PR middle-end/80422
[official-gcc.git] / gcc / tree-affine.c
blob13c477dc7d6dcfebdea9c852d1266726be01250c
1 /* Operations with affine combinations of trees.
2 Copyright (C) 2005-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "tree-pretty-print.h"
28 #include "fold-const.h"
29 #include "tree-affine.h"
30 #include "gimplify.h"
31 #include "dumpfile.h"
32 #include "cfgexpand.h"
34 /* Extends CST as appropriate for the affine combinations COMB. */
36 widest_int
37 wide_int_ext_for_comb (const widest_int &cst, tree type)
39 return wi::sext (cst, TYPE_PRECISION (type));
42 /* Initializes affine combination COMB so that its value is zero in TYPE. */
44 static void
45 aff_combination_zero (aff_tree *comb, tree type)
47 int i;
48 comb->type = type;
49 comb->offset = 0;
50 comb->n = 0;
51 for (i = 0; i < MAX_AFF_ELTS; i++)
52 comb->elts[i].coef = 0;
53 comb->rest = NULL_TREE;
56 /* Sets COMB to CST. */
58 void
59 aff_combination_const (aff_tree *comb, tree type, const widest_int &cst)
61 aff_combination_zero (comb, type);
62 comb->offset = wide_int_ext_for_comb (cst, comb->type);;
65 /* Sets COMB to single element ELT. */
67 void
68 aff_combination_elt (aff_tree *comb, tree type, tree elt)
70 aff_combination_zero (comb, type);
72 comb->n = 1;
73 comb->elts[0].val = elt;
74 comb->elts[0].coef = 1;
77 /* Scales COMB by SCALE. */
79 void
80 aff_combination_scale (aff_tree *comb, const widest_int &scale_in)
82 unsigned i, j;
84 widest_int scale = wide_int_ext_for_comb (scale_in, comb->type);
85 if (scale == 1)
86 return;
88 if (scale == 0)
90 aff_combination_zero (comb, comb->type);
91 return;
94 comb->offset = wide_int_ext_for_comb (scale * comb->offset, comb->type);
95 for (i = 0, j = 0; i < comb->n; i++)
97 widest_int new_coef
98 = wide_int_ext_for_comb (scale * comb->elts[i].coef, comb->type);
99 /* A coefficient may become zero due to overflow. Remove the zero
100 elements. */
101 if (new_coef == 0)
102 continue;
103 comb->elts[j].coef = new_coef;
104 comb->elts[j].val = comb->elts[i].val;
105 j++;
107 comb->n = j;
109 if (comb->rest)
111 tree type = comb->type;
112 if (POINTER_TYPE_P (type))
113 type = sizetype;
114 if (comb->n < MAX_AFF_ELTS)
116 comb->elts[comb->n].coef = scale;
117 comb->elts[comb->n].val = comb->rest;
118 comb->rest = NULL_TREE;
119 comb->n++;
121 else
122 comb->rest = fold_build2 (MULT_EXPR, type, comb->rest,
123 wide_int_to_tree (type, scale));
127 /* Adds ELT * SCALE to COMB. */
129 void
130 aff_combination_add_elt (aff_tree *comb, tree elt, const widest_int &scale_in)
132 unsigned i;
133 tree type;
135 widest_int scale = wide_int_ext_for_comb (scale_in, comb->type);
136 if (scale == 0)
137 return;
139 for (i = 0; i < comb->n; i++)
140 if (operand_equal_p (comb->elts[i].val, elt, 0))
142 widest_int new_coef
143 = wide_int_ext_for_comb (comb->elts[i].coef + scale, comb->type);
144 if (new_coef != 0)
146 comb->elts[i].coef = new_coef;
147 return;
150 comb->n--;
151 comb->elts[i] = comb->elts[comb->n];
153 if (comb->rest)
155 gcc_assert (comb->n == MAX_AFF_ELTS - 1);
156 comb->elts[comb->n].coef = 1;
157 comb->elts[comb->n].val = comb->rest;
