1 /* Lower complex number operations to scalar operations.
2 Copyright (C) 2004-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
28 #include "tree-pass.h"
30 #include "fold-const.h"
31 #include "stor-layout.h"
34 #include "gimple-iterator.h"
35 #include "gimplify-me.h"
39 #include "tree-ssa-propagate.h"
40 #include "tree-hasher.h"
45 /* For each complex ssa name, a lattice value. We're interested in finding
46 out whether a complex number is degenerate in some way, having only real
47 or only complex parts. */
57 /* The type complex_lattice_t holds combinations of the above
59 typedef int complex_lattice_t
;
61 #define PAIR(a, b) ((a) << 2 | (b))
64 static vec
<complex_lattice_t
> complex_lattice_values
;
66 /* For each complex variable, a pair of variables for the components exists in
68 static int_tree_htab_type
*complex_variable_components
;
70 /* For each complex SSA_NAME, a pair of ssa names for the components. */
71 static vec
<tree
> complex_ssa_name_components
;
73 /* Vector of PHI triplets (original complex PHI and corresponding real and
74 imag PHIs if real and/or imag PHIs contain temporarily
75 non-SSA_NAME/non-invariant args that need to be replaced by SSA_NAMEs. */
76 static vec
<gphi
*> phis_to_revisit
;
78 /* Lookup UID in the complex_variable_components hashtable and return the
81 cvc_lookup (unsigned int uid
)
83 struct int_tree_map in
;
85 return complex_variable_components
->find_with_hash (in
, uid
).to
;
88 /* Insert the pair UID, TO into the complex_variable_components hashtable. */
91 cvc_insert (unsigned int uid
, tree to
)
97 loc
= complex_variable_components
->find_slot_with_hash (h
, uid
, INSERT
);
102 /* Return true if T is not a zero constant. In the case of real values,
103 we're only interested in +0.0. */
106 some_nonzerop (tree t
)
110 /* Operations with real or imaginary part of a complex number zero
111 cannot be treated the same as operations with a real or imaginary
112 operand if we care about the signs of zeros in the result. */
113 if (TREE_CODE (t
) == REAL_CST
&& !flag_signed_zeros
)
114 zerop
= real_identical (&TREE_REAL_CST (t
), &dconst0
);
115 else if (TREE_CODE (t
) == FIXED_CST
)
116 zerop
= fixed_zerop (t
);
117 else if (TREE_CODE (t
) == INTEGER_CST
)
118 zerop
= integer_zerop (t
);
124 /* Compute a lattice value from the components of a complex type REAL
127 static complex_lattice_t
128 find_lattice_value_parts (tree real
, tree imag
)
131 complex_lattice_t ret
;
133 r
= some_nonzerop (real
);
134 i
= some_nonzerop (imag
);
135 ret
= r
* ONLY_REAL
+ i
* ONLY_IMAG
;
137 /* ??? On occasion we could do better than mapping 0+0i to real, but we
138 certainly don't want to leave it UNINITIALIZED, which eventually gets
139 mapped to VARYING. */
140 if (ret
== UNINITIALIZED
)
147 /* Compute a lattice value from gimple_val T. */
149 static complex_lattice_t
150 find_lattice_value (tree t
)
154 switch (TREE_CODE (t
))
157 return complex_lattice_values
[SSA_NAME_VERSION (t
)];
160 real
= TREE_REALPART (t
);
161 imag
= TREE_IMAGPART (t
);
168 return find_lattice_value_parts (real
, imag
);
171 /* Determine if LHS is something for which we're interested in seeing
172 simulation results. */
175 is_complex_reg (tree lhs
)
177 return TREE_CODE (TREE_TYPE (lhs
)) == COMPLEX_TYPE
&& is_gimple_reg (lhs
);
180 /* Mark the incoming parameters to the function as VARYING. */
183 init_parameter_lattice_values (void)
187 for (parm
= DECL_ARGUMENTS (cfun
->decl
); parm
; parm
= DECL_CHAIN (parm
))
188 if (is_complex_reg (parm
)
189 && (ssa_name
= ssa_default_def (cfun
, parm
)) != NULL_TREE
)
190 complex_lattice_values
[SSA_NAME_VERSION (ssa_name
)] = VARYING
;
193 /* Initialize simulation state for each statement. Return false if we
194 found no statements we want to simulate, and thus there's nothing
195 for the entire pass to do. */
198 init_dont_simulate_again (void)
201 bool saw_a_complex_op
= false;
203 FOR_EACH_BB_FN (bb
, cfun
)
205 for (gphi_iterator gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
);
208 gphi
*phi
= gsi
.phi ();
209 prop_set_simulate_again (phi
,
210 is_complex_reg (gimple_phi_result (phi
)));
213 for (gimple_stmt_iterator gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
);
220 stmt
= gsi_stmt (gsi
);
221 op0
= op1
= NULL_TREE
;
223 /* Most control-altering statements must be initially
224 simulated, else we won't cover the entire cfg. */
225 sim_again_p
= stmt_ends_bb_p (stmt
);
227 switch (gimple_code (stmt
))
230 if (gimple_call_lhs (stmt
))
231 sim_again_p
= is_complex_reg (gimple_call_lhs (stmt
));
235 sim_again_p
= is_complex_reg (gimple_assign_lhs (stmt
));
236 if (gimple_assign_rhs_code (stmt
) == REALPART_EXPR
237 || gimple_assign_rhs_code (stmt
) == IMAGPART_EXPR
)
238 op0
= TREE_OPERAND (gimple_assign_rhs1 (stmt
), 0);
240 op0
= gimple_assign_rhs1 (stmt
);
241 if (gimple_num_ops (stmt
) > 2)
242 op1
= gimple_assign_rhs2 (stmt
);
246 op0
= gimple_cond_lhs (stmt
);
247 op1
= gimple_cond_rhs (stmt
);
255 switch (gimple_expr_code (stmt
))
267 if (TREE_CODE (TREE_TYPE (op0
)) == COMPLEX_TYPE
268 || TREE_CODE (TREE_TYPE (op1
)) == COMPLEX_TYPE
)
269 saw_a_complex_op
= true;
274 if (TREE_CODE (TREE_TYPE (op0
)) == COMPLEX_TYPE
)
275 saw_a_complex_op
= true;
280 /* The total store transformation performed during
281 gimplification creates such uninitialized loads
282 and we need to lower the statement to be able
284 if (TREE_CODE (op0
) == SSA_NAME
285 && ssa_undefined_value_p (op0
))
286 saw_a_complex_op
= true;
293 prop_set_simulate_again (stmt
, sim_again_p
);
297 return saw_a_complex_op
;
301 /* Evaluate statement STMT against the complex lattice defined above. */
303 static enum ssa_prop_result
304 complex_visit_stmt (gimple
*stmt
, edge
*taken_edge_p ATTRIBUTE_UNUSED
,
307 complex_lattice_t new_l
, old_l
, op1_l
, op2_l
;
311 lhs
= gimple_get_lhs (stmt
);
