* cselib.h (cselib_add_permanent_equiv): Declare.
[official-gcc.git] / gcc / var-tracking.c
blob27bff38751c57f3214cc283c61f21e401ab8dae9
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* This file contains the variable tracking pass. It computes where
22 variables are located (which registers or where in memory) at each position
23 in instruction stream and emits notes describing the locations.
24 Debug information (DWARF2 location lists) is finally generated from
25 these notes.
26 With this debug information, it is possible to show variables
27 even when debugging optimized code.
29 How does the variable tracking pass work?
31 First, it scans RTL code for uses, stores and clobbers (register/memory
32 references in instructions), for call insns and for stack adjustments
33 separately for each basic block and saves them to an array of micro
34 operations.
35 The micro operations of one instruction are ordered so that
36 pre-modifying stack adjustment < use < use with no var < call insn <
37 < clobber < set < post-modifying stack adjustment
39 Then, a forward dataflow analysis is performed to find out how locations
40 of variables change through code and to propagate the variable locations
41 along control flow graph.
42 The IN set for basic block BB is computed as a union of OUT sets of BB's
43 predecessors, the OUT set for BB is copied from the IN set for BB and
44 is changed according to micro operations in BB.
46 The IN and OUT sets for basic blocks consist of a current stack adjustment
47 (used for adjusting offset of variables addressed using stack pointer),
48 the table of structures describing the locations of parts of a variable
49 and for each physical register a linked list for each physical register.
50 The linked list is a list of variable parts stored in the register,
51 i.e. it is a list of triplets (reg, decl, offset) where decl is
52 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
53 effective deleting appropriate variable parts when we set or clobber the
54 register.
56 There may be more than one variable part in a register. The linked lists
57 should be pretty short so it is a good data structure here.
58 For example in the following code, register allocator may assign same
59 register to variables A and B, and both of them are stored in the same
60 register in CODE:
62 if (cond)
63 set A;
64 else
65 set B;
66 CODE;
67 if (cond)
68 use A;
69 else
70 use B;
72 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
73 are emitted to appropriate positions in RTL code. Each such a note describes
74 the location of one variable at the point in instruction stream where the
75 note is. There is no need to emit a note for each variable before each
76 instruction, we only emit these notes where the location of variable changes
77 (this means that we also emit notes for changes between the OUT set of the
78 previous block and the IN set of the current block).
80 The notes consist of two parts:
81 1. the declaration (from REG_EXPR or MEM_EXPR)
82 2. the location of a variable - it is either a simple register/memory
83 reference (for simple variables, for example int),
84 or a parallel of register/memory references (for a large variables
85 which consist of several parts, for example long long).
89 #include "config.h"
90 #include "system.h"
91 #include "coretypes.h"
92 #include "tm.h"
93 #include "rtl.h"
94 #include "tree.h"
95 #include "tm_p.h"
96 #include "hard-reg-set.h"
97 #include "basic-block.h"
98 #include "flags.h"
99 #include "output.h"
100 #include "insn-config.h"
101 #include "reload.h"
102 #include "sbitmap.h"
103 #include "alloc-pool.h"
104 #include "fibheap.h"
105 #include "hashtab.h"
106 #include "regs.h"
107 #include "expr.h"
108 #include "timevar.h"
109 #include "tree-pass.h"
110 #include "tree-flow.h"
111 #include "cselib.h"
112 #include "target.h"
113 #include "params.h"
114 #include "diagnostic.h"
115 #include "tree-pretty-print.h"
116 #include "pointer-set.h"
117 #include "recog.h"
118 #include "tm_p.h"
120 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
121 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
122 Currently the value is the same as IDENTIFIER_NODE, which has such
123 a property. If this compile time assertion ever fails, make sure that
124 the new tree code that equals (int) VALUE has the same property. */
125 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
127 /* Type of micro operation. */
128 enum micro_operation_type
130 MO_USE, /* Use location (REG or MEM). */
131 MO_USE_NO_VAR,/* Use location which is not associated with a variable
132 or the variable is not trackable. */
133 MO_VAL_USE, /* Use location which is associated with a value. */
134 MO_VAL_LOC, /* Use location which appears in a debug insn. */
135 MO_VAL_SET, /* Set location associated with a value. */
136 MO_SET, /* Set location. */
137 MO_COPY, /* Copy the same portion of a variable from one
138 location to another. */
139 MO_CLOBBER, /* Clobber location. */
140 MO_CALL, /* Call insn. */
141 MO_ADJUST /* Adjust stack pointer. */
145 static const char * const ATTRIBUTE_UNUSED
146 micro_operation_type_name[] = {
147 "MO_USE",
148 "MO_USE_NO_VAR",
149 "MO_VAL_USE",
150 "MO_VAL_LOC",
151 "MO_VAL_SET",
152 "MO_SET",
153 "MO_COPY",
154 "MO_CLOBBER",
155 "MO_CALL",
156 "MO_ADJUST"
159 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
160 Notes emitted as AFTER_CALL are to take effect during the call,
161 rather than after the call. */
162 enum emit_note_where
164 EMIT_NOTE_BEFORE_INSN,
165 EMIT_NOTE_AFTER_INSN,
166 EMIT_NOTE_AFTER_CALL_INSN
169 /* Structure holding information about micro operation. */
170 typedef struct micro_operation_def
172 /* Type of micro operation. */
173 enum micro_operation_type type;
175 /* The instruction which the micro operation is in, for MO_USE,
176 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
177 instruction or note in the original flow (before any var-tracking
178 notes are inserted, to simplify emission of notes), for MO_SET
179 and MO_CLOBBER. */
180 rtx insn;
182 union {
183 /* Location. For MO_SET and MO_COPY, this is the SET that
184 performs the assignment, if known, otherwise it is the target
185 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
186 CONCAT of the VALUE and the LOC associated with it. For
187 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
188 associated with it. */
189 rtx loc;
191 /* Stack adjustment. */
192 HOST_WIDE_INT adjust;
193 } u;
194 } micro_operation;
196 DEF_VEC_O(micro_operation);
197 DEF_VEC_ALLOC_O(micro_operation,heap);
199 /* A declaration of a variable, or an RTL value being handled like a
200 declaration. */
201 typedef void *decl_or_value;
203 /* Structure for passing some other parameters to function
204 emit_note_insn_var_location. */
205 typedef struct emit_note_data_def
207 /* The instruction which the note will be emitted before/after. */
208 rtx insn;
210 /* Where the note will be emitted (before/after insn)? */
211 enum emit_note_where where;
213 /* The variables and values active at this point. */
214 htab_t vars;
215 } emit_note_data;
217 /* Description of location of a part of a variable. The content of a physical
218 register is described by a chain of these structures.
219 The chains are pretty short (usually 1 or 2 elements) and thus
220 chain is the best data structure. */
221 typedef struct attrs_def
223 /* Pointer to next member of the list. */
224 struct attrs_def *next;
226 /* The rtx of register. */
227 rtx loc;
229 /* The declaration corresponding to LOC. */
230 decl_or_value dv;
232 /* Offset from start of DECL. */
233 HOST_WIDE_INT offset;
234 } *attrs;
236 /* Structure holding a refcounted hash table. If refcount > 1,
237 it must be first unshared before modified. */
238 typedef struct shared_hash_def
240 /* Reference count. */
241 int refcount;
243 /* Actual hash table. */
244 htab_t htab;
245 } *shared_hash;
247 /* Structure holding the IN or OUT set for a basic block. */
248 typedef struct dataflow_set_def
250 /* Adjustment of stack offset. */
251 HOST_WIDE_INT stack_adjust;
253 /* Attributes for registers (lists of attrs). */
254 attrs regs[FIRST_PSEUDO_REGISTER];
256 /* Variable locations. */
257 shared_hash vars;
259 /* Vars that is being traversed. */
260 shared_hash traversed_vars;
261 } dataflow_set;
263 /* The structure (one for each basic block) containing the information
264 needed for variable tracking. */
265 typedef struct variable_tracking_info_def
267 /* The vector of micro operations. */
268 VEC(micro_operation, heap) *mos;
270 /* The IN and OUT set for dataflow analysis. */
271 dataflow_set in;
272 dataflow_set out;
274 /* The permanent-in dataflow set for this block. This is used to
275 hold values for which we had to compute entry values. ??? This
276 should probably be dynamically allocated, to avoid using more
277 memory in non-debug builds. */
278 dataflow_set *permp;
280 /* Has the block been visited in DFS? */
281 bool visited;
283 /* Has the block been flooded in VTA? */
284 bool flooded;
286 } *variable_tracking_info;
288 /* Structure for chaining the locations. */
289 typedef struct location_chain_def
291 /* Next element in the chain. */
292 struct location_chain_def *next;
294 /* The location (REG, MEM or VALUE). */
295 rtx loc;
297 /* The "value" stored in this location. */
298 rtx set_src;
300 /* Initialized? */
301 enum var_init_status init;
302 } *location_chain;
304 /* A vector of loc_exp_dep holds the active dependencies of a one-part
305 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
306 location of DV. Each entry is also part of VALUE' s linked-list of
307 backlinks back to DV. */
308 typedef struct loc_exp_dep_s
310 /* The dependent DV. */
311 decl_or_value dv;
312 /* The dependency VALUE or DECL_DEBUG. */
313 rtx value;
314 /* The next entry in VALUE's backlinks list. */
315 struct loc_exp_dep_s *next;
316 /* A pointer to the pointer to this entry (head or prev's next) in
317 the doubly-linked list. */
318 struct loc_exp_dep_s **pprev;
319 } loc_exp_dep;
321 DEF_VEC_O (loc_exp_dep);
323 /* This data structure is allocated for one-part variables at the time
324 of emitting notes. */
325 struct onepart_aux
327 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
328 computation used the expansion of this variable, and that ought
329 to be notified should this variable change. If the DV's cur_loc
330 expanded to NULL, all components of the loc list are regarded as
331 active, so that any changes in them give us a chance to get a
332 location. Otherwise, only components of the loc that expanded to
333 non-NULL are regarded as active dependencies. */
334 loc_exp_dep *backlinks;
335 /* This holds the LOC that was expanded into cur_loc. We need only
336 mark a one-part variable as changed if the FROM loc is removed,
337 or if it has no known location and a loc is added, or if it gets
338 a change notification from any of its active dependencies. */
339 rtx from;
340 /* The depth of the cur_loc expression. */
341 int depth;
342 /* Dependencies actively used when expand FROM into cur_loc. */
343 VEC (loc_exp_dep, none) deps;
346 /* Structure describing one part of variable. */
347 typedef struct variable_part_def
349 /* Chain of locations of the part. */
350 location_chain loc_chain;
352 /* Location which was last emitted to location list. */
353 rtx cur_loc;
355 union variable_aux
357 /* The offset in the variable, if !var->onepart. */
358 HOST_WIDE_INT offset;
360 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
361 struct onepart_aux *onepaux;
362 } aux;
363 } variable_part;
365 /* Maximum number of location parts. */
366 #define MAX_VAR_PARTS 16
368 /* Enumeration type used to discriminate various types of one-part
369 variables. */
370 typedef enum onepart_enum
372 /* Not a one-part variable. */
373 NOT_ONEPART = 0,
374 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
375 ONEPART_VDECL = 1,
376 /* A DEBUG_EXPR_DECL. */
377 ONEPART_DEXPR = 2,
378 /* A VALUE. */
379 ONEPART_VALUE = 3
380 } onepart_enum_t;
382 /* Structure describing where the variable is located. */
383 typedef struct variable_def
385 /* The declaration of the variable, or an RTL value being handled
386 like a declaration. */
387 decl_or_value dv;
389 /* Reference count. */
390 int refcount;
392 /* Number of variable parts. */
393 char n_var_parts;
395 /* What type of DV this is, according to enum onepart_enum. */
396 ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
398 /* True if this variable_def struct is currently in the
399 changed_variables hash table. */
400 bool in_changed_variables;
402 /* The variable parts. */
403 variable_part var_part[1];
404 } *variable;
405 typedef const struct variable_def *const_variable;
407 /* Pointer to the BB's information specific to variable tracking pass. */
408 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
410 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
411 #define INT_MEM_OFFSET(mem) (MEM_OFFSET_KNOWN_P (mem) ? MEM_OFFSET (mem) : 0)
413 #if ENABLE_CHECKING && (GCC_VERSION >= 2007)
415 /* Access VAR's Ith part's offset, checking that it's not a one-part
416 variable. */
417 #define VAR_PART_OFFSET(var, i) __extension__ \
418 (*({ variable const __v = (var); \
419 gcc_checking_assert (!__v->onepart); \
420 &__v->var_part[(i)].aux.offset; }))
422 /* Access VAR's one-part auxiliary data, checking that it is a
423 one-part variable. */
424 #define VAR_LOC_1PAUX(var) __extension__ \
425 (*({ variable const __v = (var); \
426 gcc_checking_assert (__v->onepart); \
427 &__v->var_part[0].aux.onepaux; }))
429 #else
430 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
431 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
432 #endif
434 /* These are accessor macros for the one-part auxiliary data. When
435 convenient for users, they're guarded by tests that the data was
436 allocated. */
437 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
438 ? VAR_LOC_1PAUX (var)->backlinks \
439 : NULL)
440 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
441 ? &VAR_LOC_1PAUX (var)->backlinks \
442 : NULL)
443 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
444 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
445 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
446 ? &VAR_LOC_1PAUX (var)->deps \
447 : NULL)
449 /* Alloc pool for struct attrs_def. */
450 static alloc_pool attrs_pool;
452 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
453 static alloc_pool var_pool;
455 /* Alloc pool for struct variable_def with a single var_part entry. */
456 static alloc_pool valvar_pool;
458 /* Alloc pool for struct location_chain_def. */
459 static alloc_pool loc_chain_pool;
461 /* Alloc pool for struct shared_hash_def. */
462 static alloc_pool shared_hash_pool;
464 /* Changed variables, notes will be emitted for them. */
465 static htab_t changed_variables;
467 /* Shall notes be emitted? */
468 static bool emit_notes;
470 /* Values whose dynamic location lists have gone empty, but whose
471 cselib location lists are still usable. Use this to hold the
472 current location, the backlinks, etc, during emit_notes. */
473 static htab_t dropped_values;
475 /* Empty shared hashtable. */
476 static shared_hash empty_shared_hash;
478 /* Scratch register bitmap used by cselib_expand_value_rtx. */
479 static bitmap scratch_regs = NULL;
481 #ifdef HAVE_window_save
482 typedef struct GTY(()) parm_reg {
483 rtx outgoing;
484 rtx incoming;
485 } parm_reg_t;
487 DEF_VEC_O(parm_reg_t);
488 DEF_VEC_ALLOC_O(parm_reg_t, gc);
490 /* Vector of windowed parameter registers, if any. */
491 static VEC(parm_reg_t, gc) *windowed_parm_regs = NULL;
492 #endif
494 /* Variable used to tell whether cselib_process_insn called our hook. */
495 static bool cselib_hook_called;
497 /* Local function prototypes. */
498 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
499 HOST_WIDE_INT *);
500 static void insn_stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
501 HOST_WIDE_INT *);
502 static bool vt_stack_adjustments (void);
503 static hashval_t variable_htab_hash (const void *);
504 static int variable_htab_eq (const void *, const void *);
505 static void variable_htab_free (void *);
507 static void init_attrs_list_set (attrs *);
508 static void attrs_list_clear (attrs *);
509 static attrs attrs_list_member (attrs, decl_or_value, HOST_WIDE_INT);
510 static void attrs_list_insert (attrs *, decl_or_value, HOST_WIDE_INT, rtx);
511 static void attrs_list_copy (attrs *, attrs);
512 static void attrs_list_union (attrs *, attrs);
514 static void **unshare_variable (dataflow_set *set, void **slot, variable var,
515 enum var_init_status);
516 static void vars_copy (htab_t, htab_t);
517 static tree var_debug_decl (tree);
518 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
519 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
520 enum var_init_status, rtx);
521 static void var_reg_delete (dataflow_set *, rtx, bool);
522 static void var_regno_delete (dataflow_set *, int);
523 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
524 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
525 enum var_init_status, rtx);
526 static void var_mem_delete (dataflow_set *, rtx, bool);
528 static void dataflow_set_init (dataflow_set *);
529 static void dataflow_set_clear (dataflow_set *);
530 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
531 static int variable_union_info_cmp_pos (const void *, const void *);
532 static void dataflow_set_union (dataflow_set *, dataflow_set *);
533 static location_chain find_loc_in_1pdv (rtx, variable, htab_t);
534 static bool canon_value_cmp (rtx, rtx);
535 static int loc_cmp (rtx, rtx);
536 static bool variable_part_different_p (variable_part *, variable_part *);
537 static bool onepart_variable_different_p (variable, variable);
538 static bool variable_different_p (variable, variable);
539 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
540 static void dataflow_set_destroy (dataflow_set *);
542 static bool contains_symbol_ref (rtx);
543 static bool track_expr_p (tree, bool);
544 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
545 static int add_uses (rtx *, void *);
546 static void add_uses_1 (rtx *, void *);
547 static void add_stores (rtx, const_rtx, void *);
548 static bool compute_bb_dataflow (basic_block);
549 static bool vt_find_locations (void);
551 static void dump_attrs_list (attrs);
552 static int dump_var_slot (void **, void *);
553 static void dump_var (variable);
554 static void dump_vars (htab_t);
555 static void dump_dataflow_set (dataflow_set *);
556 static void dump_dataflow_sets (void);
558 static void set_dv_changed (decl_or_value, bool);
559 static void variable_was_changed (variable, dataflow_set *);
560 static void **set_slot_part (dataflow_set *, rtx, void **,
561 decl_or_value, HOST_WIDE_INT,
562 enum var_init_status, rtx);
563 static void set_variable_part (dataflow_set *, rtx,
564 decl_or_value, HOST_WIDE_INT,
565 enum var_init_status, rtx, enum insert_option);
566 static void **clobber_slot_part (dataflow_set *, rtx,
567 void **, HOST_WIDE_INT, rtx);
568 static void clobber_variable_part (dataflow_set *, rtx,
569 decl_or_value, HOST_WIDE_INT, rtx);
570 static void **delete_slot_part (dataflow_set *, rtx, void **, HOST_WIDE_INT);
571 static void delete_variable_part (dataflow_set *, rtx,
572 decl_or_value, HOST_WIDE_INT);
573 static int emit_note_insn_var_location (void **, void *);
574 static void emit_notes_for_changes (rtx, enum emit_note_where, shared_hash);
575 static int emit_notes_for_differences_1 (void **, void *);
576 static int emit_notes_for_differences_2 (void **, void *);
577 static void emit_notes_for_differences (rtx, dataflow_set *, dataflow_set *);
578 static void emit_notes_in_bb (basic_block, dataflow_set *);
579 static void vt_emit_notes (void);
581 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
582 static void vt_add_function_parameters (void);
583 static bool vt_initialize (void);
584 static void vt_finalize (void);
586 /* Given a SET, calculate the amount of stack adjustment it contains
587 PRE- and POST-modifying stack pointer.
588 This function is similar to stack_adjust_offset. */
590 static void
591 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
592 HOST_WIDE_INT *post)
594 rtx src = SET_SRC (pattern);
595 rtx dest = SET_DEST (pattern);
596 enum rtx_code code;
598 if (dest == stack_pointer_rtx)
600 /* (set (reg sp) (plus (reg sp) (const_int))) */
601 code = GET_CODE (src);
602 if (! (code == PLUS || code == MINUS)
603 || XEXP (src, 0) != stack_pointer_rtx
604 || !CONST_INT_P (XEXP (src, 1)))
605 return;
607 if (code == MINUS)
608 *post += INTVAL (XEXP (src, 1));
609 else
610 *post -= INTVAL (XEXP (src, 1));
612 else if (MEM_P (dest))
614 /* (set (mem (pre_dec (reg sp))) (foo)) */
615 src = XEXP (dest, 0);
616 code = GET_CODE (src);
618 switch (code)
620 case PRE_MODIFY:
621 case POST_MODIFY:
622 if (XEXP (src, 0) == stack_pointer_rtx)
624 rtx val = XEXP (XEXP (src, 1), 1);
625 /* We handle only adjustments by constant amount. */
626 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS &&
627 CONST_INT_P (val));
629 if (code == PRE_MODIFY)
630 *pre -= INTVAL (val);
631 else
632 *post -= INTVAL (val);
633 break;
635 return;
637 case PRE_DEC:
638 if (XEXP (src, 0) == stack_pointer_rtx)
640 *pre += GET_MODE_SIZE (GET_MODE (dest));
641 break;
643 return;
645 case POST_DEC:
646 if (XEXP (src, 0) == stack_pointer_rtx)
648 *post += GET_MODE_SIZE (GET_MODE (dest));
649 break;
651 return;
653 case PRE_INC:
654 if (XEXP (src, 0) == stack_pointer_rtx)
656 *pre -= GET_MODE_SIZE (GET_MODE (dest));
657 break;
659 return;
661 case POST_INC:
662 if (XEXP (src, 0) == stack_pointer_rtx)
664 *post -= GET_MODE_SIZE (GET_MODE (dest));
665 break;
667 return;
669 default:
670 return;
675 /* Given an INSN, calculate the amount of stack adjustment it contains
676 PRE- and POST-modifying stack pointer. */
678 static void
679 insn_stack_adjust_offset_pre_post (rtx insn, HOST_WIDE_INT *pre,
680 HOST_WIDE_INT *post)
682 rtx pattern;
684 *pre = 0;
685 *post = 0;
687 pattern = PATTERN (insn);
688 if (RTX_FRAME_RELATED_P (insn))
690 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
691 if (expr)
692 pattern = XEXP (expr, 0);
695 if (GET_CODE (pattern) == SET)
696 stack_adjust_offset_pre_post (pattern, pre, post);
697 else if (GET_CODE (pattern) == PARALLEL
698 || GET_CODE (pattern) == SEQUENCE)
700 int i;
702 /* There may be stack adjustments inside compound insns. Search
703 for them. */
704 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
705 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
706 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
710 /* Compute stack adjustments for all blocks by traversing DFS tree.
711 Return true when the adjustments on all incoming edges are consistent.
712 Heavily borrowed from pre_and_rev_post_order_compute. */
714 static bool
715 vt_stack_adjustments (void)
717 edge_iterator *stack;
718 int sp;
720 /* Initialize entry block. */
721 VTI (ENTRY_BLOCK_PTR)->visited = true;
722 VTI (ENTRY_BLOCK_PTR)->in.stack_adjust = INCOMING_FRAME_SP_OFFSET;
723 VTI (ENTRY_BLOCK_PTR)->out.stack_adjust = INCOMING_FRAME_SP_OFFSET;
725 /* Allocate stack for back-tracking up CFG. */
726 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
727 sp = 0;
729 /* Push the first edge on to the stack. */
730 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
732 while (sp)
734 edge_iterator ei;
735 basic_block src;
736 basic_block dest;
738 /* Look at the edge on the top of the stack. */
739 ei = stack[sp - 1];
740 src = ei_edge (ei)->src;
741 dest = ei_edge (ei)->dest;
743 /* Check if the edge destination has been visited yet. */
744 if (!VTI (dest)->visited)
746 rtx insn;
747 HOST_WIDE_INT pre, post, offset;
748 VTI (dest)->visited = true;
749 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
751 if (dest != EXIT_BLOCK_PTR)
752 for (insn = BB_HEAD (dest);
753 insn != NEXT_INSN (BB_END (dest));
754 insn = NEXT_INSN (insn))
755 if (INSN_P (insn))
757 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
758 offset += pre + post;
761 VTI (dest)->out.stack_adjust = offset;
763 if (EDGE_COUNT (dest->succs) > 0)
764 /* Since the DEST node has been visited for the first
765 time, check its successors. */
766 stack[sp++] = ei_start (dest->succs);
768 else
770 /* Check whether the adjustments on the edges are the same. */
771 if (VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
773 free (stack);
774 return false;
777 if (! ei_one_before_end_p (ei))
778 /* Go to the next edge. */
779 ei_next (&stack[sp - 1]);
780 else
781 /* Return to previous level if there are no more edges. */
782 sp--;
786 free (stack);
787 return true;
790 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
791 hard_frame_pointer_rtx is being mapped to it and offset for it. */
792 static rtx cfa_base_rtx;
793 static HOST_WIDE_INT cfa_base_offset;
795 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
796 or hard_frame_pointer_rtx. */
798 static inline rtx
799 compute_cfa_pointer (HOST_WIDE_INT adjustment)
801 return plus_constant (cfa_base_rtx, adjustment + cfa_base_offset);
804 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
805 or -1 if the replacement shouldn't be done. */
806 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
808 /* Data for adjust_mems callback. */
810 struct adjust_mem_data
812 bool store;
813 enum machine_mode mem_mode;
814 HOST_WIDE_INT stack_adjust;
815 rtx side_effects;
818 /* Helper for adjust_mems. Return 1 if *loc is unsuitable for
819 transformation of wider mode arithmetics to narrower mode,
820 -1 if it is suitable and subexpressions shouldn't be
821 traversed and 0 if it is suitable and subexpressions should
822 be traversed. Called through for_each_rtx. */
824 static int
825 use_narrower_mode_test (rtx *loc, void *data)
827 rtx subreg = (rtx) data;
829 if (CONSTANT_P (*loc))
830 return -1;
831 switch (GET_CODE (*loc))
833 case REG:
834 if (cselib_lookup (*loc, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
835 return 1;
836 if (!validate_subreg (GET_MODE (subreg), GET_MODE (*loc),
837 *loc, subreg_lowpart_offset (GET_MODE (subreg),
838 GET_MODE (*loc))))
839 return 1;
840 return -1;
841 case PLUS:
842 case MINUS:
843 case MULT:
844 return 0;
845 case ASHIFT:
846 if (for_each_rtx (&XEXP (*loc, 0), use_narrower_mode_test, data))
847 return 1;
848 else
849 return -1;
850 default:
851 return 1;
855 /* Transform X into narrower mode MODE from wider mode WMODE. */
857 static rtx
858 use_narrower_mode (rtx x, enum machine_mode mode, enum machine_mode wmode)
860 rtx op0, op1;
861 if (CONSTANT_P (x))
862 return lowpart_subreg (mode, x, wmode);
863 switch (GET_CODE (x))
865 case REG:
866 return lowpart_subreg (mode, x, wmode);
867 case PLUS:
868 case MINUS:
869 case MULT:
870 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
871 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
872 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
873 case ASHIFT:
874 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
875 return simplify_gen_binary (ASHIFT, mode, op0, XEXP (x, 1));
876 default:
877 gcc_unreachable ();
881 /* Helper function for adjusting used MEMs. */
883 static rtx
884 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
886 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
887 rtx mem, addr = loc, tem;
888 enum machine_mode mem_mode_save;
889 bool store_save;
890 switch (GET_CODE (loc))
892 case REG:
893 /* Don't do any sp or fp replacements outside of MEM addresses
894 on the LHS. */
895 if (amd->mem_mode == VOIDmode && amd->store)
896 return loc;
897 if (loc == stack_pointer_rtx
898 && !frame_pointer_needed
899 && cfa_base_rtx)
900 return compute_cfa_pointer (amd->stack_adjust);
901 else if (loc == hard_frame_pointer_rtx
902 && frame_pointer_needed
903 && hard_frame_pointer_adjustment != -1
904 && cfa_base_rtx)
905 return compute_cfa_pointer (hard_frame_pointer_adjustment);
906 gcc_checking_assert (loc != virtual_incoming_args_rtx);
907 return loc;
908 case MEM:
909 mem = loc;
910 if (!amd->store)
912 mem = targetm.delegitimize_address (mem);
913 if (mem != loc && !MEM_P (mem))
914 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
917 addr = XEXP (mem, 0);
918 mem_mode_save = amd->mem_mode;
919 amd->mem_mode = GET_MODE (mem);
920 store_save = amd->store;
921 amd->store = false;
922 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
923 amd->store = store_save;
924 amd->mem_mode = mem_mode_save;
925 if (mem == loc)
926 addr = targetm.delegitimize_address (addr);
927 if (addr != XEXP (mem, 0))
928 mem = replace_equiv_address_nv (mem, addr);
929 if (!amd->store)
930 mem = avoid_constant_pool_reference (mem);
931 return mem;
932 case PRE_INC:
933 case PRE_DEC:
934 addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
935 GEN_INT (GET_CODE (loc) == PRE_INC
936 ? GET_MODE_SIZE (amd->mem_mode)
937 : -GET_MODE_SIZE (amd->mem_mode)));
938 case POST_INC:
939 case POST_DEC:
940 if (addr == loc)
941 addr = XEXP (loc, 0);
942 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
943 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
944 tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
945 GEN_INT ((GET_CODE (loc) == PRE_INC
946 || GET_CODE (loc) == POST_INC)
947 ? GET_MODE_SIZE (amd->mem_mode)
948 : -GET_MODE_SIZE (amd->mem_mode)));
949 amd->side_effects = alloc_EXPR_LIST (0,
950 gen_rtx_SET (VOIDmode,
951 XEXP (loc, 0),
952 tem),
953 amd->side_effects);
954 return addr;
955 case PRE_MODIFY:
956 addr = XEXP (loc, 1);
957 case POST_MODIFY:
958 if (addr == loc)
959 addr = XEXP (loc, 0);
960 gcc_assert (amd->mem_mode != VOIDmode);
961 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
962 amd->side_effects = alloc_EXPR_LIST (0,
963 gen_rtx_SET (VOIDmode,
964 XEXP (loc, 0),
965 XEXP (loc, 1)),
966 amd->side_effects);
967 return addr;
968 case SUBREG:
969 /* First try without delegitimization of whole MEMs and
970 avoid_constant_pool_reference, which is more likely to succeed. */
971 store_save = amd->store;
972 amd->store = true;
973 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
974 data);
975 amd->store = store_save;
976 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
977 if (mem == SUBREG_REG (loc))
979 tem = loc;
980 goto finish_subreg;
982 tem = simplify_gen_subreg (GET_MODE (loc), mem,
983 GET_MODE (SUBREG_REG (loc)),
984 SUBREG_BYTE (loc));
985 if (tem)
986 goto finish_subreg;
987 tem = simplify_gen_subreg (GET_MODE (loc), addr,
988 GET_MODE (SUBREG_REG (loc)),
989 SUBREG_BYTE (loc));
990 if (tem == NULL_RTX)
991 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
992 finish_subreg:
993 if (MAY_HAVE_DEBUG_INSNS
994 && GET_CODE (tem) == SUBREG
995 && (GET_CODE (SUBREG_REG (tem)) == PLUS
996 || GET_CODE (SUBREG_REG (tem)) == MINUS
997 || GET_CODE (SUBREG_REG (tem)) == MULT
998 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
999 && GET_MODE_CLASS (GET_MODE (tem)) == MODE_INT
1000 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_INT
1001 && GET_MODE_SIZE (GET_MODE (tem))
1002 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tem)))
1003 && subreg_lowpart_p (tem)
1004 && !for_each_rtx (&SUBREG_REG (tem), use_narrower_mode_test, tem))
1005 return use_narrower_mode (SUBREG_REG (tem), GET_MODE (tem),
1006 GET_MODE (SUBREG_REG (tem)));
1007 return tem;
1008 case ASM_OPERANDS:
1009 /* Don't do any replacements in second and following
1010 ASM_OPERANDS of inline-asm with multiple sets.
1011 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1012 and ASM_OPERANDS_LABEL_VEC need to be equal between
1013 all the ASM_OPERANDs in the insn and adjust_insn will
1014 fix this up. */
1015 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
1016 return loc;
1017 break;
1018 default:
1019 break;
1021 return NULL_RTX;
1024 /* Helper function for replacement of uses. */
1026 static void
1027 adjust_mem_uses (rtx *x, void *data)
1029 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
1030 if (new_x != *x)
1031 validate_change (NULL_RTX, x, new_x, true);
1034 /* Helper function for replacement of stores. */
1036 static void
1037 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
1039 if (MEM_P (loc))
1041 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
1042 adjust_mems, data);
1043 if (new_dest != SET_DEST (expr))
1045 rtx xexpr = CONST_CAST_RTX (expr);
1046 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
1051 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1052 replace them with their value in the insn and add the side-effects
1053 as other sets to the insn. */
1055 static void
1056 adjust_insn (basic_block bb, rtx insn)
1058 struct adjust_mem_data amd;
1059 rtx set;
1061 #ifdef HAVE_window_save
1062 /* If the target machine has an explicit window save instruction, the
1063 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1064 if (RTX_FRAME_RELATED_P (insn)
1065 && find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
1067 unsigned int i, nregs = VEC_length(parm_reg_t, windowed_parm_regs);
1068 rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
1069 parm_reg_t *p;
1071 FOR_EACH_VEC_ELT (parm_reg_t, windowed_parm_regs, i, p)
1073 XVECEXP (rtl, 0, i * 2)
1074 = gen_rtx_SET (VOIDmode, p->incoming, p->outgoing);
1075 /* Do not clobber the attached DECL, but only the REG. */
1076 XVECEXP (rtl, 0, i * 2 + 1)
1077 = gen_rtx_CLOBBER (GET_MODE (p->outgoing),
1078 gen_raw_REG (GET_MODE (p->outgoing),
1079 REGNO (p->outgoing)));
1082 validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
1083 return;
1085 #endif
1087 amd.mem_mode = VOIDmode;
1088 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
1089 amd.side_effects = NULL_RTX;
1091 amd.store = true;
1092 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
1094 amd.store = false;
1095 if (GET_CODE (PATTERN (insn)) == PARALLEL
1096 && asm_noperands (PATTERN (insn)) > 0
1097 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1099 rtx body, set0;
1100 int i;
1102 /* inline-asm with multiple sets is tiny bit more complicated,
1103 because the 3 vectors in ASM_OPERANDS need to be shared between
1104 all ASM_OPERANDS in the instruction. adjust_mems will
1105 not touch ASM_OPERANDS other than the first one, asm_noperands
1106 test above needs to be called before that (otherwise it would fail)
1107 and afterwards this code fixes it up. */
1108 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1109 body = PATTERN (insn);
1110 set0 = XVECEXP (body, 0, 0);
1111 gcc_checking_assert (GET_CODE (set0) == SET
1112 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
1113 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1114 for (i = 1; i < XVECLEN (body, 0); i++)
1115 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1116 break;
1117 else
1119 set = XVECEXP (body, 0, i);
1120 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1121 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1122 == i);
1123 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1124 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1125 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1126 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1127 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1128 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1130 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1131 ASM_OPERANDS_INPUT_VEC (newsrc)
1132 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1133 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1134 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1135 ASM_OPERANDS_LABEL_VEC (newsrc)
1136 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1137 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1141 else
1142 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1144 /* For read-only MEMs containing some constant, prefer those
1145 constants. */
1146 set = single_set (insn);
1147 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1149 rtx note = find_reg_equal_equiv_note (insn);
1151 if (note && CONSTANT_P (XEXP (note, 0)))
1152 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1155 if (amd.side_effects)
1157 rtx *pat, new_pat, s;
1158 int i, oldn, newn;
1160 pat = &PATTERN (insn);
1161 if (GET_CODE (*pat) == COND_EXEC)
1162 pat = &COND_EXEC_CODE (*pat);
1163 if (GET_CODE (*pat) == PARALLEL)
1164 oldn = XVECLEN (*pat, 0);
1165 else
1166 oldn = 1;
1167 for (s = amd.side_effects, newn = 0; s; newn++)
1168 s = XEXP (s, 1);
1169 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1170 if (GET_CODE (*pat) == PARALLEL)
1171 for (i = 0; i < oldn; i++)
1172 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1173 else
1174 XVECEXP (new_pat, 0, 0) = *pat;
1175 for (s = amd.side_effects, i = oldn; i < oldn + newn; i++, s = XEXP (s, 1))
1176 XVECEXP (new_pat, 0, i) = XEXP (s, 0);
1177 free_EXPR_LIST_list (&amd.side_effects);
1178 validate_change (NULL_RTX, pat, new_pat, true);
1182 /* Return true if a decl_or_value DV is a DECL or NULL. */
1183 static inline bool
1184 dv_is_decl_p (decl_or_value dv)
1186 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
1189 /* Return true if a decl_or_value is a VALUE rtl. */
1190 static inline bool
1191 dv_is_value_p (decl_or_value dv)
1193 return dv && !dv_is_decl_p (dv);
1196 /* Return the decl in the decl_or_value. */
1197 static inline tree
1198 dv_as_decl (decl_or_value dv)
1200 gcc_checking_assert (dv_is_decl_p (dv));
1201 return (tree) dv;
1204 /* Return the value in the decl_or_value. */
1205 static inline rtx
1206 dv_as_value (decl_or_value dv)
1208 gcc_checking_assert (dv_is_value_p (dv));
1209 return (rtx)dv;
1212 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1213 static inline rtx
1214 dv_as_rtx (decl_or_value dv)
1216 tree decl;
1218 if (dv_is_value_p (dv))
1219 return dv_as_value (dv);
1221 decl = dv_as_decl (dv);
1223 gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
1224 return DECL_RTL_KNOWN_SET (decl);
1227 /* Return the opaque pointer in the decl_or_value. */
1228 static inline void *
1229 dv_as_opaque (decl_or_value dv)
1231 return dv;
1234 /* Return nonzero if a decl_or_value must not have more than one
1235 variable part. The returned value discriminates among various
1236 kinds of one-part DVs ccording to enum onepart_enum. */
1237 static inline onepart_enum_t
1238 dv_onepart_p (decl_or_value dv)
1240 tree decl;
1242 if (!MAY_HAVE_DEBUG_INSNS)
1243 return NOT_ONEPART;
1245 if (dv_is_value_p (dv))
1246 return ONEPART_VALUE;
1248 decl = dv_as_decl (dv);
1250 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1251 return ONEPART_DEXPR;
1253 if (target_for_debug_bind (decl) != NULL_TREE)
1254 return ONEPART_VDECL;
1256 return NOT_ONEPART;
1259 /* Return the variable pool to be used for a dv of type ONEPART. */
1260 static inline alloc_pool
1261 onepart_pool (onepart_enum_t onepart)
1263 return onepart ? valvar_pool : var_pool;
1266 /* Build a decl_or_value out of a decl. */
1267 static inline decl_or_value
1268 dv_from_decl (tree decl)
1270 decl_or_value dv;
1271 dv = decl;
1272 gcc_checking_assert (dv_is_decl_p (dv));
1273 return dv;
1276 /* Build a decl_or_value out of a value. */
1277 static inline decl_or_value
1278 dv_from_value (rtx value)
1280 decl_or_value dv;
1281 dv = value;
1282 gcc_checking_assert (dv_is_value_p (dv));
1283 return dv;
1286 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1287 static inline decl_or_value
1288 dv_from_rtx (rtx x)
1290 decl_or_value dv;
1292 switch (GET_CODE (x))
1294 case DEBUG_EXPR:
1295 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
1296 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
1297 break;
1299 case VALUE:
1300 dv = dv_from_value (x);
1301 break;
1303 default:
1304 gcc_unreachable ();
1307 return dv;
1310 extern void debug_dv (decl_or_value dv);
1312 DEBUG_FUNCTION void
1313 debug_dv (decl_or_value dv)
1315 if (dv_is_value_p (dv))
1316 debug_rtx (dv_as_value (dv));
1317 else
1318 debug_generic_stmt (dv_as_decl (dv));
1321 typedef unsigned int dvuid;
1323 /* Return the uid of DV. */
1325 static inline dvuid
1326 dv_uid (decl_or_value dv)
1328 if (dv_is_value_p (dv))
1329 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
1330 else
1331 return DECL_UID (dv_as_decl (dv));
1334 /* Compute the hash from the uid. */
1336 static inline hashval_t
1337 dv_uid2hash (dvuid uid)
1339 return uid;
1342 /* The hash function for a mask table in a shared_htab chain. */
1344 static inline hashval_t
1345 dv_htab_hash (decl_or_value dv)
1347 return dv_uid2hash (dv_uid (dv));
1350 /* The hash function for variable_htab, computes the hash value
1351 from the declaration of variable X. */
1353 static hashval_t
1354 variable_htab_hash (const void *x)
1356 const_variable const v = (const_variable) x;
1358 return dv_htab_hash (v->dv);
1361 /* Compare the declaration of variable X with declaration Y. */
1363 static int
1364 variable_htab_eq (const void *x, const void *y)
1366 const_variable const v = (const_variable) x;
1367 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
1369 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
1372 static void loc_exp_dep_clear (variable var);
1374 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1376 static void
1377 variable_htab_free (void *elem)
1379 int i;
1380 variable var = (variable) elem;
1381 location_chain node, next;
1383 gcc_checking_assert (var->refcount > 0);
1385 var->refcount--;
1386 if (var->refcount > 0)
1387 return;
1389 for (i = 0; i < var->n_var_parts; i++)
1391 for (node = var->var_part[i].loc_chain; node; node = next)
1393 next = node->next;
1394 pool_free (loc_chain_pool, node);
1396 var->var_part[i].loc_chain = NULL;
1398 if (var->onepart && VAR_LOC_1PAUX (var))
1400 loc_exp_dep_clear (var);
1401 if (VAR_LOC_DEP_LST (var))
1402 VAR_LOC_DEP_LST (var)->pprev = NULL;
1403 XDELETE (VAR_LOC_1PAUX (var));
1404 /* These may be reused across functions, so reset
1405 e.g. NO_LOC_P. */
1406 if (var->onepart == ONEPART_DEXPR)
1407 set_dv_changed (var->dv, true);
1409 pool_free (onepart_pool (var->onepart), var);
1412 /* Initialize the set (array) SET of attrs to empty lists. */
1414 static void
1415 init_attrs_list_set (attrs *set)
1417 int i;
1419 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1420 set[i] = NULL;
1423 /* Make the list *LISTP empty. */
1425 static void
1426 attrs_list_clear (attrs *listp)
1428 attrs list, next;
1430 for (list = *listp; list; list = next)
1432 next = list->next;
1433 pool_free (attrs_pool, list);
1435 *listp = NULL;
1438 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1440 static attrs
1441 attrs_list_member (attrs list, decl_or_value dv, HOST_WIDE_INT offset)
1443 for (; list; list = list->next)
1444 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1445 return list;
1446 return NULL;
1449 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1451 static void
1452 attrs_list_insert (attrs *listp, decl_or_value dv,
1453 HOST_WIDE_INT offset, rtx loc)
1455 attrs list;
1457 list = (attrs) pool_alloc (attrs_pool);
1458 list->loc = loc;
1459 list->dv = dv;
1460 list->offset = offset;
1461 list->next = *listp;
1462 *listp = list;
1465 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1467 static void
1468 attrs_list_copy (attrs *dstp, attrs src)
1470 attrs n;
1472 attrs_list_clear (dstp);
1473 for (; src; src = src->next)
1475 n = (attrs) pool_alloc (attrs_pool);
1476 n->loc = src->loc;
1477 n->dv = src->dv;
1478 n->offset = src->offset;
1479 n->next = *dstp;
1480 *dstp = n;
1484 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1486 static void
1487 attrs_list_union (attrs *dstp, attrs src)
1489 for (; src; src = src->next)
1491 if (!attrs_list_member (*dstp, src->dv, src->offset))
1492 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1496 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1497 *DSTP. */
1499 static void
1500 attrs_list_mpdv_union (attrs *dstp, attrs src, attrs src2)
1502 gcc_assert (!*dstp);
1503 for (; src; src = src->next)
1505 if (!dv_onepart_p (src->dv))
1506 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1508 for (src = src2; src; src = src->next)
1510 if (!dv_onepart_p (src->dv)
1511 && !attrs_list_member (*dstp, src->dv, src->offset))
1512 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1516 /* Shared hashtable support. */
1518 /* Return true if VARS is shared. */
1520 static inline bool
1521 shared_hash_shared (shared_hash vars)
1523 return vars->refcount > 1;
1526 /* Return the hash table for VARS. */
1528 static inline htab_t
1529 shared_hash_htab (shared_hash vars)
1531 return vars->htab;
1534 /* Return true if VAR is shared, or maybe because VARS is shared. */
1536 static inline bool
1537 shared_var_p (variable var, shared_hash vars)
1539 /* Don't count an entry in the changed_variables table as a duplicate. */
1540 return ((var->refcount > 1 + (int) var->in_changed_variables)
1541 || shared_hash_shared (vars));
1544 /* Copy variables into a new hash table. */
1546 static shared_hash
1547 shared_hash_unshare (shared_hash vars)
1549 shared_hash new_vars = (shared_hash) pool_alloc (shared_hash_pool);
1550 gcc_assert (vars->refcount > 1);
1551 new_vars->refcount = 1;
1552 new_vars->htab
1553 = htab_create (htab_elements (vars->htab) + 3, variable_htab_hash,
1554 variable_htab_eq, variable_htab_free);
1555 vars_copy (new_vars->htab, vars->htab);
1556 vars->refcount--;
1557 return new_vars;
1560 /* Increment reference counter on VARS and return it. */
1562 static inline shared_hash
1563 shared_hash_copy (shared_hash vars)
1565 vars->refcount++;
1566 return vars;
1569 /* Decrement reference counter and destroy hash table if not shared
1570 anymore. */
1572 static void
1573 shared_hash_destroy (shared_hash vars)
1575 gcc_checking_assert (vars->refcount > 0);
1576 if (--vars->refcount == 0)
1578 htab_delete (vars->htab);
1579 pool_free (shared_hash_pool, vars);
1583 /* Unshare *PVARS if shared and return slot for DV. If INS is
1584 INSERT, insert it if not already present. */
1586 static inline void **
1587 shared_hash_find_slot_unshare_1 (shared_hash *pvars, decl_or_value dv,
1588 hashval_t dvhash, enum insert_option ins)
1590 if (shared_hash_shared (*pvars))
1591 *pvars = shared_hash_unshare (*pvars);
1592 return htab_find_slot_with_hash (shared_hash_htab (*pvars), dv, dvhash, ins);
1595 static inline void **
1596 shared_hash_find_slot_unshare (shared_hash *pvars, decl_or_value dv,
1597 enum insert_option ins)
1599 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1602 /* Return slot for DV, if it is already present in the hash table.
1603 If it is not present, insert it only VARS is not shared, otherwise
1604 return NULL. */
1606 static inline void **
1607 shared_hash_find_slot_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1609 return htab_find_slot_with_hash (shared_hash_htab (vars), dv, dvhash,
1610 shared_hash_shared (vars)
1611 ? NO_INSERT : INSERT);
1614 static inline void **
1615 shared_hash_find_slot (shared_hash vars, decl_or_value dv)
1617 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1620 /* Return slot for DV only if it is already present in the hash table. */
1622 static inline void **
1623 shared_hash_find_slot_noinsert_1 (shared_hash vars, decl_or_value dv,
1624 hashval_t dvhash)
1626 return htab_find_slot_with_hash (shared_hash_htab (vars), dv, dvhash,
1627 NO_INSERT);
1630 static inline void **
1631 shared_hash_find_slot_noinsert (shared_hash vars, decl_or_value dv)
1633 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1636 /* Return variable for DV or NULL if not already present in the hash
1637 table. */
1639 static inline variable
1640 shared_hash_find_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1642 return (variable) htab_find_with_hash (shared_hash_htab (vars), dv, dvhash);
1645 static inline variable
1646 shared_hash_find (shared_hash vars, decl_or_value dv)
1648 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1651 /* Return true if TVAL is better than CVAL as a canonival value. We
1652 choose lowest-numbered VALUEs, using the RTX address as a
1653 tie-breaker. The idea is to arrange them into a star topology,
1654 such that all of them are at most one step away from the canonical
1655 value, and the canonical value has backlinks to all of them, in
1656 addition to all the actual locations. We don't enforce this
1657 topology throughout the entire dataflow analysis, though.
1660 static inline bool
1661 canon_value_cmp (rtx tval, rtx cval)
1663 return !cval
1664 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1667 static bool dst_can_be_shared;
1669 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1671 static void **
1672 unshare_variable (dataflow_set *set, void **slot, variable var,
1673 enum var_init_status initialized)
1675 variable new_var;
1676 int i;
1678 new_var = (variable) pool_alloc (onepart_pool (var->onepart));
1679 new_var->dv = var->dv;
1680 new_var->refcount = 1;
1681 var->refcount--;
1682 new_var->n_var_parts = var->n_var_parts;
1683 new_var->onepart = var->onepart;
1684 new_var->in_changed_variables = false;
1686 if (! flag_var_tracking_uninit)
1687 initialized = VAR_INIT_STATUS_INITIALIZED;
1689 for (i = 0; i < var->n_var_parts; i++)
1691 location_chain node;
1692 location_chain *nextp;
1694 if (i == 0 && var->onepart)
1696 /* One-part auxiliary data is only used while emitting
1697 notes, so propagate it to the new variable in the active
1698 dataflow set. If we're not emitting notes, this will be
1699 a no-op. */
1700 gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
1701 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
1702 VAR_LOC_1PAUX (var) = NULL;
1704 else
1705 VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
1706 nextp = &new_var->var_part[i].loc_chain;
1707 for (node = var->var_part[i].loc_chain; node; node = node->next)
1709 location_chain new_lc;
1711 new_lc = (location_chain) pool_alloc (loc_chain_pool);
1712 new_lc->next = NULL;
1713 if (node->init > initialized)
1714 new_lc->init = node->init;
1715 else
1716 new_lc->init = initialized;
1717 if (node->set_src && !(MEM_P (node->set_src)))
1718 new_lc->set_src = node->set_src;
1719 else
1720 new_lc->set_src = NULL;
1721 new_lc->loc = node->loc;
1723 *nextp = new_lc;
1724 nextp = &new_lc->next;
1727 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1730 dst_can_be_shared = false;
1731 if (shared_hash_shared (set->vars))
1732 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1733 else if (set->traversed_vars && set->vars != set->traversed_vars)
1734 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1735 *slot = new_var;
1736 if (var->in_changed_variables)
1738 void **cslot
1739 = htab_find_slot_with_hash (changed_variables, var->dv,
1740 dv_htab_hash (var->dv), NO_INSERT);
1741 gcc_assert (*cslot == (void *) var);
1742 var->in_changed_variables = false;
1743 variable_htab_free (var);
1744 *cslot = new_var;
1745 new_var->in_changed_variables = true;
1747 return slot;
1750 /* Copy all variables from hash table SRC to hash table DST. */
1752 static void
1753 vars_copy (htab_t dst, htab_t src)
1755 htab_iterator hi;
1756 variable var;
1758 FOR_EACH_HTAB_ELEMENT (src, var, variable, hi)
1760 void **dstp;
1761 var->refcount++;
1762 dstp = htab_find_slot_with_hash (dst, var->dv,
1763 dv_htab_hash (var->dv),
1764 INSERT);
1765 *dstp = var;
1769 /* Map a decl to its main debug decl. */
1771 static inline tree
1772 var_debug_decl (tree decl)
1774 if (decl && DECL_P (decl)
1775 && DECL_DEBUG_EXPR_IS_FROM (decl))
1777 tree debugdecl = DECL_DEBUG_EXPR (decl);
1778 if (debugdecl && DECL_P (debugdecl))
1779 decl = debugdecl;
1782 return decl;
1785 /* Set the register LOC to contain DV, OFFSET. */
1787 static void
1788 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1789 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1790 enum insert_option iopt)
1792 attrs node;
1793 bool decl_p = dv_is_decl_p (dv);
1795 if (decl_p)
1796 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1798 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1799 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1800 && node->offset == offset)
1801 break;
1802 if (!node)
1803 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1804 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1807 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1809 static void
1810 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1811 rtx set_src)
1813 tree decl = REG_EXPR (loc);
1814 HOST_WIDE_INT offset = REG_OFFSET (loc);
1816 var_reg_decl_set (set, loc, initialized,
1817 dv_from_decl (decl), offset, set_src, INSERT);
1820 static enum var_init_status
1821 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1823 variable var;
1824 int i;
1825 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1827 if (! flag_var_tracking_uninit)
1828 return VAR_INIT_STATUS_INITIALIZED;
1830 var = shared_hash_find (set->vars, dv);
1831 if (var)
1833 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1835 location_chain nextp;
1836 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1837 if (rtx_equal_p (nextp->loc, loc))
1839 ret_val = nextp->init;
1840 break;
1845 return ret_val;
1848 /* Delete current content of register LOC in dataflow set SET and set
1849 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1850 MODIFY is true, any other live copies of the same variable part are
1851 also deleted from the dataflow set, otherwise the variable part is
1852 assumed to be copied from another location holding the same
1853 part. */
1855 static void
1856 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1857 enum var_init_status initialized, rtx set_src)
1859 tree decl = REG_EXPR (loc);
1860 HOST_WIDE_INT offset = REG_OFFSET (loc);
1861 attrs node, next;
1862 attrs *nextp;
1864 decl = var_debug_decl (decl);
1866 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1867 initialized = get_init_value (set, loc, dv_from_decl (decl));
1869 nextp = &set->regs[REGNO (loc)];
1870 for (node = *nextp; node; node = next)
1872 next = node->next;
1873 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1875 delete_variable_part (set, node->loc, node->dv, node->offset);
1876 pool_free (attrs_pool, node);
1877 *nextp = next;
1879 else
1881 node->loc = loc;
1882 nextp = &node->next;
1885 if (modify)
1886 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1887 var_reg_set (set, loc, initialized, set_src);
1890 /* Delete the association of register LOC in dataflow set SET with any
1891 variables that aren't onepart. If CLOBBER is true, also delete any
1892 other live copies of the same variable part, and delete the
1893 association with onepart dvs too. */
1895 static void
1896 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1898 attrs *nextp = &set->regs[REGNO (loc)];
1899 attrs node, next;
1901 if (clobber)
1903 tree decl = REG_EXPR (loc);
1904 HOST_WIDE_INT offset = REG_OFFSET (loc);
1906 decl = var_debug_decl (decl);
1908 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1911 for (node = *nextp; node; node = next)
1913 next = node->next;
1914 if (clobber || !dv_onepart_p (node->dv))
1916 delete_variable_part (set, node->loc, node->dv, node->offset);
1917 pool_free (attrs_pool, node);
1918 *nextp = next;
1920 else
1921 nextp = &node->next;
1925 /* Delete content of register with number REGNO in dataflow set SET. */
1927 static void
1928 var_regno_delete (dataflow_set *set, int regno)
1930 attrs *reg = &set->regs[regno];
1931 attrs node, next;
1933 for (node = *reg; node; node = next)
1935 next = node->next;
1936 delete_variable_part (set, node->loc, node->dv, node->offset);
1937 pool_free (attrs_pool, node);
1939 *reg = NULL;
1942 /* Set the location of DV, OFFSET as the MEM LOC. */
1944 static void
1945 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1946 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1947 enum insert_option iopt)
1949 if (dv_is_decl_p (dv))
1950 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1952 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1955 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
1956 SET to LOC.
1957 Adjust the address first if it is stack pointer based. */
1959 static void
1960 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1961 rtx set_src)
1963 tree decl = MEM_EXPR (loc);
1964 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
1966 var_mem_decl_set (set, loc, initialized,
1967 dv_from_decl (decl), offset, set_src, INSERT);
1970 /* Delete and set the location part of variable MEM_EXPR (LOC) in
1971 dataflow set SET to LOC. If MODIFY is true, any other live copies
1972 of the same variable part are also deleted from the dataflow set,
1973 otherwise the variable part is assumed to be copied from another
1974 location holding the same part.
1975 Adjust the address first if it is stack pointer based. */
1977 static void
1978 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1979 enum var_init_status initialized, rtx set_src)
1981 tree decl = MEM_EXPR (loc);
1982 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
1984 decl = var_debug_decl (decl);
1986 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1987 initialized = get_init_value (set, loc, dv_from_decl (decl));
1989 if (modify)
1990 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
1991 var_mem_set (set, loc, initialized, set_src);
1994 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
1995 true, also delete any other live copies of the same variable part.
1996 Adjust the address first if it is stack pointer based. */
1998 static void
1999 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
2001 tree decl = MEM_EXPR (loc);
2002 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2004 decl = var_debug_decl (decl);
2005 if (clobber)
2006 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2007 delete_variable_part (set, loc, dv_from_decl (decl), offset);
2010 /* Return true if LOC should not be expanded for location expressions,
2011 or used in them. */
2013 static inline bool
2014 unsuitable_loc (rtx loc)
2016 switch (GET_CODE (loc))
2018 case PC:
2019 case SCRATCH:
2020 case CC0:
2021 case ASM_INPUT:
2022 case ASM_OPERANDS:
2023 return true;
2025 default:
2026 return false;
2030 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2031 bound to it. */
2033 static inline void
2034 val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
2036 if (REG_P (loc))
2038 if (modified)
2039 var_regno_delete (set, REGNO (loc));
2040 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2041 dv_from_value (val), 0, NULL_RTX, INSERT);
2043 else if (MEM_P (loc))
2045 struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
2047 if (l && GET_CODE (l->loc) == VALUE)
2048 l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
2050 /* If this MEM is a global constant, we don't need it in the
2051 dynamic tables. ??? We should test this before emitting the
2052 micro-op in the first place. */
2053 while (l)
2054 if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
2055 break;
2056 else
2057 l = l->next;
2059 if (!l)
2060 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2061 dv_from_value (val), 0, NULL_RTX, INSERT);
2063 else
2065 /* Other kinds of equivalences are necessarily static, at least
2066 so long as we do not perform substitutions while merging
2067 expressions. */
2068 gcc_unreachable ();
2069 set_variable_part (set, loc, dv_from_value (val), 0,
2070 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2074 /* Bind a value to a location it was just stored in. If MODIFIED
2075 holds, assume the location was modified, detaching it from any
2076 values bound to it. */
2078 static void
2079 val_store (dataflow_set *set, rtx val, rtx loc, rtx insn, bool modified)
2081 cselib_val *v = CSELIB_VAL_PTR (val);
2083 gcc_assert (cselib_preserved_value_p (v));
2085 if (dump_file)
2087 fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
2088 print_inline_rtx (dump_file, loc, 0);
2089 fprintf (dump_file, " evaluates to ");
2090 print_inline_rtx (dump_file, val, 0);
2091 if (v->locs)
2093 struct elt_loc_list *l;
2094 for (l = v->locs; l; l = l->next)
2096 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
2097 print_inline_rtx (dump_file, l->loc, 0);
2100 fprintf (dump_file, "\n");
2103 gcc_checking_assert (!unsuitable_loc (loc));
2105 val_bind (set, val, loc, modified);
2108 /* Reset this node, detaching all its equivalences. Return the slot
2109 in the variable hash table that holds dv, if there is one. */
2111 static void
2112 val_reset (dataflow_set *set, decl_or_value dv)
2114 variable var = shared_hash_find (set->vars, dv) ;
2115 location_chain node;
2116 rtx cval;
2118 if (!var || !var->n_var_parts)
2119 return;
2121 gcc_assert (var->n_var_parts == 1);
2123 cval = NULL;
2124 for (node = var->var_part[0].loc_chain; node; node = node->next)
2125 if (GET_CODE (node->loc) == VALUE
2126 && canon_value_cmp (node->loc, cval))
2127 cval = node->loc;
2129 for (node = var->var_part[0].loc_chain; node; node = node->next)
2130 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
2132 /* Redirect the equivalence link to the new canonical
2133 value, or simply remove it if it would point at
2134 itself. */
2135 if (cval)
2136 set_variable_part (set, cval, dv_from_value (node->loc),
2137 0, node->init, node->set_src, NO_INSERT);
2138 delete_variable_part (set, dv_as_value (dv),
2139 dv_from_value (node->loc), 0);
2142 if (cval)
2144 decl_or_value cdv = dv_from_value (cval);
2146 /* Keep the remaining values connected, accummulating links
2147 in the canonical value. */
2148 for (node = var->var_part[0].loc_chain; node; node = node->next)
2150 if (node->loc == cval)
2151 continue;
2152 else if (GET_CODE (node->loc) == REG)
2153 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
2154 node->set_src, NO_INSERT);
2155 else if (GET_CODE (node->loc) == MEM)
2156 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
2157 node->set_src, NO_INSERT);
2158 else
2159 set_variable_part (set, node->loc, cdv, 0,
2160 node->init, node->set_src, NO_INSERT);
2164 /* We remove this last, to make sure that the canonical value is not
2165 removed to the point of requiring reinsertion. */
2166 if (cval)
2167 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
2169 clobber_variable_part (set, NULL, dv, 0, NULL);
2172 /* Find the values in a given location and map the val to another
2173 value, if it is unique, or add the location as one holding the
2174 value. */
2176 static void
2177 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx insn)
2179 decl_or_value dv = dv_from_value (val);
2181 if (dump_file && (dump_flags & TDF_DETAILS))
2183 if (insn)
2184 fprintf (dump_file, "%i: ", INSN_UID (insn));
2185 else
2186 fprintf (dump_file, "head: ");
2187 print_inline_rtx (dump_file, val, 0);
2188 fputs (" is at ", dump_file);
2189 print_inline_rtx (dump_file, loc, 0);
2190 fputc ('\n', dump_file);
2193 val_reset (set, dv);
2195 gcc_checking_assert (!unsuitable_loc (loc));
2197 if (REG_P (loc))
2199 attrs node, found = NULL;
2201 for (node = set->regs[REGNO (loc)]; node; node = node->next)
2202 if (dv_is_value_p (node->dv)
2203 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2205 found = node;
2207 /* Map incoming equivalences. ??? Wouldn't it be nice if
2208 we just started sharing the location lists? Maybe a
2209 circular list ending at the value itself or some
2210 such. */
2211 set_variable_part (set, dv_as_value (node->dv),
2212 dv_from_value (val), node->offset,
2213 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2214 set_variable_part (set, val, node->dv, node->offset,
2215 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2218 /* If we didn't find any equivalence, we need to remember that
2219 this value is held in the named register. */
2220 if (found)
2221 return;
2223 /* ??? Attempt to find and merge equivalent MEMs or other
2224 expressions too. */
2226 val_bind (set, val, loc, false);
2229 /* Initialize dataflow set SET to be empty.
2230 VARS_SIZE is the initial size of hash table VARS. */
2232 static void
2233 dataflow_set_init (dataflow_set *set)
2235 init_attrs_list_set (set->regs);
2236 set->vars = shared_hash_copy (empty_shared_hash);
2237 set->stack_adjust = 0;
2238 set->traversed_vars = NULL;
2241 /* Delete the contents of dataflow set SET. */
2243 static void
2244 dataflow_set_clear (dataflow_set *set)
2246 int i;
2248 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2249 attrs_list_clear (&set->regs[i]);
2251 shared_hash_destroy (set->vars);
2252 set->vars = shared_hash_copy (empty_shared_hash);
2255 /* Copy the contents of dataflow set SRC to DST. */
2257 static void
2258 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2260 int i;
2262 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2263 attrs_list_copy (&dst->regs[i], src->regs[i]);
2265 shared_hash_destroy (dst->vars);
2266 dst->vars = shared_hash_copy (src->vars);
2267 dst->stack_adjust = src->stack_adjust;
2270 /* Information for merging lists of locations for a given offset of variable.
2272 struct variable_union_info
2274 /* Node of the location chain. */
2275 location_chain lc;
2277 /* The sum of positions in the input chains. */
2278 int pos;
2280 /* The position in the chain of DST dataflow set. */
2281 int pos_dst;
2284 /* Buffer for location list sorting and its allocated size. */
2285 static struct variable_union_info *vui_vec;
2286 static int vui_allocated;
2288 /* Compare function for qsort, order the structures by POS element. */
2290 static int
2291 variable_union_info_cmp_pos (const void *n1, const void *n2)
2293 const struct variable_union_info *const i1 =
2294 (const struct variable_union_info *) n1;
2295 const struct variable_union_info *const i2 =
2296 ( const struct variable_union_info *) n2;
2298 if (i1->pos != i2->pos)
2299 return i1->pos - i2->pos;
2301 return (i1->pos_dst - i2->pos_dst);
2304 /* Compute union of location parts of variable *SLOT and the same variable
2305 from hash table DATA. Compute "sorted" union of the location chains
2306 for common offsets, i.e. the locations of a variable part are sorted by
2307 a priority where the priority is the sum of the positions in the 2 chains
2308 (if a location is only in one list the position in the second list is
2309 defined to be larger than the length of the chains).
2310 When we are updating the location parts the newest location is in the
2311 beginning of the chain, so when we do the described "sorted" union
2312 we keep the newest locations in the beginning. */
2314 static int
2315 variable_union (variable src, dataflow_set *set)
2317 variable dst;
2318 void **dstp;
2319 int i, j, k;
2321 dstp = shared_hash_find_slot (set->vars, src->dv);
2322 if (!dstp || !*dstp)
2324 src->refcount++;
2326 dst_can_be_shared = false;
2327 if (!dstp)
2328 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2330 *dstp = src;
2332 /* Continue traversing the hash table. */
2333 return 1;
2335 else
2336 dst = (variable) *dstp;
2338 gcc_assert (src->n_var_parts);
2339 gcc_checking_assert (src->onepart == dst->onepart);
2341 /* We can combine one-part variables very efficiently, because their
2342 entries are in canonical order. */
2343 if (src->onepart)
2345 location_chain *nodep, dnode, snode;
2347 gcc_assert (src->n_var_parts == 1
2348 && dst->n_var_parts == 1);
2350 snode = src->var_part[0].loc_chain;
2351 gcc_assert (snode);
2353 restart_onepart_unshared:
2354 nodep = &dst->var_part[0].loc_chain;
2355 dnode = *nodep;
2356 gcc_assert (dnode);
2358 while (snode)
2360 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2362 if (r > 0)
2364 location_chain nnode;
2366 if (shared_var_p (dst, set->vars))
2368 dstp = unshare_variable (set, dstp, dst,
2369 VAR_INIT_STATUS_INITIALIZED);
2370 dst = (variable)*dstp;
2371 goto restart_onepart_unshared;
2374 *nodep = nnode = (location_chain) pool_alloc (loc_chain_pool);
2375 nnode->loc = snode->loc;
2376 nnode->init = snode->init;
2377 if (!snode->set_src || MEM_P (snode->set_src))
2378 nnode->set_src = NULL;
2379 else
2380 nnode->set_src = snode->set_src;
2381 nnode->next = dnode;
2382 dnode = nnode;
2384 else if (r == 0)
2385 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2387 if (r >= 0)
2388 snode = snode->next;
2390 nodep = &dnode->next;
2391 dnode = *nodep;
2394 return 1;
2397 gcc_checking_assert (!src->onepart);
2399 /* Count the number of location parts, result is K. */
2400 for (i = 0, j = 0, k = 0;
2401 i < src->n_var_parts && j < dst->n_var_parts; k++)
2403 if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2405 i++;
2406 j++;
2408 else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2409 i++;
2410 else
2411 j++;
2413 k += src->n_var_parts - i;
2414 k += dst->n_var_parts - j;
2416 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2417 thus there are at most MAX_VAR_PARTS different offsets. */
2418 gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
2420 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2422 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2423 dst = (variable)*dstp;
2426 i = src->n_var_parts - 1;
2427 j = dst->n_var_parts - 1;
2428 dst->n_var_parts = k;
2430 for (k--; k >= 0; k--)
2432 location_chain node, node2;
2434 if (i >= 0 && j >= 0
2435 && VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2437 /* Compute the "sorted" union of the chains, i.e. the locations which
2438 are in both chains go first, they are sorted by the sum of
2439 positions in the chains. */
2440 int dst_l, src_l;
2441 int ii, jj, n;
2442 struct variable_union_info *vui;
2444 /* If DST is shared compare the location chains.
