libgomp: For OpenMP offloading, only publicize GOMP_OFFLOAD_CAP_OPENMP_400 devices.
[official-gcc.git] / gcc / regs.h
blobcc12a5101dae9cf2eb5dfbe0b2535c4ccb35612a
1 /* Define per-register tables for data flow info and register allocation.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #ifndef GCC_REGS_H
21 #define GCC_REGS_H
23 #include "machmode.h"
24 #include "hard-reg-set.h"
25 #include "rtl.h"
27 #define REG_BYTES(R) mode_size[(int) GET_MODE (R)]
29 /* When you only have the mode of a pseudo register before it has a hard
30 register chosen for it, this reports the size of each hard register
31 a pseudo in such a mode would get allocated to. A target may
32 override this. */
34 #ifndef REGMODE_NATURAL_SIZE
35 #define REGMODE_NATURAL_SIZE(MODE) UNITS_PER_WORD
36 #endif
38 /* Maximum register number used in this function, plus one. */
40 extern int max_regno;
42 /* REG_N_REFS and REG_N_SETS are initialized by a call to
43 regstat_init_n_sets_and_refs from the current values of
44 DF_REG_DEF_COUNT and DF_REG_USE_COUNT. REG_N_REFS and REG_N_SETS
45 should only be used if a pass need to change these values in some
46 magical way or the pass needs to have accurate values for these
47 and is not using incremental df scanning.
49 At the end of a pass that uses REG_N_REFS and REG_N_SETS, a call
50 should be made to regstat_free_n_sets_and_refs.
52 Local alloc seems to play pretty loose with these values.
53 REG_N_REFS is set to 0 if the register is used in an asm.
54 Furthermore, local_alloc calls regclass to hack both REG_N_REFS and
55 REG_N_SETS for three address insns. Other passes seem to have
56 other special values. */
60 /* Structure to hold values for REG_N_SETS (i) and REG_N_REFS (i). */
62 struct regstat_n_sets_and_refs_t
64 int sets; /* # of times (REG n) is set */
65 int refs; /* # of times (REG n) is used or set */
68 extern struct regstat_n_sets_and_refs_t *regstat_n_sets_and_refs;
70 /* Indexed by n, gives number of times (REG n) is used or set. */
71 static inline int
72 REG_N_REFS (int regno)
74 return regstat_n_sets_and_refs[regno].refs;
77 /* Indexed by n, gives number of times (REG n) is used or set. */
78 #define SET_REG_N_REFS(N,V) (regstat_n_sets_and_refs[N].refs = V)
79 #define INC_REG_N_REFS(N,V) (regstat_n_sets_and_refs[N].refs += V)
81 /* Indexed by n, gives number of times (REG n) is set. */
82 static inline int
83 REG_N_SETS (int regno)
85 return regstat_n_sets_and_refs[regno].sets;
88 /* Indexed by n, gives number of times (REG n) is set. */
89 #define SET_REG_N_SETS(N,V) (regstat_n_sets_and_refs[N].sets = V)
90 #define INC_REG_N_SETS(N,V) (regstat_n_sets_and_refs[N].sets += V)
92 /* Given a REG, return TRUE if the reg is a PARM_DECL, FALSE otherwise. */
93 extern bool reg_is_parm_p (rtx);
95 /* Functions defined in regstat.c. */
96 extern void regstat_init_n_sets_and_refs (void);
97 extern void regstat_free_n_sets_and_refs (void);
98 extern void regstat_compute_ri (void);
99 extern void regstat_free_ri (void);
100 extern bitmap regstat_get_setjmp_crosses (void);
101 extern void regstat_compute_calls_crossed (void);
102 extern void regstat_free_calls_crossed (void);
103 extern void dump_reg_info (FILE *);
105 /* Register information indexed by register number. This structure is
106 initialized by calling regstat_compute_ri and is destroyed by
107 calling regstat_free_ri. */
108 struct reg_info_t
110 int freq; /* # estimated frequency (REG n) is used or set */
111 int deaths; /* # of times (REG n) dies */
112 int live_length; /* # of instructions (REG n) is live */
113 int calls_crossed; /* # of calls (REG n) is live across */
114 int freq_calls_crossed; /* # estimated frequency (REG n) crosses call */
115 int throw_calls_crossed; /* # of calls that may throw (REG n) is live across */
116 int basic_block; /* # of basic blocks (REG n) is used in */
119 extern struct reg_info_t *reg_info_p;
121 /* The number allocated elements of reg_info_p. */
122 extern size_t reg_info_p_size;
124 /* Estimate frequency of references to register N. */
126 #define REG_FREQ(N) (reg_info_p[N].freq)
128 /* The weights for each insn varies from 0 to REG_FREQ_BASE.
129 This constant does not need to be high, as in infrequently executed
130 regions we want to count instructions equivalently to optimize for
131 size instead of speed. */
132 #define REG_FREQ_MAX 1000
134 /* Compute register frequency from the BB frequency. When optimizing for size,
135 or profile driven feedback is available and the function is never executed,
136 frequency is always equivalent. Otherwise rescale the basic block
137 frequency. */
138 #define REG_FREQ_FROM_BB(bb) (optimize_function_for_size_p (cfun) \
139 ? REG_FREQ_MAX \
140 : ((bb)->frequency * REG_FREQ_MAX / BB_FREQ_MAX)\
141 ? ((bb)->frequency * REG_FREQ_MAX / BB_FREQ_MAX)\
142 : 1)
144 /* Indexed by N, gives number of insns in which register N dies.
