Remove a trivial assert (missed in previous checkin)
[official-gcc.git] / libquadmath / math / erfq.c
blob8d383e9ca7028e4642bcaaeba5c88a81547f53d5
1 /*
2 * ====================================================
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 * Developed at SunPro, a Sun Microsystems, Inc. business.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
8 * is preserved.
9 * ====================================================
12 /* Modifications and expansions for 128-bit long double are
13 Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
14 and are incorporated herein by permission of the author. The author
15 reserves the right to distribute this material elsewhere under different
16 copying permissions. These modifications are distributed here under
17 the following terms:
19 This library is free software; you can redistribute it and/or
20 modify it under the terms of the GNU Lesser General Public
21 License as published by the Free Software Foundation; either
22 version 2.1 of the License, or (at your option) any later version.
24 This library is distributed in the hope that it will be useful,
25 but WITHOUT ANY WARRANTY; without even the implied warranty of
26 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
27 Lesser General Public License for more details.
29 You should have received a copy of the GNU Lesser General Public
30 License along with this library; if not, write to the Free Software
31 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
33 /* __float128 erfq(__float128 x)
34 * __float128 erfcq(__float128 x)
35 * x
36 * 2 |\
37 * erf(x) = --------- | exp(-t*t)dt
38 * sqrt(pi) \|
39 * 0
41 * erfc(x) = 1-erf(x)
42 * Note that
43 * erf(-x) = -erf(x)
44 * erfc(-x) = 2 - erfc(x)
46 * Method:
47 * 1. erf(x) = x + x*R(x^2) for |x| in [0, 7/8]
48 * Remark. The formula is derived by noting
49 * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
50 * and that
51 * 2/sqrt(pi) = 1.128379167095512573896158903121545171688
52 * is close to one.
54 * 1a. erf(x) = 1 - erfc(x), for |x| > 1.0
55 * erfc(x) = 1 - erf(x) if |x| < 1/4
57 * 2. For |x| in [7/8, 1], let s = |x| - 1, and
58 * c = 0.84506291151 rounded to single (24 bits)
59 * erf(s + c) = sign(x) * (c + P1(s)/Q1(s))
60 * Remark: here we use the taylor series expansion at x=1.
61 * erf(1+s) = erf(1) + s*Poly(s)
62 * = 0.845.. + P1(s)/Q1(s)
63 * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
65 * 3. For x in [1/4, 5/4],
66 * erfc(s + const) = erfc(const) + s P1(s)/Q1(s)
67 * for const = 1/4, 3/8, ..., 9/8
68 * and 0 <= s <= 1/8 .
70 * 4. For x in [5/4, 107],
71 * erfc(x) = (1/x)*exp(-x*x-0.5625 + R(z))
72 * z=1/x^2
73 * The interval is partitioned into several segments
74 * of width 1/8 in 1/x.
76 * Note1:
77 * To compute exp(-x*x-0.5625+R/S), let s be a single
78 * precision number and s := x; then
79 * -x*x = -s*s + (s-x)*(s+x)
80 * exp(-x*x-0.5626+R/S) =
81 * exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
82 * Note2:
83 * Here 4 and 5 make use of the asymptotic series
84 * exp(-x*x)
85 * erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
86 * x*sqrt(pi)
88 * 5. For inf > x >= 107
89 * erf(x) = sign(x) *(1 - tiny) (raise inexact)
90 * erfc(x) = tiny*tiny (raise underflow) if x > 0
91 * = 2 - tiny if x<0
93 * 7. Special case:
94 * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
95 * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
96 * erfc/erf(NaN) is NaN
99 #include "quadmath-imp.h"
103 __float128 erfcq (__float128);
106 /* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */
108 static __float128
109 neval (__float128 x, const __float128 *p, int n)
111 __float128 y;
113 p += n;
114 y = *p--;
117 y = y * x + *p--;
119 while (--n > 0);
120 return y;
124 /* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */
126 static __float128
127 deval (__float128 x, const __float128 *p, int n)
129 __float128 y;
131 p += n;
132 y = x + *p--;
