Make return in memory explicit.
[official-gcc.git] / gcc / function.c
blob4de748aceb8a8c659f3e01544d77896d9026b391
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "toplev.h"
55 #include "hashtab.h"
56 #include "ggc.h"
57 #include "tm_p.h"
58 #include "integrate.h"
59 #include "langhooks.h"
60 #include "target.h"
61 #include "cfglayout.h"
63 #ifndef LOCAL_ALIGNMENT
64 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
65 #endif
67 #ifndef STACK_ALIGNMENT_NEEDED
68 #define STACK_ALIGNMENT_NEEDED 1
69 #endif
71 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
73 /* Some systems use __main in a way incompatible with its use in gcc, in these
74 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
75 give the same symbol without quotes for an alternative entry point. You
76 must define both, or neither. */
77 #ifndef NAME__MAIN
78 #define NAME__MAIN "__main"
79 #endif
81 /* Round a value to the lowest integer less than it that is a multiple of
82 the required alignment. Avoid using division in case the value is
83 negative. Assume the alignment is a power of two. */
84 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
86 /* Similar, but round to the next highest integer that meets the
87 alignment. */
88 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
90 /* Nonzero if function being compiled doesn't contain any calls
91 (ignoring the prologue and epilogue). This is set prior to
92 local register allocation and is valid for the remaining
93 compiler passes. */
94 int current_function_is_leaf;
96 /* Nonzero if function being compiled doesn't modify the stack pointer
97 (ignoring the prologue and epilogue). This is only valid after
98 life_analysis has run. */
99 int current_function_sp_is_unchanging;
101 /* Nonzero if the function being compiled is a leaf function which only
102 uses leaf registers. This is valid after reload (specifically after
103 sched2) and is useful only if the port defines LEAF_REGISTERS. */
104 int current_function_uses_only_leaf_regs;
106 /* Nonzero once virtual register instantiation has been done.
107 assign_stack_local uses frame_pointer_rtx when this is nonzero.
108 calls.c:emit_library_call_value_1 uses it to set up
109 post-instantiation libcalls. */
110 int virtuals_instantiated;
112 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
113 static GTY(()) int funcdef_no;
115 /* These variables hold pointers to functions to create and destroy
116 target specific, per-function data structures. */
117 struct machine_function * (*init_machine_status) (void);
119 /* The currently compiled function. */
120 struct function *cfun = 0;
122 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
123 static GTY(()) varray_type prologue;
124 static GTY(()) varray_type epilogue;
126 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
127 in this function. */
128 static GTY(()) varray_type sibcall_epilogue;
130 /* In order to evaluate some expressions, such as function calls returning
131 structures in memory, we need to temporarily allocate stack locations.
132 We record each allocated temporary in the following structure.
134 Associated with each temporary slot is a nesting level. When we pop up
135 one level, all temporaries associated with the previous level are freed.
136 Normally, all temporaries are freed after the execution of the statement
137 in which they were created. However, if we are inside a ({...}) grouping,
138 the result may be in a temporary and hence must be preserved. If the
139 result could be in a temporary, we preserve it if we can determine which
140 one it is in. If we cannot determine which temporary may contain the
141 result, all temporaries are preserved. A temporary is preserved by
142 pretending it was allocated at the previous nesting level.
144 Automatic variables are also assigned temporary slots, at the nesting
145 level where they are defined. They are marked a "kept" so that
146 free_temp_slots will not free them. */
148 struct temp_slot GTY(())
150 /* Points to next temporary slot. */
151 struct temp_slot *next;
152 /* Points to previous temporary slot. */
153 struct temp_slot *prev;
155 /* The rtx to used to reference the slot. */
156 rtx slot;
157 /* The rtx used to represent the address if not the address of the
158 slot above. May be an EXPR_LIST if multiple addresses exist. */
159 rtx address;
160 /* The alignment (in bits) of the slot. */
161 unsigned int align;
162 /* The size, in units, of the slot. */
163 HOST_WIDE_INT size;
164 /* The type of the object in the slot, or zero if it doesn't correspond
165 to a type. We use this to determine whether a slot can be reused.
166 It can be reused if objects of the type of the new slot will always
167 conflict with objects of the type of the old slot. */
168 tree type;
169 /* Nonzero if this temporary is currently in use. */
170 char in_use;
171 /* Nonzero if this temporary has its address taken. */
172 char addr_taken;
173 /* Nesting level at which this slot is being used. */
174 int level;
175 /* Nonzero if this should survive a call to free_temp_slots. */
176 int keep;
177 /* The offset of the slot from the frame_pointer, including extra space
178 for alignment. This info is for combine_temp_slots. */
179 HOST_WIDE_INT base_offset;
180 /* The size of the slot, including extra space for alignment. This
181 info is for combine_temp_slots. */
182 HOST_WIDE_INT full_size;
185 /* Forward declarations. */
187 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
188 struct function *);
189 static struct temp_slot *find_temp_slot_from_address (rtx);
190 static void instantiate_decls (tree, int);
191 static void instantiate_decls_1 (tree, int);
192 static void instantiate_decl (rtx, HOST_WIDE_INT, int);
193 static rtx instantiate_new_reg (rtx, HOST_WIDE_INT *);
194 static int instantiate_virtual_regs_1 (rtx *, rtx, int);
195 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
196 static void pad_below (struct args_size *, enum machine_mode, tree);
197 static void reorder_blocks_1 (rtx, tree, varray_type *);
198 static void reorder_fix_fragments (tree);
199 static int all_blocks (tree, tree *);
200 static tree *get_block_vector (tree, int *);
201 extern tree debug_find_var_in_block_tree (tree, tree);
202 /* We always define `record_insns' even if it's not used so that we
203 can always export `prologue_epilogue_contains'. */
204 static void record_insns (rtx, varray_type *) ATTRIBUTE_UNUSED;
205 static int contains (rtx, varray_type);
206 #ifdef HAVE_return
207 static void emit_return_into_block (basic_block, rtx);
208 #endif
209 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
210 static rtx keep_stack_depressed (rtx);
211 #endif
212 static void prepare_function_start (tree);
213 static void do_clobber_return_reg (rtx, void *);
214 static void do_use_return_reg (rtx, void *);
215 static void instantiate_virtual_regs_lossage (rtx);
216 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
218 /* Pointer to chain of `struct function' for containing functions. */
219 struct function *outer_function_chain;
221 /* Given a function decl for a containing function,
222 return the `struct function' for it. */
224 struct function *
225 find_function_data (tree decl)
227 struct function *p;
229 for (p = outer_function_chain; p; p = p->outer)
230 if (p->decl == decl)
231 return p;
233 abort ();
236 /* Save the current context for compilation of a nested function.
237 This is called from language-specific code. The caller should use
238 the enter_nested langhook to save any language-specific state,
239 since this function knows only about language-independent
240 variables. */
242 void
243 push_function_context_to (tree context)
245 struct function *p;
247 if (context)
249 if (context == current_function_decl)
250 cfun->contains_functions = 1;
251 else
253 struct function *containing = find_function_data (context);
254 containing->contains_functions = 1;
258 if (cfun == 0)
259 init_dummy_function_start ();
260 p = cfun;
262 p->outer = outer_function_chain;
263 outer_function_chain = p;
265 lang_hooks.function.enter_nested (p);
267 cfun = 0;
270 void
271 push_function_context (void)
273 push_function_context_to (current_function_decl);
276 /* Restore the last saved context, at the end of a nested function.
277 This function is called from language-specific code. */
279 void
280 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
282 struct function *p = outer_function_chain;
284 cfun = p;
285 outer_function_chain = p->outer;
287 current_function_decl = p->decl;
288 reg_renumber = 0;
290 restore_emit_status (p);
292 lang_hooks.function.leave_nested (p);
294 /* Reset variables that have known state during rtx generation. */
295 virtuals_instantiated = 0;
296 generating_concat_p = 1;
299 void
300 pop_function_context (void)
302 pop_function_context_from (current_function_decl);
305 /* Clear out all parts of the state in F that can safely be discarded
306 after the function has been parsed, but not compiled, to let
307 garbage collection reclaim the memory. */
309 void
310 free_after_parsing (struct function *f)
312 /* f->expr->forced_labels is used by code generation. */
313 /* f->emit->regno_reg_rtx is used by code generation. */
314 /* f->varasm is used by code generation. */
315 /* f->eh->eh_return_stub_label is used by code generation. */
317 lang_hooks.function.final (f);
318 f->stmt = NULL;
321 /* Clear out all parts of the state in F that can safely be discarded
322 after the function has been compiled, to let garbage collection
323 reclaim the memory. */
325 void
326 free_after_compilation (struct function *f)
328 f->eh = NULL;
329 f->expr = NULL;
330 f->emit = NULL;
331 f->varasm = NULL;
332 f->machine = NULL;
334 f->x_avail_temp_slots = NULL;
335 f->x_used_temp_slots = NULL;
336 f->arg_offset_rtx = NULL;
337 f->return_rtx = NULL;
338 f->internal_arg_pointer = NULL;
339 f->x_nonlocal_goto_handler_labels = NULL;
340 f->x_return_label = NULL;
341 f->x_naked_return_label = NULL;
342 f->x_stack_slot_list = NULL;
343 f->x_tail_recursion_reentry = NULL;
344 f->x_arg_pointer_save_area = NULL;
345 f->x_parm_birth_insn = NULL;
346 f->original_arg_vector = NULL;
347 f->original_decl_initial = NULL;
348 f->epilogue_delay_list = NULL;
351 /* Allocate fixed slots in the stack frame of the current function. */
353 /* Return size needed for stack frame based on slots so far allocated in
354 function F.
355 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
356 the caller may have to do that. */
358 HOST_WIDE_INT
359 get_func_frame_size (struct function *f)
361 #ifdef FRAME_GROWS_DOWNWARD
362 return -f->x_frame_offset;
363 #else
364 return f->x_frame_offset;
365 #endif
368 /* Return size needed for stack frame based on slots so far allocated.
369 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
370 the caller may have to do that. */
371 HOST_WIDE_INT
372 get_frame_size (void)
374 return get_func_frame_size (cfun);
377 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
378 with machine mode MODE.
380 ALIGN controls the amount of alignment for the address of the slot:
381 0 means according to MODE,
382 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
383 -2 means use BITS_PER_UNIT,
384 positive specifies alignment boundary in bits.
386 We do not round to stack_boundary here.
388 FUNCTION specifies the function to allocate in. */
390 static rtx
391 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
392 struct function *function)
394 rtx x, addr;
395 int bigend_correction = 0;
396 unsigned int alignment;
397 int frame_off, frame_alignment, frame_phase;
399 if (align == 0)
401 tree type;
403 if (mode == BLKmode)
404 alignment = BIGGEST_ALIGNMENT;
405 else
406 alignment = GET_MODE_ALIGNMENT (mode);
408 /* Allow the target to (possibly) increase the alignment of this
409 stack slot. */
410 type = lang_hooks.types.type_for_mode (mode, 0);
411 if (type)
412 alignment = LOCAL_ALIGNMENT (type, alignment);
414 alignment /= BITS_PER_UNIT;
416 else if (align == -1)
418 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
419 size = CEIL_ROUND (size, alignment);
421 else if (align == -2)
422 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
423 else
424 alignment = align / BITS_PER_UNIT;
426 #ifdef FRAME_GROWS_DOWNWARD
427 function->x_frame_offset -= size;
428 #endif
430 /* Ignore alignment we can't do with expected alignment of the boundary. */
431 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
432 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
434 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
435 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
437 /* Calculate how many bytes the start of local variables is off from
438 stack alignment. */
439 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
440 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
441 frame_phase = frame_off ? frame_alignment - frame_off : 0;
443 /* Round the frame offset to the specified alignment. The default is
444 to always honor requests to align the stack but a port may choose to
445 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
446 if (STACK_ALIGNMENT_NEEDED
447 || mode != BLKmode
448 || size != 0)
450 /* We must be careful here, since FRAME_OFFSET might be negative and
451 division with a negative dividend isn't as well defined as we might
452 like. So we instead assume that ALIGNMENT is a power of two and
453 use logical operations which are unambiguous. */
454 #ifdef FRAME_GROWS_DOWNWARD
455 function->x_frame_offset
456 = (FLOOR_ROUND (function->x_frame_offset - frame_phase,
457 (unsigned HOST_WIDE_INT) alignment)
458 + frame_phase);
459 #else
460 function->x_frame_offset
461 = (CEIL_ROUND (function->x_frame_offset - frame_phase,
462 (unsigned HOST_WIDE_INT) alignment)
463 + frame_phase);
464 #endif
467 /* On a big-endian machine, if we are allocating more space than we will use,
468 use the least significant bytes of those that are allocated. */
469 if (BYTES_BIG_ENDIAN && mode != BLKmode)
470 bigend_correction = size - GET_MODE_SIZE (mode);
472 /* If we have already instantiated virtual registers, return the actual
473 address relative to the frame pointer. */
474 if (function == cfun && virtuals_instantiated)
475 addr = plus_constant (frame_pointer_rtx,
476 trunc_int_for_mode
477 (frame_offset + bigend_correction
478 + STARTING_FRAME_OFFSET, Pmode));
479 else
480 addr = plus_constant (virtual_stack_vars_rtx,
481 trunc_int_for_mode
482 (function->x_frame_offset + bigend_correction,
483 Pmode));
485 #ifndef FRAME_GROWS_DOWNWARD
486 function->x_frame_offset += size;
487 #endif
489 x = gen_rtx_MEM (mode, addr);
491 function->x_stack_slot_list
492 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
494 return x;
497 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
498 current function. */
501 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
503 return assign_stack_local_1 (mode, size, align, cfun);
507 /* Removes temporary slot TEMP from LIST. */
509 static void
510 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
512 if (temp->next)
513 temp->next->prev = temp->prev;
514 if (temp->prev)
515 temp->prev->next = temp->next;
516 else
517 *list = temp->next;
519 temp->prev = temp->next = NULL;
522 /* Inserts temporary slot TEMP to LIST. */
524 static void
525 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
527 temp->next = *list;
528 if (*list)
529 (*list)->prev = temp;
530 temp->prev = NULL;
531 *list = temp;
534 /* Returns the list of used temp slots at LEVEL. */
536 static struct temp_slot **
537 temp_slots_at_level (int level)
539 level++;
541 if (!used_temp_slots)
542 VARRAY_GENERIC_PTR_INIT (used_temp_slots, 3, "used_temp_slots");
544 while (level >= (int) VARRAY_ACTIVE_SIZE (used_temp_slots))
545 VARRAY_PUSH_GENERIC_PTR (used_temp_slots, NULL);
547 return (struct temp_slot **) &VARRAY_GENERIC_PTR (used_temp_slots, level);
550 /* Returns the maximal temporary slot level. */
552 static int
553 max_slot_level (void)
555 if (!used_temp_slots)
556 return -1;
558 return VARRAY_ACTIVE_SIZE (used_temp_slots) - 1;
561 /* Moves temporary slot TEMP to LEVEL. */
563 static void
564 move_slot_to_level (struct temp_slot *temp, int level)
566 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
567 insert_slot_to_list (temp, temp_slots_at_level (level));
568 temp->level = level;
571 /* Make temporary slot TEMP available. */
573 static void
574 make_slot_available (struct temp_slot *temp)
576 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
577 insert_slot_to_list (temp, &avail_temp_slots);
578 temp->in_use = 0;
579 temp->level = -1;
582 /* Allocate a temporary stack slot and record it for possible later
583 reuse.
585 MODE is the machine mode to be given to the returned rtx.
587 SIZE is the size in units of the space required. We do no rounding here
588 since assign_stack_local will do any required rounding.
590 KEEP is 1 if this slot is to be retained after a call to
591 free_temp_slots. Automatic variables for a block are allocated
592 with this flag. KEEP is 2 if we allocate a longer term temporary,
593 whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3
594 if we are to allocate something at an inner level to be treated as
595 a variable in the block (e.g., a SAVE_EXPR).
597 TYPE is the type that will be used for the stack slot. */
600 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size, int keep,
601 tree type)
603 unsigned int align;
604 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
605 rtx slot;
607 /* If SIZE is -1 it means that somebody tried to allocate a temporary
608 of a variable size. */
609 if (size == -1)
610 abort ();
612 if (mode == BLKmode)
613 align = BIGGEST_ALIGNMENT;
614 else
615 align = GET_MODE_ALIGNMENT (mode);
617 if (! type)
618 type = lang_hooks.types.type_for_mode (mode, 0);
620 if (type)
621 align = LOCAL_ALIGNMENT (type, align);
623 /* Try to find an available, already-allocated temporary of the proper
624 mode which meets the size and alignment requirements. Choose the
625 smallest one with the closest alignment. */
626 for (p = avail_temp_slots; p; p = p->next)
628 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
629 && objects_must_conflict_p (p->type, type)
630 && (best_p == 0 || best_p->size > p->size
631 || (best_p->size == p->size && best_p->align > p->align)))
633 if (p->align == align && p->size == size)
635 selected = p;
636 cut_slot_from_list (selected, &avail_temp_slots);
637 best_p = 0;
638 break;
640 best_p = p;
644 /* Make our best, if any, the one to use. */
645 if (best_p)
647 selected = best_p;
648 cut_slot_from_list (selected, &avail_temp_slots);
650 /* If there are enough aligned bytes left over, make them into a new
651 temp_slot so that the extra bytes don't get wasted. Do this only
652 for BLKmode slots, so that we can be sure of the alignment. */
653 if (GET_MODE (best_p->slot) == BLKmode)
655 int alignment = best_p->align / BITS_PER_UNIT;
656 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
658 if (best_p->size - rounded_size >= alignment)
660 p = ggc_alloc (sizeof (struct temp_slot));
661 p->in_use = p->addr_taken = 0;
662 p->size = best_p->size - rounded_size;
663 p->base_offset = best_p->base_offset + rounded_size;
664 p->full_size = best_p->full_size - rounded_size;
665 p->slot = gen_rtx_MEM (BLKmode,
666 plus_constant (XEXP (best_p->slot, 0),
667 rounded_size));
668 p->align = best_p->align;
669 p->address = 0;
670 p->type = best_p->type;
671 insert_slot_to_list (p, &avail_temp_slots);
673 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
674 stack_slot_list);
676 best_p->size = rounded_size;
677 best_p->full_size = rounded_size;
682 /* If we still didn't find one, make a new temporary. */
683 if (selected == 0)
685 HOST_WIDE_INT frame_offset_old = frame_offset;
687 p = ggc_alloc (sizeof (struct temp_slot));
689 /* We are passing an explicit alignment request to assign_stack_local.
690 One side effect of that is assign_stack_local will not round SIZE
691 to ensure the frame offset remains suitably aligned.
