PR middle-end/80422
[official-gcc.git] / gcc / rtlanal.c
blobacb4230aac83eb9dd0e608349e51197dae66539c
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "predict.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "insn-config.h"
33 #include "regs.h"
34 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
35 #include "recog.h"
36 #include "addresses.h"
37 #include "rtl-iter.h"
39 /* Forward declarations */
40 static void set_of_1 (rtx, const_rtx, void *);
41 static bool covers_regno_p (const_rtx, unsigned int);
42 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
43 static int computed_jump_p_1 (const_rtx);
44 static void parms_set (rtx, const_rtx, void *);
46 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, machine_mode,
47 const_rtx, machine_mode,
48 unsigned HOST_WIDE_INT);
49 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, machine_mode,
50 const_rtx, machine_mode,
51 unsigned HOST_WIDE_INT);
52 static unsigned int cached_num_sign_bit_copies (const_rtx, machine_mode, const_rtx,
53 machine_mode,
54 unsigned int);
55 static unsigned int num_sign_bit_copies1 (const_rtx, machine_mode, const_rtx,
56 machine_mode, unsigned int);
58 rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
59 rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
61 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
62 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
63 SIGN_EXTEND then while narrowing we also have to enforce the
64 representation and sign-extend the value to mode DESTINATION_REP.
66 If the value is already sign-extended to DESTINATION_REP mode we
67 can just switch to DESTINATION mode on it. For each pair of
68 integral modes SOURCE and DESTINATION, when truncating from SOURCE
69 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
70 contains the number of high-order bits in SOURCE that have to be
71 copies of the sign-bit so that we can do this mode-switch to
72 DESTINATION. */
74 static unsigned int
75 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
77 /* Store X into index I of ARRAY. ARRAY is known to have at least I
78 elements. Return the new base of ARRAY. */
80 template <typename T>
81 typename T::value_type *
82 generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
83 value_type *base,
84 size_t i, value_type x)
86 if (base == array.stack)
88 if (i < LOCAL_ELEMS)
90 base[i] = x;
91 return base;
93 gcc_checking_assert (i == LOCAL_ELEMS);
94 /* A previous iteration might also have moved from the stack to the
95 heap, in which case the heap array will already be big enough. */
96 if (vec_safe_length (array.heap) <= i)
97 vec_safe_grow (array.heap, i + 1);
98 base = array.heap->address ();
99 memcpy (base, array.stack, sizeof (array.stack));
100 base[LOCAL_ELEMS] = x;
101 return base;
103 unsigned int length = array.heap->length ();
104 if (length > i)
106 gcc_checking_assert (base == array.heap->address ());
107 base[i] = x;
108 return base;
110 else
112 gcc_checking_assert (i == length);
113 vec_safe_push (array.heap, x);
114 return array.heap->address ();
118 /* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
119 number of elements added to the worklist. */
121 template <typename T>
122 size_t
123 generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
124 value_type *base,
125 size_t end, rtx_type x)
127 enum rtx_code code = GET_CODE (x);
128 const char *format = GET_RTX_FORMAT (code);
129 size_t orig_end = end;
130 if (__builtin_expect (INSN_P (x), false))
132 /* Put the pattern at the top of the queue, since that's what
133 we're likely to want most. It also allows for the SEQUENCE
134 code below. */
135 for (int i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; --i)
136 if (format[i] == 'e')
138 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
139 if (__builtin_expect (end < LOCAL_ELEMS, true))
140 base[end++] = subx;
141 else
142 base = add_single_to_queue (array, base, end++, subx);
145 else
146 for (int i = 0; format[i]; ++i)
147 if (format[i] == 'e')
149 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
150 if (__builtin_expect (end < LOCAL_ELEMS, true))
151 base[end++] = subx;
152 else
153 base = add_single_to_queue (array, base, end++, subx);
155 else if (format[i] == 'E')
157 unsigned int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
158 rtx *vec = x->u.fld[i].rt_rtvec->elem;
159 if (__builtin_expect (end + length <= LOCAL_ELEMS, true))
160 for (unsigned int j = 0; j < length; j++)
161 base[end++] = T::get_value (vec[j]);
162 else
163 for (unsigned int j = 0; j < length; j++)
164 base = add_single_to_queue (array, base, end++,
165 T::get_value (vec[j]));
166 if (code == SEQUENCE && end == length)
167 /* If the subrtxes of the sequence fill the entire array then
168 we know that no other parts of a containing insn are queued.
169 The caller is therefore iterating over the sequence as a
170 PATTERN (...), so we also want the patterns of the
171 subinstructions. */
172 for (unsigned int j = 0; j < length; j++)
174 typename T::rtx_type x = T::get_rtx (base[j]);
175 if (INSN_P (x))
176 base[j] = T::get_value (PATTERN (x));
179 return end - orig_end;
182 template <typename T>
183 void
184 generic_subrtx_iterator <T>::free_array (array_type &array)
186 vec_free (array.heap);
189 template <typename T>
190 const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
192 template class generic_subrtx_iterator <const_rtx_accessor>;
193 template class generic_subrtx_iterator <rtx_var_accessor>;
194 template class generic_subrtx_iterator <rtx_ptr_accessor>;
196 /* Return 1 if the value of X is unstable
197 (would be different at a different point in the program).
198 The frame pointer, arg pointer, etc. are considered stable
199 (within one function) and so is anything marked `unchanging'. */
202 rtx_unstable_p (const_rtx x)
204 const RTX_CODE code = GET_CODE (x);
205 int i;
206 const char *fmt;
208 switch (code)
210 case MEM:
211 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
213 case CONST:
214 CASE_CONST_ANY:
215 case SYMBOL_REF:
216 case LABEL_REF:
217 return 0;
219 case REG:
220 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
221 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
222 /* The arg pointer varies if it is not a fixed register. */
223 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
224 return 0;
225 /* ??? When call-clobbered, the value is stable modulo the restore
226 that must happen after a call. This currently screws up local-alloc
227 into believing that the restore is not needed. */
228 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
229 return 0;
230 return 1;
232 case ASM_OPERANDS:
233 if (MEM_VOLATILE_P (x))
234 return 1;
236 /* Fall through. */
238 default:
239 break;
242 fmt = GET_RTX_FORMAT (code);
243 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
244 if (fmt[i] == 'e')
246 if (rtx_unstable_p (XEXP (x, i)))
247 return 1;
249 else if (fmt[i] == 'E')
251 int j;
252 for (j = 0; j < XVECLEN (x, i); j++)
253 if (rtx_unstable_p (XVECEXP (x, i, j)))
254 return 1;
257 return 0;
260 /* Return 1 if X has a value that can vary even between two
261 executions of the program. 0 means X can be compared reliably
262 against certain constants or near-constants.
263 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
264 zero, we are slightly more conservative.
265 The frame pointer and the arg pointer are considered constant. */
267 bool
268 rtx_varies_p (const_rtx x, bool for_alias)
270 RTX_CODE code;
271 int i;
272 const char *fmt;
274 if (!x)
275 return 0;
277 code = GET_CODE (x);
278 switch (code)
280 case MEM:
281 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
283 case CONST:
284 CASE_CONST_ANY:
285 case SYMBOL_REF:
286 case LABEL_REF:
287 return 0;
289 case REG:
290 /* Note that we have to test for the actual rtx used for the frame
291 and arg pointers and not just the register number in case we have
292 eliminated the frame and/or arg pointer and are using it
293 for pseudos. */
294 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
295 /* The arg pointer varies if it is not a fixed register. */
296 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
297 return 0;
298 if (x == pic_offset_table_rtx
299 /* ??? When call-clobbered, the value is stable modulo the restore
300 that must happen after a call. This currently screws up
301 local-alloc into believing that the restore is not needed, so we
302 must return 0 only if we are called from alias analysis. */
303 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
304 return 0;
305 return 1;
307 case LO_SUM:
308 /* The operand 0 of a LO_SUM is considered constant
309 (in fact it is related specifically to operand 1)
310 during alias analysis. */
311 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
312 || rtx_varies_p (XEXP (x, 1), for_alias);
314 case ASM_OPERANDS:
315 if (MEM_VOLATILE_P (x))
316 return 1;
318 /* Fall through. */
320 default:
321 break;
324 fmt = GET_RTX_FORMAT (code);
325 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
326 if (fmt[i] == 'e')
328 if (rtx_varies_p (XEXP (x, i), for_alias))
329 return 1;
331 else if (fmt[i] == 'E')
333 int j;
334 for (j = 0; j < XVECLEN (x, i); j++)
335 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
336 return 1;
339 return 0;
342 /* Compute an approximation for the offset between the register
343 FROM and TO for the current function, as it was at the start
344 of the routine. */
346 static HOST_WIDE_INT
347 get_initial_register_offset (int from, int to)
349 static const struct elim_table_t
351 const int from;
352 const int to;
353 } table[] = ELIMINABLE_REGS;
354 HOST_WIDE_INT offset1, offset2;
355 unsigned int i, j;
357 if (to == from)
358 return 0;
360 /* It is not safe to call INITIAL_ELIMINATION_OFFSET
361 before the reload pass. We need to give at least
362 an estimation for the resulting frame size. */
363 if (! reload_completed)
365 offset1 = crtl->outgoing_args_size + get_frame_size ();
366 #if !STACK_GROWS_DOWNWARD
367 offset1 = - offset1;
368 #endif
369 if (to == STACK_POINTER_REGNUM)
370 return offset1;
371 else if (from == STACK_POINTER_REGNUM)
372 return - offset1;
373 else
374 return 0;
377 for (i = 0; i < ARRAY_SIZE (table); i++)
378 if (table[i].from == from)
380 if (table[i].to == to)
382 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
383 offset1);
384 return offset1;
386 for (j = 0; j < ARRAY_SIZE (table); j++)
388 if (table[j].to == to
389 && table[j].from == table[i].to)
391 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
392 offset1);
393 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
394 offset2);
395 return offset1 + offset2;
397 if (table[j].from == to
398 && table[j].to == table[i].to)
400 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
401 offset1);
402 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
403 offset2);
404 return offset1 - offset2;
408 else if (table[i].to == from)
410 if (table[i].from == to)
412 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
413 offset1);
414 return - offset1;
416 for (j = 0; j < ARRAY_SIZE (table); j++)
418 if (table[j].to == to
419 && table[j].from == table[i].from)
421 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
422 offset1);
423 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
424 offset2);
425 return - offset1 + offset2;
427 if (table[j].from == to
428 && table[j].to == table[i].from)
430 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
431 offset1);
432 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
433 offset2);
434 return - offset1 - offset2;
439 /* If the requested register combination was not found,
440 try a different more simple combination. */
441 if (from == ARG_POINTER_REGNUM)
442 return get_initial_register_offset (HARD_FRAME_POINTER_REGNUM, to);
443 else if (to == ARG_POINTER_REGNUM)
444 return get_initial_register_offset (from, HARD_FRAME_POINTER_REGNUM);
445 else if (from == HARD_FRAME_POINTER_REGNUM)
446 return get_initial_register_offset (FRAME_POINTER_REGNUM, to);
447 else if (to == HARD_FRAME_POINTER_REGNUM)
448 return get_initial_register_offset (from, FRAME_POINTER_REGNUM);
449 else
450 return 0;
453 /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
454 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
455 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
456 references on strict alignment machines. */
458 static int
459 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
460 machine_mode mode, bool unaligned_mems)
462 enum rtx_code code = GET_CODE (x);
464 /* The offset must be a multiple of the mode size if we are considering
465 unaligned memory references on strict alignment machines. */
466 if (STRICT_ALIGNMENT && unaligned_mems && GET_MODE_SIZE (mode) != 0)
468 HOST_WIDE_INT actual_offset = offset;
470 #ifdef SPARC_STACK_BOUNDARY_HACK
471 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
472 the real alignment of %sp. However, when it does this, the
473 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
474 if (SPARC_STACK_BOUNDARY_HACK
475 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
476 actual_offset -= STACK_POINTER_OFFSET;
477 #endif
479 if (actual_offset % GET_MODE_SIZE (mode) != 0)
480 return 1;
483 switch (code)
485 case SYMBOL_REF:
486 if (SYMBOL_REF_WEAK (x))
487 return 1;
488 if (!CONSTANT_POOL_ADDRESS_P (x))
490 tree decl;
491 HOST_WIDE_INT decl_size;
493 if (offset < 0)
494 return 1;
495 if (size == 0)
496 size = GET_MODE_SIZE (mode);
497 if (size == 0)
498 return offset != 0;
500 /* If the size of the access or of the symbol is unknown,
501 assume the worst. */
502 decl = SYMBOL_REF_DECL (x);
504 /* Else check that the access is in bounds. TODO: restructure
505 expr_size/tree_expr_size/int_expr_size and just use the latter. */
506 if (!decl)
507 decl_size = -1;
508 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
509 decl_size = (tree_fits_shwi_p (DECL_SIZE_UNIT (decl))
510 ? tree_to_shwi (DECL_SIZE_UNIT (decl))
511 : -1);
512 else if (TREE_CODE (decl) == STRING_CST)
513 decl_size = TREE_STRING_LENGTH (decl);
514 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
515 decl_size = int_size_in_bytes (TREE_TYPE (decl));
516 else
517 decl_size = -1;
519 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
522 return 0;
524 case LABEL_REF:
525 return 0;
527 case REG:
528 /* Stack references are assumed not to trap, but we need to deal with
529 nonsensical offsets. */
530 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
531 || x == stack_pointer_rtx
532 /* The arg pointer varies if it is not a fixed register. */
533 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
535 #ifdef RED_ZONE_SIZE
536 HOST_WIDE_INT red_zone_size = RED_ZONE_SIZE;
537 #else
538 HOST_WIDE_INT red_zone_size = 0;
539 #endif
540 HOST_WIDE_INT stack_boundary = PREFERRED_STACK_BOUNDARY
541 / BITS_PER_UNIT;
542 HOST_WIDE_INT low_bound, high_bound;
544 if (size == 0)
545 size = GET_MODE_SIZE (mode);
546 if (size == 0)
547 return 1;
549 if (x == frame_pointer_rtx)
551 if (FRAME_GROWS_DOWNWARD)
553 high_bound = STARTING_FRAME_OFFSET;
554 low_bound = high_bound - get_frame_size ();
556 else
558 low_bound = STARTING_FRAME_OFFSET;
559 high_bound = low_bound + get_frame_size ();
562 else if (x == hard_frame_pointer_rtx)
564 HOST_WIDE_INT sp_offset
565 = get_initial_register_offset (STACK_POINTER_REGNUM,
566 HARD_FRAME_POINTER_REGNUM);
567 HOST_WIDE_INT ap_offset
568 = get_initial_register_offset (ARG_POINTER_REGNUM,
569 HARD_FRAME_POINTER_REGNUM);
571 #if STACK_GROWS_DOWNWARD
572 low_bound = sp_offset - red_zone_size - stack_boundary;
573 high_bound = ap_offset
574 + FIRST_PARM_OFFSET (current_function_decl)
575 #if !ARGS_GROW_DOWNWARD
576 + crtl->args.size
577 #endif
578 + stack_boundary;
579 #else
580 high_bound = sp_offset + red_zone_size + stack_boundary;
581 low_bound = ap_offset
582 + FIRST_PARM_OFFSET (current_function_decl)
583 #if ARGS_GROW_DOWNWARD
584 - crtl->args.size
585 #endif
586 - stack_boundary;
587 #endif
589 else if (x == stack_pointer_rtx)
591 HOST_WIDE_INT ap_offset
592 = get_initial_register_offset (ARG_POINTER_REGNUM,
593 STACK_POINTER_REGNUM);
595 #if STACK_GROWS_DOWNWARD
596 low_bound = - red_zone_size - stack_boundary;
597 high_bound = ap_offset
598 + FIRST_PARM_OFFSET (current_function_decl)
599 #if !ARGS_GROW_DOWNWARD
600 + crtl->args.size
601 #endif
602 + stack_boundary;
603 #else
604 high_bound = red_zone_size + stack_boundary;
605 low_bound = ap_offset
606 + FIRST_PARM_OFFSET (current_function_decl)
607 #if ARGS_GROW_DOWNWARD
608 - crtl->args.size
609 #endif
610 - stack_boundary;
611 #endif
613 else
615 /* We assume that accesses are safe to at least the
616 next stack boundary.
617 Examples are varargs and __builtin_return_address. */
618 #if ARGS_GROW_DOWNWARD
619 high_bound = FIRST_PARM_OFFSET (current_function_decl)
620 + stack_boundary;
621 low_bound = FIRST_PARM_OFFSET (current_function_decl)
622 - crtl->args.size - stack_boundary;
623 #else
624 low_bound = FIRST_PARM_OFFSET (current_function_decl)
625 - stack_boundary;
626 high_bound = FIRST_PARM_OFFSET (current_function_decl)
627 + crtl->args.size + stack_boundary;
628 #endif
631 if (offset >= low_bound && offset <= high_bound - size)
632 return 0;
633 return 1;
635 /* All of the virtual frame registers are stack references. */
636 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
637 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
638 return 0;
639 return 1;
641 case CONST:
642 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
643 mode, unaligned_mems);
645 case PLUS:
646 /* An address is assumed not to trap if:
647 - it is the pic register plus a constant. */
648 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
649 return 0;
651 /* - or it is an address that can't trap plus a constant integer. */
652 if (CONST_INT_P (XEXP (x, 1))
653 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
654 size, mode, unaligned_mems))
655 return 0;
657 return 1;
659 case LO_SUM:
660 case PRE_MODIFY:
661 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
662 mode, unaligned_mems);
664 case PRE_DEC:
665 case PRE_INC:
666 case POST_DEC:
667 case POST_INC:
668 case POST_MODIFY:
669 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
670 mode, unaligned_mems);
672 default:
673 break;
676 /* If it isn't one of the case above, it can cause a trap. */
677 return 1;
680 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
683 rtx_addr_can_trap_p (const_rtx x)
685 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
688 /* Return true if X contains a MEM subrtx. */
690 bool
691 contains_mem_rtx_p (rtx x)
693 subrtx_iterator::array_type array;
694 FOR_EACH_SUBRTX (iter, array, x, ALL)
695 if (MEM_P (*iter))
696 return true;
698 return false;
701 /* Return true if X is an address that is known to not be zero. */
703 bool
704 nonzero_address_p (const_rtx x)
706 const enum rtx_code code = GET_CODE (x);
708 switch (code)
710 case SYMBOL_REF:
711 return flag_delete_null_pointer_checks && !SYMBOL_REF_WEAK (x);
713 case LABEL_REF:
714 return true;
716 case REG:
717 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
718 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
719 || x == stack_pointer_rtx
720 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
721 return true;
722 /* All of the virtual frame registers are stack references. */
723 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
724 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
725 return true;
726 return false;
728 case CONST:
729 return nonzero_address_p (XEXP (x, 0));
731 case PLUS:
732 /* Handle PIC references. */
733 if (XEXP (x, 0) == pic_offset_table_rtx
734 && CONSTANT_P (XEXP (x, 1)))
735 return true;
736 return false;
738 case PRE_MODIFY:
739 /* Similar to the above; allow positive offsets. Further, since
740 auto-inc is only allowed in memories, the register must be a
741 pointer. */
742 if (CONST_INT_P (XEXP (x, 1))
743 && INTVAL (XEXP (x, 1)) > 0)
744 return true;
745 return nonzero_address_p (XEXP (x, 0));
747 case PRE_INC:
748 /* Similarly. Further, the offset is always positive. */
749 return true;
751 case PRE_DEC:
752 case POST_DEC:
753 case POST_INC:
754 case POST_MODIFY:
755 return nonzero_address_p (XEXP (x, 0));
757 case LO_SUM:
758 return nonzero_address_p (XEXP (x, 1));
760 default:
761 break;
764 /* If it isn't one of the case above, might be zero. */
765 return false;
768 /* Return 1 if X refers to a memory location whose address
769 cannot be compared reliably with constant addresses,
770 or if X refers to a BLKmode memory object.
771 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
772 zero, we are slightly more conservative. */
774 bool
775 rtx_addr_varies_p (const_rtx x, bool for_alias)
777 enum rtx_code code;
778 int i;
779 const char *fmt;
781 if (x == 0)
782 return 0;
784 code = GET_CODE (x);
785 if (code == MEM)
786 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
788 fmt = GET_RTX_FORMAT (code);
789 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
790 if (fmt[i] == 'e')
792 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
793 return 1;
795 else if (fmt[i] == 'E')
797 int j;
798 for (j = 0; j < XVECLEN (x, i); j++)
799 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
800 return 1;
802 return 0;
805 /* Return the CALL in X if there is one. */
808 get_call_rtx_from (rtx x)
810 if (INSN_P (x))
811 x = PATTERN (x);
812 if (GET_CODE (x) == PARALLEL)
813 x = XVECEXP (x, 0, 0);
814 if (GET_CODE (x) == SET)
815 x = SET_SRC (x);
816 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
817 return x;
818 return NULL_RTX;
821 /* Return the value of the integer term in X, if one is apparent;
822 otherwise return 0.
823 Only obvious integer terms are detected.
824 This is used in cse.c with the `related_value' field. */
826 HOST_WIDE_INT
827 get_integer_term (const_rtx x)
829 if (GET_CODE (x) == CONST)
830 x = XEXP (x, 0);
832 if (GET_CODE (x) == MINUS
833 && CONST_INT_P (XEXP (x, 1)))
834 return - INTVAL (XEXP (x, 1));
835 if (GET_CODE (x) == PLUS
836 && CONST_INT_P (XEXP (x, 1)))
837 return INTVAL (XEXP (x, 1));
838 return 0;
841 /* If X is a constant, return the value sans apparent integer term;
842 otherwise return 0.