135 y = y * x + *p--;
137 while (--n > 0);
138 return y;
143 static const __float128
144 tiny = 1e-4931Q,
145 half = 0.5Q,
146 one = 1.0Q,
147 two = 2.0Q,
148 /* 2/sqrt(pi) - 1 */
149 efx = 1.2837916709551257389615890312154517168810E-1Q,
150 /* 8 * (2/sqrt(pi) - 1) */
151 efx8 = 1.0270333367641005911692712249723613735048E0Q;
154 /* erf(x) = x + x R(x^2)
155 0 <= x <= 7/8
156 Peak relative error 1.8e-35 */
157 #define NTN1 8
158 static const __float128 TN1[NTN1 + 1] =
160 -3.858252324254637124543172907442106422373E10Q,
161 9.580319248590464682316366876952214879858E10Q,
162 1.302170519734879977595901236693040544854E10Q,
163 2.922956950426397417800321486727032845006E9Q,
164 1.764317520783319397868923218385468729799E8Q,
165 1.573436014601118630105796794840834145120E7Q,
166 4.028077380105721388745632295157816229289E5Q,
167 1.644056806467289066852135096352853491530E4Q,
168 3.390868480059991640235675479463287886081E1Q
170 #define NTD1 8
171 static const __float128 TD1[NTD1 + 1] =
173 -3.005357030696532927149885530689529032152E11Q,
174 -1.342602283126282827411658673839982164042E11Q,
175 -2.777153893355340961288511024443668743399E10Q,
176 -3.483826391033531996955620074072768276974E9Q,
177 -2.906321047071299585682722511260895227921E8Q,
178 -1.653347985722154162439387878512427542691E7Q,
179 -6.245520581562848778466500301865173123136E5Q,
180 -1.402124304177498828590239373389110545142E4Q,
181 -1.209368072473510674493129989468348633579E2Q
182 /* 1.0E0 */
186 /* erf(z+1) = erf_const + P(z)/Q(z)
187 -.125 <= z <= 0
188 Peak relative error 7.3e-36 */
189 static const __float128 erf_const = 0.845062911510467529296875Q;
190 #define NTN2 8
191 static const __float128 TN2[NTN2 + 1] =
193 -4.088889697077485301010486931817357000235E1Q,
194 7.157046430681808553842307502826960051036E3Q,
195 -2.191561912574409865550015485451373731780E3Q,
196 2.180174916555316874988981177654057337219E3Q,
197 2.848578658049670668231333682379720943455E2Q,
198 1.630362490952512836762810462174798925274E2Q,
199 6.317712353961866974143739396865293596895E0Q,
200 2.450441034183492434655586496522857578066E1Q,
201 5.127662277706787664956025545897050896203E-1Q
203 #define NTD2 8
204 static const __float128 TD2[NTD2 + 1] =
206 1.731026445926834008273768924015161048885E4Q,
207 1.209682239007990370796112604286048173750E4Q,
208 1.160950290217993641320602282462976163857E4Q,
209 5.394294645127126577825507169061355698157E3Q,
210 2.791239340533632669442158497532521776093E3Q,
211 8.989365571337319032943005387378993827684E2Q,
212 2.974016493766349409725385710897298069677E2Q,
213 6.148192754590376378740261072533527271947E1Q,
214 1.178502892490738445655468927408440847480E1Q
215 /* 1.0E0 */
219 /* erfc(x + 0.25) = erfc(0.25) + x R(x)
220 0 <= x < 0.125
221 Peak relative error 1.4e-35 */
222 #define NRNr13 8
223 static const __float128 RNr13[NRNr13 + 1] =
225 -2.353707097641280550282633036456457014829E3Q,
226 3.871159656228743599994116143079870279866E2Q,
227 -3.888105134258266192210485617504098426679E2Q,
228 -2.129998539120061668038806696199343094971E1Q,
229 -8.125462263594034672468446317145384108734E1Q,
230 8.151549093983505810118308635926270319660E0Q,
231 -5.033362032729207310462422357772568553670E0Q,
232 -4.253956621135136090295893547735851168471E-2Q,
233 -8.098602878463854789780108161581050357814E-2Q
235 #define NRDr13 7
236 static const __float128 RDr13[NRDr13 + 1] =
238 2.220448796306693503549505450626652881752E3Q,
239 1.899133258779578688791041599040951431383E2Q,
240 1.061906712284961110196427571557149268454E3Q,
241 7.497086072306967965180978101974566760042E1Q,
242 2.146796115662672795876463568170441327274E2Q,
243 1.120156008362573736664338015952284925592E1Q,
244 2.211014952075052616409845051695042741074E1Q,
245 6.469655675326150785692908453094054988938E-1Q
246 /* 1.0E0 */
248 /* erfc(0.25) = C13a + C13b to extra precision. */
249 static const __float128 C13a = 0.723663330078125Q;
