1 /* Induction variable optimizations.
2 Copyright (C) 2003-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This pass tries to find the optimal set of induction variables for the loop.
21 It optimizes just the basic linear induction variables (although adding
22 support for other types should not be too hard). It includes the
23 optimizations commonly known as strength reduction, induction variable
24 coalescing and induction variable elimination. It does it in the
27 1) The interesting uses of induction variables are found. This includes
29 -- uses of induction variables in non-linear expressions
30 -- addresses of arrays
31 -- comparisons of induction variables
33 Note the interesting uses are categorized and handled in group.
34 Generally, address type uses are grouped together if their iv bases
35 are different in constant offset.
37 2) Candidates for the induction variables are found. This includes
39 -- old induction variables
40 -- the variables defined by expressions derived from the "interesting
43 3) The optimal (w.r. to a cost function) set of variables is chosen. The
44 cost function assigns a cost to sets of induction variables and consists
47 -- The group/use costs. Each of the interesting groups/uses chooses
48 the best induction variable in the set and adds its cost to the sum.
49 The cost reflects the time spent on modifying the induction variables
50 value to be usable for the given purpose (adding base and offset for
52 -- The variable costs. Each of the variables has a cost assigned that
53 reflects the costs associated with incrementing the value of the
54 variable. The original variables are somewhat preferred.
55 -- The set cost. Depending on the size of the set, extra cost may be
56 added to reflect register pressure.
58 All the costs are defined in a machine-specific way, using the target
59 hooks and machine descriptions to determine them.
61 4) The trees are transformed to use the new variables, the dead code is
64 All of this is done loop by loop. Doing it globally is theoretically
65 possible, it might give a better performance and it might enable us
66 to decide costs more precisely, but getting all the interactions right
67 would be complicated. */
71 #include "coretypes.h"
77 #include "tree-pass.h"
82 #include "insn-config.h"
86 #include "gimple-pretty-print.h"
88 #include "fold-const.h"
89 #include "stor-layout.h"
92 #include "gimple-iterator.h"
93 #include "gimplify-me.h"
95 #include "tree-ssa-loop-ivopts.h"
96 #include "tree-ssa-loop-manip.h"
97 #include "tree-ssa-loop-niter.h"
98 #include "tree-ssa-loop.h"
101 #include "tree-dfa.h"
102 #include "tree-ssa.h"
104 #include "tree-scalar-evolution.h"
106 #include "tree-affine.h"
107 #include "tree-ssa-propagate.h"
108 #include "tree-ssa-address.h"
109 #include "builtins.h"
110 #include "tree-vectorizer.h"
112 /* FIXME: Expressions are expanded to RTL in this pass to determine the
113 cost of different addressing modes. This should be moved to a TBD
114 interface between the GIMPLE and RTL worlds. */
116 /* The infinite cost. */
117 #define INFTY 10000000
119 /* Returns the expected number of loop iterations for LOOP.
120 The average trip count is computed from profile data if it
123 static inline HOST_WIDE_INT
124 avg_loop_niter (struct loop
*loop
)
126 HOST_WIDE_INT niter
= estimated_stmt_executions_int (loop
);
129 niter
= likely_max_stmt_executions_int (loop
);
131 if (niter
== -1 || niter
> PARAM_VALUE (PARAM_AVG_LOOP_NITER
))
132 return PARAM_VALUE (PARAM_AVG_LOOP_NITER
);
140 /* Representation of the induction variable. */
143 tree base
; /* Initial value of the iv. */
144 tree base_object
; /* A memory object to that the induction variable points. */
145 tree step
; /* Step of the iv (constant only). */
146 tree ssa_name
; /* The ssa name with the value. */
147 struct iv_use
*nonlin_use
; /* The identifier in the use if it is the case. */
148 bool biv_p
; /* Is it a biv? */
149 bool no_overflow
; /* True if the iv doesn't overflow. */
150 bool have_address_use
;/* For biv, indicate if it's used in any address
154 /* Per-ssa version information (induction variable descriptions, etc.). */
157 tree name
; /* The ssa name. */
158 struct iv
*iv
; /* Induction variable description. */
159 bool has_nonlin_use
; /* For a loop-level invariant, whether it is used in
160 an expression that is not an induction variable. */
161 bool preserve_biv
; /* For the original biv, whether to preserve it. */
162 unsigned inv_id
; /* Id of an invariant. */
168 USE_NONLINEAR_EXPR
, /* Use in a nonlinear expression. */
169 USE_ADDRESS
, /* Use in an address. */
170 USE_COMPARE
/* Use is a compare. */
173 /* Cost of a computation. */
176 comp_cost (): cost (0), complexity (0), scratch (0)
179 comp_cost (int cost
, unsigned complexity
, int scratch
= 0)
180 : cost (cost
), complexity (complexity
), scratch (scratch
)
183 /* Returns true if COST is infinite. */
184 bool infinite_cost_p ();
186 /* Adds costs COST1 and COST2. */
187 friend comp_cost
operator+ (comp_cost cost1
, comp_cost cost2
);
189 /* Adds COST to the comp_cost. */
190 comp_cost
operator+= (comp_cost cost
);
192 /* Adds constant C to this comp_cost. */
193 comp_cost
operator+= (HOST_WIDE_INT c
);
195 /* Subtracts constant C to this comp_cost. */
196 comp_cost
operator-= (HOST_WIDE_INT c
);
198 /* Divide the comp_cost by constant C. */
199 comp_cost
operator/= (HOST_WIDE_INT c
);
201 /* Multiply the comp_cost by constant C. */
202 comp_cost
operator*= (HOST_WIDE_INT c
);
204 /* Subtracts costs COST1 and COST2. */
205 friend comp_cost
operator- (comp_cost cost1
, comp_cost cost2
);
207 /* Subtracts COST from this comp_cost. */
208 comp_cost
operator-= (comp_cost cost
);
210 /* Returns true if COST1 is smaller than COST2. */
211 friend bool operator< (comp_cost cost1
, comp_cost cost2
);
213 /* Returns true if COST1 and COST2 are equal. */
214 friend bool operator== (comp_cost cost1
, comp_cost cost2
);
216 /* Returns true if COST1 is smaller or equal than COST2. */
217 friend bool operator<= (comp_cost cost1
, comp_cost cost2
);
219 int cost
; /* The runtime cost. */
220 unsigned complexity
; /* The estimate of the complexity of the code for
221 the computation (in no concrete units --
222 complexity field should be larger for more
223 complex expressions and addressing modes). */
224 int scratch
; /* Scratch used during cost computation. */
227 static const comp_cost no_cost
;
228 static const comp_cost
infinite_cost (INFTY
, INFTY
, INFTY
);
231 comp_cost::infinite_cost_p ()
233 return cost
== INFTY
;
237 operator+ (comp_cost cost1
, comp_cost cost2
)
239 if (cost1
.infinite_cost_p () || cost2
.infinite_cost_p ())
240 return infinite_cost
;
242 cost1
.cost
+= cost2
.cost
;
243 cost1
.complexity
+= cost2
.complexity
;
249 operator- (comp_cost cost1
, comp_cost cost2
)
251 if (cost1
.infinite_cost_p ())
252 return infinite_cost
;
254 gcc_assert (!cost2
.infinite_cost_p ());
256 cost1
.cost
-= cost2
.cost
;
257 cost1
.complexity
-= cost2
.complexity
;
263 comp_cost::operator+= (comp_cost cost
)
265 *this = *this + cost
;
270 comp_cost::operator+= (HOST_WIDE_INT c
)
272 if (infinite_cost_p ())
281 comp_cost::operator-= (HOST_WIDE_INT c
)
283 if (infinite_cost_p ())
292 comp_cost::operator/= (HOST_WIDE_INT c
)
294 if (infinite_cost_p ())
303 comp_cost::operator*= (HOST_WIDE_INT c
)
305 if (infinite_cost_p ())
314 comp_cost::operator-= (comp_cost cost
)
316 *this = *this - cost
;
321 operator< (comp_cost cost1
, comp_cost cost2
)
323 if (cost1
.cost
== cost2
.cost
)
324 return cost1
.complexity
< cost2
.complexity
;
326 return cost1
.cost
< cost2
.cost
;
330 operator== (comp_cost cost1
, comp_cost cost2
)
332 return cost1
.cost
== cost2
.cost
333 && cost1
.complexity
== cost2
.complexity
;
337 operator<= (comp_cost cost1
, comp_cost cost2
)
339 return cost1
< cost2
|| cost1
== cost2
;
342 struct iv_inv_expr_ent
;
344 /* The candidate - cost pair. */
347 struct iv_cand
*cand
; /* The candidate. */
348 comp_cost cost
; /* The cost. */
349 enum tree_code comp
; /* For iv elimination, the comparison. */
350 bitmap depends_on
; /* The list of invariants that have to be
352 tree value
; /* For final value elimination, the expression for
353 the final value of the iv. For iv elimination,
354 the new bound to compare with. */
355 iv_inv_expr_ent
*inv_expr
; /* Loop invariant expression. */
361 unsigned id
; /* The id of the use. */
362 unsigned group_id
; /* The group id the use belongs to. */
363 enum use_type type
; /* Type of the use. */
364 struct iv
*iv
; /* The induction variable it is based on. */
365 gimple
*stmt
; /* Statement in that it occurs. */
366 tree
*op_p
; /* The place where it occurs. */
368 tree addr_base
; /* Base address with const offset stripped. */
369 unsigned HOST_WIDE_INT addr_offset
;
370 /* Const offset stripped from base address. */
376 /* The id of the group. */
378 /* Uses of the group are of the same type. */
380 /* The set of "related" IV candidates, plus the important ones. */
381 bitmap related_cands
;
382 /* Number of IV candidates in the cost_map. */
383 unsigned n_map_members
;
384 /* The costs wrto the iv candidates. */
385 struct cost_pair
*cost_map
;
386 /* The selected candidate for the group. */
387 struct iv_cand
*selected
;
388 /* Uses in the group. */
389 vec
<struct iv_use
*> vuses
;
392 /* The position where the iv is computed. */
395 IP_NORMAL
, /* At the end, just before the exit condition. */
396 IP_END
, /* At the end of the latch block. */
397 IP_BEFORE_USE
, /* Immediately before a specific use. */
398 IP_AFTER_USE
, /* Immediately after a specific use. */
399 IP_ORIGINAL
/* The original biv. */
402 /* The induction variable candidate. */
405 unsigned id
; /* The number of the candidate. */
406 bool important
; /* Whether this is an "important" candidate, i.e. such
407 that it should be considered by all uses. */
408 ENUM_BITFIELD(iv_position
) pos
: 8; /* Where it is computed. */
409 gimple
*incremented_at
;/* For original biv, the statement where it is
411 tree var_before
; /* The variable used for it before increment. */
412 tree var_after
; /* The variable used for it after increment. */
413 struct iv
*iv
; /* The value of the candidate. NULL for
414 "pseudocandidate" used to indicate the possibility
415 to replace the final value of an iv by direct
416 computation of the value. */
417 unsigned cost
; /* Cost of the candidate. */
418 unsigned cost_step
; /* Cost of the candidate's increment operation. */
419 struct iv_use
*ainc_use
; /* For IP_{BEFORE,AFTER}_USE candidates, the place
420 where it is incremented. */
421 bitmap depends_on
; /* The list of invariants that are used in step of the
423 struct iv
*orig_iv
; /* The original iv if this cand is added from biv with
427 /* Hashtable entry for common candidate derived from iv uses. */
428 struct iv_common_cand
432 /* IV uses from which this common candidate is derived. */
433 auto_vec
<struct iv_use
*> uses
;
437 /* Hashtable helpers. */
439 struct iv_common_cand_hasher
: delete_ptr_hash
<iv_common_cand
>
441 static inline hashval_t
hash (const iv_common_cand
*);
442 static inline bool equal (const iv_common_cand
*, const iv_common_cand
*);
445 /* Hash function for possible common candidates. */
448 iv_common_cand_hasher::hash (const iv_common_cand
*ccand
)
453 /* Hash table equality function for common candidates. */
456 iv_common_cand_hasher::equal (const iv_common_cand
*ccand1
,
457 const iv_common_cand
*ccand2
)
459 return (ccand1
->hash
== ccand2
->hash
460 && operand_equal_p (ccand1
->base
, ccand2
->base
, 0)
461 && operand_equal_p (ccand1
->step
, ccand2
->step
, 0)
462 && (TYPE_PRECISION (TREE_TYPE (ccand1
->base
))
463 == TYPE_PRECISION (TREE_TYPE (ccand2
->base
))));
466 /* Loop invariant expression hashtable entry. */
468 struct iv_inv_expr_ent
470 /* Tree expression of the entry. */
472 /* Unique indentifier. */
478 /* Sort iv_inv_expr_ent pair A and B by id field. */
481 sort_iv_inv_expr_ent (const void *a
, const void *b
)
483 const iv_inv_expr_ent
* const *e1
= (const iv_inv_expr_ent
* const *) (a
);
484 const iv_inv_expr_ent
* const *e2
= (const iv_inv_expr_ent
* const *) (b
);
486 unsigned id1
= (*e1
)->id
;
487 unsigned id2
= (*e2
)->id
;
497 /* Hashtable helpers. */
499 struct iv_inv_expr_hasher
: free_ptr_hash
<iv_inv_expr_ent
>
501 static inline hashval_t
hash (const iv_inv_expr_ent
*);
502 static inline bool equal (const iv_inv_expr_ent
*, const iv_inv_expr_ent
*);
505 /* Hash function for loop invariant expressions. */
508 iv_inv_expr_hasher::hash (const iv_inv_expr_ent
*expr
)
513 /* Hash table equality function for expressions. */
516 iv_inv_expr_hasher::equal (const iv_inv_expr_ent
*expr1
,
517 const iv_inv_expr_ent
*expr2
)
519 return expr1
->hash
== expr2
->hash
520 && operand_equal_p (expr1
->expr
, expr2
->expr
, 0);
525 /* The currently optimized loop. */
526 struct loop
*current_loop
;
527 source_location loop_loc
;
529 /* Numbers of iterations for all exits of the current loop. */
530 hash_map
<edge
, tree_niter_desc
*> *niters
;
532 /* Number of registers used in it. */
535 /* The size of version_info array allocated. */
536 unsigned version_info_size
;
538 /* The array of information for the ssa names. */
539 struct version_info
*version_info
;
541 /* The hashtable of loop invariant expressions created
543 hash_table
<iv_inv_expr_hasher
> *inv_expr_tab
;
545 /* Loop invariant expression id. */
548 /* The bitmap of indices in version_info whose value was changed. */
551 /* The uses of induction variables. */
552 vec
<iv_group
*> vgroups
;
554 /* The candidates. */
555 vec
<iv_cand
*> vcands
;
557 /* A bitmap of important candidates. */
558 bitmap important_candidates
;
560 /* Cache used by tree_to_aff_combination_expand. */
561 hash_map
<tree
, name_expansion
*> *name_expansion_cache
;
563 /* The hashtable of common candidates derived from iv uses. */
564 hash_table
<iv_common_cand_hasher
> *iv_common_cand_tab
;
566 /* The common candidates. */
567 vec
<iv_common_cand
*> iv_common_cands
;
569 /* The maximum invariant id. */
572 /* Number of no_overflow BIVs which are not used in memory address. */
573 unsigned bivs_not_used_in_addr
;
575 /* Obstack for iv structure. */
576 struct obstack iv_obstack
;
578 /* Whether to consider just related and important candidates when replacing a
580 bool consider_all_candidates
;
582 /* Are we optimizing for speed? */
585 /* Whether the loop body includes any function calls. */
586 bool body_includes_call
;
588 /* Whether the loop body can only be exited via single exit. */
589 bool loop_single_exit_p
;
592 /* An assignment of iv candidates to uses. */
596 /* The number of uses covered by the assignment. */
599 /* Number of uses that cannot be expressed by the candidates in the set. */
602 /* Candidate assigned to a use, together with the related costs. */
603 struct cost_pair
**cand_for_group
;
605 /* Number of times each candidate is used. */
606 unsigned *n_cand_uses
;
608 /* The candidates used. */
611 /* The number of candidates in the set. */
614 /* Total number of registers needed. */
617 /* Total cost of expressing uses. */
618 comp_cost cand_use_cost
;
620 /* Total cost of candidates. */
623 /* Number of times each invariant is used. */
624 unsigned *n_invariant_uses
;
626 /* Hash set with used invariant expression. */
627 hash_map
<iv_inv_expr_ent
*, unsigned> *used_inv_exprs
;
629 /* Total cost of the assignment. */
633 /* Difference of two iv candidate assignments. */
638 struct iv_group
*group
;
640 /* An old assignment (for rollback purposes). */
641 struct cost_pair
*old_cp
;
643 /* A new assignment. */
644 struct cost_pair
*new_cp
;
646 /* Next change in the list. */
647 struct iv_ca_delta
*next
;
650 /* Bound on number of candidates below that all candidates are considered. */
652 #define CONSIDER_ALL_CANDIDATES_BOUND \
653 ((unsigned) PARAM_VALUE (PARAM_IV_CONSIDER_ALL_CANDIDATES_BOUND))
655 /* If there are more iv occurrences, we just give up (it is quite unlikely that
656 optimizing such a loop would help, and it would take ages). */
658 #define MAX_CONSIDERED_GROUPS \
659 ((unsigned) PARAM_VALUE (PARAM_IV_MAX_CONSIDERED_USES))
661 /* If there are at most this number of ivs in the set, try removing unnecessary
662 ivs from the set always. */
664 #define ALWAYS_PRUNE_CAND_SET_BOUND \
665 ((unsigned) PARAM_VALUE (PARAM_IV_ALWAYS_PRUNE_CAND_SET_BOUND))
667 /* The list of trees for that the decl_rtl field must be reset is stored
670 static vec
<tree
> decl_rtl_to_reset
;
672 static comp_cost
force_expr_to_var_cost (tree
, bool);
674 /* The single loop exit if it dominates the latch, NULL otherwise. */
677 single_dom_exit (struct loop
*loop
)
679 edge exit
= single_exit (loop
);
684 if (!just_once_each_iteration_p (loop
, exit
->src
))
690 /* Dumps information about the induction variable IV to FILE. Don't dump
691 variable's name if DUMP_NAME is FALSE. The information is dumped with
692 preceding spaces indicated by INDENT_LEVEL. */
695 dump_iv (FILE *file
, struct iv
*iv
, bool dump_name
, unsigned indent_level
)
698 const char spaces
[9] = {' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', '\0'};
700 if (indent_level
> 4)
702 p
= spaces
+ 8 - (indent_level
<< 1);
704 fprintf (file
, "%sIV struct:\n", p
);
705 if (iv
->ssa_name
&& dump_name
)
707 fprintf (file
, "%s SSA_NAME:\t", p
);
708 print_generic_expr (file
, iv
->ssa_name
, TDF_SLIM
);
709 fprintf (file
, "\n");
712 fprintf (file
, "%s Type:\t", p
);
713 print_generic_expr (file
, TREE_TYPE (iv
->base
), TDF_SLIM
);
714 fprintf (file
, "\n");
716 fprintf (file
, "%s Base:\t", p
);
717 print_generic_expr (file
, iv
->base
, TDF_SLIM
);
718 fprintf (file
, "\n");
720 fprintf (file
, "%s Step:\t", p
);
721 print_generic_expr (file
, iv
->step
, TDF_SLIM
);
722 fprintf (file
, "\n");
726 fprintf (file
, "%s Object:\t", p
);
727 print_generic_expr (file
, iv
->base_object
, TDF_SLIM
);
728 fprintf (file
, "\n");
731 fprintf (file
, "%s Biv:\t%c\n", p
, iv
->biv_p
? 'Y' : 'N');
733 fprintf (file
, "%s Overflowness wrto loop niter:\t%s\n",
734 p
, iv
->no_overflow
? "No-overflow" : "Overflow");
737 /* Dumps information about the USE to FILE. */
740 dump_use (FILE *file
, struct iv_use
*use
)
742 fprintf (file
, " Use %d.%d:\n", use
->group_id
, use
->id
);
743 fprintf (file
, " At stmt:\t");
744 print_gimple_stmt (file
, use
->stmt
, 0, 0);
745 fprintf (file
, " At pos:\t");
747 print_generic_expr (file
, *use
->op_p
, TDF_SLIM
);
748 fprintf (file
, "\n");
749 dump_iv (file
, use
->iv
, false, 2);
752 /* Dumps information about the uses to FILE. */
755 dump_groups (FILE *file
, struct ivopts_data
*data
)
758 struct iv_group
*group
;
760 for (i
= 0; i
< data
->vgroups
.length (); i
++)
762 group
= data
->vgroups
[i
];
763 fprintf (file
, "Group %d:\n", group
->id
);
764 if (group
->type
== USE_NONLINEAR_EXPR
)
765 fprintf (file
, " Type:\tGENERIC\n");
766 else if (group
->type
== USE_ADDRESS
)
767 fprintf (file
, " Type:\tADDRESS\n");
770 gcc_assert (group
->type
== USE_COMPARE
);
771 fprintf (file
, " Type:\tCOMPARE\n");
773 for (j
= 0; j
< group
->vuses
.length (); j
++)
774 dump_use (file
, group
->vuses
[j
]);
778 /* Dumps information about induction variable candidate CAND to FILE. */
781 dump_cand (FILE *file
, struct iv_cand
*cand
)
783 struct iv
*iv
= cand
->iv
;
785 fprintf (file
, "Candidate %d:\n", cand
->id
);
786 if (cand
->depends_on
)
788 fprintf (file
, " Depend on: ");
789 dump_bitmap (file
, cand
->depends_on
);
792 if (cand
->var_before
)
794 fprintf (file
, " Var befor: ");
795 print_generic_expr (file
, cand
->var_before
, TDF_SLIM
);
796 fprintf (file
, "\n");
800 fprintf (file
, " Var after: ");
801 print_generic_expr (file
, cand
->var_after
, TDF_SLIM
);
802 fprintf (file
, "\n");
808 fprintf (file
, " Incr POS: before exit test\n");
812 fprintf (file
, " Incr POS: before use %d\n", cand
->ainc_use
->id
);
816 fprintf (file
, " Incr POS: after use %d\n", cand
->ainc_use
->id
);
820 fprintf (file
, " Incr POS: at end\n");
824 fprintf (file
, " Incr POS: orig biv\n");
828 dump_iv (file
, iv
, false, 1);
831 /* Returns the info for ssa version VER. */
833 static inline struct version_info
*
834 ver_info (struct ivopts_data
*data
, unsigned ver
)
836 return data
->version_info
+ ver
;
839 /* Returns the info for ssa name NAME. */
841 static inline struct version_info
*
842 name_info (struct ivopts_data
*data
, tree name
)
844 return ver_info (data
, SSA_NAME_VERSION (name
));
847 /* Returns true if STMT is after the place where the IP_NORMAL ivs will be
851 stmt_after_ip_normal_pos (struct loop
*loop
, gimple
*stmt
)
853 basic_block bb
= ip_normal_pos (loop
), sbb
= gimple_bb (stmt
);
857 if (sbb
== loop
->latch
)
863 return stmt
== last_stmt (bb
);
866 /* Returns true if STMT if after the place where the original induction
867 variable CAND is incremented. If TRUE_IF_EQUAL is set, we return true
868 if the positions are identical. */
871 stmt_after_inc_pos (struct iv_cand
*cand
, gimple
*stmt
, bool true_if_equal
)
873 basic_block cand_bb
= gimple_bb (cand
->incremented_at
);
874 basic_block stmt_bb
= gimple_bb (stmt
);
876 if (!dominated_by_p (CDI_DOMINATORS
, stmt_bb
, cand_bb
))
879 if (stmt_bb
!= cand_bb
)
883 && gimple_uid (stmt
) == gimple_uid (cand
->incremented_at
))
885 return gimple_uid (stmt
) > gimple_uid (cand
->incremented_at
);
888 /* Returns true if STMT if after the place where the induction variable
889 CAND is incremented in LOOP. */
892 stmt_after_increment (struct loop
*loop
, struct iv_cand
*cand
, gimple
*stmt
)
900 return stmt_after_ip_normal_pos (loop
, stmt
);
904 return stmt_after_inc_pos (cand
, stmt
, false);
907 return stmt_after_inc_pos (cand
, stmt
, true);
914 /* Returns true if EXP is a ssa name that occurs in an abnormal phi node. */
917 abnormal_ssa_name_p (tree exp
)
922 if (TREE_CODE (exp
) != SSA_NAME
)
925 return SSA_NAME_OCCURS_IN_ABNORMAL_PHI (exp
) != 0;
928 /* Returns false if BASE or INDEX contains a ssa name that occurs in an
929 abnormal phi node. Callback for for_each_index. */
932 idx_contains_abnormal_ssa_name_p (tree base
, tree
*index
,
933 void *data ATTRIBUTE_UNUSED
)
935 if (TREE_CODE (base
) == ARRAY_REF
|| TREE_CODE (base
) == ARRAY_RANGE_REF
)
937 if (abnormal_ssa_name_p (TREE_OPERAND (base
, 2)))
939 if (abnormal_ssa_name_p (TREE_OPERAND (base
, 3)))
943 return !abnormal_ssa_name_p (*index
);
946 /* Returns true if EXPR contains a ssa name that occurs in an
947 abnormal phi node. */
950 contains_abnormal_ssa_name_p (tree expr
)
953 enum tree_code_class codeclass
;
958 code
= TREE_CODE (expr
);
959 codeclass
= TREE_CODE_CLASS (code
);
961 if (code
== SSA_NAME
)
962 return SSA_NAME_OCCURS_IN_ABNORMAL_PHI (expr
) != 0;
964 if (code
== INTEGER_CST
965 || is_gimple_min_invariant (expr
))
968 if (code
== ADDR_EXPR
)
969 return !for_each_index (&TREE_OPERAND (expr
, 0),
970 idx_contains_abnormal_ssa_name_p
,
973 if (code
== COND_EXPR
)
974 return contains_abnormal_ssa_name_p (TREE_OPERAND (expr
, 0))
975 || contains_abnormal_ssa_name_p (TREE_OPERAND (expr
, 1))
976 || contains_abnormal_ssa_name_p (TREE_OPERAND (expr
, 2));
982 if (contains_abnormal_ssa_name_p (TREE_OPERAND (expr
, 1)))
987 if (contains_abnormal_ssa_name_p (TREE_OPERAND (expr
, 0)))
999 /* Returns the structure describing number of iterations determined from
1000 EXIT of DATA->current_loop, or NULL if something goes wrong. */
1002 static struct tree_niter_desc
*
1003 niter_for_exit (struct ivopts_data
*data
, edge exit
)
1005 struct tree_niter_desc
*desc
;
1006 tree_niter_desc
**slot
;
1010 data
->niters
= new hash_map
<edge
, tree_niter_desc
*>;
1014 slot
= data
->niters
->get (exit
);
1018 /* Try to determine number of iterations. We cannot safely work with ssa
1019 names that appear in phi nodes on abnormal edges, so that we do not
1020 create overlapping life ranges for them (PR 27283). */
1021 desc
= XNEW (struct tree_niter_desc
);
1022 if (!number_of_iterations_exit (data
->current_loop
,
1024 || contains_abnormal_ssa_name_p (desc
->niter
))
1029 data
->niters
->put (exit
, desc
);
1037 /* Returns the structure describing number of iterations determined from
1038 single dominating exit of DATA->current_loop, or NULL if something
1041 static struct tree_niter_desc
*
1042 niter_for_single_dom_exit (struct ivopts_data
*data
)
1044 edge exit
= single_dom_exit (data
->current_loop
);
1049 return niter_for_exit (data
, exit
);
1052 /* Initializes data structures used by the iv optimization pass, stored
1056 tree_ssa_iv_optimize_init (struct ivopts_data
*data
)
1058 data
->version_info_size
= 2 * num_ssa_names
;
1059 data
->version_info
= XCNEWVEC (struct version_info
, data
->version_info_size
);
1060 data
->relevant
= BITMAP_ALLOC (NULL
);
1061 data
->important_candidates
= BITMAP_ALLOC (NULL
);
1062 data
->max_inv_id
= 0;
1063 data
->niters
= NULL
;
1064 data
->vgroups
.create (20);
1065 data
->vcands
.create (20);
1066 data
->inv_expr_tab
= new hash_table
<iv_inv_expr_hasher
> (10);
1067 data
->max_inv_expr_id
= 0;
1068 data
->name_expansion_cache
= NULL
;
1069 data
->iv_common_cand_tab
= new hash_table
<iv_common_cand_hasher
> (10);
1070 data
->iv_common_cands
.create (20);
1071 decl_rtl_to_reset
.create (20);
1072 gcc_obstack_init (&data
->iv_obstack
);
1075 /* Returns a memory object to that EXPR points. In case we are able to
1076 determine that it does not point to any such object, NULL is returned. */
1079 determine_base_object (tree expr
)
1081 enum tree_code code
= TREE_CODE (expr
);
1084 /* If this is a pointer casted to any type, we need to determine
1085 the base object for the pointer; so handle conversions before
1086 throwing away non-pointer expressions. */
1087 if (CONVERT_EXPR_P (expr
))
1088 return determine_base_object (TREE_OPERAND (expr
, 0));
1090 if (!POINTER_TYPE_P (TREE_TYPE (expr
)))
1099 obj
= TREE_OPERAND (expr
, 0);
1100 base
= get_base_address (obj
);
1105 if (TREE_CODE (base
) == MEM_REF
)
1106 return determine_base_object (TREE_OPERAND (base
, 0));
1108 return fold_convert (ptr_type_node
,
1109 build_fold_addr_expr (base
));
1111 case POINTER_PLUS_EXPR
:
1112 return determine_base_object (TREE_OPERAND (expr
, 0));
1116 /* Pointer addition is done solely using POINTER_PLUS_EXPR. */
1120 return fold_convert (ptr_type_node
, expr
);
1124 /* Return true if address expression with non-DECL_P operand appears
1128 contain_complex_addr_expr (tree expr
)
1133 switch (TREE_CODE (expr
))
1135 case POINTER_PLUS_EXPR
:
1138 res
|= contain_complex_addr_expr (TREE_OPERAND (expr
, 0));
1139 res
|= contain_complex_addr_expr (TREE_OPERAND (expr
, 1));
1143 return (!DECL_P (TREE_OPERAND (expr
, 0)));
1152 /* Allocates an induction variable with given initial value BASE and step STEP
1153 for loop LOOP. NO_OVERFLOW implies the iv doesn't overflow. */
1156 alloc_iv (struct ivopts_data
*data
, tree base
, tree step
,
1157 bool no_overflow
= false)
1160 struct iv
*iv
= (struct iv
*) obstack_alloc (&data
->iv_obstack
,
1161 sizeof (struct iv
));
1162 gcc_assert (step
!= NULL_TREE
);
1164 /* Lower address expression in base except ones with DECL_P as operand.
