PR middle-end/80422
[official-gcc.git] / gcc / tree-vect-loop.c
blobaf874e7ad8e448ef896999fc85e83a711b6c045c
1 /* Loop Vectorization
2 Copyright (C) 2003-2017 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com> and
4 Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "cfghooks.h"
31 #include "tree-pass.h"
32 #include "ssa.h"
33 #include "optabs-tree.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "cfganal.h"
38 #include "gimplify.h"
39 #include "gimple-iterator.h"
40 #include "gimplify-me.h"
41 #include "tree-ssa-loop-ivopts.h"
42 #include "tree-ssa-loop-manip.h"
43 #include "tree-ssa-loop-niter.h"
44 #include "tree-ssa-loop.h"
45 #include "cfgloop.h"
46 #include "params.h"
47 #include "tree-scalar-evolution.h"
48 #include "tree-vectorizer.h"
49 #include "gimple-fold.h"
50 #include "cgraph.h"
51 #include "tree-cfg.h"
52 #include "tree-if-conv.h"
54 /* Loop Vectorization Pass.
56 This pass tries to vectorize loops.
58 For example, the vectorizer transforms the following simple loop:
60 short a[N]; short b[N]; short c[N]; int i;
62 for (i=0; i<N; i++){
63 a[i] = b[i] + c[i];
66 as if it was manually vectorized by rewriting the source code into:
68 typedef int __attribute__((mode(V8HI))) v8hi;
69 short a[N]; short b[N]; short c[N]; int i;
70 v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
71 v8hi va, vb, vc;
73 for (i=0; i<N/8; i++){
74 vb = pb[i];
75 vc = pc[i];
76 va = vb + vc;
77 pa[i] = va;
80 The main entry to this pass is vectorize_loops(), in which
81 the vectorizer applies a set of analyses on a given set of loops,
82 followed by the actual vectorization transformation for the loops that
83 had successfully passed the analysis phase.
84 Throughout this pass we make a distinction between two types of
85 data: scalars (which are represented by SSA_NAMES), and memory references
86 ("data-refs"). These two types of data require different handling both
87 during analysis and transformation. The types of data-refs that the
88 vectorizer currently supports are ARRAY_REFS which base is an array DECL
89 (not a pointer), and INDIRECT_REFS through pointers; both array and pointer
90 accesses are required to have a simple (consecutive) access pattern.
92 Analysis phase:
93 ===============
94 The driver for the analysis phase is vect_analyze_loop().
95 It applies a set of analyses, some of which rely on the scalar evolution
96 analyzer (scev) developed by Sebastian Pop.
98 During the analysis phase the vectorizer records some information
99 per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
100 loop, as well as general information about the loop as a whole, which is
101 recorded in a "loop_vec_info" struct attached to each loop.
103 Transformation phase:
104 =====================
105 The loop transformation phase scans all the stmts in the loop, and
106 creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
107 the loop that needs to be vectorized. It inserts the vector code sequence
108 just before the scalar stmt S, and records a pointer to the vector code
109 in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
110 attached to S). This pointer will be used for the vectorization of following
111 stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
112 otherwise, we rely on dead code elimination for removing it.
114 For example, say stmt S1 was vectorized into stmt VS1:
116 VS1: vb = px[i];
117 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
118 S2: a = b;
120 To vectorize stmt S2, the vectorizer first finds the stmt that defines
121 the operand 'b' (S1), and gets the relevant vector def 'vb' from the
122 vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
123 resulting sequence would be:
125 VS1: vb = px[i];
126 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
127 VS2: va = vb;
128 S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
130 Operands that are not SSA_NAMEs, are data-refs that appear in
131 load/store operations (like 'x[i]' in S1), and are handled differently.
133 Target modeling:
134 =================
135 Currently the only target specific information that is used is the
136 size of the vector (in bytes) - "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD".
137 Targets that can support different sizes of vectors, for now will need
138 to specify one value for "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD". More
139 flexibility will be added in the future.
141 Since we only vectorize operations which vector form can be
142 expressed using existing tree codes, to verify that an operation is
143 supported, the vectorizer checks the relevant optab at the relevant
144 machine_mode (e.g, optab_handler (add_optab, V8HImode)). If
145 the value found is CODE_FOR_nothing, then there's no target support, and
146 we can't vectorize the stmt.
148 For additional information on this project see:
149 http://gcc.gnu.org/projects/tree-ssa/vectorization.html
152 static void vect_estimate_min_profitable_iters (loop_vec_info, int *, int *);
154 /* Function vect_determine_vectorization_factor
156 Determine the vectorization factor (VF). VF is the number of data elements
157 that are operated upon in parallel in a single iteration of the vectorized
158 loop. For example, when vectorizing a loop that operates on 4byte elements,
159 on a target with vector size (VS) 16byte, the VF is set to 4, since 4
160 elements can fit in a single vector register.
162 We currently support vectorization of loops in which all types operated upon
163 are of the same size. Therefore this function currently sets VF according to
164 the size of the types operated upon, and fails if there are multiple sizes
165 in the loop.
167 VF is also the factor by which the loop iterations are strip-mined, e.g.:
168 original loop:
169 for (i=0; i<N; i++){
170 a[i] = b[i] + c[i];
173 vectorized loop:
174 for (i=0; i<N; i+=VF){
175 a[i:VF] = b[i:VF] + c[i:VF];
179 static bool
180 vect_determine_vectorization_factor (loop_vec_info loop_vinfo)
182 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
183 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
184 unsigned nbbs = loop->num_nodes;
185 unsigned int vectorization_factor = 0;
186 tree scalar_type = NULL_TREE;
187 gphi *phi;
188 tree vectype;
189 unsigned int nunits;
190 stmt_vec_info stmt_info;
191 unsigned i;
192 HOST_WIDE_INT dummy;
193 gimple *stmt, *pattern_stmt = NULL;
194 gimple_seq pattern_def_seq = NULL;
195 gimple_stmt_iterator pattern_def_si = gsi_none ();
196 bool analyze_pattern_stmt = false;
197 bool bool_result;
198 auto_vec<stmt_vec_info> mask_producers;
200 if (dump_enabled_p ())
201 dump_printf_loc (MSG_NOTE, vect_location,
202 "=== vect_determine_vectorization_factor ===\n");
204 for (i = 0; i < nbbs; i++)
206 basic_block bb = bbs[i];
208 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
209 gsi_next (&si))
211 phi = si.phi ();
212 stmt_info = vinfo_for_stmt (phi);
213 if (dump_enabled_p ())
215 dump_printf_loc (MSG_NOTE, vect_location, "==> examining phi: ");
216 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
219 gcc_assert (stmt_info);
221 if (STMT_VINFO_RELEVANT_P (stmt_info)
222 || STMT_VINFO_LIVE_P (stmt_info))
224 gcc_assert (!STMT_VINFO_VECTYPE (stmt_info));
225 scalar_type = TREE_TYPE (PHI_RESULT (phi));
227 if (dump_enabled_p ())
229 dump_printf_loc (MSG_NOTE, vect_location,
230 "get vectype for scalar type: ");
231 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
232 dump_printf (MSG_NOTE, "\n");
235 vectype = get_vectype_for_scalar_type (scalar_type);
236 if (!vectype)
238 if (dump_enabled_p ())
240 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
241 "not vectorized: unsupported "
242 "data-type ");
243 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
244 scalar_type);
245 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
247 return false;
249 STMT_VINFO_VECTYPE (stmt_info) = vectype;
251 if (dump_enabled_p ())
253 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
254 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
255 dump_printf (MSG_NOTE, "\n");
258 nunits = TYPE_VECTOR_SUBPARTS (vectype);
259 if (dump_enabled_p ())
260 dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d\n",
261 nunits);
263 if (!vectorization_factor
264 || (nunits > vectorization_factor))
265 vectorization_factor = nunits;
269 for (gimple_stmt_iterator si = gsi_start_bb (bb);
270 !gsi_end_p (si) || analyze_pattern_stmt;)
272 tree vf_vectype;
274 if (analyze_pattern_stmt)
275 stmt = pattern_stmt;
276 else
277 stmt = gsi_stmt (si);
279 stmt_info = vinfo_for_stmt (stmt);
281 if (dump_enabled_p ())
283 dump_printf_loc (MSG_NOTE, vect_location,
284 "==> examining statement: ");
285 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
288 gcc_assert (stmt_info);
290 /* Skip stmts which do not need to be vectorized. */
291 if ((!STMT_VINFO_RELEVANT_P (stmt_info)
292 && !STMT_VINFO_LIVE_P (stmt_info))
293 || gimple_clobber_p (stmt))
295 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
296 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
297 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
298 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
300 stmt = pattern_stmt;
301 stmt_info = vinfo_for_stmt (pattern_stmt);
302 if (dump_enabled_p ())
304 dump_printf_loc (MSG_NOTE, vect_location,
305 "==> examining pattern statement: ");
306 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
309 else
311 if (dump_enabled_p ())
312 dump_printf_loc (MSG_NOTE, vect_location, "skip.\n");
313 gsi_next (&si);
314 continue;
317 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
318 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
319 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
320 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
321 analyze_pattern_stmt = true;
323 /* If a pattern statement has def stmts, analyze them too. */
324 if (is_pattern_stmt_p (stmt_info))
326 if (pattern_def_seq == NULL)
328 pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
329 pattern_def_si = gsi_start (pattern_def_seq);
331 else if (!gsi_end_p (pattern_def_si))
332 gsi_next (&pattern_def_si);
333 if (pattern_def_seq != NULL)
335 gimple *pattern_def_stmt = NULL;
336 stmt_vec_info pattern_def_stmt_info = NULL;
338 while (!gsi_end_p (pattern_def_si))
340 pattern_def_stmt = gsi_stmt (pattern_def_si);
341 pattern_def_stmt_info
342 = vinfo_for_stmt (pattern_def_stmt);
343 if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
344 || STMT_VINFO_LIVE_P (pattern_def_stmt_info))
345 break;
346 gsi_next (&pattern_def_si);
349 if (!gsi_end_p (pattern_def_si))
351 if (dump_enabled_p ())
353 dump_printf_loc (MSG_NOTE, vect_location,
354 "==> examining pattern def stmt: ");
355 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
356 pattern_def_stmt, 0);
359 stmt = pattern_def_stmt;
360 stmt_info = pattern_def_stmt_info;
362 else
364 pattern_def_si = gsi_none ();
365 analyze_pattern_stmt = false;
368 else
369 analyze_pattern_stmt = false;
372 if (gimple_get_lhs (stmt) == NULL_TREE
373 /* MASK_STORE has no lhs, but is ok. */
374 && (!is_gimple_call (stmt)
375 || !gimple_call_internal_p (stmt)
376 || gimple_call_internal_fn (stmt) != IFN_MASK_STORE))
378 if (is_gimple_call (stmt))
380 /* Ignore calls with no lhs. These must be calls to
381 #pragma omp simd functions, and what vectorization factor
382 it really needs can't be determined until
383 vectorizable_simd_clone_call. */
384 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
386 pattern_def_seq = NULL;
387 gsi_next (&si);
389 continue;
391 if (dump_enabled_p ())
393 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
394 "not vectorized: irregular stmt.");
395 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt,
398 return false;
401 if (VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))))
403 if (dump_enabled_p ())
405 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
406 "not vectorized: vector stmt in loop:");
407 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
409 return false;
412 bool_result = false;
414 if (STMT_VINFO_VECTYPE (stmt_info))
416 /* The only case when a vectype had been already set is for stmts
417 that contain a dataref, or for "pattern-stmts" (stmts
418 generated by the vectorizer to represent/replace a certain
419 idiom). */
420 gcc_assert (STMT_VINFO_DATA_REF (stmt_info)
421 || is_pattern_stmt_p (stmt_info)
422 || !gsi_end_p (pattern_def_si));
423 vectype = STMT_VINFO_VECTYPE (stmt_info);
425 else
427 gcc_assert (!STMT_VINFO_DATA_REF (stmt_info));
428 if (gimple_call_internal_p (stmt, IFN_MASK_STORE))
429 scalar_type = TREE_TYPE (gimple_call_arg (stmt, 3));
430 else
431 scalar_type = TREE_TYPE (gimple_get_lhs (stmt));
433 /* Bool ops don't participate in vectorization factor
434 computation. For comparison use compared types to
435 compute a factor. */
436 if (VECT_SCALAR_BOOLEAN_TYPE_P (scalar_type)
437 && is_gimple_assign (stmt)
438 && gimple_assign_rhs_code (stmt) != COND_EXPR)
440 if (STMT_VINFO_RELEVANT_P (stmt_info)
441 || STMT_VINFO_LIVE_P (stmt_info))
442 mask_producers.safe_push (stmt_info);
443 bool_result = true;
445 if (TREE_CODE_CLASS (gimple_assign_rhs_code (stmt))
446 == tcc_comparison
447 && !VECT_SCALAR_BOOLEAN_TYPE_P
448 (TREE_TYPE (gimple_assign_rhs1 (stmt))))
449 scalar_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
450 else
452 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
454 pattern_def_seq = NULL;
455 gsi_next (&si);
457 continue;
461 if (dump_enabled_p ())
463 dump_printf_loc (MSG_NOTE, vect_location,
464 "get vectype for scalar type: ");
465 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
466 dump_printf (MSG_NOTE, "\n");
468 vectype = get_vectype_for_scalar_type (scalar_type);
469 if (!vectype)
471 if (dump_enabled_p ())
473 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
474 "not vectorized: unsupported "
475 "data-type ");
476 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
477 scalar_type);
478 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
480 return false;
483 if (!bool_result)
484 STMT_VINFO_VECTYPE (stmt_info) = vectype;
486 if (dump_enabled_p ())
488 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
489 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
490 dump_printf (MSG_NOTE, "\n");
494 /* Don't try to compute VF out scalar types if we stmt
495 produces boolean vector. Use result vectype instead. */
496 if (VECTOR_BOOLEAN_TYPE_P (vectype))
497 vf_vectype = vectype;
498 else
500 /* The vectorization factor is according to the smallest
501 scalar type (or the largest vector size, but we only
502 support one vector size per loop). */
503 if (!bool_result)
504 scalar_type = vect_get_smallest_scalar_type (stmt, &dummy,
505 &dummy);
506 if (dump_enabled_p ())
508 dump_printf_loc (MSG_NOTE, vect_location,
509 "get vectype for scalar type: ");
510 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
511 dump_printf (MSG_NOTE, "\n");
513 vf_vectype = get_vectype_for_scalar_type (scalar_type);
515 if (!vf_vectype)
517 if (dump_enabled_p ())
519 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
520 "not vectorized: unsupported data-type ");
521 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
522 scalar_type);
523 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
525 return false;
528 if ((GET_MODE_SIZE (TYPE_MODE (vectype))
529 != GET_MODE_SIZE (TYPE_MODE (vf_vectype))))
531 if (dump_enabled_p ())
533 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
534 "not vectorized: different sized vector "
535 "types in statement, ");
536 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
537 vectype);
538 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
539 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
540 vf_vectype);
541 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
543 return false;
546 if (dump_enabled_p ())
548 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
549 dump_generic_expr (MSG_NOTE, TDF_SLIM, vf_vectype);
550 dump_printf (MSG_NOTE, "\n");
553 nunits = TYPE_VECTOR_SUBPARTS (vf_vectype);
554 if (dump_enabled_p ())
555 dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d\n", nunits);
556 if (!vectorization_factor
557 || (nunits > vectorization_factor))
558 vectorization_factor = nunits;
560 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
562 pattern_def_seq = NULL;
563 gsi_next (&si);
568 /* TODO: Analyze cost. Decide if worth while to vectorize. */
569 if (dump_enabled_p ())
570 dump_printf_loc (MSG_NOTE, vect_location, "vectorization factor = %d\n",
571 vectorization_factor);
572 if (vectorization_factor <= 1)
574 if (dump_enabled_p ())
575 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
576 "not vectorized: unsupported data-type\n");
577 return false;
579 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
581 for (i = 0; i < mask_producers.length (); i++)
583 tree mask_type = NULL;
585 stmt = STMT_VINFO_STMT (mask_producers[i]);
587 if (is_gimple_assign (stmt)
588 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison
589 && !VECT_SCALAR_BOOLEAN_TYPE_P
590 (TREE_TYPE (gimple_assign_rhs1 (stmt))))
592 scalar_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
593 mask_type = get_mask_type_for_scalar_type (scalar_type);
595 if (!mask_type)
597 if (dump_enabled_p ())
598 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
599 "not vectorized: unsupported mask\n");
600 return false;
603 else
605 tree rhs;
606 ssa_op_iter iter;
607 gimple *def_stmt;
608 enum vect_def_type dt;
610 FOR_EACH_SSA_TREE_OPERAND (rhs, stmt, iter, SSA_OP_USE)
612 if (!vect_is_simple_use (rhs, mask_producers[i]->vinfo,
613 &def_stmt, &dt, &vectype))
615 if (dump_enabled_p ())
617 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
618 "not vectorized: can't compute mask type "
619 "for statement, ");
620 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt,
623 return false;
626 /* No vectype probably means external definition.
627 Allow it in case there is another operand which
628 allows to determine mask type. */
629 if (!vectype)
630 continue;
632 if (!mask_type)
633 mask_type = vectype;
634 else if (TYPE_VECTOR_SUBPARTS (mask_type)
635 != TYPE_VECTOR_SUBPARTS (vectype))
637 if (dump_enabled_p ())
639 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
640 "not vectorized: different sized masks "
641 "types in statement, ");
642 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
643 mask_type);
644 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
645 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
646 vectype);
647 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
649 return false;
651 else if (VECTOR_BOOLEAN_TYPE_P (mask_type)
652 != VECTOR_BOOLEAN_TYPE_P (vectype))
654 if (dump_enabled_p ())
656 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
657 "not vectorized: mixed mask and "
658 "nonmask vector types in statement, ");
659 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
660 mask_type);
661 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
662 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
663 vectype);
664 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
666 return false;
670 /* We may compare boolean value loaded as vector of integers.
671 Fix mask_type in such case. */
672 if (mask_type
673 && !VECTOR_BOOLEAN_TYPE_P (mask_type)
674 && gimple_code (stmt) == GIMPLE_ASSIGN
675 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
676 mask_type = build_same_sized_truth_vector_type (mask_type);
679 /* No mask_type should mean loop invariant predicate.
680 This is probably a subject for optimization in
681 if-conversion. */
682 if (!mask_type)
684 if (dump_enabled_p ())
686 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
687 "not vectorized: can't compute mask type "
688 "for statement, ");
689 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt,
692 return false;
695 STMT_VINFO_VECTYPE (mask_producers[i]) = mask_type;
698 return true;
702 /* Function vect_is_simple_iv_evolution.
704 FORNOW: A simple evolution of an induction variables in the loop is
705 considered a polynomial evolution. */
707 static bool
708 vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
709 tree * step)
711 tree init_expr;
712 tree step_expr;
713 tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
714 basic_block bb;
716 /* When there is no evolution in this loop, the evolution function
717 is not "simple". */
718 if (evolution_part == NULL_TREE)
719 return false;
721 /* When the evolution is a polynomial of degree >= 2
722 the evolution function is not "simple". */
723 if (tree_is_chrec (evolution_part))
724 return false;
726 step_expr = evolution_part;
727 init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));
729 if (dump_enabled_p ())
731 dump_printf_loc (MSG_NOTE, vect_location, "step: ");
732 dump_generic_expr (MSG_NOTE, TDF_SLIM, step_expr);
733 dump_printf (MSG_NOTE, ", init: ");
734 dump_generic_expr (MSG_NOTE, TDF_SLIM, init_expr);
735 dump_printf (MSG_NOTE, "\n");
738 *init = init_expr;
739 *step = step_expr;
741 if (TREE_CODE (step_expr) != INTEGER_CST
742 && (TREE_CODE (step_expr) != SSA_NAME
743 || ((bb = gimple_bb (SSA_NAME_DEF_STMT (step_expr)))
744 && flow_bb_inside_loop_p (get_loop (cfun, loop_nb), bb))
745 || (!INTEGRAL_TYPE_P (TREE_TYPE (step_expr))
746 && (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr))
747 || !flag_associative_math)))
748 && (TREE_CODE (step_expr) != REAL_CST
749 || !flag_associative_math))
751 if (dump_enabled_p ())
752 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
753 "step unknown.\n");
754 return false;
757 return true;
760 /* Function vect_analyze_scalar_cycles_1.
762 Examine the cross iteration def-use cycles of scalar variables
763 in LOOP. LOOP_VINFO represents the loop that is now being
764 considered for vectorization (can be LOOP, or an outer-loop
765 enclosing LOOP). */
767 static void
768 vect_analyze_scalar_cycles_1 (loop_vec_info loop_vinfo, struct loop *loop)
770 basic_block bb = loop->header;
771 tree init, step;
772 auto_vec<gimple *, 64> worklist;
773 gphi_iterator gsi;
774 bool double_reduc;
776 if (dump_enabled_p ())
777 dump_printf_loc (MSG_NOTE, vect_location,
778 "=== vect_analyze_scalar_cycles ===\n");
780 /* First - identify all inductions. Reduction detection assumes that all the
781 inductions have been identified, therefore, this order must not be
782 changed. */
783 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
785 gphi *phi = gsi.phi ();
786 tree access_fn = NULL;
787 tree def = PHI_RESULT (phi);
788 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
790 if (dump_enabled_p ())
792 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
793 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
796 /* Skip virtual phi's. The data dependences that are associated with
797 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
798 if (virtual_operand_p (def))
799 continue;
801 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_unknown_def_type;
803 /* Analyze the evolution function. */
804 access_fn = analyze_scalar_evolution (loop, def);
805 if (access_fn)
807 STRIP_NOPS (access_fn);
808 if (dump_enabled_p ())
810 dump_printf_loc (MSG_NOTE, vect_location,
811 "Access function of PHI: ");
812 dump_generic_expr (MSG_NOTE, TDF_SLIM, access_fn);
813 dump_printf (MSG_NOTE, "\n");
815 STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo)
816 = initial_condition_in_loop_num (access_fn, loop->num);
817 STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo)
818 = evolution_part_in_loop_num (access_fn, loop->num);
821 if (!access_fn
822 || !vect_is_simple_iv_evolution (loop->num, access_fn, &init, &step)
823 || (LOOP_VINFO_LOOP (loop_vinfo) != loop
824 && TREE_CODE (step) != INTEGER_CST))
826 worklist.safe_push (phi);
827 continue;
830 gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo)
831 != NULL_TREE);
832 gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo) != NULL_TREE);
834 if (dump_enabled_p ())
835 dump_printf_loc (MSG_NOTE, vect_location, "Detected induction.\n");
836 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_induction_def;
840 /* Second - identify all reductions and nested cycles. */
841 while (worklist.length () > 0)
843 gimple *phi = worklist.pop ();
844 tree def = PHI_RESULT (phi);
845 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
846 gimple *reduc_stmt;
847 bool nested_cycle;
849 if (dump_enabled_p ())
851 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
852 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
855 gcc_assert (!virtual_operand_p (def)
856 && STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_unknown_def_type);
858 nested_cycle = (loop != LOOP_VINFO_LOOP (loop_vinfo));
859 reduc_stmt = vect_force_simple_reduction (loop_vinfo, phi, !nested_cycle,
860 &double_reduc, false);
861 if (reduc_stmt)
863 if (double_reduc)
865 if (dump_enabled_p ())
866 dump_printf_loc (MSG_NOTE, vect_location,
867 "Detected double reduction.\n");
869 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_double_reduction_def;
870 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
871 vect_double_reduction_def;
873 else
875 if (nested_cycle)
877 if (dump_enabled_p ())
878 dump_printf_loc (MSG_NOTE, vect_location,
879 "Detected vectorizable nested cycle.\n");
881 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_nested_cycle;
882 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
883 vect_nested_cycle;
885 else
887 if (dump_enabled_p ())
888 dump_printf_loc (MSG_NOTE, vect_location,
889 "Detected reduction.\n");
891 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_reduction_def;
892 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
893 vect_reduction_def;
894 /* Store the reduction cycles for possible vectorization in
895 loop-aware SLP. */
896 LOOP_VINFO_REDUCTIONS (loop_vinfo).safe_push (reduc_stmt);
900 else
901 if (dump_enabled_p ())
902 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
903 "Unknown def-use cycle pattern.\n");
908 /* Function vect_analyze_scalar_cycles.
910 Examine the cross iteration def-use cycles of scalar variables, by
911 analyzing the loop-header PHIs of scalar variables. Classify each
912 cycle as one of the following: invariant, induction, reduction, unknown.
913 We do that for the loop represented by LOOP_VINFO, and also to its
914 inner-loop, if exists.
915 Examples for scalar cycles:
917 Example1: reduction:
919 loop1:
920 for (i=0; i<N; i++)
921 sum += a[i];
923 Example2: induction:
925 loop2:
926 for (i=0; i<N; i++)
927 a[i] = i; */
929 static void
930 vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
932 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
934 vect_analyze_scalar_cycles_1 (loop_vinfo, loop);
936 /* When vectorizing an outer-loop, the inner-loop is executed sequentially.
937 Reductions in such inner-loop therefore have different properties than
938 the reductions in the nest that gets vectorized:
939 1. When vectorized, they are executed in the same order as in the original
940 scalar loop, so we can't change the order of computation when
941 vectorizing them.
942 2. FIXME: Inner-loop reductions can be used in the inner-loop, so the
943 current checks are too strict. */
945 if (loop->inner)
946 vect_analyze_scalar_cycles_1 (loop_vinfo, loop->inner);
949 /* Transfer group and reduction information from STMT to its pattern stmt. */
951 static void
952 vect_fixup_reduc_chain (gimple *stmt)
954 gimple *firstp = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
955 gimple *stmtp;
956 gcc_assert (!GROUP_FIRST_ELEMENT (vinfo_for_stmt (firstp))
957 && GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)));
958 GROUP_SIZE (vinfo_for_stmt (firstp)) = GROUP_SIZE (vinfo_for_stmt (stmt));
961 stmtp = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
962 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmtp)) = firstp;
963 stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmt));
964 if (stmt)
965 GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmtp))
966 = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
968 while (stmt);
969 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmtp)) = vect_reduction_def;
972 /* Fixup scalar cycles that now have their stmts detected as patterns. */
974 static void
975 vect_fixup_scalar_cycles_with_patterns (loop_vec_info loop_vinfo)
977 gimple *first;
978 unsigned i;
980 FOR_EACH_VEC_ELT (LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo), i, first)
981 if (STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (first)))
983 gimple *next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (first));
984 while (next)
986 if (! STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (next)))
987 break;
988 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
990 /* If not all stmt in the chain are patterns try to handle
991 the chain without patterns. */
992 if (! next)
994 vect_fixup_reduc_chain (first);
995 LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo)[i]
996 = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (first));
1001 /* Function vect_get_loop_niters.
1003 Determine how many iterations the loop is executed and place it
1004 in NUMBER_OF_ITERATIONS. Place the number of latch iterations
1005 in NUMBER_OF_ITERATIONSM1. Place the condition under which the
1006 niter information holds in ASSUMPTIONS.
1008 Return the loop exit condition. */
1011 static gcond *
1012 vect_get_loop_niters (struct loop *loop, tree *assumptions,
1013 tree *number_of_iterations, tree *number_of_iterationsm1)
1015 edge exit = single_exit (loop);
1016 struct tree_niter_desc niter_desc;
1017 tree niter_assumptions, niter, may_be_zero;
1018 gcond *cond = get_loop_exit_condition (loop);
1020 *assumptions = boolean_true_node;
1021 *number_of_iterationsm1 = chrec_dont_know;
1022 *number_of_iterations = chrec_dont_know;
1023 if (dump_enabled_p ())
1024 dump_printf_loc (MSG_NOTE, vect_location,
1025 "=== get_loop_niters ===\n");
1027 if (!exit)
1028 return cond;
1030 niter = chrec_dont_know;
1031 may_be_zero = NULL_TREE;
1032 niter_assumptions = boolean_true_node;
1033 if (!number_of_iterations_exit_assumptions (loop, exit, &niter_desc, NULL)
1034 || chrec_contains_undetermined (niter_desc.niter))
1035 return cond;
1037 niter_assumptions = niter_desc.assumptions;
1038 may_be_zero = niter_desc.may_be_zero;
1039 niter = niter_desc.niter;
1041 if (may_be_zero && integer_zerop (may_be_zero))
1042 may_be_zero = NULL_TREE;
1044 if (may_be_zero)
1046 if (COMPARISON_CLASS_P (may_be_zero))
1048 /* Try to combine may_be_zero with assumptions, this can simplify
1049 computation of niter expression. */
1050 if (niter_assumptions && !integer_nonzerop (niter_assumptions))
1051 niter_assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1052 niter_assumptions,
1053 fold_build1 (TRUTH_NOT_EXPR,
1054 boolean_type_node,
1055 may_be_zero));
1056 else
1057 niter = fold_build3 (COND_EXPR, TREE_TYPE (niter), may_be_zero,
1058 build_int_cst (TREE_TYPE (niter), 0), niter);
1060 may_be_zero = NULL_TREE;
1062 else if (integer_nonzerop (may_be_zero))
1064 *number_of_iterationsm1 = build_int_cst (TREE_TYPE (niter), 0);
1065 *number_of_iterations = build_int_cst (TREE_TYPE (niter), 1);
1066 return cond;
1068 else
1069 return cond;
1072 *assumptions = niter_assumptions;
1073 *number_of_iterationsm1 = niter;
1075 /* We want the number of loop header executions which is the number
1076 of latch executions plus one.
1077 ??? For UINT_MAX latch executions this number overflows to zero
1078 for loops like do { n++; } while (n != 0); */
1079 if (niter && !chrec_contains_undetermined (niter))
1080 niter = fold_build2 (PLUS_EXPR, TREE_TYPE (niter), unshare_expr (niter),
1081 build_int_cst (TREE_TYPE (niter), 1));
1082 *number_of_iterations = niter;
1084 return cond;
1087 /* Function bb_in_loop_p
1089 Used as predicate for dfs order traversal of the loop bbs. */
1091 static bool
1092 bb_in_loop_p (const_basic_block bb, const void *data)
1094 const struct loop *const loop = (const struct loop *)data;
1095 if (flow_bb_inside_loop_p (loop, bb))
1096 return true;
1097 return false;
1101 /* Function new_loop_vec_info.
