1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* Middle-to-low level generation of rtx code and insns.
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
36 #include "coretypes.h"
44 #include "stringpool.h"
45 #include "insn-config.h"
49 #include "diagnostic-core.h"
51 #include "fold-const.h"
60 #include "stor-layout.h"
63 struct target_rtl default_target_rtl
;
65 struct target_rtl
*this_target_rtl
= &default_target_rtl
;
68 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
70 /* Commonly used modes. */
72 machine_mode byte_mode
; /* Mode whose width is BITS_PER_UNIT. */
73 machine_mode word_mode
; /* Mode whose width is BITS_PER_WORD. */
74 machine_mode double_mode
; /* Mode whose width is DOUBLE_TYPE_SIZE. */
75 machine_mode ptr_mode
; /* Mode whose width is POINTER_SIZE. */
77 /* Datastructures maintained for currently processed function in RTL form. */
79 struct rtl_data x_rtl
;
81 /* Indexed by pseudo register number, gives the rtx for that pseudo.
82 Allocated in parallel with regno_pointer_align.
83 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
84 with length attribute nested in top level structures. */
88 /* This is *not* reset after each function. It gives each CODE_LABEL
89 in the entire compilation a unique label number. */
91 static GTY(()) int label_num
= 1;
93 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
94 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
95 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
96 is set only for MODE_INT and MODE_VECTOR_INT modes. */
98 rtx const_tiny_rtx
[4][(int) MAX_MACHINE_MODE
];
102 REAL_VALUE_TYPE dconst0
;
103 REAL_VALUE_TYPE dconst1
;
104 REAL_VALUE_TYPE dconst2
;
105 REAL_VALUE_TYPE dconstm1
;
106 REAL_VALUE_TYPE dconsthalf
;
108 /* Record fixed-point constant 0 and 1. */
109 FIXED_VALUE_TYPE fconst0
[MAX_FCONST0
];
110 FIXED_VALUE_TYPE fconst1
[MAX_FCONST1
];
112 /* We make one copy of (const_int C) where C is in
113 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
114 to save space during the compilation and simplify comparisons of
117 rtx const_int_rtx
[MAX_SAVED_CONST_INT
* 2 + 1];
119 /* Standard pieces of rtx, to be substituted directly into things. */
122 rtx simple_return_rtx
;
125 /* Marker used for denoting an INSN, which should never be accessed (i.e.,
126 this pointer should normally never be dereferenced), but is required to be
127 distinct from NULL_RTX. Currently used by peephole2 pass. */
128 rtx_insn
*invalid_insn_rtx
;
130 /* A hash table storing CONST_INTs whose absolute value is greater
131 than MAX_SAVED_CONST_INT. */
133 struct const_int_hasher
: ggc_cache_ptr_hash
<rtx_def
>
135 typedef HOST_WIDE_INT compare_type
;
137 static hashval_t
hash (rtx i
);
138 static bool equal (rtx i
, HOST_WIDE_INT h
);
141 static GTY ((cache
)) hash_table
<const_int_hasher
> *const_int_htab
;
143 struct const_wide_int_hasher
: ggc_cache_ptr_hash
<rtx_def
>
145 static hashval_t
hash (rtx x
);
146 static bool equal (rtx x
, rtx y
);
149 static GTY ((cache
)) hash_table
<const_wide_int_hasher
> *const_wide_int_htab
;
151 /* A hash table storing register attribute structures. */
152 struct reg_attr_hasher
: ggc_cache_ptr_hash
<reg_attrs
>
154 static hashval_t
hash (reg_attrs
*x
);
155 static bool equal (reg_attrs
*a
, reg_attrs
*b
);
158 static GTY ((cache
)) hash_table
<reg_attr_hasher
> *reg_attrs_htab
;
160 /* A hash table storing all CONST_DOUBLEs. */
161 struct const_double_hasher
: ggc_cache_ptr_hash
<rtx_def
>
163 static hashval_t
hash (rtx x
);
164 static bool equal (rtx x
, rtx y
);
167 static GTY ((cache
)) hash_table
<const_double_hasher
> *const_double_htab
;
169 /* A hash table storing all CONST_FIXEDs. */
170 struct const_fixed_hasher
: ggc_cache_ptr_hash
<rtx_def
>
172 static hashval_t
hash (rtx x
);
173 static bool equal (rtx x
, rtx y
);
176 static GTY ((cache
)) hash_table
<const_fixed_hasher
> *const_fixed_htab
;
178 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
179 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
180 #define first_label_num (crtl->emit.x_first_label_num)
182 static void set_used_decls (tree
);
183 static void mark_label_nuses (rtx
);
184 #if TARGET_SUPPORTS_WIDE_INT
185 static rtx
lookup_const_wide_int (rtx
);
187 static rtx
lookup_const_double (rtx
);
188 static rtx
lookup_const_fixed (rtx
);
189 static reg_attrs
*get_reg_attrs (tree
, int);
190 static rtx
gen_const_vector (machine_mode
, int);
191 static void copy_rtx_if_shared_1 (rtx
*orig
);
193 /* Probability of the conditional branch currently proceeded by try_split.
194 Set to -1 otherwise. */
195 int split_branch_probability
= -1;
197 /* Returns a hash code for X (which is a really a CONST_INT). */
200 const_int_hasher::hash (rtx x
)
202 return (hashval_t
) INTVAL (x
);
205 /* Returns nonzero if the value represented by X (which is really a
206 CONST_INT) is the same as that given by Y (which is really a
210 const_int_hasher::equal (rtx x
, HOST_WIDE_INT y
)
212 return (INTVAL (x
) == y
);
215 #if TARGET_SUPPORTS_WIDE_INT
216 /* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
219 const_wide_int_hasher::hash (rtx x
)
222 unsigned HOST_WIDE_INT hash
= 0;
225 for (i
= 0; i
< CONST_WIDE_INT_NUNITS (xr
); i
++)
226 hash
+= CONST_WIDE_INT_ELT (xr
, i
);
228 return (hashval_t
) hash
;
231 /* Returns nonzero if the value represented by X (which is really a
232 CONST_WIDE_INT) is the same as that given by Y (which is really a
236 const_wide_int_hasher::equal (rtx x
, rtx y
)
241 if (CONST_WIDE_INT_NUNITS (xr
) != CONST_WIDE_INT_NUNITS (yr
))
244 for (i
= 0; i
< CONST_WIDE_INT_NUNITS (xr
); i
++)
245 if (CONST_WIDE_INT_ELT (xr
, i
) != CONST_WIDE_INT_ELT (yr
, i
))
252 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
254 const_double_hasher::hash (rtx x
)
256 const_rtx
const value
= x
;
259 if (TARGET_SUPPORTS_WIDE_INT
== 0 && GET_MODE (value
) == VOIDmode
)
260 h
= CONST_DOUBLE_LOW (value
) ^ CONST_DOUBLE_HIGH (value
);
263 h
= real_hash (CONST_DOUBLE_REAL_VALUE (value
));
264 /* MODE is used in the comparison, so it should be in the hash. */
265 h
^= GET_MODE (value
);
270 /* Returns nonzero if the value represented by X (really a ...)