250 static const __float128 C13b = 1.0279753638067014931732235184287934646022E-5Q;
253 /* erfc(x + 0.375) = erfc(0.375) + x R(x)
254 0 <= x < 0.125
255 Peak relative error 1.2e-35 */
256 #define NRNr14 8
257 static const __float128 RNr14[NRNr14 + 1] =
259 -2.446164016404426277577283038988918202456E3Q,
260 6.718753324496563913392217011618096698140E2Q,
261 -4.581631138049836157425391886957389240794E2Q,
262 -2.382844088987092233033215402335026078208E1Q,
263 -7.119237852400600507927038680970936336458E1Q,
264 1.313609646108420136332418282286454287146E1Q,
265 -6.188608702082264389155862490056401365834E0Q,
266 -2.787116601106678287277373011101132659279E-2Q,
267 -2.230395570574153963203348263549700967918E-2Q
269 #define NRDr14 7
270 static const __float128 RDr14[NRDr14 + 1] =
272 2.495187439241869732696223349840963702875E3Q,
273 2.503549449872925580011284635695738412162E2Q,
274 1.159033560988895481698051531263861842461E3Q,
275 9.493751466542304491261487998684383688622E1Q,
276 2.276214929562354328261422263078480321204E2Q,
277 1.367697521219069280358984081407807931847E1Q,
278 2.276988395995528495055594829206582732682E1Q,
279 7.647745753648996559837591812375456641163E-1Q
280 /* 1.0E0 */
282 /* erfc(0.375) = C14a + C14b to extra precision. */
283 static const __float128 C14a = 0.5958709716796875Q;
284 static const __float128 C14b = 1.2118885490201676174914080878232469565953E-5Q;
286 /* erfc(x + 0.5) = erfc(0.5) + x R(x)
287 0 <= x < 0.125
288 Peak relative error 4.7e-36 */
289 #define NRNr15 8
290 static const __float128 RNr15[NRNr15 + 1] =
292 -2.624212418011181487924855581955853461925E3Q,
293 8.473828904647825181073831556439301342756E2Q,
294 -5.286207458628380765099405359607331669027E2Q,
295 -3.895781234155315729088407259045269652318E1Q,
296 -6.200857908065163618041240848728398496256E1Q,
297 1.469324610346924001393137895116129204737E1Q,
298 -6.961356525370658572800674953305625578903E0Q,
299 5.145724386641163809595512876629030548495E-3Q,
300 1.990253655948179713415957791776180406812E-2Q
302 #define NRDr15 7
303 static const __float128 RDr15[NRDr15 + 1] =
305 2.986190760847974943034021764693341524962E3Q,
306 5.288262758961073066335410218650047725985E2Q,
307 1.363649178071006978355113026427856008978E3Q,
308 1.921707975649915894241864988942255320833E2Q,
309 2.588651100651029023069013885900085533226E2Q,
310 2.628752920321455606558942309396855629459E1Q,
311 2.455649035885114308978333741080991380610E1Q,
312 1.378826653595128464383127836412100939126E0Q
313 /* 1.0E0 */
315 /* erfc(0.5) = C15a + C15b to extra precision. */
316 static const __float128 C15a = 0.4794921875Q;
317 static const __float128 C15b = 7.9346869534623172533461080354712635484242E-6Q;
319 /* erfc(x + 0.625) = erfc(0.625) + x R(x)
320 0 <= x < 0.125
321 Peak relative error 5.1e-36 */
322 #define NRNr16 8
323 static const __float128 RNr16[NRNr16 + 1] =
325 -2.347887943200680563784690094002722906820E3Q,
326 8.008590660692105004780722726421020136482E2Q,
327 -5.257363310384119728760181252132311447963E2Q,
328 -4.471737717857801230450290232600243795637E1Q,
329 -4.849540386452573306708795324759300320304E1Q,
330 1.140885264677134679275986782978655952843E1Q,
331 -6.731591085460269447926746876983786152300E0Q,
332 1.370831653033047440345050025876085121231E-1Q,
333 2.022958279982138755020825717073966576670E-2Q,
335 #define NRDr16 7
336 static const __float128 RDr16[NRDr16 + 1] =
338 3.075166170024837215399323264868308087281E3Q,
339 8.730468942160798031608053127270430036627E2Q,
340 1.458472799166340479742581949088453244767E3Q,
341 3.230423687568019709453130785873540386217E2Q,
342 2.804009872719893612081109617983169474655E2Q,
343 4.465334221323222943418085830026979293091E1Q,
344 2.612723259683205928103787842214809134746E1Q,
345 2.341526751185244109722204018543276124997E0Q,
346 /* 1.0E0 */
348 /* erfc(0.625) = C16a + C16b to extra precision. */
349 static const __float128 C16a = 0.3767547607421875Q;
350 static const __float128 C16b = 4.3570693945275513594941232097252997287766E-6Q;