1103 Create and initialize a new loop_vec_info struct for LOOP, as well as
1104 stmt_vec_info structs for all the stmts in LOOP. */
1106 static loop_vec_info
1107 new_loop_vec_info (struct loop *loop)
1109 loop_vec_info res;
1110 basic_block *bbs;
1111 gimple_stmt_iterator si;
1112 unsigned int i, nbbs;
1114 res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));
1115 res->kind = vec_info::loop;
1116 LOOP_VINFO_LOOP (res) = loop;
1118 bbs = get_loop_body (loop);
1120 /* Create/Update stmt_info for all stmts in the loop. */
1121 for (i = 0; i < loop->num_nodes; i++)
1123 basic_block bb = bbs[i];
1125 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
1127 gimple *phi = gsi_stmt (si);
1128 gimple_set_uid (phi, 0);
1129 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, res));
1132 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1134 gimple *stmt = gsi_stmt (si);
1135 gimple_set_uid (stmt, 0);
1136 set_vinfo_for_stmt (stmt, new_stmt_vec_info (stmt, res));
1140 /* CHECKME: We want to visit all BBs before their successors (except for
1141 latch blocks, for which this assertion wouldn't hold). In the simple
1142 case of the loop forms we allow, a dfs order of the BBs would the same
1143 as reversed postorder traversal, so we are safe. */
1145 free (bbs);
1146 bbs = XCNEWVEC (basic_block, loop->num_nodes);
1147 nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,
1148 bbs, loop->num_nodes, loop);
1149 gcc_assert (nbbs == loop->num_nodes);
1151 LOOP_VINFO_BBS (res) = bbs;
1152 LOOP_VINFO_NITERSM1 (res) = NULL;
1153 LOOP_VINFO_NITERS (res) = NULL;
1154 LOOP_VINFO_NITERS_UNCHANGED (res) = NULL;
1155 LOOP_VINFO_NITERS_ASSUMPTIONS (res) = NULL;
1156 LOOP_VINFO_COST_MODEL_THRESHOLD (res) = 0;
1157 LOOP_VINFO_VECTORIZABLE_P (res) = 0;
1158 LOOP_VINFO_PEELING_FOR_ALIGNMENT (res) = 0;
1159 LOOP_VINFO_VECT_FACTOR (res) = 0;
1160 LOOP_VINFO_LOOP_NEST (res) = vNULL;
1161 LOOP_VINFO_DATAREFS (res) = vNULL;
1162 LOOP_VINFO_DDRS (res) = vNULL;
1163 LOOP_VINFO_UNALIGNED_DR (res) = NULL;
1164 LOOP_VINFO_MAY_MISALIGN_STMTS (res) = vNULL;
1165 LOOP_VINFO_MAY_ALIAS_DDRS (res) = vNULL;
1166 LOOP_VINFO_GROUPED_STORES (res) = vNULL;
1167 LOOP_VINFO_REDUCTIONS (res) = vNULL;
1168 LOOP_VINFO_REDUCTION_CHAINS (res) = vNULL;
1169 LOOP_VINFO_SLP_INSTANCES (res) = vNULL;
1170 LOOP_VINFO_SLP_UNROLLING_FACTOR (res) = 1;
1171 LOOP_VINFO_TARGET_COST_DATA (res) = init_cost (loop);
1172 LOOP_VINFO_PEELING_FOR_GAPS (res) = false;
1173 LOOP_VINFO_PEELING_FOR_NITER (res) = false;
1174 LOOP_VINFO_OPERANDS_SWAPPED (res) = false;
1175 LOOP_VINFO_ORIG_LOOP_INFO (res) = NULL;
1177 return res;
1181 /* Function destroy_loop_vec_info.
1183 Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the
1184 stmts in the loop. */
1186 void
1187 destroy_loop_vec_info (loop_vec_info loop_vinfo, bool clean_stmts)
1189 struct loop *loop;
1190 basic_block *bbs;
1191 int nbbs;
1192 gimple_stmt_iterator si;
1193 int j;
1194 vec<slp_instance> slp_instances;
1195 slp_instance instance;
1196 bool swapped;
1198 if (!loop_vinfo)
1199 return;
1201 loop = LOOP_VINFO_LOOP (loop_vinfo);
1203 bbs = LOOP_VINFO_BBS (loop_vinfo);
1204 nbbs = clean_stmts ? loop->num_nodes : 0;
1205 swapped = LOOP_VINFO_OPERANDS_SWAPPED (loop_vinfo);
1207 for (j = 0; j < nbbs; j++)
1209 basic_block bb = bbs[j];
1210 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
1211 free_stmt_vec_info (gsi_stmt (si));
1213 for (si = gsi_start_bb (bb); !gsi_end_p (si); )
1215 gimple *stmt = gsi_stmt (si);
1217 /* We may have broken canonical form by moving a constant
1218 into RHS1 of a commutative op. Fix such occurrences. */
1219 if (swapped && is_gimple_assign (stmt))
1221 enum tree_code code = gimple_assign_rhs_code (stmt);
1223 if ((code == PLUS_EXPR
1224 || code == POINTER_PLUS_EXPR
1225 || code == MULT_EXPR)
1226 && CONSTANT_CLASS_P (gimple_assign_rhs1 (stmt)))
1227 swap_ssa_operands (stmt,
1228 gimple_assign_rhs1_ptr (stmt),
1229 gimple_assign_rhs2_ptr (stmt));
1230 else if (code == COND_EXPR
1231 && CONSTANT_CLASS_P (gimple_assign_rhs2 (stmt)))
1233 tree cond_expr = gimple_assign_rhs1 (stmt);
1234 enum tree_code cond_code = TREE_CODE (cond_expr);
1236 if (TREE_CODE_CLASS (cond_code) == tcc_comparison)
1238 bool honor_nans = HONOR_NANS (TREE_OPERAND (cond_expr,
1239 0));
1240 cond_code = invert_tree_comparison (cond_code,
1241 honor_nans);
1242 if (cond_code != ERROR_MARK)
1244 TREE_SET_CODE (cond_expr, cond_code);
1245 swap_ssa_operands (stmt,
1246 gimple_assign_rhs2_ptr (stmt),
1247 gimple_assign_rhs3_ptr (stmt));
1253 /* Free stmt_vec_info. */
1254 free_stmt_vec_info (stmt);
1255 gsi_next (&si);
1259 free (LOOP_VINFO_BBS (loop_vinfo));
1260 vect_destroy_datarefs (loop_vinfo);
1261 free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
1262 LOOP_VINFO_LOOP_NEST (loop_vinfo).release ();
1263 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).release ();
1264 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo).release ();
1265 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).release ();
1266 slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
1267 FOR_EACH_VEC_ELT (slp_instances, j, instance)
1268 vect_free_slp_instance (instance);
1270 LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
1271 LOOP_VINFO_GROUPED_STORES (loop_vinfo).release ();
1272 LOOP_VINFO_REDUCTIONS (loop_vinfo).release ();
1273 LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo).release ();
1275 destroy_cost_data (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
1276 loop_vinfo->scalar_cost_vec.release ();
1278 free (loop_vinfo);
1279 loop->aux = NULL;
1283 /* Calculate the cost of one scalar iteration of the loop. */
1284 static void
1285 vect_compute_single_scalar_iteration_cost (loop_vec_info loop_vinfo)
1287 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1288 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1289 int nbbs = loop->num_nodes, factor, scalar_single_iter_cost = 0;
1290 int innerloop_iters, i;
1292 /* Count statements in scalar loop. Using this as scalar cost for a single
1293 iteration for now.
1295 TODO: Add outer loop support.
1297 TODO: Consider assigning different costs to different scalar
1298 statements. */
1300 /* FORNOW. */
1301 innerloop_iters = 1;
1302 if (loop->inner)
1303 innerloop_iters = 50; /* FIXME */
1305 for (i = 0; i < nbbs; i++)
1307 gimple_stmt_iterator si;
1308 basic_block bb = bbs[i];
1310 if (bb->loop_father == loop->inner)
1311 factor = innerloop_iters;
1312 else
1313 factor = 1;
1315 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1317 gimple *stmt = gsi_stmt (si);
1318 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1320 if (!is_gimple_assign (stmt) && !is_gimple_call (stmt))
1321 continue;
1323 /* Skip stmts that are not vectorized inside the loop. */
1324 if (stmt_info
1325 && !STMT_VINFO_RELEVANT_P (stmt_info)
1326 && (!STMT_VINFO_LIVE_P (stmt_info)
1327 || !VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
1328 && !STMT_VINFO_IN_PATTERN_P (stmt_info))
1329 continue;
1331 vect_cost_for_stmt kind;
1332 if (STMT_VINFO_DATA_REF (stmt_info))
1334 if (DR_IS_READ (STMT_VINFO_DATA_REF (stmt_info)))
1335 kind = scalar_load;
1336 else
1337 kind = scalar_store;
1339 else
1340 kind = scalar_stmt;
1342 scalar_single_iter_cost
1343 += record_stmt_cost (&LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
1344 factor, kind, stmt_info, 0, vect_prologue);
1347 LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST (loop_vinfo)
1348 = scalar_single_iter_cost;
1352 /* Function vect_analyze_loop_form_1.
1354 Verify that certain CFG restrictions hold, including:
1355 - the loop has a pre-header
1356 - the loop has a single entry and exit
1357 - the loop exit condition is simple enough
1358 - the number of iterations can be analyzed, i.e, a countable loop. The
1359 niter could be analyzed under some assumptions. */
1361 bool
1362 vect_analyze_loop_form_1 (struct loop *loop, gcond **loop_cond,
1363 tree *assumptions, tree *number_of_iterationsm1,
1364 tree *number_of_iterations, gcond **inner_loop_cond)
1366 if (dump_enabled_p ())
1367 dump_printf_loc (MSG_NOTE, vect_location,
1368 "=== vect_analyze_loop_form ===\n");
1370 /* Different restrictions apply when we are considering an inner-most loop,
1371 vs. an outer (nested) loop.
1372 (FORNOW. May want to relax some of these restrictions in the future). */
1374 if (!loop->inner)
1376 /* Inner-most loop. We currently require that the number of BBs is
1377 exactly 2 (the header and latch). Vectorizable inner-most loops
1378 look like this:
1380 (pre-header)
1382 header <--------+
1383 | | |
1384 | +--> latch --+
1386 (exit-bb) */
1388 if (loop->num_nodes != 2)
1390 if (dump_enabled_p ())
1391 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1392 "not vectorized: control flow in loop.\n");
1393 return false;
1396 if (empty_block_p (loop->header))
1398 if (dump_enabled_p ())
1399 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1400 "not vectorized: empty loop.\n");
1401 return false;
1404 else
1406 struct loop *innerloop = loop->inner;
1407 edge entryedge;
1409 /* Nested loop. We currently require that the loop is doubly-nested,
1410 contains a single inner loop, and the number of BBs is exactly 5.
1411 Vectorizable outer-loops look like this:
1413 (pre-header)
1415 header <---+
1417 inner-loop |
1419 tail ------+
1421 (exit-bb)
1423 The inner-loop has the properties expected of inner-most loops
1424 as described above. */
1426 if ((loop->inner)->inner || (loop->inner)->next)
1428 if (dump_enabled_p ())
1429 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1430 "not vectorized: multiple nested loops.\n");
1431 return false;
1434 if (loop->num_nodes != 5)
1436 if (dump_enabled_p ())
1437 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1438 "not vectorized: control flow in loop.\n");
1439 return false;
1442 entryedge = loop_preheader_edge (innerloop);
1443 if (entryedge->src != loop->header
1444 || !single_exit (innerloop)
1445 || single_exit (innerloop)->dest != EDGE_PRED (loop->latch, 0)->src)
1447 if (dump_enabled_p ())
1448 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1449 "not vectorized: unsupported outerloop form.\n");
1450 return false;
1453 /* Analyze the inner-loop. */
1454 tree inner_niterm1, inner_niter, inner_assumptions;
1455 if (! vect_analyze_loop_form_1 (loop->inner, inner_loop_cond,
1456 &inner_assumptions, &inner_niterm1,
1457 &inner_niter, NULL)
1458 /* Don't support analyzing niter under assumptions for inner
1459 loop. */
1460 || !integer_onep (inner_assumptions))
1462 if (dump_enabled_p ())
1463 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1464 "not vectorized: Bad inner loop.\n");
1465 return false;
1468 if (!expr_invariant_in_loop_p (loop, inner_niter))
1470 if (dump_enabled_p ())
1471 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1472 "not vectorized: inner-loop count not"
1473 " invariant.\n");
1474 return false;
1477 if (dump_enabled_p ())
1478 dump_printf_loc (MSG_NOTE, vect_location,
1479 "Considering outer-loop vectorization.\n");
1482 if (!single_exit (loop)
1483 || EDGE_COUNT (loop->header->preds) != 2)
1485 if (dump_enabled_p ())
1487 if (!single_exit (loop))
1488 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1489 "not vectorized: multiple exits.\n");
1490 else if (EDGE_COUNT (loop->header->preds) != 2)
1491 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1492 "not vectorized: too many incoming edges.\n");
1494 return false;
1497 /* We assume that the loop exit condition is at the end of the loop. i.e,
1498 that the loop is represented as a do-while (with a proper if-guard
1499 before the loop if needed), where the loop header contains all the
1500 executable statements, and the latch is empty. */
1501 if (!empty_block_p (loop->latch)
1502 || !gimple_seq_empty_p (phi_nodes (loop->latch)))
1504 if (dump_enabled_p ())
1505 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1506 "not vectorized: latch block not empty.\n");
1507 return false;
1510 /* Make sure the exit is not abnormal. */
1511 edge e = single_exit (loop);
1512 if (e->flags & EDGE_ABNORMAL)
1514 if (dump_enabled_p ())
1515 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1516 "not vectorized: abnormal loop exit edge.\n");
1517 return false;
1520 *loop_cond = vect_get_loop_niters (loop, assumptions, number_of_iterations,
1521 number_of_iterationsm1);
1522 if (!*loop_cond)
1524 if (dump_enabled_p ())
1525 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1526 "not vectorized: complicated exit condition.\n");
1527 return false;
1530 if (integer_zerop (*assumptions)
1531 || !*number_of_iterations
1532 || chrec_contains_undetermined (*number_of_iterations))
1534 if (dump_enabled_p ())
1535 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1536 "not vectorized: number of iterations cannot be "
1537 "computed.\n");
1538 return false;
1541 if (integer_zerop (*number_of_iterations))
1543 if (dump_enabled_p ())
1544 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1545 "not vectorized: number of iterations = 0.\n");
1546 return false;
1549 return true;
1552 /* Analyze LOOP form and return a loop_vec_info if it is of suitable form. */
1554 loop_vec_info
1555 vect_analyze_loop_form (struct loop *loop)
1557 tree assumptions, number_of_iterations, number_of_iterationsm1;
1558 gcond *loop_cond, *inner_loop_cond = NULL;
1560 if (! vect_analyze_loop_form_1 (loop, &loop_cond,
1561 &assumptions, &number_of_iterationsm1,
1562 &number_of_iterations, &inner_loop_cond))
1563 return NULL;
1565 loop_vec_info loop_vinfo = new_loop_vec_info (loop);
1566 LOOP_VINFO_NITERSM1 (loop_vinfo) = number_of_iterationsm1;
1567 LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;
1568 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = number_of_iterations;
1569 if (!integer_onep (assumptions))
1571 /* We consider to vectorize this loop by versioning it under
1572 some assumptions. In order to do this, we need to clear
1573 existing information computed by scev and niter analyzer. */
1574 scev_reset_htab ();
1575 free_numbers_of_iterations_estimates_loop (loop);
1576 /* Also set flag for this loop so that following scev and niter
1577 analysis are done under the assumptions. */
1578 loop_constraint_set (loop, LOOP_C_FINITE);
1579 /* Also record the assumptions for versioning. */
1580 LOOP_VINFO_NITERS_ASSUMPTIONS (loop_vinfo) = assumptions;
1583 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
1585 if (dump_enabled_p ())
1587 dump_printf_loc (MSG_NOTE, vect_location,
1588 "Symbolic number of iterations is ");
1589 dump_generic_expr (MSG_NOTE, TDF_DETAILS, number_of_iterations);
1590 dump_printf (MSG_NOTE, "\n");
1594 STMT_VINFO_TYPE (vinfo_for_stmt (loop_cond)) = loop_exit_ctrl_vec_info_type;
1595 if (inner_loop_cond)
1596 STMT_VINFO_TYPE (vinfo_for_stmt (inner_loop_cond))
1597 = loop_exit_ctrl_vec_info_type;
1599 gcc_assert (!loop->aux);
1600 loop->aux = loop_vinfo;
1601 return loop_vinfo;
1606 /* Scan the loop stmts and dependent on whether there are any (non-)SLP
1607 statements update the vectorization factor. */
1609 static void
1610 vect_update_vf_for_slp (loop_vec_info loop_vinfo)
1612 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1613 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1614 int nbbs = loop->num_nodes;
1615 unsigned int vectorization_factor;
1616 int i;
1618 if (dump_enabled_p ())
1619 dump_printf_loc (MSG_NOTE, vect_location,
1620 "=== vect_update_vf_for_slp ===\n");
1622 vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1623 gcc_assert (vectorization_factor != 0);
1625 /* If all the stmts in the loop can be SLPed, we perform only SLP, and
1626 vectorization factor of the loop is the unrolling factor required by
1627 the SLP instances. If that unrolling factor is 1, we say, that we
1628 perform pure SLP on loop - cross iteration parallelism is not
1629 exploited. */
1630 bool only_slp_in_loop = true;
1631 for (i = 0; i < nbbs; i++)
1633 basic_block bb = bbs[i];
1634 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
1635 gsi_next (&si))
1637 gimple *stmt = gsi_stmt (si);
1638 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1639 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
1640 && STMT_VINFO_RELATED_STMT (stmt_info))
1642 stmt = STMT_VINFO_RELATED_STMT (stmt_info);
1643 stmt_info = vinfo_for_stmt (stmt);
1645 if ((STMT_VINFO_RELEVANT_P (stmt_info)
1646 || VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
1647 && !PURE_SLP_STMT (stmt_info))
1648 /* STMT needs both SLP and loop-based vectorization. */
1649 only_slp_in_loop = false;
1653 if (only_slp_in_loop)
1654 vectorization_factor = LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo);
1655 else
1656 vectorization_factor
1657 = least_common_multiple (vectorization_factor,
1658 LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo));
1660 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
1661 if (dump_enabled_p ())
1662 dump_printf_loc (MSG_NOTE, vect_location,
1663 "Updating vectorization factor to %d\n",
1664 vectorization_factor);
1667 /* Function vect_analyze_loop_operations.
1669 Scan the loop stmts and make sure they are all vectorizable. */
1671 static bool
1672 vect_analyze_loop_operations (loop_vec_info loop_vinfo)
1674 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1675 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1676 int nbbs = loop->num_nodes;
1677 int i;
1678 stmt_vec_info stmt_info;
1679 bool need_to_vectorize = false;
1680 bool ok;
1682 if (dump_enabled_p ())
1683 dump_printf_loc (MSG_NOTE, vect_location,
1684 "=== vect_analyze_loop_operations ===\n");
1686 for (i = 0; i < nbbs; i++)
1688 basic_block bb = bbs[i];
1690 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
1691 gsi_next (&si))
1693 gphi *phi = si.phi ();
1694 ok = true;
1696 stmt_info = vinfo_for_stmt (phi);
1697 if (dump_enabled_p ())
1699 dump_printf_loc (MSG_NOTE, vect_location, "examining phi: ");
1700 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1702 if (virtual_operand_p (gimple_phi_result (phi)))
1703 continue;
1705 /* Inner-loop loop-closed exit phi in outer-loop vectorization
1706 (i.e., a phi in the tail of the outer-loop). */
1707 if (! is_loop_header_bb_p (bb))
1709 /* FORNOW: we currently don't support the case that these phis
1710 are not used in the outerloop (unless it is double reduction,
1711 i.e., this phi is vect_reduction_def), cause this case
1712 requires to actually do something here. */
1713 if ((!STMT_VINFO_RELEVANT_P (stmt_info)
1714 || STMT_VINFO_LIVE_P (stmt_info))
1715 && STMT_VINFO_DEF_TYPE (stmt_info)
1716 != vect_double_reduction_def)
1718 if (dump_enabled_p ())
1719 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1720 "Unsupported loop-closed phi in "
1721 "outer-loop.\n");
1722 return false;
1725 /* If PHI is used in the outer loop, we check that its operand
1726 is defined in the inner loop. */
1727 if (STMT_VINFO_RELEVANT_P (stmt_info))
1729 tree phi_op;
1730 gimple *op_def_stmt;
1732 if (gimple_phi_num_args (phi) != 1)
1733 return false;
1735 phi_op = PHI_ARG_DEF (phi, 0);
1736 if (TREE_CODE (phi_op) != SSA_NAME)
1737 return false;
1739 op_def_stmt = SSA_NAME_DEF_STMT (phi_op);
1740 if (gimple_nop_p (op_def_stmt)
1741 || !flow_bb_inside_loop_p (loop, gimple_bb (op_def_stmt))
1742 || !vinfo_for_stmt (op_def_stmt))
1743 return false;
1745 if (STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1746 != vect_used_in_outer
1747 && STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1748 != vect_used_in_outer_by_reduction)
1749 return false;
1752 continue;
1755 gcc_assert (stmt_info);
1757 if ((STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope
1758 || STMT_VINFO_LIVE_P (stmt_info))
1759 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
1761 /* A scalar-dependence cycle that we don't support. */
1762 if (dump_enabled_p ())
1763 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1764 "not vectorized: scalar dependence cycle.\n");
1765 return false;
1768 if (STMT_VINFO_RELEVANT_P (stmt_info))
1770 need_to_vectorize = true;
1771 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
1772 ok = vectorizable_induction (phi, NULL, NULL);
1775 if (ok && STMT_VINFO_LIVE_P (stmt_info))
1776 ok = vectorizable_live_operation (phi, NULL, NULL, -1, NULL);
1778 if (!ok)
1780 if (dump_enabled_p ())
1782 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1783 "not vectorized: relevant phi not "
1784 "supported: ");
1785 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, phi, 0);
1787 return false;
1791 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
1792 gsi_next (&si))
1794 gimple *stmt = gsi_stmt (si);
1795 if (!gimple_clobber_p (stmt)
1796 && !vect_analyze_stmt (stmt, &need_to_vectorize, NULL))
1797 return false;
1799 } /* bbs */
1801 /* All operations in the loop are either irrelevant (deal with loop
1802 control, or dead), or only used outside the loop and can be moved
1803 out of the loop (e.g. invariants, inductions). The loop can be
1804 optimized away by scalar optimizations. We're better off not
1805 touching this loop. */
1806 if (!need_to_vectorize)
1808 if (dump_enabled_p ())
1809 dump_printf_loc (MSG_NOTE, vect_location,
1810 "All the computation can be taken out of the loop.\n");
1811 if (dump_enabled_p ())
1812 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1813 "not vectorized: redundant loop. no profit to "
1814 "vectorize.\n");
1815 return false;
1818 return true;
1822 /* Function vect_analyze_loop_2.
1824 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1825 for it. The different analyses will record information in the
1826 loop_vec_info struct. */
1827 static bool
1828 vect_analyze_loop_2 (loop_vec_info loop_vinfo, bool &fatal)
1830 bool ok;
1831 int max_vf = MAX_VECTORIZATION_FACTOR;
1832 int min_vf = 2;
1833 unsigned int n_stmts = 0;
1835 /* The first group of checks is independent of the vector size. */
1836 fatal = true;
1838 /* Find all data references in the loop (which correspond to vdefs/vuses)
1839 and analyze their evolution in the loop. */
1841 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1843 loop_p loop = LOOP_VINFO_LOOP (loop_vinfo);
1844 if (!find_loop_nest (loop, &LOOP_VINFO_LOOP_NEST (loop_vinfo)))
1846 if (dump_enabled_p ())
1847 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1848 "not vectorized: loop nest containing two "
1849 "or more consecutive inner loops cannot be "
1850 "vectorized\n");
1851 return false;
1854 for (unsigned i = 0; i < loop->num_nodes; i++)
1855 for (gimple_stmt_iterator gsi = gsi_start_bb (bbs[i]);
1856 !gsi_end_p (gsi); gsi_next (&gsi))
1858 gimple *stmt = gsi_stmt (gsi);
1859 if (is_gimple_debug (stmt))
1860 continue;
1861 ++n_stmts;
1862 if (!find_data_references_in_stmt (loop, stmt,
1863 &LOOP_VINFO_DATAREFS (loop_vinfo)))
1865 if (is_gimple_call (stmt) && loop->safelen)
1867 tree fndecl = gimple_call_fndecl (stmt), op;
1868 if (fndecl != NULL_TREE)
1870 cgraph_node *node = cgraph_node::get (fndecl);
1871 if (node != NULL && node->simd_clones != NULL)
1873 unsigned int j, n = gimple_call_num_args (stmt);
1874 for (j = 0; j < n; j++)
1876 op = gimple_call_arg (stmt, j);
1877 if (DECL_P (op)
1878 || (REFERENCE_CLASS_P (op)
1879 && get_base_address (op)))
1880 break;
1882 op = gimple_call_lhs (stmt);
1883 /* Ignore #pragma omp declare simd functions
1884 if they don't have data references in the
1885 call stmt itself. */
1886 if (j == n
1887 && !(op
1888 && (DECL_P (op)
1889 || (REFERENCE_CLASS_P (op)
1890 && get_base_address (op)))))
1891 continue;
1895 if (dump_enabled_p ())
1896 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1897 "not vectorized: loop contains function "
1898 "calls or data references that cannot "
1899 "be analyzed\n");
1900 return false;
1904 /* Analyze the data references and also adjust the minimal
1905 vectorization factor according to the loads and stores. */
1907 ok = vect_analyze_data_refs (loop_vinfo, &min_vf);
1908 if (!ok)
1910 if (dump_enabled_p ())
1911 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1912 "bad data references.\n");
1913 return false;
1916 /* Classify all cross-iteration scalar data-flow cycles.
1917 Cross-iteration cycles caused by virtual phis are analyzed separately. */
1918 vect_analyze_scalar_cycles (loop_vinfo);
1920 vect_pattern_recog (loop_vinfo);
1922 vect_fixup_scalar_cycles_with_patterns (loop_vinfo);
1924 /* Analyze the access patterns of the data-refs in the loop (consecutive,
1925 complex, etc.). FORNOW: Only handle consecutive access pattern. */
1927 ok = vect_analyze_data_ref_accesses (loop_vinfo);
1928 if (!ok)
1930 if (dump_enabled_p ())
1931 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1932 "bad data access.\n");
1933 return false;
1936 /* Data-flow analysis to detect stmts that do not need to be vectorized. */
1938 ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
1939 if (!ok)
1941 if (dump_enabled_p ())
1942 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1943 "unexpected pattern.\n");
1944 return false;
1947 /* While the rest of the analysis below depends on it in some way. */
1948 fatal = false;
1950 /* Analyze data dependences between the data-refs in the loop
1951 and adjust the maximum vectorization factor according to
1952 the dependences.
1953 FORNOW: fail at the first data dependence that we encounter. */
1955 ok = vect_analyze_data_ref_dependences (loop_vinfo, &max_vf);
1956 if (!ok
1957 || max_vf < min_vf)
1959 if (dump_enabled_p ())
1960 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1961 "bad data dependence.\n");
1962 return false;
1965 ok = vect_determine_vectorization_factor (loop_vinfo);
1966 if (!ok)
1968 if (dump_enabled_p ())
1969 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1970 "can't determine vectorization factor.\n");
1971 return false;
1973 if (max_vf < LOOP_VINFO_VECT_FACTOR (loop_vinfo))
1975 if (dump_enabled_p ())
1976 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1977 "bad data dependence.\n");
1978 return false;
1981 /* Compute the scalar iteration cost. */
1982 vect_compute_single_scalar_iteration_cost (loop_vinfo);
1984 int saved_vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1985 HOST_WIDE_INT estimated_niter;
1986 unsigned th;
1987 int min_scalar_loop_bound;
1989 /* Check the SLP opportunities in the loop, analyze and build SLP trees. */
1990 ok = vect_analyze_slp (loop_vinfo, n_stmts);
1991 if (!ok)
1992 return false;
1994 /* If there are any SLP instances mark them as pure_slp. */
1995 bool slp = vect_make_slp_decision (loop_vinfo);
1996 if (slp)
1998 /* Find stmts that need to be both vectorized and SLPed. */
1999 vect_detect_hybrid_slp (loop_vinfo);
2001 /* Update the vectorization factor based on the SLP decision. */
2002 vect_update_vf_for_slp (loop_vinfo);
2005 /* This is the point where we can re-start analysis with SLP forced off. */
2006 start_over:
2008 /* Now the vectorization factor is final. */
2009 unsigned vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2010 gcc_assert (vectorization_factor != 0);
2012 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) && dump_enabled_p ())
2013 dump_printf_loc (MSG_NOTE, vect_location,
2014 "vectorization_factor = %d, niters = "
2015 HOST_WIDE_INT_PRINT_DEC "\n", vectorization_factor,
2016 LOOP_VINFO_INT_NITERS (loop_vinfo));
2018 HOST_WIDE_INT max_niter
2019 = likely_max_stmt_executions_int (LOOP_VINFO_LOOP (loop_vinfo));
2020 if ((LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2021 && (LOOP_VINFO_INT_NITERS (loop_vinfo) < vectorization_factor))
2022 || (max_niter != -1
2023 && (unsigned HOST_WIDE_INT) max_niter < vectorization_factor))
2025 if (dump_enabled_p ())
2026 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2027 "not vectorized: iteration count smaller than "
2028 "vectorization factor.\n");
2029 return false;
2032 /* Analyze the alignment of the data-refs in the loop.
2033 Fail if a data reference is found that cannot be vectorized. */
2035 ok = vect_analyze_data_refs_alignment (loop_vinfo);
2036 if (!ok)
2038 if (dump_enabled_p ())
2039 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2040 "bad data alignment.\n");
2041 return false;
2044 /* Prune the list of ddrs to be tested at run-time by versioning for alias.