1166 1) More accurate cost can be computed for address expressions;
1167 2) Duplicate candidates won't be created for bases in different
1168 forms, like &a[0] and &a. */
1170 if ((TREE_CODE (expr
) == ADDR_EXPR
&& !DECL_P (TREE_OPERAND (expr
, 0)))
1171 || contain_complex_addr_expr (expr
))
1174 tree_to_aff_combination (expr
, TREE_TYPE (expr
), &comb
);
1175 base
= fold_convert (TREE_TYPE (base
), aff_combination_to_tree (&comb
));
1179 iv
->base_object
= determine_base_object (base
);
1182 iv
->nonlin_use
= NULL
;
1183 iv
->ssa_name
= NULL_TREE
;
1185 && !iv_can_overflow_p (data
->current_loop
, TREE_TYPE (base
),
1188 iv
->no_overflow
= no_overflow
;
1189 iv
->have_address_use
= false;
1194 /* Sets STEP and BASE for induction variable IV. NO_OVERFLOW implies the IV
1195 doesn't overflow. */
1198 set_iv (struct ivopts_data
*data
, tree iv
, tree base
, tree step
,
1201 struct version_info
*info
= name_info (data
, iv
);
1203 gcc_assert (!info
->iv
);
1205 bitmap_set_bit (data
->relevant
, SSA_NAME_VERSION (iv
));
1206 info
->iv
= alloc_iv (data
, base
, step
, no_overflow
);
1207 info
->iv
->ssa_name
= iv
;
1210 /* Finds induction variable declaration for VAR. */
1213 get_iv (struct ivopts_data
*data
, tree var
)
1216 tree type
= TREE_TYPE (var
);
1218 if (!POINTER_TYPE_P (type
)
1219 && !INTEGRAL_TYPE_P (type
))
1222 if (!name_info (data
, var
)->iv
)
1224 bb
= gimple_bb (SSA_NAME_DEF_STMT (var
));
1227 || !flow_bb_inside_loop_p (data
->current_loop
, bb
))
1228 set_iv (data
, var
, var
, build_int_cst (type
, 0), true);
1231 return name_info (data
, var
)->iv
;
1234 /* Return the first non-invariant ssa var found in EXPR. */
1237 extract_single_var_from_expr (tree expr
)
1241 enum tree_code code
;
1243 if (!expr
|| is_gimple_min_invariant (expr
))
1246 code
= TREE_CODE (expr
);
1247 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code
)))
1249 n
= TREE_OPERAND_LENGTH (expr
);
1250 for (i
= 0; i
< n
; i
++)
1252 tmp
= extract_single_var_from_expr (TREE_OPERAND (expr
, i
));
1258 return (TREE_CODE (expr
) == SSA_NAME
) ? expr
: NULL
;
1261 /* Finds basic ivs. */
1264 find_bivs (struct ivopts_data
*data
)
1268 tree step
, type
, base
, stop
;
1270 struct loop
*loop
= data
->current_loop
;
1273 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
1277 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (phi
)))
1280 if (virtual_operand_p (PHI_RESULT (phi
)))
1283 if (!simple_iv (loop
, loop
, PHI_RESULT (phi
), &iv
, true))
1286 if (integer_zerop (iv
.step
))
1290 base
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_preheader_edge (loop
));
1291 /* Stop expanding iv base at the first ssa var referred by iv step.
1292 Ideally we should stop at any ssa var, because that's expensive
1293 and unusual to happen, we just do it on the first one.
1295 See PR64705 for the rationale. */
1296 stop
= extract_single_var_from_expr (step
);
1297 base
= expand_simple_operations (base
, stop
);
1298 if (contains_abnormal_ssa_name_p (base
)
1299 || contains_abnormal_ssa_name_p (step
))
1302 type
= TREE_TYPE (PHI_RESULT (phi
));
1303 base
= fold_convert (type
, base
);
1306 if (POINTER_TYPE_P (type
))
1307 step
= convert_to_ptrofftype (step
);
1309 step
= fold_convert (type
, step
);
1312 set_iv (data
, PHI_RESULT (phi
), base
, step
, iv
.no_overflow
);
1319 /* Marks basic ivs. */
1322 mark_bivs (struct ivopts_data
*data
)
1327 struct iv
*iv
, *incr_iv
;
1328 struct loop
*loop
= data
->current_loop
;
1329 basic_block incr_bb
;
1332 data
->bivs_not_used_in_addr
= 0;
1333 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
1337 iv
= get_iv (data
, PHI_RESULT (phi
));
1341 var
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_latch_edge (loop
));
1342 def
= SSA_NAME_DEF_STMT (var
);
1343 /* Don't mark iv peeled from other one as biv. */
1345 && gimple_code (def
) == GIMPLE_PHI
1346 && gimple_bb (def
) == loop
->header
)
1349 incr_iv
= get_iv (data
, var
);
1353 /* If the increment is in the subloop, ignore it. */
1354 incr_bb
= gimple_bb (SSA_NAME_DEF_STMT (var
));
1355 if (incr_bb
->loop_father
!= data
->current_loop
1356 || (incr_bb
->flags
& BB_IRREDUCIBLE_LOOP
))
1360 incr_iv
->biv_p
= true;
1361 if (iv
->no_overflow
)
1362 data
->bivs_not_used_in_addr
++;
1363 if (incr_iv
->no_overflow
)
1364 data
->bivs_not_used_in_addr
++;
1368 /* Checks whether STMT defines a linear induction variable and stores its
1369 parameters to IV. */
1372 find_givs_in_stmt_scev (struct ivopts_data
*data
, gimple
*stmt
, affine_iv
*iv
)
1375 struct loop
*loop
= data
->current_loop
;
1377 iv
->base
= NULL_TREE
;
1378 iv
->step
= NULL_TREE
;
1380 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
1383 lhs
= gimple_assign_lhs (stmt
);
1384 if (TREE_CODE (lhs
) != SSA_NAME
)
1387 if (!simple_iv (loop
, loop_containing_stmt (stmt
), lhs
, iv
, true))
1390 /* Stop expanding iv base at the first ssa var referred by iv step.
1391 Ideally we should stop at any ssa var, because that's expensive
1392 and unusual to happen, we just do it on the first one.
1394 See PR64705 for the rationale. */
1395 stop
= extract_single_var_from_expr (iv
->step
);
1396 iv
->base
= expand_simple_operations (iv
->base
, stop
);
1397 if (contains_abnormal_ssa_name_p (iv
->base
)
1398 || contains_abnormal_ssa_name_p (iv
->step
))
1401 /* If STMT could throw, then do not consider STMT as defining a GIV.
1402 While this will suppress optimizations, we can not safely delete this
1403 GIV and associated statements, even if it appears it is not used. */
1404 if (stmt_could_throw_p (stmt
))
1410 /* Finds general ivs in statement STMT. */
1413 find_givs_in_stmt (struct ivopts_data
*data
, gimple
*stmt
)
1417 if (!find_givs_in_stmt_scev (data
, stmt
, &iv
))
1420 set_iv (data
, gimple_assign_lhs (stmt
), iv
.base
, iv
.step
, iv
.no_overflow
);
1423 /* Finds general ivs in basic block BB. */
1426 find_givs_in_bb (struct ivopts_data
*data
, basic_block bb
)
1428 gimple_stmt_iterator bsi
;
1430 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
1431 find_givs_in_stmt (data
, gsi_stmt (bsi
));
1434 /* Finds general ivs. */
1437 find_givs (struct ivopts_data
*data
)
1439 struct loop
*loop
= data
->current_loop
;
1440 basic_block
*body
= get_loop_body_in_dom_order (loop
);
1443 for (i
= 0; i
< loop
->num_nodes
; i
++)
1444 find_givs_in_bb (data
, body
[i
]);
1448 /* For each ssa name defined in LOOP determines whether it is an induction
1449 variable and if so, its initial value and step. */
1452 find_induction_variables (struct ivopts_data
*data
)
1457 if (!find_bivs (data
))
1463 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1465 struct tree_niter_desc
*niter
= niter_for_single_dom_exit (data
);
1469 fprintf (dump_file
, " number of iterations ");
1470 print_generic_expr (dump_file
, niter
->niter
, TDF_SLIM
);
1471 if (!integer_zerop (niter
->may_be_zero
))
1473 fprintf (dump_file
, "; zero if ");
1474 print_generic_expr (dump_file
, niter
->may_be_zero
, TDF_SLIM
);
1476 fprintf (dump_file
, "\n");
1479 fprintf (dump_file
, "\n<Induction Vars>:\n");
1480 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, i
, bi
)
1482 struct version_info
*info
= ver_info (data
, i
);
1483 if (info
->iv
&& info
->iv
->step
&& !integer_zerop (info
->iv
->step
))
1484 dump_iv (dump_file
, ver_info (data
, i
)->iv
, true, 0);
1491 /* Records a use of TYPE at *USE_P in STMT whose value is IV in GROUP.
1492 For address type use, ADDR_BASE is the stripped IV base, ADDR_OFFSET
1493 is the const offset stripped from IV base; for other types use, both
1494 are zero by default. */
1496 static struct iv_use
*
1497 record_use (struct iv_group
*group
, tree
*use_p
, struct iv
*iv
,
1498 gimple
*stmt
, enum use_type type
, tree addr_base
,
1499 unsigned HOST_WIDE_INT addr_offset
)
1501 struct iv_use
*use
= XCNEW (struct iv_use
);
1503 use
->id
= group
->vuses
.length ();
1504 use
->group_id
= group
->id
;
1509 use
->addr_base
= addr_base
;
1510 use
->addr_offset
= addr_offset
;
1512 group
->vuses
.safe_push (use
);
1516 /* Checks whether OP is a loop-level invariant and if so, records it.
1517 NONLINEAR_USE is true if the invariant is used in a way we do not
1518 handle specially. */
1521 record_invariant (struct ivopts_data
*data
, tree op
, bool nonlinear_use
)
1524 struct version_info
*info
;
1526 if (TREE_CODE (op
) != SSA_NAME
1527 || virtual_operand_p (op
))
1530 bb
= gimple_bb (SSA_NAME_DEF_STMT (op
));
1532 && flow_bb_inside_loop_p (data
->current_loop
, bb
))
1535 info
= name_info (data
, op
);
1537 info
->has_nonlin_use
|= nonlinear_use
;
1539 info
->inv_id
= ++data
->max_inv_id
;
1540 bitmap_set_bit (data
->relevant
, SSA_NAME_VERSION (op
));
1544 strip_offset (tree expr
, unsigned HOST_WIDE_INT
*offset
);
1546 /* Record a group of TYPE. */
1548 static struct iv_group
*
1549 record_group (struct ivopts_data
*data
, enum use_type type
)
1551 struct iv_group
*group
= XCNEW (struct iv_group
);
1553 group
->id
= data
->vgroups
.length ();
1555 group
->related_cands
= BITMAP_ALLOC (NULL
);
1556 group
->vuses
.create (1);
1558 data
->vgroups
.safe_push (group
);
1562 /* Record a use of TYPE at *USE_P in STMT whose value is IV in a group.
1563 New group will be created if there is no existing group for the use. */
1565 static struct iv_use
*
1566 record_group_use (struct ivopts_data
*data
, tree
*use_p
,
1567 struct iv
*iv
, gimple
*stmt
, enum use_type type
)
1569 tree addr_base
= NULL
;
1570 struct iv_group
*group
= NULL
;
1571 unsigned HOST_WIDE_INT addr_offset
= 0;
1573 /* Record non address type use in a new group. */
1574 if (type
== USE_ADDRESS
&& iv
->base_object
)
1578 addr_base
= strip_offset (iv
->base
, &addr_offset
);
1579 for (i
= 0; i
< data
->vgroups
.length (); i
++)
1583 group
= data
->vgroups
[i
];
1584 use
= group
->vuses
[0];
1585 if (use
->type
!= USE_ADDRESS
|| !use
->iv
->base_object
)
1588 /* Check if it has the same stripped base and step. */
1589 if (operand_equal_p (iv
->base_object
, use
->iv
->base_object
, 0)
1590 && operand_equal_p (iv
->step
, use
->iv
->step
, 0)
1591 && operand_equal_p (addr_base
, use
->addr_base
, 0))
1594 if (i
== data
->vgroups
.length ())
1599 group
= record_group (data
, type
);
1601 return record_use (group
, use_p
, iv
, stmt
, type
, addr_base
, addr_offset
);
1604 /* Checks whether the use OP is interesting and if so, records it. */
1606 static struct iv_use
*
1607 find_interesting_uses_op (struct ivopts_data
*data
, tree op
)
1613 if (TREE_CODE (op
) != SSA_NAME
)
1616 iv
= get_iv (data
, op
);
1622 gcc_assert (iv
->nonlin_use
->type
== USE_NONLINEAR_EXPR
);
1623 return iv
->nonlin_use
;
1626 if (integer_zerop (iv
->step
))
1628 record_invariant (data
, op
, true);
1632 stmt
= SSA_NAME_DEF_STMT (op
);
1633 gcc_assert (gimple_code (stmt
) == GIMPLE_PHI
|| is_gimple_assign (stmt
));
1635 use
= record_group_use (data
, NULL
, iv
, stmt
, USE_NONLINEAR_EXPR
);
1636 iv
->nonlin_use
= use
;
1640 /* Given a condition in statement STMT, checks whether it is a compare
1641 of an induction variable and an invariant. If this is the case,
1642 CONTROL_VAR is set to location of the iv, BOUND to the location of
1643 the invariant, IV_VAR and IV_BOUND are set to the corresponding
1644 induction variable descriptions, and true is returned. If this is not
1645 the case, CONTROL_VAR and BOUND are set to the arguments of the
1646 condition and false is returned. */
1649 extract_cond_operands (struct ivopts_data
*data
, gimple
*stmt
,
1650 tree
**control_var
, tree
**bound
,
1651 struct iv
**iv_var
, struct iv
**iv_bound
)
1653 /* The objects returned when COND has constant operands. */
1654 static struct iv const_iv
;
1656 tree
*op0
= &zero
, *op1
= &zero
;
1657 struct iv
*iv0
= &const_iv
, *iv1
= &const_iv
;
1660 if (gimple_code (stmt
) == GIMPLE_COND
)
1662 gcond
*cond_stmt
= as_a
<gcond
*> (stmt
);
1663 op0
= gimple_cond_lhs_ptr (cond_stmt
);
1664 op1
= gimple_cond_rhs_ptr (cond_stmt
);
1668 op0
= gimple_assign_rhs1_ptr (stmt
);
1669 op1
= gimple_assign_rhs2_ptr (stmt
);
1672 zero
= integer_zero_node
;
1673 const_iv
.step
= integer_zero_node
;
1675 if (TREE_CODE (*op0
) == SSA_NAME
)
1676 iv0
= get_iv (data
, *op0
);
1677 if (TREE_CODE (*op1
) == SSA_NAME
)
1678 iv1
= get_iv (data
, *op1
);
1680 /* Exactly one of the compared values must be an iv, and the other one must
1685 if (integer_zerop (iv0
->step
))
1687 /* Control variable may be on the other side. */
1688 std::swap (op0
, op1
);
1689 std::swap (iv0
, iv1
);
1691 ret
= !integer_zerop (iv0
->step
) && integer_zerop (iv1
->step
);
1706 /* Checks whether the condition in STMT is interesting and if so,
1710 find_interesting_uses_cond (struct ivopts_data
*data
, gimple
*stmt
)
1712 tree
*var_p
, *bound_p
;
1715 if (!extract_cond_operands (data
, stmt
, &var_p
, &bound_p
, &var_iv
, NULL
))
1717 find_interesting_uses_op (data
, *var_p
);
1718 find_interesting_uses_op (data
, *bound_p
);
1722 record_group_use (data
, NULL
, var_iv
, stmt
, USE_COMPARE
);
1725 /* Returns the outermost loop EXPR is obviously invariant in
1726 relative to the loop LOOP, i.e. if all its operands are defined
1727 outside of the returned loop. Returns NULL if EXPR is not
1728 even obviously invariant in LOOP. */
1731 outermost_invariant_loop_for_expr (struct loop
*loop
, tree expr
)
1736 if (is_gimple_min_invariant (expr
))
1737 return current_loops
->tree_root
;
1739 if (TREE_CODE (expr
) == SSA_NAME
)
1741 def_bb
= gimple_bb (SSA_NAME_DEF_STMT (expr
));
1744 if (flow_bb_inside_loop_p (loop
, def_bb
))
1746 return superloop_at_depth (loop
,
1747 loop_depth (def_bb
->loop_father
) + 1);
1750 return current_loops
->tree_root
;
1756 unsigned maxdepth
= 0;
1757 len
= TREE_OPERAND_LENGTH (expr
);
1758 for (i
= 0; i
< len
; i
++)
1760 struct loop
*ivloop
;
1761 if (!TREE_OPERAND (expr
, i
))
1764 ivloop
= outermost_invariant_loop_for_expr (loop
, TREE_OPERAND (expr
, i
));
1767 maxdepth
= MAX (maxdepth
, loop_depth (ivloop
));
1770 return superloop_at_depth (loop
, maxdepth
);
1773 /* Returns true if expression EXPR is obviously invariant in LOOP,
1774 i.e. if all its operands are defined outside of the LOOP. LOOP
1775 should not be the function body. */
1778 expr_invariant_in_loop_p (struct loop
*loop
, tree expr
)
1783 gcc_assert (loop_depth (loop
) > 0);
1785 if (is_gimple_min_invariant (expr
))
1788 if (TREE_CODE (expr
) == SSA_NAME
)
1790 def_bb
= gimple_bb (SSA_NAME_DEF_STMT (expr
));
1792 && flow_bb_inside_loop_p (loop
, def_bb
))
1801 len
= TREE_OPERAND_LENGTH (expr
);
1802 for (i
= 0; i
< len
; i
++)
1803 if (TREE_OPERAND (expr
, i
)
1804 && !expr_invariant_in_loop_p (loop
, TREE_OPERAND (expr
, i
)))
1810 /* Given expression EXPR which computes inductive values with respect
1811 to loop recorded in DATA, this function returns biv from which EXPR
1812 is derived by tracing definition chains of ssa variables in EXPR. */
1815 find_deriving_biv_for_expr (struct ivopts_data
*data
, tree expr
)
1820 enum tree_code code
;
1823 if (expr
== NULL_TREE
)
1826 if (is_gimple_min_invariant (expr
))
1829 code
= TREE_CODE (expr
);
1830 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code
)))
1832 n
= TREE_OPERAND_LENGTH (expr
);
1833 for (i
= 0; i
< n
; i
++)
1835 iv
= find_deriving_biv_for_expr (data
, TREE_OPERAND (expr
, i
));
1841 /* Stop if it's not ssa name. */
1842 if (code
!= SSA_NAME
)
1845 iv
= get_iv (data
, expr
);
1846 if (!iv
|| integer_zerop (iv
->step
))
1851 stmt
= SSA_NAME_DEF_STMT (expr
);
1852 if (gphi
*phi
= dyn_cast
<gphi
*> (stmt
))
1855 use_operand_p use_p
;
1856 basic_block phi_bb
= gimple_bb (phi
);
1858 /* Skip loop header PHI that doesn't define biv. */
1859 if (phi_bb
->loop_father
== data
->current_loop
)
1862 if (virtual_operand_p (gimple_phi_result (phi
)))
1865 FOR_EACH_PHI_ARG (use_p
, phi
, iter
, SSA_OP_USE
)
1867 tree use
= USE_FROM_PTR (use_p
);
1868 iv
= find_deriving_biv_for_expr (data
, use
);
1874 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
1877 e1
= gimple_assign_rhs1 (stmt
);
1878 code
= gimple_assign_rhs_code (stmt
);
1879 if (get_gimple_rhs_class (code
) == GIMPLE_SINGLE_RHS
)
1880 return find_deriving_biv_for_expr (data
, e1
);
1887 case POINTER_PLUS_EXPR
:
1888 /* Increments, decrements and multiplications by a constant
1890 e2
= gimple_assign_rhs2 (stmt
);
1891 iv
= find_deriving_biv_for_expr (data
, e2
);
1897 /* Casts are simple. */
1898 return find_deriving_biv_for_expr (data
, e1
);
1907 /* Record BIV, its predecessor and successor that they are used in
1908 address type uses. */
1911 record_biv_for_address_use (struct ivopts_data
*data
, struct iv
*biv
)
1914 tree type
, base_1
, base_2
;
1917 if (!biv
|| !biv
->biv_p
|| integer_zerop (biv
->step
)
1918 || biv
->have_address_use
|| !biv
->no_overflow
)
1921 type
= TREE_TYPE (biv
->base
);
1922 if (!INTEGRAL_TYPE_P (type
))
1925 biv
->have_address_use
= true;
1926 data
->bivs_not_used_in_addr
--;
1927 base_1
= fold_build2 (PLUS_EXPR
, type
, biv
->base
, biv
->step
);
1928 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, i
, bi
)
1930 struct iv
*iv
= ver_info (data
, i
)->iv
;
1932 if (!iv
|| !iv
->biv_p
|| integer_zerop (iv
->step
)
1933 || iv
->have_address_use
|| !iv
->no_overflow
)
1936 if (type
!= TREE_TYPE (iv
->base
)
1937 || !INTEGRAL_TYPE_P (TREE_TYPE (iv
->base
)))
1940 if (!operand_equal_p (biv
->step
, iv
->step
, 0))
1943 base_2
= fold_build2 (PLUS_EXPR
, type
, iv
->base
, iv
->step
);
1944 if (operand_equal_p (base_1
, iv
->base
, 0)
1945 || operand_equal_p (base_2
, biv
->base
, 0))
1947 iv
->have_address_use
= true;
1948 data
->bivs_not_used_in_addr
--;
1953 /* Cumulates the steps of indices into DATA and replaces their values with the
1954 initial ones. Returns false when the value of the index cannot be determined.
1955 Callback for for_each_index. */
1957 struct ifs_ivopts_data
1959 struct ivopts_data
*ivopts_data
;
1965 idx_find_step (tree base
, tree
*idx
, void *data
)
1967 struct ifs_ivopts_data
*dta
= (struct ifs_ivopts_data
*) data
;
1969 bool use_overflow_semantics
= false;
1970 tree step
, iv_base
, iv_step
, lbound
, off
;
1971 struct loop
*loop
= dta
->ivopts_data
->current_loop
;
1973 /* If base is a component ref, require that the offset of the reference
1975 if (TREE_CODE (base
) == COMPONENT_REF
)
1977 off
= component_ref_field_offset (base
);
1978 return expr_invariant_in_loop_p (loop
, off
);
1981 /* If base is array, first check whether we will be able to move the
1982 reference out of the loop (in order to take its address in strength
1983 reduction). In order for this to work we need both lower bound
1984 and step to be loop invariants. */
1985 if (TREE_CODE (base
) == ARRAY_REF
|| TREE_CODE (base
) == ARRAY_RANGE_REF
)
1987 /* Moreover, for a range, the size needs to be invariant as well. */
1988 if (TREE_CODE (base
) == ARRAY_RANGE_REF
1989 && !expr_invariant_in_loop_p (loop
, TYPE_SIZE (TREE_TYPE (base
))))
1992 step
= array_ref_element_size (base
);
1993 lbound
= array_ref_low_bound (base
);
1995 if (!expr_invariant_in_loop_p (loop
, step
)
1996 || !expr_invariant_in_loop_p (loop
, lbound
))
2000 if (TREE_CODE (*idx
) != SSA_NAME
)
2003 iv
= get_iv (dta
->ivopts_data
, *idx
);
2007 /* XXX We produce for a base of *D42 with iv->base being &x[0]
2008 *&x[0], which is not folded and does not trigger the
2009 ARRAY_REF path below. */
2012 if (integer_zerop (iv
->step
))
2015 if (TREE_CODE (base
) == ARRAY_REF
|| TREE_CODE (base
) == ARRAY_RANGE_REF
)
2017 step
= array_ref_element_size (base
);
2019 /* We only handle addresses whose step is an integer constant. */
2020 if (TREE_CODE (step
) != INTEGER_CST
)
2024 /* The step for pointer arithmetics already is 1 byte. */
2025 step
= size_one_node
;
2029 if (iv
->no_overflow
&& nowrap_type_p (TREE_TYPE (iv_step
)))
2030 use_overflow_semantics
= true;
2032 if (!convert_affine_scev (dta
->ivopts_data
->current_loop
,
2033 sizetype
, &iv_base
, &iv_step
, dta
->stmt
,
2034 use_overflow_semantics
))
2036 /* The index might wrap. */
2040 step
= fold_build2 (MULT_EXPR
, sizetype
, step
, iv_step
);
2041 dta
->step
= fold_build2 (PLUS_EXPR
, sizetype
, dta
->step
, step
);
2043 if (dta
->ivopts_data
->bivs_not_used_in_addr
)
2046 iv
= find_deriving_biv_for_expr (dta
->ivopts_data
, iv
->ssa_name
);
2048 record_biv_for_address_use (dta
->ivopts_data
, iv
);
2053 /* Records use in index IDX. Callback for for_each_index. Ivopts data
2054 object is passed to it in DATA. */
2057 idx_record_use (tree base
, tree
*idx
,
2060 struct ivopts_data
*data
= (struct ivopts_data
*) vdata
;
2061 find_interesting_uses_op (data
, *idx
);
2062 if (TREE_CODE (base
) == ARRAY_REF
|| TREE_CODE (base
) == ARRAY_RANGE_REF
)
2064 find_interesting_uses_op (data
, array_ref_element_size (base
));
2065 find_interesting_uses_op (data
, array_ref_low_bound (base
));
2070 /* If we can prove that TOP = cst * BOT for some constant cst,
2071 store cst to MUL and return true. Otherwise return false.