312 /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
314 return SSA_PROP_VARYING
;
316 /* These conditions should be satisfied due to the initial filter
317 set up in init_dont_simulate_again. */
318 gcc_assert (TREE_CODE (lhs
) == SSA_NAME
);
319 gcc_assert (TREE_CODE (TREE_TYPE (lhs
)) == COMPLEX_TYPE
);
322 ver
= SSA_NAME_VERSION (lhs
);
323 old_l
= complex_lattice_values
[ver
];
325 switch (gimple_expr_code (stmt
))
329 new_l
= find_lattice_value (gimple_assign_rhs1 (stmt
));
333 new_l
= find_lattice_value_parts (gimple_assign_rhs1 (stmt
),
334 gimple_assign_rhs2 (stmt
));
339 op1_l
= find_lattice_value (gimple_assign_rhs1 (stmt
));
340 op2_l
= find_lattice_value (gimple_assign_rhs2 (stmt
));
342 /* We've set up the lattice values such that IOR neatly
344 new_l
= op1_l
| op2_l
;
353 op1_l
= find_lattice_value (gimple_assign_rhs1 (stmt
));
354 op2_l
= find_lattice_value (gimple_assign_rhs2 (stmt
));
356 /* Obviously, if either varies, so does the result. */
357 if (op1_l
== VARYING
|| op2_l
== VARYING
)
359 /* Don't prematurely promote variables if we've not yet seen
361 else if (op1_l
== UNINITIALIZED
)
363 else if (op2_l
== UNINITIALIZED
)
367 /* At this point both numbers have only one component. If the
368 numbers are of opposite kind, the result is imaginary,
369 otherwise the result is real. The add/subtract translates
370 the real/imag from/to 0/1; the ^ performs the comparison. */
371 new_l
= ((op1_l
- ONLY_REAL
) ^ (op2_l
- ONLY_REAL
)) + ONLY_REAL
;
373 /* Don't allow the lattice value to flip-flop indefinitely. */
380 new_l
= find_lattice_value (gimple_assign_rhs1 (stmt
));
388 /* If nothing changed this round, let the propagator know. */
390 return SSA_PROP_NOT_INTERESTING
;
392 complex_lattice_values
[ver
] = new_l
;
393 return new_l
== VARYING
? SSA_PROP_VARYING
: SSA_PROP_INTERESTING
;
396 /* Evaluate a PHI node against the complex lattice defined above. */
398 static enum ssa_prop_result
399 complex_visit_phi (gphi
*phi
)
401 complex_lattice_t new_l
, old_l
;
406 lhs
= gimple_phi_result (phi
);
408 /* This condition should be satisfied due to the initial filter
409 set up in init_dont_simulate_again. */
410 gcc_assert (TREE_CODE (TREE_TYPE (lhs
)) == COMPLEX_TYPE
);
412 /* We've set up the lattice values such that IOR neatly models PHI meet. */
413 new_l
= UNINITIALIZED
;
414 for (i
= gimple_phi_num_args (phi
) - 1; i
>= 0; --i
)
415 new_l
|= find_lattice_value (gimple_phi_arg_def (phi
, i
));
417 ver
= SSA_NAME_VERSION (lhs
);
418 old_l
= complex_lattice_values
[ver
];
421 return SSA_PROP_NOT_INTERESTING
;
423 complex_lattice_values
[ver
] = new_l
;
424 return new_l
== VARYING
? SSA_PROP_VARYING
: SSA_PROP_INTERESTING
;
427 /* Create one backing variable for a complex component of ORIG. */
430 create_one_component_var (tree type
, tree orig
, const char *prefix
,
431 const char *suffix
, enum tree_code code
)
433 tree r
= create_tmp_var (type
, prefix
);
435 DECL_SOURCE_LOCATION (r
) = DECL_SOURCE_LOCATION (orig
);
436 DECL_ARTIFICIAL (r
) = 1;
438 if (DECL_NAME (orig
) && !DECL_IGNORED_P (orig
))
440 const char *name
= IDENTIFIER_POINTER (DECL_NAME (orig
));
441 name
= ACONCAT ((name
, suffix
, NULL
));
442 DECL_NAME (r
) = get_identifier (name
);
444 SET_DECL_DEBUG_EXPR (r
, build1 (code
, type
, orig
));
445 DECL_HAS_DEBUG_EXPR_P (r
) = 1;
446 DECL_IGNORED_P (r
) = 0;
447 TREE_NO_WARNING (r
) = TREE_NO_WARNING (orig
);
451 DECL_IGNORED_P (r
) = 1;
452 TREE_NO_WARNING (r
) = 1;
458 /* Retrieve a value for a complex component of VAR. */
461 get_component_var (tree var
, bool imag_p
)
463 size_t decl_index
= DECL_UID (var
) * 2 + imag_p
;
464 tree ret
= cvc_lookup (decl_index
);
468 ret
= create_one_component_var (TREE_TYPE (TREE_TYPE (var
)), var
,
469 imag_p
? "CI" : "CR",
470 imag_p
? "$imag" : "$real",
471 imag_p
? IMAGPART_EXPR
: REALPART_EXPR
);
472 cvc_insert (decl_index
, ret
);
478 /* Retrieve a value for a complex component of SSA_NAME. */
481 get_component_ssa_name (tree ssa_name
, bool imag_p
)
483 complex_lattice_t lattice
= find_lattice_value (ssa_name
);
484 size_t ssa_name_index
;
487 if (lattice
== (imag_p
? ONLY_REAL
: ONLY_IMAG
))
489 tree inner_type
= TREE_TYPE (TREE_TYPE (ssa_name
));
490 if (SCALAR_FLOAT_TYPE_P (inner_type
))
491 return build_real (inner_type
, dconst0
);
493 return build_int_cst (inner_type
, 0);
496 ssa_name_index
= SSA_NAME_VERSION (ssa_name
) * 2 + imag_p
;
497 ret
= complex_ssa_name_components
[ssa_name_index
];
500 if (SSA_NAME_VAR (ssa_name
))
501 ret
= get_component_var (SSA_NAME_VAR (ssa_name
), imag_p
);
503 ret
= TREE_TYPE (TREE_TYPE (ssa_name
));
504 ret
= make_ssa_name (ret
);
506 /* Copy some properties from the original. In particular, whether it
507 is used in an abnormal phi, and whether it's uninitialized. */
508 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret
)
509 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name
);
510 if (SSA_NAME_IS_DEFAULT_DEF (ssa_name
)
511 && TREE_CODE (SSA_NAME_VAR (ssa_name
)) == VAR_DECL
)
513 SSA_NAME_DEF_STMT (ret
) = SSA_NAME_DEF_STMT (ssa_name
);
514 set_ssa_default_def (cfun
, SSA_NAME_VAR (ret
), ret
);
517 complex_ssa_name_components
[ssa_name_index
] = ret
;
523 /* Set a value for a complex component of SSA_NAME, return a
524 gimple_seq of stuff that needs doing. */
527 set_component_ssa_name (tree ssa_name
, bool imag_p
, tree value
)
529 complex_lattice_t lattice
= find_lattice_value (ssa_name
);
530 size_t ssa_name_index
;
535 /* We know the value must be zero, else there's a bug in our lattice
536 analysis. But the value may well be a variable known to contain
537 zero. We should be safe ignoring it. */
538 if (lattice
== (imag_p
? ONLY_REAL
: ONLY_IMAG
))
541 /* If we've already assigned an SSA_NAME to this component, then this
542 means that our walk of the basic blocks found a use before the set.
