1 /* Straight-line strength reduction.
2 Copyright (C) 2012-2017 Free Software Foundation, Inc.
3 Contributed by Bill Schmidt, IBM <wschmidt@linux.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* There are many algorithms for performing strength reduction on
22 loops. This is not one of them. IVOPTS handles strength reduction
23 of induction variables just fine. This pass is intended to pick
24 up the crumbs it leaves behind, by considering opportunities for
25 strength reduction along dominator paths.
27 Strength reduction addresses explicit multiplies, and certain
28 multiplies implicit in addressing expressions. It would also be
29 possible to apply strength reduction to divisions and modulos,
30 but such opportunities are relatively uncommon.
32 Strength reduction is also currently restricted to integer operations.
33 If desired, it could be extended to floating-point operations under
34 control of something like -funsafe-math-optimizations. */
38 #include "coretypes.h"
44 #include "tree-pass.h"
47 #include "gimple-pretty-print.h"
48 #include "fold-const.h"
49 #include "gimple-iterator.h"
50 #include "gimplify-me.h"
51 #include "stor-layout.h"
56 #include "tree-ssa-address.h"
57 #include "tree-affine.h"
60 /* Information about a strength reduction candidate. Each statement
61 in the candidate table represents an expression of one of the
62 following forms (the special case of CAND_REF will be described
65 (CAND_MULT) S1: X = (B + i) * S
66 (CAND_ADD) S1: X = B + (i * S)
68 Here X and B are SSA names, i is an integer constant, and S is
69 either an SSA name or a constant. We call B the "base," i the
70 "index", and S the "stride."
72 Any statement S0 that dominates S1 and is of the form:
74 (CAND_MULT) S0: Y = (B + i') * S
75 (CAND_ADD) S0: Y = B + (i' * S)
77 is called a "basis" for S1. In both cases, S1 may be replaced by
79 S1': X = Y + (i - i') * S,
81 where (i - i') * S is folded to the extent possible.
83 All gimple statements are visited in dominator order, and each
84 statement that may contribute to one of the forms of S1 above is
85 given at least one entry in the candidate table. Such statements
86 include addition, pointer addition, subtraction, multiplication,
87 negation, copies, and nontrivial type casts. If a statement may
88 represent more than one expression of the forms of S1 above,
89 multiple "interpretations" are stored in the table and chained
92 * An add of two SSA names may treat either operand as the base.
93 * A multiply of two SSA names, likewise.
94 * A copy or cast may be thought of as either a CAND_MULT with
95 i = 0 and S = 1, or as a CAND_ADD with i = 0 or S = 0.
97 Candidate records are allocated from an obstack. They are addressed
98 both from a hash table keyed on S1, and from a vector of candidate
99 pointers arranged in predominator order.
103 Currently we don't recognize:
108 as a strength reduction opportunity, even though this S1 would
109 also be replaceable by the S1' above. This can be added if it
110 comes up in practice.
112 Strength reduction in addressing
113 --------------------------------
114 There is another kind of candidate known as CAND_REF. A CAND_REF
115 describes a statement containing a memory reference having
116 complex addressing that might benefit from strength reduction.
117 Specifically, we are interested in references for which
118 get_inner_reference returns a base address, offset, and bitpos as
121 base: MEM_REF (T1, C1)
122 offset: MULT_EXPR (PLUS_EXPR (T2, C2), C3)
123 bitpos: C4 * BITS_PER_UNIT
125 Here T1 and T2 are arbitrary trees, and C1, C2, C3, C4 are
126 arbitrary integer constants. Note that C2 may be zero, in which
127 case the offset will be MULT_EXPR (T2, C3).
129 When this pattern is recognized, the original memory reference
130 can be replaced with:
132 MEM_REF (POINTER_PLUS_EXPR (T1, MULT_EXPR (T2, C3)),
135 which distributes the multiply to allow constant folding. When
136 two or more addressing expressions can be represented by MEM_REFs
137 of this form, differing only in the constants C1, C2, and C4,
138 making this substitution produces more efficient addressing during
139 the RTL phases. When there are not at least two expressions with
140 the same values of T1, T2, and C3, there is nothing to be gained
143 Strength reduction of CAND_REFs uses the same infrastructure as
144 that used by CAND_MULTs and CAND_ADDs. We record T1 in the base (B)
145 field, MULT_EXPR (T2, C3) in the stride (S) field, and
146 C1 + (C2 * C3) + C4 in the index (i) field. A basis for a CAND_REF
147 is thus another CAND_REF with the same B and S values. When at
148 least two CAND_REFs are chained together using the basis relation,
149 each of them is replaced as above, resulting in improved code
150 generation for addressing.
152 Conditional candidates
153 ======================
155 Conditional candidates are best illustrated with an example.
156 Consider the code sequence:
159 (2) a_0 = x_0 * 5; MULT (B: x_0; i: 0; S: 5)
161 (3) x_1 = x_0 + 1; ADD (B: x_0, i: 1; S: 1)
162 (4) x_2 = PHI <x_0, x_1>; PHI (B: x_0, i: 0, S: 1)
163 (5) x_3 = x_2 + 1; ADD (B: x_2, i: 1, S: 1)
164 (6) a_1 = x_3 * 5; MULT (B: x_2, i: 1; S: 5)
166 Here strength reduction is complicated by the uncertain value of x_2.
167 A legitimate transformation is:
176 (4) [x_2 = PHI <x_0, x_1>;]
177 (4a) t_2 = PHI <a_0, t_1>;
181 where the bracketed instructions may go dead.
183 To recognize this opportunity, we have to observe that statement (6)
184 has a "hidden basis" (2). The hidden basis is unlike a normal basis
185 in that the statement and the hidden basis have different base SSA
186 names (x_2 and x_0, respectively). The relationship is established
187 when a statement's base name (x_2) is defined by a phi statement (4),
188 each argument of which (x_0, x_1) has an identical "derived base name."
189 If the argument is defined by a candidate (as x_1 is by (3)) that is a
190 CAND_ADD having a stride of 1, the derived base name of the argument is
191 the base name of the candidate (x_0). Otherwise, the argument itself
192 is its derived base name (as is the case with argument x_0).
194 The hidden basis for statement (6) is the nearest dominating candidate
195 whose base name is the derived base name (x_0) of the feeding phi (4),
196 and whose stride is identical to that of the statement. We can then
197 create the new "phi basis" (4a) and feeding adds along incoming arcs (3a),
198 allowing the final replacement of (6) by the strength-reduced (6r).
200 To facilitate this, a new kind of candidate (CAND_PHI) is introduced.
201 A CAND_PHI is not a candidate for replacement, but is maintained in the
202 candidate table to ease discovery of hidden bases. Any phi statement
203 whose arguments share a common derived base name is entered into the
204 table with the derived base name, an (arbitrary) index of zero, and a
205 stride of 1. A statement with a hidden basis can then be detected by
206 simply looking up its feeding phi definition in the candidate table,
207 extracting the derived base name, and searching for a basis in the
208 usual manner after substituting the derived base name.
210 Note that the transformation is only valid when the original phi and
211 the statements that define the phi's arguments are all at the same
212 position in the loop hierarchy. */
215 /* Index into the candidate vector, offset by 1. VECs are zero-based,
216 while cand_idx's are one-based, with zero indicating null. */
217 typedef unsigned cand_idx
;
219 /* The kind of candidate. */
230 /* The candidate statement S1. */
233 /* The base expression B: often an SSA name, but not always. */
239 /* The index constant i. */
242 /* The type of the candidate. This is normally the type of base_expr,
243 but casts may have occurred when combining feeding instructions.
244 A candidate can only be a basis for candidates of the same final type.
245 (For CAND_REFs, this is the type to be used for operand 1 of the
246 replacement MEM_REF.) */
249 /* The type to be used to interpret the stride field when the stride
250 is not a constant. Normally the same as the type of the recorded
251 stride, but when the stride has been cast we need to maintain that
252 knowledge in order to make legal substitutions without losing
253 precision. When the stride is a constant, this will be sizetype. */
256 /* The kind of candidate (CAND_MULT, etc.). */
259 /* Index of this candidate in the candidate vector. */
262 /* Index of the next candidate record for the same statement.
263 A statement may be useful in more than one way (e.g., due to
264 commutativity). So we can have multiple "interpretations"
266 cand_idx next_interp
;
268 /* Index of the basis statement S0, if any, in the candidate vector. */
271 /* First candidate for which this candidate is a basis, if one exists. */
274 /* Next candidate having the same basis as this one. */
277 /* If this is a conditional candidate, the CAND_PHI candidate
278 that defines the base SSA name B. */
281 /* Savings that can be expected from eliminating dead code if this
282 candidate is replaced. */
286 typedef struct slsr_cand_d slsr_cand
, *slsr_cand_t
;
287 typedef const struct slsr_cand_d
*const_slsr_cand_t
;
289 /* Pointers to candidates are chained together as part of a mapping
290 from base expressions to the candidates that use them. */
294 /* Base expression for the chain of candidates: often, but not
295 always, an SSA name. */
298 /* Pointer to a candidate. */
302 struct cand_chain_d
*next
;
306 typedef struct cand_chain_d cand_chain
, *cand_chain_t
;
307 typedef const struct cand_chain_d
*const_cand_chain_t
;
309 /* Information about a unique "increment" associated with candidates
310 having an SSA name for a stride. An increment is the difference
311 between the index of the candidate and the index of its basis,
312 i.e., (i - i') as discussed in the module commentary.
314 When we are not going to generate address arithmetic we treat
315 increments that differ only in sign as the same, allowing sharing
316 of the cost of initializers. The absolute value of the increment
317 is stored in the incr_info. */
321 /* The increment that relates a candidate to its basis. */
324 /* How many times the increment occurs in the candidate tree. */
327 /* Cost of replacing candidates using this increment. Negative and
328 zero costs indicate replacement should be performed. */
331 /* If this increment is profitable but is not -1, 0, or 1, it requires
332 an initializer T_0 = stride * incr to be found or introduced in the
333 nearest common dominator of all candidates. This field holds T_0
334 for subsequent use. */
337 /* If the initializer was found to already exist, this is the block
338 where it was found. */
342 typedef struct incr_info_d incr_info
, *incr_info_t
;
344 /* Candidates are maintained in a vector. If candidate X dominates
345 candidate Y, then X appears before Y in the vector; but the
346 converse does not necessarily hold. */
347 static vec
<slsr_cand_t
> cand_vec
;
361 enum phi_adjust_status
367 enum count_phis_status
373 /* Pointer map embodying a mapping from statements to candidates. */
374 static hash_map
<gimple
*, slsr_cand_t
> *stmt_cand_map
;
376 /* Obstack for candidates. */
377 static struct obstack cand_obstack
;
379 /* Obstack for candidate chains. */
380 static struct obstack chain_obstack
;
382 /* An array INCR_VEC of incr_infos is used during analysis of related
383 candidates having an SSA name for a stride. INCR_VEC_LEN describes
384 its current length. MAX_INCR_VEC_LEN is used to avoid costly
385 pathological cases. */
386 static incr_info_t incr_vec
;
387 static unsigned incr_vec_len
;
388 const int MAX_INCR_VEC_LEN
= 16;
390 /* For a chain of candidates with unknown stride, indicates whether or not
391 we must generate pointer arithmetic when replacing statements. */
392 static bool address_arithmetic_p
;
394 /* Forward function declarations. */
395 static slsr_cand_t
base_cand_from_table (tree
);
396 static tree
introduce_cast_before_cand (slsr_cand_t
, tree
, tree
);
397 static bool legal_cast_p_1 (tree
, tree
);
399 /* Produce a pointer to the IDX'th candidate in the candidate vector. */
402 lookup_cand (cand_idx idx
)
404 return cand_vec
[idx
- 1];
407 /* Helper for hashing a candidate chain header. */
409 struct cand_chain_hasher
: nofree_ptr_hash
<cand_chain
>
411 static inline hashval_t
hash (const cand_chain
*);
412 static inline bool equal (const cand_chain
*, const cand_chain
*);
416 cand_chain_hasher::hash (const cand_chain
*p
)
418 tree base_expr
= p
->base_expr
;
419 return iterative_hash_expr (base_expr
, 0);
423 cand_chain_hasher::equal (const cand_chain
*chain1
, const cand_chain
*chain2
)
425 return operand_equal_p (chain1
->base_expr
, chain2
->base_expr
, 0);
428 /* Hash table embodying a mapping from base exprs to chains of candidates. */
429 static hash_table
<cand_chain_hasher
> *base_cand_map
;
431 /* Pointer map used by tree_to_aff_combination_expand. */
432 static hash_map
<tree
, name_expansion
*> *name_expansions
;
433 /* Pointer map embodying a mapping from bases to alternative bases. */
434 static hash_map
<tree
, tree
> *alt_base_map
;
436 /* Given BASE, use the tree affine combiniation facilities to
437 find the underlying tree expression for BASE, with any
438 immediate offset excluded.
440 N.B. we should eliminate this backtracking with better forward
441 analysis in a future release. */
444 get_alternative_base (tree base
)
446 tree
*result
= alt_base_map
->get (base
);
453 tree_to_aff_combination_expand (base
, TREE_TYPE (base
),
454 &aff
, &name_expansions
);
456 expr
= aff_combination_to_tree (&aff
);
458 gcc_assert (!alt_base_map
->put (base
, base
== expr
? NULL
: expr
));
460 return expr
== base
? NULL
: expr
;
466 /* Look in the candidate table for a CAND_PHI that defines BASE and
467 return it if found; otherwise return NULL. */
470 find_phi_def (tree base
)
474 if (TREE_CODE (base
) != SSA_NAME
)
477 c
= base_cand_from_table (base
);
479 if (!c
|| c
->kind
!= CAND_PHI
)
485 /* Helper routine for find_basis_for_candidate. May be called twice:
486 once for the candidate's base expr, and optionally again either for
487 the candidate's phi definition or for a CAND_REF's alternative base
491 find_basis_for_base_expr (slsr_cand_t c
, tree base_expr
)
493 cand_chain mapping_key
;
495 slsr_cand_t basis
= NULL
;
497 // Limit potential of N^2 behavior for long candidate chains.