352 /* erfc(x + 0.75) = erfc(0.75) + x R(x)
353 0 <= x < 0.125
354 Peak relative error 1.7e-35 */
355 #define NRNr17 8
356 static const __float128 RNr17[NRNr17 + 1] =
358 -1.767068734220277728233364375724380366826E3Q,
359 6.693746645665242832426891888805363898707E2Q,
360 -4.746224241837275958126060307406616817753E2Q,
361 -2.274160637728782675145666064841883803196E1Q,
362 -3.541232266140939050094370552538987982637E1Q,
363 6.988950514747052676394491563585179503865E0Q,
364 -5.807687216836540830881352383529281215100E0Q,
365 3.631915988567346438830283503729569443642E-1Q,
366 -1.488945487149634820537348176770282391202E-2Q
368 #define NRDr17 7
369 static const __float128 RDr17[NRDr17 + 1] =
371 2.748457523498150741964464942246913394647E3Q,
372 1.020213390713477686776037331757871252652E3Q,
373 1.388857635935432621972601695296561952738E3Q,
374 3.903363681143817750895999579637315491087E2Q,
375 2.784568344378139499217928969529219886578E2Q,
376 5.555800830216764702779238020065345401144E1Q,
377 2.646215470959050279430447295801291168941E1Q,
378 2.984905282103517497081766758550112011265E0Q,
379 /* 1.0E0 */
381 /* erfc(0.75) = C17a + C17b to extra precision. */
382 static const __float128 C17a = 0.2888336181640625Q;
383 static const __float128 C17b = 1.0748182422368401062165408589222625794046E-5Q;
386 /* erfc(x + 0.875) = erfc(0.875) + x R(x)
387 0 <= x < 0.125
388 Peak relative error 2.2e-35 */
389 #define NRNr18 8
390 static const __float128 RNr18[NRNr18 + 1] =
392 -1.342044899087593397419622771847219619588E3Q,
393 6.127221294229172997509252330961641850598E2Q,
394 -4.519821356522291185621206350470820610727E2Q,
395 1.223275177825128732497510264197915160235E1Q,
396 -2.730789571382971355625020710543532867692E1Q,
397 4.045181204921538886880171727755445395862E0Q,
398 -4.925146477876592723401384464691452700539E0Q,
399 5.933878036611279244654299924101068088582E-1Q,
400 -5.557645435858916025452563379795159124753E-2Q
402 #define NRDr18 7
403 static const __float128 RDr18[NRDr18 + 1] =
405 2.557518000661700588758505116291983092951E3Q,
406 1.070171433382888994954602511991940418588E3Q,
407 1.344842834423493081054489613250688918709E3Q,
408 4.161144478449381901208660598266288188426E2Q,
409 2.763670252219855198052378138756906980422E2Q,
410 5.998153487868943708236273854747564557632E1Q,
411 2.657695108438628847733050476209037025318E1Q,
412 3.252140524394421868923289114410336976512E0Q,
413 /* 1.0E0 */
415 /* erfc(0.875) = C18a + C18b to extra precision. */
416 static const __float128 C18a = 0.215911865234375Q;
417 static const __float128 C18b = 1.3073705765341685464282101150637224028267E-5Q;
419 /* erfc(x + 1.0) = erfc(1.0) + x R(x)
420 0 <= x < 0.125
421 Peak relative error 1.6e-35 */
422 #define NRNr19 8
423 static const __float128 RNr19[NRNr19 + 1] =
425 -1.139180936454157193495882956565663294826E3Q,
426 6.134903129086899737514712477207945973616E2Q,
427 -4.628909024715329562325555164720732868263E2Q,
428 4.165702387210732352564932347500364010833E1Q,
429 -2.286979913515229747204101330405771801610E1Q,
430 1.870695256449872743066783202326943667722E0Q,
431 -4.177486601273105752879868187237000032364E0Q,
432 7.533980372789646140112424811291782526263E-1Q,
433 -8.629945436917752003058064731308767664446E-2Q
435 #define NRDr19 7
436 static const __float128 RDr19[NRDr19 + 1] =
438 2.744303447981132701432716278363418643778E3Q,
439 1.266396359526187065222528050591302171471E3Q,
440 1.466739461422073351497972255511919814273E3Q,
441 4.868710570759693955597496520298058147162E2Q,
442 2.993694301559756046478189634131722579643E2Q,
443 6.868976819510254139741559102693828237440E1Q,
444 2.801505816247677193480190483913753613630E1Q,
445 3.604439909194350263552750347742663954481E0Q,
446 /* 1.0E0 */
448 /* erfc(1.0) = C19a + C19b to extra precision. */
449 static const __float128 C19a = 0.15728759765625Q;
450 static const __float128 C19b = 1.1609394035130658779364917390740703933002E-5Q;