2072 The returned value is always sign-extended, regardless of the
2073 signedness of TOP and BOT. */
2076 constant_multiple_of (tree top
, tree bot
, widest_int
*mul
)
2079 enum tree_code code
;
2080 unsigned precision
= TYPE_PRECISION (TREE_TYPE (top
));
2081 widest_int res
, p0
, p1
;
2086 if (operand_equal_p (top
, bot
, 0))
2092 code
= TREE_CODE (top
);
2096 mby
= TREE_OPERAND (top
, 1);
2097 if (TREE_CODE (mby
) != INTEGER_CST
)
2100 if (!constant_multiple_of (TREE_OPERAND (top
, 0), bot
, &res
))
2103 *mul
= wi::sext (res
* wi::to_widest (mby
), precision
);
2108 if (!constant_multiple_of (TREE_OPERAND (top
, 0), bot
, &p0
)
2109 || !constant_multiple_of (TREE_OPERAND (top
, 1), bot
, &p1
))
2112 if (code
== MINUS_EXPR
)
2114 *mul
= wi::sext (p0
+ p1
, precision
);
2118 if (TREE_CODE (bot
) != INTEGER_CST
)
2121 p0
= widest_int::from (top
, SIGNED
);
2122 p1
= widest_int::from (bot
, SIGNED
);
2125 *mul
= wi::sext (wi::divmod_trunc (p0
, p1
, SIGNED
, &res
), precision
);
2133 /* Return true if memory reference REF with step STEP may be unaligned. */
2136 may_be_unaligned_p (tree ref
, tree step
)
2138 /* TARGET_MEM_REFs are translated directly to valid MEMs on the target,
2139 thus they are not misaligned. */
2140 if (TREE_CODE (ref
) == TARGET_MEM_REF
)
2143 unsigned int align
= TYPE_ALIGN (TREE_TYPE (ref
));
2144 if (GET_MODE_ALIGNMENT (TYPE_MODE (TREE_TYPE (ref
))) > align
)
2145 align
= GET_MODE_ALIGNMENT (TYPE_MODE (TREE_TYPE (ref
)));
2147 unsigned HOST_WIDE_INT bitpos
;
2148 unsigned int ref_align
;
2149 get_object_alignment_1 (ref
, &ref_align
, &bitpos
);
2150 if (ref_align
< align
2151 || (bitpos
% align
) != 0
2152 || (bitpos
% BITS_PER_UNIT
) != 0)
2155 unsigned int trailing_zeros
= tree_ctz (step
);
2156 if (trailing_zeros
< HOST_BITS_PER_INT
2157 && (1U << trailing_zeros
) * BITS_PER_UNIT
< align
)
2163 /* Return true if EXPR may be non-addressable. */
2166 may_be_nonaddressable_p (tree expr
)
2168 switch (TREE_CODE (expr
))
2170 case TARGET_MEM_REF
:
2171 /* TARGET_MEM_REFs are translated directly to valid MEMs on the
2172 target, thus they are always addressable. */
2176 /* Likewise for MEM_REFs, modulo the storage order. */
2177 return REF_REVERSE_STORAGE_ORDER (expr
);
2180 if (REF_REVERSE_STORAGE_ORDER (expr
))
2182 return may_be_nonaddressable_p (TREE_OPERAND (expr
, 0));
2185 if (TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (TREE_OPERAND (expr
, 0))))
2187 return DECL_NONADDRESSABLE_P (TREE_OPERAND (expr
, 1))
2188 || may_be_nonaddressable_p (TREE_OPERAND (expr
, 0));
2191 case ARRAY_RANGE_REF
:
2192 if (TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (TREE_OPERAND (expr
, 0))))
2194 return may_be_nonaddressable_p (TREE_OPERAND (expr
, 0));
2196 case VIEW_CONVERT_EXPR
:
2197 /* This kind of view-conversions may wrap non-addressable objects
2198 and make them look addressable. After some processing the
2199 non-addressability may be uncovered again, causing ADDR_EXPRs
2200 of inappropriate objects to be built. */
2201 if (is_gimple_reg (TREE_OPERAND (expr
, 0))
2202 || !is_gimple_addressable (TREE_OPERAND (expr
, 0)))
2204 return may_be_nonaddressable_p (TREE_OPERAND (expr
, 0));
2216 /* Finds addresses in *OP_P inside STMT. */
2219 find_interesting_uses_address (struct ivopts_data
*data
, gimple
*stmt
,
2222 tree base
= *op_p
, step
= size_zero_node
;
2224 struct ifs_ivopts_data ifs_ivopts_data
;
2226 /* Do not play with volatile memory references. A bit too conservative,
2227 perhaps, but safe. */
2228 if (gimple_has_volatile_ops (stmt
))
2231 /* Ignore bitfields for now. Not really something terribly complicated
2233 if (TREE_CODE (base
) == BIT_FIELD_REF
)
2236 base
= unshare_expr (base
);
2238 if (TREE_CODE (base
) == TARGET_MEM_REF
)
2240 tree type
= build_pointer_type (TREE_TYPE (base
));
2244 && TREE_CODE (TMR_BASE (base
)) == SSA_NAME
)
2246 civ
= get_iv (data
, TMR_BASE (base
));
2250 TMR_BASE (base
) = civ
->base
;
2253 if (TMR_INDEX2 (base
)
2254 && TREE_CODE (TMR_INDEX2 (base
)) == SSA_NAME
)
2256 civ
= get_iv (data
, TMR_INDEX2 (base
));
2260 TMR_INDEX2 (base
) = civ
->base
;
2263 if (TMR_INDEX (base
)
2264 && TREE_CODE (TMR_INDEX (base
)) == SSA_NAME
)
2266 civ
= get_iv (data
, TMR_INDEX (base
));
2270 TMR_INDEX (base
) = civ
->base
;
2275 if (TMR_STEP (base
))
2276 astep
= fold_build2 (MULT_EXPR
, type
, TMR_STEP (base
), astep
);
2278 step
= fold_build2 (PLUS_EXPR
, type
, step
, astep
);
2282 if (integer_zerop (step
))
2284 base
= tree_mem_ref_addr (type
, base
);
2288 ifs_ivopts_data
.ivopts_data
= data
;
2289 ifs_ivopts_data
.stmt
= stmt
;
2290 ifs_ivopts_data
.step
= size_zero_node
;
2291 if (!for_each_index (&base
, idx_find_step
, &ifs_ivopts_data
)
2292 || integer_zerop (ifs_ivopts_data
.step
))
2294 step
= ifs_ivopts_data
.step
;
2296 /* Check that the base expression is addressable. This needs
2297 to be done after substituting bases of IVs into it. */
2298 if (may_be_nonaddressable_p (base
))
2301 /* Moreover, on strict alignment platforms, check that it is
2302 sufficiently aligned. */
2303 if (STRICT_ALIGNMENT
&& may_be_unaligned_p (base
, step
))
2306 base
= build_fold_addr_expr (base
);
2308 /* Substituting bases of IVs into the base expression might
2309 have caused folding opportunities. */
2310 if (TREE_CODE (base
) == ADDR_EXPR
)
2312 tree
*ref
= &TREE_OPERAND (base
, 0);
2313 while (handled_component_p (*ref
))
2314 ref
= &TREE_OPERAND (*ref
, 0);
2315 if (TREE_CODE (*ref
) == MEM_REF
)
2317 tree tem
= fold_binary (MEM_REF
, TREE_TYPE (*ref
),
2318 TREE_OPERAND (*ref
, 0),
2319 TREE_OPERAND (*ref
, 1));
2326 civ
= alloc_iv (data
, base
, step
);
2327 /* Fail if base object of this memory reference is unknown. */
2328 if (civ
->base_object
== NULL_TREE
)
2331 record_group_use (data
, op_p
, civ
, stmt
, USE_ADDRESS
);
2335 for_each_index (op_p
, idx_record_use
, data
);
2338 /* Finds and records invariants used in STMT. */
2341 find_invariants_stmt (struct ivopts_data
*data
, gimple
*stmt
)
2344 use_operand_p use_p
;
2347 FOR_EACH_PHI_OR_STMT_USE (use_p
, stmt
, iter
, SSA_OP_USE
)
2349 op
= USE_FROM_PTR (use_p
);
2350 record_invariant (data
, op
, false);
2354 /* Finds interesting uses of induction variables in the statement STMT. */
2357 find_interesting_uses_stmt (struct ivopts_data
*data
, gimple
*stmt
)
2360 tree op
, *lhs
, *rhs
;
2362 use_operand_p use_p
;
2363 enum tree_code code
;
2365 find_invariants_stmt (data
, stmt
);
2367 if (gimple_code (stmt
) == GIMPLE_COND
)
2369 find_interesting_uses_cond (data
, stmt
);
2373 if (is_gimple_assign (stmt
))
2375 lhs
= gimple_assign_lhs_ptr (stmt
);
2376 rhs
= gimple_assign_rhs1_ptr (stmt
);
2378 if (TREE_CODE (*lhs
) == SSA_NAME
)
2380 /* If the statement defines an induction variable, the uses are not
2381 interesting by themselves. */
2383 iv
= get_iv (data
, *lhs
);
2385 if (iv
&& !integer_zerop (iv
->step
))
2389 code
= gimple_assign_rhs_code (stmt
);
2390 if (get_gimple_rhs_class (code
) == GIMPLE_SINGLE_RHS
2391 && (REFERENCE_CLASS_P (*rhs
)
2392 || is_gimple_val (*rhs
)))
2394 if (REFERENCE_CLASS_P (*rhs
))
2395 find_interesting_uses_address (data
, stmt
, rhs
);
2397 find_interesting_uses_op (data
, *rhs
);
2399 if (REFERENCE_CLASS_P (*lhs
))
2400 find_interesting_uses_address (data
, stmt
, lhs
);
2403 else if (TREE_CODE_CLASS (code
) == tcc_comparison
)
2405 find_interesting_uses_cond (data
, stmt
);
2409 /* TODO -- we should also handle address uses of type
2411 memory = call (whatever);
2418 if (gimple_code (stmt
) == GIMPLE_PHI
2419 && gimple_bb (stmt
) == data
->current_loop
->header
)
2421 iv
= get_iv (data
, PHI_RESULT (stmt
));
2423 if (iv
&& !integer_zerop (iv
->step
))
2427 FOR_EACH_PHI_OR_STMT_USE (use_p
, stmt
, iter
, SSA_OP_USE
)
2429 op
= USE_FROM_PTR (use_p
);
2431 if (TREE_CODE (op
) != SSA_NAME
)
2434 iv
= get_iv (data
, op
);
2438 find_interesting_uses_op (data
, op
);
2442 /* Finds interesting uses of induction variables outside of loops
2443 on loop exit edge EXIT. */
2446 find_interesting_uses_outside (struct ivopts_data
*data
, edge exit
)
2452 for (psi
= gsi_start_phis (exit
->dest
); !gsi_end_p (psi
); gsi_next (&psi
))
2455 def
= PHI_ARG_DEF_FROM_EDGE (phi
, exit
);
2456 if (!virtual_operand_p (def
))
2457 find_interesting_uses_op (data
, def
);
2461 /* Compute maximum offset of [base + offset] addressing mode
2462 for memory reference represented by USE. */
2464 static HOST_WIDE_INT
2465 compute_max_addr_offset (struct iv_use
*use
)
2469 HOST_WIDE_INT i
, off
;
2470 unsigned list_index
, num
;
2472 machine_mode mem_mode
, addr_mode
;
2473 static vec
<HOST_WIDE_INT
> max_offset_list
;
2475 as
= TYPE_ADDR_SPACE (TREE_TYPE (use
->iv
->base
));
2476 mem_mode
= TYPE_MODE (TREE_TYPE (*use
->op_p
));
2478 num
= max_offset_list
.length ();
2479 list_index
= (unsigned) as
* MAX_MACHINE_MODE
+ (unsigned) mem_mode
;
2480 if (list_index
>= num
)
2482 max_offset_list
.safe_grow (list_index
+ MAX_MACHINE_MODE
);
2483 for (; num
< max_offset_list
.length (); num
++)
2484 max_offset_list
[num
] = -1;
2487 off
= max_offset_list
[list_index
];
2491 addr_mode
= targetm
.addr_space
.address_mode (as
);
2492 reg
= gen_raw_REG (addr_mode
, LAST_VIRTUAL_REGISTER
+ 1);
2493 addr
= gen_rtx_fmt_ee (PLUS
, addr_mode
, reg
, NULL_RTX
);
2495 width
= GET_MODE_BITSIZE (addr_mode
) - 1;
2496 if (width
> (HOST_BITS_PER_WIDE_INT
- 1))
2497 width
= HOST_BITS_PER_WIDE_INT
- 1;
2499 for (i
= width
; i
> 0; i
--)
2501 off
= (HOST_WIDE_INT_1U
<< i
) - 1;
2502 XEXP (addr
, 1) = gen_int_mode (off
, addr_mode
);
2503 if (memory_address_addr_space_p (mem_mode
, addr
, as
))
2506 /* For some strict-alignment targets, the offset must be naturally
2507 aligned. Try an aligned offset if mem_mode is not QImode. */
2508 off
= (HOST_WIDE_INT_1U
<< i
);
2509 if (off
> GET_MODE_SIZE (mem_mode
) && mem_mode
!= QImode
)
2511 off
-= GET_MODE_SIZE (mem_mode
);
2512 XEXP (addr
, 1) = gen_int_mode (off
, addr_mode
);
2513 if (memory_address_addr_space_p (mem_mode
, addr
, as
))
2520 max_offset_list
[list_index
] = off
;
2524 /* Comparison function to sort group in ascending order of addr_offset. */
2527 group_compare_offset (const void *a
, const void *b
)
2529 const struct iv_use
*const *u1
= (const struct iv_use
*const *) a
;
2530 const struct iv_use
*const *u2
= (const struct iv_use
*const *) b
;
2532 if ((*u1
)->addr_offset
!= (*u2
)->addr_offset
)
2533 return (*u1
)->addr_offset
< (*u2
)->addr_offset
? -1 : 1;
2538 /* Check if small groups should be split. Return true if no group
2539 contains more than two uses with distinct addr_offsets. Return
2540 false otherwise. We want to split such groups because:
2542 1) Small groups don't have much benefit and may interfer with
2543 general candidate selection.
2544 2) Size for problem with only small groups is usually small and
2545 general algorithm can handle it well.
2547 TODO -- Above claim may not hold when we want to merge memory
2548 accesses with conseuctive addresses. */
2551 split_small_address_groups_p (struct ivopts_data
*data
)
2553 unsigned int i
, j
, distinct
= 1;
2555 struct iv_group
*group
;
2557 for (i
= 0; i
< data
->vgroups
.length (); i
++)
2559 group
= data
->vgroups
[i
];
2560 if (group
->vuses
.length () == 1)
2563 gcc_assert (group
->type
== USE_ADDRESS
);
2564 if (group
->vuses
.length () == 2)
2566 if (group
->vuses
[0]->addr_offset
> group
->vuses
[1]->addr_offset
)
2567 std::swap (group
->vuses
[0], group
->vuses
[1]);
2570 group
->vuses
.qsort (group_compare_offset
);
2576 for (pre
= group
->vuses
[0], j
= 1; j
< group
->vuses
.length (); j
++)
2578 if (group
->vuses
[j
]->addr_offset
!= pre
->addr_offset
)
2580 pre
= group
->vuses
[j
];
2589 return (distinct
<= 2);
2592 /* For each group of address type uses, this function further groups
2593 these uses according to the maximum offset supported by target's
2594 [base + offset] addressing mode. */
2597 split_address_groups (struct ivopts_data
*data
)
2600 HOST_WIDE_INT max_offset
= -1;
2602 /* Reset max offset to split all small groups. */
2603 if (split_small_address_groups_p (data
))
2606 for (i
= 0; i
< data
->vgroups
.length (); i
++)
2608 struct iv_group
*group
= data
->vgroups
[i
];
2609 struct iv_use
*use
= group
->vuses
[0];
2612 use
->group_id
= group
->id
;
2613 if (group
->vuses
.length () == 1)
2616 if (max_offset
!= 0)
2617 max_offset
= compute_max_addr_offset (use
);
2619 for (j
= 1; j
< group
->vuses
.length (); j
++)
2621 struct iv_use
*next
= group
->vuses
[j
];
2623 /* Only uses with offset that can fit in offset part against
2624 the first use can be grouped together. */
2625 if (next
->addr_offset
- use
->addr_offset
2626 > (unsigned HOST_WIDE_INT
) max_offset
)
2630 next
->group_id
= group
->id
;
2633 if (j
< group
->vuses
.length ())
2635 struct iv_group
*new_group
= record_group (data
, group
->type
);
2636 new_group
->vuses
.safe_splice (group
->vuses
);
2637 new_group
->vuses
.block_remove (0, j
);
2638 group
->vuses
.truncate (j
);
2643 /* Finds uses of the induction variables that are interesting. */
2646 find_interesting_uses (struct ivopts_data
*data
)
2649 gimple_stmt_iterator bsi
;
2650 basic_block
*body
= get_loop_body (data
->current_loop
);
2654 for (i
= 0; i
< data
->current_loop
->num_nodes
; i
++)
2659 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2660 if (e
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
2661 && !flow_bb_inside_loop_p (data
->current_loop
, e
->dest
))
2662 find_interesting_uses_outside (data
, e
);
2664 for (bsi
= gsi_start_phis (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
2665 find_interesting_uses_stmt (data
, gsi_stmt (bsi
));
2666 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
2667 if (!is_gimple_debug (gsi_stmt (bsi
)))
2668 find_interesting_uses_stmt (data
, gsi_stmt (bsi
));
2671 split_address_groups (data
);
2673 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2677 fprintf (dump_file
, "\n<Invariant Vars>:\n");
2678 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, i
, bi
)
2680 struct version_info
*info
= ver_info (data
, i
);
2683 fprintf (dump_file
, "Inv %d:\t", info
->inv_id
);
2684 print_generic_expr (dump_file
, info
->name
, TDF_SLIM
);
2685 fprintf (dump_file
, "%s\n",
2686 info
->has_nonlin_use
? "" : "\t(eliminable)");
2690 fprintf (dump_file
, "\n<IV Groups>:\n");
2691 dump_groups (dump_file
, data
);
2692 fprintf (dump_file
, "\n");
2698 /* Strips constant offsets from EXPR and stores them to OFFSET. If INSIDE_ADDR
2699 is true, assume we are inside an address. If TOP_COMPREF is true, assume
2700 we are at the top-level of the processed address. */
2703 strip_offset_1 (tree expr
, bool inside_addr
, bool top_compref
,
2704 HOST_WIDE_INT
*offset
)
2706 tree op0
= NULL_TREE
, op1
= NULL_TREE
, tmp
, step
;
2707 enum tree_code code
;
2708 tree type
, orig_type
= TREE_TYPE (expr
);
2709 HOST_WIDE_INT off0
, off1
, st
;
2710 tree orig_expr
= expr
;
2714 type
= TREE_TYPE (expr
);
2715 code
= TREE_CODE (expr
);
2721 if (!cst_and_fits_in_hwi (expr
)
2722 || integer_zerop (expr
))
2725 *offset
= int_cst_value (expr
);
2726 return build_int_cst (orig_type
, 0);
2728 case POINTER_PLUS_EXPR
:
2731 op0
= TREE_OPERAND (expr
, 0);
2732 op1
= TREE_OPERAND (expr
, 1);
2734 op0
= strip_offset_1 (op0
, false, false, &off0
);
2735 op1
= strip_offset_1 (op1
, false, false, &off1
);
2737 *offset
= (code
== MINUS_EXPR
? off0
- off1
: off0
+ off1
);
2738 if (op0
== TREE_OPERAND (expr
, 0)
2739 && op1
== TREE_OPERAND (expr
, 1))
2742 if (integer_zerop (op1
))
2744 else if (integer_zerop (op0
))
2746 if (code
== MINUS_EXPR
)
2747 expr
= fold_build1 (NEGATE_EXPR
, type
, op1
);
2752 expr
= fold_build2 (code
, type
, op0
, op1
);
2754 return fold_convert (orig_type
, expr
);
2757 op1
= TREE_OPERAND (expr
, 1);
2758 if (!cst_and_fits_in_hwi (op1
))
2761 op0
= TREE_OPERAND (expr
, 0);
2762 op0
= strip_offset_1 (op0
, false, false, &off0
);
2763 if (op0
== TREE_OPERAND (expr
, 0))
2766 *offset
= off0
* int_cst_value (op1
);
2767 if (integer_zerop (op0
))
2770 expr
= fold_build2 (MULT_EXPR
, type
, op0
, op1
);
2772 return fold_convert (orig_type
, expr
);
2775 case ARRAY_RANGE_REF
:
2779 step
= array_ref_element_size (expr
);
2780 if (!cst_and_fits_in_hwi (step
))
2783 st
= int_cst_value (step
);
2784 op1
= TREE_OPERAND (expr
, 1);
2785 op1
= strip_offset_1 (op1
, false, false, &off1
);
2786 *offset
= off1
* st
;
2789 && integer_zerop (op1
))
2791 /* Strip the component reference completely. */
2792 op0
= TREE_OPERAND (expr
, 0);
2793 op0
= strip_offset_1 (op0
, inside_addr
, top_compref
, &off0
);
2806 tmp
= component_ref_field_offset (expr
);
2807 field
= TREE_OPERAND (expr
, 1);
2809 && cst_and_fits_in_hwi (tmp
)
2810 && cst_and_fits_in_hwi (DECL_FIELD_BIT_OFFSET (field
)))
2812 HOST_WIDE_INT boffset
, abs_off
;
2814 /* Strip the component reference completely. */
2815 op0
= TREE_OPERAND (expr
, 0);
2816 op0
= strip_offset_1 (op0
, inside_addr
, top_compref
, &off0
);
2817 boffset
= int_cst_value (DECL_FIELD_BIT_OFFSET (field
));
2818 abs_off
= abs_hwi (boffset
) / BITS_PER_UNIT
;
2822 *offset
= off0
+ int_cst_value (tmp
) + abs_off
;
2829 op0
= TREE_OPERAND (expr
, 0);
2830 op0
= strip_offset_1 (op0
, true, true, &off0
);
2833 if (op0
== TREE_OPERAND (expr
, 0))
2836 expr
= build_fold_addr_expr (op0
);
2837 return fold_convert (orig_type
, expr
);
2840 /* ??? Offset operand? */
2841 inside_addr
= false;
2848 /* Default handling of expressions for that we want to recurse into
2849 the first operand. */
2850 op0
= TREE_OPERAND (expr
, 0);
2851 op0
= strip_offset_1 (op0
, inside_addr
, false, &off0
);
2854 if (op0
== TREE_OPERAND (expr
, 0)
2855 && (!op1
|| op1
== TREE_OPERAND (expr
, 1)))
2858 expr
= copy_node (expr
);
2859 TREE_OPERAND (expr
, 0) = op0
;
2861 TREE_OPERAND (expr
, 1) = op1
;
2863 /* Inside address, we might strip the top level component references,
2864 thus changing type of the expression. Handling of ADDR_EXPR
2866 expr
= fold_convert (orig_type
, expr
);
2871 /* Strips constant offsets from EXPR and stores them to OFFSET. */
2874 strip_offset (tree expr
, unsigned HOST_WIDE_INT
*offset
)
2877 tree core
= strip_offset_1 (expr
, false, false, &off
);
2882 /* Returns variant of TYPE that can be used as base for different uses.
2883 We return unsigned type with the same precision, which avoids problems
2887 generic_type_for (tree type
)
2889 if (POINTER_TYPE_P (type
))
2890 return unsigned_type_for (type
);
2892 if (TYPE_UNSIGNED (type
))
2895 return unsigned_type_for (type
);
2898 /* Records invariants in *EXPR_P. Callback for walk_tree. DATA contains
2899 the bitmap to that we should store it. */
2901 static struct ivopts_data
*fd_ivopts_data
;
2903 find_depends (tree
*expr_p
, int *ws ATTRIBUTE_UNUSED
, void *data
)
2905 bitmap
*depends_on
= (bitmap
*) data
;
2906 struct version_info
*info
;
2908 if (TREE_CODE (*expr_p
) != SSA_NAME
)
2910 info
= name_info (fd_ivopts_data
, *expr_p
);
2912 if (!info
->inv_id
|| info
->has_nonlin_use
)
2916 *depends_on
= BITMAP_ALLOC (NULL
);
2917 bitmap_set_bit (*depends_on
, info
->inv_id
);
2922 /* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
2923 position to POS. If USE is not NULL, the candidate is set as related to
2924 it. If both BASE and STEP are NULL, we add a pseudocandidate for the
2925 replacement of the final value of the iv by a direct computation. */
2927 static struct iv_cand
*
2928 add_candidate_1 (struct ivopts_data
*data
,
2929 tree base
, tree step
, bool important
, enum iv_position pos
,
2930 struct iv_use
*use
, gimple
*incremented_at
,
2931 struct iv
*orig_iv
= NULL
)
2934 struct iv_cand
*cand
= NULL
;
2935 tree type
, orig_type
;
2937 gcc_assert (base
&& step
);
2939 /* -fkeep-gc-roots-live means that we have to keep a real pointer
2940 live, but the ivopts code may replace a real pointer with one
2941 pointing before or after the memory block that is then adjusted
2942 into the memory block during the loop. FIXME: It would likely be
2943 better to actually force the pointer live and still use ivopts;
2944 for example, it would be enough to write the pointer into memory
2945 and keep it there until after the loop. */
2946 if (flag_keep_gc_roots_live
&& POINTER_TYPE_P (TREE_TYPE (base
)))
2949 /* For non-original variables, make sure their values are computed in a type
2950 that does not invoke undefined behavior on overflows (since in general,
2951 we cannot prove that these induction variables are non-wrapping). */
2952 if (pos
!= IP_ORIGINAL
)
2954 orig_type
= TREE_TYPE (base
);
2955 type
= generic_type_for (orig_type
);
2956 if (type
!= orig_type
)
2958 base
= fold_convert (type
, base
);
2959 step
= fold_convert (type
, step
);
2963 for (i
= 0; i
< data
->vcands
.length (); i
++)
2965 cand
= data
->vcands
[i
];
2967 if (cand
->pos
!= pos
)
2970 if (cand
->incremented_at
!= incremented_at
2971 || ((pos
== IP_AFTER_USE
|| pos
== IP_BEFORE_USE
)
2972 && cand
->ainc_use
!= use
))
2975 if (operand_equal_p (base
, cand
->iv
->base
, 0)
2976 && operand_equal_p (step
, cand
->iv
->step
, 0)
2977 && (TYPE_PRECISION (TREE_TYPE (base
))
2978 == TYPE_PRECISION (TREE_TYPE (cand
->iv
->base
))))
2982 if (i
== data
->vcands
.length ())
2984 cand
= XCNEW (struct iv_cand
);
2986 cand
->iv
= alloc_iv (data
, base
, step
);
2988 if (pos
!= IP_ORIGINAL
)
2990 cand
->var_before
= create_tmp_var_raw (TREE_TYPE (base
), "ivtmp");
2991 cand
->var_after
= cand
->var_before
;
2993 cand
->important
= important
;
2994 cand
->incremented_at
= incremented_at
;
2995 data
->vcands
.safe_push (cand
);
2997 if (TREE_CODE (step
) != INTEGER_CST
)
2999 fd_ivopts_data
= data
;
3000 walk_tree (&step
, find_depends
, &cand
->depends_on
, NULL
);
3003 if (pos
== IP_AFTER_USE
|| pos
== IP_BEFORE_USE
)
3004 cand
->ainc_use
= use
;
3006 cand
->ainc_use
= NULL
;
3008 cand
->orig_iv
= orig_iv
;
3009 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3010 dump_cand (dump_file
, cand
);
3013 cand
->important
|= important
;
3015 /* Relate candidate to the group for which it is added. */
3017 bitmap_set_bit (data
->vgroups
[use
->group_id
]->related_cands
, i
);
3022 /* Returns true if incrementing the induction variable at the end of the LOOP
3025 The purpose is to avoid splitting latch edge with a biv increment, thus
3026 creating a jump, possibly confusing other optimization passes and leaving
3027 less freedom to scheduler. So we allow IP_END_POS only if IP_NORMAL_POS
3028 is not available (so we do not have a better alternative), or if the latch
3029 edge is already nonempty. */
3032 allow_ip_end_pos_p (struct loop
*loop
)
3034 if (!ip_normal_pos (loop
))
3037 if (!empty_block_p (ip_end_pos (loop
)))
3043 /* If possible, adds autoincrement candidates BASE + STEP * i based on use USE.
3044 Important field is set to IMPORTANT. */
3047 add_autoinc_candidates (struct ivopts_data
*data
, tree base
, tree step
,
3048 bool important
, struct iv_use
*use
)
3050 basic_block use_bb
= gimple_bb (use
->stmt
);
3051 machine_mode mem_mode
;
3052 unsigned HOST_WIDE_INT cstepi
;
3054 /* If we insert the increment in any position other than the standard
3055 ones, we must ensure that it is incremented once per iteration.
3056 It must not be in an inner nested loop, or one side of an if
3058 if (use_bb
->loop_father
!= data
->current_loop
3059 || !dominated_by_p (CDI_DOMINATORS
, data
->current_loop
->latch
, use_bb
)
3060 || stmt_could_throw_p (use
->stmt
)
3061 || !cst_and_fits_in_hwi (step
))
3064 cstepi
= int_cst_value (step
);
3066 mem_mode
= TYPE_MODE (TREE_TYPE (*use
->op_p
));
3067 if (((USE_LOAD_PRE_INCREMENT (mem_mode
)
3068 || USE_STORE_PRE_INCREMENT (mem_mode
))
3069 && GET_MODE_SIZE (mem_mode
) == cstepi
)
3070 || ((USE_LOAD_PRE_DECREMENT (mem_mode
)
3071 || USE_STORE_PRE_DECREMENT (mem_mode
))
3072 && GET_MODE_SIZE (mem_mode
) == -cstepi
))
3074 enum tree_code code
= MINUS_EXPR
;
3076 tree new_step
= step
;
3078 if (POINTER_TYPE_P (TREE_TYPE (base
)))
3080 new_step
= fold_build1 (NEGATE_EXPR
, TREE_TYPE (step
), step
);
3081 code
= POINTER_PLUS_EXPR
;
3084 new_step
= fold_convert (TREE_TYPE (base
), new_step
);
3085 new_base
= fold_build2 (code
, TREE_TYPE (base
), base
, new_step
);
3086 add_candidate_1 (data
, new_base
, step
, important
, IP_BEFORE_USE
, use
,
3089 if (((USE_LOAD_POST_INCREMENT (mem_mode
)
3090 || USE_STORE_POST_INCREMENT (mem_mode
))
3091 && GET_MODE_SIZE (mem_mode
) == cstepi
)
3092 || ((USE_LOAD_POST_DECREMENT (mem_mode
)
3093 || USE_STORE_POST_DECREMENT (mem_mode
))
3094 && GET_MODE_SIZE (mem_mode
) == -cstepi
))
3096 add_candidate_1 (data
, base
, step
, important
, IP_AFTER_USE
, use
,
3101 /* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
3102 position to POS. If USE is not NULL, the candidate is set as related to
3103 it. The candidate computation is scheduled before exit condition and at
3107 add_candidate (struct ivopts_data
*data
,
3108 tree base
, tree step
, bool important
, struct iv_use
*use
,
3109 struct iv
*orig_iv
= NULL
)
3111 if (ip_normal_pos (data
->current_loop
))
3112 add_candidate_1 (data
, base
, step
, important
,
3113 IP_NORMAL
, use
, NULL
, orig_iv
);
3114 if (ip_end_pos (data
->current_loop
)
3115 && allow_ip_end_pos_p (data
->current_loop
))
3116 add_candidate_1 (data
, base
, step
, important
, IP_END
, use
, NULL
, orig_iv
);
3119 /* Adds standard iv candidates. */
3122 add_standard_iv_candidates (struct ivopts_data
*data
)
3124 add_candidate (data
, integer_zero_node
, integer_one_node
, true, NULL
);
3126 /* The same for a double-integer type if it is still fast enough. */
3128 (long_integer_type_node
) > TYPE_PRECISION (integer_type_node
)
3129 && TYPE_PRECISION (long_integer_type_node
) <= BITS_PER_WORD
)
3130 add_candidate (data
, build_int_cst (long_integer_type_node
, 0),
3131 build_int_cst (long_integer_type_node
, 1), true, NULL
);
3133 /* The same for a double-integer type if it is still fast enough. */
3135 (long_long_integer_type_node
) > TYPE_PRECISION (long_integer_type_node
)
3136 && TYPE_PRECISION (long_long_integer_type_node
) <= BITS_PER_WORD
)
3137 add_candidate (data
, build_int_cst (long_long_integer_type_node
, 0),
3138 build_int_cst (long_long_integer_type_node
, 1), true, NULL
);
3142 /* Adds candidates bases on the old induction variable IV. */
3145 add_iv_candidate_for_biv (struct ivopts_data
*data
, struct iv
*iv
)
3149 struct iv_cand
*cand
;
3151 /* Check if this biv is used in address type use. */
3152 if (iv
->no_overflow
&& iv
->have_address_use
3153 && INTEGRAL_TYPE_P (TREE_TYPE (iv
->base
))
3154 && TYPE_PRECISION (TREE_TYPE (iv
->base
)) < TYPE_PRECISION (sizetype
))
3156 tree base
= fold_convert (sizetype
, iv
->base
);
3157 tree step
= fold_convert (sizetype
, iv
->step
);
3159 /* Add iv cand of same precision as index part in TARGET_MEM_REF. */
3160 add_candidate (data
, base
, step
, true, NULL
, iv
);
3161 /* Add iv cand of the original type only if it has nonlinear use. */
3163 add_candidate (data
, iv
->base
, iv
->step
, true, NULL
);
3166 add_candidate (data
, iv
->base
, iv
->step
, true, NULL
);
3168 /* The same, but with initial value zero. */
3169 if (POINTER_TYPE_P (TREE_TYPE (iv
->base
)))
3170 add_candidate (data
, size_int (0), iv
->step
, true, NULL
);
3172 add_candidate (data
, build_int_cst (TREE_TYPE (iv
->base
), 0),
3173 iv
->step
, true, NULL
);
3175 phi
= SSA_NAME_DEF_STMT (iv
->ssa_name
);
3176 if (gimple_code (phi
) == GIMPLE_PHI
)
3178 /* Additionally record the possibility of leaving the original iv
3180 def
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_latch_edge (data
->current_loop
));
3181 /* Don't add candidate if it's from another PHI node because
3182 it's an affine iv appearing in the form of PEELED_CHREC. */
3183 phi
= SSA_NAME_DEF_STMT (def
);
3184 if (gimple_code (phi
) != GIMPLE_PHI
)
3186 cand
= add_candidate_1 (data
,
3187 iv
->base
, iv
->step
, true, IP_ORIGINAL
, NULL
,
3188 SSA_NAME_DEF_STMT (def
));
3191 cand
->var_before
= iv
->ssa_name
;
3192 cand
->var_after
= def
;
3196 gcc_assert (gimple_bb (phi
) == data
->current_loop
->header
);
3200 /* Adds candidates based on the old induction variables. */
3203 add_iv_candidate_for_bivs (struct ivopts_data
*data
)
3209 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, i
, bi
)
3211 iv
= ver_info (data
, i
)->iv
;
3212 if (iv
&& iv
->biv_p
&& !integer_zerop (iv
->step
))
3213 add_iv_candidate_for_biv (data
, iv
);
3217 /* Record common candidate {BASE, STEP} derived from USE in hashtable. */
3220 record_common_cand (struct ivopts_data
*data
, tree base
,
3221 tree step
, struct iv_use
*use
)
3223 struct iv_common_cand ent
;
3224 struct iv_common_cand
**slot
;
3228 ent
.hash
= iterative_hash_expr (base
, 0);
3229 ent
.hash
= iterative_hash_expr (step
, ent
.hash
);
3231 slot
= data
->iv_common_cand_tab
->find_slot (&ent
, INSERT
);
3234 *slot
= new iv_common_cand ();
3235 (*slot
)->base
= base
;
3236 (*slot
)->step
= step
;
3237 (*slot
)->uses
.create (8);
3238 (*slot
)->hash
= ent
.hash
;
3239 data
->iv_common_cands
.safe_push ((*slot
));
3242 gcc_assert (use
!= NULL
);
3243 (*slot
)->uses
.safe_push (use
);
3247 /* Comparison function used to sort common candidates. */
3250 common_cand_cmp (const void *p1
, const void *p2
)
3253 const struct iv_common_cand
*const *const ccand1
3254 = (const struct iv_common_cand
*const *)p1
;
3255 const struct iv_common_cand
*const *const ccand2
3256 = (const struct iv_common_cand
*const *)p2
;
3258 n1
= (*ccand1
)->uses
.length ();
3259 n2
= (*ccand2
)->uses
.length ();
3263 /* Adds IV candidates based on common candidated recorded. */
3266 add_iv_candidate_derived_from_uses (struct ivopts_data
*data
)
3269 struct iv_cand
*cand_1
, *cand_2
;
3271 data
->iv_common_cands
.qsort (common_cand_cmp
);
3272 for (i
= 0; i
< data
->iv_common_cands
.length (); i
++)
3274 struct iv_common_cand
*ptr
= data
->iv_common_cands
[i
];
3276 /* Only add IV candidate if it's derived from multiple uses. */
3277 if (ptr
->uses
.length () <= 1)
3282 if (ip_normal_pos (data
->current_loop
))
3283 cand_1
= add_candidate_1 (data
, ptr
->base
, ptr
->step
,
3284 false, IP_NORMAL
, NULL
, NULL
);
3286 if (ip_end_pos (data
->current_loop
)
3287 && allow_ip_end_pos_p (data
->current_loop
))
3288 cand_2
= add_candidate_1 (data
, ptr
->base
, ptr
->step
,
3289 false, IP_END
, NULL
, NULL
);
3291 /* Bind deriving uses and the new candidates. */
3292 for (j
= 0; j
< ptr
->uses
.length (); j
++)
3294 struct iv_group
*group
= data
->vgroups
[ptr
->uses
[j
]->group_id
];
3296 bitmap_set_bit (group
->related_cands
, cand_1
->id
);
3298 bitmap_set_bit (group
->related_cands
, cand_2
->id
);
3302 /* Release data since it is useless from this point. */
3303 data
->iv_common_cand_tab
->empty ();
3304 data
->iv_common_cands
.truncate (0);
3307 /* Adds candidates based on the value of USE's iv. */
3310 add_iv_candidate_for_use (struct ivopts_data
*data
, struct iv_use
*use
)
3312 unsigned HOST_WIDE_INT offset
;
3315 struct iv
*iv
= use
->iv
;
3317 add_candidate (data
, iv
->base
, iv
->step
, false, use
);
3319 /* Record common candidate for use in case it can be shared by others. */
3320 record_common_cand (data
, iv
->base
, iv
->step
, use
);
3322 /* Record common candidate with initial value zero. */
3323 basetype
= TREE_TYPE (iv
->base
);
3324 if (POINTER_TYPE_P (basetype
))
3325 basetype
= sizetype
;
3326 record_common_cand (data
, build_int_cst (basetype
, 0), iv
->step
, use
);
3328 /* Record common candidate with constant offset stripped in base.