693 So for requests which depended on the rounding of SIZE, we go ahead
694 and round it now. We also make sure ALIGNMENT is at least
695 BIGGEST_ALIGNMENT. */
696 if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
697 abort ();
698 p->slot = assign_stack_local (mode,
699 (mode == BLKmode
700 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
701 : size),
702 align);
704 p->align = align;
706 /* The following slot size computation is necessary because we don't
707 know the actual size of the temporary slot until assign_stack_local
708 has performed all the frame alignment and size rounding for the
709 requested temporary. Note that extra space added for alignment
710 can be either above or below this stack slot depending on which
711 way the frame grows. We include the extra space if and only if it
712 is above this slot. */
713 #ifdef FRAME_GROWS_DOWNWARD
714 p->size = frame_offset_old - frame_offset;
715 #else
716 p->size = size;
717 #endif
719 /* Now define the fields used by combine_temp_slots. */
720 #ifdef FRAME_GROWS_DOWNWARD
721 p->base_offset = frame_offset;
722 p->full_size = frame_offset_old - frame_offset;
723 #else
724 p->base_offset = frame_offset_old;
725 p->full_size = frame_offset - frame_offset_old;
726 #endif
727 p->address = 0;
729 selected = p;
732 p = selected;
733 p->in_use = 1;
734 p->addr_taken = 0;
735 p->type = type;
737 if (keep == 2)
739 p->level = target_temp_slot_level;
740 p->keep = 1;
742 else if (keep == 3)
744 p->level = var_temp_slot_level;
745 p->keep = 0;
747 else
749 p->level = temp_slot_level;
750 p->keep = keep;
753 pp = temp_slots_at_level (p->level);
754 insert_slot_to_list (p, pp);
756 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
757 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
758 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
760 /* If we know the alias set for the memory that will be used, use
761 it. If there's no TYPE, then we don't know anything about the
762 alias set for the memory. */
763 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
764 set_mem_align (slot, align);
766 /* If a type is specified, set the relevant flags. */
767 if (type != 0)
769 RTX_UNCHANGING_P (slot) = (lang_hooks.honor_readonly
770 && TYPE_READONLY (type));
771 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
772 MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
775 return slot;
778 /* Allocate a temporary stack slot and record it for possible later
779 reuse. First three arguments are same as in preceding function. */
782 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
784 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
787 /* Assign a temporary.
788 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
789 and so that should be used in error messages. In either case, we
790 allocate of the given type.
791 KEEP is as for assign_stack_temp.
792 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
793 it is 0 if a register is OK.
794 DONT_PROMOTE is 1 if we should not promote values in register
795 to wider modes. */
798 assign_temp (tree type_or_decl, int keep, int memory_required,
799 int dont_promote ATTRIBUTE_UNUSED)
801 tree type, decl;
802 enum machine_mode mode;
803 #ifdef PROMOTE_MODE
804 int unsignedp;
805 #endif
807 if (DECL_P (type_or_decl))
808 decl = type_or_decl, type = TREE_TYPE (decl);
809 else
810 decl = NULL, type = type_or_decl;
812 mode = TYPE_MODE (type);
813 #ifdef PROMOTE_MODE
814 unsignedp = TYPE_UNSIGNED (type);
815 #endif
817 if (mode == BLKmode || memory_required)
819 HOST_WIDE_INT size = int_size_in_bytes (type);
820 tree size_tree;
821 rtx tmp;
823 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
824 problems with allocating the stack space. */
825 if (size == 0)
826 size = 1;
828 /* Unfortunately, we don't yet know how to allocate variable-sized
829 temporaries. However, sometimes we have a fixed upper limit on
830 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
831 instead. This is the case for Chill variable-sized strings. */
832 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
833 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
834 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
835 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
837 /* If we still haven't been able to get a size, see if the language
838 can compute a maximum size. */
839 if (size == -1
840 && (size_tree = lang_hooks.types.max_size (type)) != 0
841 && host_integerp (size_tree, 1))
842 size = tree_low_cst (size_tree, 1);
844 /* The size of the temporary may be too large to fit into an integer. */
845 /* ??? Not sure this should happen except for user silliness, so limit
846 this to things that aren't compiler-generated temporaries. The
847 rest of the time we'll abort in assign_stack_temp_for_type. */
848 if (decl && size == -1
849 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
851 error ("%Jsize of variable '%D' is too large", decl, decl);
852 size = 1;
855 tmp = assign_stack_temp_for_type (mode, size, keep, type);
856 return tmp;
859 #ifdef PROMOTE_MODE
860 if (! dont_promote)
861 mode = promote_mode (type, mode, &unsignedp, 0);
862 #endif
864 return gen_reg_rtx (mode);
867 /* Combine temporary stack slots which are adjacent on the stack.
869 This allows for better use of already allocated stack space. This is only
870 done for BLKmode slots because we can be sure that we won't have alignment
871 problems in this case. */
873 void
874 combine_temp_slots (void)
876 struct temp_slot *p, *q, *next, *next_q;
877 int num_slots;
879 /* We can't combine slots, because the information about which slot
880 is in which alias set will be lost. */
881 if (flag_strict_aliasing)
882 return;
884 /* If there are a lot of temp slots, don't do anything unless
885 high levels of optimization. */
886 if (! flag_expensive_optimizations)
887 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
888 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
889 return;
891 for (p = avail_temp_slots; p; p = next)
893 int delete_p = 0;
895 next = p->next;
897 if (GET_MODE (p->slot) != BLKmode)
898 continue;
900 for (q = p->next; q; q = next_q)
902 int delete_q = 0;
904 next_q = q->next;
906 if (GET_MODE (q->slot) != BLKmode)
907 continue;
909 if (p->base_offset + p->full_size == q->base_offset)
911 /* Q comes after P; combine Q into P. */
912 p->size += q->size;
913 p->full_size += q->full_size;
914 delete_q = 1;
916 else if (q->base_offset + q->full_size == p->base_offset)
918 /* P comes after Q; combine P into Q. */
919 q->size += p->size;
920 q->full_size += p->full_size;
921 delete_p = 1;
922 break;
924 if (delete_q)
925 cut_slot_from_list (q, &avail_temp_slots);
928 /* Either delete P or advance past it. */
929 if (delete_p)
930 cut_slot_from_list (p, &avail_temp_slots);
934 /* Find the temp slot corresponding to the object at address X. */
936 static struct temp_slot *
937 find_temp_slot_from_address (rtx x)
939 struct temp_slot *p;
940 rtx next;
941 int i;
943 for (i = max_slot_level (); i >= 0; i--)
944 for (p = *temp_slots_at_level (i); p; p = p->next)
946 if (XEXP (p->slot, 0) == x
947 || p->address == x
948 || (GET_CODE (x) == PLUS
949 && XEXP (x, 0) == virtual_stack_vars_rtx
950 && GET_CODE (XEXP (x, 1)) == CONST_INT
951 && INTVAL (XEXP (x, 1)) >= p->base_offset
952 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
953 return p;
955 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
956 for (next = p->address; next; next = XEXP (next, 1))
957 if (XEXP (next, 0) == x)
958 return p;
961 /* If we have a sum involving a register, see if it points to a temp
962 slot. */
963 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
964 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
965 return p;
966 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
967 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
968 return p;
970 return 0;
973 /* Indicate that NEW is an alternate way of referring to the temp slot
974 that previously was known by OLD. */
976 void
977 update_temp_slot_address (rtx old, rtx new)
979 struct temp_slot *p;
981 if (rtx_equal_p (old, new))
982 return;
984 p = find_temp_slot_from_address (old);
986 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
987 is a register, see if one operand of the PLUS is a temporary
988 location. If so, NEW points into it. Otherwise, if both OLD and
989 NEW are a PLUS and if there is a register in common between them.
990 If so, try a recursive call on those values. */
991 if (p == 0)
993 if (GET_CODE (old) != PLUS)
994 return;
996 if (REG_P (new))
998 update_temp_slot_address (XEXP (old, 0), new);
999 update_temp_slot_address (XEXP (old, 1), new);
1000 return;
1002 else if (GET_CODE (new) != PLUS)
1003 return;
1005 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
1006 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
1007 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
1008 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
1009 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
1010 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1011 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1012 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1014 return;
1017 /* Otherwise add an alias for the temp's address. */
1018 else if (p->address == 0)
1019 p->address = new;
1020 else
1022 if (GET_CODE (p->address) != EXPR_LIST)
1023 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1025 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1029 /* If X could be a reference to a temporary slot, mark the fact that its
1030 address was taken. */
1032 void
1033 mark_temp_addr_taken (rtx x)
1035 struct temp_slot *p;
1037 if (x == 0)
1038 return;
1040 /* If X is not in memory or is at a constant address, it cannot be in
1041 a temporary slot. */
1042 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1043 return;
1045 p = find_temp_slot_from_address (XEXP (x, 0));
1046 if (p != 0)
1047 p->addr_taken = 1;
1050 /* If X could be a reference to a temporary slot, mark that slot as
1051 belonging to the to one level higher than the current level. If X
1052 matched one of our slots, just mark that one. Otherwise, we can't
1053 easily predict which it is, so upgrade all of them. Kept slots
1054 need not be touched.
1056 This is called when an ({...}) construct occurs and a statement
1057 returns a value in memory. */
1059 void
1060 preserve_temp_slots (rtx x)
1062 struct temp_slot *p = 0, *next;
1064 /* If there is no result, we still might have some objects whose address
1065 were taken, so we need to make sure they stay around. */
1066 if (x == 0)
1068 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1070 next = p->next;
1072 if (p->addr_taken)
1073 move_slot_to_level (p, temp_slot_level - 1);
1076 return;
1079 /* If X is a register that is being used as a pointer, see if we have
1080 a temporary slot we know it points to. To be consistent with
1081 the code below, we really should preserve all non-kept slots
1082 if we can't find a match, but that seems to be much too costly. */
1083 if (REG_P (x) && REG_POINTER (x))
1084 p = find_temp_slot_from_address (x);
1086 /* If X is not in memory or is at a constant address, it cannot be in
1087 a temporary slot, but it can contain something whose address was
1088 taken. */
1089 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1091 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1093 next = p->next;
1095 if (p->addr_taken)
1096 move_slot_to_level (p, temp_slot_level - 1);
1099 return;
1102 /* First see if we can find a match. */
1103 if (p == 0)
1104 p = find_temp_slot_from_address (XEXP (x, 0));
1106 if (p != 0)
1108 /* Move everything at our level whose address was taken to our new
1109 level in case we used its address. */
1110 struct temp_slot *q;
1112 if (p->level == temp_slot_level)
1114 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1116 next = q->next;
1118 if (p != q && q->addr_taken)
1119 move_slot_to_level (q, temp_slot_level - 1);
1122 move_slot_to_level (p, temp_slot_level - 1);
1123 p->addr_taken = 0;
1125 return;
1128 /* Otherwise, preserve all non-kept slots at this level. */
1129 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1131 next = p->next;
1133 if (!p->keep)
1134 move_slot_to_level (p, temp_slot_level - 1);
1138 /* Free all temporaries used so far. This is normally called at the
1139 end of generating code for a statement. */
1141 void
1142 free_temp_slots (void)
1144 struct temp_slot *p, *next;
1146 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1148 next = p->next;
1150 if (!p->keep)
1151 make_slot_available (p);
1154 combine_temp_slots ();
1157 /* Push deeper into the nesting level for stack temporaries. */
1159 void
1160 push_temp_slots (void)
1162 temp_slot_level++;
1165 /* Pop a temporary nesting level. All slots in use in the current level
1166 are freed. */
1168 void
1169 pop_temp_slots (void)
1171 struct temp_slot *p, *next;
1173 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1175 next = p->next;
1176 make_slot_available (p);
1179 combine_temp_slots ();
1181 temp_slot_level--;
1184 /* Initialize temporary slots. */
1186 void
1187 init_temp_slots (void)
1189 /* We have not allocated any temporaries yet. */
1190 avail_temp_slots = 0;
1191 used_temp_slots = 0;
1192 temp_slot_level = 0;
1193 var_temp_slot_level = 0;
1194 target_temp_slot_level = 0;
1197 /* These routines are responsible for converting virtual register references
1198 to the actual hard register references once RTL generation is complete.
1200 The following four variables are used for communication between the
1201 routines. They contain the offsets of the virtual registers from their
1202 respective hard registers. */
1204 static int in_arg_offset;
1205 static int var_offset;
1206 static int dynamic_offset;
1207 static int out_arg_offset;
1208 static int cfa_offset;
1210 /* In most machines, the stack pointer register is equivalent to the bottom
1211 of the stack. */
1213 #ifndef STACK_POINTER_OFFSET
1214 #define STACK_POINTER_OFFSET 0
1215 #endif
1217 /* If not defined, pick an appropriate default for the offset of dynamically
1218 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1219 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1221 #ifndef STACK_DYNAMIC_OFFSET
1223 /* The bottom of the stack points to the actual arguments. If
1224 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1225 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1226 stack space for register parameters is not pushed by the caller, but
1227 rather part of the fixed stack areas and hence not included in
1228 `current_function_outgoing_args_size'. Nevertheless, we must allow
1229 for it when allocating stack dynamic objects. */
1231 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
1232 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1233 ((ACCUMULATE_OUTGOING_ARGS \
1234 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
1235 + (STACK_POINTER_OFFSET)) \
1237 #else
1238 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1239 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
1240 + (STACK_POINTER_OFFSET))
1241 #endif
1242 #endif
1244 /* On most machines, the CFA coincides with the first incoming parm. */
1246 #ifndef ARG_POINTER_CFA_OFFSET
1247 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
1248 #endif
1251 /* Pass through the INSNS of function FNDECL and convert virtual register
1252 references to hard register references. */
1254 void
1255 instantiate_virtual_regs (void)
1257 rtx insn;
1259 /* Compute the offsets to use for this function. */
1260 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1261 var_offset = STARTING_FRAME_OFFSET;
1262 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1263 out_arg_offset = STACK_POINTER_OFFSET;
1264 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1266 /* Scan all variables and parameters of this function. For each that is
1267 in memory, instantiate all virtual registers if the result is a valid
1268 address. If not, we do it later. That will handle most uses of virtual
1269 regs on many machines. */
1270 instantiate_decls (current_function_decl, 1);
1272 /* Initialize recognition, indicating that volatile is OK. */
1273 init_recog ();
1275 /* Scan through all the insns, instantiating every virtual register still
1276 present. */
1277 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1278 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
1279 || GET_CODE (insn) == CALL_INSN)
1281 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
1282 if (INSN_DELETED_P (insn))
1283 continue;
1284 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
1285 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1286 if (GET_CODE (insn) == CALL_INSN)
1287 instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn),
1288 NULL_RTX, 0);
1290 /* Past this point all ASM statements should match. Verify that
1291 to avoid failures later in the compilation process. */
1292 if (asm_noperands (PATTERN (insn)) >= 0
1293 && ! check_asm_operands (PATTERN (insn)))
1294 instantiate_virtual_regs_lossage (insn);
1297 /* Now instantiate the remaining register equivalences for debugging info.
1298 These will not be valid addresses. */
1299 instantiate_decls (current_function_decl, 0);
1301 /* Indicate that, from now on, assign_stack_local should use
1302 frame_pointer_rtx. */
1303 virtuals_instantiated = 1;
1306 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1307 all virtual registers in their DECL_RTL's.
1309 If VALID_ONLY, do this only if the resulting address is still valid.
1310 Otherwise, always do it. */
1312 static void
1313 instantiate_decls (tree fndecl, int valid_only)
1315 tree decl;
1317 /* Process all parameters of the function. */
1318 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1320 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
1321 HOST_WIDE_INT size_rtl;
1323 instantiate_decl (DECL_RTL (decl), size, valid_only);
1325 /* If the parameter was promoted, then the incoming RTL mode may be
1326 larger than the declared type size. We must use the larger of
1327 the two sizes. */
1328 size_rtl = GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl)));
1329 size = MAX (size_rtl, size);
1330 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
1333 /* Now process all variables defined in the function or its subblocks. */
1334 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
1337 /* Subroutine of instantiate_decls: Process all decls in the given
1338 BLOCK node and all its subblocks. */
1340 static void
1341 instantiate_decls_1 (tree let, int valid_only)
1343 tree t;
1345 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1346 if (DECL_RTL_SET_P (t))
1347 instantiate_decl (DECL_RTL (t),
1348 int_size_in_bytes (TREE_TYPE (t)),
1349 valid_only);
1351 /* Process all subblocks. */
1352 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
1353 instantiate_decls_1 (t, valid_only);
1356 /* Subroutine of the preceding procedures: Given RTL representing a
1357 decl and the size of the object, do any instantiation required.
1359 If VALID_ONLY is nonzero, it means that the RTL should only be
1360 changed if the new address is valid. */
1362 static void
1363 instantiate_decl (rtx x, HOST_WIDE_INT size, int valid_only)
1365 enum machine_mode mode;
1366 rtx addr;
1368 /* If this is not a MEM, no need to do anything. Similarly if the
1369 address is a constant or a register that is not a virtual register. */
1371 if (x == 0 || !MEM_P (x))
1372 return;
1374 addr = XEXP (x, 0);
1375 if (CONSTANT_P (addr)
1376 || (REG_P (addr)
1377 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1378 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1379 return;
1381 /* If we should only do this if the address is valid, copy the address.
1382 We need to do this so we can undo any changes that might make the
1383 address invalid. This copy is unfortunate, but probably can't be
1384 avoided. */
1386 if (valid_only)
1387 addr = copy_rtx (addr);
1389 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
1391 if (valid_only && size >= 0)
1393 unsigned HOST_WIDE_INT decl_size = size;
1395 /* Now verify that the resulting address is valid for every integer or
1396 floating-point mode up to and including SIZE bytes long. We do this
1397 since the object might be accessed in any mode and frame addresses
1398 are shared. */
1400 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1401 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
1402 mode = GET_MODE_WIDER_MODE (mode))
1403 if (! memory_address_p (mode, addr))
1404 return;
1406 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
1407 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
1408 mode = GET_MODE_WIDER_MODE (mode))
1409 if (! memory_address_p (mode, addr))
1410 return;
1413 /* Put back the address now that we have updated it and we either know
1414 it is valid or we don't care whether it is valid. */
1416 XEXP (x, 0) = addr;
1419 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1420 is a virtual register, return the equivalent hard register and set the
1421 offset indirectly through the pointer. Otherwise, return 0. */
1423 static rtx
1424 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1426 rtx new;
1427 HOST_WIDE_INT offset;
1429 if (x == virtual_incoming_args_rtx)
1430 new = arg_pointer_rtx, offset = in_arg_offset;
1431 else if (x == virtual_stack_vars_rtx)
1432 new = frame_pointer_rtx, offset = var_offset;
1433 else if (x == virtual_stack_dynamic_rtx)
1434 new = stack_pointer_rtx, offset = dynamic_offset;
1435 else if (x == virtual_outgoing_args_rtx)
1436 new = stack_pointer_rtx, offset = out_arg_offset;
1437 else if (x == virtual_cfa_rtx)
1438 new = arg_pointer_rtx, offset = cfa_offset;
1439 else
1440 return 0;
1442 *poffset = offset;
1443 return new;
1447 /* Called when instantiate_virtual_regs has failed to update the instruction.
1448 Usually this means that non-matching instruction has been emit, however for
1449 asm statements it may be the problem in the constraints. */
1450 static void
1451 instantiate_virtual_regs_lossage (rtx insn)
1453 if (asm_noperands (PATTERN (insn)) >= 0)
1455 error_for_asm (insn, "impossible constraint in `asm'");
1456 delete_insn (insn);
1458 else
1459 abort ();
1461 /* Given a pointer to a piece of rtx and an optional pointer to the
1462 containing object, instantiate any virtual registers present in it.