271 is the same as that represented by Y (really a ...) */
273 const_double_hasher::equal (rtx x
, rtx y
)
275 const_rtx
const a
= x
, b
= y
;
277 if (GET_MODE (a
) != GET_MODE (b
))
279 if (TARGET_SUPPORTS_WIDE_INT
== 0 && GET_MODE (a
) == VOIDmode
)
280 return (CONST_DOUBLE_LOW (a
) == CONST_DOUBLE_LOW (b
)
281 && CONST_DOUBLE_HIGH (a
) == CONST_DOUBLE_HIGH (b
));
283 return real_identical (CONST_DOUBLE_REAL_VALUE (a
),
284 CONST_DOUBLE_REAL_VALUE (b
));
287 /* Returns a hash code for X (which is really a CONST_FIXED). */
290 const_fixed_hasher::hash (rtx x
)
292 const_rtx
const value
= x
;
295 h
= fixed_hash (CONST_FIXED_VALUE (value
));
296 /* MODE is used in the comparison, so it should be in the hash. */
297 h
^= GET_MODE (value
);
301 /* Returns nonzero if the value represented by X is the same as that
305 const_fixed_hasher::equal (rtx x
, rtx y
)
307 const_rtx
const a
= x
, b
= y
;
309 if (GET_MODE (a
) != GET_MODE (b
))
311 return fixed_identical (CONST_FIXED_VALUE (a
), CONST_FIXED_VALUE (b
));
314 /* Return true if the given memory attributes are equal. */
317 mem_attrs_eq_p (const struct mem_attrs
*p
, const struct mem_attrs
*q
)
323 return (p
->alias
== q
->alias
324 && p
->offset_known_p
== q
->offset_known_p
325 && (!p
->offset_known_p
|| p
->offset
== q
->offset
)
326 && p
->size_known_p
== q
->size_known_p
327 && (!p
->size_known_p
|| p
->size
== q
->size
)
328 && p
->align
== q
->align
329 && p
->addrspace
== q
->addrspace
330 && (p
->expr
== q
->expr
331 || (p
->expr
!= NULL_TREE
&& q
->expr
!= NULL_TREE
332 && operand_equal_p (p
->expr
, q
->expr
, 0))));
335 /* Set MEM's memory attributes so that they are the same as ATTRS. */
338 set_mem_attrs (rtx mem
, mem_attrs
*attrs
)
340 /* If everything is the default, we can just clear the attributes. */
341 if (mem_attrs_eq_p (attrs
, mode_mem_attrs
[(int) GET_MODE (mem
)]))
348 || !mem_attrs_eq_p (attrs
, MEM_ATTRS (mem
)))
350 MEM_ATTRS (mem
) = ggc_alloc
<mem_attrs
> ();
351 memcpy (MEM_ATTRS (mem
), attrs
, sizeof (mem_attrs
));
355 /* Returns a hash code for X (which is a really a reg_attrs *). */
358 reg_attr_hasher::hash (reg_attrs
*x
)
360 const reg_attrs
*const p
= x
;
362 return ((p
->offset
* 1000) ^ (intptr_t) p
->decl
);
365 /* Returns nonzero if the value represented by X is the same as that given by
369 reg_attr_hasher::equal (reg_attrs
*x
, reg_attrs
*y
)
371 const reg_attrs
*const p
= x
;
372 const reg_attrs
*const q
= y
;
374 return (p
->decl
== q
->decl
&& p
->offset
== q
->offset
);
376 /* Allocate a new reg_attrs structure and insert it into the hash table if
377 one identical to it is not already in the table. We are doing this for
381 get_reg_attrs (tree decl
, int offset
)
385 /* If everything is the default, we can just return zero. */
386 if (decl
== 0 && offset
== 0)
390 attrs
.offset
= offset
;
392 reg_attrs
**slot
= reg_attrs_htab
->find_slot (&attrs
, INSERT
);
395 *slot
= ggc_alloc
<reg_attrs
> ();
396 memcpy (*slot
, &attrs
, sizeof (reg_attrs
));
404 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
405 and to block register equivalences to be seen across this insn. */
410 rtx x
= gen_rtx_ASM_INPUT (VOIDmode
, "");
411 MEM_VOLATILE_P (x
) = true;
417 /* Set the mode and register number of X to MODE and REGNO. */
420 set_mode_and_regno (rtx x
, machine_mode mode
, unsigned int regno
)
422 unsigned int nregs
= (HARD_REGISTER_NUM_P (regno
)
423 ? hard_regno_nregs
[regno
][mode
]
425 PUT_MODE_RAW (x
, mode
);
426 set_regno_raw (x
, regno
, nregs
);
429 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
430 don't attempt to share with the various global pieces of rtl (such as
431 frame_pointer_rtx). */
434 gen_raw_REG (machine_mode mode
, unsigned int regno
)
436 rtx x
= rtx_alloc_stat (REG MEM_STAT_INFO
);
437 set_mode_and_regno (x
, mode
, regno
);
438 REG_ATTRS (x
) = NULL
;
439 ORIGINAL_REGNO (x
) = regno
;
443 /* There are some RTL codes that require special attention; the generation
444 functions do the raw handling. If you add to this list, modify
445 special_rtx in gengenrtl.c as well. */
448 gen_rtx_EXPR_LIST (machine_mode mode
, rtx expr
, rtx expr_list
)
450 return as_a
<rtx_expr_list
*> (gen_rtx_fmt_ee (EXPR_LIST
, mode
, expr
,
455 gen_rtx_INSN_LIST (machine_mode mode
, rtx insn
, rtx insn_list
)
457 return as_a
<rtx_insn_list
*> (gen_rtx_fmt_ue (INSN_LIST
, mode
, insn
,
462 gen_rtx_INSN (machine_mode mode
, rtx_insn
*prev_insn
, rtx_insn
*next_insn
,
463 basic_block bb
, rtx pattern
, int location
, int code
,
466 return as_a
<rtx_insn
*> (gen_rtx_fmt_uuBeiie (INSN
, mode
,
467 prev_insn
, next_insn
,
468 bb
, pattern
, location
, code
,
473 gen_rtx_CONST_INT (machine_mode mode ATTRIBUTE_UNUSED
, HOST_WIDE_INT arg
)
475 if (arg
>= - MAX_SAVED_CONST_INT
&& arg
<= MAX_SAVED_CONST_INT
)
476 return const_int_rtx
[arg
+ MAX_SAVED_CONST_INT
];
478 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
479 if (const_true_rtx
&& arg
== STORE_FLAG_VALUE
)
480 return const_true_rtx
;
483 /* Look up the CONST_INT in the hash table. */
484 rtx
*slot
= const_int_htab
->find_slot_with_hash (arg
, (hashval_t
) arg
,
487 *slot
= gen_rtx_raw_CONST_INT (VOIDmode
, arg
);
493 gen_int_mode (HOST_WIDE_INT c
, machine_mode mode
)
495 return GEN_INT (trunc_int_for_mode (c
, mode
));
498 /* CONST_DOUBLEs might be created from pairs of integers, or from
499 REAL_VALUE_TYPEs. Also, their length is known only at run time,
500 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
502 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
503 hash table. If so, return its counterpart; otherwise add it
504 to the hash table and return it. */
506 lookup_const_double (rtx real
)
508 rtx
*slot
= const_double_htab
->find_slot (real
, INSERT
);
515 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
516 VALUE in mode MODE. */
518 const_double_from_real_value (REAL_VALUE_TYPE value
, machine_mode mode
)
520 rtx real
= rtx_alloc (CONST_DOUBLE
);
521 PUT_MODE (real
, mode
);
525 return lookup_const_double (real
);
528 /* Determine whether FIXED, a CONST_FIXED, already exists in the
529 hash table. If so, return its counterpart; otherwise add it
530 to the hash table and return it. */
533 lookup_const_fixed (rtx fixed
)
535 rtx
*slot
= const_fixed_htab
->find_slot (fixed
, INSERT
);
542 /* Return a CONST_FIXED rtx for a fixed-point value specified by
543 VALUE in mode MODE. */
546 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value
, machine_mode mode
)
548 rtx fixed
= rtx_alloc (CONST_FIXED
);
549 PUT_MODE (fixed
, mode
);
553 return lookup_const_fixed (fixed
);
556 #if TARGET_SUPPORTS_WIDE_INT == 0
557 /* Constructs double_int from rtx CST. */
560 rtx_to_double_int (const_rtx cst
)
564 if (CONST_INT_P (cst
))
565 r
= double_int::from_shwi (INTVAL (cst
));
566 else if (CONST_DOUBLE_AS_INT_P (cst
))
568 r
.low
= CONST_DOUBLE_LOW (cst
);
569 r
.high
= CONST_DOUBLE_HIGH (cst
);
578 #if TARGET_SUPPORTS_WIDE_INT
579 /* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
580 If so, return its counterpart; otherwise add it to the hash table and
584 lookup_const_wide_int (rtx wint
)
586 rtx
*slot
= const_wide_int_htab
->find_slot (wint
, INSERT
);
594 /* Return an rtx constant for V, given that the constant has mode MODE.