452 /* erfc(x + 1.125) = erfc(1.125) + x R(x)
453 0 <= x < 0.125
454 Peak relative error 3.6e-36 */
455 #define NRNr20 8
456 static const __float128 RNr20[NRNr20 + 1] =
458 -9.652706916457973956366721379612508047640E2Q,
459 5.577066396050932776683469951773643880634E2Q,
460 -4.406335508848496713572223098693575485978E2Q,
461 5.202893466490242733570232680736966655434E1Q,
462 -1.931311847665757913322495948705563937159E1Q,
463 -9.364318268748287664267341457164918090611E-2Q,
464 -3.306390351286352764891355375882586201069E0Q,
465 7.573806045289044647727613003096916516475E-1Q,
466 -9.611744011489092894027478899545635991213E-2Q
468 #define NRDr20 7
469 static const __float128 RDr20[NRDr20 + 1] =
471 3.032829629520142564106649167182428189014E3Q,
472 1.659648470721967719961167083684972196891E3Q,
473 1.703545128657284619402511356932569292535E3Q,
474 6.393465677731598872500200253155257708763E2Q,
475 3.489131397281030947405287112726059221934E2Q,
476 8.848641738570783406484348434387611713070E1Q,
477 3.132269062552392974833215844236160958502E1Q,
478 4.430131663290563523933419966185230513168E0Q
479 /* 1.0E0 */
481 /* erfc(1.125) = C20a + C20b to extra precision. */
482 static const __float128 C20a = 0.111602783203125Q;
483 static const __float128 C20b = 8.9850951672359304215530728365232161564636E-6Q;
485 /* erfc(1/x) = 1/x exp (-1/x^2 - 0.5625 + R(1/x^2))
486 7/8 <= 1/x < 1
487 Peak relative error 1.4e-35 */
488 #define NRNr8 9
489 static const __float128 RNr8[NRNr8 + 1] =
491 3.587451489255356250759834295199296936784E1Q,
492 5.406249749087340431871378009874875889602E2Q,
493 2.931301290625250886238822286506381194157E3Q,
494 7.359254185241795584113047248898753470923E3Q,
495 9.201031849810636104112101947312492532314E3Q,
496 5.749697096193191467751650366613289284777E3Q,
497 1.710415234419860825710780802678697889231E3Q,
498 2.150753982543378580859546706243022719599E2Q,
499 8.740953582272147335100537849981160931197E0Q,
500 4.876422978828717219629814794707963640913E-2Q
502 #define NRDr8 8
503 static const __float128 RDr8[NRDr8 + 1] =
505 6.358593134096908350929496535931630140282E1Q,
506 9.900253816552450073757174323424051765523E2Q,
507 5.642928777856801020545245437089490805186E3Q,
508 1.524195375199570868195152698617273739609E4Q,
509 2.113829644500006749947332935305800887345E4Q,
510 1.526438562626465706267943737310282977138E4Q,
511 5.561370922149241457131421914140039411782E3Q,
512 9.394035530179705051609070428036834496942E2Q,
513 6.147019596150394577984175188032707343615E1Q
514 /* 1.0E0 */
517 /* erfc(1/x) = 1/x exp (-1/x^2 - 0.5625 + R(1/x^2))
518 0.75 <= 1/x <= 0.875
519 Peak relative error 2.0e-36 */
520 #define NRNr7 9
521 static const __float128 RNr7[NRNr7 + 1] =
523 1.686222193385987690785945787708644476545E1Q,
524 1.178224543567604215602418571310612066594E3Q,
525 1.764550584290149466653899886088166091093E4Q,
526 1.073758321890334822002849369898232811561E5Q,
527 3.132840749205943137619839114451290324371E5Q,
528 4.607864939974100224615527007793867585915E5Q,
529 3.389781820105852303125270837910972384510E5Q,
530 1.174042187110565202875011358512564753399E5Q,
531 1.660013606011167144046604892622504338313E4Q,
532 6.700393957480661937695573729183733234400E2Q
534 #define NRDr7 9
535 static const __float128 RDr7[NRDr7 + 1] =
537 -1.709305024718358874701575813642933561169E3Q,
538 -3.280033887481333199580464617020514788369E4Q,
539 -2.345284228022521885093072363418750835214E5Q,
540 -8.086758123097763971926711729242327554917E5Q,
541 -1.456900414510108718402423999575992450138E6Q,
542 -1.391654264881255068392389037292702041855E6Q,
543 -6.842360801869939983674527468509852583855E5Q,
544 -1.597430214446573566179675395199807533371E5Q,
545 -1.488876130609876681421645314851760773480E4Q,
546 -3.511762950935060301403599443436465645703E2Q
547 /* 1.0E0 */
550 /* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2))
551 5/8 <= 1/x < 3/4
552 Peak relative error 1.9e-35 */