145 Note that if register N is live around loops, it can die
146 in transitions between basic blocks, and that is not counted here.
147 So this is only a reliable indicator of how many regions of life there are
148 for registers that are contained in one basic block. */
150 #define REG_N_DEATHS(N) (reg_info_p[N].deaths)
152 /* Get the number of consecutive words required to hold pseudo-reg N. */
154 #define PSEUDO_REGNO_SIZE(N) \
155 ((GET_MODE_SIZE (PSEUDO_REGNO_MODE (N)) + UNITS_PER_WORD - 1) \
156 / UNITS_PER_WORD)
158 /* Get the number of bytes required to hold pseudo-reg N. */
160 #define PSEUDO_REGNO_BYTES(N) \
161 GET_MODE_SIZE (PSEUDO_REGNO_MODE (N))
163 /* Get the machine mode of pseudo-reg N. */
165 #define PSEUDO_REGNO_MODE(N) GET_MODE (regno_reg_rtx[N])
167 /* Indexed by N, gives number of CALL_INSNS across which (REG n) is live. */
169 #define REG_N_CALLS_CROSSED(N) (reg_info_p[N].calls_crossed)
170 #define REG_FREQ_CALLS_CROSSED(N) (reg_info_p[N].freq_calls_crossed)
172 /* Indexed by N, gives number of CALL_INSNS that may throw, across which
173 (REG n) is live. */
175 #define REG_N_THROWING_CALLS_CROSSED(N) (reg_info_p[N].throw_calls_crossed)
177 /* Total number of instructions at which (REG n) is live.
179 This is set in regstat.c whenever register info is requested and
180 remains valid for the rest of the compilation of the function; it is
181 used to control register allocation. The larger this is, the less
182 priority (REG n) gets for allocation in a hard register (in IRA in
183 priority-coloring mode).
185 Negative values are special: -1 is used to mark a pseudo reg that
186 should not be allocated to a hard register, because it crosses a
187 setjmp call. */
189 #define REG_LIVE_LENGTH(N) (reg_info_p[N].live_length)
191 /* Indexed by n, gives number of basic block that (REG n) is used in.
192 If the value is REG_BLOCK_GLOBAL (-1),
193 it means (REG n) is used in more than one basic block.
194 REG_BLOCK_UNKNOWN (0) means it hasn't been seen yet so we don't know.
195 This information remains valid for the rest of the compilation
196 of the current function; it is used to control register allocation. */
198 #define REG_BLOCK_UNKNOWN 0
199 #define REG_BLOCK_GLOBAL -1
201 #define REG_BASIC_BLOCK(N) (reg_info_p[N].basic_block)
203 /* Vector of substitutions of register numbers,
204 used to map pseudo regs into hardware regs.
206 This can't be folded into reg_n_info without changing all of the
207 machine dependent directories, since the reload functions
208 in the machine dependent files access it. */
210 extern short *reg_renumber;
212 /* Flag set by local-alloc or global-alloc if they decide to allocate
213 something in a call-clobbered register. */
215 extern int caller_save_needed;
217 /* Select a register mode required for caller save of hard regno REGNO. */
218 #ifndef HARD_REGNO_CALLER_SAVE_MODE
219 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
220 choose_hard_reg_mode (REGNO, NREGS, false)
221 #endif
223 /* Registers that get partially clobbered by a call in a given mode.
224 These must not be call used registers. */
225 #ifndef HARD_REGNO_CALL_PART_CLOBBERED
226 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) 0
227 #endif
229 /* Target-dependent globals. */
230 struct target_regs {
231 /* For each starting hard register, the number of consecutive hard
232 registers that a given machine mode occupies. */
233 unsigned char x_hard_regno_nregs[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];
235 /* For each hard register, the widest mode object that it can contain.
