type)
2831 and then Remote_AST_I_Dereference (P)
2832 then
2833 return;
2835 elsif Try_Container_Indexing (N, P, Exprs) then
2836 return;
2838 elsif Array_Type = Any_Type then
2839 Set_Etype (N, Any_Type);
2841 -- In most cases the analysis of the prefix will have emitted
2842 -- an error already, but if the prefix may be interpreted as a
2843 -- call in prefixed notation, the report is left to the caller.
2844 -- To prevent cascaded errors, report only if no previous ones.
2846 if Serious_Errors_Detected = 0 then
2847 Error_Msg_N ("invalid prefix in indexed component", P);
2849 if Nkind (P) = N_Expanded_Name then
2850 Error_Msg_NE ("\& is not visible", P, Selector_Name (P));
2851 end if;
2852 end if;
2854 return;
2856 -- Here we definitely have a bad indexing
2858 else
2859 if Nkind (Parent (N)) = N_Requeue_Statement
2860 and then Present (Pent) and then Ekind (Pent) = E_Entry
2861 then
2862 Error_Msg_N
2863 ("REQUEUE does not permit parameters", First (Exprs));
2865 elsif Is_Entity_Name (P)
2866 and then Etype (P) = Standard_Void_Type
2867 then
2868 Error_Msg_NE ("incorrect use of &", P, Entity (P));
2870 else
2871 Error_Msg_N ("array type required in indexed component", P);
2872 end if;
2874 Set_Etype (N, Any_Type);
2875 return;
2876 end if;
2878 Index := First_Index (Array_Type);
2879 while Present (Index) and then Present (Exp) loop
2880 if not Has_Compatible_Type (Exp, Etype (Index)) then
2881 Wrong_Type (Exp, Etype (Index));
2882 Set_Etype (N, Any_Type);
2883 return;
2884 end if;
2886 Next_Index (Index);
2887 Next (Exp);
2888 end loop;
2890 Set_Etype (N, Component_Type (Array_Type));
2891 Check_Implicit_Dereference (N, Etype (N));
2893 if Present (Index) then
2894 Error_Msg_N
2895 ("too few subscripts in array reference", First (Exprs));
2897 elsif Present (Exp) then
2898 Error_Msg_N ("too many subscripts in array reference", Exp);
2899 end if;
2900 end if;
2901 end Process_Indexed_Component;
2903 ----------------------------------------
2904 -- Process_Indexed_Component_Or_Slice --
2905 ----------------------------------------
2907 procedure Process_Indexed_Component_Or_Slice is
2908 begin
2909 Exp := First (Exprs);
2910 while Present (Exp) loop
2911 Analyze_Expression (Exp);
2912 Next (Exp);
2913 end loop;
2915 Exp := First (Exprs);
2917 -- If one index is present, and it is a subtype name, then the node
2918 -- denotes a slice (note that the case of an explicit range for a
2919 -- slice was already built as an N_Slice node in the first place,
2920 -- so that case is not handled here).
2922 -- We use a replace rather than a rewrite here because this is one
2923 -- of the cases in which the tree built by the parser is plain wrong.
2925 if No (Next (Exp))
2926 and then Is_Entity_Name (Exp)
2927 and then Is_Type (Entity (Exp))
2928 then
2929 Replace (N,
2930 Make_Slice (Sloc (N),
2931 Prefix => P,
2932 Discrete_Range => New_Copy (Exp)));
2933 Analyze (N);
2935 -- Otherwise (more than one index present, or single index is not
2936 -- a subtype name), then we have the indexed component case.
2938 else
2939 Process_Indexed_Component;
2940 end if;
2941 end Process_Indexed_Component_Or_Slice;
2943 ------------------------------------------
2944 -- Process_Overloaded_Indexed_Component --
2945 ------------------------------------------
2947 procedure Process_Overloaded_Indexed_Component is
2948 Exp : Node_Id;
2949 I : Interp_Index;
2950 It : Interp;
2951 Typ : Entity_Id;
2952 Index : Node_Id;
2953 Found : Boolean;
2955 begin
2956 Set_Etype (N, Any_Type);
2958 Get_First_Interp (P, I, It);
2959 while Present (It.Nam) loop
2960 Typ := It.Typ;
2962 if Is_Access_Type (Typ) then
2963 Typ := Designated_Type (Typ);
2964 Error_Msg_NW
2965 (Warn_On_Dereference, "?d?implicit dereference", N);
2966 end if;
2968 if Is_Array_Type (Typ) then
2970 -- Got a candidate: verify that index types are compatible
2972 Index := First_Index (Typ);
2973 Found := True;
2974 Exp := First (Exprs);
2975 while Present (Index) and then Present (Exp) loop
2976 if Has_Compatible_Type (Exp, Etype (Index)) then
2977 null;
2978 else
2979 Found := False;
2980 Remove_Interp (I);
2981 exit;
2982 end if;
2984 Next_Index (Index);
2985 Next (Exp);
2986 end loop;
2988 if Found and then No (Index) and then No (Exp) then
2989 declare
2990 CT : constant Entity_Id :=
2991 Base_Type (Component_Type (Typ));
2992 begin
2993 Add_One_Interp (N, CT, CT);
2994 Check_Implicit_Dereference (N, CT);
2995 end;
2996 end if;
2998 elsif Try_Container_Indexing (N, P, Exprs) then
2999 return;
3001 end if;
3003 Get_Next_Interp (I, It);
3004 end loop;
3006 if Etype (N) = Any_Type then
3007 Error_Msg_N ("no legal interpretation for indexed component", N);
3008 Set_Is_Overloaded (N, False);
3009 end if;
3010 end Process_Overloaded_Indexed_Component;
3012 -- Start of processing for Analyze_Indexed_Component_Form
3014 begin
3015 -- Get name of array, function or type
3017 Analyze (P);
3019 -- If P is an explicit dereference whose prefix is of a remote access-
3020 -- to-subprogram type, then N has already been rewritten as a subprogram
3021 -- call and analyzed.
3023 if Nkind (N) in N_Subprogram_Call then
3024 return;
3026 -- When the prefix is attribute 'Loop_Entry and the sole expression of
3027 -- the indexed component denotes a loop name, the indexed form is turned
3028 -- into an attribute reference.
3030 elsif Nkind (N) = N_Attribute_Reference
3031 and then Attribute_Name (N) = Name_Loop_Entry
3032 then
3033 return;
3034 end if;
3036 pragma Assert (Nkind (N) = N_Indexed_Component);
3038 P_T := Base_Type (Etype (P));
3040 if Is_Entity_Name (P) and then Present (Entity (P)) then
3041 U_N := Entity (P);
3043 if Is_Type (U_N) then
3045 -- Reformat node as a type conversion
3047 E := Remove_Head (Exprs);
3049 if Present (First (Exprs)) then
3050 Error_Msg_N
3051 ("argument of type conversion must be single expression", N);
3052 end if;
3054 Change_Node (N, N_Type_Conversion);
3055 Set_Subtype_Mark (N, P);
3056 Set_Etype (N, U_N);
3057 Set_Expression (N, E);
3059 -- After changing the node, call for the specific Analysis
3060 -- routine directly, to avoid a double call to the expander.
3062 Analyze_Type_Conversion (N);
3063 return;
3064 end if;
3066 if Is_Overloadable (U_N) then
3067 Process_Function_Call;
3069 elsif Ekind (Etype (P)) = E_Subprogram_Type
3070 or else (Is_Access_Type (Etype (P))
3071 and then
3072 Ekind (Designated_Type (Etype (P))) =
3073 E_Subprogram_Type)
3074 then
3075 -- Call to access_to-subprogram with possible implicit dereference
3077 Process_Function_Call;
3079 elsif Is_Generic_Subprogram (U_N) then
3081 -- A common beginner's (or C++ templates fan) error
3083 Error_Msg_N ("generic subprogram cannot be called", N);
3084 Set_Etype (N, Any_Type);
3085 return;
3087 else
3088 Process_Indexed_Component_Or_Slice;
3089 end if;
3091 -- If not an entity name, prefix is an expression that may denote
3092 -- an array or an access-to-subprogram.
3094 else
3095 if Ekind (P_T) = E_Subprogram_Type
3096 or else (Is_Access_Type (P_T)
3097 and then
3098 Ekind (Designated_Type (P_T)) = E_Subprogram_Type)
3099 then
3100 Process_Function_Call;
3102 elsif Nkind (P) = N_Selected_Component
3103 and then Present (Entity (Selector_Name (P)))
3104 and then Is_Overloadable (Entity (Selector_Name (P)))
3105 then
3106 Process_Function_Call;
3107 else
3108 -- Indexed component, slice, or a call to a member of a family
3109 -- entry, which will be converted to an entry call later.
3111 Process_Indexed_Component_Or_Slice;
3112 end if;
3113 end if;
3115 Analyze_Dimension (N);
3116 end Analyze_Indexed_Component_Form;
3118 ------------------------
3119 -- Analyze_Logical_Op --
3120 ------------------------
3122 procedure Analyze_Logical_Op (N : Node_Id) is
3123 L : constant Node_Id := Left_Opnd (N);
3124 R : constant Node_Id := Right_Opnd (N);
3126 Op_Id : Entity_Id;
3128 begin
3129 Set_Etype (N, Any_Type);
3130 Candidate_Type := Empty;
3132 Analyze_Expression (L);
3133 Analyze_Expression (R);
3135 -- If the entity is already set, the node is the instantiation of a
3136 -- generic node with a non-local reference, or was manufactured by a
3137 -- call to Make_Op_xxx. In either case the entity is known to be valid,
3138 -- and we do not need to collect interpretations, instead we just get
3139 -- the single possible interpretation.
3141 if Present (Entity (N)) then
3142 Op_Id := Entity (N);
3144 if Ekind (Op_Id) = E_Operator then
3145 Find_Boolean_Types (L, R, Op_Id, N);
3146 else
3147 Add_One_Interp (N, Op_Id, Etype (Op_Id));
3148 end if;
3150 -- Entity is not already set, so we do need to collect interpretations
3152 else
3153 Op_Id := Get_Name_Entity_Id (Chars (N));
3154 while Present (Op_Id) loop
3155 if Ekind (Op_Id) = E_Operator then
3156 Find_Boolean_Types (L, R, Op_Id, N);
3157 else
3158 Analyze_User_Defined_Binary_Op (N, Op_Id);
3159 end if;
3161 Op_Id := Homonym (Op_Id);
3162 end loop;
3163 end if;
3165 Operator_Check (N);
3166 Check_Function_Writable_Actuals (N);
3168 if Style_Check then
3169 if Nkind (L) not in N_Short_Circuit | N_Op_And | N_Op_Or | N_Op_Xor
3170 and then Is_Boolean_Type (Etype (L))
3171 then
3172 Check_Xtra_Parens_Precedence (L);
3173 end if;
3175 if Nkind (R) not in N_Short_Circuit | N_Op_And | N_Op_Or | N_Op_Xor
3176 and then Is_Boolean_Type (Etype (R))
3177 then
3178 Check_Xtra_Parens_Precedence (R);
3179 end if;
3180 end if;
3181 end Analyze_Logical_Op;
3183 ---------------------------
3184 -- Analyze_Membership_Op --
3185 ---------------------------
3187 procedure Analyze_Membership_Op (N : Node_Id) is
3188 Loc : constant Source_Ptr := Sloc (N);
3189 L : constant Node_Id := Left_Opnd (N);
3190 R : constant Node_Id := Right_Opnd (N);
3192 procedure Analyze_Set_Membership;
3193 -- If a set of alternatives is present, analyze each and find the
3194 -- common type to which they must all resolve.
3196 function Find_Interp return Boolean;
3197 -- Find a valid interpretation of the test. Note that the context of the
3198 -- operation plays no role in resolving the operands, so that if there
3199 -- is more than one interpretation of the operands that is compatible
3200 -- with the test, the operation is ambiguous.
3202 function Try_Left_Interp (T : Entity_Id) return Boolean;
3203 -- Try an interpretation of the left operand with type T. Return true if
3204 -- one interpretation (at least) of the right operand making up a valid
3205 -- operand pair exists, otherwise false if no such pair exists.
3207 function Is_Valid_Pair (T1, T2 : Entity_Id) return Boolean;
3208 -- Return true if T1 and T2 constitute a valid pair of operand types for
3209 -- L and R respectively.
3211 ----------------------------
3212 -- Analyze_Set_Membership --
3213 ----------------------------
3215 procedure Analyze_Set_Membership is
3216 Alt : Node_Id;
3217 Index : Interp_Index;
3218 It : Interp;
3219 Candidate_Interps : Node_Id;
3220 Common_Type : Entity_Id := Empty;
3222 begin
3223 Analyze (L);
3224 Candidate_Interps := L;
3226 if not Is_Overloaded (L) then
3227 Common_Type := Etype (L);
3229 Alt := First (Alternatives (N));
3230 while Present (Alt) loop
3231 Analyze (Alt);
3233 if not Has_Compatible_Type (Alt, Common_Type) then
3234 Wrong_Type (Alt, Common_Type);
3235 end if;
3237 Next (Alt);
3238 end loop;
3240 else
3241 Alt := First (Alternatives (N));
3242 while Present (Alt) loop
3243 Analyze (Alt);
3244 if not Is_Overloaded (Alt) then
3245 Common_Type := Etype (Alt);
3247 else
3248 Get_First_Interp (Alt, Index, It);
3249 while Present (It.Typ) loop
3250 if not
3251 Has_Compatible_Type (Candidate_Interps, It.Typ)
3252 then
3253 Remove_Interp (Index);
3254 end if;
3256 Get_Next_Interp (Index, It);
3257 end loop;
3259 Get_First_Interp (Alt, Index, It);
3261 if No (It.Typ) then
3262 Error_Msg_N ("alternative has no legal type", Alt);
3263 return;
3264 end if;
3266 -- If alternative is not overloaded, we have a unique type
3267 -- for all of them.
3269 Set_Etype (Alt, It.Typ);
3271 -- If the alternative is an enumeration literal, use the one
3272 -- for this interpretation.
3274 if Is_Entity_Name (Alt) then
3275 Set_Entity (Alt, It.Nam);
3276 end if;
3278 Get_Next_Interp (Index, It);
3280 if No (It.Typ) then
3281 Set_Is_Overloaded (Alt, False);
3282 Common_Type := Etype (Alt);
3283 end if;
3285 Candidate_Interps := Alt;
3286 end if;
3288 Next (Alt);
3289 end loop;
3290 end if;
3292 if Present (Common_Type) then
3293 Set_Etype (L, Common_Type);
3295 -- The left operand may still be overloaded, to be resolved using
3296 -- the Common_Type.
3298 else
3299 Error_Msg_N ("cannot resolve membership operation", N);
3300 end if;
3301 end Analyze_Set_Membership;
3303 -----------------
3304 -- Find_Interp --
3305 -----------------
3307 function Find_Interp return Boolean is
3308 Found : Boolean;
3309 I : Interp_Index;
3310 It : Interp;
3311 L_Typ : Entity_Id;
3312 Valid_I : Interp_Index;
3314 begin
3315 -- Loop through the interpretations of the left operand
3317 if not Is_Overloaded (L) then
3318 Found := Try_Left_Interp (Etype (L));
3320 else
3321 Found := False;
3322 L_Typ := Empty;
3323 Valid_I := 0;
3325 Get_First_Interp (L, I, It);
3326 while Present (It.Typ) loop
3327 if Try_Left_Interp (It.Typ) then
3328 -- If several interpretations are possible, disambiguate
3330 if Present (L_Typ)
3331 and then Base_Type (It.Typ) /= Base_Type (L_Typ)
3332 then
3333 It := Disambiguate (L, Valid_I, I, Any_Type);
3335 if It = No_Interp then
3336 Ambiguous_Operands (N);
3337 Set_Etype (L, Any_Type);
3338 return True;
3339 end if;
3341 else
3342 Valid_I := I;
3343 end if;
3345 L_Typ := It.Typ;
3346 Set_Etype (L, L_Typ);
3347 Found := True;
3348 end if;
3350 Get_Next_Interp (I, It);
3351 end loop;
3352 end if;
3354 return Found;
3355 end Find_Interp;
3357 ---------------------
3358 -- Try_Left_Interp --
3359 ---------------------
3361 function Try_Left_Interp (T : Entity_Id) return Boolean is
3362 Found : Boolean;
3363 I : Interp_Index;
3364 It : Interp;
3365 R_Typ : Entity_Id;
3366 Valid_I : Interp_Index;
3368 begin
3369 -- Defend against previous error
3371 if Nkind (R) = N_Error then
3372 Found := False;
3374 -- Loop through the interpretations of the right operand
3376 elsif not Is_Overloaded (R) then
3377 Found := Is_Valid_Pair (T, Etype (R));
3379 else
3380 Found := False;
3381 R_Typ := Empty;
3382 Valid_I := 0;
3384 Get_First_Interp (R, I, It);
3385 while Present (It.Typ) loop
3386 if Is_Valid_Pair (T, It.Typ) then
3387 -- If several interpretations are possible, disambiguate
3389 if Present (R_Typ)
3390 and then Base_Type (It.Typ) /= Base_Type (R_Typ)
3391 then
3392 It := Disambiguate (R, Valid_I, I, Any_Type);
3394 if It = No_Interp then
3395 Ambiguous_Operands (N);
3396 Set_Etype (R, Any_Type);
3397 return True;
3398 end if;
3400 else
3401 Valid_I := I;
3402 end if;
3404 R_Typ := It.Typ;
3405 Found := True;
3406 end if;
3408 Get_Next_Interp (I, It);
3409 end loop;
3410 end if;
3412 return Found;
3413 end Try_Left_Interp;
3415 -------------------
3416 -- Is_Valid_Pair --
3417 -------------------
3419 function Is_Valid_Pair (T1, T2 : Entity_Id) return Boolean is
3420 begin
3421 return Covers (T1 => T1, T2 => T2)
3422 or else Covers (T1 => T2, T2 => T1)
3423 or else Is_User_Defined_Literal (L, T2)
3424 or else Is_User_Defined_Literal (R, T1);
3425 end Is_Valid_Pair;
3427 -- Local variables
3429 Dummy : Boolean;
3430 Op : Node_Id;
3432 -- Start of processing for Analyze_Membership_Op
3434 begin
3435 Analyze_Expression (L);
3437 if No (R) then
3438 pragma Assert (Ada_Version >= Ada_2012);
3440 Analyze_Set_Membership;
3442 declare
3443 Alt : Node_Id;
3444 begin
3445 Alt := First (Alternatives (N));
3446 while Present (Alt) loop
3447 if Is_Entity_Name (Alt) and then Is_Type (Entity (Alt)) then
3448 Check_Fully_Declared (Entity (Alt), Alt);
3450 if Has_Ghost_Predicate_Aspect (Entity (Alt)) then
3451 Error_Msg_NE
3452 ("subtype& has ghost predicate, "
3453 & "not allowed in membership test",
3454 Alt, Entity (Alt));
3455 end if;
3456 end if;
3458 Next (Alt);
3459 end loop;
3460 end;
3462 elsif Nkind (R) = N_Range
3463 or else (Nkind (R) = N_Attribute_Reference
3464 and then Attribute_Name (R) = Name_Range)
3465 then
3466 Analyze_Expression (R);
3468 Dummy := Find_Interp;
3470 -- If not a range, it can be a subtype mark, or else it is a degenerate
3471 -- membership test with a singleton value, i.e. a test for equality,
3472 -- if the types are compatible.
3474 else
3475 Analyze_Expression (R);
3477 if Is_Entity_Name (R) and then Is_Type (Entity (R)) then
3478 Find_Type (R);
3479 Check_Fully_Declared (Entity (R), R);
3481 if Has_Ghost_Predicate_Aspect (Entity (R)) then
3482 Error_Msg_NE
3483 ("subtype& has ghost predicate, "
3484 & "not allowed in membership test",
3485 R, Entity (R));
3486 end if;
3488 elsif Ada_Version >= Ada_2012 and then Find_Interp then
3489 Op := Make_Op_Eq (Loc, Left_Opnd => L, Right_Opnd => R);
3490 Resolve_Membership_Equality (Op, Etype (L));
3492 if Nkind (N) = N_Not_In then
3493 Op := Make_Op_Not (Loc, Op);
3494 end if;
3496 Rewrite (N, Op);
3497 Analyze (N);
3498 return;
3500 else
3501 -- In all versions of the language, if we reach this point there
3502 -- is a previous error that will be diagnosed below.
3504 Find_Type (R);
3505 end if;
3506 end if;
3508 -- Compatibility between expression and subtype mark or range is
3509 -- checked during resolution. The result of the operation is Boolean
3510 -- in any case.
3512 Set_Etype (N, Standard_Boolean);
3514 if Comes_From_Source (N)
3515 and then Present (Right_Opnd (N))
3516 and then Is_CPP_Class (Etype (Etype (Right_Opnd (N))))
3517 then
3518 Error_Msg_N ("membership test not applicable to cpp-class types", N);
3519 end if;
3521 Check_Function_Writable_Actuals (N);
3522 end Analyze_Membership_Op;
3524 -----------------
3525 -- Analyze_Mod --
3526 -----------------
3528 procedure Analyze_Mod (N : Node_Id) is
3529 begin
3530 -- A special warning check, if we have an expression of the form:
3531 -- expr mod 2 * literal
3532 -- where literal is 128 or less, then probably what was meant was
3533 -- expr mod 2 ** literal
3534 -- so issue an appropriate warning.
3536 if Warn_On_Suspicious_Modulus_Value
3537 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
3538 and then Intval (Right_Opnd (N)) = Uint_2
3539 and then Nkind (Parent (N)) = N_Op_Multiply
3540 and then Nkind (Right_Opnd (Parent (N))) = N_Integer_Literal
3541 and then Intval (Right_Opnd (Parent (N))) <= Uint_128
3542 then
3543 Error_Msg_N
3544 ("suspicious MOD value, was '*'* intended'??.m?", Parent (N));
3545 end if;
3547 -- Remaining processing is same as for other arithmetic operators
3549 Analyze_Arithmetic_Op (N);
3550 end Analyze_Mod;
3552 ----------------------
3553 -- Analyze_Negation --
3554 ----------------------
3556 procedure Analyze_Negation (N : Node_Id) is
3557 R : constant Node_Id := Right_Opnd (N);
3559 Op_Id : Entity_Id;
3561 begin
3562 Set_Etype (N, Any_Type);
3563 Candidate_Type := Empty;
3565 Analyze_Expression (R);
3567 -- If the entity is already set, the node is the instantiation of a
3568 -- generic node with a non-local reference, or was manufactured by a
3569 -- call to Make_Op_xxx. In either case the entity is known to be valid,
3570 -- and we do not need to collect interpretations, instead we just get
3571 -- the single possible interpretation.
3573 if Present (Entity (N)) then
3574 Op_Id := Entity (N);
3576 if Ekind (Op_Id) = E_Operator then
3577 Find_Negation_Types (R, Op_Id, N);
3578 else
3579 Add_One_Interp (N, Op_Id, Etype (Op_Id));
3580 end if;
3582 else
3583 Op_Id := Get_Name_Entity_Id (Chars (N));
3584 while Present (Op_Id) loop
3585 if Ekind (Op_Id) = E_Operator then
3586 Find_Negation_Types (R, Op_Id, N);
3587 else
3588 Analyze_User_Defined_Unary_Op (N, Op_Id);
3589 end if;
3591 Op_Id := Homonym (Op_Id);
3592 end loop;
3593 end if;
3595 Operator_Check (N);
3596 end Analyze_Negation;
3598 ------------------
3599 -- Analyze_Null --
3600 ------------------
3602 procedure Analyze_Null (N : Node_Id) is
3603 begin
3604 Set_Etype (N, Universal_Access);
3605 end Analyze_Null;
3607 ----------------------
3608 -- Analyze_One_Call --
3609 ----------------------
3611 procedure Analyze_One_Call
3612 (N : Node_Id;
3613 Nam : Entity_Id;
3614 Report : Boolean;
3615 Success : out Boolean;
3616 Skip_First : Boolean := False)
3618 Actuals : constant List_Id := Parameter_Associations (N);
3619 Prev_T : constant Entity_Id := Etype (N);
3621 -- Recognize cases of prefixed calls that have been rewritten in
3622 -- various ways. The simplest case is a rewritten selected component,
3623 -- but it can also be an already-examined indexed component, or a
3624 -- prefix that is itself a rewritten prefixed call that is in turn
3625 -- an indexed call (the syntactic ambiguity involving the indexing of
3626 -- a function with defaulted parameters that returns an array).
3627 -- A flag Maybe_Indexed_Call might be useful here ???
3629 Must_Skip : constant Boolean := Skip_First
3630 or else Nkind (Original_Node (N)) = N_Selected_Component
3631 or else
3632 (Nkind (Original_Node (N)) = N_Indexed_Component
3633 and then Nkind (Prefix (Original_Node (N))) =
3634 N_Selected_Component)
3635 or else
3636 (Nkind (Parent (N)) = N_Function_Call
3637 and then Is_Array_Type (Etype (Name (N)))
3638 and then Etype (Original_Node (N)) =
3639 Component_Type (Etype (Name (N)))
3640 and then Nkind (Original_Node (Parent (N))) =
3641 N_Selected_Component);
3643 -- The first formal must be omitted from the match when trying to find
3644 -- a primitive operation that is a possible interpretation, and also
3645 -- after the call has been rewritten, because the corresponding actual
3646 -- is already known to be compatible, and because this may be an
3647 -- indexing of a call with default parameters.
3649 First_Form : Entity_Id;
3650 Formal : Entity_Id;
3651 Actual : Node_Id;
3652 Is_Indexed : Boolean := False;
3653 Is_Indirect : Boolean := False;
3654 Subp_Type : constant Entity_Id := Etype (Nam);
3655 Norm_OK : Boolean;
3657 function Compatible_Types_In_Predicate
3658 (T1 : Entity_Id;
3659 T2 : Entity_Id) return Boolean;
3660 -- For an Ada 2012 predicate or invariant, a call may mention an
3661 -- incomplete type, while resolution of the corresponding predicate
3662 -- function may see the full view, as a consequence of the delayed
3663 -- resolution of the corresponding expressions. This may occur in
3664 -- the body of a predicate function, or in a call to such. Anomalies
3665 -- involving private and full views can also happen. In each case,
3666 -- rewrite node or add conversions to remove spurious type errors.
3668 procedure Indicate_Name_And_Type;
3669 -- If candidate interpretation matches, indicate name and type of result
3670 -- on call node.
3672 function Operator_Hidden_By (Fun : Entity_Id) return Boolean;
3673 -- There may be a user-defined operator that hides the current
3674 -- interpretation. We must check for this independently of the
3675 -- analysis of the call with the user-defined operation, because
3676 -- the parameter names may be wrong and yet the hiding takes place.
3677 -- This fixes a problem with ACATS test B34014O.
3679 -- When the type Address is a visible integer type, and the DEC
3680 -- system extension is visible, the predefined operator may be
3681 -- hidden as well, by one of the address operations in auxdec.
3682 -- Finally, the abstract operations on address do not hide the
3683 -- predefined operator (this is the purpose of making them abstract).
3685 -----------------------------------
3686 -- Compatible_Types_In_Predicate --
3687 -----------------------------------
3689 function Compatible_Types_In_Predicate
3690 (T1 : Entity_Id;
3691 T2 : Entity_Id) return Boolean
3693 function Common_Type (T : Entity_Id) return Entity_Id;
3694 -- Find non-private underlying full view if any, without going to
3695 -- ancestor type (as opposed to Underlying_Type).
3697 -----------------
3698 -- Common_Type --
3699 -----------------
3701 function Common_Type (T : Entity_Id) return Entity_Id is
3702 CT : Entity_Id;
3704 begin
3705 CT := T;
3707 if Is_Private_Type (CT) and then Present (Full_View (CT)) then
3708 CT := Full_View (CT);
3709 end if;
3711 if Is_Private_Type (CT)
3712 and then Present (Underlying_Full_View (CT))
3713 then
3714 CT := Underlying_Full_View (CT);
3715 end if;
3717 return Base_Type (CT);
3718 end Common_Type;
3720 -- Start of processing for Compatible_Types_In_Predicate
3722 begin
3723 if (Ekind (Current_Scope) = E_Function
3724 and then Is_Predicate_Function (Current_Scope))
3725 or else
3726 (Ekind (Nam) = E_Function
3727 and then Is_Predicate_Function (Nam))
3728 then
3729 if Is_Incomplete_Type (T1)
3730 and then Present (Full_View (T1))
3731 and then Full_View (T1) = T2
3732 then
3733 Set_Etype (Formal, Etype (Actual));
3734 return True;
3736 elsif Common_Type (T1) = Common_Type (T2) then
3737 Rewrite (Actual, Unchecked_Convert_To (Etype (Formal), Actual));
3738 return True;
3740 else
3741 return False;
3742 end if;
3744 else
3745 return False;
3746 end if;
3747 end Compatible_Types_In_Predicate;
3749 ----------------------------
3750 -- Indicate_Name_And_Type --
3751 ----------------------------
3753 procedure Indicate_Name_And_Type is
3754 begin
3755 Add_One_Interp (N, Nam, Etype (Nam));
3756 Check_Implicit_Dereference (N, Etype (Nam));
3757 Success := True;
3759 -- If the prefix of the call is a name, indicate the entity
3760 -- being called. If it is not a name, it is an expression that
3761 -- denotes an access to subprogram or else an entry or family. In
3762 -- the latter case, the name is a selected component, and the entity
3763 -- being called is noted on the selector.
3765 if not Is_Type (Nam) then
3766 if Is_Entity_Name (Name (N)) then
3767 Set_Entity (Name (N), Nam);
3768 Set_Etype (Name (N), Etype (Nam));
3770 elsif Nkind (Name (N)) = N_Selected_Component then
3771 Set_Entity (Selector_Name (Name (N)), Nam);
3772 end if;
3773 end if;
3775 if Debug_Flag_E and not Report then
3776 Write_Str (" Overloaded call ");
3777 Write_Int (Int (N));
3778 Write_Str (" compatible with ");
3779 Write_Int (Int (Nam));
3780 Write_Eol;
3781 end if;
3782 end Indicate_Name_And_Type;
3784 ------------------------
3785 -- Operator_Hidden_By --
3786 ------------------------
3788 function Operator_Hidden_By (Fun : Entity_Id) return Boolean is
3789 Act1 : constant Node_Id := First_Actual (N);
3790 Act2 : constant Node_Id := Next_Actual (Act1);
3791 Form1 : constant Entity_Id := First_Formal (Fun);
3792 Form2 : constant Entity_Id := Next_Formal (Form1);
3794 begin
3795 if Ekind (Fun) /= E_Function or else Is_Abstract_Subprogram (Fun) then
3796 return False;
3798 elsif not Has_Compatible_Type (Act1, Etype (Form1)) then
3799 return False;
3801 elsif Present (Form2) then
3802 if No (Act2)
3803 or else not Has_Compatible_Type (Act2, Etype (Form2))
3804 then
3805 return False;
3806 end if;
3808 elsif Present (Act2) then
3809 return False;
3810 end if;
3812 -- Now we know that the arity of the operator matches the function,
3813 -- and the function call is a valid interpretation. The function
3814 -- hides the operator if it has the right signature, or if one of
3815 -- its operands is a non-abstract operation on Address when this is
3816 -- a visible integer type.
3818 return Hides_Op (Fun, Nam)
3819 or else Is_Descendant_Of_Address (Etype (Form1))
3820 or else
3821 (Present (Form2)
3822 and then Is_Descendant_Of_Address (Etype (Form2)));
3823 end Operator_Hidden_By;
3825 -- Start of processing for Analyze_One_Call
3827 begin
3828 Success := False;
3830 -- If the subprogram has no formals or if all the formals have defaults,
3831 -- and the return type is an array type, the node may denote an indexing
3832 -- of the result of a parameterless call. In Ada 2005, the subprogram
3833 -- may have one non-defaulted formal, and the call may have been written
3834 -- in prefix notation, so that the rebuilt parameter list has more than
3835 -- one actual.
3837 if not Is_Overloadable (Nam)
3838 and then Ekind (Nam) /= E_Subprogram_Type
3839 and then Ekind (Nam) /= E_Entry_Family
3840 then
3841 return;
3842 end if;
3844 -- An indexing requires at least one actual. The name of the call cannot
3845 -- be an implicit indirect call, so it cannot be a generated explicit
3846 -- dereference.
3848 if not Is_Empty_List (Actuals)
3849 and then
3850 (Needs_No_Actuals (Nam)
3851 or else
3852 (Needs_One_Actual (Nam)
3853 and then Present (Next_Actual (First (Actuals)))))
3854 then
3855 if Is_Array_Type (Subp_Type)
3856 and then
3857 (Nkind (Name (N)) /= N_Explicit_Dereference
3858 or else Comes_From_Source (Name (N)))
3859 then
3860 Is_Indexed := Try_Indexed_Call (N, Nam, Subp_Type, Must_Skip);
3862 elsif Is_Access_Type (Subp_Type)
3863 and then Is_Array_Type (Designated_Type (Subp_Type))
3864 then
3865 Is_Indexed :=
3866 Try_Indexed_Call
3867 (N, Nam, Designated_Type (Subp_Type), Must_Skip);
3869 -- The prefix can also be a parameterless function that returns an
3870 -- access to subprogram, in which case this is an indirect call.