543 This is fine. Now we should create an initialization for the value
544 we created earlier. */
545 ssa_name_index
= SSA_NAME_VERSION (ssa_name
) * 2 + imag_p
;
546 comp
= complex_ssa_name_components
[ssa_name_index
];
550 /* If we've nothing assigned, and the value we're given is already stable,
551 then install that as the value for this SSA_NAME. This preemptively
552 copy-propagates the value, which avoids unnecessary memory allocation. */
553 else if (is_gimple_min_invariant (value
)
554 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name
))
556 complex_ssa_name_components
[ssa_name_index
] = value
;
559 else if (TREE_CODE (value
) == SSA_NAME
560 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name
))
562 /* Replace an anonymous base value with the variable from cvc_lookup.
563 This should result in better debug info. */
564 if (SSA_NAME_VAR (ssa_name
)
565 && (!SSA_NAME_VAR (value
) || DECL_IGNORED_P (SSA_NAME_VAR (value
)))
566 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name
)))
568 comp
= get_component_var (SSA_NAME_VAR (ssa_name
), imag_p
);
569 replace_ssa_name_symbol (value
, comp
);
572 complex_ssa_name_components
[ssa_name_index
] = value
;
576 /* Finally, we need to stabilize the result by installing the value into
579 comp
= get_component_ssa_name (ssa_name
, imag_p
);
581 /* Do all the work to assign VALUE to COMP. */
583 value
= force_gimple_operand (value
, &list
, false, NULL
);
584 last
= gimple_build_assign (comp
, value
);
585 gimple_seq_add_stmt (&list
, last
);
586 gcc_assert (SSA_NAME_DEF_STMT (comp
) == last
);
591 /* Extract the real or imaginary part of a complex variable or constant.
592 Make sure that it's a proper gimple_val and gimplify it if not.
593 Emit any new code before gsi. */
596 extract_component (gimple_stmt_iterator
*gsi
, tree t
, bool imagpart_p
,
597 bool gimple_p
, bool phiarg_p
= false)
599 switch (TREE_CODE (t
))
602 return imagpart_p
? TREE_IMAGPART (t
) : TREE_REALPART (t
);
609 tree inner_type
= TREE_TYPE (TREE_TYPE (t
));
610 t
= unshare_expr (t
);
611 TREE_TYPE (t
) = inner_type
;
612 TREE_OPERAND (t
, 1) = TYPE_SIZE (inner_type
);
614 TREE_OPERAND (t
, 2) = size_binop (PLUS_EXPR
, TREE_OPERAND (t
, 2),
615 TYPE_SIZE (inner_type
));
617 t
= force_gimple_operand_gsi (gsi
, t
, true, NULL
, true,
627 case VIEW_CONVERT_EXPR
:
630 tree inner_type
= TREE_TYPE (TREE_TYPE (t
));
632 t
= build1 ((imagpart_p
? IMAGPART_EXPR
: REALPART_EXPR
),
633 inner_type
, unshare_expr (t
));
636 t
= force_gimple_operand_gsi (gsi
, t
, true, NULL
, true,
643 t
= get_component_ssa_name (t
, imagpart_p
);
644 if (TREE_CODE (t
) == SSA_NAME
&& SSA_NAME_DEF_STMT (t
) == NULL
)
645 gcc_assert (phiarg_p
);
653 /* Update the complex components of the ssa name on the lhs of STMT. */
656 update_complex_components (gimple_stmt_iterator
*gsi
, gimple
*stmt
, tree r
,
662 lhs
= gimple_get_lhs (stmt
);
664 list
= set_component_ssa_name (lhs
, false, r
);
666 gsi_insert_seq_after (gsi
, list
, GSI_CONTINUE_LINKING
);
668 list
= set_component_ssa_name (lhs
, true, i
);
670 gsi_insert_seq_after (gsi
, list
, GSI_CONTINUE_LINKING
);
674 update_complex_components_on_edge (edge e
, tree lhs
, tree r
, tree i
)
678 list
= set_component_ssa_name (lhs
, false, r
);
680 gsi_insert_seq_on_edge (e
, list
);
682 list
= set_component_ssa_name (lhs
, true, i
);
684 gsi_insert_seq_on_edge (e
, list
);
688 /* Update an assignment to a complex variable in place. */
691 update_complex_assignment (gimple_stmt_iterator
*gsi
, tree r
, tree i
)
695 gimple_assign_set_rhs_with_ops (gsi
, COMPLEX_EXPR
, r
, i
);
696 stmt
= gsi_stmt (*gsi
);
698 if (maybe_clean_eh_stmt (stmt
))
699 gimple_purge_dead_eh_edges (gimple_bb (stmt
));
701 if (gimple_in_ssa_p (cfun
))
702 update_complex_components (gsi
, gsi_stmt (*gsi
), r
, i
);
706 /* Generate code at the entry point of the function to initialize the
707 component variables for a complex parameter. */
710 update_parameter_components (void)
712 edge entry_edge
= single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
715 for (parm
= DECL_ARGUMENTS (cfun
->decl
); parm
; parm
= DECL_CHAIN (parm
))
717 tree type
= TREE_TYPE (parm
);
720 if (TREE_CODE (type
) != COMPLEX_TYPE
|| !is_gimple_reg (parm
))
723 type
= TREE_TYPE (type
);
724 ssa_name
= ssa_default_def (cfun
, parm
);
728 r
= build1 (REALPART_EXPR
, type
, ssa_name
);
729 i
= build1 (IMAGPART_EXPR
, type
, ssa_name
);
730 update_complex_components_on_edge (entry_edge
, ssa_name
, r
, i
);
734 /* Generate code to set the component variables of a complex variable
735 to match the PHI statements in block BB. */
738 update_phi_components (basic_block bb
)
742 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
744 gphi
*phi
= gsi
.phi ();
746 if (is_complex_reg (gimple_phi_result (phi