595 The returned rtx will be a CONST_INT if V fits, otherwise it will be
596 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
597 (if TARGET_SUPPORTS_WIDE_INT). */
600 immed_wide_int_const (const wide_int_ref
&v
, machine_mode mode
)
602 unsigned int len
= v
.get_len ();
603 unsigned int prec
= GET_MODE_PRECISION (mode
);
605 /* Allow truncation but not extension since we do not know if the
606 number is signed or unsigned. */
607 gcc_assert (prec
<= v
.get_precision ());
609 if (len
< 2 || prec
<= HOST_BITS_PER_WIDE_INT
)
610 return gen_int_mode (v
.elt (0), mode
);
612 #if TARGET_SUPPORTS_WIDE_INT
616 unsigned int blocks_needed
617 = (prec
+ HOST_BITS_PER_WIDE_INT
- 1) / HOST_BITS_PER_WIDE_INT
;
619 if (len
> blocks_needed
)
622 value
= const_wide_int_alloc (len
);
624 /* It is so tempting to just put the mode in here. Must control
626 PUT_MODE (value
, VOIDmode
);
627 CWI_PUT_NUM_ELEM (value
, len
);
629 for (i
= 0; i
< len
; i
++)
630 CONST_WIDE_INT_ELT (value
, i
) = v
.elt (i
);
632 return lookup_const_wide_int (value
);
635 return immed_double_const (v
.elt (0), v
.elt (1), mode
);
639 #if TARGET_SUPPORTS_WIDE_INT == 0
640 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
641 of ints: I0 is the low-order word and I1 is the high-order word.
642 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
643 implied upper bits are copies of the high bit of i1. The value
644 itself is neither signed nor unsigned. Do not use this routine for
645 non-integer modes; convert to REAL_VALUE_TYPE and use
646 const_double_from_real_value. */
649 immed_double_const (HOST_WIDE_INT i0
, HOST_WIDE_INT i1
, machine_mode mode
)
654 /* There are the following cases (note that there are no modes with
655 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
657 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
659 2) If the value of the integer fits into HOST_WIDE_INT anyway
660 (i.e., i1 consists only from copies of the sign bit, and sign
661 of i0 and i1 are the same), then we return a CONST_INT for i0.
662 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
663 if (mode
!= VOIDmode
)
665 gcc_assert (GET_MODE_CLASS (mode
) == MODE_INT
666 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
667 /* We can get a 0 for an error mark. */
668 || GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
669 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
670 || GET_MODE_CLASS (mode
) == MODE_POINTER_BOUNDS
);
672 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
673 return gen_int_mode (i0
, mode
);
676 /* If this integer fits in one word, return a CONST_INT. */
677 if ((i1
== 0 && i0
>= 0) || (i1
== ~0 && i0
< 0))
680 /* We use VOIDmode for integers. */
681 value
= rtx_alloc (CONST_DOUBLE
);
682 PUT_MODE (value
, VOIDmode
);
684 CONST_DOUBLE_LOW (value
) = i0
;
685 CONST_DOUBLE_HIGH (value
) = i1
;
687 for (i
= 2; i
< (sizeof CONST_DOUBLE_FORMAT
- 1); i
++)
688 XWINT (value
, i
) = 0;
690 return lookup_const_double (value
);
695 gen_rtx_REG (machine_mode mode
, unsigned int regno
)
697 /* In case the MD file explicitly references the frame pointer, have
698 all such references point to the same frame pointer. This is
699 used during frame pointer elimination to distinguish the explicit
700 references to these registers from pseudos that happened to be
703 If we have eliminated the frame pointer or arg pointer, we will
704 be using it as a normal register, for example as a spill
705 register. In such cases, we might be accessing it in a mode that
706 is not Pmode and therefore cannot use the pre-allocated rtx.
708 Also don't do this when we are making new REGs in reload, since
709 we don't want to get confused with the real pointers. */
711 if (mode
== Pmode
&& !reload_in_progress
&& !lra_in_progress
)
713 if (regno
== FRAME_POINTER_REGNUM
714 && (!reload_completed
|| frame_pointer_needed
))
715 return frame_pointer_rtx
;
717 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
718 && regno
== HARD_FRAME_POINTER_REGNUM
719 && (!reload_completed
|| frame_pointer_needed
))
720 return hard_frame_pointer_rtx
;
721 #if !HARD_FRAME_POINTER_IS_ARG_POINTER
722 if (FRAME_POINTER_REGNUM
!= ARG_POINTER_REGNUM
723 && regno
== ARG_POINTER_REGNUM
)
724 return arg_pointer_rtx
;
726 #ifdef RETURN_ADDRESS_POINTER_REGNUM
727 if (regno
== RETURN_ADDRESS_POINTER_REGNUM
)
728 return return_address_pointer_rtx
;
730 if (regno
== (unsigned) PIC_OFFSET_TABLE_REGNUM
731 && PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
732 && fixed_regs
[PIC_OFFSET_TABLE_REGNUM
])
733 return pic_offset_table_rtx
;
734 if (regno
== STACK_POINTER_REGNUM
)
735 return stack_pointer_rtx
;
739 /* If the per-function register table has been set up, try to re-use
740 an existing entry in that table to avoid useless generation of RTL.
742 This code is disabled for now until we can fix the various backends
743 which depend on having non-shared hard registers in some cases. Long
744 term we want to re-enable this code as it can significantly cut down
745 on the amount of useless RTL that gets generated.
747 We'll also need to fix some code that runs after reload that wants to
748 set ORIGINAL_REGNO. */
753 && regno
< FIRST_PSEUDO_REGISTER
754 && reg_raw_mode
[regno
] == mode
)
755 return regno_reg_rtx
[regno
];
758 return gen_raw_REG (mode
, regno
);
762 gen_rtx_MEM (machine_mode mode
, rtx addr
)
764 rtx rt
= gen_rtx_raw_MEM (mode
, addr
);
766 /* This field is not cleared by the mere allocation of the rtx, so
773 /* Generate a memory referring to non-trapping constant memory. */
776 gen_const_mem (machine_mode mode
, rtx addr
)
778 rtx mem
= gen_rtx_MEM (mode
, addr
);
779 MEM_READONLY_P (mem
) = 1;
780 MEM_NOTRAP_P (mem
) = 1;
784 /* Generate a MEM referring to fixed portions of the frame, e.g., register
788 gen_frame_mem (machine_mode mode
, rtx addr
)
790 rtx mem
= gen_rtx_MEM (mode
, addr
);
791 MEM_NOTRAP_P (mem
) = 1;
792 set_mem_alias_set (mem
, get_frame_alias_set ());
796 /* Generate a MEM referring to a temporary use of the stack, not part
797 of the fixed stack frame. For example, something which is pushed
798 by a target splitter. */
800 gen_tmp_stack_mem (machine_mode mode
, rtx addr
)
802 rtx mem
= gen_rtx_MEM (mode
, addr
);
803 MEM_NOTRAP_P (mem
) = 1;
804 if (!cfun
->calls_alloca
)
805 set_mem_alias_set (mem
, get_frame_alias_set ());
809 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
810 this construct would be valid, and false otherwise. */
813 validate_subreg (machine_mode omode
, machine_mode imode
,
814 const_rtx reg
, unsigned int offset
)
816 unsigned int isize
= GET_MODE_SIZE (imode
);
817 unsigned int osize
= GET_MODE_SIZE (omode
);
819 /* All subregs must be aligned. */
820 if (offset
% osize
!= 0)
823 /* The subreg offset cannot be outside the inner object. */
827 /* ??? This should not be here. Temporarily continue to allow word_mode
828 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
829 Generally, backends are doing something sketchy but it'll take time to
831 if (omode
== word_mode
)
833 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
834 is the culprit here, and not the backends. */
835 else if (osize
>= UNITS_PER_WORD
&& isize
>= osize
)
837 /* Allow component subregs of complex and vector. Though given the below
838 extraction rules, it's not always clear what that means. */
839 else if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
840 && GET_MODE_INNER (imode
) == omode
)
842 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
843 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
844 represent this. It's questionable if this ought to be represented at
845 all -- why can't this all be hidden in post-reload splitters that make
846 arbitrarily mode changes to the registers themselves. */
847 else if (VECTOR_MODE_P (omode
) && GET_MODE_INNER (omode
) == imode
)
849 /* Subregs involving floating point modes are not allowed to
850 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
851 (subreg:SI (reg:DF) 0) isn't. */
852 else if (FLOAT_MODE_P (imode
) || FLOAT_MODE_P (omode
))
854 if (! (isize
== osize
855 /* LRA can use subreg to store a floating point value in
856 an integer mode. Although the floating point and the
857 integer modes need the same number of hard registers,
858 the size of floating point mode can be less than the
859 integer mode. LRA also uses subregs for a register
860 should be used in different mode in on insn. */
865 /* Paradoxical subregs must have offset zero. */
869 /* This is a normal subreg. Verify that the offset is representable. */
871 /* For hard registers, we already have most of these rules collected in
872 subreg_offset_representable_p. */
873 if (reg
&& REG_P (reg
) && HARD_REGISTER_P (reg
))
875 unsigned int regno
= REGNO (reg
);
877 #ifdef CANNOT_CHANGE_MODE_CLASS
878 if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
879 && GET_MODE_INNER (imode
) == omode
)
881 else if (REG_CANNOT_CHANGE_MODE_P (regno
, imode
, omode
))
885 return subreg_offset_representable_p (regno
, imode
, offset
, omode
);
888 /* For pseudo registers, we want most of the same checks. Namely:
889 If the register no larger than a word, the subreg must be lowpart.
890 If the register is larger than a word, the subreg must be the lowpart
891 of a subword. A subreg does *not* perform arbitrary bit extraction.