3871 -- If this succeeds, an explicit dereference is added later on,
3872 -- in Analyze_Call or Resolve_Call.
3874 elsif Is_Access_Type (Subp_Type)
3875 and then Ekind (Designated_Type (Subp_Type)) = E_Subprogram_Type
3876 then
3877 Is_Indirect := Try_Indirect_Call (N, Nam, Subp_Type);
3878 end if;
3880 end if;
3882 -- If the call has been transformed into a slice, it is of the form
3883 -- F (Subtype) where F is parameterless. The node has been rewritten in
3884 -- Try_Indexed_Call and there is nothing else to do.
3886 if Is_Indexed
3887 and then Nkind (N) = N_Slice
3888 then
3889 return;
3890 end if;
3892 Normalize_Actuals
3893 (N, Nam, (Report and not Is_Indexed and not Is_Indirect), Norm_OK);
3895 if not Norm_OK then
3897 -- If an indirect call is a possible interpretation, indicate
3898 -- success to the caller. This may be an indexing of an explicit
3899 -- dereference of a call that returns an access type (see above).
3901 if Is_Indirect
3902 or else (Is_Indexed
3903 and then Nkind (Name (N)) = N_Explicit_Dereference
3904 and then Comes_From_Source (Name (N)))
3905 then
3906 Success := True;
3907 return;
3909 -- Mismatch in number or names of parameters
3911 elsif Debug_Flag_E then
3912 Write_Str (" normalization fails in call ");
3913 Write_Int (Int (N));
3914 Write_Str (" with subprogram ");
3915 Write_Int (Int (Nam));
3916 Write_Eol;
3917 end if;
3919 -- If the context expects a function call, discard any interpretation
3920 -- that is a procedure. If the node is not overloaded, leave as is for
3921 -- better error reporting when type mismatch is found.
3923 elsif Nkind (N) = N_Function_Call
3924 and then Is_Overloaded (Name (N))
3925 and then Ekind (Nam) = E_Procedure
3926 then
3927 return;
3929 -- Ditto for function calls in a procedure context
3931 elsif Nkind (N) = N_Procedure_Call_Statement
3932 and then Is_Overloaded (Name (N))
3933 and then Etype (Nam) /= Standard_Void_Type
3934 then
3935 return;
3937 elsif No (Actuals) then
3939 -- If Normalize succeeds, then there are default parameters for
3940 -- all formals.
3942 Indicate_Name_And_Type;
3944 elsif Ekind (Nam) = E_Operator then
3945 if Nkind (N) = N_Procedure_Call_Statement then
3946 return;
3947 end if;
3949 -- This occurs when the prefix of the call is an operator name
3950 -- or an expanded name whose selector is an operator name.
3952 Analyze_Operator_Call (N, Nam);
3954 if Etype (N) /= Prev_T then
3956 -- Check that operator is not hidden by a function interpretation
3958 if Is_Overloaded (Name (N)) then
3959 declare
3960 I : Interp_Index;
3961 It : Interp;
3963 begin
3964 Get_First_Interp (Name (N), I, It);
3965 while Present (It.Nam) loop
3966 if Operator_Hidden_By (It.Nam) then
3967 Set_Etype (N, Prev_T);
3968 return;
3969 end if;
3971 Get_Next_Interp (I, It);
3972 end loop;
3973 end;
3974 end if;
3976 -- If operator matches formals, record its name on the call.
3977 -- If the operator is overloaded, Resolve will select the
3978 -- correct one from the list of interpretations. The call
3979 -- node itself carries the first candidate.
3981 Set_Entity (Name (N), Nam);
3982 Success := True;
3984 elsif Report and then Etype (N) = Any_Type then
3985 Error_Msg_N ("incompatible arguments for operator", N);
3986 end if;
3988 else
3989 -- Normalize_Actuals has chained the named associations in the
3990 -- correct order of the formals.
3992 Actual := First_Actual (N);
3993 Formal := First_Formal (Nam);
3994 First_Form := Formal;
3996 -- If we are analyzing a call rewritten from object notation, skip
3997 -- first actual, which may be rewritten later as an explicit
3998 -- dereference.
4000 if Must_Skip then
4001 Next_Actual (Actual);
4002 Next_Formal (Formal);
4003 end if;
4005 while Present (Actual) and then Present (Formal) loop
4006 if Nkind (Parent (Actual)) /= N_Parameter_Association
4007 or else Chars (Selector_Name (Parent (Actual))) = Chars (Formal)
4008 then
4009 -- The actual can be compatible with the formal, but we must
4010 -- also check that the context is not an address type that is
4011 -- visibly an integer type. In this case the use of literals is
4012 -- illegal, except in the body of descendants of system, where
4013 -- arithmetic operations on address are of course used.
4015 if Has_Compatible_Type (Actual, Etype (Formal))
4016 and then
4017 (Etype (Actual) /= Universal_Integer
4018 or else not Is_Descendant_Of_Address (Etype (Formal))
4019 or else In_Predefined_Unit (N))
4020 then
4021 Next_Actual (Actual);
4022 Next_Formal (Formal);
4024 -- In Allow_Integer_Address mode, we allow an actual integer to
4025 -- match a formal address type and vice versa. We only do this
4026 -- if we are certain that an error will otherwise be issued
4028 elsif Address_Integer_Convert_OK
4029 (Etype (Actual), Etype (Formal))
4030 and then (Report and not Is_Indexed and not Is_Indirect)
4031 then
4032 -- Handle this case by introducing an unchecked conversion
4034 Rewrite (Actual,
4035 Unchecked_Convert_To (Etype (Formal),
4036 Relocate_Node (Actual)));
4037 Analyze_And_Resolve (Actual, Etype (Formal));
4038 Next_Actual (Actual);
4039 Next_Formal (Formal);
4041 -- Under relaxed RM semantics silently replace occurrences of
4042 -- null by System.Address_Null. We only do this if we know that
4043 -- an error will otherwise be issued.
4045 elsif Null_To_Null_Address_Convert_OK (Actual, Etype (Formal))
4046 and then (Report and not Is_Indexed and not Is_Indirect)
4047 then
4048 Replace_Null_By_Null_Address (Actual);
4049 Analyze_And_Resolve (Actual, Etype (Formal));
4050 Next_Actual (Actual);
4051 Next_Formal (Formal);
4053 elsif Compatible_Types_In_Predicate
4054 (Etype (Formal), Etype (Actual))
4055 then
4056 Next_Actual (Actual);
4057 Next_Formal (Formal);
4059 -- A current instance used as an actual of a function,
4060 -- whose body has not been seen, may include a formal
4061 -- whose type is an incomplete view of an enclosing
4062 -- type declaration containing the current call (e.g.
4063 -- in the Expression for a component declaration).
4065 -- In this case, update the signature of the subprogram
4066 -- so the formal has the type of the full view.
4068 elsif Inside_Init_Proc
4069 and then Nkind (Actual) = N_Identifier
4070 and then Ekind (Etype (Formal)) = E_Incomplete_Type
4071 and then Etype (Actual) = Full_View (Etype (Formal))
4072 then
4073 Set_Etype (Formal, Etype (Actual));
4074 Next_Actual (Actual);
4075 Next_Formal (Formal);
4077 -- Handle failed type check
4079 else
4080 if Debug_Flag_E then
4081 Write_Str (" type checking fails in call ");
4082 Write_Int (Int (N));
4083 Write_Str (" with formal ");
4084 Write_Int (Int (Formal));
4085 Write_Str (" in subprogram ");
4086 Write_Int (Int (Nam));
4087 Write_Eol;
4088 end if;
4090 -- Comment needed on the following test???
4092 if Report and not Is_Indexed and not Is_Indirect then
4094 -- Ada 2005 (AI-251): Complete the error notification
4095 -- to help new Ada 2005 users.
4097 if Is_Class_Wide_Type (Etype (Formal))
4098 and then Is_Interface (Etype (Etype (Formal)))
4099 and then not Interface_Present_In_Ancestor
4100 (Typ => Etype (Actual),
4101 Iface => Etype (Etype (Formal)))
4102 then
4103 Error_Msg_NE
4104 ("(Ada 2005) does not implement interface }",
4105 Actual, Etype (Etype (Formal)));
4106 end if;
4108 -- If we are going to output a secondary error message
4109 -- below, we need to have Wrong_Type output the main one.
4111 Wrong_Type
4112 (Actual, Etype (Formal), Multiple => All_Errors_Mode);
4114 if Nkind (Actual) = N_Op_Eq
4115 and then Nkind (Left_Opnd (Actual)) = N_Identifier
4116 then
4117 Formal := First_Formal (Nam);
4118 while Present (Formal) loop
4119 if Chars (Left_Opnd (Actual)) = Chars (Formal) then
4120 Error_Msg_N -- CODEFIX
4121 ("possible misspelling of `='>`!", Actual);
4122 exit;
4123 end if;
4125 Next_Formal (Formal);
4126 end loop;
4127 end if;
4129 if All_Errors_Mode then
4130 Error_Msg_Sloc := Sloc (Nam);
4132 if Etype (Formal) = Any_Type then
4133 Error_Msg_N
4134 ("there is no legal actual parameter", Actual);
4135 end if;
4137 if Is_Overloadable (Nam)
4138 and then Present (Alias (Nam))
4139 and then not Comes_From_Source (Nam)
4140 then
4141 Error_Msg_NE
4142 ("\\ =='> in call to inherited operation & #!",
4143 Actual, Nam);
4145 elsif Ekind (Nam) = E_Subprogram_Type then
4146 declare
4147 Access_To_Subprogram_Typ :
4148 constant Entity_Id :=
4149 Defining_Identifier
4150 (Associated_Node_For_Itype (Nam));
4151 begin
4152 Error_Msg_NE
4153 ("\\ =='> in call to dereference of &#!",
4154 Actual, Access_To_Subprogram_Typ);
4155 end;
4157 else
4158 Error_Msg_NE
4159 ("\\ =='> in call to &#!", Actual, Nam);
4161 end if;
4162 end if;
4163 end if;
4165 return;
4166 end if;
4168 else
4169 -- Normalize_Actuals has verified that a default value exists
4170 -- for this formal. Current actual names a subsequent formal.
4172 Next_Formal (Formal);
4173 end if;
4174 end loop;
4176 -- Due to our current model of controlled type expansion we may
4177 -- have resolved a user call to a non-visible controlled primitive
4178 -- since these inherited subprograms may be generated in the current
4179 -- scope. This is a side effect of the need for the expander to be
4180 -- able to resolve internally generated calls.
4182 -- Specifically, the issue appears when predefined controlled
4183 -- operations get called on a type extension whose parent is a
4184 -- private extension completed with a controlled extension - see
4185 -- below:
4187 -- package X is
4188 -- type Par_Typ is tagged private;
4189 -- private
4190 -- type Par_Typ is new Controlled with null record;
4191 -- end;
4192 -- ...
4193 -- procedure Main is
4194 -- type Ext_Typ is new Par_Typ with null record;
4195 -- Obj : Ext_Typ;
4196 -- begin
4197 -- Finalize (Obj); -- Will improperly resolve
4198 -- end;
4200 -- To avoid breaking privacy, Is_Hidden gets set elsewhere on such
4201 -- primitives, but we still need to verify that Nam is indeed a
4202 -- non-visible controlled subprogram. So, we do that here and issue
4203 -- the appropriate error.
4205 if Is_Hidden (Nam)
4206 and then not In_Instance
4207 and then not Comes_From_Source (Nam)
4208 and then Comes_From_Source (N)
4210 -- Verify Nam is a non-visible controlled primitive
4212 and then Chars (Nam) in Name_Adjust
4213 | Name_Finalize
4214 | Name_Initialize
4215 and then Ekind (Nam) = E_Procedure
4216 and then Is_Controlled (Etype (First_Form))
4217 and then No (Next_Formal (First_Form))
4218 and then not Is_Visibly_Controlled (Etype (First_Form))
4219 then
4220 Error_Msg_Node_2 := Etype (First_Form);
4221 Error_Msg_NE ("call to non-visible controlled primitive & on type"
4222 & " &", N, Nam);
4223 end if;
4225 -- On exit, all actuals match
4227 Indicate_Name_And_Type;
4228 end if;
4229 end Analyze_One_Call;
4231 ---------------------------
4232 -- Analyze_Operator_Call --
4233 ---------------------------
4235 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id) is
4236 Op_Name : constant Name_Id := Chars (Op_Id);
4237 Act1 : constant Node_Id := First_Actual (N);
4238 Act2 : constant Node_Id := Next_Actual (Act1);
4240 begin
4241 -- Binary operator case
4243 if Present (Act2) then
4245 -- If more than two operands, then not binary operator after all
4247 if Present (Next_Actual (Act2)) then
4248 return;
4249 end if;
4251 -- Otherwise action depends on operator
4253 case Op_Name is
4254 when Name_Op_Add
4255 | Name_Op_Divide
4256 | Name_Op_Expon
4257 | Name_Op_Mod
4258 | Name_Op_Multiply
4259 | Name_Op_Rem
4260 | Name_Op_Subtract
4262 Find_Arithmetic_Types (Act1, Act2, Op_Id, N);
4264 when Name_Op_And
4265 | Name_Op_Or
4266 | Name_Op_Xor
4268 Find_Boolean_Types (Act1, Act2, Op_Id, N);
4270 when Name_Op_Eq
4271 | Name_Op_Ge
4272 | Name_Op_Gt
4273 | Name_Op_Le
4274 | Name_Op_Lt
4275 | Name_Op_Ne
4277 Find_Comparison_Equality_Types (Act1, Act2, Op_Id, N);
4279 when Name_Op_Concat =>
4280 Find_Concatenation_Types (Act1, Act2, Op_Id, N);
4282 -- Is this when others, or should it be an abort???
4284 when others =>
4285 null;
4286 end case;
4288 -- Unary operator case
4290 else
4291 case Op_Name is
4292 when Name_Op_Abs
4293 | Name_Op_Add
4294 | Name_Op_Subtract
4296 Find_Unary_Types (Act1, Op_Id, N);
4298 when Name_Op_Not =>
4299 Find_Negation_Types (Act1, Op_Id, N);
4301 -- Is this when others correct, or should it be an abort???
4303 when others =>
4304 null;
4305 end case;
4306 end if;
4307 end Analyze_Operator_Call;
4309 -------------------------------------------
4310 -- Analyze_Overloaded_Selected_Component --
4311 -------------------------------------------
4313 procedure Analyze_Overloaded_Selected_Component (N : Node_Id) is
4314 Nam : constant Node_Id := Prefix (N);
4315 Sel : constant Node_Id := Selector_Name (N);
4316 Comp : Entity_Id;
4317 I : Interp_Index;
4318 It : Interp;
4319 T : Entity_Id;
4321 begin
4322 Set_Etype (Sel, Any_Type);
4324 Get_First_Interp (Nam, I, It);
4325 while Present (It.Typ) loop
4326 if Is_Access_Type (It.Typ) then
4327 T := Designated_Type (It.Typ);
4328 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
4329 else
4330 T := It.Typ;
4331 end if;
4333 -- Locate the component. For a private prefix the selector can denote
4334 -- a discriminant.
4336 if Is_Record_Type (T) or else Is_Private_Type (T) then
4338 -- If the prefix is a class-wide type, the visible components are
4339 -- those of the base type.
4341 if Is_Class_Wide_Type (T) then
4342 T := Etype (T);
4343 end if;
4345 Comp := First_Entity (T);
4346 while Present (Comp) loop
4347 if Chars (Comp) = Chars (Sel)
4348 and then Is_Visible_Component (Comp, Sel)
4349 then
4351 -- AI05-105: if the context is an object renaming with
4352 -- an anonymous access type, the expected type of the
4353 -- object must be anonymous. This is a name resolution rule.
4355 if Nkind (Parent (N)) /= N_Object_Renaming_Declaration
4356 or else No (Access_Definition (Parent (N)))
4357 or else Is_Anonymous_Access_Type (Etype (Comp))
4358 then
4359 Set_Entity (Sel, Comp);
4360 Set_Etype (Sel, Etype (Comp));
4361 Add_One_Interp (N, Etype (Comp), Etype (Comp));
4362 Check_Implicit_Dereference (N, Etype (Comp));
4364 -- This also specifies a candidate to resolve the name.
4365 -- Further overloading will be resolved from context.
4366 -- The selector name itself does not carry overloading
4367 -- information.
4369 Set_Etype (Nam, It.Typ);
4371 else
4372 -- Named access type in the context of a renaming
4373 -- declaration with an access definition. Remove
4374 -- inapplicable candidate.
4376 Remove_Interp (I);
4377 end if;
4378 end if;
4380 Next_Entity (Comp);
4381 end loop;
4383 elsif Is_Concurrent_Type (T) then
4384 Comp := First_Entity (T);
4385 while Present (Comp)
4386 and then Comp /= First_Private_Entity (T)
4387 loop
4388 if Chars (Comp) = Chars (Sel) then
4389 if Is_Overloadable (Comp) then
4390 Add_One_Interp (Sel, Comp, Etype (Comp));
4391 else
4392 Set_Entity_With_Checks (Sel, Comp);
4393 Generate_Reference (Comp, Sel);
4394 end if;
4396 Set_Etype (Sel, Etype (Comp));
4397 Set_Etype (N, Etype (Comp));
4398 Set_Etype (Nam, It.Typ);
4399 end if;
4401 Next_Entity (Comp);
4402 end loop;
4404 Set_Is_Overloaded (N, Is_Overloaded (Sel));
4405 end if;
4407 Get_Next_Interp (I, It);
4408 end loop;
4410 if Etype (N) = Any_Type
4411 and then not Try_Object_Operation (N)
4412 then
4413 Error_Msg_NE ("undefined selector& for overloaded prefix", N, Sel);
4414 Set_Entity (Sel, Any_Id);
4415 Set_Etype (Sel, Any_Type);
4416 end if;
4417 end Analyze_Overloaded_Selected_Component;
4419 ----------------------------------
4420 -- Analyze_Qualified_Expression --
4421 ----------------------------------
4423 procedure Analyze_Qualified_Expression (N : Node_Id) is
4424 Expr : constant Node_Id := Expression (N);
4425 Mark : constant Entity_Id := Subtype_Mark (N);
4427 I : Interp_Index;
4428 It : Interp;
4429 T : Entity_Id;
4431 begin
4432 Find_Type (Mark);
4433 T := Entity (Mark);
4435 if Nkind (Enclosing_Declaration (N)) in
4436 N_Formal_Type_Declaration |
4437 N_Full_Type_Declaration |
4438 N_Incomplete_Type_Declaration |
4439 N_Protected_Type_Declaration |
4440 N_Private_Extension_Declaration |
4441 N_Private_Type_Declaration |
4442 N_Subtype_Declaration |
4443 N_Task_Type_Declaration
4444 and then T = Defining_Identifier (Enclosing_Declaration (N))
4445 then
4446 Error_Msg_N ("current instance not allowed", Mark);
4447 T := Any_Type;
4448 end if;
4450 Set_Etype (N, T);
4452 Analyze_Expression (Expr);
4454 if T = Any_Type then
4455 return;
4456 end if;
4458 Check_Fully_Declared (T, N);
4460 -- If expected type is class-wide, check for exact match before
4461 -- expansion, because if the expression is a dispatching call it
4462 -- may be rewritten as explicit dereference with class-wide result.
4463 -- If expression is overloaded, retain only interpretations that
4464 -- will yield exact matches.
4466 if Is_Class_Wide_Type (T) then
4467 if not Is_Overloaded (Expr) then
4468 if Base_Type (Etype (Expr)) /= Base_Type (T)
4469 and then Etype (Expr) /= Raise_Type
4470 then
4471 if Nkind (Expr) = N_Aggregate then
4472 Error_Msg_N ("type of aggregate cannot be class-wide", Expr);
4473 else
4474 Wrong_Type (Expr, T);
4475 end if;
4476 end if;
4478 else
4479 Get_First_Interp (Expr, I, It);
4481 while Present (It.Nam) loop
4482 if Base_Type (It.Typ) /= Base_Type (T) then
4483 Remove_Interp (I);
4484 end if;
4486 Get_Next_Interp (I, It);
4487 end loop;
4488 end if;
4489 end if;
4490 end Analyze_Qualified_Expression;
4492 -----------------------------------
4493 -- Analyze_Quantified_Expression --
4494 -----------------------------------
4496 procedure Analyze_Quantified_Expression (N : Node_Id) is
4497 function Is_Empty_Range (Typ : Entity_Id) return Boolean;
4498 -- Return True if the iterator is part of a quantified expression and
4499 -- the range is known to be statically empty.
4501 function No_Else_Or_Trivial_True (If_Expr : Node_Id) return Boolean;
4502 -- Determine whether if expression If_Expr lacks an else part or if it
4503 -- has one, it evaluates to True.
4505 --------------------
4506 -- Is_Empty_Range --
4507 --------------------
4509 function Is_Empty_Range (Typ : Entity_Id) return Boolean is
4510 begin
4511 return Is_Array_Type (Typ)
4512 and then Compile_Time_Known_Bounds (Typ)
4513 and then
4514 Expr_Value (Type_Low_Bound (Etype (First_Index (Typ)))) >
4515 Expr_Value (Type_High_Bound (Etype (First_Index (Typ))));
4516 end Is_Empty_Range;
4518 -----------------------------
4519 -- No_Else_Or_Trivial_True --
4520 -----------------------------
4522 function No_Else_Or_Trivial_True (If_Expr : Node_Id) return Boolean is
4523 Else_Expr : constant Node_Id :=
4524 Next (Next (First (Expressions (If_Expr))));
4525 begin
4526 return
4527 No (Else_Expr)
4528 or else (Compile_Time_Known_Value (Else_Expr)
4529 and then Is_True (Expr_Value (Else_Expr)));
4530 end No_Else_Or_Trivial_True;
4532 -- Local variables
4534 Cond : constant Node_Id := Condition (N);
4535 Loc : constant Source_Ptr := Sloc (N);
4536 Loop_Id : Entity_Id;
4537 QE_Scop : Entity_Id;
4539 -- Start of processing for Analyze_Quantified_Expression
4541 begin
4542 -- Create a scope to emulate the loop-like behavior of the quantified
4543 -- expression. The scope is needed to provide proper visibility of the
4544 -- loop variable.
4546 QE_Scop := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
4547 Set_Etype (QE_Scop, Standard_Void_Type);
4548 Set_Scope (QE_Scop, Current_Scope);
4549 Set_Parent (QE_Scop, N);
4551 Push_Scope (QE_Scop);
4553 -- All constituents are preanalyzed and resolved to avoid untimely
4554 -- generation of various temporaries and types. Full analysis and
4555 -- expansion is carried out when the quantified expression is
4556 -- transformed into an expression with actions.
4558 if Present (Iterator_Specification (N)) then
4559 Preanalyze (Iterator_Specification (N));
4561 -- Do not proceed with the analysis when the range of iteration is
4562 -- empty.
4564 if Is_Entity_Name (Name (Iterator_Specification (N)))
4565 and then Is_Empty_Range (Etype (Name (Iterator_Specification (N))))
4566 then
4567 Preanalyze_And_Resolve (Condition (N), Standard_Boolean);
4568 End_Scope;
4570 -- Emit a warning and replace expression with its static value
4572 if All_Present (N) then
4573 Error_Msg_N
4574 ("??quantified expression with ALL "
4575 & "over a null range has value True", N);
4576 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
4578 else
4579 Error_Msg_N
4580 ("??quantified expression with SOME "
4581 & "over a null range has value False", N);
4582 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
4583 end if;
4585 Analyze (N);
4586 return;
4587 end if;
4589 else pragma Assert (Present (Loop_Parameter_Specification (N)));
4590 declare
4591 Loop_Par : constant Node_Id := Loop_Parameter_Specification (N);
4593 begin
4594 Preanalyze (Loop_Par);
4596 if Nkind (Discrete_Subtype_Definition (Loop_Par)) = N_Function_Call
4597 and then Parent (Loop_Par) /= N
4598 then
4599 -- The parser cannot distinguish between a loop specification
4600 -- and an iterator specification. If after preanalysis the
4601 -- proper form has been recognized, rewrite the expression to
4602 -- reflect the right kind. This is needed for proper ASIS
4603 -- navigation. If expansion is enabled, the transformation is
4604 -- performed when the expression is rewritten as a loop.
4605 -- Is this still needed???
4607 Set_Iterator_Specification (N,
4608 New_Copy_Tree (Iterator_Specification (Parent (Loop_Par))));
4610 Set_Defining_Identifier (Iterator_Specification (N),
4611 Relocate_Node (Defining_Identifier (Loop_Par)));
4612 Set_Name (Iterator_Specification (N),
4613 Relocate_Node (Discrete_Subtype_Definition (Loop_Par)));
4614 Set_Comes_From_Source (Iterator_Specification (N),
4615 Comes_From_Source (Loop_Parameter_Specification (N)));
4616 Set_Loop_Parameter_Specification (N, Empty);
4617 end if;
4618 end;
4619 end if;
4621 Preanalyze_And_Resolve (Cond, Standard_Boolean);
4623 End_Scope;
4624 Set_Etype (N, Standard_Boolean);
4626 -- Verify that the loop variable is used within the condition of the
4627 -- quantified expression.
4629 if Present (Iterator_Specification (N)) then
4630 Loop_Id := Defining_Identifier (Iterator_Specification (N));
4631 else
4632 Loop_Id := Defining_Identifier (Loop_Parameter_Specification (N));
4633 end if;
4635 declare
4636 type Subexpr_Kind is (Full, Conjunct, Disjunct);
4638 procedure Check_Subexpr (Expr : Node_Id; Kind : Subexpr_Kind);
4639 -- Check that the quantified variable appears in every sub-expression
4640 -- of the quantified expression. If Kind is Full, Expr is the full
4641 -- expression. If Kind is Conjunct (resp. Disjunct), Expr is a
4642 -- conjunct (resp. disjunct) of the full expression.
4644 -------------------
4645 -- Check_Subexpr --
4646 -------------------
4648 procedure Check_Subexpr (Expr : Node_Id; Kind : Subexpr_Kind) is
4649 begin
4650 if Nkind (Expr) in N_Op_And | N_And_Then
4651 and then Kind /= Disjunct
4652 then
4653 Check_Subexpr (Left_Opnd (Expr), Conjunct);
4654 Check_Subexpr (Right_Opnd (Expr), Conjunct);
4656 elsif Nkind (Expr) in N_Op_Or | N_Or_Else
4657 and then Kind /= Conjunct
4658 then
4659 Check_Subexpr (Left_Opnd (Expr), Disjunct);
4660 Check_Subexpr (Right_Opnd (Expr), Disjunct);
4662 elsif Kind /= Full
4663 and then not Referenced (Loop_Id, Expr)
4664 then
4665 declare
4666 Sub : constant String :=
4667 (if Kind = Conjunct then "conjunct" else "disjunct");
4668 begin
4669 Error_Msg_NE
4670 ("?.t?unused variable & in " & Sub, Expr, Loop_Id);
4671 Error_Msg_NE
4672 ("\consider extracting " & Sub & " from quantified "
4673 & "expression", Expr, Loop_Id);
4674 end;
4675 end if;
4676 end Check_Subexpr;
4678 begin
4679 if Warn_On_Suspicious_Contract
4680 and then not Is_Internal_Name (Chars (Loop_Id))
4682 -- Generating C, this check causes spurious warnings on inlined
4683 -- postconditions; we can safely disable it because this check
4684 -- was previously performed when analyzing the internally built
4685 -- postconditions procedure.
4687 and then not (Modify_Tree_For_C and In_Inlined_Body)
4688 then
4689 if not Referenced (Loop_Id, Cond) then
4690 Error_Msg_N ("?.t?unused variable &", Loop_Id);
4691 else
4692 Check_Subexpr (Cond, Kind => Full);
4693 end if;
4694 end if;
4695 end;
4697 -- Diagnose a possible misuse of the SOME existential quantifier. When
4698 -- we have a quantified expression of the form:
4700 -- for some X => (if P then Q [else True])
4702 -- any value for X that makes P False results in the if expression being
4703 -- trivially True, and so also results in the quantified expression
4704 -- being trivially True.
4706 if Warn_On_Suspicious_Contract
4707 and then not All_Present (N)
4708 and then Nkind (Cond) = N_If_Expression
4709 and then No_Else_Or_Trivial_True (Cond)
4710 then
4711 Error_Msg_N ("?.t?suspicious expression", N);
4712 Error_Msg_N ("\\did you mean (for all X ='> (if P then Q))", N);
4713 Error_Msg_N ("\\or (for some X ='> P and then Q) instead'?", N);
4714 end if;
4715 end Analyze_Quantified_Expression;
4717 -------------------
4718 -- Analyze_Range --
4719 -------------------
4721 procedure Analyze_Range (N : Node_Id) is
4722 L : constant Node_Id := Low_Bound (N);
4723 H : constant Node_Id := High_Bound (N);
4724 I1, I2 : Interp_Index;
4725 It1, It2 : Interp;
4727 procedure Check_Common_Type (T1, T2 : Entity_Id);
4728 -- Verify the compatibility of two types, and choose the
4729 -- non universal one if the other is universal.
4731 procedure Check_High_Bound (T : Entity_Id);
4732 -- Test one interpretation of the low bound against all those
4733 -- of the high bound.
4735 procedure Check_Universal_Expression (N : Node_Id);
4736 -- In Ada 83, reject bounds of a universal range that are not literals
4737 -- or entity names.
4739 -----------------------
4740 -- Check_Common_Type --
4741 -----------------------
4743 procedure Check_Common_Type (T1, T2 : Entity_Id) is
4744 begin
4745 if Covers (T1 => T1, T2 => T2)
4746 or else
4747 Covers (T1 => T2, T2 => T1)
4748 then
4749 if Is_Universal_Numeric_Type (T1)
4750 or else T1 = Any_Character
4751 then
4752 Add_One_Interp (N, Base_Type (T2), Base_Type (T2));
4754 elsif T1 = T2 then
4755 Add_One_Interp (N, T1, T1);
4757 else
4758 Add_One_Interp (N, Base_Type (T1), Base_Type (T1));
4759 end if;
4760 end if;
4761 end Check_Common_Type;
4763 ----------------------
4764 -- Check_High_Bound --
4765 ----------------------
4767 procedure Check_High_Bound (T : Entity_Id) is
4768 begin
4769 if not Is_Overloaded (H) then
4770 Check_Common_Type (T, Etype (H));
4771 else
4772 Get_First_Interp (H, I2, It2);
4773 while Present (It2.Typ) loop
4774 Check_Common_Type (T, It2.Typ);
4775 Get_Next_Interp (I2, It2);
4776 end loop;
4777 end if;
4778 end Check_High_Bound;
4780 --------------------------------
4781 -- Check_Universal_Expression --
4782 --------------------------------
4784 procedure Check_Universal_Expression (N : Node_Id) is
4785 begin
4786 if Etype (N) = Universal_Integer
4787 and then Nkind (N) /= N_Integer_Literal
4788 and then not Is_Entity_Name (N)
4789 and then Nkind (N) /= N_Attribute_Reference
4790 then
4791 Error_Msg_N ("illegal bound in discrete range", N);
4792 end if;
4793 end Check_Universal_Expression;
4795 -- Start of processing for Analyze_Range
4797 begin
4798 Set_Etype (N, Any_Type);
4799 Analyze_Expression (L);
4800 Analyze_Expression (H);
4802 if Etype (L) = Any_Type or else Etype (H) = Any_Type then
4803 return;
4805 else
4806 if not Is_Overloaded (L) then
4807 Check_High_Bound (Etype (L));
4808 else
4809 Get_First_Interp (L, I1, It1);
4810 while Present (It1.Typ) loop
4811 Check_High_Bound (It1.Typ);
4812 Get_Next_Interp (I1, It1);
4813 end loop;
4814 end if;
4816 -- If result is Any_Type, then we did not find a compatible pair
4818 if Etype (N) = Any_Type then
4819 Error_Msg_N ("incompatible types in range", N);
4820 end if;
4821 end if;
4823 if Ada_Version = Ada_83
4824 and then
4825 (Nkind (Parent (N)) = N_Loop_Parameter_Specification
4826 or else Nkind (Parent (N)) = N_Constrained_Array_Definition)
4827 then
4828 Check_Universal_Expression (L);
4829 Check_Universal_Expression (H);
4830 end if;
4832 Check_Function_Writable_Actuals (N);
4833 end Analyze_Range;
4835 -----------------------
4836 -- Analyze_Reference --
4837 -----------------------
4839 procedure Analyze_Reference (N : Node_Id) is
4840 P : constant Node_Id := Prefix (N);
4841 E : Entity_Id;
4842 T : Entity_Id;
4843 Acc_Type : Entity_Id;
4845 begin
4846 Analyze (P);
4848 -- An interesting error check, if we take the 'Ref of an object for
4849 -- which a pragma Atomic or Volatile has been given, and the type of the
4850 -- object is not Atomic or Volatile, then we are in trouble. The problem
4851 -- is that no trace of the atomic/volatile status will remain for the
4852 -- backend to respect when it deals with the resulting pointer, since
4853 -- the pointer type will not be marked atomic (it is a pointer to the
4854 -- base type of the object).