499 int max_iters
= PARAM_VALUE (PARAM_MAX_SLSR_CANDIDATE_SCAN
);
501 mapping_key
.base_expr
= base_expr
;
502 chain
= base_cand_map
->find (&mapping_key
);
504 for (; chain
&& iters
< max_iters
; chain
= chain
->next
, ++iters
)
506 slsr_cand_t one_basis
= chain
->cand
;
508 if (one_basis
->kind
!= c
->kind
509 || one_basis
->cand_stmt
== c
->cand_stmt
510 || !operand_equal_p (one_basis
->stride
, c
->stride
, 0)
511 || !types_compatible_p (one_basis
->cand_type
, c
->cand_type
)
512 || !types_compatible_p (one_basis
->stride_type
, c
->stride_type
)
513 || !dominated_by_p (CDI_DOMINATORS
,
514 gimple_bb (c
->cand_stmt
),
515 gimple_bb (one_basis
->cand_stmt
)))
518 if (!basis
|| basis
->cand_num
< one_basis
->cand_num
)
525 /* Use the base expr from candidate C to look for possible candidates
526 that can serve as a basis for C. Each potential basis must also
527 appear in a block that dominates the candidate statement and have
528 the same stride and type. If more than one possible basis exists,
529 the one with highest index in the vector is chosen; this will be
530 the most immediately dominating basis. */
533 find_basis_for_candidate (slsr_cand_t c
)
535 slsr_cand_t basis
= find_basis_for_base_expr (c
, c
->base_expr
);
537 /* If a candidate doesn't have a basis using its base expression,
538 it may have a basis hidden by one or more intervening phis. */
539 if (!basis
&& c
->def_phi
)
541 basic_block basis_bb
, phi_bb
;
542 slsr_cand_t phi_cand
= lookup_cand (c
->def_phi
);
543 basis
= find_basis_for_base_expr (c
, phi_cand
->base_expr
);
547 /* A hidden basis must dominate the phi-definition of the
548 candidate's base name. */
549 phi_bb
= gimple_bb (phi_cand
->cand_stmt
);
550 basis_bb
= gimple_bb (basis
->cand_stmt
);
552 if (phi_bb
== basis_bb
553 || !dominated_by_p (CDI_DOMINATORS
, phi_bb
, basis_bb
))
559 /* If we found a hidden basis, estimate additional dead-code
560 savings if the phi and its feeding statements can be removed. */
561 if (basis
&& has_single_use (gimple_phi_result (phi_cand
->cand_stmt
)))
562 c
->dead_savings
+= phi_cand
->dead_savings
;
566 if (flag_expensive_optimizations
&& !basis
&& c
->kind
== CAND_REF
)
568 tree alt_base_expr
= get_alternative_base (c
->base_expr
);
570 basis
= find_basis_for_base_expr (c
, alt_base_expr
);
575 c
->sibling
= basis
->dependent
;
576 basis
->dependent
= c
->cand_num
;
577 return basis
->cand_num
;
583 /* Record a mapping from BASE to C, indicating that C may potentially serve
584 as a basis using that base expression. BASE may be the same as
585 C->BASE_EXPR; alternatively BASE can be a different tree that share the
586 underlining expression of C->BASE_EXPR. */
589 record_potential_basis (slsr_cand_t c
, tree base
)
596 node
= (cand_chain_t
) obstack_alloc (&chain_obstack
, sizeof (cand_chain
));
597 node
->base_expr
= base
;
600 slot
= base_cand_map
->find_slot (node
, INSERT
);
604 cand_chain_t head
= (cand_chain_t
) (*slot
);
605 node
->next
= head
->next
;
612 /* Allocate storage for a new candidate and initialize its fields.
613 Attempt to find a basis for the candidate.
615 For CAND_REF, an alternative base may also be recorded and used
616 to find a basis. This helps cases where the expression hidden
617 behind BASE (which is usually an SSA_NAME) has immediate offset,
621 a2[i + 20][j] = 2; */
624 alloc_cand_and_find_basis (enum cand_kind kind
, gimple
*gs
, tree base
,
625 const widest_int
&index
, tree stride
, tree ctype
,
626 tree stype
, unsigned savings
)
628 slsr_cand_t c
= (slsr_cand_t
) obstack_alloc (&cand_obstack
,
634 c
->cand_type
= ctype
;
635 c
->stride_type
= stype
;
637 c
->cand_num
= cand_vec
.length () + 1;
641 c
->def_phi
= kind
== CAND_MULT
? find_phi_def (base
) : 0;
642 c
->dead_savings
= savings
;
644 cand_vec
.safe_push (c
);
646 if (kind
== CAND_PHI
)
649 c
->basis
= find_basis_for_candidate (c
);
651 record_potential_basis (c
, base
);
652 if (flag_expensive_optimizations
&& kind
== CAND_REF
)
654 tree alt_base
= get_alternative_base (base
);
656 record_potential_basis (c
, alt_base
);
662 /* Determine the target cost of statement GS when compiling according
666 stmt_cost (gimple
*gs
, bool speed
)
668 tree lhs
, rhs1
, rhs2
;
669 machine_mode lhs_mode
;
671 gcc_assert (is_gimple_assign (gs
));
672 lhs
= gimple_assign_lhs (gs
);
673 rhs1
= gimple_assign_rhs1 (gs
);
674 lhs_mode
= TYPE_MODE (TREE_TYPE (lhs
));
676 switch (gimple_assign_rhs_code (gs
))
679 rhs2
= gimple_assign_rhs2 (gs
);
681 if (tree_fits_shwi_p (rhs2
))
682 return mult_by_coeff_cost (tree_to_shwi (rhs2
), lhs_mode
, speed
);
684 gcc_assert (TREE_CODE (rhs1
) != INTEGER_CST
);
685 return mul_cost (speed
, lhs_mode
);
688 case POINTER_PLUS_EXPR
:
690 return add_cost (speed
, lhs_mode
);
693 return neg_cost (speed
, lhs_mode
);
696 return convert_cost (lhs_mode
, TYPE_MODE (TREE_TYPE (rhs1
)), speed
);
698 /* Note that we don't assign costs to copies that in most cases
711 /* Look up the defining statement for BASE_IN and return a pointer
712 to its candidate in the candidate table, if any; otherwise NULL.
713 Only CAND_ADD and CAND_MULT candidates are returned. */
716 base_cand_from_table (tree base_in
)
720 gimple
*def
= SSA_NAME_DEF_STMT (base_in
);
722 return (slsr_cand_t
) NULL
;
724 result
= stmt_cand_map
->get (def
);
726 if (result
&& (*result
)->kind
!= CAND_REF
)
729 return (slsr_cand_t
) NULL
;
732 /* Add an entry to the statement-to-candidate mapping. */
735 add_cand_for_stmt (gimple
*gs
, slsr_cand_t c
)
737 gcc_assert (!stmt_cand_map
->put (gs
, c
));
740 /* Given PHI which contains a phi statement, determine whether it
741 satisfies all the requirements of a phi candidate. If so, create
742 a candidate. Note that a CAND_PHI never has a basis itself, but
743 is used to help find a basis for subsequent candidates. */
746 slsr_process_phi (gphi
*phi
, bool speed
)
749 tree arg0_base
= NULL_TREE
, base_type
;
751 struct loop
*cand_loop
= gimple_bb (phi
)->loop_father
;
752 unsigned savings
= 0;
754 /* A CAND_PHI requires each of its arguments to have the same
755 derived base name. (See the module header commentary for a
756 definition of derived base names.) Furthermore, all feeding
757 definitions must be in the same position in the loop hierarchy
760 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
762 slsr_cand_t arg_cand
;
763 tree arg
= gimple_phi_arg_def (phi
, i
);
764 tree derived_base_name
= NULL_TREE
;
765 gimple
*arg_stmt
= NULL
;
766 basic_block arg_bb
= NULL
;
768 if (TREE_CODE (arg
) != SSA_NAME
)
771 arg_cand
= base_cand_from_table (arg
);
775 while (arg_cand
->kind
!= CAND_ADD
&& arg_cand
->kind
!= CAND_PHI
)
777 if (!arg_cand
->next_interp
)
780 arg_cand
= lookup_cand (arg_cand
->next_interp
);
783 if (!integer_onep (arg_cand
->stride
))
786 derived_base_name
= arg_cand
->base_expr
;
787 arg_stmt
= arg_cand
->cand_stmt
;
788 arg_bb
= gimple_bb (arg_stmt
);
790 /* Gather potential dead code savings if the phi statement
791 can be removed later on. */
792 if (has_single_use (arg
))
794 if (gimple_code (arg_stmt
) == GIMPLE_PHI
)
795 savings
+= arg_cand
->dead_savings
;
797 savings
+= stmt_cost (arg_stmt
, speed
);
800 else if (SSA_NAME_IS_DEFAULT_DEF (arg
))
802 derived_base_name
= arg
;
803 arg_bb
= single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
806 if (!arg_bb
|| arg_bb
->loop_father
!= cand_loop
)
810 arg0_base
= derived_base_name
;
811 else if (!operand_equal_p (derived_base_name
, arg0_base
, 0))
815 /* Create the candidate. "alloc_cand_and_find_basis" is named
816 misleadingly for this case, as no basis will be sought for a
818 base_type
= TREE_TYPE (arg0_base
);
820 c
= alloc_cand_and_find_basis (CAND_PHI
, phi
, arg0_base
,
821 0, integer_one_node
, base_type
,
824 /* Add the candidate to the statement-candidate mapping. */
825 add_cand_for_stmt (phi
, c
);
828 /* Given PBASE which is a pointer to tree, look up the defining
829 statement for it and check whether the candidate is in the
832 X = B + (1 * S), S is integer constant
833 X = B + (i * S), S is integer one
835 If so, set PBASE to the candidate's base_expr and return double
837 Otherwise, just return double int zero. */
840 backtrace_base_for_ref (tree
*pbase
)
842 tree base_in
= *pbase
;
843 slsr_cand_t base_cand
;
845 STRIP_NOPS (base_in
);
847 /* Strip off widening conversion(s) to handle cases where
848 e.g. 'B' is widened from an 'int' in order to calculate
850 if (CONVERT_EXPR_P (base_in
)
851 && legal_cast_p_1 (TREE_TYPE (base_in
),
852 TREE_TYPE (TREE_OPERAND (base_in
, 0))))
853 base_in
= get_unwidened (base_in
, NULL_TREE
);
855 if (TREE_CODE (base_in
) != SSA_NAME
)
858 base_cand
= base_cand_from_table (base_in
);
860 while (base_cand
&& base_cand
->kind
!= CAND_PHI
)
862 if (base_cand
->kind
== CAND_ADD
863 && base_cand
->index
== 1
864 && TREE_CODE (base_cand
->stride
) == INTEGER_CST
)
866 /* X = B + (1 * S), S is integer constant. */
867 *pbase
= base_cand
->base_expr
;
868 return wi::to_widest (base_cand
->stride
);
870 else if (base_cand
->kind
== CAND_ADD
871 && TREE_CODE (base_cand
->stride
) == INTEGER_CST
872 && integer_onep (base_cand
->stride
))
874 /* X = B + (i * S), S is integer one. */
875 *pbase
= base_cand
->base_expr
;
876 return base_cand
->index
;
879 if (base_cand
->next_interp
)
880 base_cand
= lookup_cand (base_cand
->next_interp
);
888 /* Look for the following pattern:
890 *PBASE: MEM_REF (T1, C1)
892 *POFFSET: MULT_EXPR (T2, C3) [C2 is zero]
894 MULT_EXPR (PLUS_EXPR (T2, C2), C3)
896 MULT_EXPR (MINUS_EXPR (T2, -C2), C3)
898 *PINDEX: C4 * BITS_PER_UNIT
900 If not present, leave the input values unchanged and return FALSE.
901 Otherwise, modify the input values as follows and return TRUE:
904 *POFFSET: MULT_EXPR (T2, C3)
905 *PINDEX: C1 + (C2 * C3) + C4
907 When T2 is recorded by a CAND_ADD in the form of (T2' + C5), it
908 will be further restructured to:
911 *POFFSET: MULT_EXPR (T2', C3)
912 *PINDEX: C1 + (C2 * C3) + C4 + (C5 * C3) */
915 restructure_reference (tree
*pbase
, tree
*poffset
, widest_int
*pindex
,
918 tree base
= *pbase
, offset
= *poffset
;
919 widest_int index
= *pindex
;
920 tree mult_op0
, t1
, t2
, type
;
921 widest_int c1
, c2
, c3
, c4
, c5
;
925 || TREE_CODE (base
) != MEM_REF
926 || TREE_CODE (offset
) != MULT_EXPR
927 || TREE_CODE (TREE_OPERAND (offset
, 1)) != INTEGER_CST
928 || wi::umod_floor (index
, BITS_PER_UNIT
) != 0)
931 t1
= TREE_OPERAND (base
, 0);
932 c1
= widest_int::from (mem_ref_offset (base
), SIGNED
);
933 type
= TREE_TYPE (TREE_OPERAND (base
, 1));
935 mult_op0
= TREE_OPERAND (offset
, 0);
936 c3
= wi::to_widest (TREE_OPERAND (offset
, 1));
938 if (TREE_CODE (mult_op0
) == PLUS_EXPR
)
940 if (TREE_CODE (TREE_OPERAND (mult_op0
, 1)) == INTEGER_CST
)
942 t2
= TREE_OPERAND (mult_op0
, 0);
943 c2
= wi::to_widest (TREE_OPERAND (mult_op0
, 1));
948 else if (TREE_CODE (mult_op0
) == MINUS_EXPR
)
950 if (TREE_CODE (TREE_OPERAND (mult_op0
, 1)) == INTEGER_CST
)
952 t2
= TREE_OPERAND (mult_op0
, 0);
953 c2
= -wi::to_widest (TREE_OPERAND (mult_op0
, 1));
964 c4
= index
>> LOG2_BITS_PER_UNIT
;
965 c5
= backtrace_base_for_ref (&t2
);
968 *poffset
= fold_build2 (MULT_EXPR
, sizetype
, fold_convert (sizetype
, t2
),
969 wide_int_to_tree (sizetype
, c3
));
970 *pindex
= c1
+ c2
* c3
+ c4
+ c5
* c3
;
976 /* Given GS which contains a data reference, create a CAND_REF entry in
977 the candidate table and attempt to find a basis. */
980 slsr_process_ref (gimple
*gs
)
982 tree ref_expr
, base
, offset
, type
;
983 HOST_WIDE_INT bitsize
, bitpos
;
985 int unsignedp
, reversep
, volatilep
;
988 if (gimple_vdef (gs
))
989 ref_expr
= gimple_assign_lhs (gs
);
991 ref_expr
= gimple_assign_rhs1 (gs
);
993 if (!handled_component_p (ref_expr
)
994 || TREE_CODE (ref_expr
) == BIT_FIELD_REF
995 || (TREE_CODE (ref_expr
) == COMPONENT_REF
996 && DECL_BIT_FIELD (TREE_OPERAND (ref_expr
, 1))))
999 base
= get_inner_reference (ref_expr
, &bitsize
, &bitpos
, &offset
, &mode
,
1000 &unsignedp
, &reversep
, &volatilep
);
1003 widest_int index
= bitpos
;
1005 if (!restructure_reference (&base
, &offset
, &index
, &type
))
1008 c
= alloc_cand_and_find_basis (CAND_REF
, gs
, base
, index
, offset
,
1011 /* Add the candidate to the statement-candidate mapping. */
1012 add_cand_for_stmt (gs
, c
);
1015 /* Create a candidate entry for a statement GS, where GS multiplies
1016 two SSA names BASE_IN and STRIDE_IN. Propagate any known information
1017 about the two SSA names into the new candidate. Return the new
1021 create_mul_ssa_cand (gimple
*gs
, tree base_in
, tree stride_in
, bool speed
)
1023 tree base
= NULL_TREE
, stride
= NULL_TREE
, ctype
= NULL_TREE
;
1024 tree stype
= NULL_TREE
;
1026 unsigned savings
= 0;
1028 slsr_cand_t base_cand
= base_cand_from_table (base_in
);
1030 /* Look at all interpretations of the base candidate, if necessary,
1031 to find information to propagate into this candidate. */
1032 while (base_cand
&& !base
&& base_cand
->kind
!= CAND_PHI
)
1035 if (base_cand
->kind
== CAND_MULT
&& integer_onep (base_cand
->stride
))
1041 base
= base_cand
->base_expr
;
1042 index
= base_cand
->index
;
1044 ctype
= base_cand
->cand_type
;
1045 stype
= TREE_TYPE (stride_in
);
1046 if (has_single_use (base_in
))
1047 savings
= (base_cand
->dead_savings