2445 If they are different we will modify the chain in DST with
2446 high probability so make a copy of DST. */
2447 if (shared_var_p (dst, set->vars))
2449 for (node = src->var_part[i].loc_chain,
2450 node2 = dst->var_part[j].loc_chain; node && node2;
2451 node = node->next, node2 = node2->next)
2453 if (!((REG_P (node2->loc)
2454 && REG_P (node->loc)
2455 && REGNO (node2->loc) == REGNO (node->loc))
2456 || rtx_equal_p (node2->loc, node->loc)))
2458 if (node2->init < node->init)
2459 node2->init = node->init;
2460 break;
2463 if (node || node2)
2465 dstp = unshare_variable (set, dstp, dst,
2466 VAR_INIT_STATUS_UNKNOWN);
2467 dst = (variable)*dstp;
2471 src_l = 0;
2472 for (node = src->var_part[i].loc_chain; node; node = node->next)
2473 src_l++;
2474 dst_l = 0;
2475 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2476 dst_l++;
2478 if (dst_l == 1)
2480 /* The most common case, much simpler, no qsort is needed. */
2481 location_chain dstnode = dst->var_part[j].loc_chain;
2482 dst->var_part[k].loc_chain = dstnode;
2483 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET(dst, j);
2484 node2 = dstnode;
2485 for (node = src->var_part[i].loc_chain; node; node = node->next)
2486 if (!((REG_P (dstnode->loc)
2487 && REG_P (node->loc)
2488 && REGNO (dstnode->loc) == REGNO (node->loc))
2489 || rtx_equal_p (dstnode->loc, node->loc)))
2491 location_chain new_node;
2493 /* Copy the location from SRC. */
2494 new_node = (location_chain) pool_alloc (loc_chain_pool);
2495 new_node->loc = node->loc;
2496 new_node->init = node->init;
2497 if (!node->set_src || MEM_P (node->set_src))
2498 new_node->set_src = NULL;
2499 else
2500 new_node->set_src = node->set_src;
2501 node2->next = new_node;
2502 node2 = new_node;
2504 node2->next = NULL;
2506 else
2508 if (src_l + dst_l > vui_allocated)
2510 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2511 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2512 vui_allocated);
2514 vui = vui_vec;
2516 /* Fill in the locations from DST. */
2517 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2518 node = node->next, jj++)
2520 vui[jj].lc = node;
2521 vui[jj].pos_dst = jj;
2523 /* Pos plus value larger than a sum of 2 valid positions. */
2524 vui[jj].pos = jj + src_l + dst_l;
2527 /* Fill in the locations from SRC. */
2528 n = dst_l;
2529 for (node = src->var_part[i].loc_chain, ii = 0; node;
2530 node = node->next, ii++)
2532 /* Find location from NODE. */
2533 for (jj = 0; jj < dst_l; jj++)
2535 if ((REG_P (vui[jj].lc->loc)
2536 && REG_P (node->loc)
2537 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2538 || rtx_equal_p (vui[jj].lc->loc, node->loc))
2540 vui[jj].pos = jj + ii;
2541 break;
2544 if (jj >= dst_l) /* The location has not been found. */
2546 location_chain new_node;
2548 /* Copy the location from SRC. */
2549 new_node = (location_chain) pool_alloc (loc_chain_pool);
2550 new_node->loc = node->loc;
2551 new_node->init = node->init;
2552 if (!node->set_src || MEM_P (node->set_src))
2553 new_node->set_src = NULL;
2554 else
2555 new_node->set_src = node->set_src;
2556 vui[n].lc = new_node;
2557 vui[n].pos_dst = src_l + dst_l;
2558 vui[n].pos = ii + src_l + dst_l;
2559 n++;
2563 if (dst_l == 2)
2565 /* Special case still very common case. For dst_l == 2
2566 all entries dst_l ... n-1 are sorted, with for i >= dst_l
2567 vui[i].pos == i + src_l + dst_l. */
2568 if (vui[0].pos > vui[1].pos)
2570 /* Order should be 1, 0, 2... */
2571 dst->var_part[k].loc_chain = vui[1].lc;
2572 vui[1].lc->next = vui[0].lc;
2573 if (n >= 3)
2575 vui[0].lc->next = vui[2].lc;
2576 vui[n - 1].lc->next = NULL;
2578 else
2579 vui[0].lc->next = NULL;
2580 ii = 3;
2582 else
2584 dst->var_part[k].loc_chain = vui[0].lc;
2585 if (n >= 3 && vui[2].pos < vui[1].pos)
2587 /* Order should be 0, 2, 1, 3... */
2588 vui[0].lc->next = vui[2].lc;
2589 vui[2].lc->next = vui[1].lc;
2590 if (n >= 4)
2592 vui[1].lc->next = vui[3].lc;
2593 vui[n - 1].lc->next = NULL;
2595 else
2596 vui[1].lc->next = NULL;
2597 ii = 4;
2599 else
2601 /* Order should be 0, 1, 2... */
2602 ii = 1;
2603 vui[n - 1].lc->next = NULL;
2606 for (; ii < n; ii++)
2607 vui[ii - 1].lc->next = vui[ii].lc;
2609 else
2611 qsort (vui, n, sizeof (struct variable_union_info),
2612 variable_union_info_cmp_pos);
2614 /* Reconnect the nodes in sorted order. */
2615 for (ii = 1; ii < n; ii++)
2616 vui[ii - 1].lc->next = vui[ii].lc;
2617 vui[n - 1].lc->next = NULL;
2618 dst->var_part[k].loc_chain = vui[0].lc;
2621 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
2623 i--;
2624 j--;
2626 else if ((i >= 0 && j >= 0
2627 && VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2628 || i < 0)
2630 dst->var_part[k] = dst->var_part[j];
2631 j--;
2633 else if ((i >= 0 && j >= 0
2634 && VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
2635 || j < 0)
2637 location_chain *nextp;
2639 /* Copy the chain from SRC. */
2640 nextp = &dst->var_part[k].loc_chain;
2641 for (node = src->var_part[i].loc_chain; node; node = node->next)
2643 location_chain new_lc;
2645 new_lc = (location_chain) pool_alloc (loc_chain_pool);
2646 new_lc->next = NULL;
2647 new_lc->init = node->init;
2648 if (!node->set_src || MEM_P (node->set_src))
2649 new_lc->set_src = NULL;
2650 else
2651 new_lc->set_src = node->set_src;
2652 new_lc->loc = node->loc;
2654 *nextp = new_lc;
2655 nextp = &new_lc->next;
2658 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
2659 i--;
2661 dst->var_part[k].cur_loc = NULL;
2664 if (flag_var_tracking_uninit)
2665 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
2667 location_chain node, node2;
2668 for (node = src->var_part[i].loc_chain; node; node = node->next)
2669 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
2670 if (rtx_equal_p (node->loc, node2->loc))
2672 if (node->init > node2->init)
2673 node2->init = node->init;
2677 /* Continue traversing the hash table. */
2678 return 1;
2681 /* Compute union of dataflow sets SRC and DST and store it to DST. */
2683 static void
2684 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
2686 int i;
2688 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2689 attrs_list_union (&dst->regs[i], src->regs[i]);
2691 if (dst->vars == empty_shared_hash)
2693 shared_hash_destroy (dst->vars);
2694 dst->vars = shared_hash_copy (src->vars);
2696 else
2698 htab_iterator hi;
2699 variable var;
2701 FOR_EACH_HTAB_ELEMENT (shared_hash_htab (src->vars), var, variable, hi)
2702 variable_union (var, dst);
2706 /* Whether the value is currently being expanded. */
2707 #define VALUE_RECURSED_INTO(x) \
2708 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
2710 /* Whether no expansion was found, saving useless lookups.
2711 It must only be set when VALUE_CHANGED is clear. */
2712 #define NO_LOC_P(x) \
2713 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
2715 /* Whether cur_loc in the value needs to be (re)computed. */
2716 #define VALUE_CHANGED(x) \
2717 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
2718 /* Whether cur_loc in the decl needs to be (re)computed. */
2719 #define DECL_CHANGED(x) TREE_VISITED (x)
2721 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
2722 user DECLs, this means they're in changed_variables. Values and
2723 debug exprs may be left with this flag set if no user variable
2724 requires them to be evaluated. */
2726 static inline void
2727 set_dv_changed (decl_or_value dv, bool newv)
2729 switch (dv_onepart_p (dv))
2731 case ONEPART_VALUE:
2732 if (newv)
2733 NO_LOC_P (dv_as_value (dv)) = false;
2734 VALUE_CHANGED (dv_as_value (dv)) = newv;
2735 break;
2737 case ONEPART_DEXPR:
2738 if (newv)
2739 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
2740 /* Fall through... */
2742 default:
2743 DECL_CHANGED (dv_as_decl (dv)) = newv;
2744 break;
2748 /* Return true if DV needs to have its cur_loc recomputed. */
2750 static inline bool
2751 dv_changed_p (decl_or_value dv)
2753 return (dv_is_value_p (dv)
2754 ? VALUE_CHANGED (dv_as_value (dv))
2755 : DECL_CHANGED (dv_as_decl (dv)));
2758 /* Return a location list node whose loc is rtx_equal to LOC, in the
2759 location list of a one-part variable or value VAR, or in that of
2760 any values recursively mentioned in the location lists. VARS must
2761 be in star-canonical form. */
2763 static location_chain
2764 find_loc_in_1pdv (rtx loc, variable var, htab_t vars)
2766 location_chain node;
2767 enum rtx_code loc_code;
2769 if (!var)
2770 return NULL;
2772 gcc_checking_assert (var->onepart);
2774 if (!var->n_var_parts)
2775 return NULL;
2777 gcc_checking_assert (loc != dv_as_opaque (var->dv));
2779 loc_code = GET_CODE (loc);
2780 for (node = var->var_part[0].loc_chain; node; node = node->next)
2782 decl_or_value dv;
2783 variable rvar;
2785 if (GET_CODE (node->loc) != loc_code)
2787 if (GET_CODE (node->loc) != VALUE)
2788 continue;
2790 else if (loc == node->loc)
2791 return node;
2792 else if (loc_code != VALUE)
2794 if (rtx_equal_p (loc, node->loc))
2795 return node;
2796 continue;
2799 /* Since we're in star-canonical form, we don't need to visit
2800 non-canonical nodes: one-part variables and non-canonical
2801 values would only point back to the canonical node. */
2802 if (dv_is_value_p (var->dv)
2803 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
2805 /* Skip all subsequent VALUEs. */
2806 while (node->next && GET_CODE (node->next->loc) == VALUE)
2808 node = node->next;
2809 gcc_checking_assert (!canon_value_cmp (node->loc,
2810 dv_as_value (var->dv)));
2811 if (loc == node->loc)
2812 return node;
2814 continue;
2817 gcc_checking_assert (node == var->var_part[0].loc_chain);
2818 gcc_checking_assert (!node->next);
2820 dv = dv_from_value (node->loc);
2821 rvar = (variable) htab_find_with_hash (vars, dv, dv_htab_hash (dv));
2822 return find_loc_in_1pdv (loc, rvar, vars);
2825 /* ??? Gotta look in cselib_val locations too. */
2827 return NULL;
2830 /* Hash table iteration argument passed to variable_merge. */
2831 struct dfset_merge
2833 /* The set in which the merge is to be inserted. */
2834 dataflow_set *dst;
2835 /* The set that we're iterating in. */
2836 dataflow_set *cur;
2837 /* The set that may contain the other dv we are to merge with. */
2838 dataflow_set *src;
2839 /* Number of onepart dvs in src. */
2840 int src_onepart_cnt;
2843 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
2844 loc_cmp order, and it is maintained as such. */
2846 static void
2847 insert_into_intersection (location_chain *nodep, rtx loc,
2848 enum var_init_status status)
2850 location_chain node;
2851 int r;
2853 for (node = *nodep; node; nodep = &node->next, node = *nodep)
2854 if ((r = loc_cmp (node->loc, loc)) == 0)
2856 node->init = MIN (node->init, status);
2857 return;
2859 else if (r > 0)
2860 break;
2862 node = (location_chain) pool_alloc (loc_chain_pool);
2864 node->loc = loc;
2865 node->set_src = NULL;
2866 node->init = status;
2867 node->next = *nodep;
2868 *nodep = node;
2871 /* Insert in DEST the intersection of the locations present in both
2872 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
2873 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
2874 DSM->dst. */
2876 static void
2877 intersect_loc_chains (rtx val, location_chain *dest, struct dfset_merge *dsm,
2878 location_chain s1node, variable s2var)
2880 dataflow_set *s1set = dsm->cur;
2881 dataflow_set *s2set = dsm->src;
2882 location_chain found;
2884 if (s2var)
2886 location_chain s2node;
2888 gcc_checking_assert (s2var->onepart);
2890 if (s2var->n_var_parts)
2892 s2node = s2var->var_part[0].loc_chain;
2894 for (; s1node && s2node;
2895 s1node = s1node->next, s2node = s2node->next)
2896 if (s1node->loc != s2node->loc)
2897 break;
2898 else if (s1node->loc == val)
2899 continue;
2900 else
2901 insert_into_intersection (dest, s1node->loc,
2902 MIN (s1node->init, s2node->init));
2906 for (; s1node; s1node = s1node->next)
2908 if (s1node->loc == val)
2909 continue;
2911 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
2912 shared_hash_htab (s2set->vars))))
2914 insert_into_intersection (dest, s1node->loc,
2915 MIN (s1node->init, found->init));
2916 continue;
2919 if (GET_CODE (s1node->loc) == VALUE
2920 && !VALUE_RECURSED_INTO (s1node->loc))
2922 decl_or_value dv = dv_from_value (s1node->loc);
2923 variable svar = shared_hash_find (s1set->vars, dv);
2924 if (svar)
2926 if (svar->n_var_parts == 1)
2928 VALUE_RECURSED_INTO (s1node->loc) = true;
2929 intersect_loc_chains (val, dest, dsm,
2930 svar->var_part[0].loc_chain,
2931 s2var);
2932 VALUE_RECURSED_INTO (s1node->loc) = false;
2937 /* ??? gotta look in cselib_val locations too. */
2939 /* ??? if the location is equivalent to any location in src,
2940 searched recursively
2942 add to dst the values needed to represent the equivalence
2944 telling whether locations S is equivalent to another dv's
2945 location list:
2947 for each location D in the list
2949 if S and D satisfy rtx_equal_p, then it is present
2951 else if D is a value, recurse without cycles
2953 else if S and D have the same CODE and MODE
2955 for each operand oS and the corresponding oD
2957 if oS and oD are not equivalent, then S an D are not equivalent
2959 else if they are RTX vectors
2961 if any vector oS element is not equivalent to its respective oD,
2962 then S and D are not equivalent
2970 /* Return -1 if X should be before Y in a location list for a 1-part
2971 variable, 1 if Y should be before X, and 0 if they're equivalent
2972 and should not appear in the list. */
2974 static int
2975 loc_cmp (rtx x, rtx y)
2977 int i, j, r;
2978 RTX_CODE code = GET_CODE (x);
2979 const char *fmt;
2981 if (x == y)
2982 return 0;
2984 if (REG_P (x))
2986 if (!REG_P (y))
2987 return -1;
2988 gcc_assert (GET_MODE (x) == GET_MODE (y));
2989 if (REGNO (x) == REGNO (y))
2990 return 0;
2991 else if (REGNO (x) < REGNO (y))
2992 return -1;
2993 else
2994 return 1;
2997 if (REG_P (y))
2998 return 1;
3000 if (MEM_P (x))
3002 if (!MEM_P (y))
3003 return -1;
3004 gcc_assert (GET_MODE (x) == GET_MODE (y));
3005 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
3008 if (MEM_P (y))
3009 return 1;
3011 if (GET_CODE (x) == VALUE)
3013 if (GET_CODE (y) != VALUE)
3014 return -1;
3015 /* Don't assert the modes are the same, that is true only
3016 when not recursing. (subreg:QI (value:SI 1:1) 0)
3017 and (subreg:QI (value:DI 2:2) 0) can be compared,
3018 even when the modes are different. */
3019 if (canon_value_cmp (x, y))
3020 return -1;
3021 else
3022 return 1;
3025 if (GET_CODE (y) == VALUE)
3026 return 1;
3028 /* Entry value is the least preferable kind of expression. */
3029 if (GET_CODE (x) == ENTRY_VALUE)
3031 if (GET_CODE (y) != ENTRY_VALUE)
3032 return 1;
3033 gcc_assert (GET_MODE (x) == GET_MODE (y));
3034 return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
3037 if (GET_CODE (y) == ENTRY_VALUE)
3038 return -1;
3040 if (GET_CODE (x) == GET_CODE (y))
3041 /* Compare operands below. */;
3042 else if (GET_CODE (x) < GET_CODE (y))
3043 return -1;
3044 else
3045 return 1;
3047 gcc_assert (GET_MODE (x) == GET_MODE (y));
3049 if (GET_CODE (x) == DEBUG_EXPR)
3051 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3052 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
3053 return -1;
3054 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3055 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
3056 return 1;
3059 fmt = GET_RTX_FORMAT (code);
3060 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3061 switch (fmt[i])
3063 case 'w':
3064 if (XWINT (x, i) == XWINT (y, i))
3065 break;
3066 else if (XWINT (x, i) < XWINT (y, i))
3067 return -1;
3068 else
3069 return 1;
3071 case 'n':
3072 case 'i':
3073 if (XINT (x, i) == XINT (y, i))
3074 break;
3075 else if (XINT (x, i) < XINT (y, i))
3076 return -1;
3077 else
3078 return 1;
3080 case 'V':
3081 case 'E':
3082 /* Compare the vector length first. */
3083 if (XVECLEN (x, i) == XVECLEN (y, i))
3084 /* Compare the vectors elements. */;
3085 else if (XVECLEN (x, i) < XVECLEN (y, i))
3086 return -1;
3087 else
3088 return 1;
3090 for (j = 0; j < XVECLEN (x, i); j++)
3091 if ((r = loc_cmp (XVECEXP (x, i, j),
3092 XVECEXP (y, i, j))))
3093 return r;
3094 break;
3096 case 'e':
3097 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
3098 return r;
3099 break;
3101 case 'S':
3102 case 's':
3103 if (XSTR (x, i) == XSTR (y, i))
3104 break;
3105 if (!XSTR (x, i))
3106 return -1;
3107 if (!XSTR (y, i))
3108 return 1;
3109 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
3110 break;
3111 else if (r < 0)
3112 return -1;
3113 else
3114 return 1;
3116 case 'u':
3117 /* These are just backpointers, so they don't matter. */
3118 break;
3120 case '0':
3121 case 't':
3122 break;
3124 /* It is believed that rtx's at this level will never
3125 contain anything but integers and other rtx's,
3126 except for within LABEL_REFs and SYMBOL_REFs. */
3127 default:
3128 gcc_unreachable ();
3131 return 0;
3134 #if ENABLE_CHECKING
3135 /* Check the order of entries in one-part variables. */
3137 static int
3138 canonicalize_loc_order_check (void **slot, void *data ATTRIBUTE_UNUSED)
3140 variable var = (variable) *slot;
3141 location_chain node, next;
3143 #ifdef ENABLE_RTL_CHECKING
3144 int i;
3145 for (i = 0; i < var->n_var_parts; i++)
3146 gcc_assert (var->var_part[0].cur_loc == NULL);
3147 gcc_assert (!var->in_changed_variables);
3148 #endif
3150 if (!var->onepart)
3151 return 1;
3153 gcc_assert (var->n_var_parts == 1);
3154 node = var->var_part[0].loc_chain;
3155 gcc_assert (node);
3157 while ((next = node->next))
3159 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3160 node = next;
3163 return 1;
3165 #endif
3167 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3168 more likely to be chosen as canonical for an equivalence set.
3169 Ensure less likely values can reach more likely neighbors, making
3170 the connections bidirectional. */
3172 static int
3173 canonicalize_values_mark (void **slot, void *data)
3175 dataflow_set *set = (dataflow_set *)data;
3176 variable var = (variable) *slot;
3177 decl_or_value dv = var->dv;
3178 rtx val;
3179 location_chain node;
3181 if (!dv_is_value_p (dv))
3182 return 1;
3184 gcc_checking_assert (var->n_var_parts == 1);
3186 val = dv_as_value (dv);
3188 for (node = var->var_part[0].loc_chain; node; node = node->next)
3189 if (GET_CODE (node->loc) == VALUE)
3191 if (canon_value_cmp (node->loc, val))
3192 VALUE_RECURSED_INTO (val) = true;
3193 else
3195 decl_or_value odv = dv_from_value (node->loc);
3196 void **oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3198 set_slot_part (set, val, oslot, odv, 0,
3199 node->init, NULL_RTX);
3201 VALUE_RECURSED_INTO (node->loc) = true;
3205 return 1;
3208 /* Remove redundant entries from equivalence lists in onepart
3209 variables, canonicalizing equivalence sets into star shapes. */
3211 static int
3212 canonicalize_values_star (void **slot, void *data)
3214 dataflow_set *set = (dataflow_set *)data;
3215 variable var = (variable) *slot;
3216 decl_or_value dv = var->dv;
3217 location_chain node;
3218 decl_or_value cdv;
3219 rtx val, cval;
3220 void **cslot;
3221 bool has_value;
3222 bool has_marks;
3224 if (!var->onepart)
3225 return 1;
3227 gcc_checking_assert (var->n_var_parts == 1);
3229 if (dv_is_value_p (dv))
3231 cval = dv_as_value (dv);
3232 if (!VALUE_RECURSED_INTO (cval))
3233 return 1;
3234 VALUE_RECURSED_INTO (cval) = false;
3236 else
3237 cval = NULL_RTX;
3239 restart:
3240 val = cval;
3241 has_value = false;
3242 has_marks = false;
3244 gcc_assert (var->n_var_parts == 1);
3246 for (node = var->var_part[0].loc_chain; node; node = node->next)
3247 if (GET_CODE (node->loc) == VALUE)
3249 has_value = true;
3250 if (VALUE_RECURSED_INTO (node->loc))
3251 has_marks = true;
3252 if (canon_value_cmp (node->loc, cval))
3253 cval = node->loc;
3256 if (!has_value)
3257 return 1;
3259 if (cval == val)
3261 if (!has_marks || dv_is_decl_p (dv))
3262 return 1;
3264 /* Keep it marked so that we revisit it, either after visiting a
3265 child node, or after visiting a new parent that might be
3266 found out. */
3267 VALUE_RECURSED_INTO (val) = true;
3269 for (node = var->var_part[0].loc_chain; node; node = node->next)
3270 if (GET_CODE (node->loc) == VALUE
3271 && VALUE_RECURSED_INTO (node->loc))
3273 cval = node->loc;
3274 restart_with_cval:
3275 VALUE_RECURSED_INTO (cval) = false;
3276 dv = dv_from_value (cval);
3277 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3278 if (!slot)
3280 gcc_assert (dv_is_decl_p (var->dv));
3281 /* The canonical value was reset and dropped.
3282 Remove it. */
3283 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3284 return 1;
3286 var = (variable)*slot;
3287 gcc_assert (dv_is_value_p (var->dv));
3288 if (var->n_var_parts == 0)
3289 return 1;
3290 gcc_assert (var->n_var_parts == 1);
3291 goto restart;
3294 VALUE_RECURSED_INTO (val) = false;
3296 return 1;
3299 /* Push values to the canonical one. */
3300 cdv = dv_from_value (cval);
3301 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3303 for (node = var->var_part[0].loc_chain; node; node = node->next)
3304 if (node->loc != cval)
3306 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3307 node->init, NULL_RTX);
3308 if (GET_CODE (node->loc) == VALUE)
3310 decl_or_value ndv = dv_from_value (node->loc);
3312 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3313 NO_INSERT);
3315 if (canon_value_cmp (node->loc, val))
3317 /* If it could have been a local minimum, it's not any more,
3318 since it's now neighbor to cval, so it may have to push
3319 to it. Conversely, if it wouldn't have prevailed over
3320 val, then whatever mark it has is fine: if it was to
3321 push, it will now push to a more canonical node, but if
3322 it wasn't, then it has already pushed any values it might
3323 have to. */
3324 VALUE_RECURSED_INTO (node->loc) = true;
3325 /* Make sure we visit node->loc by ensuring we cval is
3326 visited too. */
3327 VALUE_RECURSED_INTO (cval) = true;
3329 else if (!VALUE_RECURSED_INTO (node->loc))
3330 /* If we have no need to "recurse" into this node, it's
3331 already "canonicalized", so drop the link to the old
3332 parent. */
3333 clobber_variable_part (set, cval, ndv, 0, NULL);
3335 else if (GET_CODE (node->loc) == REG)
3337 attrs list = set->regs[REGNO (node->loc)], *listp;
3339 /* Change an existing attribute referring to dv so that it
3340 refers to cdv, removing any duplicate this might
3341 introduce, and checking that no previous duplicates
3342 existed, all in a single pass. */
3344 while (list)
3346 if (list->offset == 0
3347 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3348 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3349 break;
3351 list = list->next;
3354 gcc_assert (list);
3355 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3357 list->dv = cdv;
3358 for (listp = &list->next; (list = *listp); listp = &list->next)
3360 if (list->offset)
3361 continue;
3363 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3365 *listp = list->next;
3366 pool_free (attrs_pool, list);
3367 list = *listp;
3368 break;
3371 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3374 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3376 for (listp = &list->next; (list = *listp); listp = &list->next)
3378 if (list->offset)
3379 continue;
3381 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3383 *listp = list->next;
3384 pool_free (attrs_pool, list);
3385 list = *listp;
3386 break;
3389 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3392 else
3393 gcc_unreachable ();
3395 #if ENABLE_CHECKING
3396 while (list)
3398 if (list->offset == 0
3399 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3400 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3401 gcc_unreachable ();
3403 list = list->next;
3405 #endif
3409 if (val)
3410 set_slot_part (set, val, cslot, cdv, 0,
3411 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3413 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3415 /* Variable may have been unshared. */
3416 var = (variable)*slot;
3417 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3418 && var->var_part[0].loc_chain->next == NULL);
3420 if (VALUE_RECURSED_INTO (cval))
3421 goto restart_with_cval;
3423 return 1;
3426 /* Bind one-part variables to the canonical value in an equivalence
3427 set. Not doing this causes dataflow convergence failure in rare
3428 circumstances, see PR42873. Unfortunately we can't do this
3429 efficiently as part of canonicalize_values_star, since we may not
3430 have determined or even seen the canonical value of a set when we
3431 get to a variable that references another member of the set. */
3433 static int
3434 canonicalize_vars_star (void **slot, void *data)
3436 dataflow_set *set = (dataflow_set *)data;
3437 variable var = (variable) *slot;
3438 decl_or_value dv = var->dv;
3439 location_chain node;
3440 rtx cval;
3441 decl_or_value cdv;
3442 void **cslot;
3443 variable cvar;
3444 location_chain cnode;
3446 if (!var->onepart || var->onepart == ONEPART_VALUE)
3447 return 1;
3449 gcc_assert (var->n_var_parts == 1);
3451 node = var->var_part[0].loc_chain;
3453 if (GET_CODE (node->loc) != VALUE)
3454 return 1;
3456 gcc_assert (!node->next);
3457 cval = node->loc;
3459 /* Push values to the canonical one. */
3460 cdv = dv_from_value (cval);
3461 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3462 if (!cslot)
3463 return 1;
3464 cvar = (variable)*cslot;
3465 gcc_assert (cvar->n_var_parts == 1);
3467 cnode = cvar->var_part[0].loc_chain;
3469 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3470 that are not “more canonical” than it. */
3471 if (GET_CODE (cnode->loc) != VALUE
3472 || !canon_value_cmp (cnode->loc, cval))
3473 return 1;
3475 /* CVAL was found to be non-canonical. Change the variable to point
3476 to the canonical VALUE. */
3477 gcc_assert (!cnode->next);
3478 cval = cnode->loc;
3480 slot = set_slot_part (set, cval, slot, dv, 0,
3481 node->init, node->set_src);
3482 clobber_slot_part (set, cval, slot, 0, node->set_src);
3484 return 1;
3487 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3488 corresponding entry in DSM->src. Multi-part variables are combined
3489 with variable_union, whereas onepart dvs are combined with
3490 intersection. */
3492 static int
3493 variable_merge_over_cur (variable s1var, struct dfset_merge *dsm)
3495 dataflow_set *dst = dsm->dst;
3496 void **dstslot;
3497 variable s2var, dvar = NULL;
3498 decl_or_value dv = s1var->dv;
3499 onepart_enum_t onepart = s1var->onepart;
3500 rtx val;
3501 hashval_t dvhash;
3502 location_chain node, *nodep;
3504 /* If the incoming onepart variable has an empty location list, then
3505 the intersection will be just as empty. For other variables,
3506 it's always union. */
3507 gcc_checking_assert (s1var->n_var_parts
3508 && s1var->var_part[0].loc_chain);
3510 if (!onepart)
3511 return variable_union (s1var, dst);
3513 gcc_checking_assert (s1var->n_var_parts == 1);
3515 dvhash = dv_htab_hash (dv);
3516 if (dv_is_value_p (dv))
3517 val = dv_as_value (dv);
3518 else
3519 val = NULL;
3521 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
3522 if (!s2var)
3524 dst_can_be_shared = false;
3525 return 1;
3528 dsm->src_onepart_cnt--;
3529 gcc_assert (s2var->var_part[0].loc_chain
3530 && s2var->onepart == onepart
3531 && s2var->n_var_parts == 1);
3533 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3534 if (dstslot)
3536 dvar = (variable)*dstslot;
3537 gcc_assert (dvar->refcount == 1
3538 && dvar->onepart == onepart
3539 && dvar->n_var_parts == 1);
3540 nodep = &dvar->var_part[0].loc_chain;
3542 else
3544 nodep = &node;
3545 node = NULL;
3548 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
3550 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
3551 dvhash, INSERT);
3552 *dstslot = dvar = s2var;
3553 dvar->refcount++;
3555 else
3557 dst_can_be_shared = false;
3559 intersect_loc_chains (val, nodep, dsm,
3560 s1var->var_part[0].loc_chain, s2var);
3562 if (!dstslot)
3564 if (node)
3566 dvar = (variable) pool_alloc (onepart_pool (onepart));
3567 dvar->dv = dv;
3568 dvar->refcount = 1;
3569 dvar->n_var_parts = 1;
3570 dvar->onepart = onepart;
3571 dvar->in_changed_variables = false;
3572 dvar->var_part[0].loc_chain = node;
3573 dvar->var_part[0].cur_loc = NULL;
3574 if (onepart)
3575 VAR_LOC_1PAUX (dvar) = NULL;
3576 else
3577 VAR_PART_OFFSET (dvar, 0) = 0;
3579 dstslot
3580 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
3581 INSERT);
3582 gcc_assert (!*dstslot);
3583 *dstslot = dvar;
3585 else
3586 return 1;
3590 nodep = &dvar->var_part[0].loc_chain;
3591 while ((node = *nodep))
3593 location_chain *nextp = &node->next;
3595 if (GET_CODE (node->loc) == REG)
3597 attrs list;
3599 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
3600 if (GET_MODE (node->loc) == GET_MODE (list->loc)
3601 && dv_is_value_p (list->dv))
3602 break;
3604 if (!list)
3605 attrs_list_insert (&dst->regs[REGNO (node->loc)],
3606 dv, 0, node->loc);
3607 /* If this value became canonical for another value that had
3608 this register, we want to leave it alone. */
3609 else if (dv_as_value (list->dv) != val)
3611 dstslot = set_slot_part (dst, dv_as_value (list->dv),
3612 dstslot, dv, 0,
3613 node->init, NULL_RTX);
3614 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
3616 /* Since nextp points into the removed node, we can't
3617 use it. The pointer to the next node moved to nodep.