)))
748 gphi
*p
[2] = { NULL
, NULL
};
749 unsigned int i
, j
, n
;
750 bool revisit_phi
= false;
752 for (j
= 0; j
< 2; j
++)
754 tree l
= get_component_ssa_name (gimple_phi_result (phi
), j
> 0);
755 if (TREE_CODE (l
) == SSA_NAME
)
756 p
[j
] = create_phi_node (l
, bb
);
759 for (i
= 0, n
= gimple_phi_num_args (phi
); i
< n
; ++i
)
761 tree comp
, arg
= gimple_phi_arg_def (phi
, i
);
762 for (j
= 0; j
< 2; j
++)
765 comp
= extract_component (NULL
, arg
, j
> 0, false, true);
766 if (TREE_CODE (comp
) == SSA_NAME
767 && SSA_NAME_DEF_STMT (comp
) == NULL
)
769 /* For the benefit of any gimple simplification during
770 this pass that might walk SSA_NAME def stmts,
771 don't add SSA_NAMEs without definitions into the
772 PHI arguments, but put a decl in there instead
773 temporarily, and revisit this PHI later on. */
774 if (SSA_NAME_VAR (comp
))
775 comp
= SSA_NAME_VAR (comp
);
777 comp
= create_tmp_reg (TREE_TYPE (comp
),
781 SET_PHI_ARG_DEF (p
[j
], i
, comp
);
787 phis_to_revisit
.safe_push (phi
);
788 phis_to_revisit
.safe_push (p
[0]);
789 phis_to_revisit
.safe_push (p
[1]);
795 /* Expand a complex move to scalars. */
798 expand_complex_move (gimple_stmt_iterator
*gsi
, tree type
)
800 tree inner_type
= TREE_TYPE (type
);
802 gimple
*stmt
= gsi_stmt (*gsi
);
804 if (is_gimple_assign (stmt
))
806 lhs
= gimple_assign_lhs (stmt
);
807 if (gimple_num_ops (stmt
) == 2)
808 rhs
= gimple_assign_rhs1 (stmt
);
812 else if (is_gimple_call (stmt
))
814 lhs
= gimple_call_lhs (stmt
);
820 if (TREE_CODE (lhs
) == SSA_NAME
)
822 if (is_ctrl_altering_stmt (stmt
))
826 /* The value is not assigned on the exception edges, so we need not
827 concern ourselves there. We do need to update on the fallthru
829 e
= find_fallthru_edge (gsi_bb (*gsi
)->succs
);
833 r
= build1 (REALPART_EXPR
, inner_type
, lhs
);
834 i
= build1 (IMAGPART_EXPR
, inner_type
, lhs
);
835 update_complex_components_on_edge (e
, lhs
, r
, i
);
837 else if (is_gimple_call (stmt
)
838 || gimple_has_side_effects (stmt
)
839 || gimple_assign_rhs_code (stmt
) == PAREN_EXPR
)
841 r
= build1 (REALPART_EXPR
, inner_type
, lhs
);
842 i
= build1 (IMAGPART_EXPR
, inner_type
, lhs
);
843 update_complex_components (gsi
, stmt
, r
, i
);
847 if (gimple_assign_rhs_code (stmt
) != COMPLEX_EXPR
)
849 r
= extract_component (gsi
, rhs
, 0, true);
850 i
= extract_component (gsi
, rhs
, 1, true);
854 r
= gimple_assign_rhs1 (stmt
);
855 i
= gimple_assign_rhs2 (stmt
);
857 update_complex_assignment (gsi
, r
, i
);
860 else if (rhs
&& TREE_CODE (rhs
) == SSA_NAME
&& !TREE_SIDE_EFFECTS (lhs
))
866 loc
= gimple_location (stmt
);
867 r
= extract_component (gsi
, rhs
, 0, false);
868 i
= extract_component (gsi
, rhs
, 1, false);
870 x
= build1 (REALPART_EXPR
, inner_type
, unshare_expr (lhs
));
871 t
= gimple_build_assign (x
, r
);
872 gimple_set_location (t
, loc
);
873 gsi_insert_before (gsi
, t
, GSI_SAME_STMT
);
875 if (stmt
== gsi_stmt (*gsi
))
877 x
= build1 (IMAGPART_EXPR
, inner_type
, unshare_expr (lhs
));
878 gimple_assign_set_lhs (stmt
, x
);
879 gimple_assign_set_rhs1 (stmt
, i
);
883 x
= build1 (IMAGPART_EXPR
, inner_type
, unshare_expr (lhs
));
884 t
= gimple_build_assign (x
, i
);
885 gimple_set_location (t
, loc
);
886 gsi_insert_before (gsi
, t
, GSI_SAME_STMT
);
888 stmt
= gsi_stmt (*gsi
);
889 gcc_assert (gimple_code (stmt
) == GIMPLE_RETURN
);
890 gimple_return_set_retval (as_a
<greturn
*> (stmt
), lhs
);
897 /* Expand complex addition to scalars:
898 a + b = (ar + br) + i(ai + bi)
899 a - b = (ar - br) + i(ai + bi)
903 expand_complex_addition (gimple_stmt_iterator
*gsi
, tree inner_type
,
904 tree ar
, tree ai
, tree br
, tree bi
,
906 complex_lattice_t al
, complex_lattice_t bl
)
910 switch (PAIR (al
, bl
))
912 case PAIR (ONLY_REAL
, ONLY_REAL
):
913 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
917 case PAIR (ONLY_REAL
, ONLY_IMAG
):
919 if (code
== MINUS_EXPR
)
920 ri
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, ai
, bi
);
925 case PAIR (ONLY_IMAG
, ONLY_REAL
):
926 if (code
== MINUS_EXPR
)
927 rr
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, ar
, br
);
933 case PAIR (ONLY_IMAG
, ONLY_IMAG
):
935 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
938 case PAIR (VARYING
, ONLY_REAL
):
939 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
943 case PAIR (VARYING
, ONLY_IMAG
):
945 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
948 case PAIR (ONLY_REAL
, VARYING
):
949 if (code
== MINUS_EXPR
)
951 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
955 case PAIR (ONLY_IMAG
, VARYING
):
956 if (code
== MINUS_EXPR
)
959 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
962 case PAIR (VARYING
, VARYING
):
964 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
965 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