4856 -- It is not clear if that can ever occur, but in case it does, we will
4857 -- generate an error message. Not clear if this message can ever be
4858 -- generated, and pretty clear that it represents a bug if it is, still
4859 -- seems worth checking, except in CodePeer mode where we do not really
4860 -- care and don't want to bother the user.
4862 T := Etype (P);
4864 if Is_Entity_Name (P)
4865 and then Is_Object_Reference (P)
4866 and then not CodePeer_Mode
4867 then
4868 E := Entity (P);
4869 T := Etype (P);
4871 if (Has_Atomic_Components (E)
4872 and then not Has_Atomic_Components (T))
4873 or else
4874 (Has_Volatile_Components (E)
4875 and then not Has_Volatile_Components (T))
4876 or else (Is_Atomic (E) and then not Is_Atomic (T))
4877 or else (Is_Volatile (E) and then not Is_Volatile (T))
4878 then
4879 Error_Msg_N ("cannot take reference to Atomic/Volatile object", N);
4880 end if;
4881 end if;
4883 -- Carry on with normal processing
4885 Acc_Type := Create_Itype (E_Allocator_Type, N);
4886 Set_Etype (Acc_Type, Acc_Type);
4887 Set_Directly_Designated_Type (Acc_Type, Etype (P));
4888 Set_Etype (N, Acc_Type);
4889 end Analyze_Reference;
4891 --------------------------------
4892 -- Analyze_Selected_Component --
4893 --------------------------------
4895 -- Prefix is a record type or a task or protected type. In the latter case,
4896 -- the selector must denote a visible entry.
4898 procedure Analyze_Selected_Component (N : Node_Id) is
4899 Name : constant Node_Id := Prefix (N);
4900 Sel : constant Node_Id := Selector_Name (N);
4901 Act_Decl : Node_Id;
4902 Comp : Entity_Id := Empty;
4903 Has_Candidate : Boolean := False;
4904 Hidden_Comp : Entity_Id;
4905 In_Scope : Boolean;
4906 Is_Private_Op : Boolean;
4907 Parent_N : Node_Id;
4908 Prefix_Type : Entity_Id;
4910 Type_To_Use : Entity_Id;
4911 -- In most cases this is the Prefix_Type, but if the Prefix_Type is
4912 -- a class-wide type, we use its root type, whose components are
4913 -- present in the class-wide type.
4915 Is_Single_Concurrent_Object : Boolean;
4916 -- Set True if the prefix is a single task or a single protected object
4918 function Constraint_Has_Unprefixed_Discriminant_Reference
4919 (Typ : Entity_Id) return Boolean;
4920 -- Given a subtype that is subject to a discriminant-dependent
4921 -- constraint, returns True if any of the values of the constraint
4922 -- (i.e., any of the index values for an index constraint, any of
4923 -- the discriminant values for a discriminant constraint)
4924 -- are unprefixed discriminant names.
4926 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean;
4927 -- It is known that the parent of N denotes a subprogram call. Comp
4928 -- is an overloadable component of the concurrent type of the prefix.
4929 -- Determine whether all formals of the parent of N and Comp are mode
4930 -- conformant. If the parent node is not analyzed yet it may be an
4931 -- indexed component rather than a function call.
4933 function Has_Dereference (Nod : Node_Id) return Boolean;
4934 -- Check whether prefix includes a dereference, explicit or implicit,
4935 -- at any recursive level.
4937 function Try_By_Protected_Procedure_Prefixed_View return Boolean;
4938 -- Return True if N is an access attribute whose prefix is a prefixed
4939 -- class-wide (synchronized or protected) interface view for which some
4940 -- interpretation is a procedure with synchronization kind By_Protected
4941 -- _Procedure, and collect all its interpretations (since it may be an
4942 -- overloaded interface primitive); otherwise return False.
4944 function Try_Selected_Component_In_Instance
4945 (Typ : Entity_Id) return Boolean;
4946 -- If Typ is the actual for a formal derived type, or a derived type
4947 -- thereof, the component inherited from the generic parent may not
4948 -- be visible in the actual, but the selected component is legal. Climb
4949 -- up the derivation chain of the generic parent type and return True if
4950 -- we find the proper ancestor type; otherwise return False.
4952 ------------------------------------------------------
4953 -- Constraint_Has_Unprefixed_Discriminant_Reference --
4954 ------------------------------------------------------
4956 function Constraint_Has_Unprefixed_Discriminant_Reference
4957 (Typ : Entity_Id) return Boolean
4959 function Is_Discriminant_Name (N : Node_Id) return Boolean is
4960 (Nkind (N) = N_Identifier
4961 and then Ekind (Entity (N)) = E_Discriminant);
4962 begin
4963 if Is_Array_Type (Typ) then
4964 declare
4965 Index : Node_Id := First_Index (Typ);
4966 Rng : Node_Id;
4967 begin
4968 while Present (Index) loop
4969 Rng := Index;
4970 if Nkind (Rng) = N_Subtype_Indication then
4971 Rng := Range_Expression (Constraint (Rng));
4972 end if;
4974 if Nkind (Rng) = N_Range then
4975 if Is_Discriminant_Name (Low_Bound (Rng))
4976 or else Is_Discriminant_Name (High_Bound (Rng))
4977 then
4978 return True;
4979 end if;
4980 end if;
4982 Next_Index (Index);
4983 end loop;
4984 end;
4985 else
4986 declare
4987 Elmt : Elmt_Id := First_Elmt (Discriminant_Constraint (Typ));
4988 begin
4989 while Present (Elmt) loop
4990 if Is_Discriminant_Name (Node (Elmt)) then
4991 return True;
4992 end if;
4993 Next_Elmt (Elmt);
4994 end loop;
4995 end;
4996 end if;
4998 return False;
4999 end Constraint_Has_Unprefixed_Discriminant_Reference;
5001 ------------------------------
5002 -- Has_Mode_Conformant_Spec --
5003 ------------------------------
5005 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean is
5006 Comp_Param : Entity_Id;
5007 Param : Node_Id;
5008 Param_Typ : Entity_Id;
5010 begin
5011 Comp_Param := First_Formal (Comp);
5013 if Nkind (Parent (N)) = N_Indexed_Component then
5014 Param := First (Expressions (Parent (N)));
5015 else
5016 Param := First (Parameter_Associations (Parent (N)));
5017 end if;
5019 while Present (Comp_Param)
5020 and then Present (Param)
5021 loop
5022 Param_Typ := Find_Parameter_Type (Param);
5024 if Present (Param_Typ)
5025 and then
5026 not Conforming_Types
5027 (Etype (Comp_Param), Param_Typ, Mode_Conformant)
5028 then
5029 return False;
5030 end if;
5032 Next_Formal (Comp_Param);
5033 Next (Param);
5034 end loop;
5036 -- One of the specs has additional formals; there is no match, unless
5037 -- this may be an indexing of a parameterless call.
5039 -- Note that when expansion is disabled, the corresponding record
5040 -- type of synchronized types is not constructed, so that there is
5041 -- no point is attempting an interpretation as a prefixed call, as
5042 -- this is bound to fail because the primitive operations will not
5043 -- be properly located.
5045 if Present (Comp_Param) or else Present (Param) then
5046 if Needs_No_Actuals (Comp)
5047 and then Is_Array_Type (Etype (Comp))
5048 and then not Expander_Active
5049 then
5050 return True;
5051 else
5052 return False;
5053 end if;
5054 end if;
5056 return True;
5057 end Has_Mode_Conformant_Spec;
5059 ---------------------
5060 -- Has_Dereference --
5061 ---------------------
5063 function Has_Dereference (Nod : Node_Id) return Boolean is
5064 begin
5065 if Nkind (Nod) = N_Explicit_Dereference then
5066 return True;
5068 elsif Is_Access_Type (Etype (Nod)) then
5069 return True;
5071 elsif Nkind (Nod) in N_Indexed_Component | N_Selected_Component then
5072 return Has_Dereference (Prefix (Nod));
5074 else
5075 return False;
5076 end if;
5077 end Has_Dereference;
5079 ----------------------------------------------
5080 -- Try_By_Protected_Procedure_Prefixed_View --
5081 ----------------------------------------------
5083 function Try_By_Protected_Procedure_Prefixed_View return Boolean is
5084 Candidate : Node_Id := Empty;
5085 Elmt : Elmt_Id;
5086 Prim : Node_Id;
5088 begin
5089 if Nkind (Parent (N)) = N_Attribute_Reference
5090 and then Attribute_Name (Parent (N)) in
5091 Name_Access
5092 | Name_Unchecked_Access
5093 | Name_Unrestricted_Access
5094 and then Is_Class_Wide_Type (Prefix_Type)
5095 and then (Is_Synchronized_Interface (Prefix_Type)
5096 or else Is_Protected_Interface (Prefix_Type))
5097 then
5098 -- If we have not found yet any interpretation then mark this
5099 -- one as the first interpretation (cf. Add_One_Interp).
5101 if No (Etype (Sel)) then
5102 Set_Etype (Sel, Any_Type);
5103 end if;
5105 Elmt := First_Elmt (Primitive_Operations (Etype (Prefix_Type)));
5106 while Present (Elmt) loop
5107 Prim := Node (Elmt);
5109 if Chars (Prim) = Chars (Sel)
5110 and then Is_By_Protected_Procedure (Prim)
5111 then
5112 Candidate := New_Copy (Prim);
5114 -- Skip the controlling formal; required to check type
5115 -- conformance of the target access to protected type
5116 -- (see Conforming_Types).
5118 Set_First_Entity (Candidate,
5119 Next_Entity (First_Entity (Prim)));
5121 Add_One_Interp (Sel, Candidate, Etype (Prim));
5122 Set_Etype (N, Etype (Prim));
5123 end if;
5125 Next_Elmt (Elmt);
5126 end loop;
5127 end if;
5129 -- Propagate overloaded attribute
5131 if Present (Candidate) and then Is_Overloaded (Sel) then
5132 Set_Is_Overloaded (N);
5133 end if;
5135 return Present (Candidate);
5136 end Try_By_Protected_Procedure_Prefixed_View;
5138 ----------------------------------------
5139 -- Try_Selected_Component_In_Instance --
5140 ----------------------------------------
5142 function Try_Selected_Component_In_Instance
5143 (Typ : Entity_Id) return Boolean
5145 procedure Find_Component_In_Instance (Rec : Entity_Id);
5146 -- In an instance, a component of a private extension may not be
5147 -- visible while it was visible in the generic. Search candidate
5148 -- scope for a component with the proper identifier. If a match is
5149 -- found, the Etype of both N and Sel are set from this component,
5150 -- and the entity of Sel is set to reference this component. If no
5151 -- match is found, Entity (Sel) remains unset. For a derived type
5152 -- that is an actual of the instance, the desired component may be
5153 -- found in any ancestor.
5155 --------------------------------
5156 -- Find_Component_In_Instance --
5157 --------------------------------
5159 procedure Find_Component_In_Instance (Rec : Entity_Id) is
5160 Comp : Entity_Id;
5161 Typ : Entity_Id;
5163 begin
5164 Typ := Rec;
5165 while Present (Typ) loop
5166 Comp := First_Component (Typ);
5167 while Present (Comp) loop
5168 if Chars (Comp) = Chars (Sel) then
5169 Set_Entity_With_Checks (Sel, Comp);
5170 Set_Etype (Sel, Etype (Comp));
5171 Set_Etype (N, Etype (Comp));
5172 return;
5173 end if;
5175 Next_Component (Comp);
5176 end loop;
5178 -- If not found, the component may be declared in the parent
5179 -- type or its full view, if any.
5181 if Is_Derived_Type (Typ) then
5182 Typ := Etype (Typ);
5184 if Is_Private_Type (Typ) then
5185 Typ := Full_View (Typ);
5186 end if;
5188 else
5189 return;
5190 end if;
5191 end loop;
5193 -- If we fall through, no match, so no changes made
5195 return;
5196 end Find_Component_In_Instance;
5198 -- Local variables
5200 Par : Entity_Id;
5202 -- Start of processing for Try_Selected_Component_In_Instance
5204 begin
5205 pragma Assert (In_Instance and then Is_Tagged_Type (Typ));
5206 pragma Assert (Etype (N) = Any_Type);
5208 -- Climb up derivation chain to generic actual subtype
5210 Par := Typ;
5211 while not Is_Generic_Actual_Type (Par) loop
5212 if Ekind (Par) = E_Record_Type then
5213 Par := Parent_Subtype (Par);
5214 exit when No (Par);
5215 else
5216 exit when Par = Etype (Par);
5217 Par := Etype (Par);
5218 end if;
5219 end loop;
5221 -- If Par is a generic actual, look for component in ancestor types.
5222 -- Skip this if we have no Declaration_Node, as is the case for
5223 -- itypes.
5225 if Present (Par)
5226 and then Is_Generic_Actual_Type (Par)
5227 and then Present (Declaration_Node (Par))
5228 then
5229 Par := Generic_Parent_Type (Declaration_Node (Par));
5230 loop
5231 Find_Component_In_Instance (Par);
5232 exit when Present (Entity (Sel))
5233 or else Par = Etype (Par);
5234 Par := Etype (Par);
5235 end loop;
5237 -- Another special case: the type is an extension of a private
5238 -- type T, either is an actual in an instance or is immediately
5239 -- visible, and we are in the body of the instance, which means
5240 -- the generic body had a full view of the type declaration for
5241 -- T or some ancestor that defines the component in question.
5242 -- This happens because Is_Visible_Component returned False on
5243 -- this component, as T or the ancestor is still private since
5244 -- the Has_Private_View mechanism is bypassed because T or the
5245 -- ancestor is not directly referenced in the generic body.
5247 elsif Is_Derived_Type (Typ)
5248 and then (Used_As_Generic_Actual (Typ)
5249 or else Is_Immediately_Visible (Typ))
5250 and then In_Instance_Body
5251 then
5252 Find_Component_In_Instance (Parent_Subtype (Typ));
5253 end if;
5255 return Etype (N) /= Any_Type;
5256 end Try_Selected_Component_In_Instance;
5258 -- Start of processing for Analyze_Selected_Component
5260 begin
5261 Set_Etype (N, Any_Type);
5263 if Is_Overloaded (Name) then
5264 Analyze_Overloaded_Selected_Component (N);
5265 return;
5267 elsif Etype (Name) = Any_Type then
5268 Set_Entity (Sel, Any_Id);
5269 Set_Etype (Sel, Any_Type);
5270 return;
5272 else
5273 Prefix_Type := Etype (Name);
5274 end if;
5276 if Is_Access_Type (Prefix_Type) then
5278 -- A RACW object can never be used as prefix of a selected component
5279 -- since that means it is dereferenced without being a controlling
5280 -- operand of a dispatching operation (RM E.2.2(16/1)). Before
5281 -- reporting an error, we must check whether this is actually a
5282 -- dispatching call in prefix form.
5284 if Is_Remote_Access_To_Class_Wide_Type (Prefix_Type)
5285 and then Comes_From_Source (N)
5286 then
5287 if Try_Object_Operation (N) then
5288 return;
5289 else
5290 Error_Msg_N
5291 ("invalid dereference of a remote access-to-class-wide value",
5293 end if;
5295 -- Normal case of selected component applied to access type
5297 else
5298 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
5299 Prefix_Type := Implicitly_Designated_Type (Prefix_Type);
5300 end if;
5302 -- If we have an explicit dereference of a remote access-to-class-wide
5303 -- value, then issue an error (see RM-E.2.2(16/1)). However we first
5304 -- have to check for the case of a prefix that is a controlling operand
5305 -- of a prefixed dispatching call, as the dereference is legal in that
5306 -- case. Normally this condition is checked in Validate_Remote_Access_
5307 -- To_Class_Wide_Type, but we have to defer the checking for selected
5308 -- component prefixes because of the prefixed dispatching call case.
5309 -- Note that implicit dereferences are checked for this just above.
5311 elsif Nkind (Name) = N_Explicit_Dereference
5312 and then Is_Remote_Access_To_Class_Wide_Type (Etype (Prefix (Name)))
5313 and then Comes_From_Source (N)
5314 then
5315 if Try_Object_Operation (N) then
5316 return;
5317 else
5318 Error_Msg_N
5319 ("invalid dereference of a remote access-to-class-wide value",
5321 end if;
5322 end if;
5324 -- (Ada 2005): if the prefix is the limited view of a type, and
5325 -- the context already includes the full view, use the full view
5326 -- in what follows, either to retrieve a component of to find
5327 -- a primitive operation. If the prefix is an explicit dereference,
5328 -- set the type of the prefix to reflect this transformation.
5329 -- If the nonlimited view is itself an incomplete type, get the
5330 -- full view if available.
5332 if From_Limited_With (Prefix_Type)
5333 and then Has_Non_Limited_View (Prefix_Type)
5334 then
5335 Prefix_Type := Get_Full_View (Non_Limited_View (Prefix_Type));
5337 if Nkind (N) = N_Explicit_Dereference then
5338 Set_Etype (Prefix (N), Prefix_Type);
5339 end if;
5340 end if;
5342 if Ekind (Prefix_Type) = E_Private_Subtype then
5343 Prefix_Type := Base_Type (Prefix_Type);
5344 end if;
5346 Type_To_Use := Prefix_Type;
5348 -- For class-wide types, use the entity list of the root type. This
5349 -- indirection is specially important for private extensions because
5350 -- only the root type get switched (not the class-wide type).
5352 if Is_Class_Wide_Type (Prefix_Type) then
5353 Type_To_Use := Root_Type (Prefix_Type);
5354 end if;
5356 -- If the prefix is a single concurrent object, use its name in error
5357 -- messages, rather than that of its anonymous type.
5359 Is_Single_Concurrent_Object :=
5360 Is_Concurrent_Type (Prefix_Type)
5361 and then Is_Internal_Name (Chars (Prefix_Type))
5362 and then not Is_Derived_Type (Prefix_Type)
5363 and then Is_Entity_Name (Name);
5365 -- Avoid initializing Comp if that initialization is not needed
5366 -- (and, more importantly, if the call to First_Entity could fail).
5368 if Has_Discriminants (Type_To_Use)
5369 or else Is_Record_Type (Type_To_Use)
5370 or else Is_Private_Type (Type_To_Use)
5371 or else Is_Concurrent_Type (Type_To_Use)
5372 then
5373 Comp := First_Entity (Type_To_Use);
5374 end if;
5376 -- If the selector has an original discriminant, the node appears in
5377 -- an instance. Replace the discriminant with the corresponding one
5378 -- in the current discriminated type. For nested generics, this must
5379 -- be done transitively, so note the new original discriminant.
5381 if Nkind (Sel) = N_Identifier
5382 and then In_Instance
5383 and then Present (Original_Discriminant (Sel))
5384 then
5385 Comp := Find_Corresponding_Discriminant (Sel, Prefix_Type);
5387 -- Mark entity before rewriting, for completeness and because
5388 -- subsequent semantic checks might examine the original node.
5390 Set_Entity (Sel, Comp);
5391 Rewrite (Selector_Name (N), New_Occurrence_Of (Comp, Sloc (N)));
5392 Set_Original_Discriminant (Selector_Name (N), Comp);
5393 Set_Etype (N, Etype (Comp));
5394 Check_Implicit_Dereference (N, Etype (Comp));
5396 elsif Is_Record_Type (Prefix_Type) then
5398 -- Find a component with the given name. If the node is a prefixed
5399 -- call, do not examine components whose visibility may be
5400 -- accidental.
5402 while Present (Comp)
5403 and then not Is_Prefixed_Call (N)
5405 -- When the selector has been resolved to a function then we may be
5406 -- looking at a prefixed call which has been preanalyzed already as
5407 -- part of a class condition. In such cases it is possible for a
5408 -- derived type to declare a component which has the same name as
5409 -- a primitive used in a parent's class condition.
5411 -- Avoid seeing components as possible interpretations of the
5412 -- selected component when this is true.
5414 and then not (Inside_Class_Condition_Preanalysis
5415 and then Present (Entity (Sel))
5416 and then Ekind (Entity (Sel)) = E_Function)
5417 loop
5418 if Chars (Comp) = Chars (Sel)
5419 and then Is_Visible_Component (Comp, N)
5420 then
5421 Set_Entity_With_Checks (Sel, Comp);
5422 Set_Etype (Sel, Etype (Comp));
5424 if Ekind (Comp) = E_Discriminant then
5425 if Is_Unchecked_Union (Base_Type (Prefix_Type)) then
5426 Error_Msg_N
5427 ("cannot reference discriminant of unchecked union",
5428 Sel);
5429 end if;
5431 if Is_Generic_Type (Prefix_Type)
5432 or else
5433 Is_Generic_Type (Root_Type (Prefix_Type))
5434 then
5435 Set_Original_Discriminant (Sel, Comp);
5436 end if;
5437 end if;
5439 -- Resolve the prefix early otherwise it is not possible to
5440 -- build the actual subtype of the component: it may need
5441 -- to duplicate this prefix and duplication is only allowed
5442 -- on fully resolved expressions.
5444 Resolve (Name);
5446 -- Ada 2005 (AI-50217): Check wrong use of incomplete types or
5447 -- subtypes in a package specification.
5448 -- Example:
5450 -- limited with Pkg;
5451 -- package Pkg is
5452 -- type Acc_Inc is access Pkg.T;
5453 -- X : Acc_Inc;
5454 -- N : Natural := X.all.Comp; -- ERROR, limited view
5455 -- end Pkg; -- Comp is not visible
5457 if Nkind (Name) = N_Explicit_Dereference
5458 and then From_Limited_With (Etype (Prefix (Name)))
5459 and then not Is_Potentially_Use_Visible (Etype (Name))
5460 and then Nkind (Parent (Cunit_Entity (Current_Sem_Unit))) =
5461 N_Package_Specification
5462 then
5463 Error_Msg_NE
5464 ("premature usage of incomplete}", Prefix (Name),
5465 Etype (Prefix (Name)));
5466 end if;
5468 -- We never need an actual subtype for the case of a selection
5469 -- for a indexed component of a non-packed array, since in
5470 -- this case gigi generates all the checks and can find the
5471 -- necessary bounds information.
5473 -- We also do not need an actual subtype for the case of a
5474 -- first, last, length, or range attribute applied to a
5475 -- non-packed array, since gigi can again get the bounds in
5476 -- these cases (gigi cannot handle the packed case, since it
5477 -- has the bounds of the packed array type, not the original
5478 -- bounds of the type). However, if the prefix is itself a
5479 -- selected component, as in a.b.c (i), gigi may regard a.b.c
5480 -- as a dynamic-sized temporary, so we do generate an actual
5481 -- subtype for this case.
5483 Parent_N := Parent (N);
5485 if not Is_Packed (Etype (Comp))
5486 and then
5487 ((Nkind (Parent_N) = N_Indexed_Component
5488 and then Nkind (Name) /= N_Selected_Component)
5489 or else
5490 (Nkind (Parent_N) = N_Attribute_Reference
5491 and then
5492 Attribute_Name (Parent_N) in Name_First
5493 | Name_Last
5494 | Name_Length
5495 | Name_Range))
5496 then
5497 Set_Etype (N, Etype (Comp));
5499 -- If full analysis is not enabled, we do not generate an
5500 -- actual subtype, because in the absence of expansion
5501 -- reference to a formal of a protected type, for example,
5502 -- will not be properly transformed, and will lead to
5503 -- out-of-scope references in gigi.
5505 -- In all other cases, we currently build an actual subtype.
5506 -- It seems likely that many of these cases can be avoided,
5507 -- but right now, the front end makes direct references to the
5508 -- bounds (e.g. in generating a length check), and if we do
5509 -- not make an actual subtype, we end up getting a direct
5510 -- reference to a discriminant, which will not do.
5512 elsif Full_Analysis then
5513 Act_Decl :=
5514 Build_Actual_Subtype_Of_Component (Etype (Comp), N);
5515 Insert_Action (N, Act_Decl);
5517 if No (Act_Decl) then
5518 Set_Etype (N, Etype (Comp));
5520 else
5521 -- If discriminants were present in the component
5522 -- declaration, they have been replaced by the
5523 -- actual values in the prefix object.
5525 declare
5526 Subt : constant Entity_Id :=
5527 Defining_Identifier (Act_Decl);
5528 begin
5529 Set_Etype (Subt, Base_Type (Etype (Comp)));
5530 Set_Etype (N, Subt);
5531 end;
5532 end if;
5534 -- If Etype (Comp) is an access type whose designated subtype
5535 -- is constrained by an unprefixed discriminant value,
5536 -- then ideally we would build a new subtype with an
5537 -- appropriately prefixed discriminant value and use that
5538 -- instead, as is done in Build_Actual_Subtype_Of_Component.
5539 -- That turns out to be difficult in this context (with
5540 -- Full_Analysis = False, we could be processing a selected
5541 -- component that occurs in a Postcondition pragma;
5542 -- PPC pragmas are odd because they can contain references
5543 -- to formal parameters that occur outside the subprogram).
5544 -- So instead we punt on building a new subtype and we
5545 -- use the base type instead. This might introduce
5546 -- correctness problems if N were the target of an
5547 -- assignment (because a required check might be omitted);
5548 -- fortunately, that's impossible because a reference to the
5549 -- current instance of a type does not denote a variable view
5550 -- when the reference occurs within an aspect_specification.
5551 -- GNAT's Precondition and Postcondition pragmas follow the
5552 -- same rules as a Pre or Post aspect_specification.
5554 elsif Has_Discriminant_Dependent_Constraint (Comp)
5555 and then Ekind (Etype (Comp)) = E_Access_Subtype
5556 and then Constraint_Has_Unprefixed_Discriminant_Reference
5557 (Designated_Type (Etype (Comp)))
5558 then
5559 Set_Etype (N, Base_Type (Etype (Comp)));
5561 -- If Full_Analysis not enabled, just set the Etype
5563 else
5564 Set_Etype (N, Etype (Comp));
5565 end if;
5567 Check_Implicit_Dereference (N, Etype (N));
5568 return;
5569 end if;
5571 -- If the prefix is a private extension, check only the visible
5572 -- components of the partial view. This must include the tag,
5573 -- which can appear in expanded code in a tag check.
5575 if Ekind (Type_To_Use) = E_Record_Type_With_Private
5576 and then Chars (Selector_Name (N)) /= Name_uTag
5577 then
5578 exit when Comp = Last_Entity (Type_To_Use);
5579 end if;
5581 Next_Entity (Comp);
5582 end loop;
5584 -- Ada 2005 (AI-252): The selected component can be interpreted as
5585 -- a prefixed view of a subprogram. Depending on the context, this is
5586 -- either a name that can appear in a renaming declaration, or part
5587 -- of an enclosing call given in prefix form.
5589 -- Ada 2005 (AI05-0030): In the case of dispatching requeue, the
5590 -- selected component should resolve to a name.
5592 -- Extension feature: Also support calls with prefixed views for
5593 -- untagged record types.
5595 if Ada_Version >= Ada_2005
5596 and then (Is_Tagged_Type (Prefix_Type)
5597 or else Core_Extensions_Allowed)
5598 and then not Is_Concurrent_Type (Prefix_Type)
5599 then
5600 if Nkind (Parent (N)) = N_Generic_Association
5601 or else Nkind (Parent (N)) = N_Requeue_Statement
5602 or else Nkind (Parent (N)) = N_Subprogram_Renaming_Declaration
5603 then
5604 if Find_Primitive_Operation (N) then
5605 return;
5606 end if;
5608 elsif Try_By_Protected_Procedure_Prefixed_View then
5609 return;
5611 -- If the prefix type is the actual for a formal derived type,
5612 -- or a derived type thereof, the component inherited from the
5613 -- generic parent may not be visible in the actual, but the
5614 -- selected component is legal. This case must be handled before
5615 -- trying the object.operation notation to avoid reporting
5616 -- spurious errors, but must be skipped when Is_Prefixed_Call has
5617 -- been set (because that means that this node was resolved to an
5618 -- Object.Operation call when the generic unit was analyzed).
5620 elsif In_Instance
5621 and then not Is_Prefixed_Call (N)
5622 and then Is_Tagged_Type (Prefix_Type)
5623 and then Try_Selected_Component_In_Instance (Type_To_Use)
5624 then
5625 return;
5627 elsif Try_Object_Operation (N) then
5628 return;
5629 end if;
5631 -- If the transformation fails, it will be necessary to redo the
5632 -- analysis with all errors enabled, to indicate candidate
5633 -- interpretations and reasons for each failure ???
5635 end if;
5637 elsif Is_Private_Type (Prefix_Type) then
5639 -- Allow access only to discriminants of the type. If the type has
5640 -- no full view, gigi uses the parent type for the components, so we
5641 -- do the same here.
5643 if No (Full_View (Prefix_Type)) then
5644 Type_To_Use := Root_Type (Base_Type (Prefix_Type));
5645 Comp := First_Entity (Type_To_Use);
5646 end if;
5648 while Present (Comp) loop
5649 if Chars (Comp) = Chars (Sel) then
5650 if Ekind (Comp) = E_Discriminant then
5651 Set_Entity_With_Checks (Sel, Comp);
5652 Generate_Reference (Comp, Sel);
5654 Set_Etype (Sel, Etype (Comp));
5655 Set_Etype (N, Etype (Comp));
5656 Check_Implicit_Dereference (N, Etype (N));
5658 if Is_Generic_Type (Prefix_Type)
5659 or else Is_Generic_Type (Root_Type (Prefix_Type))
5660 then
5661 Set_Original_Discriminant (Sel, Comp);
5662 end if;
5664 -- Before declaring an error, check whether this is tagged
5665 -- private type and a call to a primitive operation.
5667 elsif Ada_Version >= Ada_2005
5668 and then Is_Tagged_Type (Prefix_Type)
5669 and then Try_Object_Operation (N)
5670 then
5671 return;
5673 else
5674 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
5675 Error_Msg_NE ("invisible selector& for }", N, Sel);
5676 Set_Entity (Sel, Any_Id);
5677 Set_Etype (N, Any_Type);
5678 end if;
5680 return;
5681 end if;
5683 Next_Entity (Comp);
5684 end loop;
5686 -- Extension feature: Also support calls with prefixed views for
5687 -- untagged private types.
5689 if Core_Extensions_Allowed then
5690 if Try_Object_Operation (N) then
5691 return;
5692 end if;
5693 end if;
5695 elsif Is_Concurrent_Type (Prefix_Type) then
5697 -- Find visible operation with given name. For a protected type,
5698 -- the possible candidates are discriminants, entries or protected
5699 -- subprograms. For a task type, the set can only include entries or
5700 -- discriminants if the task type is not an enclosing scope. If it
5701 -- is an enclosing scope (e.g. in an inner task) then all entities
5702 -- are visible, but the prefix must denote the enclosing scope, i.e.
5703 -- can only be a direct name or an expanded name.
5705 Set_Etype (Sel, Any_Type);
5706 Hidden_Comp := Empty;
5707 In_Scope := In_Open_Scopes (Prefix_Type);
5708 Is_Private_Op := False;
5710 while Present (Comp) loop
5712 -- Do not examine private operations of the type if not within
5713 -- its scope.
5715 if Chars (Comp) = Chars (Sel) then
5716 if Is_Overloadable (Comp)
5717 and then (In_Scope
5718 or else Comp /= First_Private_Entity (Type_To_Use))
5719 then
5720 Add_One_Interp (Sel, Comp, Etype (Comp));
5721 if Comp = First_Private_Entity (Type_To_Use) then
5722 Is_Private_Op := True;
5723 end if;
5725 -- If the prefix is tagged, the correct interpretation may
5726 -- lie in the primitive or class-wide operations of the
5727 -- type. Perform a simple conformance check to determine
5728 -- whether Try_Object_Operation should be invoked even if
5729 -- a visible entity is found.
5731 if Is_Tagged_Type (Prefix_Type)
5732 and then Nkind (Parent (N)) in N_Function_Call
5733 | N_Indexed_Component
5734 | N_Procedure_Call_Statement
5735 and then Has_Mode_Conformant_Spec (Comp)
5736 then
5737 Has_Candidate := True;
5738 end if;
5740 -- Note: a selected component may not denote a component of a
5741 -- protected type (4.1.3(7)).
5743 elsif Ekind (Comp) in E_Discriminant | E_Entry_Family
5744 or else (In_Scope
5745 and then not Is_Protected_Type (Prefix_Type)
5746 and then Is_Entity_Name (Name))
5747 then
5748 Set_Entity_With_Checks (Sel, Comp);
5749 Generate_Reference (Comp, Sel);
5751 -- The selector is not overloadable, so we have a candidate
5752 -- interpretation.
5754 Has_Candidate := True;
5756 else
5757 if Ekind (Comp) = E_Component then
5758 Hidden_Comp := Comp;
5759 end if;
5761 goto Next_Comp;
5762 end if;
5764 Set_Etype (Sel, Etype (Comp));
5765 Set_Etype (N, Etype (Comp));
5767 if Ekind (Comp) = E_Discriminant then
5768 Set_Original_Discriminant (Sel, Comp);
5769 end if;
5770 end if;
5772 <<Next_Comp>>
5773 if Comp = First_Private_Entity (Type_To_Use) then
5774 if Etype (Sel) /= Any_Type then
5776 -- If the first private entity's name matches, then treat
5777 -- it as a private op: needed for the error check for
5778 -- illegal selection of private entities further below.
5780 if Chars (Comp) = Chars (Sel) then
5781 Is_Private_Op := True;
5782 end if;
5784 -- We have a candidate, so exit the loop
5786 exit;
5788 else
5789 -- Indicate that subsequent operations are private,
5790 -- for better error reporting.