3329 Like the use itself, we also add candidate directly for it. */
3330 base
= strip_offset (iv
->base
, &offset
);
3331 if (offset
|| base
!= iv
->base
)
3333 record_common_cand (data
, base
, iv
->step
, use
);
3334 add_candidate (data
, base
, iv
->step
, false, use
);
3337 /* Record common candidate with base_object removed in base. */
3340 if (iv
->base_object
!= NULL
&& TREE_CODE (base
) == POINTER_PLUS_EXPR
)
3342 tree step
= iv
->step
;
3345 base
= TREE_OPERAND (base
, 1);
3346 step
= fold_convert (sizetype
, step
);
3347 record_common_cand (data
, base
, step
, use
);
3348 /* Also record common candidate with offset stripped. */
3349 base
= strip_offset (base
, &offset
);
3351 record_common_cand (data
, base
, step
, use
);
3354 /* At last, add auto-incremental candidates. Make such variables
3355 important since other iv uses with same base object may be based
3357 if (use
!= NULL
&& use
->type
== USE_ADDRESS
)
3358 add_autoinc_candidates (data
, iv
->base
, iv
->step
, true, use
);
3361 /* Adds candidates based on the uses. */
3364 add_iv_candidate_for_groups (struct ivopts_data
*data
)
3368 /* Only add candidate for the first use in group. */
3369 for (i
= 0; i
< data
->vgroups
.length (); i
++)
3371 struct iv_group
*group
= data
->vgroups
[i
];
3373 gcc_assert (group
->vuses
[0] != NULL
);
3374 add_iv_candidate_for_use (data
, group
->vuses
[0]);
3376 add_iv_candidate_derived_from_uses (data
);
3379 /* Record important candidates and add them to related_cands bitmaps. */
3382 record_important_candidates (struct ivopts_data
*data
)
3385 struct iv_group
*group
;
3387 for (i
= 0; i
< data
->vcands
.length (); i
++)
3389 struct iv_cand
*cand
= data
->vcands
[i
];
3391 if (cand
->important
)
3392 bitmap_set_bit (data
->important_candidates
, i
);
3395 data
->consider_all_candidates
= (data
->vcands
.length ()
3396 <= CONSIDER_ALL_CANDIDATES_BOUND
);
3398 /* Add important candidates to groups' related_cands bitmaps. */
3399 for (i
= 0; i
< data
->vgroups
.length (); i
++)
3401 group
= data
->vgroups
[i
];
3402 bitmap_ior_into (group
->related_cands
, data
->important_candidates
);
3406 /* Allocates the data structure mapping the (use, candidate) pairs to costs.
3407 If consider_all_candidates is true, we use a two-dimensional array, otherwise
3408 we allocate a simple list to every use. */
3411 alloc_use_cost_map (struct ivopts_data
*data
)
3413 unsigned i
, size
, s
;
3415 for (i
= 0; i
< data
->vgroups
.length (); i
++)
3417 struct iv_group
*group
= data
->vgroups
[i
];
3419 if (data
->consider_all_candidates
)
3420 size
= data
->vcands
.length ();
3423 s
= bitmap_count_bits (group
->related_cands
);
3425 /* Round up to the power of two, so that moduling by it is fast. */
3426 size
= s
? (1 << ceil_log2 (s
)) : 1;
3429 group
->n_map_members
= size
;
3430 group
->cost_map
= XCNEWVEC (struct cost_pair
, size
);
3434 /* Sets cost of (GROUP, CAND) pair to COST and record that it depends
3435 on invariants DEPENDS_ON and that the value used in expressing it
3436 is VALUE, and in case of iv elimination the comparison operator is COMP. */
3439 set_group_iv_cost (struct ivopts_data
*data
,
3440 struct iv_group
*group
, struct iv_cand
*cand
,
3441 comp_cost cost
, bitmap depends_on
, tree value
,
3442 enum tree_code comp
, iv_inv_expr_ent
*inv_expr
)
3446 if (cost
.infinite_cost_p ())
3448 BITMAP_FREE (depends_on
);
3452 if (data
->consider_all_candidates
)
3454 group
->cost_map
[cand
->id
].cand
= cand
;
3455 group
->cost_map
[cand
->id
].cost
= cost
;
3456 group
->cost_map
[cand
->id
].depends_on
= depends_on
;
3457 group
->cost_map
[cand
->id
].value
= value
;
3458 group
->cost_map
[cand
->id
].comp
= comp
;
3459 group
->cost_map
[cand
->id
].inv_expr
= inv_expr
;
3463 /* n_map_members is a power of two, so this computes modulo. */
3464 s
= cand
->id
& (group
->n_map_members
- 1);
3465 for (i
= s
; i
< group
->n_map_members
; i
++)
3466 if (!group
->cost_map
[i
].cand
)
3468 for (i
= 0; i
< s
; i
++)
3469 if (!group
->cost_map
[i
].cand
)
3475 group
->cost_map
[i
].cand
= cand
;
3476 group
->cost_map
[i
].cost
= cost
;
3477 group
->cost_map
[i
].depends_on
= depends_on
;
3478 group
->cost_map
[i
].value
= value
;
3479 group
->cost_map
[i
].comp
= comp
;
3480 group
->cost_map
[i
].inv_expr
= inv_expr
;
3483 /* Gets cost of (GROUP, CAND) pair. */
3485 static struct cost_pair
*
3486 get_group_iv_cost (struct ivopts_data
*data
, struct iv_group
*group
,
3487 struct iv_cand
*cand
)
3490 struct cost_pair
*ret
;
3495 if (data
->consider_all_candidates
)
3497 ret
= group
->cost_map
+ cand
->id
;
3504 /* n_map_members is a power of two, so this computes modulo. */
3505 s
= cand
->id
& (group
->n_map_members
- 1);
3506 for (i
= s
; i
< group
->n_map_members
; i
++)
3507 if (group
->cost_map
[i
].cand
== cand
)
3508 return group
->cost_map
+ i
;
3509 else if (group
->cost_map
[i
].cand
== NULL
)
3511 for (i
= 0; i
< s
; i
++)
3512 if (group
->cost_map
[i
].cand
== cand
)
3513 return group
->cost_map
+ i
;
3514 else if (group
->cost_map
[i
].cand
== NULL
)
3520 /* Produce DECL_RTL for object obj so it looks like it is stored in memory. */
3522 produce_memory_decl_rtl (tree obj
, int *regno
)
3524 addr_space_t as
= TYPE_ADDR_SPACE (TREE_TYPE (obj
));
3525 machine_mode address_mode
= targetm
.addr_space
.address_mode (as
);
3529 if (TREE_STATIC (obj
) || DECL_EXTERNAL (obj
))
3531 const char *name
= IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (obj
));
3532 x
= gen_rtx_SYMBOL_REF (address_mode
, name
);
3533 SET_SYMBOL_REF_DECL (x
, obj
);
3534 x
= gen_rtx_MEM (DECL_MODE (obj
), x
);
3535 set_mem_addr_space (x
, as
);
3536 targetm
.encode_section_info (obj
, x
, true);
3540 x
= gen_raw_REG (address_mode
, (*regno
)++);
3541 x
= gen_rtx_MEM (DECL_MODE (obj
), x
);
3542 set_mem_addr_space (x
, as
);
3548 /* Prepares decl_rtl for variables referred in *EXPR_P. Callback for
3549 walk_tree. DATA contains the actual fake register number. */
3552 prepare_decl_rtl (tree
*expr_p
, int *ws
, void *data
)
3554 tree obj
= NULL_TREE
;
3556 int *regno
= (int *) data
;
3558 switch (TREE_CODE (*expr_p
))
3561 for (expr_p
= &TREE_OPERAND (*expr_p
, 0);
3562 handled_component_p (*expr_p
);
3563 expr_p
= &TREE_OPERAND (*expr_p
, 0))
3566 if (DECL_P (obj
) && HAS_RTL_P (obj
) && !DECL_RTL_SET_P (obj
))
3567 x
= produce_memory_decl_rtl (obj
, regno
);
3572 obj
= SSA_NAME_VAR (*expr_p
);
3573 /* Defer handling of anonymous SSA_NAMEs to the expander. */
3576 if (!DECL_RTL_SET_P (obj
))
3577 x
= gen_raw_REG (DECL_MODE (obj
), (*regno
)++);
3586 if (DECL_RTL_SET_P (obj
))
3589 if (DECL_MODE (obj
) == BLKmode
)
3590 x
= produce_memory_decl_rtl (obj
, regno
);
3592 x
= gen_raw_REG (DECL_MODE (obj
), (*regno
)++);
3602 decl_rtl_to_reset
.safe_push (obj
);
3603 SET_DECL_RTL (obj
, x
);
3609 /* Determines cost of the computation of EXPR. */
3612 computation_cost (tree expr
, bool speed
)
3616 tree type
= TREE_TYPE (expr
);
3618 /* Avoid using hard regs in ways which may be unsupported. */
3619 int regno
= LAST_VIRTUAL_REGISTER
+ 1;
3620 struct cgraph_node
*node
= cgraph_node::get (current_function_decl
);
3621 enum node_frequency real_frequency
= node
->frequency
;
3623 node
->frequency
= NODE_FREQUENCY_NORMAL
;
3624 crtl
->maybe_hot_insn_p
= speed
;
3625 walk_tree (&expr
, prepare_decl_rtl
, ®no
, NULL
);
3627 rslt
= expand_expr (expr
, NULL_RTX
, TYPE_MODE (type
), EXPAND_NORMAL
);
3630 default_rtl_profile ();
3631 node
->frequency
= real_frequency
;
3633 cost
= seq_cost (seq
, speed
);
3635 cost
+= address_cost (XEXP (rslt
, 0), TYPE_MODE (type
),
3636 TYPE_ADDR_SPACE (type
), speed
);
3637 else if (!REG_P (rslt
))
3638 cost
+= set_src_cost (rslt
, TYPE_MODE (type
), speed
);
3643 /* Returns variable containing the value of candidate CAND at statement AT. */
3646 var_at_stmt (struct loop
*loop
, struct iv_cand
*cand
, gimple
*stmt
)
3648 if (stmt_after_increment (loop
, cand
, stmt
))
3649 return cand
->var_after
;
3651 return cand
->var_before
;
3654 /* If A is (TYPE) BA and B is (TYPE) BB, and the types of BA and BB have the
3655 same precision that is at least as wide as the precision of TYPE, stores
3656 BA to A and BB to B, and returns the type of BA. Otherwise, returns the
3660 determine_common_wider_type (tree
*a
, tree
*b
)
3662 tree wider_type
= NULL
;
3664 tree atype
= TREE_TYPE (*a
);
3666 if (CONVERT_EXPR_P (*a
))
3668 suba
= TREE_OPERAND (*a
, 0);
3669 wider_type
= TREE_TYPE (suba
);
3670 if (TYPE_PRECISION (wider_type
) < TYPE_PRECISION (atype
))
3676 if (CONVERT_EXPR_P (*b
))
3678 subb
= TREE_OPERAND (*b
, 0);
3679 if (TYPE_PRECISION (wider_type
) != TYPE_PRECISION (TREE_TYPE (subb
)))
3690 /* Determines the expression by that USE is expressed from induction variable
3691 CAND at statement AT in LOOP. The expression is stored in a decomposed
3692 form into AFF. Returns false if USE cannot be expressed using CAND. */
3695 get_computation_aff (struct loop
*loop
,
3696 struct iv_use
*use
, struct iv_cand
*cand
, gimple
*at
,
3697 struct aff_tree
*aff
)
3699 tree ubase
= use
->iv
->base
;
3700 tree ustep
= use
->iv
->step
;
3701 tree cbase
= cand
->iv
->base
;
3702 tree cstep
= cand
->iv
->step
, cstep_common
;
3703 tree utype
= TREE_TYPE (ubase
), ctype
= TREE_TYPE (cbase
);
3704 tree common_type
, var
;
3706 aff_tree cbase_aff
, var_aff
;
3709 if (TYPE_PRECISION (utype
) > TYPE_PRECISION (ctype
))
3711 /* We do not have a precision to express the values of use. */
3715 var
= var_at_stmt (loop
, cand
, at
);
3716 uutype
= unsigned_type_for (utype
);
3718 /* If the conversion is not noop, perform it. */
3719 if (TYPE_PRECISION (utype
) < TYPE_PRECISION (ctype
))
3721 if (cand
->orig_iv
!= NULL
&& CONVERT_EXPR_P (cbase
)
3722 && (CONVERT_EXPR_P (cstep
) || TREE_CODE (cstep
) == INTEGER_CST
))
3724 tree inner_base
, inner_step
, inner_type
;
3725 inner_base
= TREE_OPERAND (cbase
, 0);
3726 if (CONVERT_EXPR_P (cstep
))
3727 inner_step
= TREE_OPERAND (cstep
, 0);
3731 inner_type
= TREE_TYPE (inner_base
);
3732 /* If candidate is added from a biv whose type is smaller than
3733 ctype, we know both candidate and the biv won't overflow.
3734 In this case, it's safe to skip the convertion in candidate.
3735 As an example, (unsigned short)((unsigned long)A) equals to
3736 (unsigned short)A, if A has a type no larger than short. */
3737 if (TYPE_PRECISION (inner_type
) <= TYPE_PRECISION (uutype
))
3743 cstep
= fold_convert (uutype
, cstep
);
3744 cbase
= fold_convert (uutype
, cbase
);
3745 var
= fold_convert (uutype
, var
);
3748 /* Ratio is 1 when computing the value of biv cand by itself.
3749 We can't rely on constant_multiple_of in this case because the
3750 use is created after the original biv is selected. The call
3751 could fail because of inconsistent fold behavior. See PR68021
3752 for more information. */
3753 if (cand
->pos
== IP_ORIGINAL
&& cand
->incremented_at
== use
->stmt
)
3755 gcc_assert (is_gimple_assign (use
->stmt
));
3756 gcc_assert (use
->iv
->ssa_name
== cand
->var_after
);
3757 gcc_assert (gimple_assign_lhs (use
->stmt
) == cand
->var_after
);
3760 else if (!constant_multiple_of (ustep
, cstep
, &rat
))
3763 /* In case both UBASE and CBASE are shortened to UUTYPE from some common
3764 type, we achieve better folding by computing their difference in this
3765 wider type, and cast the result to UUTYPE. We do not need to worry about
3766 overflows, as all the arithmetics will in the end be performed in UUTYPE
3768 common_type
= determine_common_wider_type (&ubase
, &cbase
);
3770 /* use = ubase - ratio * cbase + ratio * var. */
3771 tree_to_aff_combination (ubase
, common_type
, aff
);
3772 tree_to_aff_combination (cbase
, common_type
, &cbase_aff
);
3773 tree_to_aff_combination (var
, uutype
, &var_aff
);
3775 /* We need to shift the value if we are after the increment. */
3776 if (stmt_after_increment (loop
, cand
, at
))
3780 if (common_type
!= uutype
)
3781 cstep_common
= fold_convert (common_type
, cstep
);
3783 cstep_common
= cstep
;
3785 tree_to_aff_combination (cstep_common
, common_type
, &cstep_aff
);
3786 aff_combination_add (&cbase_aff
, &cstep_aff
);
3789 aff_combination_scale (&cbase_aff
, -rat
);
3790 aff_combination_add (aff
, &cbase_aff
);
3791 if (common_type
!= uutype
)
3792 aff_combination_convert (aff
, uutype
);
3794 aff_combination_scale (&var_aff
, rat
);
3795 aff_combination_add (aff
, &var_aff
);
3800 /* Return the type of USE. */
3803 get_use_type (struct iv_use
*use
)
3805 tree base_type
= TREE_TYPE (use
->iv
->base
);
3808 if (use
->type
== USE_ADDRESS
)
3810 /* The base_type may be a void pointer. Create a pointer type based on
3811 the mem_ref instead. */
3812 type
= build_pointer_type (TREE_TYPE (*use
->op_p
));
3813 gcc_assert (TYPE_ADDR_SPACE (TREE_TYPE (type
))
3814 == TYPE_ADDR_SPACE (TREE_TYPE (base_type
)));
3822 /* Determines the expression by that USE is expressed from induction variable
3823 CAND at statement AT in LOOP. The computation is unshared. */
3826 get_computation_at (struct loop
*loop
,
3827 struct iv_use
*use
, struct iv_cand
*cand
, gimple
*at
)
3830 tree type
= get_use_type (use
);
3832 if (!get_computation_aff (loop
, use
, cand
, at
, &aff
))
3834 unshare_aff_combination (&aff
);
3835 return fold_convert (type
, aff_combination_to_tree (&aff
));
3838 /* Determines the expression by that USE is expressed from induction variable
3839 CAND in LOOP. The computation is unshared. */
3842 get_computation (struct loop
*loop
, struct iv_use
*use
, struct iv_cand
*cand
)
3844 return get_computation_at (loop
, use
, cand
, use
->stmt
);
3847 /* Adjust the cost COST for being in loop setup rather than loop body.
3848 If we're optimizing for space, the loop setup overhead is constant;
3849 if we're optimizing for speed, amortize it over the per-iteration cost. */
3851 adjust_setup_cost (struct ivopts_data
*data
, unsigned cost
)
3855 else if (optimize_loop_for_speed_p (data
->current_loop
))
3856 return cost
/ avg_loop_niter (data
->current_loop
);
3861 /* Returns true if multiplying by RATIO is allowed in an address. Test the
3862 validity for a memory reference accessing memory of mode MODE in
3863 address space AS. */
3867 multiplier_allowed_in_address_p (HOST_WIDE_INT ratio
, machine_mode mode
,
3870 #define MAX_RATIO 128
3871 unsigned int data_index
= (int) as
* MAX_MACHINE_MODE
+ (int) mode
;
3872 static vec
<sbitmap
> valid_mult_list
;
3875 if (data_index
>= valid_mult_list
.length ())
3876 valid_mult_list
.safe_grow_cleared (data_index
+ 1);
3878 valid_mult
= valid_mult_list
[data_index
];
3881 machine_mode address_mode
= targetm
.addr_space
.address_mode (as
);
3882 rtx reg1
= gen_raw_REG (address_mode
, LAST_VIRTUAL_REGISTER
+ 1);
3883 rtx reg2
= gen_raw_REG (address_mode
, LAST_VIRTUAL_REGISTER
+ 2);
3887 valid_mult
= sbitmap_alloc (2 * MAX_RATIO
+ 1);
3888 bitmap_clear (valid_mult
);
3889 scaled
= gen_rtx_fmt_ee (MULT
, address_mode
, reg1
, NULL_RTX
);
3890 addr
= gen_rtx_fmt_ee (PLUS
, address_mode
, scaled
, reg2
);
3891 for (i
= -MAX_RATIO
; i
<= MAX_RATIO
; i
++)
3893 XEXP (scaled
, 1) = gen_int_mode (i
, address_mode
);
3894 if (memory_address_addr_space_p (mode
, addr
, as
)
3895 || memory_address_addr_space_p (mode
, scaled
, as
))
3896 bitmap_set_bit (valid_mult
, i
+ MAX_RATIO
);
3899 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3901 fprintf (dump_file
, " allowed multipliers:");
3902 for (i
= -MAX_RATIO
; i
<= MAX_RATIO
; i
++)
3903 if (bitmap_bit_p (valid_mult
, i
+ MAX_RATIO
))
3904 fprintf (dump_file
, " %d", (int) i
);
3905 fprintf (dump_file
, "\n");
3906 fprintf (dump_file
, "\n");
3909 valid_mult_list
[data_index
] = valid_mult
;
3912 if (ratio
> MAX_RATIO
|| ratio
< -MAX_RATIO
)
3915 return bitmap_bit_p (valid_mult
, ratio
+ MAX_RATIO
);
3918 /* Returns cost of address in shape symbol + var + OFFSET + RATIO * index.
3919 If SYMBOL_PRESENT is false, symbol is omitted. If VAR_PRESENT is false,
3920 variable is omitted. Compute the cost for a memory reference that accesses
3921 a memory location of mode MEM_MODE in address space AS.
3923 MAY_AUTOINC is set to true if the autoincrement (increasing index by
3924 size of MEM_MODE / RATIO) is available. To make this determination, we
3925 look at the size of the increment to be made, which is given in CSTEP.
3926 CSTEP may be zero if the step is unknown.
3927 STMT_AFTER_INC is true iff the statement we're looking at is after the
3928 increment of the original biv.
3930 TODO -- there must be some better way. This all is quite crude. */
3934 AINC_PRE_INC
, /* Pre increment. */
3935 AINC_PRE_DEC
, /* Pre decrement. */
3936 AINC_POST_INC
, /* Post increment. */
3937 AINC_POST_DEC
, /* Post decrement. */
3938 AINC_NONE
/* Also the number of auto increment types. */
3941 struct address_cost_data
3943 HOST_WIDE_INT min_offset
, max_offset
;
3944 unsigned costs
[2][2][2][2];
3945 unsigned ainc_costs
[AINC_NONE
];
3950 get_address_cost (bool symbol_present
, bool var_present
,
3951 unsigned HOST_WIDE_INT offset
, HOST_WIDE_INT ratio
,
3952 HOST_WIDE_INT cstep
, machine_mode mem_mode
,
3953 addr_space_t as
, bool speed
,
3954 bool stmt_after_inc
, bool *may_autoinc
)
3956 machine_mode address_mode
= targetm
.addr_space
.address_mode (as
);
3957 static vec
<address_cost_data
*> address_cost_data_list
;
3958 unsigned int data_index
= (int) as
* MAX_MACHINE_MODE
+ (int) mem_mode
;
3959 address_cost_data
*data
;
3960 static bool has_preinc
[MAX_MACHINE_MODE
], has_postinc
[MAX_MACHINE_MODE
];
3961 static bool has_predec
[MAX_MACHINE_MODE
], has_postdec
[MAX_MACHINE_MODE
];
3962 unsigned cost
, acost
, complexity
;
3963 enum ainc_type autoinc_type
;
3964 bool offset_p
, ratio_p
, autoinc
;
3965 HOST_WIDE_INT s_offset
, autoinc_offset
, msize
;
3966 unsigned HOST_WIDE_INT mask
;
3969 if (data_index
>= address_cost_data_list
.length ())
3970 address_cost_data_list
.safe_grow_cleared (data_index
+ 1);
3972 data
= address_cost_data_list
[data_index
];
3976 HOST_WIDE_INT rat
, off
= 0;
3977 int old_cse_not_expected
, width
;
3978 unsigned sym_p
, var_p
, off_p
, rat_p
, add_c
;
3983 data
= (address_cost_data
*) xcalloc (1, sizeof (*data
));
3985 reg1
= gen_raw_REG (address_mode
, LAST_VIRTUAL_REGISTER
+ 1);
3987 width
= GET_MODE_BITSIZE (address_mode
) - 1;
3988 if (width
> (HOST_BITS_PER_WIDE_INT
- 1))
3989 width
= HOST_BITS_PER_WIDE_INT
- 1;
3990 addr
= gen_rtx_fmt_ee (PLUS
, address_mode
, reg1
, NULL_RTX
);
3992 for (i
= width
; i
>= 0; i
--)
3994 off
= -(HOST_WIDE_INT_1U
<< i
);
3995 XEXP (addr
, 1) = gen_int_mode (off
, address_mode
);
3996 if (memory_address_addr_space_p (mem_mode
, addr
, as
))
3999 data
->min_offset
= (i
== -1? 0 : off
);
4001 for (i
= width
; i
>= 0; i
--)
4003 off
= (HOST_WIDE_INT_1U
<< i
) - 1;
4004 XEXP (addr
, 1) = gen_int_mode (off
, address_mode
);
4005 if (memory_address_addr_space_p (mem_mode
, addr
, as
))
4007 /* For some strict-alignment targets, the offset must be naturally
4008 aligned. Try an aligned offset if mem_mode is not QImode. */
4009 off
= mem_mode
!= QImode
4010 ? (HOST_WIDE_INT_1U
<< i
)
4011 - GET_MODE_SIZE (mem_mode
)
4015 XEXP (addr
, 1) = gen_int_mode (off
, address_mode
);
4016 if (memory_address_addr_space_p (mem_mode
, addr
, as
))
4022 data
->max_offset
= off
;
4024 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4026 fprintf (dump_file
, "get_address_cost:\n");
4027 fprintf (dump_file
, " min offset %s " HOST_WIDE_INT_PRINT_DEC
"\n",
4028 GET_MODE_NAME (mem_mode
),
4030 fprintf (dump_file
, " max offset %s " HOST_WIDE_INT_PRINT_DEC
"\n",
4031 GET_MODE_NAME (mem_mode
),
4036 for (i
= 2; i
<= MAX_RATIO
; i
++)
4037 if (multiplier_allowed_in_address_p (i
, mem_mode
, as
))
4043 /* Compute the cost of various addressing modes. */
4045 reg0
= gen_raw_REG (address_mode
, LAST_VIRTUAL_REGISTER
+ 1);
4046 reg1
= gen_raw_REG (address_mode
, LAST_VIRTUAL_REGISTER
+ 2);
4048 if (USE_LOAD_PRE_DECREMENT (mem_mode
)
4049 || USE_STORE_PRE_DECREMENT (mem_mode
))
4051 addr
= gen_rtx_PRE_DEC (address_mode
, reg0
);
4052 has_predec
[mem_mode
]
4053 = memory_address_addr_space_p (mem_mode
, addr
, as
);
4055 if (has_predec
[mem_mode
])
4056 data
->ainc_costs
[AINC_PRE_DEC
]
4057 = address_cost (addr
, mem_mode
, as
, speed
);
4059 if (USE_LOAD_POST_DECREMENT (mem_mode
)
4060 || USE_STORE_POST_DECREMENT (mem_mode
))
4062 addr
= gen_rtx_POST_DEC (address_mode
, reg0
);
4063 has_postdec
[mem_mode
]
4064 = memory_address_addr_space_p (mem_mode
, addr
, as
);
4066 if (has_postdec
[mem_mode
])
4067 data
->ainc_costs
[AINC_POST_DEC
]
4068 = address_cost (addr
, mem_mode
, as
, speed
);
4070 if (USE_LOAD_PRE_INCREMENT (mem_mode
)
4071 || USE_STORE_PRE_DECREMENT (mem_mode
))
4073 addr
= gen_rtx_PRE_INC (address_mode
, reg0
);
4074 has_preinc
[mem_mode
]
4075 = memory_address_addr_space_p (mem_mode
, addr
, as
);
4077 if (has_preinc
[mem_mode
])
4078 data
->ainc_costs
[AINC_PRE_INC
]
4079 = address_cost (addr
, mem_mode
, as
, speed
);
4081 if (USE_LOAD_POST_INCREMENT (mem_mode
)
4082 || USE_STORE_POST_INCREMENT (mem_mode
))
4084 addr
= gen_rtx_POST_INC (address_mode
, reg0
);
4085 has_postinc
[mem_mode
]
4086 = memory_address_addr_space_p (mem_mode
, addr
, as
);
4088 if (has_postinc
[mem_mode
])
4089 data
->ainc_costs
[AINC_POST_INC
]
4090 = address_cost (addr
, mem_mode
, as
, speed
);
4092 for (i
= 0; i
< 16; i
++)
4095 var_p
= (i
>> 1) & 1;
4096 off_p
= (i
>> 2) & 1;
4097 rat_p
= (i
>> 3) & 1;
4101 addr
= gen_rtx_fmt_ee (MULT
, address_mode
, addr
,
4102 gen_int_mode (rat
, address_mode
));
4105 addr
= gen_rtx_fmt_ee (PLUS
, address_mode
, addr
, reg1
);
4109 base
= gen_rtx_SYMBOL_REF (address_mode
, ggc_strdup (""));
4110 /* ??? We can run into trouble with some backends by presenting
4111 it with symbols which haven't been properly passed through
4112 targetm.encode_section_info. By setting the local bit, we
4113 enhance the probability of things working. */
4114 SYMBOL_REF_FLAGS (base
) = SYMBOL_FLAG_LOCAL
;
4117 base
= gen_rtx_fmt_e (CONST
, address_mode
,
4119 (PLUS
, address_mode
, base
,
4120 gen_int_mode (off
, address_mode
)));
4123 base
= gen_int_mode (off
, address_mode
);
4128 addr
= gen_rtx_fmt_ee (PLUS
, address_mode
, addr
, base
);
4131 /* To avoid splitting addressing modes, pretend that no cse will
4133 old_cse_not_expected
= cse_not_expected
;
4134 cse_not_expected
= true;
4135 addr
= memory_address_addr_space (mem_mode
, addr
, as
);
4136 cse_not_expected
= old_cse_not_expected
;
4140 acost
= seq_cost (seq
, speed
);
4141 acost
+= address_cost (addr
, mem_mode
, as
, speed
);
4145 data
->costs
[sym_p
][var_p
][off_p
][rat_p
] = acost
;
4148 /* On some targets, it is quite expensive to load symbol to a register,
4149 which makes addresses that contain symbols look much more expensive.