843 Only obvious integer terms are detected. */
846 get_related_value (const_rtx x)
848 if (GET_CODE (x) != CONST)
849 return 0;
850 x = XEXP (x, 0);
851 if (GET_CODE (x) == PLUS
852 && CONST_INT_P (XEXP (x, 1)))
853 return XEXP (x, 0);
854 else if (GET_CODE (x) == MINUS
855 && CONST_INT_P (XEXP (x, 1)))
856 return XEXP (x, 0);
857 return 0;
860 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
861 to somewhere in the same object or object_block as SYMBOL. */
863 bool
864 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
866 tree decl;
868 if (GET_CODE (symbol) != SYMBOL_REF)
869 return false;
871 if (offset == 0)
872 return true;
874 if (offset > 0)
876 if (CONSTANT_POOL_ADDRESS_P (symbol)
877 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
878 return true;
880 decl = SYMBOL_REF_DECL (symbol);
881 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
882 return true;
885 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
886 && SYMBOL_REF_BLOCK (symbol)
887 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
888 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
889 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
890 return true;
892 return false;
895 /* Split X into a base and a constant offset, storing them in *BASE_OUT
896 and *OFFSET_OUT respectively. */
898 void
899 split_const (rtx x, rtx *base_out, rtx *offset_out)
901 if (GET_CODE (x) == CONST)
903 x = XEXP (x, 0);
904 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
906 *base_out = XEXP (x, 0);
907 *offset_out = XEXP (x, 1);
908 return;
911 *base_out = x;
912 *offset_out = const0_rtx;
915 /* Return the number of places FIND appears within X. If COUNT_DEST is
916 zero, we do not count occurrences inside the destination of a SET. */
919 count_occurrences (const_rtx x, const_rtx find, int count_dest)
921 int i, j;
922 enum rtx_code code;
923 const char *format_ptr;
924 int count;
926 if (x == find)
927 return 1;
929 code = GET_CODE (x);
931 switch (code)
933 case REG:
934 CASE_CONST_ANY:
935 case SYMBOL_REF:
936 case CODE_LABEL:
937 case PC:
938 case CC0:
939 return 0;
941 case EXPR_LIST:
942 count = count_occurrences (XEXP (x, 0), find, count_dest);
943 if (XEXP (x, 1))
944 count += count_occurrences (XEXP (x, 1), find, count_dest);
945 return count;
947 case MEM:
948 if (MEM_P (find) && rtx_equal_p (x, find))
949 return 1;
950 break;
952 case SET:
953 if (SET_DEST (x) == find && ! count_dest)
954 return count_occurrences (SET_SRC (x), find, count_dest);
955 break;
957 default:
958 break;
961 format_ptr = GET_RTX_FORMAT (code);
962 count = 0;
964 for (i = 0; i < GET_RTX_LENGTH (code); i++)
966 switch (*format_ptr++)
968 case 'e':
969 count += count_occurrences (XEXP (x, i), find, count_dest);
970 break;
972 case 'E':
973 for (j = 0; j < XVECLEN (x, i); j++)
974 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
975 break;
978 return count;
982 /* Return TRUE if OP is a register or subreg of a register that
983 holds an unsigned quantity. Otherwise, return FALSE. */
985 bool
986 unsigned_reg_p (rtx op)
988 if (REG_P (op)
989 && REG_EXPR (op)
990 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
991 return true;
993 if (GET_CODE (op) == SUBREG
994 && SUBREG_PROMOTED_SIGN (op))
995 return true;
997 return false;
1001 /* Nonzero if register REG appears somewhere within IN.
1002 Also works if REG is not a register; in this case it checks
1003 for a subexpression of IN that is Lisp "equal" to REG. */
1006 reg_mentioned_p (const_rtx reg, const_rtx in)
1008 const char *fmt;
1009 int i;
1010 enum rtx_code code;
1012 if (in == 0)
1013 return 0;
1015 if (reg == in)
1016 return 1;
1018 if (GET_CODE (in) == LABEL_REF)
1019 return reg == label_ref_label (in);
1021 code = GET_CODE (in);
1023 switch (code)
1025 /* Compare registers by number. */
1026 case REG:
1027 return REG_P (reg) && REGNO (in) == REGNO (reg);
1029 /* These codes have no constituent expressions
1030 and are unique. */
1031 case SCRATCH:
1032 case CC0:
1033 case PC:
1034 return 0;
1036 CASE_CONST_ANY:
1037 /* These are kept unique for a given value. */
1038 return 0;
1040 default:
1041 break;
1044 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
1045 return 1;
1047 fmt = GET_RTX_FORMAT (code);
1049 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1051 if (fmt[i] == 'E')
1053 int j;
1054 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
1055 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
1056 return 1;
1058 else if (fmt[i] == 'e'
1059 && reg_mentioned_p (reg, XEXP (in, i)))
1060 return 1;
1062 return 0;
1065 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
1066 no CODE_LABEL insn. */
1069 no_labels_between_p (const rtx_insn *beg, const rtx_insn *end)
1071 rtx_insn *p;
1072 if (beg == end)
1073 return 0;
1074 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
1075 if (LABEL_P (p))
1076 return 0;
1077 return 1;
1080 /* Nonzero if register REG is used in an insn between
1081 FROM_INSN and TO_INSN (exclusive of those two). */
1084 reg_used_between_p (const_rtx reg, const rtx_insn *from_insn,
1085 const rtx_insn *to_insn)
1087 rtx_insn *insn;
1089 if (from_insn == to_insn)
1090 return 0;
1092 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1093 if (NONDEBUG_INSN_P (insn)
1094 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
1095 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
1096 return 1;
1097 return 0;
1100 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
1101 is entirely replaced by a new value and the only use is as a SET_DEST,
1102 we do not consider it a reference. */
1105 reg_referenced_p (const_rtx x, const_rtx body)
1107 int i;
1109 switch (GET_CODE (body))
1111 case SET:
1112 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
1113 return 1;
1115 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
1116 of a REG that occupies all of the REG, the insn references X if
1117 it is mentioned in the destination. */
1118 if (GET_CODE (SET_DEST (body)) != CC0
1119 && GET_CODE (SET_DEST (body)) != PC
1120 && !REG_P (SET_DEST (body))
1121 && ! (GET_CODE (SET_DEST (body)) == SUBREG
1122 && REG_P (SUBREG_REG (SET_DEST (body)))
1123 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
1124 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1125 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
1126 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
1127 && reg_overlap_mentioned_p (x, SET_DEST (body)))
1128 return 1;
1129 return 0;
1131 case ASM_OPERANDS:
1132 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1133 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
1134 return 1;
1135 return 0;
1137 case CALL:
1138 case USE:
1139 case IF_THEN_ELSE:
1140 return reg_overlap_mentioned_p (x, body);
1142 case TRAP_IF:
1143 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
1145 case PREFETCH:
1146 return reg_overlap_mentioned_p (x, XEXP (body, 0));
1148 case UNSPEC:
1149 case UNSPEC_VOLATILE:
1150 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1151 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
1152 return 1;
1153 return 0;
1155 case PARALLEL:
1156 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1157 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
1158 return 1;
1159 return 0;
1161 case CLOBBER:
1162 if (MEM_P (XEXP (body, 0)))
1163 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
1164 return 1;
1165 return 0;
1167 case COND_EXEC:
1168 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
1169 return 1;
1170 return reg_referenced_p (x, COND_EXEC_CODE (body));
1172 default:
1173 return 0;
1177 /* Nonzero if register REG is set or clobbered in an insn between
1178 FROM_INSN and TO_INSN (exclusive of those two). */
1181 reg_set_between_p (const_rtx reg, const rtx_insn *from_insn,
1182 const rtx_insn *to_insn)
1184 const rtx_insn *insn;
1186 if (from_insn == to_insn)
1187 return 0;
1189 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1190 if (INSN_P (insn) && reg_set_p (reg, insn))
1191 return 1;
1192 return 0;
1195 /* Return true if REG is set or clobbered inside INSN. */
1198 reg_set_p (const_rtx reg, const_rtx insn)
1200 /* After delay slot handling, call and branch insns might be in a
1201 sequence. Check all the elements there. */
1202 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1204 for (int i = 0; i < XVECLEN (PATTERN (insn), 0); ++i)
1205 if (reg_set_p (reg, XVECEXP (PATTERN (insn), 0, i)))
1206 return true;
1208 return false;
1211 /* We can be passed an insn or part of one. If we are passed an insn,
1212 check if a side-effect of the insn clobbers REG. */
1213 if (INSN_P (insn)
1214 && (FIND_REG_INC_NOTE (insn, reg)
1215 || (CALL_P (insn)
1216 && ((REG_P (reg)
1217 && REGNO (reg) < FIRST_PSEUDO_REGISTER
1218 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
1219 GET_MODE (reg), REGNO (reg)))
1220 || MEM_P (reg)
1221 || find_reg_fusage (insn, CLOBBER, reg)))))
1222 return true;
1224 return set_of (reg, insn) != NULL_RTX;
1227 /* Similar to reg_set_between_p, but check all registers in X. Return 0
1228 only if none of them are modified between START and END. Return 1 if
1229 X contains a MEM; this routine does use memory aliasing. */
1232 modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end)
1234 const enum rtx_code code = GET_CODE (x);
1235 const char *fmt;
1236 int i, j;
1237 rtx_insn *insn;
1239 if (start == end)
1240 return 0;
1242 switch (code)
1244 CASE_CONST_ANY:
1245 case CONST:
1246 case SYMBOL_REF:
1247 case LABEL_REF:
1248 return 0;
1250 case PC:
1251 case CC0:
1252 return 1;
1254 case MEM:
1255 if (modified_between_p (XEXP (x, 0), start, end))
1256 return 1;
1257 if (MEM_READONLY_P (x))
1258 return 0;
1259 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1260 if (memory_modified_in_insn_p (x, insn))
1261 return 1;
1262 return 0;
1264 case REG:
1265 return reg_set_between_p (x, start, end);
1267 default:
1268 break;
1271 fmt = GET_RTX_FORMAT (code);
1272 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1274 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1275 return 1;
1277 else if (fmt[i] == 'E')
1278 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1279 if (modified_between_p (XVECEXP (x, i, j), start, end))
1280 return 1;
1283 return 0;
1286 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1287 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1288 does use memory aliasing. */
1291 modified_in_p (const_rtx x, const_rtx insn)
1293 const enum rtx_code code = GET_CODE (x);
1294 const char *fmt;
1295 int i, j;
1297 switch (code)
1299 CASE_CONST_ANY:
1300 case CONST:
1301 case SYMBOL_REF:
1302 case LABEL_REF:
1303 return 0;
1305 case PC:
1306 case CC0:
1307 return 1;
1309 case MEM:
1310 if (modified_in_p (XEXP (x, 0), insn))
1311 return 1;
1312 if (MEM_READONLY_P (x))
1313 return 0;
1314 if (memory_modified_in_insn_p (x, insn))
1315 return 1;
1316 return 0;
1318 case REG:
1319 return reg_set_p (x, insn);
1321 default:
1322 break;
1325 fmt = GET_RTX_FORMAT (code);
1326 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1328 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1329 return 1;
1331 else if (fmt[i] == 'E')
1332 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1333 if (modified_in_p (XVECEXP (x, i, j), insn))
1334 return 1;
1337 return 0;
1340 /* Helper function for set_of. */
1341 struct set_of_data
1343 const_rtx found;
1344 const_rtx pat;
1347 static void
1348 set_of_1 (rtx x, const_rtx pat, void *data1)
1350 struct set_of_data *const data = (struct set_of_data *) (data1);
1351 if (rtx_equal_p (x, data->pat)
1352 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1353 data->found = pat;
1356 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1357 (either directly or via STRICT_LOW_PART and similar modifiers). */
1358 const_rtx
1359 set_of (const_rtx pat, const_rtx insn)
1361 struct set_of_data data;
1362 data.found = NULL_RTX;
1363 data.pat = pat;
1364 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1365 return data.found;
1368 /* Add all hard register in X to *PSET. */
1369 void
1370 find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
1372 subrtx_iterator::array_type array;
1373 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1375 const_rtx x = *iter;
1376 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1377 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1381 /* This function, called through note_stores, collects sets and
1382 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1383 by DATA. */
1384 void
1385 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1387 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1388 if (REG_P (x) && HARD_REGISTER_P (x))
1389 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1392 /* Examine INSN, and compute the set of hard registers written by it.
1393 Store it in *PSET. Should only be called after reload. */
1394 void
1395 find_all_hard_reg_sets (const rtx_insn *insn, HARD_REG_SET *pset, bool implicit)
1397 rtx link;
1399 CLEAR_HARD_REG_SET (*pset);
1400 note_stores (PATTERN (insn), record_hard_reg_sets, pset);
1401 if (CALL_P (insn))
1403 if (implicit)
1404 IOR_HARD_REG_SET (*pset, call_used_reg_set);
1406 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1407 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1409 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1410 if (REG_NOTE_KIND (link) == REG_INC)
1411 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1414 /* Like record_hard_reg_sets, but called through note_uses. */
1415 void
1416 record_hard_reg_uses (rtx *px, void *data)
1418 find_all_hard_regs (*px, (HARD_REG_SET *) data);
1421 /* Given an INSN, return a SET expression if this insn has only a single SET.
1422 It may also have CLOBBERs, USEs, or SET whose output
1423 will not be used, which we ignore. */
1426 single_set_2 (const rtx_insn *insn, const_rtx pat)
1428 rtx set = NULL;
1429 int set_verified = 1;
1430 int i;
1432 if (GET_CODE (pat) == PARALLEL)
1434 for (i = 0; i < XVECLEN (pat, 0); i++)
1436 rtx sub = XVECEXP (pat, 0, i);
1437 switch (GET_CODE (sub))
1439 case USE:
1440 case CLOBBER:
1441 break;
1443 case SET:
1444 /* We can consider insns having multiple sets, where all
1445 but one are dead as single set insns. In common case
1446 only single set is present in the pattern so we want
1447 to avoid checking for REG_UNUSED notes unless necessary.
1449 When we reach set first time, we just expect this is
1450 the single set we are looking for and only when more
1451 sets are found in the insn, we check them. */
1452 if (!set_verified)
1454 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1455 && !side_effects_p (set))
1456 set = NULL;
1457 else
1458 set_verified = 1;
1460 if (!set)
1461 set = sub, set_verified = 0;
1462 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1463 || side_effects_p (sub))
1464 return NULL_RTX;
1465 break;
1467 default:
1468 return NULL_RTX;
1472 return set;
1475 /* Given an INSN, return nonzero if it has more than one SET, else return
1476 zero. */
1479 multiple_sets (const_rtx insn)
1481 int found;
1482 int i;
1484 /* INSN must be an insn. */
1485 if (! INSN_P (insn))
1486 return 0;
1488 /* Only a PARALLEL can have multiple SETs. */
1489 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1491 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1492 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1494 /* If we have already found a SET, then return now. */
1495 if (found)
1496 return 1;
1497 else
1498 found = 1;
1502 /* Either zero or one SET. */
1503 return 0;
1506 /* Return nonzero if the destination of SET equals the source
1507 and there are no side effects. */
1510 set_noop_p (const_rtx set)
1512 rtx src = SET_SRC (set);
1513 rtx dst = SET_DEST (set);
1515 if (dst == pc_rtx && src == pc_rtx)
1516 return 1;
1518 if (MEM_P (dst) && MEM_P (src))
1519 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1521 if (GET_CODE (dst) == ZERO_EXTRACT)
1522 return rtx_equal_p (XEXP (dst, 0), src)
1523 && !BITS_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1524 && !side_effects_p (src);
1526 if (GET_CODE (dst) == STRICT_LOW_PART)
1527 dst = XEXP (dst, 0);
1529 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1531 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1532 return 0;
1533 src = SUBREG_REG (src);
1534 dst = SUBREG_REG (dst);
1537 /* It is a NOOP if destination overlaps with selected src vector
1538 elements. */
1539 if (GET_CODE (src) == VEC_SELECT
1540 && REG_P (XEXP (src, 0)) && REG_P (dst)
1541 && HARD_REGISTER_P (XEXP (src, 0))
1542 && HARD_REGISTER_P (dst))
1544 int i;
1545 rtx par = XEXP (src, 1);
1546 rtx src0 = XEXP (src, 0);
1547 int c0 = INTVAL (XVECEXP (par, 0, 0));
1548 HOST_WIDE_INT offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
1550 for (i = 1; i < XVECLEN (par, 0); i++)
1551 if (INTVAL (XVECEXP (par, 0, i)) != c0 + i)
1552 return 0;
1553 return
1554 simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
1555 offset, GET_MODE (dst)) == (int) REGNO (dst);
1558 return (REG_P (src) && REG_P (dst)
1559 && REGNO (src) == REGNO (dst));
1562 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1563 value to itself. */
1566 noop_move_p (const rtx_insn *insn)
1568 rtx pat = PATTERN (insn);
1570 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1571 return 1;
1573 /* Insns carrying these notes are useful later on. */
1574 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1575 return 0;
1577 /* Check the code to be executed for COND_EXEC. */
1578 if (GET_CODE (pat) == COND_EXEC)
1579 pat = COND_EXEC_CODE (pat);
1581 if (GET_CODE (pat) == SET && set_noop_p (pat))
1582 return 1;
1584 if (GET_CODE (pat) == PARALLEL)
1586 int i;
1587 /* If nothing but SETs of registers to themselves,
1588 this insn can also be deleted. */
1589 for (i = 0; i < XVECLEN (pat, 0); i++)
1591 rtx tem = XVECEXP (pat, 0, i);
1593 if (GET_CODE (tem) == USE
1594 || GET_CODE (tem) == CLOBBER)
1595 continue;
1597 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1598 return 0;
1601 return 1;
1603 return 0;
1607 /* Return nonzero if register in range [REGNO, ENDREGNO)
1608 appears either explicitly or implicitly in X
1609 other than being stored into.
1611 References contained within the substructure at LOC do not count.
1612 LOC may be zero, meaning don't ignore anything. */
1614 bool
1615 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1616 rtx *loc)
1618 int i;
1619 unsigned int x_regno;
1620 RTX_CODE code;
1621 const char *fmt;
1623 repeat:
1624 /* The contents of a REG_NONNEG note is always zero, so we must come here
1625 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1626 if (x == 0)
1627 return false;
1629 code = GET_CODE (x);
1631 switch (code)
1633 case REG:
1634 x_regno = REGNO (x);
1636 /* If we modifying the stack, frame, or argument pointer, it will
1637 clobber a virtual register. In fact, we could be more precise,
1638 but it isn't worth it. */
1639 if ((x_regno == STACK_POINTER_REGNUM
1640 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1641 && x_regno == ARG_POINTER_REGNUM)
1642 || x_regno == FRAME_POINTER_REGNUM)
1643 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1644 return true;
1646 return endregno > x_regno && regno < END_REGNO (x);
1648 case SUBREG:
1649 /* If this is a SUBREG of a hard reg, we can see exactly which
1650 registers are being modified. Otherwise, handle normally. */
1651 if (REG_P (SUBREG_REG (x))
1652 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1654 unsigned int inner_regno = subreg_regno (x);
1655 unsigned int inner_endregno
1656 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1657 ? subreg_nregs (x) : 1);
1659 return endregno > inner_regno && regno < inner_endregno;
1661 break;
1663 case CLOBBER:
1664 case SET:
1665 if (&SET_DEST (x) != loc
1666 /* Note setting a SUBREG counts as referring to the REG it is in for
1667 a pseudo but not for hard registers since we can
1668 treat each word individually. */
1669 && ((GET_CODE (SET_DEST (x)) == SUBREG
1670 && loc != &SUBREG_REG (SET_DEST (x))
1671 && REG_P (SUBREG_REG (SET_DEST (x)))
1672 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1673 && refers_to_regno_p (regno, endregno,
1674 SUBREG_REG (SET_DEST (x)), loc))
1675 || (!REG_P (SET_DEST (x))
1676 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1677 return true;
1679 if (code == CLOBBER || loc == &SET_SRC (x))
1680 return false;
1681 x = SET_SRC (x);
1682 goto repeat;
1684 default:
1685 break;
1688 /* X does not match, so try its subexpressions. */
1690 fmt = GET_RTX_FORMAT (code);
1691 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1693 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1695 if (i == 0)
1697 x = XEXP (x, 0);
1698 goto repeat;
1700 else
1701 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1702 return true;
1704 else if (fmt[i] == 'E')
1706 int j;
1707 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1708 if (loc != &XVECEXP (x, i, j)
1709 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1710 return true;
1713 return false;
1716 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1717 we check if any register number in X conflicts with the relevant register
1718 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1719 contains a MEM (we don't bother checking for memory addresses that can't
1720 conflict because we expect this to be a rare case. */
1723 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1725 unsigned int regno, endregno;
1727 /* If either argument is a constant, then modifying X can not
1728 affect IN. Here we look at IN, we can profitably combine
1729 CONSTANT_P (x) with the switch statement below. */
1730 if (CONSTANT_P (in))
1731 return 0;
1733 recurse:
1734 switch (GET_CODE (x))
1736 case STRICT_LOW_PART:
1737 case ZERO_EXTRACT:
1738 case SIGN_EXTRACT:
1739 /* Overly conservative. */
1740 x = XEXP (x, 0);
1741 goto recurse;
1743 case SUBREG:
1744 regno = REGNO (SUBREG_REG (x));
1745 if (regno < FIRST_PSEUDO_REGISTER)
1746 regno = subreg_regno (x);
1747 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1748 ? subreg_nregs (x) : 1);
1749 goto do_reg;
1751 case REG:
1752 regno = REGNO (x);
1753 endregno = END_REGNO (x);
1754 do_reg:
1755 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1757 case MEM:
1759 const char *fmt;
1760 int i;
1762 if (MEM_P (in))
1763 return 1;
1765 fmt = GET_RTX_FORMAT (GET_CODE (in));
1766 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1767 if (fmt[i] == 'e')
1769 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1770 return 1;
1772 else if (fmt[i] == 'E')
1774 int j;
1775 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1776 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1777 return 1;
1780 return 0;
1783 case SCRATCH:
1784 case PC:
1785 case CC0:
1786 return reg_mentioned_p (x, in);
1788 case PARALLEL:
1790 int i;
1792 /* If any register in here refers to it we return true. */
1793 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1794 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1795 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1796 return 1;
1797 return 0;
1800 default:
1801 gcc_assert (CONSTANT_P (x));
1802 return 0;
1806 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1807 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1808 ignored by note_stores, but passed to FUN.