5792 Is_Private_Op := True;
5793 end if;
5794 end if;
5796 -- Do not examine private operations if not within scope of
5797 -- the synchronized type.
5799 exit when not In_Scope
5800 and then
5801 Comp = First_Private_Entity (Base_Type (Prefix_Type));
5802 Next_Entity (Comp);
5803 end loop;
5805 -- If the scope is a current instance, the prefix cannot be an
5806 -- expression of the same type, unless the selector designates a
5807 -- public operation (otherwise that would represent an attempt to
5808 -- reach an internal entity of another synchronized object).
5810 -- This is legal if prefix is an access to such type and there is
5811 -- a dereference, or is a component with a dereferenced prefix.
5812 -- It is also legal if the prefix is a component of a task type,
5813 -- and the selector is one of the task operations.
5815 if In_Scope
5816 and then not Is_Entity_Name (Name)
5817 and then not Has_Dereference (Name)
5818 then
5819 if Is_Task_Type (Prefix_Type)
5820 and then Present (Entity (Sel))
5821 and then Is_Entry (Entity (Sel))
5822 then
5823 null;
5825 elsif Is_Protected_Type (Prefix_Type)
5826 and then Is_Overloadable (Entity (Sel))
5827 and then not Is_Private_Op
5828 then
5829 null;
5831 else
5832 Error_Msg_NE
5833 ("invalid reference to internal operation of some object of "
5834 & "type &", N, Type_To_Use);
5835 Set_Entity (Sel, Any_Id);
5836 Set_Etype (Sel, Any_Type);
5837 return;
5838 end if;
5840 -- Another special case: the prefix may denote an object of the type
5841 -- (but not a type) in which case this is an external call and the
5842 -- operation must be public.
5844 elsif In_Scope
5845 and then Is_Object_Reference (Original_Node (Prefix (N)))
5846 and then Comes_From_Source (N)
5847 and then Is_Private_Op
5848 then
5849 if Present (Hidden_Comp) then
5850 Error_Msg_NE
5851 ("invalid reference to private component of object of type "
5852 & "&", N, Type_To_Use);
5854 else
5855 Error_Msg_NE
5856 ("invalid reference to private operation of some object of "
5857 & "type &", N, Type_To_Use);
5858 end if;
5860 Set_Entity (Sel, Any_Id);
5861 Set_Etype (Sel, Any_Type);
5862 return;
5863 end if;
5865 -- If there is no visible entity with the given name or none of the
5866 -- visible entities are plausible interpretations, check whether
5867 -- there is some other primitive operation with that name.
5869 if Ada_Version >= Ada_2005 and then Is_Tagged_Type (Prefix_Type) then
5870 if (Etype (N) = Any_Type
5871 or else not Has_Candidate)
5872 and then Try_Object_Operation (N)
5873 then
5874 return;
5876 -- If the context is not syntactically a procedure call, it
5877 -- may be a call to a primitive function declared outside of
5878 -- the synchronized type.
5880 -- If the context is a procedure call, there might still be
5881 -- an overloading between an entry and a primitive procedure
5882 -- declared outside of the synchronized type, called in prefix
5883 -- notation. This is harder to disambiguate because in one case
5884 -- the controlling formal is implicit ???
5886 elsif Nkind (Parent (N)) /= N_Procedure_Call_Statement
5887 and then Nkind (Parent (N)) /= N_Indexed_Component
5888 and then Try_Object_Operation (N)
5889 then
5890 return;
5891 end if;
5893 -- Ada 2012 (AI05-0090-1): If we found a candidate of a call to an
5894 -- entry or procedure of a tagged concurrent type we must check
5895 -- if there are class-wide subprograms covering the primitive. If
5896 -- true then Try_Object_Operation reports the error.
5898 if Has_Candidate
5899 and then Is_Concurrent_Type (Prefix_Type)
5900 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
5901 then
5902 -- Duplicate the call. This is required to avoid problems with
5903 -- the tree transformations performed by Try_Object_Operation.
5904 -- Set properly the parent of the copied call, because it is
5905 -- about to be reanalyzed.
5907 declare
5908 Par : constant Node_Id := New_Copy_Tree (Parent (N));
5910 begin
5911 Set_Parent (Par, Parent (Parent (N)));
5913 if Try_Object_Operation
5914 (Sinfo.Nodes.Name (Par), CW_Test_Only => True)
5915 then
5916 return;
5917 end if;
5918 end;
5919 end if;
5920 end if;
5922 if Etype (N) = Any_Type and then Is_Protected_Type (Prefix_Type) then
5924 -- Case of a prefix of a protected type: selector might denote
5925 -- an invisible private component.
5927 Comp := First_Private_Entity (Base_Type (Prefix_Type));
5928 while Present (Comp) and then Chars (Comp) /= Chars (Sel) loop
5929 Next_Entity (Comp);
5930 end loop;
5932 if Present (Comp) then
5933 if Is_Single_Concurrent_Object then
5934 Error_Msg_Node_2 := Entity (Name);
5935 Error_Msg_NE ("invisible selector& for &", N, Sel);
5937 else
5938 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
5939 Error_Msg_NE ("invisible selector& for }", N, Sel);
5940 end if;
5941 return;
5942 end if;
5943 end if;
5945 Set_Is_Overloaded (N, Is_Overloaded (Sel));
5947 -- Extension feature: Also support calls with prefixed views for
5948 -- untagged types.
5950 elsif Core_Extensions_Allowed
5951 and then Try_Object_Operation (N)
5952 then
5953 return;
5955 else
5956 -- Invalid prefix
5958 Error_Msg_NE ("invalid prefix in selected component&", N, Sel);
5959 end if;
5961 -- If N still has no type, the component is not defined in the prefix
5963 if Etype (N) = Any_Type then
5965 if Is_Single_Concurrent_Object then
5966 Error_Msg_Node_2 := Entity (Name);
5967 Error_Msg_NE ("no selector& for&", N, Sel);
5969 Check_Misspelled_Selector (Type_To_Use, Sel);
5971 -- If this is a derived formal type, the parent may have different
5972 -- visibility at this point. Try for an inherited component before
5973 -- reporting an error.
5975 elsif Is_Generic_Type (Prefix_Type)
5976 and then Ekind (Prefix_Type) = E_Record_Type_With_Private
5977 and then Prefix_Type /= Etype (Prefix_Type)
5978 and then Is_Record_Type (Etype (Prefix_Type))
5979 then
5980 Set_Etype (Prefix (N), Etype (Prefix_Type));
5981 Analyze_Selected_Component (N);
5982 return;
5984 -- Similarly, if this is the actual for a formal derived type, or
5985 -- a derived type thereof, the component inherited from the generic
5986 -- parent may not be visible in the actual, but the selected
5987 -- component is legal.
5989 elsif In_Instance and then Is_Tagged_Type (Prefix_Type) then
5991 -- Climb up the derivation chain of the generic parent type until
5992 -- we find the proper ancestor type.
5994 if Try_Selected_Component_In_Instance (Type_To_Use) then
5995 return;
5997 -- The search above must have eventually succeeded, since the
5998 -- selected component was legal in the generic.
6000 else
6001 raise Program_Error;
6002 end if;
6004 -- Component not found, specialize error message when appropriate
6006 else
6007 if Ekind (Prefix_Type) = E_Record_Subtype then
6009 -- Check whether this is a component of the base type which
6010 -- is absent from a statically constrained subtype. This will
6011 -- raise constraint error at run time, but is not a compile-
6012 -- time error. When the selector is illegal for base type as
6013 -- well fall through and generate a compilation error anyway.
6015 Comp := First_Component (Base_Type (Prefix_Type));
6016 while Present (Comp) loop
6017 if Chars (Comp) = Chars (Sel)
6018 and then Is_Visible_Component (Comp, Sel)
6019 then
6020 Set_Entity_With_Checks (Sel, Comp);
6021 Generate_Reference (Comp, Sel);
6022 Set_Etype (Sel, Etype (Comp));
6023 Set_Etype (N, Etype (Comp));
6025 -- Emit appropriate message. The node will be replaced
6026 -- by an appropriate raise statement.
6028 -- Note that in GNATprove mode, as with all calls to
6029 -- apply a compile time constraint error, this will be
6030 -- made into an error to simplify the processing of the
6031 -- formal verification backend.
6033 Apply_Compile_Time_Constraint_Error
6034 (N, "component not present in }??",
6035 CE_Discriminant_Check_Failed,
6036 Ent => Prefix_Type,
6037 Emit_Message =>
6038 GNATprove_Mode or not In_Instance_Not_Visible);
6039 return;
6040 end if;
6042 Next_Component (Comp);
6043 end loop;
6045 end if;
6047 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
6048 Error_Msg_NE ("no selector& for}", N, Sel);
6050 -- Add information in the case of an incomplete prefix
6052 if Is_Incomplete_Type (Type_To_Use) then
6053 declare
6054 Inc : constant Entity_Id := First_Subtype (Type_To_Use);
6056 begin
6057 if From_Limited_With (Scope (Type_To_Use)) then
6058 Error_Msg_NE
6059 ("\limited view of& has no components", N, Inc);
6061 else
6062 Error_Msg_NE
6063 ("\premature usage of incomplete type&", N, Inc);
6065 if Nkind (Parent (Inc)) =
6066 N_Incomplete_Type_Declaration
6067 then
6068 -- Record location of premature use in entity so that
6069 -- a continuation message is generated when the
6070 -- completion is seen.
6072 Set_Premature_Use (Parent (Inc), N);
6073 end if;
6074 end if;
6075 end;
6076 end if;
6078 Check_Misspelled_Selector (Type_To_Use, Sel);
6079 end if;
6081 Set_Entity (Sel, Any_Id);
6082 Set_Etype (Sel, Any_Type);
6083 end if;
6084 end Analyze_Selected_Component;
6086 ---------------------------
6087 -- Analyze_Short_Circuit --
6088 ---------------------------
6090 procedure Analyze_Short_Circuit (N : Node_Id) is
6091 L : constant Node_Id := Left_Opnd (N);
6092 R : constant Node_Id := Right_Opnd (N);
6093 Ind : Interp_Index;
6094 It : Interp;
6096 begin
6097 Set_Etype (N, Any_Type);
6098 Analyze_Expression (L);
6099 Analyze_Expression (R);
6101 if not Is_Overloaded (L) then
6102 if Root_Type (Etype (L)) = Standard_Boolean
6103 and then Has_Compatible_Type (R, Etype (L))
6104 then
6105 Add_One_Interp (N, Etype (L), Etype (L));
6106 end if;
6108 else
6109 Get_First_Interp (L, Ind, It);
6110 while Present (It.Typ) loop
6111 if Root_Type (It.Typ) = Standard_Boolean
6112 and then Has_Compatible_Type (R, It.Typ)
6113 then
6114 Add_One_Interp (N, It.Typ, It.Typ);
6115 end if;
6117 Get_Next_Interp (Ind, It);
6118 end loop;
6119 end if;
6121 -- Here we have failed to find an interpretation. Clearly we know that
6122 -- it is not the case that both operands can have an interpretation of
6123 -- Boolean, but this is by far the most likely intended interpretation.
6124 -- So we simply resolve both operands as Booleans, and at least one of
6125 -- these resolutions will generate an error message, and we do not need
6126 -- to give another error message on the short circuit operation itself.
6128 if Etype (N) = Any_Type then
6129 Resolve (L, Standard_Boolean);
6130 Resolve (R, Standard_Boolean);
6131 Set_Etype (N, Standard_Boolean);
6132 end if;
6134 if Style_Check then
6135 if Nkind (L) not in N_Short_Circuit | N_Op_And | N_Op_Or | N_Op_Xor
6136 then
6137 Check_Xtra_Parens_Precedence (L);
6138 end if;
6140 if Nkind (R) not in N_Short_Circuit | N_Op_And | N_Op_Or | N_Op_Xor
6141 then
6142 Check_Xtra_Parens_Precedence (R);
6143 end if;
6144 end if;
6145 end Analyze_Short_Circuit;
6147 -------------------
6148 -- Analyze_Slice --
6149 -------------------
6151 procedure Analyze_Slice (N : Node_Id) is
6152 D : constant Node_Id := Discrete_Range (N);
6153 P : constant Node_Id := Prefix (N);
6154 Array_Type : Entity_Id;
6155 Index_Type : Entity_Id;
6157 procedure Analyze_Overloaded_Slice;
6158 -- If the prefix is overloaded, select those interpretations that
6159 -- yield a one-dimensional array type.
6161 ------------------------------
6162 -- Analyze_Overloaded_Slice --
6163 ------------------------------
6165 procedure Analyze_Overloaded_Slice is
6166 I : Interp_Index;
6167 It : Interp;
6168 Typ : Entity_Id;
6170 begin
6171 Set_Etype (N, Any_Type);
6173 Get_First_Interp (P, I, It);
6174 while Present (It.Nam) loop
6175 Typ := It.Typ;
6177 if Is_Access_Type (Typ) then
6178 Typ := Designated_Type (Typ);
6179 Error_Msg_NW
6180 (Warn_On_Dereference, "?d?implicit dereference", N);
6181 end if;
6183 if Is_Array_Type (Typ)
6184 and then Number_Dimensions (Typ) = 1
6185 and then Has_Compatible_Type (D, Etype (First_Index (Typ)))
6186 then
6187 Add_One_Interp (N, Typ, Typ);
6188 end if;
6190 Get_Next_Interp (I, It);
6191 end loop;
6193 if Etype (N) = Any_Type then
6194 Error_Msg_N ("expect array type in prefix of slice", N);
6195 end if;
6196 end Analyze_Overloaded_Slice;
6198 -- Start of processing for Analyze_Slice
6200 begin
6201 Analyze (P);
6202 Analyze (D);
6204 if Is_Overloaded (P) then
6205 Analyze_Overloaded_Slice;
6207 else
6208 Array_Type := Etype (P);
6209 Set_Etype (N, Any_Type);
6211 if Is_Access_Type (Array_Type) then
6212 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
6213 Array_Type := Implicitly_Designated_Type (Array_Type);
6214 end if;
6216 if not Is_Array_Type (Array_Type) then
6217 Wrong_Type (P, Any_Array);
6219 elsif Number_Dimensions (Array_Type) > 1 then
6220 Error_Msg_N
6221 ("type is not one-dimensional array in slice prefix", N);
6223 else
6224 if Ekind (Array_Type) = E_String_Literal_Subtype then
6225 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
6226 else
6227 Index_Type := Etype (First_Index (Array_Type));
6228 end if;
6230 if not Has_Compatible_Type (D, Index_Type) then
6231 Wrong_Type (D, Index_Type);
6232 else
6233 Set_Etype (N, Array_Type);
6234 end if;
6235 end if;
6236 end if;
6237 end Analyze_Slice;
6239 -----------------------------
6240 -- Analyze_Type_Conversion --
6241 -----------------------------
6243 procedure Analyze_Type_Conversion (N : Node_Id) is
6244 Expr : constant Node_Id := Expression (N);
6245 Mark : constant Entity_Id := Subtype_Mark (N);
6247 Typ : Entity_Id;
6249 begin
6250 -- If Conversion_OK is set, then the Etype is already set, and the only
6251 -- processing required is to analyze the expression. This is used to
6252 -- construct certain "illegal" conversions which are not allowed by Ada
6253 -- semantics, but can be handled by Gigi, see Sinfo for further details.
6255 if Conversion_OK (N) then
6256 Analyze (Expr);
6257 return;
6258 end if;
6260 -- Otherwise full type analysis is required, as well as some semantic
6261 -- checks to make sure the argument of the conversion is appropriate.
6263 Find_Type (Mark);
6264 Typ := Entity (Mark);
6265 Set_Etype (N, Typ);
6267 Analyze_Expression (Expr);
6269 Check_Fully_Declared (Typ, N);
6270 Validate_Remote_Type_Type_Conversion (N);
6272 -- Only remaining step is validity checks on the argument. These
6273 -- are skipped if the conversion does not come from the source.
6275 if not Comes_From_Source (N) then
6276 return;
6278 -- If there was an error in a generic unit, no need to replicate the
6279 -- error message. Conversely, constant-folding in the generic may
6280 -- transform the argument of a conversion into a string literal, which
6281 -- is legal. Therefore the following tests are not performed in an
6282 -- instance. The same applies to an inlined body.
6284 elsif In_Instance or In_Inlined_Body then
6285 return;
6287 elsif Nkind (Expr) = N_Null then
6288 Error_Msg_N ("argument of conversion cannot be null", N);
6289 Error_Msg_N ("\use qualified expression instead", N);
6290 Set_Etype (N, Any_Type);
6292 elsif Nkind (Expr) = N_Aggregate then
6293 Error_Msg_N ("argument of conversion cannot be aggregate", N);
6294 Error_Msg_N ("\use qualified expression instead", N);
6296 elsif Nkind (Expr) = N_Allocator then
6297 Error_Msg_N ("argument of conversion cannot be allocator", N);
6298 Error_Msg_N ("\use qualified expression instead", N);
6300 elsif Nkind (Expr) = N_String_Literal then
6301 Error_Msg_N ("argument of conversion cannot be string literal", N);
6302 Error_Msg_N ("\use qualified expression instead", N);
6304 elsif Nkind (Expr) = N_Character_Literal then
6305 if Ada_Version = Ada_83 then
6306 Resolve (Expr, Typ);
6307 else
6308 Error_Msg_N
6309 ("argument of conversion cannot be character literal", N);
6310 Error_Msg_N ("\use qualified expression instead", N);
6311 end if;
6313 elsif Nkind (Expr) = N_Attribute_Reference
6314 and then Attribute_Name (Expr) in Name_Access
6315 | Name_Unchecked_Access
6316 | Name_Unrestricted_Access
6317 then
6318 Error_Msg_N
6319 ("argument of conversion cannot be access attribute", N);
6320 Error_Msg_N ("\use qualified expression instead", N);
6321 end if;
6323 -- A formal parameter of a specific tagged type whose related subprogram
6324 -- is subject to pragma Extensions_Visible with value "False" cannot
6325 -- appear in a class-wide conversion (SPARK RM 6.1.7(3)). Do not check
6326 -- internally generated expressions.
6328 if Is_Class_Wide_Type (Typ)
6329 and then Comes_From_Source (Expr)
6330 and then Is_EVF_Expression (Expr)
6331 then
6332 Error_Msg_N
6333 ("formal parameter cannot be converted to class-wide type when "
6334 & "Extensions_Visible is False", Expr);
6335 end if;
6336 end Analyze_Type_Conversion;
6338 ----------------------
6339 -- Analyze_Unary_Op --
6340 ----------------------
6342 procedure Analyze_Unary_Op (N : Node_Id) is
6343 R : constant Node_Id := Right_Opnd (N);
6345 Op_Id : Entity_Id;
6347 begin
6348 Set_Etype (N, Any_Type);
6349 Candidate_Type := Empty;
6351 Analyze_Expression (R);
6353 -- If the entity is already set, the node is the instantiation of a
6354 -- generic node with a non-local reference, or was manufactured by a
6355 -- call to Make_Op_xxx. In either case the entity is known to be valid,
6356 -- and we do not need to collect interpretations, instead we just get
6357 -- the single possible interpretation.
6359 if Present (Entity (N)) then
6360 Op_Id := Entity (N);
6362 if Ekind (Op_Id) = E_Operator then
6363 Find_Unary_Types (R, Op_Id, N);
6364 else
6365 Add_One_Interp (N, Op_Id, Etype (Op_Id));
6366 end if;
6368 else
6369 Op_Id := Get_Name_Entity_Id (Chars (N));
6370 while Present (Op_Id) loop
6371 if Ekind (Op_Id) = E_Operator then
6372 if No (Next_Entity (First_Entity (Op_Id))) then
6373 Find_Unary_Types (R, Op_Id, N);
6374 end if;
6376 elsif Is_Overloadable (Op_Id) then
6377 Analyze_User_Defined_Unary_Op (N, Op_Id);
6378 end if;
6380 Op_Id := Homonym (Op_Id);
6381 end loop;
6382 end if;
6384 Operator_Check (N);
6385 end Analyze_Unary_Op;
6387 ----------------------------------
6388 -- Analyze_Unchecked_Expression --
6389 ----------------------------------
6391 procedure Analyze_Unchecked_Expression (N : Node_Id) is
6392 Expr : constant Node_Id := Expression (N);
6394 begin
6395 Analyze (Expr, Suppress => All_Checks);
6396 Set_Etype (N, Etype (Expr));
6397 Save_Interps (Expr, N);
6398 end Analyze_Unchecked_Expression;
6400 ---------------------------------------
6401 -- Analyze_Unchecked_Type_Conversion --
6402 ---------------------------------------
6404 procedure Analyze_Unchecked_Type_Conversion (N : Node_Id) is
6405 Expr : constant Node_Id := Expression (N);
6406 Mark : constant Entity_Id := Subtype_Mark (N);
6408 begin
6409 Find_Type (Mark);
6410 Set_Etype (N, Entity (Mark));
6411 Analyze_Expression (Expr);
6412 end Analyze_Unchecked_Type_Conversion;
6414 ------------------------------------
6415 -- Analyze_User_Defined_Binary_Op --
6416 ------------------------------------
6418 procedure Analyze_User_Defined_Binary_Op
6419 (N : Node_Id;
6420 Op_Id : Entity_Id) is
6421 begin
6422 declare
6423 F1 : constant Entity_Id := First_Formal (Op_Id);
6424 F2 : constant Entity_Id := Next_Formal (F1);
6426 begin
6427 -- Verify that Op_Id is a visible binary function. Note that since
6428 -- we know Op_Id is overloaded, potentially use visible means use
6429 -- visible for sure (RM 9.4(11)). Be prepared for previous errors.
6431 if Ekind (Op_Id) = E_Function
6432 and then Present (F2)
6433 and then (Is_Immediately_Visible (Op_Id)
6434 or else Is_Potentially_Use_Visible (Op_Id))
6435 and then (Has_Compatible_Type (Left_Opnd (N), Etype (F1))
6436 or else Etype (F1) = Any_Type)
6437 and then (Has_Compatible_Type (Right_Opnd (N), Etype (F2))
6438 or else Etype (F2) = Any_Type)
6439 then
6440 Add_One_Interp (N, Op_Id, Base_Type (Etype (Op_Id)));
6442 -- If the operands are overloaded, indicate that the current
6443 -- type is a viable candidate. This is redundant in most cases,
6444 -- but for equality and comparison operators where the context
6445 -- does not impose a type on the operands, setting the proper
6446 -- type is necessary to avoid subsequent ambiguities during
6447 -- resolution, when both user-defined and predefined operators
6448 -- may be candidates.
6450 if Is_Overloaded (Left_Opnd (N)) then
6451 Set_Etype (Left_Opnd (N), Etype (F1));
6452 end if;
6454 if Is_Overloaded (Right_Opnd (N)) then
6455 Set_Etype (Right_Opnd (N), Etype (F2));
6456 end if;
6458 if Debug_Flag_E then
6459 Write_Str ("user defined operator ");
6460 Write_Name (Chars (Op_Id));
6461 Write_Str (" on node ");
6462 Write_Int (Int (N));
6463 Write_Eol;
6464 end if;
6465 end if;
6466 end;
6467 end Analyze_User_Defined_Binary_Op;
6469 -----------------------------------
6470 -- Analyze_User_Defined_Unary_Op --
6471 -----------------------------------
6473 procedure Analyze_User_Defined_Unary_Op
6474 (N : Node_Id;
6475 Op_Id : Entity_Id)
6477 begin
6478 -- Only do analysis if the operator Comes_From_Source, since otherwise
6479 -- the operator was generated by the expander, and all such operators
6480 -- always refer to the operators in package Standard.
6482 if Comes_From_Source (N) then
6483 declare
6484 F : constant Entity_Id := First_Formal (Op_Id);
6486 begin
6487 -- Verify that Op_Id is a visible unary function. Note that since
6488 -- we know Op_Id is overloaded, potentially use visible means use
6489 -- visible for sure (RM 9.4(11)).
6491 if Ekind (Op_Id) = E_Function
6492 and then No (Next_Formal (F))
6493 and then (Is_Immediately_Visible (Op_Id)
6494 or else Is_Potentially_Use_Visible (Op_Id))
6495 and then Has_Compatible_Type (Right_Opnd (N), Etype (F))
6496 then
6497 Add_One_Interp (N, Op_Id, Etype (Op_Id));
6498 end if;
6499 end;
6500 end if;
6501 end Analyze_User_Defined_Unary_Op;
6503 ---------------------------
6504 -- Check_Arithmetic_Pair --
6505 ---------------------------
6507 procedure Check_Arithmetic_Pair
6508 (T1, T2 : Entity_Id;
6509 Op_Id : Entity_Id;
6510 N : Node_Id)
6512 Op_Name : constant Name_Id := Chars (Op_Id);
6514 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean;
6515 -- Check whether the fixed-point type Typ has a user-defined operator
6516 -- (multiplication or division) that should hide the corresponding
6517 -- predefined operator. Used to implement Ada 2005 AI-264, to make
6518 -- such operators more visible and therefore useful.
6520 -- If the name of the operation is an expanded name with prefix
6521 -- Standard, the predefined universal fixed operator is available,
6522 -- as specified by AI-420 (RM 4.5.5 (19.1/2)).
6524 ------------------
6525 -- Has_Fixed_Op --
6526 ------------------
6528 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean is
6529 Bas : constant Entity_Id := Base_Type (Typ);
6530 Ent : Entity_Id;
6531 F1 : Entity_Id;
6532 F2 : Entity_Id;
6534 begin
6535 -- If the universal_fixed operation is given explicitly the rule
6536 -- concerning primitive operations of the type do not apply.
6538 if Nkind (N) = N_Function_Call
6539 and then Nkind (Name (N)) = N_Expanded_Name
6540 and then Entity (Prefix (Name (N))) = Standard_Standard
6541 then
6542 return False;
6543 end if;
6545 -- The operation is treated as primitive if it is declared in the
6546 -- same scope as the type, and therefore on the same entity chain.
6548 Ent := Next_Entity (Typ);
6549 while Present (Ent) loop
6550 if Chars (Ent) = Chars (Op) then
6551 F1 := First_Formal (Ent);
6552 F2 := Next_Formal (F1);
6554 -- The operation counts as primitive if either operand or
6555 -- result are of the given base type, and both operands are
6556 -- fixed point types.
6558 if (Base_Type (Etype (F1)) = Bas
6559 and then Is_Fixed_Point_Type (Etype (F2)))
6561 or else
6562 (Base_Type (Etype (F2)) = Bas
6563 and then Is_Fixed_Point_Type (Etype (F1)))
6565 or else
6566 (Base_Type (Etype (Ent)) = Bas
6567 and then Is_Fixed_Point_Type (Etype (F1))
6568 and then Is_Fixed_Point_Type (Etype (F2)))
6569 then
6570 return True;
6571 end if;
6572 end if;
6574 Next_Entity (Ent);
6575 end loop;
6577 return False;
6578 end Has_Fixed_Op;
6580 -- Start of processing for Check_Arithmetic_Pair
6582 begin
6583 if Op_Name in Name_Op_Add | Name_Op_Subtract then
6584 if Is_Numeric_Type (T1)
6585 and then Is_Numeric_Type (T2)
6586 and then (Covers (T1 => T1, T2 => T2)
6587 or else
6588 Covers (T1 => T2, T2 => T1))
6589 then
6590 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
6591 end if;
6593 elsif Op_Name in Name_Op_Multiply | Name_Op_Divide then
6594 if Is_Fixed_Point_Type (T1)
6595 and then (Is_Fixed_Point_Type (T2) or else T2 = Universal_Real)
6596 then
6597 -- Add one interpretation with universal fixed result
6599 if not Has_Fixed_Op (T1, Op_Id)
6600 or else Nkind (Parent (N)) = N_Type_Conversion
6601 then
6602 Add_One_Interp (N, Op_Id, Universal_Fixed);
6603 end if;
6605 elsif Is_Fixed_Point_Type (T2)
6606 and then T1 = Universal_Real
6607 and then
6608 (not Has_Fixed_Op (T1, Op_Id)
6609 or else Nkind (Parent (N)) = N_Type_Conversion)
6610 then
6611 Add_One_Interp (N, Op_Id, Universal_Fixed);
6613 elsif Is_Numeric_Type (T1)
6614 and then Is_Numeric_Type (T2)
6615 and then (Covers (T1 => T1, T2 => T2)
6616 or else
6617 Covers (T1 => T2, T2 => T1))
6618 then
6619 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
6621 elsif Is_Fixed_Point_Type (T1)
6622 and then (Base_Type (T2) = Base_Type (Standard_Integer)
6623 or else T2 = Universal_Integer)
6624 then
6625 Add_One_Interp (N, Op_Id, T1);
6627 elsif T2 = Universal_Real
6628 and then Base_Type (T1) = Base_Type (Standard_Integer)
6629 and then Op_Name = Name_Op_Multiply
6630 then
6631 Add_One_Interp (N, Op_Id, Any_Fixed);
6633 elsif T1 = Universal_Real
6634 and then Base_Type (T2) = Base_Type (Standard_Integer)
6635 then
6636 Add_One_Interp (N, Op_Id, Any_Fixed);
6638 elsif Is_Fixed_Point_Type (T2)
6639 and then (Base_Type (T1) = Base_Type (Standard_Integer)
6640 or else T1 = Universal_Integer)
6641 and then Op_Name = Name_Op_Multiply
6642 then
6643 Add_One_Interp (N, Op_Id, T2);
6645 elsif T1 = Universal_Real and then T2 = Universal_Integer then
6646 Add_One_Interp (N, Op_Id, T1);
6648 elsif T2 = Universal_Real
6649 and then T1 = Universal_Integer
6650 and then Op_Name = Name_Op_Multiply
6651 then
6652 Add_One_Interp (N, Op_Id, T2);
6653 end if;
6655 elsif Op_Name = Name_Op_Mod or else Op_Name = Name_Op_Rem then
6657 if Is_Integer_Type (T1)
6658 and then (Covers (T1 => T1, T2 => T2)
6659 or else
6660 Covers (T1 => T2, T2 => T1))
6661 then
6662 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
6663 end if;
6665 elsif Op_Name = Name_Op_Expon then
6666 if Is_Numeric_Type (T1)
6667 and then not Is_Fixed_Point_Type (T1)
6668 and then (Base_Type (T2) = Base_Type (Standard_Integer)
6669 or else T2 = Universal_Integer)
6670 then
6671 Add_One_Interp (N, Op_Id, Base_Type (T1));
6672 end if;
6674 else pragma Assert (Nkind (N) in N_Op_Shift);
6676 -- If not one of the predefined operators, the node may be one
6677 -- of the intrinsic functions. Its kind is always specific, and
6678 -- we can use it directly, rather than the name of the operation.
6680 if Is_Integer_Type (T1)
6681 and then (Base_Type (T2) = Base_Type (Standard_Integer)
6682 or else T2 = Universal_Integer)
6683 then
6684 Add_One_Interp (N, Op_Id, Base_Type (T1));
6685 end if;
6686 end if;
6687 end Check_Arithmetic_Pair;
6689 -------------------------------
6690 -- Check_Misspelled_Selector --
6691 -------------------------------
6693 procedure Check_Misspelled_Selector
6694 (Prefix : Entity_Id;
6695 Sel : Node_Id)
6697 Max_Suggestions : constant := 2;
6698 Nr_Of_Suggestions : Natural := 0;
6700 Suggestion_1 : Entity_Id := Empty;
6701 Suggestion_2 : Entity_Id := Empty;
6703 Comp : Entity_Id;
6705 begin
6706 -- All the components of the prefix of selector Sel are matched against
6707 -- Sel and a count is maintained of possible misspellings. When at
6708 -- the end of the analysis there are one or two (not more) possible
6709 -- misspellings, these misspellings will be suggested as possible
6710 -- correction.
6712 if not (Is_Private_Type (Prefix) or else Is_Record_Type (Prefix)) then
6714 -- Concurrent types should be handled as well ???
6716 return;
6717 end if;
6719 Comp := First_Entity (Prefix);
6720 while Nr_Of_Suggestions <= Max_Suggestions and then Present (Comp) loop
6721 if Is_Visible_Component (Comp, Sel) then
6722 if Is_Bad_Spelling_Of (Chars (Comp), Chars (Sel)) then
6723 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
6725 case Nr_Of_Suggestions is
6726 when 1 => Suggestion_1 := Comp;
6727 when 2 => Suggestion_2 := Comp;
6728 when others => null;
6729 end case;
6730 end if;
6731 end if;
6733 Next_Entity (Comp);
6734 end loop;
6736 -- Report at most two suggestions
6738 if Nr_Of_Suggestions = 1 then
6739 Error_Msg_NE -- CODEFIX
6740 ("\possible misspelling of&", Sel, Suggestion_1);
6742 elsif Nr_Of_Suggestions = 2 then
6743 Error_Msg_Node_2 := Suggestion_2;
6744 Error_Msg_NE -- CODEFIX
6745 ("\possible misspelling of& or&", Sel, Suggestion_1);
6746 end if;
6747 end Check_Misspelled_Selector;
6749 -------------------
6750 -- Diagnose_Call --
6751 -------------------
6753 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id) is
6754 Actual : Node_Id;
6755 X : Interp_Index;
6756 It : Interp;
6757 Err_Mode : Boolean;
6758 New_Nam : Node_Id;
6759 Num_Actuals : Natural;
6760 Num_Interps : Natural;
6761 Void_Interp_Seen : Boolean := False;
6763 Success : Boolean;
6764 pragma Warnings (Off, Boolean);
6766 begin
6767 Num_Actuals := 0;
6768 Actual := First_Actual (N);
6770 while Present (Actual) loop
6771 -- Ada 2005 (AI-50217): Post an error in case of premature
6772 -- usage of an entity from the limited view.