158 comb->rest = NULL_TREE;
159 comb->n++;
161 return;
163 if (comb->n < MAX_AFF_ELTS)
165 comb->elts[comb->n].coef = scale;
166 comb->elts[comb->n].val = elt;
167 comb->n++;
168 return;
171 type = comb->type;
172 if (POINTER_TYPE_P (type))
173 type = sizetype;
175 if (scale == 1)
176 elt = fold_convert (type, elt);
177 else
178 elt = fold_build2 (MULT_EXPR, type,
179 fold_convert (type, elt),
180 wide_int_to_tree (type, scale));
182 if (comb->rest)
183 comb->rest = fold_build2 (PLUS_EXPR, type, comb->rest,
184 elt);
185 else
186 comb->rest = elt;
189 /* Adds CST to C. */
191 static void
192 aff_combination_add_cst (aff_tree *c, const widest_int &cst)
194 c->offset = wide_int_ext_for_comb (c->offset + cst, c->type);
197 /* Adds COMB2 to COMB1. */
199 void
200 aff_combination_add (aff_tree *comb1, aff_tree *comb2)
202 unsigned i;
204 aff_combination_add_cst (comb1, comb2->offset);
205 for (i = 0; i < comb2->n; i++)
206 aff_combination_add_elt (comb1, comb2->elts[i].val, comb2->elts[i].coef);
207 if (comb2->rest)
208 aff_combination_add_elt (comb1, comb2->rest, 1);
211 /* Converts affine combination COMB to TYPE. */
213 void
214 aff_combination_convert (aff_tree *comb, tree type)
216 unsigned i, j;
217 tree comb_type = comb->type;
219 if (TYPE_PRECISION (type) > TYPE_PRECISION (comb_type))
221 tree val = fold_convert (type, aff_combination_to_tree (comb));
222 tree_to_aff_combination (val, type, comb);
223 return;
226 comb->type = type;
227 if (comb->rest && !POINTER_TYPE_P (type))
228 comb->rest = fold_convert (type, comb->rest);
230 if (TYPE_PRECISION (type) == TYPE_PRECISION (comb_type))
231 return;
233 comb->offset = wide_int_ext_for_comb (comb->offset, comb->type);
234 for (i = j = 0; i < comb->n; i++)
236 if (comb->elts[i].coef == 0)
237 continue;
238 comb->elts[j].coef = comb->elts[i].coef;
239 comb->elts[j].val = fold_convert (type, comb->elts[i].val);
240 j++;
243 comb->n = j;
244 if (comb->n < MAX_AFF_ELTS && comb->rest)
246 comb->elts[comb->n].coef = 1;
247 comb->elts[comb->n].val = comb->rest;
248 comb->rest = NULL_TREE;
249 comb->n++;
253 /* Splits EXPR into an affine combination of parts. */
255 void
256 tree_to_aff_combination (tree expr, tree type, aff_tree *comb)
258 aff_tree tmp;
259 enum tree_code code;
260 tree cst, core, toffset;
261 HOST_WIDE_INT bitpos, bitsize;
262 machine_mode mode;
263 int unsignedp, reversep, volatilep;
265 STRIP_NOPS (expr);
267 code = TREE_CODE (expr);
268 switch (code)
270 case INTEGER_CST:
271 aff_combination_const (comb, type, wi::to_widest (expr));
272 return;
274 case POINTER_PLUS_EXPR:
275 tree_to_aff_combination (TREE_OPERAND (expr, 0), type, comb);
276 tree_to_aff_combination (TREE_OPERAND (expr, 1), sizetype, &tmp);
277 aff_combination_add (comb, &tmp);
278 return;
280 case PLUS_EXPR:
281 case MINUS_EXPR:
282 tree_to_aff_combination (TREE_OPERAND (expr, 0), type, comb);
283 tree_to_aff_combination (TREE_OPERAND (expr, 1), type, &tmp);
284 if (code == MINUS_EXPR)
285 aff_combination_scale (&tmp, -1);
286 aff_combination_add (comb, &tmp);
287 return;
289 case MULT_EXPR:
290 cst = TREE_OPERAND (expr, 1);
291 if (TREE_CODE (cst) != INTEGER_CST)
292 break;
293 tree_to_aff_combination (TREE_OPERAND (expr, 0), type, comb);
294 aff_combination_scale (comb, wi::to_widest (cst));
295 return;
297 case NEGATE_EXPR:
298 tree_to_aff_combination (TREE_OPERAND (expr, 0), type, comb);
299 aff_combination_scale (comb, -1);
300 return;
302 case BIT_NOT_EXPR:
303 /* ~x = -x - 1 */
304 tree_to_aff_combination (TREE_OPERAND (expr, 0), type, comb);
305 aff_combination_scale (comb, -1);
306 aff_combination_add_cst (comb, -1);
307 return;
309 case ADDR_EXPR:
310 /* Handle &MEM[ptr + CST] which is equivalent to POINTER_PLUS_EXPR. */
311 if (TREE_CODE (TREE_OPERAND (expr, 0)) == MEM_REF)
313 expr = TREE_OPERAND (expr, 0);
314 tree_to_aff_combination (TREE_OPERAND (expr, 0), type, comb);
315 tree_to_aff_combination (TREE_OPERAND (expr, 1), sizetype, &tmp);
316 aff_combination_add (comb, &tmp);
317 return;
319 core = get_inner_reference (TREE_OPERAND (expr, 0), &bitsize, &bitpos,
320 &toffset, &mode, &unsignedp, &reversep,
321 &volatilep);
322 if (bitpos % BITS_PER_UNIT != 0)
323 break;
324 aff_combination_const (comb, type, bitpos / BITS_PER_UNIT);
325 if (TREE_CODE (core) == MEM_REF)
327 aff_combination_add_cst (comb, wi::to_widest (TREE_OPERAND (core, 1)));
328 core = TREE_OPERAND (core, 0);
330 else
331 core = build_fold_addr_expr (core);
333 if (TREE_CODE (core) == ADDR_EXPR)
334 aff_combination_add_elt (comb, core, 1);
335 else
337 tree_to_aff_combination (core, type, &tmp);
338 aff_combination_add (comb, &tmp);
340 if (toffset)
342 tree_to_aff_combination (toffset, type, &tmp);
343 aff_combination_add (comb, &tmp);
345 return;
347 case MEM_REF:
348 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR)
349 tree_to_aff_combination (TREE_OPERAND (TREE_OPERAND (expr, 0), 0),
350 type, comb);
351 else if (integer_zerop (TREE_OPERAND (expr, 1)))
353 aff_combination_elt (comb, type, expr);
354 return;
356 else
357 aff_combination_elt (comb, type,
358 build2 (MEM_REF, TREE_TYPE (expr),
359 TREE_OPERAND (expr, 0),
360 build_int_cst
361 (TREE_TYPE (TREE_OPERAND (expr, 1)), 0)));
362 tree_to_aff_combination (TREE_OPERAND (expr, 1), sizetype, &tmp);
363 aff_combination_add (comb, &tmp);
364 return;
366 default:
367 break;
370 aff_combination_elt (comb, type, expr);
373 /* Creates EXPR + ELT * SCALE in TYPE. EXPR is taken from affine
374 combination COMB. */
376 static tree
377 add_elt_to_tree (tree expr, tree type, tree elt, const widest_int &scale_in)
379 enum tree_code code;
381 widest_int scale = wide_int_ext_for_comb (scale_in, type);
383 elt = fold_convert (type, elt);
384 if (scale == 1)
386 if (!expr)
387 return elt;
389 return fold_build2 (PLUS_EXPR, type, expr, elt);
392 if (scale == -1)
394 if (!expr)
395 return fold_build1 (NEGATE_EXPR, type, elt);
397 return fold_build2 (MINUS_EXPR, type, expr, elt);
400 if (!expr)
401 return fold_build2 (MULT_EXPR, type, elt, wide_int_to_tree (type, scale));
403 if (wi::neg_p (scale))
405 code = MINUS_EXPR;
406 scale = -scale;
408 else
409 code = PLUS_EXPR;
411 elt = fold_build2 (MULT_EXPR, type, elt, wide_int_to_tree (type, scale));