972 update_complex_assignment (gsi
, rr
, ri
);
975 /* Expand a complex multiplication or division to a libcall to the c99
976 compliant routines. */
979 expand_complex_libcall (gimple_stmt_iterator
*gsi
, tree ar
, tree ai
,
980 tree br
, tree bi
, enum tree_code code
)
983 enum built_in_function bcode
;
988 old_stmt
= gsi_stmt (*gsi
);
989 lhs
= gimple_assign_lhs (old_stmt
);
990 type
= TREE_TYPE (lhs
);
992 mode
= TYPE_MODE (type
);
993 gcc_assert (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
);
995 if (code
== MULT_EXPR
)
996 bcode
= ((enum built_in_function
)
997 (BUILT_IN_COMPLEX_MUL_MIN
+ mode
- MIN_MODE_COMPLEX_FLOAT
));
998 else if (code
== RDIV_EXPR
)
999 bcode
= ((enum built_in_function
)
1000 (BUILT_IN_COMPLEX_DIV_MIN
+ mode
- MIN_MODE_COMPLEX_FLOAT
));
1003 fn
= builtin_decl_explicit (bcode
);
1005 stmt
= gimple_build_call (fn
, 4, ar
, ai
, br
, bi
);
1006 gimple_call_set_lhs (stmt
, lhs
);
1008 gsi_replace (gsi
, stmt
, false);
1010 if (maybe_clean_or_replace_eh_stmt (old_stmt
, stmt
))
1011 gimple_purge_dead_eh_edges (gsi_bb (*gsi
));
1013 if (gimple_in_ssa_p (cfun
))
1015 type
= TREE_TYPE (type
);
1016 update_complex_components (gsi
, stmt
,
1017 build1 (REALPART_EXPR
, type
, lhs
),
1018 build1 (IMAGPART_EXPR
, type
, lhs
));
1019 SSA_NAME_DEF_STMT (lhs
) = stmt
;
1023 /* Expand complex multiplication to scalars:
1024 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
1028 expand_complex_multiplication (gimple_stmt_iterator
*gsi
, tree inner_type
,
1029 tree ar
, tree ai
, tree br
, tree bi
,
1030 complex_lattice_t al
, complex_lattice_t bl
)
1036 complex_lattice_t tl
;
1037 rr
= ar
, ar
= br
, br
= rr
;
1038 ri
= ai
, ai
= bi
, bi
= ri
;
1039 tl
= al
, al
= bl
, bl
= tl
;
1042 switch (PAIR (al
, bl
))
1044 case PAIR (ONLY_REAL
, ONLY_REAL
):
1045 rr
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, br
);
1049 case PAIR (ONLY_IMAG
, ONLY_REAL
):
1051 if (TREE_CODE (ai
) == REAL_CST
1052 && real_identical (&TREE_REAL_CST (ai
), &dconst1
))
1055 ri
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, br
);
1058 case PAIR (ONLY_IMAG
, ONLY_IMAG
):
1059 rr
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, bi
);
1060 rr
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, rr
);
1064 case PAIR (VARYING
, ONLY_REAL
):
1065 rr
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, br
);
1066 ri
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, br
);
1069 case PAIR (VARYING
, ONLY_IMAG
):
1070 rr
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, bi
);
1071 rr
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, rr
);
1072 ri
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, bi
);
1075 case PAIR (VARYING
, VARYING
):
1076 if (flag_complex_method
== 2 && SCALAR_FLOAT_TYPE_P (inner_type
))
1078 expand_complex_libcall (gsi
, ar
, ai
, br
, bi
, MULT_EXPR
);
1083 tree t1
, t2
, t3
, t4
;
1085 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, br
);
1086 t2
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, bi
);
1087 t3
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, bi
);
1089 /* Avoid expanding redundant multiplication for the common
1090 case of squaring a complex number. */
1091 if (ar
== br
&& ai
== bi
)
1094 t4
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, br
);
1096 rr
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, t1
, t2
);
1097 ri
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t3
, t4
);
1105 update_complex_assignment (gsi
, rr
, ri
);
1108 /* Keep this algorithm in sync with fold-const.c:const_binop().
1110 Expand complex division to scalars, straightforward algorithm.
1111 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1116 expand_complex_div_straight (gimple_stmt_iterator
*gsi
, tree inner_type
,
1117 tree ar
, tree ai
, tree br
, tree bi
,
1118 enum tree_code code
)
1120 tree rr
, ri
, div
, t1
, t2
, t3
;
1122 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, br
, br
);
1123 t2
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, bi
, bi
);
1124 div
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, t2
);
1126 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, br
);
1127 t2
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, bi
);
1128 t3
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, t2
);
1129 rr
= gimplify_build2 (gsi
, code
, inner_type
, t3
, div
);
1131 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, br
);
1132 t2
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, bi
);
1133 t3
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, t1
, t2
);
1134 ri
= gimplify_build2 (gsi
, code
, inner_type
, t3
, div
);
1136 update_complex_assignment (gsi
, rr
, ri
);
1139 /* Keep this algorithm in sync with fold-const.c:const_binop().