6774 if not Analyzed (Etype (Actual))
6775 and then From_Limited_With (Etype (Actual))
6776 and then Ada_Version >= Ada_2005
6777 then
6778 Error_Msg_Qual_Level := 1;
6779 Error_Msg_NE
6780 ("missing with_clause for scope of imported type&",
6781 Actual, Etype (Actual));
6782 Error_Msg_Qual_Level := 0;
6783 end if;
6785 Num_Actuals := Num_Actuals + 1;
6786 Next_Actual (Actual);
6787 end loop;
6789 -- Before listing the possible candidates, check whether this is
6790 -- a prefix of a selected component that has been rewritten as a
6791 -- parameterless function call because there is a callable candidate
6792 -- interpretation. If there is a hidden package in the list of homonyms
6793 -- of the function name (bad programming style in any case) suggest that
6794 -- this is the intended entity.
6796 if No (Parameter_Associations (N))
6797 and then Nkind (Parent (N)) = N_Selected_Component
6798 and then Nkind (Parent (Parent (N))) in N_Declaration
6799 and then Is_Overloaded (Nam)
6800 then
6801 declare
6802 Ent : Entity_Id;
6804 begin
6805 Ent := Current_Entity (Nam);
6806 while Present (Ent) loop
6807 if Ekind (Ent) = E_Package then
6808 Error_Msg_N
6809 ("no legal interpretations as function call,!", Nam);
6810 Error_Msg_NE ("\package& is not visible", N, Ent);
6812 Rewrite (Parent (N),
6813 New_Occurrence_Of (Any_Type, Sloc (N)));
6814 return;
6815 end if;
6817 Ent := Homonym (Ent);
6818 end loop;
6819 end;
6820 end if;
6822 -- If this is a call to an operation of a concurrent type, the failed
6823 -- interpretations have been removed from the name. Recover them now
6824 -- in order to provide full diagnostics.
6826 if Nkind (Parent (Nam)) = N_Selected_Component then
6827 Set_Entity (Nam, Empty);
6828 New_Nam := New_Copy_Tree (Parent (Nam));
6829 Set_Is_Overloaded (New_Nam, False);
6830 Set_Is_Overloaded (Selector_Name (New_Nam), False);
6831 Set_Parent (New_Nam, Parent (Parent (Nam)));
6832 Analyze_Selected_Component (New_Nam);
6833 Get_First_Interp (Selector_Name (New_Nam), X, It);
6834 else
6835 Get_First_Interp (Nam, X, It);
6836 end if;
6838 -- If the number of actuals is 2, then remove interpretations involving
6839 -- a unary "+" operator as they might yield confusing errors downstream.
6841 if Num_Actuals = 2
6842 and then Nkind (Parent (Nam)) /= N_Selected_Component
6843 then
6844 Num_Interps := 0;
6846 while Present (It.Nam) loop
6847 if Ekind (It.Nam) = E_Operator
6848 and then Chars (It.Nam) = Name_Op_Add
6849 and then (No (First_Formal (It.Nam))
6850 or else No (Next_Formal (First_Formal (It.Nam))))
6851 then
6852 Remove_Interp (X);
6853 else
6854 Num_Interps := Num_Interps + 1;
6855 end if;
6857 Get_Next_Interp (X, It);
6858 end loop;
6860 if Num_Interps = 0 then
6861 Error_Msg_N ("!too many arguments in call to&", Nam);
6862 return;
6863 end if;
6865 Get_First_Interp (Nam, X, It);
6867 else
6868 Num_Interps := 2; -- at least
6869 end if;
6871 -- Analyze each candidate call again with full error reporting for each
6873 if Num_Interps > 1 then
6874 Error_Msg_N ("!no candidate interpretations match the actuals:", Nam);
6875 end if;
6877 Err_Mode := All_Errors_Mode;
6878 All_Errors_Mode := True;
6880 while Present (It.Nam) loop
6881 if Etype (It.Nam) = Standard_Void_Type then
6882 Void_Interp_Seen := True;
6883 end if;
6885 Analyze_One_Call (N, It.Nam, True, Success);
6886 Get_Next_Interp (X, It);
6887 end loop;
6889 if Nkind (N) = N_Function_Call then
6890 Get_First_Interp (Nam, X, It);
6892 if No (It.Typ)
6893 and then Ekind (Entity (Name (N))) = E_Function
6894 and then Present (Homonym (Entity (Name (N))))
6895 then
6896 -- A name may appear overloaded if it has a homonym, even if that
6897 -- homonym is non-overloadable, in which case the overload list is
6898 -- in fact empty. This specialized case deserves a special message
6899 -- if the homonym is a child package.
6901 declare
6902 Nam : constant Node_Id := Name (N);
6903 H : constant Entity_Id := Homonym (Entity (Nam));
6905 begin
6906 if Ekind (H) = E_Package and then Is_Child_Unit (H) then
6907 Error_Msg_Qual_Level := 2;
6908 Error_Msg_NE ("if an entity in package& is meant, ", Nam, H);
6909 Error_Msg_NE ("\use a fully qualified name", Nam, H);
6910 Error_Msg_Qual_Level := 0;
6911 end if;
6912 end;
6914 else
6915 while Present (It.Nam) loop
6916 if Ekind (It.Nam) in E_Function | E_Operator then
6917 return;
6918 else
6919 Get_Next_Interp (X, It);
6920 end if;
6921 end loop;
6923 -- If all interpretations are procedures, this deserves a more
6924 -- precise message. Ditto if this appears as the prefix of a
6925 -- selected component, which may be a lexical error.
6927 Error_Msg_N
6928 ("\context requires function call, found procedure name", Nam);
6930 if Nkind (Parent (N)) = N_Selected_Component
6931 and then N = Prefix (Parent (N))
6932 then
6933 Error_Msg_N -- CODEFIX
6934 ("\period should probably be semicolon", Parent (N));
6935 end if;
6936 end if;
6938 elsif Nkind (N) = N_Procedure_Call_Statement
6939 and then not Void_Interp_Seen
6940 then
6941 Error_Msg_N ("\function name found in procedure call", Nam);
6942 end if;
6944 All_Errors_Mode := Err_Mode;
6945 end Diagnose_Call;
6947 ---------------------------
6948 -- Find_Arithmetic_Types --
6949 ---------------------------
6951 procedure Find_Arithmetic_Types
6952 (L, R : Node_Id;
6953 Op_Id : Entity_Id;
6954 N : Node_Id)
6956 procedure Check_Right_Argument (T : Entity_Id);
6957 -- Check right operand of operator
6959 --------------------------
6960 -- Check_Right_Argument --
6961 --------------------------
6963 procedure Check_Right_Argument (T : Entity_Id) is
6964 I : Interp_Index;
6965 It : Interp;
6967 begin
6968 if not Is_Overloaded (R) then
6969 Check_Arithmetic_Pair (T, Etype (R), Op_Id, N);
6971 else
6972 Get_First_Interp (R, I, It);
6973 while Present (It.Typ) loop
6974 Check_Arithmetic_Pair (T, It.Typ, Op_Id, N);
6975 Get_Next_Interp (I, It);
6976 end loop;
6977 end if;
6978 end Check_Right_Argument;
6980 -- Local variables
6982 I : Interp_Index;
6983 It : Interp;
6985 -- Start of processing for Find_Arithmetic_Types
6987 begin
6988 if not Is_Overloaded (L) then
6989 Check_Right_Argument (Etype (L));
6991 else
6992 Get_First_Interp (L, I, It);
6993 while Present (It.Typ) loop
6994 Check_Right_Argument (It.Typ);
6995 Get_Next_Interp (I, It);
6996 end loop;
6997 end if;
6998 end Find_Arithmetic_Types;
7000 ------------------------
7001 -- Find_Boolean_Types --
7002 ------------------------
7004 procedure Find_Boolean_Types
7005 (L, R : Node_Id;
7006 Op_Id : Entity_Id;
7007 N : Node_Id)
7009 procedure Check_Boolean_Pair (T1, T2 : Entity_Id);
7010 -- Check operand pair of operator
7012 procedure Check_Right_Argument (T : Entity_Id);
7013 -- Check right operand of operator
7015 ------------------------
7016 -- Check_Boolean_Pair --
7017 ------------------------
7019 procedure Check_Boolean_Pair (T1, T2 : Entity_Id) is
7020 T : Entity_Id;
7022 begin
7023 if Valid_Boolean_Arg (T1)
7024 and then Valid_Boolean_Arg (T2)
7025 and then (Covers (T1 => T1, T2 => T2)
7026 or else Covers (T1 => T2, T2 => T1))
7027 then
7028 T := Specific_Type (T1, T2);
7030 if T = Universal_Integer then
7031 T := Any_Modular;
7032 end if;
7034 Add_One_Interp (N, Op_Id, T);
7035 end if;
7036 end Check_Boolean_Pair;
7038 --------------------------
7039 -- Check_Right_Argument --
7040 --------------------------
7042 procedure Check_Right_Argument (T : Entity_Id) is
7043 I : Interp_Index;
7044 It : Interp;
7046 begin
7047 -- Defend against previous error
7049 if Nkind (R) = N_Error then
7050 null;
7052 elsif not Is_Overloaded (R) then
7053 Check_Boolean_Pair (T, Etype (R));
7055 else
7056 Get_First_Interp (R, I, It);
7057 while Present (It.Typ) loop
7058 Check_Boolean_Pair (T, It.Typ);
7059 Get_Next_Interp (I, It);
7060 end loop;
7061 end if;
7062 end Check_Right_Argument;
7064 -- Local variables
7066 I : Interp_Index;
7067 It : Interp;
7069 -- Start of processing for Find_Boolean_Types
7071 begin
7072 if not Is_Overloaded (L) then
7073 Check_Right_Argument (Etype (L));
7075 else
7076 Get_First_Interp (L, I, It);
7077 while Present (It.Typ) loop
7078 Check_Right_Argument (It.Typ);
7079 Get_Next_Interp (I, It);
7080 end loop;
7081 end if;
7082 end Find_Boolean_Types;
7084 ------------------------------------
7085 -- Find_Comparison_Equality_Types --
7086 ------------------------------------
7088 -- The context of the operator plays no role in resolving the operands,
7089 -- so that if there is more than one interpretation of the operands that
7090 -- is compatible with the comparison or equality, then the operation is
7091 -- ambiguous, but this cannot be reported at this point because there is
7092 -- no guarantee that the operation will be resolved to this operator yet.
7094 procedure Find_Comparison_Equality_Types
7095 (L, R : Node_Id;
7096 Op_Id : Entity_Id;
7097 N : Node_Id)
7099 Op_Name : constant Name_Id := Chars (Op_Id);
7100 Op_Typ : Entity_Id renames Standard_Boolean;
7102 function Try_Left_Interp (T : Entity_Id) return Entity_Id;
7103 -- Try an interpretation of the left operand with type T. Return the
7104 -- type of the interpretation of the right operand making up a valid
7105 -- operand pair, or else Any_Type if the right operand is ambiguous,
7106 -- otherwise Empty if no such pair exists.
7108 function Is_Valid_Comparison_Type (T : Entity_Id) return Boolean;
7109 -- Return true if T is a valid comparison type
7111 function Is_Valid_Equality_Type
7112 (T : Entity_Id;
7113 Anon_Access : Boolean) return Boolean;
7114 -- Return true if T is a valid equality type
7116 function Is_Valid_Pair (T1, T2 : Entity_Id) return Boolean;
7117 -- Return true if T1 and T2 constitute a valid pair of operand types for
7118 -- L and R respectively.
7120 ---------------------
7121 -- Try_Left_Interp --
7122 ---------------------
7124 function Try_Left_Interp (T : Entity_Id) return Entity_Id is
7125 I : Interp_Index;
7126 It : Interp;
7127 R_Typ : Entity_Id;
7128 Valid_I : Interp_Index;
7130 begin
7131 -- Defend against previous error
7133 if Nkind (R) = N_Error then
7134 null;
7136 -- Loop through the interpretations of the right operand
7138 elsif not Is_Overloaded (R) then
7139 if Is_Valid_Pair (T, Etype (R)) then
7140 return Etype (R);
7141 end if;
7143 else
7144 R_Typ := Empty;
7145 Valid_I := 0;
7147 Get_First_Interp (R, I, It);
7148 while Present (It.Typ) loop
7149 if Is_Valid_Pair (T, It.Typ) then
7150 -- If several interpretations are possible, disambiguate
7152 if Present (R_Typ)
7153 and then Base_Type (It.Typ) /= Base_Type (R_Typ)
7154 then
7155 It := Disambiguate (R, Valid_I, I, Any_Type);
7157 if It = No_Interp then
7158 R_Typ := Any_Type;
7159 exit;
7160 end if;
7162 else
7163 Valid_I := I;
7164 end if;
7166 R_Typ := It.Typ;
7167 end if;
7169 Get_Next_Interp (I, It);
7170 end loop;
7172 if Present (R_Typ) then
7173 return R_Typ;
7174 end if;
7175 end if;
7177 return Empty;
7178 end Try_Left_Interp;
7180 ------------------------------
7181 -- Is_Valid_Comparison_Type --
7182 ------------------------------
7184 function Is_Valid_Comparison_Type (T : Entity_Id) return Boolean is
7185 begin
7186 -- The operation must be performed in a context where the operators
7187 -- of the base type are visible.
7189 if Is_Visible_Operator (N, Base_Type (T)) then
7190 null;
7192 -- Save candidate type for subsequent error message, if any
7194 else
7195 if Valid_Comparison_Arg (T) then
7196 Candidate_Type := T;
7197 end if;
7199 return False;
7200 end if;
7202 -- Defer to the common implementation for the rest
7204 return Valid_Comparison_Arg (T);
7205 end Is_Valid_Comparison_Type;
7207 ----------------------------
7208 -- Is_Valid_Equality_Type --
7209 ----------------------------
7211 function Is_Valid_Equality_Type
7212 (T : Entity_Id;
7213 Anon_Access : Boolean) return Boolean
7215 begin
7216 -- The operation must be performed in a context where the operators
7217 -- of the base type are visible. Deal with special types used with
7218 -- access types before type resolution is done.
7220 if Ekind (T) = E_Access_Attribute_Type
7221 or else (Ekind (T) in E_Access_Subprogram_Type
7222 | E_Access_Protected_Subprogram_Type
7223 and then
7224 Ekind (Designated_Type (T)) /= E_Subprogram_Type)
7225 or else Is_Visible_Operator (N, Base_Type (T))
7226 then
7227 null;
7229 -- AI95-0230: Keep restriction imposed by Ada 83 and 95, do not allow
7230 -- anonymous access types in universal_access equality operators.
7232 elsif Anon_Access then
7233 if Ada_Version < Ada_2005 then
7234 return False;
7235 end if;
7237 -- Save candidate type for subsequent error message, if any
7239 else
7240 if Valid_Equality_Arg (T) then
7241 Candidate_Type := T;
7242 end if;
7244 return False;
7245 end if;
7247 -- For the use of a "/=" operator on a tagged type, several possible
7248 -- interpretations of equality need to be considered, we don't want
7249 -- the default inequality declared in Standard to be chosen, and the
7250 -- "/=" operator will be rewritten as a negation of "=" (see the end
7251 -- of Analyze_Comparison_Equality_Op). This ensures the rewriting
7252 -- occurs during analysis rather than being delayed until expansion.
7253 -- Note that, if the node is N_Op_Ne but Op_Id is Name_Op_Eq, then we
7254 -- still proceed with the interpretation, because this indicates
7255 -- the aforementioned rewriting case where the interpretation to be
7256 -- considered is actually that of the "=" operator.
7258 if Nkind (N) = N_Op_Ne
7259 and then Op_Name /= Name_Op_Eq
7260 and then Is_Tagged_Type (T)
7261 then
7262 return False;
7264 -- Defer to the common implementation for the rest
7266 else
7267 return Valid_Equality_Arg (T);
7268 end if;
7269 end Is_Valid_Equality_Type;
7271 -------------------
7272 -- Is_Valid_Pair --
7273 -------------------
7275 function Is_Valid_Pair (T1, T2 : Entity_Id) return Boolean is
7276 begin
7277 if Op_Name = Name_Op_Eq or else Op_Name = Name_Op_Ne then
7278 declare
7279 Anon_Access : constant Boolean :=
7280 Is_Anonymous_Access_Type (T1)
7281 or else Is_Anonymous_Access_Type (T2);
7282 -- RM 4.5.2(9.1/2): At least one of the operands of an equality
7283 -- operator for universal_access shall be of specific anonymous
7284 -- access type.
7286 begin
7287 if not Is_Valid_Equality_Type (T1, Anon_Access)
7288 or else not Is_Valid_Equality_Type (T2, Anon_Access)
7289 then
7290 return False;
7291 end if;
7292 end;
7294 else
7295 if not Is_Valid_Comparison_Type (T1)
7296 or else not Is_Valid_Comparison_Type (T2)
7297 then
7298 return False;
7299 end if;
7300 end if;
7302 return Covers (T1 => T1, T2 => T2)
7303 or else Covers (T1 => T2, T2 => T1)
7304 or else Is_User_Defined_Literal (L, T2)
7305 or else Is_User_Defined_Literal (R, T1);
7306 end Is_Valid_Pair;
7308 -- Local variables
7310 I : Interp_Index;
7311 It : Interp;
7312 L_Typ : Entity_Id;
7313 R_Typ : Entity_Id;
7314 T : Entity_Id;
7315 Valid_I : Interp_Index;
7317 -- Start of processing for Find_Comparison_Equality_Types
7319 begin
7320 -- Loop through the interpretations of the left operand
7322 if not Is_Overloaded (L) then
7323 T := Try_Left_Interp (Etype (L));
7325 if Present (T) then
7326 Set_Etype (R, T);
7327 Add_One_Interp (N, Op_Id, Op_Typ, Find_Unique_Type (L, R));
7328 end if;
7330 else
7331 L_Typ := Empty;
7332 R_Typ := Empty;
7333 Valid_I := 0;
7335 Get_First_Interp (L, I, It);
7336 while Present (It.Typ) loop
7337 T := Try_Left_Interp (It.Typ);
7339 if Present (T) then
7340 -- If several interpretations are possible, disambiguate
7342 if Present (L_Typ)
7343 and then Base_Type (It.Typ) /= Base_Type (L_Typ)
7344 then
7345 It := Disambiguate (L, Valid_I, I, Any_Type);
7347 if It = No_Interp then
7348 L_Typ := Any_Type;
7349 R_Typ := T;
7350 exit;
7351 end if;
7353 else
7354 Valid_I := I;
7355 end if;
7357 L_Typ := It.Typ;
7358 R_Typ := T;
7359 end if;
7361 Get_Next_Interp (I, It);
7362 end loop;
7364 if Present (L_Typ) then
7365 Set_Etype (L, L_Typ);
7366 Set_Etype (R, R_Typ);
7367 Add_One_Interp (N, Op_Id, Op_Typ, Find_Unique_Type (L, R));
7368 end if;
7369 end if;
7370 end Find_Comparison_Equality_Types;
7372 ------------------------------
7373 -- Find_Concatenation_Types --
7374 ------------------------------
7376 procedure Find_Concatenation_Types
7377 (L, R : Node_Id;
7378 Op_Id : Entity_Id;
7379 N : Node_Id)
7381 Is_String : constant Boolean := Nkind (L) = N_String_Literal
7382 or else
7383 Nkind (R) = N_String_Literal;
7384 Op_Type : constant Entity_Id := Etype (Op_Id);
7386 begin
7387 if Is_Array_Type (Op_Type)
7389 -- Small but very effective optimization: if at least one operand is a
7390 -- string literal, then the type of the operator must be either array
7391 -- of characters or array of strings.
7393 and then (not Is_String
7394 or else
7395 Is_Character_Type (Component_Type (Op_Type))
7396 or else
7397 Is_String_Type (Component_Type (Op_Type)))
7399 and then not Is_Limited_Type (Op_Type)
7401 and then (Has_Compatible_Type (L, Op_Type)
7402 or else
7403 Has_Compatible_Type (L, Component_Type (Op_Type)))
7405 and then (Has_Compatible_Type (R, Op_Type)
7406 or else
7407 Has_Compatible_Type (R, Component_Type (Op_Type)))
7408 then
7409 Add_One_Interp (N, Op_Id, Op_Type);
7410 end if;
7411 end Find_Concatenation_Types;
7413 -------------------------
7414 -- Find_Negation_Types --
7415 -------------------------
7417 procedure Find_Negation_Types
7418 (R : Node_Id;
7419 Op_Id : Entity_Id;
7420 N : Node_Id)
7422 Index : Interp_Index;
7423 It : Interp;
7425 begin
7426 if not Is_Overloaded (R) then
7427 if Etype (R) = Universal_Integer then
7428 Add_One_Interp (N, Op_Id, Any_Modular);
7429 elsif Valid_Boolean_Arg (Etype (R)) then
7430 Add_One_Interp (N, Op_Id, Etype (R));
7431 end if;
7433 else
7434 Get_First_Interp (R, Index, It);
7435 while Present (It.Typ) loop
7436 if Valid_Boolean_Arg (It.Typ) then
7437 Add_One_Interp (N, Op_Id, It.Typ);
7438 end if;
7440 Get_Next_Interp (Index, It);
7441 end loop;
7442 end if;
7443 end Find_Negation_Types;
7445 ------------------------------
7446 -- Find_Primitive_Operation --
7447 ------------------------------
7449 function Find_Primitive_Operation (N : Node_Id) return Boolean is
7450 Obj : constant Node_Id := Prefix (N);
7451 Op : constant Node_Id := Selector_Name (N);
7453 Prim : Elmt_Id;
7454 Prims : Elist_Id;
7455 Typ : Entity_Id;
7457 begin
7458 Set_Etype (Op, Any_Type);
7460 if Is_Access_Type (Etype (Obj)) then
7461 Typ := Designated_Type (Etype (Obj));
7462 else
7463 Typ := Etype (Obj);
7464 end if;
7466 if Is_Class_Wide_Type (Typ) then
7467 Typ := Root_Type (Typ);
7468 end if;
7470 Prims := Primitive_Operations (Typ);
7472 Prim := First_Elmt (Prims);
7473 while Present (Prim) loop
7474 if Chars (Node (Prim)) = Chars (Op) then
7475 Add_One_Interp (Op, Node (Prim), Etype (Node (Prim)));
7476 Set_Etype (N, Etype (Node (Prim)));
7477 end if;
7479 Next_Elmt (Prim);
7480 end loop;
7482 -- Now look for class-wide operations of the type or any of its
7483 -- ancestors by iterating over the homonyms of the selector.
7485 declare
7486 Cls_Type : constant Entity_Id := Class_Wide_Type (Typ);
7487 Hom : Entity_Id;
7489 begin
7490 Hom := Current_Entity (Op);
7491 while Present (Hom) loop
7492 if (Ekind (Hom) = E_Procedure
7493 or else
7494 Ekind (Hom) = E_Function)
7495 and then Scope (Hom) = Scope (Typ)
7496 and then Present (First_Formal (Hom))
7497 and then
7498 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
7499 or else
7500 (Is_Access_Type (Etype (First_Formal (Hom)))
7501 and then
7502 Ekind (Etype (First_Formal (Hom))) =
7503 E_Anonymous_Access_Type
7504 and then
7505 Base_Type
7506 (Designated_Type (Etype (First_Formal (Hom)))) =
7507 Cls_Type))
7508 then
7509 Add_One_Interp (Op, Hom, Etype (Hom));
7510 Set_Etype (N, Etype (Hom));
7511 end if;
7513 Hom := Homonym (Hom);
7514 end loop;
7515 end;
7517 return Etype (Op) /= Any_Type;
7518 end Find_Primitive_Operation;
7520 ----------------------
7521 -- Find_Unary_Types --
7522 ----------------------
7524 procedure Find_Unary_Types
7525 (R : Node_Id;
7526 Op_Id : Entity_Id;
7527 N : Node_Id)
7529 Index : Interp_Index;
7530 It : Interp;
7532 begin
7533 if not Is_Overloaded (R) then
7534 if Is_Numeric_Type (Etype (R)) then
7536 -- In an instance a generic actual may be a numeric type even if
7537 -- the formal in the generic unit was not. In that case, the
7538 -- predefined operator was not a possible interpretation in the
7539 -- generic, and cannot be one in the instance, unless the operator
7540 -- is an actual of an instance.
7542 if In_Instance
7543 and then
7544 not Is_Numeric_Type (Corresponding_Generic_Type (Etype (R)))
7545 then
7546 null;
7547 else
7548 Add_One_Interp (N, Op_Id, Base_Type (Etype (R)));
7549 end if;
7550 end if;
7552 else
7553 Get_First_Interp (R, Index, It);
7554 while Present (It.Typ) loop
7555 if Is_Numeric_Type (It.Typ) then
7556 if In_Instance
7557 and then
7558 not Is_Numeric_Type
7559 (Corresponding_Generic_Type (Etype (It.Typ)))
7560 then
7561 null;
7563 else
7564 Add_One_Interp (N, Op_Id, Base_Type (It.Typ));
7565 end if;
7566 end if;
7568 Get_Next_Interp (Index, It);
7569 end loop;
7570 end if;
7571 end Find_Unary_Types;
7573 ------------------
7574 -- Junk_Operand --
7575 ------------------
7577 function Junk_Operand (N : Node_Id) return Boolean is
7578 Enode : Node_Id;
7580 begin
7581 if Error_Posted (N) then
7582 return False;
7583 end if;
7585 -- Get entity to be tested
7587 if Is_Entity_Name (N)
7588 and then Present (Entity (N))
7589 then
7590 Enode := N;
7592 -- An odd case, a procedure name gets converted to a very peculiar
7593 -- function call, and here is where we detect this happening.
7595 elsif Nkind (N) = N_Function_Call
7596 and then Is_Entity_Name (Name (N))
7597 and then Present (Entity (Name (N)))
7598 then
7599 Enode := Name (N);
7601 -- Another odd case, there are at least some cases of selected
7602 -- components where the selected component is not marked as having
7603 -- an entity, even though the selector does have an entity
7605 elsif Nkind (N) = N_Selected_Component
7606 and then Present (Entity (Selector_Name (N)))
7607 then
7608 Enode := Selector_Name (N);
7610 else
7611 return False;
7612 end if;
7614 -- Now test the entity we got to see if it is a bad case
7616 case Ekind (Entity (Enode)) is
7617 when E_Package =>
7618 Error_Msg_N
7619 ("package name cannot be used as operand", Enode);
7621 when Generic_Unit_Kind =>
7622 Error_Msg_N
7623 ("generic unit name cannot be used as operand", Enode);
7625 when Type_Kind =>
7626 Error_Msg_N
7627 ("subtype name cannot be used as operand", Enode);
7629 when Entry_Kind =>
7630 Error_Msg_N
7631 ("entry name cannot be used as operand", Enode);
7633 when E_Procedure =>
7634 Error_Msg_N
7635 ("procedure name cannot be used as operand", Enode);
7637 when E_Exception =>
7638 Error_Msg_N
7639 ("exception name cannot be used as operand", Enode);
7641 when E_Block
7642 | E_Label
7643 | E_Loop
7645 Error_Msg_N
7646 ("label name cannot be used as operand", Enode);
7648 when others =>
7649 return False;
7650 end case;
7652 return True;
7653 end Junk_Operand;
7655 --------------------
7656 -- Operator_Check --
7657 --------------------
7659 procedure Operator_Check (N : Node_Id) is
7660 begin
7661 Remove_Abstract_Operations (N);
7663 -- Test for case of no interpretation found for operator
7665 if Etype (N) = Any_Type then
7666 declare
7667 L : constant Node_Id :=
7668 (if Nkind (N) in N_Binary_Op then Left_Opnd (N) else Empty);
7669 R : constant Node_Id := Right_Opnd (N);
7671 begin
7672 -- If either operand has no type, then don't complain further,
7673 -- since this simply means that we have a propagated error.
7675 if R = Error
7676 or else Etype (R) = Any_Type
7677 or else (Nkind (N) in N_Binary_Op and then Etype (L) = Any_Type)
7678 then
7679 -- For the rather unusual case where one of the operands is
7680 -- a Raise_Expression, whose initial type is Any_Type, use
7681 -- the type of the other operand.
7683 if Nkind (L) = N_Raise_Expression then
7684 Set_Etype (L, Etype (R));
7685 Set_Etype (N, Etype (R));
7687 elsif Nkind (R) = N_Raise_Expression then
7688 Set_Etype (R, Etype (L));
7689 Set_Etype (N, Etype (L));
7690 end if;
7692 return;
7694 -- We explicitly check for the case of concatenation of component
7695 -- with component to avoid reporting spurious matching array types
7696 -- that might happen to be lurking in distant packages (such as
7697 -- run-time packages). This also prevents inconsistencies in the
7698 -- messages for certain ACVC B tests, which can vary depending on
7699 -- types declared in run-time interfaces. Another improvement when
7700 -- aggregates are present is to look for a well-typed operand.
7702 elsif Present (Candidate_Type)
7703 and then (Nkind (N) /= N_Op_Concat
7704 or else Is_Array_Type (Etype (L))
7705 or else Is_Array_Type (Etype (R)))
7706 then
7707 if Nkind (N) = N_Op_Concat then
7708 if Etype (L) /= Any_Composite
7709 and then Is_Array_Type (Etype (L))
7710 then
7711 Candidate_Type := Etype (L);
7713 elsif Etype (R) /= Any_Composite
7714 and then Is_Array_Type (Etype (R))
7715 then
7716 Candidate_Type := Etype (R);
7717 end if;
7718 end if;
7720 Error_Msg_NE -- CODEFIX
7721 ("operator for} is not directly visible!",
7722 N, First_Subtype (Candidate_Type));
7724 declare
7725 U : constant Node_Id :=
7726 Cunit (Get_Source_Unit (Candidate_Type));
7727 begin
7728 if Unit_Is_Visible (U) then
7729 Error_Msg_N -- CODEFIX
7730 ("use clause would make operation legal!", N);
7731 else
7732 Error_Msg_NE -- CODEFIX
7733 ("add with_clause and use_clause for&!",
7734 N, Defining_Entity (Unit (U)));
7735 end if;
7736 end;
7737 return;
7739 -- If either operand is a junk operand (e.g. package name), then
7740 -- post appropriate error messages, but do not complain further.
7742 -- Note that the use of OR in this test instead of OR ELSE is
7743 -- quite deliberate, we may as well check both operands in the
7744 -- binary operator case.
7746 elsif Junk_Operand (R)
7747 or -- really mean OR here and not OR ELSE, see above
7748 (Nkind (N) in N_Binary_Op and then Junk_Operand (L))
7749 then
7750 return;
7752 -- The handling of user-defined literals is deferred to the second
7753 -- pass of resolution.
7755 elsif Has_Possible_User_Defined_Literal (N) then
7756 return;
7758 -- If we have a logical operator, one of whose operands is
7759 -- Boolean, then we know that the other operand cannot resolve to
7760 -- Boolean (since we got no interpretations), but in that case we
7761 -- pretty much know that the other operand should be Boolean, so
7762 -- resolve it that way (generating an error).
7764 elsif Nkind (N) in N_Op_And | N_Op_Or | N_Op_Xor then
7765 if Etype (L) = Standard_Boolean then
7766 Resolve (R, Standard_Boolean);
7767 return;
7768 elsif Etype (R) = Standard_Boolean then
7769 Resolve (L, Standard_Boolean);
7770 return;
7771 end if;
7773 -- For an arithmetic operator or comparison operator, if one
7774 -- of the operands is numeric, then we know the other operand
7775 -- is not the same numeric type. If it is a non-numeric type,
7776 -- then probably it is intended to match the other operand.
7778 elsif Nkind (N) in N_Op_Add
7779 | N_Op_Divide
7780 | N_Op_Ge
7781 | N_Op_Gt
7782 | N_Op_Le
7783 | N_Op_Lt
7784 | N_Op_Mod
7785 | N_Op_Multiply
7786 | N_Op_Rem
7787 | N_Op_Subtract
7788 then
7789 -- If Allow_Integer_Address is active, check whether the
7790 -- operation becomes legal after converting an operand.