236 This will be a MODE_INT mode if the register can hold integers. Otherwise
237 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
238 register. */
239 machine_mode x_reg_raw_mode[FIRST_PSEUDO_REGISTER];
241 /* Vector indexed by machine mode saying whether there are regs of
242 that mode. */
243 bool x_have_regs_of_mode[MAX_MACHINE_MODE];
245 /* 1 if the corresponding class contains a register of the given mode. */
246 char x_contains_reg_of_mode[N_REG_CLASSES][MAX_MACHINE_MODE];
248 /* Record for each mode whether we can move a register directly to or
249 from an object of that mode in memory. If we can't, we won't try
250 to use that mode directly when accessing a field of that mode. */
251 char x_direct_load[NUM_MACHINE_MODES];
252 char x_direct_store[NUM_MACHINE_MODES];
254 /* Record for each mode whether we can float-extend from memory. */
255 bool x_float_extend_from_mem[NUM_MACHINE_MODES][NUM_MACHINE_MODES];
258 extern struct target_regs default_target_regs;
259 #if SWITCHABLE_TARGET
260 extern struct target_regs *this_target_regs;
261 #else
262 #define this_target_regs (&default_target_regs)
263 #endif
265 #define hard_regno_nregs \
266 (this_target_regs->x_hard_regno_nregs)
267 #define reg_raw_mode \
268 (this_target_regs->x_reg_raw_mode)
269 #define have_regs_of_mode \
270 (this_target_regs->x_have_regs_of_mode)
271 #define contains_reg_of_mode \
272 (this_target_regs->x_contains_reg_of_mode)
273 #define direct_load \
274 (this_target_regs->x_direct_load)
275 #define direct_store \
276 (this_target_regs->x_direct_store)
277 #define float_extend_from_mem \
278 (this_target_regs->x_float_extend_from_mem)
280 /* Return an exclusive upper bound on the registers occupied by hard
281 register (reg:MODE REGNO). */
283 static inline unsigned int
284 end_hard_regno (machine_mode mode, unsigned int regno)
286 return regno + hard_regno_nregs[regno][(int) mode];
289 /* Likewise for hard register X. */
291 #define END_HARD_REGNO(X) end_hard_regno (GET_MODE (X), REGNO (X))
293 /* Likewise for hard or pseudo register X. */
295 #define END_REGNO(X) (HARD_REGISTER_P (X) ? END_HARD_REGNO (X) : REGNO (X) + 1)
297 /* Add to REGS all the registers required to store a value of mode MODE
298 in register REGNO. */
300 static inline void
301 add_to_hard_reg_set (HARD_REG_SET *regs, machine_mode mode,
302 unsigned int regno)
304 unsigned int end_regno;
306 end_regno = end_hard_regno (mode, regno);
308 SET_HARD_REG_BIT (*regs, regno);
309 while (++regno < end_regno);
312 /* Likewise, but remove the registers. */
314 static inline void
315 remove_from_hard_reg_set (HARD_REG_SET *regs, machine_mode mode,
316 unsigned int regno)
318 unsigned int end_regno;
320 end_regno = end_hard_regno (mode, regno);
322 CLEAR_HARD_REG_BIT (*regs, regno);
323 while (++regno < end_regno);
326 /* Return true if REGS contains the whole of (reg:MODE REGNO). */
328 static inline bool
329 in_hard_reg_set_p (const HARD_REG_SET regs, machine_mode mode,
330 unsigned int regno)
332 unsigned int end_regno;
334 gcc_assert (HARD_REGISTER_NUM_P (regno));
336 if (!TEST_HARD_REG_BIT (regs, regno))
337 return false;
339 end_regno = end_hard_regno (mode, regno);
341 if (!HARD_REGISTER_NUM_P (end_regno - 1))
342 return false;
344 while (++regno < end_regno)
345 if (!TEST_HARD_REG_BIT (regs, regno))
346 return false;
348 return true;
351 /* Return true if (reg:MODE REGNO) includes an element of REGS. */
353 static inline bool
354 overlaps_hard_reg_set_p (const HARD_REG_SET regs, machine_mode mode,
355 unsigned int regno)
357 unsigned int end_regno;
359 if (TEST_HARD_REG_BIT (regs, regno))
360 return true;
362 end_regno = end_hard_regno (mode, regno);
363 while (++regno < end_regno)
364 if (TEST_HARD_REG_BIT (regs, regno))
365 return true;
367 return false;
370 /* Like add_to_hard_reg_set, but use a REGNO/NREGS range instead of
371 REGNO and MODE. */
373 static inline void
374 add_range_to_hard_reg_set (HARD_REG_SET *regs, unsigned int regno,
375 int nregs)
377 while (nregs-- > 0)
378 SET_HARD_REG_BIT (*regs, regno + nregs);
381 /* Likewise, but remove the registers. */
383 static inline void
384 remove_range_from_hard_reg_set (HARD_REG_SET *regs, unsigned int regno,
385 int nregs)
387 while (nregs-- > 0)
388 CLEAR_HARD_REG_BIT (*regs, regno + nregs);
391 /* Like overlaps_hard_reg_set_p, but use a REGNO/NREGS range instead of
392 REGNO and MODE. */
393 static inline bool
394 range_overlaps_hard_reg_set_p (const HARD_REG_SET set, unsigned regno,
395 int nregs)
397 while (nregs-- > 0)
398 if (TEST_HARD_REG_BIT (set, regno + nregs))
399 return true;
400 return false;
403 /* Like in_hard_reg_set_p, but use a REGNO/NREGS range instead of
404 REGNO and MODE. */
405 static inline bool
406 range_in_hard_reg_set_p (const HARD_REG_SET set, unsigned regno, int nregs)
408 while (nregs-- > 0)
409 if (!TEST_HARD_REG_BIT (set, regno + nregs))
410 return false;
411 return true;
414 /* Get registers used by given function call instruction. */
415 extern bool get_call_reg_set_usage (rtx_insn *insn, HARD_REG_SET *reg_set,
416 HARD_REG_SET default_set);
418 #endif /* GCC_REGS_H */