1048 + stmt_cost (base_cand
->cand_stmt
, speed
));
1050 else if (base_cand
->kind
== CAND_ADD
1051 && TREE_CODE (base_cand
->stride
) == INTEGER_CST
)
1053 /* Y = B + (i' * S), S constant
1055 ============================
1056 X = B + ((i' * S) * Z) */
1057 base
= base_cand
->base_expr
;
1058 index
= base_cand
->index
* wi::to_widest (base_cand
->stride
);
1060 ctype
= base_cand
->cand_type
;
1061 stype
= TREE_TYPE (stride_in
);
1062 if (has_single_use (base_in
))
1063 savings
= (base_cand
->dead_savings
1064 + stmt_cost (base_cand
->cand_stmt
, speed
));
1067 if (base_cand
->next_interp
)
1068 base_cand
= lookup_cand (base_cand
->next_interp
);
1075 /* No interpretations had anything useful to propagate, so
1076 produce X = (Y + 0) * Z. */
1080 ctype
= TREE_TYPE (base_in
);
1081 stype
= TREE_TYPE (stride_in
);
1084 c
= alloc_cand_and_find_basis (CAND_MULT
, gs
, base
, index
, stride
,
1085 ctype
, stype
, savings
);
1089 /* Create a candidate entry for a statement GS, where GS multiplies
1090 SSA name BASE_IN by constant STRIDE_IN. Propagate any known
1091 information about BASE_IN into the new candidate. Return the new
1095 create_mul_imm_cand (gimple
*gs
, tree base_in
, tree stride_in
, bool speed
)
1097 tree base
= NULL_TREE
, stride
= NULL_TREE
, ctype
= NULL_TREE
;
1098 widest_int index
, temp
;
1099 unsigned savings
= 0;
1101 slsr_cand_t base_cand
= base_cand_from_table (base_in
);
1103 /* Look at all interpretations of the base candidate, if necessary,
1104 to find information to propagate into this candidate. */
1105 while (base_cand
&& !base
&& base_cand
->kind
!= CAND_PHI
)
1107 if (base_cand
->kind
== CAND_MULT
1108 && TREE_CODE (base_cand
->stride
) == INTEGER_CST
)
1110 /* Y = (B + i') * S, S constant
1112 ============================
1113 X = (B + i') * (S * c) */
1114 temp
= wi::to_widest (base_cand
->stride
) * wi::to_widest (stride_in
);
1115 if (wi::fits_to_tree_p (temp
, TREE_TYPE (stride_in
)))
1117 base
= base_cand
->base_expr
;
1118 index
= base_cand
->index
;
1119 stride
= wide_int_to_tree (TREE_TYPE (stride_in
), temp
);
1120 ctype
= base_cand
->cand_type
;
1121 if (has_single_use (base_in
))
1122 savings
= (base_cand
->dead_savings
1123 + stmt_cost (base_cand
->cand_stmt
, speed
));
1126 else if (base_cand
->kind
== CAND_ADD
&& integer_onep (base_cand
->stride
))
1130 ===========================
1132 base
= base_cand
->base_expr
;
1133 index
= base_cand
->index
;
1135 ctype
= base_cand
->cand_type
;
1136 if (has_single_use (base_in
))
1137 savings
= (base_cand
->dead_savings
1138 + stmt_cost (base_cand
->cand_stmt
, speed
));
1140 else if (base_cand
->kind
== CAND_ADD
1141 && base_cand
->index
== 1
1142 && TREE_CODE (base_cand
->stride
) == INTEGER_CST
)
1144 /* Y = B + (1 * S), S constant
1146 ===========================
1148 base
= base_cand
->base_expr
;
1149 index
= wi::to_widest (base_cand
->stride
);
1151 ctype
= base_cand
->cand_type
;
1152 if (has_single_use (base_in
))
1153 savings
= (base_cand
->dead_savings
1154 + stmt_cost (base_cand
->cand_stmt
, speed
));
1157 if (base_cand
->next_interp
)
1158 base_cand
= lookup_cand (base_cand
->next_interp
);
1165 /* No interpretations had anything useful to propagate, so
1166 produce X = (Y + 0) * c. */
1170 ctype
= TREE_TYPE (base_in
);
1173 c
= alloc_cand_and_find_basis (CAND_MULT
, gs
, base
, index
, stride
,
1174 ctype
, sizetype
, savings
);
1178 /* Given GS which is a multiply of scalar integers, make an appropriate
1179 entry in the candidate table. If this is a multiply of two SSA names,
1180 create two CAND_MULT interpretations and attempt to find a basis for
1181 each of them. Otherwise, create a single CAND_MULT and attempt to
1185 slsr_process_mul (gimple
*gs
, tree rhs1
, tree rhs2
, bool speed
)
1189 /* If this is a multiply of an SSA name with itself, it is highly
1190 unlikely that we will get a strength reduction opportunity, so
1191 don't record it as a candidate. This simplifies the logic for
1192 finding a basis, so if this is removed that must be considered. */
1196 if (TREE_CODE (rhs2
) == SSA_NAME
)
1198 /* Record an interpretation of this statement in the candidate table
1199 assuming RHS1 is the base expression and RHS2 is the stride. */
1200 c
= create_mul_ssa_cand (gs
, rhs1
, rhs2
, speed
);
1202 /* Add the first interpretation to the statement-candidate mapping. */
1203 add_cand_for_stmt (gs
, c
);
1205 /* Record another interpretation of this statement assuming RHS1
1206 is the stride and RHS2 is the base expression. */
1207 c2
= create_mul_ssa_cand (gs
, rhs2
, rhs1
, speed
);
1208 c
->next_interp
= c2
->cand_num
;
1212 /* Record an interpretation for the multiply-immediate. */
1213 c
= create_mul_imm_cand (gs
, rhs1
, rhs2
, speed
);
1215 /* Add the interpretation to the statement-candidate mapping. */
1216 add_cand_for_stmt (gs
, c
);
1220 /* Create a candidate entry for a statement GS, where GS adds two
1221 SSA names BASE_IN and ADDEND_IN if SUBTRACT_P is false, and
1222 subtracts ADDEND_IN from BASE_IN otherwise. Propagate any known
1223 information about the two SSA names into the new candidate.
1224 Return the new candidate. */
1227 create_add_ssa_cand (gimple
*gs
, tree base_in
, tree addend_in
,
1228 bool subtract_p
, bool speed
)
1230 tree base
= NULL_TREE
, stride
= NULL_TREE
, ctype
= NULL_TREE
;
1231 tree stype
= NULL_TREE
;
1233 unsigned savings
= 0;
1235 slsr_cand_t base_cand
= base_cand_from_table (base_in
);
1236 slsr_cand_t addend_cand
= base_cand_from_table (addend_in
);
1238 /* The most useful transformation is a multiply-immediate feeding
1239 an add or subtract. Look for that first. */
1240 while (addend_cand
&& !base
&& addend_cand
->kind
!= CAND_PHI
)
1242 if (addend_cand
->kind
== CAND_MULT
1243 && addend_cand
->index
== 0
1244 && TREE_CODE (addend_cand
->stride
) == INTEGER_CST
)
1246 /* Z = (B + 0) * S, S constant
1248 ===========================
1249 X = Y + ((+/-1 * S) * B) */
1251 index
= wi::to_widest (addend_cand
->stride
);
1254 stride
= addend_cand
->base_expr
;
1255 ctype
= TREE_TYPE (base_in
);
1256 stype
= addend_cand
->cand_type
;
1257 if (has_single_use (addend_in
))
1258 savings
= (addend_cand
->dead_savings
1259 + stmt_cost (addend_cand
->cand_stmt
, speed
));
1262 if (addend_cand
->next_interp
)
1263 addend_cand
= lookup_cand (addend_cand
->next_interp
);
1268 while (base_cand
&& !base
&& base_cand
->kind
!= CAND_PHI
)
1270 if (base_cand
->kind
== CAND_ADD
1271 && (base_cand
->index
== 0
1272 || operand_equal_p (base_cand
->stride
,
1273 integer_zero_node
, 0)))
1275 /* Y = B + (i' * S), i' * S = 0
1277 ============================
1278 X = B + (+/-1 * Z) */
1279 base
= base_cand
->base_expr
;
1280 index
= subtract_p
? -1 : 1;
1282 ctype
= base_cand
->cand_type
;
1283 stype
= (TREE_CODE (addend_in
) == INTEGER_CST
? sizetype
1284 : TREE_TYPE (addend_in
));
1285 if (has_single_use (base_in
))
1286 savings
= (base_cand
->dead_savings
1287 + stmt_cost (base_cand
->cand_stmt
, speed
));
1289 else if (subtract_p
)
1291 slsr_cand_t subtrahend_cand
= base_cand_from_table (addend_in
);
1293 while (subtrahend_cand
&& !base
&& subtrahend_cand
->kind
!= CAND_PHI
)
1295 if (subtrahend_cand
->kind
== CAND_MULT
1296 && subtrahend_cand
->index
== 0
1297 && TREE_CODE (subtrahend_cand
->stride
) == INTEGER_CST
)
1299 /* Z = (B + 0) * S, S constant
1301 ===========================
1302 Value: X = Y + ((-1 * S) * B) */
1304 index
= wi::to_widest (subtrahend_cand
->stride
);
1306 stride
= subtrahend_cand
->base_expr
;
1307 ctype
= TREE_TYPE (base_in
);
1308 stype
= subtrahend_cand
->cand_type
;
1309 if (has_single_use (addend_in
))
1310 savings
= (subtrahend_cand
->dead_savings
1311 + stmt_cost (subtrahend_cand
->cand_stmt
, speed
));
1314 if (subtrahend_cand
->next_interp
)
1315 subtrahend_cand
= lookup_cand (subtrahend_cand
->next_interp
);
1317 subtrahend_cand
= NULL
;
1321 if (base_cand
->next_interp
)
1322 base_cand
= lookup_cand (base_cand
->next_interp
);
1329 /* No interpretations had anything useful to propagate, so
1330 produce X = Y + (1 * Z). */
1332 index
= subtract_p
? -1 : 1;
1334 ctype
= TREE_TYPE (base_in
);
1335 stype
= (TREE_CODE (addend_in
) == INTEGER_CST
? sizetype
1336 : TREE_TYPE (addend_in
));
1339 c
= alloc_cand_and_find_basis (CAND_ADD
, gs
, base
, index
, stride
,
1340 ctype
, stype
, savings
);
1344 /* Create a candidate entry for a statement GS, where GS adds SSA
1345 name BASE_IN to constant INDEX_IN. Propagate any known information
1346 about BASE_IN into the new candidate. Return the new candidate. */
1349 create_add_imm_cand (gimple
*gs
, tree base_in
, const widest_int
&index_in
,
1352 enum cand_kind kind
= CAND_ADD
;
1353 tree base
= NULL_TREE
, stride
= NULL_TREE
, ctype
= NULL_TREE
;
1354 tree stype
= NULL_TREE
;
1355 widest_int index
, multiple
;
1356 unsigned savings
= 0;
1358 slsr_cand_t base_cand
= base_cand_from_table (base_in
);
1360 while (base_cand
&& !base
&& base_cand
->kind
!= CAND_PHI
)
1362 signop sign
= TYPE_SIGN (TREE_TYPE (base_cand
->stride
));
1364 if (TREE_CODE (base_cand
->stride
) == INTEGER_CST
1365 && wi::multiple_of_p (index_in
, wi::to_widest (base_cand
->stride
),
1368 /* Y = (B + i') * S, S constant, c = kS for some integer k
1370 ============================
1371 X = (B + (i'+ k)) * S
1373 Y = B + (i' * S), S constant, c = kS for some integer k
1375 ============================
1376 X = (B + (i'+ k)) * S */
1377 kind
= base_cand
->kind
;
1378 base
= base_cand
->base_expr
;
1379 index
= base_cand
->index
+ multiple
;
1380 stride
= base_cand
->stride
;
1381 ctype
= base_cand
->cand_type
;
1382 stype
= base_cand
->stride_type
;
1383 if (has_single_use (base_in
))
1384 savings
= (base_cand
->dead_savings
1385 + stmt_cost (base_cand
->cand_stmt
, speed
));
1388 if (base_cand
->next_interp
)
1389 base_cand
= lookup_cand (base_cand
->next_interp
);
1396 /* No interpretations had anything useful to propagate, so
1397 produce X = Y + (c * 1). */
1401 stride
= integer_one_node
;
1402 ctype
= TREE_TYPE (base_in
);
1406 c
= alloc_cand_and_find_basis (kind
, gs
, base
, index
, stride
,
1407 ctype
, stype
, savings
);
1411 /* Given GS which is an add or subtract of scalar integers or pointers,
1412 make at least one appropriate entry in the candidate table. */
1415 slsr_process_add (gimple
*gs
, tree rhs1
, tree rhs2
, bool speed
)
1417 bool subtract_p
= gimple_assign_rhs_code (gs
) == MINUS_EXPR
;
1418 slsr_cand_t c
= NULL
, c2
;
1420 if (TREE_CODE (rhs2
) == SSA_NAME
)
1422 /* First record an interpretation assuming RHS1 is the base expression
1423 and RHS2 is the stride. But it doesn't make sense for the
1424 stride to be a pointer, so don't record a candidate in that case. */
1425 if (!POINTER_TYPE_P (TREE_TYPE (rhs2
)))
1427 c
= create_add_ssa_cand (gs
, rhs1
, rhs2
, subtract_p
, speed
);
1429 /* Add the first interpretation to the statement-candidate
1431 add_cand_for_stmt (gs
, c
);
1434 /* If the two RHS operands are identical, or this is a subtract,
1436 if (operand_equal_p (rhs1
, rhs2
, 0) || subtract_p
)
1439 /* Otherwise, record another interpretation assuming RHS2 is the
1440 base expression and RHS1 is the stride, again provided that the
1441 stride is not a pointer. */
1442 if (!POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1444 c2
= create_add_ssa_cand (gs
, rhs2
, rhs1
, false, speed
);
1446 c
->next_interp
= c2
->cand_num
;
1448 add_cand_for_stmt (gs
, c2
);
1453 /* Record an interpretation for the add-immediate. */
1454 widest_int index
= wi::to_widest (rhs2
);
1458 c
= create_add_imm_cand (gs
, rhs1
, index
, speed
);
1460 /* Add the interpretation to the statement-candidate mapping. */
1461 add_cand_for_stmt (gs
, c
);
1465 /* Given GS which is a negate of a scalar integer, make an appropriate
1466 entry in the candidate table. A negate is equivalent to a multiply
1470 slsr_process_neg (gimple
*gs
, tree rhs1
, bool speed
)
1472 /* Record a CAND_MULT interpretation for the multiply by -1. */
1473 slsr_cand_t c
= create_mul_imm_cand (gs
, rhs1
, integer_minus_one_node
, speed
);
1475 /* Add the interpretation to the statement-candidate mapping. */
1476 add_cand_for_stmt (gs
, c
);
1479 /* Help function for legal_cast_p, operating on two trees. Checks
1480 whether it's allowable to cast from RHS to LHS. See legal_cast_p
1481 for more details. */
1484 legal_cast_p_1 (tree lhs_type
, tree rhs_type
)
1486 unsigned lhs_size
, rhs_size
;
1487 bool lhs_wraps
, rhs_wraps
;
1489 lhs_size
= TYPE_PRECISION (lhs_type
);
1490 rhs_size
= TYPE_PRECISION (rhs_type
);
1491 lhs_wraps
= ANY_INTEGRAL_TYPE_P (lhs_type
) && TYPE_OVERFLOW_WRAPS (lhs_type
);
1492 rhs_wraps
= ANY_INTEGRAL_TYPE_P (rhs_type
) && TYPE_OVERFLOW_WRAPS (rhs_type
);
1494 if (lhs_size
< rhs_size
1495 || (rhs_wraps
&& !lhs_wraps
)
1496 || (rhs_wraps
&& lhs_wraps
&& rhs_size
!= lhs_size
))
1502 /* Return TRUE if GS is a statement that defines an SSA name from
1503 a conversion and is legal for us to combine with an add and multiply
1504 in the candidate table. For example, suppose we have:
1510 Without the type-cast, we would create a CAND_MULT for D with base B,
1511 index i, and stride S. We want to record this candidate only if it
1512 is equivalent to apply the type cast following the multiply:
1518 We will record the type with the candidate for D. This allows us
1519 to use a similar previous candidate as a basis. If we have earlier seen
1525 we can replace D with
1527 D = D' + (i - i') * S;
1529 But if moving the type-cast would change semantics, we mustn't do this.
1531 This is legitimate for casts from a non-wrapping integral type to
1532 any integral type of the same or larger size. It is not legitimate
1533 to convert a wrapping type to a non-wrapping type, or to a wrapping
1534 type of a different size. I.e., with a wrapping type, we must
1535 assume that the addition B + i could wrap, in which case performing
1536 the multiply before or after one of the "illegal" type casts will
1537 have different semantics. */
1540 legal_cast_p (gimple
*gs
, tree rhs
)
1542 if (!is_gimple_assign (gs
)
1543 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs
)))
1546 return legal_cast_p_1 (TREE_TYPE (gimple_assign_lhs (gs
)), TREE_TYPE (rhs
));
1549 /* Given GS which is a cast to a scalar integer type, determine whether
1550 the cast is legal for strength reduction. If so, make at least one
1551 appropriate entry in the candidate table. */
1554 slsr_process_cast (gimple
*gs
, tree rhs1
, bool speed
)
1557 slsr_cand_t base_cand
, c
= NULL
, c2
;
1558 unsigned savings
= 0;
1560 if (!legal_cast_p (gs
, rhs1
))
1563 lhs
= gimple_assign_lhs (gs
);
1564 base_cand
= base_cand_from_table (rhs1
);
1565 ctype
= TREE_TYPE (lhs
);
1567 if (base_cand
&& base_cand
->kind
!= CAND_PHI
)
1571 /* Propagate all data from the base candidate except the type,
1572 which comes from the cast, and the base candidate's cast,
1573 which is no longer applicable. */
1574 if (has_single_use (rhs1
))
1575 savings
= (base_cand
->dead_savings
1576 + stmt_cost (base_cand
->cand_stmt
, speed
));
1578 c
= alloc_cand_and_find_basis (base_cand
->kind
, gs
,
1579 base_cand
->base_expr
,
1580 base_cand
->index
, base_cand
->stride
,
1581 ctype
, base_cand
->stride_type
,
1583 if (base_cand
->next_interp
)
1584 base_cand
= lookup_cand (base_cand
->next_interp
);
1591 /* If nothing is known about the RHS, create fresh CAND_ADD and
1592 CAND_MULT interpretations:
1597 The first of these is somewhat arbitrary, but the choice of
1598 1 for the stride simplifies the logic for propagating casts
1600 c
= alloc_cand_and_find_basis (CAND_ADD
, gs
, rhs1
, 0,
1601 integer_one_node
, ctype
, sizetype
, 0);
1602 c2
= alloc_cand_and_find_basis (CAND_MULT
, gs
, rhs1
, 0,
1603 integer_one_node
, ctype
, sizetype
, 0);
1604 c
->next_interp
= c2
->cand_num
;
1607 /* Add the first (or only) interpretation to the statement-candidate
1609 add_cand_for_stmt (gs
, c
);
1612 /* Given GS which is a copy of a scalar integer type, make at least one
1613 appropriate entry in the candidate table.
1615 This interface is included for completeness, but is unnecessary
1616 if this pass immediately follows a pass that performs copy
1617 propagation, such as DOM. */
1620 slsr_process_copy (gimple
*gs
, tree rhs1
, bool speed
)
1622 slsr_cand_t base_cand
, c
= NULL
, c2
;
1623 unsigned savings
= 0;
1625 base_cand
= base_cand_from_table (rhs1
);
1627 if (base_cand
&& base_cand
->kind
!= CAND_PHI
)
1631 /* Propagate all data from the base candidate. */
1632 if (has_single_use (rhs1
))
1633 savings
= (base_cand
->dead_savings
1634 + stmt_cost (base_cand
->cand_stmt
, speed
));
1636 c
= alloc_cand_and_find_basis (base_cand
->kind
, gs
,
1637 base_cand
->base_expr
,
1638 base_cand
->index
, base_cand
->stride
,
1639 base_cand
->cand_type
,
1640 base_cand
->stride_type
, savings
);
1641 if (base_cand
->next_interp
)
1642 base_cand
= lookup_cand (base_cand
->next_interp
);
1649 /* If nothing is known about the RHS, create fresh CAND_ADD and
1650 CAND_MULT interpretations:
1655 The first of these is somewhat arbitrary, but the choice of
1656 1 for the stride simplifies the logic for propagating casts
1658 c
= alloc_cand_and_find_basis (CAND_ADD
, gs
, rhs1
, 0,
1659 integer_one_node
, TREE_TYPE (rhs1
),
1661 c2
= alloc_cand_and_find_basis (CAND_MULT
, gs
, rhs1
, 0,
1662 integer_one_node
, TREE_TYPE (rhs1
),
1664 c
->next_interp
= c2
->cand_num
;
1667 /* Add the first (or only) interpretation to the statement-candidate
1669 add_cand_for_stmt (gs
, c
);
1672 class find_candidates_dom_walker
: public dom_walker
1675 find_candidates_dom_walker (cdi_direction direction
)
1676 : dom_walker (direction
) {}
1677 virtual edge
before_dom_children (basic_block
);
1680 /* Find strength-reduction candidates in block BB. */
1683 find_candidates_dom_walker::before_dom_children (basic_block bb
)
1685 bool speed
= optimize_bb_for_speed_p (bb
);
1687 for (gphi_iterator gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
);
1689 slsr_process_phi (gsi
.phi (), speed
);
1691 for (gimple_stmt_iterator gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
);
1694 gimple
*gs
= gsi_stmt (gsi
);
1696 if (gimple_vuse (gs
) && gimple_assign_single_p (gs
))
1697 slsr_process_ref (gs
);
1699 else if (is_gimple_assign (gs
)
1700 && SCALAR_INT_MODE_P
1701 (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs
)))))
1703 tree rhs1
= NULL_TREE
, rhs2
= NULL_TREE
;
1705 switch (gimple_assign_rhs_code (gs
))
1709 rhs1
= gimple_assign_rhs1 (gs
);
1710 rhs2
= gimple_assign_rhs2 (gs
);
1711 /* Should never happen, but currently some buggy situations
1712 in earlier phases put constants in rhs1. */
1713 if (TREE_CODE (rhs1
) != SSA_NAME
)
1717 /* Possible future opportunity: rhs1 of a ptr+ can be
1719 case POINTER_PLUS_EXPR
:
1721 rhs2
= gimple_assign_rhs2 (gs
);
1727 rhs1
= gimple_assign_rhs1 (gs
);
1728 if (TREE_CODE (rhs1
) != SSA_NAME
)
1736 switch (gimple_assign_rhs_code (gs
))
1739 slsr_process_mul (gs
, rhs1
, rhs2
, speed
);
1743 case POINTER_PLUS_EXPR
:
1745 slsr_process_add (gs
, rhs1
, rhs2
, speed
);
1749 slsr_process_neg (gs
, rhs1
, speed
);
1753 slsr_process_cast (gs
, rhs1
, speed
);
1757 slsr_process_copy (gs
, rhs1
, speed
);
1768 /* Dump a candidate for debug. */
1771 dump_candidate (slsr_cand_t c
)
1773 fprintf (dump_file
, "%3d [%d] ", c
->cand_num
,
1774 gimple_bb (c
->cand_stmt
)->index
);
1775 print_gimple_stmt (dump_file
, c
->cand_stmt
, 0, 0);
1779 fputs (" MULT : (", dump_file
);
1780 print_generic_expr (dump_file
, c
->base_expr
, 0);
1781 fputs (" + ", dump_file
);
1782 print_decs (c
->index
, dump_file
);
1783 fputs (") * ", dump_file
);
1784 if (TREE_CODE (c
->stride
) != INTEGER_CST
1785 && c
->stride_type
!= TREE_TYPE (c
->stride
))
1787 fputs ("(", dump_file
);
1788 print_generic_expr (dump_file
, c
->stride_type
, 0);
1789 fputs (")", dump_file
);
1791 print_generic_expr (dump_file
, c
->stride
, 0);
1792 fputs (" : ", dump_file
);
1795 fputs (" ADD : ", dump_file
);
1796 print_generic_expr (dump_file
, c
->base_expr
, 0);
1797 fputs (" + (", dump_file
);
1798 print_decs (c
->index
, dump_file
);
1799 fputs (" * ", dump_file
);
1800 if (TREE_CODE (c
->stride
) != INTEGER_CST
1801 && c
->stride_type
!= TREE_TYPE (c
->stride
))
1803 fputs ("(", dump_file
);
1804 print_generic_expr (dump_file
, c
->stride_type
, 0);
1805 fputs (")", dump_file
);
1807 print_generic_expr (dump_file
, c
->stride
, 0);
1808 fputs (") : ", dump_file
);
1811 fputs (" REF : ", dump_file
);
1812 print_generic_expr (dump_file
, c
->base_expr
, 0);
1813 fputs (" + (", dump_file
);
1814 print_generic_expr (dump_file
, c
->stride
, 0);
1815 fputs (") + ", dump_file
);
1816 print_decs (c
->index
, dump_file
);
1817 fputs (" : ", dump_file
);
1820 fputs (" PHI : ", dump_file
);
1821 print_generic_expr (dump_file
, c
->base_expr
, 0);
1822 fputs (" + (unknown * ", dump_file
);
1823 print_generic_expr (dump_file
, c
->stride
, 0);
1824 fputs (") : ", dump_file
);
1829 print_generic_expr (dump_file
, c
->cand_type
, 0);
1830 fprintf (dump_file
, "\n basis: %d dependent: %d sibling: %d\n",
1831 c
->basis
, c
->dependent
, c
->sibling
);
1832 fprintf (dump_file
, " next-interp: %d dead-savings: %d\n",
1833 c
->next_interp
, c
->dead_savings
);
1835 fprintf (dump_file
, " phi: %d\n", c
->def_phi
);
1836 fputs ("\n", dump_file
);
1839 /* Dump the candidate vector for debug. */
1842 dump_cand_vec (void)
1847 fprintf (dump_file
, "\nStrength reduction candidate vector:\n\n");
1849 FOR_EACH_VEC_ELT (cand_vec
, i
, c
)
1853 /* Callback used to dump the candidate chains hash table. */
1856 ssa_base_cand_dump_callback (cand_chain
**slot
, void *ignored ATTRIBUTE_UNUSED
)
1858 const_cand_chain_t chain
= *slot
;
1861 print_generic_expr (dump_file
, chain
->base_expr
, 0);
1862 fprintf (dump_file
, " -> %d", chain
->cand
->cand_num
);
1864 for (p
= chain
->next
; p
; p
= p
->next
)
1865 fprintf (dump_file
, " -> %d", p
->cand
->cand_num
);
1867 fputs ("\n", dump_file
);
1871 /* Dump the candidate chains. */
1874 dump_cand_chains (void)
1876 fprintf (dump_file
, "\nStrength reduction candidate chains:\n\n");
1877 base_cand_map
->traverse_noresize
<void *, ssa_base_cand_dump_callback
>
1879 fputs ("\n", dump_file
);
1882 /* Dump the increment vector for debug. */
1885 dump_incr_vec (void)
1887 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1891 fprintf (dump_file
, "\nIncrement vector:\n\n");
1893 for (i
= 0; i
< incr_vec_len
; i
++)
1895 fprintf (dump_file
, "%3d increment: ", i
);
1896 print_decs (incr_vec
[i
].incr
, dump_file
);
1897 fprintf (dump_file
, "\n count: %d", incr_vec
[i
].count
);
1898 fprintf (dump_file
, "\n cost: %d", incr_vec
[i
].cost
);
1899 fputs ("\n initializer: ", dump_file
);
1900 print_generic_expr (dump_file
, incr_vec
[i
].initializer
, 0);
1901 fputs ("\n\n", dump_file
);
1906 /* Replace *EXPR in candidate C with an equivalent strength-reduced
1910 replace_ref (tree
*expr
, slsr_cand_t c
)
1912 tree add_expr
, mem_ref
, acc_type
= TREE_TYPE (*expr
);
1913 unsigned HOST_WIDE_INT misalign
;
1916 /* Ensure the memory reference carries the minimum alignment
1917 requirement for the data type. See PR58041. */
1918 get_object_alignment_1 (*expr
, &align
, &misalign
);
1920 align
= least_bit_hwi (misalign
);
1921 if (align
< TYPE_ALIGN (acc_type
))
1922 acc_type
= build_aligned_type (acc_type
, align
);
1924 add_expr
= fold_build2 (POINTER_PLUS_EXPR
, c
->cand_type
,
1925 c
->base_expr
, c
->stride
);
1926 mem_ref
= fold_build2 (MEM_REF
, acc_type
, add_expr
,
1927 wide_int_to_tree (c
->cand_type
, c
->index
));
1929 /* Gimplify the base addressing expression for the new MEM_REF tree. */
1930 gimple_stmt_iterator gsi
= gsi_for_stmt (c
->cand_stmt
);
1931 TREE_OPERAND (mem_ref
, 0)
1932 = force_gimple_operand_gsi (&gsi
, TREE_OPERAND (mem_ref
, 0),
1933 /*simple_p=*/true, NULL
,
1934 /*before=*/true, GSI_SAME_STMT
);
1935 copy_ref_info (mem_ref
, *expr
);
1937 update_stmt (c
->cand_stmt
);
1940 /* Replace CAND_REF candidate C, each sibling of candidate C, and each
1941 dependent of candidate C with an equivalent strength-reduced data
1945 replace_refs (slsr_cand_t c
)
1947 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1949 fputs ("Replacing reference: ", dump_file
);
1950 print_gimple_stmt (dump_file
, c
->cand_stmt
, 0, 0);
1953 if (gimple_vdef (c
->cand_stmt
))
1955 tree
*lhs
= gimple_assign_lhs_ptr (c
->cand_stmt
);
1956 replace_ref (lhs
, c
);
1960 tree
*rhs
= gimple_assign_rhs1_ptr (c
->cand_stmt
);
1961 replace_ref (rhs
, c
);
1964 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1966 fputs ("With: ", dump_file
);
1967 print_gimple_stmt (dump_file
, c
->cand_stmt
, 0, 0);
1968 fputs ("\n", dump_file
);
1972 replace_refs (lookup_cand (c
->sibling
));
1975 replace_refs (lookup_cand (c
->dependent
));
1978 /* Return TRUE if candidate C is dependent upon a PHI. */
1981 phi_dependent_cand_p (slsr_cand_t c
)
1983 /* A candidate is not necessarily dependent upon a PHI just because
1984 it has a phi definition for its base name. It may have a basis
1985 that relies upon the same phi definition, in which case the PHI
1986 is irrelevant to this candidate. */
1989 && lookup_cand (c
->basis
)->def_phi
!= c
->def_phi
);
1992 /* Calculate the increment required for candidate C relative to
1996 cand_increment (slsr_cand_t c
)
2000 /* If the candidate doesn't have a basis, just return its own
2001 index. This is useful in record_increments to help us find
2002 an existing initializer. Also, if the candidate's basis is
2003 hidden by a phi, then its own index will be the increment
2004 from the newly introduced phi basis. */
2005 if (!c
->basis
|| phi_dependent_cand_p (c
))
2008 basis
= lookup_cand (c
->basis
);
2009 gcc_assert (operand_equal_p (c
->base_expr
, basis
->base_expr
, 0));
2010 return c
->index
- basis
->index
;
2013 /* Calculate the increment required for candidate C relative to
2014 its basis. If we aren't going to generate pointer arithmetic
2015 for this candidate, return the absolute value of that increment
2018 static inline widest_int
2019 cand_abs_increment (slsr_cand_t c
)
2021 widest_int increment
= cand_increment (c
);
2023 if (!address_arithmetic_p
&& wi::neg_p (increment
))
2024 increment
= -increment
;