7792 if Is_Numeric_Type (Etype (L))
7793 and then not Is_Numeric_Type (Etype (R))
7794 then
7795 if Address_Integer_Convert_OK (Etype (R), Etype (L)) then
7796 Rewrite (L,
7797 Unchecked_Convert_To (
7798 Standard_Address, Relocate_Node (L)));
7799 Rewrite (R,
7800 Unchecked_Convert_To (
7801 Standard_Address, Relocate_Node (R)));
7803 if Nkind (N) in N_Op_Ge | N_Op_Gt | N_Op_Le | N_Op_Lt then
7804 Analyze_Comparison_Equality_Op (N);
7805 else
7806 Analyze_Arithmetic_Op (N);
7807 end if;
7808 else
7809 Resolve (R, Etype (L));
7810 end if;
7812 return;
7814 elsif Is_Numeric_Type (Etype (R))
7815 and then not Is_Numeric_Type (Etype (L))
7816 then
7817 if Address_Integer_Convert_OK (Etype (L), Etype (R)) then
7818 Rewrite (L,
7819 Unchecked_Convert_To (
7820 Standard_Address, Relocate_Node (L)));
7821 Rewrite (R,
7822 Unchecked_Convert_To (
7823 Standard_Address, Relocate_Node (R)));
7825 if Nkind (N) in N_Op_Ge | N_Op_Gt | N_Op_Le | N_Op_Lt then
7826 Analyze_Comparison_Equality_Op (N);
7827 else
7828 Analyze_Arithmetic_Op (N);
7829 end if;
7831 return;
7833 else
7834 Resolve (L, Etype (R));
7835 end if;
7837 return;
7839 elsif Allow_Integer_Address
7840 and then Is_Descendant_Of_Address (Etype (L))
7841 and then Is_Descendant_Of_Address (Etype (R))
7842 and then not Error_Posted (N)
7843 then
7844 declare
7845 Addr_Type : constant Entity_Id := Etype (L);
7847 begin
7848 Rewrite (L,
7849 Unchecked_Convert_To (
7850 Standard_Address, Relocate_Node (L)));
7851 Rewrite (R,
7852 Unchecked_Convert_To (
7853 Standard_Address, Relocate_Node (R)));
7855 if Nkind (N) in N_Op_Ge | N_Op_Gt | N_Op_Le | N_Op_Lt then
7856 Analyze_Comparison_Equality_Op (N);
7857 else
7858 Analyze_Arithmetic_Op (N);
7859 end if;
7861 -- If this is an operand in an enclosing arithmetic
7862 -- operation, Convert the result as an address so that
7863 -- arithmetic folding of address can continue.
7865 if Nkind (Parent (N)) in N_Op then
7866 Rewrite (N,
7867 Unchecked_Convert_To (Addr_Type, Relocate_Node (N)));
7868 end if;
7870 return;
7871 end;
7873 -- Under relaxed RM semantics silently replace occurrences of
7874 -- null by System.Address_Null.
7876 elsif Null_To_Null_Address_Convert_OK (N) then
7877 Replace_Null_By_Null_Address (N);
7879 if Nkind (N) in N_Op_Ge | N_Op_Gt | N_Op_Le | N_Op_Lt then
7880 Analyze_Comparison_Equality_Op (N);
7881 else
7882 Analyze_Arithmetic_Op (N);
7883 end if;
7885 return;
7886 end if;
7888 -- Comparisons on A'Access are common enough to deserve a
7889 -- special message.
7891 elsif Nkind (N) in N_Op_Eq | N_Op_Ne
7892 and then Ekind (Etype (L)) = E_Access_Attribute_Type
7893 and then Ekind (Etype (R)) = E_Access_Attribute_Type
7894 then
7895 Error_Msg_N
7896 ("two access attributes cannot be compared directly", N);
7897 Error_Msg_N
7898 ("\use qualified expression for one of the operands",
7900 return;
7902 -- Another one for C programmers
7904 elsif Nkind (N) = N_Op_Concat
7905 and then Valid_Boolean_Arg (Etype (L))
7906 and then Valid_Boolean_Arg (Etype (R))
7907 then
7908 Error_Msg_N ("invalid operands for concatenation", N);
7909 Error_Msg_N -- CODEFIX
7910 ("\maybe AND was meant", N);
7911 return;
7913 -- A special case for comparison of access parameter with null
7915 elsif Nkind (N) = N_Op_Eq
7916 and then Is_Entity_Name (L)
7917 and then Nkind (Parent (Entity (L))) = N_Parameter_Specification
7918 and then Nkind (Parameter_Type (Parent (Entity (L)))) =
7919 N_Access_Definition
7920 and then Nkind (R) = N_Null
7921 then
7922 Error_Msg_N ("access parameter is not allowed to be null", L);
7923 Error_Msg_N ("\(call would raise Constraint_Error)", L);
7924 return;
7926 -- Another special case for exponentiation, where the right
7927 -- operand must be Natural, independently of the base.
7929 elsif Nkind (N) = N_Op_Expon
7930 and then Is_Numeric_Type (Etype (L))
7931 and then not Is_Overloaded (R)
7932 and then
7933 First_Subtype (Base_Type (Etype (R))) /= Standard_Integer
7934 and then Base_Type (Etype (R)) /= Universal_Integer
7935 then
7936 if Ada_Version >= Ada_2012
7937 and then Has_Dimension_System (Etype (L))
7938 then
7939 Error_Msg_NE
7940 ("exponent for dimensioned type must be a rational" &
7941 ", found}", R, Etype (R));
7942 else
7943 Error_Msg_NE
7944 ("exponent must be of type Natural, found}", R, Etype (R));
7945 end if;
7947 return;
7949 elsif Nkind (N) in N_Op_Eq | N_Op_Ne then
7950 if Address_Integer_Convert_OK (Etype (R), Etype (L)) then
7951 Rewrite (L,
7952 Unchecked_Convert_To (
7953 Standard_Address, Relocate_Node (L)));
7954 Rewrite (R,
7955 Unchecked_Convert_To (
7956 Standard_Address, Relocate_Node (R)));
7957 Analyze_Comparison_Equality_Op (N);
7958 return;
7960 -- Under relaxed RM semantics silently replace occurrences of
7961 -- null by System.Address_Null.
7963 elsif Null_To_Null_Address_Convert_OK (N) then
7964 Replace_Null_By_Null_Address (N);
7965 Analyze_Comparison_Equality_Op (N);
7966 return;
7967 end if;
7968 end if;
7970 -- If we fall through then just give general message
7972 Unresolved_Operator (N);
7973 end;
7974 end if;
7975 end Operator_Check;
7977 ---------------------------------------
7978 -- Has_Possible_User_Defined_Literal --
7979 ---------------------------------------
7981 function Has_Possible_User_Defined_Literal (N : Node_Id) return Boolean is
7982 R : constant Node_Id := Right_Opnd (N);
7984 procedure Check_Literal_Opnd (Opnd : Node_Id);
7985 -- If an operand is a literal to which an aspect may apply,
7986 -- add the corresponding type to operator node.
7988 ------------------------
7989 -- Check_Literal_Opnd --
7990 ------------------------
7992 procedure Check_Literal_Opnd (Opnd : Node_Id) is
7993 begin
7994 if Nkind (Opnd) in N_Numeric_Or_String_Literal
7995 or else (Is_Entity_Name (Opnd)
7996 and then Present (Entity (Opnd))
7997 and then Is_Named_Number (Entity (Opnd)))
7998 then
7999 Add_One_Interp (N, Etype (Opnd), Etype (Opnd));
8000 end if;
8001 end Check_Literal_Opnd;
8003 -- Start of processing for Has_Possible_User_Defined_Literal
8005 begin
8006 if Ada_Version < Ada_2022 then
8007 return False;
8008 end if;
8010 Check_Literal_Opnd (R);
8012 -- Check left operand only if right one did not provide a
8013 -- possible interpretation. Note that literal types are not
8014 -- overloadable, in the sense that there is no overloadable
8015 -- entity name whose several interpretations can be used to
8016 -- indicate possible resulting types, so there is no way to
8017 -- provide more than one interpretation to the operator node.
8018 -- The choice of one operand over the other is arbitrary at
8019 -- this point, and may lead to spurious resolution when both
8020 -- operands are literals of different kinds, but the second
8021 -- pass of resolution will examine anew both operands to
8022 -- determine whether a user-defined literal may apply to
8023 -- either or both.
8025 if Nkind (N) in N_Binary_Op and then Etype (N) = Any_Type then
8026 Check_Literal_Opnd (Left_Opnd (N));
8027 end if;
8029 return Etype (N) /= Any_Type;
8030 end Has_Possible_User_Defined_Literal;
8032 -----------------------------------------------
8033 -- Nondispatching_Call_To_Abstract_Operation --
8034 -----------------------------------------------
8036 procedure Nondispatching_Call_To_Abstract_Operation
8037 (N : Node_Id;
8038 Abstract_Op : Entity_Id)
8040 Typ : constant Entity_Id := Etype (N);
8042 begin
8043 -- In an instance body, this is a runtime check, but one we know will
8044 -- fail, so give an appropriate warning. As usual this kind of warning
8045 -- is an error in SPARK mode.
8047 Error_Msg_Sloc := Sloc (Abstract_Op);
8049 if In_Instance_Body and then SPARK_Mode /= On then
8050 Error_Msg_NE
8051 ("??cannot call abstract operation& declared#",
8052 N, Abstract_Op);
8053 Error_Msg_N ("\Program_Error [??", N);
8054 Rewrite (N,
8055 Make_Raise_Program_Error (Sloc (N),
8056 Reason => PE_Explicit_Raise));
8057 Analyze (N);
8058 Set_Etype (N, Typ);
8060 else
8061 Error_Msg_NE
8062 ("cannot call abstract operation& declared#",
8063 N, Abstract_Op);
8064 Set_Etype (N, Any_Type);
8065 end if;
8066 end Nondispatching_Call_To_Abstract_Operation;
8068 ----------------------------------------------
8069 -- Possible_Type_For_Conditional_Expression --
8070 ----------------------------------------------
8072 function Possible_Type_For_Conditional_Expression
8073 (T1, T2 : Entity_Id) return Entity_Id
8075 function Is_Access_Protected_Subprogram_Attribute
8076 (T : Entity_Id) return Boolean;
8077 -- Return true if T is the type of an access-to-protected-subprogram
8078 -- attribute.
8080 function Is_Access_Subprogram_Attribute (T : Entity_Id) return Boolean;
8081 -- Return true if T is the type of an access-to-subprogram attribute
8083 ----------------------------------------------
8084 -- Is_Access_Protected_Subprogram_Attribute --
8085 ----------------------------------------------
8087 function Is_Access_Protected_Subprogram_Attribute
8088 (T : Entity_Id) return Boolean
8090 begin
8091 return Ekind (T) = E_Access_Protected_Subprogram_Type
8092 and then Ekind (Designated_Type (T)) /= E_Subprogram_Type;
8093 end Is_Access_Protected_Subprogram_Attribute;
8095 ------------------------------------
8096 -- Is_Access_Subprogram_Attribute --
8097 ------------------------------------
8099 function Is_Access_Subprogram_Attribute (T : Entity_Id) return Boolean is
8100 begin
8101 return Ekind (T) = E_Access_Subprogram_Type
8102 and then Ekind (Designated_Type (T)) /= E_Subprogram_Type;
8103 end Is_Access_Subprogram_Attribute;
8105 -- Start of processing for Possible_Type_For_Conditional_Expression
8107 begin
8108 -- If both types are those of similar access attributes or allocators,
8109 -- pick one of them, for example the first.
8111 if Ekind (T1) in E_Access_Attribute_Type | E_Allocator_Type
8112 and then Ekind (T2) in E_Access_Attribute_Type | E_Allocator_Type
8113 then
8114 return T1;
8116 elsif Is_Access_Subprogram_Attribute (T1)
8117 and then Is_Access_Subprogram_Attribute (T2)
8118 and then
8119 Subtype_Conformant (Designated_Type (T1), Designated_Type (T2))
8120 then
8121 return T1;
8123 elsif Is_Access_Protected_Subprogram_Attribute (T1)
8124 and then Is_Access_Protected_Subprogram_Attribute (T2)
8125 and then
8126 Subtype_Conformant (Designated_Type (T1), Designated_Type (T2))
8127 then
8128 return T1;
8130 -- The other case to be considered is a pair of tagged types
8132 elsif Is_Tagged_Type (T1) and then Is_Tagged_Type (T2) then
8133 -- Covers performs the same checks when T1 or T2 are a CW type, so
8134 -- we don't need to do them again here.
8136 if not Is_Class_Wide_Type (T1) and then Is_Ancestor (T1, T2) then
8137 return T1;
8139 elsif not Is_Class_Wide_Type (T2) and then Is_Ancestor (T2, T1) then
8140 return T2;
8142 -- Neither type is an ancestor of the other, but they may have one in
8143 -- common, so we pick the first type as above. We could perform here
8144 -- the computation of the nearest common ancestors of T1 and T2, but
8145 -- this would require a significant amount of work and the practical
8146 -- benefit would very likely be negligible.
8148 else
8149 return T1;
8150 end if;
8152 -- Otherwise no type is possible
8154 else
8155 return Empty;
8156 end if;
8157 end Possible_Type_For_Conditional_Expression;
8159 --------------------------------
8160 -- Remove_Abstract_Operations --
8161 --------------------------------
8163 procedure Remove_Abstract_Operations (N : Node_Id) is
8164 Abstract_Op : Entity_Id := Empty;
8165 Address_Descendant : Boolean := False;
8166 I : Interp_Index;
8167 It : Interp;
8169 -- AI-310: If overloaded, remove abstract non-dispatching operations. We
8170 -- activate this if either extensions are enabled, or if the abstract
8171 -- operation in question comes from a predefined file. This latter test
8172 -- allows us to use abstract to make operations invisible to users. In
8173 -- particular, if type Address is non-private and abstract subprograms
8174 -- are used to hide its operators, they will be truly hidden.
8176 type Operand_Position is (First_Op, Second_Op);
8177 Univ_Type : constant Entity_Id := Universal_Interpretation (N);
8179 procedure Remove_Address_Interpretations (Op : Operand_Position);
8180 -- Ambiguities may arise when the operands are literal and the address
8181 -- operations in s-auxdec are visible. In that case, remove the
8182 -- interpretation of a literal as Address, to retain the semantics
8183 -- of Address as a private type.
8185 ------------------------------------
8186 -- Remove_Address_Interpretations --
8187 ------------------------------------
8189 procedure Remove_Address_Interpretations (Op : Operand_Position) is
8190 Formal : Entity_Id;
8192 begin
8193 if Is_Overloaded (N) then
8194 Get_First_Interp (N, I, It);
8195 while Present (It.Nam) loop
8196 Formal := First_Entity (It.Nam);
8198 if Op = Second_Op then
8199 Next_Entity (Formal);
8200 end if;
8202 if Is_Descendant_Of_Address (Etype (Formal)) then
8203 Address_Descendant := True;
8204 Remove_Interp (I);
8205 end if;
8207 Get_Next_Interp (I, It);
8208 end loop;
8209 end if;
8210 end Remove_Address_Interpretations;
8212 -- Start of processing for Remove_Abstract_Operations
8214 begin
8215 if Is_Overloaded (N) then
8216 if Debug_Flag_V then
8217 Write_Line ("Remove_Abstract_Operations: ");
8218 Write_Overloads (N);
8219 end if;
8221 Get_First_Interp (N, I, It);
8223 while Present (It.Nam) loop
8224 if Is_Overloadable (It.Nam)
8225 and then Is_Abstract_Subprogram (It.Nam)
8226 and then not Is_Dispatching_Operation (It.Nam)
8227 then
8228 Abstract_Op := It.Nam;
8230 if Is_Descendant_Of_Address (It.Typ) then
8231 Address_Descendant := True;
8232 Remove_Interp (I);
8233 exit;
8235 -- In Ada 2005, this operation does not participate in overload
8236 -- resolution. If the operation is defined in a predefined
8237 -- unit, it is one of the operations declared abstract in some
8238 -- variants of System, and it must be removed as well.
8240 elsif Ada_Version >= Ada_2005
8241 or else In_Predefined_Unit (It.Nam)
8242 then
8243 Remove_Interp (I);
8244 exit;
8245 end if;
8246 end if;
8248 Get_Next_Interp (I, It);
8249 end loop;
8251 if No (Abstract_Op) then
8253 -- If some interpretation yields an integer type, it is still
8254 -- possible that there are address interpretations. Remove them
8255 -- if one operand is a literal, to avoid spurious ambiguities
8256 -- on systems where Address is a visible integer type.
8258 if Is_Overloaded (N)
8259 and then Nkind (N) in N_Op
8260 and then Is_Integer_Type (Etype (N))
8261 then
8262 if Nkind (N) in N_Binary_Op then
8263 if Nkind (Right_Opnd (N)) = N_Integer_Literal then
8264 Remove_Address_Interpretations (Second_Op);
8266 elsif Nkind (Left_Opnd (N)) = N_Integer_Literal then
8267 Remove_Address_Interpretations (First_Op);
8268 end if;
8269 end if;
8270 end if;
8272 elsif Nkind (N) in N_Op then
8274 -- Remove interpretations that treat literals as addresses. This
8275 -- is never appropriate, even when Address is defined as a visible
8276 -- Integer type. The reason is that we would really prefer Address
8277 -- to behave as a private type, even in this case. If Address is a
8278 -- visible integer type, we get lots of overload ambiguities.
8280 if Nkind (N) in N_Binary_Op then
8281 declare
8282 U1 : constant Boolean :=
8283 Present (Universal_Interpretation (Right_Opnd (N)));
8284 U2 : constant Boolean :=
8285 Present (Universal_Interpretation (Left_Opnd (N)));
8287 begin
8288 if U1 then
8289 Remove_Address_Interpretations (Second_Op);
8290 end if;
8292 if U2 then
8293 Remove_Address_Interpretations (First_Op);
8294 end if;
8296 if not (U1 and U2) then
8298 -- Remove corresponding predefined operator, which is
8299 -- always added to the overload set.
8301 Get_First_Interp (N, I, It);
8302 while Present (It.Nam) loop
8303 if Scope (It.Nam) = Standard_Standard
8304 and then Base_Type (It.Typ) =
8305 Base_Type (Etype (Abstract_Op))
8306 then
8307 Remove_Interp (I);
8308 end if;
8310 Get_Next_Interp (I, It);
8311 end loop;
8313 elsif Is_Overloaded (N)
8314 and then Present (Univ_Type)
8315 then
8316 -- If both operands have a universal interpretation,
8317 -- it is still necessary to remove interpretations that
8318 -- yield Address. Any remaining ambiguities will be
8319 -- removed in Disambiguate.
8321 Get_First_Interp (N, I, It);
8322 while Present (It.Nam) loop
8323 if Is_Descendant_Of_Address (It.Typ) then
8324 Remove_Interp (I);
8326 elsif not Is_Type (It.Nam) then
8327 Set_Entity (N, It.Nam);
8328 end if;
8330 Get_Next_Interp (I, It);
8331 end loop;
8332 end if;
8333 end;
8334 end if;
8336 elsif Nkind (N) = N_Function_Call
8337 and then
8338 (Nkind (Name (N)) = N_Operator_Symbol
8339 or else
8340 (Nkind (Name (N)) = N_Expanded_Name
8341 and then
8342 Nkind (Selector_Name (Name (N))) = N_Operator_Symbol))
8343 then
8345 declare
8346 Arg1 : constant Node_Id := First (Parameter_Associations (N));
8347 U1 : constant Boolean :=
8348 Present (Universal_Interpretation (Arg1));
8349 U2 : constant Boolean :=
8350 Present (Next (Arg1)) and then
8351 Present (Universal_Interpretation (Next (Arg1)));
8353 begin
8354 if U1 then
8355 Remove_Address_Interpretations (First_Op);
8356 end if;
8358 if U2 then
8359 Remove_Address_Interpretations (Second_Op);
8360 end if;
8362 if not (U1 and U2) then
8363 Get_First_Interp (N, I, It);
8364 while Present (It.Nam) loop
8365 if Scope (It.Nam) = Standard_Standard
8366 and then It.Typ = Base_Type (Etype (Abstract_Op))
8367 then
8368 Remove_Interp (I);
8369 end if;
8371 Get_Next_Interp (I, It);
8372 end loop;
8373 end if;
8374 end;
8375 end if;
8377 -- If the removal has left no valid interpretations, emit an error
8378 -- message now and label node as illegal.
8380 if Present (Abstract_Op) then
8381 Get_First_Interp (N, I, It);
8383 if No (It.Nam) then
8385 -- Removal of abstract operation left no viable candidate
8387 Nondispatching_Call_To_Abstract_Operation (N, Abstract_Op);
8389 -- In Ada 2005, an abstract operation may disable predefined
8390 -- operators. Since the context is not yet known, we mark the
8391 -- predefined operators as potentially hidden. Do not include
8392 -- predefined operators when addresses are involved since this
8393 -- case is handled separately.
8395 elsif Ada_Version >= Ada_2005 and then not Address_Descendant then
8396 while Present (It.Nam) loop
8397 if Is_Numeric_Type (It.Typ)
8398 and then Scope (It.Typ) = Standard_Standard
8399 and then Ekind (It.Nam) = E_Operator
8400 then
8401 Set_Abstract_Op (I, Abstract_Op);
8402 end if;
8404 Get_Next_Interp (I, It);
8405 end loop;
8406 end if;
8407 end if;
8409 if Debug_Flag_V then
8410 Write_Line ("Remove_Abstract_Operations done: ");
8411 Write_Overloads (N);
8412 end if;
8413 end if;
8414 end Remove_Abstract_Operations;
8416 ----------------------------
8417 -- Try_Container_Indexing --
8418 ----------------------------
8420 function Try_Container_Indexing
8421 (N : Node_Id;
8422 Prefix : Node_Id;
8423 Exprs : List_Id) return Boolean
8425 Pref_Typ : Entity_Id := Etype (Prefix);
8427 function Constant_Indexing_OK return Boolean;
8428 -- Constant_Indexing is legal if there is no Variable_Indexing defined
8429 -- for the type, or else node not a target of assignment, or an actual
8430 -- for an IN OUT or OUT formal (RM 4.1.6 (11)).
8432 function Expr_Matches_In_Formal
8433 (Subp : Entity_Id;
8434 Par : Node_Id) return Boolean;
8435 -- Find formal corresponding to given indexed component that is an
8436 -- actual in a call. Note that the enclosing subprogram call has not
8437 -- been analyzed yet, and the parameter list is not normalized, so
8438 -- that if the argument is a parameter association we must match it
8439 -- by name and not by position.
8441 function Find_Indexing_Operations
8442 (T : Entity_Id;
8443 Nam : Name_Id;
8444 Is_Constant : Boolean) return Node_Id;
8445 -- Return a reference to the primitive operation of type T denoted by
8446 -- name Nam. If the operation is overloaded, the reference carries all
8447 -- interpretations. Flag Is_Constant should be set when the context is
8448 -- constant indexing.
8450 --------------------------
8451 -- Constant_Indexing_OK --
8452 --------------------------
8454 function Constant_Indexing_OK return Boolean is
8455 Par : Node_Id;
8457 begin
8458 if No (Find_Value_Of_Aspect (Pref_Typ, Aspect_Variable_Indexing)) then
8459 return True;
8461 elsif not Is_Variable (Prefix) then
8462 return True;
8463 end if;
8465 Par := N;
8466 while Present (Par) loop
8467 if Nkind (Parent (Par)) = N_Assignment_Statement
8468 and then Par = Name (Parent (Par))
8469 then
8470 return False;
8472 -- The call may be overloaded, in which case we assume that its
8473 -- resolution does not depend on the type of the parameter that
8474 -- includes the indexing operation.
8476 elsif Nkind (Parent (Par)) in N_Subprogram_Call then
8478 if not Is_Entity_Name (Name (Parent (Par))) then
8480 -- ??? We don't know what to do with an N_Selected_Component
8481 -- node for a prefixed-notation call to AA.BB where AA's
8482 -- type is known, but BB has not yet been resolved. In that
8483 -- case, the preceding Is_Entity_Name call returns False.
8484 -- Incorrectly returning False here will usually work
8485 -- better than incorrectly returning True, so that's what
8486 -- we do for now.
8488 return False;
8489 end if;
8491 declare
8492 Proc : Entity_Id;
8494 begin
8495 -- We should look for an interpretation with the proper
8496 -- number of formals, and determine whether it is an
8497 -- In_Parameter, but for now we examine the formal that
8498 -- corresponds to the indexing, and assume that variable
8499 -- indexing is required if some interpretation has an
8500 -- assignable formal at that position. Still does not
8501 -- cover the most complex cases ???
8503 if Is_Overloaded (Name (Parent (Par))) then
8504 declare
8505 Proc : constant Node_Id := Name (Parent (Par));
8506 I : Interp_Index;
8507 It : Interp;
8509 begin
8510 Get_First_Interp (Proc, I, It);
8511 while Present (It.Nam) loop
8512 if not Expr_Matches_In_Formal (It.Nam, Par) then
8513 return False;
8514 end if;
8516 Get_Next_Interp (I, It);
8517 end loop;
8518 end;
8520 -- All interpretations have a matching in-mode formal
8522 return True;
8524 else
8525 Proc := Entity (Name (Parent (Par)));
8527 -- If this is an indirect call, get formals from
8528 -- designated type.
8530 if Is_Access_Subprogram_Type (Etype (Proc)) then
8531 Proc := Designated_Type (Etype (Proc));
8532 end if;
8533 end if;
8535 return Expr_Matches_In_Formal (Proc, Par);
8536 end;
8538 elsif Nkind (Parent (Par)) = N_Object_Renaming_Declaration then
8539 return False;
8541 -- If the indexed component is a prefix it may be the first actual
8542 -- of a prefixed call. Retrieve the called entity, if any, and
8543 -- check its first formal. Determine if the context is a procedure
8544 -- or function call.
8546 elsif Nkind (Parent (Par)) = N_Selected_Component then
8547 declare
8548 Sel : constant Node_Id := Selector_Name (Parent (Par));
8549 Nam : constant Entity_Id := Current_Entity (Sel);
8551 begin
8552 if Present (Nam) and then Is_Overloadable (Nam) then
8553 if Nkind (Parent (Parent (Par))) =
8554 N_Procedure_Call_Statement
8555 then
8556 return False;
8558 elsif Ekind (Nam) = E_Function
8559 and then Present (First_Formal (Nam))
8560 then
8561 return Ekind (First_Formal (Nam)) = E_In_Parameter;
8562 end if;
8563 end if;
8564 end;
8566 elsif Nkind (Par) in N_Op then
8567 return True;
8568 end if;
8570 Par := Parent (Par);
8571 end loop;
8573 -- In all other cases, constant indexing is legal
8575 return True;
8576 end Constant_Indexing_OK;
8578 ----------------------------
8579 -- Expr_Matches_In_Formal --
8580 ----------------------------
8582 function Expr_Matches_In_Formal
8583 (Subp : Entity_Id;
8584 Par : Node_Id) return Boolean
8586 Actual : Node_Id;
8587 Formal : Node_Id;
8589 begin
8590 Formal := First_Formal (Subp);
8591 Actual := First (Parameter_Associations ((Parent (Par))));
8593 if Nkind (Par) /= N_Parameter_Association then
8595 -- Match by position
8597 while Present (Actual) and then Present (Formal) loop
8598 exit when Actual = Par;
8599 Next (Actual);
8601 if Present (Formal) then
8602 Next_Formal (Formal);
8604 -- Otherwise this is a parameter mismatch, the error is
8605 -- reported elsewhere, or else variable indexing is implied.
8607 else
8608 return False;
8609 end if;
8610 end loop;
8612 else
8613 -- Match by name
8615 while Present (Formal) loop
8616 exit when Chars (Formal) = Chars (Selector_Name (Par));
8617 Next_Formal (Formal);
8619 if No (Formal) then
8620 return False;
8621 end if;
8622 end loop;
8623 end if;
8625 return Present (Formal) and then Ekind (Formal) = E_In_Parameter;
8626 end Expr_Matches_In_Formal;
8628 ------------------------------
8629 -- Find_Indexing_Operations --
8630 ------------------------------
8632 function Find_Indexing_Operations
8633 (T : Entity_Id;
8634 Nam : Name_Id;
8635 Is_Constant : Boolean) return Node_Id
8637 procedure Inspect_Declarations
8638 (Typ : Entity_Id;
8639 Ref : in out Node_Id);
8640 -- Traverse the declarative list where type Typ resides and collect
8641 -- all suitable interpretations in node Ref.
8643 procedure Inspect_Primitives
8644 (Typ : Entity_Id;
8645 Ref : in out Node_Id);
8646 -- Traverse the list of primitive operations of type Typ and collect
8647 -- all suitable interpretations in node Ref.
8649 function Is_OK_Candidate
8650 (Subp_Id : Entity_Id;
8651 Typ : Entity_Id) return Boolean;
8652 -- Determine whether subprogram Subp_Id is a suitable indexing
8653 -- operation for type Typ. To qualify as such, the subprogram must
8654 -- be a function, have at least two parameters, and the type of the
8655 -- first parameter must be either Typ, or Typ'Class, or access [to
8656 -- constant] with designated type Typ or Typ'Class.
8658 procedure Record_Interp (Subp_Id : Entity_Id; Ref : in out Node_Id);
8659 -- Store subprogram Subp_Id as an interpretation in node Ref
8661 --------------------------
8662 -- Inspect_Declarations --
8663 --------------------------
8665 procedure Inspect_Declarations
8666 (Typ : Entity_Id;
8667 Ref : in out Node_Id)
8669 Typ_Decl : constant Node_Id := Declaration_Node (Typ);
8670 Decl : Node_Id;
8671 Subp_Id : Entity_Id;
8673 begin
8674 -- Ensure that the routine is not called with itypes, which lack a
8675 -- declarative node.
8677 pragma Assert (Present (Typ_Decl));
8678 pragma Assert (Is_List_Member (Typ_Decl));
8680 Decl := First (List_Containing (Typ_Decl));
8681 while Present (Decl) loop
8682 if Nkind (Decl) = N_Subprogram_Declaration then
8683 Subp_Id := Defining_Entity (Decl);
8685 if Is_OK_Candidate (Subp_Id, Typ) then
8686 Record_Interp (Subp_Id, Ref);
8687 end if;
8688 end if;
8690 Next (Decl);
8691 end loop;
8692 end Inspect_Declarations;
8694 ------------------------
8695 -- Inspect_Primitives --
8696 ------------------------
8698 procedure Inspect_Primitives
8699 (Typ : Entity_Id;
8700 Ref : in out Node_Id)
8702 Prim_Elmt : Elmt_Id;
8703 Prim_Id : Entity_Id;
8705 begin
8706 Prim_Elmt := First_Elmt (Primitive_Operations (Typ));
8707 while Present (Prim_Elmt) loop
8708 Prim_Id := Node (Prim_Elmt);
8710 if Is_OK_Candidate (Prim_Id, Typ) then
8711 Record_Interp (Prim_Id, Ref);
8712 end if;
8714 Next_Elmt (Prim_Elmt);
8715 end loop;
8716 end Inspect_Primitives;
8718 ---------------------
8719 -- Is_OK_Candidate --
8720 ---------------------
8722 function Is_OK_Candidate
8723 (Subp_Id : Entity_Id;
8724 Typ : Entity_Id) return Boolean
8726 Formal : Entity_Id;
8727 Formal_Typ : Entity_Id;
8728 Param_Typ : Node_Id;
8730 begin
8731 -- To classify as a suitable candidate, the subprogram must be a
8732 -- function whose name matches the argument of aspect Constant or
8733 -- Variable_Indexing.
8735 if Ekind (Subp_Id) = E_Function and then Chars (Subp_Id) = Nam then
8736 Formal := First_Formal (Subp_Id);
8738 -- The candidate requires at least two parameters
8740 if Present (Formal) and then Present (Next_Formal (Formal)) then
8741 Formal_Typ := Empty;
8742 Param_Typ := Parameter_Type (Parent (Formal));
8744 -- Use the designated type when the first parameter is of an
8745 -- access type.
8747 if Nkind (Param_Typ) = N_Access_Definition
8748 and then Present (Subtype_Mark (Param_Typ))
8749 then
8750 -- When the context is a constant indexing, the access
8751 -- definition must be access-to-constant. This does not
8752 -- apply to variable indexing.
8754 if not Is_Constant
8755 or else Constant_Present (Param_Typ)
8756 then
8757 Formal_Typ := Etype (Subtype_Mark (Param_Typ));
8758 end if;
8760 -- Otherwise use the parameter type
8762 else
8763 Formal_Typ := Etype (Param_Typ);
8764 end if;
8766 if Present (Formal_Typ) then
8768 -- Use the specific type when the parameter type is
8769 -- class-wide.
8771 if Is_Class_Wide_Type (Formal_Typ) then
8772 Formal_Typ := Etype (Base_Type (Formal_Typ));
8773 end if;
8775 -- Use the full view when the parameter type is private
8776 -- or incomplete.
8778 if Is_Incomplete_Or_Private_Type (Formal_Typ)
8779 and then Present (Full_View (Formal_Typ))
8780 then
8781 Formal_Typ := Full_View (Formal_Typ);
8782 end if;
8784 -- The type of the first parameter must denote the type
8785 -- of the container or acts as its ancestor type.
8787 return
8788 Formal_Typ = Typ
8789 or else Is_Ancestor (Formal_Typ, Typ);
8790 end if;
8791 end if;
8792 end if;
8794 return False;
8795 end Is_OK_Candidate;
8797 -------------------
8798 -- Record_Interp --
8799 -------------------
8801 procedure Record_Interp (Subp_Id : Entity_Id; Ref : in out Node_Id) is
8802 begin
8803 if Present (Ref) then
8804 Add_One_Interp (Ref, Subp_Id, Etype (Subp_Id));
8806 -- Otherwise this is the first interpretation. Create a reference
8807 -- where all remaining interpretations will be collected.