1810 FUN receives three arguments:
1811 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1812 2. the SET or CLOBBER rtx that does the store,
1813 3. the pointer DATA provided to note_stores.
1815 If the item being stored in or clobbered is a SUBREG of a hard register,
1816 the SUBREG will be passed. */
1818 void
1819 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1821 int i;
1823 if (GET_CODE (x) == COND_EXEC)
1824 x = COND_EXEC_CODE (x);
1826 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1828 rtx dest = SET_DEST (x);
1830 while ((GET_CODE (dest) == SUBREG
1831 && (!REG_P (SUBREG_REG (dest))
1832 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1833 || GET_CODE (dest) == ZERO_EXTRACT
1834 || GET_CODE (dest) == STRICT_LOW_PART)
1835 dest = XEXP (dest, 0);
1837 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1838 each of whose first operand is a register. */
1839 if (GET_CODE (dest) == PARALLEL)
1841 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1842 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1843 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1845 else
1846 (*fun) (dest, x, data);
1849 else if (GET_CODE (x) == PARALLEL)
1850 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1851 note_stores (XVECEXP (x, 0, i), fun, data);
1854 /* Like notes_stores, but call FUN for each expression that is being
1855 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1856 FUN for each expression, not any interior subexpressions. FUN receives a
1857 pointer to the expression and the DATA passed to this function.
1859 Note that this is not quite the same test as that done in reg_referenced_p
1860 since that considers something as being referenced if it is being
1861 partially set, while we do not. */
1863 void
1864 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1866 rtx body = *pbody;
1867 int i;
1869 switch (GET_CODE (body))
1871 case COND_EXEC:
1872 (*fun) (&COND_EXEC_TEST (body), data);
1873 note_uses (&COND_EXEC_CODE (body), fun, data);
1874 return;
1876 case PARALLEL:
1877 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1878 note_uses (&XVECEXP (body, 0, i), fun, data);
1879 return;
1881 case SEQUENCE:
1882 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1883 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1884 return;
1886 case USE:
1887 (*fun) (&XEXP (body, 0), data);
1888 return;
1890 case ASM_OPERANDS:
1891 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1892 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1893 return;
1895 case TRAP_IF:
1896 (*fun) (&TRAP_CONDITION (body), data);
1897 return;
1899 case PREFETCH:
1900 (*fun) (&XEXP (body, 0), data);
1901 return;
1903 case UNSPEC:
1904 case UNSPEC_VOLATILE:
1905 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1906 (*fun) (&XVECEXP (body, 0, i), data);
1907 return;
1909 case CLOBBER:
1910 if (MEM_P (XEXP (body, 0)))
1911 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1912 return;
1914 case SET:
1916 rtx dest = SET_DEST (body);
1918 /* For sets we replace everything in source plus registers in memory
1919 expression in store and operands of a ZERO_EXTRACT. */
1920 (*fun) (&SET_SRC (body), data);
1922 if (GET_CODE (dest) == ZERO_EXTRACT)
1924 (*fun) (&XEXP (dest, 1), data);
1925 (*fun) (&XEXP (dest, 2), data);
1928 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1929 dest = XEXP (dest, 0);
1931 if (MEM_P (dest))
1932 (*fun) (&XEXP (dest, 0), data);
1934 return;
1936 default:
1937 /* All the other possibilities never store. */
1938 (*fun) (pbody, data);
1939 return;
1943 /* Return nonzero if X's old contents don't survive after INSN.
1944 This will be true if X is (cc0) or if X is a register and
1945 X dies in INSN or because INSN entirely sets X.
1947 "Entirely set" means set directly and not through a SUBREG, or
1948 ZERO_EXTRACT, so no trace of the old contents remains.
1949 Likewise, REG_INC does not count.
1951 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1952 but for this use that makes no difference, since regs don't overlap
1953 during their lifetimes. Therefore, this function may be used
1954 at any time after deaths have been computed.
1956 If REG is a hard reg that occupies multiple machine registers, this
1957 function will only return 1 if each of those registers will be replaced
1958 by INSN. */
1961 dead_or_set_p (const rtx_insn *insn, const_rtx x)
1963 unsigned int regno, end_regno;
1964 unsigned int i;
1966 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1967 if (GET_CODE (x) == CC0)
1968 return 1;
1970 gcc_assert (REG_P (x));
1972 regno = REGNO (x);
1973 end_regno = END_REGNO (x);
1974 for (i = regno; i < end_regno; i++)
1975 if (! dead_or_set_regno_p (insn, i))
1976 return 0;
1978 return 1;
1981 /* Return TRUE iff DEST is a register or subreg of a register and
1982 doesn't change the number of words of the inner register, and any
1983 part of the register is TEST_REGNO. */
1985 static bool
1986 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1988 unsigned int regno, endregno;
1990 if (GET_CODE (dest) == SUBREG
1991 && (((GET_MODE_SIZE (GET_MODE (dest))
1992 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1993 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1994 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1995 dest = SUBREG_REG (dest);
1997 if (!REG_P (dest))
1998 return false;
2000 regno = REGNO (dest);
2001 endregno = END_REGNO (dest);
2002 return (test_regno >= regno && test_regno < endregno);
2005 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
2006 any member matches the covers_regno_no_parallel_p criteria. */
2008 static bool
2009 covers_regno_p (const_rtx dest, unsigned int test_regno)
2011 if (GET_CODE (dest) == PARALLEL)
2013 /* Some targets place small structures in registers for return
2014 values of functions, and those registers are wrapped in
2015 PARALLELs that we may see as the destination of a SET. */
2016 int i;
2018 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2020 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
2021 if (inner != NULL_RTX
2022 && covers_regno_no_parallel_p (inner, test_regno))
2023 return true;
2026 return false;
2028 else
2029 return covers_regno_no_parallel_p (dest, test_regno);
2032 /* Utility function for dead_or_set_p to check an individual register. */
2035 dead_or_set_regno_p (const rtx_insn *insn, unsigned int test_regno)
2037 const_rtx pattern;
2039 /* See if there is a death note for something that includes TEST_REGNO. */
2040 if (find_regno_note (insn, REG_DEAD, test_regno))
2041 return 1;
2043 if (CALL_P (insn)
2044 && find_regno_fusage (insn, CLOBBER, test_regno))
2045 return 1;
2047 pattern = PATTERN (insn);
2049 /* If a COND_EXEC is not executed, the value survives. */
2050 if (GET_CODE (pattern) == COND_EXEC)
2051 return 0;
2053 if (GET_CODE (pattern) == SET)
2054 return covers_regno_p (SET_DEST (pattern), test_regno);
2055 else if (GET_CODE (pattern) == PARALLEL)
2057 int i;
2059 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
2061 rtx body = XVECEXP (pattern, 0, i);
2063 if (GET_CODE (body) == COND_EXEC)
2064 body = COND_EXEC_CODE (body);
2066 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
2067 && covers_regno_p (SET_DEST (body), test_regno))
2068 return 1;
2072 return 0;
2075 /* Return the reg-note of kind KIND in insn INSN, if there is one.
2076 If DATUM is nonzero, look for one whose datum is DATUM. */
2079 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
2081 rtx link;
2083 gcc_checking_assert (insn);
2085 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2086 if (! INSN_P (insn))
2087 return 0;
2088 if (datum == 0)
2090 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2091 if (REG_NOTE_KIND (link) == kind)
2092 return link;
2093 return 0;
2096 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2097 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
2098 return link;
2099 return 0;
2102 /* Return the reg-note of kind KIND in insn INSN which applies to register
2103 number REGNO, if any. Return 0 if there is no such reg-note. Note that
2104 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
2105 it might be the case that the note overlaps REGNO. */
2108 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
2110 rtx link;
2112 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2113 if (! INSN_P (insn))
2114 return 0;
2116 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2117 if (REG_NOTE_KIND (link) == kind
2118 /* Verify that it is a register, so that scratch and MEM won't cause a
2119 problem here. */
2120 && REG_P (XEXP (link, 0))
2121 && REGNO (XEXP (link, 0)) <= regno
2122 && END_REGNO (XEXP (link, 0)) > regno)
2123 return link;
2124 return 0;
2127 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
2128 has such a note. */
2131 find_reg_equal_equiv_note (const_rtx insn)
2133 rtx link;
2135 if (!INSN_P (insn))
2136 return 0;
2138 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2139 if (REG_NOTE_KIND (link) == REG_EQUAL
2140 || REG_NOTE_KIND (link) == REG_EQUIV)
2142 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
2143 insns that have multiple sets. Checking single_set to
2144 make sure of this is not the proper check, as explained
2145 in the comment in set_unique_reg_note.
2147 This should be changed into an assert. */
2148 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
2149 return 0;
2150 return link;
2152 return NULL;
2155 /* Check whether INSN is a single_set whose source is known to be
2156 equivalent to a constant. Return that constant if so, otherwise
2157 return null. */
2160 find_constant_src (const rtx_insn *insn)
2162 rtx note, set, x;
2164 set = single_set (insn);
2165 if (set)
2167 x = avoid_constant_pool_reference (SET_SRC (set));
2168 if (CONSTANT_P (x))
2169 return x;
2172 note = find_reg_equal_equiv_note (insn);
2173 if (note && CONSTANT_P (XEXP (note, 0)))
2174 return XEXP (note, 0);
2176 return NULL_RTX;
2179 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
2180 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2183 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
2185 /* If it's not a CALL_INSN, it can't possibly have a
2186 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
2187 if (!CALL_P (insn))
2188 return 0;
2190 gcc_assert (datum);
2192 if (!REG_P (datum))
2194 rtx link;
2196 for (link = CALL_INSN_FUNCTION_USAGE (insn);
2197 link;
2198 link = XEXP (link, 1))
2199 if (GET_CODE (XEXP (link, 0)) == code
2200 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
2201 return 1;
2203 else
2205 unsigned int regno = REGNO (datum);
2207 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2208 to pseudo registers, so don't bother checking. */
2210 if (regno < FIRST_PSEUDO_REGISTER)
2212 unsigned int end_regno = END_REGNO (datum);
2213 unsigned int i;
2215 for (i = regno; i < end_regno; i++)
2216 if (find_regno_fusage (insn, code, i))
2217 return 1;
2221 return 0;
2224 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2225 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2228 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
2230 rtx link;
2232 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2233 to pseudo registers, so don't bother checking. */
2235 if (regno >= FIRST_PSEUDO_REGISTER
2236 || !CALL_P (insn) )
2237 return 0;
2239 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2241 rtx op, reg;
2243 if (GET_CODE (op = XEXP (link, 0)) == code
2244 && REG_P (reg = XEXP (op, 0))
2245 && REGNO (reg) <= regno
2246 && END_REGNO (reg) > regno)
2247 return 1;
2250 return 0;
2254 /* Return true if KIND is an integer REG_NOTE. */
2256 static bool
2257 int_reg_note_p (enum reg_note kind)
2259 return kind == REG_BR_PROB;
2262 /* Allocate a register note with kind KIND and datum DATUM. LIST is
2263 stored as the pointer to the next register note. */
2266 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
2268 rtx note;
2270 gcc_checking_assert (!int_reg_note_p (kind));
2271 switch (kind)
2273 case REG_CC_SETTER:
2274 case REG_CC_USER:
2275 case REG_LABEL_TARGET:
2276 case REG_LABEL_OPERAND:
2277 case REG_TM:
2278 /* These types of register notes use an INSN_LIST rather than an
2279 EXPR_LIST, so that copying is done right and dumps look
2280 better. */
2281 note = alloc_INSN_LIST (datum, list);
2282 PUT_REG_NOTE_KIND (note, kind);
2283 break;
2285 default:
2286 note = alloc_EXPR_LIST (kind, datum, list);
2287 break;
2290 return note;
2293 /* Add register note with kind KIND and datum DATUM to INSN. */
2295 void
2296 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
2298 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
2301 /* Add an integer register note with kind KIND and datum DATUM to INSN. */
2303 void
2304 add_int_reg_note (rtx_insn *insn, enum reg_note kind, int datum)
2306 gcc_checking_assert (int_reg_note_p (kind));
2307 REG_NOTES (insn) = gen_rtx_INT_LIST ((machine_mode) kind,
2308 datum, REG_NOTES (insn));
2311 /* Add a register note like NOTE to INSN. */
2313 void
2314 add_shallow_copy_of_reg_note (rtx_insn *insn, rtx note)
2316 if (GET_CODE (note) == INT_LIST)
2317 add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
2318 else
2319 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2322 /* Duplicate NOTE and return the copy. */
2324 duplicate_reg_note (rtx note)
2326 reg_note kind = REG_NOTE_KIND (note);
2328 if (GET_CODE (note) == INT_LIST)
2329 return gen_rtx_INT_LIST ((machine_mode) kind, XINT (note, 0), NULL_RTX);
2330 else if (GET_CODE (note) == EXPR_LIST)
2331 return alloc_reg_note (kind, copy_insn_1 (XEXP (note, 0)), NULL_RTX);
2332 else
2333 return alloc_reg_note (kind, XEXP (note, 0), NULL_RTX);
2336 /* Remove register note NOTE from the REG_NOTES of INSN. */
2338 void
2339 remove_note (rtx_insn *insn, const_rtx note)
2341 rtx link;
2343 if (note == NULL_RTX)
2344 return;
2346 if (REG_NOTES (insn) == note)
2347 REG_NOTES (insn) = XEXP (note, 1);
2348 else
2349 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2350 if (XEXP (link, 1) == note)
2352 XEXP (link, 1) = XEXP (note, 1);
2353 break;
2356 switch (REG_NOTE_KIND (note))
2358 case REG_EQUAL:
2359 case REG_EQUIV:
2360 df_notes_rescan (insn);
2361 break;
2362 default:
2363 break;
2367 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes.
2368 Return true if any note has been removed. */
2370 bool
2371 remove_reg_equal_equiv_notes (rtx_insn *insn)
2373 rtx *loc;
2374 bool ret = false;
2376 loc = &REG_NOTES (insn);
2377 while (*loc)
2379 enum reg_note kind = REG_NOTE_KIND (*loc);
2380 if (kind == REG_EQUAL || kind == REG_EQUIV)
2382 *loc = XEXP (*loc, 1);
2383 ret = true;
2385 else
2386 loc = &XEXP (*loc, 1);
2388 return ret;
2391 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2393 void
2394 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2396 df_ref eq_use;
2398 if (!df)
2399 return;
2401 /* This loop is a little tricky. We cannot just go down the chain because
2402 it is being modified by some actions in the loop. So we just iterate
2403 over the head. We plan to drain the list anyway. */
2404 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2406 rtx_insn *insn = DF_REF_INSN (eq_use);
2407 rtx note = find_reg_equal_equiv_note (insn);
2409 /* This assert is generally triggered when someone deletes a REG_EQUAL
2410 or REG_EQUIV note by hacking the list manually rather than calling
2411 remove_note. */
2412 gcc_assert (note);
2414 remove_note (insn, note);
2418 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2419 return 1 if it is found. A simple equality test is used to determine if
2420 NODE matches. */
2422 bool
2423 in_insn_list_p (const rtx_insn_list *listp, const rtx_insn *node)
2425 const_rtx x;
2427 for (x = listp; x; x = XEXP (x, 1))
2428 if (node == XEXP (x, 0))
2429 return true;
2431 return false;
2434 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2435 remove that entry from the list if it is found.
2437 A simple equality test is used to determine if NODE matches. */
2439 void
2440 remove_node_from_expr_list (const_rtx node, rtx_expr_list **listp)
2442 rtx_expr_list *temp = *listp;
2443 rtx_expr_list *prev = NULL;
2445 while (temp)
2447 if (node == temp->element ())
2449 /* Splice the node out of the list. */
2450 if (prev)
2451 XEXP (prev, 1) = temp->next ();
2452 else
2453 *listp = temp->next ();
2455 return;
2458 prev = temp;
2459 temp = temp->next ();
2463 /* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2464 remove that entry from the list if it is found.
2466 A simple equality test is used to determine if NODE matches. */
2468 void
2469 remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp)
2471 rtx_insn_list *temp = *listp;
2472 rtx_insn_list *prev = NULL;
2474 while (temp)
2476 if (node == temp->insn ())
2478 /* Splice the node out of the list. */
2479 if (prev)
2480 XEXP (prev, 1) = temp->next ();
2481 else
2482 *listp = temp->next ();
2484 return;
2487 prev = temp;
2488 temp = temp->next ();
2492 /* Nonzero if X contains any volatile instructions. These are instructions
2493 which may cause unpredictable machine state instructions, and thus no
2494 instructions or register uses should be moved or combined across them.
2495 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2498 volatile_insn_p (const_rtx x)
2500 const RTX_CODE code = GET_CODE (x);
2501 switch (code)
2503 case LABEL_REF:
2504 case SYMBOL_REF:
2505 case CONST:
2506 CASE_CONST_ANY:
2507 case CC0:
2508 case PC:
2509 case REG:
2510 case SCRATCH:
2511 case CLOBBER:
2512 case ADDR_VEC:
2513 case ADDR_DIFF_VEC:
2514 case CALL:
2515 case MEM:
2516 return 0;
2518 case UNSPEC_VOLATILE:
2519 return 1;
2521 case ASM_INPUT:
2522 case ASM_OPERANDS:
2523 if (MEM_VOLATILE_P (x))
2524 return 1;
2526 default:
2527 break;
2530 /* Recursively scan the operands of this expression. */
2533 const char *const fmt = GET_RTX_FORMAT (code);
2534 int i;
2536 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2538 if (fmt[i] == 'e')
2540 if (volatile_insn_p (XEXP (x, i)))
2541 return 1;
2543 else if (fmt[i] == 'E')
2545 int j;
2546 for (j = 0; j < XVECLEN (x, i); j++)
2547 if (volatile_insn_p (XVECEXP (x, i, j)))
2548 return 1;
2552 return 0;
2555 /* Nonzero if X contains any volatile memory references
2556 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2559 volatile_refs_p (const_rtx x)
2561 const RTX_CODE code = GET_CODE (x);
2562 switch (code)
2564 case LABEL_REF:
2565 case SYMBOL_REF:
2566 case CONST:
2567 CASE_CONST_ANY:
2568 case CC0:
2569 case PC:
2570 case REG:
2571 case SCRATCH:
2572 case CLOBBER:
2573 case ADDR_VEC:
2574 case ADDR_DIFF_VEC:
2575 return 0;
2577 case UNSPEC_VOLATILE:
2578 return 1;
2580 case MEM:
2581 case ASM_INPUT:
2582 case ASM_OPERANDS:
2583 if (MEM_VOLATILE_P (x))
2584 return 1;
2586 default:
2587 break;
2590 /* Recursively scan the operands of this expression. */
2593 const char *const fmt = GET_RTX_FORMAT (code);
2594 int i;
2596 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2598 if (fmt[i] == 'e')
2600 if (volatile_refs_p (XEXP (x, i)))
2601 return 1;
2603 else if (fmt[i] == 'E')
2605 int j;
2606 for (j = 0; j < XVECLEN (x, i); j++)
2607 if (volatile_refs_p (XVECEXP (x, i, j)))
2608 return 1;
2612 return 0;
2615 /* Similar to above, except that it also rejects register pre- and post-
2616 incrementing. */
2619 side_effects_p (const_rtx x)
2621 const RTX_CODE code = GET_CODE (x);
2622 switch (code)
2624 case LABEL_REF:
2625 case SYMBOL_REF:
2626 case CONST:
2627 CASE_CONST_ANY:
2628 case CC0:
2629 case PC:
2630 case REG:
2631 case SCRATCH:
2632 case ADDR_VEC:
2633 case ADDR_DIFF_VEC:
2634 case VAR_LOCATION:
2635 return 0;
2637 case CLOBBER:
2638 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2639 when some combination can't be done. If we see one, don't think
2640 that we can simplify the expression. */
2641 return (GET_MODE (x) != VOIDmode);
2643 case PRE_INC:
2644 case PRE_DEC:
2645 case POST_INC:
2646 case POST_DEC:
2647 case PRE_MODIFY:
2648 case POST_MODIFY:
2649 case CALL:
2650 case UNSPEC_VOLATILE:
2651 return 1;
2653 case MEM:
2654 case ASM_INPUT:
2655 case ASM_OPERANDS:
2656 if (MEM_VOLATILE_P (x))
2657 return 1;
2659 default:
2660 break;
2663 /* Recursively scan the operands of this expression. */
2666 const char *fmt = GET_RTX_FORMAT (code);
2667 int i;
2669 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2671 if (fmt[i] == 'e')
2673 if (side_effects_p (XEXP (x, i)))
2674 return 1;
2676 else if (fmt[i] == 'E')
2678 int j;
2679 for (j = 0; j < XVECLEN (x, i); j++)
2680 if (side_effects_p (XVECEXP (x, i, j)))
2681 return 1;
2685 return 0;
2688 /* Return nonzero if evaluating rtx X might cause a trap.