412 return fold_build2 (code, type, expr, elt);
415 /* Makes tree from the affine combination COMB. */
417 tree
418 aff_combination_to_tree (aff_tree *comb)
420 tree type = comb->type, base = NULL_TREE, expr = NULL_TREE;
421 unsigned i;
422 widest_int off, sgn;
424 gcc_assert (comb->n == MAX_AFF_ELTS || comb->rest == NULL_TREE);
426 i = 0;
427 if (POINTER_TYPE_P (type))
429 type = sizetype;
430 if (comb->n > 0 && comb->elts[0].coef == 1
431 && POINTER_TYPE_P (TREE_TYPE (comb->elts[0].val)))
433 base = comb->elts[0].val;
434 ++i;
438 for (; i < comb->n; i++)
439 expr = add_elt_to_tree (expr, type, comb->elts[i].val, comb->elts[i].coef);
441 if (comb->rest)
442 expr = add_elt_to_tree (expr, type, comb->rest, 1);
444 /* Ensure that we get x - 1, not x + (-1) or x + 0xff..f if x is
445 unsigned. */
446 if (wi::neg_p (comb->offset))
448 off = -comb->offset;
449 sgn = -1;
451 else
453 off = comb->offset;
454 sgn = 1;
456 expr = add_elt_to_tree (expr, type, wide_int_to_tree (type, off), sgn);
458 if (base)
459 return fold_build_pointer_plus (base, expr);
460 else
461 return fold_convert (comb->type, expr);
464 /* Copies the tree elements of COMB to ensure that they are not shared. */
466 void
467 unshare_aff_combination (aff_tree *comb)
469 unsigned i;
471 for (i = 0; i < comb->n; i++)
472 comb->elts[i].val = unshare_expr (comb->elts[i].val);
473 if (comb->rest)
474 comb->rest = unshare_expr (comb->rest);
477 /* Remove M-th element from COMB. */
479 void
480 aff_combination_remove_elt (aff_tree *comb, unsigned m)
482 comb->n--;
483 if (m <= comb->n)
484 comb->elts[m] = comb->elts[comb->n];
485 if (comb->rest)
487 comb->elts[comb->n].coef = 1;
488 comb->elts[comb->n].val = comb->rest;
489 comb->rest = NULL_TREE;
490 comb->n++;
494 /* Adds C * COEF * VAL to R. VAL may be NULL, in that case only
495 C * COEF is added to R. */
498 static void
499 aff_combination_add_product (aff_tree *c, const widest_int &coef, tree val,
500 aff_tree *r)
502 unsigned i;
503 tree aval, type;
505 for (i = 0; i < c->n; i++)
507 aval = c->elts[i].val;
508 if (val)
510 type = TREE_TYPE (aval);
511 aval = fold_build2 (MULT_EXPR, type, aval,
512 fold_convert (type, val));
515 aff_combination_add_elt (r, aval, coef * c->elts[i].coef);
518 if (c->rest)
520 aval = c->rest;
521 if (val)
523 type = TREE_TYPE (aval);
524 aval = fold_build2 (MULT_EXPR, type, aval,
525 fold_convert (type, val));
528 aff_combination_add_elt (r, aval, coef);
531 if (val)
532 aff_combination_add_elt (r, val, coef * c->offset);
533 else
534 aff_combination_add_cst (r, coef * c->offset);
537 /* Multiplies C1 by C2, storing the result to R */
539 void
540 aff_combination_mult (aff_tree *c1, aff_tree *c2, aff_tree *r)
542 unsigned i;
543 gcc_assert (TYPE_PRECISION (c1->type) == TYPE_PRECISION (c2->type));
545 aff_combination_zero (r, c1->type);
547 for (i = 0; i < c2->n; i++)
548 aff_combination_add_product (c1, c2->elts[i].coef, c2->elts[i].val, r);
549 if (c2->rest)
550 aff_combination_add_product (c1, 1, c2->rest, r);
551 aff_combination_add_product (c1, c2->offset, NULL, r);