8809 else
8810 Ref := New_Occurrence_Of (Subp_Id, Sloc (T));
8811 end if;
8812 end Record_Interp;
8814 -- Local variables
8816 Ref : Node_Id;
8817 Typ : Entity_Id;
8819 -- Start of processing for Find_Indexing_Operations
8821 begin
8822 Typ := T;
8824 -- Use the specific type when the parameter type is class-wide
8826 if Is_Class_Wide_Type (Typ) then
8827 Typ := Root_Type (Typ);
8828 end if;
8830 Ref := Empty;
8831 Typ := Underlying_Type (Base_Type (Typ));
8833 Inspect_Primitives (Typ, Ref);
8835 -- Now look for explicit declarations of an indexing operation.
8836 -- If the type is private the operation may be declared in the
8837 -- visible part that contains the partial view.
8839 if Is_Private_Type (T) then
8840 Inspect_Declarations (T, Ref);
8841 end if;
8843 Inspect_Declarations (Typ, Ref);
8845 return Ref;
8846 end Find_Indexing_Operations;
8848 -- Local variables
8850 Loc : constant Source_Ptr := Sloc (N);
8851 Assoc : List_Id;
8852 C_Type : Entity_Id;
8853 Func : Entity_Id;
8854 Func_Name : Node_Id;
8855 Indexing : Node_Id;
8857 Is_Constant_Indexing : Boolean := False;
8858 -- This flag reflects the nature of the container indexing. Note that
8859 -- the context may be suited for constant indexing, but the type may
8860 -- lack a Constant_Indexing annotation.
8862 -- Start of processing for Try_Container_Indexing
8864 begin
8865 -- Node may have been analyzed already when testing for a prefixed
8866 -- call, in which case do not redo analysis.
8868 if Present (Generalized_Indexing (N)) then
8869 return True;
8870 end if;
8872 -- An explicit dereference needs to be created in the case of a prefix
8873 -- that's an access.
8875 -- It seems that this should be done elsewhere, but not clear where that
8876 -- should happen. Normally Insert_Explicit_Dereference is called via
8877 -- Resolve_Implicit_Dereference, called from Resolve_Indexed_Component,
8878 -- but that won't be called in this case because we transform the
8879 -- indexing to a call. Resolve_Call.Check_Prefixed_Call takes care of
8880 -- implicit dereferencing and referencing on prefixed calls, but that
8881 -- would be too late, even if we expanded to a prefix call, because
8882 -- Process_Indexed_Component will flag an error before the resolution
8883 -- happens. ???
8885 if Is_Access_Type (Pref_Typ) then
8886 Pref_Typ := Implicitly_Designated_Type (Pref_Typ);
8887 Insert_Explicit_Dereference (Prefix);
8888 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
8889 end if;
8891 C_Type := Pref_Typ;
8893 -- If indexing a class-wide container, obtain indexing primitive from
8894 -- specific type.
8896 if Is_Class_Wide_Type (C_Type) then
8897 C_Type := Etype (Base_Type (C_Type));
8898 end if;
8900 -- Check whether the type has a specified indexing aspect
8902 Func_Name := Empty;
8904 -- The context is suitable for constant indexing, so obtain the name of
8905 -- the indexing function from aspect Constant_Indexing.
8907 if Constant_Indexing_OK then
8908 Func_Name :=
8909 Find_Value_Of_Aspect (Pref_Typ, Aspect_Constant_Indexing);
8910 end if;
8912 if Present (Func_Name) then
8913 Is_Constant_Indexing := True;
8915 -- Otherwise attempt variable indexing
8917 else
8918 Func_Name :=
8919 Find_Value_Of_Aspect (Pref_Typ, Aspect_Variable_Indexing);
8920 end if;
8922 -- The type is not subject to either form of indexing, therefore the
8923 -- indexed component does not denote container indexing. If this is a
8924 -- true error, it is diagnosed by the caller.
8926 if No (Func_Name) then
8928 -- The prefix itself may be an indexing of a container. Rewrite it
8929 -- as such and retry.
8931 if Has_Implicit_Dereference (Pref_Typ) then
8932 Build_Explicit_Dereference
8933 (Prefix, Get_Reference_Discriminant (Pref_Typ));
8934 return Try_Container_Indexing (N, Prefix, Exprs);
8936 -- Otherwise this is definitely not container indexing
8938 else
8939 return False;
8940 end if;
8942 -- If the container type is derived from another container type, the
8943 -- value of the inherited aspect is the Reference operation declared
8944 -- for the parent type.
8946 -- However, Reference is also a primitive operation of the type, and the
8947 -- inherited operation has a different signature. We retrieve the right
8948 -- ones (the function may be overloaded) from the list of primitive
8949 -- operations of the derived type.
8951 -- Note that predefined containers are typically all derived from one of
8952 -- the Controlled types. The code below is motivated by containers that
8953 -- are derived from other types with a Reference aspect.
8954 -- Note as well that we need to examine the base type, given that
8955 -- the container object may be a constrained subtype or itype that
8956 -- does not have an explicit declaration.
8958 elsif Is_Derived_Type (C_Type)
8959 and then Etype (First_Formal (Entity (Func_Name))) /= Pref_Typ
8960 then
8961 Func_Name :=
8962 Find_Indexing_Operations
8963 (T => Base_Type (C_Type),
8964 Nam => Chars (Func_Name),
8965 Is_Constant => Is_Constant_Indexing);
8966 end if;
8968 Assoc := New_List (Relocate_Node (Prefix));
8970 -- A generalized indexing may have nore than one index expression, so
8971 -- transfer all of them to the argument list to be used in the call.
8972 -- Note that there may be named associations, in which case the node
8973 -- was rewritten earlier as a call, and has been transformed back into
8974 -- an indexed expression to share the following processing.
8976 -- The generalized indexing node is the one on which analysis and
8977 -- resolution take place. Before expansion the original node is replaced
8978 -- with the generalized indexing node, which is a call, possibly with a
8979 -- dereference operation.
8981 -- Create argument list for function call that represents generalized
8982 -- indexing. Note that indices (i.e. actuals) may themselves be
8983 -- overloaded.
8985 declare
8986 Arg : Node_Id;
8987 New_Arg : Node_Id;
8989 begin
8990 Arg := First (Exprs);
8991 while Present (Arg) loop
8992 New_Arg := Relocate_Node (Arg);
8994 -- The arguments can be parameter associations, in which case the
8995 -- explicit actual parameter carries the overloadings.
8997 if Nkind (New_Arg) /= N_Parameter_Association then
8998 Save_Interps (Arg, New_Arg);
8999 end if;
9001 Append (New_Arg, Assoc);
9002 Next (Arg);
9003 end loop;
9004 end;
9006 if not Is_Overloaded (Func_Name) then
9007 Func := Entity (Func_Name);
9009 -- Can happen in case of e.g. cascaded errors
9011 if No (Func) then
9012 return False;
9013 end if;
9015 Indexing :=
9016 Make_Function_Call (Loc,
9017 Name => New_Occurrence_Of (Func, Loc),
9018 Parameter_Associations => Assoc);
9020 Set_Parent (Indexing, Parent (N));
9021 Set_Generalized_Indexing (N, Indexing);
9022 Analyze (Indexing);
9023 Set_Etype (N, Etype (Indexing));
9025 -- If the return type of the indexing function is a reference type,
9026 -- add the dereference as a possible interpretation. Note that the
9027 -- indexing aspect may be a function that returns the element type
9028 -- with no intervening implicit dereference, and that the reference
9029 -- discriminant is not the first discriminant.
9031 if Has_Discriminants (Etype (Func)) then
9032 Check_Implicit_Dereference (N, Etype (Func));
9033 end if;
9035 else
9036 -- If there are multiple indexing functions, build a function call
9037 -- and analyze it for each of the possible interpretations.
9039 Indexing :=
9040 Make_Function_Call (Loc,
9041 Name =>
9042 Make_Identifier (Loc, Chars (Func_Name)),
9043 Parameter_Associations => Assoc);
9044 Set_Parent (Indexing, Parent (N));
9045 Set_Generalized_Indexing (N, Indexing);
9046 Set_Etype (N, Any_Type);
9047 Set_Etype (Name (Indexing), Any_Type);
9049 declare
9050 I : Interp_Index;
9051 It : Interp;
9052 Success : Boolean;
9054 begin
9055 Get_First_Interp (Func_Name, I, It);
9056 Set_Etype (Indexing, Any_Type);
9058 -- Analyze each candidate function with the given actuals
9060 while Present (It.Nam) loop
9061 Analyze_One_Call (Indexing, It.Nam, False, Success);
9062 Get_Next_Interp (I, It);
9063 end loop;
9065 -- If there are several successful candidates, resolution will
9066 -- be by result. Mark the interpretations of the function name
9067 -- itself.
9069 if Is_Overloaded (Indexing) then
9070 Get_First_Interp (Indexing, I, It);
9072 while Present (It.Nam) loop
9073 Add_One_Interp (Name (Indexing), It.Nam, It.Typ);
9074 Get_Next_Interp (I, It);
9075 end loop;
9077 else
9078 Set_Etype (Name (Indexing), Etype (Indexing));
9079 end if;
9081 -- Now add the candidate interpretations to the indexing node
9082 -- itself, to be replaced later by the function call.
9084 if Is_Overloaded (Name (Indexing)) then
9085 Get_First_Interp (Name (Indexing), I, It);
9087 while Present (It.Nam) loop
9088 Add_One_Interp (N, It.Nam, It.Typ);
9090 -- Add dereference interpretation if the result type has
9091 -- implicit reference discriminants.
9093 if Has_Discriminants (Etype (It.Nam)) then
9094 Check_Implicit_Dereference (N, Etype (It.Nam));
9095 end if;
9097 Get_Next_Interp (I, It);
9098 end loop;
9100 else
9101 Set_Etype (N, Etype (Name (Indexing)));
9102 if Has_Discriminants (Etype (N)) then
9103 Check_Implicit_Dereference (N, Etype (N));
9104 end if;
9105 end if;
9106 end;
9107 end if;
9109 if Etype (Indexing) = Any_Type then
9110 Error_Msg_NE
9111 ("container cannot be indexed with&", N, Etype (First (Exprs)));
9112 Rewrite (N, New_Occurrence_Of (Any_Id, Loc));
9113 end if;
9115 return True;
9116 end Try_Container_Indexing;
9118 -----------------------
9119 -- Try_Indirect_Call --
9120 -----------------------
9122 function Try_Indirect_Call
9123 (N : Node_Id;
9124 Nam : Entity_Id;
9125 Typ : Entity_Id) return Boolean
9127 Actual : Node_Id;
9128 Formal : Entity_Id;
9130 Call_OK : Boolean;
9131 pragma Warnings (Off, Call_OK);
9133 begin
9134 Normalize_Actuals (N, Designated_Type (Typ), False, Call_OK);
9136 Actual := First_Actual (N);
9137 Formal := First_Formal (Designated_Type (Typ));
9138 while Present (Actual) and then Present (Formal) loop
9139 if not Has_Compatible_Type (Actual, Etype (Formal)) then
9140 return False;
9141 end if;
9143 Next (Actual);
9144 Next_Formal (Formal);
9145 end loop;
9147 if No (Actual) and then No (Formal) then
9148 Add_One_Interp (N, Nam, Etype (Designated_Type (Typ)));
9150 -- Nam is a candidate interpretation for the name in the call,
9151 -- if it is not an indirect call.
9153 if not Is_Type (Nam)
9154 and then Is_Entity_Name (Name (N))
9155 then
9156 Set_Entity (Name (N), Nam);
9157 end if;
9159 return True;
9161 else
9162 return False;
9163 end if;
9164 end Try_Indirect_Call;
9166 ----------------------
9167 -- Try_Indexed_Call --
9168 ----------------------
9170 function Try_Indexed_Call
9171 (N : Node_Id;
9172 Nam : Entity_Id;
9173 Typ : Entity_Id;
9174 Skip_First : Boolean) return Boolean
9176 Loc : constant Source_Ptr := Sloc (N);
9177 Actuals : constant List_Id := Parameter_Associations (N);
9178 Actual : Node_Id;
9179 Index : Entity_Id;
9181 begin
9182 Actual := First (Actuals);
9184 -- If the call was originally written in prefix form, skip the first
9185 -- actual, which is obviously not defaulted.
9187 if Skip_First then
9188 Next (Actual);
9189 end if;
9191 Index := First_Index (Typ);
9192 while Present (Actual) and then Present (Index) loop
9194 -- If the parameter list has a named association, the expression
9195 -- is definitely a call and not an indexed component.
9197 if Nkind (Actual) = N_Parameter_Association then
9198 return False;
9199 end if;
9201 if Is_Entity_Name (Actual)
9202 and then Is_Type (Entity (Actual))
9203 and then No (Next (Actual))
9204 then
9205 -- A single actual that is a type name indicates a slice if the
9206 -- type is discrete, and an error otherwise.
9208 if Is_Discrete_Type (Entity (Actual)) then
9209 Rewrite (N,
9210 Make_Slice (Loc,
9211 Prefix =>
9212 Make_Function_Call (Loc,
9213 Name => Relocate_Node (Name (N))),
9214 Discrete_Range =>
9215 New_Occurrence_Of (Entity (Actual), Sloc (Actual))));
9217 Analyze (N);
9219 else
9220 Error_Msg_N ("invalid use of type in expression", Actual);
9221 Set_Etype (N, Any_Type);
9222 end if;
9224 return True;
9226 elsif not Has_Compatible_Type (Actual, Etype (Index)) then
9227 return False;
9228 end if;
9230 Next (Actual);
9231 Next_Index (Index);
9232 end loop;
9234 if No (Actual) and then No (Index) then
9235 Add_One_Interp (N, Nam, Component_Type (Typ));
9237 -- Nam is a candidate interpretation for the name in the call,
9238 -- if it is not an indirect call.
9240 if not Is_Type (Nam)
9241 and then Is_Entity_Name (Name (N))
9242 then
9243 Set_Entity (Name (N), Nam);
9244 end if;
9246 return True;
9247 else
9248 return False;
9249 end if;
9250 end Try_Indexed_Call;
9252 --------------------------
9253 -- Try_Object_Operation --
9254 --------------------------
9256 function Try_Object_Operation
9257 (N : Node_Id;
9258 CW_Test_Only : Boolean := False;
9259 Allow_Extensions : Boolean := False) return Boolean
9261 K : constant Node_Kind := Nkind (Parent (N));
9262 Is_Subprg_Call : constant Boolean := K in N_Subprogram_Call;
9263 Loc : constant Source_Ptr := Sloc (N);
9264 Obj : constant Node_Id := Prefix (N);
9266 Subprog : constant Node_Id :=
9267 Make_Identifier (Sloc (Selector_Name (N)),
9268 Chars => Chars (Selector_Name (N)));
9269 -- Identifier on which possible interpretations will be collected
9271 Report_Error : Boolean := False;
9272 -- If no candidate interpretation matches the context, redo analysis
9273 -- with Report_Error True to provide additional information.
9275 Actual : Node_Id;
9276 Candidate : Entity_Id := Empty;
9277 New_Call_Node : Node_Id := Empty;
9278 Node_To_Replace : Node_Id;
9279 Obj_Type : Entity_Id := Etype (Obj);
9280 Success : Boolean := False;
9282 procedure Complete_Object_Operation
9283 (Call_Node : Node_Id;
9284 Node_To_Replace : Node_Id);
9285 -- Make Subprog the name of Call_Node, replace Node_To_Replace with
9286 -- Call_Node, insert the object (or its dereference) as the first actual
9287 -- in the call, and complete the analysis of the call.
9289 procedure Report_Ambiguity (Op : Entity_Id);
9290 -- If a prefixed procedure call is ambiguous, indicate whether the call
9291 -- includes an implicit dereference or an implicit 'Access.
9293 procedure Transform_Object_Operation
9294 (Call_Node : out Node_Id;
9295 Node_To_Replace : out Node_Id);
9296 -- Transform Obj.Operation (X, Y, ...) into Operation (Obj, X, Y ...).
9297 -- Call_Node is the resulting subprogram call, Node_To_Replace is
9298 -- either N or the parent of N, and Subprog is a reference to the
9299 -- subprogram we are trying to match. Note that the transformation
9300 -- may be partially destructive for the parent of N, so it needs to
9301 -- be undone in the case where Try_Object_Operation returns false.
9303 function Try_Class_Wide_Operation
9304 (Call_Node : Node_Id;
9305 Node_To_Replace : Node_Id) return Boolean;
9306 -- Traverse all ancestor types looking for a class-wide subprogram for
9307 -- which the current operation is a valid non-dispatching call.
9309 procedure Try_One_Prefix_Interpretation (T : Entity_Id);
9310 -- If prefix is overloaded, its interpretation may include different
9311 -- tagged types, and we must examine the primitive operations and the
9312 -- class-wide operations of each in order to find candidate
9313 -- interpretations for the call as a whole.
9315 function Try_Primitive_Operation
9316 (Call_Node : Node_Id;
9317 Node_To_Replace : Node_Id) return Boolean;
9318 -- Traverse the list of primitive subprograms looking for a dispatching
9319 -- operation for which the current node is a valid call.
9321 function Valid_Candidate
9322 (Success : Boolean;
9323 Call : Node_Id;
9324 Subp : Entity_Id) return Entity_Id;
9325 -- If the subprogram is a valid interpretation, record it, and add to
9326 -- the list of interpretations of Subprog. Otherwise return Empty.
9328 -------------------------------
9329 -- Complete_Object_Operation --
9330 -------------------------------
9332 procedure Complete_Object_Operation
9333 (Call_Node : Node_Id;
9334 Node_To_Replace : Node_Id)
9336 Control : constant Entity_Id := First_Formal (Entity (Subprog));
9337 Formal_Type : constant Entity_Id := Etype (Control);
9338 First_Actual : Node_Id;
9340 begin
9341 -- Place the name of the operation, with its interpretations,
9342 -- on the rewritten call.
9344 Set_Name (Call_Node, Subprog);
9346 First_Actual := First (Parameter_Associations (Call_Node));
9348 -- For cross-reference purposes, treat the new node as being in the
9349 -- source if the original one is. Set entity and type, even though
9350 -- they may be overwritten during resolution if overloaded.
9352 Set_Comes_From_Source (Subprog, Comes_From_Source (N));
9353 Set_Comes_From_Source (Call_Node, Comes_From_Source (N));
9355 if Nkind (N) = N_Selected_Component
9356 and then not Inside_A_Generic
9357 then
9358 Set_Entity (Selector_Name (N), Entity (Subprog));
9359 Set_Etype (Selector_Name (N), Etype (Entity (Subprog)));
9360 end if;
9362 -- If need be, rewrite first actual as an explicit dereference. If
9363 -- the call is overloaded, the rewriting can only be done once the
9364 -- primitive operation is identified.
9366 if Is_Overloaded (Subprog) then
9368 -- The prefix itself may be overloaded, and its interpretations
9369 -- must be propagated to the new actual in the call.
9371 if Is_Overloaded (Obj) then
9372 Save_Interps (Obj, First_Actual);
9373 end if;
9375 Rewrite (First_Actual, Obj);
9377 elsif not Is_Access_Type (Formal_Type)
9378 and then Is_Access_Type (Etype (Obj))
9379 then
9380 Rewrite (First_Actual,
9381 Make_Explicit_Dereference (Sloc (Obj), Obj));
9382 Analyze (First_Actual);
9384 -- If we need to introduce an explicit dereference, verify that
9385 -- the resulting actual is compatible with the mode of the formal.
9387 if Ekind (First_Formal (Entity (Subprog))) /= E_In_Parameter
9388 and then Is_Access_Constant (Etype (Obj))
9389 then
9390 Error_Msg_NE
9391 ("expect variable in call to&", Prefix (N), Entity (Subprog));
9392 end if;
9394 -- Conversely, if the formal is an access parameter and the object is
9395 -- not an access type or a reference type (i.e. a type with the
9396 -- Implicit_Dereference aspect specified), replace the actual with a
9397 -- 'Access reference. Its analysis will check that the object is
9398 -- aliased.
9400 elsif Is_Access_Type (Formal_Type)
9401 and then not Is_Access_Type (Etype (Obj))
9402 and then
9403 (not Has_Implicit_Dereference (Etype (Obj))
9404 or else
9405 not Is_Access_Type (Designated_Type (Etype
9406 (Get_Reference_Discriminant (Etype (Obj))))))
9407 then
9408 -- A special case: A.all'Access is illegal if A is an access to a
9409 -- constant and the context requires an access to a variable.
9411 if not Is_Access_Constant (Formal_Type) then
9412 if (Nkind (Obj) = N_Explicit_Dereference
9413 and then Is_Access_Constant (Etype (Prefix (Obj))))
9414 or else not Is_Variable (Obj)
9415 then
9416 Error_Msg_NE
9417 ("actual for & must be a variable", Obj, Control);
9418 end if;
9419 end if;
9421 Rewrite (First_Actual,
9422 Make_Attribute_Reference (Loc,
9423 Attribute_Name => Name_Access,
9424 Prefix => Relocate_Node (Obj)));
9426 -- If the object is not overloaded verify that taking access of
9427 -- it is legal. Otherwise check is made during resolution.
9429 if not Is_Overloaded (Obj)
9430 and then not Is_Aliased_View (Obj)
9431 then
9432 Error_Msg_NE
9433 ("object in prefixed call to & must be aliased "
9434 & "(RM 4.1.3 (13 1/2))", Prefix (First_Actual), Subprog);
9435 end if;
9437 Analyze (First_Actual);
9439 else
9440 if Is_Overloaded (Obj) then
9441 Save_Interps (Obj, First_Actual);
9442 end if;
9444 Rewrite (First_Actual, Obj);
9445 end if;
9447 if In_Extended_Main_Source_Unit (Current_Scope) then
9448 -- The operation is obtained from the dispatch table and not by
9449 -- visibility, and may be declared in a unit that is not
9450 -- explicitly referenced in the source, but is nevertheless
9451 -- required in the context of the current unit. Indicate that
9452 -- operation and its scope are referenced, to prevent spurious and
9453 -- misleading warnings. If the operation is overloaded, all
9454 -- primitives are in the same scope and we can use any of them.
9455 -- Don't do that outside the main unit since otherwise this will
9456 -- e.g. prevent the detection of some unused with clauses.
9458 Set_Referenced (Entity (Subprog), True);
9459 Set_Referenced (Scope (Entity (Subprog)), True);
9460 end if;
9462 Rewrite (Node_To_Replace, Call_Node);
9464 -- Propagate the interpretations collected in subprog to the new
9465 -- function call node, to be resolved from context.
9467 if Is_Overloaded (Subprog) then
9468 Save_Interps (Subprog, Node_To_Replace);
9470 else
9471 Analyze (Node_To_Replace);
9473 -- If the operation has been rewritten into a call, which may get
9474 -- subsequently an explicit dereference, preserve the type on the
9475 -- original node (selected component or indexed component) for
9476 -- subsequent legality tests, e.g. Is_Variable. which examines
9477 -- the original node.
9479 if Nkind (Node_To_Replace) = N_Function_Call then
9480 Set_Etype
9481 (Original_Node (Node_To_Replace), Etype (Node_To_Replace));
9482 end if;
9483 end if;
9484 end Complete_Object_Operation;
9486 ----------------------
9487 -- Report_Ambiguity --
9488 ----------------------
9490 procedure Report_Ambiguity (Op : Entity_Id) is
9491 Access_Actual : constant Boolean :=
9492 Is_Access_Type (Etype (Prefix (N)));
9493 Access_Formal : Boolean := False;
9495 begin
9496 Error_Msg_Sloc := Sloc (Op);
9498 if Present (First_Formal (Op)) then
9499 Access_Formal := Is_Access_Type (Etype (First_Formal (Op)));
9500 end if;
9502 if Access_Formal and then not Access_Actual then
9503 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
9504 Error_Msg_N
9505 ("\possible interpretation "
9506 & "(inherited, with implicit 'Access) #", N);
9507 else
9508 Error_Msg_N
9509 ("\possible interpretation (with implicit 'Access) #", N);
9510 end if;
9512 elsif not Access_Formal and then Access_Actual then
9513 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
9514 Error_Msg_N
9515 ("\possible interpretation "
9516 & "(inherited, with implicit dereference) #", N);
9517 else
9518 Error_Msg_N
9519 ("\possible interpretation (with implicit dereference) #", N);
9520 end if;
9522 else
9523 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
9524 Error_Msg_N ("\possible interpretation (inherited)#", N);
9525 else
9526 Error_Msg_N -- CODEFIX
9527 ("\possible interpretation#", N);
9528 end if;
9529 end if;
9530 end Report_Ambiguity;
9532 --------------------------------
9533 -- Transform_Object_Operation --
9534 --------------------------------
9536 procedure Transform_Object_Operation
9537 (Call_Node : out Node_Id;
9538 Node_To_Replace : out Node_Id)
9540 Dummy : constant Node_Id := New_Copy (Obj);
9541 -- Placeholder used as a first parameter in the call, replaced
9542 -- eventually by the proper object.
9544 Parent_Node : constant Node_Id := Parent (N);
9546 Actual : Node_Id;
9547 Actuals : List_Id;
9549 begin
9550 -- Common case covering 1) Call to a procedure and 2) Call to a
9551 -- function that has some additional actuals.
9553 if Nkind (Parent_Node) in N_Subprogram_Call
9555 -- N is a selected component node containing the name of the
9556 -- subprogram. If N is not the name of the parent node we must
9557 -- not replace the parent node by the new construct. This case
9558 -- occurs when N is a parameterless call to a subprogram that
9559 -- is an actual parameter of a call to another subprogram. For
9560 -- example:
9561 -- Some_Subprogram (..., Obj.Operation, ...)
9563 and then N = Name (Parent_Node)
9564 then
9565 Node_To_Replace := Parent_Node;
9567 Actuals := Parameter_Associations (Parent_Node);
9569 if Present (Actuals) then
9570 Prepend (Dummy, Actuals);
9571 else
9572 Actuals := New_List (Dummy);
9573 end if;
9575 if Nkind (Parent_Node) = N_Procedure_Call_Statement then
9576 Call_Node :=
9577 Make_Procedure_Call_Statement (Loc,
9578 Name => New_Copy (Subprog),
9579 Parameter_Associations => Actuals);
9581 else
9582 Call_Node :=
9583 Make_Function_Call (Loc,
9584 Name => New_Copy (Subprog),
9585 Parameter_Associations => Actuals);
9586 end if;
9588 -- Before analysis, a function call appears as an indexed component
9589 -- if there are no named associations.
9591 elsif Nkind (Parent_Node) = N_Indexed_Component
9592 and then N = Prefix (Parent_Node)
9593 then
9594 Node_To_Replace := Parent_Node;
9595 Actuals := Expressions (Parent_Node);
9597 Actual := First (Actuals);
9598 while Present (Actual) loop
9599 Analyze (Actual);
9600 Next (Actual);
9601 end loop;
9603 Prepend (Dummy, Actuals);
9605 Call_Node :=
9606 Make_Function_Call (Loc,
9607 Name => New_Copy (Subprog),
9608 Parameter_Associations => Actuals);
9610 -- Parameterless call: Obj.F is rewritten as F (Obj)
9612 else
9613 Node_To_Replace := N;
9615 Call_Node :=
9616 Make_Function_Call (Loc,
9617 Name => New_Copy (Subprog),
9618 Parameter_Associations => New_List (Dummy));
9619 end if;
9620 end Transform_Object_Operation;
9622 ------------------------------
9623 -- Try_Class_Wide_Operation --
9624 ------------------------------
9626 function Try_Class_Wide_Operation
9627 (Call_Node : Node_Id;
9628 Node_To_Replace : Node_Id) return Boolean
9630 Anc_Type : Entity_Id;
9631 Matching_Op : Entity_Id := Empty;
9632 Error : Boolean;
9634 procedure Traverse_Homonyms
9635 (Anc_Type : Entity_Id;
9636 Error : out Boolean);
9637 -- Traverse the homonym chain of the subprogram searching for those
9638 -- homonyms whose first formal has the Anc_Type's class-wide type,
9639 -- or an anonymous access type designating the class-wide type. If
9640 -- an ambiguity is detected, then Error is set to True.
9642 procedure Traverse_Interfaces
9643 (Anc_Type : Entity_Id;
9644 Error : out Boolean);
9645 -- Traverse the list of interfaces, if any, associated with Anc_Type
9646 -- and search for acceptable class-wide homonyms associated with each
9647 -- interface. If an ambiguity is detected, then Error is set to True.
9649 -----------------------
9650 -- Traverse_Homonyms --
9651 -----------------------
9653 procedure Traverse_Homonyms
9654 (Anc_Type : Entity_Id;
9655 Error : out Boolean)
9657 function First_Formal_Match
9658 (Subp_Id : Entity_Id;
9659 Typ : Entity_Id) return Boolean;
9660 -- Predicate to verify that the first foramal of class-wide
9661 -- subprogram Subp_Id matches type Typ of the prefix.
9663 ------------------------
9664 -- First_Formal_Match --
9665 ------------------------
9667 function First_Formal_Match
9668 (Subp_Id : Entity_Id;
9669 Typ : Entity_Id) return Boolean
9671 Ctrl : constant Entity_Id := First_Formal (Subp_Id);
9673 begin
9674 return
9675 Present (Ctrl)
9676 and then
9677 (Base_Type (Etype (Ctrl)) = Typ
9678 or else
9679 (Ekind (Etype (Ctrl)) = E_Anonymous_Access_Type
9680 and then
9681 Base_Type (Designated_Type (Etype (Ctrl))) =
9682 Typ));
9683 end First_Formal_Match;
9685 -- Local variables
9687 CW_Typ : constant Entity_Id := Class_Wide_Type (Anc_Type);
9689 Candidate : Entity_Id;
9690 -- If homonym is a renaming, examine the renamed program
9692 Hom : Entity_Id;
9693 Hom_Ref : Node_Id;
9694 Success : Boolean;
9696 -- Start of processing for Traverse_Homonyms
9698 begin
9699 Error := False;
9701 -- Find a non-hidden operation whose first parameter is of the
9702 -- class-wide type, a subtype thereof, or an anonymous access
9703 -- to same. If in an instance, the operation can be considered
9704 -- even if hidden (it may be hidden because the instantiation
9705 -- is expanded after the containing package has been analyzed).
9706 -- If the subprogram is a generic actual in an enclosing instance,
9707 -- it appears as a renaming that is a candidate interpretation as
9708 -- well.
9710 Hom := Current_Entity (Subprog);
9711 while Present (Hom) loop
9712 if Ekind (Hom) in E_Procedure | E_Function
9713 and then Present (Renamed_Entity (Hom))
9714 and then Is_Generic_Actual_Subprogram (Hom)
9715 and then In_Open_Scopes (Scope (Hom))
9716 then
9717 Candidate := Renamed_Entity (Hom);
9718 else
9719 Candidate := Hom;
9720 end if;
9722 if Ekind (Candidate) in E_Function | E_Procedure
9723 and then (not Is_Hidden (Candidate) or else In_Instance)
9724 and then Scope (Candidate) = Scope (Base_Type (Anc_Type))
9725 and then First_Formal_Match (Candidate, CW_Typ)
9726 then
9727 -- If the context is a procedure call, ignore functions
9728 -- in the name of the call.
9730 if Ekind (Candidate) = E_Function
9731 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
9732 and then N = Name (Parent (N))
9733 then
9734 goto Next_Hom;
9736 -- If the context is a function call, ignore procedures
9737 -- in the name of the call.
9739 elsif Ekind (Candidate) = E_Procedure
9740 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
9741 then
9742 goto Next_Hom;
9743 end if;
9745 Set_Etype (Call_Node, Any_Type);
9746 Set_Is_Overloaded (Call_Node, False);
9747 Success := False;
9749 if No (Matching_Op) then
9750 Hom_Ref := New_Occurrence_Of (Candidate, Sloc (Subprog));
9752 Set_Etype (Call_Node, Any_Type);
9753 Set_Name (Call_Node, Hom_Ref);
9754 Set_Parent (Call_Node, Parent (Node_To_Replace));
9756 Analyze_One_Call
9757 (N => Call_Node,
9758 Nam => Candidate,
9759 Report => Report_Error,
9760 Success => Success,
9761 Skip_First => True);
9763 Matching_Op :=
9764 Valid_Candidate (Success, Call_Node, Candidate);
9766 else
9767 Analyze_One_Call
9768 (N => Call_Node,
9769 Nam => Candidate,
9770 Report => Report_Error,
9771 Success => Success,
9772 Skip_First => True);
9774 -- The same operation may be encountered on two homonym
9775 -- traversals, before and after looking at interfaces.
9776 -- Check for this case before reporting a real ambiguity.