2689 FLAGS controls how to consider MEMs. A nonzero means the context
2690 of the access may have changed from the original, such that the
2691 address may have become invalid. */
2694 may_trap_p_1 (const_rtx x, unsigned flags)
2696 int i;
2697 enum rtx_code code;
2698 const char *fmt;
2700 /* We make no distinction currently, but this function is part of
2701 the internal target-hooks ABI so we keep the parameter as
2702 "unsigned flags". */
2703 bool code_changed = flags != 0;
2705 if (x == 0)
2706 return 0;
2707 code = GET_CODE (x);
2708 switch (code)
2710 /* Handle these cases quickly. */
2711 CASE_CONST_ANY:
2712 case SYMBOL_REF:
2713 case LABEL_REF:
2714 case CONST:
2715 case PC:
2716 case CC0:
2717 case REG:
2718 case SCRATCH:
2719 return 0;
2721 case UNSPEC:
2722 return targetm.unspec_may_trap_p (x, flags);
2724 case UNSPEC_VOLATILE:
2725 case ASM_INPUT:
2726 case TRAP_IF:
2727 return 1;
2729 case ASM_OPERANDS:
2730 return MEM_VOLATILE_P (x);
2732 /* Memory ref can trap unless it's a static var or a stack slot. */
2733 case MEM:
2734 /* Recognize specific pattern of stack checking probes. */
2735 if (flag_stack_check
2736 && MEM_VOLATILE_P (x)
2737 && XEXP (x, 0) == stack_pointer_rtx)
2738 return 1;
2739 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2740 reference; moving it out of context such as when moving code
2741 when optimizing, might cause its address to become invalid. */
2742 code_changed
2743 || !MEM_NOTRAP_P (x))
2745 HOST_WIDE_INT size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : 0;
2746 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2747 GET_MODE (x), code_changed);
2750 return 0;
2752 /* Division by a non-constant might trap. */
2753 case DIV:
2754 case MOD:
2755 case UDIV:
2756 case UMOD:
2757 if (HONOR_SNANS (x))
2758 return 1;
2759 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2760 return flag_trapping_math;
2761 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2762 return 1;
2763 break;
2765 case EXPR_LIST:
2766 /* An EXPR_LIST is used to represent a function call. This
2767 certainly may trap. */
2768 return 1;
2770 case GE:
2771 case GT:
2772 case LE:
2773 case LT:
2774 case LTGT:
2775 case COMPARE:
2776 /* Some floating point comparisons may trap. */
2777 if (!flag_trapping_math)
2778 break;
2779 /* ??? There is no machine independent way to check for tests that trap
2780 when COMPARE is used, though many targets do make this distinction.
2781 For instance, sparc uses CCFPE for compares which generate exceptions
2782 and CCFP for compares which do not generate exceptions. */
2783 if (HONOR_NANS (x))
2784 return 1;
2785 /* But often the compare has some CC mode, so check operand
2786 modes as well. */
2787 if (HONOR_NANS (XEXP (x, 0))
2788 || HONOR_NANS (XEXP (x, 1)))
2789 return 1;
2790 break;
2792 case EQ:
2793 case NE:
2794 if (HONOR_SNANS (x))
2795 return 1;
2796 /* Often comparison is CC mode, so check operand modes. */
2797 if (HONOR_SNANS (XEXP (x, 0))
2798 || HONOR_SNANS (XEXP (x, 1)))
2799 return 1;
2800 break;
2802 case FIX:
2803 /* Conversion of floating point might trap. */
2804 if (flag_trapping_math && HONOR_NANS (XEXP (x, 0)))
2805 return 1;
2806 break;
2808 case NEG:
2809 case ABS:
2810 case SUBREG:
2811 /* These operations don't trap even with floating point. */
2812 break;
2814 default:
2815 /* Any floating arithmetic may trap. */
2816 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
2817 return 1;
2820 fmt = GET_RTX_FORMAT (code);
2821 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2823 if (fmt[i] == 'e')
2825 if (may_trap_p_1 (XEXP (x, i), flags))
2826 return 1;
2828 else if (fmt[i] == 'E')
2830 int j;
2831 for (j = 0; j < XVECLEN (x, i); j++)
2832 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2833 return 1;
2836 return 0;
2839 /* Return nonzero if evaluating rtx X might cause a trap. */
2842 may_trap_p (const_rtx x)
2844 return may_trap_p_1 (x, 0);
2847 /* Same as above, but additionally return nonzero if evaluating rtx X might
2848 cause a fault. We define a fault for the purpose of this function as a
2849 erroneous execution condition that cannot be encountered during the normal
2850 execution of a valid program; the typical example is an unaligned memory
2851 access on a strict alignment machine. The compiler guarantees that it
2852 doesn't generate code that will fault from a valid program, but this
2853 guarantee doesn't mean anything for individual instructions. Consider
2854 the following example:
2856 struct S { int d; union { char *cp; int *ip; }; };
2858 int foo(struct S *s)
2860 if (s->d == 1)
2861 return *s->ip;
2862 else
2863 return *s->cp;
2866 on a strict alignment machine. In a valid program, foo will never be
2867 invoked on a structure for which d is equal to 1 and the underlying
2868 unique field of the union not aligned on a 4-byte boundary, but the
2869 expression *s->ip might cause a fault if considered individually.
2871 At the RTL level, potentially problematic expressions will almost always
2872 verify may_trap_p; for example, the above dereference can be emitted as
2873 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2874 However, suppose that foo is inlined in a caller that causes s->cp to
2875 point to a local character variable and guarantees that s->d is not set
2876 to 1; foo may have been effectively translated into pseudo-RTL as:
2878 if ((reg:SI) == 1)
2879 (set (reg:SI) (mem:SI (%fp - 7)))
2880 else
2881 (set (reg:QI) (mem:QI (%fp - 7)))
2883 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2884 memory reference to a stack slot, but it will certainly cause a fault
2885 on a strict alignment machine. */
2888 may_trap_or_fault_p (const_rtx x)
2890 return may_trap_p_1 (x, 1);
2893 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2894 i.e., an inequality. */
2897 inequality_comparisons_p (const_rtx x)
2899 const char *fmt;
2900 int len, i;
2901 const enum rtx_code code = GET_CODE (x);
2903 switch (code)
2905 case REG:
2906 case SCRATCH:
2907 case PC:
2908 case CC0:
2909 CASE_CONST_ANY:
2910 case CONST:
2911 case LABEL_REF:
2912 case SYMBOL_REF:
2913 return 0;
2915 case LT:
2916 case LTU:
2917 case GT:
2918 case GTU:
2919 case LE:
2920 case LEU:
2921 case GE:
2922 case GEU:
2923 return 1;
2925 default:
2926 break;
2929 len = GET_RTX_LENGTH (code);
2930 fmt = GET_RTX_FORMAT (code);
2932 for (i = 0; i < len; i++)
2934 if (fmt[i] == 'e')
2936 if (inequality_comparisons_p (XEXP (x, i)))
2937 return 1;
2939 else if (fmt[i] == 'E')
2941 int j;
2942 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2943 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2944 return 1;
2948 return 0;
2951 /* Replace any occurrence of FROM in X with TO. The function does
2952 not enter into CONST_DOUBLE for the replace.
2954 Note that copying is not done so X must not be shared unless all copies
2955 are to be modified.
2957 ALL_REGS is true if we want to replace all REGs equal to FROM, not just
2958 those pointer-equal ones. */
2961 replace_rtx (rtx x, rtx from, rtx to, bool all_regs)
2963 int i, j;
2964 const char *fmt;
2966 if (x == from)
2967 return to;
2969 /* Allow this function to make replacements in EXPR_LISTs. */
2970 if (x == 0)
2971 return 0;
2973 if (all_regs
2974 && REG_P (x)
2975 && REG_P (from)
2976 && REGNO (x) == REGNO (from))
2978 gcc_assert (GET_MODE (x) == GET_MODE (from));
2979 return to;
2981 else if (GET_CODE (x) == SUBREG)
2983 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to, all_regs);
2985 if (CONST_INT_P (new_rtx))
2987 x = simplify_subreg (GET_MODE (x), new_rtx,
2988 GET_MODE (SUBREG_REG (x)),
2989 SUBREG_BYTE (x));
2990 gcc_assert (x);
2992 else
2993 SUBREG_REG (x) = new_rtx;
2995 return x;
2997 else if (GET_CODE (x) == ZERO_EXTEND)
2999 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to, all_regs);
3001 if (CONST_INT_P (new_rtx))
3003 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3004 new_rtx, GET_MODE (XEXP (x, 0)));
3005 gcc_assert (x);
3007 else
3008 XEXP (x, 0) = new_rtx;
3010 return x;
3013 fmt = GET_RTX_FORMAT (GET_CODE (x));
3014 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3016 if (fmt[i] == 'e')
3017 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to, all_regs);
3018 else if (fmt[i] == 'E')
3019 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3020 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j),
3021 from, to, all_regs);
3024 return x;
3027 /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
3028 the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
3030 void
3031 replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses)
3033 /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
3034 rtx x = *loc;
3035 if (JUMP_TABLE_DATA_P (x))
3037 x = PATTERN (x);
3038 rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC);
3039 int len = GET_NUM_ELEM (vec);
3040 for (int i = 0; i < len; ++i)
3042 rtx ref = RTVEC_ELT (vec, i);
3043 if (XEXP (ref, 0) == old_label)
3045 XEXP (ref, 0) = new_label;
3046 if (update_label_nuses)
3048 ++LABEL_NUSES (new_label);
3049 --LABEL_NUSES (old_label);
3053 return;
3056 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
3057 field. This is not handled by the iterator because it doesn't
3058 handle unprinted ('0') fields. */
3059 if (JUMP_P (x) && JUMP_LABEL (x) == old_label)
3060 JUMP_LABEL (x) = new_label;
3062 subrtx_ptr_iterator::array_type array;
3063 FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
3065 rtx *loc = *iter;
3066 if (rtx x = *loc)
3068 if (GET_CODE (x) == SYMBOL_REF
3069 && CONSTANT_POOL_ADDRESS_P (x))
3071 rtx c = get_pool_constant (x);
3072 if (rtx_referenced_p (old_label, c))
3074 /* Create a copy of constant C; replace the label inside
3075 but do not update LABEL_NUSES because uses in constant pool
3076 are not counted. */
3077 rtx new_c = copy_rtx (c);
3078 replace_label (&new_c, old_label, new_label, false);
3080 /* Add the new constant NEW_C to constant pool and replace
3081 the old reference to constant by new reference. */
3082 rtx new_mem = force_const_mem (get_pool_mode (x), new_c);
3083 *loc = replace_rtx (x, x, XEXP (new_mem, 0));
3087 if ((GET_CODE (x) == LABEL_REF
3088 || GET_CODE (x) == INSN_LIST)
3089 && XEXP (x, 0) == old_label)
3091 XEXP (x, 0) = new_label;
3092 if (update_label_nuses)
3094 ++LABEL_NUSES (new_label);
3095 --LABEL_NUSES (old_label);
3102 void
3103 replace_label_in_insn (rtx_insn *insn, rtx_insn *old_label,
3104 rtx_insn *new_label, bool update_label_nuses)
3106 rtx insn_as_rtx = insn;
3107 replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses);
3108 gcc_checking_assert (insn_as_rtx == insn);
3111 /* Return true if X is referenced in BODY. */
3113 bool
3114 rtx_referenced_p (const_rtx x, const_rtx body)
3116 subrtx_iterator::array_type array;
3117 FOR_EACH_SUBRTX (iter, array, body, ALL)
3118 if (const_rtx y = *iter)
3120 /* Check if a label_ref Y refers to label X. */
3121 if (GET_CODE (y) == LABEL_REF
3122 && LABEL_P (x)
3123 && label_ref_label (y) == x)
3124 return true;
3126 if (rtx_equal_p (x, y))
3127 return true;
3129 /* If Y is a reference to pool constant traverse the constant. */
3130 if (GET_CODE (y) == SYMBOL_REF
3131 && CONSTANT_POOL_ADDRESS_P (y))
3132 iter.substitute (get_pool_constant (y));
3134 return false;
3137 /* If INSN is a tablejump return true and store the label (before jump table) to
3138 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
3140 bool
3141 tablejump_p (const rtx_insn *insn, rtx_insn **labelp,
3142 rtx_jump_table_data **tablep)
3144 if (!JUMP_P (insn))
3145 return false;
3147 rtx target = JUMP_LABEL (insn);
3148 if (target == NULL_RTX || ANY_RETURN_P (target))
3149 return false;
3151 rtx_insn *label = as_a<rtx_insn *> (target);
3152 rtx_insn *table = next_insn (label);
3153 if (table == NULL_RTX || !JUMP_TABLE_DATA_P (table))
3154 return false;
3156 if (labelp)
3157 *labelp = label;
3158 if (tablep)
3159 *tablep = as_a <rtx_jump_table_data *> (table);
3160 return true;
3163 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
3164 constant that is not in the constant pool and not in the condition
3165 of an IF_THEN_ELSE. */
3167 static int
3168 computed_jump_p_1 (const_rtx x)
3170 const enum rtx_code code = GET_CODE (x);
3171 int i, j;
3172 const char *fmt;
3174 switch (code)
3176 case LABEL_REF:
3177 case PC:
3178 return 0;
3180 case CONST:
3181 CASE_CONST_ANY:
3182 case SYMBOL_REF:
3183 case REG:
3184 return 1;
3186 case MEM:
3187 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3188 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
3190 case IF_THEN_ELSE:
3191 return (computed_jump_p_1 (XEXP (x, 1))
3192 || computed_jump_p_1 (XEXP (x, 2)));
3194 default:
3195 break;
3198 fmt = GET_RTX_FORMAT (code);
3199 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3201 if (fmt[i] == 'e'
3202 && computed_jump_p_1 (XEXP (x, i)))
3203 return 1;
3205 else if (fmt[i] == 'E')
3206 for (j = 0; j < XVECLEN (x, i); j++)
3207 if (computed_jump_p_1 (XVECEXP (x, i, j)))
3208 return 1;
3211 return 0;
3214 /* Return nonzero if INSN is an indirect jump (aka computed jump).
3216 Tablejumps and casesi insns are not considered indirect jumps;
3217 we can recognize them by a (use (label_ref)). */
3220 computed_jump_p (const rtx_insn *insn)
3222 int i;
3223 if (JUMP_P (insn))
3225 rtx pat = PATTERN (insn);
3227 /* If we have a JUMP_LABEL set, we're not a computed jump. */
3228 if (JUMP_LABEL (insn) != NULL)
3229 return 0;
3231 if (GET_CODE (pat) == PARALLEL)
3233 int len = XVECLEN (pat, 0);
3234 int has_use_labelref = 0;
3236 for (i = len - 1; i >= 0; i--)
3237 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
3238 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
3239 == LABEL_REF))
3241 has_use_labelref = 1;
3242 break;
3245 if (! has_use_labelref)
3246 for (i = len - 1; i >= 0; i--)
3247 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
3248 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
3249 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
3250 return 1;
3252 else if (GET_CODE (pat) == SET
3253 && SET_DEST (pat) == pc_rtx
3254 && computed_jump_p_1 (SET_SRC (pat)))
3255 return 1;
3257 return 0;
3262 /* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
3263 the equivalent add insn and pass the result to FN, using DATA as the
3264 final argument. */
3266 static int
3267 for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
3269 rtx x = XEXP (mem, 0);
3270 switch (GET_CODE (x))
3272 case PRE_INC:
3273 case POST_INC:
3275 int size = GET_MODE_SIZE (GET_MODE (mem));
3276 rtx r1 = XEXP (x, 0);
3277 rtx c = gen_int_mode (size, GET_MODE (r1));
3278 return fn (mem, x, r1, r1, c, data);
3281 case PRE_DEC:
3282 case POST_DEC:
3284 int size = GET_MODE_SIZE (GET_MODE (mem));
3285 rtx r1 = XEXP (x, 0);
3286 rtx c = gen_int_mode (-size, GET_MODE (r1));
3287 return fn (mem, x, r1, r1, c, data);
3290 case PRE_MODIFY:
3291 case POST_MODIFY:
3293 rtx r1 = XEXP (x, 0);
3294 rtx add = XEXP (x, 1);
3295 return fn (mem, x, r1, add, NULL, data);
3298 default:
3299 gcc_unreachable ();
3303 /* Traverse *LOC looking for MEMs that have autoinc addresses.
3304 For each such autoinc operation found, call FN, passing it
3305 the innermost enclosing MEM, the operation itself, the RTX modified
3306 by the operation, two RTXs (the second may be NULL) that, once
3307 added, represent the value to be held by the modified RTX
3308 afterwards, and DATA. FN is to return 0 to continue the
3309 traversal or any other value to have it returned to the caller of
3310 for_each_inc_dec. */
3313 for_each_inc_dec (rtx x,
3314 for_each_inc_dec_fn fn,
3315 void *data)
3317 subrtx_var_iterator::array_type array;
3318 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
3320 rtx mem = *iter;
3321 if (mem
3322 && MEM_P (mem)
3323 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
3325 int res = for_each_inc_dec_find_inc_dec (mem, fn, data);
3326 if (res != 0)
3327 return res;
3328 iter.skip_subrtxes ();
3331 return 0;
3335 /* Searches X for any reference to REGNO, returning the rtx of the
3336 reference found if any. Otherwise, returns NULL_RTX. */
3339 regno_use_in (unsigned int regno, rtx x)
3341 const char *fmt;
3342 int i, j;
3343 rtx tem;
3345 if (REG_P (x) && REGNO (x) == regno)
3346 return x;
3348 fmt = GET_RTX_FORMAT (GET_CODE (x));
3349 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3351 if (fmt[i] == 'e')
3353 if ((tem = regno_use_in (regno, XEXP (x, i))))
3354 return tem;
3356 else if (fmt[i] == 'E')
3357 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3358 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3359 return tem;
3362 return NULL_RTX;
3365 /* Return a value indicating whether OP, an operand of a commutative
3366 operation, is preferred as the first or second operand. The more
3367 positive the value, the stronger the preference for being the first
3368 operand. */
3371 commutative_operand_precedence (rtx op)
3373 enum rtx_code code = GET_CODE (op);
3375 /* Constants always become the second operand. Prefer "nice" constants. */
3376 if (code == CONST_INT)
3377 return -8;
3378 if (code == CONST_WIDE_INT)
3379 return -7;
3380 if (code == CONST_DOUBLE)
3381 return -7;
3382 if (code == CONST_FIXED)
3383 return -7;
3384 op = avoid_constant_pool_reference (op);
3385 code = GET_CODE (op);
3387 switch (GET_RTX_CLASS (code))
3389 case RTX_CONST_OBJ:
3390 if (code == CONST_INT)
3391 return -6;
3392 if (code == CONST_WIDE_INT)
3393 return -6;
3394 if (code == CONST_DOUBLE)
3395 return -5;
3396 if (code == CONST_FIXED)
3397 return -5;
3398 return -4;
3400 case RTX_EXTRA:
3401 /* SUBREGs of objects should come second. */
3402 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3403 return -3;
3404 return 0;
3406 case RTX_OBJ:
3407 /* Complex expressions should be the first, so decrease priority
3408 of objects. Prefer pointer objects over non pointer objects. */
3409 if ((REG_P (op) && REG_POINTER (op))
3410 || (MEM_P (op) && MEM_POINTER (op)))
3411 return -1;
3412 return -2;
3414 case RTX_COMM_ARITH:
3415 /* Prefer operands that are themselves commutative to be first.
3416 This helps to make things linear. In particular,
3417 (and (and (reg) (reg)) (not (reg))) is canonical. */
3418 return 4;
3420 case RTX_BIN_ARITH:
3421 /* If only one operand is a binary expression, it will be the first
3422 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3423 is canonical, although it will usually be further simplified. */
3424 return 2;
3426 case RTX_UNARY:
3427 /* Then prefer NEG and NOT. */
3428 if (code == NEG || code == NOT)
3429 return 1;
3430 /* FALLTHRU */
3432 default:
3433 return 0;
3437 /* Return 1 iff it is necessary to swap operands of commutative operation
3438 in order to canonicalize expression. */
3440 bool
3441 swap_commutative_operands_p (rtx x, rtx y)
3443 return (commutative_operand_precedence (x)
3444 < commutative_operand_precedence (y));
3447 /* Return 1 if X is an autoincrement side effect and the register is
3448 not the stack pointer. */
3450 auto_inc_p (const_rtx x)
3452 switch (GET_CODE (x))
3454 case PRE_INC:
3455 case POST_INC:
3456 case PRE_DEC:
3457 case POST_DEC:
3458 case PRE_MODIFY:
3459 case POST_MODIFY:
3460 /* There are no REG_INC notes for SP. */
3461 if (XEXP (x, 0) != stack_pointer_rtx)
3462 return 1;
3463 default:
3464 break;
3466 return 0;
3469 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3471 loc_mentioned_in_p (rtx *loc, const_rtx in)
3473 enum rtx_code code;
3474 const char *fmt;
3475 int i, j;
3477 if (!in)
3478 return 0;
3480 code = GET_CODE (in);
3481 fmt = GET_RTX_FORMAT (code);
3482 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3484 if (fmt[i] == 'e')
3486 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3487 return 1;
3489 else if (fmt[i] == 'E')
3490 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3491 if (loc == &XVECEXP (in, i, j)
3492 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3493 return 1;
3495 return 0;
3498 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3499 and SUBREG_BYTE, return the bit offset where the subreg begins
3500 (counting from the least significant bit of the operand). */
3502 unsigned int
3503 subreg_lsb_1 (machine_mode outer_mode,
3504 machine_mode inner_mode,
3505 unsigned int subreg_byte)
3507 unsigned int bitpos;
3508 unsigned int byte;
3509 unsigned int word;
3511 /* A paradoxical subreg begins at bit position 0. */
3512 if (GET_MODE_PRECISION (outer_mode) > GET_MODE_PRECISION (inner_mode))
3513 return 0;
3515 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3516 /* If the subreg crosses a word boundary ensure that
3517 it also begins and ends on a word boundary. */
3518 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3519 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3520 && (subreg_byte % UNITS_PER_WORD
3521 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3523 if (WORDS_BIG_ENDIAN)
3524 word = (GET_MODE_SIZE (inner_mode)
3525 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3526 else
3527 word = subreg_byte / UNITS_PER_WORD;
3528 bitpos = word * BITS_PER_WORD;
3530 if (BYTES_BIG_ENDIAN)
3531 byte = (GET_MODE_SIZE (inner_mode)
3532 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3533 else
3534 byte = subreg_byte % UNITS_PER_WORD;
3535 bitpos += byte * BITS_PER_UNIT;
3537 return bitpos;
3540 /* Given a subreg X, return the bit offset where the subreg begins
3541 (counting from the least significant bit of the reg). */
3543 unsigned int
3544 subreg_lsb (const_rtx x)
3546 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3547 SUBREG_BYTE (x));
3550 /* Return the subreg byte offset for a subreg whose outer value has
3551 OUTER_BYTES bytes, whose inner value has INNER_BYTES bytes, and where
3552 there are LSB_SHIFT *bits* between the lsb of the outer value and the
3553 lsb of the inner value. This is the inverse of the calculation
3554 performed by subreg_lsb_1 (which converts byte offsets to bit shifts). */
3556 unsigned int
3557 subreg_size_offset_from_lsb (unsigned int outer_bytes,
3558 unsigned int inner_bytes,
3559 unsigned int lsb_shift)
3561 /* A paradoxical subreg begins at bit position 0. */
3562 if (outer_bytes > inner_bytes)
3564 gcc_checking_assert (lsb_shift == 0);
3565 return 0;
3568 gcc_assert (lsb_shift % BITS_PER_UNIT == 0);
3569 unsigned int lower_bytes = lsb_shift / BITS_PER_UNIT;
3570 unsigned int upper_bytes = inner_bytes - (lower_bytes + outer_bytes);
3571 if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
3572 return upper_bytes;
3573 else if (!WORDS_BIG_ENDIAN && !BYTES_BIG_ENDIAN)
3574 return lower_bytes;
3575 else
3577 unsigned int lower_word_part = lower_bytes & -UNITS_PER_WORD;
3578 unsigned int upper_word_part = upper_bytes & -UNITS_PER_WORD;
3579 if (WORDS_BIG_ENDIAN)
3580 return upper_word_part + (lower_bytes - lower_word_part);
3581 else
3582 return lower_word_part + (upper_bytes - upper_word_part);
3586 /* Fill in information about a subreg of a hard register.