1464 If EXTRA_INSNS, we always do the replacement and generate
1465 any extra insns before OBJECT. If it zero, we do nothing if replacement
1466 is not valid.
1468 Return 1 if we either had nothing to do or if we were able to do the
1469 needed replacement. Return 0 otherwise; we only return zero if
1470 EXTRA_INSNS is zero.
1472 We first try some simple transformations to avoid the creation of extra
1473 pseudos. */
1475 static int
1476 instantiate_virtual_regs_1 (rtx *loc, rtx object, int extra_insns)
1478 rtx x;
1479 RTX_CODE code;
1480 rtx new = 0;
1481 HOST_WIDE_INT offset = 0;
1482 rtx temp;
1483 rtx seq;
1484 int i, j;
1485 const char *fmt;
1487 /* Re-start here to avoid recursion in common cases. */
1488 restart:
1490 x = *loc;
1491 if (x == 0)
1492 return 1;
1494 /* We may have detected and deleted invalid asm statements. */
1495 if (object && INSN_P (object) && INSN_DELETED_P (object))
1496 return 1;
1498 code = GET_CODE (x);
1500 /* Check for some special cases. */
1501 switch (code)
1503 case CONST_INT:
1504 case CONST_DOUBLE:
1505 case CONST_VECTOR:
1506 case CONST:
1507 case SYMBOL_REF:
1508 case CODE_LABEL:
1509 case PC:
1510 case CC0:
1511 case ASM_INPUT:
1512 case ADDR_VEC:
1513 case ADDR_DIFF_VEC:
1514 case RETURN:
1515 return 1;
1517 case SET:
1518 /* We are allowed to set the virtual registers. This means that
1519 the actual register should receive the source minus the
1520 appropriate offset. This is used, for example, in the handling
1521 of non-local gotos. */
1522 if ((new = instantiate_new_reg (SET_DEST (x), &offset)) != 0)
1524 rtx src = SET_SRC (x);
1526 /* We are setting the register, not using it, so the relevant
1527 offset is the negative of the offset to use were we using
1528 the register. */
1529 offset = - offset;
1530 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
1532 /* The only valid sources here are PLUS or REG. Just do
1533 the simplest possible thing to handle them. */
1534 if (!REG_P (src) && GET_CODE (src) != PLUS)
1536 instantiate_virtual_regs_lossage (object);
1537 return 1;
1540 start_sequence ();
1541 if (!REG_P (src))
1542 temp = force_operand (src, NULL_RTX);
1543 else
1544 temp = src;
1545 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
1546 seq = get_insns ();
1547 end_sequence ();
1549 emit_insn_before (seq, object);
1550 SET_DEST (x) = new;
1552 if (! validate_change (object, &SET_SRC (x), temp, 0)
1553 || ! extra_insns)
1554 instantiate_virtual_regs_lossage (object);
1556 return 1;
1559 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
1560 loc = &SET_SRC (x);
1561 goto restart;
1563 case PLUS:
1564 /* Handle special case of virtual register plus constant. */
1565 if (CONSTANT_P (XEXP (x, 1)))
1567 rtx old, new_offset;
1569 /* Check for (plus (plus VIRT foo) (const_int)) first. */
1570 if (GET_CODE (XEXP (x, 0)) == PLUS)
1572 if ((new = instantiate_new_reg (XEXP (XEXP (x, 0), 0), &offset)))
1574 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
1575 extra_insns);
1576 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
1578 else
1580 loc = &XEXP (x, 0);
1581 goto restart;
1585 #ifdef POINTERS_EXTEND_UNSIGNED
1586 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1587 we can commute the PLUS and SUBREG because pointers into the
1588 frame are well-behaved. */
1589 else if (GET_CODE (XEXP (x, 0)) == SUBREG && GET_MODE (x) == ptr_mode
1590 && GET_CODE (XEXP (x, 1)) == CONST_INT
1591 && 0 != (new
1592 = instantiate_new_reg (SUBREG_REG (XEXP (x, 0)),
1593 &offset))
1594 && validate_change (object, loc,
1595 plus_constant (gen_lowpart (ptr_mode,
1596 new),
1597 offset
1598 + INTVAL (XEXP (x, 1))),
1600 return 1;
1601 #endif
1602 else if ((new = instantiate_new_reg (XEXP (x, 0), &offset)) == 0)
1604 /* We know the second operand is a constant. Unless the
1605 first operand is a REG (which has been already checked),
1606 it needs to be checked. */
1607 if (!REG_P (XEXP (x, 0)))
1609 loc = &XEXP (x, 0);
1610 goto restart;
1612 return 1;
1615 new_offset = plus_constant (XEXP (x, 1), offset);
1617 /* If the new constant is zero, try to replace the sum with just
1618 the register. */
1619 if (new_offset == const0_rtx
1620 && validate_change (object, loc, new, 0))
1621 return 1;
1623 /* Next try to replace the register and new offset.
1624 There are two changes to validate here and we can't assume that
1625 in the case of old offset equals new just changing the register
1626 will yield a valid insn. In the interests of a little efficiency,
1627 however, we only call validate change once (we don't queue up the
1628 changes and then call apply_change_group). */
1630 old = XEXP (x, 0);
1631 if (offset == 0
1632 ? ! validate_change (object, &XEXP (x, 0), new, 0)
1633 : (XEXP (x, 0) = new,
1634 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
1636 if (! extra_insns)
1638 XEXP (x, 0) = old;
1639 return 0;
1642 /* Otherwise copy the new constant into a register and replace
1643 constant with that register. */
1644 temp = gen_reg_rtx (Pmode);
1645 XEXP (x, 0) = new;
1646 if (validate_change (object, &XEXP (x, 1), temp, 0))
1647 emit_insn_before (gen_move_insn (temp, new_offset), object);
1648 else
1650 /* If that didn't work, replace this expression with a
1651 register containing the sum. */
1653 XEXP (x, 0) = old;
1654 new = gen_rtx_PLUS (Pmode, new, new_offset);
1656 start_sequence ();
1657 temp = force_operand (new, NULL_RTX);
1658 seq = get_insns ();
1659 end_sequence ();
1661 emit_insn_before (seq, object);
1662 if (! validate_change (object, loc, temp, 0)
1663 && ! validate_replace_rtx (x, temp, object))
1665 instantiate_virtual_regs_lossage (object);
1666 return 1;
1671 return 1;
1674 /* Fall through to generic two-operand expression case. */
1675 case EXPR_LIST:
1676 case CALL:
1677 case COMPARE:
1678 case MINUS:
1679 case MULT:
1680 case DIV: case UDIV:
1681 case MOD: case UMOD:
1682 case AND: case IOR: case XOR:
1683 case ROTATERT: case ROTATE:
1684 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
1685 case NE: case EQ:
1686 case GE: case GT: case GEU: case GTU:
1687 case LE: case LT: case LEU: case LTU:
1688 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
1689 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
1690 loc = &XEXP (x, 0);
1691 goto restart;
1693 case MEM:
1694 /* Most cases of MEM that convert to valid addresses have already been
1695 handled by our scan of decls. The only special handling we
1696 need here is to make a copy of the rtx to ensure it isn't being
1697 shared if we have to change it to a pseudo.
1699 If the rtx is a simple reference to an address via a virtual register,
1700 it can potentially be shared. In such cases, first try to make it
1701 a valid address, which can also be shared. Otherwise, copy it and
1702 proceed normally.
1704 First check for common cases that need no processing. These are
1705 usually due to instantiation already being done on a previous instance
1706 of a shared rtx. */
1708 temp = XEXP (x, 0);
1709 if (CONSTANT_ADDRESS_P (temp)
1710 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1711 || temp == arg_pointer_rtx
1712 #endif
1713 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1714 || temp == hard_frame_pointer_rtx
1715 #endif
1716 || temp == frame_pointer_rtx)
1717 return 1;
1719 if (GET_CODE (temp) == PLUS
1720 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
1721 && (XEXP (temp, 0) == frame_pointer_rtx
1722 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1723 || XEXP (temp, 0) == hard_frame_pointer_rtx
1724 #endif
1725 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1726 || XEXP (temp, 0) == arg_pointer_rtx
1727 #endif
1729 return 1;
1731 if (temp == virtual_stack_vars_rtx
1732 || temp == virtual_incoming_args_rtx
1733 || (GET_CODE (temp) == PLUS
1734 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
1735 && (XEXP (temp, 0) == virtual_stack_vars_rtx
1736 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
1738 /* This MEM may be shared. If the substitution can be done without
1739 the need to generate new pseudos, we want to do it in place
1740 so all copies of the shared rtx benefit. The call below will
1741 only make substitutions if the resulting address is still
1742 valid.
1744 Note that we cannot pass X as the object in the recursive call
1745 since the insn being processed may not allow all valid
1746 addresses. However, if we were not passed on object, we can
1747 only modify X without copying it if X will have a valid
1748 address.
1750 ??? Also note that this can still lose if OBJECT is an insn that
1751 has less restrictions on an address that some other insn.
1752 In that case, we will modify the shared address. This case
1753 doesn't seem very likely, though. One case where this could
1754 happen is in the case of a USE or CLOBBER reference, but we
1755 take care of that below. */
1757 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
1758 object ? object : x, 0))
1759 return 1;
1761 /* Otherwise make a copy and process that copy. We copy the entire
1762 RTL expression since it might be a PLUS which could also be
1763 shared. */
1764 *loc = x = copy_rtx (x);
1767 /* Fall through to generic unary operation case. */
1768 case PREFETCH:
1769 case SUBREG:
1770 case STRICT_LOW_PART:
1771 case NEG: case NOT:
1772 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
1773 case SIGN_EXTEND: case ZERO_EXTEND:
1774 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
1775 case FLOAT: case FIX:
1776 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
1777 case ABS:
1778 case SQRT:
1779 case FFS:
1780 case CLZ: case CTZ:
1781 case POPCOUNT: case PARITY:
1782 /* These case either have just one operand or we know that we need not
1783 check the rest of the operands. */
1784 loc = &XEXP (x, 0);
1785 goto restart;
1787 case USE:
1788 case CLOBBER:
1789 /* If the operand is a MEM, see if the change is a valid MEM. If not,
1790 go ahead and make the invalid one, but do it to a copy. For a REG,
1791 just make the recursive call, since there's no chance of a problem. */
1793 if ((MEM_P (XEXP (x, 0))
1794 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
1796 || (REG_P (XEXP (x, 0))
1797 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
1798 return 1;
1800 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
1801 loc = &XEXP (x, 0);
1802 goto restart;
1804 case REG:
1805 /* Try to replace with a PLUS. If that doesn't work, compute the sum
1806 in front of this insn and substitute the temporary. */
1807 if ((new = instantiate_new_reg (x, &offset)) != 0)
1809 temp = plus_constant (new, offset);
1810 if (!validate_change (object, loc, temp, 0))
1812 if (! extra_insns)
1813 return 0;
1815 start_sequence ();
1816 temp = force_operand (temp, NULL_RTX);
1817 seq = get_insns ();
1818 end_sequence ();
1820 emit_insn_before (seq, object);
1821 if (! validate_change (object, loc, temp, 0)
1822 && ! validate_replace_rtx (x, temp, object))
1823 instantiate_virtual_regs_lossage (object);
1827 return 1;
1829 default:
1830 break;
1833 /* Scan all subexpressions. */
1834 fmt = GET_RTX_FORMAT (code);
1835 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1836 if (*fmt == 'e')
1838 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
1839 return 0;
1841 else if (*fmt == 'E')
1842 for (j = 0; j < XVECLEN (x, i); j++)
1843 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
1844 extra_insns))
1845 return 0;
1847 return 1;
1850 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1851 This means a type for which function calls must pass an address to the
1852 function or get an address back from the function.
1853 EXP may be a type node or an expression (whose type is tested). */
1856 aggregate_value_p (tree exp, tree fntype)
1858 int i, regno, nregs;
1859 rtx reg;
1861 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1863 if (fntype)
1864 switch (TREE_CODE (fntype))
1866 case CALL_EXPR:
1867 fntype = get_callee_fndecl (fntype);
1868 fntype = fntype ? TREE_TYPE (fntype) : 0;
1869 break;
1870 case FUNCTION_DECL:
1871 fntype = TREE_TYPE (fntype);
1872 break;
1873 case FUNCTION_TYPE:
1874 case METHOD_TYPE:
1875 break;
1876 case IDENTIFIER_NODE:
1877 fntype = 0;
1878 break;
1879 default:
1880 /* We don't expect other rtl types here. */
1881 abort();
1884 if (TREE_CODE (type) == VOID_TYPE)
1885 return 0;
1886 /* If the front end has decided that this needs to be passed by
1887 reference, do so. */
1888 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1889 && DECL_BY_REFERENCE (exp))
1890 return 1;
1891 if (targetm.calls.return_in_memory (type, fntype))
1892 return 1;
1893 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1894 and thus can't be returned in registers. */
1895 if (TREE_ADDRESSABLE (type))
1896 return 1;
1897 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1898 return 1;
1899 /* Make sure we have suitable call-clobbered regs to return
1900 the value in; if not, we must return it in memory. */
1901 reg = hard_function_value (type, 0, 0);
1903 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1904 it is OK. */
1905 if (!REG_P (reg))
1906 return 0;
1908 regno = REGNO (reg);
1909 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1910 for (i = 0; i < nregs; i++)
1911 if (! call_used_regs[regno + i])
1912 return 1;
1913 return 0;
1916 /* Return true if we should assign DECL a pseudo register; false if it
1917 should live on the local stack. */
1919 bool
1920 use_register_for_decl (tree decl)
1922 /* Honor volatile. */
1923 if (TREE_SIDE_EFFECTS (decl))
1924 return false;
1926 /* Honor addressability. */
1927 if (TREE_ADDRESSABLE (decl))
1928 return false;
1930 /* Only register-like things go in registers. */
1931 if (DECL_MODE (decl) == BLKmode)
1932 return false;
1934 /* If -ffloat-store specified, don't put explicit float variables
1935 into registers. */
1936 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1937 propagates values across these stores, and it probably shouldn't. */
1938 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1939 return false;
1941 /* Compiler-generated temporaries can always go in registers. */
1942 if (DECL_ARTIFICIAL (decl))
1943 return true;
1945 #ifdef NON_SAVING_SETJMP
1946 /* Protect variables not declared "register" from setjmp. */
1947 if (NON_SAVING_SETJMP
1948 && current_function_calls_setjmp
1949 && !DECL_REGISTER (decl))
1950 return false;
1951 #endif
1953 return (optimize || DECL_REGISTER (decl));
1956 /* Return true if TYPE should be passed by invisible reference. */
1958 bool
1959 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1960 tree type, bool named_arg)
1962 if (type)
1964 /* If this type contains non-trivial constructors, then it is
1965 forbidden for the middle-end to create any new copies. */
1966 if (TREE_ADDRESSABLE (type))
1967 return true;
1969 /* GCC post 3.4 passes *all* variable sized types by reference. */
1970 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1971 return true;
1974 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1977 /* Structures to communicate between the subroutines of assign_parms.
1978 The first holds data persistent across all parameters, the second
1979 is cleared out for each parameter. */
1981 struct assign_parm_data_all
1983 CUMULATIVE_ARGS args_so_far;
1984 struct args_size stack_args_size;
1985 tree function_result_decl;
1986 tree orig_fnargs;
1987 rtx conversion_insns;
1988 HOST_WIDE_INT pretend_args_size;
1989 HOST_WIDE_INT extra_pretend_bytes;
1990 int reg_parm_stack_space;
1993 struct assign_parm_data_one
1995 tree nominal_type;
1996 tree passed_type;
1997 rtx entry_parm;
1998 rtx stack_parm;
1999 enum machine_mode nominal_mode;
2000 enum machine_mode passed_mode;
2001 enum machine_mode promoted_mode;
2002 struct locate_and_pad_arg_data locate;
2003 int partial;
2004 BOOL_BITFIELD named_arg : 1;
2005 BOOL_BITFIELD last_named : 1;
2006 BOOL_BITFIELD passed_pointer : 1;
2007 BOOL_BITFIELD on_stack : 1;
2008 BOOL_BITFIELD loaded_in_reg : 1;
2011 /* A subroutine of assign_parms. Initialize ALL. */
2013 static void
2014 assign_parms_initialize_all (struct assign_parm_data_all *all)
2016 tree fntype;
2018 memset (all, 0, sizeof (*all));
2020 fntype = TREE_TYPE (current_function_decl);
2022 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2023 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
2024 #else
2025 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
2026 current_function_decl, -1);
2027 #endif
2029 #ifdef REG_PARM_STACK_SPACE
2030 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2031 #endif
2034 /* If ARGS contains entries with complex types, split the entry into two
2035 entries of the component type. Return a new list of substitutions are
2036 needed, else the old list. */
2038 static tree
2039 split_complex_args (tree args)
2041 tree p;
2043 /* Before allocating memory, check for the common case of no complex. */
2044 for (p = args; p; p = TREE_CHAIN (p))
2046 tree type = TREE_TYPE (p);
2047 if (TREE_CODE (type) == COMPLEX_TYPE
2048 && targetm.calls.split_complex_arg (type))
2049 goto found;
2051 return args;
2053 found:
2054 args = copy_list (args);
2056 for (p = args; p; p = TREE_CHAIN (p))
2058 tree type = TREE_TYPE (p);
2059 if (TREE_CODE (type) == COMPLEX_TYPE
2060 && targetm.calls.split_complex_arg (type))
2062 tree decl;
2063 tree subtype = TREE_TYPE (type);
2065 /* Rewrite the PARM_DECL's type with its component. */
2066 TREE_TYPE (p) = subtype;
2067 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2068 DECL_MODE (p) = VOIDmode;
2069 DECL_SIZE (p) = NULL;
2070 DECL_SIZE_UNIT (p) = NULL;
2071 layout_decl (p, 0);
2073 /* Build a second synthetic decl. */
2074 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
2075 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2076 layout_decl (decl, 0);
2078 /* Splice it in; skip the new decl. */
2079 TREE_CHAIN (decl) = TREE_CHAIN (p);
2080 TREE_CHAIN (p) = decl;
2081 p = decl;
2085 return args;
2088 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2089 the hidden struct return argument, and (abi willing) complex args.