2029 /* Return TRUE iff candidate C has already been replaced under
2030 another interpretation. */
2033 cand_already_replaced (slsr_cand_t c
)
2035 return (gimple_bb (c
->cand_stmt
) == 0);
2038 /* Common logic used by replace_unconditional_candidate and
2039 replace_conditional_candidate. */
2042 replace_mult_candidate (slsr_cand_t c
, tree basis_name
, widest_int bump
)
2044 tree target_type
= TREE_TYPE (gimple_assign_lhs (c
->cand_stmt
));
2045 enum tree_code cand_code
= gimple_assign_rhs_code (c
->cand_stmt
);
2047 /* It is highly unlikely, but possible, that the resulting
2048 bump doesn't fit in a HWI. Abandon the replacement
2049 in this case. This does not affect siblings or dependents
2050 of C. Restriction to signed HWI is conservative for unsigned
2051 types but allows for safe negation without twisted logic. */
2052 if (wi::fits_shwi_p (bump
)
2053 && bump
.to_shwi () != HOST_WIDE_INT_MIN
2054 /* It is not useful to replace casts, copies, or adds of
2055 an SSA name and a constant. */
2056 && cand_code
!= SSA_NAME
2057 && !CONVERT_EXPR_CODE_P (cand_code
)
2058 && cand_code
!= PLUS_EXPR
2059 && cand_code
!= POINTER_PLUS_EXPR
2060 && cand_code
!= MINUS_EXPR
)
2062 enum tree_code code
= PLUS_EXPR
;
2064 gimple
*stmt_to_print
= NULL
;
2066 /* If the basis name and the candidate's LHS have incompatible
2067 types, introduce a cast. */
2068 if (!useless_type_conversion_p (target_type
, TREE_TYPE (basis_name
)))
2069 basis_name
= introduce_cast_before_cand (c
, target_type
, basis_name
);
2070 if (wi::neg_p (bump
))
2076 bump_tree
= wide_int_to_tree (target_type
, bump
);
2078 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2080 fputs ("Replacing: ", dump_file
);
2081 print_gimple_stmt (dump_file
, c
->cand_stmt
, 0, 0);
2086 tree lhs
= gimple_assign_lhs (c
->cand_stmt
);
2087 gassign
*copy_stmt
= gimple_build_assign (lhs
, basis_name
);
2088 gimple_stmt_iterator gsi
= gsi_for_stmt (c
->cand_stmt
);
2090 gimple_set_location (copy_stmt
, gimple_location (c
->cand_stmt
));
2091 gsi_replace (&gsi
, copy_stmt
, false);
2092 c
->cand_stmt
= copy_stmt
;
2093 while (cc
->next_interp
)
2095 cc
= lookup_cand (cc
->next_interp
);
2096 cc
->cand_stmt
= copy_stmt
;
2098 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2099 stmt_to_print
= copy_stmt
;
2104 if (cand_code
!= NEGATE_EXPR
) {
2105 rhs1
= gimple_assign_rhs1 (c
->cand_stmt
);
2106 rhs2
= gimple_assign_rhs2 (c
->cand_stmt
);
2108 if (cand_code
!= NEGATE_EXPR
2109 && ((operand_equal_p (rhs1
, basis_name
, 0)
2110 && operand_equal_p (rhs2
, bump_tree
, 0))
2111 || (operand_equal_p (rhs1
, bump_tree
, 0)
2112 && operand_equal_p (rhs2
, basis_name
, 0))))
2114 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2116 fputs ("(duplicate, not actually replacing)", dump_file
);
2117 stmt_to_print
= c
->cand_stmt
;
2122 gimple_stmt_iterator gsi
= gsi_for_stmt (c
->cand_stmt
);
2124 gimple_assign_set_rhs_with_ops (&gsi
, code
,
2125 basis_name
, bump_tree
);
2126 update_stmt (gsi_stmt (gsi
));
2127 c
->cand_stmt
= gsi_stmt (gsi
);
2128 while (cc
->next_interp
)
2130 cc
= lookup_cand (cc
->next_interp
);
2131 cc
->cand_stmt
= gsi_stmt (gsi
);
2133 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2134 stmt_to_print
= gsi_stmt (gsi
);
2138 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2140 fputs ("With: ", dump_file
);
2141 print_gimple_stmt (dump_file
, stmt_to_print
, 0, 0);
2142 fputs ("\n", dump_file
);
2147 /* Replace candidate C with an add or subtract. Note that we only
2148 operate on CAND_MULTs with known strides, so we will never generate
2149 a POINTER_PLUS_EXPR. Each candidate X = (B + i) * S is replaced by
2150 X = Y + ((i - i') * S), as described in the module commentary. The
2151 folded value ((i - i') * S) is referred to here as the "bump." */
2154 replace_unconditional_candidate (slsr_cand_t c
)
2158 if (cand_already_replaced (c
))
2161 basis
= lookup_cand (c
->basis
);
2162 widest_int bump
= cand_increment (c
) * wi::to_widest (c
->stride
);
2164 replace_mult_candidate (c
, gimple_assign_lhs (basis
->cand_stmt
), bump
);
2167 /* Return the index in the increment vector of the given INCREMENT,
2168 or -1 if not found. The latter can occur if more than
2169 MAX_INCR_VEC_LEN increments have been found. */
2172 incr_vec_index (const widest_int
&increment
)
2176 for (i
= 0; i
< incr_vec_len
&& increment
!= incr_vec
[i
].incr
; i
++)
2179 if (i
< incr_vec_len
)
2185 /* Create a new statement along edge E to add BASIS_NAME to the product
2186 of INCREMENT and the stride of candidate C. Create and return a new
2187 SSA name from *VAR to be used as the LHS of the new statement.
2188 KNOWN_STRIDE is true iff C's stride is a constant. */
2191 create_add_on_incoming_edge (slsr_cand_t c
, tree basis_name
,
2192 widest_int increment
, edge e
, location_t loc
,
2195 basic_block insert_bb
;
2196 gimple_stmt_iterator gsi
;
2197 tree lhs
, basis_type
;
2198 gassign
*new_stmt
, *cast_stmt
= NULL
;
2200 /* If the add candidate along this incoming edge has the same
2201 index as C's hidden basis, the hidden basis represents this
2206 basis_type
= TREE_TYPE (basis_name
);
2207 lhs
= make_temp_ssa_name (basis_type
, NULL
, "slsr");
2209 /* Occasionally people convert integers to pointers without a
2210 cast, leading us into trouble if we aren't careful. */
2211 enum tree_code plus_code
2212 = POINTER_TYPE_P (basis_type
) ? POINTER_PLUS_EXPR
: PLUS_EXPR
;
2217 enum tree_code code
= plus_code
;
2218 widest_int bump
= increment
* wi::to_widest (c
->stride
);
2219 if (wi::neg_p (bump
) && !POINTER_TYPE_P (basis_type
))
2225 tree stride_type
= POINTER_TYPE_P (basis_type
) ? sizetype
: basis_type
;
2226 bump_tree
= wide_int_to_tree (stride_type
, bump
);
2227 new_stmt
= gimple_build_assign (lhs
, code
, basis_name
, bump_tree
);
2232 bool negate_incr
= !POINTER_TYPE_P (basis_type
) && wi::neg_p (increment
);
2233 i
= incr_vec_index (negate_incr
? -increment
: increment
);
2234 gcc_assert (i
>= 0);
2236 if (incr_vec
[i
].initializer
)
2238 enum tree_code code
= negate_incr
? MINUS_EXPR
: plus_code
;
2239 new_stmt
= gimple_build_assign (lhs
, code
, basis_name
,
2240 incr_vec
[i
].initializer
);
2245 if (!types_compatible_p (TREE_TYPE (c
->stride
), c
->stride_type
))
2247 tree cast_stride
= make_temp_ssa_name (c
->stride_type
, NULL
,
2249 cast_stmt
= gimple_build_assign (cast_stride
, NOP_EXPR
,
2251 stride
= cast_stride
;
2257 new_stmt
= gimple_build_assign (lhs
, plus_code
, basis_name
, stride
);
2258 else if (increment
== -1)
2259 new_stmt
= gimple_build_assign (lhs
, MINUS_EXPR
, basis_name
, stride
);
2265 insert_bb
= single_succ_p (e
->src
) ? e
->src
: split_edge (e
);
2266 gsi
= gsi_last_bb (insert_bb
);
2268 if (!gsi_end_p (gsi
) && stmt_ends_bb_p (gsi_stmt (gsi
)))
2270 gsi_insert_before (&gsi
, new_stmt
, GSI_SAME_STMT
);
2273 gsi_insert_before (&gsi
, cast_stmt
, GSI_SAME_STMT
);
2274 gimple_set_location (cast_stmt
, loc
);
2281 gsi_insert_after (&gsi
, cast_stmt
, GSI_NEW_STMT
);
2282 gimple_set_location (cast_stmt
, loc
);
2284 gsi_insert_after (&gsi
, new_stmt
, GSI_NEW_STMT
);
2287 gimple_set_location (new_stmt
, loc
);
2289 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2293 fprintf (dump_file
, "Inserting cast in block %d: ",
2295 print_gimple_stmt (dump_file
, cast_stmt
, 0, 0);
2297 fprintf (dump_file
, "Inserting in block %d: ", insert_bb
->index
);
2298 print_gimple_stmt (dump_file
, new_stmt
, 0, 0);
2304 /* Given a candidate C with BASIS_NAME being the LHS of C's basis which
2305 is hidden by the phi node FROM_PHI, create a new phi node in the same
2306 block as FROM_PHI. The new phi is suitable for use as a basis by C,
2307 with its phi arguments representing conditional adjustments to the
2308 hidden basis along conditional incoming paths. Those adjustments are
2309 made by creating add statements (and sometimes recursively creating
2310 phis) along those incoming paths. LOC is the location to attach to
2311 the introduced statements. KNOWN_STRIDE is true iff C's stride is a
2315 create_phi_basis (slsr_cand_t c
, gimple
*from_phi
, tree basis_name
,
2316 location_t loc
, bool known_stride
)
2321 slsr_cand_t basis
= lookup_cand (c
->basis
);
2322 int nargs
= gimple_phi_num_args (from_phi
);
2323 basic_block phi_bb
= gimple_bb (from_phi
);
2324 slsr_cand_t phi_cand
= *stmt_cand_map
->get (from_phi
);
2325 auto_vec
<tree
> phi_args (nargs
);
2327 /* Process each argument of the existing phi that represents
2328 conditionally-executed add candidates. */
2329 for (i
= 0; i
< nargs
; i
++)
2331 edge e
= (*phi_bb
->preds
)[i
];
2332 tree arg
= gimple_phi_arg_def (from_phi
, i
);
2335 /* If the phi argument is the base name of the CAND_PHI, then
2336 this incoming arc should use the hidden basis. */
2337 if (operand_equal_p (arg
, phi_cand
->base_expr
, 0))
2338 if (basis
->index
== 0)
2339 feeding_def
= gimple_assign_lhs (basis
->cand_stmt
);
2342 widest_int incr
= -basis
->index
;
2343 feeding_def
= create_add_on_incoming_edge (c
, basis_name
, incr
,
2344 e
, loc
, known_stride
);
2348 gimple
*arg_def
= SSA_NAME_DEF_STMT (arg
);
2350 /* If there is another phi along this incoming edge, we must
2351 process it in the same fashion to ensure that all basis
2352 adjustments are made along its incoming edges. */
2353 if (gimple_code (arg_def
) == GIMPLE_PHI
)
2354 feeding_def
= create_phi_basis (c
, arg_def
, basis_name
,
2358 slsr_cand_t arg_cand
= base_cand_from_table (arg
);
2359 widest_int diff
= arg_cand
->index
- basis
->index
;
2360 feeding_def
= create_add_on_incoming_edge (c
, basis_name
, diff
,
2361 e
, loc
, known_stride
);
2365 /* Because of recursion, we need to save the arguments in a vector
2366 so we can create the PHI statement all at once. Otherwise the
2367 storage for the half-created PHI can be reclaimed. */
2368 phi_args
.safe_push (feeding_def
);
2371 /* Create the new phi basis. */
2372 name
= make_temp_ssa_name (TREE_TYPE (basis_name
), NULL
, "slsr");
2373 phi
= create_phi_node (name
, phi_bb
);
2374 SSA_NAME_DEF_STMT (name
) = phi
;
2376 FOR_EACH_VEC_ELT (phi_args
, i
, phi_arg
)
2378 edge e
= (*phi_bb
->preds
)[i
];
2379 add_phi_arg (phi
, phi_arg
, e
, loc
);
2384 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2386 fputs ("Introducing new phi basis: ", dump_file
);
2387 print_gimple_stmt (dump_file
, phi
, 0, 0);
2393 /* Given a candidate C whose basis is hidden by at least one intervening
2394 phi, introduce a matching number of new phis to represent its basis
2395 adjusted by conditional increments along possible incoming paths. Then
2396 replace C as though it were an unconditional candidate, using the new
2400 replace_conditional_candidate (slsr_cand_t c
)
2402 tree basis_name
, name
;
2406 /* Look up the LHS SSA name from C's basis. This will be the
2407 RHS1 of the adds we will introduce to create new phi arguments. */
2408 basis
= lookup_cand (c
->basis
);
2409 basis_name
= gimple_assign_lhs (basis
->cand_stmt
);
2411 /* Create a new phi statement which will represent C's true basis
2412 after the transformation is complete. */
2413 loc
= gimple_location (c
->cand_stmt
);
2414 name
= create_phi_basis (c
, lookup_cand (c
->def_phi
)->cand_stmt
,
2415 basis_name
, loc
, KNOWN_STRIDE
);
2416 /* Replace C with an add of the new basis phi and a constant. */
2417 widest_int bump
= c
->index
* wi::to_widest (c
->stride
);
2419 replace_mult_candidate (c
, name
, bump
);
2422 /* Compute the expected costs of inserting basis adjustments for
2423 candidate C with phi-definition PHI. The cost of inserting
2424 one adjustment is given by ONE_ADD_COST. If PHI has arguments
2425 which are themselves phi results, recursively calculate costs
2426 for those phis as well. */
2429 phi_add_costs (gimple
*phi
, slsr_cand_t c
, int one_add_cost
)
2433 slsr_cand_t phi_cand
= *stmt_cand_map
->get (phi
);
2435 /* If we work our way back to a phi that isn't dominated by the hidden
2436 basis, this isn't a candidate for replacement. Indicate this by
2437 returning an unreasonably high cost. It's not easy to detect
2438 these situations when determining the basis, so we defer the
2439 decision until now. */
2440 basic_block phi_bb
= gimple_bb (phi
);
2441 slsr_cand_t basis
= lookup_cand (c
->basis
);
2442 basic_block basis_bb
= gimple_bb (basis
->cand_stmt
);
2444 if (phi_bb
== basis_bb
|| !dominated_by_p (CDI_DOMINATORS
, phi_bb
, basis_bb
))
2445 return COST_INFINITE
;
2447 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
2449 tree arg
= gimple_phi_arg_def (phi
, i
);
2451 if (arg
!= phi_cand
->base_expr
)
2453 gimple
*arg_def
= SSA_NAME_DEF_STMT (arg
);
2455 if (gimple_code (arg_def
) == GIMPLE_PHI
)
2456 cost
+= phi_add_costs (arg_def
, c
, one_add_cost
);
2459 slsr_cand_t arg_cand
= base_cand_from_table (arg
);
2461 if (arg_cand
->index
!= c
->index
)
2462 cost
+= one_add_cost
;
2470 /* For candidate C, each sibling of candidate C, and each dependent of
2471 candidate C, determine whether the candidate is dependent upon a
2472 phi that hides its basis. If not, replace the candidate unconditionally.