3587 xregno - A regno of an inner hard subreg_reg (or what will become one).
3588 xmode - The mode of xregno.
3589 offset - The byte offset.
3590 ymode - The mode of a top level SUBREG (or what may become one).
3591 info - Pointer to structure to fill in.
3593 Rather than considering one particular inner register (and thus one
3594 particular "outer" register) in isolation, this function really uses
3595 XREGNO as a model for a sequence of isomorphic hard registers. Thus the
3596 function does not check whether adding INFO->offset to XREGNO gives
3597 a valid hard register; even if INFO->offset + XREGNO is out of range,
3598 there might be another register of the same type that is in range.
3599 Likewise it doesn't check whether HARD_REGNO_MODE_OK accepts the new
3600 register, since that can depend on things like whether the final
3601 register number is even or odd. Callers that want to check whether
3602 this particular subreg can be replaced by a simple (reg ...) should
3603 use simplify_subreg_regno. */
3605 void
3606 subreg_get_info (unsigned int xregno, machine_mode xmode,
3607 unsigned int offset, machine_mode ymode,
3608 struct subreg_info *info)
3610 unsigned int nregs_xmode, nregs_ymode;
3612 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3614 unsigned int xsize = GET_MODE_SIZE (xmode);
3615 unsigned int ysize = GET_MODE_SIZE (ymode);
3616 bool rknown = false;
3618 /* If the register representation of a non-scalar mode has holes in it,
3619 we expect the scalar units to be concatenated together, with the holes
3620 distributed evenly among the scalar units. Each scalar unit must occupy
3621 at least one register. */
3622 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3624 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3625 unsigned int nunits = GET_MODE_NUNITS (xmode);
3626 machine_mode xmode_unit = GET_MODE_INNER (xmode);
3627 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3628 gcc_assert (nregs_xmode
3629 == (nunits
3630 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3631 gcc_assert (hard_regno_nregs[xregno][xmode]
3632 == hard_regno_nregs[xregno][xmode_unit] * nunits);
3634 /* You can only ask for a SUBREG of a value with holes in the middle
3635 if you don't cross the holes. (Such a SUBREG should be done by
3636 picking a different register class, or doing it in memory if
3637 necessary.) An example of a value with holes is XCmode on 32-bit
3638 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3639 3 for each part, but in memory it's two 128-bit parts.
3640 Padding is assumed to be at the end (not necessarily the 'high part')
3641 of each unit. */
3642 if ((offset / GET_MODE_SIZE (xmode_unit) + 1 < nunits)
3643 && (offset / GET_MODE_SIZE (xmode_unit)
3644 != ((offset + ysize - 1) / GET_MODE_SIZE (xmode_unit))))
3646 info->representable_p = false;
3647 rknown = true;
3650 else
3651 nregs_xmode = hard_regno_nregs[xregno][xmode];
3653 nregs_ymode = hard_regno_nregs[xregno][ymode];
3655 /* Paradoxical subregs are otherwise valid. */
3656 if (!rknown && offset == 0 && ysize > xsize)
3658 info->representable_p = true;
3659 /* If this is a big endian paradoxical subreg, which uses more
3660 actual hard registers than the original register, we must
3661 return a negative offset so that we find the proper highpart
3662 of the register.
3664 We assume that the ordering of registers within a multi-register
3665 value has a consistent endianness: if bytes and register words
3666 have different endianness, the hard registers that make up a
3667 multi-register value must be at least word-sized. */
3668 if (REG_WORDS_BIG_ENDIAN)
3669 info->offset = (int) nregs_xmode - (int) nregs_ymode;
3670 else
3671 info->offset = 0;
3672 info->nregs = nregs_ymode;
3673 return;
3676 /* If registers store different numbers of bits in the different
3677 modes, we cannot generally form this subreg. */
3678 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3679 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3680 && (xsize % nregs_xmode) == 0
3681 && (ysize % nregs_ymode) == 0)
3683 int regsize_xmode = xsize / nregs_xmode;
3684 int regsize_ymode = ysize / nregs_ymode;
3685 if (!rknown
3686 && ((nregs_ymode > 1 && regsize_xmode > regsize_ymode)
3687 || (nregs_xmode > 1 && regsize_ymode > regsize_xmode)))
3689 info->representable_p = false;
3690 info->nregs = CEIL (ysize, regsize_xmode);
3691 info->offset = offset / regsize_xmode;
3692 return;
3694 /* It's not valid to extract a subreg of mode YMODE at OFFSET that
3695 would go outside of XMODE. */
3696 if (!rknown && ysize + offset > xsize)
3698 info->representable_p = false;
3699 info->nregs = nregs_ymode;
3700 info->offset = offset / regsize_xmode;
3701 return;
3703 /* Quick exit for the simple and common case of extracting whole
3704 subregisters from a multiregister value. */
3705 /* ??? It would be better to integrate this into the code below,
3706 if we can generalize the concept enough and figure out how
3707 odd-sized modes can coexist with the other weird cases we support. */
3708 if (!rknown
3709 && WORDS_BIG_ENDIAN == REG_WORDS_BIG_ENDIAN
3710 && regsize_xmode == regsize_ymode
3711 && (offset % regsize_ymode) == 0)
3713 info->representable_p = true;
3714 info->nregs = nregs_ymode;
3715 info->offset = offset / regsize_ymode;
3716 gcc_assert (info->offset + info->nregs <= (int) nregs_xmode);
3717 return;
3721 /* Lowpart subregs are otherwise valid. */
3722 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3724 info->representable_p = true;
3725 rknown = true;
3727 if (offset == 0 || nregs_xmode == nregs_ymode)
3729 info->offset = 0;
3730 info->nregs = nregs_ymode;
3731 return;
3735 /* Set NUM_BLOCKS to the number of independently-representable YMODE
3736 values there are in (reg:XMODE XREGNO). We can view the register
3737 as consisting of this number of independent "blocks", where each
3738 block occupies NREGS_YMODE registers and contains exactly one
3739 representable YMODE value. */
3740 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3741 unsigned int num_blocks = nregs_xmode / nregs_ymode;
3743 /* Calculate the number of bytes in each block. This must always
3744 be exact, otherwise we don't know how to verify the constraint.
3745 These conditions may be relaxed but subreg_regno_offset would
3746 need to be redesigned. */
3747 gcc_assert ((xsize % num_blocks) == 0);
3748 unsigned int bytes_per_block = xsize / num_blocks;
3750 /* Get the number of the first block that contains the subreg and the byte
3751 offset of the subreg from the start of that block. */
3752 unsigned int block_number = offset / bytes_per_block;
3753 unsigned int subblock_offset = offset % bytes_per_block;
3755 if (!rknown)
3757 /* Only the lowpart of each block is representable. */
3758 info->representable_p
3759 = (subblock_offset
3760 == subreg_size_lowpart_offset (ysize, bytes_per_block));
3761 rknown = true;
3764 /* We assume that the ordering of registers within a multi-register
3765 value has a consistent endianness: if bytes and register words
3766 have different endianness, the hard registers that make up a
3767 multi-register value must be at least word-sized. */
3768 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN)
3769 /* The block number we calculated above followed memory endianness.
3770 Convert it to register endianness by counting back from the end.
3771 (Note that, because of the assumption above, each block must be
3772 at least word-sized.) */
3773 info->offset = (num_blocks - block_number - 1) * nregs_ymode;
3774 else
3775 info->offset = block_number * nregs_ymode;
3776 info->nregs = nregs_ymode;
3779 /* This function returns the regno offset of a subreg expression.
3780 xregno - A regno of an inner hard subreg_reg (or what will become one).
3781 xmode - The mode of xregno.
3782 offset - The byte offset.
3783 ymode - The mode of a top level SUBREG (or what may become one).
3784 RETURN - The regno offset which would be used. */
3785 unsigned int
3786 subreg_regno_offset (unsigned int xregno, machine_mode xmode,
3787 unsigned int offset, machine_mode ymode)
3789 struct subreg_info info;
3790 subreg_get_info (xregno, xmode, offset, ymode, &info);
3791 return info.offset;
3794 /* This function returns true when the offset is representable via
3795 subreg_offset in the given regno.
3796 xregno - A regno of an inner hard subreg_reg (or what will become one).
3797 xmode - The mode of xregno.
3798 offset - The byte offset.
3799 ymode - The mode of a top level SUBREG (or what may become one).
3800 RETURN - Whether the offset is representable. */
3801 bool
3802 subreg_offset_representable_p (unsigned int xregno, machine_mode xmode,
3803 unsigned int offset, machine_mode ymode)
3805 struct subreg_info info;
3806 subreg_get_info (xregno, xmode, offset, ymode, &info);
3807 return info.representable_p;
3810 /* Return the number of a YMODE register to which
3812 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3814 can be simplified. Return -1 if the subreg can't be simplified.
3816 XREGNO is a hard register number. */
3819 simplify_subreg_regno (unsigned int xregno, machine_mode xmode,
3820 unsigned int offset, machine_mode ymode)
3822 struct subreg_info info;
3823 unsigned int yregno;
3825 #ifdef CANNOT_CHANGE_MODE_CLASS
3826 /* Give the backend a chance to disallow the mode change. */
3827 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3828 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3829 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode)
3830 /* We can use mode change in LRA for some transformations. */
3831 && ! lra_in_progress)
3832 return -1;
3833 #endif
3835 /* We shouldn't simplify stack-related registers. */
3836 if ((!reload_completed || frame_pointer_needed)
3837 && xregno == FRAME_POINTER_REGNUM)
3838 return -1;
3840 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3841 && xregno == ARG_POINTER_REGNUM)
3842 return -1;
3844 if (xregno == STACK_POINTER_REGNUM
3845 /* We should convert hard stack register in LRA if it is
3846 possible. */
3847 && ! lra_in_progress)
3848 return -1;
3850 /* Try to get the register offset. */
3851 subreg_get_info (xregno, xmode, offset, ymode, &info);
3852 if (!info.representable_p)
3853 return -1;
3855 /* Make sure that the offsetted register value is in range. */
3856 yregno = xregno + info.offset;
3857 if (!HARD_REGISTER_NUM_P (yregno))
3858 return -1;
3860 /* See whether (reg:YMODE YREGNO) is valid.
3862 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3863 This is a kludge to work around how complex FP arguments are passed
3864 on IA-64 and should be fixed. See PR target/49226. */
3865 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3866 && HARD_REGNO_MODE_OK (xregno, xmode))
3867 return -1;
3869 return (int) yregno;
3872 /* Return the final regno that a subreg expression refers to. */
3873 unsigned int
3874 subreg_regno (const_rtx x)
3876 unsigned int ret;
3877 rtx subreg = SUBREG_REG (x);
3878 int regno = REGNO (subreg);
3880 ret = regno + subreg_regno_offset (regno,
3881 GET_MODE (subreg),
3882 SUBREG_BYTE (x),
3883 GET_MODE (x));
3884 return ret;
3888 /* Return the number of registers that a subreg expression refers
3889 to. */
3890 unsigned int
3891 subreg_nregs (const_rtx x)
3893 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3896 /* Return the number of registers that a subreg REG with REGNO
3897 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3898 changed so that the regno can be passed in. */
3900 unsigned int
3901 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3903 struct subreg_info info;
3904 rtx subreg = SUBREG_REG (x);
3906 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3907 &info);
3908 return info.nregs;
3911 struct parms_set_data
3913 int nregs;
3914 HARD_REG_SET regs;
3917 /* Helper function for noticing stores to parameter registers. */
3918 static void
3919 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3921 struct parms_set_data *const d = (struct parms_set_data *) data;
3922 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3923 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3925 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3926 d->nregs--;
3930 /* Look backward for first parameter to be loaded.
3931 Note that loads of all parameters will not necessarily be
3932 found if CSE has eliminated some of them (e.g., an argument
3933 to the outer function is passed down as a parameter).
3934 Do not skip BOUNDARY. */
3935 rtx_insn *
3936 find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary)
3938 struct parms_set_data parm;
3939 rtx p;
3940 rtx_insn *before, *first_set;
3942 /* Since different machines initialize their parameter registers
3943 in different orders, assume nothing. Collect the set of all
3944 parameter registers. */
3945 CLEAR_HARD_REG_SET (parm.regs);
3946 parm.nregs = 0;
3947 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3948 if (GET_CODE (XEXP (p, 0)) == USE
3949 && REG_P (XEXP (XEXP (p, 0), 0))
3950 && !STATIC_CHAIN_REG_P (XEXP (XEXP (p, 0), 0)))
3952 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3954 /* We only care about registers which can hold function
3955 arguments. */
3956 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3957 continue;
3959 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3960 parm.nregs++;
3962 before = call_insn;
3963 first_set = call_insn;
3965 /* Search backward for the first set of a register in this set. */
3966 while (parm.nregs && before != boundary)
3968 before = PREV_INSN (before);
3970 /* It is possible that some loads got CSEed from one call to
3971 another. Stop in that case. */
3972 if (CALL_P (before))
3973 break;
3975 /* Our caller needs either ensure that we will find all sets
3976 (in case code has not been optimized yet), or take care
3977 for possible labels in a way by setting boundary to preceding
3978 CODE_LABEL. */
3979 if (LABEL_P (before))
3981 gcc_assert (before == boundary);
3982 break;
3985 if (INSN_P (before))
3987 int nregs_old = parm.nregs;
3988 note_stores (PATTERN (before), parms_set, &parm);
3989 /* If we found something that did not set a parameter reg,
3990 we're done. Do not keep going, as that might result
3991 in hoisting an insn before the setting of a pseudo
3992 that is used by the hoisted insn. */
3993 if (nregs_old != parm.nregs)
3994 first_set = before;
3995 else
3996 break;
3999 return first_set;
4002 /* Return true if we should avoid inserting code between INSN and preceding
4003 call instruction. */
4005 bool
4006 keep_with_call_p (const rtx_insn *insn)
4008 rtx set;
4010 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
4012 if (REG_P (SET_DEST (set))
4013 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
4014 && fixed_regs[REGNO (SET_DEST (set))]
4015 && general_operand (SET_SRC (set), VOIDmode))
4016 return true;
4017 if (REG_P (SET_SRC (set))
4018 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
4019 && REG_P (SET_DEST (set))
4020 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
4021 return true;
4022 /* There may be a stack pop just after the call and before the store
4023 of the return register. Search for the actual store when deciding
4024 if we can break or not. */
4025 if (SET_DEST (set) == stack_pointer_rtx)
4027 /* This CONST_CAST is okay because next_nonnote_insn just
4028 returns its argument and we assign it to a const_rtx
4029 variable. */
4030 const rtx_insn *i2
4031 = next_nonnote_insn (const_cast<rtx_insn *> (insn));
4032 if (i2 && keep_with_call_p (i2))
4033 return true;
4036 return false;
4039 /* Return true if LABEL is a target of JUMP_INSN. This applies only
4040 to non-complex jumps. That is, direct unconditional, conditional,
4041 and tablejumps, but not computed jumps or returns. It also does
4042 not apply to the fallthru case of a conditional jump. */
4044 bool
4045 label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn)
4047 rtx tmp = JUMP_LABEL (jump_insn);
4048 rtx_jump_table_data *table;
4050 if (label == tmp)
4051 return true;
4053 if (tablejump_p (jump_insn, NULL, &table))
4055 rtvec vec = table->get_labels ();
4056 int i, veclen = GET_NUM_ELEM (vec);
4058 for (i = 0; i < veclen; ++i)
4059 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
4060 return true;
4063 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
4064 return true;
4066 return false;
4070 /* Return an estimate of the cost of computing rtx X.
4071 One use is in cse, to decide which expression to keep in the hash table.
4072 Another is in rtl generation, to pick the cheapest way to multiply.
4073 Other uses like the latter are expected in the future.
4075 X appears as operand OPNO in an expression with code OUTER_CODE.
4076 SPEED specifies whether costs optimized for speed or size should
4077 be returned. */
4080 rtx_cost (rtx x, machine_mode mode, enum rtx_code outer_code,
4081 int opno, bool speed)
4083 int i, j;
4084 enum rtx_code code;
4085 const char *fmt;
4086 int total;
4087 int factor;
4089 if (x == 0)
4090 return 0;
4092 if (GET_MODE (x) != VOIDmode)
4093 mode = GET_MODE (x);
4095 /* A size N times larger than UNITS_PER_WORD likely needs N times as
4096 many insns, taking N times as long. */
4097 factor = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4098 if (factor == 0)
4099 factor = 1;
4101 /* Compute the default costs of certain things.
4102 Note that targetm.rtx_costs can override the defaults. */
4104 code = GET_CODE (x);
4105 switch (code)
4107 case MULT:
4108 /* Multiplication has time-complexity O(N*N), where N is the
4109 number of units (translated from digits) when using
4110 schoolbook long multiplication. */
4111 total = factor * factor * COSTS_N_INSNS (5);
4112 break;
4113 case DIV:
4114 case UDIV:
4115 case MOD:
4116 case UMOD:
4117 /* Similarly, complexity for schoolbook long division. */
4118 total = factor * factor * COSTS_N_INSNS (7);
4119 break;
4120 case USE:
4121 /* Used in combine.c as a marker. */
4122 total = 0;
4123 break;
4124 case SET:
4125 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
4126 the mode for the factor. */
4127 mode = GET_MODE (SET_DEST (x));
4128 factor = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4129 if (factor == 0)
4130 factor = 1;
4131 /* FALLTHRU */
4132 default:
4133 total = factor * COSTS_N_INSNS (1);
4136 switch (code)
4138 case REG:
4139 return 0;
4141 case SUBREG:
4142 total = 0;
4143 /* If we can't tie these modes, make this expensive. The larger
4144 the mode, the more expensive it is. */
4145 if (! MODES_TIEABLE_P (mode, GET_MODE (SUBREG_REG (x))))
4146 return COSTS_N_INSNS (2 + factor);
4147 break;
4149 default:
4150 if (targetm.rtx_costs (x, mode, outer_code, opno, &total, speed))
4151 return total;
4152 break;
4155 /* Sum the costs of the sub-rtx's, plus cost of this operation,
4156 which is already in total. */
4158 fmt = GET_RTX_FORMAT (code);
4159 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4160 if (fmt[i] == 'e')
4161 total += rtx_cost (XEXP (x, i), mode, code, i, speed);
4162 else if (fmt[i] == 'E')
4163 for (j = 0; j < XVECLEN (x, i); j++)
4164 total += rtx_cost (XVECEXP (x, i, j), mode, code, i, speed);
4166 return total;
4169 /* Fill in the structure C with information about both speed and size rtx
4170 costs for X, which is operand OPNO in an expression with code OUTER. */
4172 void
4173 get_full_rtx_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno,
4174 struct full_rtx_costs *c)
4176 c->speed = rtx_cost (x, mode, outer, opno, true);
4177 c->size = rtx_cost (x, mode, outer, opno, false);
4181 /* Return cost of address expression X.