554 /* Returns the element of COMB whose value is VAL, or NULL if no such
555 element exists. If IDX is not NULL, it is set to the index of VAL in
556 COMB. */
558 static struct aff_comb_elt *
559 aff_combination_find_elt (aff_tree *comb, tree val, unsigned *idx)
561 unsigned i;
563 for (i = 0; i < comb->n; i++)
564 if (operand_equal_p (comb->elts[i].val, val, 0))
566 if (idx)
567 *idx = i;
569 return &comb->elts[i];
572 return NULL;
575 /* Element of the cache that maps ssa name NAME to its expanded form
576 as an affine expression EXPANSION. */
578 struct name_expansion
580 aff_tree expansion;
582 /* True if the expansion for the name is just being generated. */
583 unsigned in_progress : 1;
586 /* Expands SSA names in COMB recursively. CACHE is used to cache the
587 results. */
589 void
590 aff_combination_expand (aff_tree *comb ATTRIBUTE_UNUSED,
591 hash_map<tree, name_expansion *> **cache)
593 unsigned i;
594 aff_tree to_add, current, curre;
595 tree e, rhs;
596 gimple *def;
597 widest_int scale;
598 struct name_expansion *exp;
600 aff_combination_zero (&to_add, comb->type);
601 for (i = 0; i < comb->n; i++)
603 tree type, name;
604 enum tree_code code;
606 e = comb->elts[i].val;
607 type = TREE_TYPE (e);
608 name = e;
609 /* Look through some conversions. */
610 if (CONVERT_EXPR_P (e)
611 && (TYPE_PRECISION (type)
612 >= TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (e, 0)))))
613 name = TREE_OPERAND (e, 0);
614 if (TREE_CODE (name) != SSA_NAME)
615 continue;
616 def = SSA_NAME_DEF_STMT (name);
617 if (!is_gimple_assign (def) || gimple_assign_lhs (def) != name)
618 continue;
620 code = gimple_assign_rhs_code (def);
621 if (code != SSA_NAME
622 && !IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code))
623 && (get_gimple_rhs_class (code) != GIMPLE_SINGLE_RHS
624 || !is_gimple_min_invariant (gimple_assign_rhs1 (def))))
625 continue;
627 /* We do not know whether the reference retains its value at the
628 place where the expansion is used. */
629 if (TREE_CODE_CLASS (code) == tcc_reference)
630 continue;
632 if (!*cache)
633 *cache = new hash_map<tree, name_expansion *>;
634 name_expansion **slot = &(*cache)->get_or_insert (e);
635 exp = *slot;
637 if (!exp)
639 exp = XNEW (struct name_expansion);
640 exp->in_progress = 1;
641 *slot = exp;
642 /* In principle this is a generally valid folding, but
643 it is not unconditionally an optimization, so do it
644 here and not in fold_unary. */
645 /* Convert (T1)(X *+- CST) into (T1)X *+- (T1)CST if T1 is wider
646 than the type of X and overflow for the type of X is
647 undefined. */
648 if (e != name
649 && INTEGRAL_TYPE_P (type)
650 && INTEGRAL_TYPE_P (TREE_TYPE (name))
651 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (name))
652 && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (name))
653 && (code == PLUS_EXPR || code == MINUS_EXPR || code == MULT_EXPR)
654 && TREE_CODE (gimple_assign_rhs2 (def)) == INTEGER_CST)
655 rhs = fold_build2 (code, type,
656 fold_convert (type, gimple_assign_rhs1 (def)),
657 fold_convert (type, gimple_assign_rhs2 (def)));
658 else
660 rhs = gimple_assign_rhs_to_tree (def);