4150 However, the symbol will have to be loaded in any case before the
4151 loop (and quite likely we have it in register already), so it does not
4152 make much sense to penalize them too heavily. So make some final
4153 tweaks for the SYMBOL_PRESENT modes:
4155 If VAR_PRESENT is false, and the mode obtained by changing symbol to
4156 var is cheaper, use this mode with small penalty.
4157 If VAR_PRESENT is true, try whether the mode with
4158 SYMBOL_PRESENT = false is cheaper even with cost of addition, and
4159 if this is the case, use it. */
4160 add_c
= add_cost (speed
, address_mode
);
4161 for (i
= 0; i
< 8; i
++)
4164 off_p
= (i
>> 1) & 1;
4165 rat_p
= (i
>> 2) & 1;
4167 acost
= data
->costs
[0][1][off_p
][rat_p
] + 1;
4171 if (acost
< data
->costs
[1][var_p
][off_p
][rat_p
])
4172 data
->costs
[1][var_p
][off_p
][rat_p
] = acost
;
4175 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4177 fprintf (dump_file
, "<Address Costs>:\n");
4179 for (i
= 0; i
< 16; i
++)
4182 var_p
= (i
>> 1) & 1;
4183 off_p
= (i
>> 2) & 1;
4184 rat_p
= (i
>> 3) & 1;
4186 fprintf (dump_file
, " ");
4188 fprintf (dump_file
, "sym + ");
4190 fprintf (dump_file
, "var + ");
4192 fprintf (dump_file
, "cst + ");
4194 fprintf (dump_file
, "rat * ");
4196 acost
= data
->costs
[sym_p
][var_p
][off_p
][rat_p
];
4197 fprintf (dump_file
, "index costs %d\n", acost
);
4199 if (has_predec
[mem_mode
] || has_postdec
[mem_mode
]
4200 || has_preinc
[mem_mode
] || has_postinc
[mem_mode
])
4201 fprintf (dump_file
, " May include autoinc/dec\n");
4202 fprintf (dump_file
, "\n");
4205 address_cost_data_list
[data_index
] = data
;
4208 bits
= GET_MODE_BITSIZE (address_mode
);
4209 mask
= ~(HOST_WIDE_INT_M1U
<< (bits
- 1) << 1);
4211 if ((offset
>> (bits
- 1) & 1))
4216 autoinc_type
= AINC_NONE
;
4217 msize
= GET_MODE_SIZE (mem_mode
);
4218 autoinc_offset
= offset
;
4220 autoinc_offset
+= ratio
* cstep
;
4221 if (symbol_present
|| var_present
|| ratio
!= 1)
4225 if (has_postinc
[mem_mode
] && autoinc_offset
== 0
4227 autoinc_type
= AINC_POST_INC
;
4228 else if (has_postdec
[mem_mode
] && autoinc_offset
== 0
4230 autoinc_type
= AINC_POST_DEC
;
4231 else if (has_preinc
[mem_mode
] && autoinc_offset
== msize
4233 autoinc_type
= AINC_PRE_INC
;
4234 else if (has_predec
[mem_mode
] && autoinc_offset
== -msize
4236 autoinc_type
= AINC_PRE_DEC
;
4238 if (autoinc_type
!= AINC_NONE
)
4243 offset_p
= (s_offset
!= 0
4244 && data
->min_offset
<= s_offset
4245 && s_offset
<= data
->max_offset
);
4246 ratio_p
= (ratio
!= 1
4247 && multiplier_allowed_in_address_p (ratio
, mem_mode
, as
));
4249 if (ratio
!= 1 && !ratio_p
)
4250 cost
+= mult_by_coeff_cost (ratio
, address_mode
, speed
);
4252 if (s_offset
&& !offset_p
&& !symbol_present
)
4253 cost
+= add_cost (speed
, address_mode
);
4256 *may_autoinc
= autoinc
;
4258 acost
= data
->ainc_costs
[autoinc_type
];
4260 acost
= data
->costs
[symbol_present
][var_present
][offset_p
][ratio_p
];
4261 complexity
= (symbol_present
!= 0) + (var_present
!= 0) + offset_p
+ ratio_p
;
4262 return comp_cost (cost
+ acost
, complexity
);
4265 /* Calculate the SPEED or size cost of shiftadd EXPR in MODE. MULT is the
4266 EXPR operand holding the shift. COST0 and COST1 are the costs for
4267 calculating the operands of EXPR. Returns true if successful, and returns
4268 the cost in COST. */
4271 get_shiftadd_cost (tree expr
, machine_mode mode
, comp_cost cost0
,
4272 comp_cost cost1
, tree mult
, bool speed
, comp_cost
*cost
)
4275 tree op1
= TREE_OPERAND (expr
, 1);
4276 tree cst
= TREE_OPERAND (mult
, 1);
4277 tree multop
= TREE_OPERAND (mult
, 0);
4278 int m
= exact_log2 (int_cst_value (cst
));
4279 int maxm
= MIN (BITS_PER_WORD
, GET_MODE_BITSIZE (mode
));
4280 int as_cost
, sa_cost
;
4283 if (!(m
>= 0 && m
< maxm
))
4287 mult_in_op1
= operand_equal_p (op1
, mult
, 0);
4289 as_cost
= add_cost (speed
, mode
) + shift_cost (speed
, mode
, m
);
4291 /* If the target has a cheap shift-and-add or shift-and-sub instruction,
4292 use that in preference to a shift insn followed by an add insn. */
4293 sa_cost
= (TREE_CODE (expr
) != MINUS_EXPR
4294 ? shiftadd_cost (speed
, mode
, m
)
4296 ? shiftsub1_cost (speed
, mode
, m
)
4297 : shiftsub0_cost (speed
, mode
, m
)));
4299 res
= comp_cost (MIN (as_cost
, sa_cost
), 0);
4300 res
+= (mult_in_op1
? cost0
: cost1
);
4302 STRIP_NOPS (multop
);
4303 if (!is_gimple_val (multop
))
4304 res
+= force_expr_to_var_cost (multop
, speed
);
4310 /* Estimates cost of forcing expression EXPR into a variable. */
4313 force_expr_to_var_cost (tree expr
, bool speed
)
4315 static bool costs_initialized
= false;
4316 static unsigned integer_cost
[2];
4317 static unsigned symbol_cost
[2];
4318 static unsigned address_cost
[2];
4320 comp_cost cost0
, cost1
, cost
;
4323 if (!costs_initialized
)
4325 tree type
= build_pointer_type (integer_type_node
);
4330 var
= create_tmp_var_raw (integer_type_node
, "test_var");
4331 TREE_STATIC (var
) = 1;
4332 x
= produce_memory_decl_rtl (var
, NULL
);
4333 SET_DECL_RTL (var
, x
);
4335 addr
= build1 (ADDR_EXPR
, type
, var
);
4338 for (i
= 0; i
< 2; i
++)
4340 integer_cost
[i
] = computation_cost (build_int_cst (integer_type_node
,
4343 symbol_cost
[i
] = computation_cost (addr
, i
) + 1;
4346 = computation_cost (fold_build_pointer_plus_hwi (addr
, 2000), i
) + 1;
4347 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4349 fprintf (dump_file
, "force_expr_to_var_cost %s costs:\n", i
? "speed" : "size");
4350 fprintf (dump_file
, " integer %d\n", (int) integer_cost
[i
]);
4351 fprintf (dump_file
, " symbol %d\n", (int) symbol_cost
[i
]);
4352 fprintf (dump_file
, " address %d\n", (int) address_cost
[i
]);
4353 fprintf (dump_file
, " other %d\n", (int) target_spill_cost
[i
]);
4354 fprintf (dump_file
, "\n");
4358 costs_initialized
= true;
4363 if (SSA_VAR_P (expr
))
4366 if (is_gimple_min_invariant (expr
))
4368 if (TREE_CODE (expr
) == INTEGER_CST
)
4369 return comp_cost (integer_cost
[speed
], 0);
4371 if (TREE_CODE (expr
) == ADDR_EXPR
)
4373 tree obj
= TREE_OPERAND (expr
, 0);
4376 || TREE_CODE (obj
) == PARM_DECL
4377 || TREE_CODE (obj
) == RESULT_DECL
)
4378 return comp_cost (symbol_cost
[speed
], 0);
4381 return comp_cost (address_cost
[speed
], 0);
4384 switch (TREE_CODE (expr
))
4386 case POINTER_PLUS_EXPR
:
4390 op0
= TREE_OPERAND (expr
, 0);
4391 op1
= TREE_OPERAND (expr
, 1);
4398 op0
= TREE_OPERAND (expr
, 0);
4404 /* Just an arbitrary value, FIXME. */
4405 return comp_cost (target_spill_cost
[speed
], 0);
4408 if (op0
== NULL_TREE
4409 || TREE_CODE (op0
) == SSA_NAME
|| CONSTANT_CLASS_P (op0
))
4412 cost0
= force_expr_to_var_cost (op0
, speed
);
4414 if (op1
== NULL_TREE
4415 || TREE_CODE (op1
) == SSA_NAME
|| CONSTANT_CLASS_P (op1
))
4418 cost1
= force_expr_to_var_cost (op1
, speed
);
4420 mode
= TYPE_MODE (TREE_TYPE (expr
));
4421 switch (TREE_CODE (expr
))
4423 case POINTER_PLUS_EXPR
:
4427 cost
= comp_cost (add_cost (speed
, mode
), 0);
4428 if (TREE_CODE (expr
) != NEGATE_EXPR
)
4430 tree mult
= NULL_TREE
;
4432 if (TREE_CODE (op1
) == MULT_EXPR
)
4434 else if (TREE_CODE (op0
) == MULT_EXPR
)
4437 if (mult
!= NULL_TREE
4438 && cst_and_fits_in_hwi (TREE_OPERAND (mult
, 1))
4439 && get_shiftadd_cost (expr
, mode
, cost0
, cost1
, mult
,
4447 tree inner_mode
, outer_mode
;
4448 outer_mode
= TREE_TYPE (expr
);
4449 inner_mode
= TREE_TYPE (op0
);
4450 cost
= comp_cost (convert_cost (TYPE_MODE (outer_mode
),
4451 TYPE_MODE (inner_mode
), speed
), 0);
4456 if (cst_and_fits_in_hwi (op0
))
4457 cost
= comp_cost (mult_by_coeff_cost (int_cst_value (op0
),
4459 else if (cst_and_fits_in_hwi (op1
))
4460 cost
= comp_cost (mult_by_coeff_cost (int_cst_value (op1
),
4463 return comp_cost (target_spill_cost
[speed
], 0);
4473 /* Bound the cost by target_spill_cost. The parts of complicated
4474 computations often are either loop invariant or at least can
4475 be shared between several iv uses, so letting this grow without
4476 limits would not give reasonable results. */
4477 if (cost
.cost
> (int) target_spill_cost
[speed
])
4478 cost
.cost
= target_spill_cost
[speed
];
4483 /* Estimates cost of forcing EXPR into a variable. DEPENDS_ON is a set of the
4484 invariants the computation depends on. */
4487 force_var_cost (struct ivopts_data
*data
,
4488 tree expr
, bitmap
*depends_on
)
4492 fd_ivopts_data
= data
;
4493 walk_tree (&expr
, find_depends
, depends_on
, NULL
);
4496 return force_expr_to_var_cost (expr
, data
->speed
);
4499 /* Estimates cost of expressing address ADDR as var + symbol + offset. The
4500 value of offset is added to OFFSET, SYMBOL_PRESENT and VAR_PRESENT are set
4501 to false if the corresponding part is missing. DEPENDS_ON is a set of the
4502 invariants the computation depends on. */
4505 split_address_cost (struct ivopts_data
*data
,
4506 tree addr
, bool *symbol_present
, bool *var_present
,
4507 unsigned HOST_WIDE_INT
*offset
, bitmap
*depends_on
)
4510 HOST_WIDE_INT bitsize
;
4511 HOST_WIDE_INT bitpos
;
4514 int unsignedp
, reversep
, volatilep
;
4516 core
= get_inner_reference (addr
, &bitsize
, &bitpos
, &toffset
, &mode
,
4517 &unsignedp
, &reversep
, &volatilep
);
4520 || bitpos
% BITS_PER_UNIT
!= 0
4524 *symbol_present
= false;
4525 *var_present
= true;
4526 fd_ivopts_data
= data
;
4528 walk_tree (&addr
, find_depends
, depends_on
, NULL
);
4530 return comp_cost (target_spill_cost
[data
->speed
], 0);
4533 *offset
+= bitpos
/ BITS_PER_UNIT
;
4534 if (TREE_STATIC (core
)
4535 || DECL_EXTERNAL (core
))
4537 *symbol_present
= true;
4538 *var_present
= false;
4542 *symbol_present
= false;
4543 *var_present
= true;
4547 /* Estimates cost of expressing difference of addresses E1 - E2 as
4548 var + symbol + offset. The value of offset is added to OFFSET,
4549 SYMBOL_PRESENT and VAR_PRESENT are set to false if the corresponding
4550 part is missing. DEPENDS_ON is a set of the invariants the computation
4554 ptr_difference_cost (struct ivopts_data
*data
,
4555 tree e1
, tree e2
, bool *symbol_present
, bool *var_present
,
4556 unsigned HOST_WIDE_INT
*offset
, bitmap
*depends_on
)
4558 HOST_WIDE_INT diff
= 0;
4559 aff_tree aff_e1
, aff_e2
;
4562 gcc_assert (TREE_CODE (e1
) == ADDR_EXPR
);
4564 if (ptr_difference_const (e1
, e2
, &diff
))
4567 *symbol_present
= false;
4568 *var_present
= false;
4572 if (integer_zerop (e2
))
4573 return split_address_cost (data
, TREE_OPERAND (e1
, 0),
4574 symbol_present
, var_present
, offset
, depends_on
);
4576 *symbol_present
= false;
4577 *var_present
= true;
4579 type
= signed_type_for (TREE_TYPE (e1
));
4580 tree_to_aff_combination (e1
, type
, &aff_e1
);
4581 tree_to_aff_combination (e2
, type
, &aff_e2
);
4582 aff_combination_scale (&aff_e2
, -1);
4583 aff_combination_add (&aff_e1
, &aff_e2
);
4585 return force_var_cost (data
, aff_combination_to_tree (&aff_e1
), depends_on
);
4588 /* Estimates cost of expressing difference E1 - E2 as
4589 var + symbol + offset. The value of offset is added to OFFSET,
4590 SYMBOL_PRESENT and VAR_PRESENT are set to false if the corresponding
4591 part is missing. DEPENDS_ON is a set of the invariants the computation
4595 difference_cost (struct ivopts_data
*data
,
4596 tree e1
, tree e2
, bool *symbol_present
, bool *var_present
,
4597 unsigned HOST_WIDE_INT
*offset
, bitmap
*depends_on
)
4599 machine_mode mode
= TYPE_MODE (TREE_TYPE (e1
));
4600 unsigned HOST_WIDE_INT off1
, off2
;
4601 aff_tree aff_e1
, aff_e2
;
4604 e1
= strip_offset (e1
, &off1
);
4605 e2
= strip_offset (e2
, &off2
);
4606 *offset
+= off1
- off2
;
4611 if (TREE_CODE (e1
) == ADDR_EXPR
)
4612 return ptr_difference_cost (data
, e1
, e2
, symbol_present
, var_present
,
4613 offset
, depends_on
);
4614 *symbol_present
= false;
4616 if (operand_equal_p (e1
, e2
, 0))
4618 *var_present
= false;
4622 *var_present
= true;
4624 if (integer_zerop (e2
))
4625 return force_var_cost (data
, e1
, depends_on
);
4627 if (integer_zerop (e1
))
4629 comp_cost cost
= force_var_cost (data
, e2
, depends_on
);
4630 cost
+= mult_by_coeff_cost (-1, mode
, data
->speed
);
4634 type
= signed_type_for (TREE_TYPE (e1
));
4635 tree_to_aff_combination (e1
, type
, &aff_e1
);
4636 tree_to_aff_combination (e2
, type
, &aff_e2
);
4637 aff_combination_scale (&aff_e2
, -1);
4638 aff_combination_add (&aff_e1
, &aff_e2
);
4640 return force_var_cost (data
, aff_combination_to_tree (&aff_e1
), depends_on
);
4643 /* Returns true if AFF1 and AFF2 are identical. */
4646 compare_aff_trees (aff_tree
*aff1
, aff_tree
*aff2
)
4650 if (aff1
->n
!= aff2
->n
)
4653 for (i
= 0; i
< aff1
->n
; i
++)
4655 if (aff1
->elts
[i
].coef
!= aff2
->elts
[i
].coef
)
4658 if (!operand_equal_p (aff1
->elts
[i
].val
, aff2
->elts
[i
].val
, 0))
4664 /* Stores EXPR in DATA->inv_expr_tab, return pointer to iv_inv_expr_ent. */
4666 static iv_inv_expr_ent
*
4667 record_inv_expr (struct ivopts_data
*data
, tree expr
)
4669 struct iv_inv_expr_ent ent
;
4670 struct iv_inv_expr_ent
**slot
;
4673 ent
.hash
= iterative_hash_expr (expr
, 0);
4674 slot
= data
->inv_expr_tab
->find_slot (&ent
, INSERT
);
4678 *slot
= XNEW (struct iv_inv_expr_ent
);
4679 (*slot
)->expr
= expr
;
4680 (*slot
)->hash
= ent
.hash
;
4681 (*slot
)->id
= data
->max_inv_expr_id
++;
4687 /* Returns the invariant expression if expression UBASE - RATIO * CBASE
4688 requires a new compiler generated temporary. Returns -1 otherwise.
4689 ADDRESS_P is a flag indicating if the expression is for address
4692 static iv_inv_expr_ent
*
4693 get_loop_invariant_expr (struct ivopts_data
*data
, tree ubase
,
4694 tree cbase
, HOST_WIDE_INT ratio
,
4697 aff_tree ubase_aff
, cbase_aff
;
4705 if ((TREE_CODE (ubase
) == INTEGER_CST
)
4706 && (TREE_CODE (cbase
) == INTEGER_CST
))
4709 /* Strips the constant part. */
4710 if (TREE_CODE (ubase
) == PLUS_EXPR
4711 || TREE_CODE (ubase
) == MINUS_EXPR
4712 || TREE_CODE (ubase
) == POINTER_PLUS_EXPR
)
4714 if (TREE_CODE (TREE_OPERAND (ubase
, 1)) == INTEGER_CST
)
4715 ubase
= TREE_OPERAND (ubase
, 0);
4718 /* Strips the constant part. */
4719 if (TREE_CODE (cbase
) == PLUS_EXPR
4720 || TREE_CODE (cbase
) == MINUS_EXPR
4721 || TREE_CODE (cbase
) == POINTER_PLUS_EXPR
)
4723 if (TREE_CODE (TREE_OPERAND (cbase
, 1)) == INTEGER_CST
)
4724 cbase
= TREE_OPERAND (cbase
, 0);
4729 if (((TREE_CODE (ubase
) == SSA_NAME
)
4730 || (TREE_CODE (ubase
) == ADDR_EXPR
4731 && is_gimple_min_invariant (ubase
)))
4732 && (TREE_CODE (cbase
) == INTEGER_CST
))
4735 if (((TREE_CODE (cbase
) == SSA_NAME
)
4736 || (TREE_CODE (cbase
) == ADDR_EXPR
4737 && is_gimple_min_invariant (cbase
)))
4738 && (TREE_CODE (ubase
) == INTEGER_CST
))
4744 if (operand_equal_p (ubase
, cbase
, 0))
4747 if (TREE_CODE (ubase
) == ADDR_EXPR
4748 && TREE_CODE (cbase
) == ADDR_EXPR
)
4752 usym
= TREE_OPERAND (ubase
, 0);
4753 csym
= TREE_OPERAND (cbase
, 0);
4754 if (TREE_CODE (usym
) == ARRAY_REF
)
4756 tree ind
= TREE_OPERAND (usym
, 1);
4757 if (TREE_CODE (ind
) == INTEGER_CST
4758 && tree_fits_shwi_p (ind
)
4759 && tree_to_shwi (ind
) == 0)
4760 usym
= TREE_OPERAND (usym
, 0);
4762 if (TREE_CODE (csym
) == ARRAY_REF
)
4764 tree ind
= TREE_OPERAND (csym
, 1);
4765 if (TREE_CODE (ind
) == INTEGER_CST
4766 && tree_fits_shwi_p (ind
)
4767 && tree_to_shwi (ind
) == 0)
4768 csym
= TREE_OPERAND (csym
, 0);
4770 if (operand_equal_p (usym
, csym
, 0))
4773 /* Now do more complex comparison */
4774 tree_to_aff_combination (ubase
, TREE_TYPE (ubase
), &ubase_aff
);
4775 tree_to_aff_combination (cbase
, TREE_TYPE (cbase
), &cbase_aff
);
4776 if (compare_aff_trees (&ubase_aff
, &cbase_aff
))
4780 tree_to_aff_combination (ub
, TREE_TYPE (ub
), &ubase_aff
);
4781 tree_to_aff_combination (cb
, TREE_TYPE (cb
), &cbase_aff
);
4783 aff_combination_scale (&cbase_aff
, -1 * ratio
);
4784 aff_combination_add (&ubase_aff
, &cbase_aff
);
4785 expr
= aff_combination_to_tree (&ubase_aff
);
4786 return record_inv_expr (data
, expr
);
4789 /* Scale (multiply) the computed COST (except scratch part that should be
4790 hoisted out a loop) by header->frequency / AT->frequency,
4791 which makes expected cost more accurate. */
4794 get_scaled_computation_cost_at (ivopts_data
*data
, gimple
*at
, iv_cand
*cand
,
4797 int loop_freq
= data
->current_loop
->header
->frequency
;
4798 int bb_freq
= gimple_bb (at
)->frequency
;
4801 gcc_assert (cost
.scratch
<= cost
.cost
);
4803 = cost
.scratch
+ (cost
.cost
- cost
.scratch
) * bb_freq
/ loop_freq
;
4805 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4806 fprintf (dump_file
, "Scaling iv_use based on cand %d "
4807 "by %2.2f: %d (scratch: %d) -> %d (%d/%d)\n",
4808 cand
->id
, 1.0f
* bb_freq
/ loop_freq
, cost
.cost
,
4809 cost
.scratch
, scaled_cost
, bb_freq
, loop_freq
);
4811 cost
.cost
= scaled_cost
;
4817 /* Determines the cost of the computation by that USE is expressed
4818 from induction variable CAND. If ADDRESS_P is true, we just need
4819 to create an address from it, otherwise we want to get it into
4820 register. A set of invariants we depend on is stored in
4821 DEPENDS_ON. AT is the statement at that the value is computed.
4822 If CAN_AUTOINC is nonnull, use it to record whether autoinc
4823 addressing is likely. */
4826 get_computation_cost_at (struct ivopts_data
*data
,
4827 struct iv_use
*use
, struct iv_cand
*cand
,
4828 bool address_p
, bitmap
*depends_on
, gimple
*at
,
4830 iv_inv_expr_ent
**inv_expr
)
4832 tree ubase
= use
->iv
->base
, ustep
= use
->iv
->step
;
4834 tree utype
= TREE_TYPE (ubase
), ctype
;
4835 unsigned HOST_WIDE_INT cstepi
, offset
= 0;
4836 HOST_WIDE_INT ratio
, aratio
;
4837 bool var_present
, symbol_present
, stmt_is_after_inc
;
4840 bool speed
= optimize_bb_for_speed_p (gimple_bb (at
));
4841 machine_mode mem_mode
= (address_p
4842 ? TYPE_MODE (TREE_TYPE (*use
->op_p
))
4848 /* Only consider real candidates. */
4850 return infinite_cost
;
4852 cbase
= cand
->iv
->base
;
4853 cstep
= cand
->iv
->step
;
4854 ctype
= TREE_TYPE (cbase
);
4856 if (TYPE_PRECISION (utype
) > TYPE_PRECISION (ctype
))
4858 /* We do not have a precision to express the values of use. */
4859 return infinite_cost
;
4863 || (use
->iv
->base_object
4864 && cand
->iv
->base_object
4865 && POINTER_TYPE_P (TREE_TYPE (use
->iv
->base_object
))
4866 && POINTER_TYPE_P (TREE_TYPE (cand
->iv
->base_object
))))
4868 /* Do not try to express address of an object with computation based
4869 on address of a different object. This may cause problems in rtl
4870 level alias analysis (that does not expect this to be happening,
4871 as this is illegal in C), and would be unlikely to be useful
4873 if (use
->iv
->base_object
4874 && cand
->iv
->base_object
4875 && !operand_equal_p (use
->iv
->base_object
, cand
->iv
->base_object
, 0))
4876 return infinite_cost
;
4879 if (TYPE_PRECISION (utype
) < TYPE_PRECISION (ctype
))
4881 /* TODO -- add direct handling of this case. */
4885 /* CSTEPI is removed from the offset in case statement is after the
4886 increment. If the step is not constant, we use zero instead.
4887 This is a bit imprecise (there is the extra addition), but
4888 redundancy elimination is likely to transform the code so that
4889 it uses value of the variable before increment anyway,
4890 so it is not that much unrealistic. */
4891 if (cst_and_fits_in_hwi (cstep
))
4892 cstepi
= int_cst_value (cstep
);
4896 if (!constant_multiple_of (ustep
, cstep
, &rat
))
4897 return infinite_cost
;
4899 if (wi::fits_shwi_p (rat
))
4900 ratio
= rat
.to_shwi ();
4902 return infinite_cost
;
4905 ctype
= TREE_TYPE (cbase
);
4907 stmt_is_after_inc
= stmt_after_increment (data
->current_loop
, cand
, at
);
4909 /* use = ubase + ratio * (var - cbase). If either cbase is a constant
4910 or ratio == 1, it is better to handle this like
4912 ubase - ratio * cbase + ratio * var
4914 (also holds in the case ratio == -1, TODO. */
4916 if (cst_and_fits_in_hwi (cbase
))
4918 offset
= - ratio
* (unsigned HOST_WIDE_INT
) int_cst_value (cbase
);
4919 cost
= difference_cost (data
,
4920 ubase
, build_int_cst (utype
, 0),
4921 &symbol_present
, &var_present
, &offset
,
4923 cost
/= avg_loop_niter (data
->current_loop
);
4925 else if (ratio
== 1)
4927 tree real_cbase
= cbase
;
4929 /* Check to see if any adjustment is needed. */
4930 if (cstepi
== 0 && stmt_is_after_inc
)
4932 aff_tree real_cbase_aff
;
4935 tree_to_aff_combination (cbase
, TREE_TYPE (real_cbase
),
4937 tree_to_aff_combination (cstep
, TREE_TYPE (cstep
), &cstep_aff
);
4939 aff_combination_add (&real_cbase_aff
, &cstep_aff
);
4940 real_cbase
= aff_combination_to_tree (&real_cbase_aff
);
4943 cost
= difference_cost (data
,
4945 &symbol_present
, &var_present
, &offset
,
4947 cost
/= avg_loop_niter (data
->current_loop
);
4950 && !POINTER_TYPE_P (ctype
)
4951 && multiplier_allowed_in_address_p
4953 TYPE_ADDR_SPACE (TREE_TYPE (utype
))))
4955 tree real_cbase
= cbase
;
4957 if (cstepi
== 0 && stmt_is_after_inc
)
4959 if (POINTER_TYPE_P (ctype
))
4960 real_cbase
= fold_build2 (POINTER_PLUS_EXPR
, ctype
, cbase
, cstep
);
4962 real_cbase
= fold_build2 (PLUS_EXPR
, ctype
, cbase
, cstep
);
4964 real_cbase
= fold_build2 (MULT_EXPR
, ctype
, real_cbase
,
4965 build_int_cst (ctype
, ratio
));
4966 cost
= difference_cost (data
,
4968 &symbol_present
, &var_present
, &offset
,
4970 cost
/= avg_loop_niter (data
->current_loop
);
4974 cost
= force_var_cost (data
, cbase
, depends_on
);
4975 cost
+= difference_cost (data
, ubase
, build_int_cst (utype
, 0),
4976 &symbol_present
, &var_present
, &offset
,
4978 cost
/= avg_loop_niter (data
->current_loop
);
4979 cost
+= add_cost (data
->speed
, TYPE_MODE (ctype
));
4982 /* Record setup cost in scratch field. */
4983 cost
.scratch
= cost
.cost
;
4985 if (inv_expr
&& depends_on
&& *depends_on
)
4987 *inv_expr
= get_loop_invariant_expr (data
, ubase
, cbase
, ratio
,
4989 /* Clear depends on. */
4990 if (*inv_expr
!= NULL
)
4991 bitmap_clear (*depends_on
);
4994 /* If we are after the increment, the value of the candidate is higher by
4996 if (stmt_is_after_inc
)
4997 offset
-= ratio
* cstepi
;
4999 /* Now the computation is in shape symbol + var1 + const + ratio * var2.