2090 Return the new parameter list. */
2092 static tree
2093 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2095 tree fndecl = current_function_decl;
2096 tree fntype = TREE_TYPE (fndecl);
2097 tree fnargs = DECL_ARGUMENTS (fndecl);
2099 /* If struct value address is treated as the first argument, make it so. */
2100 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2101 && ! current_function_returns_pcc_struct
2102 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2104 tree type = build_pointer_type (TREE_TYPE (fntype));
2105 tree decl;
2107 decl = build_decl (PARM_DECL, NULL_TREE, type);
2108 DECL_ARG_TYPE (decl) = type;
2109 DECL_ARTIFICIAL (decl) = 1;
2111 TREE_CHAIN (decl) = fnargs;
2112 fnargs = decl;
2113 all->function_result_decl = decl;
2116 all->orig_fnargs = fnargs;
2118 /* If the target wants to split complex arguments into scalars, do so. */
2119 if (targetm.calls.split_complex_arg)
2120 fnargs = split_complex_args (fnargs);
2122 return fnargs;
2125 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2126 data for the parameter. Incorporate ABI specifics such as pass-by-
2127 reference and type promotion. */
2129 static void
2130 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2131 struct assign_parm_data_one *data)
2133 tree nominal_type, passed_type;
2134 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2136 memset (data, 0, sizeof (*data));
2138 /* Set LAST_NAMED if this is last named arg before last anonymous args. */
2139 if (current_function_stdarg)
2141 tree tem;
2142 for (tem = TREE_CHAIN (parm); tem; tem = TREE_CHAIN (tem))
2143 if (DECL_NAME (tem))
2144 break;
2145 if (tem == 0)
2146 data->last_named = true;
2149 /* Set NAMED_ARG if this arg should be treated as a named arg. For
2150 most machines, if this is a varargs/stdarg function, then we treat
2151 the last named arg as if it were anonymous too. */
2152 if (targetm.calls.strict_argument_naming (&all->args_so_far))
2153 data->named_arg = 1;
2154 else
2155 data->named_arg = !data->last_named;
2157 nominal_type = TREE_TYPE (parm);
2158 passed_type = DECL_ARG_TYPE (parm);
2160 /* Look out for errors propagating this far. Also, if the parameter's
2161 type is void then its value doesn't matter. */
2162 if (TREE_TYPE (parm) == error_mark_node
2163 /* This can happen after weird syntax errors
2164 or if an enum type is defined among the parms. */
2165 || TREE_CODE (parm) != PARM_DECL
2166 || passed_type == NULL
2167 || VOID_TYPE_P (nominal_type))
2169 nominal_type = passed_type = void_type_node;
2170 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2171 goto egress;
2174 /* Find mode of arg as it is passed, and mode of arg as it should be
2175 during execution of this function. */
2176 passed_mode = TYPE_MODE (passed_type);
2177 nominal_mode = TYPE_MODE (nominal_type);
2179 /* If the parm is to be passed as a transparent union, use the type of
2180 the first field for the tests below. We have already verified that
2181 the modes are the same. */
2182 if (DECL_TRANSPARENT_UNION (parm)
2183 || (TREE_CODE (passed_type) == UNION_TYPE
2184 && TYPE_TRANSPARENT_UNION (passed_type)))
2185 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2187 /* See if this arg was passed by invisible reference. */
2188 if (pass_by_reference (&all->args_so_far, passed_mode,
2189 passed_type, data->named_arg))
2191 passed_type = nominal_type = build_pointer_type (passed_type);
2192 data->passed_pointer = true;
2193 passed_mode = nominal_mode = Pmode;
2196 /* Find mode as it is passed by the ABI. */
2197 promoted_mode = passed_mode;
2198 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2200 int unsignedp = TYPE_UNSIGNED (passed_type);
2201 promoted_mode = promote_mode (passed_type, promoted_mode,
2202 &unsignedp, 1);
2205 egress:
2206 data->nominal_type = nominal_type;
2207 data->passed_type = passed_type;
2208 data->nominal_mode = nominal_mode;
2209 data->passed_mode = passed_mode;
2210 data->promoted_mode = promoted_mode;
2213 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2215 static void
2216 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2217 struct assign_parm_data_one *data, bool no_rtl)
2219 int varargs_pretend_bytes = 0;
2221 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2222 data->promoted_mode,
2223 data->passed_type,
2224 &varargs_pretend_bytes, no_rtl);
2226 /* If the back-end has requested extra stack space, record how much is
2227 needed. Do not change pretend_args_size otherwise since it may be
2228 nonzero from an earlier partial argument. */
2229 if (varargs_pretend_bytes > 0)
2230 all->pretend_args_size = varargs_pretend_bytes;
2233 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2234 the incoming location of the current parameter. */
2236 static void
2237 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2238 struct assign_parm_data_one *data)
2240 HOST_WIDE_INT pretend_bytes = 0;
2241 rtx entry_parm;
2242 bool in_regs;
2244 if (data->promoted_mode == VOIDmode)
2246 data->entry_parm = data->stack_parm = const0_rtx;
2247 return;
2250 #ifdef FUNCTION_INCOMING_ARG
2251 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2252 data->passed_type, data->named_arg);
2253 #else
2254 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2255 data->passed_type, data->named_arg);
2256 #endif
2258 if (entry_parm == 0)
2259 data->promoted_mode = data->passed_mode;
2261 /* Determine parm's home in the stack, in case it arrives in the stack
2262 or we should pretend it did. Compute the stack position and rtx where
2263 the argument arrives and its size.
2265 There is one complexity here: If this was a parameter that would
2266 have been passed in registers, but wasn't only because it is
2267 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2268 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2269 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2270 as it was the previous time. */
2271 in_regs = entry_parm != 0;
2272 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2273 in_regs = true;
2274 #endif
2275 if (!in_regs && !data->named_arg)
2277 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2279 rtx tem;
2280 #ifdef FUNCTION_INCOMING_ARG
2281 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2282 data->passed_type, true);
2283 #else
2284 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2285 data->passed_type, true);
2286 #endif
2287 in_regs = tem != NULL;
2291 /* If this parameter was passed both in registers and in the stack, use
2292 the copy on the stack. */
2293 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2294 data->passed_type))
2295 entry_parm = 0;
2297 if (entry_parm)
2299 int partial;
2301 partial = FUNCTION_ARG_PARTIAL_NREGS (all->args_so_far,
2302 data->promoted_mode,
2303 data->passed_type,
2304 data->named_arg);
2305 data->partial = partial;
2307 /* The caller might already have allocated stack space for the
2308 register parameters. */
2309 if (partial != 0 && all->reg_parm_stack_space == 0)
2311 /* Part of this argument is passed in registers and part
2312 is passed on the stack. Ask the prologue code to extend
2313 the stack part so that we can recreate the full value.
2315 PRETEND_BYTES is the size of the registers we need to store.
2316 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2317 stack space that the prologue should allocate.
2319 Internally, gcc assumes that the argument pointer is aligned
2320 to STACK_BOUNDARY bits. This is used both for alignment
2321 optimizations (see init_emit) and to locate arguments that are
2322 aligned to more than PARM_BOUNDARY bits. We must preserve this
2323 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2324 a stack boundary. */
2326 /* We assume at most one partial arg, and it must be the first
2327 argument on the stack. */
2328 if (all->extra_pretend_bytes || all->pretend_args_size)
2329 abort ();
2331 pretend_bytes = partial * UNITS_PER_WORD;
2332 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2334 /* We want to align relative to the actual stack pointer, so
2335 don't include this in the stack size until later. */
2336 all->extra_pretend_bytes = all->pretend_args_size;
2340 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2341 entry_parm ? data->partial : 0, current_function_decl,
2342 &all->stack_args_size, &data->locate);
2344 /* Adjust offsets to include the pretend args. */
2345 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2346 data->locate.slot_offset.constant += pretend_bytes;
2347 data->locate.offset.constant += pretend_bytes;
2349 data->entry_parm = entry_parm;
2352 /* A subroutine of assign_parms. If there is actually space on the stack
2353 for this parm, count it in stack_args_size and return true. */
2355 static bool
2356 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2357 struct assign_parm_data_one *data)
2359 /* Trivially true if we've no incomming register. */
2360 if (data->entry_parm == NULL)
2362 /* Also true if we're partially in registers and partially not,
2363 since we've arranged to drop the entire argument on the stack. */
2364 else if (data->partial != 0)
2366 /* Also true if the target says that it's passed in both registers
2367 and on the stack. */
2368 else if (GET_CODE (data->entry_parm) == PARALLEL
2369 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2371 /* Also true if the target says that there's stack allocated for
2372 all register parameters. */
2373 else if (all->reg_parm_stack_space > 0)
2375 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2376 else
2377 return false;
2379 all->stack_args_size.constant += data->locate.size.constant;
2380 if (data->locate.size.var)
2381 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2383 return true;
2386 /* A subroutine of assign_parms. Given that this parameter is allocated
2387 stack space by the ABI, find it. */
2389 static void
2390 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2392 rtx offset_rtx, stack_parm;
2393 unsigned int align, boundary;
2395 /* If we're passing this arg using a reg, make its stack home the
2396 aligned stack slot. */
2397 if (data->entry_parm)
2398 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2399 else
2400 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2402 stack_parm = current_function_internal_arg_pointer;
2403 if (offset_rtx != const0_rtx)
2404 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2405 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2407 set_mem_attributes (stack_parm, parm, 1);
2409 boundary = FUNCTION_ARG_BOUNDARY (data->promoted_mode, data->passed_type);
2410 align = 0;
2412 /* If we're padding upward, we know that the alignment of the slot
2413 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2414 intentionally forcing upward padding. Otherwise we have to come
2415 up with a guess at the alignment based on OFFSET_RTX. */
2416 if (data->locate.where_pad == upward || data->entry_parm)
2417 align = boundary;
2418 else if (GET_CODE (offset_rtx) == CONST_INT)
2420 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2421 align = align & -align;
2423 if (align > 0)
2424 set_mem_align (stack_parm, align);
2426 if (data->entry_parm)
2427 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2429 data->stack_parm = stack_parm;
2432 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2433 always valid and contiguous. */
2435 static void
2436 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2438 rtx entry_parm = data->entry_parm;
2439 rtx stack_parm = data->stack_parm;
2441 /* If this parm was passed part in regs and part in memory, pretend it
2442 arrived entirely in memory by pushing the register-part onto the stack.
2443 In the special case of a DImode or DFmode that is split, we could put
2444 it together in a pseudoreg directly, but for now that's not worth
2445 bothering with. */
2446 if (data->partial != 0)
2448 /* Handle calls that pass values in multiple non-contiguous
2449 locations. The Irix 6 ABI has examples of this. */
2450 if (GET_CODE (entry_parm) == PARALLEL)
2451 emit_group_store (validize_mem (stack_parm), entry_parm,
2452 data->passed_type,
2453 int_size_in_bytes (data->passed_type));
2454 else
2455 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2456 data->partial);
2458 entry_parm = stack_parm;
2461 /* If we didn't decide this parm came in a register, by default it came
2462 on the stack. */
2463 else if (entry_parm == NULL)
2464 entry_parm = stack_parm;
2466 /* When an argument is passed in multiple locations, we can't make use
2467 of this information, but we can save some copying if the whole argument
2468 is passed in a single register. */
2469 else if (GET_CODE (entry_parm) == PARALLEL
2470 && data->nominal_mode != BLKmode
2471 && data->passed_mode != BLKmode)
2473 size_t i, len = XVECLEN (entry_parm, 0);
2475 for (i = 0; i < len; i++)
2476 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2477 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2478 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2479 == data->passed_mode)
2480 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2482 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2483 break;
2487 data->entry_parm = entry_parm;
2490 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2491 always valid and properly aligned. */
2494 static void
2495 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2497 rtx stack_parm = data->stack_parm;
2499 /* If we can't trust the parm stack slot to be aligned enough for its
2500 ultimate type, don't use that slot after entry. We'll make another
2501 stack slot, if we need one. */
2502 if (STRICT_ALIGNMENT && stack_parm
2503 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2504 stack_parm = NULL;
2506 /* If parm was passed in memory, and we need to convert it on entry,
2507 don't store it back in that same slot. */
2508 else if (data->entry_parm == stack_parm
2509 && data->nominal_mode != BLKmode
2510 && data->nominal_mode != data->passed_mode)
2511 stack_parm = NULL;
2513 data->stack_parm = stack_parm;
2516 /* A subroutine of assign_parms. Return true if the current parameter
2517 should be stored as a BLKmode in the current frame. */
2519 static bool
2520 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2522 if (data->nominal_mode == BLKmode)
2523 return true;
2524 if (GET_CODE (data->entry_parm) == PARALLEL)
2525 return true;
2527 #ifdef BLOCK_REG_PADDING
2528 if (data->locate.where_pad == (BYTES_BIG_ENDIAN ? upward : downward)
2529 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD)
2530 return true;
2531 #endif
2533 return false;
2536 /* A subroutine of assign_parms. Arrange for the parameter to be
2537 present and valid in DATA->STACK_RTL. */
2539 static void
2540 assign_parm_setup_block (tree parm, struct assign_parm_data_one *data)
2542 rtx entry_parm = data->entry_parm;
2543 rtx stack_parm = data->stack_parm;
2545 /* If we've a non-block object that's nevertheless passed in parts,
2546 reconstitute it in register operations rather than on the stack. */
2547 if (GET_CODE (entry_parm) == PARALLEL
2548 && data->nominal_mode != BLKmode
2549 && XVECLEN (entry_parm, 0) > 1
2550 && optimize)
2552 rtx parmreg = gen_reg_rtx (data->nominal_mode);
2554 emit_group_store (parmreg, entry_parm, data->nominal_type,
2555 int_size_in_bytes (data->nominal_type));
2556 SET_DECL_RTL (parm, parmreg);
2557 return;
2560 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2561 calls that pass values in multiple non-contiguous locations. */
2562 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2564 HOST_WIDE_INT size = int_size_in_bytes (data->passed_type);
2565 HOST_WIDE_INT size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2566 rtx mem;
2568 /* Note that we will be storing an integral number of words.
2569 So we have to be careful to ensure that we allocate an
2570 integral number of words. We do this below in the
2571 assign_stack_local if space was not allocated in the argument
2572 list. If it was, this will not work if PARM_BOUNDARY is not
2573 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2574 if it becomes a problem. Exception is when BLKmode arrives
2575 with arguments not conforming to word_mode. */
2577 if (stack_parm == 0)
2579 stack_parm = assign_stack_local (BLKmode, size_stored, 0);
2580 data->stack_parm = stack_parm;
2581 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2582 set_mem_attributes (stack_parm, parm, 1);
2584 else if (GET_CODE (entry_parm) == PARALLEL)
2586 else if (size != 0 && PARM_BOUNDARY % BITS_PER_WORD != 0)
2587 abort ();
2589 mem = validize_mem (stack_parm);
2591 /* Handle values in multiple non-contiguous locations. */
2592 if (GET_CODE (entry_parm) == PARALLEL)
2593 emit_group_store (mem, entry_parm, data->passed_type, size);
2595 else if (size == 0)
2598 /* If SIZE is that of a mode no bigger than a word, just use
2599 that mode's store operation. */
2600 else if (size <= UNITS_PER_WORD)
2602 enum machine_mode mode
2603 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2605 if (mode != BLKmode
2606 #ifdef BLOCK_REG_PADDING
2607 && (size == UNITS_PER_WORD
2608 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2609 != (BYTES_BIG_ENDIAN ? upward : downward)))
2610 #endif
2613 rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
2614 emit_move_insn (change_address (mem, mode, 0), reg);
2617 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2618 machine must be aligned to the left before storing
2619 to memory. Note that the previous test doesn't
2620 handle all cases (e.g. SIZE == 3). */
2621 else if (size != UNITS_PER_WORD
2622 #ifdef BLOCK_REG_PADDING
2623 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2624 == downward)
2625 #else
2626 && BYTES_BIG_ENDIAN
2627 #endif
2630 rtx tem, x;
2631 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2632 rtx reg = gen_rtx_REG (word_mode, REGNO (data->entry_parm));
2634 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2635 build_int_2 (by, 0), NULL_RTX, 1);
2636 tem = change_address (mem, word_mode, 0);
2637 emit_move_insn (tem, x);
2639 else
2640 move_block_from_reg (REGNO (data->entry_parm), mem,
2641 size_stored / UNITS_PER_WORD);
2643 else
2644 move_block_from_reg (REGNO (data->entry_parm), mem,
2645 size_stored / UNITS_PER_WORD);
2648 SET_DECL_RTL (parm, stack_parm);
2651 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2652 parameter. Get it there. Perform all ABI specified conversions. */
2654 static void
2655 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2656 struct assign_parm_data_one *data)
2658 rtx parmreg;
2659 enum machine_mode promoted_nominal_mode;
2660 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2661 bool did_conversion = false;
2663 /* Store the parm in a pseudoregister during the function, but we may
2664 need to do it in a wider mode. */
2666 promoted_nominal_mode
2667 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 0);
2669 parmreg = gen_reg_rtx (promoted_nominal_mode);
2671 if (!DECL_ARTIFICIAL (parm))
2672 mark_user_reg (parmreg);
2674 /* If this was an item that we received a pointer to,
2675 set DECL_RTL appropriately. */
2676 if (data->passed_pointer)
2678 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2679 set_mem_attributes (x, parm, 1);
2680 SET_DECL_RTL (parm, x);
2682 else
2684 SET_DECL_RTL (parm, parmreg);
2685 maybe_set_unchanging (DECL_RTL (parm), parm);
2688 /* Copy the value into the register. */
2689 if (data->nominal_mode != data->passed_mode
2690 || promoted_nominal_mode != data->promoted_mode)
2692 int save_tree_used;
2694 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2695 mode, by the caller. We now have to convert it to
2696 NOMINAL_MODE, if different. However, PARMREG may be in
2697 a different mode than NOMINAL_MODE if it is being stored
2698 promoted.
2700 If ENTRY_PARM is a hard register, it might be in a register
2701 not valid for operating in its mode (e.g., an odd-numbered
2702 register for a DFmode). In that case, moves are the only
2703 thing valid, so we can't do a convert from there. This
2704 occurs when the calling sequence allow such misaligned
2705 usages.
2707 In addition, the conversion may involve a call, which could
2708 clobber parameters which haven't been copied to pseudo
2709 registers yet. Therefore, we must first copy the parm to
2710 a pseudo reg here, and save the conversion until after all
2711 parameters have been moved. */
2713 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2715 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2717 push_to_sequence (all->conversion_insns);
2718 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2720 if (GET_CODE (tempreg) == SUBREG
2721 && GET_MODE (tempreg) == data->nominal_mode
2722 && REG_P (SUBREG_REG (tempreg))
2723 && data->nominal_mode == data->passed_mode
2724 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2725 && GET_MODE_SIZE (GET_MODE (tempreg))
2726 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2728 /* The argument is already sign/zero extended, so note it
2729 into the subreg. */
2730 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2731 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2734 /* TREE_USED gets set erroneously during expand_assignment. */
2735 save_tree_used = TREE_USED (parm);
2736 expand_assignment (parm, make_tree (data->nominal_type, tempreg), 0);
2737 TREE_USED (parm) = save_tree_used;
2738 all->conversion_insns = get_insns ();
2739 end_sequence ();
2741 did_conversion = true;
2743 else
2744 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2746 /* If we were passed a pointer but the actual value can safely live
2747 in a register, put it in one. */
2748 if (data->passed_pointer
2749 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2750 /* If by-reference argument was promoted, demote it. */
2751 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2752 || use_register_for_decl (parm)))
2754 /* We can't use nominal_mode, because it will have been set to
2755 Pmode above. We must use the actual mode of the parm. */
2756 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2757 mark_user_reg (parmreg);
2759 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2761 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2762 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2764 push_to_sequence (all->conversion_insns);
2765 emit_move_insn (tempreg, DECL_RTL (parm));
2766 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2767 emit_move_insn (parmreg, tempreg);
2768 all->conversion_insns = get_insns();
2769 end_sequence ();
2771 did_conversion = true;
2773 else
2774 emit_move_insn (parmreg, DECL_RTL (parm));
2776 SET_DECL_RTL (parm, parmreg);
2778 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2779 now the parm. */
2780 data->stack_parm = NULL;
2783 /* If we are passed an arg by reference and it is our responsibility
2784 to make a copy, do it now.