892 Given that we've already checked mode/offset alignment, we only have
893 to check subword subregs here. */
894 if (osize
< UNITS_PER_WORD
895 && ! (lra_in_progress
&& (FLOAT_MODE_P (imode
) || FLOAT_MODE_P (omode
))))
897 machine_mode wmode
= isize
> UNITS_PER_WORD
? word_mode
: imode
;
898 unsigned int low_off
= subreg_lowpart_offset (omode
, wmode
);
899 if (offset
% UNITS_PER_WORD
!= low_off
)
906 gen_rtx_SUBREG (machine_mode mode
, rtx reg
, int offset
)
908 gcc_assert (validate_subreg (mode
, GET_MODE (reg
), reg
, offset
));
909 return gen_rtx_raw_SUBREG (mode
, reg
, offset
);
912 /* Generate a SUBREG representing the least-significant part of REG if MODE
913 is smaller than mode of REG, otherwise paradoxical SUBREG. */
916 gen_lowpart_SUBREG (machine_mode mode
, rtx reg
)
920 inmode
= GET_MODE (reg
);
921 if (inmode
== VOIDmode
)
923 return gen_rtx_SUBREG (mode
, reg
,
924 subreg_lowpart_offset (mode
, inmode
));
928 gen_rtx_VAR_LOCATION (machine_mode mode
, tree decl
, rtx loc
,
929 enum var_init_status status
)
931 rtx x
= gen_rtx_fmt_te (VAR_LOCATION
, mode
, decl
, loc
);
932 PAT_VAR_LOCATION_STATUS (x
) = status
;
937 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
940 gen_rtvec (int n
, ...)
948 /* Don't allocate an empty rtvec... */
955 rt_val
= rtvec_alloc (n
);
957 for (i
= 0; i
< n
; i
++)
958 rt_val
->elem
[i
] = va_arg (p
, rtx
);
965 gen_rtvec_v (int n
, rtx
*argp
)
970 /* Don't allocate an empty rtvec... */
974 rt_val
= rtvec_alloc (n
);
976 for (i
= 0; i
< n
; i
++)
977 rt_val
->elem
[i
] = *argp
++;
983 gen_rtvec_v (int n
, rtx_insn
**argp
)
988 /* Don't allocate an empty rtvec... */
992 rt_val
= rtvec_alloc (n
);
994 for (i
= 0; i
< n
; i
++)
995 rt_val
->elem
[i
] = *argp
++;
1001 /* Return the number of bytes between the start of an OUTER_MODE
1002 in-memory value and the start of an INNER_MODE in-memory value,
1003 given that the former is a lowpart of the latter. It may be a
1004 paradoxical lowpart, in which case the offset will be negative
1005 on big-endian targets. */
1008 byte_lowpart_offset (machine_mode outer_mode
,
1009 machine_mode inner_mode
)
1011 if (GET_MODE_SIZE (outer_mode
) < GET_MODE_SIZE (inner_mode
))
1012 return subreg_lowpart_offset (outer_mode
, inner_mode
);
1014 return -subreg_lowpart_offset (inner_mode
, outer_mode
);
1017 /* Generate a REG rtx for a new pseudo register of mode MODE.
1018 This pseudo is assigned the next sequential register number. */
1021 gen_reg_rtx (machine_mode mode
)
1024 unsigned int align
= GET_MODE_ALIGNMENT (mode
);
1026 gcc_assert (can_create_pseudo_p ());
1028 /* If a virtual register with bigger mode alignment is generated,
1029 increase stack alignment estimation because it might be spilled
1031 if (SUPPORTS_STACK_ALIGNMENT
1032 && crtl
->stack_alignment_estimated
< align
1033 && !crtl
->stack_realign_processed
)
1035 unsigned int min_align
= MINIMUM_ALIGNMENT (NULL
, mode
, align
);
1036 if (crtl
->stack_alignment_estimated
< min_align
)
1037 crtl
->stack_alignment_estimated
= min_align
;
1040 if (generating_concat_p
1041 && (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
1042 || GET_MODE_CLASS (mode
) == MODE_COMPLEX_INT
))
1044 /* For complex modes, don't make a single pseudo.
1045 Instead, make a CONCAT of two pseudos.
1046 This allows noncontiguous allocation of the real and imaginary parts,
1047 which makes much better code. Besides, allocating DCmode
1048 pseudos overstrains reload on some machines like the 386. */
1049 rtx realpart
, imagpart
;
1050 machine_mode partmode
= GET_MODE_INNER (mode
);
1052 realpart
= gen_reg_rtx (partmode
);
1053 imagpart
= gen_reg_rtx (partmode
);
1054 return gen_rtx_CONCAT (mode
, realpart
, imagpart
);
1057 /* Do not call gen_reg_rtx with uninitialized crtl. */
1058 gcc_assert (crtl
->emit
.regno_pointer_align_length
);
1060 crtl
->emit
.ensure_regno_capacity ();
1061 gcc_assert (reg_rtx_no
< crtl
->emit
.regno_pointer_align_length
);
1063 val
= gen_raw_REG (mode
, reg_rtx_no
);
1064 regno_reg_rtx
[reg_rtx_no
++] = val
;
1068 /* Make sure m_regno_pointer_align, and regno_reg_rtx are large
1069 enough to have elements in the range 0 <= idx <= reg_rtx_no. */
1072 emit_status::ensure_regno_capacity ()
1074 int old_size
= regno_pointer_align_length
;
1076 if (reg_rtx_no
< old_size
)
1079 int new_size
= old_size
* 2;
1080 while (reg_rtx_no
>= new_size
)
1083 char *tmp
= XRESIZEVEC (char, regno_pointer_align
, new_size
);
1084 memset (tmp
+ old_size
, 0, new_size
- old_size
);
1085 regno_pointer_align
= (unsigned char *) tmp
;
1087 rtx
*new1
= GGC_RESIZEVEC (rtx
, regno_reg_rtx
, new_size
);
1088 memset (new1
+ old_size
, 0, (new_size
- old_size
) * sizeof (rtx
));
1089 regno_reg_rtx
= new1
;
1091 crtl
->emit
.regno_pointer_align_length
= new_size
;
1094 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1097 reg_is_parm_p (rtx reg
)
1101 gcc_assert (REG_P (reg
));
1102 decl
= REG_EXPR (reg
);
1103 return (decl
&& TREE_CODE (decl
) == PARM_DECL
);
1106 /* Update NEW with the same attributes as REG, but with OFFSET added
1107 to the REG_OFFSET. */
1110 update_reg_offset (rtx new_rtx
, rtx reg
, int offset
)
1112 REG_ATTRS (new_rtx
) = get_reg_attrs (REG_EXPR (reg
),
1113 REG_OFFSET (reg
) + offset
);
1116 /* Generate a register with same attributes as REG, but with OFFSET
1117 added to the REG_OFFSET. */
1120 gen_rtx_REG_offset (rtx reg
, machine_mode mode
, unsigned int regno
,
1123 rtx new_rtx
= gen_rtx_REG (mode
, regno
);
1125 update_reg_offset (new_rtx
, reg
, offset
);
1129 /* Generate a new pseudo-register with the same attributes as REG, but
1130 with OFFSET added to the REG_OFFSET. */
1133 gen_reg_rtx_offset (rtx reg
, machine_mode mode
, int offset
)
1135 rtx new_rtx
= gen_reg_rtx (mode
);
1137 update_reg_offset (new_rtx
, reg
, offset
);
1141 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
1142 new register is a (possibly paradoxical) lowpart of the old one. */
1145 adjust_reg_mode (rtx reg
, machine_mode mode
)
1147 update_reg_offset (reg
, reg
, byte_lowpart_offset (mode
, GET_MODE (reg
)));
1148 PUT_MODE (reg
, mode
);
1151 /* Copy REG's attributes from X, if X has any attributes. If REG and X
1152 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1155 set_reg_attrs_from_value (rtx reg
, rtx x
)
1158 bool can_be_reg_pointer
= true;
1160 /* Don't call mark_reg_pointer for incompatible pointer sign
1162 while (GET_CODE (x
) == SIGN_EXTEND
1163 || GET_CODE (x
) == ZERO_EXTEND
1164 || GET_CODE (x
) == TRUNCATE
1165 || (GET_CODE (x
) == SUBREG
&& subreg_lowpart_p (x
)))
1167 #if defined(POINTERS_EXTEND_UNSIGNED)
1168 if (((GET_CODE (x
) == SIGN_EXTEND
&& POINTERS_EXTEND_UNSIGNED
)
1169 || (GET_CODE (x
) == ZERO_EXTEND
&& ! POINTERS_EXTEND_UNSIGNED
)
1170 || (paradoxical_subreg_p (x
)
1171 && ! (SUBREG_PROMOTED_VAR_P (x
)
1172 && SUBREG_CHECK_PROMOTED_SIGN (x
,
1173 POINTERS_EXTEND_UNSIGNED
))))
1174 && !targetm
.have_ptr_extend ())
1175 can_be_reg_pointer
= false;
1180 /* Hard registers can be reused for multiple purposes within the same
1181 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1182 on them is wrong. */
1183 if (HARD_REGISTER_P (reg
))
1186 offset
= byte_lowpart_offset (GET_MODE (reg
), GET_MODE (x
));
1189 if (MEM_OFFSET_KNOWN_P (x
))
1190 REG_ATTRS (reg
) = get_reg_attrs (MEM_EXPR (x
),
1191 MEM_OFFSET (x
) + offset
);
1192 if (can_be_reg_pointer
&& MEM_POINTER (x
))
1193 mark_reg_pointer (reg
, 0);
1198 update_reg_offset (reg
, x
, offset
);
1199 if (can_be_reg_pointer
&& REG_POINTER (x
))
1200 mark_reg_pointer (reg
, REGNO_POINTER_ALIGN (REGNO (x
)));
1204 /* Generate a REG rtx for a new pseudo register, copying the mode
1205 and attributes from X. */
1208 gen_reg_rtx_and_attrs (rtx x
)
1210 rtx reg
= gen_reg_rtx (GET_MODE (x
));
1211 set_reg_attrs_from_value (reg
, x
);
1215 /* Set the register attributes for registers contained in PARM_RTX.