4182 Expect that X is properly formed address reference.
4184 SPEED parameter specify whether costs optimized for speed or size should
4185 be returned. */
4188 address_cost (rtx x, machine_mode mode, addr_space_t as, bool speed)
4190 /* We may be asked for cost of various unusual addresses, such as operands
4191 of push instruction. It is not worthwhile to complicate writing
4192 of the target hook by such cases. */
4194 if (!memory_address_addr_space_p (mode, x, as))
4195 return 1000;
4197 return targetm.address_cost (x, mode, as, speed);
4200 /* If the target doesn't override, compute the cost as with arithmetic. */
4203 default_address_cost (rtx x, machine_mode, addr_space_t, bool speed)
4205 return rtx_cost (x, Pmode, MEM, 0, speed);
4209 unsigned HOST_WIDE_INT
4210 nonzero_bits (const_rtx x, machine_mode mode)
4212 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
4215 unsigned int
4216 num_sign_bit_copies (const_rtx x, machine_mode mode)
4218 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
4221 /* Return true if nonzero_bits1 might recurse into both operands
4222 of X. */
4224 static inline bool
4225 nonzero_bits_binary_arith_p (const_rtx x)
4227 if (!ARITHMETIC_P (x))
4228 return false;
4229 switch (GET_CODE (x))
4231 case AND:
4232 case XOR:
4233 case IOR:
4234 case UMIN:
4235 case UMAX:
4236 case SMIN:
4237 case SMAX:
4238 case PLUS:
4239 case MINUS:
4240 case MULT:
4241 case DIV:
4242 case UDIV:
4243 case MOD:
4244 case UMOD:
4245 return true;
4246 default:
4247 return false;
4251 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
4252 It avoids exponential behavior in nonzero_bits1 when X has
4253 identical subexpressions on the first or the second level. */
4255 static unsigned HOST_WIDE_INT
4256 cached_nonzero_bits (const_rtx x, machine_mode mode, const_rtx known_x,
4257 machine_mode known_mode,
4258 unsigned HOST_WIDE_INT known_ret)
4260 if (x == known_x && mode == known_mode)
4261 return known_ret;
4263 /* Try to find identical subexpressions. If found call
4264 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
4265 precomputed value for the subexpression as KNOWN_RET. */
4267 if (nonzero_bits_binary_arith_p (x))
4269 rtx x0 = XEXP (x, 0);
4270 rtx x1 = XEXP (x, 1);
4272 /* Check the first level. */
4273 if (x0 == x1)
4274 return nonzero_bits1 (x, mode, x0, mode,
4275 cached_nonzero_bits (x0, mode, known_x,
4276 known_mode, known_ret));
4278 /* Check the second level. */
4279 if (nonzero_bits_binary_arith_p (x0)
4280 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4281 return nonzero_bits1 (x, mode, x1, mode,
4282 cached_nonzero_bits (x1, mode, known_x,
4283 known_mode, known_ret));
4285 if (nonzero_bits_binary_arith_p (x1)
4286 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4287 return nonzero_bits1 (x, mode, x0, mode,
4288 cached_nonzero_bits (x0, mode, known_x,
4289 known_mode, known_ret));
4292 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
4295 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4296 We don't let nonzero_bits recur into num_sign_bit_copies, because that
4297 is less useful. We can't allow both, because that results in exponential
4298 run time recursion. There is a nullstone testcase that triggered
4299 this. This macro avoids accidental uses of num_sign_bit_copies. */
4300 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4302 /* Given an expression, X, compute which bits in X can be nonzero.
4303 We don't care about bits outside of those defined in MODE.
4305 For most X this is simply GET_MODE_MASK (GET_MODE (X)), but if X is
4306 an arithmetic operation, we can do better. */
4308 static unsigned HOST_WIDE_INT
4309 nonzero_bits1 (const_rtx x, machine_mode mode, const_rtx known_x,
4310 machine_mode known_mode,
4311 unsigned HOST_WIDE_INT known_ret)
4313 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
4314 unsigned HOST_WIDE_INT inner_nz;
4315 enum rtx_code code;
4316 machine_mode inner_mode;
4317 unsigned int mode_width = GET_MODE_PRECISION (mode);
4319 /* For floating-point and vector values, assume all bits are needed. */
4320 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
4321 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4322 return nonzero;
4324 /* If X is wider than MODE, use its mode instead. */
4325 if (GET_MODE_PRECISION (GET_MODE (x)) > mode_width)
4327 mode = GET_MODE (x);
4328 nonzero = GET_MODE_MASK (mode);
4329 mode_width = GET_MODE_PRECISION (mode);
4332 if (mode_width > HOST_BITS_PER_WIDE_INT)
4333 /* Our only callers in this case look for single bit values. So
4334 just return the mode mask. Those tests will then be false. */
4335 return nonzero;
4337 /* If MODE is wider than X, but both are a single word for both the host
4338 and target machines, we can compute this from which bits of the
4339 object might be nonzero in its own mode, taking into account the fact
4340 that on many CISC machines, accessing an object in a wider mode
4341 causes the high-order bits to become undefined. So they are
4342 not known to be zero. */
4344 if (!WORD_REGISTER_OPERATIONS
4345 && GET_MODE (x) != VOIDmode
4346 && GET_MODE (x) != mode
4347 && GET_MODE_PRECISION (GET_MODE (x)) <= BITS_PER_WORD
4348 && GET_MODE_PRECISION (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
4349 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (GET_MODE (x)))
4351 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
4352 known_x, known_mode, known_ret);
4353 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
4354 return nonzero;
4357 /* Please keep nonzero_bits_binary_arith_p above in sync with
4358 the code in the switch below. */
4359 code = GET_CODE (x);
4360 switch (code)
4362 case REG:
4363 #if defined(POINTERS_EXTEND_UNSIGNED)
4364 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4365 all the bits above ptr_mode are known to be zero. */
4366 /* As we do not know which address space the pointer is referring to,
4367 we can do this only if the target does not support different pointer
4368 or address modes depending on the address space. */
4369 if (target_default_pointer_address_modes_p ()
4370 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4371 && REG_POINTER (x)
4372 && !targetm.have_ptr_extend ())
4373 nonzero &= GET_MODE_MASK (ptr_mode);
4374 #endif
4376 /* Include declared information about alignment of pointers. */
4377 /* ??? We don't properly preserve REG_POINTER changes across
4378 pointer-to-integer casts, so we can't trust it except for
4379 things that we know must be pointers. See execute/960116-1.c. */
4380 if ((x == stack_pointer_rtx
4381 || x == frame_pointer_rtx
4382 || x == arg_pointer_rtx)
4383 && REGNO_POINTER_ALIGN (REGNO (x)))
4385 unsigned HOST_WIDE_INT alignment
4386 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4388 #ifdef PUSH_ROUNDING
4389 /* If PUSH_ROUNDING is defined, it is possible for the
4390 stack to be momentarily aligned only to that amount,
4391 so we pick the least alignment. */
4392 if (x == stack_pointer_rtx && PUSH_ARGS)
4393 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
4394 alignment);
4395 #endif
4397 nonzero &= ~(alignment - 1);
4401 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4402 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
4403 known_mode, known_ret,
4404 &nonzero_for_hook);
4406 if (new_rtx)
4407 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4408 known_mode, known_ret);
4410 return nonzero_for_hook;
4413 case CONST_INT:
4414 /* If X is negative in MODE, sign-extend the value. */
4415 if (SHORT_IMMEDIATES_SIGN_EXTEND && INTVAL (x) > 0
4416 && mode_width < BITS_PER_WORD
4417 && (UINTVAL (x) & (HOST_WIDE_INT_1U << (mode_width - 1)))
4418 != 0)
4419 return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
4421 return UINTVAL (x);
4423 case MEM:
4424 /* In many, if not most, RISC machines, reading a byte from memory
4425 zeros the rest of the register. Noticing that fact saves a lot
4426 of extra zero-extends. */
4427 if (load_extend_op (GET_MODE (x)) == ZERO_EXTEND)
4428 nonzero &= GET_MODE_MASK (GET_MODE (x));
4429 break;
4431 case EQ: case NE:
4432 case UNEQ: case LTGT:
4433 case GT: case GTU: case UNGT:
4434 case LT: case LTU: case UNLT:
4435 case GE: case GEU: case UNGE:
4436 case LE: case LEU: case UNLE:
4437 case UNORDERED: case ORDERED:
4438 /* If this produces an integer result, we know which bits are set.
4439 Code here used to clear bits outside the mode of X, but that is
4440 now done above. */
4441 /* Mind that MODE is the mode the caller wants to look at this
4442 operation in, and not the actual operation mode. We can wind
4443 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4444 that describes the results of a vector compare. */
4445 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
4446 && mode_width <= HOST_BITS_PER_WIDE_INT)
4447 nonzero = STORE_FLAG_VALUE;
4448 break;
4450 case NEG:
4451 #if 0
4452 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4453 and num_sign_bit_copies. */
4454 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4455 == GET_MODE_PRECISION (GET_MODE (x)))
4456 nonzero = 1;
4457 #endif
4459 if (GET_MODE_PRECISION (GET_MODE (x)) < mode_width)
4460 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
4461 break;
4463 case ABS:
4464 #if 0
4465 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4466 and num_sign_bit_copies. */
4467 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4468 == GET_MODE_PRECISION (GET_MODE (x)))
4469 nonzero = 1;
4470 #endif
4471 break;
4473 case TRUNCATE:
4474 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4475 known_x, known_mode, known_ret)
4476 & GET_MODE_MASK (mode));
4477 break;
4479 case ZERO_EXTEND:
4480 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4481 known_x, known_mode, known_ret);
4482 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4483 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4484 break;
4486 case SIGN_EXTEND:
4487 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4488 Otherwise, show all the bits in the outer mode but not the inner
4489 may be nonzero. */
4490 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4491 known_x, known_mode, known_ret);
4492 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4494 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4495 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4496 inner_nz |= (GET_MODE_MASK (mode)
4497 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4500 nonzero &= inner_nz;
4501 break;
4503 case AND:
4504 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4505 known_x, known_mode, known_ret)
4506 & cached_nonzero_bits (XEXP (x, 1), mode,
4507 known_x, known_mode, known_ret);
4508 break;
4510 case XOR: case IOR:
4511 case UMIN: case UMAX: case SMIN: case SMAX:
4513 unsigned HOST_WIDE_INT nonzero0
4514 = cached_nonzero_bits (XEXP (x, 0), mode,
4515 known_x, known_mode, known_ret);
4517 /* Don't call nonzero_bits for the second time if it cannot change
4518 anything. */
4519 if ((nonzero & nonzero0) != nonzero)
4520 nonzero &= nonzero0
4521 | cached_nonzero_bits (XEXP (x, 1), mode,
4522 known_x, known_mode, known_ret);
4524 break;
4526 case PLUS: case MINUS:
4527 case MULT:
4528 case DIV: case UDIV:
4529 case MOD: case UMOD:
4530 /* We can apply the rules of arithmetic to compute the number of
4531 high- and low-order zero bits of these operations. We start by
4532 computing the width (position of the highest-order nonzero bit)
4533 and the number of low-order zero bits for each value. */
4535 unsigned HOST_WIDE_INT nz0
4536 = cached_nonzero_bits (XEXP (x, 0), mode,
4537 known_x, known_mode, known_ret);
4538 unsigned HOST_WIDE_INT nz1
4539 = cached_nonzero_bits (XEXP (x, 1), mode,
4540 known_x, known_mode, known_ret);
4541 int sign_index = GET_MODE_PRECISION (GET_MODE (x)) - 1;
4542 int width0 = floor_log2 (nz0) + 1;
4543 int width1 = floor_log2 (nz1) + 1;
4544 int low0 = ctz_or_zero (nz0);
4545 int low1 = ctz_or_zero (nz1);
4546 unsigned HOST_WIDE_INT op0_maybe_minusp
4547 = nz0 & (HOST_WIDE_INT_1U << sign_index);
4548 unsigned HOST_WIDE_INT op1_maybe_minusp
4549 = nz1 & (HOST_WIDE_INT_1U << sign_index);
4550 unsigned int result_width = mode_width;
4551 int result_low = 0;
4553 switch (code)
4555 case PLUS:
4556 result_width = MAX (width0, width1) + 1;
4557 result_low = MIN (low0, low1);
4558 break;
4559 case MINUS:
4560 result_low = MIN (low0, low1);
4561 break;
4562 case MULT:
4563 result_width = width0 + width1;
4564 result_low = low0 + low1;
4565 break;
4566 case DIV:
4567 if (width1 == 0)
4568 break;
4569 if (!op0_maybe_minusp && !op1_maybe_minusp)
4570 result_width = width0;
4571 break;
4572 case UDIV:
4573 if (width1 == 0)
4574 break;
4575 result_width = width0;
4576 break;
4577 case MOD:
4578 if (width1 == 0)
4579 break;
4580 if (!op0_maybe_minusp && !op1_maybe_minusp)
4581 result_width = MIN (width0, width1);
4582 result_low = MIN (low0, low1);
4583 break;
4584 case UMOD:
4585 if (width1 == 0)
4586 break;
4587 result_width = MIN (width0, width1);
4588 result_low = MIN (low0, low1);
4589 break;
4590 default:
4591 gcc_unreachable ();
4594 if (result_width < mode_width)
4595 nonzero &= (HOST_WIDE_INT_1U << result_width) - 1;
4597 if (result_low > 0)
4598 nonzero &= ~((HOST_WIDE_INT_1U << result_low) - 1);
4600 break;
4602 case ZERO_EXTRACT:
4603 if (CONST_INT_P (XEXP (x, 1))
4604 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4605 nonzero &= (HOST_WIDE_INT_1U << INTVAL (XEXP (x, 1))) - 1;
4606 break;
4608 case SUBREG:
4609 /* If this is a SUBREG formed for a promoted variable that has
4610 been zero-extended, we know that at least the high-order bits
4611 are zero, though others might be too. */
4612 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
4613 nonzero = GET_MODE_MASK (GET_MODE (x))
4614 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4615 known_x, known_mode, known_ret);
4617 /* If the inner mode is a single word for both the host and target
4618 machines, we can compute this from which bits of the inner
4619 object might be nonzero. */
4620 inner_mode = GET_MODE (SUBREG_REG (x));
4621 if (GET_MODE_PRECISION (inner_mode) <= BITS_PER_WORD
4622 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT)
4624 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4625 known_x, known_mode, known_ret);
4627 /* On many CISC machines, accessing an object in a wider mode
4628 causes the high-order bits to become undefined. So they are
4629 not known to be zero. */
4630 rtx_code extend_op;
4631 if ((!WORD_REGISTER_OPERATIONS
4632 /* If this is a typical RISC machine, we only have to worry
4633 about the way loads are extended. */
4634 || ((extend_op = load_extend_op (inner_mode)) == SIGN_EXTEND
4635 ? val_signbit_known_set_p (inner_mode, nonzero)
4636 : extend_op != ZERO_EXTEND)
4637 || (!MEM_P (SUBREG_REG (x)) && !REG_P (SUBREG_REG (x))))
4638 && GET_MODE_PRECISION (GET_MODE (x))
4639 > GET_MODE_PRECISION (inner_mode))
4640 nonzero
4641 |= (GET_MODE_MASK (GET_MODE (x)) & ~GET_MODE_MASK (inner_mode));
4643 break;
4645 case ASHIFTRT:
4646 case LSHIFTRT:
4647 case ASHIFT:
4648 case ROTATE:
4649 /* The nonzero bits are in two classes: any bits within MODE
4650 that aren't in GET_MODE (x) are always significant. The rest of the
4651 nonzero bits are those that are significant in the operand of
4652 the shift when shifted the appropriate number of bits. This
4653 shows that high-order bits are cleared by the right shift and
4654 low-order bits by left shifts. */
4655 if (CONST_INT_P (XEXP (x, 1))
4656 && INTVAL (XEXP (x, 1)) >= 0
4657 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4658 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4660 machine_mode inner_mode = GET_MODE (x);
4661 unsigned int width = GET_MODE_PRECISION (inner_mode);
4662 int count = INTVAL (XEXP (x, 1));
4663 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4664 unsigned HOST_WIDE_INT op_nonzero
4665 = cached_nonzero_bits (XEXP (x, 0), mode,
4666 known_x, known_mode, known_ret);
4667 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4668 unsigned HOST_WIDE_INT outer = 0;
4670 if (mode_width > width)
4671 outer = (op_nonzero & nonzero & ~mode_mask);
4673 if (code == LSHIFTRT)
4674 inner >>= count;
4675 else if (code == ASHIFTRT)
4677 inner >>= count;
4679 /* If the sign bit may have been nonzero before the shift, we
4680 need to mark all the places it could have been copied to
4681 by the shift as possibly nonzero. */
4682 if (inner & (HOST_WIDE_INT_1U << (width - 1 - count)))
4683 inner |= ((HOST_WIDE_INT_1U << count) - 1)
4684 << (width - count);
4686 else if (code == ASHIFT)
4687 inner <<= count;
4688 else
4689 inner = ((inner << (count % width)
4690 | (inner >> (width - (count % width)))) & mode_mask);
4692 nonzero &= (outer | inner);
4694 break;
4696 case FFS:
4697 case POPCOUNT:
4698 /* This is at most the number of bits in the mode. */
4699 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4700 break;
4702 case CLZ:
4703 /* If CLZ has a known value at zero, then the nonzero bits are
4704 that value, plus the number of bits in the mode minus one. */
4705 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4706 nonzero
4707 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4708 else
4709 nonzero = -1;
4710 break;
4712 case CTZ:
4713 /* If CTZ has a known value at zero, then the nonzero bits are
4714 that value, plus the number of bits in the mode minus one. */
4715 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4716 nonzero
4717 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4718 else
4719 nonzero = -1;
4720 break;
4722 case CLRSB:
4723 /* This is at most the number of bits in the mode minus 1. */
4724 nonzero = (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4725 break;
4727 case PARITY:
4728 nonzero = 1;
4729 break;
4731 case IF_THEN_ELSE:
4733 unsigned HOST_WIDE_INT nonzero_true
4734 = cached_nonzero_bits (XEXP (x, 1), mode,
4735 known_x, known_mode, known_ret);
4737 /* Don't call nonzero_bits for the second time if it cannot change
4738 anything. */
4739 if ((nonzero & nonzero_true) != nonzero)
4740 nonzero &= nonzero_true
4741 | cached_nonzero_bits (XEXP (x, 2), mode,
4742 known_x, known_mode, known_ret);
4744 break;
4746 default:
4747 break;
4750 return nonzero;
4753 /* See the macro definition above. */
4754 #undef cached_num_sign_bit_copies
4757 /* Return true if num_sign_bit_copies1 might recurse into both operands
4758 of X. */
4760 static inline bool
4761 num_sign_bit_copies_binary_arith_p (const_rtx x)
4763 if (!ARITHMETIC_P (x))
4764 return false;
4765 switch (GET_CODE (x))
4767 case IOR:
4768 case AND:
4769 case XOR:
4770 case SMIN:
4771 case SMAX:
4772 case UMIN:
4773 case UMAX:
4774 case PLUS:
4775 case MINUS:
4776 case MULT:
4777 return true;
4778 default:
4779 return false;
4783 /* The function cached_num_sign_bit_copies is a wrapper around
4784 num_sign_bit_copies1. It avoids exponential behavior in
4785 num_sign_bit_copies1 when X has identical subexpressions on the
4786 first or the second level. */
4788 static unsigned int
4789 cached_num_sign_bit_copies (const_rtx x, machine_mode mode, const_rtx known_x,
4790 machine_mode known_mode,
4791 unsigned int known_ret)
4793 if (x == known_x && mode == known_mode)
4794 return known_ret;
4796 /* Try to find identical subexpressions. If found call
4797 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4798 the precomputed value for the subexpression as KNOWN_RET. */
4800 if (num_sign_bit_copies_binary_arith_p (x))
4802 rtx x0 = XEXP (x, 0);
4803 rtx x1 = XEXP (x, 1);
4805 /* Check the first level. */
4806 if (x0 == x1)
4807 return
4808 num_sign_bit_copies1 (x, mode, x0, mode,
4809 cached_num_sign_bit_copies (x0, mode, known_x,
4810 known_mode,
4811 known_ret));
4813 /* Check the second level. */
4814 if (num_sign_bit_copies_binary_arith_p (x0)
4815 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4816 return
4817 num_sign_bit_copies1 (x, mode, x1, mode,
4818 cached_num_sign_bit_copies (x1, mode, known_x,
4819 known_mode,
4820 known_ret));
4822 if (num_sign_bit_copies_binary_arith_p (x1)
4823 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4824 return
4825 num_sign_bit_copies1 (x, mode, x0, mode,
4826 cached_num_sign_bit_copies (x0, mode, known_x,
4827 known_mode,
4828 known_ret));
4831 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4834 /* Return the number of bits at the high-order end of X that are known to
4835 be equal to the sign bit. X will be used in mode MODE; if MODE is
4836 VOIDmode, X will be used in its own mode. The returned value will always
4837 be between 1 and the number of bits in MODE. */
4839 static unsigned int
4840 num_sign_bit_copies1 (const_rtx x, machine_mode mode, const_rtx known_x,
4841 machine_mode known_mode,
4842 unsigned int known_ret)
4844 enum rtx_code code = GET_CODE (x);
4845 machine_mode inner_mode;
4846 int num0, num1, result;
4847 unsigned HOST_WIDE_INT nonzero;
4849 /* If we weren't given a mode, use the mode of X. If the mode is still
4850 VOIDmode, we don't know anything. Likewise if one of the modes is
4851 floating-point. */
4853 if (mode == VOIDmode)
4854 mode = GET_MODE (x);
4856 gcc_checking_assert (mode != BLKmode);
4858 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4859 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4860 return 1;
4862 /* For a smaller mode, just ignore the high bits. */
4863 unsigned int bitwidth = GET_MODE_PRECISION (mode);
4864 if (bitwidth < GET_MODE_PRECISION (GET_MODE (x)))
4866 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4867 known_x, known_mode, known_ret);
4868 return MAX (1,
4869 num0 - (int) (GET_MODE_PRECISION (GET_MODE (x)) - bitwidth));
4872 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_PRECISION (GET_MODE (x)))
4874 /* If this machine does not do all register operations on the entire
4875 register and MODE is wider than the mode of X, we can say nothing
4876 at all about the high-order bits. */
4877 if (!WORD_REGISTER_OPERATIONS)
4878 return 1;
4880 /* Likewise on machines that do, if the mode of the object is smaller
4881 than a word and loads of that size don't sign extend, we can say
4882 nothing about the high order bits. */
4883 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
4884 && load_extend_op (GET_MODE (x)) != SIGN_EXTEND)
4885 return 1;
4888 /* Please keep num_sign_bit_copies_binary_arith_p above in sync with
4889 the code in the switch below. */
4890 switch (code)
4892 case REG:
4894 #if defined(POINTERS_EXTEND_UNSIGNED)
4895 /* If pointers extend signed and this is a pointer in Pmode, say that
4896 all the bits above ptr_mode are known to be sign bit copies. */
4897 /* As we do not know which address space the pointer is referring to,
4898 we can do this only if the target does not support different pointer
4899 or address modes depending on the address space. */
4900 if (target_default_pointer_address_modes_p ()
4901 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4902 && mode == Pmode && REG_POINTER (x)
4903 && !targetm.have_ptr_extend ())
4904 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
4905 #endif
4908 unsigned int copies_for_hook = 1, copies = 1;
4909 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4910 known_mode, known_ret,
4911 &copies_for_hook);
4913 if (new_rtx)
4914 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4915 known_mode, known_ret);
4917 if (copies > 1 || copies_for_hook > 1)
4918 return MAX (copies, copies_for_hook);
4920 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4922 break;
4924 case MEM:
4925 /* Some RISC machines sign-extend all loads of smaller than a word. */
4926 if (load_extend_op (GET_MODE (x)) == SIGN_EXTEND)
4927 return MAX (1, ((int) bitwidth
4928 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1));
4929 break;
4931 case CONST_INT:
4932 /* If the constant is negative, take its 1's complement and remask.