2785 PASSED_TYPE and PASSED mode now refer to the pointer, not the
2786 original argument, so we must recreate them in the call to
2787 FUNCTION_ARG_CALLEE_COPIES. */
2788 /* ??? Later add code to handle the case that if the argument isn't
2789 modified, don't do the copy. */
2791 else if (data->passed_pointer)
2793 tree type = TREE_TYPE (data->passed_type);
2795 if (FUNCTION_ARG_CALLEE_COPIES (all->args_so_far, TYPE_MODE (type),
2796 type, data->named_arg)
2797 && !TREE_ADDRESSABLE (type))
2799 rtx copy;
2801 /* This sequence may involve a library call perhaps clobbering
2802 registers that haven't been copied to pseudos yet. */
2804 push_to_sequence (all->conversion_insns);
2806 if (!COMPLETE_TYPE_P (type)
2807 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2809 /* This is a variable sized object. */
2810 copy = allocate_dynamic_stack_space (expr_size (parm), NULL_RTX,
2811 TYPE_ALIGN (type));
2812 copy = gen_rtx_MEM (BLKmode, copy);
2814 else
2815 copy = assign_stack_temp (TYPE_MODE (type),
2816 int_size_in_bytes (type), 1);
2817 set_mem_attributes (copy, parm, 1);
2819 store_expr (parm, copy, 0);
2820 emit_move_insn (parmreg, XEXP (copy, 0));
2821 all->conversion_insns = get_insns ();
2822 end_sequence ();
2824 did_conversion = true;
2828 /* Mark the register as eliminable if we did no conversion and it was
2829 copied from memory at a fixed offset, and the arg pointer was not
2830 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2831 offset formed an invalid address, such memory-equivalences as we
2832 make here would screw up life analysis for it. */
2833 if (data->nominal_mode == data->passed_mode
2834 && !did_conversion
2835 && data->stack_parm != 0
2836 && MEM_P (data->stack_parm)
2837 && data->locate.offset.var == 0
2838 && reg_mentioned_p (virtual_incoming_args_rtx,
2839 XEXP (data->stack_parm, 0)))
2841 rtx linsn = get_last_insn ();
2842 rtx sinsn, set;
2844 /* Mark complex types separately. */
2845 if (GET_CODE (parmreg) == CONCAT)
2847 enum machine_mode submode
2848 = GET_MODE_INNER (GET_MODE (parmreg));
2849 int regnor = REGNO (gen_realpart (submode, parmreg));
2850 int regnoi = REGNO (gen_imagpart (submode, parmreg));
2851 rtx stackr = gen_realpart (submode, data->stack_parm);
2852 rtx stacki = gen_imagpart (submode, data->stack_parm);
2854 /* Scan backwards for the set of the real and
2855 imaginary parts. */
2856 for (sinsn = linsn; sinsn != 0;
2857 sinsn = prev_nonnote_insn (sinsn))
2859 set = single_set (sinsn);
2860 if (set == 0)
2861 continue;
2863 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2864 REG_NOTES (sinsn)
2865 = gen_rtx_EXPR_LIST (REG_EQUIV, stacki,
2866 REG_NOTES (sinsn));
2867 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2868 REG_NOTES (sinsn)
2869 = gen_rtx_EXPR_LIST (REG_EQUIV, stackr,
2870 REG_NOTES (sinsn));
2873 else if ((set = single_set (linsn)) != 0
2874 && SET_DEST (set) == parmreg)
2875 REG_NOTES (linsn)
2876 = gen_rtx_EXPR_LIST (REG_EQUIV,
2877 data->stack_parm, REG_NOTES (linsn));
2880 /* For pointer data type, suggest pointer register. */
2881 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2882 mark_reg_pointer (parmreg,
2883 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2886 /* A subroutine of assign_parms. Allocate stack space to hold the current
2887 parameter. Get it there. Perform all ABI specified conversions. */
2889 static void
2890 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2891 struct assign_parm_data_one *data)
2893 /* Value must be stored in the stack slot STACK_PARM during function
2894 execution. */
2896 if (data->promoted_mode != data->nominal_mode)
2898 /* Conversion is required. */
2899 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2901 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2903 push_to_sequence (all->conversion_insns);
2904 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2905 TYPE_UNSIGNED (TREE_TYPE (parm)));
2907 if (data->stack_parm)
2908 /* ??? This may need a big-endian conversion on sparc64. */
2909 data->stack_parm
2910 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2912 all->conversion_insns = get_insns ();
2913 end_sequence ();
2916 if (data->entry_parm != data->stack_parm)
2918 if (data->stack_parm == 0)
2920 data->stack_parm
2921 = assign_stack_local (GET_MODE (data->entry_parm),
2922 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2924 set_mem_attributes (data->stack_parm, parm, 1);
2927 if (data->promoted_mode != data->nominal_mode)
2929 push_to_sequence (all->conversion_insns);
2930 emit_move_insn (validize_mem (data->stack_parm),
2931 validize_mem (data->entry_parm));
2932 all->conversion_insns = get_insns ();
2933 end_sequence ();
2935 else
2936 emit_move_insn (validize_mem (data->stack_parm),
2937 validize_mem (data->entry_parm));
2940 SET_DECL_RTL (parm, data->stack_parm);
2943 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
2944 undo the frobbing that we did in assign_parms_augmented_arg_list. */
2946 static void
2947 assign_parms_unsplit_complex (tree orig_fnargs, tree fnargs)
2949 tree parm;
2951 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
2953 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
2954 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
2956 rtx tmp, real, imag;
2957 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
2959 real = DECL_RTL (fnargs);
2960 imag = DECL_RTL (TREE_CHAIN (fnargs));
2961 if (inner != GET_MODE (real))
2963 real = gen_lowpart_SUBREG (inner, real);
2964 imag = gen_lowpart_SUBREG (inner, imag);
2966 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2967 SET_DECL_RTL (parm, tmp);
2969 real = DECL_INCOMING_RTL (fnargs);
2970 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
2971 if (inner != GET_MODE (real))
2973 real = gen_lowpart_SUBREG (inner, real);
2974 imag = gen_lowpart_SUBREG (inner, imag);
2976 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2977 set_decl_incoming_rtl (parm, tmp);
2978 fnargs = TREE_CHAIN (fnargs);
2980 else
2982 SET_DECL_RTL (parm, DECL_RTL (fnargs));
2983 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs));
2985 /* Set MEM_EXPR to the original decl, i.e. to PARM,
2986 instead of the copy of decl, i.e. FNARGS. */
2987 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
2988 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
2991 fnargs = TREE_CHAIN (fnargs);
2995 /* Assign RTL expressions to the function's parameters. This may involve
2996 copying them into registers and using those registers as the DECL_RTL. */
2998 void
2999 assign_parms (tree fndecl)
3001 struct assign_parm_data_all all;
3002 tree fnargs, parm;
3003 rtx internal_arg_pointer;
3004 int varargs_setup = 0;
3006 /* If the reg that the virtual arg pointer will be translated into is
3007 not a fixed reg or is the stack pointer, make a copy of the virtual
3008 arg pointer, and address parms via the copy. The frame pointer is
3009 considered fixed even though it is not marked as such.
3011 The second time through, simply use ap to avoid generating rtx. */
3013 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
3014 || ! (fixed_regs[ARG_POINTER_REGNUM]
3015 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
3016 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
3017 else
3018 internal_arg_pointer = virtual_incoming_args_rtx;
3019 current_function_internal_arg_pointer = internal_arg_pointer;
3021 assign_parms_initialize_all (&all);
3022 fnargs = assign_parms_augmented_arg_list (&all);
3024 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3026 struct assign_parm_data_one data;
3028 /* Extract the type of PARM; adjust it according to ABI. */
3029 assign_parm_find_data_types (&all, parm, &data);
3031 /* Early out for errors and void parameters. */
3032 if (data.passed_mode == VOIDmode)
3034 SET_DECL_RTL (parm, const0_rtx);
3035 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3036 continue;
3039 /* Handle stdargs. LAST_NAMED is a slight mis-nomer; it's also true
3040 for the unnamed dummy argument following the last named argument.
3041 See ABI silliness wrt strict_argument_naming and NAMED_ARG. So
3042 we only want to do this when we get to the actual last named
3043 argument, which will be the first time LAST_NAMED gets set. */
3044 if (data.last_named && !varargs_setup)
3046 varargs_setup = true;
3047 assign_parms_setup_varargs (&all, &data, false);
3050 /* Find out where the parameter arrives in this function. */
3051 assign_parm_find_entry_rtl (&all, &data);
3053 /* Find out where stack space for this parameter might be. */
3054 if (assign_parm_is_stack_parm (&all, &data))
3056 assign_parm_find_stack_rtl (parm, &data);
3057 assign_parm_adjust_entry_rtl (&data);
3060 /* Record permanently how this parm was passed. */
3061 set_decl_incoming_rtl (parm, data.entry_parm);
3063 /* Update info on where next arg arrives in registers. */
3064 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3065 data.passed_type, data.named_arg);
3067 assign_parm_adjust_stack_rtl (&data);
3069 if (assign_parm_setup_block_p (&data))
3070 assign_parm_setup_block (parm, &data);
3071 else if (data.passed_pointer || use_register_for_decl (parm))
3072 assign_parm_setup_reg (&all, parm, &data);
3073 else
3074 assign_parm_setup_stack (&all, parm, &data);
3077 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3078 assign_parms_unsplit_complex (all.orig_fnargs, fnargs);
3080 /* Output all parameter conversion instructions (possibly including calls)
3081 now that all parameters have been copied out of hard registers. */
3082 emit_insn (all.conversion_insns);
3084 /* If we are receiving a struct value address as the first argument, set up
3085 the RTL for the function result. As this might require code to convert
3086 the transmitted address to Pmode, we do this here to ensure that possible
3087 preliminary conversions of the address have been emitted already. */
3088 if (all.function_result_decl)
3090 tree result = DECL_RESULT (current_function_decl);
3091 rtx addr = DECL_RTL (all.function_result_decl);
3092 rtx x;
3094 if (DECL_BY_REFERENCE (result))
3095 x = addr;
3096 else
3098 addr = convert_memory_address (Pmode, addr);
3099 x = gen_rtx_MEM (DECL_MODE (result), addr);
3100 set_mem_attributes (x, result, 1);
3102 SET_DECL_RTL (result, x);
3105 /* We have aligned all the args, so add space for the pretend args. */
3106 current_function_pretend_args_size = all.pretend_args_size;
3107 all.stack_args_size.constant += all.extra_pretend_bytes;
3108 current_function_args_size = all.stack_args_size.constant;
3110 /* Adjust function incoming argument size for alignment and
3111 minimum length. */
3113 #ifdef REG_PARM_STACK_SPACE
3114 current_function_args_size = MAX (current_function_args_size,
3115 REG_PARM_STACK_SPACE (fndecl));
3116 #endif
3118 current_function_args_size
3119 = ((current_function_args_size + STACK_BYTES - 1)
3120 / STACK_BYTES) * STACK_BYTES;
3122 #ifdef ARGS_GROW_DOWNWARD
3123 current_function_arg_offset_rtx
3124 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3125 : expand_expr (size_diffop (all.stack_args_size.var,
3126 size_int (-all.stack_args_size.constant)),
3127 NULL_RTX, VOIDmode, 0));
3128 #else
3129 current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3130 #endif
3132 /* See how many bytes, if any, of its args a function should try to pop
3133 on return. */
3135 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3136 current_function_args_size);
3138 /* For stdarg.h function, save info about
3139 regs and stack space used by the named args. */
3141 current_function_args_info = all.args_so_far;
3143 /* Set the rtx used for the function return value. Put this in its
3144 own variable so any optimizers that need this information don't have
3145 to include tree.h. Do this here so it gets done when an inlined
3146 function gets output. */
3148 current_function_return_rtx
3149 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3150 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3152 /* If scalar return value was computed in a pseudo-reg, or was a named
3153 return value that got dumped to the stack, copy that to the hard
3154 return register. */
3155 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3157 tree decl_result = DECL_RESULT (fndecl);
3158 rtx decl_rtl = DECL_RTL (decl_result);
3160 if (REG_P (decl_rtl)
3161 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3162 : DECL_REGISTER (decl_result))
3164 rtx real_decl_rtl;
3166 #ifdef FUNCTION_OUTGOING_VALUE
3167 real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
3168 fndecl);
3169 #else
3170 real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
3171 fndecl);
3172 #endif
3173 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3174 /* The delay slot scheduler assumes that current_function_return_rtx
3175 holds the hard register containing the return value, not a
3176 temporary pseudo. */
3177 current_function_return_rtx = real_decl_rtl;
3182 /* Indicate whether REGNO is an incoming argument to the current function
3183 that was promoted to a wider mode. If so, return the RTX for the
3184 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
3185 that REGNO is promoted from and whether the promotion was signed or
3186 unsigned. */
3189 promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
3191 tree arg;
3193 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
3194 arg = TREE_CHAIN (arg))
3195 if (REG_P (DECL_INCOMING_RTL (arg))
3196 && REGNO (DECL_INCOMING_RTL (arg)) == regno
3197 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
3199 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
3200 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (arg));
3202 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
3203 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
3204 && mode != DECL_MODE (arg))
3206 *pmode = DECL_MODE (arg);
3207 *punsignedp = unsignedp;
3208 return DECL_INCOMING_RTL (arg);
3212 return 0;
3216 /* Compute the size and offset from the start of the stacked arguments for a
3217 parm passed in mode PASSED_MODE and with type TYPE.
3219 INITIAL_OFFSET_PTR points to the current offset into the stacked
3220 arguments.
3222 The starting offset and size for this parm are returned in
3223 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3224 nonzero, the offset is that of stack slot, which is returned in
3225 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3226 padding required from the initial offset ptr to the stack slot.
3228 IN_REGS is nonzero if the argument will be passed in registers. It will
3229 never be set if REG_PARM_STACK_SPACE is not defined.
3231 FNDECL is the function in which the argument was defined.
3233 There are two types of rounding that are done. The first, controlled by
3234 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3235 list to be aligned to the specific boundary (in bits). This rounding
3236 affects the initial and starting offsets, but not the argument size.
3238 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3239 optionally rounds the size of the parm to PARM_BOUNDARY. The
3240 initial offset is not affected by this rounding, while the size always
3241 is and the starting offset may be. */
3243 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3244 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3245 callers pass in the total size of args so far as
3246 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3248 void
3249 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3250 int partial, tree fndecl ATTRIBUTE_UNUSED,
3251 struct args_size *initial_offset_ptr,
3252 struct locate_and_pad_arg_data *locate)
3254 tree sizetree;
3255 enum direction where_pad;
3256 int boundary;
3257 int reg_parm_stack_space = 0;
3258 int part_size_in_regs;
3260 #ifdef REG_PARM_STACK_SPACE
3261 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3263 /* If we have found a stack parm before we reach the end of the
3264 area reserved for registers, skip that area. */
3265 if (! in_regs)
3267 if (reg_parm_stack_space > 0)
3269 if (initial_offset_ptr->var)
3271 initial_offset_ptr->var
3272 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3273 ssize_int (reg_parm_stack_space));
3274 initial_offset_ptr->constant = 0;
3276 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3277 initial_offset_ptr->constant = reg_parm_stack_space;
3280 #endif /* REG_PARM_STACK_SPACE */
3282 part_size_in_regs = 0;
3283 if (reg_parm_stack_space == 0)
3284 part_size_in_regs = ((partial * UNITS_PER_WORD)
3285 / (PARM_BOUNDARY / BITS_PER_UNIT)
3286 * (PARM_BOUNDARY / BITS_PER_UNIT));
3288 sizetree
3289 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3290 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3291 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3292 locate->where_pad = where_pad;
3294 #ifdef ARGS_GROW_DOWNWARD
3295 locate->slot_offset.constant = -initial_offset_ptr->constant;
3296 if (initial_offset_ptr->var)
3297 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3298 initial_offset_ptr->var);
3301 tree s2 = sizetree;
3302 if (where_pad != none
3303 && (!host_integerp (sizetree, 1)
3304 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3305 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3306 SUB_PARM_SIZE (locate->slot_offset, s2);
3309 locate->slot_offset.constant += part_size_in_regs;
3311 if (!in_regs
3312 #ifdef REG_PARM_STACK_SPACE
3313 || REG_PARM_STACK_SPACE (fndecl) > 0
3314 #endif
3316 pad_to_arg_alignment (&locate->slot_offset, boundary,
3317 &locate->alignment_pad);
3319 locate->size.constant = (-initial_offset_ptr->constant
3320 - locate->slot_offset.constant);
3321 if (initial_offset_ptr->var)
3322 locate->size.var = size_binop (MINUS_EXPR,
3323 size_binop (MINUS_EXPR,
3324 ssize_int (0),
3325 initial_offset_ptr->var),
3326 locate->slot_offset.var);
3328 /* Pad_below needs the pre-rounded size to know how much to pad
3329 below. */
3330 locate->offset = locate->slot_offset;
3331 if (where_pad == downward)
3332 pad_below (&locate->offset, passed_mode, sizetree);
3334 #else /* !ARGS_GROW_DOWNWARD */
3335 if (!in_regs
3336 #ifdef REG_PARM_STACK_SPACE
3337 || REG_PARM_STACK_SPACE (fndecl) > 0
3338 #endif
3340 pad_to_arg_alignment (initial_offset_ptr, boundary,
3341 &locate->alignment_pad);
3342 locate->slot_offset = *initial_offset_ptr;
3344 #ifdef PUSH_ROUNDING
3345 if (passed_mode != BLKmode)
3346 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3347 #endif
3349 /* Pad_below needs the pre-rounded size to know how much to pad below
3350 so this must be done before rounding up. */
3351 locate->offset = locate->slot_offset;
3352 if (where_pad == downward)
3353 pad_below (&locate->offset, passed_mode, sizetree);
3355 if (where_pad != none
3356 && (!host_integerp (sizetree, 1)
3357 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3358 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3360 ADD_PARM_SIZE (locate->size, sizetree);
3362 locate->size.constant -= part_size_in_regs;
3363 #endif /* ARGS_GROW_DOWNWARD */
3366 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3367 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3369 static void
3370 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3371 struct args_size *alignment_pad)
3373 tree save_var = NULL_TREE;
3374 HOST_WIDE_INT save_constant = 0;
3375 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3376 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3378 #ifdef SPARC_STACK_BOUNDARY_HACK
3379 /* The sparc port has a bug. It sometimes claims a STACK_BOUNDARY
3380 higher than the real alignment of %sp. However, when it does this,
3381 the alignment of %sp+STACK_POINTER_OFFSET will be STACK_BOUNDARY.