1141 Expand complex division to scalars, modified algorithm to minimize
1142 overflow with wide input ranges. */
1145 expand_complex_div_wide (gimple_stmt_iterator
*gsi
, tree inner_type
,
1146 tree ar
, tree ai
, tree br
, tree bi
,
1147 enum tree_code code
)
1149 tree rr
, ri
, ratio
, div
, t1
, t2
, tr
, ti
, compare
;
1150 basic_block bb_cond
, bb_true
, bb_false
, bb_join
;
1153 /* Examine |br| < |bi|, and branch. */
1154 t1
= gimplify_build1 (gsi
, ABS_EXPR
, inner_type
, br
);
1155 t2
= gimplify_build1 (gsi
, ABS_EXPR
, inner_type
, bi
);
1156 compare
= fold_build2_loc (gimple_location (gsi_stmt (*gsi
)),
1157 LT_EXPR
, boolean_type_node
, t1
, t2
);
1158 STRIP_NOPS (compare
);
1160 bb_cond
= bb_true
= bb_false
= bb_join
= NULL
;
1161 rr
= ri
= tr
= ti
= NULL
;
1162 if (TREE_CODE (compare
) != INTEGER_CST
)
1168 tmp
= create_tmp_var (boolean_type_node
);
1169 stmt
= gimple_build_assign (tmp
, compare
);
1170 if (gimple_in_ssa_p (cfun
))
1172 tmp
= make_ssa_name (tmp
, stmt
);
1173 gimple_assign_set_lhs (stmt
, tmp
);
1176 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1178 cond
= fold_build2_loc (gimple_location (stmt
),
1179 EQ_EXPR
, boolean_type_node
, tmp
, boolean_true_node
);
1180 stmt
= gimple_build_cond_from_tree (cond
, NULL_TREE
, NULL_TREE
);
1181 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1183 /* Split the original block, and create the TRUE and FALSE blocks. */
1184 e
= split_block (gsi_bb (*gsi
), stmt
);
1187 bb_true
= create_empty_bb (bb_cond
);
1188 bb_false
= create_empty_bb (bb_true
);
1190 /* Wire the blocks together. */
1191 e
->flags
= EDGE_TRUE_VALUE
;
1192 redirect_edge_succ (e
, bb_true
);
1193 make_edge (bb_cond
, bb_false
, EDGE_FALSE_VALUE
);
1194 make_edge (bb_true
, bb_join
, EDGE_FALLTHRU
);
1195 make_edge (bb_false
, bb_join
, EDGE_FALLTHRU
);
1196 add_bb_to_loop (bb_true
, bb_cond
->loop_father
);
1197 add_bb_to_loop (bb_false
, bb_cond
->loop_father
);
1199 /* Update dominance info. Note that bb_join's data was
1200 updated by split_block. */
1201 if (dom_info_available_p (CDI_DOMINATORS
))
1203 set_immediate_dominator (CDI_DOMINATORS
, bb_true
, bb_cond
);
1204 set_immediate_dominator (CDI_DOMINATORS
, bb_false
, bb_cond
);
1207 rr
= create_tmp_reg (inner_type
);
1208 ri
= create_tmp_reg (inner_type
);
1211 /* In the TRUE branch, we compute
1213 div = (br * ratio) + bi;
1214 tr = (ar * ratio) + ai;
1215 ti = (ai * ratio) - ar;
1218 if (bb_true
|| integer_nonzerop (compare
))
1222 *gsi
= gsi_last_bb (bb_true
);
1223 gsi_insert_after (gsi
, gimple_build_nop (), GSI_NEW_STMT
);
1226 ratio
= gimplify_build2 (gsi
, code
, inner_type
, br
, bi
);
1228 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, br
, ratio
);
1229 div
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, bi
);
1231 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, ratio
);
1232 tr
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, ai
);
1234 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, ratio
);
1235 ti
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, t1
, ar
);
1237 tr
= gimplify_build2 (gsi
, code
, inner_type
, tr
, div
);
1238 ti
= gimplify_build2 (gsi
, code
, inner_type
, ti
, div
);
1242 stmt
= gimple_build_assign (rr
, tr
);
1243 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1244 stmt
= gimple_build_assign (ri
, ti
);
1245 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1246 gsi_remove (gsi
, true);
1250 /* In the FALSE branch, we compute
1252 divisor = (d * ratio) + c;
1253 tr = (b * ratio) + a;
1254 ti = b - (a * ratio);
1257 if (bb_false
|| integer_zerop (compare
))
1261 *gsi
= gsi_last_bb (bb_false
);
1262 gsi_insert_after (gsi
, gimple_build_nop (), GSI_NEW_STMT
);
1265 ratio
= gimplify_build2 (gsi
, code
, inner_type
, bi
, br
);
1267 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, bi
, ratio
);
1268 div
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, br
);
1270 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, ratio
);
1271 tr
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, ar
);
1273 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, ratio
);
1274 ti
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, ai
, t1
);
1276 tr
= gimplify_build2 (gsi
, code
, inner_type
, tr
, div
);
1277 ti
= gimplify_build2 (gsi
, code
, inner_type
, ti
, div
);
1281 stmt
= gimple_build_assign (rr
, tr
);
1282 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1283 stmt
= gimple_build_assign (ri
, ti
);
1284 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1285 gsi_remove (gsi
, true);
1290 *gsi
= gsi_start_bb (bb_join
);
1294 update_complex_assignment (gsi
, rr
, ri
);
1297 /* Expand complex division to scalars. */
1300 expand_complex_division (gimple_stmt_iterator
*gsi
, tree inner_type
,
1301 tree ar
, tree ai
, tree br
, tree bi
,
1302 enum tree_code code
,
1303 complex_lattice_t al
, complex_lattice_t bl
)
1307 switch (PAIR (al
, bl
))
1309 case PAIR (ONLY_REAL
, ONLY_REAL
):
1310 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
1314 case PAIR (ONLY_REAL
, ONLY_IMAG
):
1316 ri
= gimplify_build2 (gsi
, code
, inner_type
, ar
, bi
);
1317 ri
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ri
);