553 #define NRNr6 9
554 static const __float128 RNr6[NRNr6 + 1] =
556 1.642076876176834390623842732352935761108E0Q,
557 1.207150003611117689000664385596211076662E2Q,
558 2.119260779316389904742873816462800103939E3Q,
559 1.562942227734663441801452930916044224174E4Q,
560 5.656779189549710079988084081145693580479E4Q,
561 1.052166241021481691922831746350942786299E5Q,
562 9.949798524786000595621602790068349165758E4Q,
563 4.491790734080265043407035220188849562856E4Q,
564 8.377074098301530326270432059434791287601E3Q,
565 4.506934806567986810091824791963991057083E2Q
567 #define NRDr6 9
568 static const __float128 RDr6[NRDr6 + 1] =
570 -1.664557643928263091879301304019826629067E2Q,
571 -3.800035902507656624590531122291160668452E3Q,
572 -3.277028191591734928360050685359277076056E4Q,
573 -1.381359471502885446400589109566587443987E5Q,
574 -3.082204287382581873532528989283748656546E5Q,
575 -3.691071488256738343008271448234631037095E5Q,
576 -2.300482443038349815750714219117566715043E5Q,
577 -6.873955300927636236692803579555752171530E4Q,
578 -8.262158817978334142081581542749986845399E3Q,
579 -2.517122254384430859629423488157361983661E2Q
580 /* 1.00 */
583 /* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2))
584 1/2 <= 1/x < 5/8
585 Peak relative error 4.6e-36 */
586 #define NRNr5 10
587 static const __float128 RNr5[NRNr5 + 1] =
589 -3.332258927455285458355550878136506961608E-3Q,
590 -2.697100758900280402659586595884478660721E-1Q,
591 -6.083328551139621521416618424949137195536E0Q,
592 -6.119863528983308012970821226810162441263E1Q,
593 -3.176535282475593173248810678636522589861E2Q,
594 -8.933395175080560925809992467187963260693E2Q,
595 -1.360019508488475978060917477620199499560E3Q,
596 -1.075075579828188621541398761300910213280E3Q,
597 -4.017346561586014822824459436695197089916E2Q,
598 -5.857581368145266249509589726077645791341E1Q,
599 -2.077715925587834606379119585995758954399E0Q
601 #define NRDr5 9
602 static const __float128 RDr5[NRDr5 + 1] =
604 3.377879570417399341550710467744693125385E-1Q,
605 1.021963322742390735430008860602594456187E1Q,
606 1.200847646592942095192766255154827011939E2Q,
607 7.118915528142927104078182863387116942836E2Q,
608 2.318159380062066469386544552429625026238E3Q,
609 4.238729853534009221025582008928765281620E3Q,
610 4.279114907284825886266493994833515580782E3Q,
611 2.257277186663261531053293222591851737504E3Q,
612 5.570475501285054293371908382916063822957E2Q,
613 5.142189243856288981145786492585432443560E1Q
614 /* 1.0E0 */
617 /* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2))
618 3/8 <= 1/x < 1/2
619 Peak relative error 2.0e-36 */
620 #define NRNr4 10
621 static const __float128 RNr4[NRNr4 + 1] =
623 3.258530712024527835089319075288494524465E-3Q,
624 2.987056016877277929720231688689431056567E-1Q,
625 8.738729089340199750734409156830371528862E0Q,
626 1.207211160148647782396337792426311125923E2Q,
627 8.997558632489032902250523945248208224445E2Q,
628 3.798025197699757225978410230530640879762E3Q,
629 9.113203668683080975637043118209210146846E3Q,
630 1.203285891339933238608683715194034900149E4Q,
631 8.100647057919140328536743641735339740855E3Q,
632 2.383888249907144945837976899822927411769E3Q,
633 2.127493573166454249221983582495245662319E2Q
635 #define NRDr4 10
636 static const __float128 RDr4[NRDr4 + 1] =
638 -3.303141981514540274165450687270180479586E-1Q,
639 -1.353768629363605300707949368917687066724E1Q,
640 -2.206127630303621521950193783894598987033E2Q,
641 -1.861800338758066696514480386180875607204E3Q,
642 -8.889048775872605708249140016201753255599E3Q,
643 -2.465888106627948210478692168261494857089E4Q,
644 -3.934642211710774494879042116768390014289E4Q,
645 -3.455077258242252974937480623730228841003E4Q,
646 -1.524083977439690284820586063729912653196E4Q,
647 -2.810541887397984804237552337349093953857E3Q,
648 -1.343929553541159933824901621702567066156E2Q
649 /* 1.0E0 */
652 /* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2))