3382 This is a temporary hack while the sparc port is fixed. */
3383 if (SPARC_STACK_BOUNDARY_HACK)
3384 sp_offset = 0;
3385 #endif
3387 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3389 save_var = offset_ptr->var;
3390 save_constant = offset_ptr->constant;
3393 alignment_pad->var = NULL_TREE;
3394 alignment_pad->constant = 0;
3396 if (boundary > BITS_PER_UNIT)
3398 if (offset_ptr->var)
3400 tree sp_offset_tree = ssize_int (sp_offset);
3401 tree offset = size_binop (PLUS_EXPR,
3402 ARGS_SIZE_TREE (*offset_ptr),
3403 sp_offset_tree);
3404 #ifdef ARGS_GROW_DOWNWARD
3405 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3406 #else
3407 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3408 #endif
3410 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3411 /* ARGS_SIZE_TREE includes constant term. */
3412 offset_ptr->constant = 0;
3413 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3414 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3415 save_var);
3417 else
3419 offset_ptr->constant = -sp_offset +
3420 #ifdef ARGS_GROW_DOWNWARD
3421 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3422 #else
3423 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3424 #endif
3425 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3426 alignment_pad->constant = offset_ptr->constant - save_constant;
3431 static void
3432 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3434 if (passed_mode != BLKmode)
3436 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3437 offset_ptr->constant
3438 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3439 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3440 - GET_MODE_SIZE (passed_mode));
3442 else
3444 if (TREE_CODE (sizetree) != INTEGER_CST
3445 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3447 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3448 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3449 /* Add it in. */
3450 ADD_PARM_SIZE (*offset_ptr, s2);
3451 SUB_PARM_SIZE (*offset_ptr, sizetree);
3456 /* Walk the tree of blocks describing the binding levels within a function
3457 and warn about variables the might be killed by setjmp or vfork.
3458 This is done after calling flow_analysis and before global_alloc
3459 clobbers the pseudo-regs to hard regs. */
3461 void
3462 setjmp_vars_warning (tree block)
3464 tree decl, sub;
3466 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3468 if (TREE_CODE (decl) == VAR_DECL
3469 && DECL_RTL_SET_P (decl)
3470 && REG_P (DECL_RTL (decl))
3471 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3472 warning ("%Jvariable '%D' might be clobbered by `longjmp' or `vfork'",
3473 decl, decl);
3476 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
3477 setjmp_vars_warning (sub);
3480 /* Do the appropriate part of setjmp_vars_warning
3481 but for arguments instead of local variables. */
3483 void
3484 setjmp_args_warning (void)
3486 tree decl;
3487 for (decl = DECL_ARGUMENTS (current_function_decl);
3488 decl; decl = TREE_CHAIN (decl))
3489 if (DECL_RTL (decl) != 0
3490 && REG_P (DECL_RTL (decl))
3491 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3492 warning ("%Jargument '%D' might be clobbered by `longjmp' or `vfork'",
3493 decl, decl);
3497 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3498 and create duplicate blocks. */
3499 /* ??? Need an option to either create block fragments or to create
3500 abstract origin duplicates of a source block. It really depends
3501 on what optimization has been performed. */
3503 void
3504 reorder_blocks (void)
3506 tree block = DECL_INITIAL (current_function_decl);
3507 varray_type block_stack;
3509 if (block == NULL_TREE)
3510 return;
3512 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
3514 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3515 clear_block_marks (block);
3517 /* Prune the old trees away, so that they don't get in the way. */
3518 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3519 BLOCK_CHAIN (block) = NULL_TREE;
3521 /* Recreate the block tree from the note nesting. */
3522 reorder_blocks_1 (get_insns (), block, &block_stack);
3523 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3525 /* Remove deleted blocks from the block fragment chains. */
3526 reorder_fix_fragments (block);
3529 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3531 void
3532 clear_block_marks (tree block)
3534 while (block)
3536 TREE_ASM_WRITTEN (block) = 0;
3537 clear_block_marks (BLOCK_SUBBLOCKS (block));
3538 block = BLOCK_CHAIN (block);
3542 static void
3543 reorder_blocks_1 (rtx insns, tree current_block, varray_type *p_block_stack)
3545 rtx insn;
3547 for (insn = insns; insn; insn = NEXT_INSN (insn))
3549 if (NOTE_P (insn))
3551 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
3553 tree block = NOTE_BLOCK (insn);
3555 /* If we have seen this block before, that means it now
3556 spans multiple address regions. Create a new fragment. */
3557 if (TREE_ASM_WRITTEN (block))
3559 tree new_block = copy_node (block);
3560 tree origin;
3562 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3563 ? BLOCK_FRAGMENT_ORIGIN (block)
3564 : block);
3565 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3566 BLOCK_FRAGMENT_CHAIN (new_block)
3567 = BLOCK_FRAGMENT_CHAIN (origin);
3568 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3570 NOTE_BLOCK (insn) = new_block;
3571 block = new_block;
3574 BLOCK_SUBBLOCKS (block) = 0;
3575 TREE_ASM_WRITTEN (block) = 1;
3576 /* When there's only one block for the entire function,
3577 current_block == block and we mustn't do this, it
3578 will cause infinite recursion. */
3579 if (block != current_block)
3581 BLOCK_SUPERCONTEXT (block) = current_block;
3582 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3583 BLOCK_SUBBLOCKS (current_block) = block;
3584 current_block = block;
3586 VARRAY_PUSH_TREE (*p_block_stack, block);
3588 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
3590 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
3591 VARRAY_POP (*p_block_stack);
3592 BLOCK_SUBBLOCKS (current_block)
3593 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3594 current_block = BLOCK_SUPERCONTEXT (current_block);
3600 /* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
3601 appears in the block tree, select one of the fragments to become
3602 the new origin block. */
3604 static void
3605 reorder_fix_fragments (tree block)
3607 while (block)
3609 tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
3610 tree new_origin = NULL_TREE;
3612 if (dup_origin)
3614 if (! TREE_ASM_WRITTEN (dup_origin))
3616 new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
3618 /* Find the first of the remaining fragments. There must
3619 be at least one -- the current block. */
3620 while (! TREE_ASM_WRITTEN (new_origin))
3621 new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
3622 BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
3625 else if (! dup_origin)
3626 new_origin = block;
3628 /* Re-root the rest of the fragments to the new origin. In the
3629 case that DUP_ORIGIN was null, that means BLOCK was the origin
3630 of a chain of fragments and we want to remove those fragments
3631 that didn't make it to the output. */
3632 if (new_origin)
3634 tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
3635 tree chain = *pp;
3637 while (chain)
3639 if (TREE_ASM_WRITTEN (chain))
3641 BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
3642 *pp = chain;
3643 pp = &BLOCK_FRAGMENT_CHAIN (chain);
3645 chain = BLOCK_FRAGMENT_CHAIN (chain);
3647 *pp = NULL_TREE;
3650 reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
3651 block = BLOCK_CHAIN (block);
3655 /* Reverse the order of elements in the chain T of blocks,
3656 and return the new head of the chain (old last element). */
3658 tree
3659 blocks_nreverse (tree t)
3661 tree prev = 0, decl, next;
3662 for (decl = t; decl; decl = next)
3664 next = BLOCK_CHAIN (decl);
3665 BLOCK_CHAIN (decl) = prev;
3666 prev = decl;
3668 return prev;
3671 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3672 non-NULL, list them all into VECTOR, in a depth-first preorder
3673 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3674 blocks. */
3676 static int
3677 all_blocks (tree block, tree *vector)
3679 int n_blocks = 0;
3681 while (block)
3683 TREE_ASM_WRITTEN (block) = 0;
3685 /* Record this block. */
3686 if (vector)
3687 vector[n_blocks] = block;
3689 ++n_blocks;
3691 /* Record the subblocks, and their subblocks... */
3692 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3693 vector ? vector + n_blocks : 0);
3694 block = BLOCK_CHAIN (block);
3697 return n_blocks;
3700 /* Return a vector containing all the blocks rooted at BLOCK. The
3701 number of elements in the vector is stored in N_BLOCKS_P. The
3702 vector is dynamically allocated; it is the caller's responsibility
3703 to call `free' on the pointer returned. */
3705 static tree *
3706 get_block_vector (tree block, int *n_blocks_p)
3708 tree *block_vector;
3710 *n_blocks_p = all_blocks (block, NULL);
3711 block_vector = xmalloc (*n_blocks_p * sizeof (tree));
3712 all_blocks (block, block_vector);
3714 return block_vector;
3717 static GTY(()) int next_block_index = 2;
3719 /* Set BLOCK_NUMBER for all the blocks in FN. */
3721 void
3722 number_blocks (tree fn)
3724 int i;
3725 int n_blocks;
3726 tree *block_vector;
3728 /* For SDB and XCOFF debugging output, we start numbering the blocks
3729 from 1 within each function, rather than keeping a running
3730 count. */
3731 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3732 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3733 next_block_index = 1;
3734 #endif
3736 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3738 /* The top-level BLOCK isn't numbered at all. */
3739 for (i = 1; i < n_blocks; ++i)
3740 /* We number the blocks from two. */
3741 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3743 free (block_vector);
3745 return;
3748 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3750 tree
3751 debug_find_var_in_block_tree (tree var, tree block)
3753 tree t;
3755 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3756 if (t == var)
3757 return block;
3759 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3761 tree ret = debug_find_var_in_block_tree (var, t);
3762 if (ret)
3763 return ret;
3766 return NULL_TREE;
3769 /* Allocate a function structure for FNDECL and set its contents
3770 to the defaults. */
3772 void
3773 allocate_struct_function (tree fndecl)
3775 tree result;
3776 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
3778 cfun = ggc_alloc_cleared (sizeof (struct function));
3780 cfun->stack_alignment_needed = STACK_BOUNDARY;
3781 cfun->preferred_stack_boundary = STACK_BOUNDARY;
3783 current_function_funcdef_no = funcdef_no++;
3785 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
3787 init_stmt_for_function ();
3788 init_eh_for_function ();
3790 lang_hooks.function.init (cfun);
3791 if (init_machine_status)
3792 cfun->machine = (*init_machine_status) ();
3794 if (fndecl == NULL)
3795 return;
3797 DECL_STRUCT_FUNCTION (fndecl) = cfun;
3798 cfun->decl = fndecl;
3800 result = DECL_RESULT (fndecl);
3801 if (aggregate_value_p (result, fndecl))
3803 #ifdef PCC_STATIC_STRUCT_RETURN
3804 current_function_returns_pcc_struct = 1;
3805 #endif
3806 current_function_returns_struct = 1;
3809 current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
3811 current_function_stdarg
3812 = (fntype
3813 && TYPE_ARG_TYPES (fntype) != 0
3814 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3815 != void_type_node));
3818 /* Reset cfun, and other non-struct-function variables to defaults as
3819 appropriate for emitting rtl at the start of a function. */
3821 static void
3822 prepare_function_start (tree fndecl)
3824 if (fndecl && DECL_STRUCT_FUNCTION (fndecl))
3825 cfun = DECL_STRUCT_FUNCTION (fndecl);
3826 else
3827 allocate_struct_function (fndecl);
3828 init_emit ();
3829 init_varasm_status (cfun);
3830 init_expr ();
3832 cse_not_expected = ! optimize;
3834 /* Caller save not needed yet. */
3835 caller_save_needed = 0;
3837 /* We haven't done register allocation yet. */
3838 reg_renumber = 0;
3840 /* Indicate that we have not instantiated virtual registers yet. */
3841 virtuals_instantiated = 0;
3843 /* Indicate that we want CONCATs now. */
3844 generating_concat_p = 1;
3846 /* Indicate we have no need of a frame pointer yet. */
3847 frame_pointer_needed = 0;
3850 /* Initialize the rtl expansion mechanism so that we can do simple things
3851 like generate sequences. This is used to provide a context during global
3852 initialization of some passes. */
3853 void
3854 init_dummy_function_start (void)
3856 prepare_function_start (NULL);
3859 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
3860 and initialize static variables for generating RTL for the statements
3861 of the function. */
3863 void
3864 init_function_start (tree subr)
3866 prepare_function_start (subr);
3868 /* Prevent ever trying to delete the first instruction of a
3869 function. Also tell final how to output a linenum before the
3870 function prologue. Note linenums could be missing, e.g. when
3871 compiling a Java .class file. */
3872 if (! DECL_IS_BUILTIN (subr))
3873 emit_line_note (DECL_SOURCE_LOCATION (subr));
3875 /* Make sure first insn is a note even if we don't want linenums.
3876 This makes sure the first insn will never be deleted.
3877 Also, final expects a note to appear there. */
3878 emit_note (NOTE_INSN_DELETED);
3880 /* Warn if this value is an aggregate type,
3881 regardless of which calling convention we are using for it. */
3882 if (warn_aggregate_return
3883 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
3884 warning ("function returns an aggregate");
3887 /* Make sure all values used by the optimization passes have sane
3888 defaults. */
3889 void
3890 init_function_for_compilation (void)
3892 reg_renumber = 0;
3894 /* No prologue/epilogue insns yet. */
3895 VARRAY_GROW (prologue, 0);
3896 VARRAY_GROW (epilogue, 0);
3897 VARRAY_GROW (sibcall_epilogue, 0);
3900 /* Expand a call to __main at the beginning of a possible main function. */
3902 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
3903 #undef HAS_INIT_SECTION
3904 #define HAS_INIT_SECTION
3905 #endif
3907 void
3908 expand_main_function (void)
3910 #ifdef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
3911 if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN)
3913 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
3914 rtx tmp, seq;
3916 start_sequence ();
3917 /* Forcibly align the stack. */
3918 #ifdef STACK_GROWS_DOWNWARD
3919 tmp = expand_simple_binop (Pmode, AND, stack_pointer_rtx, GEN_INT(-align),
3920 stack_pointer_rtx, 1, OPTAB_WIDEN);
3921 #else
3922 tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3923 GEN_INT (align - 1), NULL_RTX, 1, OPTAB_WIDEN);
3924 tmp = expand_simple_binop (Pmode, AND, tmp, GEN_INT (-align),
3925 stack_pointer_rtx, 1, OPTAB_WIDEN);
3926 #endif
3927 if (tmp != stack_pointer_rtx)
3928 emit_move_insn (stack_pointer_rtx, tmp);
3930 /* Enlist allocate_dynamic_stack_space to pick up the pieces. */
3931 tmp = force_reg (Pmode, const0_rtx);
3932 allocate_dynamic_stack_space (tmp, NULL_RTX, BIGGEST_ALIGNMENT);
3933 seq = get_insns ();
3934 end_sequence ();
3936 for (tmp = get_last_insn (); tmp; tmp = PREV_INSN (tmp))
3937 if (NOTE_P (tmp) && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_FUNCTION_BEG)
3938 break;
3939 if (tmp)
3940 emit_insn_before (seq, tmp);
3941 else
3942 emit_insn (seq);
3944 #endif
3946 #ifndef HAS_INIT_SECTION
3947 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
3948 #endif
3951 /* The PENDING_SIZES represent the sizes of variable-sized types.
3952 Create RTL for the various sizes now (using temporary variables),
3953 so that we can refer to the sizes from the RTL we are generating
3954 for the current function. The PENDING_SIZES are a TREE_LIST. The
3955 TREE_VALUE of each node is a SAVE_EXPR. */
3957 void
3958 expand_pending_sizes (tree pending_sizes)
3960 tree tem;
3962 /* Evaluate now the sizes of any types declared among the arguments. */
3963 for (tem = pending_sizes; tem; tem = TREE_CHAIN (tem))
3964 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode, 0);
3967 /* Start the RTL for a new function, and set variables used for
3968 emitting RTL.
3969 SUBR is the FUNCTION_DECL node.
3970 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
3971 the function's parameters, which must be run at any return statement. */
3973 void
3974 expand_function_start (tree subr)
3976 /* Make sure volatile mem refs aren't considered
3977 valid operands of arithmetic insns. */
3978 init_recog_no_volatile ();
3980 current_function_profile
3981 = (profile_flag
3982 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
3984 current_function_limit_stack
3985 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
3987 /* Make the label for return statements to jump to. Do not special
3988 case machines with special return instructions -- they will be
3989 handled later during jump, ifcvt, or epilogue creation. */
3990 return_label = gen_label_rtx ();
3992 /* Initialize rtx used to return the value. */
3993 /* Do this before assign_parms so that we copy the struct value address
3994 before any library calls that assign parms might generate. */
3996 /* Decide whether to return the value in memory or in a register. */
3997 if (aggregate_value_p (DECL_RESULT (subr), subr))
3999 /* Returning something that won't go in a register. */
4000 rtx value_address = 0;
4002 #ifdef PCC_STATIC_STRUCT_RETURN
4003 if (current_function_returns_pcc_struct)
4005 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4006 value_address = assemble_static_space (size);
4008 else
4009 #endif
4011 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 1);
4012 /* Expect to be passed the address of a place to store the value.
4013 If it is passed as an argument, assign_parms will take care of
4014 it. */
4015 if (sv)
4017 value_address = gen_reg_rtx (Pmode);
4018 emit_move_insn (value_address, sv);
4021 if (value_address)
4023 rtx x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address);
4024 set_mem_attributes (x, DECL_RESULT (subr), 1);
4025 SET_DECL_RTL (DECL_RESULT (subr), x);
4028 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4029 /* If return mode is void, this decl rtl should not be used. */
4030 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4031 else
4033 /* Compute the return values into a pseudo reg, which we will copy
4034 into the true return register after the cleanups are done. */
4036 /* In order to figure out what mode to use for the pseudo, we
4037 figure out what the mode of the eventual return register will
4038 actually be, and use that. */
4039 rtx hard_reg
4040 = hard_function_value (TREE_TYPE (DECL_RESULT (subr)),
4041 subr, 1);
4043 /* Structures that are returned in registers are not aggregate_value_p,
4044 so we may see a PARALLEL or a REG. */
4045 if (REG_P (hard_reg))
4046 SET_DECL_RTL (DECL_RESULT (subr), gen_reg_rtx (GET_MODE (hard_reg)));
4047 else if (GET_CODE (hard_reg) == PARALLEL)
4048 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4049 else
4050 abort ();
4052 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4053 result to the real return register(s). */
4054 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4057 /* Initialize rtx for parameters and local variables.
4058 In some cases this requires emitting insns. */
4059 assign_parms (subr);
4061 /* If function gets a static chain arg, store it. */
4062 if (cfun->static_chain_decl)
4064 tree parm = cfun->static_chain_decl;
4065 rtx local = gen_reg_rtx (Pmode);
4067 set_decl_incoming_rtl (parm, static_chain_incoming_rtx);
4068 SET_DECL_RTL (parm, local);
4069 maybe_set_unchanging (local, parm);
4070 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4072 emit_move_insn (local, static_chain_incoming_rtx);
4075 /* If the function receives a non-local goto, then store the
4076 bits we need to restore the frame pointer. */
4077 if (cfun->nonlocal_goto_save_area)
4079 tree t_save;
4080 rtx r_save;
4082 /* ??? We need to do this save early. Unfortunately here is
4083 before the frame variable gets declared. Help out... */
4084 expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0));
4086 t_save = build4 (ARRAY_REF, ptr_type_node,
4087 cfun->nonlocal_goto_save_area,
4088 integer_zero_node, NULL_TREE, NULL_TREE);
4089 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4090 r_save = convert_memory_address (Pmode, r_save);
4092 emit_move_insn (r_save, virtual_stack_vars_rtx);
4093 update_nonlocal_goto_save_area ();
4096 /* The following was moved from init_function_start.