1320 case PAIR (ONLY_IMAG
, ONLY_REAL
):
1322 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, br
);
1325 case PAIR (ONLY_IMAG
, ONLY_IMAG
):
1326 rr
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
1330 case PAIR (VARYING
, ONLY_REAL
):
1331 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
1332 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, br
);
1335 case PAIR (VARYING
, ONLY_IMAG
):
1336 rr
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
1337 ri
= gimplify_build2 (gsi
, code
, inner_type
, ar
, bi
);
1338 ri
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ri
);
1341 case PAIR (ONLY_REAL
, VARYING
):
1342 case PAIR (ONLY_IMAG
, VARYING
):
1343 case PAIR (VARYING
, VARYING
):
1344 switch (flag_complex_method
)
1347 /* straightforward implementation of complex divide acceptable. */
1348 expand_complex_div_straight (gsi
, inner_type
, ar
, ai
, br
, bi
, code
);
1352 if (SCALAR_FLOAT_TYPE_P (inner_type
))
1354 expand_complex_libcall (gsi
, ar
, ai
, br
, bi
, code
);
1360 /* wide ranges of inputs must work for complex divide. */
1361 expand_complex_div_wide (gsi
, inner_type
, ar
, ai
, br
, bi
, code
);
1373 update_complex_assignment (gsi
, rr
, ri
);
1376 /* Expand complex negation to scalars:
1381 expand_complex_negation (gimple_stmt_iterator
*gsi
, tree inner_type
,
1386 rr
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ar
);
1387 ri
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ai
);
1389 update_complex_assignment (gsi
, rr
, ri
);
1392 /* Expand complex conjugate to scalars:
1397 expand_complex_conjugate (gimple_stmt_iterator
*gsi
, tree inner_type
,
1402 ri
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ai
);
1404 update_complex_assignment (gsi
, ar
, ri
);
1407 /* Expand complex comparison (EQ or NE only). */
1410 expand_complex_comparison (gimple_stmt_iterator
*gsi
, tree ar
, tree ai
,
1411 tree br
, tree bi
, enum tree_code code
)
1413 tree cr
, ci
, cc
, type
;
1416 cr
= gimplify_build2 (gsi
, code
, boolean_type_node
, ar
, br
);
1417 ci
= gimplify_build2 (gsi
, code
, boolean_type_node
, ai
, bi
);
1418 cc
= gimplify_build2 (gsi
,
1419 (code
== EQ_EXPR
? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
),
1420 boolean_type_node
, cr
, ci
);
1422 stmt
= gsi_stmt (*gsi
);
1424 switch (gimple_code (stmt
))
1428 greturn
*return_stmt
= as_a
<greturn
*> (stmt
);
1429 type
= TREE_TYPE (gimple_return_retval (return_stmt
));
1430 gimple_return_set_retval (return_stmt
, fold_convert (type
, cc
));
1435 type
= TREE_TYPE (gimple_assign_lhs (stmt
));
1436 gimple_assign_set_rhs_from_tree (gsi
, fold_convert (type
, cc
));
1437 stmt
= gsi_stmt (*gsi
);
1442 gcond
*cond_stmt
= as_a
<gcond
*> (stmt
);
1443 gimple_cond_set_code (cond_stmt
, EQ_EXPR
);
1444 gimple_cond_set_lhs (cond_stmt
, cc
);
1445 gimple_cond_set_rhs (cond_stmt
, boolean_true_node
);
1456 /* Expand inline asm that sets some complex SSA_NAMEs. */
1459 expand_complex_asm (gimple_stmt_iterator
*gsi
)
1461 gasm
*stmt
= as_a
<gasm
*> (gsi_stmt (*gsi
));
1464 for (i
= 0; i
< gimple_asm_noutputs (stmt
); ++i
)
1466 tree link
= gimple_asm_output_op (stmt
, i
);
1467 tree op
= TREE_VALUE (link
);
1468 if (TREE_CODE (op
) == SSA_NAME
1469 && TREE_CODE (TREE_TYPE (op
)) == COMPLEX_TYPE
)
1471 tree type
= TREE_TYPE (op
);
1472 tree inner_type
= TREE_TYPE (type
);
1473 tree r
= build1 (REALPART_EXPR
, inner_type
, op
);
1474 tree i
= build1 (IMAGPART_EXPR
, inner_type
, op
);
1475 gimple_seq list
= set_component_ssa_name (op
, false, r
);
1478 gsi_insert_seq_after (gsi
, list
, GSI_CONTINUE_LINKING
);
1480 list
= set_component_ssa_name (op
, true, i
);
1482 gsi_insert_seq_after (gsi
, list
, GSI_CONTINUE_LINKING
);
1487 /* Process one statement. If we identify a complex operation, expand it. */
1490 expand_complex_operations_1 (gimple_stmt_iterator
*gsi
)
1492 gimple
*stmt
= gsi_stmt (*gsi
);
1493 tree type
, inner_type
, lhs
;
1494 tree ac
, ar
, ai
, bc
, br
, bi
;
1495 complex_lattice_t al
, bl
;
1496 enum tree_code code
;
1498 if (gimple_code (stmt
) == GIMPLE_ASM
)
1500 expand_complex_asm (gsi
);
1504 lhs
= gimple_get_lhs (stmt
);
1505 if (!lhs
&& gimple_code (stmt
) != GIMPLE_COND
)
1508 type
= TREE_TYPE (gimple_op (stmt
, 0));
1509 code
= gimple_expr_code (stmt
);
1511 /* Initial filter for operations we handle. */
1517 case TRUNC_DIV_EXPR
:
1519 case FLOOR_DIV_EXPR
:
1520 case ROUND_DIV_EXPR
:
1524 if (TREE_CODE (type
) != COMPLEX_TYPE
)
1526 inner_type
= TREE_TYPE (type
);
1531 /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
1532 subcode, so we need to access the operands using gimple_op. */
1533 inner_type
= TREE_TYPE (gimple_op (stmt
, 1));
1534 if (TREE_CODE (inner_type
) != COMPLEX_TYPE
)
1542 /* GIMPLE_COND may also fallthru here, but we do not need to
1543 do anything with it. */
1544 if (gimple_code (stmt
) == GIMPLE_COND
)
1547 if (TREE_CODE (type
) == COMPLEX_TYPE
)
1548 expand_complex_move (gsi
, type
);
1549 else if (is_gimple_assign (stmt
)
1550 && (gimple_assign_rhs_code (stmt
) == REALPART_EXPR
1551 || gimple_assign_rhs_code (stmt
) == IMAGPART_EXPR
)
1552 && TREE_CODE (lhs
) == SSA_NAME
)
1554 rhs
= gimple_assign_rhs1 (stmt
);
1555 rhs
= extract_component (gsi
, TREE_OPERAND (rhs