5000 (symbol/var1/const parts may be omitted). If we are looking for an
5001 address, find the cost of addressing this. */
5004 cost
+= get_address_cost (symbol_present
, var_present
,
5005 offset
, ratio
, cstepi
,
5007 TYPE_ADDR_SPACE (TREE_TYPE (utype
)),
5008 speed
, stmt_is_after_inc
, can_autoinc
);
5009 return get_scaled_computation_cost_at (data
, at
, cand
, cost
);
5012 /* Otherwise estimate the costs for computing the expression. */
5013 if (!symbol_present
&& !var_present
&& !offset
)
5016 cost
+= mult_by_coeff_cost (ratio
, TYPE_MODE (ctype
), speed
);
5017 return get_scaled_computation_cost_at (data
, at
, cand
, cost
);
5020 /* Symbol + offset should be compile-time computable so consider that they
5021 are added once to the variable, if present. */
5022 if (var_present
&& (symbol_present
|| offset
))
5023 cost
+= adjust_setup_cost (data
,
5024 add_cost (speed
, TYPE_MODE (ctype
)));
5026 /* Having offset does not affect runtime cost in case it is added to
5027 symbol, but it increases complexity. */
5031 cost
+= add_cost (speed
, TYPE_MODE (ctype
));
5033 aratio
= ratio
> 0 ? ratio
: -ratio
;
5035 cost
+= mult_by_coeff_cost (aratio
, TYPE_MODE (ctype
), speed
);
5037 return get_scaled_computation_cost_at (data
, at
, cand
, cost
);
5041 *can_autoinc
= false;
5043 /* Just get the expression, expand it and measure the cost. */
5044 tree comp
= get_computation_at (data
->current_loop
, use
, cand
, at
);
5047 return infinite_cost
;
5050 comp
= build_simple_mem_ref (comp
);
5052 cost
= comp_cost (computation_cost (comp
, speed
), 0);
5054 return get_scaled_computation_cost_at (data
, at
, cand
, cost
);
5057 /* Determines the cost of the computation by that USE is expressed
5058 from induction variable CAND. If ADDRESS_P is true, we just need
5059 to create an address from it, otherwise we want to get it into
5060 register. A set of invariants we depend on is stored in
5061 DEPENDS_ON. If CAN_AUTOINC is nonnull, use it to record whether
5062 autoinc addressing is likely. */
5065 get_computation_cost (struct ivopts_data
*data
,
5066 struct iv_use
*use
, struct iv_cand
*cand
,
5067 bool address_p
, bitmap
*depends_on
,
5068 bool *can_autoinc
, iv_inv_expr_ent
**inv_expr
)
5070 return get_computation_cost_at (data
,
5071 use
, cand
, address_p
, depends_on
, use
->stmt
,
5072 can_autoinc
, inv_expr
);
5075 /* Determines cost of computing the use in GROUP with CAND in a generic
5079 determine_group_iv_cost_generic (struct ivopts_data
*data
,
5080 struct iv_group
*group
, struct iv_cand
*cand
)
5083 iv_inv_expr_ent
*inv_expr
= NULL
;
5084 bitmap depends_on
= NULL
;
5085 struct iv_use
*use
= group
->vuses
[0];
5087 /* The simple case first -- if we need to express value of the preserved
5088 original biv, the cost is 0. This also prevents us from counting the
5089 cost of increment twice -- once at this use and once in the cost of
5091 if (cand
->pos
== IP_ORIGINAL
&& cand
->incremented_at
== use
->stmt
)
5094 cost
= get_computation_cost (data
, use
, cand
, false,
5095 &depends_on
, NULL
, &inv_expr
);
5097 set_group_iv_cost (data
, group
, cand
, cost
, depends_on
,
5098 NULL_TREE
, ERROR_MARK
, inv_expr
);
5099 return !cost
.infinite_cost_p ();
5102 /* Determines cost of computing uses in GROUP with CAND in addresses. */
5105 determine_group_iv_cost_address (struct ivopts_data
*data
,
5106 struct iv_group
*group
, struct iv_cand
*cand
)
5111 iv_inv_expr_ent
*inv_expr
= NULL
;
5112 struct iv_use
*use
= group
->vuses
[0];
5113 comp_cost sum_cost
= no_cost
, cost
;
5115 cost
= get_computation_cost (data
, use
, cand
, true,
5116 &depends_on
, &can_autoinc
, &inv_expr
);
5119 if (!sum_cost
.infinite_cost_p () && cand
->ainc_use
== use
)
5122 sum_cost
-= cand
->cost_step
;
5123 /* If we generated the candidate solely for exploiting autoincrement
5124 opportunities, and it turns out it can't be used, set the cost to
5125 infinity to make sure we ignore it. */
5126 else if (cand
->pos
== IP_AFTER_USE
|| cand
->pos
== IP_BEFORE_USE
)
5127 sum_cost
= infinite_cost
;
5130 /* Uses in a group can share setup code, so only add setup cost once. */
5131 cost
-= cost
.scratch
;
5132 /* Compute and add costs for rest uses of this group. */
5133 for (i
= 1; i
< group
->vuses
.length () && !sum_cost
.infinite_cost_p (); i
++)
5135 struct iv_use
*next
= group
->vuses
[i
];
5137 /* TODO: We could skip computing cost for sub iv_use when it has the
5138 same cost as the first iv_use, but the cost really depends on the
5139 offset and where the iv_use is. */
5140 cost
= get_computation_cost (data
, next
, cand
, true,
5141 NULL
, &can_autoinc
, NULL
);
5144 set_group_iv_cost (data
, group
, cand
, sum_cost
, depends_on
,
5145 NULL_TREE
, ERROR_MARK
, inv_expr
);
5147 return !sum_cost
.infinite_cost_p ();
5150 /* Computes value of candidate CAND at position AT in iteration NITER, and
5151 stores it to VAL. */
5154 cand_value_at (struct loop
*loop
, struct iv_cand
*cand
, gimple
*at
, tree niter
,
5157 aff_tree step
, delta
, nit
;
5158 struct iv
*iv
= cand
->iv
;
5159 tree type
= TREE_TYPE (iv
->base
);
5161 if (POINTER_TYPE_P (type
))
5162 steptype
= sizetype
;
5164 steptype
= unsigned_type_for (type
);
5166 tree_to_aff_combination (iv
->step
, TREE_TYPE (iv
->step
), &step
);
5167 aff_combination_convert (&step
, steptype
);
5168 tree_to_aff_combination (niter
, TREE_TYPE (niter
), &nit
);
5169 aff_combination_convert (&nit
, steptype
);
5170 aff_combination_mult (&nit
, &step
, &delta
);
5171 if (stmt_after_increment (loop
, cand
, at
))
5172 aff_combination_add (&delta
, &step
);
5174 tree_to_aff_combination (iv
->base
, type
, val
);
5175 if (!POINTER_TYPE_P (type
))
5176 aff_combination_convert (val
, steptype
);
5177 aff_combination_add (val
, &delta
);
5180 /* Returns period of induction variable iv. */
5183 iv_period (struct iv
*iv
)
5185 tree step
= iv
->step
, period
, type
;
5188 gcc_assert (step
&& TREE_CODE (step
) == INTEGER_CST
);
5190 type
= unsigned_type_for (TREE_TYPE (step
));
5191 /* Period of the iv is lcm (step, type_range)/step -1,
5192 i.e., N*type_range/step - 1. Since type range is power
5193 of two, N == (step >> num_of_ending_zeros_binary (step),
5194 so the final result is
5196 (type_range >> num_of_ending_zeros_binary (step)) - 1
5199 pow2div
= num_ending_zeros (step
);
5201 period
= build_low_bits_mask (type
,
5202 (TYPE_PRECISION (type
)
5203 - tree_to_uhwi (pow2div
)));
5208 /* Returns the comparison operator used when eliminating the iv USE. */
5210 static enum tree_code
5211 iv_elimination_compare (struct ivopts_data
*data
, struct iv_use
*use
)
5213 struct loop
*loop
= data
->current_loop
;
5217 ex_bb
= gimple_bb (use
->stmt
);
5218 exit
= EDGE_SUCC (ex_bb
, 0);
5219 if (flow_bb_inside_loop_p (loop
, exit
->dest
))
5220 exit
= EDGE_SUCC (ex_bb
, 1);
5222 return (exit
->flags
& EDGE_TRUE_VALUE
? EQ_EXPR
: NE_EXPR
);
5225 /* Returns true if we can prove that BASE - OFFSET does not overflow. For now,
5226 we only detect the situation that BASE = SOMETHING + OFFSET, where the
5227 calculation is performed in non-wrapping type.
5229 TODO: More generally, we could test for the situation that
5230 BASE = SOMETHING + OFFSET' and OFFSET is between OFFSET' and zero.
5231 This would require knowing the sign of OFFSET. */
5234 difference_cannot_overflow_p (struct ivopts_data
*data
, tree base
, tree offset
)
5236 enum tree_code code
;
5238 aff_tree aff_e1
, aff_e2
, aff_offset
;
5240 if (!nowrap_type_p (TREE_TYPE (base
)))
5243 base
= expand_simple_operations (base
);
5245 if (TREE_CODE (base
) == SSA_NAME
)
5247 gimple
*stmt
= SSA_NAME_DEF_STMT (base
);
5249 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
5252 code
= gimple_assign_rhs_code (stmt
);
5253 if (get_gimple_rhs_class (code
) != GIMPLE_BINARY_RHS
)
5256 e1
= gimple_assign_rhs1 (stmt
);
5257 e2
= gimple_assign_rhs2 (stmt
);
5261 code
= TREE_CODE (base
);
5262 if (get_gimple_rhs_class (code
) != GIMPLE_BINARY_RHS
)
5264 e1
= TREE_OPERAND (base
, 0);
5265 e2
= TREE_OPERAND (base
, 1);
5268 /* Use affine expansion as deeper inspection to prove the equality. */
5269 tree_to_aff_combination_expand (e2
, TREE_TYPE (e2
),
5270 &aff_e2
, &data
->name_expansion_cache
);
5271 tree_to_aff_combination_expand (offset
, TREE_TYPE (offset
),
5272 &aff_offset
, &data
->name_expansion_cache
);
5273 aff_combination_scale (&aff_offset
, -1);
5277 aff_combination_add (&aff_e2
, &aff_offset
);
5278 if (aff_combination_zero_p (&aff_e2
))
5281 tree_to_aff_combination_expand (e1
, TREE_TYPE (e1
),
5282 &aff_e1
, &data
->name_expansion_cache
);
5283 aff_combination_add (&aff_e1
, &aff_offset
);
5284 return aff_combination_zero_p (&aff_e1
);
5286 case POINTER_PLUS_EXPR
:
5287 aff_combination_add (&aff_e2
, &aff_offset
);
5288 return aff_combination_zero_p (&aff_e2
);
5295 /* Tries to replace loop exit by one formulated in terms of a LT_EXPR
5296 comparison with CAND. NITER describes the number of iterations of
5297 the loops. If successful, the comparison in COMP_P is altered accordingly.
5299 We aim to handle the following situation:
5315 Here, the number of iterations of the loop is (a + 1 > b) ? 0 : b - a - 1.
5316 We aim to optimize this to
5324 while (p < p_0 - a + b);
5326 This preserves the correctness, since the pointer arithmetics does not
5327 overflow. More precisely:
5329 1) if a + 1 <= b, then p_0 - a + b is the final value of p, hence there is no
5330 overflow in computing it or the values of p.
5331 2) if a + 1 > b, then we need to verify that the expression p_0 - a does not
5332 overflow. To prove this, we use the fact that p_0 = base + a. */
5335 iv_elimination_compare_lt (struct ivopts_data
*data
,
5336 struct iv_cand
*cand
, enum tree_code
*comp_p
,
5337 struct tree_niter_desc
*niter
)
5339 tree cand_type
, a
, b
, mbz
, nit_type
= TREE_TYPE (niter
->niter
), offset
;
5340 struct aff_tree nit
, tmpa
, tmpb
;
5341 enum tree_code comp
;
5344 /* We need to know that the candidate induction variable does not overflow.
5345 While more complex analysis may be used to prove this, for now just
5346 check that the variable appears in the original program and that it
5347 is computed in a type that guarantees no overflows. */
5348 cand_type
= TREE_TYPE (cand
->iv
->base
);
5349 if (cand
->pos
!= IP_ORIGINAL
|| !nowrap_type_p (cand_type
))
5352 /* Make sure that the loop iterates till the loop bound is hit, as otherwise
5353 the calculation of the BOUND could overflow, making the comparison
5355 if (!data
->loop_single_exit_p
)
5358 /* We need to be able to decide whether candidate is increasing or decreasing
5359 in order to choose the right comparison operator. */
5360 if (!cst_and_fits_in_hwi (cand
->iv
->step
))
5362 step
= int_cst_value (cand
->iv
->step
);
5364 /* Check that the number of iterations matches the expected pattern:
5365 a + 1 > b ? 0 : b - a - 1. */
5366 mbz
= niter
->may_be_zero
;
5367 if (TREE_CODE (mbz
) == GT_EXPR
)
5369 /* Handle a + 1 > b. */
5370 tree op0
= TREE_OPERAND (mbz
, 0);
5371 if (TREE_CODE (op0
) == PLUS_EXPR
&& integer_onep (TREE_OPERAND (op0
, 1)))
5373 a
= TREE_OPERAND (op0
, 0);
5374 b
= TREE_OPERAND (mbz
, 1);
5379 else if (TREE_CODE (mbz
) == LT_EXPR
)
5381 tree op1
= TREE_OPERAND (mbz
, 1);
5383 /* Handle b < a + 1. */
5384 if (TREE_CODE (op1
) == PLUS_EXPR
&& integer_onep (TREE_OPERAND (op1
, 1)))
5386 a
= TREE_OPERAND (op1
, 0);
5387 b
= TREE_OPERAND (mbz
, 0);
5395 /* Expected number of iterations is B - A - 1. Check that it matches
5396 the actual number, i.e., that B - A - NITER = 1. */
5397 tree_to_aff_combination (niter
->niter
, nit_type
, &nit
);
5398 tree_to_aff_combination (fold_convert (nit_type
, a
), nit_type
, &tmpa
);
5399 tree_to_aff_combination (fold_convert (nit_type
, b
), nit_type
, &tmpb
);
5400 aff_combination_scale (&nit
, -1);
5401 aff_combination_scale (&tmpa
, -1);
5402 aff_combination_add (&tmpb
, &tmpa
);
5403 aff_combination_add (&tmpb
, &nit
);
5404 if (tmpb
.n
!= 0 || tmpb
.offset
!= 1)
5407 /* Finally, check that CAND->IV->BASE - CAND->IV->STEP * A does not
5409 offset
= fold_build2 (MULT_EXPR
, TREE_TYPE (cand
->iv
->step
),
5411 fold_convert (TREE_TYPE (cand
->iv
->step
), a
));
5412 if (!difference_cannot_overflow_p (data
, cand
->iv
->base
, offset
))
5415 /* Determine the new comparison operator. */
5416 comp
= step
< 0 ? GT_EXPR
: LT_EXPR
;
5417 if (*comp_p
== NE_EXPR
)
5419 else if (*comp_p
== EQ_EXPR
)
5420 *comp_p
= invert_tree_comparison (comp
, false);
5427 /* Check whether it is possible to express the condition in USE by comparison
5428 of candidate CAND. If so, store the value compared with to BOUND, and the
5429 comparison operator to COMP. */
5432 may_eliminate_iv (struct ivopts_data
*data
,
5433 struct iv_use
*use
, struct iv_cand
*cand
, tree
*bound
,
5434 enum tree_code
*comp
)
5439 struct loop
*loop
= data
->current_loop
;
5441 struct tree_niter_desc
*desc
= NULL
;
5443 if (TREE_CODE (cand
->iv
->step
) != INTEGER_CST
)
5446 /* For now works only for exits that dominate the loop latch.
5447 TODO: extend to other conditions inside loop body. */
5448 ex_bb
= gimple_bb (use
->stmt
);
5449 if (use
->stmt
!= last_stmt (ex_bb
)
5450 || gimple_code (use
->stmt
) != GIMPLE_COND
5451 || !dominated_by_p (CDI_DOMINATORS
, loop
->latch
, ex_bb
))
5454 exit
= EDGE_SUCC (ex_bb
, 0);
5455 if (flow_bb_inside_loop_p (loop
, exit
->dest
))
5456 exit
= EDGE_SUCC (ex_bb
, 1);
5457 if (flow_bb_inside_loop_p (loop
, exit
->dest
))
5460 desc
= niter_for_exit (data
, exit
);
5464 /* Determine whether we can use the variable to test the exit condition.
5465 This is the case iff the period of the induction variable is greater
5466 than the number of iterations for which the exit condition is true. */
5467 period
= iv_period (cand
->iv
);
5469 /* If the number of iterations is constant, compare against it directly. */
5470 if (TREE_CODE (desc
->niter
) == INTEGER_CST
)
5472 /* See cand_value_at. */
5473 if (stmt_after_increment (loop
, cand
, use
->stmt
))
5475 if (!tree_int_cst_lt (desc
->niter
, period
))
5480 if (tree_int_cst_lt (period
, desc
->niter
))
5485 /* If not, and if this is the only possible exit of the loop, see whether
5486 we can get a conservative estimate on the number of iterations of the
5487 entire loop and compare against that instead. */
5490 widest_int period_value
, max_niter
;
5492 max_niter
= desc
->max
;
5493 if (stmt_after_increment (loop
, cand
, use
->stmt
))
5495 period_value
= wi::to_widest (period
);
5496 if (wi::gtu_p (max_niter
, period_value
))
5498 /* See if we can take advantage of inferred loop bound
5500 if (data
->loop_single_exit_p
)
5502 if (!max_loop_iterations (loop
, &max_niter
))
5504 /* The loop bound is already adjusted by adding 1. */
5505 if (wi::gtu_p (max_niter
, period_value
))
5513 cand_value_at (loop
, cand
, use
->stmt
, desc
->niter
, &bnd
);
5515 *bound
= fold_convert (TREE_TYPE (cand
->iv
->base
),
5516 aff_combination_to_tree (&bnd
));
5517 *comp
= iv_elimination_compare (data
, use
);
5519 /* It is unlikely that computing the number of iterations using division
5520 would be more profitable than keeping the original induction variable. */
5521 if (expression_expensive_p (*bound
))
5524 /* Sometimes, it is possible to handle the situation that the number of
5525 iterations may be zero unless additional assumptions by using <
5526 instead of != in the exit condition.
5528 TODO: we could also calculate the value MAY_BE_ZERO ? 0 : NITER and
5529 base the exit condition on it. However, that is often too
5531 if (!integer_zerop (desc
->may_be_zero
))
5532 return iv_elimination_compare_lt (data
, cand
, comp
, desc
);
5537 /* Calculates the cost of BOUND, if it is a PARM_DECL. A PARM_DECL must
5538 be copied, if it is used in the loop body and DATA->body_includes_call. */
5541 parm_decl_cost (struct ivopts_data
*data
, tree bound
)
5543 tree sbound
= bound
;
5544 STRIP_NOPS (sbound
);
5546 if (TREE_CODE (sbound
) == SSA_NAME
5547 && SSA_NAME_IS_DEFAULT_DEF (sbound
)
5548 && TREE_CODE (SSA_NAME_VAR (sbound
)) == PARM_DECL
5549 && data
->body_includes_call
)
5550 return COSTS_N_INSNS (1);
5555 /* Determines cost of computing the use in GROUP with CAND in a condition. */
5558 determine_group_iv_cost_cond (struct ivopts_data
*data
,
5559 struct iv_group
*group
, struct iv_cand
*cand
)
5561 tree bound
= NULL_TREE
;
5563 bitmap depends_on_elim
= NULL
, depends_on_express
= NULL
, depends_on
;
5564 comp_cost elim_cost
, express_cost
, cost
, bound_cost
;
5566 iv_inv_expr_ent
*elim_inv_expr
= NULL
, *express_inv_expr
= NULL
, *inv_expr
;
5567 tree
*control_var
, *bound_cst
;
5568 enum tree_code comp
= ERROR_MARK
;
5569 struct iv_use
*use
= group
->vuses
[0];
5571 gcc_assert (cand
->iv
);
5573 /* Try iv elimination. */
5574 if (may_eliminate_iv (data
, use
, cand
, &bound
, &comp
))
5576 elim_cost
= force_var_cost (data
, bound
, &depends_on_elim
);
5577 if (elim_cost
.cost
== 0)
5578 elim_cost
.cost
= parm_decl_cost (data
, bound
);
5579 else if (TREE_CODE (bound
) == INTEGER_CST
)
5581 /* If we replace a loop condition 'i < n' with 'p < base + n',
5582 depends_on_elim will have 'base' and 'n' set, which implies
5583 that both 'base' and 'n' will be live during the loop. More likely,
5584 'base + n' will be loop invariant, resulting in only one live value
5585 during the loop. So in that case we clear depends_on_elim and set
5586 elim_inv_expr_id instead. */
5587 if (depends_on_elim
&& bitmap_count_bits (depends_on_elim
) > 1)
5589 elim_inv_expr
= record_inv_expr (data
, bound
);
5590 bitmap_clear (depends_on_elim
);
5592 /* The bound is a loop invariant, so it will be only computed
5594 elim_cost
.cost
= adjust_setup_cost (data
, elim_cost
.cost
);
5597 elim_cost
= infinite_cost
;
5599 /* Try expressing the original giv. If it is compared with an invariant,
5600 note that we cannot get rid of it. */
5601 ok
= extract_cond_operands (data
, use
->stmt
, &control_var
, &bound_cst
,
5605 /* When the condition is a comparison of the candidate IV against
5606 zero, prefer this IV.
5608 TODO: The constant that we're subtracting from the cost should
5609 be target-dependent. This information should be added to the
5610 target costs for each backend. */
5611 if (!elim_cost
.infinite_cost_p () /* Do not try to decrease infinite! */
5612 && integer_zerop (*bound_cst
)
5613 && (operand_equal_p (*control_var
, cand
->var_after
, 0)
5614 || operand_equal_p (*control_var
, cand
->var_before
, 0)))
5617 express_cost
= get_computation_cost (data
, use
, cand
, false,
5618 &depends_on_express
, NULL
,
5620 fd_ivopts_data
= data
;
5621 walk_tree (&cmp_iv
->base
, find_depends
, &depends_on_express
, NULL
);
5623 /* Count the cost of the original bound as well. */
5624 bound_cost
= force_var_cost (data
, *bound_cst
, NULL
);
5625 if (bound_cost
.cost
== 0)
5626 bound_cost
.cost
= parm_decl_cost (data
, *bound_cst
);
5627 else if (TREE_CODE (*bound_cst
) == INTEGER_CST
)
5628 bound_cost
.cost
= 0;
5629 express_cost
+= bound_cost
;
5631 /* Choose the better approach, preferring the eliminated IV. */
5632 if (elim_cost
<= express_cost
)
5635 depends_on
= depends_on_elim
;
5636 depends_on_elim
= NULL
;
5637 inv_expr
= elim_inv_expr
;
5641 cost
= express_cost
;
5642 depends_on
= depends_on_express
;
5643 depends_on_express
= NULL
;
5646 inv_expr
= express_inv_expr
;
5649 set_group_iv_cost (data
, group
, cand
, cost
,
5650 depends_on
, bound
, comp
, inv_expr
);
5652 if (depends_on_elim
)
5653 BITMAP_FREE (depends_on_elim
);
5654 if (depends_on_express
)
5655 BITMAP_FREE (depends_on_express
);
5657 return !cost
.infinite_cost_p ();
5660 /* Determines cost of computing uses in GROUP with CAND. Returns false
5661 if USE cannot be represented with CAND. */
5664 determine_group_iv_cost (struct ivopts_data
*data
,
5665 struct iv_group
*group
, struct iv_cand
*cand
)
5667 switch (group
->type
)
5669 case USE_NONLINEAR_EXPR
:
5670 return determine_group_iv_cost_generic (data
, group
, cand
);
5673 return determine_group_iv_cost_address (data
, group
, cand
);
5676 return determine_group_iv_cost_cond (data
, group
, cand
);
5683 /* Return true if get_computation_cost indicates that autoincrement is
5684 a possibility for the pair of USE and CAND, false otherwise. */
5687 autoinc_possible_for_pair (struct ivopts_data
*data
, struct iv_use
*use
,
5688 struct iv_cand
*cand
)
5694 if (use
->type
!= USE_ADDRESS
)
5697 cost
= get_computation_cost (data
, use
, cand
, true, &depends_on
,
5698 &can_autoinc
, NULL
);
5700 BITMAP_FREE (depends_on
);
5702 return !cost
.infinite_cost_p () && can_autoinc
;
5705 /* Examine IP_ORIGINAL candidates to see if they are incremented next to a
5706 use that allows autoincrement, and set their AINC_USE if possible. */
5709 set_autoinc_for_original_candidates (struct ivopts_data
*data
)
5713 for (i
= 0; i
< data
->vcands
.length (); i
++)
5715 struct iv_cand
*cand
= data
->vcands
[i
];
5716 struct iv_use
*closest_before
= NULL
;
5717 struct iv_use
*closest_after
= NULL
;
5718 if (cand
->pos
!= IP_ORIGINAL
)
5721 for (j
= 0; j
< data
->vgroups
.length (); j
++)
5723 struct iv_group
*group
= data
->vgroups
[j
];
5724 struct iv_use
*use
= group
->vuses
[0];
5725 unsigned uid
= gimple_uid (use
->stmt
);
5727 if (gimple_bb (use
->stmt
) != gimple_bb (cand
->incremented_at
))
5730 if (uid
< gimple_uid (cand
->incremented_at
)
5731 && (closest_before
== NULL
5732 || uid
> gimple_uid (closest_before
->stmt
)))
5733 closest_before
= use
;
5735 if (uid
> gimple_uid (cand
->incremented_at
)
5736 && (closest_after
== NULL
5737 || uid
< gimple_uid (closest_after
->stmt
)))
5738 closest_after
= use
;
5741 if (closest_before
!= NULL
5742 && autoinc_possible_for_pair (data
, closest_before
, cand
))
5743 cand
->ainc_use
= closest_before
;
5744 else if (closest_after
!= NULL
5745 && autoinc_possible_for_pair (data
, closest_after
, cand
))
5746 cand
->ainc_use
= closest_after
;
5750 /* Finds the candidates for the induction variables. */
5753 find_iv_candidates (struct ivopts_data
*data
)
5755 /* Add commonly used ivs. */
5756 add_standard_iv_candidates (data
);
5758 /* Add old induction variables. */
5759 add_iv_candidate_for_bivs (data
);
5761 /* Add induction variables derived from uses. */
5762 add_iv_candidate_for_groups (data
);
5764 set_autoinc_for_original_candidates (data
);
5766 /* Record the important candidates. */
5767 record_important_candidates (data
);
5769 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5773 fprintf (dump_file
, "\n<Important Candidates>:\t");
5774 for (i
= 0; i
< data
->vcands
.length (); i
++)
5775 if (data
->vcands
[i
]->important
)
5776 fprintf (dump_file
, " %d,", data
->vcands
[i
]->id
);
5777 fprintf (dump_file
, "\n");
5779 fprintf (dump_file
, "\n<Group, Cand> Related:\n");
5780 for (i
= 0; i
< data
->vgroups
.length (); i
++)
5782 struct iv_group
*group
= data
->vgroups
[i
];
5784 if (group
->related_cands
)
5786 fprintf (dump_file
, " Group %d:\t", group
->id
);
5787 dump_bitmap (dump_file
, group
->related_cands
);
5790 fprintf (dump_file
, "\n");
5794 /* Determines costs of computing use of iv with an iv candidate. */
5797 determine_group_iv_costs (struct ivopts_data
*data
)
5800 struct iv_cand
*cand
;
5801 struct iv_group
*group
;
5802 bitmap to_clear
= BITMAP_ALLOC (NULL
);
5804 alloc_use_cost_map (data
);
5806 for (i
= 0; i
< data
->vgroups
.length (); i
++)
5808 group
= data
->vgroups
[i
];
5810 if (data
->consider_all_candidates
)
5812 for (j
= 0; j
< data
->vcands
.length (); j
++)
5814 cand
= data
->vcands
[j
];
5815 determine_group_iv_cost (data
, group
, cand
);
5822 EXECUTE_IF_SET_IN_BITMAP (group
->related_cands
, 0, j
, bi
)
5824 cand
= data
->vcands
[j
];
5825 if (!determine_group_iv_cost (data
, group
, cand
))
5826 bitmap_set_bit (to_clear
, j
);
5829 /* Remove the candidates for that the cost is infinite from
5830 the list of related candidates. */
5831 bitmap_and_compl_into (group
->related_cands
, to_clear
);
5832 bitmap_clear (to_clear
);
5836 BITMAP_FREE (to_clear
);
5838 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5840 fprintf (dump_file
, "\n<Invariant Expressions>:\n");
5841 auto_vec
<iv_inv_expr_ent
*> list (data
->inv_expr_tab
->elements ());
5843 for (hash_table
<iv_inv_expr_hasher
>::iterator it
5844 = data
->inv_expr_tab
->begin (); it
!= data
->inv_expr_tab
->end ();
5846 list
.safe_push (*it
);
5848 list
.qsort (sort_iv_inv_expr_ent
);
5850 for (i
= 0; i
< list
.length (); ++i
)
5852 fprintf (dump_file
, "inv_expr %d: \t", i
);
5853 print_generic_expr (dump_file
, list
[i
]->expr
, TDF_SLIM
);
5854 fprintf (dump_file
, "\n");
5857 fprintf (dump_file
, "\n<Group-candidate Costs>:\n");
5859 for (i
= 0; i
< data
->vgroups
.length (); i
++)
5861 group
= data
->vgroups
[i
];
5863 fprintf (dump_file
, "Group %d:\n", i
);
5864 fprintf (dump_file
, " cand\tcost\tcompl.\tinv.ex.\tdepends on\n");
5865 for (j
= 0; j
< group
->n_map_members
; j
++)
5867 if (!group
->cost_map
[j
].cand
5868 || group
->cost_map
[j
].cost
.infinite_cost_p ())
5871 fprintf (dump_file
, " %d\t%d\t%d\t",
5872 group
->cost_map
[j
].cand
->id
,
5873 group
->cost_map
[j
].cost
.cost
,
5874 group
->cost_map
[j
].cost
.complexity
);
5875 if (group
->cost_map
[j
].inv_expr
!= NULL
)
5876 fprintf (dump_file
, "%d\t",
5877 group
->cost_map
[j
].inv_expr
->id
);
5879 fprintf (dump_file
, "\t");
5880 if (group
->cost_map
[j
].depends_on
)
5881 bitmap_print (dump_file
,
5882 group
->cost_map
[j
].depends_on
, "","");
5883 fprintf (dump_file
, "\n");
5886 fprintf (dump_file
, "\n");
5888 fprintf (dump_file
, "\n");
5892 /* Determines cost of the candidate CAND. */
5895 determine_iv_cost (struct ivopts_data
*data
, struct iv_cand
*cand
)
5897 comp_cost cost_base
;
5898 unsigned cost
, cost_step
;
5907 /* There are two costs associated with the candidate -- its increment
5908 and its initialization. The second is almost negligible for any loop
5909 that rolls enough, so we take it just very little into account. */
5911 base
= cand
->iv
->base
;
5912 cost_base
= force_var_cost (data
, base
, NULL
);
5913 /* It will be exceptional that the iv register happens to be initialized with
5914 the proper value at no cost. In general, there will at least be a regcopy
5916 if (cost_base
.cost
== 0)
5917 cost_base
.cost
= COSTS_N_INSNS (1);
5918 cost_step
= add_cost (data
->speed
, TYPE_MODE (TREE_TYPE (base
)));
5920 cost
= cost_step
+ adjust_setup_cost (data
, cost_base
.cost
);
5922 /* Prefer the original ivs unless we may gain something by replacing it.