2045 It is important to call pruning after vect_analyze_data_ref_accesses,
2046 since we use grouping information gathered by interleaving analysis. */
2047 ok = vect_prune_runtime_alias_test_list (loop_vinfo);
2048 if (!ok)
2049 return false;
2051 /* Do not invoke vect_enhance_data_refs_alignment for eplilogue
2052 vectorization. */
2053 if (!LOOP_VINFO_EPILOGUE_P (loop_vinfo))
2055 /* This pass will decide on using loop versioning and/or loop peeling in
2056 order to enhance the alignment of data references in the loop. */
2057 ok = vect_enhance_data_refs_alignment (loop_vinfo);
2058 if (!ok)
2060 if (dump_enabled_p ())
2061 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2062 "bad data alignment.\n");
2063 return false;
2067 if (slp)
2069 /* Analyze operations in the SLP instances. Note this may
2070 remove unsupported SLP instances which makes the above
2071 SLP kind detection invalid. */
2072 unsigned old_size = LOOP_VINFO_SLP_INSTANCES (loop_vinfo).length ();
2073 vect_slp_analyze_operations (LOOP_VINFO_SLP_INSTANCES (loop_vinfo),
2074 LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
2075 if (LOOP_VINFO_SLP_INSTANCES (loop_vinfo).length () != old_size)
2076 goto again;
2079 /* Scan all the remaining operations in the loop that are not subject
2080 to SLP and make sure they are vectorizable. */
2081 ok = vect_analyze_loop_operations (loop_vinfo);
2082 if (!ok)
2084 if (dump_enabled_p ())
2085 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2086 "bad operation or unsupported loop bound.\n");
2087 return false;
2090 /* If epilog loop is required because of data accesses with gaps,
2091 one additional iteration needs to be peeled. Check if there is
2092 enough iterations for vectorization. */
2093 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
2094 && LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
2096 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2097 tree scalar_niters = LOOP_VINFO_NITERSM1 (loop_vinfo);
2099 if (wi::to_widest (scalar_niters) < vf)
2101 if (dump_enabled_p ())
2102 dump_printf_loc (MSG_NOTE, vect_location,
2103 "loop has no enough iterations to support"
2104 " peeling for gaps.\n");
2105 return false;
2109 /* Analyze cost. Decide if worth while to vectorize. */
2110 int min_profitable_estimate, min_profitable_iters;
2111 vect_estimate_min_profitable_iters (loop_vinfo, &min_profitable_iters,
2112 &min_profitable_estimate);
2114 if (min_profitable_iters < 0)
2116 if (dump_enabled_p ())
2117 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2118 "not vectorized: vectorization not profitable.\n");
2119 if (dump_enabled_p ())
2120 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2121 "not vectorized: vector version will never be "
2122 "profitable.\n");
2123 goto again;
2126 min_scalar_loop_bound = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
2127 * vectorization_factor) - 1);
2129 /* Use the cost model only if it is more conservative than user specified
2130 threshold. */
2131 th = (unsigned) min_scalar_loop_bound;
2132 if (min_profitable_iters
2133 && (!min_scalar_loop_bound
2134 || min_profitable_iters > min_scalar_loop_bound))
2135 th = (unsigned) min_profitable_iters;
2137 LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = th;
2139 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2140 && LOOP_VINFO_INT_NITERS (loop_vinfo) <= th)
2142 if (dump_enabled_p ())
2143 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2144 "not vectorized: vectorization not profitable.\n");
2145 if (dump_enabled_p ())
2146 dump_printf_loc (MSG_NOTE, vect_location,
2147 "not vectorized: iteration count smaller than user "
2148 "specified loop bound parameter or minimum profitable "
2149 "iterations (whichever is more conservative).\n");
2150 goto again;
2153 estimated_niter
2154 = estimated_stmt_executions_int (LOOP_VINFO_LOOP (loop_vinfo));
2155 if (estimated_niter == -1)
2156 estimated_niter = max_niter;
2157 if (estimated_niter != -1
2158 && ((unsigned HOST_WIDE_INT) estimated_niter
2159 <= MAX (th, (unsigned)min_profitable_estimate)))
2161 if (dump_enabled_p ())
2162 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2163 "not vectorized: estimated iteration count too "
2164 "small.\n");
2165 if (dump_enabled_p ())
2166 dump_printf_loc (MSG_NOTE, vect_location,
2167 "not vectorized: estimated iteration count smaller "
2168 "than specified loop bound parameter or minimum "
2169 "profitable iterations (whichever is more "
2170 "conservative).\n");
2171 goto again;
2174 /* Decide whether we need to create an epilogue loop to handle
2175 remaining scalar iterations. */
2176 th = ((LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) + 1)
2177 / LOOP_VINFO_VECT_FACTOR (loop_vinfo))
2178 * LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2180 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2181 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
2183 if (ctz_hwi (LOOP_VINFO_INT_NITERS (loop_vinfo)
2184 - LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo))
2185 < exact_log2 (LOOP_VINFO_VECT_FACTOR (loop_vinfo)))
2186 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = true;
2188 else if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
2189 || (tree_ctz (LOOP_VINFO_NITERS (loop_vinfo))
2190 < (unsigned)exact_log2 (LOOP_VINFO_VECT_FACTOR (loop_vinfo))
2191 /* In case of versioning, check if the maximum number of
2192 iterations is greater than th. If they are identical,
2193 the epilogue is unnecessary. */
2194 && (!LOOP_REQUIRES_VERSIONING (loop_vinfo)
2195 || (unsigned HOST_WIDE_INT) max_niter > th)))
2196 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = true;
2198 /* If an epilogue loop is required make sure we can create one. */
2199 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
2200 || LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo))
2202 if (dump_enabled_p ())
2203 dump_printf_loc (MSG_NOTE, vect_location, "epilog loop required\n");
2204 if (!vect_can_advance_ivs_p (loop_vinfo)
2205 || !slpeel_can_duplicate_loop_p (LOOP_VINFO_LOOP (loop_vinfo),
2206 single_exit (LOOP_VINFO_LOOP
2207 (loop_vinfo))))
2209 if (dump_enabled_p ())
2210 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2211 "not vectorized: can't create required "
2212 "epilog loop\n");
2213 goto again;
2217 gcc_assert (vectorization_factor
2218 == (unsigned)LOOP_VINFO_VECT_FACTOR (loop_vinfo));
2220 /* Ok to vectorize! */
2221 return true;
2223 again:
2224 /* Try again with SLP forced off but if we didn't do any SLP there is
2225 no point in re-trying. */
2226 if (!slp)
2227 return false;
2229 /* If there are reduction chains re-trying will fail anyway. */
2230 if (! LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo).is_empty ())
2231 return false;
2233 /* Likewise if the grouped loads or stores in the SLP cannot be handled
2234 via interleaving or lane instructions. */
2235 slp_instance instance;
2236 slp_tree node;
2237 unsigned i, j;
2238 FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), i, instance)
2240 stmt_vec_info vinfo;
2241 vinfo = vinfo_for_stmt
2242 (SLP_TREE_SCALAR_STMTS (SLP_INSTANCE_TREE (instance))[0]);
2243 if (! STMT_VINFO_GROUPED_ACCESS (vinfo))
2244 continue;
2245 vinfo = vinfo_for_stmt (STMT_VINFO_GROUP_FIRST_ELEMENT (vinfo));
2246 unsigned int size = STMT_VINFO_GROUP_SIZE (vinfo);
2247 tree vectype = STMT_VINFO_VECTYPE (vinfo);
2248 if (! vect_store_lanes_supported (vectype, size)
2249 && ! vect_grouped_store_supported (vectype, size))
2250 return false;
2251 FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (instance), j, node)
2253 vinfo = vinfo_for_stmt (SLP_TREE_SCALAR_STMTS (node)[0]);
2254 vinfo = vinfo_for_stmt (STMT_VINFO_GROUP_FIRST_ELEMENT (vinfo));
2255 bool single_element_p = !STMT_VINFO_GROUP_NEXT_ELEMENT (vinfo);
2256 size = STMT_VINFO_GROUP_SIZE (vinfo);
2257 vectype = STMT_VINFO_VECTYPE (vinfo);
2258 if (! vect_load_lanes_supported (vectype, size)
2259 && ! vect_grouped_load_supported (vectype, single_element_p,
2260 size))
2261 return false;
2265 if (dump_enabled_p ())
2266 dump_printf_loc (MSG_NOTE, vect_location,
2267 "re-trying with SLP disabled\n");
2269 /* Roll back state appropriately. No SLP this time. */
2270 slp = false;
2271 /* Restore vectorization factor as it were without SLP. */
2272 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = saved_vectorization_factor;
2273 /* Free the SLP instances. */
2274 FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), j, instance)
2275 vect_free_slp_instance (instance);
2276 LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
2277 /* Reset SLP type to loop_vect on all stmts. */
2278 for (i = 0; i < LOOP_VINFO_LOOP (loop_vinfo)->num_nodes; ++i)
2280 basic_block bb = LOOP_VINFO_BBS (loop_vinfo)[i];
2281 for (gimple_stmt_iterator si = gsi_start_bb (bb);
2282 !gsi_end_p (si); gsi_next (&si))
2284 stmt_vec_info stmt_info = vinfo_for_stmt (gsi_stmt (si));
2285 STMT_SLP_TYPE (stmt_info) = loop_vect;
2286 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
2288 stmt_info = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (stmt_info));
2289 STMT_SLP_TYPE (stmt_info) = loop_vect;
2290 for (gimple_stmt_iterator pi
2291 = gsi_start (STMT_VINFO_PATTERN_DEF_SEQ (stmt_info));
2292 !gsi_end_p (pi); gsi_next (&pi))
2294 gimple *pstmt = gsi_stmt (pi);
2295 STMT_SLP_TYPE (vinfo_for_stmt (pstmt)) = loop_vect;
2300 /* Free optimized alias test DDRS. */
2301 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo).release ();
2302 /* Reset target cost data. */
2303 destroy_cost_data (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
2304 LOOP_VINFO_TARGET_COST_DATA (loop_vinfo)
2305 = init_cost (LOOP_VINFO_LOOP (loop_vinfo));
2306 /* Reset assorted flags. */
2307 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = false;
2308 LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = false;
2309 LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = 0;
2311 goto start_over;
2314 /* Function vect_analyze_loop.
2316 Apply a set of analyses on LOOP, and create a loop_vec_info struct
2317 for it. The different analyses will record information in the
2318 loop_vec_info struct. If ORIG_LOOP_VINFO is not NULL epilogue must
2319 be vectorized. */
2320 loop_vec_info
2321 vect_analyze_loop (struct loop *loop, loop_vec_info orig_loop_vinfo)
2323 loop_vec_info loop_vinfo;
2324 unsigned int vector_sizes;
2326 /* Autodetect first vector size we try. */
2327 current_vector_size = 0;
2328 vector_sizes = targetm.vectorize.autovectorize_vector_sizes ();
2330 if (dump_enabled_p ())
2331 dump_printf_loc (MSG_NOTE, vect_location,
2332 "===== analyze_loop_nest =====\n");
2334 if (loop_outer (loop)
2335 && loop_vec_info_for_loop (loop_outer (loop))
2336 && LOOP_VINFO_VECTORIZABLE_P (loop_vec_info_for_loop (loop_outer (loop))))
2338 if (dump_enabled_p ())
2339 dump_printf_loc (MSG_NOTE, vect_location,
2340 "outer-loop already vectorized.\n");
2341 return NULL;
2344 while (1)
2346 /* Check the CFG characteristics of the loop (nesting, entry/exit). */
2347 loop_vinfo = vect_analyze_loop_form (loop);
2348 if (!loop_vinfo)
2350 if (dump_enabled_p ())
2351 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2352 "bad loop form.\n");
2353 return NULL;
2356 bool fatal = false;
2358 if (orig_loop_vinfo)
2359 LOOP_VINFO_ORIG_LOOP_INFO (loop_vinfo) = orig_loop_vinfo;
2361 if (vect_analyze_loop_2 (loop_vinfo, fatal))
2363 LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
2365 return loop_vinfo;
2368 destroy_loop_vec_info (loop_vinfo, true);
2370 vector_sizes &= ~current_vector_size;
2371 if (fatal
2372 || vector_sizes == 0
2373 || current_vector_size == 0)
2374 return NULL;
2376 /* Try the next biggest vector size. */
2377 current_vector_size = 1 << floor_log2 (vector_sizes);
2378 if (dump_enabled_p ())
2379 dump_printf_loc (MSG_NOTE, vect_location,
2380 "***** Re-trying analysis with "
2381 "vector size %d\n", current_vector_size);
2386 /* Function reduction_code_for_scalar_code
2388 Input:
2389 CODE - tree_code of a reduction operations.
2391 Output:
2392 REDUC_CODE - the corresponding tree-code to be used to reduce the
2393 vector of partial results into a single scalar result, or ERROR_MARK
2394 if the operation is a supported reduction operation, but does not have
2395 such a tree-code.
2397 Return FALSE if CODE currently cannot be vectorized as reduction. */
2399 static bool
2400 reduction_code_for_scalar_code (enum tree_code code,
2401 enum tree_code *reduc_code)
2403 switch (code)
2405 case MAX_EXPR:
2406 *reduc_code = REDUC_MAX_EXPR;
2407 return true;
2409 case MIN_EXPR:
2410 *reduc_code = REDUC_MIN_EXPR;
2411 return true;
2413 case PLUS_EXPR:
2414 *reduc_code = REDUC_PLUS_EXPR;
2415 return true;
2417 case MULT_EXPR:
2418 case MINUS_EXPR:
2419 case BIT_IOR_EXPR:
2420 case BIT_XOR_EXPR:
2421 case BIT_AND_EXPR:
2422 *reduc_code = ERROR_MARK;
2423 return true;
2425 default:
2426 return false;
2431 /* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
2432 STMT is printed with a message MSG. */
2434 static void
2435 report_vect_op (int msg_type, gimple *stmt, const char *msg)
2437 dump_printf_loc (msg_type, vect_location, "%s", msg);
2438 dump_gimple_stmt (msg_type, TDF_SLIM, stmt, 0);
2442 /* Detect SLP reduction of the form:
2444 #a1 = phi <a5, a0>
2445 a2 = operation (a1)
2446 a3 = operation (a2)
2447 a4 = operation (a3)
2448 a5 = operation (a4)
2450 #a = phi <a5>
2452 PHI is the reduction phi node (#a1 = phi <a5, a0> above)
2453 FIRST_STMT is the first reduction stmt in the chain
2454 (a2 = operation (a1)).
2456 Return TRUE if a reduction chain was detected. */
2458 static bool
2459 vect_is_slp_reduction (loop_vec_info loop_info, gimple *phi,
2460 gimple *first_stmt)
2462 struct loop *loop = (gimple_bb (phi))->loop_father;
2463 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
2464 enum tree_code code;
2465 gimple *current_stmt = NULL, *loop_use_stmt = NULL, *first, *next_stmt;
2466 stmt_vec_info use_stmt_info, current_stmt_info;
2467 tree lhs;
2468 imm_use_iterator imm_iter;
2469 use_operand_p use_p;
2470 int nloop_uses, size = 0, n_out_of_loop_uses;
2471 bool found = false;
2473 if (loop != vect_loop)
2474 return false;
2476 lhs = PHI_RESULT (phi);
2477 code = gimple_assign_rhs_code (first_stmt);
2478 while (1)
2480 nloop_uses = 0;
2481 n_out_of_loop_uses = 0;
2482 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
2484 gimple *use_stmt = USE_STMT (use_p);
2485 if (is_gimple_debug (use_stmt))
2486 continue;
2488 /* Check if we got back to the reduction phi. */
2489 if (use_stmt == phi)
2491 loop_use_stmt = use_stmt;
2492 found = true;
2493 break;
2496 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2498 loop_use_stmt = use_stmt;
2499 nloop_uses++;
2501 else
2502 n_out_of_loop_uses++;
2504 /* There are can be either a single use in the loop or two uses in
2505 phi nodes. */
2506 if (nloop_uses > 1 || (n_out_of_loop_uses && nloop_uses))
2507 return false;
2510 if (found)
2511 break;
2513 /* We reached a statement with no loop uses. */
2514 if (nloop_uses == 0)
2515 return false;
2517 /* This is a loop exit phi, and we haven't reached the reduction phi. */
2518 if (gimple_code (loop_use_stmt) == GIMPLE_PHI)
2519 return false;
2521 if (!is_gimple_assign (loop_use_stmt)
2522 || code != gimple_assign_rhs_code (loop_use_stmt)
2523 || !flow_bb_inside_loop_p (loop, gimple_bb (loop_use_stmt)))
2524 return false;
2526 /* Insert USE_STMT into reduction chain. */
2527 use_stmt_info = vinfo_for_stmt (loop_use_stmt);
2528 if (current_stmt)
2530 current_stmt_info = vinfo_for_stmt (current_stmt);
2531 GROUP_NEXT_ELEMENT (current_stmt_info) = loop_use_stmt;
2532 GROUP_FIRST_ELEMENT (use_stmt_info)
2533 = GROUP_FIRST_ELEMENT (current_stmt_info);
2535 else
2536 GROUP_FIRST_ELEMENT (use_stmt_info) = loop_use_stmt;
2538 lhs = gimple_assign_lhs (loop_use_stmt);
2539 current_stmt = loop_use_stmt;
2540 size++;
2543 if (!found || loop_use_stmt != phi || size < 2)
2544 return false;
2546 /* Swap the operands, if needed, to make the reduction operand be the second
2547 operand. */
2548 lhs = PHI_RESULT (phi);
2549 next_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
2550 while (next_stmt)
2552 if (gimple_assign_rhs2 (next_stmt) == lhs)
2554 tree op = gimple_assign_rhs1 (next_stmt);
2555 gimple *def_stmt = NULL;
2557 if (TREE_CODE (op) == SSA_NAME)
2558 def_stmt = SSA_NAME_DEF_STMT (op);
2560 /* Check that the other def is either defined in the loop
2561 ("vect_internal_def"), or it's an induction (defined by a
2562 loop-header phi-node). */
2563 if (def_stmt
2564 && gimple_bb (def_stmt)
2565 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2566 && (is_gimple_assign (def_stmt)
2567 || is_gimple_call (def_stmt)
2568 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2569 == vect_induction_def
2570 || (gimple_code (def_stmt) == GIMPLE_PHI
2571 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2572 == vect_internal_def
2573 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
2575 lhs = gimple_assign_lhs (next_stmt);
2576 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
2577 continue;
2580 return false;
2582 else
2584 tree op = gimple_assign_rhs2 (next_stmt);
2585 gimple *def_stmt = NULL;
2587 if (TREE_CODE (op) == SSA_NAME)
2588 def_stmt = SSA_NAME_DEF_STMT (op);
2590 /* Check that the other def is either defined in the loop
2591 ("vect_internal_def"), or it's an induction (defined by a
2592 loop-header phi-node). */
2593 if (def_stmt
2594 && gimple_bb (def_stmt)
2595 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2596 && (is_gimple_assign (def_stmt)
2597 || is_gimple_call (def_stmt)
2598 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2599 == vect_induction_def
2600 || (gimple_code (def_stmt) == GIMPLE_PHI
2601 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2602 == vect_internal_def
2603 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
2605 if (dump_enabled_p ())
2607 dump_printf_loc (MSG_NOTE, vect_location, "swapping oprnds: ");
2608 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, next_stmt, 0);
2611 swap_ssa_operands (next_stmt,
2612 gimple_assign_rhs1_ptr (next_stmt),
2613 gimple_assign_rhs2_ptr (next_stmt));
2614 update_stmt (next_stmt);
2616 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (next_stmt)))
2617 LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
2619 else
2620 return false;
2623 lhs = gimple_assign_lhs (next_stmt);
2624 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
2627 /* Save the chain for further analysis in SLP detection. */
2628 first = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
2629 LOOP_VINFO_REDUCTION_CHAINS (loop_info).safe_push (first);
2630 GROUP_SIZE (vinfo_for_stmt (first)) = size;
2632 return true;
2636 /* Function vect_is_simple_reduction_1
2638 (1) Detect a cross-iteration def-use cycle that represents a simple
2639 reduction computation. We look for the following pattern:
2641 loop_header:
2642 a1 = phi < a0, a2 >
2643 a3 = ...
2644 a2 = operation (a3, a1)
2648 a3 = ...
2649 loop_header:
2650 a1 = phi < a0, a2 >
2651 a2 = operation (a3, a1)
2653 such that:
2654 1. operation is commutative and associative and it is safe to
2655 change the order of the computation (if CHECK_REDUCTION is true)
2656 2. no uses for a2 in the loop (a2 is used out of the loop)
2657 3. no uses of a1 in the loop besides the reduction operation
2658 4. no uses of a1 outside the loop.
2660 Conditions 1,4 are tested here.
2661 Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.
2663 (2) Detect a cross-iteration def-use cycle in nested loops, i.e.,
2664 nested cycles, if CHECK_REDUCTION is false.
2666 (3) Detect cycles of phi nodes in outer-loop vectorization, i.e., double
2667 reductions:
2669 a1 = phi < a0, a2 >
2670 inner loop (def of a3)
2671 a2 = phi < a3 >
2673 (4) Detect condition expressions, ie:
2674 for (int i = 0; i < N; i++)
2675 if (a[i] < val)
2676 ret_val = a[i];
2680 static gimple *
2681 vect_is_simple_reduction (loop_vec_info loop_info, gimple *phi,
2682 bool check_reduction, bool *double_reduc,
2683 bool need_wrapping_integral_overflow,
2684 enum vect_reduction_type *v_reduc_type)
2686 struct loop *loop = (gimple_bb (phi))->loop_father;
2687 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
2688 edge latch_e = loop_latch_edge (loop);
2689 tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
2690 gimple *def_stmt, *def1 = NULL, *def2 = NULL, *phi_use_stmt = NULL;
2691 enum tree_code orig_code, code;
2692 tree op1, op2, op3 = NULL_TREE, op4 = NULL_TREE;
2693 tree type;
2694 int nloop_uses;
2695 tree name;
2696 imm_use_iterator imm_iter;
2697 use_operand_p use_p;
2698 bool phi_def;
2700 *double_reduc = false;
2701 *v_reduc_type = TREE_CODE_REDUCTION;
2703 /* If CHECK_REDUCTION is true, we assume inner-most loop vectorization,
2704 otherwise, we assume outer loop vectorization. */
2705 gcc_assert ((check_reduction && loop == vect_loop)
2706 || (!check_reduction && flow_loop_nested_p (vect_loop, loop)));
2708 name = PHI_RESULT (phi);
2709 /* ??? If there are no uses of the PHI result the inner loop reduction
2710 won't be detected as possibly double-reduction by vectorizable_reduction
2711 because that tries to walk the PHI arg from the preheader edge which
2712 can be constant. See PR60382. */
2713 if (has_zero_uses (name))
2714 return NULL;
2715 nloop_uses = 0;
2716 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2718 gimple *use_stmt = USE_STMT (use_p);
2719 if (is_gimple_debug (use_stmt))
2720 continue;
2722 if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2724 if (dump_enabled_p ())
2725 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2726 "intermediate value used outside loop.\n");
2728 return NULL;
2731 nloop_uses++;
2732 if (nloop_uses > 1)
2734 if (dump_enabled_p ())
2735 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2736 "reduction used in loop.\n");
2737 return NULL;
2740 phi_use_stmt = use_stmt;
2743 if (TREE_CODE (loop_arg) != SSA_NAME)
2745 if (dump_enabled_p ())
2747 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2748 "reduction: not ssa_name: ");
2749 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, loop_arg);
2750 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
2752 return NULL;
2755 def_stmt = SSA_NAME_DEF_STMT (loop_arg);
2756 if (!def_stmt)
2758 if (dump_enabled_p ())
2759 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2760 "reduction: no def_stmt.\n");
2761 return NULL;
2764 if (!is_gimple_assign (def_stmt) && gimple_code (def_stmt) != GIMPLE_PHI)
2766 if (dump_enabled_p ())
2767 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, def_stmt, 0);
2768 return NULL;
2771 if (is_gimple_assign (def_stmt))
2773 name = gimple_assign_lhs (def_stmt);
2774 phi_def = false;
2776 else
2778 name = PHI_RESULT (def_stmt);
2779 phi_def = true;
2782 nloop_uses = 0;
2783 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2785 gimple *use_stmt = USE_STMT (use_p);
2786 if (is_gimple_debug (use_stmt))
2787 continue;
2788 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2789 nloop_uses++;
2790 if (nloop_uses > 1)
2792 if (dump_enabled_p ())
2793 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2794 "reduction used in loop.\n");
2795 return NULL;
2799 /* If DEF_STMT is a phi node itself, we expect it to have a single argument
2800 defined in the inner loop. */
2801 if (phi_def)
2803 op1 = PHI_ARG_DEF (def_stmt, 0);
2805 if (gimple_phi_num_args (def_stmt) != 1
2806 || TREE_CODE (op1) != SSA_NAME)
2808 if (dump_enabled_p ())
2809 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2810 "unsupported phi node definition.\n");
2812 return NULL;
2815 def1 = SSA_NAME_DEF_STMT (op1);
2816 if (gimple_bb (def1)
2817 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2818 && loop->inner
2819 && flow_bb_inside_loop_p (loop->inner, gimple_bb (def1))
2820 && is_gimple_assign (def1)
2821 && flow_bb_inside_loop_p (loop->inner, gimple_bb (phi_use_stmt)))
2823 if (dump_enabled_p ())
2824 report_vect_op (MSG_NOTE, def_stmt,
2825 "detected double reduction: ");
2827 *double_reduc = true;
2828 return def_stmt;
2831 return NULL;
2834 code = orig_code = gimple_assign_rhs_code (def_stmt);
2836 /* We can handle "res -= x[i]", which is non-associative by
2837 simply rewriting this into "res += -x[i]". Avoid changing
2838 gimple instruction for the first simple tests and only do this
2839 if we're allowed to change code at all. */
2840 if (code == MINUS_EXPR
2841 && (op1 = gimple_assign_rhs1 (def_stmt))
2842 && TREE_CODE (op1) == SSA_NAME
2843 && SSA_NAME_DEF_STMT (op1) == phi)
2844 code = PLUS_EXPR;
2846 if (code == COND_EXPR)
2848 if (check_reduction)
2849 *v_reduc_type = COND_REDUCTION;
2851 else if (!commutative_tree_code (code) || !associative_tree_code (code))
2853 if (dump_enabled_p ())
2854 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2855 "reduction: not commutative/associative: ");
2856 return NULL;
2859 if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
2861 if (code != COND_EXPR)
2863 if (dump_enabled_p ())
2864 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2865 "reduction: not binary operation: ");
2867 return NULL;
2870 op3 = gimple_assign_rhs1 (def_stmt);
2871 if (COMPARISON_CLASS_P (op3))
2873 op4 = TREE_OPERAND (op3, 1);
2874 op3 = TREE_OPERAND (op3, 0);
2877 op1 = gimple_assign_rhs2 (def_stmt);
2878 op2 = gimple_assign_rhs3 (def_stmt);
2880 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
2882 if (dump_enabled_p ())
2883 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2884 "reduction: uses not ssa_names: ");
2886 return NULL;
2889 else
2891 op1 = gimple_assign_rhs1 (def_stmt);
2892 op2 = gimple_assign_rhs2 (def_stmt);
2894 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
2896 if (dump_enabled_p ())
2897 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2898 "reduction: uses not ssa_names: ");
2900 return NULL;
2904 type = TREE_TYPE (gimple_assign_lhs (def_stmt));
2905 if ((TREE_CODE (op1) == SSA_NAME
2906 && !types_compatible_p (type,TREE_TYPE (op1)))
2907 || (TREE_CODE (op2) == SSA_NAME
2908 && !types_compatible_p (type, TREE_TYPE (op2)))
2909 || (op3 && TREE_CODE (op3) == SSA_NAME
2910 && !types_compatible_p (type, TREE_TYPE (op3)))
2911 || (op4 && TREE_CODE (op4) == SSA_NAME
2912 && !types_compatible_p (type, TREE_TYPE (op4))))
2914 if (dump_enabled_p ())
2916 dump_printf_loc (MSG_NOTE, vect_location,
2917 "reduction: multiple types: operation type: ");
2918 dump_generic_expr (MSG_NOTE, TDF_SLIM, type);
2919 dump_printf (MSG_NOTE, ", operands types: ");
2920 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2921 TREE_TYPE (op1));
2922 dump_printf (MSG_NOTE, ",");
2923 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2924 TREE_TYPE (op2));
2925 if (op3)
2927 dump_printf (MSG_NOTE, ",");
2928 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2929 TREE_TYPE (op3));
2932 if (op4)
2934 dump_printf (MSG_NOTE, ",");
2935 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2936 TREE_TYPE (op4));
2938 dump_printf (MSG_NOTE, "\n");
2941 return NULL;
2944 /* Check that it's ok to change the order of the computation.
2945 Generally, when vectorizing a reduction we change the order of the
2946 computation. This may change the behavior of the program in some
2947 cases, so we need to check that this is ok. One exception is when
2948 vectorizing an outer-loop: the inner-loop is executed sequentially,
2949 and therefore vectorizing reductions in the inner-loop during
2950 outer-loop vectorization is safe. */
2952 if (*v_reduc_type != COND_REDUCTION
2953 && check_reduction)
2955 /* CHECKME: check for !flag_finite_math_only too? */
2956 if (SCALAR_FLOAT_TYPE_P (type) && !flag_associative_math)
2958 /* Changing the order of operations changes the semantics. */
2959 if (dump_enabled_p ())
2960 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2961 "reduction: unsafe fp math optimization: ");
2962 return NULL;
2964 else if (INTEGRAL_TYPE_P (type))
2966 if (!operation_no_trapping_overflow (type, code))
2968 /* Changing the order of operations changes the semantics. */
2969 if (dump_enabled_p ())
2970 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2971 "reduction: unsafe int math optimization"
2972 " (overflow traps): ");
2973 return NULL;
2975 if (need_wrapping_integral_overflow
2976 && !TYPE_OVERFLOW_WRAPS (type)
2977 && operation_can_overflow (code))
2979 /* Changing the order of operations changes the semantics. */
2980 if (dump_enabled_p ())
2981 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2982 "reduction: unsafe int math optimization"
2983 " (overflow doesn't wrap): ");
2984 return NULL;
2987 else if (SAT_FIXED_POINT_TYPE_P (type))
2989 /* Changing the order of operations changes the semantics. */
2990 if (dump_enabled_p ())
2991 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2992 "reduction: unsafe fixed-point math optimization: ");
2993 return NULL;
2997 /* Reduction is safe. We're dealing with one of the following:
2998 1) integer arithmetic and no trapv
2999 2) floating point arithmetic, and special flags permit this optimization
3000 3) nested cycle (i.e., outer loop vectorization). */
3001 if (TREE_CODE (op1) == SSA_NAME)
3002 def1 = SSA_NAME_DEF_STMT (op1);
3004 if (TREE_CODE (op2) == SSA_NAME)
3005 def2 = SSA_NAME_DEF_STMT (op2);
3007 if (code != COND_EXPR
3008 && ((!def1 || gimple_nop_p (def1)) && (!def2 || gimple_nop_p (def2))))
3010 if (dump_enabled_p ())
3011 report_vect_op (MSG_NOTE, def_stmt, "reduction: no defs for operands: ");
3012 return NULL;
3015 /* Check that one def is the reduction def, defined by PHI,
3016 the other def is either defined in the loop ("vect_internal_def"),
3017 or it's an induction (defined by a loop-header phi-node). */
3019 if (def2 && def2 == phi
3020 && (code == COND_EXPR
3021 || !def1 || gimple_nop_p (def1)
3022 || !flow_bb_inside_loop_p (loop, gimple_bb (def1))
3023 || (def1 && flow_bb_inside_loop_p (loop, gimple_bb (def1))
3024 && (is_gimple_assign (def1)
3025 || is_gimple_call (def1)
3026 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
3027 == vect_induction_def
3028 || (gimple_code (def1) == GIMPLE_PHI
3029 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
3030 == vect_internal_def
3031 && !is_loop_header_bb_p (gimple_bb (def1)))))))
3033 if (dump_enabled_p ())
3034 report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
3035 return def_stmt;
3038 if (def1 && def1 == phi
3039 && (code == COND_EXPR
3040 || !def2 || gimple_nop_p (def2)
3041 || !flow_bb_inside_loop_p (loop, gimple_bb (def2))
3042 || (def2 && flow_bb_inside_loop_p (loop, gimple_bb (def2))
3043 && (is_gimple_assign (def2)
3044 || is_gimple_call (def2)
3045 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
3046 == vect_induction_def
3047 || (gimple_code (def2) == GIMPLE_PHI
3048 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
3049 == vect_internal_def
3050 && !is_loop_header_bb_p (gimple_bb (def2)))))))
3052 if (check_reduction && orig_code != MINUS_EXPR)
3054 /* Check if we can swap operands (just for simplicity - so that
3055 the rest of the code can assume that the reduction variable
3056 is always the last (second) argument). */
3057 if (code == COND_EXPR)
3059 /* Swap cond_expr by inverting the condition. */
3060 tree cond_expr = gimple_assign_rhs1 (def_stmt);
3061 enum tree_code invert_code = ERROR_MARK;
3062 enum tree_code cond_code = TREE_CODE (cond_expr);
3064 if (TREE_CODE_CLASS (cond_code) == tcc_comparison)
3066 bool honor_nans = HONOR_NANS (TREE_OPERAND (cond_expr, 0));
3067 invert_code = invert_tree_comparison (cond_code, honor_nans);
3069 if (invert_code != ERROR_MARK)
3071 TREE_SET_CODE (cond_expr, invert_code);
3072 swap_ssa_operands (def_stmt,
3073 gimple_assign_rhs2_ptr (def_stmt),
3074 gimple_assign_rhs3_ptr (def_stmt));
3076 else
3078 if (dump_enabled_p ())
3079 report_vect_op (MSG_NOTE, def_stmt,
3080 "detected reduction: cannot swap operands "
3081 "for cond_expr");
3082 return NULL;
3085 else
3086 swap_ssa_operands (def_stmt, gimple_assign_rhs1_ptr (def_stmt),
3087 gimple_assign_rhs2_ptr (def_stmt));
3089 if (dump_enabled_p ())
3090 report_vect_op (MSG_NOTE, def_stmt,
3091 "detected reduction: need to swap operands: ");
3093 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (def_stmt)))
3094 LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
3096 else
3098 if (dump_enabled_p ())
3099 report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
3102 return def_stmt;
3105 /* Try to find SLP reduction chain. */
3106 if (check_reduction && code != COND_EXPR
3107 && vect_is_slp_reduction (loop_info, phi, def_stmt))
3109 if (dump_enabled_p ())
3110 report_vect_op (MSG_NOTE, def_stmt,
3111 "reduction: detected reduction chain: ");
3113 return def_stmt;
3116 if (dump_enabled_p ())
3117 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
3118 "reduction: unknown pattern: ");
3120 return NULL;
3123 /* Wrapper around vect_is_simple_reduction_1, which will modify code
3124 in-place if it enables detection of more reductions. Arguments
3125 as there. */
3127 gimple *
3128 vect_force_simple_reduction (loop_vec_info loop_info, gimple *phi,
3129 bool check_reduction, bool *double_reduc,
3130 bool need_wrapping_integral_overflow)
3132 enum vect_reduction_type v_reduc_type;
3133 return vect_is_simple_reduction (loop_info, phi, check_reduction,
3134 double_reduc,
3135 need_wrapping_integral_overflow,
3136 &v_reduc_type);
3139 /* Calculate cost of peeling the loop PEEL_ITERS_PROLOGUE times. */
3141 vect_get_known_peeling_cost (loop_vec_info loop_vinfo, int peel_iters_prologue,
3142 int *peel_iters_epilogue,
3143 stmt_vector_for_cost *scalar_cost_vec,
3144 stmt_vector_for_cost *prologue_cost_vec,
3145 stmt_vector_for_cost *epilogue_cost_vec)
3147 int retval = 0;
3148 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3150 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
3152 *peel_iters_epilogue = vf/2;
3153 if (dump_enabled_p ())
3154 dump_printf_loc (MSG_NOTE, vect_location,
3155 "cost model: epilogue peel iters set to vf/2 "
3156 "because loop iterations are unknown .\n");
3158 /* If peeled iterations are known but number of scalar loop
3159 iterations are unknown, count a taken branch per peeled loop. */
3160 retval = record_stmt_cost (prologue_cost_vec, 1, cond_branch_taken,
3161 NULL, 0, vect_prologue);
3162 retval = record_stmt_cost (prologue_cost_vec, 1, cond_branch_taken,
3163 NULL, 0, vect_epilogue);
3165 else
3167 int niters = LOOP_VINFO_INT_NITERS (loop_vinfo);
3168 peel_iters_prologue = niters < peel_iters_prologue ?