, 0),
1556 gimple_assign_rhs_code (stmt
)
1559 gimple_assign_set_rhs_from_tree (gsi
, rhs
);
1560 stmt
= gsi_stmt (*gsi
);
1567 /* Extract the components of the two complex values. Make sure and
1568 handle the common case of the same value used twice specially. */
1569 if (is_gimple_assign (stmt
))
1571 ac
= gimple_assign_rhs1 (stmt
);
1572 bc
= (gimple_num_ops (stmt
) > 2) ? gimple_assign_rhs2 (stmt
) : NULL
;
1574 /* GIMPLE_CALL can not get here. */
1577 ac
= gimple_cond_lhs (stmt
);
1578 bc
= gimple_cond_rhs (stmt
);
1581 ar
= extract_component (gsi
, ac
, false, true);
1582 ai
= extract_component (gsi
, ac
, true, true);
1588 br
= extract_component (gsi
, bc
, 0, true);
1589 bi
= extract_component (gsi
, bc
, 1, true);
1592 br
= bi
= NULL_TREE
;
1594 if (gimple_in_ssa_p (cfun
))
1596 al
= find_lattice_value (ac
);
1597 if (al
== UNINITIALIZED
)
1600 if (TREE_CODE_CLASS (code
) == tcc_unary
)
1606 bl
= find_lattice_value (bc
);
1607 if (bl
== UNINITIALIZED
)
1618 expand_complex_addition (gsi
, inner_type
, ar
, ai
, br
, bi
, code
, al
, bl
);
1622 expand_complex_multiplication (gsi
, inner_type
, ar
, ai
, br
, bi
, al
, bl
);
1625 case TRUNC_DIV_EXPR
:
1627 case FLOOR_DIV_EXPR
:
1628 case ROUND_DIV_EXPR
:
1630 expand_complex_division (gsi
, inner_type
, ar
, ai
, br
, bi
, code
, al
, bl
);
1634 expand_complex_negation (gsi
, inner_type
, ar
, ai
);
1638 expand_complex_conjugate (gsi
, inner_type
, ar
, ai
);
1643 expand_complex_comparison (gsi
, ar
, ai
, br
, bi
, code
);
1652 /* Entry point for complex operation lowering during optimization. */
1655 tree_lower_complex (void)
1657 gimple_stmt_iterator gsi
;
1662 if (!init_dont_simulate_again ())
1665 complex_lattice_values
.create (num_ssa_names
);
1666 complex_lattice_values
.safe_grow_cleared (num_ssa_names
);
1668 init_parameter_lattice_values ();
1669 ssa_propagate (complex_visit_stmt
, complex_visit_phi
);
1671 complex_variable_components
= new int_tree_htab_type (10);
1673 complex_ssa_name_components
.create (2 * num_ssa_names
);
1674 complex_ssa_name_components
.safe_grow_cleared (2 * num_ssa_names
);
1676 update_parameter_components ();
1678 rpo
= XNEWVEC (int, last_basic_block_for_fn (cfun
));
1679 n_bbs
= pre_and_rev_post_order_compute (NULL
, rpo
, false);
1680 for (i
= 0; i
< n_bbs
; i
++)
1682 bb
= BASIC_BLOCK_FOR_FN (cfun
, rpo
[i
]);
1683 update_phi_components (bb
);
1684 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1685 expand_complex_operations_1 (&gsi
);
1690 if (!phis_to_revisit
.is_empty ())
1692 unsigned int n
= phis_to_revisit
.length ();
1693 for (unsigned int j
= 0; j
< n
; j
+= 3)
1694 for (unsigned int k
= 0; k
< 2; k
++)
1695 if (gphi
*phi
= phis_to_revisit
[j
+ k
+ 1])
1697 unsigned int m
= gimple_phi_num_args (phi
);
1698 for (unsigned int l
= 0; l
< m
; ++l
)
1700 tree op
= gimple_phi_arg_def (phi
, l
);
1701 if (TREE_CODE (op
) == SSA_NAME
1702 || is_gimple_min_invariant (op
))
1704 tree arg
= gimple_phi_arg_def (phis_to_revisit
[j
], l
);
1705 op
= extract_component (NULL
, arg
, k
> 0, false, false);
1706 SET_PHI_ARG_DEF (phi
, l
, op
);
1709 phis_to_revisit
.release ();
1712 gsi_commit_edge_inserts ();
1714 delete complex_variable_components
;
1715 complex_variable_components
= NULL
;
1716 complex_ssa_name_components
.release ();
1717 complex_lattice_values
.release ();
1723 const pass_data pass_data_lower_complex
=
1725 GIMPLE_PASS
, /* type */
1726 "cplxlower", /* name */
1727 OPTGROUP_NONE
, /* optinfo_flags */
1728 TV_NONE
, /* tv_id */
1729 PROP_ssa
, /* properties_required */
1730 PROP_gimple_lcx
, /* properties_provided */
1731 0, /* properties_destroyed */
1732 0, /* todo_flags_start */
1733 TODO_update_ssa
, /* todo_flags_finish */
1736 class pass_lower_complex
: public gimple_opt_pass
1739 pass_lower_complex (gcc::context
*ctxt
)
1740 : gimple_opt_pass (pass_data_lower_complex
, ctxt
)
1743 /* opt_pass methods: */
1744 opt_pass
* clone () { return new pass_lower_complex (m_ctxt
); }
1745 virtual unsigned int execute (function
*) { return tree_lower_complex (); }
1747 }; // class pass_lower_complex
1752 make_pass_lower_complex (gcc::context
*ctxt
)
1754 return new pass_lower_complex (ctxt
);
1760 const pass_data pass_data_lower_complex_O0
=
1762 GIMPLE_PASS
, /* type */
1763 "cplxlower0", /* name */
1764 OPTGROUP_NONE
, /* optinfo_flags */
1765 TV_NONE
, /* tv_id */
1766 PROP_cfg
, /* properties_required */
1767 PROP_gimple_lcx
, /* properties_provided */
1768 0, /* properties_destroyed */
1769 0, /* todo_flags_start */
1770 TODO_update_ssa
, /* todo_flags_finish */
1773 class pass_lower_complex_O0
: public gimple_opt_pass
1776 pass_lower_complex_O0 (gcc::context
*ctxt
)
1777 : gimple_opt_pass (pass_data_lower_complex_O0
, ctxt
)
1780 /* opt_pass methods: */
1781 virtual bool gate (function
*fun
)
1783 /* With errors, normal optimization passes are not run. If we don't
1784 lower complex operations at all, rtl expansion will abort. */
1785 return !(fun
->curr_properties
& PROP_gimple_lcx
);
1788 virtual unsigned int execute (function
*) { return tree_lower_complex (); }
1790 }; // class pass_lower_complex_O0
1795 make_pass_lower_complex_O0 (gcc::context
*ctxt
)
1797 return new pass_lower_complex_O0 (ctxt
);