2473 Otherwise, determine whether the cost of introducing compensation code
2474 for the candidate is offset by the gains from strength reduction. If
2475 so, replace the candidate and introduce the compensation code. */
2478 replace_uncond_cands_and_profitable_phis (slsr_cand_t c
)
2480 if (phi_dependent_cand_p (c
))
2482 if (c
->kind
== CAND_MULT
)
2484 /* A candidate dependent upon a phi will replace a multiply by
2485 a constant with an add, and will insert at most one add for
2486 each phi argument. Add these costs with the potential dead-code
2487 savings to determine profitability. */
2488 bool speed
= optimize_bb_for_speed_p (gimple_bb (c
->cand_stmt
));
2489 int mult_savings
= stmt_cost (c
->cand_stmt
, speed
);
2490 gimple
*phi
= lookup_cand (c
->def_phi
)->cand_stmt
;
2491 tree phi_result
= gimple_phi_result (phi
);
2492 int one_add_cost
= add_cost (speed
,
2493 TYPE_MODE (TREE_TYPE (phi_result
)));
2494 int add_costs
= one_add_cost
+ phi_add_costs (phi
, c
, one_add_cost
);
2495 int cost
= add_costs
- mult_savings
- c
->dead_savings
;
2497 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2499 fprintf (dump_file
, " Conditional candidate %d:\n", c
->cand_num
);
2500 fprintf (dump_file
, " add_costs = %d\n", add_costs
);
2501 fprintf (dump_file
, " mult_savings = %d\n", mult_savings
);
2502 fprintf (dump_file
, " dead_savings = %d\n", c
->dead_savings
);
2503 fprintf (dump_file
, " cost = %d\n", cost
);
2504 if (cost
<= COST_NEUTRAL
)
2505 fputs (" Replacing...\n", dump_file
);
2507 fputs (" Not replaced.\n", dump_file
);
2510 if (cost
<= COST_NEUTRAL
)
2511 replace_conditional_candidate (c
);
2515 replace_unconditional_candidate (c
);
2518 replace_uncond_cands_and_profitable_phis (lookup_cand (c
->sibling
));
2521 replace_uncond_cands_and_profitable_phis (lookup_cand (c
->dependent
));
2524 /* Count the number of candidates in the tree rooted at C that have
2525 not already been replaced under other interpretations. */
2528 count_candidates (slsr_cand_t c
)
2530 unsigned count
= cand_already_replaced (c
) ? 0 : 1;
2533 count
+= count_candidates (lookup_cand (c
->sibling
));
2536 count
+= count_candidates (lookup_cand (c
->dependent
));
2541 /* Increase the count of INCREMENT by one in the increment vector.
2542 INCREMENT is associated with candidate C. If INCREMENT is to be
2543 conditionally executed as part of a conditional candidate replacement,
2544 IS_PHI_ADJUST is true, otherwise false. If an initializer
2545 T_0 = stride * I is provided by a candidate that dominates all
2546 candidates with the same increment, also record T_0 for subsequent use. */
2549 record_increment (slsr_cand_t c
, widest_int increment
, bool is_phi_adjust
)
2554 /* Treat increments that differ only in sign as identical so as to
2555 share initializers, unless we are generating pointer arithmetic. */
2556 if (!address_arithmetic_p
&& wi::neg_p (increment
))
2557 increment
= -increment
;
2559 for (i
= 0; i
< incr_vec_len
; i
++)
2561 if (incr_vec
[i
].incr
== increment
)
2563 incr_vec
[i
].count
++;
2566 /* If we previously recorded an initializer that doesn't
2567 dominate this candidate, it's not going to be useful to
2569 if (incr_vec
[i
].initializer
2570 && !dominated_by_p (CDI_DOMINATORS
,
2571 gimple_bb (c
->cand_stmt
),
2572 incr_vec
[i
].init_bb
))
2574 incr_vec
[i
].initializer
= NULL_TREE
;
2575 incr_vec
[i
].init_bb
= NULL
;
2582 if (!found
&& incr_vec_len
< MAX_INCR_VEC_LEN
- 1)
2584 /* The first time we see an increment, create the entry for it.
2585 If this is the root candidate which doesn't have a basis, set
2586 the count to zero. We're only processing it so it can possibly
2587 provide an initializer for other candidates. */
2588 incr_vec
[incr_vec_len
].incr
= increment
;
2589 incr_vec
[incr_vec_len
].count
= c
->basis
|| is_phi_adjust
? 1 : 0;
2590 incr_vec
[incr_vec_len
].cost
= COST_INFINITE
;
2592 /* Optimistically record the first occurrence of this increment
2593 as providing an initializer (if it does); we will revise this
2594 opinion later if it doesn't dominate all other occurrences.
2595 Exception: increments of 0, 1 never need initializers;
2596 and phi adjustments don't ever provide initializers. */
2597 if (c
->kind
== CAND_ADD
2599 && c
->index
== increment
2600 && (increment
> 1 || increment
< 0)
2601 && (gimple_assign_rhs_code (c
->cand_stmt
) == PLUS_EXPR
2602 || gimple_assign_rhs_code (c
->cand_stmt
) == POINTER_PLUS_EXPR
))
2604 tree t0
= NULL_TREE
;
2605 tree rhs1
= gimple_assign_rhs1 (c
->cand_stmt
);
2606 tree rhs2
= gimple_assign_rhs2 (c
->cand_stmt
);
2607 if (operand_equal_p (rhs1
, c
->base_expr
, 0))
2609 else if (operand_equal_p (rhs2
, c
->base_expr
, 0))
2612 && SSA_NAME_DEF_STMT (t0
)
2613 && gimple_bb (SSA_NAME_DEF_STMT (t0
)))
2615 incr_vec
[incr_vec_len
].initializer
= t0
;
2616 incr_vec
[incr_vec_len
++].init_bb
2617 = gimple_bb (SSA_NAME_DEF_STMT (t0
));
2621 incr_vec
[incr_vec_len
].initializer
= NULL_TREE
;
2622 incr_vec
[incr_vec_len
++].init_bb
= NULL
;
2627 incr_vec
[incr_vec_len
].initializer
= NULL_TREE
;
2628 incr_vec
[incr_vec_len
++].init_bb
= NULL
;
2633 /* Given phi statement PHI that hides a candidate from its BASIS, find
2634 the increments along each incoming arc (recursively handling additional
2635 phis that may be present) and record them. These increments are the
2636 difference in index between the index-adjusting statements and the
2637 index of the basis. */
2640 record_phi_increments (slsr_cand_t basis
, gimple
*phi
)
2643 slsr_cand_t phi_cand
= *stmt_cand_map
->get (phi
);
2645 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
2647 tree arg
= gimple_phi_arg_def (phi
, i
);
2649 if (!operand_equal_p (arg
, phi_cand
->base_expr
, 0))
2651 gimple
*arg_def
= SSA_NAME_DEF_STMT (arg
);
2653 if (gimple_code (arg_def
) == GIMPLE_PHI
)
2654 record_phi_increments (basis
, arg_def
);
2657 slsr_cand_t arg_cand
= base_cand_from_table (arg
);
2658 widest_int diff
= arg_cand
->index
- basis
->index
;
2659 record_increment (arg_cand
, diff
, PHI_ADJUST
);
2665 /* Determine how many times each unique increment occurs in the set
2666 of candidates rooted at C's parent, recording the data in the
2667 increment vector. For each unique increment I, if an initializer
2668 T_0 = stride * I is provided by a candidate that dominates all
2669 candidates with the same increment, also record T_0 for subsequent
2673 record_increments (slsr_cand_t c
)
2675 if (!cand_already_replaced (c
))
2677 if (!phi_dependent_cand_p (c
))
2678 record_increment (c
, cand_increment (c
), NOT_PHI_ADJUST
);
2681 /* A candidate with a basis hidden by a phi will have one
2682 increment for its relationship to the index represented by
2683 the phi, and potentially additional increments along each
2684 incoming edge. For the root of the dependency tree (which
2685 has no basis), process just the initial index in case it has
2686 an initializer that can be used by subsequent candidates. */
2687 record_increment (c
, c
->index
, NOT_PHI_ADJUST
);
2690 record_phi_increments (lookup_cand (c
->basis
),
2691 lookup_cand (c
->def_phi
)->cand_stmt
);
2696 record_increments (lookup_cand (c
->sibling
));
2699 record_increments (lookup_cand (c
->dependent
));
2702 /* Add up and return the costs of introducing add statements that
2703 require the increment INCR on behalf of candidate C and phi
2704 statement PHI. Accumulate into *SAVINGS the potential savings
2705 from removing existing statements that feed PHI and have no other
2709 phi_incr_cost (slsr_cand_t c
, const widest_int
&incr
, gimple
*phi
,
2714 slsr_cand_t basis
= lookup_cand (c
->basis
);
2715 slsr_cand_t phi_cand
= *stmt_cand_map
->get (phi
);
2717 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
2719 tree arg
= gimple_phi_arg_def (phi
, i
);
2721 if (!operand_equal_p (arg
, phi_cand
->base_expr
, 0))
2723 gimple
*arg_def
= SSA_NAME_DEF_STMT (arg
);
2725 if (gimple_code (arg_def
) == GIMPLE_PHI
)
2727 int feeding_savings
= 0;
2728 cost
+= phi_incr_cost (c
, incr
, arg_def
, &feeding_savings
);
2729 if (has_single_use (gimple_phi_result (arg_def
)))
2730 *savings
+= feeding_savings
;
2734 slsr_cand_t arg_cand
= base_cand_from_table (arg
);
2735 widest_int diff
= arg_cand
->index
- basis
->index
;
2739 tree basis_lhs
= gimple_assign_lhs (basis
->cand_stmt
);
2740 tree lhs
= gimple_assign_lhs (arg_cand
->cand_stmt
);
2741 cost
+= add_cost (true, TYPE_MODE (TREE_TYPE (basis_lhs
)));
2742 if (has_single_use (lhs
))
2743 *savings
+= stmt_cost (arg_cand
->cand_stmt
, true);
2752 /* Return the first candidate in the tree rooted at C that has not
2753 already been replaced, favoring siblings over dependents. */
2756 unreplaced_cand_in_tree (slsr_cand_t c
)
2758 if (!cand_already_replaced (c
))
2763 slsr_cand_t sib
= unreplaced_cand_in_tree (lookup_cand (c
->sibling
));
2770 slsr_cand_t dep
= unreplaced_cand_in_tree (lookup_cand (c
->dependent
));
2778 /* Return TRUE if the candidates in the tree rooted at C should be
2779 optimized for speed, else FALSE. We estimate this based on the block
2780 containing the most dominant candidate in the tree that has not yet
2784 optimize_cands_for_speed_p (slsr_cand_t c
)
2786 slsr_cand_t c2
= unreplaced_cand_in_tree (c
);
2788 return optimize_bb_for_speed_p (gimple_bb (c2
->cand_stmt
));
2791 /* Add COST_IN to the lowest cost of any dependent path starting at
2792 candidate C or any of its siblings, counting only candidates along
2793 such paths with increment INCR. Assume that replacing a candidate
2794 reduces cost by REPL_SAVINGS. Also account for savings from any
2795 statements that would go dead. If COUNT_PHIS is true, include
2796 costs of introducing feeding statements for conditional candidates. */
2799 lowest_cost_path (int cost_in
, int repl_savings
, slsr_cand_t c
,
2800 const widest_int
&incr
, bool count_phis
)
2802 int local_cost
, sib_cost
, savings
= 0;
2803 widest_int cand_incr
= cand_abs_increment (c
);
2805 if (cand_already_replaced (c
))
2806 local_cost
= cost_in
;
2807 else if (incr
== cand_incr
)
2808 local_cost
= cost_in
- repl_savings
- c
->dead_savings
;
2810 local_cost
= cost_in
- c
->dead_savings
;
2813 && phi_dependent_cand_p (c
)
2814 && !cand_already_replaced (c
))
2816 gimple
*phi
= lookup_cand (c
->def_phi
)->cand_stmt
;
2817 local_cost
+= phi_incr_cost (c
, incr
, phi
, &savings
);
2819 if (has_single_use (gimple_phi_result (phi
)))
2820 local_cost
-= savings
;
2824 local_cost
= lowest_cost_path (local_cost
, repl_savings
,
2825 lookup_cand (c
->dependent
), incr
,
2830 sib_cost
= lowest_cost_path (cost_in
, repl_savings
,
2831 lookup_cand (c
->sibling
), incr
,
2833 local_cost
= MIN (local_cost
, sib_cost
);
2839 /* Compute the total savings that would accrue from all replacements
2840 in the candidate tree rooted at C, counting only candidates with
2841 increment INCR. Assume that replacing a candidate reduces cost
2842 by REPL_SAVINGS. Also account for savings from statements that
2846 total_savings (int repl_savings
, slsr_cand_t c
, const widest_int
&incr
,
2850 widest_int cand_incr
= cand_abs_increment (c
);
2852 if (incr
== cand_incr
&& !cand_already_replaced (c
))
2853 savings
+= repl_savings
+ c
->dead_savings
;
2856 && phi_dependent_cand_p (c
)
2857 && !cand_already_replaced (c
))
2859 int phi_savings
= 0;
2860 gimple
*phi
= lookup_cand (c
->def_phi
)->cand_stmt
;
2861 savings
-= phi_incr_cost (c
, incr
, phi
, &phi_savings
);
2863 if (has_single_use (gimple_phi_result (phi
)))
2864 savings
+= phi_savings
;
2868 savings
+= total_savings (repl_savings
, lookup_cand (c
->dependent
), incr
,
2872 savings
+= total_savings (repl_savings
, lookup_cand (c
->sibling
), incr
,
2878 /* Use target-specific costs to determine and record which increments
2879 in the current candidate tree are profitable to replace, assuming
2880 MODE and SPEED. FIRST_DEP is the first dependent of the root of
2883 One slight limitation here is that we don't account for the possible
2884 introduction of casts in some cases. See replace_one_candidate for
2885 the cases where these are introduced. This should probably be cleaned
2889 analyze_increments (slsr_cand_t first_dep
, machine_mode mode
, bool speed
)
2893 for (i
= 0; i
< incr_vec_len
; i
++)
2895 HOST_WIDE_INT incr
= incr_vec
[i
].incr
.to_shwi ();
2897 /* If somehow this increment is bigger than a HWI, we won't
2898 be optimizing candidates that use it. And if the increment
2899 has a count of zero, nothing will be done with it. */
2900 if (!wi::fits_shwi_p (incr_vec
[i
].incr
) || !incr_vec
[i
].count
)
2901 incr_vec
[i
].cost
= COST_INFINITE
;
2903 /* Increments of 0, 1, and -1 are always profitable to replace,
2904 because they always replace a multiply or add with an add or
2905 copy, and may cause one or more existing instructions to go
2906 dead. Exception: -1 can't be assumed to be profitable for
2907 pointer addition. */
2911 && !POINTER_TYPE_P (first_dep
->cand_type
)))
2912 incr_vec
[i
].cost
= COST_NEUTRAL
;
2914 /* If we need to add an initializer, give up if a cast from the
2915 candidate's type to its stride's type can lose precision.