661 if (e != name)
662 rhs = fold_convert (type, rhs);
664 tree_to_aff_combination_expand (rhs, comb->type, &current, cache);
665 exp->expansion = current;
666 exp->in_progress = 0;
668 else
670 /* Since we follow the definitions in the SSA form, we should not
671 enter a cycle unless we pass through a phi node. */
672 gcc_assert (!exp->in_progress);
673 current = exp->expansion;
676 /* Accumulate the new terms to TO_ADD, so that we do not modify
677 COMB while traversing it; include the term -coef * E, to remove
678 it from COMB. */
679 scale = comb->elts[i].coef;
680 aff_combination_zero (&curre, comb->type);
681 aff_combination_add_elt (&curre, e, -scale);
682 aff_combination_scale (&current, scale);
683 aff_combination_add (&to_add, &current);
684 aff_combination_add (&to_add, &curre);
686 aff_combination_add (comb, &to_add);
689 /* Similar to tree_to_aff_combination, but follows SSA name definitions
690 and expands them recursively. CACHE is used to cache the expansions
691 of the ssa names, to avoid exponential time complexity for cases
692 like
694 a1 = a0 + a0;
695 a2 = a1 + a1;
696 a3 = a2 + a2;
697 ... */
699 void
700 tree_to_aff_combination_expand (tree expr, tree type, aff_tree *comb,
701 hash_map<tree, name_expansion *> **cache)
703 tree_to_aff_combination (expr, type, comb);
704 aff_combination_expand (comb, cache);
707 /* Frees memory occupied by struct name_expansion in *VALUE. Callback for
708 hash_map::traverse. */
710 bool
711 free_name_expansion (tree const &, name_expansion **value, void *)
713 free (*value);
714 return true;
717 /* Frees memory allocated for the CACHE used by
718 tree_to_aff_combination_expand. */
720 void
721 free_affine_expand_cache (hash_map<tree, name_expansion *> **cache)
723 if (!*cache)
724 return;
726 (*cache)->traverse<void *, free_name_expansion> (NULL);
727 delete (*cache);
728 *cache = NULL;
731 /* If VAL != CST * DIV for any constant CST, returns false.
732 Otherwise, if *MULT_SET is true, additionally compares CST and MULT,
733 and if they are different, returns false. Finally, if neither of these
734 two cases occur, true is returned, and CST is stored to MULT and MULT_SET
735 is set to true. */
737 static bool
738 wide_int_constant_multiple_p (const widest_int &val, const widest_int &div,
739 bool *mult_set, widest_int *mult)
741 widest_int rem, cst;
743 if (val == 0)
745 if (*mult_set && *mult != 0)
746 return false;
747 *mult_set = true;
748 *mult = 0;
749 return true;
752 if (div == 0)
753 return false;
755 if (!wi::multiple_of_p (val, div, SIGNED, &cst))
756 return false;
758 if (*mult_set && *mult != cst)
759 return false;
761 *mult_set = true;
762 *mult = cst;
763 return true;
766 /* Returns true if VAL = X * DIV for some constant X. If this is the case,
767 X is stored to MULT. */
769 bool
770 aff_combination_constant_multiple_p (aff_tree *val, aff_tree *div,
771 widest_int *mult)
773 bool mult_set = false;
774 unsigned i;
776 if (val->n == 0 && val->offset == 0)
778 *mult = 0;
779 return true;
781 if (val->n != div->n)
782 return false;
784 if (val->rest || div->rest)