5923 The reason is to make debugging simpler; so this is not relevant for
5924 artificial ivs created by other optimization passes. */
5925 if (cand
->pos
!= IP_ORIGINAL
5926 || !SSA_NAME_VAR (cand
->var_before
)
5927 || DECL_ARTIFICIAL (SSA_NAME_VAR (cand
->var_before
)))
5930 /* Prefer not to insert statements into latch unless there are some
5931 already (so that we do not create unnecessary jumps). */
5932 if (cand
->pos
== IP_END
5933 && empty_block_p (ip_end_pos (data
->current_loop
)))
5937 cand
->cost_step
= cost_step
;
5940 /* Determines costs of computation of the candidates. */
5943 determine_iv_costs (struct ivopts_data
*data
)
5947 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5949 fprintf (dump_file
, "<Candidate Costs>:\n");
5950 fprintf (dump_file
, " cand\tcost\n");
5953 for (i
= 0; i
< data
->vcands
.length (); i
++)
5955 struct iv_cand
*cand
= data
->vcands
[i
];
5957 determine_iv_cost (data
, cand
);
5959 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5960 fprintf (dump_file
, " %d\t%d\n", i
, cand
->cost
);
5963 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5964 fprintf (dump_file
, "\n");
5967 /* Calculates cost for having SIZE induction variables. */
5970 ivopts_global_cost_for_size (struct ivopts_data
*data
, unsigned size
)
5972 /* We add size to the cost, so that we prefer eliminating ivs
5974 return size
+ estimate_reg_pressure_cost (size
, data
->regs_used
, data
->speed
,
5975 data
->body_includes_call
);
5978 /* For each size of the induction variable set determine the penalty. */
5981 determine_set_costs (struct ivopts_data
*data
)
5987 struct loop
*loop
= data
->current_loop
;
5990 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5992 fprintf (dump_file
, "<Global Costs>:\n");
5993 fprintf (dump_file
, " target_avail_regs %d\n", target_avail_regs
);
5994 fprintf (dump_file
, " target_clobbered_regs %d\n", target_clobbered_regs
);
5995 fprintf (dump_file
, " target_reg_cost %d\n", target_reg_cost
[data
->speed
]);
5996 fprintf (dump_file
, " target_spill_cost %d\n", target_spill_cost
[data
->speed
]);
6000 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
6003 op
= PHI_RESULT (phi
);
6005 if (virtual_operand_p (op
))
6008 if (get_iv (data
, op
))
6014 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, j
, bi
)
6016 struct version_info
*info
= ver_info (data
, j
);
6018 if (info
->inv_id
&& info
->has_nonlin_use
)
6022 data
->regs_used
= n
;
6023 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6024 fprintf (dump_file
, " regs_used %d\n", n
);
6026 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6028 fprintf (dump_file
, " cost for size:\n");
6029 fprintf (dump_file
, " ivs\tcost\n");
6030 for (j
= 0; j
<= 2 * target_avail_regs
; j
++)
6031 fprintf (dump_file
, " %d\t%d\n", j
,
6032 ivopts_global_cost_for_size (data
, j
));
6033 fprintf (dump_file
, "\n");
6037 /* Returns true if A is a cheaper cost pair than B. */
6040 cheaper_cost_pair (struct cost_pair
*a
, struct cost_pair
*b
)
6048 if (a
->cost
< b
->cost
)
6051 if (b
->cost
< a
->cost
)
6054 /* In case the costs are the same, prefer the cheaper candidate. */
6055 if (a
->cand
->cost
< b
->cand
->cost
)
6062 /* Returns candidate by that USE is expressed in IVS. */
6064 static struct cost_pair
*
6065 iv_ca_cand_for_group (struct iv_ca
*ivs
, struct iv_group
*group
)
6067 return ivs
->cand_for_group
[group
->id
];
6070 /* Computes the cost field of IVS structure. */
6073 iv_ca_recount_cost (struct ivopts_data
*data
, struct iv_ca
*ivs
)
6075 comp_cost cost
= ivs
->cand_use_cost
;
6077 cost
+= ivs
->cand_cost
;
6079 cost
+= ivopts_global_cost_for_size (data
,
6081 + ivs
->used_inv_exprs
->elements ());
6086 /* Remove invariants in set INVS to set IVS. */
6089 iv_ca_set_remove_invariants (struct iv_ca
*ivs
, bitmap invs
)
6097 EXECUTE_IF_SET_IN_BITMAP (invs
, 0, iid
, bi
)
6099 ivs
->n_invariant_uses
[iid
]--;
6100 if (ivs
->n_invariant_uses
[iid
] == 0)
6105 /* Set USE not to be expressed by any candidate in IVS. */
6108 iv_ca_set_no_cp (struct ivopts_data
*data
, struct iv_ca
*ivs
,
6109 struct iv_group
*group
)
6111 unsigned gid
= group
->id
, cid
;
6112 struct cost_pair
*cp
;
6114 cp
= ivs
->cand_for_group
[gid
];
6120 ivs
->cand_for_group
[gid
] = NULL
;
6121 ivs
->n_cand_uses
[cid
]--;
6123 if (ivs
->n_cand_uses
[cid
] == 0)
6125 bitmap_clear_bit (ivs
->cands
, cid
);
6126 /* Do not count the pseudocandidates. */
6130 ivs
->cand_cost
-= cp
->cand
->cost
;
6132 iv_ca_set_remove_invariants (ivs
, cp
->cand
->depends_on
);
6135 ivs
->cand_use_cost
-= cp
->cost
;
6137 iv_ca_set_remove_invariants (ivs
, cp
->depends_on
);
6139 if (cp
->inv_expr
!= NULL
)
6141 unsigned *slot
= ivs
->used_inv_exprs
->get (cp
->inv_expr
);
6144 ivs
->used_inv_exprs
->remove (cp
->inv_expr
);
6146 iv_ca_recount_cost (data
, ivs
);
6149 /* Add invariants in set INVS to set IVS. */
6152 iv_ca_set_add_invariants (struct iv_ca
*ivs
, bitmap invs
)
6160 EXECUTE_IF_SET_IN_BITMAP (invs
, 0, iid
, bi
)
6162 ivs
->n_invariant_uses
[iid
]++;
6163 if (ivs
->n_invariant_uses
[iid
] == 1)
6168 /* Set cost pair for GROUP in set IVS to CP. */
6171 iv_ca_set_cp (struct ivopts_data
*data
, struct iv_ca
*ivs
,
6172 struct iv_group
*group
, struct cost_pair
*cp
)
6174 unsigned gid
= group
->id
, cid
;
6176 if (ivs
->cand_for_group
[gid
] == cp
)
6179 if (ivs
->cand_for_group
[gid
])
6180 iv_ca_set_no_cp (data
, ivs
, group
);
6187 ivs
->cand_for_group
[gid
] = cp
;
6188 ivs
->n_cand_uses
[cid
]++;
6189 if (ivs
->n_cand_uses
[cid
] == 1)
6191 bitmap_set_bit (ivs
->cands
, cid
);
6192 /* Do not count the pseudocandidates. */
6196 ivs
->cand_cost
+= cp
->cand
->cost
;
6198 iv_ca_set_add_invariants (ivs
, cp
->cand
->depends_on
);
6201 ivs
->cand_use_cost
+= cp
->cost
;
6202 iv_ca_set_add_invariants (ivs
, cp
->depends_on
);
6204 if (cp
->inv_expr
!= NULL
)
6206 unsigned *slot
= &ivs
->used_inv_exprs
->get_or_insert (cp
->inv_expr
);
6209 iv_ca_recount_cost (data
, ivs
);
6213 /* Extend set IVS by expressing USE by some of the candidates in it
6214 if possible. Consider all important candidates if candidates in
6215 set IVS don't give any result. */
6218 iv_ca_add_group (struct ivopts_data
*data
, struct iv_ca
*ivs
,
6219 struct iv_group
*group
)
6221 struct cost_pair
*best_cp
= NULL
, *cp
;
6224 struct iv_cand
*cand
;
6226 gcc_assert (ivs
->upto
>= group
->id
);
6230 EXECUTE_IF_SET_IN_BITMAP (ivs
->cands
, 0, i
, bi
)
6232 cand
= data
->vcands
[i
];
6233 cp
= get_group_iv_cost (data
, group
, cand
);
6234 if (cheaper_cost_pair (cp
, best_cp
))
6238 if (best_cp
== NULL
)
6240 EXECUTE_IF_SET_IN_BITMAP (data
->important_candidates
, 0, i
, bi
)
6242 cand
= data
->vcands
[i
];
6243 cp
= get_group_iv_cost (data
, group
, cand
);
6244 if (cheaper_cost_pair (cp
, best_cp
))
6249 iv_ca_set_cp (data
, ivs
, group
, best_cp
);
6252 /* Get cost for assignment IVS. */
6255 iv_ca_cost (struct iv_ca
*ivs
)
6257 /* This was a conditional expression but it triggered a bug in
6259 if (ivs
->bad_groups
)
6260 return infinite_cost
;
6265 /* Returns true if all dependences of CP are among invariants in IVS. */
6268 iv_ca_has_deps (struct iv_ca
*ivs
, struct cost_pair
*cp
)
6273 if (!cp
->depends_on
)
6276 EXECUTE_IF_SET_IN_BITMAP (cp
->depends_on
, 0, i
, bi
)
6278 if (ivs
->n_invariant_uses
[i
] == 0)
6285 /* Creates change of expressing GROUP by NEW_CP instead of OLD_CP and chains
6288 static struct iv_ca_delta
*
6289 iv_ca_delta_add (struct iv_group
*group
, struct cost_pair
*old_cp
,
6290 struct cost_pair
*new_cp
, struct iv_ca_delta
*next
)
6292 struct iv_ca_delta
*change
= XNEW (struct iv_ca_delta
);
6294 change
->group
= group
;
6295 change
->old_cp
= old_cp
;
6296 change
->new_cp
= new_cp
;
6297 change
->next
= next
;
6302 /* Joins two lists of changes L1 and L2. Destructive -- old lists
6305 static struct iv_ca_delta
*
6306 iv_ca_delta_join (struct iv_ca_delta
*l1
, struct iv_ca_delta
*l2
)
6308 struct iv_ca_delta
*last
;
6316 for (last
= l1
; last
->next
; last
= last
->next
)
6323 /* Reverse the list of changes DELTA, forming the inverse to it. */
6325 static struct iv_ca_delta
*
6326 iv_ca_delta_reverse (struct iv_ca_delta
*delta
)
6328 struct iv_ca_delta
*act
, *next
, *prev
= NULL
;
6330 for (act
= delta
; act
; act
= next
)
6336 std::swap (act
->old_cp
, act
->new_cp
);
6342 /* Commit changes in DELTA to IVS. If FORWARD is false, the changes are
6343 reverted instead. */
6346 iv_ca_delta_commit (struct ivopts_data
*data
, struct iv_ca
*ivs
,
6347 struct iv_ca_delta
*delta
, bool forward
)
6349 struct cost_pair
*from
, *to
;
6350 struct iv_ca_delta
*act
;
6353 delta
= iv_ca_delta_reverse (delta
);
6355 for (act
= delta
; act
; act
= act
->next
)
6359 gcc_assert (iv_ca_cand_for_group (ivs
, act
->group
) == from
);
6360 iv_ca_set_cp (data
, ivs
, act
->group
, to
);
6364 iv_ca_delta_reverse (delta
);
6367 /* Returns true if CAND is used in IVS. */
6370 iv_ca_cand_used_p (struct iv_ca
*ivs
, struct iv_cand
*cand
)
6372 return ivs
->n_cand_uses
[cand
->id
] > 0;
6375 /* Returns number of induction variable candidates in the set IVS. */
6378 iv_ca_n_cands (struct iv_ca
*ivs
)
6380 return ivs
->n_cands
;
6383 /* Free the list of changes DELTA. */
6386 iv_ca_delta_free (struct iv_ca_delta
**delta
)
6388 struct iv_ca_delta
*act
, *next
;
6390 for (act
= *delta
; act
; act
= next
)
6399 /* Allocates new iv candidates assignment. */
6401 static struct iv_ca
*
6402 iv_ca_new (struct ivopts_data
*data
)
6404 struct iv_ca
*nw
= XNEW (struct iv_ca
);
6408 nw
->cand_for_group
= XCNEWVEC (struct cost_pair
*,
6409 data
->vgroups
.length ());
6410 nw
->n_cand_uses
= XCNEWVEC (unsigned, data
->vcands
.length ());
6411 nw
->cands
= BITMAP_ALLOC (NULL
);
6414 nw
->cand_use_cost
= no_cost
;
6416 nw
->n_invariant_uses
= XCNEWVEC (unsigned, data
->max_inv_id
+ 1);
6417 nw
->used_inv_exprs
= new hash_map
<iv_inv_expr_ent
*, unsigned> (13);
6423 /* Free memory occupied by the set IVS. */
6426 iv_ca_free (struct iv_ca
**ivs
)
6428 free ((*ivs
)->cand_for_group
);
6429 free ((*ivs
)->n_cand_uses
);
6430 BITMAP_FREE ((*ivs
)->cands
);
6431 free ((*ivs
)->n_invariant_uses
);
6432 delete ((*ivs
)->used_inv_exprs
);
6437 /* Dumps IVS to FILE. */
6440 iv_ca_dump (struct ivopts_data
*data
, FILE *file
, struct iv_ca
*ivs
)
6443 comp_cost cost
= iv_ca_cost (ivs
);
6445 fprintf (file
, " cost: %d (complexity %d)\n", cost
.cost
,
6447 fprintf (file
, " cand_cost: %d\n cand_group_cost: %d (complexity %d)\n",
6448 ivs
->cand_cost
, ivs
->cand_use_cost
.cost
,
6449 ivs
->cand_use_cost
.complexity
);
6450 bitmap_print (file
, ivs
->cands
, " candidates: ","\n");
6452 for (i
= 0; i
< ivs
->upto
; i
++)
6454 struct iv_group
*group
= data
->vgroups
[i
];
6455 struct cost_pair
*cp
= iv_ca_cand_for_group (ivs
, group
);
6457 fprintf (file
, " group:%d --> iv_cand:%d, cost=(%d,%d)\n",
6458 group
->id
, cp
->cand
->id
, cp
->cost
.cost
,
6459 cp
->cost
.complexity
);
6461 fprintf (file
, " group:%d --> ??\n", group
->id
);
6464 const char *pref
= "";
6465 fprintf (file
, " invariant variables: ");
6466 for (i
= 1; i
<= data
->max_inv_id
; i
++)
6467 if (ivs
->n_invariant_uses
[i
])
6469 fprintf (file
, "%s%d", pref
, i
);
6474 fprintf (file
, "\n invariant expressions: ");
6475 for (hash_map
<iv_inv_expr_ent
*, unsigned>::iterator it
6476 = ivs
->used_inv_exprs
->begin (); it
!= ivs
->used_inv_exprs
->end (); ++it
)
6478 fprintf (file
, "%s%d", pref
, (*it
).first
->id
);
6482 fprintf (file
, "\n\n");
6485 /* Try changing candidate in IVS to CAND for each use. Return cost of the
6486 new set, and store differences in DELTA. Number of induction variables
6487 in the new set is stored to N_IVS. MIN_NCAND is a flag. When it is true
6488 the function will try to find a solution with mimimal iv candidates. */
6491 iv_ca_extend (struct ivopts_data
*data
, struct iv_ca
*ivs
,
6492 struct iv_cand
*cand
, struct iv_ca_delta
**delta
,
6493 unsigned *n_ivs
, bool min_ncand
)
6497 struct iv_group
*group
;
6498 struct cost_pair
*old_cp
, *new_cp
;
6501 for (i
= 0; i
< ivs
->upto
; i
++)
6503 group
= data
->vgroups
[i
];
6504 old_cp
= iv_ca_cand_for_group (ivs
, group
);
6507 && old_cp
->cand
== cand
)
6510 new_cp
= get_group_iv_cost (data
, group
, cand
);
6514 if (!min_ncand
&& !iv_ca_has_deps (ivs
, new_cp
))
6517 if (!min_ncand
&& !cheaper_cost_pair (new_cp
, old_cp
))
6520 *delta
= iv_ca_delta_add (group
, old_cp
, new_cp
, *delta
);
6523 iv_ca_delta_commit (data
, ivs
, *delta
, true);
6524 cost
= iv_ca_cost (ivs
);
6526 *n_ivs
= iv_ca_n_cands (ivs
);
6527 iv_ca_delta_commit (data
, ivs
, *delta
, false);
6532 /* Try narrowing set IVS by removing CAND. Return the cost of
6533 the new set and store the differences in DELTA. START is
6534 the candidate with which we start narrowing. */
6537 iv_ca_narrow (struct ivopts_data
*data
, struct iv_ca
*ivs
,
6538 struct iv_cand
*cand
, struct iv_cand
*start
,
6539 struct iv_ca_delta
**delta
)
6542 struct iv_group
*group
;
6543 struct cost_pair
*old_cp
, *new_cp
, *cp
;
6545 struct iv_cand
*cnd
;
6546 comp_cost cost
, best_cost
, acost
;
6549 for (i
= 0; i
< data
->vgroups
.length (); i
++)
6551 group
= data
->vgroups
[i
];
6553 old_cp
= iv_ca_cand_for_group (ivs
, group
);
6554 if (old_cp
->cand
!= cand
)
6557 best_cost
= iv_ca_cost (ivs
);
6558 /* Start narrowing with START. */
6559 new_cp
= get_group_iv_cost (data
, group
, start
);
6561 if (data
->consider_all_candidates
)
6563 EXECUTE_IF_SET_IN_BITMAP (ivs
->cands
, 0, ci
, bi
)
6565 if (ci
== cand
->id
|| (start
&& ci
== start
->id
))
6568 cnd
= data
->vcands
[ci
];
6570 cp
= get_group_iv_cost (data
, group
, cnd
);
6574 iv_ca_set_cp (data
, ivs
, group
, cp
);
6575 acost
= iv_ca_cost (ivs
);
6577 if (acost
< best_cost
)
6586 EXECUTE_IF_AND_IN_BITMAP (group
->related_cands
, ivs
->cands
, 0, ci
, bi
)
6588 if (ci
== cand
->id
|| (start
&& ci
== start
->id
))
6591 cnd
= data
->vcands
[ci
];
6593 cp
= get_group_iv_cost (data
, group
, cnd
);
6597 iv_ca_set_cp (data
, ivs
, group
, cp
);
6598 acost
= iv_ca_cost (ivs
);
6600 if (acost
< best_cost
)
6607 /* Restore to old cp for use. */
6608 iv_ca_set_cp (data
, ivs
, group
, old_cp
);
6612 iv_ca_delta_free (delta
);
6613 return infinite_cost
;
6616 *delta
= iv_ca_delta_add (group
, old_cp
, new_cp
, *delta
);
6619 iv_ca_delta_commit (data
, ivs
, *delta
, true);
6620 cost
= iv_ca_cost (ivs
);
6621 iv_ca_delta_commit (data
, ivs
, *delta
, false);
6626 /* Try optimizing the set of candidates IVS by removing candidates different
6627 from to EXCEPT_CAND from it. Return cost of the new set, and store
6628 differences in DELTA. */
6631 iv_ca_prune (struct ivopts_data
*data
, struct iv_ca
*ivs
,
6632 struct iv_cand
*except_cand
, struct iv_ca_delta
**delta
)
6635 struct iv_ca_delta
*act_delta
, *best_delta
;
6637 comp_cost best_cost
, acost
;
6638 struct iv_cand
*cand
;
6641 best_cost
= iv_ca_cost (ivs
);
6643 EXECUTE_IF_SET_IN_BITMAP (ivs
->cands
, 0, i
, bi
)
6645 cand
= data
->vcands
[i
];
6647 if (cand
== except_cand
)
6650 acost
= iv_ca_narrow (data
, ivs
, cand
, except_cand
, &act_delta
);
6652 if (acost
< best_cost
)
6655 iv_ca_delta_free (&best_delta
);
6656 best_delta
= act_delta
;
6659 iv_ca_delta_free (&act_delta
);
6668 /* Recurse to possibly remove other unnecessary ivs. */
6669 iv_ca_delta_commit (data
, ivs
, best_delta
, true);
6670 best_cost
= iv_ca_prune (data
, ivs
, except_cand
, delta
);
6671 iv_ca_delta_commit (data
, ivs
, best_delta
, false);
6672 *delta
= iv_ca_delta_join (best_delta
, *delta
);
6676 /* Check if CAND_IDX is a candidate other than OLD_CAND and has
6677 cheaper local cost for GROUP than BEST_CP. Return pointer to
6678 the corresponding cost_pair, otherwise just return BEST_CP. */
6680 static struct cost_pair
*
6681 cheaper_cost_with_cand (struct ivopts_data
*data
, struct iv_group
*group
,
6682 unsigned int cand_idx
, struct iv_cand
*old_cand
,
6683 struct cost_pair
*best_cp
)
6685 struct iv_cand
*cand
;
6686 struct cost_pair
*cp
;
6688 gcc_assert (old_cand
!= NULL
&& best_cp
!= NULL
);
6689 if (cand_idx
== old_cand
->id
)
6692 cand
= data
->vcands
[cand_idx
];
6693 cp
= get_group_iv_cost (data
, group
, cand
);
6694 if (cp
!= NULL
&& cheaper_cost_pair (cp
, best_cp
))
6700 /* Try breaking local optimal fixed-point for IVS by replacing candidates
6701 which are used by more than one iv uses. For each of those candidates,
6702 this function tries to represent iv uses under that candidate using
6703 other ones with lower local cost, then tries to prune the new set.