3618 However, if the variable we're walking is unshared
3619 during our walk, we'll keep walking the location list
3620 of the previously-shared variable, in which case the
3621 node won't have been removed, and we'll want to skip
3622 it. That's why we test *nodep here. */
3623 if (*nodep != node)
3624 nextp = nodep;
3627 else
3628 /* Canonicalization puts registers first, so we don't have to
3629 walk it all. */
3630 break;
3631 nodep = nextp;
3634 if (dvar != (variable)*dstslot)
3635 dvar = (variable)*dstslot;
3636 nodep = &dvar->var_part[0].loc_chain;
3638 if (val)
3640 /* Mark all referenced nodes for canonicalization, and make sure
3641 we have mutual equivalence links. */
3642 VALUE_RECURSED_INTO (val) = true;
3643 for (node = *nodep; node; node = node->next)
3644 if (GET_CODE (node->loc) == VALUE)
3646 VALUE_RECURSED_INTO (node->loc) = true;
3647 set_variable_part (dst, val, dv_from_value (node->loc), 0,
3648 node->init, NULL, INSERT);
3651 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3652 gcc_assert (*dstslot == dvar);
3653 canonicalize_values_star (dstslot, dst);
3654 gcc_checking_assert (dstslot
3655 == shared_hash_find_slot_noinsert_1 (dst->vars,
3656 dv, dvhash));
3657 dvar = (variable)*dstslot;
3659 else
3661 bool has_value = false, has_other = false;
3663 /* If we have one value and anything else, we're going to
3664 canonicalize this, so make sure all values have an entry in
3665 the table and are marked for canonicalization. */
3666 for (node = *nodep; node; node = node->next)
3668 if (GET_CODE (node->loc) == VALUE)
3670 /* If this was marked during register canonicalization,
3671 we know we have to canonicalize values. */
3672 if (has_value)
3673 has_other = true;
3674 has_value = true;
3675 if (has_other)
3676 break;
3678 else
3680 has_other = true;
3681 if (has_value)
3682 break;
3686 if (has_value && has_other)
3688 for (node = *nodep; node; node = node->next)
3690 if (GET_CODE (node->loc) == VALUE)
3692 decl_or_value dv = dv_from_value (node->loc);
3693 void **slot = NULL;
3695 if (shared_hash_shared (dst->vars))
3696 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
3697 if (!slot)
3698 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
3699 INSERT);
3700 if (!*slot)
3702 variable var = (variable) pool_alloc (onepart_pool
3703 (ONEPART_VALUE));
3704 var->dv = dv;
3705 var->refcount = 1;
3706 var->n_var_parts = 1;
3707 var->onepart = ONEPART_VALUE;
3708 var->in_changed_variables = false;
3709 var->var_part[0].loc_chain = NULL;
3710 var->var_part[0].cur_loc = NULL;
3711 VAR_LOC_1PAUX (var) = NULL;
3712 *slot = var;
3715 VALUE_RECURSED_INTO (node->loc) = true;
3719 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3720 gcc_assert (*dstslot == dvar);
3721 canonicalize_values_star (dstslot, dst);
3722 gcc_checking_assert (dstslot
3723 == shared_hash_find_slot_noinsert_1 (dst->vars,
3724 dv, dvhash));
3725 dvar = (variable)*dstslot;
3729 if (!onepart_variable_different_p (dvar, s2var))
3731 variable_htab_free (dvar);
3732 *dstslot = dvar = s2var;
3733 dvar->refcount++;
3735 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
3737 variable_htab_free (dvar);
3738 *dstslot = dvar = s1var;
3739 dvar->refcount++;
3740 dst_can_be_shared = false;
3742 else
3743 dst_can_be_shared = false;
3745 return 1;
3748 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
3749 multi-part variable. Unions of multi-part variables and
3750 intersections of one-part ones will be handled in
3751 variable_merge_over_cur(). */
3753 static int
3754 variable_merge_over_src (variable s2var, struct dfset_merge *dsm)
3756 dataflow_set *dst = dsm->dst;
3757 decl_or_value dv = s2var->dv;
3759 if (!s2var->onepart)
3761 void **dstp = shared_hash_find_slot (dst->vars, dv);
3762 *dstp = s2var;
3763 s2var->refcount++;
3764 return 1;
3767 dsm->src_onepart_cnt++;
3768 return 1;
3771 /* Combine dataflow set information from SRC2 into DST, using PDST
3772 to carry over information across passes. */
3774 static void
3775 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
3777 dataflow_set cur = *dst;
3778 dataflow_set *src1 = &cur;
3779 struct dfset_merge dsm;
3780 int i;
3781 size_t src1_elems, src2_elems;
3782 htab_iterator hi;
3783 variable var;
3785 src1_elems = htab_elements (shared_hash_htab (src1->vars));
3786 src2_elems = htab_elements (shared_hash_htab (src2->vars));
3787 dataflow_set_init (dst);
3788 dst->stack_adjust = cur.stack_adjust;
3789 shared_hash_destroy (dst->vars);
3790 dst->vars = (shared_hash) pool_alloc (shared_hash_pool);
3791 dst->vars->refcount = 1;
3792 dst->vars->htab
3793 = htab_create (MAX (src1_elems, src2_elems), variable_htab_hash,
3794 variable_htab_eq, variable_htab_free);
3796 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3797 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
3799 dsm.dst = dst;
3800 dsm.src = src2;
3801 dsm.cur = src1;
3802 dsm.src_onepart_cnt = 0;
3804 FOR_EACH_HTAB_ELEMENT (shared_hash_htab (dsm.src->vars), var, variable, hi)
3805 variable_merge_over_src (var, &dsm);
3806 FOR_EACH_HTAB_ELEMENT (shared_hash_htab (dsm.cur->vars), var, variable, hi)
3807 variable_merge_over_cur (var, &dsm);
3809 if (dsm.src_onepart_cnt)
3810 dst_can_be_shared = false;
3812 dataflow_set_destroy (src1);
3815 /* Mark register equivalences. */
3817 static void
3818 dataflow_set_equiv_regs (dataflow_set *set)
3820 int i;
3821 attrs list, *listp;
3823 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3825 rtx canon[NUM_MACHINE_MODES];
3827 /* If the list is empty or one entry, no need to canonicalize
3828 anything. */
3829 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
3830 continue;
3832 memset (canon, 0, sizeof (canon));
3834 for (list = set->regs[i]; list; list = list->next)
3835 if (list->offset == 0 && dv_is_value_p (list->dv))
3837 rtx val = dv_as_value (list->dv);
3838 rtx *cvalp = &canon[(int)GET_MODE (val)];
3839 rtx cval = *cvalp;
3841 if (canon_value_cmp (val, cval))
3842 *cvalp = val;
3845 for (list = set->regs[i]; list; list = list->next)
3846 if (list->offset == 0 && dv_onepart_p (list->dv))
3848 rtx cval = canon[(int)GET_MODE (list->loc)];
3850 if (!cval)
3851 continue;
3853 if (dv_is_value_p (list->dv))
3855 rtx val = dv_as_value (list->dv);
3857 if (val == cval)
3858 continue;
3860 VALUE_RECURSED_INTO (val) = true;
3861 set_variable_part (set, val, dv_from_value (cval), 0,
3862 VAR_INIT_STATUS_INITIALIZED,
3863 NULL, NO_INSERT);
3866 VALUE_RECURSED_INTO (cval) = true;
3867 set_variable_part (set, cval, list->dv, 0,
3868 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
3871 for (listp = &set->regs[i]; (list = *listp);
3872 listp = list ? &list->next : listp)
3873 if (list->offset == 0 && dv_onepart_p (list->dv))
3875 rtx cval = canon[(int)GET_MODE (list->loc)];
3876 void **slot;
3878 if (!cval)
3879 continue;
3881 if (dv_is_value_p (list->dv))
3883 rtx val = dv_as_value (list->dv);
3884 if (!VALUE_RECURSED_INTO (val))
3885 continue;
3888 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
3889 canonicalize_values_star (slot, set);
3890 if (*listp != list)
3891 list = NULL;
3896 /* Remove any redundant values in the location list of VAR, which must
3897 be unshared and 1-part. */
3899 static void
3900 remove_duplicate_values (variable var)
3902 location_chain node, *nodep;
3904 gcc_assert (var->onepart);
3905 gcc_assert (var->n_var_parts == 1);
3906 gcc_assert (var->refcount == 1);
3908 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
3910 if (GET_CODE (node->loc) == VALUE)
3912 if (VALUE_RECURSED_INTO (node->loc))
3914 /* Remove duplicate value node. */
3915 *nodep = node->next;
3916 pool_free (loc_chain_pool, node);
3917 continue;
3919 else
3920 VALUE_RECURSED_INTO (node->loc) = true;
3922 nodep = &node->next;
3925 for (node = var->var_part[0].loc_chain; node; node = node->next)
3926 if (GET_CODE (node->loc) == VALUE)
3928 gcc_assert (VALUE_RECURSED_INTO (node->loc));
3929 VALUE_RECURSED_INTO (node->loc) = false;
3934 /* Hash table iteration argument passed to variable_post_merge. */
3935 struct dfset_post_merge
3937 /* The new input set for the current block. */
3938 dataflow_set *set;
3939 /* Pointer to the permanent input set for the current block, or
3940 NULL. */
3941 dataflow_set **permp;
3944 /* Create values for incoming expressions associated with one-part
3945 variables that don't have value numbers for them. */
3947 static int
3948 variable_post_merge_new_vals (void **slot, void *info)
3950 struct dfset_post_merge *dfpm = (struct dfset_post_merge *)info;
3951 dataflow_set *set = dfpm->set;
3952 variable var = (variable)*slot;
3953 location_chain node;
3955 if (!var->onepart || !var->n_var_parts)
3956 return 1;
3958 gcc_assert (var->n_var_parts == 1);
3960 if (dv_is_decl_p (var->dv))
3962 bool check_dupes = false;
3964 restart:
3965 for (node = var->var_part[0].loc_chain; node; node = node->next)
3967 if (GET_CODE (node->loc) == VALUE)
3968 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
3969 else if (GET_CODE (node->loc) == REG)
3971 attrs att, *attp, *curp = NULL;
3973 if (var->refcount != 1)
3975 slot = unshare_variable (set, slot, var,
3976 VAR_INIT_STATUS_INITIALIZED);
3977 var = (variable)*slot;
3978 goto restart;
3981 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
3982 attp = &att->next)
3983 if (att->offset == 0
3984 && GET_MODE (att->loc) == GET_MODE (node->loc))
3986 if (dv_is_value_p (att->dv))
3988 rtx cval = dv_as_value (att->dv);
3989 node->loc = cval;
3990 check_dupes = true;
3991 break;
3993 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
3994 curp = attp;
3997 if (!curp)
3999 curp = attp;
4000 while (*curp)
4001 if ((*curp)->offset == 0
4002 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
4003 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
4004 break;
4005 else
4006 curp = &(*curp)->next;
4007 gcc_assert (*curp);
4010 if (!att)
4012 decl_or_value cdv;
4013 rtx cval;
4015 if (!*dfpm->permp)
4017 *dfpm->permp = XNEW (dataflow_set);
4018 dataflow_set_init (*dfpm->permp);
4021 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
4022 att; att = att->next)
4023 if (GET_MODE (att->loc) == GET_MODE (node->loc))
4025 gcc_assert (att->offset == 0
4026 && dv_is_value_p (att->dv));
4027 val_reset (set, att->dv);
4028 break;
4031 if (att)
4033 cdv = att->dv;
4034 cval = dv_as_value (cdv);
4036 else
4038 /* Create a unique value to hold this register,
4039 that ought to be found and reused in
4040 subsequent rounds. */
4041 cselib_val *v;
4042 gcc_assert (!cselib_lookup (node->loc,
4043 GET_MODE (node->loc), 0,
4044 VOIDmode));
4045 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
4046 VOIDmode);
4047 cselib_preserve_value (v);
4048 cselib_invalidate_rtx (node->loc);
4049 cval = v->val_rtx;
4050 cdv = dv_from_value (cval);
4051 if (dump_file)
4052 fprintf (dump_file,
4053 "Created new value %u:%u for reg %i\n",
4054 v->uid, v->hash, REGNO (node->loc));
4057 var_reg_decl_set (*dfpm->permp, node->loc,
4058 VAR_INIT_STATUS_INITIALIZED,
4059 cdv, 0, NULL, INSERT);
4061 node->loc = cval;
4062 check_dupes = true;
4065 /* Remove attribute referring to the decl, which now
4066 uses the value for the register, already existing or
4067 to be added when we bring perm in. */
4068 att = *curp;
4069 *curp = att->next;
4070 pool_free (attrs_pool, att);
4074 if (check_dupes)
4075 remove_duplicate_values (var);
4078 return 1;
4081 /* Reset values in the permanent set that are not associated with the
4082 chosen expression. */
4084 static int
4085 variable_post_merge_perm_vals (void **pslot, void *info)
4087 struct dfset_post_merge *dfpm = (struct dfset_post_merge *)info;
4088 dataflow_set *set = dfpm->set;
4089 variable pvar = (variable)*pslot, var;
4090 location_chain pnode;
4091 decl_or_value dv;
4092 attrs att;
4094 gcc_assert (dv_is_value_p (pvar->dv)
4095 && pvar->n_var_parts == 1);
4096 pnode = pvar->var_part[0].loc_chain;
4097 gcc_assert (pnode
4098 && !pnode->next
4099 && REG_P (pnode->loc));
4101 dv = pvar->dv;
4103 var = shared_hash_find (set->vars, dv);
4104 if (var)
4106 /* Although variable_post_merge_new_vals may have made decls
4107 non-star-canonical, values that pre-existed in canonical form
4108 remain canonical, and newly-created values reference a single
4109 REG, so they are canonical as well. Since VAR has the
4110 location list for a VALUE, using find_loc_in_1pdv for it is
4111 fine, since VALUEs don't map back to DECLs. */
4112 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4113 return 1;
4114 val_reset (set, dv);
4117 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4118 if (att->offset == 0
4119 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4120 && dv_is_value_p (att->dv))
4121 break;
4123 /* If there is a value associated with this register already, create
4124 an equivalence. */
4125 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4127 rtx cval = dv_as_value (att->dv);
4128 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4129 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4130 NULL, INSERT);
4132 else if (!att)
4134 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4135 dv, 0, pnode->loc);
4136 variable_union (pvar, set);
4139 return 1;
4142 /* Just checking stuff and registering register attributes for
4143 now. */
4145 static void
4146 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4148 struct dfset_post_merge dfpm;
4150 dfpm.set = set;
4151 dfpm.permp = permp;
4153 htab_traverse (shared_hash_htab (set->vars), variable_post_merge_new_vals,
4154 &dfpm);
4155 if (*permp)
4156 htab_traverse (shared_hash_htab ((*permp)->vars),
4157 variable_post_merge_perm_vals, &dfpm);
4158 htab_traverse (shared_hash_htab (set->vars), canonicalize_values_star, set);
4159 htab_traverse (shared_hash_htab (set->vars), canonicalize_vars_star, set);
4162 /* Return a node whose loc is a MEM that refers to EXPR in the
4163 location list of a one-part variable or value VAR, or in that of
4164 any values recursively mentioned in the location lists. */
4166 static location_chain
4167 find_mem_expr_in_1pdv (tree expr, rtx val, htab_t vars)
4169 location_chain node;
4170 decl_or_value dv;
4171 variable var;
4172 location_chain where = NULL;
4174 if (!val)
4175 return NULL;
4177 gcc_assert (GET_CODE (val) == VALUE
4178 && !VALUE_RECURSED_INTO (val));
4180 dv = dv_from_value (val);
4181 var = (variable) htab_find_with_hash (vars, dv, dv_htab_hash (dv));
4183 if (!var)
4184 return NULL;
4186 gcc_assert (var->onepart);
4188 if (!var->n_var_parts)
4189 return NULL;
4191 VALUE_RECURSED_INTO (val) = true;
4193 for (node = var->var_part[0].loc_chain; node; node = node->next)
4194 if (MEM_P (node->loc)
4195 && MEM_EXPR (node->loc) == expr
4196 && INT_MEM_OFFSET (node->loc) == 0)
4198 where = node;
4199 break;
4201 else if (GET_CODE (node->loc) == VALUE
4202 && !VALUE_RECURSED_INTO (node->loc)
4203 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4204 break;
4206 VALUE_RECURSED_INTO (val) = false;
4208 return where;
4211 /* Return TRUE if the value of MEM may vary across a call. */
4213 static bool
4214 mem_dies_at_call (rtx mem)
4216 tree expr = MEM_EXPR (mem);
4217 tree decl;
4219 if (!expr)
4220 return true;
4222 decl = get_base_address (expr);
4224 if (!decl)
4225 return true;
4227 if (!DECL_P (decl))
4228 return true;
4230 return (may_be_aliased (decl)
4231 || (!TREE_READONLY (decl) && is_global_var (decl)));
4234 /* Remove all MEMs from the location list of a hash table entry for a
4235 one-part variable, except those whose MEM attributes map back to
4236 the variable itself, directly or within a VALUE. */
4238 static int
4239 dataflow_set_preserve_mem_locs (void **slot, void *data)
4241 dataflow_set *set = (dataflow_set *) data;
4242 variable var = (variable) *slot;
4244 if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
4246 tree decl = dv_as_decl (var->dv);
4247 location_chain loc, *locp;
4248 bool changed = false;
4250 if (!var->n_var_parts)
4251 return 1;
4253 gcc_assert (var->n_var_parts == 1);
4255 if (shared_var_p (var, set->vars))
4257 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4259 /* We want to remove dying MEMs that doesn't refer to DECL. */
4260 if (GET_CODE (loc->loc) == MEM
4261 && (MEM_EXPR (loc->loc) != decl
4262 || INT_MEM_OFFSET (loc->loc) != 0)
4263 && !mem_dies_at_call (loc->loc))
4264 break;
4265 /* We want to move here MEMs that do refer to DECL. */
4266 else if (GET_CODE (loc->loc) == VALUE
4267 && find_mem_expr_in_1pdv (decl, loc->loc,
4268 shared_hash_htab (set->vars)))
4269 break;
4272 if (!loc)
4273 return 1;
4275 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4276 var = (variable)*slot;
4277 gcc_assert (var->n_var_parts == 1);
4280 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4281 loc; loc = *locp)
4283 rtx old_loc = loc->loc;
4284 if (GET_CODE (old_loc) == VALUE)
4286 location_chain mem_node
4287 = find_mem_expr_in_1pdv (decl, loc->loc,
4288 shared_hash_htab (set->vars));
4290 /* ??? This picks up only one out of multiple MEMs that
4291 refer to the same variable. Do we ever need to be
4292 concerned about dealing with more than one, or, given
4293 that they should all map to the same variable
4294 location, their addresses will have been merged and
4295 they will be regarded as equivalent? */
4296 if (mem_node)
4298 loc->loc = mem_node->loc;
4299 loc->set_src = mem_node->set_src;
4300 loc->init = MIN (loc->init, mem_node->init);
4304 if (GET_CODE (loc->loc) != MEM
4305 || (MEM_EXPR (loc->loc) == decl
4306 && INT_MEM_OFFSET (loc->loc) == 0)
4307 || !mem_dies_at_call (loc->loc))
4309 if (old_loc != loc->loc && emit_notes)
4311 if (old_loc == var->var_part[0].cur_loc)
4313 changed = true;
4314 var->var_part[0].cur_loc = NULL;
4317 locp = &loc->next;
4318 continue;
4321 if (emit_notes)
4323 if (old_loc == var->var_part[0].cur_loc)
4325 changed = true;
4326 var->var_part[0].cur_loc = NULL;
4329 *locp = loc->next;
4330 pool_free (loc_chain_pool, loc);
4333 if (!var->var_part[0].loc_chain)
4335 var->n_var_parts--;
4336 changed = true;
4338 if (changed)
4339 variable_was_changed (var, set);
4342 return 1;
4345 /* Remove all MEMs from the location list of a hash table entry for a
4346 value. */
4348 static int
4349 dataflow_set_remove_mem_locs (void **slot, void *data)
4351 dataflow_set *set = (dataflow_set *) data;
4352 variable var = (variable) *slot;
4354 if (var->onepart == ONEPART_VALUE)
4356 location_chain loc, *locp;
4357 bool changed = false;
4358 rtx cur_loc;
4360 gcc_assert (var->n_var_parts == 1);
4362 if (shared_var_p (var, set->vars))
4364 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4365 if (GET_CODE (loc->loc) == MEM
4366 && mem_dies_at_call (loc->loc))
4367 break;
4369 if (!loc)
4370 return 1;
4372 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4373 var = (variable)*slot;
4374 gcc_assert (var->n_var_parts == 1);
4377 if (VAR_LOC_1PAUX (var))
4378 cur_loc = VAR_LOC_FROM (var);
4379 else
4380 cur_loc = var->var_part[0].cur_loc;
4382 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4383 loc; loc = *locp)
4385 if (GET_CODE (loc->loc) != MEM
4386 || !mem_dies_at_call (loc->loc))
4388 locp = &loc->next;
4389 continue;
4392 *locp = loc->next;
4393 /* If we have deleted the location which was last emitted
4394 we have to emit new location so add the variable to set
4395 of changed variables. */
4396 if (cur_loc == loc->loc)
4398 changed = true;
4399 var->var_part[0].cur_loc = NULL;
4400 if (VAR_LOC_1PAUX (var))
4401 VAR_LOC_FROM (var) = NULL;
4403 pool_free (loc_chain_pool, loc);
4406 if (!var->var_part[0].loc_chain)
4408 var->n_var_parts--;
4409 changed = true;
4411 if (changed)
4412 variable_was_changed (var, set);
4415 return 1;
4418 /* Remove all variable-location information about call-clobbered
4419 registers, as well as associations between MEMs and VALUEs. */
4421 static void
4422 dataflow_set_clear_at_call (dataflow_set *set)
4424 int r;
4426 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
4427 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, r))
4428 var_regno_delete (set, r);
4430 if (MAY_HAVE_DEBUG_INSNS)
4432 set->traversed_vars = set->vars;
4433 htab_traverse (shared_hash_htab (set->vars),
4434 dataflow_set_preserve_mem_locs, set);
4435 set->traversed_vars = set->vars;
4436 htab_traverse (shared_hash_htab (set->vars), dataflow_set_remove_mem_locs,
4437 set);
4438 set->traversed_vars = NULL;
4442 static bool
4443 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4445 location_chain lc1, lc2;
4447 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4449 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4451 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4453 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4454 break;
4456 if (rtx_equal_p (lc1->loc, lc2->loc))
4457 break;
4459 if (!lc2)
4460 return true;
4462 return false;
4465 /* Return true if one-part variables VAR1 and VAR2 are different.
4466 They must be in canonical order. */
4468 static bool
4469 onepart_variable_different_p (variable var1, variable var2)
4471 location_chain lc1, lc2;
4473 if (var1 == var2)
4474 return false;
4476 gcc_assert (var1->n_var_parts == 1
4477 && var2->n_var_parts == 1);
4479 lc1 = var1->var_part[0].loc_chain;
4480 lc2 = var2->var_part[0].loc_chain;
4482 gcc_assert (lc1 && lc2);
4484 while (lc1 && lc2)
4486 if (loc_cmp (lc1->loc, lc2->loc))
4487 return true;
4488 lc1 = lc1->next;
4489 lc2 = lc2->next;
4492 return lc1 != lc2;
4495 /* Return true if variables VAR1 and VAR2 are different. */
4497 static bool
4498 variable_different_p (variable var1, variable var2)
4500 int i;
4502 if (var1 == var2)
4503 return false;
4505 if (var1->onepart != var2->onepart)
4506 return true;
4508 if (var1->n_var_parts != var2->n_var_parts)
4509 return true;
4511 if (var1->onepart && var1->n_var_parts)
4513 gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
4514 && var1->n_var_parts == 1);
4515 /* One-part values have locations in a canonical order. */
4516 return onepart_variable_different_p (var1, var2);
4519 for (i = 0; i < var1->n_var_parts; i++)
4521 if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
4522 return true;
4523 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
4524 return true;
4525 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
4526 return true;
4528 return false;
4531 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
4533 static bool
4534 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
4536 htab_iterator hi;
4537 variable var1;
4539 if (old_set->vars == new_set->vars)
4540 return false;
4542 if (htab_elements (shared_hash_htab (old_set->vars))
4543 != htab_elements (shared_hash_htab (new_set->vars)))
4544 return true;
4546 FOR_EACH_HTAB_ELEMENT (shared_hash_htab (old_set->vars), var1, variable, hi)
4548 htab_t htab = shared_hash_htab (new_set->vars);
4549 variable var2 = (variable) htab_find_with_hash (htab, var1->dv,
4550 dv_htab_hash (var1->dv));
4551 if (!var2)
4553 if (dump_file && (dump_flags & TDF_DETAILS))
4555 fprintf (dump_file, "dataflow difference found: removal of:\n");
4556 dump_var (var1);
4558 return true;
4561 if (variable_different_p (var1, var2))
4563 if (dump_file && (dump_flags & TDF_DETAILS))
4565 fprintf (dump_file, "dataflow difference found: "
4566 "old and new follow:\n");
4567 dump_var (var1);
4568 dump_var (var2);
4570 return true;
4574 /* No need to traverse the second hashtab, if both have the same number
4575 of elements and the second one had all entries found in the first one,
4576 then it can't have any extra entries. */
4577 return false;
4580 /* Free the contents of dataflow set SET. */
4582 static void
4583 dataflow_set_destroy (dataflow_set *set)
4585 int i;
4587 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4588 attrs_list_clear (&set->regs[i]);
4590 shared_hash_destroy (set->vars);
4591 set->vars = NULL;
4594 /* Return true if RTL X contains a SYMBOL_REF. */
4596 static bool
4597 contains_symbol_ref (rtx x)
4599 const char *fmt;
4600 RTX_CODE code;
4601 int i;
4603 if (!x)
4604 return false;
4606 code = GET_CODE (x);
4607 if (code == SYMBOL_REF)
4608 return true;
4610 fmt = GET_RTX_FORMAT (code);
4611 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4613 if (fmt[i] == 'e')
4615 if (contains_symbol_ref (XEXP (x, i)))
4616 return true;
4618 else if (fmt[i] == 'E')
4620 int j;
4621 for (j = 0; j < XVECLEN (x, i); j++)
4622 if (contains_symbol_ref (XVECEXP (x, i, j)))
4623 return true;
4627 return false;
4630 /* Shall EXPR be tracked? */
4632 static bool
4633 track_expr_p (tree expr, bool need_rtl)
4635 rtx decl_rtl;
4636 tree realdecl;
4638 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
4639 return DECL_RTL_SET_P (expr);
4641 /* If EXPR is not a parameter or a variable do not track it. */
4642 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
4643 return 0;
4645 /* It also must have a name... */
4646 if (!DECL_NAME (expr) && need_rtl)
4647 return 0;
4649 /* ... and a RTL assigned to it. */
4650 decl_rtl = DECL_RTL_IF_SET (expr);
4651 if (!decl_rtl && need_rtl)
4652 return 0;
4654 /* If this expression is really a debug alias of some other declaration, we
4655 don't need to track this expression if the ultimate declaration is
4656 ignored. */
4657 realdecl = expr;
4658 if (DECL_DEBUG_EXPR_IS_FROM (realdecl))
4660 realdecl = DECL_DEBUG_EXPR (realdecl);
4661 if (realdecl == NULL_TREE)
4662 realdecl = expr;
4663 else if (!DECL_P (realdecl))
4665 if (handled_component_p (realdecl))
4667 HOST_WIDE_INT bitsize, bitpos, maxsize;
4668 tree innerdecl
4669 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
4670 &maxsize);
4671 if (!DECL_P (innerdecl)
4672 || DECL_IGNORED_P (innerdecl)
4673 || TREE_STATIC (innerdecl)
4674 || bitsize <= 0
4675 || bitpos + bitsize > 256
4676 || bitsize != maxsize)
4677 return 0;
4678 else
4679 realdecl = expr;
4681 else
4682 return 0;
4686 /* Do not track EXPR if REALDECL it should be ignored for debugging
4687 purposes. */
4688 if (DECL_IGNORED_P (realdecl))
4689 return 0;
4691 /* Do not track global variables until we are able to emit correct location
4692 list for them. */
4693 if (TREE_STATIC (realdecl))
4694 return 0;
4696 /* When the EXPR is a DECL for alias of some variable (see example)
4697 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
4698 DECL_RTL contains SYMBOL_REF.
4700 Example:
4701 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
4702 char **_dl_argv;
4704 if (decl_rtl && MEM_P (decl_rtl)
4705 && contains_symbol_ref (XEXP (decl_rtl, 0)))
4706 return 0;
4708 /* If RTX is a memory it should not be very large (because it would be
4709 an array or struct). */
4710 if (decl_rtl && MEM_P (decl_rtl))
4712 /* Do not track structures and arrays. */
4713 if (GET_MODE (decl_rtl) == BLKmode
4714 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
4715 return 0;
4716 if (MEM_SIZE_KNOWN_P (decl_rtl)
4717 && MEM_SIZE (decl_rtl) > MAX_VAR_PARTS)
4718 return 0;
4721 DECL_CHANGED (expr) = 0;
4722 DECL_CHANGED (realdecl) = 0;
4723 return 1;
4726 /* Determine whether a given LOC refers to the same variable part as
4727 EXPR+OFFSET. */
4729 static bool
4730 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
4732 tree expr2;
4733 HOST_WIDE_INT offset2;
4735 if (! DECL_P (expr))
4736 return false;
4738 if (REG_P (loc))
4740 expr2 = REG_EXPR (loc);
4741 offset2 = REG_OFFSET (loc);
4743 else if (MEM_P (loc))
4745 expr2 = MEM_EXPR (loc);
4746 offset2 = INT_MEM_OFFSET (loc);
4748 else
4749 return false;
4751 if (! expr2 || ! DECL_P (expr2))
4752 return false;
4754 expr = var_debug_decl (expr);
4755 expr2 = var_debug_decl (expr2);
4757 return (expr == expr2 && offset == offset2);
4760 /* LOC is a REG or MEM that we would like to track if possible.