1216 Use needed values from memory attributes of MEM. */
1219 set_reg_attrs_for_parm (rtx parm_rtx
, rtx mem
)
1221 if (REG_P (parm_rtx
))
1222 set_reg_attrs_from_value (parm_rtx
, mem
);
1223 else if (GET_CODE (parm_rtx
) == PARALLEL
)
1225 /* Check for a NULL entry in the first slot, used to indicate that the
1226 parameter goes both on the stack and in registers. */
1227 int i
= XEXP (XVECEXP (parm_rtx
, 0, 0), 0) ? 0 : 1;
1228 for (; i
< XVECLEN (parm_rtx
, 0); i
++)
1230 rtx x
= XVECEXP (parm_rtx
, 0, i
);
1231 if (REG_P (XEXP (x
, 0)))
1232 REG_ATTRS (XEXP (x
, 0))
1233 = get_reg_attrs (MEM_EXPR (mem
),
1234 INTVAL (XEXP (x
, 1)));
1239 /* Set the REG_ATTRS for registers in value X, given that X represents
1243 set_reg_attrs_for_decl_rtl (tree t
, rtx x
)
1248 if (GET_CODE (x
) == SUBREG
)
1250 gcc_assert (subreg_lowpart_p (x
));
1255 = get_reg_attrs (t
, byte_lowpart_offset (GET_MODE (x
),
1258 : TYPE_MODE (TREE_TYPE (tdecl
))));
1259 if (GET_CODE (x
) == CONCAT
)
1261 if (REG_P (XEXP (x
, 0)))
1262 REG_ATTRS (XEXP (x
, 0)) = get_reg_attrs (t
, 0);
1263 if (REG_P (XEXP (x
, 1)))
1264 REG_ATTRS (XEXP (x
, 1))
1265 = get_reg_attrs (t
, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x
, 0))));
1267 if (GET_CODE (x
) == PARALLEL
)
1271 /* Check for a NULL entry, used to indicate that the parameter goes
1272 both on the stack and in registers. */
1273 if (XEXP (XVECEXP (x
, 0, 0), 0))
1278 for (i
= start
; i
< XVECLEN (x
, 0); i
++)
1280 rtx y
= XVECEXP (x
, 0, i
);
1281 if (REG_P (XEXP (y
, 0)))
1282 REG_ATTRS (XEXP (y
, 0)) = get_reg_attrs (t
, INTVAL (XEXP (y
, 1)));
1287 /* Assign the RTX X to declaration T. */
1290 set_decl_rtl (tree t
, rtx x
)
1292 DECL_WRTL_CHECK (t
)->decl_with_rtl
.rtl
= x
;
1294 set_reg_attrs_for_decl_rtl (t
, x
);
1297 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1298 if the ABI requires the parameter to be passed by reference. */
1301 set_decl_incoming_rtl (tree t
, rtx x
, bool by_reference_p
)
1303 DECL_INCOMING_RTL (t
) = x
;
1304 if (x
&& !by_reference_p
)
1305 set_reg_attrs_for_decl_rtl (t
, x
);
1308 /* Identify REG (which may be a CONCAT) as a user register. */
1311 mark_user_reg (rtx reg
)
1313 if (GET_CODE (reg
) == CONCAT
)
1315 REG_USERVAR_P (XEXP (reg
, 0)) = 1;
1316 REG_USERVAR_P (XEXP (reg
, 1)) = 1;
1320 gcc_assert (REG_P (reg
));
1321 REG_USERVAR_P (reg
) = 1;
1325 /* Identify REG as a probable pointer register and show its alignment
1326 as ALIGN, if nonzero. */
1329 mark_reg_pointer (rtx reg
, int align
)
1331 if (! REG_POINTER (reg
))
1333 REG_POINTER (reg
) = 1;
1336 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1338 else if (align
&& align
< REGNO_POINTER_ALIGN (REGNO (reg
)))
1339 /* We can no-longer be sure just how aligned this pointer is. */
1340 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1343 /* Return 1 plus largest pseudo reg number used in the current function. */
1351 /* Return 1 + the largest label number used so far in the current function. */
1354 max_label_num (void)
1359 /* Return first label number used in this function (if any were used). */
1362 get_first_label_num (void)
1364 return first_label_num
;
1367 /* If the rtx for label was created during the expansion of a nested
1368 function, then first_label_num won't include this label number.
1369 Fix this now so that array indices work later. */
1372 maybe_set_first_label_num (rtx_code_label
*x
)
1374 if (CODE_LABEL_NUMBER (x
) < first_label_num
)
1375 first_label_num
= CODE_LABEL_NUMBER (x
);
1378 /* For use by the RTL function loader, when mingling with normal
1380 Ensure that label_num is greater than the label num of X, to avoid
1381 duplicate labels in the generated assembler. */
1384 maybe_set_max_label_num (rtx_code_label
*x
)
1386 if (CODE_LABEL_NUMBER (x
) >= label_num
)
1387 label_num
= CODE_LABEL_NUMBER (x
) + 1;
1391 /* Return a value representing some low-order bits of X, where the number
1392 of low-order bits is given by MODE. Note that no conversion is done
1393 between floating-point and fixed-point values, rather, the bit
1394 representation is returned.
1396 This function handles the cases in common between gen_lowpart, below,
1397 and two variants in cse.c and combine.c. These are the cases that can
1398 be safely handled at all points in the compilation.