3169 niters : peel_iters_prologue;
3170 *peel_iters_epilogue = (niters - peel_iters_prologue) % vf;
3171 /* If we need to peel for gaps, but no peeling is required, we have to
3172 peel VF iterations. */
3173 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) && !*peel_iters_epilogue)
3174 *peel_iters_epilogue = vf;
3177 stmt_info_for_cost *si;
3178 int j;
3179 if (peel_iters_prologue)
3180 FOR_EACH_VEC_ELT (*scalar_cost_vec, j, si)
3182 stmt_vec_info stmt_info
3183 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3184 retval += record_stmt_cost (prologue_cost_vec,
3185 si->count * peel_iters_prologue,
3186 si->kind, stmt_info, si->misalign,
3187 vect_prologue);
3189 if (*peel_iters_epilogue)
3190 FOR_EACH_VEC_ELT (*scalar_cost_vec, j, si)
3192 stmt_vec_info stmt_info
3193 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3194 retval += record_stmt_cost (epilogue_cost_vec,
3195 si->count * *peel_iters_epilogue,
3196 si->kind, stmt_info, si->misalign,
3197 vect_epilogue);
3200 return retval;
3203 /* Function vect_estimate_min_profitable_iters
3205 Return the number of iterations required for the vector version of the
3206 loop to be profitable relative to the cost of the scalar version of the
3207 loop.
3209 *RET_MIN_PROFITABLE_NITERS is a cost model profitability threshold
3210 of iterations for vectorization. -1 value means loop vectorization
3211 is not profitable. This returned value may be used for dynamic
3212 profitability check.
3214 *RET_MIN_PROFITABLE_ESTIMATE is a profitability threshold to be used
3215 for static check against estimated number of iterations. */
3217 static void
3218 vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo,
3219 int *ret_min_profitable_niters,
3220 int *ret_min_profitable_estimate)
3222 int min_profitable_iters;
3223 int min_profitable_estimate;
3224 int peel_iters_prologue;
3225 int peel_iters_epilogue;
3226 unsigned vec_inside_cost = 0;
3227 int vec_outside_cost = 0;
3228 unsigned vec_prologue_cost = 0;
3229 unsigned vec_epilogue_cost = 0;
3230 int scalar_single_iter_cost = 0;
3231 int scalar_outside_cost = 0;
3232 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3233 int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
3234 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3236 /* Cost model disabled. */
3237 if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
3239 dump_printf_loc (MSG_NOTE, vect_location, "cost model disabled.\n");
3240 *ret_min_profitable_niters = 0;
3241 *ret_min_profitable_estimate = 0;
3242 return;
3245 /* Requires loop versioning tests to handle misalignment. */
3246 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
3248 /* FIXME: Make cost depend on complexity of individual check. */
3249 unsigned len = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ();
3250 (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
3251 vect_prologue);
3252 dump_printf (MSG_NOTE,
3253 "cost model: Adding cost of checks for loop "
3254 "versioning to treat misalignment.\n");
3257 /* Requires loop versioning with alias checks. */
3258 if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
3260 /* FIXME: Make cost depend on complexity of individual check. */
3261 unsigned len = LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo).length ();
3262 (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
3263 vect_prologue);
3264 dump_printf (MSG_NOTE,
3265 "cost model: Adding cost of checks for loop "
3266 "versioning aliasing.\n");
3269 /* Requires loop versioning with niter checks. */
3270 if (LOOP_REQUIRES_VERSIONING_FOR_NITERS (loop_vinfo))
3272 /* FIXME: Make cost depend on complexity of individual check. */
3273 (void) add_stmt_cost (target_cost_data, 1, vector_stmt, NULL, 0,
3274 vect_prologue);
3275 dump_printf (MSG_NOTE,
3276 "cost model: Adding cost of checks for loop "
3277 "versioning niters.\n");
3280 if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
3281 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken, NULL, 0,
3282 vect_prologue);
3284 /* Count statements in scalar loop. Using this as scalar cost for a single
3285 iteration for now.
3287 TODO: Add outer loop support.
3289 TODO: Consider assigning different costs to different scalar
3290 statements. */
3292 scalar_single_iter_cost
3293 = LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST (loop_vinfo);
3295 /* Add additional cost for the peeled instructions in prologue and epilogue
3296 loop.
3298 FORNOW: If we don't know the value of peel_iters for prologue or epilogue
3299 at compile-time - we assume it's vf/2 (the worst would be vf-1).
3301 TODO: Build an expression that represents peel_iters for prologue and
3302 epilogue to be used in a run-time test. */
3304 if (npeel < 0)
3306 peel_iters_prologue = vf/2;
3307 dump_printf (MSG_NOTE, "cost model: "
3308 "prologue peel iters set to vf/2.\n");
3310 /* If peeling for alignment is unknown, loop bound of main loop becomes
3311 unknown. */
3312 peel_iters_epilogue = vf/2;
3313 dump_printf (MSG_NOTE, "cost model: "
3314 "epilogue peel iters set to vf/2 because "
3315 "peeling for alignment is unknown.\n");
3317 /* If peeled iterations are unknown, count a taken branch and a not taken
3318 branch per peeled loop. Even if scalar loop iterations are known,
3319 vector iterations are not known since peeled prologue iterations are
3320 not known. Hence guards remain the same. */
3321 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken,
3322 NULL, 0, vect_prologue);
3323 (void) add_stmt_cost (target_cost_data, 1, cond_branch_not_taken,
3324 NULL, 0, vect_prologue);
3325 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken,
3326 NULL, 0, vect_epilogue);
3327 (void) add_stmt_cost (target_cost_data, 1, cond_branch_not_taken,
3328 NULL, 0, vect_epilogue);
3329 stmt_info_for_cost *si;
3330 int j;
3331 FOR_EACH_VEC_ELT (LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo), j, si)
3333 struct _stmt_vec_info *stmt_info
3334 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3335 (void) add_stmt_cost (target_cost_data,
3336 si->count * peel_iters_prologue,
3337 si->kind, stmt_info, si->misalign,
3338 vect_prologue);
3339 (void) add_stmt_cost (target_cost_data,
3340 si->count * peel_iters_epilogue,
3341 si->kind, stmt_info, si->misalign,
3342 vect_epilogue);
3345 else
3347 stmt_vector_for_cost prologue_cost_vec, epilogue_cost_vec;
3348 stmt_info_for_cost *si;
3349 int j;
3350 void *data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3352 prologue_cost_vec.create (2);
3353 epilogue_cost_vec.create (2);
3354 peel_iters_prologue = npeel;
3356 (void) vect_get_known_peeling_cost (loop_vinfo, peel_iters_prologue,
3357 &peel_iters_epilogue,
3358 &LOOP_VINFO_SCALAR_ITERATION_COST
3359 (loop_vinfo),
3360 &prologue_cost_vec,
3361 &epilogue_cost_vec);
3363 FOR_EACH_VEC_ELT (prologue_cost_vec, j, si)
3365 struct _stmt_vec_info *stmt_info
3366 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3367 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
3368 si->misalign, vect_prologue);
3371 FOR_EACH_VEC_ELT (epilogue_cost_vec, j, si)
3373 struct _stmt_vec_info *stmt_info
3374 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3375 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
3376 si->misalign, vect_epilogue);
3379 prologue_cost_vec.release ();
3380 epilogue_cost_vec.release ();
3383 /* FORNOW: The scalar outside cost is incremented in one of the
3384 following ways:
3386 1. The vectorizer checks for alignment and aliasing and generates
3387 a condition that allows dynamic vectorization. A cost model
3388 check is ANDED with the versioning condition. Hence scalar code
3389 path now has the added cost of the versioning check.
3391 if (cost > th & versioning_check)
3392 jmp to vector code
3394 Hence run-time scalar is incremented by not-taken branch cost.
3396 2. The vectorizer then checks if a prologue is required. If the
3397 cost model check was not done before during versioning, it has to
3398 be done before the prologue check.
3400 if (cost <= th)
3401 prologue = scalar_iters
3402 if (prologue == 0)
3403 jmp to vector code
3404 else
3405 execute prologue
3406 if (prologue == num_iters)
3407 go to exit
3409 Hence the run-time scalar cost is incremented by a taken branch,
3410 plus a not-taken branch, plus a taken branch cost.
3412 3. The vectorizer then checks if an epilogue is required. If the
3413 cost model check was not done before during prologue check, it
3414 has to be done with the epilogue check.
3416 if (prologue == 0)
3417 jmp to vector code
3418 else
3419 execute prologue
3420 if (prologue == num_iters)
3421 go to exit
3422 vector code:
3423 if ((cost <= th) | (scalar_iters-prologue-epilogue == 0))
3424 jmp to epilogue
3426 Hence the run-time scalar cost should be incremented by 2 taken
3427 branches.
3429 TODO: The back end may reorder the BBS's differently and reverse
3430 conditions/branch directions. Change the estimates below to
3431 something more reasonable. */
3433 /* If the number of iterations is known and we do not do versioning, we can
3434 decide whether to vectorize at compile time. Hence the scalar version
3435 do not carry cost model guard costs. */
3436 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
3437 || LOOP_REQUIRES_VERSIONING (loop_vinfo))
3439 /* Cost model check occurs at versioning. */
3440 if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
3441 scalar_outside_cost += vect_get_stmt_cost (cond_branch_not_taken);
3442 else
3444 /* Cost model check occurs at prologue generation. */
3445 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
3446 scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken)
3447 + vect_get_stmt_cost (cond_branch_not_taken);
3448 /* Cost model check occurs at epilogue generation. */
3449 else
3450 scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken);
3454 /* Complete the target-specific cost calculations. */
3455 finish_cost (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo), &vec_prologue_cost,
3456 &vec_inside_cost, &vec_epilogue_cost);
3458 vec_outside_cost = (int)(vec_prologue_cost + vec_epilogue_cost);
3460 if (dump_enabled_p ())
3462 dump_printf_loc (MSG_NOTE, vect_location, "Cost model analysis: \n");
3463 dump_printf (MSG_NOTE, " Vector inside of loop cost: %d\n",
3464 vec_inside_cost);
3465 dump_printf (MSG_NOTE, " Vector prologue cost: %d\n",
3466 vec_prologue_cost);
3467 dump_printf (MSG_NOTE, " Vector epilogue cost: %d\n",
3468 vec_epilogue_cost);
3469 dump_printf (MSG_NOTE, " Scalar iteration cost: %d\n",
3470 scalar_single_iter_cost);
3471 dump_printf (MSG_NOTE, " Scalar outside cost: %d\n",
3472 scalar_outside_cost);
3473 dump_printf (MSG_NOTE, " Vector outside cost: %d\n",
3474 vec_outside_cost);
3475 dump_printf (MSG_NOTE, " prologue iterations: %d\n",
3476 peel_iters_prologue);
3477 dump_printf (MSG_NOTE, " epilogue iterations: %d\n",
3478 peel_iters_epilogue);
3481 /* Calculate number of iterations required to make the vector version
3482 profitable, relative to the loop bodies only. The following condition
3483 must hold true:
3484 SIC * niters + SOC > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC
3485 where
3486 SIC = scalar iteration cost, VIC = vector iteration cost,
3487 VOC = vector outside cost, VF = vectorization factor,
3488 PL_ITERS = prologue iterations, EP_ITERS= epilogue iterations
3489 SOC = scalar outside cost for run time cost model check. */
3491 if ((scalar_single_iter_cost * vf) > (int) vec_inside_cost)
3493 if (vec_outside_cost <= 0)
3494 min_profitable_iters = 1;
3495 else
3497 min_profitable_iters = ((vec_outside_cost - scalar_outside_cost) * vf
3498 - vec_inside_cost * peel_iters_prologue
3499 - vec_inside_cost * peel_iters_epilogue)
3500 / ((scalar_single_iter_cost * vf)
3501 - vec_inside_cost);
3503 if ((scalar_single_iter_cost * vf * min_profitable_iters)
3504 <= (((int) vec_inside_cost * min_profitable_iters)
3505 + (((int) vec_outside_cost - scalar_outside_cost) * vf)))
3506 min_profitable_iters++;
3509 /* vector version will never be profitable. */
3510 else
3512 if (LOOP_VINFO_LOOP (loop_vinfo)->force_vectorize)
3513 warning_at (vect_location, OPT_Wopenmp_simd, "vectorization "
3514 "did not happen for a simd loop");
3516 if (dump_enabled_p ())
3517 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3518 "cost model: the vector iteration cost = %d "
3519 "divided by the scalar iteration cost = %d "
3520 "is greater or equal to the vectorization factor = %d"
3521 ".\n",
3522 vec_inside_cost, scalar_single_iter_cost, vf);
3523 *ret_min_profitable_niters = -1;
3524 *ret_min_profitable_estimate = -1;
3525 return;
3528 dump_printf (MSG_NOTE,
3529 " Calculated minimum iters for profitability: %d\n",
3530 min_profitable_iters);
3532 min_profitable_iters =
3533 min_profitable_iters < vf ? vf : min_profitable_iters;
3535 /* Because the condition we create is:
3536 if (niters <= min_profitable_iters)
3537 then skip the vectorized loop. */
3538 min_profitable_iters--;
3540 if (dump_enabled_p ())
3541 dump_printf_loc (MSG_NOTE, vect_location,
3542 " Runtime profitability threshold = %d\n",
3543 min_profitable_iters);
3545 *ret_min_profitable_niters = min_profitable_iters;
3547 /* Calculate number of iterations required to make the vector version
3548 profitable, relative to the loop bodies only.
3550 Non-vectorized variant is SIC * niters and it must win over vector
3551 variant on the expected loop trip count. The following condition must hold true:
3552 SIC * niters > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC + SOC */
3554 if (vec_outside_cost <= 0)
3555 min_profitable_estimate = 1;
3556 else
3558 min_profitable_estimate = ((vec_outside_cost + scalar_outside_cost) * vf
3559 - vec_inside_cost * peel_iters_prologue
3560 - vec_inside_cost * peel_iters_epilogue)
3561 / ((scalar_single_iter_cost * vf)
3562 - vec_inside_cost);
3564 min_profitable_estimate --;
3565 min_profitable_estimate = MAX (min_profitable_estimate, min_profitable_iters);
3566 if (dump_enabled_p ())
3567 dump_printf_loc (MSG_NOTE, vect_location,
3568 " Static estimate profitability threshold = %d\n",
3569 min_profitable_estimate);
3571 *ret_min_profitable_estimate = min_profitable_estimate;
3574 /* Writes into SEL a mask for a vec_perm, equivalent to a vec_shr by OFFSET
3575 vector elements (not bits) for a vector of mode MODE. */
3576 static void
3577 calc_vec_perm_mask_for_shift (enum machine_mode mode, unsigned int offset,
3578 unsigned char *sel)
3580 unsigned int i, nelt = GET_MODE_NUNITS (mode);
3582 for (i = 0; i < nelt; i++)
3583 sel[i] = (i + offset) & (2*nelt - 1);
3586 /* Checks whether the target supports whole-vector shifts for vectors of mode
3587 MODE. This is the case if _either_ the platform handles vec_shr_optab, _or_
3588 it supports vec_perm_const with masks for all necessary shift amounts. */
3589 static bool
3590 have_whole_vector_shift (enum machine_mode mode)
3592 if (optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
3593 return true;
3595 if (direct_optab_handler (vec_perm_const_optab, mode) == CODE_FOR_nothing)
3596 return false;
3598 unsigned int i, nelt = GET_MODE_NUNITS (mode);
3599 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
3601 for (i = nelt/2; i >= 1; i/=2)
3603 calc_vec_perm_mask_for_shift (mode, i, sel);
3604 if (!can_vec_perm_p (mode, false, sel))
3605 return false;
3607 return true;
3610 /* Return the reduction operand (with index REDUC_INDEX) of STMT. */
3612 static tree
3613 get_reduction_op (gimple *stmt, int reduc_index)
3615 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
3617 case GIMPLE_SINGLE_RHS:
3618 gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt))
3619 == ternary_op);
3620 return TREE_OPERAND (gimple_assign_rhs1 (stmt), reduc_index);
3621 case GIMPLE_UNARY_RHS:
3622 return gimple_assign_rhs1 (stmt);
3623 case GIMPLE_BINARY_RHS:
3624 return (reduc_index
3625 ? gimple_assign_rhs2 (stmt) : gimple_assign_rhs1 (stmt));
3626 case GIMPLE_TERNARY_RHS:
3627 return gimple_op (stmt, reduc_index + 1);
3628 default:
3629 gcc_unreachable ();
3633 /* TODO: Close dependency between vect_model_*_cost and vectorizable_*
3634 functions. Design better to avoid maintenance issues. */
3636 /* Function vect_model_reduction_cost.
3638 Models cost for a reduction operation, including the vector ops
3639 generated within the strip-mine loop, the initial definition before
3640 the loop, and the epilogue code that must be generated. */
3642 static bool
3643 vect_model_reduction_cost (stmt_vec_info stmt_info, enum tree_code reduc_code,
3644 int ncopies, int reduc_index)
3646 int prologue_cost = 0, epilogue_cost = 0;
3647 enum tree_code code;
3648 optab optab;
3649 tree vectype;
3650 gimple *stmt, *orig_stmt;
3651 tree reduction_op;
3652 machine_mode mode;
3653 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3654 struct loop *loop = NULL;
3655 void *target_cost_data;
3657 if (loop_vinfo)
3659 loop = LOOP_VINFO_LOOP (loop_vinfo);
3660 target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3662 else
3663 target_cost_data = BB_VINFO_TARGET_COST_DATA (STMT_VINFO_BB_VINFO (stmt_info));
3665 /* Condition reductions generate two reductions in the loop. */
3666 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
3667 ncopies *= 2;
3669 /* Cost of reduction op inside loop. */
3670 unsigned inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
3671 stmt_info, 0, vect_body);
3672 stmt = STMT_VINFO_STMT (stmt_info);
3674 reduction_op = get_reduction_op (stmt, reduc_index);
3676 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
3677 if (!vectype)
3679 if (dump_enabled_p ())
3681 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3682 "unsupported data-type ");
3683 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
3684 TREE_TYPE (reduction_op));
3685 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3687 return false;
3690 mode = TYPE_MODE (vectype);
3691 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
3693 if (!orig_stmt)
3694 orig_stmt = STMT_VINFO_STMT (stmt_info);
3696 code = gimple_assign_rhs_code (orig_stmt);
3698 /* Add in cost for initial definition.
3699 For cond reduction we have four vectors: initial index, step, initial
3700 result of the data reduction, initial value of the index reduction. */
3701 int prologue_stmts = STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
3702 == COND_REDUCTION ? 4 : 1;
3703 prologue_cost += add_stmt_cost (target_cost_data, prologue_stmts,
3704 scalar_to_vec, stmt_info, 0,
3705 vect_prologue);
3707 /* Determine cost of epilogue code.
3709 We have a reduction operator that will reduce the vector in one statement.
3710 Also requires scalar extract. */
3712 if (!loop || !nested_in_vect_loop_p (loop, orig_stmt))
3714 if (reduc_code != ERROR_MARK)
3716 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
3718 /* An EQ stmt and an COND_EXPR stmt. */
3719 epilogue_cost += add_stmt_cost (target_cost_data, 2,
3720 vector_stmt, stmt_info, 0,
3721 vect_epilogue);
3722 /* Reduction of the max index and a reduction of the found
3723 values. */
3724 epilogue_cost += add_stmt_cost (target_cost_data, 2,
3725 vec_to_scalar, stmt_info, 0,
3726 vect_epilogue);
3727 /* A broadcast of the max value. */
3728 epilogue_cost += add_stmt_cost (target_cost_data, 1,
3729 scalar_to_vec, stmt_info, 0,
3730 vect_epilogue);
3732 else
3734 epilogue_cost += add_stmt_cost (target_cost_data, 1, vector_stmt,
3735 stmt_info, 0, vect_epilogue);
3736 epilogue_cost += add_stmt_cost (target_cost_data, 1,
3737 vec_to_scalar, stmt_info, 0,
3738 vect_epilogue);
3741 else
3743 int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
3744 tree bitsize =
3745 TYPE_SIZE (TREE_TYPE (gimple_assign_lhs (orig_stmt)));
3746 int element_bitsize = tree_to_uhwi (bitsize);
3747 int nelements = vec_size_in_bits / element_bitsize;
3749 optab = optab_for_tree_code (code, vectype, optab_default);
3751 /* We have a whole vector shift available. */
3752 if (VECTOR_MODE_P (mode)
3753 && optab_handler (optab, mode) != CODE_FOR_nothing
3754 && have_whole_vector_shift (mode))
3756 /* Final reduction via vector shifts and the reduction operator.
3757 Also requires scalar extract. */
3758 epilogue_cost += add_stmt_cost (target_cost_data,
3759 exact_log2 (nelements) * 2,
3760 vector_stmt, stmt_info, 0,
3761 vect_epilogue);
3762 epilogue_cost += add_stmt_cost (target_cost_data, 1,
3763 vec_to_scalar, stmt_info, 0,
3764 vect_epilogue);
3766 else
3767 /* Use extracts and reduction op for final reduction. For N
3768 elements, we have N extracts and N-1 reduction ops. */
3769 epilogue_cost += add_stmt_cost (target_cost_data,
3770 nelements + nelements - 1,
3771 vector_stmt, stmt_info, 0,
3772 vect_epilogue);
3776 if (dump_enabled_p ())
3777 dump_printf (MSG_NOTE,
3778 "vect_model_reduction_cost: inside_cost = %d, "
3779 "prologue_cost = %d, epilogue_cost = %d .\n", inside_cost,
3780 prologue_cost, epilogue_cost);
3782 return true;
3786 /* Function vect_model_induction_cost.
3788 Models cost for induction operations. */
3790 static void
3791 vect_model_induction_cost (stmt_vec_info stmt_info, int ncopies)
3793 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3794 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3795 unsigned inside_cost, prologue_cost;
3797 /* loop cost for vec_loop. */
3798 inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
3799 stmt_info, 0, vect_body);
3801 /* prologue cost for vec_init and vec_step. */
3802 prologue_cost = add_stmt_cost (target_cost_data, 2, scalar_to_vec,
3803 stmt_info, 0, vect_prologue);
3805 if (dump_enabled_p ())
3806 dump_printf_loc (MSG_NOTE, vect_location,
3807 "vect_model_induction_cost: inside_cost = %d, "
3808 "prologue_cost = %d .\n", inside_cost, prologue_cost);
3812 /* Function get_initial_def_for_induction
3814 Input:
3815 STMT - a stmt that performs an induction operation in the loop.
3816 IV_PHI - the initial value of the induction variable
3818 Output:
3819 Return a vector variable, initialized with the first VF values of
3820 the induction variable. E.g., for an iv with IV_PHI='X' and
3821 evolution S, for a vector of 4 units, we want to return:
3822 [X, X + S, X + 2*S, X + 3*S]. */
3824 static tree
3825 get_initial_def_for_induction (gimple *iv_phi)
3827 stmt_vec_info stmt_vinfo = vinfo_for_stmt (iv_phi);
3828 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
3829 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3830 tree vectype;
3831 int nunits;
3832 edge pe = loop_preheader_edge (loop);
3833 struct loop *iv_loop;
3834 basic_block new_bb;
3835 tree new_vec, vec_init, vec_step, t;
3836 tree new_name;
3837 gimple *new_stmt;
3838 gphi *induction_phi;
3839 tree induc_def, vec_def, vec_dest;
3840 tree init_expr, step_expr;
3841 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3842 int i;
3843 int ncopies;
3844 tree expr;
3845 stmt_vec_info phi_info = vinfo_for_stmt (iv_phi);
3846 bool nested_in_vect_loop = false;
3847 gimple_seq stmts;
3848 imm_use_iterator imm_iter;
3849 use_operand_p use_p;
3850 gimple *exit_phi;
3851 edge latch_e;
3852 tree loop_arg;
3853 gimple_stmt_iterator si;
3854 basic_block bb = gimple_bb (iv_phi);
3855 tree stepvectype;
3856 tree resvectype;
3858 /* Is phi in an inner-loop, while vectorizing an enclosing outer-loop? */
3859 if (nested_in_vect_loop_p (loop, iv_phi))
3861 nested_in_vect_loop = true;
3862 iv_loop = loop->inner;
3864 else
3865 iv_loop = loop;
3866 gcc_assert (iv_loop == (gimple_bb (iv_phi))->loop_father);
3868 latch_e = loop_latch_edge (iv_loop);
3869 loop_arg = PHI_ARG_DEF_FROM_EDGE (iv_phi, latch_e);
3871 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (phi_info);
3872 gcc_assert (step_expr != NULL_TREE);
3874 pe = loop_preheader_edge (iv_loop);
3875 init_expr = PHI_ARG_DEF_FROM_EDGE (iv_phi,
3876 loop_preheader_edge (iv_loop));
3878 vectype = get_vectype_for_scalar_type (TREE_TYPE (init_expr));
3879 resvectype = get_vectype_for_scalar_type (TREE_TYPE (PHI_RESULT (iv_phi)));
3880 gcc_assert (vectype);
3881 nunits = TYPE_VECTOR_SUBPARTS (vectype);
3882 ncopies = vf / nunits;
3884 gcc_assert (phi_info);
3885 gcc_assert (ncopies >= 1);
3887 /* Convert the step to the desired type. */
3888 stmts = NULL;
3889 step_expr = gimple_convert (&stmts, TREE_TYPE (vectype), step_expr);
3890 if (stmts)
3892 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
3893 gcc_assert (!new_bb);
3896 /* Find the first insertion point in the BB. */
3897 si = gsi_after_labels (bb);
3899 /* Create the vector that holds the initial_value of the induction. */
3900 if (nested_in_vect_loop)
3902 /* iv_loop is nested in the loop to be vectorized. init_expr had already
3903 been created during vectorization of previous stmts. We obtain it
3904 from the STMT_VINFO_VEC_STMT of the defining stmt. */
3905 vec_init = vect_get_vec_def_for_operand (init_expr, iv_phi);
3906 /* If the initial value is not of proper type, convert it. */
3907 if (!useless_type_conversion_p (vectype, TREE_TYPE (vec_init)))
3909 new_stmt
3910 = gimple_build_assign (vect_get_new_ssa_name (vectype,
3911 vect_simple_var,
3912 "vec_iv_"),
3913 VIEW_CONVERT_EXPR,
3914 build1 (VIEW_CONVERT_EXPR, vectype,
3915 vec_init));
3916 vec_init = gimple_assign_lhs (new_stmt);
3917 new_bb = gsi_insert_on_edge_immediate (loop_preheader_edge (iv_loop),
3918 new_stmt);
3919 gcc_assert (!new_bb);
3920 set_vinfo_for_stmt (new_stmt,
3921 new_stmt_vec_info (new_stmt, loop_vinfo));
3924 else
3926 vec<constructor_elt, va_gc> *v;
3928 /* iv_loop is the loop to be vectorized. Create:
3929 vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr) */
3930 stmts = NULL;
3931 new_name = gimple_convert (&stmts, TREE_TYPE (vectype), init_expr);
3933 vec_alloc (v, nunits);
3934 bool constant_p = is_gimple_min_invariant (new_name);
3935 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
3936 for (i = 1; i < nunits; i++)
3938 /* Create: new_name_i = new_name + step_expr */
3939 new_name = gimple_build (&stmts, PLUS_EXPR, TREE_TYPE (new_name),
3940 new_name, step_expr);
3941 if (!is_gimple_min_invariant (new_name))
3942 constant_p = false;
3943 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
3945 if (stmts)
3947 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
3948 gcc_assert (!new_bb);
3951 /* Create a vector from [new_name_0, new_name_1, ..., new_name_nunits-1] */
3952 if (constant_p)
3953 new_vec = build_vector_from_ctor (vectype, v);
3954 else
3955 new_vec = build_constructor (vectype, v);
3956 vec_init = vect_init_vector (iv_phi, new_vec, vectype, NULL);
3960 /* Create the vector that holds the step of the induction. */
3961 if (nested_in_vect_loop)
3962 /* iv_loop is nested in the loop to be vectorized. Generate:
3963 vec_step = [S, S, S, S] */
3964 new_name = step_expr;
3965 else
3967 /* iv_loop is the loop to be vectorized. Generate:
3968 vec_step = [VF*S, VF*S, VF*S, VF*S] */
3969 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
3971 expr = build_int_cst (integer_type_node, vf);
3972 expr = fold_convert (TREE_TYPE (step_expr), expr);
3974 else
3975 expr = build_int_cst (TREE_TYPE (step_expr), vf);
3976 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
3977 expr, step_expr);
3978 if (TREE_CODE (step_expr) == SSA_NAME)
3979 new_name = vect_init_vector (iv_phi, new_name,
3980 TREE_TYPE (step_expr), NULL);
3983 t = unshare_expr (new_name);
3984 gcc_assert (CONSTANT_CLASS_P (new_name)
3985 || TREE_CODE (new_name) == SSA_NAME);
3986 stepvectype = get_vectype_for_scalar_type (TREE_TYPE (new_name));
3987 gcc_assert (stepvectype);
3988 new_vec = build_vector_from_val (stepvectype, t);
3989 vec_step = vect_init_vector (iv_phi, new_vec, stepvectype, NULL);
3992 /* Create the following def-use cycle:
3993 loop prolog:
3994 vec_init = ...