4761 If EXPR is null, we don't know what expression LOC refers to,
4762 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
4763 LOC is an lvalue register.
4765 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
4766 is something we can track. When returning true, store the mode of
4767 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
4768 from EXPR in *OFFSET_OUT (if nonnull). */
4770 static bool
4771 track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
4772 enum machine_mode *mode_out, HOST_WIDE_INT *offset_out)
4774 enum machine_mode mode;
4776 if (expr == NULL || !track_expr_p (expr, true))
4777 return false;
4779 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
4780 whole subreg, but only the old inner part is really relevant. */
4781 mode = GET_MODE (loc);
4782 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
4784 enum machine_mode pseudo_mode;
4786 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
4787 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (pseudo_mode))
4789 offset += byte_lowpart_offset (pseudo_mode, mode);
4790 mode = pseudo_mode;
4794 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
4795 Do the same if we are storing to a register and EXPR occupies
4796 the whole of register LOC; in that case, the whole of EXPR is
4797 being changed. We exclude complex modes from the second case
4798 because the real and imaginary parts are represented as separate
4799 pseudo registers, even if the whole complex value fits into one
4800 hard register. */
4801 if ((GET_MODE_SIZE (mode) > GET_MODE_SIZE (DECL_MODE (expr))
4802 || (store_reg_p
4803 && !COMPLEX_MODE_P (DECL_MODE (expr))
4804 && hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
4805 && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
4807 mode = DECL_MODE (expr);
4808 offset = 0;
4811 if (offset < 0 || offset >= MAX_VAR_PARTS)
4812 return false;
4814 if (mode_out)
4815 *mode_out = mode;
4816 if (offset_out)
4817 *offset_out = offset;
4818 return true;
4821 /* Return the MODE lowpart of LOC, or null if LOC is not something we
4822 want to track. When returning nonnull, make sure that the attributes
4823 on the returned value are updated. */
4825 static rtx
4826 var_lowpart (enum machine_mode mode, rtx loc)
4828 unsigned int offset, reg_offset, regno;
4830 if (!REG_P (loc) && !MEM_P (loc))
4831 return NULL;
4833 if (GET_MODE (loc) == mode)
4834 return loc;
4836 offset = byte_lowpart_offset (mode, GET_MODE (loc));
4838 if (MEM_P (loc))
4839 return adjust_address_nv (loc, mode, offset);
4841 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
4842 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
4843 reg_offset, mode);
4844 return gen_rtx_REG_offset (loc, mode, regno, offset);
4847 /* Carry information about uses and stores while walking rtx. */
4849 struct count_use_info
4851 /* The insn where the RTX is. */
4852 rtx insn;
4854 /* The basic block where insn is. */
4855 basic_block bb;
4857 /* The array of n_sets sets in the insn, as determined by cselib. */
4858 struct cselib_set *sets;
4859 int n_sets;
4861 /* True if we're counting stores, false otherwise. */
4862 bool store_p;
4865 /* Find a VALUE corresponding to X. */
4867 static inline cselib_val *
4868 find_use_val (rtx x, enum machine_mode mode, struct count_use_info *cui)
4870 int i;
4872 if (cui->sets)
4874 /* This is called after uses are set up and before stores are
4875 processed by cselib, so it's safe to look up srcs, but not
4876 dsts. So we look up expressions that appear in srcs or in
4877 dest expressions, but we search the sets array for dests of
4878 stores. */
4879 if (cui->store_p)
4881 /* Some targets represent memset and memcpy patterns
4882 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
4883 (set (mem:BLK ...) (const_int ...)) or
4884 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
4885 in that case, otherwise we end up with mode mismatches. */
4886 if (mode == BLKmode && MEM_P (x))
4887 return NULL;
4888 for (i = 0; i < cui->n_sets; i++)
4889 if (cui->sets[i].dest == x)
4890 return cui->sets[i].src_elt;
4892 else
4893 return cselib_lookup (x, mode, 0, VOIDmode);
4896 return NULL;
4899 /* Helper function to get mode of MEM's address. */
4901 static inline enum machine_mode
4902 get_address_mode (rtx mem)
4904 enum machine_mode mode = GET_MODE (XEXP (mem, 0));
4905 if (mode != VOIDmode)
4906 return mode;
4907 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
4910 /* Replace all registers and addresses in an expression with VALUE
4911 expressions that map back to them, unless the expression is a
4912 register. If no mapping is or can be performed, returns NULL. */
4914 static rtx
4915 replace_expr_with_values (rtx loc)
4917 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
4918 return NULL;
4919 else if (MEM_P (loc))
4921 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
4922 get_address_mode (loc), 0,
4923 GET_MODE (loc));
4924 if (addr)
4925 return replace_equiv_address_nv (loc, addr->val_rtx);
4926 else
4927 return NULL;
4929 else
4930 return cselib_subst_to_values (loc, VOIDmode);
4933 /* Return true if *X is a DEBUG_EXPR. Usable as an argument to
4934 for_each_rtx to tell whether there are any DEBUG_EXPRs within
4935 RTX. */
4937 static int
4938 rtx_debug_expr_p (rtx *x, void *data ATTRIBUTE_UNUSED)
4940 rtx loc = *x;
4942 return GET_CODE (loc) == DEBUG_EXPR;
4945 /* Determine what kind of micro operation to choose for a USE. Return
4946 MO_CLOBBER if no micro operation is to be generated. */
4948 static enum micro_operation_type
4949 use_type (rtx loc, struct count_use_info *cui, enum machine_mode *modep)
4951 tree expr;
4953 if (cui && cui->sets)
4955 if (GET_CODE (loc) == VAR_LOCATION)
4957 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
4959 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
4960 if (! VAR_LOC_UNKNOWN_P (ploc))
4962 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
4963 VOIDmode);
4965 /* ??? flag_float_store and volatile mems are never
4966 given values, but we could in theory use them for
4967 locations. */
4968 gcc_assert (val || 1);
4970 return MO_VAL_LOC;
4972 else
4973 return MO_CLOBBER;
4976 if (REG_P (loc) || MEM_P (loc))
4978 if (modep)
4979 *modep = GET_MODE (loc);
4980 if (cui->store_p)
4982 if (REG_P (loc)
4983 || (find_use_val (loc, GET_MODE (loc), cui)
4984 && cselib_lookup (XEXP (loc, 0),
4985 get_address_mode (loc), 0,
4986 GET_MODE (loc))))
4987 return MO_VAL_SET;
4989 else
4991 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
4993 if (val && !cselib_preserved_value_p (val))
4994 return MO_VAL_USE;
4999 if (REG_P (loc))
5001 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
5003 if (loc == cfa_base_rtx)
5004 return MO_CLOBBER;
5005 expr = REG_EXPR (loc);
5007 if (!expr)
5008 return MO_USE_NO_VAR;
5009 else if (target_for_debug_bind (var_debug_decl (expr)))
5010 return MO_CLOBBER;
5011 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
5012 false, modep, NULL))
5013 return MO_USE;
5014 else
5015 return MO_USE_NO_VAR;
5017 else if (MEM_P (loc))
5019 expr = MEM_EXPR (loc);
5021 if (!expr)
5022 return MO_CLOBBER;
5023 else if (target_for_debug_bind (var_debug_decl (expr)))
5024 return MO_CLOBBER;
5025 else if (track_loc_p (loc, expr, INT_MEM_OFFSET (loc),
5026 false, modep, NULL)
5027 /* Multi-part variables shouldn't refer to one-part
5028 variable names such as VALUEs (never happens) or
5029 DEBUG_EXPRs (only happens in the presence of debug
5030 insns). */
5031 && (!MAY_HAVE_DEBUG_INSNS
5032 || !for_each_rtx (&XEXP (loc, 0), rtx_debug_expr_p, NULL)))
5033 return MO_USE;
5034 else
5035 return MO_CLOBBER;
5038 return MO_CLOBBER;
5041 /* Log to OUT information about micro-operation MOPT involving X in
5042 INSN of BB. */
5044 static inline void
5045 log_op_type (rtx x, basic_block bb, rtx insn,
5046 enum micro_operation_type mopt, FILE *out)
5048 fprintf (out, "bb %i op %i insn %i %s ",
5049 bb->index, VEC_length (micro_operation, VTI (bb)->mos),
5050 INSN_UID (insn), micro_operation_type_name[mopt]);
5051 print_inline_rtx (out, x, 2);
5052 fputc ('\n', out);
5055 /* Tell whether the CONCAT used to holds a VALUE and its location
5056 needs value resolution, i.e., an attempt of mapping the location
5057 back to other incoming values. */
5058 #define VAL_NEEDS_RESOLUTION(x) \
5059 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5060 /* Whether the location in the CONCAT is a tracked expression, that
5061 should also be handled like a MO_USE. */
5062 #define VAL_HOLDS_TRACK_EXPR(x) \
5063 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5064 /* Whether the location in the CONCAT should be handled like a MO_COPY
5065 as well. */
5066 #define VAL_EXPR_IS_COPIED(x) \
5067 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5068 /* Whether the location in the CONCAT should be handled like a
5069 MO_CLOBBER as well. */
5070 #define VAL_EXPR_IS_CLOBBERED(x) \
5071 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5073 /* All preserved VALUEs. */
5074 static VEC (rtx, heap) *preserved_values;
5076 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5078 static void
5079 preserve_value (cselib_val *val)
5081 cselib_preserve_value (val);
5082 VEC_safe_push (rtx, heap, preserved_values, val->val_rtx);
5085 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5086 any rtxes not suitable for CONST use not replaced by VALUEs
5087 are discovered. */
5089 static int
5090 non_suitable_const (rtx *x, void *data ATTRIBUTE_UNUSED)
5092 if (*x == NULL_RTX)
5093 return 0;
5095 switch (GET_CODE (*x))
5097 case REG:
5098 case DEBUG_EXPR:
5099 case PC:
5100 case SCRATCH:
5101 case CC0:
5102 case ASM_INPUT:
5103 case ASM_OPERANDS:
5104 return 1;
5105 case MEM:
5106 return !MEM_READONLY_P (*x);
5107 default:
5108 return 0;
5112 /* Add uses (register and memory references) LOC which will be tracked
5113 to VTI (bb)->mos. INSN is instruction which the LOC is part of. */
5115 static int
5116 add_uses (rtx *ploc, void *data)
5118 rtx loc = *ploc;
5119 enum machine_mode mode = VOIDmode;
5120 struct count_use_info *cui = (struct count_use_info *)data;
5121 enum micro_operation_type type = use_type (loc, cui, &mode);
5123 if (type != MO_CLOBBER)
5125 basic_block bb = cui->bb;
5126 micro_operation mo;
5128 mo.type = type;
5129 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5130 mo.insn = cui->insn;
5132 if (type == MO_VAL_LOC)
5134 rtx oloc = loc;
5135 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5136 cselib_val *val;
5138 gcc_assert (cui->sets);
5140 if (MEM_P (vloc)
5141 && !REG_P (XEXP (vloc, 0))
5142 && !MEM_P (XEXP (vloc, 0)))
5144 rtx mloc = vloc;
5145 enum machine_mode address_mode = get_address_mode (mloc);
5146 cselib_val *val
5147 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5148 GET_MODE (mloc));
5150 if (val && !cselib_preserved_value_p (val))
5151 preserve_value (val);
5154 if (CONSTANT_P (vloc)
5155 && (GET_CODE (vloc) != CONST
5156 || for_each_rtx (&vloc, non_suitable_const, NULL)))
5157 /* For constants don't look up any value. */;
5158 else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
5159 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5161 enum machine_mode mode2;
5162 enum micro_operation_type type2;
5163 rtx nloc = NULL;
5164 bool resolvable = REG_P (vloc) || MEM_P (vloc);
5166 if (resolvable)
5167 nloc = replace_expr_with_values (vloc);
5169 if (nloc)
5171 oloc = shallow_copy_rtx (oloc);
5172 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5175 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5177 type2 = use_type (vloc, 0, &mode2);
5179 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5180 || type2 == MO_CLOBBER);
5182 if (type2 == MO_CLOBBER
5183 && !cselib_preserved_value_p (val))
5185 VAL_NEEDS_RESOLUTION (oloc) = resolvable;
5186 preserve_value (val);
5189 else if (!VAR_LOC_UNKNOWN_P (vloc))
5191 oloc = shallow_copy_rtx (oloc);
5192 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5195 mo.u.loc = oloc;
5197 else if (type == MO_VAL_USE)
5199 enum machine_mode mode2 = VOIDmode;
5200 enum micro_operation_type type2;
5201 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5202 rtx vloc, oloc = loc, nloc;
5204 gcc_assert (cui->sets);
5206 if (MEM_P (oloc)
5207 && !REG_P (XEXP (oloc, 0))
5208 && !MEM_P (XEXP (oloc, 0)))
5210 rtx mloc = oloc;
5211 enum machine_mode address_mode = get_address_mode (mloc);
5212 cselib_val *val
5213 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5214 GET_MODE (mloc));
5216 if (val && !cselib_preserved_value_p (val))
5217 preserve_value (val);
5220 type2 = use_type (loc, 0, &mode2);
5222 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5223 || type2 == MO_CLOBBER);
5225 if (type2 == MO_USE)
5226 vloc = var_lowpart (mode2, loc);
5227 else
5228 vloc = oloc;
5230 /* The loc of a MO_VAL_USE may have two forms:
5232 (concat val src): val is at src, a value-based
5233 representation.
5235 (concat (concat val use) src): same as above, with use as
5236 the MO_USE tracked value, if it differs from src.
5240 gcc_checking_assert (REG_P (loc) || MEM_P (loc));
5241 nloc = replace_expr_with_values (loc);
5242 if (!nloc)
5243 nloc = oloc;
5245 if (vloc != nloc)
5246 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5247 else
5248 oloc = val->val_rtx;
5250 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5252 if (type2 == MO_USE)
5253 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5254 if (!cselib_preserved_value_p (val))
5256 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5257 preserve_value (val);
5260 else
5261 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5263 if (dump_file && (dump_flags & TDF_DETAILS))
5264 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5265 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &mo);
5268 return 0;
5271 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5273 static void
5274 add_uses_1 (rtx *x, void *cui)
5276 for_each_rtx (x, add_uses, cui);
5279 /* This is the value used during expansion of locations. We want it
5280 to be unbounded, so that variables expanded deep in a recursion
5281 nest are fully evaluated, so that their values are cached
5282 correctly. We avoid recursion cycles through other means, and we
5283 don't unshare RTL, so excess complexity is not a problem. */
5284 #define EXPR_DEPTH (INT_MAX)
5285 /* We use this to keep too-complex expressions from being emitted as
5286 location notes, and then to debug information. Users can trade
5287 compile time for ridiculously complex expressions, although they're
5288 seldom useful, and they may often have to be discarded as not
5289 representable anyway. */
5290 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5292 /* Attempt to reverse the EXPR operation in the debug info and record
5293 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5294 no longer live we can express its value as VAL - 6. */
5296 static void
5297 reverse_op (rtx val, const_rtx expr, rtx insn)
5299 rtx src, arg, ret;
5300 cselib_val *v;
5301 enum rtx_code code;
5303 if (GET_CODE (expr) != SET)
5304 return;
5306 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5307 return;
5309 src = SET_SRC (expr);
5310 switch (GET_CODE (src))
5312 case PLUS:
5313 case MINUS:
5314 case XOR:
5315 case NOT:
5316 case NEG:
5317 if (!REG_P (XEXP (src, 0)))
5318 return;
5319 break;
5320 case SIGN_EXTEND:
5321 case ZERO_EXTEND:
5322 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5323 return;
5324 break;
5325 default:
5326 return;
5329 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5330 return;
5332 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5333 if (!v || !cselib_preserved_value_p (v))
5334 return;
5336 switch (GET_CODE (src))
5338 case NOT:
5339 case NEG:
5340 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5341 return;
5342 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5343 break;
5344 case SIGN_EXTEND:
5345 case ZERO_EXTEND:
5346 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5347 break;
5348 case XOR:
5349 code = XOR;
5350 goto binary;
5351 case PLUS:
5352 code = MINUS;
5353 goto binary;
5354 case MINUS:
5355 code = PLUS;
5356 goto binary;
5357 binary:
5358 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5359 return;
5360 arg = XEXP (src, 1);
5361 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5363 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5364 if (arg == NULL_RTX)
5365 return;
5366 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5367 return;
5369 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5370 if (ret == val)
5371 /* Ensure ret isn't VALUE itself (which can happen e.g. for
5372 (plus (reg1) (reg2)) when reg2 is known to be 0), as that
5373 breaks a lot of routines during var-tracking. */
5374 ret = gen_rtx_fmt_ee (PLUS, GET_MODE (val), val, const0_rtx);
5375 break;
5376 default:
5377 gcc_unreachable ();
5380 cselib_add_permanent_equiv (v, ret, insn);
5383 /* Add stores (register and memory references) LOC which will be tracked
5384 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5385 CUIP->insn is instruction which the LOC is part of. */
5387 static void
5388 add_stores (rtx loc, const_rtx expr, void *cuip)
5390 enum machine_mode mode = VOIDmode, mode2;
5391 struct count_use_info *cui = (struct count_use_info *)cuip;
5392 basic_block bb = cui->bb;
5393 micro_operation mo;
5394 rtx oloc = loc, nloc, src = NULL;
5395 enum micro_operation_type type = use_type (loc, cui, &mode);
5396 bool track_p = false;
5397 cselib_val *v;
5398 bool resolve, preserve;
5400 if (type == MO_CLOBBER)
5401 return;
5403 mode2 = mode;
5405 if (REG_P (loc))
5407 gcc_assert (loc != cfa_base_rtx);
5408 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5409 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5410 || GET_CODE (expr) == CLOBBER)
5412 mo.type = MO_CLOBBER;
5413 mo.u.loc = loc;
5414 if (GET_CODE (expr) == SET
5415 && SET_DEST (expr) == loc
5416 && !unsuitable_loc (SET_SRC (expr))
5417 && find_use_val (loc, mode, cui))
5419 gcc_checking_assert (type == MO_VAL_SET);
5420 mo.u.loc = gen_rtx_SET (VOIDmode, loc, SET_SRC (expr));
5423 else
5425 if (GET_CODE (expr) == SET
5426 && SET_DEST (expr) == loc
5427 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5428 src = var_lowpart (mode2, SET_SRC (expr));
5429 loc = var_lowpart (mode2, loc);
5431 if (src == NULL)
5433 mo.type = MO_SET;
5434 mo.u.loc = loc;
5436 else
5438 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5439 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5440 mo.type = MO_COPY;
5441 else
5442 mo.type = MO_SET;
5443 mo.u.loc = xexpr;
5446 mo.insn = cui->insn;
5448 else if (MEM_P (loc)
5449 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
5450 || cui->sets))
5452 if (MEM_P (loc) && type == MO_VAL_SET
5453 && !REG_P (XEXP (loc, 0))
5454 && !MEM_P (XEXP (loc, 0)))
5456 rtx mloc = loc;
5457 enum machine_mode address_mode = get_address_mode (mloc);
5458 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
5459 address_mode, 0,
5460 GET_MODE (mloc));
5462 if (val && !cselib_preserved_value_p (val))
5463 preserve_value (val);
5466 if (GET_CODE (expr) == CLOBBER || !track_p)
5468 mo.type = MO_CLOBBER;
5469 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
5471 else
5473 if (GET_CODE (expr) == SET
5474 && SET_DEST (expr) == loc
5475 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5476 src = var_lowpart (mode2, SET_SRC (expr));
5477 loc = var_lowpart (mode2, loc);
5479 if (src == NULL)
5481 mo.type = MO_SET;
5482 mo.u.loc = loc;
5484 else
5486 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5487 if (same_variable_part_p (SET_SRC (xexpr),
5488 MEM_EXPR (loc),
5489 INT_MEM_OFFSET (loc)))
5490 mo.type = MO_COPY;
5491 else
5492 mo.type = MO_SET;
5493 mo.u.loc = xexpr;
5496 mo.insn = cui->insn;
5498 else
5499 return;
5501 if (type != MO_VAL_SET)
5502 goto log_and_return;
5504 v = find_use_val (oloc, mode, cui);
5506 if (!v)
5507 goto log_and_return;
5509 resolve = preserve = !cselib_preserved_value_p (v);
5511 nloc = replace_expr_with_values (oloc);
5512 if (nloc)
5513 oloc = nloc;
5515 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
5517 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
5519 gcc_assert (oval != v);
5520 gcc_assert (REG_P (oloc) || MEM_P (oloc));
5522 if (!cselib_preserved_value_p (oval))
5524 micro_operation moa;
5526 preserve_value (oval);
5528 moa.type = MO_VAL_USE;
5529 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
5530 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
5531 moa.insn = cui->insn;
5533 if (dump_file && (dump_flags & TDF_DETAILS))
5534 log_op_type (moa.u.loc, cui->bb, cui->insn,
5535 moa.type, dump_file);
5536 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &moa);
5539 resolve = false;
5541 else if (resolve && GET_CODE (mo.u.loc) == SET)
5543 if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
5544 nloc = replace_expr_with_values (SET_SRC (expr));
5545 else
5546 nloc = NULL_RTX;
5548 /* Avoid the mode mismatch between oexpr and expr. */
5549 if (!nloc && mode != mode2)
5551 nloc = SET_SRC (expr);
5552 gcc_assert (oloc == SET_DEST (expr));
5555 if (nloc && nloc != SET_SRC (mo.u.loc))
5556 oloc = gen_rtx_SET (GET_MODE (mo.u.loc), oloc, nloc);
5557 else
5559 if (oloc == SET_DEST (mo.u.loc))
5560 /* No point in duplicating. */
5561 oloc = mo.u.loc;
5562 if (!REG_P (SET_SRC (mo.u.loc)))
5563 resolve = false;
5566 else if (!resolve)
5568 if (GET_CODE (mo.u.loc) == SET
5569 && oloc == SET_DEST (mo.u.loc))
5570 /* No point in duplicating. */
5571 oloc = mo.u.loc;
5573 else
5574 resolve = false;
5576 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
5578 if (mo.u.loc != oloc)
5579 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
5581 /* The loc of a MO_VAL_SET may have various forms:
5583 (concat val dst): dst now holds val
5585 (concat val (set dst src)): dst now holds val, copied from src
5587 (concat (concat val dstv) dst): dst now holds val; dstv is dst
5588 after replacing mems and non-top-level regs with values.
5590 (concat (concat val dstv) (set dst src)): dst now holds val,
5591 copied from src. dstv is a value-based representation of dst, if
5592 it differs from dst. If resolution is needed, src is a REG, and
5593 its mode is the same as that of val.
5595 (concat (concat val (set dstv srcv)) (set dst src)): src
5596 copied to dst, holding val. dstv and srcv are value-based
5597 representations of dst and src, respectively.
5601 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
5602 reverse_op (v->val_rtx, expr, cui->insn);
5604 mo.u.loc = loc;
5606 if (track_p)
5607 VAL_HOLDS_TRACK_EXPR (loc) = 1;
5608 if (preserve)
5610 VAL_NEEDS_RESOLUTION (loc) = resolve;
5611 preserve_value (v);
5613 if (mo.type == MO_CLOBBER)
5614 VAL_EXPR_IS_CLOBBERED (loc) = 1;
5615 if (mo.type == MO_COPY)
5616 VAL_EXPR_IS_COPIED (loc) = 1;
5618 mo.type = MO_VAL_SET;
5620 log_and_return:
5621 if (dump_file && (dump_flags & TDF_DETAILS))
5622 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5623 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &mo);
5626 /* Arguments to the call. */
5627 static rtx call_arguments;
5629 /* Compute call_arguments. */
5631 static void
5632 prepare_call_arguments (basic_block bb, rtx insn)
5634 rtx link, x;
5635 rtx prev, cur, next;
5636 rtx call = PATTERN (insn);
5637 rtx this_arg = NULL_RTX;
5638 tree type = NULL_TREE, t, fndecl = NULL_TREE;
5639 tree obj_type_ref = NULL_TREE;
5640 CUMULATIVE_ARGS args_so_far_v;
5641 cumulative_args_t args_so_far;
5643 memset (&args_so_far_v, 0, sizeof (args_so_far_v));
5644 args_so_far = pack_cumulative_args (&args_so_far_v);
5645 if (GET_CODE (call) == PARALLEL)
5646 call = XVECEXP (call, 0, 0);
5647 if (GET_CODE (call) == SET)
5648 call = SET_SRC (call);
5649 if (GET_CODE (call) == CALL && MEM_P (XEXP (call, 0)))
5651 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
5653 rtx symbol = XEXP (XEXP (call, 0), 0);
5654 if (SYMBOL_REF_DECL (symbol))
5655 fndecl = SYMBOL_REF_DECL (symbol);
5657 if (fndecl == NULL_TREE)
5658 fndecl = MEM_EXPR (XEXP (call, 0));
5659 if (fndecl
5660 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
5661 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
5662 fndecl = NULL_TREE;
5663 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
5664 type = TREE_TYPE (fndecl);
5665 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
5667 if (TREE_CODE (fndecl) == INDIRECT_REF
5668 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
5669 obj_type_ref = TREE_OPERAND (fndecl, 0);
5670 fndecl = NULL_TREE;
5672 if (type)
5674 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
5675 t = TREE_CHAIN (t))
5676 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
5677 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
5678 break;
5679 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
5680 type = NULL;
5681 else
5683 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
5684 link = CALL_INSN_FUNCTION_USAGE (insn);
5685 #ifndef PCC_STATIC_STRUCT_RETURN
5686 if (aggregate_value_p (TREE_TYPE (type), type)
5687 && targetm.calls.struct_value_rtx (type, 0) == 0)
5689 tree struct_addr = build_pointer_type (TREE_TYPE (type));
5690 enum machine_mode mode = TYPE_MODE (struct_addr);
5691 rtx reg;
5692 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
5693 nargs + 1);
5694 reg = targetm.calls.function_arg (args_so_far, mode,
5695 struct_addr, true);
5696 targetm.calls.function_arg_advance (args_so_far, mode,
5697 struct_addr, true);
5698 if (reg == NULL_RTX)
5700 for (; link; link = XEXP (link, 1))
5701 if (GET_CODE (XEXP (link, 0)) == USE
5702 && MEM_P (XEXP (XEXP (link, 0), 0)))
5704 link = XEXP (link, 1);
5705 break;
5709 else
5710 #endif
5711 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
5712 nargs);
5713 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
5715 enum machine_mode mode;
5716 t = TYPE_ARG_TYPES (type);
5717 mode = TYPE_MODE (TREE_VALUE (t));
5718 this_arg = targetm.calls.function_arg (args_so_far, mode,
5719 TREE_VALUE (t), true);
5720 if (this_arg && !REG_P (this_arg))
5721 this_arg = NULL_RTX;
5722 else if (this_arg == NULL_RTX)
5724 for (; link; link = XEXP (link, 1))
5725 if (GET_CODE (XEXP (link, 0)) == USE
5726 && MEM_P (XEXP (XEXP (link, 0), 0)))
5728 this_arg = XEXP (XEXP (link, 0), 0);
5729 break;
5736 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
5738 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
5739 if (GET_CODE (XEXP (link, 0)) == USE)
5741 rtx item = NULL_RTX;
5742 x = XEXP (XEXP (link, 0), 0);
5743 if (GET_MODE (link) == VOIDmode
5744 || GET_MODE (link) == BLKmode
5745 || (GET_MODE (link) != GET_MODE (x)
5746 && (GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
5747 || GET_MODE_CLASS (GET_MODE (x)) != MODE_INT)))
5748 /* Can't do anything for these, if the original type mode
5749 isn't known or can't be converted. */;
5750 else if (REG_P (x))
5752 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
5753 if (val && cselib_preserved_value_p (val))
5754 item = val->val_rtx;
5755 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT)
5757 enum machine_mode mode = GET_MODE (x);
5759 while ((mode = GET_MODE_WIDER_MODE (mode)) != VOIDmode
5760 && GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)
5762 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
5764 if (reg == NULL_RTX || !REG_P (reg))
5765 continue;
5766 val = cselib_lookup (reg, mode, 0, VOIDmode);
5767 if (val && cselib_preserved_value_p (val))
5769 item = val->val_rtx;
5770 break;
5775 else if (MEM_P (x))
5777 rtx mem = x;
5778 cselib_val *val;
5780 if (!frame_pointer_needed)
5782 struct adjust_mem_data amd;
5783 amd.mem_mode = VOIDmode;
5784 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
5785 amd.side_effects = NULL_RTX;
5786 amd.store = true;
5787 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
5788 &amd);
5789 gcc_assert (amd.side_effects == NULL_RTX);
5791 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
5792 if (val && cselib_preserved_value_p (val))
5793 item = val->val_rtx;
5794 else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT)
5796 /* For non-integer stack argument see also if they weren't
5797 initialized by integers. */
5798 enum machine_mode imode = int_mode_for_mode (GET_MODE (mem));
5799 if (imode != GET_MODE (mem) && imode != BLKmode)
5801 val = cselib_lookup (adjust_address_nv (mem, imode, 0),
5802 imode, 0, VOIDmode);
5803 if (val && cselib_preserved_value_p (val))
5804 item = lowpart_subreg (GET_MODE (x), val->val_rtx,
5805 imode);
5809 if (item)
5811 rtx x2 = x;
5812 if (GET_MODE (item) != GET_MODE (link))
5813 item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
5814 if (GET_MODE (x2) != GET_MODE (link))
5815 x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
5816 item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
5817 call_arguments
5818 = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
5820 if (t && t != void_list_node)
5822 tree argtype = TREE_VALUE (t);
5823 enum machine_mode mode = TYPE_MODE (argtype);
5824 rtx reg;
5825 if (pass_by_reference (&args_so_far_v, mode, argtype, true))
5827 argtype = build_pointer_type (argtype);
5828 mode = TYPE_MODE (argtype);
5830 reg = targetm.calls.function_arg (args_so_far, mode,
5831 argtype, true);
5832 if (TREE_CODE (argtype) == REFERENCE_TYPE
5833 && INTEGRAL_TYPE_P (TREE_TYPE (argtype))
5834 && reg
5835 && REG_P (reg)
5836 && GET_MODE (reg) == mode
5837 && GET_MODE_CLASS (mode) == MODE_INT
5838 && REG_P (x)
5839 && REGNO (x) == REGNO (reg)
5840 && GET_MODE (x) == mode
5841 && item)
5843 enum machine_mode indmode
5844 = TYPE_MODE (TREE_TYPE (argtype));
5845 rtx mem = gen_rtx_MEM (indmode, x);
5846 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
5847 if (val && cselib_preserved_value_p (val))
5849 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
5850 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
5851 call_arguments);
5853 else
5855 struct elt_loc_list *l;
5856 tree initial;
5858 /* Try harder, when passing address of a constant
5859 pool integer it can be easily read back. */
5860 item = XEXP (item, 1);
5861 if (GET_CODE (item) == SUBREG)
5862 item = SUBREG_REG (item);
5863 gcc_assert (GET_CODE (item) == VALUE);
5864 val = CSELIB_VAL_PTR (item);
5865 for (l = val->locs; l; l = l->next)
5866 if (GET_CODE (l->loc) == SYMBOL_REF
5867 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
5868 && SYMBOL_REF_DECL (l->loc)
5869 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
5871 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
5872 if (host_integerp (initial, 0))
5874 item = GEN_INT (tree_low_cst (initial, 0));
5875 item = gen_rtx_CONCAT (indmode, mem, item);
5876 call_arguments
5877 = gen_rtx_EXPR_LIST (VOIDmode, item,
5878 call_arguments);
5880 break;
5884 targetm.calls.function_arg_advance (args_so_far, mode,
5885 argtype, true);
5886 t = TREE_CHAIN (t);
5890 /* Add debug arguments. */
5891 if (fndecl
5892 && TREE_CODE (fndecl) == FUNCTION_DECL
5893 && DECL_HAS_DEBUG_ARGS_P (fndecl))
5895 VEC(tree, gc) **debug_args = decl_debug_args_lookup (fndecl);
5896 if (debug_args)
5898 unsigned int ix;
5899 tree param;
5900 for (ix = 0; VEC_iterate (tree, *debug_args, ix, param); ix += 2)
5902 rtx item;
5903 tree dtemp = VEC_index (tree, *debug_args, ix + 1);
5904 enum machine_mode mode = DECL_MODE (dtemp);
5905 item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
5906 item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
5907 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
5908 call_arguments);
5913 /* Reverse call_arguments chain. */
5914 prev = NULL_RTX;
5915 for (cur = call_arguments; cur; cur = next)
5917 next = XEXP (cur, 1);
5918 XEXP (cur, 1) = prev;
5919 prev = cur;
5921 call_arguments = prev;
5923 x = PATTERN (insn);
5924 if (GET_CODE (x) == PARALLEL)
5925 x = XVECEXP (x, 0, 0);
5926 if (GET_CODE (x) == SET)
5927 x = SET_SRC (x);
5928 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
5930 x = XEXP (XEXP (x, 0), 0);
5931 if (GET_CODE (x) == SYMBOL_REF)
5932 /* Don't record anything. */;
5933 else if (CONSTANT_P (x))
5935 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
5936 pc_rtx, x);
5937 call_arguments
5938 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
5940 else
5942 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
5943 if (val && cselib_preserved_value_p (val))
5945 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
5946 call_arguments
5947 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
5951 if (this_arg)
5953 enum machine_mode mode
5954 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