785 return false;
787 if (!wide_int_constant_multiple_p (val->offset, div->offset,
788 &mult_set, mult))
789 return false;
791 for (i = 0; i < div->n; i++)
793 struct aff_comb_elt *elt
794 = aff_combination_find_elt (val, div->elts[i].val, NULL);
795 if (!elt)
796 return false;
797 if (!wide_int_constant_multiple_p (elt->coef, div->elts[i].coef,
798 &mult_set, mult))
799 return false;
802 gcc_assert (mult_set);
803 return true;
806 /* Prints the affine VAL to the FILE. */
808 static void
809 print_aff (FILE *file, aff_tree *val)
811 unsigned i;
812 signop sgn = TYPE_SIGN (val->type);
813 if (POINTER_TYPE_P (val->type))
814 sgn = SIGNED;
815 fprintf (file, "{\n type = ");
816 print_generic_expr (file, val->type, TDF_VOPS|TDF_MEMSYMS);
817 fprintf (file, "\n offset = ");
818 print_dec (val->offset, file, sgn);
819 if (val->n > 0)
821 fprintf (file, "\n elements = {\n");
822 for (i = 0; i < val->n; i++)
824 fprintf (file, " [%d] = ", i);
825 print_generic_expr (file, val->elts[i].val, TDF_VOPS|TDF_MEMSYMS);
827 fprintf (file, " * ");
828 print_dec (val->elts[i].coef, file, sgn);
829 if (i != val->n - 1)
830 fprintf (file, ", \n");
832 fprintf (file, "\n }");
834 if (val->rest)
836 fprintf (file, "\n rest = ");
837 print_generic_expr (file, val->rest, TDF_VOPS|TDF_MEMSYMS);
839 fprintf (file, "\n}");
842 /* Prints the affine VAL to the standard error, used for debugging. */
844 DEBUG_FUNCTION void
845 debug_aff (aff_tree *val)
847 print_aff (stderr, val);
848 fprintf (stderr, "\n");
851 /* Computes address of the reference REF in ADDR. The size of the accessed
852 location is stored to SIZE. Returns the ultimate containing object to
853 which REF refers. */
855 tree
856 get_inner_reference_aff (tree ref, aff_tree *addr, widest_int *size)
858 HOST_WIDE_INT bitsize, bitpos;
859 tree toff;
860 machine_mode mode;
861 int uns, rev, vol;
862 aff_tree tmp;
863 tree base = get_inner_reference (ref, &bitsize, &bitpos, &toff, &mode,
864 &uns, &rev, &vol);
865 tree base_addr = build_fold_addr_expr (base);
867 /* ADDR = &BASE + TOFF + BITPOS / BITS_PER_UNIT. */
869 tree_to_aff_combination (base_addr, sizetype, addr);
871 if (toff)
873 tree_to_aff_combination (toff, sizetype, &tmp);
874 aff_combination_add (addr, &tmp);
877 aff_combination_const (&tmp, sizetype, bitpos / BITS_PER_UNIT);
878 aff_combination_add (addr, &tmp);
880 *size = (bitsize + BITS_PER_UNIT - 1) / BITS_PER_UNIT;
882 return base;
885 /* Returns true if a region of size SIZE1 at position 0 and a region of
886 size SIZE2 at position DIFF cannot overlap. */
888 bool
889 aff_comb_cannot_overlap_p (aff_tree *diff, const widest_int &size1,
890 const widest_int &size2)
892 /* Unless the difference is a constant, we fail. */
893 if (diff->n != 0)
894 return false;
896 if (wi::neg_p (diff->offset))
898 /* The second object is before the first one, we succeed if the last
899 element of the second object is before the start of the first one. */
900 return wi::neg_p (diff->offset + size2 - 1);
902 else
904 /* We succeed if the second object starts after the first one ends. */
905 return size1 <= diff->offset;