9778 if Present
9779 (Valid_Candidate (Success, Call_Node, Candidate))
9780 and then Nkind (Call_Node) /= N_Function_Call
9781 and then Candidate /= Matching_Op
9782 then
9783 Error_Msg_NE ("ambiguous call to&", N, Hom);
9784 Report_Ambiguity (Matching_Op);
9785 Report_Ambiguity (Hom);
9786 Check_Ambiguous_Aggregate (New_Call_Node);
9787 Error := True;
9788 return;
9789 end if;
9790 end if;
9791 end if;
9793 <<Next_Hom>>
9794 Hom := Homonym (Hom);
9795 end loop;
9796 end Traverse_Homonyms;
9798 -------------------------
9799 -- Traverse_Interfaces --
9800 -------------------------
9802 procedure Traverse_Interfaces
9803 (Anc_Type : Entity_Id;
9804 Error : out Boolean)
9806 Intface_List : constant List_Id :=
9807 Abstract_Interface_List (Anc_Type);
9808 Intface : Node_Id;
9810 begin
9811 Error := False;
9813 Intface := First (Intface_List);
9814 while Present (Intface) loop
9816 -- Look for acceptable class-wide homonyms associated with the
9817 -- interface.
9819 Traverse_Homonyms (Etype (Intface), Error);
9821 if Error then
9822 return;
9823 end if;
9825 -- Continue the search by looking at each of the interface's
9826 -- associated interface ancestors.
9828 Traverse_Interfaces (Etype (Intface), Error);
9830 if Error then
9831 return;
9832 end if;
9834 Next (Intface);
9835 end loop;
9836 end Traverse_Interfaces;
9838 -- Start of processing for Try_Class_Wide_Operation
9840 begin
9841 -- If we are searching only for conflicting class-wide subprograms
9842 -- then initialize directly Matching_Op with the target entity.
9844 if CW_Test_Only then
9845 Matching_Op := Entity (Selector_Name (N));
9846 end if;
9848 -- Loop through ancestor types (including interfaces), traversing
9849 -- the homonym chain of the subprogram, trying out those homonyms
9850 -- whose first formal has the class-wide type of the ancestor, or
9851 -- an anonymous access type designating the class-wide type.
9853 Anc_Type := Obj_Type;
9854 loop
9855 -- Look for a match among homonyms associated with the ancestor
9857 Traverse_Homonyms (Anc_Type, Error);
9859 if Error then
9860 return True;
9861 end if;
9863 -- Continue the search for matches among homonyms associated with
9864 -- any interfaces implemented by the ancestor.
9866 Traverse_Interfaces (Anc_Type, Error);
9868 if Error then
9869 return True;
9870 end if;
9872 exit when Etype (Anc_Type) = Anc_Type;
9873 Anc_Type := Etype (Anc_Type);
9874 end loop;
9876 if Present (Matching_Op) then
9877 Set_Etype (Call_Node, Etype (Matching_Op));
9878 end if;
9880 return Present (Matching_Op);
9881 end Try_Class_Wide_Operation;
9883 -----------------------------------
9884 -- Try_One_Prefix_Interpretation --
9885 -----------------------------------
9887 procedure Try_One_Prefix_Interpretation (T : Entity_Id) is
9888 Prev_Obj_Type : constant Entity_Id := Obj_Type;
9889 -- If the interpretation does not have a valid candidate type,
9890 -- preserve current value of Obj_Type for subsequent errors.
9892 begin
9893 Obj_Type := T;
9895 if Is_Access_Type (Obj_Type) then
9896 Obj_Type := Designated_Type (Obj_Type);
9897 end if;
9899 if Ekind (Obj_Type)
9900 in E_Private_Subtype | E_Record_Subtype_With_Private
9901 then
9902 Obj_Type := Base_Type (Obj_Type);
9903 end if;
9905 if Is_Class_Wide_Type (Obj_Type) then
9906 Obj_Type := Etype (Class_Wide_Type (Obj_Type));
9907 end if;
9909 -- The type may have be obtained through a limited_with clause,
9910 -- in which case the primitive operations are available on its
9911 -- nonlimited view. If still incomplete, retrieve full view.
9913 if Ekind (Obj_Type) = E_Incomplete_Type
9914 and then From_Limited_With (Obj_Type)
9915 and then Has_Non_Limited_View (Obj_Type)
9916 then
9917 Obj_Type := Get_Full_View (Non_Limited_View (Obj_Type));
9918 end if;
9920 -- If the object is not tagged, or the type is still an incomplete
9921 -- type, this is not a prefixed call. Restore the previous type as
9922 -- the current one is not a legal candidate.
9924 -- Extension feature: Calls with prefixed views are also supported
9925 -- for untagged types, so skip the early return when extensions are
9926 -- enabled, unless the type doesn't have a primitive operations list
9927 -- (such as in the case of predefined types).
9929 if (not Is_Tagged_Type (Obj_Type)
9930 and then
9931 (not (Core_Extensions_Allowed or Allow_Extensions)
9932 or else No (Primitive_Operations (Obj_Type))))
9933 or else Is_Incomplete_Type (Obj_Type)
9934 then
9935 Obj_Type := Prev_Obj_Type;
9936 return;
9937 end if;
9939 declare
9940 Dup_Call_Node : constant Node_Id := New_Copy (New_Call_Node);
9941 Ignore : Boolean;
9942 Prim_Result : Boolean := False;
9944 begin
9945 if not CW_Test_Only then
9946 Prim_Result :=
9947 Try_Primitive_Operation
9948 (Call_Node => New_Call_Node,
9949 Node_To_Replace => Node_To_Replace);
9951 -- Extension feature: In the case where the prefix is of an
9952 -- access type, and a primitive wasn't found for the designated
9953 -- type, then if the access type has primitives we attempt a
9954 -- prefixed call using one of its primitives. (It seems that
9955 -- this isn't quite right to give preference to the designated
9956 -- type in the case where both the access and designated types
9957 -- have homographic prefixed-view operations that could result
9958 -- in an ambiguity, but handling properly may be tricky. ???)
9960 if (Core_Extensions_Allowed or Allow_Extensions)
9961 and then not Prim_Result
9962 and then Is_Named_Access_Type (Prev_Obj_Type)
9963 and then Present (Direct_Primitive_Operations (Prev_Obj_Type))
9964 then
9965 -- Temporarily reset Obj_Type to the original access type
9967 Obj_Type := Prev_Obj_Type;
9969 Prim_Result :=
9970 Try_Primitive_Operation
9971 (Call_Node => New_Call_Node,
9972 Node_To_Replace => Node_To_Replace);
9974 -- Restore Obj_Type to the designated type (is this really
9975 -- necessary, or should it only be done when Prim_Result is
9976 -- still False?).
9978 Obj_Type := Designated_Type (Obj_Type);
9979 end if;
9980 end if;
9982 -- Check if there is a class-wide subprogram covering the
9983 -- primitive. This check must be done even if a candidate
9984 -- was found in order to report ambiguous calls.
9986 if not Prim_Result then
9987 Ignore :=
9988 Try_Class_Wide_Operation
9989 (Call_Node => New_Call_Node,
9990 Node_To_Replace => Node_To_Replace);
9992 -- If we found a primitive we search for class-wide subprograms
9993 -- using a duplicate of the call node (done to avoid missing its
9994 -- decoration if there is no ambiguity).
9996 else
9997 Ignore :=
9998 Try_Class_Wide_Operation
9999 (Call_Node => Dup_Call_Node,
10000 Node_To_Replace => Node_To_Replace);
10001 end if;
10002 end;
10003 end Try_One_Prefix_Interpretation;
10005 -----------------------------
10006 -- Try_Primitive_Operation --
10007 -----------------------------
10009 function Try_Primitive_Operation
10010 (Call_Node : Node_Id;
10011 Node_To_Replace : Node_Id) return Boolean
10013 Elmt : Elmt_Id;
10014 Prim_Op : Entity_Id;
10015 Matching_Op : Entity_Id := Empty;
10016 Prim_Op_Ref : Node_Id := Empty;
10018 Corr_Type : Entity_Id := Empty;
10019 -- If the prefix is a synchronized type, the controlling type of
10020 -- the primitive operation is the corresponding record type, else
10021 -- this is the object type itself.
10023 Success : Boolean := False;
10025 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id;
10026 -- For tagged types the candidate interpretations are found in
10027 -- the list of primitive operations of the type and its ancestors.
10028 -- For formal tagged types we have to find the operations declared
10029 -- in the same scope as the type (including in the generic formal
10030 -- part) because the type itself carries no primitive operations,
10031 -- except for formal derived types that inherit the operations of
10032 -- the parent and progenitors.
10034 -- If the context is a generic subprogram body, the generic formals
10035 -- are visible by name, but are not in the entity list of the
10036 -- subprogram because that list starts with the subprogram formals.
10037 -- We retrieve the candidate operations from the generic declaration.
10039 function Extended_Primitive_Ops (T : Entity_Id) return Elist_Id;
10040 -- Prefix notation can also be used on operations that are not
10041 -- primitives of the type, but are declared in the same immediate
10042 -- declarative part, which can only mean the corresponding package
10043 -- body (see RM 4.1.3 (9.2/3)). If we are in that body we extend the
10044 -- list of primitives with body operations with the same name that
10045 -- may be candidates, so that Try_Primitive_Operations can examine
10046 -- them if no real primitive is found.
10048 function Is_Private_Overriding (Op : Entity_Id) return Boolean;
10049 -- An operation that overrides an inherited operation in the private
10050 -- part of its package may be hidden, but if the inherited operation
10051 -- is visible a direct call to it will dispatch to the private one,
10052 -- which is therefore a valid candidate.
10054 function Names_Match
10055 (Obj_Type : Entity_Id;
10056 Prim_Op : Entity_Id;
10057 Subprog : Entity_Id) return Boolean;
10058 -- Return True if the names of Prim_Op and Subprog match. If Obj_Type
10059 -- is a protected type then compare also the original name of Prim_Op
10060 -- with the name of Subprog (since the expander may have added a
10061 -- prefix to its original name --see Exp_Ch9.Build_Selected_Name).
10063 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean;
10064 -- Verify that the prefix, dereferenced if need be, is a valid
10065 -- controlling argument in a call to Op. The remaining actuals
10066 -- are checked in the subsequent call to Analyze_One_Call.
10068 ------------------------------
10069 -- Collect_Generic_Type_Ops --
10070 ------------------------------
10072 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id is
10073 Bas : constant Entity_Id := Base_Type (T);
10074 Candidates : constant Elist_Id := New_Elmt_List;
10075 Subp : Entity_Id;
10076 Formal : Entity_Id;
10078 procedure Check_Candidate;
10079 -- The operation is a candidate if its first parameter is a
10080 -- controlling operand of the desired type.
10082 -----------------------
10083 -- Check_Candidate; --
10084 -----------------------
10086 procedure Check_Candidate is
10087 begin
10088 Formal := First_Formal (Subp);
10090 if Present (Formal)
10091 and then Is_Controlling_Formal (Formal)
10092 and then
10093 (Base_Type (Etype (Formal)) = Bas
10094 or else
10095 (Is_Access_Type (Etype (Formal))
10096 and then Designated_Type (Etype (Formal)) = Bas))
10097 then
10098 Append_Elmt (Subp, Candidates);
10099 end if;
10100 end Check_Candidate;
10102 -- Start of processing for Collect_Generic_Type_Ops
10104 begin
10105 if Is_Derived_Type (T) then
10106 return Primitive_Operations (T);
10108 elsif Ekind (Scope (T)) in E_Procedure | E_Function then
10110 -- Scan the list of generic formals to find subprograms
10111 -- that may have a first controlling formal of the type.
10113 if Nkind (Unit_Declaration_Node (Scope (T))) =
10114 N_Generic_Subprogram_Declaration
10115 then
10116 declare
10117 Decl : Node_Id;
10119 begin
10120 Decl :=
10121 First (Generic_Formal_Declarations
10122 (Unit_Declaration_Node (Scope (T))));
10123 while Present (Decl) loop
10124 if Nkind (Decl) in N_Formal_Subprogram_Declaration then
10125 Subp := Defining_Entity (Decl);
10126 Check_Candidate;
10127 end if;
10129 Next (Decl);
10130 end loop;
10131 end;
10132 end if;
10133 return Candidates;
10135 else
10136 -- Scan the list of entities declared in the same scope as
10137 -- the type. In general this will be an open scope, given that
10138 -- the call we are analyzing can only appear within a generic
10139 -- declaration or body (either the one that declares T, or a
10140 -- child unit).
10142 -- For a subtype representing a generic actual type, go to the
10143 -- base type.
10145 if Is_Generic_Actual_Type (T) then
10146 Subp := First_Entity (Scope (Base_Type (T)));
10147 else
10148 Subp := First_Entity (Scope (T));
10149 end if;
10151 while Present (Subp) loop
10152 if Is_Overloadable (Subp) then
10153 Check_Candidate;
10154 end if;
10156 Next_Entity (Subp);
10157 end loop;
10159 return Candidates;
10160 end if;
10161 end Collect_Generic_Type_Ops;
10163 ----------------------------
10164 -- Extended_Primitive_Ops --
10165 ----------------------------
10167 function Extended_Primitive_Ops (T : Entity_Id) return Elist_Id is
10168 Type_Scope : constant Entity_Id := Scope (T);
10169 Op_List : Elist_Id := Primitive_Operations (T);
10170 begin
10171 if Is_Package_Or_Generic_Package (Type_Scope)
10172 and then ((In_Package_Body (Type_Scope)
10173 and then In_Open_Scopes (Type_Scope)) or else In_Instance_Body)
10174 then
10175 -- Retrieve list of declarations of package body if possible
10177 declare
10178 The_Body : constant Node_Id :=
10179 Corresponding_Body (Unit_Declaration_Node (Type_Scope));
10180 begin
10181 if Present (The_Body) then
10182 declare
10183 Body_Decls : constant List_Id :=
10184 Declarations (Unit_Declaration_Node (The_Body));
10185 Op_Found : Boolean := False;
10186 Op : Entity_Id := Current_Entity (Subprog);
10187 begin
10188 while Present (Op) loop
10189 if Comes_From_Source (Op)
10190 and then Is_Overloadable (Op)
10192 -- Exclude overriding primitive operations of a
10193 -- type extension declared in the package body,
10194 -- to prevent duplicates in extended list.
10196 and then not Is_Primitive (Op)
10197 and then Is_List_Member
10198 (Unit_Declaration_Node (Op))
10199 and then List_Containing
10200 (Unit_Declaration_Node (Op)) = Body_Decls
10201 then
10202 if not Op_Found then
10203 -- Copy list of primitives so it is not
10204 -- affected for other uses.
10206 Op_List := New_Copy_Elist (Op_List);
10207 Op_Found := True;
10208 end if;
10210 Append_Elmt (Op, Op_List);
10211 end if;
10213 Op := Homonym (Op);
10214 end loop;
10215 end;
10216 end if;
10217 end;
10218 end if;
10220 return Op_List;
10221 end Extended_Primitive_Ops;
10223 ---------------------------
10224 -- Is_Private_Overriding --
10225 ---------------------------
10227 function Is_Private_Overriding (Op : Entity_Id) return Boolean is
10228 Visible_Op : Entity_Id;
10230 begin
10231 -- The subprogram may be overloaded with both visible and private
10232 -- entities with the same name. We have to scan the chain of
10233 -- homonyms to determine whether there is a previous implicit
10234 -- declaration in the same scope that is overridden by the
10235 -- private candidate.
10237 Visible_Op := Homonym (Op);
10238 while Present (Visible_Op) loop
10239 if Scope (Op) /= Scope (Visible_Op) then
10240 return False;
10242 elsif not Comes_From_Source (Visible_Op)
10243 and then Alias (Visible_Op) = Op
10244 then
10245 -- If Visible_Op or what it overrides is not hidden, then we
10246 -- have found what we're looking for.
10248 if not Is_Hidden (Visible_Op)
10249 or else not Is_Hidden (Overridden_Operation (Op))
10250 then
10251 return True;
10252 end if;
10253 end if;
10255 Visible_Op := Homonym (Visible_Op);
10256 end loop;
10258 return False;
10259 end Is_Private_Overriding;
10261 -----------------
10262 -- Names_Match --
10263 -----------------
10265 function Names_Match
10266 (Obj_Type : Entity_Id;
10267 Prim_Op : Entity_Id;
10268 Subprog : Entity_Id) return Boolean is
10269 begin
10270 -- Common case: exact match
10272 if Chars (Prim_Op) = Chars (Subprog) then
10273 return True;
10275 -- For protected type primitives the expander may have built the
10276 -- name of the dispatching primitive prepending the type name to
10277 -- avoid conflicts with the name of the protected subprogram (see
10278 -- Exp_Ch9.Build_Selected_Name).
10280 elsif Is_Protected_Type (Obj_Type) then
10281 return
10282 Present (Original_Protected_Subprogram (Prim_Op))
10283 and then Chars (Original_Protected_Subprogram (Prim_Op)) =
10284 Chars (Subprog);
10286 -- In an instance, the selector name may be a generic actual that
10287 -- renames a primitive operation of the type of the prefix.
10289 elsif In_Instance and then Present (Current_Entity (Subprog)) then
10290 declare
10291 Subp : constant Entity_Id := Current_Entity (Subprog);
10292 begin
10293 if Present (Subp)
10294 and then Is_Subprogram (Subp)
10295 and then Present (Renamed_Entity (Subp))
10296 and then Is_Generic_Actual_Subprogram (Subp)
10297 and then Chars (Renamed_Entity (Subp)) = Chars (Prim_Op)
10298 then
10299 return True;
10300 end if;
10301 end;
10302 end if;
10304 return False;
10305 end Names_Match;
10307 -----------------------------
10308 -- Valid_First_Argument_Of --
10309 -----------------------------
10311 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean is
10312 Typ : Entity_Id := Etype (First_Formal (Op));
10314 begin
10315 if Is_Concurrent_Type (Typ)
10316 and then Present (Corresponding_Record_Type (Typ))
10317 then
10318 Typ := Corresponding_Record_Type (Typ);
10319 end if;
10321 -- Simple case. Object may be a subtype of the tagged type or may
10322 -- be the corresponding record of a synchronized type.
10324 return Obj_Type = Typ
10325 or else Base_Type (Obj_Type) = Base_Type (Typ)
10326 or else Corr_Type = Typ
10328 -- Object may be of a derived type whose parent has unknown
10329 -- discriminants, in which case the type matches the underlying
10330 -- record view of its base.
10332 or else
10333 (Has_Unknown_Discriminants (Typ)
10334 and then Typ = Underlying_Record_View (Base_Type (Obj_Type)))
10336 -- Prefix can be dereferenced
10338 or else
10339 (Is_Access_Type (Corr_Type)
10340 and then Designated_Type (Corr_Type) = Typ)
10342 -- Formal is an access parameter, for which the object can
10343 -- provide an access.
10345 or else
10346 (Ekind (Typ) = E_Anonymous_Access_Type
10347 and then
10348 Base_Type (Designated_Type (Typ)) = Base_Type (Corr_Type));
10349 end Valid_First_Argument_Of;
10351 -- Start of processing for Try_Primitive_Operation
10353 begin
10354 -- Look for subprograms in the list of primitive operations. The name
10355 -- must be identical, and the kind of call indicates the expected
10356 -- kind of operation (function or procedure). If the type is a
10357 -- (tagged) synchronized type, the primitive ops are attached to the
10358 -- corresponding record (base) type.
10360 if Is_Concurrent_Type (Obj_Type) then
10361 if Present (Corresponding_Record_Type (Obj_Type)) then
10362 Corr_Type := Base_Type (Corresponding_Record_Type (Obj_Type));
10363 Elmt := First_Elmt (Primitive_Operations (Corr_Type));
10364 else
10365 Corr_Type := Obj_Type;
10366 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
10367 end if;
10369 elsif not Is_Generic_Type (Obj_Type) then
10370 Corr_Type := Obj_Type;
10371 Elmt := First_Elmt (Extended_Primitive_Ops (Obj_Type));
10373 else
10374 Corr_Type := Obj_Type;
10375 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
10376 end if;
10378 while Present (Elmt) loop
10379 Prim_Op := Node (Elmt);
10381 if Names_Match (Obj_Type, Prim_Op, Subprog)
10382 and then Present (First_Formal (Prim_Op))
10383 and then Valid_First_Argument_Of (Prim_Op)
10384 and then
10385 (Nkind (Call_Node) = N_Function_Call)
10387 (Ekind (Prim_Op) = E_Function)
10388 then
10389 -- Ada 2005 (AI-251): If this primitive operation corresponds
10390 -- to an immediate ancestor interface there is no need to add
10391 -- it to the list of interpretations; the corresponding aliased
10392 -- primitive is also in this list of primitive operations and
10393 -- will be used instead.
10395 if (Present (Interface_Alias (Prim_Op))
10396 and then Is_Ancestor (Find_Dispatching_Type
10397 (Alias (Prim_Op)), Corr_Type))
10399 -- Do not consider hidden primitives unless the type is in an
10400 -- open scope or we are within an instance, where visibility
10401 -- is known to be correct, or else if this is an overriding
10402 -- operation in the private part for an inherited operation.
10404 or else (Is_Hidden (Prim_Op)
10405 and then not Is_Immediately_Visible (Obj_Type)
10406 and then not In_Instance
10407 and then not Is_Private_Overriding (Prim_Op))
10408 then
10409 goto Continue;
10410 end if;
10412 Set_Etype (Call_Node, Any_Type);
10413 Set_Is_Overloaded (Call_Node, False);
10415 if No (Matching_Op) then
10416 Prim_Op_Ref := New_Occurrence_Of (Prim_Op, Sloc (Subprog));
10417 Candidate := Prim_Op;
10419 Set_Parent (Call_Node, Parent (Node_To_Replace));
10421 Set_Name (Call_Node, Prim_Op_Ref);
10422 Success := False;
10424 Analyze_One_Call
10425 (N => Call_Node,
10426 Nam => Prim_Op,
10427 Report => Report_Error,
10428 Success => Success,
10429 Skip_First => True);
10431 Matching_Op := Valid_Candidate (Success, Call_Node, Prim_Op);
10433 -- More than one interpretation, collect for subsequent
10434 -- disambiguation. If this is a procedure call and there
10435 -- is another match, report ambiguity now.
10437 else
10438 Analyze_One_Call
10439 (N => Call_Node,
10440 Nam => Prim_Op,
10441 Report => Report_Error,
10442 Success => Success,
10443 Skip_First => True);
10445 if Present (Valid_Candidate (Success, Call_Node, Prim_Op))
10446 and then Nkind (Call_Node) /= N_Function_Call
10447 then
10448 Error_Msg_NE ("ambiguous call to&", N, Prim_Op);
10449 Report_Ambiguity (Matching_Op);
10450 Report_Ambiguity (Prim_Op);
10451 Check_Ambiguous_Aggregate (Call_Node);
10452 return True;
10453 end if;
10454 end if;
10455 end if;
10457 <<Continue>>
10458 Next_Elmt (Elmt);
10459 end loop;
10461 if Present (Matching_Op) then
10462 Set_Etype (Call_Node, Etype (Matching_Op));
10463 end if;
10465 return Present (Matching_Op);
10466 end Try_Primitive_Operation;
10468 ---------------------
10469 -- Valid_Candidate --
10470 ---------------------
10472 function Valid_Candidate
10473 (Success : Boolean;
10474 Call : Node_Id;
10475 Subp : Entity_Id) return Entity_Id
10477 Arr_Type : Entity_Id;
10478 Comp_Type : Entity_Id;
10480 begin
10481 -- If the subprogram is a valid interpretation, record it in global
10482 -- variable Subprog, to collect all possible overloadings.
10484 if Success then
10485 if Subp /= Entity (Subprog) then
10486 Add_One_Interp (Subprog, Subp, Etype (Subp));
10487 end if;
10488 end if;
10490 -- If the call may be an indexed call, retrieve component type of
10491 -- resulting expression, and add possible interpretation.
10493 Arr_Type := Empty;
10494 Comp_Type := Empty;
10496 if Nkind (Call) = N_Function_Call
10497 and then Nkind (Parent (N)) = N_Indexed_Component
10498 and then Needs_One_Actual (Subp)
10499 then
10500 if Is_Array_Type (Etype (Subp)) then
10501 Arr_Type := Etype (Subp);
10503 elsif Is_Access_Type (Etype (Subp))
10504 and then Is_Array_Type (Designated_Type (Etype (Subp)))
10505 then
10506 Arr_Type := Designated_Type (Etype (Subp));
10507 end if;
10508 end if;
10510 if Present (Arr_Type) then
10512 -- Verify that the actuals (excluding the object) match the types
10513 -- of the indexes.
10515 declare
10516 Actual : Node_Id;
10517 Index : Node_Id;
10519 begin
10520 Actual := Next (First_Actual (Call));
10521 Index := First_Index (Arr_Type);
10522 while Present (Actual) and then Present (Index) loop
10523 if not Has_Compatible_Type (Actual, Etype (Index)) then
10524 Arr_Type := Empty;
10525 exit;
10526 end if;
10528 Next_Actual (Actual);
10529 Next_Index (Index);
10530 end loop;
10532 if No (Actual)
10533 and then No (Index)
10534 and then Present (Arr_Type)
10535 then
10536 Comp_Type := Component_Type (Arr_Type);
10537 end if;
10538 end;
10540 if Present (Comp_Type)
10541 and then Etype (Subprog) /= Comp_Type
10542 then
10543 Add_One_Interp (Subprog, Subp, Comp_Type);
10544 end if;
10545 end if;
10547 if Etype (Call) /= Any_Type then
10548 return Subp;
10549 else
10550 return Empty;
10551 end if;
10552 end Valid_Candidate;
10554 -- Start of processing for Try_Object_Operation
10556 begin
10557 Analyze_Expression (Obj);
10559 -- Analyze the actuals if node is known to be a subprogram call
10561 if Is_Subprg_Call and then N = Name (Parent (N)) then
10562 Actual := First (Parameter_Associations (Parent (N)));
10563 while Present (Actual) loop
10564 Analyze_Expression (Actual);
10565 Next (Actual);
10566 end loop;
10567 end if;
10569 -- Build a subprogram call node, using a copy of Obj as its first
10570 -- actual. This is a placeholder, to be replaced by an explicit
10571 -- dereference when needed.
10573 Transform_Object_Operation
10574 (Call_Node => New_Call_Node,
10575 Node_To_Replace => Node_To_Replace);
10577 Set_Etype (New_Call_Node, Any_Type);
10578 Set_Etype (Subprog, Any_Type);
10579 Set_Parent (New_Call_Node, Parent (Node_To_Replace));
10581 if not Is_Overloaded (Obj) then
10582 Try_One_Prefix_Interpretation (Obj_Type);
10584 else
10585 declare
10586 I : Interp_Index;
10587 It : Interp;
10588 begin
10589 Get_First_Interp (Obj, I, It);
10590 while Present (It.Nam) loop
10591 Try_One_Prefix_Interpretation (It.Typ);
10592 Get_Next_Interp (I, It);
10593 end loop;
10594 end;
10595 end if;
10597 if Etype (New_Call_Node) /= Any_Type then
10599 -- No need to complete the tree transformations if we are only
10600 -- searching for conflicting class-wide subprograms
10602 if CW_Test_Only then
10603 return False;
10604 else
10605 Complete_Object_Operation
10606 (Call_Node => New_Call_Node,
10607 Node_To_Replace => Node_To_Replace);
10608 return True;
10609 end if;
10611 elsif Present (Candidate) then
10613 -- The argument list is not type correct. Re-analyze with error
10614 -- reporting enabled, and use one of the possible candidates.
10615 -- In All_Errors_Mode, re-analyze all failed interpretations.
10617 if All_Errors_Mode then
10618 Report_Error := True;
10619 if Try_Primitive_Operation
10620 (Call_Node => New_Call_Node,
10621 Node_To_Replace => Node_To_Replace)
10623 or else
10624 Try_Class_Wide_Operation
10625 (Call_Node => New_Call_Node,
10626 Node_To_Replace => Node_To_Replace)
10627 then
10628 null;
10629 end if;
10631 else
10632 Analyze_One_Call
10633 (N => New_Call_Node,
10634 Nam => Candidate,
10635 Report => True,
10636 Success => Success,
10637 Skip_First => True);
10639 -- The error may hot have been reported yet for overloaded
10640 -- prefixed calls, depending on the non-matching candidate,
10641 -- in which case provide a concise error now.
10643 if Serious_Errors_Detected = 0 then
10644 Error_Msg_NE
10645 ("cannot resolve prefixed call to primitive operation of&",
10646 N, Entity (Obj));
10647 end if;
10648 end if;
10650 -- No need for further errors
10652 return True;
10654 else
10655 -- There was no candidate operation, but Analyze_Selected_Component
10656 -- may continue the analysis so we need to undo the change possibly
10657 -- made to the Parent of N earlier by Transform_Object_Operation.
10659 declare
10660 Parent_Node : constant Node_Id := Parent (N);
10662 begin
10663 if Node_To_Replace = Parent_Node then
10664 Remove (First (Parameter_Associations (New_Call_Node)));
10665 Set_Parent
10666 (Parameter_Associations (New_Call_Node), Parent_Node);
10667 end if;
10668 end;
10670 return False;
10671 end if;
10672 end Try_Object_Operation;
10674 -------------------------
10675 -- Unresolved_Operator --
10676 -------------------------
10678 procedure Unresolved_Operator (N : Node_Id) is
10679 L : constant Node_Id :=
10680 (if Nkind (N) in N_Binary_Op then Left_Opnd (N) else Empty);
10681 R : constant Node_Id := Right_Opnd (N);
10683 Op_Id : Entity_Id;
10685 begin
10686 -- Note that in the following messages, if the operand is overloaded we
10687 -- choose an arbitrary type to complain about, but that is probably more
10688 -- useful than not giving a type at all.
10690 if Nkind (N) in N_Unary_Op then
10691 Error_Msg_Node_2 := Etype (R);
10692 Error_Msg_N ("operator& not defined for}", N);
10694 elsif Nkind (N) in N_Binary_Op then
10695 if not Is_Overloaded (L)
10696 and then not Is_Overloaded (R)
10697 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
10698 then
10699 Error_Msg_Node_2 := First_Subtype (Etype (R));
10700 Error_Msg_N ("there is no applicable operator& for}", N);
10702 else
10703 -- Another attempt to find a fix: one of the candidate
10704 -- interpretations may not be use-visible. This has
10705 -- already been checked for predefined operators, so
10706 -- we examine only user-defined functions.
10708 Op_Id := Get_Name_Entity_Id (Chars (N));
10710 while Present (Op_Id) loop
10711 if Ekind (Op_Id) /= E_Operator
10712 and then Is_Overloadable (Op_Id)
10713 and then not Is_Immediately_Visible (Op_Id)
10714 and then not In_Use (Scope (Op_Id))
10715 and then not Is_Abstract_Subprogram (Op_Id)
10716 and then not Is_Hidden (Op_Id)
10717 and then Ekind (Scope (Op_Id)) = E_Package
10718 and then Has_Compatible_Type (L, Etype (First_Formal (Op_Id)))
10719 and then Present (Next_Formal (First_Formal (Op_Id)))
10720 and then
10721 Has_Compatible_Type
10722 (R, Etype (Next_Formal (First_Formal (Op_Id))))
10723 then
10724 Error_Msg_N ("no legal interpretation for operator&", N);
10725 Error_Msg_NE ("\use clause on& would make operation legal",
10726 N, Scope (Op_Id));
10727 exit;
10728 end if;
10730 Op_Id := Homonym (Op_Id);
10731 end loop;
10733 if No (Op_Id) then
10734 Error_Msg_N ("invalid operand types for operator&", N);
10736 if Nkind (N) /= N_Op_Concat then
10737 Error_Msg_NE ("\left operand has}!", N, Etype (L));
10738 Error_Msg_NE ("\right operand has}!", N, Etype (R));
10740 -- For multiplication and division operators with
10741 -- a fixed-point operand and an integer operand,
10742 -- indicate that the integer operand should be of
10743 -- type Integer.
10745 if Nkind (N) in N_Op_Multiply | N_Op_Divide
10746 and then Is_Fixed_Point_Type (Etype (L))
10747 and then Is_Integer_Type (Etype (R))
10748 then
10749 Error_Msg_N ("\convert right operand to `Integer`", N);
10751 elsif Nkind (N) = N_Op_Multiply
10752 and then Is_Fixed_Point_Type (Etype (R))
10753 and then Is_Integer_Type (Etype (L))
10754 then
10755 Error_Msg_N ("\convert left operand to `Integer`", N);
10756 end if;
10758 -- For concatenation operators it is more difficult to
10759 -- determine which is the wrong operand. It is worth
10760 -- flagging explicitly an access type, for those who
10761 -- might think that a dereference happens here.
10763 elsif Is_Access_Type (Etype (L)) then
10764 Error_Msg_N ("\left operand is access type", N);
10766 elsif Is_Access_Type (Etype (R)) then
10767 Error_Msg_N ("\right operand is access type", N);
10768 end if;
10769 end if;
10770 end if;
10771 end if;
10772 end Unresolved_Operator;
10774 ---------
10775 -- wpo --
10776 ---------
10778 procedure wpo (T : Entity_Id) is
10779 Op : Entity_Id;
10780 E : Elmt_Id;
10782 begin
10783 if not Is_Tagged_Type (T) then
10784 return;
10785 end if;
10787 E := First_Elmt (Primitive_Operations (Base_Type (T)));
10788 while Present (E) loop
10789 Op := Node (E);
10790 Write_Int (Int (Op));
10791 Write_Str (" === ");
10792 Write_Name (Chars (Op));
10793 Write_Str (" in ");
10794 Write_Name (Chars (Scope (Op)));
10795 Next_Elmt (E);
10796 Write_Eol;
10797 end loop;
10798 end wpo;
10800 end Sem_Ch4;