3995 vec_step = ...
3996 loop:
3997 vec_iv = PHI <vec_init, vec_loop>
3999 STMT
4001 vec_loop = vec_iv + vec_step; */
4003 /* Create the induction-phi that defines the induction-operand. */
4004 vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
4005 induction_phi = create_phi_node (vec_dest, iv_loop->header);
4006 set_vinfo_for_stmt (induction_phi,
4007 new_stmt_vec_info (induction_phi, loop_vinfo));
4008 induc_def = PHI_RESULT (induction_phi);
4010 /* Create the iv update inside the loop */
4011 new_stmt = gimple_build_assign (vec_dest, PLUS_EXPR, induc_def, vec_step);
4012 vec_def = make_ssa_name (vec_dest, new_stmt);
4013 gimple_assign_set_lhs (new_stmt, vec_def);
4014 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
4015 set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo));
4017 /* Set the arguments of the phi node: */
4018 add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
4019 add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
4020 UNKNOWN_LOCATION);
4023 /* In case that vectorization factor (VF) is bigger than the number
4024 of elements that we can fit in a vectype (nunits), we have to generate
4025 more than one vector stmt - i.e - we need to "unroll" the
4026 vector stmt by a factor VF/nunits. For more details see documentation
4027 in vectorizable_operation. */
4029 if (ncopies > 1)
4031 stmt_vec_info prev_stmt_vinfo;
4032 /* FORNOW. This restriction should be relaxed. */
4033 gcc_assert (!nested_in_vect_loop);
4035 /* Create the vector that holds the step of the induction. */
4036 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
4038 expr = build_int_cst (integer_type_node, nunits);
4039 expr = fold_convert (TREE_TYPE (step_expr), expr);
4041 else
4042 expr = build_int_cst (TREE_TYPE (step_expr), nunits);
4043 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
4044 expr, step_expr);
4045 if (TREE_CODE (step_expr) == SSA_NAME)
4046 new_name = vect_init_vector (iv_phi, new_name,
4047 TREE_TYPE (step_expr), NULL);
4048 t = unshare_expr (new_name);
4049 gcc_assert (CONSTANT_CLASS_P (new_name)
4050 || TREE_CODE (new_name) == SSA_NAME);
4051 new_vec = build_vector_from_val (stepvectype, t);
4052 vec_step = vect_init_vector (iv_phi, new_vec, stepvectype, NULL);
4054 vec_def = induc_def;
4055 prev_stmt_vinfo = vinfo_for_stmt (induction_phi);
4056 for (i = 1; i < ncopies; i++)
4058 /* vec_i = vec_prev + vec_step */
4059 new_stmt = gimple_build_assign (vec_dest, PLUS_EXPR,
4060 vec_def, vec_step);
4061 vec_def = make_ssa_name (vec_dest, new_stmt);
4062 gimple_assign_set_lhs (new_stmt, vec_def);
4064 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
4065 if (!useless_type_conversion_p (resvectype, vectype))
4067 new_stmt
4068 = gimple_build_assign
4069 (vect_get_new_vect_var (resvectype, vect_simple_var,
4070 "vec_iv_"),
4071 VIEW_CONVERT_EXPR,
4072 build1 (VIEW_CONVERT_EXPR, resvectype,
4073 gimple_assign_lhs (new_stmt)));
4074 gimple_assign_set_lhs (new_stmt,
4075 make_ssa_name
4076 (gimple_assign_lhs (new_stmt), new_stmt));
4077 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
4079 set_vinfo_for_stmt (new_stmt,
4080 new_stmt_vec_info (new_stmt, loop_vinfo));
4081 STMT_VINFO_RELATED_STMT (prev_stmt_vinfo) = new_stmt;
4082 prev_stmt_vinfo = vinfo_for_stmt (new_stmt);
4086 if (nested_in_vect_loop)
4088 /* Find the loop-closed exit-phi of the induction, and record
4089 the final vector of induction results: */
4090 exit_phi = NULL;
4091 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
4093 gimple *use_stmt = USE_STMT (use_p);
4094 if (is_gimple_debug (use_stmt))
4095 continue;
4097 if (!flow_bb_inside_loop_p (iv_loop, gimple_bb (use_stmt)))
4099 exit_phi = use_stmt;
4100 break;
4103 if (exit_phi)
4105 stmt_vec_info stmt_vinfo = vinfo_for_stmt (exit_phi);
4106 /* FORNOW. Currently not supporting the case that an inner-loop induction
4107 is not used in the outer-loop (i.e. only outside the outer-loop). */
4108 gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo)
4109 && !STMT_VINFO_LIVE_P (stmt_vinfo));
4111 STMT_VINFO_VEC_STMT (stmt_vinfo) = new_stmt;
4112 if (dump_enabled_p ())
4114 dump_printf_loc (MSG_NOTE, vect_location,
4115 "vector of inductions after inner-loop:");
4116 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, new_stmt, 0);
4122 if (dump_enabled_p ())
4124 dump_printf_loc (MSG_NOTE, vect_location,
4125 "transform induction: created def-use cycle: ");
4126 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, induction_phi, 0);
4127 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
4128 SSA_NAME_DEF_STMT (vec_def), 0);
4131 STMT_VINFO_VEC_STMT (phi_info) = induction_phi;
4132 if (!useless_type_conversion_p (resvectype, vectype))
4134 new_stmt = gimple_build_assign (vect_get_new_vect_var (resvectype,
4135 vect_simple_var,
4136 "vec_iv_"),
4137 VIEW_CONVERT_EXPR,
4138 build1 (VIEW_CONVERT_EXPR, resvectype,
4139 induc_def));
4140 induc_def = make_ssa_name (gimple_assign_lhs (new_stmt), new_stmt);
4141 gimple_assign_set_lhs (new_stmt, induc_def);
4142 si = gsi_after_labels (bb);
4143 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
4144 set_vinfo_for_stmt (new_stmt,
4145 new_stmt_vec_info (new_stmt, loop_vinfo));
4146 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_stmt))
4147 = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (induction_phi));
4150 return induc_def;
4154 /* Function get_initial_def_for_reduction
4156 Input:
4157 STMT - a stmt that performs a reduction operation in the loop.
4158 INIT_VAL - the initial value of the reduction variable
4160 Output:
4161 ADJUSTMENT_DEF - a tree that holds a value to be added to the final result
4162 of the reduction (used for adjusting the epilog - see below).
4163 Return a vector variable, initialized according to the operation that STMT
4164 performs. This vector will be used as the initial value of the
4165 vector of partial results.
4167 Option1 (adjust in epilog): Initialize the vector as follows:
4168 add/bit or/xor: [0,0,...,0,0]
4169 mult/bit and: [1,1,...,1,1]
4170 min/max/cond_expr: [init_val,init_val,..,init_val,init_val]
4171 and when necessary (e.g. add/mult case) let the caller know
4172 that it needs to adjust the result by init_val.
4174 Option2: Initialize the vector as follows:
4175 add/bit or/xor: [init_val,0,0,...,0]
4176 mult/bit and: [init_val,1,1,...,1]
4177 min/max/cond_expr: [init_val,init_val,...,init_val]
4178 and no adjustments are needed.
4180 For example, for the following code:
4182 s = init_val;
4183 for (i=0;i<n;i++)
4184 s = s + a[i];
4186 STMT is 's = s + a[i]', and the reduction variable is 's'.
4187 For a vector of 4 units, we want to return either [0,0,0,init_val],
4188 or [0,0,0,0] and let the caller know that it needs to adjust
4189 the result at the end by 'init_val'.
4191 FORNOW, we are using the 'adjust in epilog' scheme, because this way the
4192 initialization vector is simpler (same element in all entries), if
4193 ADJUSTMENT_DEF is not NULL, and Option2 otherwise.
4195 A cost model should help decide between these two schemes. */
4197 tree
4198 get_initial_def_for_reduction (gimple *stmt, tree init_val,
4199 tree *adjustment_def)
4201 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
4202 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
4203 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
4204 tree scalar_type = TREE_TYPE (init_val);
4205 tree vectype = get_vectype_for_scalar_type (scalar_type);
4206 int nunits;
4207 enum tree_code code = gimple_assign_rhs_code (stmt);
4208 tree def_for_init;
4209 tree init_def;
4210 tree *elts;
4211 int i;
4212 bool nested_in_vect_loop = false;
4213 REAL_VALUE_TYPE real_init_val = dconst0;
4214 int int_init_val = 0;
4215 gimple *def_stmt = NULL;
4216 gimple_seq stmts = NULL;
4218 gcc_assert (vectype);
4219 nunits = TYPE_VECTOR_SUBPARTS (vectype);
4221 gcc_assert (POINTER_TYPE_P (scalar_type) || INTEGRAL_TYPE_P (scalar_type)
4222 || SCALAR_FLOAT_TYPE_P (scalar_type));
4224 if (nested_in_vect_loop_p (loop, stmt))
4225 nested_in_vect_loop = true;
4226 else
4227 gcc_assert (loop == (gimple_bb (stmt))->loop_father);
4229 /* In case of double reduction we only create a vector variable to be put
4230 in the reduction phi node. The actual statement creation is done in
4231 vect_create_epilog_for_reduction. */
4232 if (adjustment_def && nested_in_vect_loop
4233 && TREE_CODE (init_val) == SSA_NAME
4234 && (def_stmt = SSA_NAME_DEF_STMT (init_val))
4235 && gimple_code (def_stmt) == GIMPLE_PHI
4236 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
4237 && vinfo_for_stmt (def_stmt)
4238 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
4239 == vect_double_reduction_def)
4241 *adjustment_def = NULL;
4242 return vect_create_destination_var (init_val, vectype);
4245 /* In case of a nested reduction do not use an adjustment def as
4246 that case is not supported by the epilogue generation correctly
4247 if ncopies is not one. */
4248 if (adjustment_def && nested_in_vect_loop)
4250 *adjustment_def = NULL;
4251 return vect_get_vec_def_for_operand (init_val, stmt);
4254 switch (code)
4256 case WIDEN_SUM_EXPR:
4257 case DOT_PROD_EXPR:
4258 case SAD_EXPR:
4259 case PLUS_EXPR:
4260 case MINUS_EXPR:
4261 case BIT_IOR_EXPR:
4262 case BIT_XOR_EXPR:
4263 case MULT_EXPR:
4264 case BIT_AND_EXPR:
4265 /* ADJUSMENT_DEF is NULL when called from
4266 vect_create_epilog_for_reduction to vectorize double reduction. */
4267 if (adjustment_def)
4268 *adjustment_def = init_val;
4270 if (code == MULT_EXPR)
4272 real_init_val = dconst1;
4273 int_init_val = 1;
4276 if (code == BIT_AND_EXPR)
4277 int_init_val = -1;
4279 if (SCALAR_FLOAT_TYPE_P (scalar_type))
4280 def_for_init = build_real (scalar_type, real_init_val);
4281 else
4282 def_for_init = build_int_cst (scalar_type, int_init_val);
4284 /* Create a vector of '0' or '1' except the first element. */
4285 elts = XALLOCAVEC (tree, nunits);
4286 for (i = nunits - 2; i >= 0; --i)
4287 elts[i + 1] = def_for_init;
4289 /* Option1: the first element is '0' or '1' as well. */
4290 if (adjustment_def)
4292 elts[0] = def_for_init;
4293 init_def = build_vector (vectype, elts);
4294 break;
4297 /* Option2: the first element is INIT_VAL. */
4298 elts[0] = init_val;
4299 if (TREE_CONSTANT (init_val))
4300 init_def = build_vector (vectype, elts);
4301 else
4303 vec<constructor_elt, va_gc> *v;
4304 vec_alloc (v, nunits);
4305 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init_val);
4306 for (i = 1; i < nunits; ++i)
4307 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[i]);
4308 init_def = build_constructor (vectype, v);
4311 break;
4313 case MIN_EXPR:
4314 case MAX_EXPR:
4315 case COND_EXPR:
4316 if (adjustment_def)
4318 *adjustment_def = NULL_TREE;
4319 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_vinfo) != COND_REDUCTION)
4321 init_def = vect_get_vec_def_for_operand (init_val, stmt);
4322 break;
4325 init_val = gimple_convert (&stmts, TREE_TYPE (vectype), init_val);
4326 if (! gimple_seq_empty_p (stmts))
4327 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
4328 init_def = build_vector_from_val (vectype, init_val);
4329 break;
4331 default:
4332 gcc_unreachable ();
4335 return init_def;
4338 /* Function vect_create_epilog_for_reduction
4340 Create code at the loop-epilog to finalize the result of a reduction
4341 computation.
4343 VECT_DEFS is list of vector of partial results, i.e., the lhs's of vector
4344 reduction statements.
4345 STMT is the scalar reduction stmt that is being vectorized.
4346 NCOPIES is > 1 in case the vectorization factor (VF) is bigger than the
4347 number of elements that we can fit in a vectype (nunits). In this case
4348 we have to generate more than one vector stmt - i.e - we need to "unroll"
4349 the vector stmt by a factor VF/nunits. For more details see documentation
4350 in vectorizable_operation.
4351 REDUC_CODE is the tree-code for the epilog reduction.
4352 REDUCTION_PHIS is a list of the phi-nodes that carry the reduction
4353 computation.
4354 REDUC_INDEX is the index of the operand in the right hand side of the
4355 statement that is defined by REDUCTION_PHI.
4356 DOUBLE_REDUC is TRUE if double reduction phi nodes should be handled.
4357 SLP_NODE is an SLP node containing a group of reduction statements. The
4358 first one in this group is STMT.
4359 INDUCTION_INDEX is the index of the loop for condition reductions.
4360 Otherwise it is undefined.
4362 This function:
4363 1. Creates the reduction def-use cycles: sets the arguments for
4364 REDUCTION_PHIS:
4365 The loop-entry argument is the vectorized initial-value of the reduction.
4366 The loop-latch argument is taken from VECT_DEFS - the vector of partial
4367 sums.
4368 2. "Reduces" each vector of partial results VECT_DEFS into a single result,
4369 by applying the operation specified by REDUC_CODE if available, or by
4370 other means (whole-vector shifts or a scalar loop).
4371 The function also creates a new phi node at the loop exit to preserve
4372 loop-closed form, as illustrated below.
4374 The flow at the entry to this function:
4376 loop:
4377 vec_def = phi <null, null> # REDUCTION_PHI
4378 VECT_DEF = vector_stmt # vectorized form of STMT
4379 s_loop = scalar_stmt # (scalar) STMT
4380 loop_exit:
4381 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4382 use <s_out0>
4383 use <s_out0>
4385 The above is transformed by this function into:
4387 loop:
4388 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
4389 VECT_DEF = vector_stmt # vectorized form of STMT
4390 s_loop = scalar_stmt # (scalar) STMT
4391 loop_exit:
4392 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4393 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4394 v_out2 = reduce <v_out1>
4395 s_out3 = extract_field <v_out2, 0>
4396 s_out4 = adjust_result <s_out3>
4397 use <s_out4>
4398 use <s_out4>
4401 static void
4402 vect_create_epilog_for_reduction (vec<tree> vect_defs, gimple *stmt,
4403 int ncopies, enum tree_code reduc_code,
4404 vec<gimple *> reduction_phis,
4405 int reduc_index, bool double_reduc,
4406 slp_tree slp_node, tree induction_index)
4408 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4409 stmt_vec_info prev_phi_info;
4410 tree vectype;
4411 machine_mode mode;
4412 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4413 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *outer_loop = NULL;
4414 basic_block exit_bb;
4415 tree scalar_dest;
4416 tree scalar_type;
4417 gimple *new_phi = NULL, *phi;
4418 gimple_stmt_iterator exit_gsi;
4419 tree vec_dest;
4420 tree new_temp = NULL_TREE, new_dest, new_name, new_scalar_dest;
4421 gimple *epilog_stmt = NULL;
4422 enum tree_code code = gimple_assign_rhs_code (stmt);
4423 gimple *exit_phi;
4424 tree bitsize;
4425 tree adjustment_def = NULL;
4426 tree vec_initial_def = NULL;
4427 tree reduction_op, expr, def, initial_def = NULL;
4428 tree orig_name, scalar_result;
4429 imm_use_iterator imm_iter, phi_imm_iter;
4430 use_operand_p use_p, phi_use_p;
4431 gimple *use_stmt, *orig_stmt, *reduction_phi = NULL;
4432 bool nested_in_vect_loop = false;
4433 auto_vec<gimple *> new_phis;
4434 auto_vec<gimple *> inner_phis;
4435 enum vect_def_type dt = vect_unknown_def_type;
4436 int j, i;
4437 auto_vec<tree> scalar_results;
4438 unsigned int group_size = 1, k, ratio;
4439 auto_vec<tree> vec_initial_defs;
4440 auto_vec<gimple *> phis;
4441 bool slp_reduc = false;
4442 tree new_phi_result;
4443 gimple *inner_phi = NULL;
4445 if (slp_node)
4446 group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
4448 if (nested_in_vect_loop_p (loop, stmt))
4450 outer_loop = loop;
4451 loop = loop->inner;
4452 nested_in_vect_loop = true;
4453 gcc_assert (!slp_node);
4456 reduction_op = get_reduction_op (stmt, reduc_index);
4458 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
4459 gcc_assert (vectype);
4460 mode = TYPE_MODE (vectype);
4462 /* 1. Create the reduction def-use cycle:
4463 Set the arguments of REDUCTION_PHIS, i.e., transform
4465 loop:
4466 vec_def = phi <null, null> # REDUCTION_PHI
4467 VECT_DEF = vector_stmt # vectorized form of STMT
4470 into:
4472 loop:
4473 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
4474 VECT_DEF = vector_stmt # vectorized form of STMT
4477 (in case of SLP, do it for all the phis). */
4479 /* Get the loop-entry arguments. */
4480 enum vect_def_type initial_def_dt = vect_unknown_def_type;
4481 if (slp_node)
4482 vect_get_vec_defs (reduction_op, NULL_TREE, stmt, &vec_initial_defs,
4483 NULL, slp_node, reduc_index);
4484 else
4486 /* Get at the scalar def before the loop, that defines the initial value
4487 of the reduction variable. */
4488 gimple *def_stmt = SSA_NAME_DEF_STMT (reduction_op);
4489 initial_def = PHI_ARG_DEF_FROM_EDGE (def_stmt,
4490 loop_preheader_edge (loop));
4491 vect_is_simple_use (initial_def, loop_vinfo, &def_stmt, &initial_def_dt);
4492 vec_initial_def = get_initial_def_for_reduction (stmt, initial_def,
4493 &adjustment_def);
4494 vec_initial_defs.create (1);
4495 vec_initial_defs.quick_push (vec_initial_def);
4498 /* Set phi nodes arguments. */
4499 FOR_EACH_VEC_ELT (reduction_phis, i, phi)
4501 tree vec_init_def, def;
4502 gimple_seq stmts;
4503 vec_init_def = force_gimple_operand (vec_initial_defs[i], &stmts,
4504 true, NULL_TREE);
4505 if (stmts)
4506 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
4508 def = vect_defs[i];
4509 for (j = 0; j < ncopies; j++)
4511 if (j != 0)
4513 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
4514 if (nested_in_vect_loop)
4515 vec_init_def
4516 = vect_get_vec_def_for_stmt_copy (initial_def_dt,
4517 vec_init_def);
4520 /* Set the loop-entry arg of the reduction-phi. */
4522 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
4523 == INTEGER_INDUC_COND_REDUCTION)
4525 /* Initialise the reduction phi to zero. This prevents initial
4526 values of non-zero interferring with the reduction op. */
4527 gcc_assert (ncopies == 1);
4528 gcc_assert (i == 0);
4530 tree vec_init_def_type = TREE_TYPE (vec_init_def);
4531 tree zero_vec = build_zero_cst (vec_init_def_type);
4533 add_phi_arg (as_a <gphi *> (phi), zero_vec,
4534 loop_preheader_edge (loop), UNKNOWN_LOCATION);
4536 else
4537 add_phi_arg (as_a <gphi *> (phi), vec_init_def,
4538 loop_preheader_edge (loop), UNKNOWN_LOCATION);
4540 /* Set the loop-latch arg for the reduction-phi. */
4541 if (j > 0)
4542 def = vect_get_vec_def_for_stmt_copy (vect_unknown_def_type, def);
4544 add_phi_arg (as_a <gphi *> (phi), def, loop_latch_edge (loop),
4545 UNKNOWN_LOCATION);
4547 if (dump_enabled_p ())
4549 dump_printf_loc (MSG_NOTE, vect_location,
4550 "transform reduction: created def-use cycle: ");
4551 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
4552 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, SSA_NAME_DEF_STMT (def), 0);
4557 /* 2. Create epilog code.
4558 The reduction epilog code operates across the elements of the vector
4559 of partial results computed by the vectorized loop.
4560 The reduction epilog code consists of:
4562 step 1: compute the scalar result in a vector (v_out2)
4563 step 2: extract the scalar result (s_out3) from the vector (v_out2)
4564 step 3: adjust the scalar result (s_out3) if needed.
4566 Step 1 can be accomplished using one the following three schemes:
4567 (scheme 1) using reduc_code, if available.
4568 (scheme 2) using whole-vector shifts, if available.
4569 (scheme 3) using a scalar loop. In this case steps 1+2 above are
4570 combined.
4572 The overall epilog code looks like this:
4574 s_out0 = phi <s_loop> # original EXIT_PHI
4575 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4576 v_out2 = reduce <v_out1> # step 1
4577 s_out3 = extract_field <v_out2, 0> # step 2
4578 s_out4 = adjust_result <s_out3> # step 3
4580 (step 3 is optional, and steps 1 and 2 may be combined).
4581 Lastly, the uses of s_out0 are replaced by s_out4. */
4584 /* 2.1 Create new loop-exit-phis to preserve loop-closed form:
4585 v_out1 = phi <VECT_DEF>
4586 Store them in NEW_PHIS. */
4588 exit_bb = single_exit (loop)->dest;
4589 prev_phi_info = NULL;
4590 new_phis.create (vect_defs.length ());
4591 FOR_EACH_VEC_ELT (vect_defs, i, def)
4593 for (j = 0; j < ncopies; j++)
4595 tree new_def = copy_ssa_name (def);
4596 phi = create_phi_node (new_def, exit_bb);
4597 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, loop_vinfo));
4598 if (j == 0)
4599 new_phis.quick_push (phi);
4600 else
4602 def = vect_get_vec_def_for_stmt_copy (dt, def);
4603 STMT_VINFO_RELATED_STMT (prev_phi_info) = phi;
4606 SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, def);
4607 prev_phi_info = vinfo_for_stmt (phi);
4611 /* The epilogue is created for the outer-loop, i.e., for the loop being
4612 vectorized. Create exit phis for the outer loop. */
4613 if (double_reduc)
4615 loop = outer_loop;
4616 exit_bb = single_exit (loop)->dest;
4617 inner_phis.create (vect_defs.length ());
4618 FOR_EACH_VEC_ELT (new_phis, i, phi)
4620 tree new_result = copy_ssa_name (PHI_RESULT (phi));
4621 gphi *outer_phi = create_phi_node (new_result, exit_bb);
4622 SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
4623 PHI_RESULT (phi));
4624 set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
4625 loop_vinfo));
4626 inner_phis.quick_push (phi);
4627 new_phis[i] = outer_phi;
4628 prev_phi_info = vinfo_for_stmt (outer_phi);
4629 while (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi)))
4631 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
4632 new_result = copy_ssa_name (PHI_RESULT (phi));
4633 outer_phi = create_phi_node (new_result, exit_bb);
4634 SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
4635 PHI_RESULT (phi));
4636 set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
4637 loop_vinfo));
4638 STMT_VINFO_RELATED_STMT (prev_phi_info) = outer_phi;
4639 prev_phi_info = vinfo_for_stmt (outer_phi);
4644 exit_gsi = gsi_after_labels (exit_bb);
4646 /* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
4647 (i.e. when reduc_code is not available) and in the final adjustment
4648 code (if needed). Also get the original scalar reduction variable as
4649 defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
4650 represents a reduction pattern), the tree-code and scalar-def are
4651 taken from the original stmt that the pattern-stmt (STMT) replaces.
4652 Otherwise (it is a regular reduction) - the tree-code and scalar-def
4653 are taken from STMT. */
4655 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
4656 if (!orig_stmt)
4658 /* Regular reduction */
4659 orig_stmt = stmt;
4661 else
4663 /* Reduction pattern */
4664 stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt);
4665 gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo));
4666 gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
4669 code = gimple_assign_rhs_code (orig_stmt);
4670 /* For MINUS_EXPR the initial vector is [init_val,0,...,0], therefore,
4671 partial results are added and not subtracted. */
4672 if (code == MINUS_EXPR)
4673 code = PLUS_EXPR;
4675 scalar_dest = gimple_assign_lhs (orig_stmt);
4676 scalar_type = TREE_TYPE (scalar_dest);
4677 scalar_results.create (group_size);
4678 new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
4679 bitsize = TYPE_SIZE (scalar_type);
4681 /* In case this is a reduction in an inner-loop while vectorizing an outer
4682 loop - we don't need to extract a single scalar result at the end of the
4683 inner-loop (unless it is double reduction, i.e., the use of reduction is
4684 outside the outer-loop). The final vector of partial results will be used
4685 in the vectorized outer-loop, or reduced to a scalar result at the end of
4686 the outer-loop. */
4687 if (nested_in_vect_loop && !double_reduc)
4688 goto vect_finalize_reduction;
4690 /* SLP reduction without reduction chain, e.g.,
4691 # a1 = phi <a2, a0>
4692 # b1 = phi <b2, b0>
4693 a2 = operation (a1)
4694 b2 = operation (b1) */
4695 slp_reduc = (slp_node && !GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)));
4697 /* In case of reduction chain, e.g.,
4698 # a1 = phi <a3, a0>
4699 a2 = operation (a1)
4700 a3 = operation (a2),
4702 we may end up with more than one vector result. Here we reduce them to
4703 one vector. */
4704 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
4706 tree first_vect = PHI_RESULT (new_phis[0]);
4707 tree tmp;
4708 gassign *new_vec_stmt = NULL;
4710 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4711 for (k = 1; k < new_phis.length (); k++)
4713 gimple *next_phi = new_phis[k];
4714 tree second_vect = PHI_RESULT (next_phi);
4716 tmp = build2 (code, vectype, first_vect, second_vect);
4717 new_vec_stmt = gimple_build_assign (vec_dest, tmp);
4718 first_vect = make_ssa_name (vec_dest, new_vec_stmt);
4719 gimple_assign_set_lhs (new_vec_stmt, first_vect);
4720 gsi_insert_before (&exit_gsi, new_vec_stmt, GSI_SAME_STMT);
4723 new_phi_result = first_vect;
4724 if (new_vec_stmt)
4726 new_phis.truncate (0);
4727 new_phis.safe_push (new_vec_stmt);
4730 else
4731 new_phi_result = PHI_RESULT (new_phis[0]);
4733 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
4735 /* For condition reductions, we have a vector (NEW_PHI_RESULT) containing
4736 various data values where the condition matched and another vector
4737 (INDUCTION_INDEX) containing all the indexes of those matches. We
4738 need to extract the last matching index (which will be the index with
4739 highest value) and use this to index into the data vector.
4740 For the case where there were no matches, the data vector will contain
4741 all default values and the index vector will be all zeros. */
4743 /* Get various versions of the type of the vector of indexes. */
4744 tree index_vec_type = TREE_TYPE (induction_index);
4745 gcc_checking_assert (TYPE_UNSIGNED (index_vec_type));
4746 tree index_scalar_type = TREE_TYPE (index_vec_type);
4747 tree index_vec_cmp_type = build_same_sized_truth_vector_type
4748 (index_vec_type);
4750 /* Get an unsigned integer version of the type of the data vector. */
4751 int scalar_precision = GET_MODE_PRECISION (TYPE_MODE (scalar_type));
4752 tree scalar_type_unsigned = make_unsigned_type (scalar_precision);
4753 tree vectype_unsigned = build_vector_type
4754 (scalar_type_unsigned, TYPE_VECTOR_SUBPARTS (vectype));
4756 /* First we need to create a vector (ZERO_VEC) of zeros and another
4757 vector (MAX_INDEX_VEC) filled with the last matching index, which we
4758 can create using a MAX reduction and then expanding.