2916 Note that this already takes into account that the stride may
2917 have been cast to a wider type, in which case this test won't
2923 _4 = x + _3; ADD: x + (10 * (int)_1) : int
2925 _6 = x + _5; ADD: x + (15 * (int)_1) : int
2927 Although the stride was a short int initially, the stride
2928 used in the analysis has been widened to an int, and such
2929 widening will be done in the initializer as well. */
2930 else if (!incr_vec
[i
].initializer
2931 && TREE_CODE (first_dep
->stride
) != INTEGER_CST
2932 && !legal_cast_p_1 (first_dep
->stride_type
,
2933 TREE_TYPE (gimple_assign_lhs
2934 (first_dep
->cand_stmt
))))
2935 incr_vec
[i
].cost
= COST_INFINITE
;
2937 /* If we need to add an initializer, make sure we don't introduce
2938 a multiply by a pointer type, which can happen in certain cast
2940 else if (!incr_vec
[i
].initializer
2941 && TREE_CODE (first_dep
->stride
) != INTEGER_CST
2942 && POINTER_TYPE_P (first_dep
->stride_type
))
2943 incr_vec
[i
].cost
= COST_INFINITE
;
2945 /* For any other increment, if this is a multiply candidate, we
2946 must introduce a temporary T and initialize it with
2947 T_0 = stride * increment. When optimizing for speed, walk the
2948 candidate tree to calculate the best cost reduction along any
2949 path; if it offsets the fixed cost of inserting the initializer,
2950 replacing the increment is profitable. When optimizing for
2951 size, instead calculate the total cost reduction from replacing
2952 all candidates with this increment. */
2953 else if (first_dep
->kind
== CAND_MULT
)
2955 int cost
= mult_by_coeff_cost (incr
, mode
, speed
);
2956 int repl_savings
= mul_cost (speed
, mode
) - add_cost (speed
, mode
);
2958 cost
= lowest_cost_path (cost
, repl_savings
, first_dep
,
2959 incr_vec
[i
].incr
, COUNT_PHIS
);
2961 cost
-= total_savings (repl_savings
, first_dep
, incr_vec
[i
].incr
,
2964 incr_vec
[i
].cost
= cost
;
2967 /* If this is an add candidate, the initializer may already
2968 exist, so only calculate the cost of the initializer if it
2969 doesn't. We are replacing one add with another here, so the
2970 known replacement savings is zero. We will account for removal
2971 of dead instructions in lowest_cost_path or total_savings. */
2975 if (!incr_vec
[i
].initializer
)
2976 cost
= mult_by_coeff_cost (incr
, mode
, speed
);
2979 cost
= lowest_cost_path (cost
, 0, first_dep
, incr_vec
[i
].incr
,
2982 cost
-= total_savings (0, first_dep
, incr_vec
[i
].incr
,
2985 incr_vec
[i
].cost
= cost
;
2990 /* Return the nearest common dominator of BB1 and BB2. If the blocks
2991 are identical, return the earlier of C1 and C2 in *WHERE. Otherwise,
2992 if the NCD matches BB1, return C1 in *WHERE; if the NCD matches BB2,
2993 return C2 in *WHERE; and if the NCD matches neither, return NULL in
2994 *WHERE. Note: It is possible for one of C1 and C2 to be NULL. */
2997 ncd_for_two_cands (basic_block bb1
, basic_block bb2
,
2998 slsr_cand_t c1
, slsr_cand_t c2
, slsr_cand_t
*where
)
3014 ncd
= nearest_common_dominator (CDI_DOMINATORS
, bb1
, bb2
);
3016 /* If both candidates are in the same block, the earlier
3018 if (bb1
== ncd
&& bb2
== ncd
)
3020 if (!c1
|| (c2
&& c2
->cand_num
< c1
->cand_num
))
3026 /* Otherwise, if one of them produced a candidate in the
3027 dominator, that one wins. */
3028 else if (bb1
== ncd
)
3031 else if (bb2
== ncd
)
3034 /* If neither matches the dominator, neither wins. */
3041 /* Consider all candidates that feed PHI. Find the nearest common
3042 dominator of those candidates requiring the given increment INCR.
3043 Further find and return the nearest common dominator of this result
3044 with block NCD. If the returned block contains one or more of the
3045 candidates, return the earliest candidate in the block in *WHERE. */
3048 ncd_with_phi (slsr_cand_t c
, const widest_int
&incr
, gphi
*phi
,
3049 basic_block ncd
, slsr_cand_t
*where
)
3052 slsr_cand_t basis
= lookup_cand (c
->basis
);
3053 slsr_cand_t phi_cand
= *stmt_cand_map
->get (phi
);
3055 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
3057 tree arg
= gimple_phi_arg_def (phi
, i
);
3059 if (!operand_equal_p (arg
, phi_cand
->base_expr
, 0))
3061 gimple
*arg_def
= SSA_NAME_DEF_STMT (arg
);
3063 if (gimple_code (arg_def
) == GIMPLE_PHI
)
3064 ncd
= ncd_with_phi (c
, incr
, as_a
<gphi
*> (arg_def
), ncd
,
3068 slsr_cand_t arg_cand
= base_cand_from_table (arg
);
3069 widest_int diff
= arg_cand
->index
- basis
->index
;
3070 basic_block pred
= gimple_phi_arg_edge (phi
, i
)->src
;
3072 if ((incr
== diff
) || (!address_arithmetic_p
&& incr
== -diff
))
3073 ncd
= ncd_for_two_cands (ncd
, pred
, *where
, NULL
, where
);
3081 /* Consider the candidate C together with any candidates that feed
3082 C's phi dependence (if any). Find and return the nearest common
3083 dominator of those candidates requiring the given increment INCR.
3084 If the returned block contains one or more of the candidates,
3085 return the earliest candidate in the block in *WHERE. */
3088 ncd_of_cand_and_phis (slsr_cand_t c
, const widest_int
&incr
, slsr_cand_t
*where
)
3090 basic_block ncd
= NULL
;
3092 if (cand_abs_increment (c
) == incr
)
3094 ncd
= gimple_bb (c
->cand_stmt
);
3098 if (phi_dependent_cand_p (c
))
3099 ncd
= ncd_with_phi (c
, incr
,
3100 as_a
<gphi
*> (lookup_cand (c
->def_phi
)->cand_stmt
),
3106 /* Consider all candidates in the tree rooted at C for which INCR
3107 represents the required increment of C relative to its basis.
3108 Find and return the basic block that most nearly dominates all
3109 such candidates. If the returned block contains one or more of
3110 the candidates, return the earliest candidate in the block in
3114 nearest_common_dominator_for_cands (slsr_cand_t c
, const widest_int
&incr
,
3117 basic_block sib_ncd
= NULL
, dep_ncd
= NULL
, this_ncd
= NULL
, ncd
;
3118 slsr_cand_t sib_where
= NULL
, dep_where
= NULL
, this_where
= NULL
, new_where
;
3120 /* First find the NCD of all siblings and dependents. */
3122 sib_ncd
= nearest_common_dominator_for_cands (lookup_cand (c
->sibling
),
3125 dep_ncd
= nearest_common_dominator_for_cands (lookup_cand (c
->dependent
),
3127 if (!sib_ncd
&& !dep_ncd
)
3132 else if (sib_ncd
&& !dep_ncd
)
3134 new_where
= sib_where
;
3137 else if (dep_ncd
&& !sib_ncd
)
3139 new_where
= dep_where
;
3143 ncd
= ncd_for_two_cands (sib_ncd
, dep_ncd
, sib_where
,
3144 dep_where
, &new_where
);
3146 /* If the candidate's increment doesn't match the one we're interested
3147 in (and nor do any increments for feeding defs of a phi-dependence),
3148 then the result depends only on siblings and dependents. */
3149 this_ncd
= ncd_of_cand_and_phis (c
, incr
, &this_where
);
3151 if (!this_ncd
|| cand_already_replaced (c
))
3157 /* Otherwise, compare this candidate with the result from all siblings
3159 ncd
= ncd_for_two_cands (ncd
, this_ncd
, new_where
, this_where
, where
);
3164 /* Return TRUE if the increment indexed by INDEX is profitable to replace. */
3167 profitable_increment_p (unsigned index
)
3169 return (incr_vec
[index
].cost
<= COST_NEUTRAL
);
3172 /* For each profitable increment in the increment vector not equal to
3173 0 or 1 (or -1, for non-pointer arithmetic), find the nearest common
3174 dominator of all statements in the candidate chain rooted at C
3175 that require that increment, and insert an initializer
3176 T_0 = stride * increment at that location. Record T_0 with the
3177 increment record. */
3180 insert_initializers (slsr_cand_t c
)
3184 for (i
= 0; i
< incr_vec_len
; i
++)
3187 slsr_cand_t where
= NULL
;
3189 gassign
*cast_stmt
= NULL
;
3190 tree new_name
, incr_tree
, init_stride
;
3191 widest_int incr
= incr_vec
[i
].incr
;
3193 if (!profitable_increment_p (i
)
3196 && (!POINTER_TYPE_P (lookup_cand (c
->basis
)->cand_type
)))
3200 /* We may have already identified an existing initializer that
3202 if (incr_vec
[i
].initializer
)
3204 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3206 fputs ("Using existing initializer: ", dump_file
);
3207 print_gimple_stmt (dump_file
,
3208 SSA_NAME_DEF_STMT (incr_vec
[i
].initializer
),
3214 /* Find the block that most closely dominates all candidates
3215 with this increment. If there is at least one candidate in
3216 that block, the earliest one will be returned in WHERE. */
3217 bb
= nearest_common_dominator_for_cands (c
, incr
, &where
);
3219 /* If the nominal stride has a different type than the recorded
3220 stride type, build a cast from the nominal stride to that type. */
3221 if (!types_compatible_p (TREE_TYPE (c
->stride
), c
->stride_type
))
3223 init_stride
= make_temp_ssa_name (c
->stride_type
, NULL
, "slsr");
3224 cast_stmt
= gimple_build_assign (init_stride
, NOP_EXPR
, c
->stride
);
3227 init_stride
= c
->stride
;
3229 /* Create a new SSA name to hold the initializer's value. */
3230 new_name
= make_temp_ssa_name (c
->stride_type
, NULL
, "slsr");
3231 incr_vec
[i
].initializer
= new_name
;
3233 /* Create the initializer and insert it in the latest possible
3234 dominating position. */
3235 incr_tree
= wide_int_to_tree (c
->stride_type
, incr
);
3236 init_stmt
= gimple_build_assign (new_name
, MULT_EXPR
,
3237 init_stride
, incr_tree
);
3240 gimple_stmt_iterator gsi
= gsi_for_stmt (where
->cand_stmt
);
3241 location_t loc
= gimple_location (where
->cand_stmt
);
3245 gsi_insert_before (&gsi
, cast_stmt
, GSI_SAME_STMT
);
3246 gimple_set_location (cast_stmt
, loc
);
3249 gsi_insert_before (&gsi
, init_stmt
, GSI_SAME_STMT
);
3250 gimple_set_location (init_stmt
, loc
);
3254 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
3255 gimple
*basis_stmt
= lookup_cand (c
->basis
)->cand_stmt
;
3256 location_t loc
= gimple_location (basis_stmt
);
3258 if (!gsi_end_p (gsi
) && stmt_ends_bb_p (gsi_stmt (gsi
)))
3262 gsi_insert_before (&gsi
, cast_stmt
, GSI_SAME_STMT
);
3263 gimple_set_location (cast_stmt
, loc
);
3265 gsi_insert_before (&gsi
, init_stmt
, GSI_SAME_STMT
);
3271 gsi_insert_after (&gsi
, cast_stmt
, GSI_NEW_STMT
);
3272 gimple_set_location (cast_stmt
, loc
);
3274 gsi_insert_after (&gsi
, init_stmt
, GSI_SAME_STMT
);
3277 gimple_set_location (init_stmt
, gimple_location (basis_stmt
));
3280 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3284 fputs ("Inserting stride cast: ", dump_file
);
3285 print_gimple_stmt (dump_file
, cast_stmt
, 0, 0);
3287 fputs ("Inserting initializer: ", dump_file
);
3288 print_gimple_stmt (dump_file
, init_stmt
, 0, 0);
3293 /* Return TRUE iff all required increments for candidates feeding PHI
3294 are profitable (and legal!) to replace on behalf of candidate C. */
3297 all_phi_incrs_profitable (slsr_cand_t c
, gphi
*phi
)
3300 slsr_cand_t basis
= lookup_cand (c
->basis
);
3301 slsr_cand_t phi_cand
= *stmt_cand_map
->get (phi
);
3303 /* If the basis doesn't dominate the PHI (including when the PHI is
3304 in the same block as the basis), we won't be able to create a PHI
3305 using the basis here. */
3306 basic_block basis_bb
= gimple_bb (basis
->cand_stmt
);
3307 basic_block phi_bb
= gimple_bb (phi
);
3309 if (phi_bb
== basis_bb
3310 || !dominated_by_p (CDI_DOMINATORS
, phi_bb
, basis_bb
))
3313 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
3315 /* If the PHI arg resides in a block not dominated by the basis,
3316 we won't be able to create a PHI using the basis here. */
3317 basic_block pred_bb
= gimple_phi_arg_edge (phi
, i
)->src
;
3319 if (!dominated_by_p (CDI_DOMINATORS
, pred_bb
, basis_bb
))
3322 tree arg
= gimple_phi_arg_def (phi
, i
);
3324 if (!operand_equal_p (arg
, phi_cand
->base_expr
, 0))
3326 gimple
*arg_def
= SSA_NAME_DEF_STMT (arg
);
3328 if (gimple_code (arg_def
) == GIMPLE_PHI
)
3330 if (!all_phi_incrs_profitable (c
, as_a
<gphi
*> (arg_def
)))
3336 slsr_cand_t arg_cand
= base_cand_from_table (arg
);
3337 widest_int increment
= arg_cand
->index
- basis
->index
;
3339 if (!address_arithmetic_p
&& wi::neg_p (increment
))
3340 increment
= -increment
;
3342 j
= incr_vec_index (increment
);
3344 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3346 fprintf (dump_file
, " Conditional candidate %d, phi: ",
3348 print_gimple_stmt (dump_file
, phi
, 0, 0);
3349 fputs (" increment: ", dump_file
);
3350 print_decs (increment
, dump_file
);
3353 "\n Not replaced; incr_vec overflow.\n");
3355 fprintf (dump_file
, "\n cost: %d\n", incr_vec
[j
].cost
);
3356 if (profitable_increment_p (j
))
3357 fputs (" Replacing...\n", dump_file
);
3359 fputs (" Not replaced.\n", dump_file
);
3363 if (j
< 0 || !profitable_increment_p (j
))
3372 /* Create a NOP_EXPR that copies FROM_EXPR into a new SSA name of
3373 type TO_TYPE, and insert it in front of the statement represented
3374 by candidate C. Use *NEW_VAR to create the new SSA name. Return
3375 the new SSA name. */
3378 introduce_cast_before_cand (slsr_cand_t c
, tree to_type
, tree from_expr
)
3382 gimple_stmt_iterator gsi
= gsi_for_stmt (c
->cand_stmt
);
3384 cast_lhs
= make_temp_ssa_name (to_type
, NULL
, "slsr");
3385 cast_stmt
= gimple_build_assign (cast_lhs
, NOP_EXPR
, from_expr
);
3386 gimple_set_location (cast_stmt
, gimple_location (c
->cand_stmt
));
3387 gsi_insert_before (&gsi
, cast_stmt
, GSI_SAME_STMT
);
3389 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3391 fputs (" Inserting: ", dump_file
);
3392 print_gimple_stmt (dump_file
, cast_stmt
, 0, 0);
3398 /* Replace the RHS of the statement represented by candidate C with
3399 NEW_CODE, NEW_RHS1, and NEW_RHS2, provided that to do so doesn't
3400 leave C unchanged or just interchange its operands. The original
3401 operation and operands are in OLD_CODE, OLD_RHS1, and OLD_RHS2.