653 1/4 <= 1/x < 3/8
654 Peak relative error 8.4e-37 */
655 #define NRNr3 11
656 static const __float128 RNr3[NRNr3 + 1] =
658 -1.952401126551202208698629992497306292987E-6Q,
659 -2.130881743066372952515162564941682716125E-4Q,
660 -8.376493958090190943737529486107282224387E-3Q,
661 -1.650592646560987700661598877522831234791E-1Q,
662 -1.839290818933317338111364667708678163199E0Q,
663 -1.216278715570882422410442318517814388470E1Q,
664 -4.818759344462360427612133632533779091386E1Q,
665 -1.120994661297476876804405329172164436784E2Q,
666 -1.452850765662319264191141091859300126931E2Q,
667 -9.485207851128957108648038238656777241333E1Q,
668 -2.563663855025796641216191848818620020073E1Q,
669 -1.787995944187565676837847610706317833247E0Q
671 #define NRDr3 10
672 static const __float128 RDr3[NRDr3 + 1] =
674 1.979130686770349481460559711878399476903E-4Q,
675 1.156941716128488266238105813374635099057E-2Q,
676 2.752657634309886336431266395637285974292E-1Q,
677 3.482245457248318787349778336603569327521E0Q,
678 2.569347069372696358578399521203959253162E1Q,
679 1.142279000180457419740314694631879921561E2Q,
680 3.056503977190564294341422623108332700840E2Q,
681 4.780844020923794821656358157128719184422E2Q,
682 4.105972727212554277496256802312730410518E2Q,
683 1.724072188063746970865027817017067646246E2Q,
684 2.815939183464818198705278118326590370435E1Q
685 /* 1.0E0 */
688 /* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2))
689 1/8 <= 1/x < 1/4
690 Peak relative error 1.5e-36 */
691 #define NRNr2 11
692 static const __float128 RNr2[NRNr2 + 1] =
694 -2.638914383420287212401687401284326363787E-8Q,
695 -3.479198370260633977258201271399116766619E-6Q,
696 -1.783985295335697686382487087502222519983E-4Q,
697 -4.777876933122576014266349277217559356276E-3Q,
698 -7.450634738987325004070761301045014986520E-2Q,
699 -7.068318854874733315971973707247467326619E-1Q,
700 -4.113919921935944795764071670806867038732E0Q,
701 -1.440447573226906222417767283691888875082E1Q,
702 -2.883484031530718428417168042141288943905E1Q,
703 -2.990886974328476387277797361464279931446E1Q,
704 -1.325283914915104866248279787536128997331E1Q,
705 -1.572436106228070195510230310658206154374E0Q
707 #define NRDr2 10
708 static const __float128 RDr2[NRDr2 + 1] =
710 2.675042728136731923554119302571867799673E-6Q,
711 2.170997868451812708585443282998329996268E-4Q,
712 7.249969752687540289422684951196241427445E-3Q,
713 1.302040375859768674620410563307838448508E-1Q,
714 1.380202483082910888897654537144485285549E0Q,
715 8.926594113174165352623847870299170069350E0Q,
716 3.521089584782616472372909095331572607185E1Q,
717 8.233547427533181375185259050330809105570E1Q,
718 1.072971579885803033079469639073292840135E2Q,
719 6.943803113337964469736022094105143158033E1Q,
720 1.775695341031607738233608307835017282662E1Q
721 /* 1.0E0 */
724 /* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2))
725 1/128 <= 1/x < 1/8
726 Peak relative error 2.2e-36 */
727 #define NRNr1 9
728 static const __float128 RNr1[NRNr1 + 1] =
730 -4.250780883202361946697751475473042685782E-8Q,
731 -5.375777053288612282487696975623206383019E-6Q,
732 -2.573645949220896816208565944117382460452E-4Q,
733 -6.199032928113542080263152610799113086319E-3Q,
734 -8.262721198693404060380104048479916247786E-2Q,
735 -6.242615227257324746371284637695778043982E-1Q,
736 -2.609874739199595400225113299437099626386E0Q,
737 -5.581967563336676737146358534602770006970E0Q,
738 -5.124398923356022609707490956634280573882E0Q,
739 -1.290865243944292370661544030414667556649E0Q
741 #define NRDr1 8
742 static const __float128 RDr1[NRDr1 + 1] =
744 4.308976661749509034845251315983612976224E-6Q,
745 3.265390126432780184125233455960049294580E-4Q,
746 9.811328839187040701901866531796570418691E-3Q,
747 1.511222515036021033410078631914783519649E-1Q,
748 1.289264341917429958858379585970225092274E0Q,
749 6.147640356182230769548007536914983522270E0Q,
750 1.573966871337739784518246317003956180750E1Q,