4759 In the case where the loop never made any matches, the max index will
4760 be zero. */
4762 /* Vector of {0, 0, 0,...}. */
4763 tree zero_vec = make_ssa_name (vectype);
4764 tree zero_vec_rhs = build_zero_cst (vectype);
4765 gimple *zero_vec_stmt = gimple_build_assign (zero_vec, zero_vec_rhs);
4766 gsi_insert_before (&exit_gsi, zero_vec_stmt, GSI_SAME_STMT);
4768 /* Find maximum value from the vector of found indexes. */
4769 tree max_index = make_ssa_name (index_scalar_type);
4770 gimple *max_index_stmt = gimple_build_assign (max_index, REDUC_MAX_EXPR,
4771 induction_index);
4772 gsi_insert_before (&exit_gsi, max_index_stmt, GSI_SAME_STMT);
4774 /* Vector of {max_index, max_index, max_index,...}. */
4775 tree max_index_vec = make_ssa_name (index_vec_type);
4776 tree max_index_vec_rhs = build_vector_from_val (index_vec_type,
4777 max_index);
4778 gimple *max_index_vec_stmt = gimple_build_assign (max_index_vec,
4779 max_index_vec_rhs);
4780 gsi_insert_before (&exit_gsi, max_index_vec_stmt, GSI_SAME_STMT);
4782 /* Next we compare the new vector (MAX_INDEX_VEC) full of max indexes
4783 with the vector (INDUCTION_INDEX) of found indexes, choosing values
4784 from the data vector (NEW_PHI_RESULT) for matches, 0 (ZERO_VEC)
4785 otherwise. Only one value should match, resulting in a vector
4786 (VEC_COND) with one data value and the rest zeros.
4787 In the case where the loop never made any matches, every index will
4788 match, resulting in a vector with all data values (which will all be
4789 the default value). */
4791 /* Compare the max index vector to the vector of found indexes to find
4792 the position of the max value. */
4793 tree vec_compare = make_ssa_name (index_vec_cmp_type);
4794 gimple *vec_compare_stmt = gimple_build_assign (vec_compare, EQ_EXPR,
4795 induction_index,
4796 max_index_vec);
4797 gsi_insert_before (&exit_gsi, vec_compare_stmt, GSI_SAME_STMT);
4799 /* Use the compare to choose either values from the data vector or
4800 zero. */
4801 tree vec_cond = make_ssa_name (vectype);
4802 gimple *vec_cond_stmt = gimple_build_assign (vec_cond, VEC_COND_EXPR,
4803 vec_compare, new_phi_result,
4804 zero_vec);
4805 gsi_insert_before (&exit_gsi, vec_cond_stmt, GSI_SAME_STMT);
4807 /* Finally we need to extract the data value from the vector (VEC_COND)
4808 into a scalar (MATCHED_DATA_REDUC). Logically we want to do a OR
4809 reduction, but because this doesn't exist, we can use a MAX reduction
4810 instead. The data value might be signed or a float so we need to cast
4811 it first.
4812 In the case where the loop never made any matches, the data values are
4813 all identical, and so will reduce down correctly. */
4815 /* Make the matched data values unsigned. */
4816 tree vec_cond_cast = make_ssa_name (vectype_unsigned);
4817 tree vec_cond_cast_rhs = build1 (VIEW_CONVERT_EXPR, vectype_unsigned,
4818 vec_cond);
4819 gimple *vec_cond_cast_stmt = gimple_build_assign (vec_cond_cast,
4820 VIEW_CONVERT_EXPR,
4821 vec_cond_cast_rhs);
4822 gsi_insert_before (&exit_gsi, vec_cond_cast_stmt, GSI_SAME_STMT);
4824 /* Reduce down to a scalar value. */
4825 tree data_reduc = make_ssa_name (scalar_type_unsigned);
4826 optab ot = optab_for_tree_code (REDUC_MAX_EXPR, vectype_unsigned,
4827 optab_default);
4828 gcc_assert (optab_handler (ot, TYPE_MODE (vectype_unsigned))
4829 != CODE_FOR_nothing);
4830 gimple *data_reduc_stmt = gimple_build_assign (data_reduc,
4831 REDUC_MAX_EXPR,
4832 vec_cond_cast);
4833 gsi_insert_before (&exit_gsi, data_reduc_stmt, GSI_SAME_STMT);
4835 /* Convert the reduced value back to the result type and set as the
4836 result. */
4837 tree data_reduc_cast = build1 (VIEW_CONVERT_EXPR, scalar_type,
4838 data_reduc);
4839 epilog_stmt = gimple_build_assign (new_scalar_dest, data_reduc_cast);
4840 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4841 gimple_assign_set_lhs (epilog_stmt, new_temp);
4842 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4843 scalar_results.safe_push (new_temp);
4846 /* 2.3 Create the reduction code, using one of the three schemes described
4847 above. In SLP we simply need to extract all the elements from the
4848 vector (without reducing them), so we use scalar shifts. */
4849 else if (reduc_code != ERROR_MARK && !slp_reduc)
4851 tree tmp;
4852 tree vec_elem_type;
4854 /*** Case 1: Create:
4855 v_out2 = reduc_expr <v_out1> */
4857 if (dump_enabled_p ())
4858 dump_printf_loc (MSG_NOTE, vect_location,
4859 "Reduce using direct vector reduction.\n");
4861 vec_elem_type = TREE_TYPE (TREE_TYPE (new_phi_result));
4862 if (!useless_type_conversion_p (scalar_type, vec_elem_type))
4864 tree tmp_dest =
4865 vect_create_destination_var (scalar_dest, vec_elem_type);
4866 tmp = build1 (reduc_code, vec_elem_type, new_phi_result);
4867 epilog_stmt = gimple_build_assign (tmp_dest, tmp);
4868 new_temp = make_ssa_name (tmp_dest, epilog_stmt);
4869 gimple_assign_set_lhs (epilog_stmt, new_temp);
4870 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4872 tmp = build1 (NOP_EXPR, scalar_type, new_temp);
4874 else
4875 tmp = build1 (reduc_code, scalar_type, new_phi_result);
4877 epilog_stmt = gimple_build_assign (new_scalar_dest, tmp);
4878 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4879 gimple_assign_set_lhs (epilog_stmt, new_temp);
4880 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4882 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
4883 == INTEGER_INDUC_COND_REDUCTION)
4885 /* Earlier we set the initial value to be zero. Check the result
4886 and if it is zero then replace with the original initial
4887 value. */
4888 tree zero = build_zero_cst (scalar_type);
4889 tree zcompare = build2 (EQ_EXPR, boolean_type_node, new_temp, zero);
4891 tmp = make_ssa_name (new_scalar_dest);
4892 epilog_stmt = gimple_build_assign (tmp, COND_EXPR, zcompare,
4893 initial_def, new_temp);
4894 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4895 new_temp = tmp;
4898 scalar_results.safe_push (new_temp);
4900 else
4902 bool reduce_with_shift = have_whole_vector_shift (mode);
4903 int element_bitsize = tree_to_uhwi (bitsize);
4904 int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
4905 tree vec_temp;
4907 /* Regardless of whether we have a whole vector shift, if we're
4908 emulating the operation via tree-vect-generic, we don't want
4909 to use it. Only the first round of the reduction is likely
4910 to still be profitable via emulation. */
4911 /* ??? It might be better to emit a reduction tree code here, so that
4912 tree-vect-generic can expand the first round via bit tricks. */
4913 if (!VECTOR_MODE_P (mode))
4914 reduce_with_shift = false;
4915 else
4917 optab optab = optab_for_tree_code (code, vectype, optab_default);
4918 if (optab_handler (optab, mode) == CODE_FOR_nothing)
4919 reduce_with_shift = false;
4922 if (reduce_with_shift && !slp_reduc)
4924 int nelements = vec_size_in_bits / element_bitsize;
4925 unsigned char *sel = XALLOCAVEC (unsigned char, nelements);
4927 int elt_offset;
4929 tree zero_vec = build_zero_cst (vectype);
4930 /*** Case 2: Create:
4931 for (offset = nelements/2; offset >= 1; offset/=2)
4933 Create: va' = vec_shift <va, offset>
4934 Create: va = vop <va, va'>
4935 } */
4937 tree rhs;
4939 if (dump_enabled_p ())
4940 dump_printf_loc (MSG_NOTE, vect_location,
4941 "Reduce using vector shifts\n");
4943 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4944 new_temp = new_phi_result;
4945 for (elt_offset = nelements / 2;
4946 elt_offset >= 1;
4947 elt_offset /= 2)
4949 calc_vec_perm_mask_for_shift (mode, elt_offset, sel);
4950 tree mask = vect_gen_perm_mask_any (vectype, sel);
4951 epilog_stmt = gimple_build_assign (vec_dest, VEC_PERM_EXPR,
4952 new_temp, zero_vec, mask);
4953 new_name = make_ssa_name (vec_dest, epilog_stmt);
4954 gimple_assign_set_lhs (epilog_stmt, new_name);
4955 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4957 epilog_stmt = gimple_build_assign (vec_dest, code, new_name,
4958 new_temp);
4959 new_temp = make_ssa_name (vec_dest, epilog_stmt);
4960 gimple_assign_set_lhs (epilog_stmt, new_temp);
4961 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4964 /* 2.4 Extract the final scalar result. Create:
4965 s_out3 = extract_field <v_out2, bitpos> */
4967 if (dump_enabled_p ())
4968 dump_printf_loc (MSG_NOTE, vect_location,
4969 "extract scalar result\n");
4971 rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp,
4972 bitsize, bitsize_zero_node);
4973 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4974 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4975 gimple_assign_set_lhs (epilog_stmt, new_temp);
4976 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4977 scalar_results.safe_push (new_temp);
4979 else
4981 /*** Case 3: Create:
4982 s = extract_field <v_out2, 0>
4983 for (offset = element_size;
4984 offset < vector_size;
4985 offset += element_size;)
4987 Create: s' = extract_field <v_out2, offset>
4988 Create: s = op <s, s'> // For non SLP cases
4989 } */
4991 if (dump_enabled_p ())
4992 dump_printf_loc (MSG_NOTE, vect_location,
4993 "Reduce using scalar code.\n");
4995 vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
4996 FOR_EACH_VEC_ELT (new_phis, i, new_phi)
4998 int bit_offset;
4999 if (gimple_code (new_phi) == GIMPLE_PHI)
5000 vec_temp = PHI_RESULT (new_phi);
5001 else
5002 vec_temp = gimple_assign_lhs (new_phi);
5003 tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
5004 bitsize_zero_node);
5005 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
5006 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
5007 gimple_assign_set_lhs (epilog_stmt, new_temp);
5008 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5010 /* In SLP we don't need to apply reduction operation, so we just
5011 collect s' values in SCALAR_RESULTS. */
5012 if (slp_reduc)
5013 scalar_results.safe_push (new_temp);
5015 for (bit_offset = element_bitsize;
5016 bit_offset < vec_size_in_bits;
5017 bit_offset += element_bitsize)
5019 tree bitpos = bitsize_int (bit_offset);
5020 tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp,
5021 bitsize, bitpos);
5023 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
5024 new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
5025 gimple_assign_set_lhs (epilog_stmt, new_name);
5026 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5028 if (slp_reduc)
5030 /* In SLP we don't need to apply reduction operation, so
5031 we just collect s' values in SCALAR_RESULTS. */
5032 new_temp = new_name;
5033 scalar_results.safe_push (new_name);
5035 else
5037 epilog_stmt = gimple_build_assign (new_scalar_dest, code,
5038 new_name, new_temp);
5039 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
5040 gimple_assign_set_lhs (epilog_stmt, new_temp);
5041 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5046 /* The only case where we need to reduce scalar results in SLP, is
5047 unrolling. If the size of SCALAR_RESULTS is greater than
5048 GROUP_SIZE, we reduce them combining elements modulo
5049 GROUP_SIZE. */
5050 if (slp_reduc)
5052 tree res, first_res, new_res;
5053 gimple *new_stmt;
5055 /* Reduce multiple scalar results in case of SLP unrolling. */
5056 for (j = group_size; scalar_results.iterate (j, &res);
5057 j++)
5059 first_res = scalar_results[j % group_size];
5060 new_stmt = gimple_build_assign (new_scalar_dest, code,
5061 first_res, res);
5062 new_res = make_ssa_name (new_scalar_dest, new_stmt);
5063 gimple_assign_set_lhs (new_stmt, new_res);
5064 gsi_insert_before (&exit_gsi, new_stmt, GSI_SAME_STMT);
5065 scalar_results[j % group_size] = new_res;
5068 else
5069 /* Not SLP - we have one scalar to keep in SCALAR_RESULTS. */
5070 scalar_results.safe_push (new_temp);
5074 vect_finalize_reduction:
5076 if (double_reduc)
5077 loop = loop->inner;
5079 /* 2.5 Adjust the final result by the initial value of the reduction
5080 variable. (When such adjustment is not needed, then
5081 'adjustment_def' is zero). For example, if code is PLUS we create:
5082 new_temp = loop_exit_def + adjustment_def */
5084 if (adjustment_def)
5086 gcc_assert (!slp_reduc);
5087 if (nested_in_vect_loop)
5089 new_phi = new_phis[0];
5090 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) == VECTOR_TYPE);
5091 expr = build2 (code, vectype, PHI_RESULT (new_phi), adjustment_def);
5092 new_dest = vect_create_destination_var (scalar_dest, vectype);
5094 else
5096 new_temp = scalar_results[0];
5097 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) != VECTOR_TYPE);
5098 expr = build2 (code, scalar_type, new_temp, adjustment_def);
5099 new_dest = vect_create_destination_var (scalar_dest, scalar_type);
5102 epilog_stmt = gimple_build_assign (new_dest, expr);
5103 new_temp = make_ssa_name (new_dest, epilog_stmt);
5104 gimple_assign_set_lhs (epilog_stmt, new_temp);
5105 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5106 if (nested_in_vect_loop)
5108 set_vinfo_for_stmt (epilog_stmt,
5109 new_stmt_vec_info (epilog_stmt, loop_vinfo));
5110 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (epilog_stmt)) =
5111 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_phi));
5113 if (!double_reduc)
5114 scalar_results.quick_push (new_temp);
5115 else
5116 scalar_results[0] = new_temp;
5118 else
5119 scalar_results[0] = new_temp;
5121 new_phis[0] = epilog_stmt;
5124 /* 2.6 Handle the loop-exit phis. Replace the uses of scalar loop-exit
5125 phis with new adjusted scalar results, i.e., replace use <s_out0>
5126 with use <s_out4>.
5128 Transform:
5129 loop_exit:
5130 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
5131 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
5132 v_out2 = reduce <v_out1>
5133 s_out3 = extract_field <v_out2, 0>
5134 s_out4 = adjust_result <s_out3>
5135 use <s_out0>
5136 use <s_out0>
5138 into:
5140 loop_exit:
5141 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
5142 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
5143 v_out2 = reduce <v_out1>
5144 s_out3 = extract_field <v_out2, 0>
5145 s_out4 = adjust_result <s_out3>
5146 use <s_out4>
5147 use <s_out4> */
5150 /* In SLP reduction chain we reduce vector results into one vector if
5151 necessary, hence we set here GROUP_SIZE to 1. SCALAR_DEST is the LHS of
5152 the last stmt in the reduction chain, since we are looking for the loop
5153 exit phi node. */
5154 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
5156 gimple *dest_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[group_size - 1];
5157 /* Handle reduction patterns. */
5158 if (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (dest_stmt)))
5159 dest_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (dest_stmt));
5161 scalar_dest = gimple_assign_lhs (dest_stmt);
5162 group_size = 1;
5165 /* In SLP we may have several statements in NEW_PHIS and REDUCTION_PHIS (in
5166 case that GROUP_SIZE is greater than vectorization factor). Therefore, we
5167 need to match SCALAR_RESULTS with corresponding statements. The first
5168 (GROUP_SIZE / number of new vector stmts) scalar results correspond to
5169 the first vector stmt, etc.
5170 (RATIO is equal to (GROUP_SIZE / number of new vector stmts)). */
5171 if (group_size > new_phis.length ())
5173 ratio = group_size / new_phis.length ();
5174 gcc_assert (!(group_size % new_phis.length ()));
5176 else
5177 ratio = 1;
5179 for (k = 0; k < group_size; k++)
5181 if (k % ratio == 0)
5183 epilog_stmt = new_phis[k / ratio];
5184 reduction_phi = reduction_phis[k / ratio];
5185 if (double_reduc)
5186 inner_phi = inner_phis[k / ratio];
5189 if (slp_reduc)
5191 gimple *current_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[k];
5193 orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (current_stmt));
5194 /* SLP statements can't participate in patterns. */
5195 gcc_assert (!orig_stmt);
5196 scalar_dest = gimple_assign_lhs (current_stmt);
5199 phis.create (3);
5200 /* Find the loop-closed-use at the loop exit of the original scalar
5201 result. (The reduction result is expected to have two immediate uses -
5202 one at the latch block, and one at the loop exit). */
5203 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
5204 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p)))
5205 && !is_gimple_debug (USE_STMT (use_p)))
5206 phis.safe_push (USE_STMT (use_p));
5208 /* While we expect to have found an exit_phi because of loop-closed-ssa
5209 form we can end up without one if the scalar cycle is dead. */
5211 FOR_EACH_VEC_ELT (phis, i, exit_phi)
5213 if (outer_loop)
5215 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
5216 gphi *vect_phi;
5218 /* FORNOW. Currently not supporting the case that an inner-loop
5219 reduction is not used in the outer-loop (but only outside the
5220 outer-loop), unless it is double reduction. */
5221 gcc_assert ((STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
5222 && !STMT_VINFO_LIVE_P (exit_phi_vinfo))
5223 || double_reduc);
5225 if (double_reduc)
5226 STMT_VINFO_VEC_STMT (exit_phi_vinfo) = inner_phi;
5227 else
5228 STMT_VINFO_VEC_STMT (exit_phi_vinfo) = epilog_stmt;
5229 if (!double_reduc
5230 || STMT_VINFO_DEF_TYPE (exit_phi_vinfo)
5231 != vect_double_reduction_def)
5232 continue;
5234 /* Handle double reduction:
5236 stmt1: s1 = phi <s0, s2> - double reduction phi (outer loop)
5237 stmt2: s3 = phi <s1, s4> - (regular) reduc phi (inner loop)
5238 stmt3: s4 = use (s3) - (regular) reduc stmt (inner loop)
5239 stmt4: s2 = phi <s4> - double reduction stmt (outer loop)
5241 At that point the regular reduction (stmt2 and stmt3) is
5242 already vectorized, as well as the exit phi node, stmt4.
5243 Here we vectorize the phi node of double reduction, stmt1, and
5244 update all relevant statements. */
5246 /* Go through all the uses of s2 to find double reduction phi
5247 node, i.e., stmt1 above. */
5248 orig_name = PHI_RESULT (exit_phi);
5249 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
5251 stmt_vec_info use_stmt_vinfo;
5252 stmt_vec_info new_phi_vinfo;
5253 tree vect_phi_init, preheader_arg, vect_phi_res, init_def;
5254 basic_block bb = gimple_bb (use_stmt);
5255 gimple *use;
5257 /* Check that USE_STMT is really double reduction phi
5258 node. */
5259 if (gimple_code (use_stmt) != GIMPLE_PHI
5260 || gimple_phi_num_args (use_stmt) != 2
5261 || bb->loop_father != outer_loop)
5262 continue;
5263 use_stmt_vinfo = vinfo_for_stmt (use_stmt);
5264 if (!use_stmt_vinfo
5265 || STMT_VINFO_DEF_TYPE (use_stmt_vinfo)
5266 != vect_double_reduction_def)
5267 continue;
5269 /* Create vector phi node for double reduction:
5270 vs1 = phi <vs0, vs2>
5271 vs1 was created previously in this function by a call to
5272 vect_get_vec_def_for_operand and is stored in
5273 vec_initial_def;
5274 vs2 is defined by INNER_PHI, the vectorized EXIT_PHI;
5275 vs0 is created here. */
5277 /* Create vector phi node. */
5278 vect_phi = create_phi_node (vec_initial_def, bb);
5279 new_phi_vinfo = new_stmt_vec_info (vect_phi,
5280 loop_vec_info_for_loop (outer_loop));
5281 set_vinfo_for_stmt (vect_phi, new_phi_vinfo);
5283 /* Create vs0 - initial def of the double reduction phi. */
5284 preheader_arg = PHI_ARG_DEF_FROM_EDGE (use_stmt,
5285 loop_preheader_edge (outer_loop));
5286 init_def = get_initial_def_for_reduction (stmt,
5287 preheader_arg, NULL);
5288 vect_phi_init = vect_init_vector (use_stmt, init_def,
5289 vectype, NULL);
5291 /* Update phi node arguments with vs0 and vs2. */
5292 add_phi_arg (vect_phi, vect_phi_init,
5293 loop_preheader_edge (outer_loop),
5294 UNKNOWN_LOCATION);
5295 add_phi_arg (vect_phi, PHI_RESULT (inner_phi),
5296 loop_latch_edge (outer_loop), UNKNOWN_LOCATION);
5297 if (dump_enabled_p ())
5299 dump_printf_loc (MSG_NOTE, vect_location,
5300 "created double reduction phi node: ");
5301 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, vect_phi, 0);
5304 vect_phi_res = PHI_RESULT (vect_phi);
5306 /* Replace the use, i.e., set the correct vs1 in the regular
5307 reduction phi node. FORNOW, NCOPIES is always 1, so the
5308 loop is redundant. */
5309 use = reduction_phi;
5310 for (j = 0; j < ncopies; j++)
5312 edge pr_edge = loop_preheader_edge (loop);
5313 SET_PHI_ARG_DEF (use, pr_edge->dest_idx, vect_phi_res);
5314 use = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use));
5320 phis.release ();
5321 if (nested_in_vect_loop)
5323 if (double_reduc)
5324 loop = outer_loop;
5325 else
5326 continue;
5329 phis.create (3);
5330 /* Find the loop-closed-use at the loop exit of the original scalar
5331 result. (The reduction result is expected to have two immediate uses,
5332 one at the latch block, and one at the loop exit). For double
5333 reductions we are looking for exit phis of the outer loop. */
5334 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
5336 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
5338 if (!is_gimple_debug (USE_STMT (use_p)))
5339 phis.safe_push (USE_STMT (use_p));
5341 else
5343 if (double_reduc && gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
5345 tree phi_res = PHI_RESULT (USE_STMT (use_p));
5347 FOR_EACH_IMM_USE_FAST (phi_use_p, phi_imm_iter, phi_res)
5349 if (!flow_bb_inside_loop_p (loop,
5350 gimple_bb (USE_STMT (phi_use_p)))
5351 && !is_gimple_debug (USE_STMT (phi_use_p)))
5352 phis.safe_push (USE_STMT (phi_use_p));
5358 FOR_EACH_VEC_ELT (phis, i, exit_phi)
5360 /* Replace the uses: */
5361 orig_name = PHI_RESULT (exit_phi);
5362 scalar_result = scalar_results[k];
5363 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
5364 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
5365 SET_USE (use_p, scalar_result);
5368 phis.release ();
5373 /* Function is_nonwrapping_integer_induction.
5375 Check if STMT (which is part of loop LOOP) both increments and
5376 does not cause overflow. */
5378 static bool
5379 is_nonwrapping_integer_induction (gimple *stmt, struct loop *loop)
5381 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
5382 tree base = STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo);
5383 tree step = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo);
5384 tree lhs_type = TREE_TYPE (gimple_phi_result (stmt));
5385 widest_int ni, max_loop_value, lhs_max;
5386 bool overflow = false;
5388 /* Make sure the loop is integer based. */
5389 if (TREE_CODE (base) != INTEGER_CST
5390 || TREE_CODE (step) != INTEGER_CST)
5391 return false;
5393 /* Check that the induction increments. */
5394 if (tree_int_cst_sgn (step) == -1)
5395 return false;
5397 /* Check that the max size of the loop will not wrap. */
5399 if (TYPE_OVERFLOW_UNDEFINED (lhs_type))
5400 return true;
5402 if (! max_stmt_executions (loop, &ni))
5403 return false;
5405 max_loop_value = wi::mul (wi::to_widest (step), ni, TYPE_SIGN (lhs_type),
5406 &overflow);
5407 if (overflow)
5408 return false;
5410 max_loop_value = wi::add (wi::to_widest (base), max_loop_value,
5411 TYPE_SIGN (lhs_type), &overflow);
5412 if (overflow)
5413 return false;
5415 return (wi::min_precision (max_loop_value, TYPE_SIGN (lhs_type))
5416 <= TYPE_PRECISION (lhs_type));
5419 /* Function vectorizable_reduction.
5421 Check if STMT performs a reduction operation that can be vectorized.
5422 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
5423 stmt to replace it, put it in VEC_STMT, and insert it at GSI.
5424 Return FALSE if not a vectorizable STMT, TRUE otherwise.
5426 This function also handles reduction idioms (patterns) that have been
5427 recognized in advance during vect_pattern_recog. In this case, STMT may be
5428 of this form:
5429 X = pattern_expr (arg0, arg1, ..., X)
5430 and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
5431 sequence that had been detected and replaced by the pattern-stmt (STMT).
5433 This function also handles reduction of condition expressions, for example:
5434 for (int i = 0; i < N; i++)
5435 if (a[i] < value)
5436 last = a[i];
5437 This is handled by vectorising the loop and creating an additional vector
5438 containing the loop indexes for which "a[i] < value" was true. In the
5439 function epilogue this is reduced to a single max value and then used to
5440 index into the vector of results.
5442 In some cases of reduction patterns, the type of the reduction variable X is
5443 different than the type of the other arguments of STMT.
5444 In such cases, the vectype that is used when transforming STMT into a vector
5445 stmt is different than the vectype that is used to determine the
5446 vectorization factor, because it consists of a different number of elements
5447 than the actual number of elements that are being operated upon in parallel.
5449 For example, consider an accumulation of shorts into an int accumulator.
5450 On some targets it's possible to vectorize this pattern operating on 8
5451 shorts at a time (hence, the vectype for purposes of determining the
5452 vectorization factor should be V8HI); on the other hand, the vectype that
5453 is used to create the vector form is actually V4SI (the type of the result).
5455 Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
5456 indicates what is the actual level of parallelism (V8HI in the example), so
5457 that the right vectorization factor would be derived. This vectype
5458 corresponds to the type of arguments to the reduction stmt, and should *NOT*
5459 be used to create the vectorized stmt. The right vectype for the vectorized
5460 stmt is obtained from the type of the result X:
5461 get_vectype_for_scalar_type (TREE_TYPE (X))
5463 This means that, contrary to "regular" reductions (or "regular" stmts in
5464 general), the following equation:
5465 STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
5466 does *NOT* necessarily hold for reduction patterns. */
5468 bool
5469 vectorizable_reduction (gimple *stmt, gimple_stmt_iterator *gsi,
5470 gimple **vec_stmt, slp_tree slp_node)
5472 tree vec_dest;
5473 tree scalar_dest;
5474 tree loop_vec_def0 = NULL_TREE, loop_vec_def1 = NULL_TREE;
5475 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5476 tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
5477 tree vectype_in = NULL_TREE;
5478 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5479 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5480 enum tree_code code, orig_code, epilog_reduc_code;
5481 machine_mode vec_mode;
5482 int op_type;
5483 optab optab, reduc_optab;
5484 tree new_temp = NULL_TREE;
5485 gimple *def_stmt;
5486 enum vect_def_type dt, cond_reduc_dt = vect_unknown_def_type;
5487 gphi *new_phi = NULL;
5488 tree scalar_type;
5489 bool is_simple_use;
5490 gimple *orig_stmt;
5491 stmt_vec_info orig_stmt_info;
5492 tree expr = NULL_TREE;
5493 int i;
5494 int ncopies;
5495 int epilog_copies;
5496 stmt_vec_info prev_stmt_info, prev_phi_info;
5497 bool single_defuse_cycle = false;
5498 tree reduc_def = NULL_TREE;
5499 gimple *new_stmt = NULL;
5500 int j;
5501 tree ops[3];
5502 bool nested_cycle = false, found_nested_cycle_def = false;
5503 gimple *reduc_def_stmt = NULL;
5504 bool double_reduc = false, dummy;
5505 basic_block def_bb;
5506 struct loop * def_stmt_loop, *outer_loop = NULL;
5507 tree def_arg;
5508 gimple *def_arg_stmt;
5509 auto_vec<tree> vec_oprnds0;
5510 auto_vec<tree> vec_oprnds1;
5511 auto_vec<tree> vect_defs;
5512 auto_vec<gimple *> phis;
5513 int vec_num;
5514 tree def0, def1, tem, op1 = NULL_TREE;
5515 bool first_p = true;
5516 tree cr_index_scalar_type = NULL_TREE, cr_index_vector_type = NULL_TREE;
5517 tree cond_reduc_val = NULL_TREE;
5519 /* In case of reduction chain we switch to the first stmt in the chain, but
5520 we don't update STMT_INFO, since only the last stmt is marked as reduction
5521 and has reduction properties. */
5522 if (GROUP_FIRST_ELEMENT (stmt_info)
5523 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
5525 stmt = GROUP_FIRST_ELEMENT (stmt_info);
5526 first_p = false;
5529 if (nested_in_vect_loop_p (loop, stmt))
5531 outer_loop = loop;
5532 loop = loop->inner;
5533 nested_cycle = true;
5536 /* 1. Is vectorizable reduction? */
5537 /* Not supportable if the reduction variable is used in the loop, unless
5538 it's a reduction chain. */
5539 if (STMT_VINFO_RELEVANT (stmt_info) > vect_used_in_outer
5540 && !GROUP_FIRST_ELEMENT (stmt_info))
5541 return false;
5543 /* Reductions that are not used even in an enclosing outer-loop,
5544 are expected to be "live" (used out of the loop). */
5545 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope
5546 && !STMT_VINFO_LIVE_P (stmt_info))
5547 return false;
5549 /* Make sure it was already recognized as a reduction computation. */
5550 if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmt)) != vect_reduction_def
5551 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmt)) != vect_nested_cycle)
5552 return false;
5554 /* 2. Has this been recognized as a reduction pattern?
5556 Check if STMT represents a pattern that has been recognized
5557 in earlier analysis stages. For stmts that represent a pattern,
5558 the STMT_VINFO_RELATED_STMT field records the last stmt in
5559 the original sequence that constitutes the pattern. */
5561 orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
5562 if (orig_stmt)
5564 orig_stmt_info = vinfo_for_stmt (orig_stmt);
5565 gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
5566 gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
5569 /* 3. Check the operands of the operation. The first operands are defined
5570 inside the loop body. The last operand is the reduction variable,
5571 which is defined by the loop-header-phi. */
5573 gcc_assert (is_gimple_assign (stmt));
5575 /* Flatten RHS. */
5576 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
5578 case GIMPLE_SINGLE_RHS:
5579 op_type = TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt));
5580 if (op_type == ternary_op)
5582 tree rhs = gimple_assign_rhs1 (stmt);
5583 ops[0] = TREE_OPERAND (rhs, 0);
5584 ops[1] = TREE_OPERAND (rhs, 1);
5585 ops[2] = TREE_OPERAND (rhs, 2);
5586 code = TREE_CODE (rhs);
5588 else
5589 return false;
5590 break;
5592 case GIMPLE_BINARY_RHS:
5593 code = gimple_assign_rhs_code (stmt);
5594 op_type = TREE_CODE_LENGTH (code);
5595 gcc_assert (op_type == binary_op);
5596 ops[0] = gimple_assign_rhs1 (stmt);
5597 ops[1] = gimple_assign_rhs2 (stmt);
5598 break;
5600 case GIMPLE_TERNARY_RHS:
5601 code = gimple_assign_rhs_code (stmt);
5602 op_type = TREE_CODE_LENGTH (code);
5603 gcc_assert (op_type == ternary_op);
5604 ops[0] = gimple_assign_rhs1 (stmt);
5605 ops[1] = gimple_assign_rhs2 (stmt);
5606 ops[2] = gimple_assign_rhs3 (stmt);
5607 break;
5609 case GIMPLE_UNARY_RHS:
5610 return false;
5612 default:
5613 gcc_unreachable ();
5615 /* The default is that the reduction variable is the last in statement. */
5616 int reduc_index = op_type - 1;
5617 if (code == MINUS_EXPR)
5618 reduc_index = 0;
5620 if (code == COND_EXPR && slp_node)
5621 return false;
5623 scalar_dest = gimple_assign_lhs (stmt);
5624 scalar_type = TREE_TYPE (scalar_dest);
5625 if (!POINTER_TYPE_P (scalar_type) && !INTEGRAL_TYPE_P (scalar_type)
5626 && !SCALAR_FLOAT_TYPE_P (scalar_type))
5627 return false;
5629 /* Do not try to vectorize bit-precision reductions. */
5630 if ((TYPE_PRECISION (scalar_type)
5631 != GET_MODE_PRECISION (TYPE_MODE (scalar_type))))
5632 return false;
5634 /* All uses but the last are expected to be defined in the loop.