3402 If the replacement was made and we are doing a details dump,
3403 return the revised statement, else NULL. */
3406 replace_rhs_if_not_dup (enum tree_code new_code
, tree new_rhs1
, tree new_rhs2
,
3407 enum tree_code old_code
, tree old_rhs1
, tree old_rhs2
,
3410 if (new_code
!= old_code
3411 || ((!operand_equal_p (new_rhs1
, old_rhs1
, 0)
3412 || !operand_equal_p (new_rhs2
, old_rhs2
, 0))
3413 && (!operand_equal_p (new_rhs1
, old_rhs2
, 0)
3414 || !operand_equal_p (new_rhs2
, old_rhs1
, 0))))
3416 gimple_stmt_iterator gsi
= gsi_for_stmt (c
->cand_stmt
);
3418 gimple_assign_set_rhs_with_ops (&gsi
, new_code
, new_rhs1
, new_rhs2
);
3419 update_stmt (gsi_stmt (gsi
));
3420 c
->cand_stmt
= gsi_stmt (gsi
);
3421 while (cc
->next_interp
)
3423 cc
= lookup_cand (cc
->next_interp
);
3424 cc
->cand_stmt
= gsi_stmt (gsi
);
3427 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3428 return gsi_stmt (gsi
);
3431 else if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3432 fputs (" (duplicate, not actually replacing)\n", dump_file
);
3437 /* Strength-reduce the statement represented by candidate C by replacing
3438 it with an equivalent addition or subtraction. I is the index into
3439 the increment vector identifying C's increment. NEW_VAR is used to
3440 create a new SSA name if a cast needs to be introduced. BASIS_NAME
3441 is the rhs1 to use in creating the add/subtract. */
3444 replace_one_candidate (slsr_cand_t c
, unsigned i
, tree basis_name
)
3446 gimple
*stmt_to_print
= NULL
;
3447 tree orig_rhs1
, orig_rhs2
;
3449 enum tree_code orig_code
, repl_code
;
3450 widest_int cand_incr
;
3452 orig_code
= gimple_assign_rhs_code (c
->cand_stmt
);
3453 orig_rhs1
= gimple_assign_rhs1 (c
->cand_stmt
);
3454 orig_rhs2
= gimple_assign_rhs2 (c
->cand_stmt
);
3455 cand_incr
= cand_increment (c
);
3457 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3459 fputs ("Replacing: ", dump_file
);
3460 print_gimple_stmt (dump_file
, c
->cand_stmt
, 0, 0);
3461 stmt_to_print
= c
->cand_stmt
;
3464 if (address_arithmetic_p
)
3465 repl_code
= POINTER_PLUS_EXPR
;
3467 repl_code
= PLUS_EXPR
;
3469 /* If the increment has an initializer T_0, replace the candidate
3470 statement with an add of the basis name and the initializer. */
3471 if (incr_vec
[i
].initializer
)
3473 tree init_type
= TREE_TYPE (incr_vec
[i
].initializer
);
3474 tree orig_type
= TREE_TYPE (orig_rhs2
);
3476 if (types_compatible_p (orig_type
, init_type
))
3477 rhs2
= incr_vec
[i
].initializer
;
3479 rhs2
= introduce_cast_before_cand (c
, orig_type
,
3480 incr_vec
[i
].initializer
);
3482 if (incr_vec
[i
].incr
!= cand_incr
)
3484 gcc_assert (repl_code
== PLUS_EXPR
);
3485 repl_code
= MINUS_EXPR
;
3488 stmt_to_print
= replace_rhs_if_not_dup (repl_code
, basis_name
, rhs2
,
3489 orig_code
, orig_rhs1
, orig_rhs2
,
3493 /* Otherwise, the increment is one of -1, 0, and 1. Replace
3494 with a subtract of the stride from the basis name, a copy
3495 from the basis name, or an add of the stride to the basis
3496 name, respectively. It may be necessary to introduce a
3497 cast (or reuse an existing cast). */
3498 else if (cand_incr
== 1)
3500 tree stride_type
= TREE_TYPE (c
->stride
);
3501 tree orig_type
= TREE_TYPE (orig_rhs2
);
3503 if (types_compatible_p (orig_type
, stride_type
))
3506 rhs2
= introduce_cast_before_cand (c
, orig_type
, c
->stride
);
3508 stmt_to_print
= replace_rhs_if_not_dup (repl_code
, basis_name
, rhs2
,
3509 orig_code
, orig_rhs1
, orig_rhs2
,
3513 else if (cand_incr
== -1)
3515 tree stride_type
= TREE_TYPE (c
->stride
);
3516 tree orig_type
= TREE_TYPE (orig_rhs2
);
3517 gcc_assert (repl_code
!= POINTER_PLUS_EXPR
);
3519 if (types_compatible_p (orig_type
, stride_type
))
3522 rhs2
= introduce_cast_before_cand (c
, orig_type
, c
->stride
);
3524 if (orig_code
!= MINUS_EXPR
3525 || !operand_equal_p (basis_name
, orig_rhs1
, 0)
3526 || !operand_equal_p (rhs2
, orig_rhs2
, 0))
3528 gimple_stmt_iterator gsi
= gsi_for_stmt (c
->cand_stmt
);
3530 gimple_assign_set_rhs_with_ops (&gsi
, MINUS_EXPR
, basis_name
, rhs2
);
3531 update_stmt (gsi_stmt (gsi
));
3532 c
->cand_stmt
= gsi_stmt (gsi
);
3533 while (cc
->next_interp
)
3535 cc
= lookup_cand (cc
->next_interp
);
3536 cc
->cand_stmt
= gsi_stmt (gsi
);
3539 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3540 stmt_to_print
= gsi_stmt (gsi
);
3542 else if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3543 fputs (" (duplicate, not actually replacing)\n", dump_file
);
3546 else if (cand_incr
== 0)
3548 tree lhs
= gimple_assign_lhs (c
->cand_stmt
);
3549 tree lhs_type
= TREE_TYPE (lhs
);
3550 tree basis_type
= TREE_TYPE (basis_name
);
3552 if (types_compatible_p (lhs_type
, basis_type
))
3554 gassign
*copy_stmt
= gimple_build_assign (lhs
, basis_name
);
3555 gimple_stmt_iterator gsi
= gsi_for_stmt (c
->cand_stmt
);
3557 gimple_set_location (copy_stmt
, gimple_location (c
->cand_stmt
));
3558 gsi_replace (&gsi
, copy_stmt
, false);
3559 c
->cand_stmt
= copy_stmt
;
3560 while (cc
->next_interp
)
3562 cc
= lookup_cand (cc
->next_interp
);
3563 cc
->cand_stmt
= copy_stmt
;
3566 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3567 stmt_to_print
= copy_stmt
;
3571 gimple_stmt_iterator gsi
= gsi_for_stmt (c
->cand_stmt
);
3572 gassign
*cast_stmt
= gimple_build_assign (lhs
, NOP_EXPR
, basis_name
);
3574 gimple_set_location (cast_stmt
, gimple_location (c
->cand_stmt
));
3575 gsi_replace (&gsi
, cast_stmt
, false);
3576 c
->cand_stmt
= cast_stmt
;
3577 while (cc
->next_interp
)
3579 cc
= lookup_cand (cc
->next_interp
);
3580 cc
->cand_stmt
= cast_stmt
;
3583 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3584 stmt_to_print
= cast_stmt
;
3590 if (dump_file
&& (dump_flags
& TDF_DETAILS
) && stmt_to_print
)
3592 fputs ("With: ", dump_file
);
3593 print_gimple_stmt (dump_file
, stmt_to_print
, 0, 0);
3594 fputs ("\n", dump_file
);
3598 /* For each candidate in the tree rooted at C, replace it with
3599 an increment if such has been shown to be profitable. */
3602 replace_profitable_candidates (slsr_cand_t c
)
3604 if (!cand_already_replaced (c
))
3606 widest_int increment
= cand_abs_increment (c
);
3607 enum tree_code orig_code
= gimple_assign_rhs_code (c
->cand_stmt
);
3610 i
= incr_vec_index (increment
);
3612 /* Only process profitable increments. Nothing useful can be done
3613 to a cast or copy. */
3615 && profitable_increment_p (i
)
3616 && orig_code
!= SSA_NAME
3617 && !CONVERT_EXPR_CODE_P (orig_code
))
3619 if (phi_dependent_cand_p (c
))
3621 gphi
*phi
= as_a
<gphi
*> (lookup_cand (c
->def_phi
)->cand_stmt
);
3623 if (all_phi_incrs_profitable (c
, phi
))
3625 /* Look up the LHS SSA name from C's basis. This will be
3626 the RHS1 of the adds we will introduce to create new
3628 slsr_cand_t basis
= lookup_cand (c
->basis
);
3629 tree basis_name
= gimple_assign_lhs (basis
->cand_stmt
);
3631 /* Create a new phi statement that will represent C's true
3632 basis after the transformation is complete. */
3633 location_t loc
= gimple_location (c
->cand_stmt
);
3634 tree name
= create_phi_basis (c
, phi
, basis_name
,
3635 loc
, UNKNOWN_STRIDE
);
3637 /* Replace C with an add of the new basis phi and the
3639 replace_one_candidate (c
, i
, name
);
3644 slsr_cand_t basis
= lookup_cand (c
->basis
);
3645 tree basis_name
= gimple_assign_lhs (basis
->cand_stmt
);
3646 replace_one_candidate (c
, i
, basis_name
);
3652 replace_profitable_candidates (lookup_cand (c
->sibling
));
3655 replace_profitable_candidates (lookup_cand (c
->dependent
));
3658 /* Analyze costs of related candidates in the candidate vector,
3659 and make beneficial replacements. */
3662 analyze_candidates_and_replace (void)
3667 /* Each candidate that has a null basis and a non-null
3668 dependent is the root of a tree of related statements.
3669 Analyze each tree to determine a subset of those
3670 statements that can be replaced with maximum benefit. */
3671 FOR_EACH_VEC_ELT (cand_vec
, i
, c
)
3673 slsr_cand_t first_dep
;
3675 if (c
->basis
!= 0 || c
->dependent
== 0)
3678 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3679 fprintf (dump_file
, "\nProcessing dependency tree rooted at %d.\n",
3682 first_dep
= lookup_cand (c
->dependent
);
3684 /* If this is a chain of CAND_REFs, unconditionally replace
3685 each of them with a strength-reduced data reference. */
3686 if (c
->kind
== CAND_REF
)
3689 /* If the common stride of all related candidates is a known
3690 constant, each candidate without a phi-dependence can be
3691 profitably replaced. Each replaces a multiply by a single
3692 add, with the possibility that a feeding add also goes dead.
3693 A candidate with a phi-dependence is replaced only if the
3694 compensation code it requires is offset by the strength
3695 reduction savings. */
3696 else if (TREE_CODE (c
->stride
) == INTEGER_CST
)
3697 replace_uncond_cands_and_profitable_phis (first_dep
);
3699 /* When the stride is an SSA name, it may still be profitable
3700 to replace some or all of the dependent candidates, depending
3701 on whether the introduced increments can be reused, or are
3702 less expensive to calculate than the replaced statements. */
3708 /* Determine whether we'll be generating pointer arithmetic
3709 when replacing candidates. */
3710 address_arithmetic_p
= (c
->kind
== CAND_ADD
3711 && POINTER_TYPE_P (c
->cand_type
));
3713 /* If all candidates have already been replaced under other
3714 interpretations, nothing remains to be done. */
3715 if (!count_candidates (c
))
3718 /* Construct an array of increments for this candidate chain. */
3719 incr_vec
= XNEWVEC (incr_info
, MAX_INCR_VEC_LEN
);
3721 record_increments (c
);
3723 /* Determine which increments are profitable to replace. */
3724 mode
= TYPE_MODE (TREE_TYPE (gimple_assign_lhs (c
->cand_stmt
)));
3725 speed
= optimize_cands_for_speed_p (c
);
3726 analyze_increments (first_dep
, mode
, speed
);
3728 /* Insert initializers of the form T_0 = stride * increment
3729 for use in profitable replacements. */
3730 insert_initializers (first_dep
);
3733 /* Perform the replacements. */
3734 replace_profitable_candidates (first_dep
);
3742 const pass_data pass_data_strength_reduction
=
3744 GIMPLE_PASS
, /* type */
3746 OPTGROUP_NONE
, /* optinfo_flags */
3747 TV_GIMPLE_SLSR
, /* tv_id */
3748 ( PROP_cfg
| PROP_ssa
), /* properties_required */
3749 0, /* properties_provided */
3750 0, /* properties_destroyed */
3751 0, /* todo_flags_start */
3752 0, /* todo_flags_finish */
3755 class pass_strength_reduction
: public gimple_opt_pass
3758 pass_strength_reduction (gcc::context
*ctxt
)
3759 : gimple_opt_pass (pass_data_strength_reduction
, ctxt
)
3762 /* opt_pass methods: */
3763 virtual bool gate (function
*) { return flag_tree_slsr
; }
3764 virtual unsigned int execute (function
*);
3766 }; // class pass_strength_reduction
3769 pass_strength_reduction::execute (function
*fun
)
3771 /* Create the obstack where candidates will reside. */
3772 gcc_obstack_init (&cand_obstack
);
3774 /* Allocate the candidate vector. */
3775 cand_vec
.create (128);
3777 /* Allocate the mapping from statements to candidate indices. */
3778 stmt_cand_map
= new hash_map
<gimple
*, slsr_cand_t
>;
3780 /* Create the obstack where candidate chains will reside. */
3781 gcc_obstack_init (&chain_obstack
);
3783 /* Allocate the mapping from base expressions to candidate chains. */
3784 base_cand_map
= new hash_table
<cand_chain_hasher
> (500);
3786 /* Allocate the mapping from bases to alternative bases. */
3787 alt_base_map
= new hash_map
<tree
, tree
>;
3789 /* Initialize the loop optimizer. We need to detect flow across
3790 back edges, and this gives us dominator information as well. */
3791 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
3793 /* Walk the CFG in predominator order looking for strength reduction
3795 find_candidates_dom_walker (CDI_DOMINATORS
)
3796 .walk (fun
->cfg
->x_entry_block_ptr
);
3798 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3801 dump_cand_chains ();
3804 delete alt_base_map
;
3805 free_affine_expand_cache (&name_expansions
);
3807 /* Analyze costs and make appropriate replacements. */
3808 analyze_candidates_and_replace ();
3810 loop_optimizer_finalize ();
3811 delete base_cand_map
;
3812 base_cand_map
= NULL
;
3813 obstack_free (&chain_obstack
, NULL
);
3814 delete stmt_cand_map
;
3815 cand_vec
.release ();
3816 obstack_free (&cand_obstack
, NULL
);
3824 make_pass_strength_reduction (gcc::context
*ctxt
)
3826 return new pass_strength_reduction (ctxt
);