4933 Then see how many zero bits we have. */
4934 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
4935 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4936 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
4937 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4939 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4941 case SUBREG:
4942 /* If this is a SUBREG for a promoted object that is sign-extended
4943 and we are looking at it in a wider mode, we know that at least the
4944 high-order bits are known to be sign bit copies. */
4946 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x))
4948 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4949 known_x, known_mode, known_ret);
4950 return MAX ((int) bitwidth
4951 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1,
4952 num0);
4955 /* For a smaller object, just ignore the high bits. */
4956 inner_mode = GET_MODE (SUBREG_REG (x));
4957 if (bitwidth <= GET_MODE_PRECISION (inner_mode))
4959 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4960 known_x, known_mode, known_ret);
4961 return
4962 MAX (1, num0 - (int) (GET_MODE_PRECISION (inner_mode) - bitwidth));
4965 /* For paradoxical SUBREGs on machines where all register operations
4966 affect the entire register, just look inside. Note that we are
4967 passing MODE to the recursive call, so the number of sign bit copies
4968 will remain relative to that mode, not the inner mode. */
4970 /* This works only if loads sign extend. Otherwise, if we get a
4971 reload for the inner part, it may be loaded from the stack, and
4972 then we lose all sign bit copies that existed before the store
4973 to the stack. */
4975 if (WORD_REGISTER_OPERATIONS
4976 && load_extend_op (inner_mode) == SIGN_EXTEND
4977 && paradoxical_subreg_p (x)
4978 && (MEM_P (SUBREG_REG (x)) || REG_P (SUBREG_REG (x))))
4979 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4980 known_x, known_mode, known_ret);
4981 break;
4983 case SIGN_EXTRACT:
4984 if (CONST_INT_P (XEXP (x, 1)))
4985 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4986 break;
4988 case SIGN_EXTEND:
4989 return (bitwidth - GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4990 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4991 known_x, known_mode, known_ret));
4993 case TRUNCATE:
4994 /* For a smaller object, just ignore the high bits. */
4995 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4996 known_x, known_mode, known_ret);
4997 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4998 - bitwidth)));
5000 case NOT:
5001 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5002 known_x, known_mode, known_ret);
5004 case ROTATE: case ROTATERT:
5005 /* If we are rotating left by a number of bits less than the number
5006 of sign bit copies, we can just subtract that amount from the
5007 number. */
5008 if (CONST_INT_P (XEXP (x, 1))
5009 && INTVAL (XEXP (x, 1)) >= 0
5010 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
5012 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5013 known_x, known_mode, known_ret);
5014 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
5015 : (int) bitwidth - INTVAL (XEXP (x, 1))));
5017 break;
5019 case NEG:
5020 /* In general, this subtracts one sign bit copy. But if the value
5021 is known to be positive, the number of sign bit copies is the
5022 same as that of the input. Finally, if the input has just one bit
5023 that might be nonzero, all the bits are copies of the sign bit. */
5024 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5025 known_x, known_mode, known_ret);
5026 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5027 return num0 > 1 ? num0 - 1 : 1;
5029 nonzero = nonzero_bits (XEXP (x, 0), mode);
5030 if (nonzero == 1)
5031 return bitwidth;
5033 if (num0 > 1
5034 && ((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero))
5035 num0--;
5037 return num0;
5039 case IOR: case AND: case XOR:
5040 case SMIN: case SMAX: case UMIN: case UMAX:
5041 /* Logical operations will preserve the number of sign-bit copies.
5042 MIN and MAX operations always return one of the operands. */
5043 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5044 known_x, known_mode, known_ret);
5045 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5046 known_x, known_mode, known_ret);
5048 /* If num1 is clearing some of the top bits then regardless of
5049 the other term, we are guaranteed to have at least that many
5050 high-order zero bits. */
5051 if (code == AND
5052 && num1 > 1
5053 && bitwidth <= HOST_BITS_PER_WIDE_INT
5054 && CONST_INT_P (XEXP (x, 1))
5055 && (UINTVAL (XEXP (x, 1))
5056 & (HOST_WIDE_INT_1U << (bitwidth - 1))) == 0)
5057 return num1;
5059 /* Similarly for IOR when setting high-order bits. */
5060 if (code == IOR
5061 && num1 > 1
5062 && bitwidth <= HOST_BITS_PER_WIDE_INT
5063 && CONST_INT_P (XEXP (x, 1))
5064 && (UINTVAL (XEXP (x, 1))
5065 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5066 return num1;
5068 return MIN (num0, num1);
5070 case PLUS: case MINUS:
5071 /* For addition and subtraction, we can have a 1-bit carry. However,
5072 if we are subtracting 1 from a positive number, there will not
5073 be such a carry. Furthermore, if the positive number is known to
5074 be 0 or 1, we know the result is either -1 or 0. */
5076 if (code == PLUS && XEXP (x, 1) == constm1_rtx
5077 && bitwidth <= HOST_BITS_PER_WIDE_INT)
5079 nonzero = nonzero_bits (XEXP (x, 0), mode);
5080 if (((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero) == 0)
5081 return (nonzero == 1 || nonzero == 0 ? bitwidth
5082 : bitwidth - floor_log2 (nonzero) - 1);
5085 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5086 known_x, known_mode, known_ret);
5087 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5088 known_x, known_mode, known_ret);
5089 result = MAX (1, MIN (num0, num1) - 1);
5091 return result;
5093 case MULT:
5094 /* The number of bits of the product is the sum of the number of
5095 bits of both terms. However, unless one of the terms if known
5096 to be positive, we must allow for an additional bit since negating
5097 a negative number can remove one sign bit copy. */
5099 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5100 known_x, known_mode, known_ret);
5101 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5102 known_x, known_mode, known_ret);
5104 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
5105 if (result > 0
5106 && (bitwidth > HOST_BITS_PER_WIDE_INT
5107 || (((nonzero_bits (XEXP (x, 0), mode)
5108 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5109 && ((nonzero_bits (XEXP (x, 1), mode)
5110 & (HOST_WIDE_INT_1U << (bitwidth - 1)))
5111 != 0))))
5112 result--;
5114 return MAX (1, result);
5116 case UDIV:
5117 /* The result must be <= the first operand. If the first operand
5118 has the high bit set, we know nothing about the number of sign
5119 bit copies. */
5120 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5121 return 1;
5122 else if ((nonzero_bits (XEXP (x, 0), mode)
5123 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5124 return 1;
5125 else
5126 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5127 known_x, known_mode, known_ret);
5129 case UMOD:
5130 /* The result must be <= the second operand. If the second operand
5131 has (or just might have) the high bit set, we know nothing about
5132 the number of sign bit copies. */
5133 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5134 return 1;
5135 else if ((nonzero_bits (XEXP (x, 1), mode)
5136 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5137 return 1;
5138 else
5139 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
5140 known_x, known_mode, known_ret);
5142 case DIV:
5143 /* Similar to unsigned division, except that we have to worry about
5144 the case where the divisor is negative, in which case we have
5145 to add 1. */
5146 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5147 known_x, known_mode, known_ret);
5148 if (result > 1
5149 && (bitwidth > HOST_BITS_PER_WIDE_INT
5150 || (nonzero_bits (XEXP (x, 1), mode)
5151 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5152 result--;
5154 return result;
5156 case MOD:
5157 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5158 known_x, known_mode, known_ret);
5159 if (result > 1
5160 && (bitwidth > HOST_BITS_PER_WIDE_INT
5161 || (nonzero_bits (XEXP (x, 1), mode)
5162 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5163 result--;
5165 return result;
5167 case ASHIFTRT:
5168 /* Shifts by a constant add to the number of bits equal to the
5169 sign bit. */
5170 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5171 known_x, known_mode, known_ret);
5172 if (CONST_INT_P (XEXP (x, 1))
5173 && INTVAL (XEXP (x, 1)) > 0
5174 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
5175 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
5177 return num0;
5179 case ASHIFT:
5180 /* Left shifts destroy copies. */
5181 if (!CONST_INT_P (XEXP (x, 1))
5182 || INTVAL (XEXP (x, 1)) < 0
5183 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
5184 || INTVAL (XEXP (x, 1)) >= GET_MODE_PRECISION (GET_MODE (x)))
5185 return 1;
5187 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5188 known_x, known_mode, known_ret);
5189 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
5191 case IF_THEN_ELSE:
5192 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5193 known_x, known_mode, known_ret);
5194 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
5195 known_x, known_mode, known_ret);
5196 return MIN (num0, num1);
5198 case EQ: case NE: case GE: case GT: case LE: case LT:
5199 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
5200 case GEU: case GTU: case LEU: case LTU:
5201 case UNORDERED: case ORDERED:
5202 /* If the constant is negative, take its 1's complement and remask.
5203 Then see how many zero bits we have. */
5204 nonzero = STORE_FLAG_VALUE;
5205 if (bitwidth <= HOST_BITS_PER_WIDE_INT
5206 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5207 nonzero = (~nonzero) & GET_MODE_MASK (mode);
5209 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
5211 default:
5212 break;
5215 /* If we haven't been able to figure it out by one of the above rules,
5216 see if some of the high-order bits are known to be zero. If so,
5217 count those bits and return one less than that amount. If we can't
5218 safely compute the mask for this mode, always return BITWIDTH. */
5220 bitwidth = GET_MODE_PRECISION (mode);
5221 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5222 return 1;
5224 nonzero = nonzero_bits (x, mode);
5225 return nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))
5226 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
5229 /* Calculate the rtx_cost of a single instruction. A return value of
5230 zero indicates an instruction pattern without a known cost. */
5233 insn_rtx_cost (rtx pat, bool speed)
5235 int i, cost;
5236 rtx set;
5238 /* Extract the single set rtx from the instruction pattern.
5239 We can't use single_set since we only have the pattern. */
5240 if (GET_CODE (pat) == SET)
5241 set = pat;
5242 else if (GET_CODE (pat) == PARALLEL)
5244 set = NULL_RTX;
5245 for (i = 0; i < XVECLEN (pat, 0); i++)
5247 rtx x = XVECEXP (pat, 0, i);
5248 if (GET_CODE (x) == SET)
5250 if (set)
5251 return 0;
5252 set = x;
5255 if (!set)
5256 return 0;
5258 else
5259 return 0;
5261 cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
5262 return cost > 0 ? cost : COSTS_N_INSNS (1);
5265 /* Returns estimate on cost of computing SEQ. */
5267 unsigned
5268 seq_cost (const rtx_insn *seq, bool speed)
5270 unsigned cost = 0;
5271 rtx set;
5273 for (; seq; seq = NEXT_INSN (seq))
5275 set = single_set (seq);
5276 if (set)
5277 cost += set_rtx_cost (set, speed);
5278 else
5279 cost++;
5282 return cost;
5285 /* Given an insn INSN and condition COND, return the condition in a
5286 canonical form to simplify testing by callers. Specifically:
5288 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
5289 (2) Both operands will be machine operands; (cc0) will have been replaced.
5290 (3) If an operand is a constant, it will be the second operand.
5291 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
5292 for GE, GEU, and LEU.
5294 If the condition cannot be understood, or is an inequality floating-point
5295 comparison which needs to be reversed, 0 will be returned.
5297 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
5299 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5300 insn used in locating the condition was found. If a replacement test
5301 of the condition is desired, it should be placed in front of that
5302 insn and we will be sure that the inputs are still valid.
5304 If WANT_REG is nonzero, we wish the condition to be relative to that
5305 register, if possible. Therefore, do not canonicalize the condition
5306 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
5307 to be a compare to a CC mode register.
5309 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
5310 and at INSN. */
5313 canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
5314 rtx_insn **earliest,
5315 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
5317 enum rtx_code code;
5318 rtx_insn *prev = insn;
5319 const_rtx set;
5320 rtx tem;
5321 rtx op0, op1;
5322 int reverse_code = 0;
5323 machine_mode mode;
5324 basic_block bb = BLOCK_FOR_INSN (insn);
5326 code = GET_CODE (cond);
5327 mode = GET_MODE (cond);
5328 op0 = XEXP (cond, 0);
5329 op1 = XEXP (cond, 1);
5331 if (reverse)
5332 code = reversed_comparison_code (cond, insn);
5333 if (code == UNKNOWN)
5334 return 0;
5336 if (earliest)
5337 *earliest = insn;
5339 /* If we are comparing a register with zero, see if the register is set
5340 in the previous insn to a COMPARE or a comparison operation. Perform
5341 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5342 in cse.c */
5344 while ((GET_RTX_CLASS (code) == RTX_COMPARE
5345 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
5346 && op1 == CONST0_RTX (GET_MODE (op0))
5347 && op0 != want_reg)
5349 /* Set nonzero when we find something of interest. */
5350 rtx x = 0;
5352 /* If comparison with cc0, import actual comparison from compare
5353 insn. */
5354 if (op0 == cc0_rtx)
5356 if ((prev = prev_nonnote_insn (prev)) == 0
5357 || !NONJUMP_INSN_P (prev)
5358 || (set = single_set (prev)) == 0
5359 || SET_DEST (set) != cc0_rtx)
5360 return 0;
5362 op0 = SET_SRC (set);
5363 op1 = CONST0_RTX (GET_MODE (op0));
5364 if (earliest)
5365 *earliest = prev;
5368 /* If this is a COMPARE, pick up the two things being compared. */
5369 if (GET_CODE (op0) == COMPARE)
5371 op1 = XEXP (op0, 1);
5372 op0 = XEXP (op0, 0);
5373 continue;
5375 else if (!REG_P (op0))
5376 break;
5378 /* Go back to the previous insn. Stop if it is not an INSN. We also
5379 stop if it isn't a single set or if it has a REG_INC note because
5380 we don't want to bother dealing with it. */
5382 prev = prev_nonnote_nondebug_insn (prev);
5384 if (prev == 0
5385 || !NONJUMP_INSN_P (prev)
5386 || FIND_REG_INC_NOTE (prev, NULL_RTX)
5387 /* In cfglayout mode, there do not have to be labels at the
5388 beginning of a block, or jumps at the end, so the previous
5389 conditions would not stop us when we reach bb boundary. */
5390 || BLOCK_FOR_INSN (prev) != bb)
5391 break;
5393 set = set_of (op0, prev);
5395 if (set
5396 && (GET_CODE (set) != SET
5397 || !rtx_equal_p (SET_DEST (set), op0)))
5398 break;
5400 /* If this is setting OP0, get what it sets it to if it looks
5401 relevant. */
5402 if (set)
5404 machine_mode inner_mode = GET_MODE (SET_DEST (set));
5405 #ifdef FLOAT_STORE_FLAG_VALUE
5406 REAL_VALUE_TYPE fsfv;
5407 #endif
5409 /* ??? We may not combine comparisons done in a CCmode with
5410 comparisons not done in a CCmode. This is to aid targets
5411 like Alpha that have an IEEE compliant EQ instruction, and
5412 a non-IEEE compliant BEQ instruction. The use of CCmode is
5413 actually artificial, simply to prevent the combination, but
5414 should not affect other platforms.
5416 However, we must allow VOIDmode comparisons to match either
5417 CCmode or non-CCmode comparison, because some ports have
5418 modeless comparisons inside branch patterns.
5420 ??? This mode check should perhaps look more like the mode check
5421 in simplify_comparison in combine. */
5422 if (((GET_MODE_CLASS (mode) == MODE_CC)
5423 != (GET_MODE_CLASS (inner_mode) == MODE_CC))
5424 && mode != VOIDmode
5425 && inner_mode != VOIDmode)
5426 break;
5427 if (GET_CODE (SET_SRC (set)) == COMPARE
5428 || (((code == NE
5429 || (code == LT
5430 && val_signbit_known_set_p (inner_mode,
5431 STORE_FLAG_VALUE))
5432 #ifdef FLOAT_STORE_FLAG_VALUE
5433 || (code == LT
5434 && SCALAR_FLOAT_MODE_P (inner_mode)
5435 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5436 REAL_VALUE_NEGATIVE (fsfv)))
5437 #endif
5439 && COMPARISON_P (SET_SRC (set))))
5440 x = SET_SRC (set);
5441 else if (((code == EQ
5442 || (code == GE
5443 && val_signbit_known_set_p (inner_mode,
5444 STORE_FLAG_VALUE))
5445 #ifdef FLOAT_STORE_FLAG_VALUE
5446 || (code == GE
5447 && SCALAR_FLOAT_MODE_P (inner_mode)
5448 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5449 REAL_VALUE_NEGATIVE (fsfv)))
5450 #endif
5452 && COMPARISON_P (SET_SRC (set)))
5454 reverse_code = 1;
5455 x = SET_SRC (set);
5457 else if ((code == EQ || code == NE)
5458 && GET_CODE (SET_SRC (set)) == XOR)
5459 /* Handle sequences like:
5461 (set op0 (xor X Y))
5462 ...(eq|ne op0 (const_int 0))...
5464 in which case:
5466 (eq op0 (const_int 0)) reduces to (eq X Y)
5467 (ne op0 (const_int 0)) reduces to (ne X Y)
5469 This is the form used by MIPS16, for example. */
5470 x = SET_SRC (set);
5471 else
5472 break;
5475 else if (reg_set_p (op0, prev))
5476 /* If this sets OP0, but not directly, we have to give up. */
5477 break;
5479 if (x)
5481 /* If the caller is expecting the condition to be valid at INSN,
5482 make sure X doesn't change before INSN. */
5483 if (valid_at_insn_p)
5484 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5485 break;
5486 if (COMPARISON_P (x))
5487 code = GET_CODE (x);
5488 if (reverse_code)
5490 code = reversed_comparison_code (x, prev);
5491 if (code == UNKNOWN)
5492 return 0;
5493 reverse_code = 0;
5496 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5497 if (earliest)
5498 *earliest = prev;
5502 /* If constant is first, put it last. */
5503 if (CONSTANT_P (op0))
5504 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5506 /* If OP0 is the result of a comparison, we weren't able to find what
5507 was really being compared, so fail. */
5508 if (!allow_cc_mode
5509 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5510 return 0;
5512 /* Canonicalize any ordered comparison with integers involving equality
5513 if we can do computations in the relevant mode and we do not
5514 overflow. */
5516 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
5517 && CONST_INT_P (op1)
5518 && GET_MODE (op0) != VOIDmode
5519 && GET_MODE_PRECISION (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
5521 HOST_WIDE_INT const_val = INTVAL (op1);
5522 unsigned HOST_WIDE_INT uconst_val = const_val;
5523 unsigned HOST_WIDE_INT max_val
5524 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
5526 switch (code)
5528 case LE:
5529 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5530 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
5531 break;
5533 /* When cross-compiling, const_val might be sign-extended from
5534 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5535 case GE:
5536 if ((const_val & max_val)
5537 != (HOST_WIDE_INT_1U
5538 << (GET_MODE_PRECISION (GET_MODE (op0)) - 1)))
5539 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
5540 break;
5542 case LEU:
5543 if (uconst_val < max_val)
5544 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
5545 break;
5547 case GEU:
5548 if (uconst_val != 0)
5549 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
5550 break;
5552 default:
5553 break;
5557 /* Never return CC0; return zero instead. */
5558 if (CC0_P (op0))
5559 return 0;
5561 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5564 /* Given a jump insn JUMP, return the condition that will cause it to branch
5565 to its JUMP_LABEL. If the condition cannot be understood, or is an
5566 inequality floating-point comparison which needs to be reversed, 0 will
5567 be returned.
5569 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5570 insn used in locating the condition was found. If a replacement test
5571 of the condition is desired, it should be placed in front of that
5572 insn and we will be sure that the inputs are still valid. If EARLIEST
5573 is null, the returned condition will be valid at INSN.
5575 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5576 compare CC mode register.