1400 If this is not a case we can handle, return 0. */
1403 gen_lowpart_common (machine_mode mode
, rtx x
)
1405 int msize
= GET_MODE_SIZE (mode
);
1407 machine_mode innermode
;
1409 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1410 so we have to make one up. Yuk. */
1411 innermode
= GET_MODE (x
);
1413 && msize
* BITS_PER_UNIT
<= HOST_BITS_PER_WIDE_INT
)
1414 innermode
= mode_for_size (HOST_BITS_PER_WIDE_INT
, MODE_INT
, 0);
1415 else if (innermode
== VOIDmode
)
1416 innermode
= mode_for_size (HOST_BITS_PER_DOUBLE_INT
, MODE_INT
, 0);
1418 xsize
= GET_MODE_SIZE (innermode
);
1420 gcc_assert (innermode
!= VOIDmode
&& innermode
!= BLKmode
);
1422 if (innermode
== mode
)
1425 /* MODE must occupy no more words than the mode of X. */
1426 if ((msize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
1427 > ((xsize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))
1430 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1431 if (SCALAR_FLOAT_MODE_P (mode
) && msize
> xsize
)
1434 if ((GET_CODE (x
) == ZERO_EXTEND
|| GET_CODE (x
) == SIGN_EXTEND
)
1435 && (GET_MODE_CLASS (mode
) == MODE_INT
1436 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
))
1438 /* If we are getting the low-order part of something that has been
1439 sign- or zero-extended, we can either just use the object being
1440 extended or make a narrower extension. If we want an even smaller
1441 piece than the size of the object being extended, call ourselves
1444 This case is used mostly by combine and cse. */
1446 if (GET_MODE (XEXP (x
, 0)) == mode
)
1448 else if (msize
< GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))))
1449 return gen_lowpart_common (mode
, XEXP (x
, 0));
1450 else if (msize
< xsize
)
1451 return gen_rtx_fmt_e (GET_CODE (x
), mode
, XEXP (x
, 0));
1453 else if (GET_CODE (x
) == SUBREG
|| REG_P (x
)
1454 || GET_CODE (x
) == CONCAT
|| GET_CODE (x
) == CONST_VECTOR
1455 || CONST_DOUBLE_AS_FLOAT_P (x
) || CONST_SCALAR_INT_P (x
))
1456 return lowpart_subreg (mode
, x
, innermode
);
1458 /* Otherwise, we can't do this. */
1463 gen_highpart (machine_mode mode
, rtx x
)
1465 unsigned int msize
= GET_MODE_SIZE (mode
);
1468 /* This case loses if X is a subreg. To catch bugs early,
1469 complain if an invalid MODE is used even in other cases. */
1470 gcc_assert (msize
<= UNITS_PER_WORD
1471 || msize
== (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x
)));
1473 result
= simplify_gen_subreg (mode
, x
, GET_MODE (x
),
1474 subreg_highpart_offset (mode
, GET_MODE (x
)));
1475 gcc_assert (result
);
1477 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1478 the target if we have a MEM. gen_highpart must return a valid operand,
1479 emitting code if necessary to do so. */
1482 result
= validize_mem (result
);
1483 gcc_assert (result
);
1489 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1490 be VOIDmode constant. */
1492 gen_highpart_mode (machine_mode outermode
, machine_mode innermode
, rtx exp
)
1494 if (GET_MODE (exp
) != VOIDmode
)
1496 gcc_assert (GET_MODE (exp
) == innermode
);
1497 return gen_highpart (outermode
, exp
);
1499 return simplify_gen_subreg (outermode
, exp
, innermode
,
1500 subreg_highpart_offset (outermode
, innermode
));
1503 /* Return the SUBREG_BYTE for a lowpart subreg whose outer mode has
1504 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1507 subreg_size_lowpart_offset (unsigned int outer_bytes
, unsigned int inner_bytes
)
1509 if (outer_bytes
> inner_bytes
)
1510 /* Paradoxical subregs always have a SUBREG_BYTE of 0. */
1513 if (BYTES_BIG_ENDIAN
&& WORDS_BIG_ENDIAN
)
1514 return inner_bytes
- outer_bytes
;
1515 else if (!BYTES_BIG_ENDIAN
&& !WORDS_BIG_ENDIAN
)
1518 return subreg_size_offset_from_lsb (outer_bytes
, inner_bytes
, 0);
1521 /* Return the SUBREG_BYTE for a highpart subreg whose outer mode has
1522 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1525 subreg_size_highpart_offset (unsigned int outer_bytes
,
1526 unsigned int inner_bytes
)
1528 gcc_assert (inner_bytes
>= outer_bytes
);
1530 if (BYTES_BIG_ENDIAN
&& WORDS_BIG_ENDIAN
)
1532 else if (!BYTES_BIG_ENDIAN
&& !WORDS_BIG_ENDIAN
)
1533 return inner_bytes
- outer_bytes
;
1535 return subreg_size_offset_from_lsb (outer_bytes
, inner_bytes
,
1536 (inner_bytes
- outer_bytes
)
1540 /* Return 1 iff X, assumed to be a SUBREG,
1541 refers to the least significant part of its containing reg.
1542 If X is not a SUBREG, always return 1 (it is its own low part!). */
1545 subreg_lowpart_p (const_rtx x
)
1547 if (GET_CODE (x
) != SUBREG
)
1549 else if (GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
1552 return (subreg_lowpart_offset (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)))
1553 == SUBREG_BYTE (x
));
1556 /* Return true if X is a paradoxical subreg, false otherwise. */
1558 paradoxical_subreg_p (const_rtx x
)
1560 if (GET_CODE (x
) != SUBREG
)
1562 return (GET_MODE_PRECISION (GET_MODE (x
))
1563 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x
))));
1566 /* Return subword OFFSET of operand OP.
1567 The word number, OFFSET, is interpreted as the word number starting
1568 at the low-order address. OFFSET 0 is the low-order word if not
1569 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1571 If we cannot extract the required word, we return zero. Otherwise,
1572 an rtx corresponding to the requested word will be returned.
1574 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1575 reload has completed, a valid address will always be returned. After
1576 reload, if a valid address cannot be returned, we return zero.
1578 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1579 it is the responsibility of the caller.
1581 MODE is the mode of OP in case it is a CONST_INT.
1583 ??? This is still rather broken for some cases. The problem for the
1584 moment is that all callers of this thing provide no 'goal mode' to
1585 tell us to work with. This exists because all callers were written
1586 in a word based SUBREG world.
1587 Now use of this function can be deprecated by simplify_subreg in most
1592 operand_subword (rtx op
, unsigned int offset
, int validate_address
, machine_mode mode
)
1594 if (mode
== VOIDmode
)
1595 mode
= GET_MODE (op
);
1597 gcc_assert (mode
!= VOIDmode
);
1599 /* If OP is narrower than a word, fail. */
1601 && (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
))
1604 /* If we want a word outside OP, return zero. */
1606 && (offset
+ 1) * UNITS_PER_WORD
> GET_MODE_SIZE (mode
))
1609 /* Form a new MEM at the requested address. */
1612 rtx new_rtx
= adjust_address_nv (op
, word_mode
, offset
* UNITS_PER_WORD
);
1614 if (! validate_address
)
1617 else if (reload_completed
)
1619 if (! strict_memory_address_addr_space_p (word_mode
,
1621 MEM_ADDR_SPACE (op
)))
1625 return replace_equiv_address (new_rtx
, XEXP (new_rtx
, 0));
1628 /* Rest can be handled by simplify_subreg. */
1629 return simplify_gen_subreg (word_mode
, op
, mode
, (offset
* UNITS_PER_WORD
));
1632 /* Similar to `operand_subword', but never return 0. If we can't
1633 extract the required subword, put OP into a register and try again.