5955 rtx clobbered = gen_rtx_MEM (mode, this_arg);
5956 HOST_WIDE_INT token
5957 = tree_low_cst (OBJ_TYPE_REF_TOKEN (obj_type_ref), 0);
5958 if (token)
5959 clobbered = plus_constant (clobbered, token * GET_MODE_SIZE (mode));
5960 clobbered = gen_rtx_MEM (mode, clobbered);
5961 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
5962 call_arguments
5963 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
5967 /* Callback for cselib_record_sets_hook, that records as micro
5968 operations uses and stores in an insn after cselib_record_sets has
5969 analyzed the sets in an insn, but before it modifies the stored
5970 values in the internal tables, unless cselib_record_sets doesn't
5971 call it directly (perhaps because we're not doing cselib in the
5972 first place, in which case sets and n_sets will be 0). */
5974 static void
5975 add_with_sets (rtx insn, struct cselib_set *sets, int n_sets)
5977 basic_block bb = BLOCK_FOR_INSN (insn);
5978 int n1, n2;
5979 struct count_use_info cui;
5980 micro_operation *mos;
5982 cselib_hook_called = true;
5984 cui.insn = insn;
5985 cui.bb = bb;
5986 cui.sets = sets;
5987 cui.n_sets = n_sets;
5989 n1 = VEC_length (micro_operation, VTI (bb)->mos);
5990 cui.store_p = false;
5991 note_uses (&PATTERN (insn), add_uses_1, &cui);
5992 n2 = VEC_length (micro_operation, VTI (bb)->mos) - 1;
5993 mos = VEC_address (micro_operation, VTI (bb)->mos);
5995 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
5996 MO_VAL_LOC last. */
5997 while (n1 < n2)
5999 while (n1 < n2 && mos[n1].type == MO_USE)
6000 n1++;
6001 while (n1 < n2 && mos[n2].type != MO_USE)
6002 n2--;
6003 if (n1 < n2)
6005 micro_operation sw;
6007 sw = mos[n1];
6008 mos[n1] = mos[n2];
6009 mos[n2] = sw;
6013 n2 = VEC_length (micro_operation, VTI (bb)->mos) - 1;
6014 while (n1 < n2)
6016 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
6017 n1++;
6018 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
6019 n2--;
6020 if (n1 < n2)
6022 micro_operation sw;
6024 sw = mos[n1];
6025 mos[n1] = mos[n2];
6026 mos[n2] = sw;
6030 if (CALL_P (insn))
6032 micro_operation mo;
6034 mo.type = MO_CALL;
6035 mo.insn = insn;
6036 mo.u.loc = call_arguments;
6037 call_arguments = NULL_RTX;
6039 if (dump_file && (dump_flags & TDF_DETAILS))
6040 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
6041 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &mo);
6044 n1 = VEC_length (micro_operation, VTI (bb)->mos);
6045 /* This will record NEXT_INSN (insn), such that we can
6046 insert notes before it without worrying about any
6047 notes that MO_USEs might emit after the insn. */
6048 cui.store_p = true;
6049 note_stores (PATTERN (insn), add_stores, &cui);
6050 n2 = VEC_length (micro_operation, VTI (bb)->mos) - 1;
6051 mos = VEC_address (micro_operation, VTI (bb)->mos);
6053 /* Order the MO_VAL_USEs first (note_stores does nothing
6054 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6055 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6056 while (n1 < n2)
6058 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
6059 n1++;
6060 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
6061 n2--;
6062 if (n1 < n2)
6064 micro_operation sw;
6066 sw = mos[n1];
6067 mos[n1] = mos[n2];
6068 mos[n2] = sw;
6072 n2 = VEC_length (micro_operation, VTI (bb)->mos) - 1;
6073 while (n1 < n2)
6075 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
6076 n1++;
6077 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
6078 n2--;
6079 if (n1 < n2)
6081 micro_operation sw;
6083 sw = mos[n1];
6084 mos[n1] = mos[n2];
6085 mos[n2] = sw;
6090 static enum var_init_status
6091 find_src_status (dataflow_set *in, rtx src)
6093 tree decl = NULL_TREE;
6094 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
6096 if (! flag_var_tracking_uninit)
6097 status = VAR_INIT_STATUS_INITIALIZED;
6099 if (src && REG_P (src))
6100 decl = var_debug_decl (REG_EXPR (src));
6101 else if (src && MEM_P (src))
6102 decl = var_debug_decl (MEM_EXPR (src));
6104 if (src && decl)
6105 status = get_init_value (in, src, dv_from_decl (decl));
6107 return status;
6110 /* SRC is the source of an assignment. Use SET to try to find what
6111 was ultimately assigned to SRC. Return that value if known,
6112 otherwise return SRC itself. */
6114 static rtx
6115 find_src_set_src (dataflow_set *set, rtx src)
6117 tree decl = NULL_TREE; /* The variable being copied around. */
6118 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6119 variable var;
6120 location_chain nextp;
6121 int i;
6122 bool found;
6124 if (src && REG_P (src))
6125 decl = var_debug_decl (REG_EXPR (src));
6126 else if (src && MEM_P (src))
6127 decl = var_debug_decl (MEM_EXPR (src));
6129 if (src && decl)
6131 decl_or_value dv = dv_from_decl (decl);
6133 var = shared_hash_find (set->vars, dv);
6134 if (var)
6136 found = false;
6137 for (i = 0; i < var->n_var_parts && !found; i++)
6138 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6139 nextp = nextp->next)
6140 if (rtx_equal_p (nextp->loc, src))
6142 set_src = nextp->set_src;
6143 found = true;
6149 return set_src;
6152 /* Compute the changes of variable locations in the basic block BB. */
6154 static bool
6155 compute_bb_dataflow (basic_block bb)
6157 unsigned int i;
6158 micro_operation *mo;
6159 bool changed;
6160 dataflow_set old_out;
6161 dataflow_set *in = &VTI (bb)->in;
6162 dataflow_set *out = &VTI (bb)->out;
6164 dataflow_set_init (&old_out);
6165 dataflow_set_copy (&old_out, out);
6166 dataflow_set_copy (out, in);
6168 FOR_EACH_VEC_ELT (micro_operation, VTI (bb)->mos, i, mo)
6170 rtx insn = mo->insn;
6172 switch (mo->type)
6174 case MO_CALL:
6175 dataflow_set_clear_at_call (out);
6176 break;
6178 case MO_USE:
6180 rtx loc = mo->u.loc;
6182 if (REG_P (loc))
6183 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6184 else if (MEM_P (loc))
6185 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6187 break;
6189 case MO_VAL_LOC:
6191 rtx loc = mo->u.loc;
6192 rtx val, vloc;
6193 tree var;
6195 if (GET_CODE (loc) == CONCAT)
6197 val = XEXP (loc, 0);
6198 vloc = XEXP (loc, 1);
6200 else
6202 val = NULL_RTX;
6203 vloc = loc;
6206 var = PAT_VAR_LOCATION_DECL (vloc);
6208 clobber_variable_part (out, NULL_RTX,
6209 dv_from_decl (var), 0, NULL_RTX);
6210 if (val)
6212 if (VAL_NEEDS_RESOLUTION (loc))
6213 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6214 set_variable_part (out, val, dv_from_decl (var), 0,
6215 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6216 INSERT);
6218 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6219 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6220 dv_from_decl (var), 0,
6221 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6222 INSERT);
6224 break;
6226 case MO_VAL_USE:
6228 rtx loc = mo->u.loc;
6229 rtx val, vloc, uloc;
6231 vloc = uloc = XEXP (loc, 1);
6232 val = XEXP (loc, 0);
6234 if (GET_CODE (val) == CONCAT)
6236 uloc = XEXP (val, 1);
6237 val = XEXP (val, 0);
6240 if (VAL_NEEDS_RESOLUTION (loc))
6241 val_resolve (out, val, vloc, insn);
6242 else
6243 val_store (out, val, uloc, insn, false);
6245 if (VAL_HOLDS_TRACK_EXPR (loc))
6247 if (GET_CODE (uloc) == REG)
6248 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6249 NULL);
6250 else if (GET_CODE (uloc) == MEM)
6251 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6252 NULL);
6255 break;
6257 case MO_VAL_SET:
6259 rtx loc = mo->u.loc;
6260 rtx val, vloc, uloc;
6262 vloc = loc;
6263 uloc = XEXP (vloc, 1);
6264 val = XEXP (vloc, 0);
6265 vloc = uloc;
6267 if (GET_CODE (val) == CONCAT)
6269 vloc = XEXP (val, 1);
6270 val = XEXP (val, 0);
6273 if (GET_CODE (vloc) == SET)
6275 rtx vsrc = SET_SRC (vloc);
6277 gcc_assert (val != vsrc);
6278 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6280 vloc = SET_DEST (vloc);
6282 if (VAL_NEEDS_RESOLUTION (loc))
6283 val_resolve (out, val, vsrc, insn);
6285 else if (VAL_NEEDS_RESOLUTION (loc))
6287 gcc_assert (GET_CODE (uloc) == SET
6288 && GET_CODE (SET_SRC (uloc)) == REG);
6289 val_resolve (out, val, SET_SRC (uloc), insn);
6292 if (VAL_HOLDS_TRACK_EXPR (loc))
6294 if (VAL_EXPR_IS_CLOBBERED (loc))
6296 if (REG_P (uloc))
6297 var_reg_delete (out, uloc, true);
6298 else if (MEM_P (uloc))
6299 var_mem_delete (out, uloc, true);
6301 else
6303 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6304 rtx set_src = NULL;
6305 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6307 if (GET_CODE (uloc) == SET)
6309 set_src = SET_SRC (uloc);
6310 uloc = SET_DEST (uloc);
6313 if (copied_p)
6315 if (flag_var_tracking_uninit)
6317 status = find_src_status (in, set_src);
6319 if (status == VAR_INIT_STATUS_UNKNOWN)
6320 status = find_src_status (out, set_src);
6323 set_src = find_src_set_src (in, set_src);
6326 if (REG_P (uloc))
6327 var_reg_delete_and_set (out, uloc, !copied_p,
6328 status, set_src);
6329 else if (MEM_P (uloc))
6330 var_mem_delete_and_set (out, uloc, !copied_p,
6331 status, set_src);
6334 else if (REG_P (uloc))
6335 var_regno_delete (out, REGNO (uloc));
6337 val_store (out, val, vloc, insn, true);
6339 break;
6341 case MO_SET:
6343 rtx loc = mo->u.loc;
6344 rtx set_src = NULL;
6346 if (GET_CODE (loc) == SET)
6348 set_src = SET_SRC (loc);
6349 loc = SET_DEST (loc);
6352 if (REG_P (loc))
6353 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6354 set_src);
6355 else if (MEM_P (loc))
6356 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6357 set_src);
6359 break;
6361 case MO_COPY:
6363 rtx loc = mo->u.loc;
6364 enum var_init_status src_status;
6365 rtx set_src = NULL;
6367 if (GET_CODE (loc) == SET)
6369 set_src = SET_SRC (loc);
6370 loc = SET_DEST (loc);
6373 if (! flag_var_tracking_uninit)
6374 src_status = VAR_INIT_STATUS_INITIALIZED;
6375 else
6377 src_status = find_src_status (in, set_src);
6379 if (src_status == VAR_INIT_STATUS_UNKNOWN)
6380 src_status = find_src_status (out, set_src);
6383 set_src = find_src_set_src (in, set_src);
6385 if (REG_P (loc))
6386 var_reg_delete_and_set (out, loc, false, src_status, set_src);
6387 else if (MEM_P (loc))
6388 var_mem_delete_and_set (out, loc, false, src_status, set_src);
6390 break;
6392 case MO_USE_NO_VAR:
6394 rtx loc = mo->u.loc;
6396 if (REG_P (loc))
6397 var_reg_delete (out, loc, false);
6398 else if (MEM_P (loc))
6399 var_mem_delete (out, loc, false);
6401 break;
6403 case MO_CLOBBER:
6405 rtx loc = mo->u.loc;
6407 if (REG_P (loc))
6408 var_reg_delete (out, loc, true);
6409 else if (MEM_P (loc))
6410 var_mem_delete (out, loc, true);
6412 break;
6414 case MO_ADJUST:
6415 out->stack_adjust += mo->u.adjust;
6416 break;
6420 if (MAY_HAVE_DEBUG_INSNS)
6422 dataflow_set_equiv_regs (out);
6423 htab_traverse (shared_hash_htab (out->vars), canonicalize_values_mark,
6424 out);
6425 htab_traverse (shared_hash_htab (out->vars), canonicalize_values_star,
6426 out);
6427 #if ENABLE_CHECKING
6428 htab_traverse (shared_hash_htab (out->vars),
6429 canonicalize_loc_order_check, out);
6430 #endif
6432 changed = dataflow_set_different (&old_out, out);
6433 dataflow_set_destroy (&old_out);
6434 return changed;
6437 /* Find the locations of variables in the whole function. */
6439 static bool
6440 vt_find_locations (void)
6442 fibheap_t worklist, pending, fibheap_swap;
6443 sbitmap visited, in_worklist, in_pending, sbitmap_swap;
6444 basic_block bb;
6445 edge e;
6446 int *bb_order;
6447 int *rc_order;
6448 int i;
6449 int htabsz = 0;
6450 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
6451 bool success = true;
6453 timevar_push (TV_VAR_TRACKING_DATAFLOW);
6454 /* Compute reverse completion order of depth first search of the CFG
6455 so that the data-flow runs faster. */
6456 rc_order = XNEWVEC (int, n_basic_blocks - NUM_FIXED_BLOCKS);
6457 bb_order = XNEWVEC (int, last_basic_block);
6458 pre_and_rev_post_order_compute (NULL, rc_order, false);
6459 for (i = 0; i < n_basic_blocks - NUM_FIXED_BLOCKS; i++)
6460 bb_order[rc_order[i]] = i;
6461 free (rc_order);
6463 worklist = fibheap_new ();
6464 pending = fibheap_new ();
6465 visited = sbitmap_alloc (last_basic_block);
6466 in_worklist = sbitmap_alloc (last_basic_block);
6467 in_pending = sbitmap_alloc (last_basic_block);
6468 sbitmap_zero (in_worklist);
6470 FOR_EACH_BB (bb)
6471 fibheap_insert (pending, bb_order[bb->index], bb);
6472 sbitmap_ones (in_pending);
6474 while (success && !fibheap_empty (pending))
6476 fibheap_swap = pending;
6477 pending = worklist;
6478 worklist = fibheap_swap;
6479 sbitmap_swap = in_pending;
6480 in_pending = in_worklist;
6481 in_worklist = sbitmap_swap;
6483 sbitmap_zero (visited);
6485 while (!fibheap_empty (worklist))
6487 bb = (basic_block) fibheap_extract_min (worklist);
6488 RESET_BIT (in_worklist, bb->index);
6489 gcc_assert (!TEST_BIT (visited, bb->index));
6490 if (!TEST_BIT (visited, bb->index))
6492 bool changed;
6493 edge_iterator ei;
6494 int oldinsz, oldoutsz;
6496 SET_BIT (visited, bb->index);
6498 if (VTI (bb)->in.vars)
6500 htabsz
6501 -= (htab_size (shared_hash_htab (VTI (bb)->in.vars))
6502 + htab_size (shared_hash_htab (VTI (bb)->out.vars)));
6503 oldinsz
6504 = htab_elements (shared_hash_htab (VTI (bb)->in.vars));
6505 oldoutsz
6506 = htab_elements (shared_hash_htab (VTI (bb)->out.vars));
6508 else
6509 oldinsz = oldoutsz = 0;
6511 if (MAY_HAVE_DEBUG_INSNS)
6513 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
6514 bool first = true, adjust = false;
6516 /* Calculate the IN set as the intersection of
6517 predecessor OUT sets. */
6519 dataflow_set_clear (in);
6520 dst_can_be_shared = true;
6522 FOR_EACH_EDGE (e, ei, bb->preds)
6523 if (!VTI (e->src)->flooded)
6524 gcc_assert (bb_order[bb->index]
6525 <= bb_order[e->src->index]);
6526 else if (first)
6528 dataflow_set_copy (in, &VTI (e->src)->out);
6529 first_out = &VTI (e->src)->out;
6530 first = false;
6532 else
6534 dataflow_set_merge (in, &VTI (e->src)->out);
6535 adjust = true;
6538 if (adjust)
6540 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
6541 #if ENABLE_CHECKING
6542 /* Merge and merge_adjust should keep entries in
6543 canonical order. */
6544 htab_traverse (shared_hash_htab (in->vars),
6545 canonicalize_loc_order_check,
6546 in);
6547 #endif
6548 if (dst_can_be_shared)
6550 shared_hash_destroy (in->vars);
6551 in->vars = shared_hash_copy (first_out->vars);
6555 VTI (bb)->flooded = true;
6557 else
6559 /* Calculate the IN set as union of predecessor OUT sets. */
6560 dataflow_set_clear (&VTI (bb)->in);
6561 FOR_EACH_EDGE (e, ei, bb->preds)
6562 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
6565 changed = compute_bb_dataflow (bb);
6566 htabsz += (htab_size (shared_hash_htab (VTI (bb)->in.vars))
6567 + htab_size (shared_hash_htab (VTI (bb)->out.vars)));
6569 if (htabmax && htabsz > htabmax)
6571 if (MAY_HAVE_DEBUG_INSNS)
6572 inform (DECL_SOURCE_LOCATION (cfun->decl),
6573 "variable tracking size limit exceeded with "
6574 "-fvar-tracking-assignments, retrying without");
6575 else
6576 inform (DECL_SOURCE_LOCATION (cfun->decl),
6577 "variable tracking size limit exceeded");
6578 success = false;
6579 break;
6582 if (changed)
6584 FOR_EACH_EDGE (e, ei, bb->succs)
6586 if (e->dest == EXIT_BLOCK_PTR)
6587 continue;
6589 if (TEST_BIT (visited, e->dest->index))
6591 if (!TEST_BIT (in_pending, e->dest->index))
6593 /* Send E->DEST to next round. */
6594 SET_BIT (in_pending, e->dest->index);
6595 fibheap_insert (pending,
6596 bb_order[e->dest->index],
6597 e->dest);
6600 else if (!TEST_BIT (in_worklist, e->dest->index))
6602 /* Add E->DEST to current round. */
6603 SET_BIT (in_worklist, e->dest->index);
6604 fibheap_insert (worklist, bb_order[e->dest->index],
6605 e->dest);
6610 if (dump_file)
6611 fprintf (dump_file,
6612 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
6613 bb->index,
6614 (int)htab_elements (shared_hash_htab (VTI (bb)->in.vars)),
6615 oldinsz,
6616 (int)htab_elements (shared_hash_htab (VTI (bb)->out.vars)),
6617 oldoutsz,
6618 (int)worklist->nodes, (int)pending->nodes, htabsz);
6620 if (dump_file && (dump_flags & TDF_DETAILS))
6622 fprintf (dump_file, "BB %i IN:\n", bb->index);
6623 dump_dataflow_set (&VTI (bb)->in);
6624 fprintf (dump_file, "BB %i OUT:\n", bb->index);
6625 dump_dataflow_set (&VTI (bb)->out);
6631 if (success && MAY_HAVE_DEBUG_INSNS)
6632 FOR_EACH_BB (bb)
6633 gcc_assert (VTI (bb)->flooded);
6635 free (bb_order);
6636 fibheap_delete (worklist);
6637 fibheap_delete (pending);
6638 sbitmap_free (visited);
6639 sbitmap_free (in_worklist);
6640 sbitmap_free (in_pending);
6642 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
6643 return success;
6646 /* Print the content of the LIST to dump file. */
6648 static void
6649 dump_attrs_list (attrs list)
6651 for (; list; list = list->next)
6653 if (dv_is_decl_p (list->dv))
6654 print_mem_expr (dump_file, dv_as_decl (list->dv));
6655 else
6656 print_rtl_single (dump_file, dv_as_value (list->dv));
6657 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
6659 fprintf (dump_file, "\n");
6662 /* Print the information about variable *SLOT to dump file. */
6664 static int
6665 dump_var_slot (void **slot, void *data ATTRIBUTE_UNUSED)
6667 variable var = (variable) *slot;
6669 dump_var (var);
6671 /* Continue traversing the hash table. */
6672 return 1;
6675 /* Print the information about variable VAR to dump file. */
6677 static void
6678 dump_var (variable var)
6680 int i;
6681 location_chain node;
6683 if (dv_is_decl_p (var->dv))
6685 const_tree decl = dv_as_decl (var->dv);
6687 if (DECL_NAME (decl))
6689 fprintf (dump_file, " name: %s",
6690 IDENTIFIER_POINTER (DECL_NAME (decl)));
6691 if (dump_flags & TDF_UID)
6692 fprintf (dump_file, "D.%u", DECL_UID (decl));
6694 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
6695 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
6696 else
6697 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
6698 fprintf (dump_file, "\n");
6700 else
6702 fputc (' ', dump_file);
6703 print_rtl_single (dump_file, dv_as_value (var->dv));
6706 for (i = 0; i < var->n_var_parts; i++)
6708 fprintf (dump_file, " offset %ld\n",
6709 (long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
6710 for (node = var->var_part[i].loc_chain; node; node = node->next)
6712 fprintf (dump_file, " ");
6713 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
6714 fprintf (dump_file, "[uninit]");
6715 print_rtl_single (dump_file, node->loc);
6720 /* Print the information about variables from hash table VARS to dump file. */
6722 static void
6723 dump_vars (htab_t vars)
6725 if (htab_elements (vars) > 0)
6727 fprintf (dump_file, "Variables:\n");
6728 htab_traverse (vars, dump_var_slot, NULL);
6732 /* Print the dataflow set SET to dump file. */
6734 static void
6735 dump_dataflow_set (dataflow_set *set)
6737 int i;
6739 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
6740 set->stack_adjust);
6741 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
6743 if (set->regs[i])
6745 fprintf (dump_file, "Reg %d:", i);
6746 dump_attrs_list (set->regs[i]);
6749 dump_vars (shared_hash_htab (set->vars));
6750 fprintf (dump_file, "\n");
6753 /* Print the IN and OUT sets for each basic block to dump file. */
6755 static void
6756 dump_dataflow_sets (void)
6758 basic_block bb;
6760 FOR_EACH_BB (bb)
6762 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
6763 fprintf (dump_file, "IN:\n");
6764 dump_dataflow_set (&VTI (bb)->in);
6765 fprintf (dump_file, "OUT:\n");
6766 dump_dataflow_set (&VTI (bb)->out);
6770 /* Return the variable for DV in dropped_values, inserting one if
6771 requested with INSERT. */
6773 static inline variable
6774 variable_from_dropped (decl_or_value dv, enum insert_option insert)
6776 void **slot;
6777 variable empty_var;
6778 onepart_enum_t onepart;
6780 slot = htab_find_slot_with_hash (dropped_values, dv, dv_htab_hash (dv),
6781 insert);
6783 if (!slot)
6784 return NULL;
6786 if (*slot)
6787 return (variable) *slot;
6789 gcc_checking_assert (insert == INSERT);
6791 onepart = dv_onepart_p (dv);
6793 gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
6795 empty_var = (variable) pool_alloc (onepart_pool (onepart));
6796 empty_var->dv = dv;
6797 empty_var->refcount = 1;
6798 empty_var->n_var_parts = 0;
6799 empty_var->onepart = onepart;
6800 empty_var->in_changed_variables = false;
6801 empty_var->var_part[0].loc_chain = NULL;
6802 empty_var->var_part[0].cur_loc = NULL;
6803 VAR_LOC_1PAUX (empty_var) = NULL;
6804 set_dv_changed (dv, true);
6806 *slot = empty_var;
6808 return empty_var;
6811 /* Recover the one-part aux from dropped_values. */
6813 static struct onepart_aux *
6814 recover_dropped_1paux (variable var)
6816 variable dvar;
6818 gcc_checking_assert (var->onepart);
6820 if (VAR_LOC_1PAUX (var))
6821 return VAR_LOC_1PAUX (var);
6823 if (var->onepart == ONEPART_VDECL)
6824 return NULL;
6826 dvar = variable_from_dropped (var->dv, NO_INSERT);
6828 if (!dvar)
6829 return NULL;
6831 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
6832 VAR_LOC_1PAUX (dvar) = NULL;
6834 return VAR_LOC_1PAUX (var);
6837 /* Add variable VAR to the hash table of changed variables and
6838 if it has no locations delete it from SET's hash table. */
6840 static void
6841 variable_was_changed (variable var, dataflow_set *set)
6843 hashval_t hash = dv_htab_hash (var->dv);
6845 if (emit_notes)
6847 void **slot;
6849 /* Remember this decl or VALUE has been added to changed_variables. */
6850 set_dv_changed (var->dv, true);
6852 slot = htab_find_slot_with_hash (changed_variables,
6853 var->dv,
6854 hash, INSERT);
6856 if (*slot)
6858 variable old_var = (variable) *slot;
6859 gcc_assert (old_var->in_changed_variables);
6860 old_var->in_changed_variables = false;
6861 if (var != old_var && var->onepart)
6863 /* Restore the auxiliary info from an empty variable
6864 previously created for changed_variables, so it is
6865 not lost. */
6866 gcc_checking_assert (!VAR_LOC_1PAUX (var));
6867 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
6868 VAR_LOC_1PAUX (old_var) = NULL;
6870 variable_htab_free (*slot);
6873 if (set && var->n_var_parts == 0)
6875 onepart_enum_t onepart = var->onepart;
6876 variable empty_var = NULL;
6877 void **dslot = NULL;
6879 if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
6881 dslot = htab_find_slot_with_hash (dropped_values, var->dv,
6882 dv_htab_hash (var->dv),
6883 INSERT);
6884 empty_var = (variable) *dslot;
6886 if (empty_var)
6888 gcc_checking_assert (!empty_var->in_changed_variables);
6889 if (!VAR_LOC_1PAUX (var))
6891 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
6892 VAR_LOC_1PAUX (empty_var) = NULL;
6894 else
6895 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
6899 if (!empty_var)
6901 empty_var = (variable) pool_alloc (onepart_pool (onepart));
6902 empty_var->dv = var->dv;
6903 empty_var->refcount = 1;
6904 empty_var->n_var_parts = 0;
6905 empty_var->onepart = onepart;
6906 if (dslot)
6908 empty_var->refcount++;
6909 *dslot = empty_var;
6912 else
6913 empty_var->refcount++;
6914 empty_var->in_changed_variables = true;
6915 *slot = empty_var;
6916 if (onepart)
6918 empty_var->var_part[0].loc_chain = NULL;
6919 empty_var->var_part[0].cur_loc = NULL;
6920 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
6921 VAR_LOC_1PAUX (var) = NULL;
6923 goto drop_var;
6925 else
6927 if (var->onepart && !VAR_LOC_1PAUX (var))
6928 recover_dropped_1paux (var);
6929 var->refcount++;
6930 var->in_changed_variables = true;
6931 *slot = var;
6934 else
6936 gcc_assert (set);
6937 if (var->n_var_parts == 0)
6939 void **slot;
6941 drop_var:
6942 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
6943 if (slot)
6945 if (shared_hash_shared (set->vars))
6946 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
6947 NO_INSERT);
6948 htab_clear_slot (shared_hash_htab (set->vars), slot);
6954 /* Look for the index in VAR->var_part corresponding to OFFSET.
6955 Return -1 if not found. If INSERTION_POINT is non-NULL, the
6956 referenced int will be set to the index that the part has or should
6957 have, if it should be inserted. */
6959 static inline int
6960 find_variable_location_part (variable var, HOST_WIDE_INT offset,
6961 int *insertion_point)
6963 int pos, low, high;
6965 if (var->onepart)
6967 if (offset != 0)
6968 return -1;
6970 if (insertion_point)
6971 *insertion_point = 0;
6973 return var->n_var_parts - 1;
6976 /* Find the location part. */
6977 low = 0;
6978 high = var->n_var_parts;
6979 while (low != high)
6981 pos = (low + high) / 2;
6982 if (VAR_PART_OFFSET (var, pos) < offset)
6983 low = pos + 1;
6984 else
6985 high = pos;
6987 pos = low;
6989 if (insertion_point)
6990 *insertion_point = pos;
6992 if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
6993 return pos;
6995 return -1;
6998 static void **
6999 set_slot_part (dataflow_set *set, rtx loc, void **slot,
7000 decl_or_value dv, HOST_WIDE_INT offset,
7001 enum var_init_status initialized, rtx set_src)
7003 int pos;
7004 location_chain node, next;
7005 location_chain *nextp;
7006 variable var;
7007 onepart_enum_t onepart;
7009 var = (variable) *slot;
7011 if (var)
7012 onepart = var->onepart;
7013 else
7014 onepart = dv_onepart_p (dv);
7016 gcc_checking_assert (offset == 0 || !onepart);
7017 gcc_checking_assert (loc != dv_as_opaque (dv));
7019 if (! flag_var_tracking_uninit)
7020 initialized = VAR_INIT_STATUS_INITIALIZED;
7022 if (!var)
7024 /* Create new variable information. */
7025 var = (variable) pool_alloc (onepart_pool (onepart));
7026 var->dv = dv;
7027 var->refcount = 1;
7028 var->n_var_parts = 1;
7029 var->onepart = onepart;
7030 var->in_changed_variables = false;
7031 if (var->onepart)
7032 VAR_LOC_1PAUX (var) = NULL;
7033 else
7034 VAR_PART_OFFSET (var, 0) = offset;
7035 var->var_part[0].loc_chain = NULL;
7036 var->var_part[0].cur_loc = NULL;
7037 *slot = var;
7038 pos = 0;
7039 nextp = &var->var_part[0].loc_chain;
7041 else if (onepart)
7043 int r = -1, c = 0;
7045 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
7047 pos = 0;
7049 if (GET_CODE (loc) == VALUE)
7051 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7052 nextp = &node->next)
7053 if (GET_CODE (node->loc) == VALUE)
7055 if (node->loc == loc)
7057 r = 0;
7058 break;
7060 if (canon_value_cmp (node->loc, loc))
7061 c++;
7062 else
7064 r = 1;
7065 break;
7068 else if (REG_P (node->loc) || MEM_P (node->loc))
7069 c++;
7070 else
7072 r = 1;
7073 break;
7076 else if (REG_P (loc))
7078 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7079 nextp = &node->next)
7080 if (REG_P (node->loc))
7082 if (REGNO (node->loc) < REGNO (loc))
7083 c++;
7084 else
7086 if (REGNO (node->loc) == REGNO (loc))
7087 r = 0;
7088 else
7089 r = 1;
7090 break;
7093 else
7095 r = 1;
7096 break;
7099 else if (MEM_P (loc))
7101 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7102 nextp = &node->next)
7103 if (REG_P (node->loc))
7104 c++;
7105 else if (MEM_P (node->loc))
7107 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
7108 break;
7109 else
7110 c++;
7112 else
7114 r = 1;
7115 break;
7118 else
7119 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7120 nextp = &node->next)
7121 if ((r = loc_cmp (node->loc, loc)) >= 0)
7122 break;
7123 else
7124 c++;
7126 if (r == 0)
7127 return slot;
7129 if (shared_var_p (var, set->vars))
7131 slot = unshare_variable (set, slot, var, initialized);
7132 var = (variable)*slot;
7133 for (nextp = &var->var_part[0].loc_chain; c;
7134 nextp = &(*nextp)->next)
7135 c--;
7136 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
7139 else
7141 int inspos = 0;
7143 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
7145 pos = find_variable_location_part (var, offset, &inspos);
7147 if (pos >= 0)
7149 node = var->var_part[pos].loc_chain;
7151 if (node
7152 && ((REG_P (node->loc) && REG_P (loc)
7153 && REGNO (node->loc) == REGNO (loc))
7154 || rtx_equal_p (node->loc, loc)))
7156 /* LOC is in the beginning of the chain so we have nothing
7157 to do. */
7158 if (node->init < initialized)
7159 node->init = initialized;
7160 if (set_src != NULL)
7161 node->set_src = set_src;
7163 return slot;
7165 else
7167 /* We have to make a copy of a shared variable. */
7168 if (shared_var_p (var, set->vars))
7170 slot = unshare_variable (set, slot, var, initialized);
7171 var = (variable)*slot;
7175 else
7177 /* We have not found the location part, new one will be created. */
7179 /* We have to make a copy of the shared variable. */
7180 if (shared_var_p (var, set->vars))
7182 slot = unshare_variable (set, slot, var, initialized);
7183 var = (variable)*slot;
7186 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7187 thus there are at most MAX_VAR_PARTS different offsets. */
7188 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
7189 && (!var->n_var_parts || !onepart));
7191 /* We have to move the elements of array starting at index
7192 inspos to the next position. */
7193 for (pos = var->n_var_parts; pos > inspos; pos--)
7194 var->var_part[pos] = var->var_part[pos - 1];
7196 var->n_var_parts++;
7197 gcc_checking_assert (!onepart);
7198 VAR_PART_OFFSET (var, pos) = offset;
7199 var->var_part[pos].loc_chain = NULL;
7200 var->var_part[pos].cur_loc = NULL;
7203 /* Delete the location from the list. */
7204 nextp = &var->var_part[pos].loc_chain;
7205 for (node = var->var_part[pos].loc_chain; node; node = next)
7207 next = node->next;
7208 if ((REG_P (node->loc) && REG_P (loc)
7209 && REGNO (node->loc) == REGNO (loc))
7210 || rtx_equal_p (node->loc, loc))
7212 /* Save these values, to assign to the new node, before
7213 deleting this one. */
7214 if (node->init > initialized)
7215 initialized = node->init;
7216 if (node->set_src != NULL && set_src == NULL)
7217 set_src = node->set_src;
7218 if (var->var_part[pos].cur_loc == node->loc)
7219 var->var_part[pos].cur_loc = NULL;
7220 pool_free (loc_chain_pool, node);
7221 *nextp = next;
7222 break;
7224 else
7225 nextp = &node->next;
7228 nextp = &var->var_part[pos].loc_chain;
7231 /* Add the location to the beginning. */
7232 node = (location_chain) pool_alloc (loc_chain_pool);
7233 node->loc = loc;
7234 node->init = initialized;
7235 node->set_src = set_src;
7236 node->next = *nextp;
7237 *nextp = node;
7239 /* If no location was emitted do so. */
7240 if (var->var_part[pos].cur_loc == NULL)
7241 variable_was_changed (var, set);
7243 return slot;
7246 /* Set the part of variable's location in the dataflow set SET. The
7247 variable part is specified by variable's declaration in DV and
7248 offset OFFSET and the part's location by LOC. IOPT should be
7249 NO_INSERT if the variable is known to be in SET already and the
7250 variable hash table must not be resized, and INSERT otherwise. */
7252 static void
7253 set_variable_part (dataflow_set *set, rtx loc,
7254 decl_or_value dv, HOST_WIDE_INT offset,
7255 enum var_init_status initialized, rtx set_src,
7256 enum insert_option iopt)
7258 void **slot;
7260 if (iopt == NO_INSERT)
7261 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7262 else
7264 slot = shared_hash_find_slot (set->vars, dv);
7265 if (!slot)
7266 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7268 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7271 /* Remove all recorded register locations for the given variable part
7272 from dataflow set SET, except for those that are identical to loc.
7273 The variable part is specified by variable's declaration or value
7274 DV and offset OFFSET. */
7276 static void **
7277 clobber_slot_part (dataflow_set *set, rtx loc, void **slot,
7278 HOST_WIDE_INT offset, rtx set_src)
7280 variable var = (variable) *slot;
7281 int pos = find_variable_location_part (var, offset, NULL);
7283 if (pos >= 0)
7285 location_chain node, next;
7287 /* Remove the register locations from the dataflow set. */
7288 next = var->var_part[pos].loc_chain;
7289 for (node = next; node; node = next)
7291 next = node->next;
7292 if (node->loc != loc
7293 && (!flag_var_tracking_uninit
7294 || !set_src
7295 || MEM_P (set_src)
7296 || !rtx_equal_p (set_src, node->set_src)))
7298 if (REG_P (node->loc))
7300 attrs anode, anext;
7301 attrs *anextp;
7303 /* Remove the variable part from the register's
7304 list, but preserve any other variable parts
7305 that might be regarded as live in that same
7306 register. */
7307 anextp = &set->regs[REGNO (node->loc)];
7308 for (anode = *anextp; anode; anode = anext)
7310 anext = anode->next;
7311 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7312 && anode->offset == offset)
7314 pool_free (attrs_pool, anode);
7315 *anextp = anext;
7317 else
7318 anextp = &anode->next;
7322 slot = delete_slot_part (set, node->loc, slot, offset);
7327 return slot;
7330 /* Remove all recorded register locations for the given variable part
7331 from dataflow set SET, except for those that are identical to loc.