751 1.955534123435095067199574045529218238263E1Q,
752 9.472613121363135472247929109615785855865E0Q
753 /* 1.0E0 */
757 __float128
758 erfq (__float128 x)
760 __float128 a, y, z;
761 int32_t i, ix, sign;
762 ieee854_float128 u;
764 u.value = x;
765 sign = u.words32.w0;
766 ix = sign & 0x7fffffff;
768 if (ix >= 0x7fff0000)
769 { /* erf(nan)=nan */
770 i = ((sign & 0xffff0000) >> 31) << 1;
771 return (__float128) (1 - i) + one / x; /* erf(+-inf)=+-1 */
774 if (ix >= 0x3fff0000) /* |x| >= 1.0 */
776 y = erfcq (x);
777 return (one - y);
778 /* return (one - erfcq (x)); */
780 u.words32.w0 = ix;
781 a = u.value;
782 z = x * x;
783 if (ix < 0x3ffec000) /* a < 0.875 */
785 if (ix < 0x3fc60000) /* |x|<2**-57 */
787 if (ix < 0x00080000)
788 return 0.125 * (8.0 * x + efx8 * x); /*avoid underflow */
789 return x + efx * x;
791 y = a + a * neval (z, TN1, NTN1) / deval (z, TD1, NTD1);
793 else
795 a = a - one;
796 y = erf_const + neval (a, TN2, NTN2) / deval (a, TD2, NTD2);
799 if (sign & 0x80000000) /* x < 0 */
800 y = -y;
801 return( y );
805 __float128
806 erfcq (__float128 x)
808 __float128 y = 0.0Q, z, p, r;
809 int32_t i, ix, sign;
810 ieee854_float128 u;
812 u.value = x;
813 sign = u.words32.w0;
814 ix = sign & 0x7fffffff;
815 u.words32.w0 = ix;
817 if (ix >= 0x7fff0000)
818 { /* erfc(nan)=nan */
819 /* erfc(+-inf)=0,2 */
820 return (__float128) (((uint32_t) sign >> 31) << 1) + one / x;
823 if (ix < 0x3ffd0000) /* |x| <1/4 */
825 if (ix < 0x3f8d0000) /* |x|<2**-114 */
826 return one - x;
827 return one - erfq (x);
829 if (ix < 0x3fff4000) /* 1.25 */
831 x = u.value;
832 i = 8.0 * x;
833 switch (i)
835 case 2:
836 z = x - 0.25Q;
837 y = C13b + z * neval (z, RNr13, NRNr13) / deval (z, RDr13, NRDr13);
838 y += C13a;
839 break;
840 case 3:
841 z = x - 0.375Q;
842 y = C14b + z * neval (z, RNr14, NRNr14) / deval (z, RDr14, NRDr14);
843 y += C14a;
844 break;
845 case 4:
846 z = x - 0.5Q;
847 y = C15b + z * neval (z, RNr15, NRNr15) / deval (z, RDr15, NRDr15);
848 y += C15a;
849 break;
850 case 5:
851 z = x - 0.625Q;
852 y = C16b + z * neval (z, RNr16, NRNr16) / deval (z, RDr16, NRDr16);
853 y += C16a;
854 break;
855 case 6:
856 z = x - 0.75Q;
857 y = C17b + z * neval (z, RNr17, NRNr17) / deval (z, RDr17, NRDr17);
858 y += C17a;
859 break;
860 case 7:
861 z = x - 0.875Q;
862 y = C18b + z * neval (z, RNr18, NRNr18) / deval (z, RDr18, NRDr18);
863 y += C18a;
864 break;
865 case 8:
866 z = x - 1.0Q;
867 y = C19b + z * neval (z, RNr19, NRNr19) / deval (z, RDr19, NRDr19);
868 y += C19a;
869 break;
870 case 9:
871 z = x - 1.125Q;
872 y = C20b + z * neval (z, RNr20, NRNr20) / deval (z, RDr20, NRDr20);
873 y += C20a;
874 break;
876 if (sign & 0x80000000)
877 y = 2.0Q - y;
878 return y;
880 /* 1.25 < |x| < 107 */
881 if (ix < 0x4005ac00)
883 /* x < -9 */
884 if ((ix >= 0x40022000) && (sign & 0x80000000))
885 return two - tiny;
887 x = fabsq (x);
888 z = one / (x * x);
889 i = 8.0 / x;
890 switch (i)
892 default:
893 case 0:
894 p = neval (z, RNr1, NRNr1) / deval (z, RDr1, NRDr1);
895 break;
896 case 1:
897 p = neval (z, RNr2, NRNr2) / deval (z, RDr2, NRDr2);
898 break;
899 case 2:
900 p = neval (z, RNr3, NRNr3) / deval (z, RDr3, NRDr3);
901 break;
902 case 3:
903 p = neval (z, RNr4, NRNr4) / deval (z, RDr4, NRDr4);
904 break;
905 case 4:
906 p = neval (z, RNr5, NRNr5) / deval (z, RDr5, NRDr5);
907 break;
908 case 5:
909 p = neval (z, RNr6, NRNr6) / deval (z, RDr6, NRDr6);
910 break;
911 case 6:
912 p = neval (z, RNr7, NRNr7) / deval (z, RDr7, NRDr7);
913 break;
914 case 7:
915 p = neval (z, RNr8, NRNr8) / deval (z, RDr8, NRDr8);
916 break;
918 u.value = x;
919 u.words32.w3 = 0;
920 u.words32.w2 &= 0xfe000000;
921 z = u.value;
922 r = expq (-z * z - 0.5625) * expq ((z - x) * (z + x) + p);
923 if ((sign & 0x80000000) == 0)
924 return r / x;
925 else
926 return two - r / x;
928 else
930 if ((sign & 0x80000000) == 0)
931 return tiny * tiny;
932 else
933 return two - tiny;