4097 The move is supposed to make sdb output more accurate. */
4098 /* Indicate the beginning of the function body,
4099 as opposed to parm setup. */
4100 emit_note (NOTE_INSN_FUNCTION_BEG);
4102 if (!NOTE_P (get_last_insn ()))
4103 emit_note (NOTE_INSN_DELETED);
4104 parm_birth_insn = get_last_insn ();
4106 if (current_function_profile)
4108 #ifdef PROFILE_HOOK
4109 PROFILE_HOOK (current_function_funcdef_no);
4110 #endif
4113 /* After the display initializations is where the tail-recursion label
4114 should go, if we end up needing one. Ensure we have a NOTE here
4115 since some things (like trampolines) get placed before this. */
4116 tail_recursion_reentry = emit_note (NOTE_INSN_DELETED);
4118 /* Evaluate now the sizes of any types declared among the arguments. */
4119 expand_pending_sizes (nreverse (get_pending_sizes ()));
4121 /* Make sure there is a line number after the function entry setup code. */
4122 force_next_line_note ();
4125 /* Undo the effects of init_dummy_function_start. */
4126 void
4127 expand_dummy_function_end (void)
4129 /* End any sequences that failed to be closed due to syntax errors. */
4130 while (in_sequence_p ())
4131 end_sequence ();
4133 /* Outside function body, can't compute type's actual size
4134 until next function's body starts. */
4136 free_after_parsing (cfun);
4137 free_after_compilation (cfun);
4138 cfun = 0;
4141 /* Call DOIT for each hard register used as a return value from
4142 the current function. */
4144 void
4145 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4147 rtx outgoing = current_function_return_rtx;
4149 if (! outgoing)
4150 return;
4152 if (REG_P (outgoing))
4153 (*doit) (outgoing, arg);
4154 else if (GET_CODE (outgoing) == PARALLEL)
4156 int i;
4158 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4160 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4162 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4163 (*doit) (x, arg);
4168 static void
4169 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4171 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
4174 void
4175 clobber_return_register (void)
4177 diddle_return_value (do_clobber_return_reg, NULL);
4179 /* In case we do use pseudo to return value, clobber it too. */
4180 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4182 tree decl_result = DECL_RESULT (current_function_decl);
4183 rtx decl_rtl = DECL_RTL (decl_result);
4184 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4186 do_clobber_return_reg (decl_rtl, NULL);
4191 static void
4192 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4194 emit_insn (gen_rtx_USE (VOIDmode, reg));
4197 void
4198 use_return_register (void)
4200 diddle_return_value (do_use_return_reg, NULL);
4203 /* Possibly warn about unused parameters. */
4204 void
4205 do_warn_unused_parameter (tree fn)
4207 tree decl;
4209 for (decl = DECL_ARGUMENTS (fn);
4210 decl; decl = TREE_CHAIN (decl))
4211 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4212 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl))
4213 warning ("%Junused parameter '%D'", decl, decl);
4216 static GTY(()) rtx initial_trampoline;
4218 /* Generate RTL for the end of the current function. */
4220 void
4221 expand_function_end (void)
4223 rtx clobber_after;
4225 /* If arg_pointer_save_area was referenced only from a nested
4226 function, we will not have initialized it yet. Do that now. */
4227 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
4228 get_arg_pointer_save_area (cfun);
4230 /* If we are doing stack checking and this function makes calls,
4231 do a stack probe at the start of the function to ensure we have enough
4232 space for another stack frame. */
4233 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
4235 rtx insn, seq;
4237 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4238 if (CALL_P (insn))
4240 start_sequence ();
4241 probe_stack_range (STACK_CHECK_PROTECT,
4242 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4243 seq = get_insns ();
4244 end_sequence ();
4245 emit_insn_before (seq, tail_recursion_reentry);
4246 break;
4250 /* Possibly warn about unused parameters.
4251 When frontend does unit-at-a-time, the warning is already
4252 issued at finalization time. */
4253 if (warn_unused_parameter
4254 && !lang_hooks.callgraph.expand_function)
4255 do_warn_unused_parameter (current_function_decl);
4257 /* End any sequences that failed to be closed due to syntax errors. */
4258 while (in_sequence_p ())
4259 end_sequence ();
4261 clear_pending_stack_adjust ();
4262 do_pending_stack_adjust ();
4264 /* @@@ This is a kludge. We want to ensure that instructions that
4265 may trap are not moved into the epilogue by scheduling, because
4266 we don't always emit unwind information for the epilogue.
4267 However, not all machine descriptions define a blockage insn, so
4268 emit an ASM_INPUT to act as one. */
4269 if (flag_non_call_exceptions)
4270 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
4272 /* Mark the end of the function body.
4273 If control reaches this insn, the function can drop through
4274 without returning a value. */
4275 emit_note (NOTE_INSN_FUNCTION_END);
4277 /* Must mark the last line number note in the function, so that the test
4278 coverage code can avoid counting the last line twice. This just tells
4279 the code to ignore the immediately following line note, since there
4280 already exists a copy of this note somewhere above. This line number
4281 note is still needed for debugging though, so we can't delete it. */
4282 if (flag_test_coverage)
4283 emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
4285 /* Output a linenumber for the end of the function.
4286 SDB depends on this. */
4287 force_next_line_note ();
4288 emit_line_note (input_location);
4290 /* Before the return label (if any), clobber the return
4291 registers so that they are not propagated live to the rest of
4292 the function. This can only happen with functions that drop
4293 through; if there had been a return statement, there would
4294 have either been a return rtx, or a jump to the return label.
4296 We delay actual code generation after the current_function_value_rtx
4297 is computed. */
4298 clobber_after = get_last_insn ();
4300 /* Output the label for the actual return from the function,
4301 if one is expected. This happens either because a function epilogue
4302 is used instead of a return instruction, or because a return was done
4303 with a goto in order to run local cleanups, or because of pcc-style
4304 structure returning. */
4305 if (return_label)
4306 emit_label (return_label);
4308 /* Let except.c know where it should emit the call to unregister
4309 the function context for sjlj exceptions. */
4310 if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
4311 sjlj_emit_function_exit_after (get_last_insn ());
4313 /* If we had calls to alloca, and this machine needs
4314 an accurate stack pointer to exit the function,
4315 insert some code to save and restore the stack pointer. */
4316 if (! EXIT_IGNORE_STACK
4317 && current_function_calls_alloca)
4319 rtx tem = 0;
4321 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4322 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4325 /* If scalar return value was computed in a pseudo-reg, or was a named
4326 return value that got dumped to the stack, copy that to the hard
4327 return register. */
4328 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4330 tree decl_result = DECL_RESULT (current_function_decl);
4331 rtx decl_rtl = DECL_RTL (decl_result);
4333 if (REG_P (decl_rtl)
4334 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4335 : DECL_REGISTER (decl_result))
4337 rtx real_decl_rtl = current_function_return_rtx;
4339 /* This should be set in assign_parms. */
4340 if (! REG_FUNCTION_VALUE_P (real_decl_rtl))
4341 abort ();
4343 /* If this is a BLKmode structure being returned in registers,
4344 then use the mode computed in expand_return. Note that if
4345 decl_rtl is memory, then its mode may have been changed,
4346 but that current_function_return_rtx has not. */
4347 if (GET_MODE (real_decl_rtl) == BLKmode)
4348 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4350 /* If a named return value dumped decl_return to memory, then
4351 we may need to re-do the PROMOTE_MODE signed/unsigned
4352 extension. */
4353 if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4355 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4357 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4358 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4359 &unsignedp, 1);
4361 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4363 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4365 /* If expand_function_start has created a PARALLEL for decl_rtl,
4366 move the result to the real return registers. Otherwise, do
4367 a group load from decl_rtl for a named return. */
4368 if (GET_CODE (decl_rtl) == PARALLEL)
4369 emit_group_move (real_decl_rtl, decl_rtl);
4370 else
4371 emit_group_load (real_decl_rtl, decl_rtl,
4372 TREE_TYPE (decl_result),
4373 int_size_in_bytes (TREE_TYPE (decl_result)));
4375 else
4376 emit_move_insn (real_decl_rtl, decl_rtl);
4380 /* If returning a structure, arrange to return the address of the value
4381 in a place where debuggers expect to find it.
4383 If returning a structure PCC style,
4384 the caller also depends on this value.
4385 And current_function_returns_pcc_struct is not necessarily set. */
4386 if (current_function_returns_struct
4387 || current_function_returns_pcc_struct)
4389 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4390 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4391 rtx outgoing;
4393 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4394 type = TREE_TYPE (type);
4395 else
4396 value_address = XEXP (value_address, 0);
4398 #ifdef FUNCTION_OUTGOING_VALUE
4399 outgoing = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
4400 current_function_decl);
4401 #else
4402 outgoing = FUNCTION_VALUE (build_pointer_type (type),
4403 current_function_decl);
4404 #endif
4406 /* Mark this as a function return value so integrate will delete the
4407 assignment and USE below when inlining this function. */
4408 REG_FUNCTION_VALUE_P (outgoing) = 1;
4410 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4411 value_address = convert_memory_address (GET_MODE (outgoing),
4412 value_address);
4414 emit_move_insn (outgoing, value_address);
4416 /* Show return register used to hold result (in this case the address
4417 of the result. */
4418 current_function_return_rtx = outgoing;
4421 /* If this is an implementation of throw, do what's necessary to
4422 communicate between __builtin_eh_return and the epilogue. */
4423 expand_eh_return ();
4425 /* Emit the actual code to clobber return register. */
4427 rtx seq, after;
4429 start_sequence ();
4430 clobber_return_register ();
4431 seq = get_insns ();
4432 end_sequence ();
4434 after = emit_insn_after (seq, clobber_after);
4437 /* Output the label for the naked return from the function, if one is
4438 expected. This is currently used only by __builtin_return. */
4439 if (naked_return_label)
4440 emit_label (naked_return_label);
4442 /* ??? This should no longer be necessary since stupid is no longer with
4443 us, but there are some parts of the compiler (eg reload_combine, and
4444 sh mach_dep_reorg) that still try and compute their own lifetime info
4445 instead of using the general framework. */
4446 use_return_register ();
4450 get_arg_pointer_save_area (struct function *f)
4452 rtx ret = f->x_arg_pointer_save_area;
4454 if (! ret)
4456 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
4457 f->x_arg_pointer_save_area = ret;
4460 if (f == cfun && ! f->arg_pointer_save_area_init)
4462 rtx seq;
4464 /* Save the arg pointer at the beginning of the function. The
4465 generated stack slot may not be a valid memory address, so we
4466 have to check it and fix it if necessary. */
4467 start_sequence ();
4468 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
4469 seq = get_insns ();
4470 end_sequence ();
4472 push_topmost_sequence ();
4473 emit_insn_after (seq, get_insns ());
4474 pop_topmost_sequence ();
4477 return ret;
4480 /* Extend a vector that records the INSN_UIDs of INSNS
4481 (a list of one or more insns). */
4483 static void
4484 record_insns (rtx insns, varray_type *vecp)
4486 int i, len;
4487 rtx tmp;
4489 tmp = insns;
4490 len = 0;
4491 while (tmp != NULL_RTX)
4493 len++;
4494 tmp = NEXT_INSN (tmp);
4497 i = VARRAY_SIZE (*vecp);
4498 VARRAY_GROW (*vecp, i + len);
4499 tmp = insns;
4500 while (tmp != NULL_RTX)
4502 VARRAY_INT (*vecp, i) = INSN_UID (tmp);
4503 i++;
4504 tmp = NEXT_INSN (tmp);
4508 /* Set the locator of the insn chain starting at INSN to LOC. */
4509 static void
4510 set_insn_locators (rtx insn, int loc)
4512 while (insn != NULL_RTX)
4514 if (INSN_P (insn))
4515 INSN_LOCATOR (insn) = loc;
4516 insn = NEXT_INSN (insn);
4520 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4521 be running after reorg, SEQUENCE rtl is possible. */
4523 static int
4524 contains (rtx insn, varray_type vec)
4526 int i, j;
4528 if (NONJUMP_INSN_P (insn)
4529 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4531 int count = 0;
4532 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4533 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
4534 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
4535 count++;
4536 return count;
4538 else
4540 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
4541 if (INSN_UID (insn) == VARRAY_INT (vec, j))
4542 return 1;
4544 return 0;
4548 prologue_epilogue_contains (rtx insn)
4550 if (contains (insn, prologue))
4551 return 1;
4552 if (contains (insn, epilogue))
4553 return 1;
4554 return 0;
4558 sibcall_epilogue_contains (rtx insn)
4560 if (sibcall_epilogue)
4561 return contains (insn, sibcall_epilogue);
4562 return 0;
4565 #ifdef HAVE_return
4566 /* Insert gen_return at the end of block BB. This also means updating
4567 block_for_insn appropriately. */
4569 static void
4570 emit_return_into_block (basic_block bb, rtx line_note)
4572 emit_jump_insn_after (gen_return (), BB_END (bb));
4573 if (line_note)
4574 emit_note_copy_after (line_note, PREV_INSN (BB_END (bb)));
4576 #endif /* HAVE_return */
4578 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
4580 /* These functions convert the epilogue into a variant that does not modify the
4581 stack pointer. This is used in cases where a function returns an object
4582 whose size is not known until it is computed. The called function leaves the
4583 object on the stack, leaves the stack depressed, and returns a pointer to
4584 the object.
4586 What we need to do is track all modifications and references to the stack
4587 pointer, deleting the modifications and changing the references to point to
4588 the location the stack pointer would have pointed to had the modifications
4589 taken place.
4591 These functions need to be portable so we need to make as few assumptions
4592 about the epilogue as we can. However, the epilogue basically contains
4593 three things: instructions to reset the stack pointer, instructions to
4594 reload registers, possibly including the frame pointer, and an
4595 instruction to return to the caller.
4597 If we can't be sure of what a relevant epilogue insn is doing, we abort.
4598 We also make no attempt to validate the insns we make since if they are
4599 invalid, we probably can't do anything valid. The intent is that these
4600 routines get "smarter" as more and more machines start to use them and
4601 they try operating on different epilogues.
4603 We use the following structure to track what the part of the epilogue that
4604 we've already processed has done. We keep two copies of the SP equivalence,
4605 one for use during the insn we are processing and one for use in the next
4606 insn. The difference is because one part of a PARALLEL may adjust SP
4607 and the other may use it. */
4609 struct epi_info
4611 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
4612 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
4613 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
4614 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
4615 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
4616 should be set to once we no longer need
4617 its value. */
4618 rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
4619 for registers. */
4622 static void handle_epilogue_set (rtx, struct epi_info *);
4623 static void update_epilogue_consts (rtx, rtx, void *);
4624 static void emit_equiv_load (struct epi_info *);
4626 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
4627 no modifications to the stack pointer. Return the new list of insns. */
4629 static rtx
4630 keep_stack_depressed (rtx insns)
4632 int j;
4633 struct epi_info info;
4634 rtx insn, next;
4636 /* If the epilogue is just a single instruction, it must be OK as is. */
4637 if (NEXT_INSN (insns) == NULL_RTX)
4638 return insns;
4640 /* Otherwise, start a sequence, initialize the information we have, and
4641 process all the insns we were given. */
4642 start_sequence ();
4644 info.sp_equiv_reg = stack_pointer_rtx;
4645 info.sp_offset = 0;
4646 info.equiv_reg_src = 0;
4648 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
4649 info.const_equiv[j] = 0;
4651 insn = insns;
4652 next = NULL_RTX;
4653 while (insn != NULL_RTX)
4655 next = NEXT_INSN (insn);
4657 if (!INSN_P (insn))
4659 add_insn (insn);
4660 insn = next;
4661 continue;
4664 /* If this insn references the register that SP is equivalent to and
4665 we have a pending load to that register, we must force out the load
4666 first and then indicate we no longer know what SP's equivalent is. */
4667 if (info.equiv_reg_src != 0
4668 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
4670 emit_equiv_load (&info);
4671 info.sp_equiv_reg = 0;
4674 info.new_sp_equiv_reg = info.sp_equiv_reg;
4675 info.new_sp_offset = info.sp_offset;
4677 /* If this is a (RETURN) and the return address is on the stack,
4678 update the address and change to an indirect jump. */
4679 if (GET_CODE (PATTERN (insn)) == RETURN
4680 || (GET_CODE (PATTERN (insn)) == PARALLEL
4681 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
4683 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
4684 rtx base = 0;
4685 HOST_WIDE_INT offset = 0;
4686 rtx jump_insn, jump_set;
4688 /* If the return address is in a register, we can emit the insn
4689 unchanged. Otherwise, it must be a MEM and we see what the
4690 base register and offset are. In any case, we have to emit any
4691 pending load to the equivalent reg of SP, if any. */
4692 if (REG_P (retaddr))
4694 emit_equiv_load (&info);
4695 add_insn (insn);
4696 insn = next;
4697 continue;
4699 else if (MEM_P (retaddr)
4700 && REG_P (XEXP (retaddr, 0)))
4701 base = gen_rtx_REG (Pmode, REGNO (XEXP (retaddr, 0))), offset = 0;
4702 else if (MEM_P (retaddr)
4703 && GET_CODE (XEXP (retaddr, 0)) == PLUS
4704 && REG_P (XEXP (XEXP (retaddr, 0), 0))
4705 && GET_CODE (XEXP (XEXP (retaddr, 0), 1)) == CONST_INT)
4707 base = gen_rtx_REG (Pmode, REGNO (XEXP (XEXP (retaddr, 0), 0)));
4708 offset = INTVAL (XEXP (XEXP (retaddr, 0), 1));
4710 else
4711 abort ();
4713 /* If the base of the location containing the return pointer
4714 is SP, we must update it with the replacement address. Otherwise,
4715 just build the necessary MEM. */
4716 retaddr = plus_constant (base, offset);
4717 if (base == stack_pointer_rtx)
4718 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
4719 plus_constant (info.sp_equiv_reg,
4720 info.sp_offset));
4722 retaddr = gen_rtx_MEM (Pmode, retaddr);
4724 /* If there is a pending load to the equivalent register for SP
4725 and we reference that register, we must load our address into
4726 a scratch register and then do that load. */
4727 if (info.equiv_reg_src
4728 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
4730 unsigned int regno;
4731 rtx reg;
4733 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
4734 if (HARD_REGNO_MODE_OK (regno, Pmode)
4735 && !fixed_regs[regno]
4736 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
4737 && !REGNO_REG_SET_P (EXIT_BLOCK_PTR->global_live_at_start,
4738 regno)
4739 && !refers_to_regno_p (regno,
4740 regno + hard_regno_nregs[regno]
4741 [Pmode],
4742 info.equiv_reg_src, NULL)
4743 && info.const_equiv[regno] == 0)
4744 break;
4746 if (regno == FIRST_PSEUDO_REGISTER)
4747 abort ();
4749 reg = gen_rtx_REG (Pmode, regno);
4750 emit_move_insn (reg, retaddr);
4751 retaddr = reg;
4754 emit_equiv_load (&info);
4755 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
4757 /* Show the SET in the above insn is a RETURN. */
4758 jump_set = single_set (jump_insn);
4759 if (jump_set == 0)
4760 abort ();
4761 else
4762 SET_IS_RETURN_P (jump_set) = 1;
4765 /* If SP is not mentioned in the pattern and its equivalent register, if
4766 any, is not modified, just emit it. Otherwise, if neither is set,
4767 replace the reference to SP and emit the insn. If none of those are
4768 true, handle each SET individually. */
4769 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
4770 && (info.sp_equiv_reg == stack_pointer_rtx
4771 || !reg_set_p (info.sp_equiv_reg, insn)))
4772 add_insn (insn);
4773 else if (! reg_set_p (stack_pointer_rtx, insn)
4774 && (info.sp_equiv_reg == stack_pointer_rtx
4775 || !reg_set_p (info.sp_equiv_reg, insn)))
4777 if (! validate_replace_rtx (stack_pointer_rtx,
4778 plus_constant (info.sp_equiv_reg,
4779 info.sp_offset),
4780 insn))
4781 abort ();
4783 add_insn (insn);
4785 else if (GET_CODE (PATTERN (insn)) == SET)
4786 handle_epilogue_set (PATTERN (insn), &info);
4787 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
4789 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
4790 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
4791 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
4793 else
4794 add_insn (insn);
4796 info.sp_equiv_reg = info.new_sp_equiv_reg;
4797 info.sp_offset = info.new_sp_offset;
4799 /* Now update any constants this insn sets. */
4800 note_stores (PATTERN (insn), update_epilogue_consts, &info);
4801 insn = next;
4804 insns = get_insns ();
4805 end_sequence ();
4806 return insns;
4809 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
4810 structure that contains information about what we've seen so far. We
4811 process this SET by either updating that data or by emitting one or
4812 more insns. */
4814 static void
4815 handle_epilogue_set (rtx set, struct epi_info *p)
4817 /* First handle the case where we are setting SP. Record what it is being
4818 set from. If unknown, abort. */
4819 if (reg_set_p (stack_pointer_rtx, set))
4821 if (SET_DEST (set) != stack_pointer_rtx)
4822 abort ();
4824 if (GET_CODE (SET_SRC (set)) == PLUS)
4826 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
4827 if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
4828 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
4829 else if (REG_P (XEXP (SET_SRC (set), 1))
4830 && REGNO (XEXP (SET_SRC (set), 1)) < FIRST_PSEUDO_REGISTER
4831 && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))] != 0)
4832 p->new_sp_offset
4833 = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4834 else
4835 abort ();
4837 else
4838 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
4840 /* If we are adjusting SP, we adjust from the old data. */
4841 if (p->new_sp_equiv_reg == stack_pointer_rtx)
4843 p->new_sp_equiv_reg = p->sp_equiv_reg;
4844 p->new_sp_offset += p->sp_offset;
4847 if (p->new_sp_equiv_reg == 0 || !REG_P (p->new_sp_equiv_reg))
4848 abort ();
4850 return;
4853 /* Next handle the case where we are setting SP's equivalent register.