6704 If the new set has lower cost, It returns the new cost after recording
6705 candidate replacement in list DELTA. */
6708 iv_ca_replace (struct ivopts_data
*data
, struct iv_ca
*ivs
,
6709 struct iv_ca_delta
**delta
)
6711 bitmap_iterator bi
, bj
;
6712 unsigned int i
, j
, k
;
6713 struct iv_cand
*cand
;
6714 comp_cost orig_cost
, acost
;
6715 struct iv_ca_delta
*act_delta
, *tmp_delta
;
6716 struct cost_pair
*old_cp
, *best_cp
= NULL
;
6719 orig_cost
= iv_ca_cost (ivs
);
6721 EXECUTE_IF_SET_IN_BITMAP (ivs
->cands
, 0, i
, bi
)
6723 if (ivs
->n_cand_uses
[i
] == 1
6724 || ivs
->n_cand_uses
[i
] > ALWAYS_PRUNE_CAND_SET_BOUND
)
6727 cand
= data
->vcands
[i
];
6730 /* Represent uses under current candidate using other ones with
6731 lower local cost. */
6732 for (j
= 0; j
< ivs
->upto
; j
++)
6734 struct iv_group
*group
= data
->vgroups
[j
];
6735 old_cp
= iv_ca_cand_for_group (ivs
, group
);
6737 if (old_cp
->cand
!= cand
)
6741 if (data
->consider_all_candidates
)
6742 for (k
= 0; k
< data
->vcands
.length (); k
++)
6743 best_cp
= cheaper_cost_with_cand (data
, group
, k
,
6744 old_cp
->cand
, best_cp
);
6746 EXECUTE_IF_SET_IN_BITMAP (group
->related_cands
, 0, k
, bj
)
6747 best_cp
= cheaper_cost_with_cand (data
, group
, k
,
6748 old_cp
->cand
, best_cp
);
6750 if (best_cp
== old_cp
)
6753 act_delta
= iv_ca_delta_add (group
, old_cp
, best_cp
, act_delta
);
6755 /* No need for further prune. */
6759 /* Prune the new candidate set. */
6760 iv_ca_delta_commit (data
, ivs
, act_delta
, true);
6761 acost
= iv_ca_prune (data
, ivs
, NULL
, &tmp_delta
);
6762 iv_ca_delta_commit (data
, ivs
, act_delta
, false);
6763 act_delta
= iv_ca_delta_join (act_delta
, tmp_delta
);
6765 if (acost
< orig_cost
)
6771 iv_ca_delta_free (&act_delta
);
6777 /* Tries to extend the sets IVS in the best possible way in order to
6778 express the GROUP. If ORIGINALP is true, prefer candidates from
6779 the original set of IVs, otherwise favor important candidates not
6780 based on any memory object. */
6783 try_add_cand_for (struct ivopts_data
*data
, struct iv_ca
*ivs
,
6784 struct iv_group
*group
, bool originalp
)
6786 comp_cost best_cost
, act_cost
;
6789 struct iv_cand
*cand
;
6790 struct iv_ca_delta
*best_delta
= NULL
, *act_delta
;
6791 struct cost_pair
*cp
;
6793 iv_ca_add_group (data
, ivs
, group
);
6794 best_cost
= iv_ca_cost (ivs
);
6795 cp
= iv_ca_cand_for_group (ivs
, group
);
6798 best_delta
= iv_ca_delta_add (group
, NULL
, cp
, NULL
);
6799 iv_ca_set_no_cp (data
, ivs
, group
);
6802 /* If ORIGINALP is true, try to find the original IV for the use. Otherwise
6803 first try important candidates not based on any memory object. Only if
6804 this fails, try the specific ones. Rationale -- in loops with many
6805 variables the best choice often is to use just one generic biv. If we
6806 added here many ivs specific to the uses, the optimization algorithm later
6807 would be likely to get stuck in a local minimum, thus causing us to create
6808 too many ivs. The approach from few ivs to more seems more likely to be
6809 successful -- starting from few ivs, replacing an expensive use by a
6810 specific iv should always be a win. */
6811 EXECUTE_IF_SET_IN_BITMAP (group
->related_cands
, 0, i
, bi
)
6813 cand
= data
->vcands
[i
];
6815 if (originalp
&& cand
->pos
!=IP_ORIGINAL
)
6818 if (!originalp
&& cand
->iv
->base_object
!= NULL_TREE
)
6821 if (iv_ca_cand_used_p (ivs
, cand
))
6824 cp
= get_group_iv_cost (data
, group
, cand
);
6828 iv_ca_set_cp (data
, ivs
, group
, cp
);
6829 act_cost
= iv_ca_extend (data
, ivs
, cand
, &act_delta
, NULL
,
6831 iv_ca_set_no_cp (data
, ivs
, group
);
6832 act_delta
= iv_ca_delta_add (group
, NULL
, cp
, act_delta
);
6834 if (act_cost
< best_cost
)
6836 best_cost
= act_cost
;
6838 iv_ca_delta_free (&best_delta
);
6839 best_delta
= act_delta
;
6842 iv_ca_delta_free (&act_delta
);
6845 if (best_cost
.infinite_cost_p ())
6847 for (i
= 0; i
< group
->n_map_members
; i
++)
6849 cp
= group
->cost_map
+ i
;
6854 /* Already tried this. */
6855 if (cand
->important
)
6857 if (originalp
&& cand
->pos
== IP_ORIGINAL
)
6859 if (!originalp
&& cand
->iv
->base_object
== NULL_TREE
)
6863 if (iv_ca_cand_used_p (ivs
, cand
))
6867 iv_ca_set_cp (data
, ivs
, group
, cp
);
6868 act_cost
= iv_ca_extend (data
, ivs
, cand
, &act_delta
, NULL
, true);
6869 iv_ca_set_no_cp (data
, ivs
, group
);
6870 act_delta
= iv_ca_delta_add (group
,
6871 iv_ca_cand_for_group (ivs
, group
),
6874 if (act_cost
< best_cost
)
6876 best_cost
= act_cost
;
6879 iv_ca_delta_free (&best_delta
);
6880 best_delta
= act_delta
;
6883 iv_ca_delta_free (&act_delta
);
6887 iv_ca_delta_commit (data
, ivs
, best_delta
, true);
6888 iv_ca_delta_free (&best_delta
);
6890 return !best_cost
.infinite_cost_p ();
6893 /* Finds an initial assignment of candidates to uses. */
6895 static struct iv_ca
*
6896 get_initial_solution (struct ivopts_data
*data
, bool originalp
)
6899 struct iv_ca
*ivs
= iv_ca_new (data
);
6901 for (i
= 0; i
< data
->vgroups
.length (); i
++)
6902 if (!try_add_cand_for (data
, ivs
, data
->vgroups
[i
], originalp
))
6911 /* Tries to improve set of induction variables IVS. TRY_REPLACE_P
6912 points to a bool variable, this function tries to break local
6913 optimal fixed-point by replacing candidates in IVS if it's true. */
6916 try_improve_iv_set (struct ivopts_data
*data
,
6917 struct iv_ca
*ivs
, bool *try_replace_p
)
6920 comp_cost acost
, best_cost
= iv_ca_cost (ivs
);
6921 struct iv_ca_delta
*best_delta
= NULL
, *act_delta
, *tmp_delta
;
6922 struct iv_cand
*cand
;
6924 /* Try extending the set of induction variables by one. */
6925 for (i
= 0; i
< data
->vcands
.length (); i
++)
6927 cand
= data
->vcands
[i
];
6929 if (iv_ca_cand_used_p (ivs
, cand
))
6932 acost
= iv_ca_extend (data
, ivs
, cand
, &act_delta
, &n_ivs
, false);
6936 /* If we successfully added the candidate and the set is small enough,
6937 try optimizing it by removing other candidates. */
6938 if (n_ivs
<= ALWAYS_PRUNE_CAND_SET_BOUND
)
6940 iv_ca_delta_commit (data
, ivs
, act_delta
, true);
6941 acost
= iv_ca_prune (data
, ivs
, cand
, &tmp_delta
);
6942 iv_ca_delta_commit (data
, ivs
, act_delta
, false);
6943 act_delta
= iv_ca_delta_join (act_delta
, tmp_delta
);
6946 if (acost
< best_cost
)
6949 iv_ca_delta_free (&best_delta
);
6950 best_delta
= act_delta
;
6953 iv_ca_delta_free (&act_delta
);
6958 /* Try removing the candidates from the set instead. */
6959 best_cost
= iv_ca_prune (data
, ivs
, NULL
, &best_delta
);
6961 if (!best_delta
&& *try_replace_p
)
6963 *try_replace_p
= false;
6964 /* So far candidate selecting algorithm tends to choose fewer IVs
6965 so that it can handle cases in which loops have many variables
6966 but the best choice is often to use only one general biv. One
6967 weakness is it can't handle opposite cases, in which different
6968 candidates should be chosen with respect to each use. To solve
6969 the problem, we replace candidates in a manner described by the
6970 comments of iv_ca_replace, thus give general algorithm a chance
6971 to break local optimal fixed-point in these cases. */
6972 best_cost
= iv_ca_replace (data
, ivs
, &best_delta
);
6979 iv_ca_delta_commit (data
, ivs
, best_delta
, true);
6980 gcc_assert (best_cost
== iv_ca_cost (ivs
));
6981 iv_ca_delta_free (&best_delta
);
6985 /* Attempts to find the optimal set of induction variables. We do simple
6986 greedy heuristic -- we try to replace at most one candidate in the selected
6987 solution and remove the unused ivs while this improves the cost. */
6989 static struct iv_ca
*
6990 find_optimal_iv_set_1 (struct ivopts_data
*data
, bool originalp
)
6993 bool try_replace_p
= true;
6995 /* Get the initial solution. */
6996 set
= get_initial_solution (data
, originalp
);
6999 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7000 fprintf (dump_file
, "Unable to substitute for ivs, failed.\n");
7004 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7006 fprintf (dump_file
, "Initial set of candidates:\n");
7007 iv_ca_dump (data
, dump_file
, set
);
7010 while (try_improve_iv_set (data
, set
, &try_replace_p
))
7012 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7014 fprintf (dump_file
, "Improved to:\n");
7015 iv_ca_dump (data
, dump_file
, set
);
7022 static struct iv_ca
*
7023 find_optimal_iv_set (struct ivopts_data
*data
)
7026 comp_cost cost
, origcost
;
7027 struct iv_ca
*set
, *origset
;
7029 /* Determine the cost based on a strategy that starts with original IVs,
7030 and try again using a strategy that prefers candidates not based
7032 origset
= find_optimal_iv_set_1 (data
, true);
7033 set
= find_optimal_iv_set_1 (data
, false);
7035 if (!origset
&& !set
)
7038 origcost
= origset
? iv_ca_cost (origset
) : infinite_cost
;
7039 cost
= set
? iv_ca_cost (set
) : infinite_cost
;
7041 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7043 fprintf (dump_file
, "Original cost %d (complexity %d)\n\n",
7044 origcost
.cost
, origcost
.complexity
);
7045 fprintf (dump_file
, "Final cost %d (complexity %d)\n\n",
7046 cost
.cost
, cost
.complexity
);
7049 /* Choose the one with the best cost. */
7050 if (origcost
<= cost
)
7057 iv_ca_free (&origset
);
7059 for (i
= 0; i
< data
->vgroups
.length (); i
++)
7061 struct iv_group
*group
= data
->vgroups
[i
];
7062 group
->selected
= iv_ca_cand_for_group (set
, group
)->cand
;
7068 /* Creates a new induction variable corresponding to CAND. */
7071 create_new_iv (struct ivopts_data
*data
, struct iv_cand
*cand
)
7073 gimple_stmt_iterator incr_pos
;
7076 struct iv_group
*group
;
7085 incr_pos
= gsi_last_bb (ip_normal_pos (data
->current_loop
));
7089 incr_pos
= gsi_last_bb (ip_end_pos (data
->current_loop
));
7097 incr_pos
= gsi_for_stmt (cand
->incremented_at
);
7101 /* Mark that the iv is preserved. */
7102 name_info (data
, cand
->var_before
)->preserve_biv
= true;
7103 name_info (data
, cand
->var_after
)->preserve_biv
= true;
7105 /* Rewrite the increment so that it uses var_before directly. */
7106 use
= find_interesting_uses_op (data
, cand
->var_after
);
7107 group
= data
->vgroups
[use
->group_id
];
7108 group
->selected
= cand
;
7112 gimple_add_tmp_var (cand
->var_before
);
7114 base
= unshare_expr (cand
->iv
->base
);
7116 create_iv (base
, unshare_expr (cand
->iv
->step
),
7117 cand
->var_before
, data
->current_loop
,
7118 &incr_pos
, after
, &cand
->var_before
, &cand
->var_after
);
7121 /* Creates new induction variables described in SET. */
7124 create_new_ivs (struct ivopts_data
*data
, struct iv_ca
*set
)
7127 struct iv_cand
*cand
;
7130 EXECUTE_IF_SET_IN_BITMAP (set
->cands
, 0, i
, bi
)
7132 cand
= data
->vcands
[i
];
7133 create_new_iv (data
, cand
);
7136 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7138 fprintf (dump_file
, "Selected IV set for loop %d",
7139 data
->current_loop
->num
);
7140 if (data
->loop_loc
!= UNKNOWN_LOCATION
)
7141 fprintf (dump_file
, " at %s:%d", LOCATION_FILE (data
->loop_loc
),
7142 LOCATION_LINE (data
->loop_loc
));
7143 fprintf (dump_file
, ", " HOST_WIDE_INT_PRINT_DEC
" avg niters",
7144 avg_loop_niter (data
->current_loop
));
7145 fprintf (dump_file
, ", " HOST_WIDE_INT_PRINT_UNSIGNED
" expressions",
7146 (unsigned HOST_WIDE_INT
) set
->used_inv_exprs
->elements ());
7147 fprintf (dump_file
, ", %lu IVs:\n", bitmap_count_bits (set
->cands
));
7148 EXECUTE_IF_SET_IN_BITMAP (set
->cands
, 0, i
, bi
)
7150 cand
= data
->vcands
[i
];
7151 dump_cand (dump_file
, cand
);
7153 fprintf (dump_file
, "\n");
7157 /* Rewrites USE (definition of iv used in a nonlinear expression)
7158 using candidate CAND. */
7161 rewrite_use_nonlinear_expr (struct ivopts_data
*data
,
7162 struct iv_use
*use
, struct iv_cand
*cand
)
7167 gimple_stmt_iterator bsi
;
7169 /* An important special case -- if we are asked to express value of
7170 the original iv by itself, just exit; there is no need to
7171 introduce a new computation (that might also need casting the
7172 variable to unsigned and back). */
7173 if (cand
->pos
== IP_ORIGINAL
7174 && cand
->incremented_at
== use
->stmt
)
7176 tree op
= NULL_TREE
;
7177 enum tree_code stmt_code
;
7179 gcc_assert (is_gimple_assign (use
->stmt
));
7180 gcc_assert (gimple_assign_lhs (use
->stmt
) == cand
->var_after
);
7182 /* Check whether we may leave the computation unchanged.
7183 This is the case only if it does not rely on other
7184 computations in the loop -- otherwise, the computation
7185 we rely upon may be removed in remove_unused_ivs,
7186 thus leading to ICE. */
7187 stmt_code
= gimple_assign_rhs_code (use
->stmt
);
7188 if (stmt_code
== PLUS_EXPR
7189 || stmt_code
== MINUS_EXPR
7190 || stmt_code
== POINTER_PLUS_EXPR
)
7192 if (gimple_assign_rhs1 (use
->stmt
) == cand
->var_before
)
7193 op
= gimple_assign_rhs2 (use
->stmt
);
7194 else if (gimple_assign_rhs2 (use
->stmt
) == cand
->var_before
)
7195 op
= gimple_assign_rhs1 (use
->stmt
);
7198 if (op
!= NULL_TREE
)
7200 if (expr_invariant_in_loop_p (data
->current_loop
, op
))
7202 if (TREE_CODE (op
) == SSA_NAME
)
7204 struct iv
*iv
= get_iv (data
, op
);
7205 if (iv
!= NULL
&& integer_zerop (iv
->step
))
7211 comp
= get_computation (data
->current_loop
, use
, cand
);
7212 gcc_assert (comp
!= NULL_TREE
);
7214 switch (gimple_code (use
->stmt
))
7217 tgt
= PHI_RESULT (use
->stmt
);
7219 /* If we should keep the biv, do not replace it. */
7220 if (name_info (data
, tgt
)->preserve_biv
)
7223 bsi
= gsi_after_labels (gimple_bb (use
->stmt
));
7227 tgt
= gimple_assign_lhs (use
->stmt
);
7228 bsi
= gsi_for_stmt (use
->stmt
);
7235 if (!valid_gimple_rhs_p (comp
)
7236 || (gimple_code (use
->stmt
) != GIMPLE_PHI
7237 /* We can't allow re-allocating the stmt as it might be pointed
7239 && (get_gimple_rhs_num_ops (TREE_CODE (comp
))
7240 >= gimple_num_ops (gsi_stmt (bsi
)))))
7242 comp
= force_gimple_operand_gsi (&bsi
, comp
, true, NULL_TREE
,
7243 true, GSI_SAME_STMT
);
7244 if (POINTER_TYPE_P (TREE_TYPE (tgt
)))
7246 duplicate_ssa_name_ptr_info (comp
, SSA_NAME_PTR_INFO (tgt
));
7247 /* As this isn't a plain copy we have to reset alignment
7249 if (SSA_NAME_PTR_INFO (comp
))
7250 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (comp
));
7254 if (gimple_code (use
->stmt
) == GIMPLE_PHI
)
7256 ass
= gimple_build_assign (tgt
, comp
);
7257 gsi_insert_before (&bsi
, ass
, GSI_SAME_STMT
);
7259 bsi
= gsi_for_stmt (use
->stmt
);
7260 remove_phi_node (&bsi
, false);
7264 gimple_assign_set_rhs_from_tree (&bsi
, comp
);
7265 use
->stmt
= gsi_stmt (bsi
);
7269 /* Performs a peephole optimization to reorder the iv update statement with
7270 a mem ref to enable instruction combining in later phases. The mem ref uses
7271 the iv value before the update, so the reordering transformation requires
7272 adjustment of the offset. CAND is the selected IV_CAND.
7276 t = MEM_REF (base, iv1, 8, 16); // base, index, stride, offset
7284 directly propagating t over to (1) will introduce overlapping live range
7285 thus increase register pressure. This peephole transform it into:
7289 t = MEM_REF (base, iv2, 8, 8);
7296 adjust_iv_update_pos (struct iv_cand
*cand
, struct iv_use
*use
)
7299 gimple
*iv_update
, *stmt
;
7301 gimple_stmt_iterator gsi
, gsi_iv
;
7303 if (cand
->pos
!= IP_NORMAL
)
7306 var_after
= cand
->var_after
;
7307 iv_update
= SSA_NAME_DEF_STMT (var_after
);
7309 bb
= gimple_bb (iv_update
);
7310 gsi
= gsi_last_nondebug_bb (bb
);
7311 stmt
= gsi_stmt (gsi
);
7313 /* Only handle conditional statement for now. */
7314 if (gimple_code (stmt
) != GIMPLE_COND
)
7317 gsi_prev_nondebug (&gsi
);
7318 stmt
= gsi_stmt (gsi
);
7319 if (stmt
!= iv_update
)
7322 gsi_prev_nondebug (&gsi
);
7323 if (gsi_end_p (gsi
))
7326 stmt
= gsi_stmt (gsi
);
7327 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
7330 if (stmt
!= use
->stmt
)
7333 if (TREE_CODE (gimple_assign_lhs (stmt
)) != SSA_NAME
)
7336 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7338 fprintf (dump_file
, "Reordering \n");
7339 print_gimple_stmt (dump_file
, iv_update
, 0, 0);
7340 print_gimple_stmt (dump_file
, use
->stmt
, 0, 0);
7341 fprintf (dump_file
, "\n");
7344 gsi
= gsi_for_stmt (use
->stmt
);
7345 gsi_iv
= gsi_for_stmt (iv_update
);
7346 gsi_move_before (&gsi_iv
, &gsi
);
7348 cand
->pos
= IP_BEFORE_USE
;
7349 cand
->incremented_at
= use
->stmt
;
7352 /* Rewrites USE (address that is an iv) using candidate CAND. */
7355 rewrite_use_address (struct ivopts_data
*data
,
7356 struct iv_use
*use
, struct iv_cand
*cand
)
7359 gimple_stmt_iterator bsi
= gsi_for_stmt (use
->stmt
);
7360 tree base_hint
= NULL_TREE
;
7364 adjust_iv_update_pos (cand
, use
);
7365 ok
= get_computation_aff (data
->current_loop
, use
, cand
, use
->stmt
, &aff
);
7367 unshare_aff_combination (&aff
);
7369 /* To avoid undefined overflow problems, all IV candidates use unsigned
7370 integer types. The drawback is that this makes it impossible for
7371 create_mem_ref to distinguish an IV that is based on a memory object
7372 from one that represents simply an offset.
7374 To work around this problem, we pass a hint to create_mem_ref that
7375 indicates which variable (if any) in aff is an IV based on a memory
7376 object. Note that we only consider the candidate. If this is not
7377 based on an object, the base of the reference is in some subexpression
7378 of the use -- but these will use pointer types, so they are recognized
7379 by the create_mem_ref heuristics anyway. */
7380 if (cand
->iv
->base_object
)
7381 base_hint
= var_at_stmt (data
->current_loop
, cand
, use
->stmt
);
7383 iv
= var_at_stmt (data
->current_loop
, cand
, use
->stmt
);
7384 tree type
= TREE_TYPE (*use
->op_p
);
7385 unsigned int align
= get_object_alignment (*use
->op_p
);
7386 if (align
!= TYPE_ALIGN (type
))
7387 type
= build_aligned_type (type
, align
);
7388 ref
= create_mem_ref (&bsi
, type
, &aff
,
7389 reference_alias_ptr_type (*use
->op_p
),
7390 iv
, base_hint
, data
->speed
);
7391 copy_ref_info (ref
, *use
->op_p
);
7395 /* Rewrites USE (the condition such that one of the arguments is an iv) using
7399 rewrite_use_compare (struct ivopts_data
*data
,
7400 struct iv_use
*use
, struct iv_cand
*cand
)
7402 tree comp
, *var_p
, op
, bound
;
7403 gimple_stmt_iterator bsi
= gsi_for_stmt (use
->stmt
);
7404 enum tree_code compare
;
7405 struct iv_group
*group
= data
->vgroups
[use
->group_id
];
7406 struct cost_pair
*cp
= get_group_iv_cost (data
, group
, cand
);
7412 tree var
= var_at_stmt (data
->current_loop
, cand
, use
->stmt
);
7413 tree var_type
= TREE_TYPE (var
);
7416 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7418 fprintf (dump_file
, "Replacing exit test: ");
7419 print_gimple_stmt (dump_file
, use
->stmt
, 0, TDF_SLIM
);
7422 bound
= unshare_expr (fold_convert (var_type
, bound
));
7423 op
= force_gimple_operand (bound
, &stmts
, true, NULL_TREE
);
7425 gsi_insert_seq_on_edge_immediate (
7426 loop_preheader_edge (data
->current_loop
),
7429 gcond
*cond_stmt
= as_a
<gcond
*> (use
->stmt
);
7430 gimple_cond_set_lhs (cond_stmt
, var
);
7431 gimple_cond_set_code (cond_stmt
, compare
);
7432 gimple_cond_set_rhs (cond_stmt
, op
);
7436 /* The induction variable elimination failed; just express the original
7438 comp
= get_computation (data
->current_loop
, use
, cand
);
7439 gcc_assert (comp
!= NULL_TREE
);
7441 ok
= extract_cond_operands (data
, use
->stmt
, &var_p
, NULL
, NULL
, NULL
);
7444 *var_p
= force_gimple_operand_gsi (&bsi
, comp
, true, SSA_NAME_VAR (*var_p
),
7445 true, GSI_SAME_STMT
);
7448 /* Rewrite the groups using the selected induction variables. */
7451 rewrite_groups (struct ivopts_data
*data
)
7455 for (i
= 0; i
< data
->vgroups
.length (); i
++)
7457 struct iv_group
*group
= data
->vgroups
[i
];
7458 struct iv_cand
*cand
= group
->selected
;
7462 if (group
->type
== USE_NONLINEAR_EXPR
)
7464 for (j
= 0; j
< group
->vuses
.length (); j
++)
7466 rewrite_use_nonlinear_expr (data
, group
->vuses
[j
], cand
);
7467 update_stmt (group
->vuses
[j
]->stmt
);
7470 else if (group
->type
== USE_ADDRESS
)
7472 for (j
= 0; j
< group
->vuses
.length (); j
++)
7474 rewrite_use_address (data
, group
->vuses
[j
], cand
);
7475 update_stmt (group
->vuses
[j
]->stmt
);
7480 gcc_assert (group
->type
== USE_COMPARE
);
7482 for (j
= 0; j
< group
->vuses
.length (); j
++)
7484 rewrite_use_compare (data
, group
->vuses
[j
], cand
);
7485 update_stmt (group
->vuses
[j
]->stmt
);
7491 /* Removes the ivs that are not used after rewriting. */
7494 remove_unused_ivs (struct ivopts_data
*data
)
7498 bitmap toremove
= BITMAP_ALLOC (NULL
);
7500 /* Figure out an order in which to release SSA DEFs so that we don't
7501 release something that we'd have to propagate into a debug stmt
7503 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, j
, bi
)
7505 struct version_info
*info
;
7507 info
= ver_info (data
, j
);
7509 && !integer_zerop (info
->iv
->step
)
7511 && !info
->iv
->nonlin_use
7512 && !info
->preserve_biv
)
7514 bitmap_set_bit (toremove
, SSA_NAME_VERSION (info
->iv
->ssa_name
));
7516 tree def
= info
->iv
->ssa_name
;
7518 if (MAY_HAVE_DEBUG_STMTS
&& SSA_NAME_DEF_STMT (def
))
7520 imm_use_iterator imm_iter
;
7521 use_operand_p use_p
;
7525 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, def
)
7527 if (!gimple_debug_bind_p (stmt
))
7530 /* We just want to determine whether to do nothing
7531 (count == 0), to substitute the computed
7532 expression into a single use of the SSA DEF by
7533 itself (count == 1), or to use a debug temp
7534 because the SSA DEF is used multiple times or as
7535 part of a larger expression (count > 1). */
7537 if (gimple_debug_bind_get_value (stmt
) != def
)
7541 BREAK_FROM_IMM_USE_STMT (imm_iter
);
7547 struct iv_use dummy_use
;
7548 struct iv_cand
*best_cand
= NULL
, *cand
;
7549 unsigned i
, best_pref
= 0, cand_pref
;
7551 memset (&dummy_use
, 0, sizeof (dummy_use
));
7552 dummy_use
.iv
= info
->iv
;
7553 for (i
= 0; i
< data
->vgroups
.length () && i
< 64; i
++)
7555 cand
= data
->vgroups
[i
]->selected
;
7556 if (cand
== best_cand
)
7558 cand_pref
= operand_equal_p (cand
->iv
->step
,
7562 += TYPE_MODE (TREE_TYPE (cand
->iv
->base
))
7563 == TYPE_MODE (TREE_TYPE (info
->iv
->base
))
7566 += TREE_CODE (cand
->iv
->base
) == INTEGER_CST
7568 if (best_cand
== NULL
|| best_pref
< cand_pref
)
7571 best_pref
= cand_pref
;
7578 tree comp
= get_computation_at (data
->current_loop
,
7579 &dummy_use
, best_cand
,
7580 SSA_NAME_DEF_STMT (def
));
7586 tree vexpr
= make_node (DEBUG_EXPR_DECL
);
7587 DECL_ARTIFICIAL (vexpr
) = 1;
7588 TREE_TYPE (vexpr
) = TREE_TYPE (comp
);
7589 if (SSA_NAME_VAR (def
))
7590 SET_DECL_MODE (vexpr
, DECL_MODE (SSA_NAME_VAR (def
)));
7592 SET_DECL_MODE (vexpr
, TYPE_MODE (TREE_TYPE (vexpr
)));
7594 = gimple_build_debug_bind (vexpr
, comp
, NULL
);
7595 gimple_stmt_iterator gsi
;
7597 if (gimple_code (SSA_NAME_DEF_STMT (def
)) == GIMPLE_PHI
)
7598 gsi
= gsi_after_labels (gimple_bb
7599 (SSA_NAME_DEF_STMT (def
)));
7601 gsi
= gsi_for_stmt (SSA_NAME_DEF_STMT (def
));
7603 gsi_insert_before (&gsi
, def_temp
, GSI_SAME_STMT
);
7607 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, def
)
7609 if (!gimple_debug_bind_p (stmt
))
7612 FOR_EACH_IMM_USE_ON_STMT (use_p
, imm_iter
)
7613 SET_USE (use_p
, comp
);
7621 release_defs_bitset (toremove
);
7623 BITMAP_FREE (toremove
);
7626 /* Frees memory occupied by struct tree_niter_desc in *VALUE. Callback
7627 for hash_map::traverse. */
7630 free_tree_niter_desc (edge
const &, tree_niter_desc
*const &value
, void *)
7636 /* Frees data allocated by the optimization of a single loop. */
7639 free_loop_data (struct ivopts_data
*data
)
7647 data
->niters
->traverse
<void *, free_tree_niter_desc
> (NULL
);
7648 delete data
->niters
;
7649 data
->niters
= NULL
;
7652 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, i
, bi
)
7654 struct version_info
*info
;
7656 info
= ver_info (data
, i
);
7658 info
->has_nonlin_use
= false;
7659 info
->preserve_biv
= false;
7662 bitmap_clear (data
->relevant
);
7663 bitmap_clear (data
->important_candidates
);
7665 for (i
= 0; i
< data
->vgroups
.length (); i
++)
7667 struct iv_group
*group
= data
->vgroups
[i
];
7669 for (j
= 0; j
< group
->vuses
.length (); j
++)
7670 free (group
->vuses
[j
]);
7671 group
->vuses
.release ();
7673 BITMAP_FREE (group
->related_cands
);
7674 for (j
= 0; j
< group
->n_map_members
; j
++)
7675 if (group
->cost_map
[j
].depends_on
)
7676 BITMAP_FREE (group
->cost_map
[j
].depends_on
);
7678 free (group
->cost_map
);
7681 data
->vgroups
.truncate (0);
7683 for (i
= 0; i
< data
->vcands
.length (); i
++)
7685 struct iv_cand
*cand
= data
->vcands
[i
];
7687 if (cand
->depends_on
)
7688 BITMAP_FREE (cand
->depends_on
);
7691 data
->vcands
.truncate (0);
7693 if (data
->version_info_size
< num_ssa_names
)
7695 data
->version_info_size
= 2 * num_ssa_names
;
7696 free (data
->version_info
);
7697 data
->version_info
= XCNEWVEC (struct version_info
, data
->version_info_size
);
7700 data
->max_inv_id
= 0;
7702 FOR_EACH_VEC_ELT (decl_rtl_to_reset
, i
, obj
)
7703 SET_DECL_RTL (obj
, NULL_RTX
);
7705 decl_rtl_to_reset
.truncate (0);
7707 data
->inv_expr_tab
->empty ();
7708 data
->max_inv_expr_id
= 0;
7710 data
->iv_common_cand_tab
->empty ();
7711 data
->iv_common_cands
.truncate (0);
7714 /* Finalizes data structures used by the iv optimization pass. LOOPS is the
7718 tree_ssa_iv_optimize_finalize (struct ivopts_data
*data
)
7720 free_loop_data (data
);
7721 free (data
->version_info
);
7722 BITMAP_FREE (data
->relevant
);
7723 BITMAP_FREE (data
->important_candidates
);
7725 decl_rtl_to_reset
.release ();
7726 data
->vgroups
.release ();
7727 data
->vcands
.release ();
7728 delete data
->inv_expr_tab
;
7729 data
->inv_expr_tab
= NULL
;
7730 free_affine_expand_cache (&data
->name_expansion_cache
);
7731 delete data
->iv_common_cand_tab
;
7732 data
->iv_common_cand_tab
= NULL
;
7733 data
->iv_common_cands
.release ();
7734 obstack_free (&data
->iv_obstack
, NULL
);
7737 /* Returns true if the loop body BODY includes any function calls. */
7740 loop_body_includes_call (basic_block
*body
, unsigned num_nodes
)
7742 gimple_stmt_iterator gsi
;
7745 for (i
= 0; i
< num_nodes
; i
++)
7746 for (gsi
= gsi_start_bb (body
[i
]); !gsi_end_p (gsi
); gsi_next (&gsi
))
7748 gimple
*stmt
= gsi_stmt (gsi
);
7749 if (is_gimple_call (stmt
)
7750 && !gimple_call_internal_p (stmt
)
7751 && !is_inexpensive_builtin (gimple_call_fndecl (stmt
)))
7757 /* Optimizes the LOOP. Returns true if anything changed. */
7760 tree_ssa_iv_optimize_loop (struct ivopts_data
*data
, struct loop
*loop
)
7762 bool changed
= false;
7763 struct iv_ca
*iv_ca
;
7764 edge exit
= single_dom_exit (loop
);
7767 gcc_assert (!data
->niters
);
7768 data
->current_loop
= loop
;
7769 data
->loop_loc
= find_loop_location (loop
);
7770 data
->speed
= optimize_loop_for_speed_p (loop
);
7772 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7774 fprintf (dump_file
, "Processing loop %d", loop
->num
);
7775 if (data
->loop_loc
!= UNKNOWN_LOCATION
)
7776 fprintf (dump_file
, " at %s:%d", LOCATION_FILE (data
->loop_loc
),
7777 LOCATION_LINE (data
->loop_loc
));
7778 fprintf (dump_file
, "\n");
7782 fprintf (dump_file
, " single exit %d -> %d, exit condition ",
7783 exit
->src
->index
, exit
->dest
->index
);
7784 print_gimple_stmt (dump_file
, last_stmt (exit
->src
), 0, TDF_SLIM
);
7785 fprintf (dump_file
, "\n");
7788 fprintf (dump_file
, "\n");
7791 body
= get_loop_body (loop
);
7792 data
->body_includes_call
= loop_body_includes_call (body
, loop
->num_nodes
);
7793 renumber_gimple_stmt_uids_in_blocks (body
, loop
->num_nodes
);
7796 data
->loop_single_exit_p
= exit
!= NULL
&& loop_only_exit_p (loop
, exit
);
7798 /* For each ssa name determines whether it behaves as an induction variable
7800 if (!find_induction_variables (data
))
7803 /* Finds interesting uses (item 1). */
7804 find_interesting_uses (data
);
7805 if (data
->vgroups
.length () > MAX_CONSIDERED_GROUPS
)
7808 /* Finds candidates for the induction variables (item 2). */
7809 find_iv_candidates (data
);
7811 /* Calculates the costs (item 3, part 1). */
7812 determine_iv_costs (data
);
7813 determine_group_iv_costs (data
);
7814 determine_set_costs (data
);
7816 /* Find the optimal set of induction variables (item 3, part 2). */
7817 iv_ca
= find_optimal_iv_set (data
);
7822 /* Create the new induction variables (item 4, part 1). */
7823 create_new_ivs (data
, iv_ca
);
7824 iv_ca_free (&iv_ca
);
7826 /* Rewrite the uses (item 4, part 2). */
7827 rewrite_groups (data
);
7829 /* Remove the ivs that are unused after rewriting. */
7830 remove_unused_ivs (data
);
7832 /* We have changed the structure of induction variables; it might happen
7833 that definitions in the scev database refer to some of them that were
7838 free_loop_data (data
);
7843 /* Main entry point. Optimizes induction variables in loops. */
7846 tree_ssa_iv_optimize (void)
7849 struct ivopts_data data
;
7851 tree_ssa_iv_optimize_init (&data
);
7853 /* Optimize the loops starting with the innermost ones. */
7854 FOR_EACH_LOOP (loop
, LI_FROM_INNERMOST
)
7856 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7857 flow_loop_dump (loop
, dump_file
, NULL
, 1);
7859 tree_ssa_iv_optimize_loop (&data
, loop
);
7862 tree_ssa_iv_optimize_finalize (&data
);