5635 The last use is the reduction variable. In case of nested cycle this
5636 assumption is not true: we use reduc_index to record the index of the
5637 reduction variable. */
5638 for (i = 0; i < op_type; i++)
5640 if (i == reduc_index)
5641 continue;
5643 /* The condition of COND_EXPR is checked in vectorizable_condition(). */
5644 if (i == 0 && code == COND_EXPR)
5645 continue;
5647 is_simple_use = vect_is_simple_use (ops[i], loop_vinfo,
5648 &def_stmt, &dt, &tem);
5649 if (!vectype_in)
5650 vectype_in = tem;
5651 gcc_assert (is_simple_use);
5653 if (dt != vect_internal_def
5654 && dt != vect_external_def
5655 && dt != vect_constant_def
5656 && dt != vect_induction_def
5657 && !(dt == vect_nested_cycle && nested_cycle))
5658 return false;
5660 if (dt == vect_nested_cycle)
5662 found_nested_cycle_def = true;
5663 reduc_def_stmt = def_stmt;
5664 reduc_index = i;
5667 if (i == 1 && code == COND_EXPR)
5669 /* Record how value of COND_EXPR is defined. */
5670 if (dt == vect_constant_def)
5672 cond_reduc_dt = dt;
5673 cond_reduc_val = ops[i];
5675 if (dt == vect_induction_def && def_stmt != NULL
5676 && is_nonwrapping_integer_induction (def_stmt, loop))
5677 cond_reduc_dt = dt;
5681 is_simple_use = vect_is_simple_use (ops[reduc_index], loop_vinfo,
5682 &def_stmt, &dt, &tem);
5683 if (!vectype_in)
5684 vectype_in = tem;
5685 gcc_assert (is_simple_use);
5686 if (!found_nested_cycle_def)
5687 reduc_def_stmt = def_stmt;
5689 if (reduc_def_stmt && gimple_code (reduc_def_stmt) != GIMPLE_PHI)
5690 return false;
5692 if (!(dt == vect_reduction_def
5693 || dt == vect_nested_cycle
5694 || ((dt == vect_internal_def || dt == vect_external_def
5695 || dt == vect_constant_def || dt == vect_induction_def)
5696 && nested_cycle && found_nested_cycle_def)))
5698 /* For pattern recognized stmts, orig_stmt might be a reduction,
5699 but some helper statements for the pattern might not, or
5700 might be COND_EXPRs with reduction uses in the condition. */
5701 gcc_assert (orig_stmt);
5702 return false;
5705 enum vect_reduction_type v_reduc_type;
5706 gimple *tmp = vect_is_simple_reduction (loop_vinfo, reduc_def_stmt,
5707 !nested_cycle, &dummy, false,
5708 &v_reduc_type);
5710 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) = v_reduc_type;
5711 /* If we have a condition reduction, see if we can simplify it further. */
5712 if (v_reduc_type == COND_REDUCTION)
5714 if (cond_reduc_dt == vect_induction_def)
5716 if (dump_enabled_p ())
5717 dump_printf_loc (MSG_NOTE, vect_location,
5718 "condition expression based on "
5719 "integer induction.\n");
5720 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
5721 = INTEGER_INDUC_COND_REDUCTION;
5724 /* Loop peeling modifies initial value of reduction PHI, which
5725 makes the reduction stmt to be transformed different to the
5726 original stmt analyzed. We need to record reduction code for
5727 CONST_COND_REDUCTION type reduction at analyzing stage, thus
5728 it can be used directly at transform stage. */
5729 if (STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info) == MAX_EXPR
5730 || STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info) == MIN_EXPR)
5732 /* Also set the reduction type to CONST_COND_REDUCTION. */
5733 gcc_assert (cond_reduc_dt == vect_constant_def);
5734 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) = CONST_COND_REDUCTION;
5736 else if (cond_reduc_dt == vect_constant_def)
5738 enum vect_def_type cond_initial_dt;
5739 gimple *def_stmt = SSA_NAME_DEF_STMT (ops[reduc_index]);
5740 tree cond_initial_val
5741 = PHI_ARG_DEF_FROM_EDGE (def_stmt, loop_preheader_edge (loop));
5743 gcc_assert (cond_reduc_val != NULL_TREE);
5744 vect_is_simple_use (cond_initial_val, loop_vinfo,
5745 &def_stmt, &cond_initial_dt);
5746 if (cond_initial_dt == vect_constant_def
5747 && types_compatible_p (TREE_TYPE (cond_initial_val),
5748 TREE_TYPE (cond_reduc_val)))
5750 tree e = fold_build2 (LE_EXPR, boolean_type_node,
5751 cond_initial_val, cond_reduc_val);
5752 if (e && (integer_onep (e) || integer_zerop (e)))
5754 if (dump_enabled_p ())
5755 dump_printf_loc (MSG_NOTE, vect_location,
5756 "condition expression based on "
5757 "compile time constant.\n");
5758 /* Record reduction code at analysis stage. */
5759 STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info)
5760 = integer_onep (e) ? MAX_EXPR : MIN_EXPR;
5761 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
5762 = CONST_COND_REDUCTION;
5768 if (orig_stmt)
5769 gcc_assert (tmp == orig_stmt
5770 || GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) == orig_stmt);
5771 else
5772 /* We changed STMT to be the first stmt in reduction chain, hence we
5773 check that in this case the first element in the chain is STMT. */
5774 gcc_assert (stmt == tmp
5775 || GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) == stmt);
5777 if (STMT_VINFO_LIVE_P (vinfo_for_stmt (reduc_def_stmt)))
5778 return false;
5780 if (slp_node)
5781 ncopies = 1;
5782 else
5783 ncopies = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
5784 / TYPE_VECTOR_SUBPARTS (vectype_in));
5786 gcc_assert (ncopies >= 1);
5788 vec_mode = TYPE_MODE (vectype_in);
5790 if (code == COND_EXPR)
5792 /* Only call during the analysis stage, otherwise we'll lose
5793 STMT_VINFO_TYPE. */
5794 if (!vec_stmt && !vectorizable_condition (stmt, gsi, NULL,
5795 ops[reduc_index], 0, NULL))
5797 if (dump_enabled_p ())
5798 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5799 "unsupported condition in reduction\n");
5800 return false;
5803 else
5805 /* 4. Supportable by target? */
5807 if (code == LSHIFT_EXPR || code == RSHIFT_EXPR
5808 || code == LROTATE_EXPR || code == RROTATE_EXPR)
5810 /* Shifts and rotates are only supported by vectorizable_shifts,
5811 not vectorizable_reduction. */
5812 if (dump_enabled_p ())
5813 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5814 "unsupported shift or rotation.\n");
5815 return false;
5818 /* 4.1. check support for the operation in the loop */
5819 optab = optab_for_tree_code (code, vectype_in, optab_default);
5820 if (!optab)
5822 if (dump_enabled_p ())
5823 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5824 "no optab.\n");
5826 return false;
5829 if (optab_handler (optab, vec_mode) == CODE_FOR_nothing)
5831 if (dump_enabled_p ())
5832 dump_printf (MSG_NOTE, "op not supported by target.\n");
5834 if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
5835 || LOOP_VINFO_VECT_FACTOR (loop_vinfo)
5836 < vect_min_worthwhile_factor (code))
5837 return false;
5839 if (dump_enabled_p ())
5840 dump_printf (MSG_NOTE, "proceeding using word mode.\n");
5843 /* Worthwhile without SIMD support? */
5844 if (!VECTOR_MODE_P (TYPE_MODE (vectype_in))
5845 && LOOP_VINFO_VECT_FACTOR (loop_vinfo)
5846 < vect_min_worthwhile_factor (code))
5848 if (dump_enabled_p ())
5849 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5850 "not worthwhile without SIMD support.\n");
5852 return false;
5856 /* 4.2. Check support for the epilog operation.
5858 If STMT represents a reduction pattern, then the type of the
5859 reduction variable may be different than the type of the rest
5860 of the arguments. For example, consider the case of accumulation
5861 of shorts into an int accumulator; The original code:
5862 S1: int_a = (int) short_a;
5863 orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
5865 was replaced with:
5866 STMT: int_acc = widen_sum <short_a, int_acc>
5868 This means that:
5869 1. The tree-code that is used to create the vector operation in the
5870 epilog code (that reduces the partial results) is not the
5871 tree-code of STMT, but is rather the tree-code of the original
5872 stmt from the pattern that STMT is replacing. I.e, in the example
5873 above we want to use 'widen_sum' in the loop, but 'plus' in the
5874 epilog.
5875 2. The type (mode) we use to check available target support
5876 for the vector operation to be created in the *epilog*, is
5877 determined by the type of the reduction variable (in the example
5878 above we'd check this: optab_handler (plus_optab, vect_int_mode])).
5879 However the type (mode) we use to check available target support
5880 for the vector operation to be created *inside the loop*, is
5881 determined by the type of the other arguments to STMT (in the
5882 example we'd check this: optab_handler (widen_sum_optab,
5883 vect_short_mode)).
5885 This is contrary to "regular" reductions, in which the types of all
5886 the arguments are the same as the type of the reduction variable.
5887 For "regular" reductions we can therefore use the same vector type
5888 (and also the same tree-code) when generating the epilog code and
5889 when generating the code inside the loop. */
5891 if (orig_stmt)
5893 /* This is a reduction pattern: get the vectype from the type of the
5894 reduction variable, and get the tree-code from orig_stmt. */
5895 gcc_assert (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
5896 == TREE_CODE_REDUCTION);
5897 orig_code = gimple_assign_rhs_code (orig_stmt);
5898 gcc_assert (vectype_out);
5899 vec_mode = TYPE_MODE (vectype_out);
5901 else
5903 /* Regular reduction: use the same vectype and tree-code as used for
5904 the vector code inside the loop can be used for the epilog code. */
5905 orig_code = code;
5907 if (code == MINUS_EXPR)
5908 orig_code = PLUS_EXPR;
5910 /* For simple condition reductions, replace with the actual expression
5911 we want to base our reduction around. */
5912 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == CONST_COND_REDUCTION)
5914 orig_code = STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info);
5915 gcc_assert (orig_code == MAX_EXPR || orig_code == MIN_EXPR);
5917 else if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
5918 == INTEGER_INDUC_COND_REDUCTION)
5919 orig_code = MAX_EXPR;
5922 if (nested_cycle)
5924 def_bb = gimple_bb (reduc_def_stmt);
5925 def_stmt_loop = def_bb->loop_father;
5926 def_arg = PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt,
5927 loop_preheader_edge (def_stmt_loop));
5928 if (TREE_CODE (def_arg) == SSA_NAME
5929 && (def_arg_stmt = SSA_NAME_DEF_STMT (def_arg))
5930 && gimple_code (def_arg_stmt) == GIMPLE_PHI
5931 && flow_bb_inside_loop_p (outer_loop, gimple_bb (def_arg_stmt))
5932 && vinfo_for_stmt (def_arg_stmt)
5933 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_arg_stmt))
5934 == vect_double_reduction_def)
5935 double_reduc = true;
5938 epilog_reduc_code = ERROR_MARK;
5940 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) != COND_REDUCTION)
5942 if (reduction_code_for_scalar_code (orig_code, &epilog_reduc_code))
5944 reduc_optab = optab_for_tree_code (epilog_reduc_code, vectype_out,
5945 optab_default);
5946 if (!reduc_optab)
5948 if (dump_enabled_p ())
5949 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5950 "no optab for reduction.\n");
5952 epilog_reduc_code = ERROR_MARK;
5954 else if (optab_handler (reduc_optab, vec_mode) == CODE_FOR_nothing)
5956 if (dump_enabled_p ())
5957 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5958 "reduc op not supported by target.\n");
5960 epilog_reduc_code = ERROR_MARK;
5963 /* When epilog_reduc_code is ERROR_MARK then a reduction will be
5964 generated in the epilog using multiple expressions. This does not
5965 work for condition reductions. */
5966 if (epilog_reduc_code == ERROR_MARK
5967 && (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
5968 == INTEGER_INDUC_COND_REDUCTION
5969 || STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
5970 == CONST_COND_REDUCTION))
5972 if (dump_enabled_p ())
5973 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5974 "no reduc code for scalar code.\n");
5975 return false;
5978 else
5980 if (!nested_cycle || double_reduc)
5982 if (dump_enabled_p ())
5983 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5984 "no reduc code for scalar code.\n");
5986 return false;
5990 else
5992 int scalar_precision = GET_MODE_PRECISION (TYPE_MODE (scalar_type));
5993 cr_index_scalar_type = make_unsigned_type (scalar_precision);
5994 cr_index_vector_type = build_vector_type
5995 (cr_index_scalar_type, TYPE_VECTOR_SUBPARTS (vectype_out));
5997 epilog_reduc_code = REDUC_MAX_EXPR;
5998 optab = optab_for_tree_code (REDUC_MAX_EXPR, cr_index_vector_type,
5999 optab_default);
6000 if (optab_handler (optab, TYPE_MODE (cr_index_vector_type))
6001 == CODE_FOR_nothing)
6003 if (dump_enabled_p ())
6004 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6005 "reduc max op not supported by target.\n");
6006 return false;
6010 if ((double_reduc
6011 || STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) != TREE_CODE_REDUCTION)
6012 && ncopies > 1)
6014 if (dump_enabled_p ())
6015 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6016 "multiple types in double reduction or condition "
6017 "reduction.\n");
6018 return false;
6021 /* In case of widenning multiplication by a constant, we update the type
6022 of the constant to be the type of the other operand. We check that the
6023 constant fits the type in the pattern recognition pass. */
6024 if (code == DOT_PROD_EXPR
6025 && !types_compatible_p (TREE_TYPE (ops[0]), TREE_TYPE (ops[1])))
6027 if (TREE_CODE (ops[0]) == INTEGER_CST)
6028 ops[0] = fold_convert (TREE_TYPE (ops[1]), ops[0]);
6029 else if (TREE_CODE (ops[1]) == INTEGER_CST)
6030 ops[1] = fold_convert (TREE_TYPE (ops[0]), ops[1]);
6031 else
6033 if (dump_enabled_p ())
6034 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6035 "invalid types in dot-prod\n");
6037 return false;
6041 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
6043 widest_int ni;
6045 if (! max_loop_iterations (loop, &ni))
6047 if (dump_enabled_p ())
6048 dump_printf_loc (MSG_NOTE, vect_location,
6049 "loop count not known, cannot create cond "
6050 "reduction.\n");
6051 return false;
6053 /* Convert backedges to iterations. */
6054 ni += 1;
6056 /* The additional index will be the same type as the condition. Check
6057 that the loop can fit into this less one (because we'll use up the
6058 zero slot for when there are no matches). */
6059 tree max_index = TYPE_MAX_VALUE (cr_index_scalar_type);
6060 if (wi::geu_p (ni, wi::to_widest (max_index)))
6062 if (dump_enabled_p ())
6063 dump_printf_loc (MSG_NOTE, vect_location,
6064 "loop size is greater than data size.\n");
6065 return false;
6069 if (!vec_stmt) /* transformation not required. */
6071 if (first_p
6072 && !vect_model_reduction_cost (stmt_info, epilog_reduc_code, ncopies,
6073 reduc_index))
6074 return false;
6075 STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
6076 return true;
6079 /** Transform. **/
6081 if (dump_enabled_p ())
6082 dump_printf_loc (MSG_NOTE, vect_location, "transform reduction.\n");
6084 /* FORNOW: Multiple types are not supported for condition. */
6085 if (code == COND_EXPR)
6086 gcc_assert (ncopies == 1);
6088 /* Create the destination vector */
6089 vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
6091 /* In case the vectorization factor (VF) is bigger than the number
6092 of elements that we can fit in a vectype (nunits), we have to generate
6093 more than one vector stmt - i.e - we need to "unroll" the
6094 vector stmt by a factor VF/nunits. For more details see documentation
6095 in vectorizable_operation. */
6097 /* If the reduction is used in an outer loop we need to generate
6098 VF intermediate results, like so (e.g. for ncopies=2):
6099 r0 = phi (init, r0)
6100 r1 = phi (init, r1)
6101 r0 = x0 + r0;
6102 r1 = x1 + r1;
6103 (i.e. we generate VF results in 2 registers).
6104 In this case we have a separate def-use cycle for each copy, and therefore
6105 for each copy we get the vector def for the reduction variable from the
6106 respective phi node created for this copy.
6108 Otherwise (the reduction is unused in the loop nest), we can combine
6109 together intermediate results, like so (e.g. for ncopies=2):
6110 r = phi (init, r)
6111 r = x0 + r;
6112 r = x1 + r;
6113 (i.e. we generate VF/2 results in a single register).
6114 In this case for each copy we get the vector def for the reduction variable
6115 from the vectorized reduction operation generated in the previous iteration.
6118 if (STMT_VINFO_RELEVANT (stmt_info) <= vect_used_only_live)
6120 single_defuse_cycle = true;
6121 epilog_copies = 1;
6123 else
6124 epilog_copies = ncopies;
6126 prev_stmt_info = NULL;
6127 prev_phi_info = NULL;
6128 if (slp_node)
6129 vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
6130 else
6132 vec_num = 1;
6133 vec_oprnds0.create (1);
6134 if (op_type == ternary_op)
6135 vec_oprnds1.create (1);
6138 phis.create (vec_num);
6139 vect_defs.create (vec_num);
6140 if (!slp_node)
6141 vect_defs.quick_push (NULL_TREE);
6143 for (j = 0; j < ncopies; j++)
6145 if (j == 0 || !single_defuse_cycle)
6147 for (i = 0; i < vec_num; i++)
6149 /* Create the reduction-phi that defines the reduction
6150 operand. */
6151 new_phi = create_phi_node (vec_dest, loop->header);
6152 set_vinfo_for_stmt (new_phi,
6153 new_stmt_vec_info (new_phi, loop_vinfo));
6154 if (j == 0 || slp_node)
6155 phis.quick_push (new_phi);
6159 if (code == COND_EXPR)
6161 gcc_assert (!slp_node);
6162 vectorizable_condition (stmt, gsi, vec_stmt,
6163 PHI_RESULT (phis[0]),
6164 reduc_index, NULL);
6165 /* Multiple types are not supported for condition. */
6166 break;
6169 /* Handle uses. */
6170 if (j == 0)
6172 if (slp_node)
6174 /* Get vec defs for all the operands except the reduction index,
6175 ensuring the ordering of the ops in the vector is kept. */
6176 auto_vec<tree, 3> slp_ops;
6177 auto_vec<vec<tree>, 3> vec_defs;
6179 slp_ops.quick_push (reduc_index == 0 ? NULL : ops[0]);
6180 slp_ops.quick_push (reduc_index == 1 ? NULL : ops[1]);
6181 if (op_type == ternary_op)
6182 slp_ops.quick_push (reduc_index == 2 ? NULL : ops[2]);
6184 vect_get_slp_defs (slp_ops, slp_node, &vec_defs, -1);
6186 vec_oprnds0.safe_splice (vec_defs[reduc_index == 0 ? 1 : 0]);
6187 vec_defs[reduc_index == 0 ? 1 : 0].release ();
6188 if (op_type == ternary_op)
6190 vec_oprnds1.safe_splice (vec_defs[reduc_index == 2 ? 1 : 2]);
6191 vec_defs[reduc_index == 2 ? 1 : 2].release ();
6194 else
6196 loop_vec_def0 = vect_get_vec_def_for_operand (ops[!reduc_index],
6197 stmt);
6198 vec_oprnds0.quick_push (loop_vec_def0);
6199 if (op_type == ternary_op)
6201 op1 = reduc_index == 0 ? ops[2] : ops[1];
6202 loop_vec_def1 = vect_get_vec_def_for_operand (op1, stmt);
6203 vec_oprnds1.quick_push (loop_vec_def1);
6207 else
6209 if (!slp_node)
6211 enum vect_def_type dt;
6212 gimple *dummy_stmt;
6214 vect_is_simple_use (ops[!reduc_index], loop_vinfo,
6215 &dummy_stmt, &dt);
6216 loop_vec_def0 = vect_get_vec_def_for_stmt_copy (dt,
6217 loop_vec_def0);
6218 vec_oprnds0[0] = loop_vec_def0;
6219 if (op_type == ternary_op)
6221 vect_is_simple_use (op1, loop_vinfo, &dummy_stmt, &dt);
6222 loop_vec_def1 = vect_get_vec_def_for_stmt_copy (dt,
6223 loop_vec_def1);
6224 vec_oprnds1[0] = loop_vec_def1;
6228 if (single_defuse_cycle)
6229 reduc_def = gimple_assign_lhs (new_stmt);
6231 STMT_VINFO_RELATED_STMT (prev_phi_info) = new_phi;
6234 FOR_EACH_VEC_ELT (vec_oprnds0, i, def0)
6236 if (slp_node)
6237 reduc_def = PHI_RESULT (phis[i]);
6238 else
6240 if (!single_defuse_cycle || j == 0)
6241 reduc_def = PHI_RESULT (new_phi);
6244 def1 = ((op_type == ternary_op)
6245 ? vec_oprnds1[i] : NULL);
6246 if (op_type == binary_op)
6248 if (reduc_index == 0)
6249 expr = build2 (code, vectype_out, reduc_def, def0);
6250 else
6251 expr = build2 (code, vectype_out, def0, reduc_def);
6253 else
6255 if (reduc_index == 0)
6256 expr = build3 (code, vectype_out, reduc_def, def0, def1);
6257 else
6259 if (reduc_index == 1)
6260 expr = build3 (code, vectype_out, def0, reduc_def, def1);
6261 else
6262 expr = build3 (code, vectype_out, def0, def1, reduc_def);
6266 new_stmt = gimple_build_assign (vec_dest, expr);
6267 new_temp = make_ssa_name (vec_dest, new_stmt);
6268 gimple_assign_set_lhs (new_stmt, new_temp);
6269 vect_finish_stmt_generation (stmt, new_stmt, gsi);
6271 if (slp_node)
6273 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
6274 vect_defs.quick_push (new_temp);
6276 else
6277 vect_defs[0] = new_temp;
6280 if (slp_node)
6281 continue;
6283 if (j == 0)
6284 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
6285 else
6286 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
6288 prev_stmt_info = vinfo_for_stmt (new_stmt);
6289 prev_phi_info = vinfo_for_stmt (new_phi);
6292 tree indx_before_incr, indx_after_incr, cond_name = NULL;
6294 /* Finalize the reduction-phi (set its arguments) and create the
6295 epilog reduction code. */
6296 if ((!single_defuse_cycle || code == COND_EXPR) && !slp_node)
6298 new_temp = gimple_assign_lhs (*vec_stmt);
6299 vect_defs[0] = new_temp;
6301 /* For cond reductions we want to create a new vector (INDEX_COND_EXPR)
6302 which is updated with the current index of the loop for every match of
6303 the original loop's cond_expr (VEC_STMT). This results in a vector
6304 containing the last time the condition passed for that vector lane.
6305 The first match will be a 1 to allow 0 to be used for non-matching
6306 indexes. If there are no matches at all then the vector will be all
6307 zeroes. */
6308 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
6310 int nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
6311 int k;
6313 gcc_assert (gimple_assign_rhs_code (*vec_stmt) == VEC_COND_EXPR);
6315 /* First we create a simple vector induction variable which starts
6316 with the values {1,2,3,...} (SERIES_VECT) and increments by the
6317 vector size (STEP). */
6319 /* Create a {1,2,3,...} vector. */
6320 tree *vtemp = XALLOCAVEC (tree, nunits_out);
6321 for (k = 0; k < nunits_out; ++k)
6322 vtemp[k] = build_int_cst (cr_index_scalar_type, k + 1);
6323 tree series_vect = build_vector (cr_index_vector_type, vtemp);
6325 /* Create a vector of the step value. */
6326 tree step = build_int_cst (cr_index_scalar_type, nunits_out);
6327 tree vec_step = build_vector_from_val (cr_index_vector_type, step);
6329 /* Create an induction variable. */
6330 gimple_stmt_iterator incr_gsi;
6331 bool insert_after;
6332 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
6333 create_iv (series_vect, vec_step, NULL_TREE, loop, &incr_gsi,
6334 insert_after, &indx_before_incr, &indx_after_incr);
6336 /* Next create a new phi node vector (NEW_PHI_TREE) which starts
6337 filled with zeros (VEC_ZERO). */
6339 /* Create a vector of 0s. */
6340 tree zero = build_zero_cst (cr_index_scalar_type);
6341 tree vec_zero = build_vector_from_val (cr_index_vector_type, zero);
6343 /* Create a vector phi node. */
6344 tree new_phi_tree = make_ssa_name (cr_index_vector_type);
6345 new_phi = create_phi_node (new_phi_tree, loop->header);
6346 set_vinfo_for_stmt (new_phi,
6347 new_stmt_vec_info (new_phi, loop_vinfo));
6348 add_phi_arg (new_phi, vec_zero, loop_preheader_edge (loop),
6349 UNKNOWN_LOCATION);
6351 /* Now take the condition from the loops original cond_expr
6352 (VEC_STMT) and produce a new cond_expr (INDEX_COND_EXPR) which for
6353 every match uses values from the induction variable
6354 (INDEX_BEFORE_INCR) otherwise uses values from the phi node
6355 (NEW_PHI_TREE).
6356 Finally, we update the phi (NEW_PHI_TREE) to take the value of
6357 the new cond_expr (INDEX_COND_EXPR). */
6359 /* Duplicate the condition from vec_stmt. */
6360 tree ccompare = unshare_expr (gimple_assign_rhs1 (*vec_stmt));
6362 /* Create a conditional, where the condition is taken from vec_stmt
6363 (CCOMPARE), then is the induction index (INDEX_BEFORE_INCR) and
6364 else is the phi (NEW_PHI_TREE). */
6365 tree index_cond_expr = build3 (VEC_COND_EXPR, cr_index_vector_type,
6366 ccompare, indx_before_incr,
6367 new_phi_tree);
6368 cond_name = make_ssa_name (cr_index_vector_type);
6369 gimple *index_condition = gimple_build_assign (cond_name,
6370 index_cond_expr);
6371 gsi_insert_before (&incr_gsi, index_condition, GSI_SAME_STMT);
6372 stmt_vec_info index_vec_info = new_stmt_vec_info (index_condition,
6373 loop_vinfo);
6374 STMT_VINFO_VECTYPE (index_vec_info) = cr_index_vector_type;
6375 set_vinfo_for_stmt (index_condition, index_vec_info);
6377 /* Update the phi with the vec cond. */
6378 add_phi_arg (new_phi, cond_name, loop_latch_edge (loop),
6379 UNKNOWN_LOCATION);
6383 vect_create_epilog_for_reduction (vect_defs, stmt, epilog_copies,
6384 epilog_reduc_code, phis, reduc_index,
6385 double_reduc, slp_node, cond_name);
6387 return true;
6390 /* Function vect_min_worthwhile_factor.
6392 For a loop where we could vectorize the operation indicated by CODE,
6393 return the minimum vectorization factor that makes it worthwhile
6394 to use generic vectors. */
6396 vect_min_worthwhile_factor (enum tree_code code)
6398 switch (code)
6400 case PLUS_EXPR:
6401 case MINUS_EXPR:
6402 case NEGATE_EXPR:
6403 return 4;
6405 case BIT_AND_EXPR:
6406 case BIT_IOR_EXPR:
6407 case BIT_XOR_EXPR:
6408 case BIT_NOT_EXPR:
6409 return 2;
6411 default:
6412 return INT_MAX;
6417 /* Function vectorizable_induction
6419 Check if PHI performs an induction computation that can be vectorized.
6420 If VEC_STMT is also passed, vectorize the induction PHI: create a vectorized
6421 phi to replace it, put it in VEC_STMT, and add it to the same basic block.
6422 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
6424 bool
6425 vectorizable_induction (gimple *phi,
6426 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
6427 gimple **vec_stmt)
6429 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
6430 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
6431 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
6432 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
6433 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
6434 int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
6435 tree vec_def;
6437 gcc_assert (ncopies >= 1);
6438 /* FORNOW. These restrictions should be relaxed. */
6439 if (nested_in_vect_loop_p (loop, phi))
6441 imm_use_iterator imm_iter;
6442 use_operand_p use_p;
6443 gimple *exit_phi;
6444 edge latch_e;
6445 tree loop_arg;
6447 if (ncopies > 1)
6449 if (dump_enabled_p ())
6450 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6451 "multiple types in nested loop.\n");
6452 return false;
6455 exit_phi = NULL;
6456 latch_e = loop_latch_edge (loop->inner);
6457 loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
6458 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
6460 gimple *use_stmt = USE_STMT (use_p);
6461 if (is_gimple_debug (use_stmt))
6462 continue;
6464 if (!flow_bb_inside_loop_p (loop->inner, gimple_bb (use_stmt)))
6466 exit_phi = use_stmt;
6467 break;
6470 if (exit_phi)
6472 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
6473 if (!(STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
6474 && !STMT_VINFO_LIVE_P (exit_phi_vinfo)))
6476 if (dump_enabled_p ())
6477 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6478 "inner-loop induction only used outside "
6479 "of the outer vectorized loop.\n");
6480 return false;
6485 if (!STMT_VINFO_RELEVANT_P (stmt_info))
6486 return false;
6488 /* FORNOW: SLP not supported. */
6489 if (STMT_SLP_TYPE (stmt_info))
6490 return false;
6492 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def);
6494 if (gimple_code (phi) != GIMPLE_PHI)
6495 return false;
6497 if (!vec_stmt) /* transformation not required. */
6499 STMT_VINFO_TYPE (stmt_info) = induc_vec_info_type;
6500 if (dump_enabled_p ())
6501 dump_printf_loc (MSG_NOTE, vect_location,
6502 "=== vectorizable_induction ===\n");
6503 vect_model_induction_cost (stmt_info, ncopies);
6504 return true;
6507 /** Transform. **/
6509 if (dump_enabled_p ())
6510 dump_printf_loc (MSG_NOTE, vect_location, "transform induction phi.\n");
6512 vec_def = get_initial_def_for_induction (phi);
6513 *vec_stmt = SSA_NAME_DEF_STMT (vec_def);
6514 return true;
6517 /* Function vectorizable_live_operation.