4854 If we already have a value to set it to, abort. We could update, but
4855 there seems little point in handling that case. Note that we have
4856 to allow for the case where we are setting the register set in
4857 the previous part of a PARALLEL inside a single insn. But use the
4858 old offset for any updates within this insn. We must allow for the case
4859 where the register is being set in a different (usually wider) mode than
4860 Pmode). */
4861 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
4863 if (p->equiv_reg_src != 0
4864 || !REG_P (p->new_sp_equiv_reg)
4865 || !REG_P (SET_DEST (set))
4866 || GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) > BITS_PER_WORD
4867 || REGNO (p->new_sp_equiv_reg) != REGNO (SET_DEST (set)))
4868 abort ();
4869 else
4870 p->equiv_reg_src
4871 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4872 plus_constant (p->sp_equiv_reg,
4873 p->sp_offset));
4876 /* Otherwise, replace any references to SP in the insn to its new value
4877 and emit the insn. */
4878 else
4880 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4881 plus_constant (p->sp_equiv_reg,
4882 p->sp_offset));
4883 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
4884 plus_constant (p->sp_equiv_reg,
4885 p->sp_offset));
4886 emit_insn (set);
4890 /* Update the tracking information for registers set to constants. */
4892 static void
4893 update_epilogue_consts (rtx dest, rtx x, void *data)
4895 struct epi_info *p = (struct epi_info *) data;
4896 rtx new;
4898 if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4899 return;
4901 /* If we are either clobbering a register or doing a partial set,
4902 show we don't know the value. */
4903 else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
4904 p->const_equiv[REGNO (dest)] = 0;
4906 /* If we are setting it to a constant, record that constant. */
4907 else if (GET_CODE (SET_SRC (x)) == CONST_INT)
4908 p->const_equiv[REGNO (dest)] = SET_SRC (x);
4910 /* If this is a binary operation between a register we have been tracking
4911 and a constant, see if we can compute a new constant value. */
4912 else if (ARITHMETIC_P (SET_SRC (x))
4913 && REG_P (XEXP (SET_SRC (x), 0))
4914 && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
4915 && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
4916 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
4917 && 0 != (new = simplify_binary_operation
4918 (GET_CODE (SET_SRC (x)), GET_MODE (dest),
4919 p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
4920 XEXP (SET_SRC (x), 1)))
4921 && GET_CODE (new) == CONST_INT)
4922 p->const_equiv[REGNO (dest)] = new;
4924 /* Otherwise, we can't do anything with this value. */
4925 else
4926 p->const_equiv[REGNO (dest)] = 0;
4929 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
4931 static void
4932 emit_equiv_load (struct epi_info *p)
4934 if (p->equiv_reg_src != 0)
4936 rtx dest = p->sp_equiv_reg;
4938 if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
4939 dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
4940 REGNO (p->sp_equiv_reg));
4942 emit_move_insn (dest, p->equiv_reg_src);
4943 p->equiv_reg_src = 0;
4946 #endif
4948 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
4949 this into place with notes indicating where the prologue ends and where
4950 the epilogue begins. Update the basic block information when possible. */
4952 void
4953 thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
4955 int inserted = 0;
4956 edge e;
4957 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
4958 rtx seq;
4959 #endif
4960 #ifdef HAVE_prologue
4961 rtx prologue_end = NULL_RTX;
4962 #endif
4963 #if defined (HAVE_epilogue) || defined(HAVE_return)
4964 rtx epilogue_end = NULL_RTX;
4965 #endif
4967 #ifdef HAVE_prologue
4968 if (HAVE_prologue)
4970 start_sequence ();
4971 seq = gen_prologue ();
4972 emit_insn (seq);
4974 /* Retain a map of the prologue insns. */
4975 record_insns (seq, &prologue);
4976 prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
4978 seq = get_insns ();
4979 end_sequence ();
4980 set_insn_locators (seq, prologue_locator);
4982 /* Can't deal with multiple successors of the entry block
4983 at the moment. Function should always have at least one
4984 entry point. */
4985 if (!ENTRY_BLOCK_PTR->succ || ENTRY_BLOCK_PTR->succ->succ_next)
4986 abort ();
4988 insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
4989 inserted = 1;
4991 #endif
4993 /* If the exit block has no non-fake predecessors, we don't need
4994 an epilogue. */
4995 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
4996 if ((e->flags & EDGE_FAKE) == 0)
4997 break;
4998 if (e == NULL)
4999 goto epilogue_done;
5001 #ifdef HAVE_return
5002 if (optimize && HAVE_return)
5004 /* If we're allowed to generate a simple return instruction,
5005 then by definition we don't need a full epilogue. Examine
5006 the block that falls through to EXIT. If it does not
5007 contain any code, examine its predecessors and try to
5008 emit (conditional) return instructions. */
5010 basic_block last;
5011 edge e_next;
5012 rtx label;
5014 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
5015 if (e->flags & EDGE_FALLTHRU)
5016 break;
5017 if (e == NULL)
5018 goto epilogue_done;
5019 last = e->src;
5021 /* Verify that there are no active instructions in the last block. */
5022 label = BB_END (last);
5023 while (label && !LABEL_P (label))
5025 if (active_insn_p (label))
5026 break;
5027 label = PREV_INSN (label);
5030 if (BB_HEAD (last) == label && LABEL_P (label))
5032 rtx epilogue_line_note = NULL_RTX;
5034 /* Locate the line number associated with the closing brace,
5035 if we can find one. */
5036 for (seq = get_last_insn ();
5037 seq && ! active_insn_p (seq);
5038 seq = PREV_INSN (seq))
5039 if (NOTE_P (seq) && NOTE_LINE_NUMBER (seq) > 0)
5041 epilogue_line_note = seq;
5042 break;
5045 for (e = last->pred; e; e = e_next)
5047 basic_block bb = e->src;
5048 rtx jump;
5050 e_next = e->pred_next;
5051 if (bb == ENTRY_BLOCK_PTR)
5052 continue;
5054 jump = BB_END (bb);
5055 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5056 continue;
5058 /* If we have an unconditional jump, we can replace that
5059 with a simple return instruction. */
5060 if (simplejump_p (jump))
5062 emit_return_into_block (bb, epilogue_line_note);
5063 delete_insn (jump);
5066 /* If we have a conditional jump, we can try to replace
5067 that with a conditional return instruction. */
5068 else if (condjump_p (jump))
5070 if (! redirect_jump (jump, 0, 0))
5071 continue;
5073 /* If this block has only one successor, it both jumps
5074 and falls through to the fallthru block, so we can't
5075 delete the edge. */
5076 if (bb->succ->succ_next == NULL)
5077 continue;
5079 else
5080 continue;
5082 /* Fix up the CFG for the successful change we just made. */
5083 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5086 /* Emit a return insn for the exit fallthru block. Whether
5087 this is still reachable will be determined later. */
5089 emit_barrier_after (BB_END (last));
5090 emit_return_into_block (last, epilogue_line_note);
5091 epilogue_end = BB_END (last);
5092 last->succ->flags &= ~EDGE_FALLTHRU;
5093 goto epilogue_done;
5096 #endif
5097 /* Find the edge that falls through to EXIT. Other edges may exist
5098 due to RETURN instructions, but those don't need epilogues.
5099 There really shouldn't be a mixture -- either all should have
5100 been converted or none, however... */
5102 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
5103 if (e->flags & EDGE_FALLTHRU)
5104 break;
5105 if (e == NULL)
5106 goto epilogue_done;
5108 #ifdef HAVE_epilogue
5109 if (HAVE_epilogue)
5111 start_sequence ();
5112 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5114 seq = gen_epilogue ();
5116 #ifdef INCOMING_RETURN_ADDR_RTX
5117 /* If this function returns with the stack depressed and we can support
5118 it, massage the epilogue to actually do that. */
5119 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
5120 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
5121 seq = keep_stack_depressed (seq);
5122 #endif
5124 emit_jump_insn (seq);
5126 /* Retain a map of the epilogue insns. */
5127 record_insns (seq, &epilogue);
5128 set_insn_locators (seq, epilogue_locator);
5130 seq = get_insns ();
5131 end_sequence ();
5133 insert_insn_on_edge (seq, e);
5134 inserted = 1;
5136 else
5137 #endif
5139 basic_block cur_bb;
5141 if (! next_active_insn (BB_END (e->src)))
5142 goto epilogue_done;
5143 /* We have a fall-through edge to the exit block, the source is not
5144 at the end of the function, and there will be an assembler epilogue
5145 at the end of the function.
5146 We can't use force_nonfallthru here, because that would try to
5147 use return. Inserting a jump 'by hand' is extremely messy, so
5148 we take advantage of cfg_layout_finalize using
5149 fixup_fallthru_exit_predecessor. */
5150 cfg_layout_initialize (0);
5151 FOR_EACH_BB (cur_bb)
5152 if (cur_bb->index >= 0 && cur_bb->next_bb->index >= 0)
5153 cur_bb->rbi->next = cur_bb->next_bb;
5154 cfg_layout_finalize ();
5156 epilogue_done:
5158 if (inserted)
5159 commit_edge_insertions ();
5161 #ifdef HAVE_sibcall_epilogue
5162 /* Emit sibling epilogues before any sibling call sites. */
5163 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
5165 basic_block bb = e->src;
5166 rtx insn = BB_END (bb);
5167 rtx i;
5168 rtx newinsn;
5170 if (!CALL_P (insn)
5171 || ! SIBLING_CALL_P (insn))
5172 continue;
5174 start_sequence ();
5175 emit_insn (gen_sibcall_epilogue ());
5176 seq = get_insns ();
5177 end_sequence ();
5179 /* Retain a map of the epilogue insns. Used in life analysis to
5180 avoid getting rid of sibcall epilogue insns. Do this before we
5181 actually emit the sequence. */
5182 record_insns (seq, &sibcall_epilogue);
5183 set_insn_locators (seq, epilogue_locator);
5185 i = PREV_INSN (insn);
5186 newinsn = emit_insn_before (seq, insn);
5188 #endif
5190 #ifdef HAVE_prologue
5191 /* This is probably all useless now that we use locators. */
5192 if (prologue_end)
5194 rtx insn, prev;
5196 /* GDB handles `break f' by setting a breakpoint on the first
5197 line note after the prologue. Which means (1) that if
5198 there are line number notes before where we inserted the
5199 prologue we should move them, and (2) we should generate a
5200 note before the end of the first basic block, if there isn't
5201 one already there.
5203 ??? This behavior is completely broken when dealing with
5204 multiple entry functions. We simply place the note always
5205 into first basic block and let alternate entry points
5206 to be missed.
5209 for (insn = prologue_end; insn; insn = prev)
5211 prev = PREV_INSN (insn);
5212 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5214 /* Note that we cannot reorder the first insn in the
5215 chain, since rest_of_compilation relies on that
5216 remaining constant. */
5217 if (prev == NULL)
5218 break;
5219 reorder_insns (insn, insn, prologue_end);
5223 /* Find the last line number note in the first block. */
5224 for (insn = BB_END (ENTRY_BLOCK_PTR->next_bb);
5225 insn != prologue_end && insn;
5226 insn = PREV_INSN (insn))
5227 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5228 break;
5230 /* If we didn't find one, make a copy of the first line number
5231 we run across. */
5232 if (! insn)
5234 for (insn = next_active_insn (prologue_end);
5235 insn;
5236 insn = PREV_INSN (insn))
5237 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5239 emit_note_copy_after (insn, prologue_end);
5240 break;
5244 #endif
5245 #ifdef HAVE_epilogue
5246 if (epilogue_end)
5248 rtx insn, next;
5250 /* Similarly, move any line notes that appear after the epilogue.
5251 There is no need, however, to be quite so anal about the existence
5252 of such a note. Also move the NOTE_INSN_FUNCTION_END and (possibly)
5253 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5254 info generation. */
5255 for (insn = epilogue_end; insn; insn = next)
5257 next = NEXT_INSN (insn);
5258 if (NOTE_P (insn)
5259 && (NOTE_LINE_NUMBER (insn) > 0
5260 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG
5261 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END))
5262 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5265 #endif
5268 /* Reposition the prologue-end and epilogue-begin notes after instruction
5269 scheduling and delayed branch scheduling. */
5271 void
5272 reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
5274 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5275 rtx insn, last, note;
5276 int len;
5278 if ((len = VARRAY_SIZE (prologue)) > 0)
5280 last = 0, note = 0;
5282 /* Scan from the beginning until we reach the last prologue insn.
5283 We apparently can't depend on basic_block_{head,end} after
5284 reorg has run. */
5285 for (insn = f; insn; insn = NEXT_INSN (insn))
5287 if (NOTE_P (insn))
5289 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
5290 note = insn;
5292 else if (contains (insn, prologue))
5294 last = insn;
5295 if (--len == 0)
5296 break;
5300 if (last)
5302 /* Find the prologue-end note if we haven't already, and
5303 move it to just after the last prologue insn. */
5304 if (note == 0)
5306 for (note = last; (note = NEXT_INSN (note));)
5307 if (NOTE_P (note)
5308 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
5309 break;
5312 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5313 if (LABEL_P (last))
5314 last = NEXT_INSN (last);
5315 reorder_insns (note, note, last);
5319 if ((len = VARRAY_SIZE (epilogue)) > 0)
5321 last = 0, note = 0;
5323 /* Scan from the end until we reach the first epilogue insn.
5324 We apparently can't depend on basic_block_{head,end} after
5325 reorg has run. */
5326 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5328 if (NOTE_P (insn))
5330 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
5331 note = insn;
5333 else if (contains (insn, epilogue))
5335 last = insn;
5336 if (--len == 0)
5337 break;
5341 if (last)
5343 /* Find the epilogue-begin note if we haven't already, and
5344 move it to just before the first epilogue insn. */
5345 if (note == 0)
5347 for (note = insn; (note = PREV_INSN (note));)
5348 if (NOTE_P (note)
5349 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
5350 break;
5353 if (PREV_INSN (last) != note)
5354 reorder_insns (note, note, PREV_INSN (last));
5357 #endif /* HAVE_prologue or HAVE_epilogue */
5360 /* Called once, at initialization, to initialize function.c. */
5362 void
5363 init_function_once (void)
5365 VARRAY_INT_INIT (prologue, 0, "prologue");
5366 VARRAY_INT_INIT (epilogue, 0, "epilogue");
5367 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
5370 /* Resets insn_block_boundaries array. */
5372 void
5373 reset_block_changes (void)
5375 VARRAY_TREE_INIT (cfun->ib_boundaries_block, 100, "ib_boundaries_block");
5376 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, NULL_TREE);
5379 /* Record the boundary for BLOCK. */
5380 void
5381 record_block_change (tree block)
5383 int i, n;
5384 tree last_block;
5386 if (!block)
5387 return;
5389 last_block = VARRAY_TOP_TREE (cfun->ib_boundaries_block);
5390 VARRAY_POP (cfun->ib_boundaries_block);
5391 n = get_max_uid ();
5392 for (i = VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block); i < n; i++)
5393 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, last_block);
5395 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, block);
5398 /* Finishes record of boundaries. */
5399 void finalize_block_changes (void)
5401 record_block_change (DECL_INITIAL (current_function_decl));
5404 /* For INSN return the BLOCK it belongs to. */
5405 void
5406 check_block_change (rtx insn, tree *block)
5408 unsigned uid = INSN_UID (insn);
5410 if (uid >= VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block))
5411 return;
5413 *block = VARRAY_TREE (cfun->ib_boundaries_block, uid);
5416 /* Releases the ib_boundaries_block records. */
5417 void
5418 free_block_changes (void)
5420 cfun->ib_boundaries_block = NULL;
5423 /* Returns the name of the current function. */
5424 const char *
5425 current_function_name (void)
5427 return lang_hooks.decl_printable_name (cfun->decl, 2);
5430 #include "gt-function.h"