1634 The second attempt must succeed. We always validate the address in
1637 MODE is the mode of OP, in case it is CONST_INT. */
1640 operand_subword_force (rtx op
, unsigned int offset
, machine_mode mode
)
1642 rtx result
= operand_subword (op
, offset
, 1, mode
);
1647 if (mode
!= BLKmode
&& mode
!= VOIDmode
)
1649 /* If this is a register which can not be accessed by words, copy it
1650 to a pseudo register. */
1652 op
= copy_to_reg (op
);
1654 op
= force_reg (mode
, op
);
1657 result
= operand_subword (op
, offset
, 1, mode
);
1658 gcc_assert (result
);
1663 /* Returns 1 if both MEM_EXPR can be considered equal
1667 mem_expr_equal_p (const_tree expr1
, const_tree expr2
)
1672 if (! expr1
|| ! expr2
)
1675 if (TREE_CODE (expr1
) != TREE_CODE (expr2
))
1678 return operand_equal_p (expr1
, expr2
, 0);
1681 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1682 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1686 get_mem_align_offset (rtx mem
, unsigned int align
)
1689 unsigned HOST_WIDE_INT offset
;
1691 /* This function can't use
1692 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1693 || (MAX (MEM_ALIGN (mem),
1694 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1698 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1700 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1701 for <variable>. get_inner_reference doesn't handle it and
1702 even if it did, the alignment in that case needs to be determined
1703 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1704 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1705 isn't sufficiently aligned, the object it is in might be. */
1706 gcc_assert (MEM_P (mem
));
1707 expr
= MEM_EXPR (mem
);
1708 if (expr
== NULL_TREE
|| !MEM_OFFSET_KNOWN_P (mem
))
1711 offset
= MEM_OFFSET (mem
);
1714 if (DECL_ALIGN (expr
) < align
)
1717 else if (INDIRECT_REF_P (expr
))
1719 if (TYPE_ALIGN (TREE_TYPE (expr
)) < (unsigned int) align
)
1722 else if (TREE_CODE (expr
) == COMPONENT_REF
)
1726 tree inner
= TREE_OPERAND (expr
, 0);
1727 tree field
= TREE_OPERAND (expr
, 1);
1728 tree byte_offset
= component_ref_field_offset (expr
);
1729 tree bit_offset
= DECL_FIELD_BIT_OFFSET (field
);
1732 || !tree_fits_uhwi_p (byte_offset
)
1733 || !tree_fits_uhwi_p (bit_offset
))
1736 offset
+= tree_to_uhwi (byte_offset
);
1737 offset
+= tree_to_uhwi (bit_offset
) / BITS_PER_UNIT
;
1739 if (inner
== NULL_TREE
)
1741 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field
))
1742 < (unsigned int) align
)
1746 else if (DECL_P (inner
))
1748 if (DECL_ALIGN (inner
) < align
)
1752 else if (TREE_CODE (inner
) != COMPONENT_REF
)
1760 return offset
& ((align
/ BITS_PER_UNIT
) - 1);
1763 /* Given REF (a MEM) and T, either the type of X or the expression
1764 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1765 if we are making a new object of this type. BITPOS is nonzero if
1766 there is an offset outstanding on T that will be applied later. */
1769 set_mem_attributes_minus_bitpos (rtx ref
, tree t
, int objectp
,
1770 HOST_WIDE_INT bitpos
)
1772 HOST_WIDE_INT apply_bitpos
= 0;
1774 struct mem_attrs attrs
, *defattrs
, *refattrs
;
1777 /* It can happen that type_for_mode was given a mode for which there
1778 is no language-level type. In which case it returns NULL, which
1783 type
= TYPE_P (t
) ? t
: TREE_TYPE (t
);
1784 if (type
== error_mark_node
)
1787 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1788 wrong answer, as it assumes that DECL_RTL already has the right alias
1789 info. Callers should not set DECL_RTL until after the call to
1790 set_mem_attributes. */
1791 gcc_assert (!DECL_P (t
) || ref
!= DECL_RTL_IF_SET (t
));
1793 memset (&attrs
, 0, sizeof (attrs
));
1795 /* Get the alias set from the expression or type (perhaps using a
1796 front-end routine) and use it. */
1797 attrs
.alias
= get_alias_set (t
);
1799 MEM_VOLATILE_P (ref
) |= TYPE_VOLATILE (type
);
1800 MEM_POINTER (ref
) = POINTER_TYPE_P (type
);
1802 /* Default values from pre-existing memory attributes if present. */
1803 refattrs
= MEM_ATTRS (ref
);
1806 /* ??? Can this ever happen? Calling this routine on a MEM that
1807 already carries memory attributes should probably be invalid. */
1808 attrs
.expr
= refattrs
->expr
;
1809 attrs
.offset_known_p
= refattrs
->offset_known_p
;
1810 attrs
.offset
= refattrs
->offset
;
1811 attrs
.size_known_p
= refattrs
->size_known_p
;
1812 attrs
.size
= refattrs
->size
;
1813 attrs
.align
= refattrs
->align
;
1816 /* Otherwise, default values from the mode of the MEM reference. */
1819 defattrs
= mode_mem_attrs
[(int) GET_MODE (ref
)];
1820 gcc_assert (!defattrs
->expr
);
1821 gcc_assert (!defattrs
->offset_known_p
);
1823 /* Respect mode size. */
1824 attrs
.size_known_p
= defattrs
->size_known_p
;
1825 attrs
.size
= defattrs
->size
;
1826 /* ??? Is this really necessary? We probably should always get
1827 the size from the type below. */
1829 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1830 if T is an object, always compute the object alignment below. */
1832 attrs
.align
= defattrs
->align
;
1834 attrs
.align
= BITS_PER_UNIT
;
1835 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1836 e.g. if the type carries an alignment attribute. Should we be
1837 able to simply always use TYPE_ALIGN? */
1840 /* We can set the alignment from the type if we are making an object or if
1841 this is an INDIRECT_REF. */
1842 if (objectp
|| TREE_CODE (t
) == INDIRECT_REF
)
1843 attrs
.align
= MAX (attrs
.align
, TYPE_ALIGN (type
));
1845 /* If the size is known, we can set that. */
1846 tree new_size
= TYPE_SIZE_UNIT (type
);
1848 /* The address-space is that of the type. */
1849 as
= TYPE_ADDR_SPACE (type
);
1851 /* If T is not a type, we may be able to deduce some more information about
1857 if (TREE_THIS_VOLATILE (t
))
1858 MEM_VOLATILE_P (ref
) = 1;
1860 /* Now remove any conversions: they don't change what the underlying
1861 object is. Likewise for SAVE_EXPR. */
1862 while (CONVERT_EXPR_P (t
)
1863 || TREE_CODE (t
) == VIEW_CONVERT_EXPR
1864 || TREE_CODE (t
) == SAVE_EXPR
)
1865 t
= TREE_OPERAND (t
, 0);
1867 /* Note whether this expression can trap. */
1868 MEM_NOTRAP_P (ref
) = !tree_could_trap_p (t
);
1870 base
= get_base_address (t
);
1874 && TREE_READONLY (base
)
1875 && (TREE_STATIC (base
) || DECL_EXTERNAL (base
))
1876 && !TREE_THIS_VOLATILE (base
))
1877 MEM_READONLY_P (ref
) = 1;
1879 /* Mark static const strings readonly as well. */
1880 if (TREE_CODE (base
) == STRING_CST
1881 && TREE_READONLY (base
)
1882 && TREE_STATIC (base
))
1883 MEM_READONLY_P (ref
) = 1;
1885 /* Address-space information is on the base object. */
1886 if (TREE_CODE (base
) == MEM_REF
1887 || TREE_CODE (base
) == TARGET_MEM_REF
)
1888 as
= TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base
,
1891 as
= TYPE_ADDR_SPACE (TREE_TYPE (base
));
1894 /* If this expression uses it's parent's alias set, mark it such
1895 that we won't change it. */
1896 if (component_uses_parent_alias_set_from (t
) != NULL_TREE
)
1897 MEM_KEEP_ALIAS_SET_P (ref
) = 1;
1899 /* If this is a decl, set the attributes of the MEM from it. */
1903 attrs
.offset_known_p
= true;
1905 apply_bitpos
= bitpos
;
1906 new_size
= DECL_SIZE_UNIT (t
);
1909 /* ??? If we end up with a constant here do record a MEM_EXPR. */
1910 else if (CONSTANT_CLASS_P (t
))
1913 /* If this is a field reference, record it. */
1914 else if (TREE_CODE (t
) == COMPONENT_REF
)
1917 attrs
.offset_known_p
= true;
1919 apply_bitpos
= bitpos
;
1920 if (DECL_BIT_FIELD (TREE_OPERAND (t
, 1)))
1921 new_size
= DECL_SIZE_UNIT (TREE_OPERAND (t
, 1));
1924 /* If this is an array reference, look for an outer field reference. */
1925 else if (TREE_CODE (t
) == ARRAY_REF
)
1927 tree off_tree
= size_zero_node
;
1928 /* We can't modify t, because we use it at the end of the
1934 tree index
= TREE_OPERAND (t2
, 1);
1935 tree low_bound
= array_ref_low_bound (t2
);
1936 tree unit_size
= array_ref_element_size (t2
);
1938 /* We assume all arrays have sizes that are a multiple of a byte.