6519 STMT computes a value that is used outside the loop. Check if
6520 it can be supported. */
6522 bool
6523 vectorizable_live_operation (gimple *stmt,
6524 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
6525 slp_tree slp_node, int slp_index,
6526 gimple **vec_stmt)
6528 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
6529 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
6530 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
6531 imm_use_iterator imm_iter;
6532 tree lhs, lhs_type, bitsize, vec_bitsize;
6533 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
6534 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
6535 int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
6536 gimple *use_stmt;
6537 auto_vec<tree> vec_oprnds;
6539 gcc_assert (STMT_VINFO_LIVE_P (stmt_info));
6541 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
6542 return false;
6544 /* FORNOW. CHECKME. */
6545 if (nested_in_vect_loop_p (loop, stmt))
6546 return false;
6548 /* If STMT is not relevant and it is a simple assignment and its inputs are
6549 invariant then it can remain in place, unvectorized. The original last
6550 scalar value that it computes will be used. */
6551 if (!STMT_VINFO_RELEVANT_P (stmt_info))
6553 gcc_assert (is_simple_and_all_uses_invariant (stmt, loop_vinfo));
6554 if (dump_enabled_p ())
6555 dump_printf_loc (MSG_NOTE, vect_location,
6556 "statement is simple and uses invariant. Leaving in "
6557 "place.\n");
6558 return true;
6561 if (!vec_stmt)
6562 /* No transformation required. */
6563 return true;
6565 /* If stmt has a related stmt, then use that for getting the lhs. */
6566 if (is_pattern_stmt_p (stmt_info))
6567 stmt = STMT_VINFO_RELATED_STMT (stmt_info);
6569 lhs = (is_a <gphi *> (stmt)) ? gimple_phi_result (stmt)
6570 : gimple_get_lhs (stmt);
6571 lhs_type = TREE_TYPE (lhs);
6573 bitsize = TYPE_SIZE (TREE_TYPE (vectype));
6574 vec_bitsize = TYPE_SIZE (vectype);
6576 /* Get the vectorized lhs of STMT and the lane to use (counted in bits). */
6577 tree vec_lhs, bitstart;
6578 if (slp_node)
6580 gcc_assert (slp_index >= 0);
6582 int num_scalar = SLP_TREE_SCALAR_STMTS (slp_node).length ();
6583 int num_vec = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
6585 /* Get the last occurrence of the scalar index from the concatenation of
6586 all the slp vectors. Calculate which slp vector it is and the index
6587 within. */
6588 int pos = (num_vec * nunits) - num_scalar + slp_index;
6589 int vec_entry = pos / nunits;
6590 int vec_index = pos % nunits;
6592 /* Get the correct slp vectorized stmt. */
6593 vec_lhs = gimple_get_lhs (SLP_TREE_VEC_STMTS (slp_node)[vec_entry]);
6595 /* Get entry to use. */
6596 bitstart = build_int_cst (unsigned_type_node, vec_index);
6597 bitstart = int_const_binop (MULT_EXPR, bitsize, bitstart);
6599 else
6601 enum vect_def_type dt = STMT_VINFO_DEF_TYPE (stmt_info);
6602 vec_lhs = vect_get_vec_def_for_operand_1 (stmt, dt);
6604 /* For multiple copies, get the last copy. */
6605 for (int i = 1; i < ncopies; ++i)
6606 vec_lhs = vect_get_vec_def_for_stmt_copy (vect_unknown_def_type,
6607 vec_lhs);
6609 /* Get the last lane in the vector. */
6610 bitstart = int_const_binop (MINUS_EXPR, vec_bitsize, bitsize);
6613 /* Create a new vectorized stmt for the uses of STMT and insert outside the
6614 loop. */
6615 gimple_seq stmts = NULL;
6616 tree bftype = TREE_TYPE (vectype);
6617 if (VECTOR_BOOLEAN_TYPE_P (vectype))
6618 bftype = build_nonstandard_integer_type (tree_to_uhwi (bitsize), 1);
6619 tree new_tree = build3 (BIT_FIELD_REF, bftype, vec_lhs, bitsize, bitstart);
6620 new_tree = force_gimple_operand (fold_convert (lhs_type, new_tree), &stmts,
6621 true, NULL_TREE);
6622 if (stmts)
6623 gsi_insert_seq_on_edge_immediate (single_exit (loop), stmts);
6625 /* Replace use of lhs with newly computed result. If the use stmt is a
6626 single arg PHI, just replace all uses of PHI result. It's necessary
6627 because lcssa PHI defining lhs may be before newly inserted stmt. */
6628 use_operand_p use_p;
6629 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, lhs)
6630 if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
6631 && !is_gimple_debug (use_stmt))
6633 if (gimple_code (use_stmt) == GIMPLE_PHI
6634 && gimple_phi_num_args (use_stmt) == 1)
6636 replace_uses_by (gimple_phi_result (use_stmt), new_tree);
6638 else
6640 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
6641 SET_USE (use_p, new_tree);
6643 update_stmt (use_stmt);
6646 return true;
6649 /* Kill any debug uses outside LOOP of SSA names defined in STMT. */
6651 static void
6652 vect_loop_kill_debug_uses (struct loop *loop, gimple *stmt)
6654 ssa_op_iter op_iter;
6655 imm_use_iterator imm_iter;
6656 def_operand_p def_p;
6657 gimple *ustmt;
6659 FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
6661 FOR_EACH_IMM_USE_STMT (ustmt, imm_iter, DEF_FROM_PTR (def_p))
6663 basic_block bb;
6665 if (!is_gimple_debug (ustmt))
6666 continue;
6668 bb = gimple_bb (ustmt);
6670 if (!flow_bb_inside_loop_p (loop, bb))
6672 if (gimple_debug_bind_p (ustmt))
6674 if (dump_enabled_p ())
6675 dump_printf_loc (MSG_NOTE, vect_location,
6676 "killing debug use\n");
6678 gimple_debug_bind_reset_value (ustmt);
6679 update_stmt (ustmt);
6681 else
6682 gcc_unreachable ();
6688 /* Given loop represented by LOOP_VINFO, return true if computation of
6689 LOOP_VINFO_NITERS (= LOOP_VINFO_NITERSM1 + 1) doesn't overflow, false
6690 otherwise. */
6692 static bool
6693 loop_niters_no_overflow (loop_vec_info loop_vinfo)
6695 /* Constant case. */
6696 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
6698 tree cst_niters = LOOP_VINFO_NITERS (loop_vinfo);
6699 tree cst_nitersm1 = LOOP_VINFO_NITERSM1 (loop_vinfo);
6701 gcc_assert (TREE_CODE (cst_niters) == INTEGER_CST);
6702 gcc_assert (TREE_CODE (cst_nitersm1) == INTEGER_CST);
6703 if (wi::to_widest (cst_nitersm1) < wi::to_widest (cst_niters))
6704 return true;
6707 widest_int max;
6708 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
6709 /* Check the upper bound of loop niters. */
6710 if (get_max_loop_iterations (loop, &max))
6712 tree type = TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo));
6713 signop sgn = TYPE_SIGN (type);
6714 widest_int type_max = widest_int::from (wi::max_value (type), sgn);
6715 if (max < type_max)
6716 return true;
6718 return false;
6721 /* Scale profiling counters by estimation for LOOP which is vectorized
6722 by factor VF. */
6724 static void
6725 scale_profile_for_vect_loop (struct loop *loop, unsigned vf)
6727 edge preheader = loop_preheader_edge (loop);
6728 /* Reduce loop iterations by the vectorization factor. */
6729 gcov_type new_est_niter = niter_for_unrolled_loop (loop, vf);
6730 gcov_type freq_h = loop->header->count, freq_e = preheader->count;
6732 /* Use frequency only if counts are zero. */
6733 if (freq_h == 0 && freq_e == 0)
6735 freq_h = loop->header->frequency;
6736 freq_e = EDGE_FREQUENCY (preheader);
6738 if (freq_h != 0)
6740 gcov_type scale;
6742 /* Avoid dropping loop body profile counter to 0 because of zero count
6743 in loop's preheader. */
6744 freq_e = MAX (freq_e, 1);
6745 /* This should not overflow. */
6746 scale = GCOV_COMPUTE_SCALE (freq_e * (new_est_niter + 1), freq_h);
6747 scale_loop_frequencies (loop, scale, REG_BR_PROB_BASE);
6750 basic_block exit_bb = single_pred (loop->latch);
6751 edge exit_e = single_exit (loop);
6752 exit_e->count = loop_preheader_edge (loop)->count;
6753 exit_e->probability = REG_BR_PROB_BASE / (new_est_niter + 1);
6755 edge exit_l = single_pred_edge (loop->latch);
6756 int prob = exit_l->probability;
6757 exit_l->probability = REG_BR_PROB_BASE - exit_e->probability;
6758 exit_l->count = exit_bb->count - exit_e->count;
6759 if (exit_l->count < 0)
6760 exit_l->count = 0;
6761 if (prob > 0)
6762 scale_bbs_frequencies_int (&loop->latch, 1, exit_l->probability, prob);
6765 /* Function vect_transform_loop.
6767 The analysis phase has determined that the loop is vectorizable.
6768 Vectorize the loop - created vectorized stmts to replace the scalar
6769 stmts in the loop, and update the loop exit condition.
6770 Returns scalar epilogue loop if any. */
6772 struct loop *
6773 vect_transform_loop (loop_vec_info loop_vinfo)
6775 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
6776 struct loop *epilogue = NULL;
6777 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
6778 int nbbs = loop->num_nodes;
6779 int i;
6780 tree niters_vector = NULL;
6781 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
6782 bool grouped_store;
6783 bool slp_scheduled = false;
6784 gimple *stmt, *pattern_stmt;
6785 gimple_seq pattern_def_seq = NULL;
6786 gimple_stmt_iterator pattern_def_si = gsi_none ();
6787 bool transform_pattern_stmt = false;
6788 bool check_profitability = false;
6789 int th;
6791 if (dump_enabled_p ())
6792 dump_printf_loc (MSG_NOTE, vect_location, "=== vec_transform_loop ===\n");
6794 /* Use the more conservative vectorization threshold. If the number
6795 of iterations is constant assume the cost check has been performed
6796 by our caller. If the threshold makes all loops profitable that
6797 run at least the vectorization factor number of times checking
6798 is pointless, too. */
6799 th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
6800 if (th >= LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 1
6801 && !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
6803 if (dump_enabled_p ())
6804 dump_printf_loc (MSG_NOTE, vect_location,
6805 "Profitability threshold is %d loop iterations.\n",
6806 th);
6807 check_profitability = true;
6810 /* Make sure there exists a single-predecessor exit bb. Do this before
6811 versioning. */
6812 edge e = single_exit (loop);
6813 if (! single_pred_p (e->dest))
6815 split_loop_exit_edge (e);
6816 if (dump_enabled_p ())
6817 dump_printf (MSG_NOTE, "split exit edge\n");
6820 /* Version the loop first, if required, so the profitability check
6821 comes first. */
6823 if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
6825 vect_loop_versioning (loop_vinfo, th, check_profitability);
6826 check_profitability = false;
6829 /* Make sure there exists a single-predecessor exit bb also on the
6830 scalar loop copy. Do this after versioning but before peeling
6831 so CFG structure is fine for both scalar and if-converted loop
6832 to make slpeel_duplicate_current_defs_from_edges face matched
6833 loop closed PHI nodes on the exit. */
6834 if (LOOP_VINFO_SCALAR_LOOP (loop_vinfo))
6836 e = single_exit (LOOP_VINFO_SCALAR_LOOP (loop_vinfo));
6837 if (! single_pred_p (e->dest))
6839 split_loop_exit_edge (e);
6840 if (dump_enabled_p ())
6841 dump_printf (MSG_NOTE, "split exit edge of scalar loop\n");
6845 tree niters = vect_build_loop_niters (loop_vinfo);
6846 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = niters;
6847 tree nitersm1 = unshare_expr (LOOP_VINFO_NITERSM1 (loop_vinfo));
6848 bool niters_no_overflow = loop_niters_no_overflow (loop_vinfo);
6849 epilogue = vect_do_peeling (loop_vinfo, niters, nitersm1, &niters_vector, th,
6850 check_profitability, niters_no_overflow);
6851 if (niters_vector == NULL_TREE)
6853 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
6854 niters_vector
6855 = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
6856 LOOP_VINFO_INT_NITERS (loop_vinfo) / vf);
6857 else
6858 vect_gen_vector_loop_niters (loop_vinfo, niters, &niters_vector,
6859 niters_no_overflow);
6862 /* 1) Make sure the loop header has exactly two entries
6863 2) Make sure we have a preheader basic block. */
6865 gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
6867 split_edge (loop_preheader_edge (loop));
6869 /* FORNOW: the vectorizer supports only loops which body consist
6870 of one basic block (header + empty latch). When the vectorizer will
6871 support more involved loop forms, the order by which the BBs are
6872 traversed need to be reconsidered. */
6874 for (i = 0; i < nbbs; i++)
6876 basic_block bb = bbs[i];
6877 stmt_vec_info stmt_info;
6879 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
6880 gsi_next (&si))
6882 gphi *phi = si.phi ();
6883 if (dump_enabled_p ())
6885 dump_printf_loc (MSG_NOTE, vect_location,
6886 "------>vectorizing phi: ");
6887 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
6889 stmt_info = vinfo_for_stmt (phi);
6890 if (!stmt_info)
6891 continue;
6893 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
6894 vect_loop_kill_debug_uses (loop, phi);
6896 if (!STMT_VINFO_RELEVANT_P (stmt_info)
6897 && !STMT_VINFO_LIVE_P (stmt_info))
6898 continue;
6900 if (STMT_VINFO_VECTYPE (stmt_info)
6901 && (TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info))
6902 != (unsigned HOST_WIDE_INT) vf)
6903 && dump_enabled_p ())
6904 dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
6906 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
6908 if (dump_enabled_p ())
6909 dump_printf_loc (MSG_NOTE, vect_location, "transform phi.\n");
6910 vect_transform_stmt (phi, NULL, NULL, NULL, NULL);
6914 pattern_stmt = NULL;
6915 for (gimple_stmt_iterator si = gsi_start_bb (bb);
6916 !gsi_end_p (si) || transform_pattern_stmt;)
6918 bool is_store;
6920 if (transform_pattern_stmt)
6921 stmt = pattern_stmt;
6922 else
6924 stmt = gsi_stmt (si);
6925 /* During vectorization remove existing clobber stmts. */
6926 if (gimple_clobber_p (stmt))
6928 unlink_stmt_vdef (stmt);
6929 gsi_remove (&si, true);
6930 release_defs (stmt);
6931 continue;
6935 if (dump_enabled_p ())
6937 dump_printf_loc (MSG_NOTE, vect_location,
6938 "------>vectorizing statement: ");
6939 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
6942 stmt_info = vinfo_for_stmt (stmt);
6944 /* vector stmts created in the outer-loop during vectorization of
6945 stmts in an inner-loop may not have a stmt_info, and do not
6946 need to be vectorized. */
6947 if (!stmt_info)
6949 gsi_next (&si);
6950 continue;
6953 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
6954 vect_loop_kill_debug_uses (loop, stmt);
6956 if (!STMT_VINFO_RELEVANT_P (stmt_info)
6957 && !STMT_VINFO_LIVE_P (stmt_info))
6959 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
6960 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
6961 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
6962 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
6964 stmt = pattern_stmt;
6965 stmt_info = vinfo_for_stmt (stmt);
6967 else
6969 gsi_next (&si);
6970 continue;
6973 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
6974 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
6975 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
6976 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
6977 transform_pattern_stmt = true;
6979 /* If pattern statement has def stmts, vectorize them too. */
6980 if (is_pattern_stmt_p (stmt_info))
6982 if (pattern_def_seq == NULL)
6984 pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
6985 pattern_def_si = gsi_start (pattern_def_seq);
6987 else if (!gsi_end_p (pattern_def_si))
6988 gsi_next (&pattern_def_si);
6989 if (pattern_def_seq != NULL)
6991 gimple *pattern_def_stmt = NULL;
6992 stmt_vec_info pattern_def_stmt_info = NULL;
6994 while (!gsi_end_p (pattern_def_si))
6996 pattern_def_stmt = gsi_stmt (pattern_def_si);
6997 pattern_def_stmt_info
6998 = vinfo_for_stmt (pattern_def_stmt);
6999 if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
7000 || STMT_VINFO_LIVE_P (pattern_def_stmt_info))
7001 break;
7002 gsi_next (&pattern_def_si);
7005 if (!gsi_end_p (pattern_def_si))
7007 if (dump_enabled_p ())
7009 dump_printf_loc (MSG_NOTE, vect_location,
7010 "==> vectorizing pattern def "
7011 "stmt: ");
7012 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
7013 pattern_def_stmt, 0);
7016 stmt = pattern_def_stmt;
7017 stmt_info = pattern_def_stmt_info;
7019 else
7021 pattern_def_si = gsi_none ();
7022 transform_pattern_stmt = false;
7025 else
7026 transform_pattern_stmt = false;
7029 if (STMT_VINFO_VECTYPE (stmt_info))
7031 unsigned int nunits
7032 = (unsigned int)
7033 TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
7034 if (!STMT_SLP_TYPE (stmt_info)
7035 && nunits != (unsigned int) vf
7036 && dump_enabled_p ())
7037 /* For SLP VF is set according to unrolling factor, and not
7038 to vector size, hence for SLP this print is not valid. */
7039 dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
7042 /* SLP. Schedule all the SLP instances when the first SLP stmt is
7043 reached. */
7044 if (STMT_SLP_TYPE (stmt_info))
7046 if (!slp_scheduled)
7048 slp_scheduled = true;
7050 if (dump_enabled_p ())
7051 dump_printf_loc (MSG_NOTE, vect_location,
7052 "=== scheduling SLP instances ===\n");
7054 vect_schedule_slp (loop_vinfo);
7057 /* Hybrid SLP stmts must be vectorized in addition to SLP. */
7058 if (!vinfo_for_stmt (stmt) || PURE_SLP_STMT (stmt_info))
7060 if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
7062 pattern_def_seq = NULL;
7063 gsi_next (&si);
7065 continue;
7069 /* -------- vectorize statement ------------ */
7070 if (dump_enabled_p ())
7071 dump_printf_loc (MSG_NOTE, vect_location, "transform statement.\n");
7073 grouped_store = false;
7074 is_store = vect_transform_stmt (stmt, &si, &grouped_store, NULL, NULL);
7075 if (is_store)
7077 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
7079 /* Interleaving. If IS_STORE is TRUE, the vectorization of the
7080 interleaving chain was completed - free all the stores in
7081 the chain. */
7082 gsi_next (&si);
7083 vect_remove_stores (GROUP_FIRST_ELEMENT (stmt_info));
7085 else
7087 /* Free the attached stmt_vec_info and remove the stmt. */
7088 gimple *store = gsi_stmt (si);
7089 free_stmt_vec_info (store);
7090 unlink_stmt_vdef (store);
7091 gsi_remove (&si, true);
7092 release_defs (store);
7095 /* Stores can only appear at the end of pattern statements. */
7096 gcc_assert (!transform_pattern_stmt);
7097 pattern_def_seq = NULL;
7099 else if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
7101 pattern_def_seq = NULL;
7102 gsi_next (&si);
7104 } /* stmts in BB */
7105 } /* BBs in loop */
7107 slpeel_make_loop_iterate_ntimes (loop, niters_vector);
7109 scale_profile_for_vect_loop (loop, vf);
7111 /* The minimum number of iterations performed by the epilogue. This
7112 is 1 when peeling for gaps because we always need a final scalar
7113 iteration. */
7114 int min_epilogue_iters = LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) ? 1 : 0;
7115 /* +1 to convert latch counts to loop iteration counts,
7116 -min_epilogue_iters to remove iterations that cannot be performed
7117 by the vector code. */
7118 int bias = 1 - min_epilogue_iters;
7119 /* In these calculations the "- 1" converts loop iteration counts
7120 back to latch counts. */
7121 if (loop->any_upper_bound)
7122 loop->nb_iterations_upper_bound
7123 = wi::udiv_floor (loop->nb_iterations_upper_bound + bias, vf) - 1;
7124 if (loop->any_likely_upper_bound)
7125 loop->nb_iterations_likely_upper_bound
7126 = wi::udiv_floor (loop->nb_iterations_likely_upper_bound + bias, vf) - 1;
7127 if (loop->any_estimate)
7128 loop->nb_iterations_estimate
7129 = wi::udiv_floor (loop->nb_iterations_estimate + bias, vf) - 1;
7131 if (dump_enabled_p ())
7133 if (!LOOP_VINFO_EPILOGUE_P (loop_vinfo))
7135 dump_printf_loc (MSG_NOTE, vect_location,
7136 "LOOP VECTORIZED\n");
7137 if (loop->inner)
7138 dump_printf_loc (MSG_NOTE, vect_location,
7139 "OUTER LOOP VECTORIZED\n");
7140 dump_printf (MSG_NOTE, "\n");
7142 else
7143 dump_printf_loc (MSG_NOTE, vect_location,
7144 "LOOP EPILOGUE VECTORIZED (VS=%d)\n",
7145 current_vector_size);
7148 /* Free SLP instances here because otherwise stmt reference counting
7149 won't work. */
7150 slp_instance instance;
7151 FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), i, instance)
7152 vect_free_slp_instance (instance);
7153 LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
7154 /* Clear-up safelen field since its value is invalid after vectorization
7155 since vectorized loop can have loop-carried dependencies. */
7156 loop->safelen = 0;
7158 /* Don't vectorize epilogue for epilogue. */
7159 if (LOOP_VINFO_EPILOGUE_P (loop_vinfo))
7160 epilogue = NULL;
7162 if (epilogue)
7164 unsigned int vector_sizes
7165 = targetm.vectorize.autovectorize_vector_sizes ();
7166 vector_sizes &= current_vector_size - 1;
7168 if (!PARAM_VALUE (PARAM_VECT_EPILOGUES_NOMASK))
7169 epilogue = NULL;
7170 else if (!vector_sizes)
7171 epilogue = NULL;
7172 else if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
7173 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) >= 0)
7175 int smallest_vec_size = 1 << ctz_hwi (vector_sizes);
7176 int ratio = current_vector_size / smallest_vec_size;
7177 int eiters = LOOP_VINFO_INT_NITERS (loop_vinfo)
7178 - LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
7179 eiters = eiters % vf;
7181 epilogue->nb_iterations_upper_bound = eiters - 1;
7183 if (eiters < vf / ratio)
7184 epilogue = NULL;
7188 if (epilogue)
7190 epilogue->force_vectorize = loop->force_vectorize;
7191 epilogue->safelen = loop->safelen;
7192 epilogue->dont_vectorize = false;
7194 /* We may need to if-convert epilogue to vectorize it. */
7195 if (LOOP_VINFO_SCALAR_LOOP (loop_vinfo))
7196 tree_if_conversion (epilogue);
7199 return epilogue;
7202 /* The code below is trying to perform simple optimization - revert
7203 if-conversion for masked stores, i.e. if the mask of a store is zero
7204 do not perform it and all stored value producers also if possible.
7205 For example,
7206 for (i=0; i<n; i++)
7207 if (c[i])
7209 p1[i] += 1;
7210 p2[i] = p3[i] +2;
7212 this transformation will produce the following semi-hammock:
7214 if (!mask__ifc__42.18_165 == { 0, 0, 0, 0, 0, 0, 0, 0 })
7216 vect__11.19_170 = MASK_LOAD (vectp_p1.20_168, 0B, mask__ifc__42.18_165);
7217 vect__12.22_172 = vect__11.19_170 + vect_cst__171;
7218 MASK_STORE (vectp_p1.23_175, 0B, mask__ifc__42.18_165, vect__12.22_172);
7219 vect__18.25_182 = MASK_LOAD (vectp_p3.26_180, 0B, mask__ifc__42.18_165);
7220 vect__19.28_184 = vect__18.25_182 + vect_cst__183;
7221 MASK_STORE (vectp_p2.29_187, 0B, mask__ifc__42.18_165, vect__19.28_184);
7225 void
7226 optimize_mask_stores (struct loop *loop)
7228 basic_block *bbs = get_loop_body (loop);
7229 unsigned nbbs = loop->num_nodes;
7230 unsigned i;
7231 basic_block bb;
7232 struct loop *bb_loop;
7233 gimple_stmt_iterator gsi;
7234 gimple *stmt;
7235 auto_vec<gimple *> worklist;
7237 vect_location = find_loop_location (loop);
7238 /* Pick up all masked stores in loop if any. */
7239 for (i = 0; i < nbbs; i++)
7241 bb = bbs[i];
7242 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
7243 gsi_next (&gsi))
7245 stmt = gsi_stmt (gsi);
7246 if (gimple_call_internal_p (stmt, IFN_MASK_STORE))
7247 worklist.safe_push (stmt);
7251 free (bbs);
7252 if (worklist.is_empty ())
7253 return;
7255 /* Loop has masked stores. */
7256 while (!worklist.is_empty ())
7258 gimple *last, *last_store;
7259 edge e, efalse;
7260 tree mask;
7261 basic_block store_bb, join_bb;
7262 gimple_stmt_iterator gsi_to;
7263 tree vdef, new_vdef;
7264 gphi *phi;
7265 tree vectype;
7266 tree zero;
7268 last = worklist.pop ();
7269 mask = gimple_call_arg (last, 2);
7270 bb = gimple_bb (last);
7271 /* Create then_bb and if-then structure in CFG, then_bb belongs to
7272 the same loop as if_bb. It could be different to LOOP when two
7273 level loop-nest is vectorized and mask_store belongs to the inner
7274 one. */
7275 e = split_block (bb, last);
7276 bb_loop = bb->loop_father;
7277 gcc_assert (loop == bb_loop || flow_loop_nested_p (loop, bb_loop));
7278 join_bb = e->dest;
7279 store_bb = create_empty_bb (bb);
7280 add_bb_to_loop (store_bb, bb_loop);
7281 e->flags = EDGE_TRUE_VALUE;
7282 efalse = make_edge (bb, store_bb, EDGE_FALSE_VALUE);
7283 /* Put STORE_BB to likely part. */
7284 efalse->probability = PROB_UNLIKELY;
7285 store_bb->frequency = PROB_ALWAYS - EDGE_FREQUENCY (efalse);
7286 make_edge (store_bb, join_bb, EDGE_FALLTHRU);
7287 if (dom_info_available_p (CDI_DOMINATORS))
7288 set_immediate_dominator (CDI_DOMINATORS, store_bb, bb);
7289 if (dump_enabled_p ())
7290 dump_printf_loc (MSG_NOTE, vect_location,
7291 "Create new block %d to sink mask stores.",
7292 store_bb->index);
7293 /* Create vector comparison with boolean result. */
7294 vectype = TREE_TYPE (mask);
7295 zero = build_zero_cst (vectype);
7296 stmt = gimple_build_cond (EQ_EXPR, mask, zero, NULL_TREE, NULL_TREE);
7297 gsi = gsi_last_bb (bb);
7298 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
7299 /* Create new PHI node for vdef of the last masked store:
7300 .MEM_2 = VDEF <.MEM_1>
7301 will be converted to
7302 .MEM.3 = VDEF <.MEM_1>
7303 and new PHI node will be created in join bb
7304 .MEM_2 = PHI <.MEM_1, .MEM_3>
7306 vdef = gimple_vdef (last);
7307 new_vdef = make_ssa_name (gimple_vop (cfun), last);
7308 gimple_set_vdef (last, new_vdef);
7309 phi = create_phi_node (vdef, join_bb);
7310 add_phi_arg (phi, new_vdef, EDGE_SUCC (store_bb, 0), UNKNOWN_LOCATION);
7312 /* Put all masked stores with the same mask to STORE_BB if possible. */
7313 while (true)
7315 gimple_stmt_iterator gsi_from;
7316 gimple *stmt1 = NULL;
7318 /* Move masked store to STORE_BB. */
7319 last_store = last;
7320 gsi = gsi_for_stmt (last);
7321 gsi_from = gsi;
7322 /* Shift GSI to the previous stmt for further traversal. */
7323 gsi_prev (&gsi);
7324 gsi_to = gsi_start_bb (store_bb);
7325 gsi_move_before (&gsi_from, &gsi_to);
7326 /* Setup GSI_TO to the non-empty block start. */
7327 gsi_to = gsi_start_bb (store_bb);
7328 if (dump_enabled_p ())
7330 dump_printf_loc (MSG_NOTE, vect_location,
7331 "Move stmt to created bb\n");
7332 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, last, 0);
7334 /* Move all stored value producers if possible. */
7335 while (!gsi_end_p (gsi))
7337 tree lhs;
7338 imm_use_iterator imm_iter;
7339 use_operand_p use_p;
7340 bool res;
7342 /* Skip debug statements. */
7343 if (is_gimple_debug (gsi_stmt (gsi)))
7345 gsi_prev (&gsi);
7346 continue;
7348 stmt1 = gsi_stmt (gsi);
7349 /* Do not consider statements writing to memory or having
7350 volatile operand. */
7351 if (gimple_vdef (stmt1)
7352 || gimple_has_volatile_ops (stmt1))
7353 break;
7354 gsi_from = gsi;
7355 gsi_prev (&gsi);
7356 lhs = gimple_get_lhs (stmt1);
7357 if (!lhs)
7358 break;
7360 /* LHS of vectorized stmt must be SSA_NAME. */
7361 if (TREE_CODE (lhs) != SSA_NAME)
7362 break;
7364 if (!VECTOR_TYPE_P (TREE_TYPE (lhs)))
7366 /* Remove dead scalar statement. */
7367 if (has_zero_uses (lhs))
7369 gsi_remove (&gsi_from, true);
7370 continue;
7374 /* Check that LHS does not have uses outside of STORE_BB. */
7375 res = true;
7376 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
7378 gimple *use_stmt;
7379 use_stmt = USE_STMT (use_p);
7380 if (is_gimple_debug (use_stmt))
7381 continue;
7382 if (gimple_bb (use_stmt) != store_bb)
7384 res = false;
7385 break;
7388 if (!res)
7389 break;
7391 if (gimple_vuse (stmt1)
7392 && gimple_vuse (stmt1) != gimple_vuse (last_store))
7393 break;
7395 /* Can move STMT1 to STORE_BB. */
7396 if (dump_enabled_p ())
7398 dump_printf_loc (MSG_NOTE, vect_location,
7399 "Move stmt to created bb\n");
7400 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt1, 0);
7402 gsi_move_before (&gsi_from, &gsi_to);
7403 /* Shift GSI_TO for further insertion. */
7404 gsi_prev (&gsi_to);
7406 /* Put other masked stores with the same mask to STORE_BB. */
7407 if (worklist.is_empty ()
7408 || gimple_call_arg (worklist.last (), 2) != mask
7409 || worklist.last () != stmt1)
7410 break;
7411 last = worklist.pop ();
7413 add_phi_arg (phi, gimple_vuse (last_store), e, UNKNOWN_LOCATION);