7332 The variable part is specified by variable's declaration or value
7333 DV and offset OFFSET. */
7335 static void
7336 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7337 HOST_WIDE_INT offset, rtx set_src)
7339 void **slot;
7341 if (!dv_as_opaque (dv)
7342 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7343 return;
7345 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7346 if (!slot)
7347 return;
7349 clobber_slot_part (set, loc, slot, offset, set_src);
7352 /* Delete the part of variable's location from dataflow set SET. The
7353 variable part is specified by its SET->vars slot SLOT and offset
7354 OFFSET and the part's location by LOC. */
7356 static void **
7357 delete_slot_part (dataflow_set *set, rtx loc, void **slot,
7358 HOST_WIDE_INT offset)
7360 variable var = (variable) *slot;
7361 int pos = find_variable_location_part (var, offset, NULL);
7363 if (pos >= 0)
7365 location_chain node, next;
7366 location_chain *nextp;
7367 bool changed;
7368 rtx cur_loc;
7370 if (shared_var_p (var, set->vars))
7372 /* If the variable contains the location part we have to
7373 make a copy of the variable. */
7374 for (node = var->var_part[pos].loc_chain; node;
7375 node = node->next)
7377 if ((REG_P (node->loc) && REG_P (loc)
7378 && REGNO (node->loc) == REGNO (loc))
7379 || rtx_equal_p (node->loc, loc))
7381 slot = unshare_variable (set, slot, var,
7382 VAR_INIT_STATUS_UNKNOWN);
7383 var = (variable)*slot;
7384 break;
7389 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7390 cur_loc = VAR_LOC_FROM (var);
7391 else
7392 cur_loc = var->var_part[pos].cur_loc;
7394 /* Delete the location part. */
7395 changed = false;
7396 nextp = &var->var_part[pos].loc_chain;
7397 for (node = *nextp; node; node = next)
7399 next = node->next;
7400 if ((REG_P (node->loc) && REG_P (loc)
7401 && REGNO (node->loc) == REGNO (loc))
7402 || rtx_equal_p (node->loc, loc))
7404 /* If we have deleted the location which was last emitted
7405 we have to emit new location so add the variable to set
7406 of changed variables. */
7407 if (cur_loc == node->loc)
7409 changed = true;
7410 var->var_part[pos].cur_loc = NULL;
7411 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7412 VAR_LOC_FROM (var) = NULL;
7414 pool_free (loc_chain_pool, node);
7415 *nextp = next;
7416 break;
7418 else
7419 nextp = &node->next;
7422 if (var->var_part[pos].loc_chain == NULL)
7424 changed = true;
7425 var->n_var_parts--;
7426 while (pos < var->n_var_parts)
7428 var->var_part[pos] = var->var_part[pos + 1];
7429 pos++;
7432 if (changed)
7433 variable_was_changed (var, set);
7436 return slot;
7439 /* Delete the part of variable's location from dataflow set SET. The
7440 variable part is specified by variable's declaration or value DV
7441 and offset OFFSET and the part's location by LOC. */
7443 static void
7444 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7445 HOST_WIDE_INT offset)
7447 void **slot = shared_hash_find_slot_noinsert (set->vars, dv);
7448 if (!slot)
7449 return;
7451 delete_slot_part (set, loc, slot, offset);
7454 DEF_VEC_P (variable);
7455 DEF_VEC_ALLOC_P (variable, heap);
7457 DEF_VEC_ALLOC_P_STACK (rtx);
7458 #define VEC_rtx_stack_alloc(alloc) VEC_stack_alloc (rtx, alloc)
7460 /* Structure for passing some other parameters to function
7461 vt_expand_loc_callback. */
7462 struct expand_loc_callback_data
7464 /* The variables and values active at this point. */
7465 htab_t vars;
7467 /* Stack of values and debug_exprs under expansion, and their
7468 children. */
7469 VEC (rtx, stack) *expanding;
7471 /* Stack of values and debug_exprs whose expansion hit recursion
7472 cycles. They will have VALUE_RECURSED_INTO marked when added to
7473 this list. This flag will be cleared if any of its dependencies
7474 resolves to a valid location. So, if the flag remains set at the
7475 end of the search, we know no valid location for this one can
7476 possibly exist. */
7477 VEC (rtx, stack) *pending;
7479 /* The maximum depth among the sub-expressions under expansion.
7480 Zero indicates no expansion so far. */
7481 int depth;
7484 /* Allocate the one-part auxiliary data structure for VAR, with enough
7485 room for COUNT dependencies. */
7487 static void
7488 loc_exp_dep_alloc (variable var, int count)
7490 size_t allocsize;
7492 gcc_checking_assert (var->onepart);
7494 /* We can be called with COUNT == 0 to allocate the data structure
7495 without any dependencies, e.g. for the backlinks only. However,
7496 if we are specifying a COUNT, then the dependency list must have
7497 been emptied before. It would be possible to adjust pointers or
7498 force it empty here, but this is better done at an earlier point
7499 in the algorithm, so we instead leave an assertion to catch
7500 errors. */
7501 gcc_checking_assert (!count
7502 || VEC_empty (loc_exp_dep, VAR_LOC_DEP_VEC (var)));
7504 if (VAR_LOC_1PAUX (var)
7505 && VEC_space (loc_exp_dep, VAR_LOC_DEP_VEC (var), count))
7506 return;
7508 allocsize = offsetof (struct onepart_aux, deps)
7509 + VEC_embedded_size (loc_exp_dep, count);
7511 if (VAR_LOC_1PAUX (var))
7513 VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
7514 VAR_LOC_1PAUX (var), allocsize);
7515 /* If the reallocation moves the onepaux structure, the
7516 back-pointer to BACKLINKS in the first list member will still
7517 point to its old location. Adjust it. */
7518 if (VAR_LOC_DEP_LST (var))
7519 VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
7521 else
7523 VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
7524 *VAR_LOC_DEP_LSTP (var) = NULL;
7525 VAR_LOC_FROM (var) = NULL;
7526 VAR_LOC_DEPTH (var) = 0;
7528 VEC_embedded_init (loc_exp_dep, VAR_LOC_DEP_VEC (var), count);
7531 /* Remove all entries from the vector of active dependencies of VAR,
7532 removing them from the back-links lists too. */
7534 static void
7535 loc_exp_dep_clear (variable var)
7537 while (!VEC_empty (loc_exp_dep, VAR_LOC_DEP_VEC (var)))
7539 loc_exp_dep *led = VEC_last (loc_exp_dep, VAR_LOC_DEP_VEC (var));
7540 if (led->next)
7541 led->next->pprev = led->pprev;
7542 if (led->pprev)
7543 *led->pprev = led->next;
7544 VEC_pop (loc_exp_dep, VAR_LOC_DEP_VEC (var));
7548 /* Insert an active dependency from VAR on X to the vector of
7549 dependencies, and add the corresponding back-link to X's list of
7550 back-links in VARS. */
7552 static void
7553 loc_exp_insert_dep (variable var, rtx x, htab_t vars)
7555 decl_or_value dv;
7556 variable xvar;
7557 loc_exp_dep *led;
7559 dv = dv_from_rtx (x);
7561 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
7562 an additional look up? */
7563 xvar = (variable) htab_find_with_hash (vars, dv, dv_htab_hash (dv));
7565 if (!xvar)
7567 xvar = variable_from_dropped (dv, NO_INSERT);
7568 gcc_checking_assert (xvar);
7571 /* No point in adding the same backlink more than once. This may
7572 arise if say the same value appears in two complex expressions in
7573 the same loc_list, or even more than once in a single
7574 expression. */
7575 if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
7576 return;
7578 VEC_quick_push (loc_exp_dep, VAR_LOC_DEP_VEC (var), NULL);
7579 led = VEC_last (loc_exp_dep, VAR_LOC_DEP_VEC (var));
7580 led->dv = var->dv;
7581 led->value = x;
7583 loc_exp_dep_alloc (xvar, 0);
7584 led->pprev = VAR_LOC_DEP_LSTP (xvar);
7585 led->next = *led->pprev;
7586 if (led->next)
7587 led->next->pprev = &led->next;
7588 *led->pprev = led;
7591 /* Create active dependencies of VAR on COUNT values starting at
7592 VALUE, and corresponding back-links to the entries in VARS. Return
7593 true if we found any pending-recursion results. */
7595 static bool
7596 loc_exp_dep_set (variable var, rtx result, rtx *value, int count, htab_t vars)
7598 bool pending_recursion = false;
7600 gcc_checking_assert (VEC_empty (loc_exp_dep, VAR_LOC_DEP_VEC (var)));
7602 /* Set up all dependencies from last_child (as set up at the end of
7603 the loop above) to the end. */
7604 loc_exp_dep_alloc (var, count);
7606 while (count--)
7608 rtx x = *value++;
7610 if (!pending_recursion)
7611 pending_recursion = !result && VALUE_RECURSED_INTO (x);
7613 loc_exp_insert_dep (var, x, vars);
7616 return pending_recursion;
7619 /* Notify the back-links of IVAR that are pending recursion that we
7620 have found a non-NIL value for it, so they are cleared for another
7621 attempt to compute a current location. */
7623 static void
7624 notify_dependents_of_resolved_value (variable ivar, htab_t vars)
7626 loc_exp_dep *led, *next;
7628 for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
7630 decl_or_value dv = led->dv;
7631 variable var;
7633 next = led->next;
7635 if (dv_is_value_p (dv))
7637 rtx value = dv_as_value (dv);
7639 /* If we have already resolved it, leave it alone. */
7640 if (!VALUE_RECURSED_INTO (value))
7641 continue;
7643 /* Check that VALUE_RECURSED_INTO, true from the test above,
7644 implies NO_LOC_P. */
7645 gcc_checking_assert (NO_LOC_P (value));
7647 /* We won't notify variables that are being expanded,
7648 because their dependency list is cleared before
7649 recursing. */
7650 NO_LOC_P (value) = false;
7651 VALUE_RECURSED_INTO (value) = false;
7653 gcc_checking_assert (dv_changed_p (dv));
7655 else if (!dv_changed_p (dv))
7656 continue;
7658 var = (variable) htab_find_with_hash (vars, dv, dv_htab_hash (dv));
7660 if (!var)
7661 var = variable_from_dropped (dv, NO_INSERT);
7663 if (var)
7664 notify_dependents_of_resolved_value (var, vars);
7666 if (next)
7667 next->pprev = led->pprev;
7668 if (led->pprev)
7669 *led->pprev = next;
7670 led->next = NULL;
7671 led->pprev = NULL;
7675 static rtx vt_expand_loc_callback (rtx x, bitmap regs,
7676 int max_depth, void *data);
7678 /* Return the combined depth, when one sub-expression evaluated to
7679 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
7681 static inline int
7682 update_depth (int saved_depth, int best_depth)
7684 /* If we didn't find anything, stick with what we had. */
7685 if (!best_depth)
7686 return saved_depth;
7688 /* If we found hadn't found anything, use the depth of the current
7689 expression. Do NOT add one extra level, we want to compute the
7690 maximum depth among sub-expressions. We'll increment it later,
7691 if appropriate. */
7692 if (!saved_depth)
7693 return best_depth;
7695 if (saved_depth < best_depth)
7696 return best_depth;
7697 else
7698 return saved_depth;
7701 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
7702 DATA for cselib expand callback. If PENDRECP is given, indicate in
7703 it whether any sub-expression couldn't be fully evaluated because
7704 it is pending recursion resolution. */
7706 static inline rtx
7707 vt_expand_var_loc_chain (variable var, bitmap regs, void *data, bool *pendrecp)
7709 struct expand_loc_callback_data *elcd
7710 = (struct expand_loc_callback_data *) data;
7711 location_chain loc, next;
7712 rtx result = NULL;
7713 int first_child, result_first_child, last_child;
7714 bool pending_recursion;
7715 rtx loc_from = NULL;
7716 struct elt_loc_list *cloc = NULL;
7717 int depth = 0, saved_depth = elcd->depth;
7719 /* Clear all backlinks pointing at this, so that we're not notified
7720 while we're active. */
7721 loc_exp_dep_clear (var);
7723 if (var->onepart == ONEPART_VALUE)
7725 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
7727 gcc_checking_assert (cselib_preserved_value_p (val));
7729 cloc = val->locs;
7732 first_child = result_first_child = last_child
7733 = VEC_length (rtx, elcd->expanding);
7735 /* Attempt to expand each available location in turn. */
7736 for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
7737 loc || cloc; loc = next)
7739 result_first_child = last_child;
7741 if (!loc || (GET_CODE (loc->loc) == ENTRY_VALUE && cloc))
7743 loc_from = cloc->loc;
7744 next = loc;
7745 cloc = cloc->next;
7746 if (unsuitable_loc (loc_from))
7747 continue;
7749 else
7751 loc_from = loc->loc;
7752 next = loc->next;
7755 gcc_checking_assert (!unsuitable_loc (loc_from));
7757 elcd->depth = 0;
7758 result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
7759 vt_expand_loc_callback, data);
7760 last_child = VEC_length (rtx, elcd->expanding);
7762 if (result)
7764 depth = elcd->depth;
7766 gcc_checking_assert (depth || result_first_child == last_child);
7768 if (last_child - result_first_child != 1)
7769 depth++;
7771 if (depth <= EXPR_USE_DEPTH)
7772 break;
7774 result = NULL;
7777 /* Set it up in case we leave the loop. */
7778 depth = 0;
7779 loc_from = NULL;
7780 result_first_child = first_child;
7783 /* Register all encountered dependencies as active. */
7784 pending_recursion = loc_exp_dep_set
7785 (var, result, VEC_address (rtx, elcd->expanding) + result_first_child,
7786 last_child - result_first_child, elcd->vars);
7788 VEC_truncate (rtx, elcd->expanding, first_child);
7790 /* Record where the expansion came from. */
7791 gcc_checking_assert (!result || !pending_recursion);
7792 VAR_LOC_FROM (var) = loc_from;
7793 VAR_LOC_DEPTH (var) = depth;
7795 gcc_checking_assert (!depth == !result);
7797 elcd->depth = update_depth (saved_depth, depth);
7799 /* Indicate whether any of the dependencies are pending recursion
7800 resolution. */
7801 if (pendrecp)
7802 *pendrecp = pending_recursion;
7804 if (!pendrecp || !pending_recursion)
7805 var->var_part[0].cur_loc = result;
7807 return result;
7810 /* Callback for cselib_expand_value, that looks for expressions
7811 holding the value in the var-tracking hash tables. Return X for
7812 standard processing, anything else is to be used as-is. */
7814 static rtx
7815 vt_expand_loc_callback (rtx x, bitmap regs,
7816 int max_depth ATTRIBUTE_UNUSED,
7817 void *data)
7819 struct expand_loc_callback_data *elcd
7820 = (struct expand_loc_callback_data *) data;
7821 decl_or_value dv;
7822 variable var;
7823 rtx result, subreg;
7824 bool pending_recursion = false;
7825 bool from_empty = false;
7827 switch (GET_CODE (x))
7829 case SUBREG:
7830 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
7831 EXPR_DEPTH,
7832 vt_expand_loc_callback, data);
7834 if (!subreg)
7835 return NULL;
7837 result = simplify_gen_subreg (GET_MODE (x), subreg,
7838 GET_MODE (SUBREG_REG (x)),
7839 SUBREG_BYTE (x));
7841 /* Invalid SUBREGs are ok in debug info. ??? We could try
7842 alternate expansions for the VALUE as well. */
7843 if (!result)
7844 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
7846 return result;
7848 case DEBUG_EXPR:
7849 case VALUE:
7850 dv = dv_from_rtx (x);
7851 break;
7853 default:
7854 return x;
7857 VEC_safe_push (rtx, stack, elcd->expanding, x);
7859 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
7860 gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
7862 if (NO_LOC_P (x))
7864 gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
7865 return NULL;
7868 var = (variable) htab_find_with_hash (elcd->vars, dv, dv_htab_hash (dv));
7870 if (!var)
7872 from_empty = true;
7873 var = variable_from_dropped (dv, INSERT);
7876 gcc_checking_assert (var);
7878 if (!dv_changed_p (dv))
7880 gcc_checking_assert (!NO_LOC_P (x));
7881 gcc_checking_assert (var->var_part[0].cur_loc);
7882 gcc_checking_assert (VAR_LOC_1PAUX (var));
7883 gcc_checking_assert (VAR_LOC_1PAUX (var)->depth);
7885 elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
7887 return var->var_part[0].cur_loc;
7890 VALUE_RECURSED_INTO (x) = true;
7891 /* This is tentative, but it makes some tests simpler. */
7892 NO_LOC_P (x) = true;
7894 gcc_checking_assert (var->n_var_parts == 1 || from_empty);
7896 result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
7898 if (pending_recursion)
7900 gcc_checking_assert (!result);
7901 VEC_safe_push (rtx, stack, elcd->pending, x);
7903 else
7905 NO_LOC_P (x) = !result;
7906 VALUE_RECURSED_INTO (x) = false;
7907 set_dv_changed (dv, false);
7909 if (result)
7910 notify_dependents_of_resolved_value (var, elcd->vars);
7913 return result;
7916 /* While expanding variables, we may encounter recursion cycles
7917 because of mutual (possibly indirect) dependencies between two
7918 particular variables (or values), say A and B. If we're trying to
7919 expand A when we get to B, which in turn attempts to expand A, if
7920 we can't find any other expansion for B, we'll add B to this
7921 pending-recursion stack, and tentatively return NULL for its
7922 location. This tentative value will be used for any other
7923 occurrences of B, unless A gets some other location, in which case
7924 it will notify B that it is worth another try at computing a
7925 location for it, and it will use the location computed for A then.
7926 At the end of the expansion, the tentative NULL locations become
7927 final for all members of PENDING that didn't get a notification.
7928 This function performs this finalization of NULL locations. */
7930 static void
7931 resolve_expansions_pending_recursion (VEC (rtx, stack) *pending)
7933 while (!VEC_empty (rtx, pending))
7935 rtx x = VEC_pop (rtx, pending);
7936 decl_or_value dv;
7938 if (!VALUE_RECURSED_INTO (x))
7939 continue;
7941 gcc_checking_assert (NO_LOC_P (x));
7942 VALUE_RECURSED_INTO (x) = false;
7943 dv = dv_from_rtx (x);
7944 gcc_checking_assert (dv_changed_p (dv));
7945 set_dv_changed (dv, false);
7949 /* Initialize expand_loc_callback_data D with variable hash table V.
7950 It must be a macro because of alloca (VEC stack). */
7951 #define INIT_ELCD(d, v) \
7952 do \
7954 (d).vars = (v); \
7955 (d).expanding = VEC_alloc (rtx, stack, 4); \
7956 (d).pending = VEC_alloc (rtx, stack, 4); \
7957 (d).depth = 0; \
7959 while (0)
7960 /* Finalize expand_loc_callback_data D, resolved to location L. */
7961 #define FINI_ELCD(d, l) \
7962 do \
7964 resolve_expansions_pending_recursion ((d).pending); \
7965 VEC_free (rtx, stack, (d).pending); \
7966 VEC_free (rtx, stack, (d).expanding); \
7968 if ((l) && MEM_P (l)) \
7969 (l) = targetm.delegitimize_address (l); \
7971 while (0)
7973 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
7974 equivalences in VARS, updating their CUR_LOCs in the process. */
7976 static rtx
7977 vt_expand_loc (rtx loc, htab_t vars)
7979 struct expand_loc_callback_data data;
7980 rtx result;
7982 if (!MAY_HAVE_DEBUG_INSNS)
7983 return loc;
7985 INIT_ELCD (data, vars);
7987 result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
7988 vt_expand_loc_callback, &data);
7990 FINI_ELCD (data, result);
7992 return result;
7995 /* Expand the one-part VARiable to a location, using the equivalences
7996 in VARS, updating their CUR_LOCs in the process. */
7998 static rtx
7999 vt_expand_1pvar (variable var, htab_t vars)
8001 struct expand_loc_callback_data data;
8002 rtx loc;
8004 gcc_checking_assert (var->onepart && var->n_var_parts == 1);
8006 if (!dv_changed_p (var->dv))
8007 return var->var_part[0].cur_loc;
8009 INIT_ELCD (data, vars);
8011 loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
8013 gcc_checking_assert (VEC_empty (rtx, data.expanding));
8015 FINI_ELCD (data, loc);
8017 return loc;
8020 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8021 additional parameters: WHERE specifies whether the note shall be emitted
8022 before or after instruction INSN. */
8024 static int
8025 emit_note_insn_var_location (void **varp, void *data)
8027 variable var = (variable) *varp;
8028 rtx insn = ((emit_note_data *)data)->insn;
8029 enum emit_note_where where = ((emit_note_data *)data)->where;
8030 htab_t vars = ((emit_note_data *)data)->vars;
8031 rtx note, note_vl;
8032 int i, j, n_var_parts;
8033 bool complete;
8034 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
8035 HOST_WIDE_INT last_limit;
8036 tree type_size_unit;
8037 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
8038 rtx loc[MAX_VAR_PARTS];
8039 tree decl;
8040 location_chain lc;
8042 gcc_checking_assert (var->onepart == NOT_ONEPART
8043 || var->onepart == ONEPART_VDECL);
8045 decl = dv_as_decl (var->dv);
8047 complete = true;
8048 last_limit = 0;
8049 n_var_parts = 0;
8050 if (!var->onepart)
8051 for (i = 0; i < var->n_var_parts; i++)
8052 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
8053 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
8054 for (i = 0; i < var->n_var_parts; i++)
8056 enum machine_mode mode, wider_mode;
8057 rtx loc2;
8058 HOST_WIDE_INT offset;
8060 if (i == 0 && var->onepart)
8062 gcc_checking_assert (var->n_var_parts == 1);
8063 offset = 0;
8064 initialized = VAR_INIT_STATUS_INITIALIZED;
8065 loc2 = vt_expand_1pvar (var, vars);
8067 else
8069 if (last_limit < VAR_PART_OFFSET (var, i))
8071 complete = false;
8072 break;
8074 else if (last_limit > VAR_PART_OFFSET (var, i))
8075 continue;
8076 offset = VAR_PART_OFFSET (var, i);
8077 if (!var->var_part[i].cur_loc)
8079 complete = false;
8080 continue;
8082 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
8083 if (var->var_part[i].cur_loc == lc->loc)
8085 initialized = lc->init;
8086 break;
8088 gcc_assert (lc);
8089 loc2 = var->var_part[i].cur_loc;
8092 offsets[n_var_parts] = offset;
8093 if (!loc2)
8095 complete = false;
8096 continue;
8098 loc[n_var_parts] = loc2;
8099 mode = GET_MODE (var->var_part[i].cur_loc);
8100 if (mode == VOIDmode && var->onepart)
8101 mode = DECL_MODE (decl);
8102 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8104 /* Attempt to merge adjacent registers or memory. */
8105 wider_mode = GET_MODE_WIDER_MODE (mode);
8106 for (j = i + 1; j < var->n_var_parts; j++)
8107 if (last_limit <= VAR_PART_OFFSET (var, j))
8108 break;
8109 if (j < var->n_var_parts
8110 && wider_mode != VOIDmode
8111 && var->var_part[j].cur_loc
8112 && mode == GET_MODE (var->var_part[j].cur_loc)
8113 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
8114 && last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
8115 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
8116 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
8118 rtx new_loc = NULL;
8120 if (REG_P (loc[n_var_parts])
8121 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
8122 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
8123 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
8124 == REGNO (loc2))
8126 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
8127 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
8128 mode, 0);
8129 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
8130 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
8131 if (new_loc)
8133 if (!REG_P (new_loc)
8134 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
8135 new_loc = NULL;
8136 else
8137 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
8140 else if (MEM_P (loc[n_var_parts])
8141 && GET_CODE (XEXP (loc2, 0)) == PLUS
8142 && REG_P (XEXP (XEXP (loc2, 0), 0))
8143 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
8145 if ((REG_P (XEXP (loc[n_var_parts], 0))
8146 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
8147 XEXP (XEXP (loc2, 0), 0))
8148 && INTVAL (XEXP (XEXP (loc2, 0), 1))
8149 == GET_MODE_SIZE (mode))
8150 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
8151 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
8152 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
8153 XEXP (XEXP (loc2, 0), 0))
8154 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
8155 + GET_MODE_SIZE (mode)
8156 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
8157 new_loc = adjust_address_nv (loc[n_var_parts],
8158 wider_mode, 0);
8161 if (new_loc)
8163 loc[n_var_parts] = new_loc;
8164 mode = wider_mode;
8165 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8166 i = j;
8169 ++n_var_parts;
8171 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
8172 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
8173 complete = false;
8175 if (! flag_var_tracking_uninit)
8176 initialized = VAR_INIT_STATUS_INITIALIZED;
8178 note_vl = NULL_RTX;
8179 if (!complete)
8180 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX,
8181 (int) initialized);
8182 else if (n_var_parts == 1)
8184 rtx expr_list;
8186 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
8187 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
8188 else
8189 expr_list = loc[0];
8191 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list,
8192 (int) initialized);
8194 else if (n_var_parts)
8196 rtx parallel;
8198 for (i = 0; i < n_var_parts; i++)
8199 loc[i]
8200 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
8202 parallel = gen_rtx_PARALLEL (VOIDmode,
8203 gen_rtvec_v (n_var_parts, loc));
8204 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
8205 parallel, (int) initialized);
8208 if (where != EMIT_NOTE_BEFORE_INSN)
8210 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8211 if (where == EMIT_NOTE_AFTER_CALL_INSN)
8212 NOTE_DURING_CALL_P (note) = true;
8214 else
8216 /* Make sure that the call related notes come first. */
8217 while (NEXT_INSN (insn)
8218 && NOTE_P (insn)
8219 && NOTE_DURING_CALL_P (insn))
8220 insn = NEXT_INSN (insn);
8221 if (NOTE_P (insn) && NOTE_DURING_CALL_P (insn))
8222 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8223 else
8224 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
8226 NOTE_VAR_LOCATION (note) = note_vl;
8228 set_dv_changed (var->dv, false);
8229 gcc_assert (var->in_changed_variables);
8230 var->in_changed_variables = false;
8231 htab_clear_slot (changed_variables, varp);
8233 /* Continue traversing the hash table. */
8234 return 1;
8237 /* While traversing changed_variables, push onto DATA (a stack of RTX
8238 values) entries that aren't user variables. */
8240 static int
8241 values_to_stack (void **slot, void *data)
8243 VEC (rtx, stack) **changed_values_stack = (VEC (rtx, stack) **)data;
8244 variable var = (variable) *slot;
8246 if (var->onepart == ONEPART_VALUE)
8247 VEC_safe_push (rtx, stack, *changed_values_stack, dv_as_value (var->dv));
8248 else if (var->onepart == ONEPART_DEXPR)
8249 VEC_safe_push (rtx, stack, *changed_values_stack,
8250 DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
8252 return 1;
8255 /* Remove from changed_variables the entry whose DV corresponds to
8256 value or debug_expr VAL. */
8257 static void
8258 remove_value_from_changed_variables (rtx val)
8260 decl_or_value dv = dv_from_rtx (val);
8261 void **slot;
8262 variable var;
8264 slot = htab_find_slot_with_hash (changed_variables,
8265 dv, dv_htab_hash (dv), NO_INSERT);
8266 var = (variable) *slot;
8267 var->in_changed_variables = false;
8268 htab_clear_slot (changed_variables, slot);
8271 /* If VAL (a value or debug_expr) has backlinks to variables actively
8272 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8273 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8274 have dependencies of their own to notify. */
8276 static void
8277 notify_dependents_of_changed_value (rtx val, htab_t htab,
8278 VEC (rtx, stack) **changed_values_stack)
8280 void **slot;
8281 variable var;
8282 loc_exp_dep *led;
8283 decl_or_value dv = dv_from_rtx (val);
8285 slot = htab_find_slot_with_hash (changed_variables,
8286 dv, dv_htab_hash (dv), NO_INSERT);
8287 if (!slot)
8288 slot = htab_find_slot_with_hash (htab,
8289 dv, dv_htab_hash (dv), NO_INSERT);
8290 if (!slot)
8291 slot = htab_find_slot_with_hash (dropped_values,
8292 dv, dv_htab_hash (dv), NO_INSERT);
8293 var = (variable) *slot;
8295 while ((led = VAR_LOC_DEP_LST (var)))
8297 decl_or_value ldv = led->dv;
8298 void **islot;
8299 variable ivar;
8301 /* Deactivate and remove the backlink, as it was “used up”. It
8302 makes no sense to attempt to notify the same entity again:
8303 either it will be recomputed and re-register an active
8304 dependency, or it will still have the changed mark. */
8305 if (led->next)
8306 led->next->pprev = led->pprev;
8307 if (led->pprev)
8308 *led->pprev = led->next;
8309 led->next = NULL;
8310 led->pprev = NULL;
8312 if (dv_changed_p (ldv))
8313 continue;
8315 switch (dv_onepart_p (ldv))
8317 case ONEPART_VALUE:
8318 case ONEPART_DEXPR:
8319 set_dv_changed (ldv, true);
8320 VEC_safe_push (rtx, stack, *changed_values_stack, dv_as_rtx (ldv));
8321 break;
8323 default:
8324 islot = htab_find_slot_with_hash (htab, ldv, dv_htab_hash (ldv),
8325 NO_INSERT);
8326 ivar = (variable) *islot;
8327 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
8328 variable_was_changed (ivar, NULL);
8329 break;
8334 /* Take out of changed_variables any entries that don't refer to use
8335 variables. Back-propagate change notifications from values and
8336 debug_exprs to their active dependencies in HTAB or in
8337 CHANGED_VARIABLES. */
8339 static void
8340 process_changed_values (htab_t htab)
8342 int i, n;
8343 rtx val;
8344 VEC (rtx, stack) *changed_values_stack = VEC_alloc (rtx, stack, 20);
8346 /* Move values from changed_variables to changed_values_stack. */
8347 htab_traverse (changed_variables, values_to_stack, &changed_values_stack);
8349 /* Back-propagate change notifications in values while popping
8350 them from the stack. */
8351 for (n = i = VEC_length (rtx, changed_values_stack);
8352 i > 0; i = VEC_length (rtx, changed_values_stack))
8354 val = VEC_pop (rtx, changed_values_stack);
8355 notify_dependents_of_changed_value (val, htab, &changed_values_stack);
8357 /* This condition will hold when visiting each of the entries
8358 originally in changed_variables. We can't remove them
8359 earlier because this could drop the backlinks before we got a
8360 chance to use them. */
8361 if (i == n)
8363 remove_value_from_changed_variables (val);
8364 n--;
8368 VEC_free (rtx, stack, changed_values_stack);
8371 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
8372 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
8373 the notes shall be emitted before of after instruction INSN. */
8375 static void
8376 emit_notes_for_changes (rtx insn, enum emit_note_where where,
8377 shared_hash vars)
8379 emit_note_data data;
8380 htab_t htab = shared_hash_htab (vars);
8382 if (!htab_elements (changed_variables))
8383 return;
8385 if (MAY_HAVE_DEBUG_INSNS)
8386 process_changed_values (htab);
8388 data.insn = insn;
8389 data.where = where;
8390 data.vars = htab;
8392 htab_traverse (changed_variables, emit_note_insn_var_location, &data);
8395 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
8396 same variable in hash table DATA or is not there at all. */
8398 static int
8399 emit_notes_for_differences_1 (void **slot, void *data)
8401 htab_t new_vars = (htab_t) data;
8402 variable old_var, new_var;
8404 old_var = (variable) *slot;
8405 new_var = (variable) htab_find_with_hash (new_vars, old_var->dv,
8406 dv_htab_hash (old_var->dv));
8408 if (!new_var)
8410 /* Variable has disappeared. */
8411 variable empty_var = NULL;
8413 if (old_var->onepart == ONEPART_VALUE
8414 || old_var->onepart == ONEPART_DEXPR)
8416 empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
8417 if (empty_var)
8419 gcc_checking_assert (!empty_var->in_changed_variables);
8420 if (!VAR_LOC_1PAUX (old_var))
8422 VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
8423 VAR_LOC_1PAUX (empty_var) = NULL;
8425 else
8426 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
8430 if (!empty_var)
8432 empty_var = (variable) pool_alloc (onepart_pool (old_var->onepart));