5578 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5581 get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode,
5582 int valid_at_insn_p)
5584 rtx cond;
5585 int reverse;
5586 rtx set;
5588 /* If this is not a standard conditional jump, we can't parse it. */
5589 if (!JUMP_P (jump)
5590 || ! any_condjump_p (jump))
5591 return 0;
5592 set = pc_set (jump);
5594 cond = XEXP (SET_SRC (set), 0);
5596 /* If this branches to JUMP_LABEL when the condition is false, reverse
5597 the condition. */
5598 reverse
5599 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5600 && label_ref_label (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump);
5602 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5603 allow_cc_mode, valid_at_insn_p);
5606 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5607 TARGET_MODE_REP_EXTENDED.
5609 Note that we assume that the property of
5610 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5611 narrower than mode B. I.e., if A is a mode narrower than B then in
5612 order to be able to operate on it in mode B, mode A needs to
5613 satisfy the requirements set by the representation of mode B. */
5615 static void
5616 init_num_sign_bit_copies_in_rep (void)
5618 machine_mode mode, in_mode;
5620 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
5621 in_mode = GET_MODE_WIDER_MODE (mode))
5622 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
5623 mode = GET_MODE_WIDER_MODE (mode))
5625 machine_mode i;
5627 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5628 extends to the next widest mode. */
5629 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5630 || GET_MODE_WIDER_MODE (mode) == in_mode);
5632 /* We are in in_mode. Count how many bits outside of mode
5633 have to be copies of the sign-bit. */
5634 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5636 machine_mode wider = GET_MODE_WIDER_MODE (i);
5638 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5639 /* We can only check sign-bit copies starting from the
5640 top-bit. In order to be able to check the bits we
5641 have already seen we pretend that subsequent bits
5642 have to be sign-bit copies too. */
5643 || num_sign_bit_copies_in_rep [in_mode][mode])
5644 num_sign_bit_copies_in_rep [in_mode][mode]
5645 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5650 /* Suppose that truncation from the machine mode of X to MODE is not a
5651 no-op. See if there is anything special about X so that we can
5652 assume it already contains a truncated value of MODE. */
5654 bool
5655 truncated_to_mode (machine_mode mode, const_rtx x)
5657 /* This register has already been used in MODE without explicit
5658 truncation. */
5659 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5660 return true;
5662 /* See if we already satisfy the requirements of MODE. If yes we
5663 can just switch to MODE. */
5664 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5665 && (num_sign_bit_copies (x, GET_MODE (x))
5666 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5667 return true;
5669 return false;
5672 /* Return true if RTX code CODE has a single sequence of zero or more
5673 "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
5674 entry in that case. */
5676 static bool
5677 setup_reg_subrtx_bounds (unsigned int code)
5679 const char *format = GET_RTX_FORMAT ((enum rtx_code) code);
5680 unsigned int i = 0;
5681 for (; format[i] != 'e'; ++i)
5683 if (!format[i])
5684 /* No subrtxes. Leave start and count as 0. */
5685 return true;
5686 if (format[i] == 'E' || format[i] == 'V')
5687 return false;
5690 /* Record the sequence of 'e's. */
5691 rtx_all_subrtx_bounds[code].start = i;
5693 ++i;
5694 while (format[i] == 'e');
5695 rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start;
5696 /* rtl-iter.h relies on this. */
5697 gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3);
5699 for (; format[i]; ++i)
5700 if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e')
5701 return false;
5703 return true;
5706 /* Initialize rtx_all_subrtx_bounds. */
5707 void
5708 init_rtlanal (void)
5710 int i;
5711 for (i = 0; i < NUM_RTX_CODE; i++)
5713 if (!setup_reg_subrtx_bounds (i))
5714 rtx_all_subrtx_bounds[i].count = UCHAR_MAX;
5715 if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
5716 rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i];
5719 init_num_sign_bit_copies_in_rep ();
5722 /* Check whether this is a constant pool constant. */
5723 bool
5724 constant_pool_constant_p (rtx x)
5726 x = avoid_constant_pool_reference (x);
5727 return CONST_DOUBLE_P (x);
5730 /* If M is a bitmask that selects a field of low-order bits within an item but
5731 not the entire word, return the length of the field. Return -1 otherwise.
5732 M is used in machine mode MODE. */
5735 low_bitmask_len (machine_mode mode, unsigned HOST_WIDE_INT m)
5737 if (mode != VOIDmode)
5739 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
5740 return -1;
5741 m &= GET_MODE_MASK (mode);
5744 return exact_log2 (m + 1);
5747 /* Return the mode of MEM's address. */
5749 machine_mode
5750 get_address_mode (rtx mem)
5752 machine_mode mode;
5754 gcc_assert (MEM_P (mem));
5755 mode = GET_MODE (XEXP (mem, 0));
5756 if (mode != VOIDmode)
5757 return mode;
5758 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5761 /* Split up a CONST_DOUBLE or integer constant rtx
5762 into two rtx's for single words,
5763 storing in *FIRST the word that comes first in memory in the target
5764 and in *SECOND the other.
5766 TODO: This function needs to be rewritten to work on any size
5767 integer. */
5769 void
5770 split_double (rtx value, rtx *first, rtx *second)
5772 if (CONST_INT_P (value))
5774 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5776 /* In this case the CONST_INT holds both target words.
5777 Extract the bits from it into two word-sized pieces.
5778 Sign extend each half to HOST_WIDE_INT. */
5779 unsigned HOST_WIDE_INT low, high;
5780 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5781 unsigned bits_per_word = BITS_PER_WORD;
5783 /* Set sign_bit to the most significant bit of a word. */
5784 sign_bit = 1;
5785 sign_bit <<= bits_per_word - 1;
5787 /* Set mask so that all bits of the word are set. We could
5788 have used 1 << BITS_PER_WORD instead of basing the
5789 calculation on sign_bit. However, on machines where
5790 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5791 compiler warning, even though the code would never be
5792 executed. */
5793 mask = sign_bit << 1;
5794 mask--;
5796 /* Set sign_extend as any remaining bits. */
5797 sign_extend = ~mask;
5799 /* Pick the lower word and sign-extend it. */
5800 low = INTVAL (value);
5801 low &= mask;
5802 if (low & sign_bit)
5803 low |= sign_extend;
5805 /* Pick the higher word, shifted to the least significant
5806 bits, and sign-extend it. */
5807 high = INTVAL (value);
5808 high >>= bits_per_word - 1;
5809 high >>= 1;
5810 high &= mask;
5811 if (high & sign_bit)
5812 high |= sign_extend;
5814 /* Store the words in the target machine order. */
5815 if (WORDS_BIG_ENDIAN)
5817 *first = GEN_INT (high);
5818 *second = GEN_INT (low);
5820 else
5822 *first = GEN_INT (low);
5823 *second = GEN_INT (high);
5826 else
5828 /* The rule for using CONST_INT for a wider mode
5829 is that we regard the value as signed.
5830 So sign-extend it. */
5831 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
5832 if (WORDS_BIG_ENDIAN)
5834 *first = high;
5835 *second = value;
5837 else
5839 *first = value;
5840 *second = high;
5844 else if (GET_CODE (value) == CONST_WIDE_INT)
5846 /* All of this is scary code and needs to be converted to
5847 properly work with any size integer. */
5848 gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2);
5849 if (WORDS_BIG_ENDIAN)
5851 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5852 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5854 else
5856 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5857 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5860 else if (!CONST_DOUBLE_P (value))
5862 if (WORDS_BIG_ENDIAN)
5864 *first = const0_rtx;
5865 *second = value;
5867 else
5869 *first = value;
5870 *second = const0_rtx;
5873 else if (GET_MODE (value) == VOIDmode
5874 /* This is the old way we did CONST_DOUBLE integers. */
5875 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
5877 /* In an integer, the words are defined as most and least significant.
5878 So order them by the target's convention. */
5879 if (WORDS_BIG_ENDIAN)
5881 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
5882 *second = GEN_INT (CONST_DOUBLE_LOW (value));
5884 else
5886 *first = GEN_INT (CONST_DOUBLE_LOW (value));
5887 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
5890 else
5892 long l[2];
5894 /* Note, this converts the REAL_VALUE_TYPE to the target's
5895 format, splits up the floating point double and outputs
5896 exactly 32 bits of it into each of l[0] and l[1] --
5897 not necessarily BITS_PER_WORD bits. */
5898 REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (value), l);
5900 /* If 32 bits is an entire word for the target, but not for the host,
5901 then sign-extend on the host so that the number will look the same
5902 way on the host that it would on the target. See for instance
5903 simplify_unary_operation. The #if is needed to avoid compiler
5904 warnings. */
5906 #if HOST_BITS_PER_LONG > 32
5907 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
5909 if (l[0] & ((long) 1 << 31))
5910 l[0] |= ((unsigned long) (-1) << 32);
5911 if (l[1] & ((long) 1 << 31))
5912 l[1] |= ((unsigned long) (-1) << 32);
5914 #endif
5916 *first = GEN_INT (l[0]);
5917 *second = GEN_INT (l[1]);
5921 /* Return true if X is a sign_extract or zero_extract from the least
5922 significant bit. */
5924 static bool
5925 lsb_bitfield_op_p (rtx x)
5927 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
5929 machine_mode mode = GET_MODE (XEXP (x, 0));
5930 HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
5931 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
5933 return (pos == (BITS_BIG_ENDIAN ? GET_MODE_PRECISION (mode) - len : 0));
5935 return false;
5938 /* Strip outer address "mutations" from LOC and return a pointer to the
5939 inner value. If OUTER_CODE is nonnull, store the code of the innermost
5940 stripped expression there.
5942 "Mutations" either convert between modes or apply some kind of
5943 extension, truncation or alignment. */
5945 rtx *
5946 strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
5948 for (;;)
5950 enum rtx_code code = GET_CODE (*loc);
5951 if (GET_RTX_CLASS (code) == RTX_UNARY)
5952 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
5953 used to convert between pointer sizes. */
5954 loc = &XEXP (*loc, 0);
5955 else if (lsb_bitfield_op_p (*loc))
5956 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
5957 acts as a combined truncation and extension. */
5958 loc = &XEXP (*loc, 0);
5959 else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
5960 /* (and ... (const_int -X)) is used to align to X bytes. */
5961 loc = &XEXP (*loc, 0);
5962 else if (code == SUBREG
5963 && !OBJECT_P (SUBREG_REG (*loc))
5964 && subreg_lowpart_p (*loc))
5965 /* (subreg (operator ...) ...) inside and is used for mode
5966 conversion too. */
5967 loc = &SUBREG_REG (*loc);
5968 else
5969 return loc;
5970 if (outer_code)
5971 *outer_code = code;
5975 /* Return true if CODE applies some kind of scale. The scaled value is
5976 is the first operand and the scale is the second. */
5978 static bool
5979 binary_scale_code_p (enum rtx_code code)
5981 return (code == MULT
5982 || code == ASHIFT
5983 /* Needed by ARM targets. */
5984 || code == ASHIFTRT
5985 || code == LSHIFTRT
5986 || code == ROTATE
5987 || code == ROTATERT);
5990 /* If *INNER can be interpreted as a base, return a pointer to the inner term
5991 (see address_info). Return null otherwise. */
5993 static rtx *
5994 get_base_term (rtx *inner)
5996 if (GET_CODE (*inner) == LO_SUM)
5997 inner = strip_address_mutations (&XEXP (*inner, 0));
5998 if (REG_P (*inner)
5999 || MEM_P (*inner)
6000 || GET_CODE (*inner) == SUBREG
6001 || GET_CODE (*inner) == SCRATCH)
6002 return inner;
6003 return 0;
6006 /* If *INNER can be interpreted as an index, return a pointer to the inner term
6007 (see address_info). Return null otherwise. */
6009 static rtx *
6010 get_index_term (rtx *inner)
6012 /* At present, only constant scales are allowed. */
6013 if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
6014 inner = strip_address_mutations (&XEXP (*inner, 0));
6015 if (REG_P (*inner)
6016 || MEM_P (*inner)
6017 || GET_CODE (*inner) == SUBREG
6018 || GET_CODE (*inner) == SCRATCH)
6019 return inner;
6020 return 0;
6023 /* Set the segment part of address INFO to LOC, given that INNER is the
6024 unmutated value. */
6026 static void
6027 set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
6029 gcc_assert (!info->segment);
6030 info->segment = loc;
6031 info->segment_term = inner;
6034 /* Set the base part of address INFO to LOC, given that INNER is the
6035 unmutated value. */
6037 static void
6038 set_address_base (struct address_info *info, rtx *loc, rtx *inner)
6040 gcc_assert (!info->base);
6041 info->base = loc;
6042 info->base_term = inner;
6045 /* Set the index part of address INFO to LOC, given that INNER is the
6046 unmutated value. */
6048 static void
6049 set_address_index (struct address_info *info, rtx *loc, rtx *inner)
6051 gcc_assert (!info->index);
6052 info->index = loc;
6053 info->index_term = inner;
6056 /* Set the displacement part of address INFO to LOC, given that INNER
6057 is the constant term. */
6059 static void
6060 set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
6062 gcc_assert (!info->disp);
6063 info->disp = loc;
6064 info->disp_term = inner;
6067 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
6068 rest of INFO accordingly. */
6070 static void
6071 decompose_incdec_address (struct address_info *info)
6073 info->autoinc_p = true;
6075 rtx *base = &XEXP (*info->inner, 0);
6076 set_address_base (info, base, base);
6077 gcc_checking_assert (info->base == info->base_term);
6079 /* These addresses are only valid when the size of the addressed
6080 value is known. */
6081 gcc_checking_assert (info->mode != VOIDmode);
6084 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
6085 of INFO accordingly. */
6087 static void
6088 decompose_automod_address (struct address_info *info)
6090 info->autoinc_p = true;
6092 rtx *base = &XEXP (*info->inner, 0);
6093 set_address_base (info, base, base);
6094 gcc_checking_assert (info->base == info->base_term);
6096 rtx plus = XEXP (*info->inner, 1);
6097 gcc_assert (GET_CODE (plus) == PLUS);
6099 info->base_term2 = &XEXP (plus, 0);
6100 gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
6102 rtx *step = &XEXP (plus, 1);
6103 rtx *inner_step = strip_address_mutations (step);
6104 if (CONSTANT_P (*inner_step))
6105 set_address_disp (info, step, inner_step);
6106 else
6107 set_address_index (info, step, inner_step);
6110 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
6111 values in [PTR, END). Return a pointer to the end of the used array. */
6113 static rtx **
6114 extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
6116 rtx x = *loc;
6117 if (GET_CODE (x) == PLUS)
6119 ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
6120 ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
6122 else
6124 gcc_assert (ptr != end);
6125 *ptr++ = loc;
6127 return ptr;
6130 /* Evaluate the likelihood of X being a base or index value, returning
6131 positive if it is likely to be a base, negative if it is likely to be
6132 an index, and 0 if we can't tell. Make the magnitude of the return
6133 value reflect the amount of confidence we have in the answer.
6135 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
6137 static int
6138 baseness (rtx x, machine_mode mode, addr_space_t as,
6139 enum rtx_code outer_code, enum rtx_code index_code)
6141 /* Believe *_POINTER unless the address shape requires otherwise. */
6142 if (REG_P (x) && REG_POINTER (x))
6143 return 2;
6144 if (MEM_P (x) && MEM_POINTER (x))
6145 return 2;
6147 if (REG_P (x) && HARD_REGISTER_P (x))
6149 /* X is a hard register. If it only fits one of the base
6150 or index classes, choose that interpretation. */
6151 int regno = REGNO (x);
6152 bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
6153 bool index_p = REGNO_OK_FOR_INDEX_P (regno);
6154 if (base_p != index_p)
6155 return base_p ? 1 : -1;
6157 return 0;
6160 /* INFO->INNER describes a normal, non-automodified address.
6161 Fill in the rest of INFO accordingly. */
6163 static void
6164 decompose_normal_address (struct address_info *info)
6166 /* Treat the address as the sum of up to four values. */
6167 rtx *ops[4];
6168 size_t n_ops = extract_plus_operands (info->inner, ops,
6169 ops + ARRAY_SIZE (ops)) - ops;
6171 /* If there is more than one component, any base component is in a PLUS. */
6172 if (n_ops > 1)
6173 info->base_outer_code = PLUS;
6175 /* Try to classify each sum operand now. Leave those that could be
6176 either a base or an index in OPS. */
6177 rtx *inner_ops[4];
6178 size_t out = 0;
6179 for (size_t in = 0; in < n_ops; ++in)
6181 rtx *loc = ops[in];
6182 rtx *inner = strip_address_mutations (loc);
6183 if (CONSTANT_P (*inner))
6184 set_address_disp (info, loc, inner);
6185 else if (GET_CODE (*inner) == UNSPEC)
6186 set_address_segment (info, loc, inner);
6187 else
6189 /* The only other possibilities are a base or an index. */
6190 rtx *base_term = get_base_term (inner);
6191 rtx *index_term = get_index_term (inner);
6192 gcc_assert (base_term || index_term);
6193 if (!base_term)
6194 set_address_index (info, loc, index_term);
6195 else if (!index_term)
6196 set_address_base (info, loc, base_term);
6197 else
6199 gcc_assert (base_term == index_term);
6200 ops[out] = loc;
6201 inner_ops[out] = base_term;
6202 ++out;
6207 /* Classify the remaining OPS members as bases and indexes. */
6208 if (out == 1)
6210 /* If we haven't seen a base or an index yet, assume that this is
6211 the base. If we were confident that another term was the base
6212 or index, treat the remaining operand as the other kind. */
6213 if (!info->base)
6214 set_address_base (info, ops[0], inner_ops[0]);
6215 else
6216 set_address_index (info, ops[0], inner_ops[0]);
6218 else if (out == 2)
6220 /* In the event of a tie, assume the base comes first. */
6221 if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
6222 GET_CODE (*ops[1]))
6223 >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
6224 GET_CODE (*ops[0])))
6226 set_address_base (info, ops[0], inner_ops[0]);
6227 set_address_index (info, ops[1], inner_ops[1]);
6229 else
6231 set_address_base (info, ops[1], inner_ops[1]);
6232 set_address_index (info, ops[0], inner_ops[0]);
6235 else
6236 gcc_assert (out == 0);
6239 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
6240 or VOIDmode if not known. AS is the address space associated with LOC.
6241 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
6243 void
6244 decompose_address (struct address_info *info, rtx *loc, machine_mode mode,
6245 addr_space_t as, enum rtx_code outer_code)
6247 memset (info, 0, sizeof (*info));
6248 info->mode = mode;
6249 info->as = as;
6250 info->addr_outer_code = outer_code;
6251 info->outer = loc;
6252 info->inner = strip_address_mutations (loc, &outer_code);
6253 info->base_outer_code = outer_code;
6254 switch (GET_CODE (*info->inner))
6256 case PRE_DEC:
6257 case PRE_INC:
6258 case POST_DEC:
6259 case POST_INC:
6260 decompose_incdec_address (info);
6261 break;
6263 case PRE_MODIFY:
6264 case POST_MODIFY:
6265 decompose_automod_address (info);
6266 break;
6268 default:
6269 decompose_normal_address (info);
6270 break;
6274 /* Describe address operand LOC in INFO. */
6276 void
6277 decompose_lea_address (struct address_info *info, rtx *loc)
6279 decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
6282 /* Describe the address of MEM X in INFO. */
6284 void
6285 decompose_mem_address (struct address_info *info, rtx x)
6287 gcc_assert (MEM_P (x));
6288 decompose_address (info, &XEXP (x, 0), GET_MODE (x),
6289 MEM_ADDR_SPACE (x), MEM);
6292 /* Update INFO after a change to the address it describes. */
6294 void
6295 update_address (struct address_info *info)
6297 decompose_address (info, info->outer, info->mode, info->as,
6298 info->addr_outer_code);
6301 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
6302 more complicated than that. */
6304 HOST_WIDE_INT
6305 get_index_scale (const struct address_info *info)
6307 rtx index = *info->index;
6308 if (GET_CODE (index) == MULT
6309 && CONST_INT_P (XEXP (index, 1))
6310 && info->index_term == &XEXP (index, 0))
6311 return INTVAL (XEXP (index, 1));
6313 if (GET_CODE (index) == ASHIFT
6314 && CONST_INT_P (XEXP (index, 1))
6315 && info->index_term == &XEXP (index, 0))
6316 return HOST_WIDE_INT_1 << INTVAL (XEXP (index, 1));
6318 if (info->index == info->index_term)
6319 return 1;
6321 return 0;
6324 /* Return the "index code" of INFO, in the form required by
6325 ok_for_base_p_1. */
6327 enum rtx_code
6328 get_index_code (const struct address_info *info)
6330 if (info->index)
6331 return GET_CODE (*info->index);
6333 if (info->disp)
6334 return GET_CODE (*info->disp);
6336 return SCRATCH;
6339 /* Return true if RTL X contains a SYMBOL_REF. */
6341 bool
6342 contains_symbol_ref_p (const_rtx x)
6344 subrtx_iterator::array_type array;
6345 FOR_EACH_SUBRTX (iter, array, x, ALL)
6346 if (SYMBOL_REF_P (*iter))
6347 return true;
6349 return false;
6352 /* Return true if RTL X contains a SYMBOL_REF or LABEL_REF. */
6354 bool
6355 contains_symbolic_reference_p (const_rtx x)
6357 subrtx_iterator::array_type array;
6358 FOR_EACH_SUBRTX (iter, array, x, ALL)
6359 if (SYMBOL_REF_P (*iter) || GET_CODE (*iter) == LABEL_REF)
6360 return true;
6362 return false;
6365 /* Return true if X contains a thread-local symbol. */
6367 bool
6368 tls_referenced_p (const_rtx x)
6370 if (!targetm.have_tls)
6371 return false;
6373 subrtx_iterator::array_type array;
6374 FOR_EACH_SUBRTX (iter, array, x, ALL)
6375 if (GET_CODE (*iter) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*iter) != 0)
6376 return true;
6377 return false;