8433 empty_var->dv = old_var->dv;
8434 empty_var->refcount = 0;
8435 empty_var->n_var_parts = 0;
8436 empty_var->onepart = old_var->onepart;
8437 empty_var->in_changed_variables = false;
8440 if (empty_var->onepart)
8442 /* Propagate the auxiliary data to (ultimately)
8443 changed_variables. */
8444 empty_var->var_part[0].loc_chain = NULL;
8445 empty_var->var_part[0].cur_loc = NULL;
8446 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
8447 VAR_LOC_1PAUX (old_var) = NULL;
8449 variable_was_changed (empty_var, NULL);
8450 /* Continue traversing the hash table. */
8451 return 1;
8453 /* Update cur_loc and one-part auxiliary data, before new_var goes
8454 through variable_was_changed. */
8455 if (old_var != new_var && new_var->onepart)
8457 gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
8458 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
8459 VAR_LOC_1PAUX (old_var) = NULL;
8460 new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
8462 if (variable_different_p (old_var, new_var))
8463 variable_was_changed (new_var, NULL);
8465 /* Continue traversing the hash table. */
8466 return 1;
8469 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
8470 table DATA. */
8472 static int
8473 emit_notes_for_differences_2 (void **slot, void *data)
8475 htab_t old_vars = (htab_t) data;
8476 variable old_var, new_var;
8478 new_var = (variable) *slot;
8479 old_var = (variable) htab_find_with_hash (old_vars, new_var->dv,
8480 dv_htab_hash (new_var->dv));
8481 if (!old_var)
8483 int i;
8484 for (i = 0; i < new_var->n_var_parts; i++)
8485 new_var->var_part[i].cur_loc = NULL;
8486 variable_was_changed (new_var, NULL);
8489 /* Continue traversing the hash table. */
8490 return 1;
8493 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
8494 NEW_SET. */
8496 static void
8497 emit_notes_for_differences (rtx insn, dataflow_set *old_set,
8498 dataflow_set *new_set)
8500 htab_traverse (shared_hash_htab (old_set->vars),
8501 emit_notes_for_differences_1,
8502 shared_hash_htab (new_set->vars));
8503 htab_traverse (shared_hash_htab (new_set->vars),
8504 emit_notes_for_differences_2,
8505 shared_hash_htab (old_set->vars));
8506 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
8509 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
8511 static rtx
8512 next_non_note_insn_var_location (rtx insn)
8514 while (insn)
8516 insn = NEXT_INSN (insn);
8517 if (insn == 0
8518 || !NOTE_P (insn)
8519 || NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
8520 break;
8523 return insn;
8526 /* Emit the notes for changes of location parts in the basic block BB. */
8528 static void
8529 emit_notes_in_bb (basic_block bb, dataflow_set *set)
8531 unsigned int i;
8532 micro_operation *mo;
8534 dataflow_set_clear (set);
8535 dataflow_set_copy (set, &VTI (bb)->in);
8537 FOR_EACH_VEC_ELT (micro_operation, VTI (bb)->mos, i, mo)
8539 rtx insn = mo->insn;
8540 rtx next_insn = next_non_note_insn_var_location (insn);
8542 switch (mo->type)
8544 case MO_CALL:
8545 dataflow_set_clear_at_call (set);
8546 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
8548 rtx arguments = mo->u.loc, *p = &arguments, note;
8549 while (*p)
8551 XEXP (XEXP (*p, 0), 1)
8552 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
8553 shared_hash_htab (set->vars));
8554 /* If expansion is successful, keep it in the list. */
8555 if (XEXP (XEXP (*p, 0), 1))
8556 p = &XEXP (*p, 1);
8557 /* Otherwise, if the following item is data_value for it,
8558 drop it too too. */
8559 else if (XEXP (*p, 1)
8560 && REG_P (XEXP (XEXP (*p, 0), 0))
8561 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
8562 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
8564 && REGNO (XEXP (XEXP (*p, 0), 0))
8565 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
8566 0), 0)))
8567 *p = XEXP (XEXP (*p, 1), 1);
8568 /* Just drop this item. */
8569 else
8570 *p = XEXP (*p, 1);
8572 note = emit_note_after (NOTE_INSN_CALL_ARG_LOCATION, insn);
8573 NOTE_VAR_LOCATION (note) = arguments;
8575 break;
8577 case MO_USE:
8579 rtx loc = mo->u.loc;
8581 if (REG_P (loc))
8582 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
8583 else
8584 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
8586 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
8588 break;
8590 case MO_VAL_LOC:
8592 rtx loc = mo->u.loc;
8593 rtx val, vloc;
8594 tree var;
8596 if (GET_CODE (loc) == CONCAT)
8598 val = XEXP (loc, 0);
8599 vloc = XEXP (loc, 1);
8601 else
8603 val = NULL_RTX;
8604 vloc = loc;
8607 var = PAT_VAR_LOCATION_DECL (vloc);
8609 clobber_variable_part (set, NULL_RTX,
8610 dv_from_decl (var), 0, NULL_RTX);
8611 if (val)
8613 if (VAL_NEEDS_RESOLUTION (loc))
8614 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
8615 set_variable_part (set, val, dv_from_decl (var), 0,
8616 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
8617 INSERT);
8619 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
8620 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
8621 dv_from_decl (var), 0,
8622 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
8623 INSERT);
8625 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
8627 break;
8629 case MO_VAL_USE:
8631 rtx loc = mo->u.loc;
8632 rtx val, vloc, uloc;
8634 vloc = uloc = XEXP (loc, 1);
8635 val = XEXP (loc, 0);
8637 if (GET_CODE (val) == CONCAT)
8639 uloc = XEXP (val, 1);
8640 val = XEXP (val, 0);
8643 if (VAL_NEEDS_RESOLUTION (loc))
8644 val_resolve (set, val, vloc, insn);
8645 else
8646 val_store (set, val, uloc, insn, false);
8648 if (VAL_HOLDS_TRACK_EXPR (loc))
8650 if (GET_CODE (uloc) == REG)
8651 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
8652 NULL);
8653 else if (GET_CODE (uloc) == MEM)
8654 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
8655 NULL);
8658 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
8660 break;
8662 case MO_VAL_SET:
8664 rtx loc = mo->u.loc;
8665 rtx val, vloc, uloc;
8667 vloc = loc;
8668 uloc = XEXP (vloc, 1);
8669 val = XEXP (vloc, 0);
8670 vloc = uloc;
8672 if (GET_CODE (val) == CONCAT)
8674 vloc = XEXP (val, 1);
8675 val = XEXP (val, 0);
8678 if (GET_CODE (vloc) == SET)
8680 rtx vsrc = SET_SRC (vloc);
8682 gcc_assert (val != vsrc);
8683 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
8685 vloc = SET_DEST (vloc);
8687 if (VAL_NEEDS_RESOLUTION (loc))
8688 val_resolve (set, val, vsrc, insn);
8690 else if (VAL_NEEDS_RESOLUTION (loc))
8692 gcc_assert (GET_CODE (uloc) == SET
8693 && GET_CODE (SET_SRC (uloc)) == REG);
8694 val_resolve (set, val, SET_SRC (uloc), insn);
8697 if (VAL_HOLDS_TRACK_EXPR (loc))
8699 if (VAL_EXPR_IS_CLOBBERED (loc))
8701 if (REG_P (uloc))
8702 var_reg_delete (set, uloc, true);
8703 else if (MEM_P (uloc))
8704 var_mem_delete (set, uloc, true);
8706 else
8708 bool copied_p = VAL_EXPR_IS_COPIED (loc);
8709 rtx set_src = NULL;
8710 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
8712 if (GET_CODE (uloc) == SET)
8714 set_src = SET_SRC (uloc);
8715 uloc = SET_DEST (uloc);
8718 if (copied_p)
8720 status = find_src_status (set, set_src);
8722 set_src = find_src_set_src (set, set_src);
8725 if (REG_P (uloc))
8726 var_reg_delete_and_set (set, uloc, !copied_p,
8727 status, set_src);
8728 else if (MEM_P (uloc))
8729 var_mem_delete_and_set (set, uloc, !copied_p,
8730 status, set_src);
8733 else if (REG_P (uloc))
8734 var_regno_delete (set, REGNO (uloc));
8736 val_store (set, val, vloc, insn, true);
8738 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
8739 set->vars);
8741 break;
8743 case MO_SET:
8745 rtx loc = mo->u.loc;
8746 rtx set_src = NULL;
8748 if (GET_CODE (loc) == SET)
8750 set_src = SET_SRC (loc);
8751 loc = SET_DEST (loc);
8754 if (REG_P (loc))
8755 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
8756 set_src);
8757 else
8758 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
8759 set_src);
8761 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
8762 set->vars);
8764 break;
8766 case MO_COPY:
8768 rtx loc = mo->u.loc;
8769 enum var_init_status src_status;
8770 rtx set_src = NULL;
8772 if (GET_CODE (loc) == SET)
8774 set_src = SET_SRC (loc);
8775 loc = SET_DEST (loc);
8778 src_status = find_src_status (set, set_src);
8779 set_src = find_src_set_src (set, set_src);
8781 if (REG_P (loc))
8782 var_reg_delete_and_set (set, loc, false, src_status, set_src);
8783 else
8784 var_mem_delete_and_set (set, loc, false, src_status, set_src);
8786 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
8787 set->vars);
8789 break;
8791 case MO_USE_NO_VAR:
8793 rtx loc = mo->u.loc;
8795 if (REG_P (loc))
8796 var_reg_delete (set, loc, false);
8797 else
8798 var_mem_delete (set, loc, false);
8800 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
8802 break;
8804 case MO_CLOBBER:
8806 rtx loc = mo->u.loc;
8808 if (REG_P (loc))
8809 var_reg_delete (set, loc, true);
8810 else
8811 var_mem_delete (set, loc, true);
8813 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
8814 set->vars);
8816 break;
8818 case MO_ADJUST:
8819 set->stack_adjust += mo->u.adjust;
8820 break;
8825 /* Emit notes for the whole function. */
8827 static void
8828 vt_emit_notes (void)
8830 basic_block bb;
8831 dataflow_set cur;
8833 gcc_assert (!htab_elements (changed_variables));
8835 /* Free memory occupied by the out hash tables, as they aren't used
8836 anymore. */
8837 FOR_EACH_BB (bb)
8838 dataflow_set_clear (&VTI (bb)->out);
8840 /* Enable emitting notes by functions (mainly by set_variable_part and
8841 delete_variable_part). */
8842 emit_notes = true;
8844 if (MAY_HAVE_DEBUG_INSNS)
8845 dropped_values = htab_create (cselib_get_next_uid () * 2,
8846 variable_htab_hash, variable_htab_eq,
8847 variable_htab_free);
8849 dataflow_set_init (&cur);
8851 FOR_EACH_BB (bb)
8853 /* Emit the notes for changes of variable locations between two
8854 subsequent basic blocks. */
8855 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
8857 /* Emit the notes for the changes in the basic block itself. */
8858 emit_notes_in_bb (bb, &cur);
8860 /* Free memory occupied by the in hash table, we won't need it
8861 again. */
8862 dataflow_set_clear (&VTI (bb)->in);
8864 #ifdef ENABLE_CHECKING
8865 htab_traverse (shared_hash_htab (cur.vars),
8866 emit_notes_for_differences_1,
8867 shared_hash_htab (empty_shared_hash));
8868 #endif
8869 dataflow_set_destroy (&cur);
8871 if (MAY_HAVE_DEBUG_INSNS)
8872 htab_delete (dropped_values);
8874 emit_notes = false;
8877 /* If there is a declaration and offset associated with register/memory RTL
8878 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
8880 static bool
8881 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
8883 if (REG_P (rtl))
8885 if (REG_ATTRS (rtl))
8887 *declp = REG_EXPR (rtl);
8888 *offsetp = REG_OFFSET (rtl);
8889 return true;
8892 else if (MEM_P (rtl))
8894 if (MEM_ATTRS (rtl))
8896 *declp = MEM_EXPR (rtl);
8897 *offsetp = INT_MEM_OFFSET (rtl);
8898 return true;
8901 return false;
8904 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
8905 of VAL. */
8907 static void
8908 record_entry_value (cselib_val *val, rtx rtl)
8910 rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
8912 ENTRY_VALUE_EXP (ev) = rtl;
8914 cselib_add_permanent_equiv (val, ev, get_insns ());
8917 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
8919 static void
8920 vt_add_function_parameter (tree parm)
8922 rtx decl_rtl = DECL_RTL_IF_SET (parm);
8923 rtx incoming = DECL_INCOMING_RTL (parm);
8924 tree decl;
8925 enum machine_mode mode;
8926 HOST_WIDE_INT offset;
8927 dataflow_set *out;
8928 decl_or_value dv;
8930 if (TREE_CODE (parm) != PARM_DECL)
8931 return;
8933 if (!decl_rtl || !incoming)
8934 return;
8936 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
8937 return;
8939 /* If there is a DRAP register, rewrite the incoming location of parameters
8940 passed on the stack into MEMs based on the argument pointer, as the DRAP
8941 register can be reused for other purposes and we do not track locations
8942 based on generic registers. But the prerequisite is that this argument
8943 pointer be also the virtual CFA pointer, see vt_initialize. */
8944 if (MEM_P (incoming)
8945 && stack_realign_drap
8946 && arg_pointer_rtx == cfa_base_rtx
8947 && (XEXP (incoming, 0) == crtl->args.internal_arg_pointer
8948 || (GET_CODE (XEXP (incoming, 0)) == PLUS
8949 && XEXP (XEXP (incoming, 0), 0)
8950 == crtl->args.internal_arg_pointer
8951 && CONST_INT_P (XEXP (XEXP (incoming, 0), 1)))))
8953 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
8954 if (GET_CODE (XEXP (incoming, 0)) == PLUS)
8955 off += INTVAL (XEXP (XEXP (incoming, 0), 1));
8956 incoming
8957 = replace_equiv_address_nv (incoming,
8958 plus_constant (arg_pointer_rtx, off));
8961 #ifdef HAVE_window_save
8962 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
8963 If the target machine has an explicit window save instruction, the
8964 actual entry value is the corresponding OUTGOING_REGNO instead. */
8965 if (REG_P (incoming)
8966 && HARD_REGISTER_P (incoming)
8967 && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
8969 parm_reg_t *p
8970 = VEC_safe_push (parm_reg_t, gc, windowed_parm_regs, NULL);
8971 p->incoming = incoming;
8972 incoming
8973 = gen_rtx_REG_offset (incoming, GET_MODE (incoming),
8974 OUTGOING_REGNO (REGNO (incoming)), 0);
8975 p->outgoing = incoming;
8977 else if (MEM_P (incoming)
8978 && REG_P (XEXP (incoming, 0))
8979 && HARD_REGISTER_P (XEXP (incoming, 0)))
8981 rtx reg = XEXP (incoming, 0);
8982 if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
8984 parm_reg_t *p
8985 = VEC_safe_push (parm_reg_t, gc, windowed_parm_regs, NULL);
8986 p->incoming = reg;
8987 reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
8988 p->outgoing = reg;
8989 incoming = replace_equiv_address_nv (incoming, reg);
8992 #endif
8994 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
8996 if (REG_P (incoming) || MEM_P (incoming))
8998 /* This means argument is passed by invisible reference. */
8999 offset = 0;
9000 decl = parm;
9001 incoming = gen_rtx_MEM (GET_MODE (decl_rtl), incoming);
9003 else
9005 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
9006 return;
9007 offset += byte_lowpart_offset (GET_MODE (incoming),
9008 GET_MODE (decl_rtl));
9012 if (!decl)
9013 return;
9015 if (parm != decl)
9017 /* Assume that DECL_RTL was a pseudo that got spilled to
9018 memory. The spill slot sharing code will force the
9019 memory to reference spill_slot_decl (%sfp), so we don't
9020 match above. That's ok, the pseudo must have referenced
9021 the entire parameter, so just reset OFFSET. */
9022 gcc_assert (decl == get_spill_slot_decl (false));
9023 offset = 0;
9026 if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
9027 return;
9029 out = &VTI (ENTRY_BLOCK_PTR)->out;
9031 dv = dv_from_decl (parm);
9033 if (target_for_debug_bind (parm)
9034 /* We can't deal with these right now, because this kind of
9035 variable is single-part. ??? We could handle parallels
9036 that describe multiple locations for the same single
9037 value, but ATM we don't. */
9038 && GET_CODE (incoming) != PARALLEL)
9040 cselib_val *val;
9042 /* ??? We shouldn't ever hit this, but it may happen because
9043 arguments passed by invisible reference aren't dealt with
9044 above: incoming-rtl will have Pmode rather than the
9045 expected mode for the type. */
9046 if (offset)
9047 return;
9049 val = cselib_lookup_from_insn (var_lowpart (mode, incoming), mode, true,
9050 VOIDmode, get_insns ());
9052 /* ??? Float-typed values in memory are not handled by
9053 cselib. */
9054 if (val)
9056 preserve_value (val);
9057 set_variable_part (out, val->val_rtx, dv, offset,
9058 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9059 dv = dv_from_value (val->val_rtx);
9063 if (REG_P (incoming))
9065 incoming = var_lowpart (mode, incoming);
9066 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
9067 attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
9068 incoming);
9069 set_variable_part (out, incoming, dv, offset,
9070 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9071 if (dv_is_value_p (dv))
9073 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
9074 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
9075 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
9077 enum machine_mode indmode
9078 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
9079 rtx mem = gen_rtx_MEM (indmode, incoming);
9080 cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
9081 VOIDmode,
9082 get_insns ());
9083 if (val)
9085 preserve_value (val);
9086 record_entry_value (val, mem);
9087 set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
9088 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9093 else if (MEM_P (incoming))
9095 incoming = var_lowpart (mode, incoming);
9096 set_variable_part (out, incoming, dv, offset,
9097 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9101 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9103 static void
9104 vt_add_function_parameters (void)
9106 tree parm;
9108 for (parm = DECL_ARGUMENTS (current_function_decl);
9109 parm; parm = DECL_CHAIN (parm))
9110 vt_add_function_parameter (parm);
9112 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
9114 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
9116 if (TREE_CODE (vexpr) == INDIRECT_REF)
9117 vexpr = TREE_OPERAND (vexpr, 0);
9119 if (TREE_CODE (vexpr) == PARM_DECL
9120 && DECL_ARTIFICIAL (vexpr)
9121 && !DECL_IGNORED_P (vexpr)
9122 && DECL_NAMELESS (vexpr))
9123 vt_add_function_parameter (vexpr);
9127 /* Return true if INSN in the prologue initializes hard_frame_pointer_rtx. */
9129 static bool
9130 fp_setter (rtx insn)
9132 rtx pat = PATTERN (insn);
9133 if (RTX_FRAME_RELATED_P (insn))
9135 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
9136 if (expr)
9137 pat = XEXP (expr, 0);
9139 if (GET_CODE (pat) == SET)
9140 return SET_DEST (pat) == hard_frame_pointer_rtx;
9141 else if (GET_CODE (pat) == PARALLEL)
9143 int i;
9144 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9145 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
9146 && SET_DEST (XVECEXP (pat, 0, i)) == hard_frame_pointer_rtx)
9147 return true;
9149 return false;
9152 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9153 ensure it isn't flushed during cselib_reset_table.
9154 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9155 has been eliminated. */
9157 static void
9158 vt_init_cfa_base (void)
9160 cselib_val *val;
9162 #ifdef FRAME_POINTER_CFA_OFFSET
9163 cfa_base_rtx = frame_pointer_rtx;
9164 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
9165 #else
9166 cfa_base_rtx = arg_pointer_rtx;
9167 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
9168 #endif
9169 if (cfa_base_rtx == hard_frame_pointer_rtx
9170 || !fixed_regs[REGNO (cfa_base_rtx)])
9172 cfa_base_rtx = NULL_RTX;
9173 return;
9175 if (!MAY_HAVE_DEBUG_INSNS)
9176 return;
9178 /* Tell alias analysis that cfa_base_rtx should share
9179 find_base_term value with stack pointer or hard frame pointer. */
9180 if (!frame_pointer_needed)
9181 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
9182 else if (!crtl->stack_realign_tried)
9183 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
9185 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
9186 VOIDmode, get_insns ());
9187 preserve_value (val);
9188 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
9189 var_reg_decl_set (&VTI (ENTRY_BLOCK_PTR)->out, cfa_base_rtx,
9190 VAR_INIT_STATUS_INITIALIZED, dv_from_value (val->val_rtx),
9191 0, NULL_RTX, INSERT);
9194 /* Allocate and initialize the data structures for variable tracking
9195 and parse the RTL to get the micro operations. */
9197 static bool
9198 vt_initialize (void)
9200 basic_block bb, prologue_bb = single_succ (ENTRY_BLOCK_PTR);
9201 HOST_WIDE_INT fp_cfa_offset = -1;
9203 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
9205 attrs_pool = create_alloc_pool ("attrs_def pool",
9206 sizeof (struct attrs_def), 1024);
9207 var_pool = create_alloc_pool ("variable_def pool",
9208 sizeof (struct variable_def)
9209 + (MAX_VAR_PARTS - 1)
9210 * sizeof (((variable)NULL)->var_part[0]), 64);
9211 loc_chain_pool = create_alloc_pool ("location_chain_def pool",
9212 sizeof (struct location_chain_def),
9213 1024);
9214 shared_hash_pool = create_alloc_pool ("shared_hash_def pool",
9215 sizeof (struct shared_hash_def), 256);
9216 empty_shared_hash = (shared_hash) pool_alloc (shared_hash_pool);
9217 empty_shared_hash->refcount = 1;
9218 empty_shared_hash->htab
9219 = htab_create (1, variable_htab_hash, variable_htab_eq,
9220 variable_htab_free);
9221 changed_variables = htab_create (10, variable_htab_hash, variable_htab_eq,
9222 variable_htab_free);
9224 /* Init the IN and OUT sets. */
9225 FOR_ALL_BB (bb)
9227 VTI (bb)->visited = false;
9228 VTI (bb)->flooded = false;
9229 dataflow_set_init (&VTI (bb)->in);
9230 dataflow_set_init (&VTI (bb)->out);
9231 VTI (bb)->permp = NULL;
9234 if (MAY_HAVE_DEBUG_INSNS)
9236 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
9237 scratch_regs = BITMAP_ALLOC (NULL);
9238 valvar_pool = create_alloc_pool ("small variable_def pool",
9239 sizeof (struct variable_def), 256);
9240 preserved_values = VEC_alloc (rtx, heap, 256);
9242 else
9244 scratch_regs = NULL;
9245 valvar_pool = NULL;
9248 /* In order to factor out the adjustments made to the stack pointer or to
9249 the hard frame pointer and thus be able to use DW_OP_fbreg operations
9250 instead of individual location lists, we're going to rewrite MEMs based
9251 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
9252 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
9253 resp. arg_pointer_rtx. We can do this either when there is no frame
9254 pointer in the function and stack adjustments are consistent for all
9255 basic blocks or when there is a frame pointer and no stack realignment.
9256 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
9257 has been eliminated. */
9258 if (!frame_pointer_needed)
9260 rtx reg, elim;
9262 if (!vt_stack_adjustments ())
9263 return false;
9265 #ifdef FRAME_POINTER_CFA_OFFSET
9266 reg = frame_pointer_rtx;
9267 #else
9268 reg = arg_pointer_rtx;
9269 #endif
9270 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9271 if (elim != reg)
9273 if (GET_CODE (elim) == PLUS)
9274 elim = XEXP (elim, 0);
9275 if (elim == stack_pointer_rtx)
9276 vt_init_cfa_base ();
9279 else if (!crtl->stack_realign_tried)
9281 rtx reg, elim;
9283 #ifdef FRAME_POINTER_CFA_OFFSET
9284 reg = frame_pointer_rtx;
9285 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9286 #else
9287 reg = arg_pointer_rtx;
9288 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
9289 #endif
9290 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9291 if (elim != reg)
9293 if (GET_CODE (elim) == PLUS)
9295 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
9296 elim = XEXP (elim, 0);
9298 if (elim != hard_frame_pointer_rtx)
9299 fp_cfa_offset = -1;
9301 else
9302 fp_cfa_offset = -1;
9305 /* If the stack is realigned and a DRAP register is used, we're going to
9306 rewrite MEMs based on it representing incoming locations of parameters
9307 passed on the stack into MEMs based on the argument pointer. Although
9308 we aren't going to rewrite other MEMs, we still need to initialize the
9309 virtual CFA pointer in order to ensure that the argument pointer will
9310 be seen as a constant throughout the function.
9312 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
9313 else if (stack_realign_drap)
9315 rtx reg, elim;
9317 #ifdef FRAME_POINTER_CFA_OFFSET
9318 reg = frame_pointer_rtx;
9319 #else
9320 reg = arg_pointer_rtx;
9321 #endif
9322 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9323 if (elim != reg)
9325 if (GET_CODE (elim) == PLUS)
9326 elim = XEXP (elim, 0);
9327 if (elim == hard_frame_pointer_rtx)
9328 vt_init_cfa_base ();
9332 hard_frame_pointer_adjustment = -1;
9334 vt_add_function_parameters ();
9336 FOR_EACH_BB (bb)
9338 rtx insn;
9339 HOST_WIDE_INT pre, post = 0;
9340 basic_block first_bb, last_bb;
9342 if (MAY_HAVE_DEBUG_INSNS)
9344 cselib_record_sets_hook = add_with_sets;
9345 if (dump_file && (dump_flags & TDF_DETAILS))
9346 fprintf (dump_file, "first value: %i\n",
9347 cselib_get_next_uid ());
9350 first_bb = bb;
9351 for (;;)
9353 edge e;
9354 if (bb->next_bb == EXIT_BLOCK_PTR
9355 || ! single_pred_p (bb->next_bb))
9356 break;
9357 e = find_edge (bb, bb->next_bb);
9358 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
9359 break;
9360 bb = bb->next_bb;
9362 last_bb = bb;
9364 /* Add the micro-operations to the vector. */
9365 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
9367 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
9368 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
9369 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
9370 insn = NEXT_INSN (insn))
9372 if (INSN_P (insn))
9374 if (!frame_pointer_needed)
9376 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
9377 if (pre)
9379 micro_operation mo;
9380 mo.type = MO_ADJUST;
9381 mo.u.adjust = pre;
9382 mo.insn = insn;
9383 if (dump_file && (dump_flags & TDF_DETAILS))
9384 log_op_type (PATTERN (insn), bb, insn,
9385 MO_ADJUST, dump_file);
9386 VEC_safe_push (micro_operation, heap, VTI (bb)->mos,
9387 &mo);
9388 VTI (bb)->out.stack_adjust += pre;
9392 cselib_hook_called = false;
9393 adjust_insn (bb, insn);
9394 if (MAY_HAVE_DEBUG_INSNS)
9396 if (CALL_P (insn))
9397 prepare_call_arguments (bb, insn);
9398 cselib_process_insn (insn);
9399 if (dump_file && (dump_flags & TDF_DETAILS))
9401 print_rtl_single (dump_file, insn);
9402 dump_cselib_table (dump_file);
9405 if (!cselib_hook_called)
9406 add_with_sets (insn, 0, 0);
9407 cancel_changes (0);
9409 if (!frame_pointer_needed && post)
9411 micro_operation mo;
9412 mo.type = MO_ADJUST;
9413 mo.u.adjust = post;
9414 mo.insn = insn;
9415 if (dump_file && (dump_flags & TDF_DETAILS))
9416 log_op_type (PATTERN (insn), bb, insn,
9417 MO_ADJUST, dump_file);
9418 VEC_safe_push (micro_operation, heap, VTI (bb)->mos,
9419 &mo);
9420 VTI (bb)->out.stack_adjust += post;
9423 if (bb == prologue_bb
9424 && fp_cfa_offset != -1
9425 && hard_frame_pointer_adjustment == -1
9426 && RTX_FRAME_RELATED_P (insn)
9427 && fp_setter (insn))
9429 vt_init_cfa_base ();
9430 hard_frame_pointer_adjustment = fp_cfa_offset;
9434 gcc_assert (offset == VTI (bb)->out.stack_adjust);
9437 bb = last_bb;
9439 if (MAY_HAVE_DEBUG_INSNS)
9441 cselib_preserve_only_values ();
9442 cselib_reset_table (cselib_get_next_uid ());
9443 cselib_record_sets_hook = NULL;
9447 hard_frame_pointer_adjustment = -1;
9448 VTI (ENTRY_BLOCK_PTR)->flooded = true;
9449 cfa_base_rtx = NULL_RTX;
9450 return true;
9453 /* This is *not* reset after each function. It gives each
9454 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
9455 a unique label number. */
9457 static int debug_label_num = 1;
9459 /* Get rid of all debug insns from the insn stream. */
9461 static void
9462 delete_debug_insns (void)
9464 basic_block bb;
9465 rtx insn, next;
9467 if (!MAY_HAVE_DEBUG_INSNS)
9468 return;
9470 FOR_EACH_BB (bb)
9472 FOR_BB_INSNS_SAFE (bb, insn, next)
9473 if (DEBUG_INSN_P (insn))
9475 tree decl = INSN_VAR_LOCATION_DECL (insn);
9476 if (TREE_CODE (decl) == LABEL_DECL
9477 && DECL_NAME (decl)
9478 && !DECL_RTL_SET_P (decl))
9480 PUT_CODE (insn, NOTE);
9481 NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
9482 NOTE_DELETED_LABEL_NAME (insn)
9483 = IDENTIFIER_POINTER (DECL_NAME (decl));
9484 SET_DECL_RTL (decl, insn);
9485 CODE_LABEL_NUMBER (insn) = debug_label_num++;
9487 else
9488 delete_insn (insn);
9493 /* Run a fast, BB-local only version of var tracking, to take care of
9494 information that we don't do global analysis on, such that not all
9495 information is lost. If SKIPPED holds, we're skipping the global
9496 pass entirely, so we should try to use information it would have
9497 handled as well.. */
9499 static void
9500 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
9502 /* ??? Just skip it all for now. */
9503 delete_debug_insns ();
9506 /* Free the data structures needed for variable tracking. */
9508 static void
9509 vt_finalize (void)
9511 basic_block bb;
9513 FOR_EACH_BB (bb)
9515 VEC_free (micro_operation, heap, VTI (bb)->mos);
9518 FOR_ALL_BB (bb)
9520 dataflow_set_destroy (&VTI (bb)->in);
9521 dataflow_set_destroy (&VTI (bb)->out);
9522 if (VTI (bb)->permp)
9524 dataflow_set_destroy (VTI (bb)->permp);
9525 XDELETE (VTI (bb)->permp);
9528 free_aux_for_blocks ();
9529 htab_delete (empty_shared_hash->htab);
9530 htab_delete (changed_variables);
9531 free_alloc_pool (attrs_pool);
9532 free_alloc_pool (var_pool);
9533 free_alloc_pool (loc_chain_pool);
9534 free_alloc_pool (shared_hash_pool);
9536 if (MAY_HAVE_DEBUG_INSNS)
9538 free_alloc_pool (valvar_pool);
9539 VEC_free (rtx, heap, preserved_values);
9540 cselib_finish ();
9541 BITMAP_FREE (scratch_regs);
9542 scratch_regs = NULL;
9545 #ifdef HAVE_window_save
9546 VEC_free (parm_reg_t, gc, windowed_parm_regs);
9547 #endif
9549 if (vui_vec)
9550 XDELETEVEC (vui_vec);
9551 vui_vec = NULL;
9552 vui_allocated = 0;
9555 /* The entry point to variable tracking pass. */
9557 static inline unsigned int
9558 variable_tracking_main_1 (void)
9560 bool success;
9562 if (flag_var_tracking_assignments < 0)
9564 delete_debug_insns ();
9565 return 0;
9568 if (n_basic_blocks > 500 && n_edges / n_basic_blocks >= 20)
9570 vt_debug_insns_local (true);
9571 return 0;
9574 mark_dfs_back_edges ();
9575 if (!vt_initialize ())
9577 vt_finalize ();
9578 vt_debug_insns_local (true);
9579 return 0;
9582 success = vt_find_locations ();
9584 if (!success && flag_var_tracking_assignments > 0)
9586 vt_finalize ();
9588 delete_debug_insns ();
9590 /* This is later restored by our caller. */
9591 flag_var_tracking_assignments = 0;
9593 success = vt_initialize ();
9594 gcc_assert (success);
9596 success = vt_find_locations ();
9599 if (!success)
9601 vt_finalize ();
9602 vt_debug_insns_local (false);
9603 return 0;
9606 if (dump_file && (dump_flags & TDF_DETAILS))
9608 dump_dataflow_sets ();
9609 dump_flow_info (dump_file, dump_flags);
9612 timevar_push (TV_VAR_TRACKING_EMIT);
9613 vt_emit_notes ();
9614 timevar_pop (TV_VAR_TRACKING_EMIT);
9616 vt_finalize ();
9617 vt_debug_insns_local (false);
9618 return 0;
9621 unsigned int
9622 variable_tracking_main (void)
9624 unsigned int ret;
9625 int save = flag_var_tracking_assignments;
9627 ret = variable_tracking_main_1 ();
9629 flag_var_tracking_assignments = save;
9631 return ret;
9634 static bool
9635 gate_handle_var_tracking (void)
9637 return (flag_var_tracking && !targetm.delay_vartrack);
9642 struct rtl_opt_pass pass_variable_tracking =
9645 RTL_PASS,
9646 "vartrack", /* name */
9647 gate_handle_var_tracking, /* gate */
9648 variable_tracking_main, /* execute */
9649 NULL, /* sub */
9650 NULL, /* next */
9651 0, /* static_pass_number */
9652 TV_VAR_TRACKING, /* tv_id */
9653 0, /* properties_required */
9654 0, /* properties_provided */
9655 0, /* properties_destroyed */
9656 0, /* todo_flags_start */
9657 TODO_verify_rtl_sharing /* todo_flags_finish */