1939 First subtract the lower bound, if any, in the type of the
1940 index, then convert to sizetype and multiply by the size of
1941 the array element. */
1942 if (! integer_zerop (low_bound
))
1943 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
1946 off_tree
= size_binop (PLUS_EXPR
,
1947 size_binop (MULT_EXPR
,
1948 fold_convert (sizetype
,
1952 t2
= TREE_OPERAND (t2
, 0);
1954 while (TREE_CODE (t2
) == ARRAY_REF
);
1957 || TREE_CODE (t2
) == COMPONENT_REF
)
1960 attrs
.offset_known_p
= false;
1961 if (tree_fits_uhwi_p (off_tree
))
1963 attrs
.offset_known_p
= true;
1964 attrs
.offset
= tree_to_uhwi (off_tree
);
1965 apply_bitpos
= bitpos
;
1968 /* Else do not record a MEM_EXPR. */
1971 /* If this is an indirect reference, record it. */
1972 else if (TREE_CODE (t
) == MEM_REF
1973 || TREE_CODE (t
) == TARGET_MEM_REF
)
1976 attrs
.offset_known_p
= true;
1978 apply_bitpos
= bitpos
;
1981 /* Compute the alignment. */
1982 unsigned int obj_align
;
1983 unsigned HOST_WIDE_INT obj_bitpos
;
1984 get_object_alignment_1 (t
, &obj_align
, &obj_bitpos
);
1985 obj_bitpos
= (obj_bitpos
- bitpos
) & (obj_align
- 1);
1986 if (obj_bitpos
!= 0)
1987 obj_align
= least_bit_hwi (obj_bitpos
);
1988 attrs
.align
= MAX (attrs
.align
, obj_align
);
1991 if (tree_fits_uhwi_p (new_size
))
1993 attrs
.size_known_p
= true;
1994 attrs
.size
= tree_to_uhwi (new_size
);
1997 /* If we modified OFFSET based on T, then subtract the outstanding
1998 bit position offset. Similarly, increase the size of the accessed
1999 object to contain the negative offset. */
2002 gcc_assert (attrs
.offset_known_p
);
2003 attrs
.offset
-= apply_bitpos
/ BITS_PER_UNIT
;
2004 if (attrs
.size_known_p
)
2005 attrs
.size
+= apply_bitpos
/ BITS_PER_UNIT
;
2008 /* Now set the attributes we computed above. */
2009 attrs
.addrspace
= as
;
2010 set_mem_attrs (ref
, &attrs
);
2014 set_mem_attributes (rtx ref
, tree t
, int objectp
)
2016 set_mem_attributes_minus_bitpos (ref
, t
, objectp
, 0);
2019 /* Set the alias set of MEM to SET. */
2022 set_mem_alias_set (rtx mem
, alias_set_type set
)
2024 struct mem_attrs attrs
;
2026 /* If the new and old alias sets don't conflict, something is wrong. */
2027 gcc_checking_assert (alias_sets_conflict_p (set
, MEM_ALIAS_SET (mem
)));
2028 attrs
= *get_mem_attrs (mem
);
2030 set_mem_attrs (mem
, &attrs
);
2033 /* Set the address space of MEM to ADDRSPACE (target-defined). */
2036 set_mem_addr_space (rtx mem
, addr_space_t addrspace
)
2038 struct mem_attrs attrs
;
2040 attrs
= *get_mem_attrs (mem
);
2041 attrs
.addrspace
= addrspace
;
2042 set_mem_attrs (mem
, &attrs
);
2045 /* Set the alignment of MEM to ALIGN bits. */
2048 set_mem_align (rtx mem
, unsigned int align
)
2050 struct mem_attrs attrs
;
2052 attrs
= *get_mem_attrs (mem
);
2053 attrs
.align
= align
;
2054 set_mem_attrs (mem
, &attrs
);
2057 /* Set the expr for MEM to EXPR. */
2060 set_mem_expr (rtx mem
, tree expr
)
2062 struct mem_attrs attrs
;
2064 attrs
= *get_mem_attrs (mem
);
2066 set_mem_attrs (mem
, &attrs
);
2069 /* Set the offset of MEM to OFFSET. */
2072 set_mem_offset (rtx mem
, HOST_WIDE_INT offset
)
2074 struct mem_attrs attrs
;
2076 attrs
= *get_mem_attrs (mem
);
2077 attrs
.offset_known_p
= true;
2078 attrs
.offset
= offset
;
2079 set_mem_attrs (mem
, &attrs
);
2082 /* Clear the offset of MEM. */
2085 clear_mem_offset (rtx mem
)
2087 struct mem_attrs attrs
;
2089 attrs
= *get_mem_attrs (mem
);
2090 attrs
.offset_known_p
= false;
2091 set_mem_attrs (mem
, &attrs
);
2094 /* Set the size of MEM to SIZE. */
2097 set_mem_size (rtx mem
, HOST_WIDE_INT size
)
2099 struct mem_attrs attrs
;
2101 attrs
= *get_mem_attrs (mem
);
2102 attrs
.size_known_p
= true;
2104 set_mem_attrs (mem
, &attrs
);
2107 /* Clear the size of MEM. */
2110 clear_mem_size (rtx mem
)
2112 struct mem_attrs attrs
;
2114 attrs
= *get_mem_attrs (mem
);
2115 attrs
.size_known_p
= false;
2116 set_mem_attrs (mem
, &attrs
);
2119 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2120 and its address changed to ADDR. (VOIDmode means don't change the mode.
2121 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2122 returned memory location is required to be valid. INPLACE is true if any
2123 changes can be made directly to MEMREF or false if MEMREF must be treated
2126 The memory attributes are not changed. */
2129 change_address_1 (rtx memref
, machine_mode mode
, rtx addr
, int validate
,
2135 gcc_assert (MEM_P (memref
));
2136 as
= MEM_ADDR_SPACE (memref
);
2137 if (mode
== VOIDmode
)
2138 mode
= GET_MODE (memref
);
2140 addr
= XEXP (memref
, 0);
2141 if (mode
== GET_MODE (memref
) && addr
== XEXP (memref
, 0)
2142 && (!validate
|| memory_address_addr_space_p (mode
, addr
, as
)))
2145 /* Don't validate address for LRA. LRA can make the address valid
2146 by itself in most efficient way. */
2147 if (validate
&& !lra_in_progress
)
2149 if (reload_in_progress
|| reload_completed
)
2150 gcc_assert (memory_address_addr_space_p (mode
, addr
, as
));
2152 addr
= memory_address_addr_space (mode
, addr
, as
);
2155 if (rtx_equal_p (addr
, XEXP (memref
, 0)) && mode
== GET_MODE (memref
))
2160 XEXP (memref
, 0) = addr
;
2164 new_rtx
= gen_rtx_MEM (mode
, addr
);
2165 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
2169 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2170 way we are changing MEMREF, so we only preserve the alias set. */
2173 change_address (rtx memref
, machine_mode mode
, rtx addr
)
2175 rtx new_rtx
= change_address_1 (memref
, mode
, addr
, 1, false);
2176 machine_mode mmode
= GET_MODE (new_rtx
);
2177 struct mem_attrs attrs
, *defattrs
;
2179 attrs
= *get_mem_attrs (memref
);
2180 defattrs
= mode_mem_attrs
[(int) mmode
];
2181 attrs
.expr
= NULL_TREE
;
2182 attrs
.offset_known_p
= false;
2183 attrs
.size_known_p
= defattrs
->size_known_p
;
2184 attrs
.size
= defattrs
->size
;
2185 attrs
.align
= defattrs
->align
;
2187 /* If there are no changes, just return the original memory reference. */
2188 if (new_rtx
== memref
)
2190 if (mem_attrs_eq_p (get_mem_attrs (memref
), &attrs
))
2193 new_rtx
= gen_rtx_MEM (mmode
, XEXP (memref
, 0));
2194 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
2197 set_mem_attrs (new_rtx
, &attrs
);
2201 /* Return a memory reference like MEMREF, but with its mode changed
2202 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2203 nonzero, the memory address is forced to be valid.
2204 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2205 and the caller is responsible for adjusting MEMREF base register.
2206 If ADJUST_OBJECT is zero, the underlying object associated with the
2207 memory reference is left unchanged and the caller is responsible for
2208 dealing with it. Otherwise, if the new memory reference is outside
2209 the underlying object, even partially, then the object is dropped.
2210 SIZE, if nonzero, is the size of an access in cases where MODE
2211 has no inherent size. */
2214 adjust_address_1 (rtx memref
, machine_mode mode
, HOST_WIDE_INT offset
,
2215 int validate
, int adjust_address
, int adjust_object
,
2218 rtx addr
= XEXP (memref
, 0);
2220 machine_mode address_mode
;
2222 struct mem_attrs attrs
= *get_mem_attrs (memref
), *defattrs
;
2223 unsigned HOST_WIDE_INT max_align
;
2224 #ifdef POINTERS_EXTEND_UNSIGNED
2225 machine_mode pointer_mode
2226 = targetm
.addr_space
.pointer_mode (attrs
.addrspace
);
2229 /* VOIDmode means no mode change for change_address_1. */
2230 if (mode
== VOIDmode
)
2231 mode
= GET_MODE (memref
);
2233 /* Take the size of non-BLKmode accesses from the mode. */
2234 defattrs
= mode_mem_attrs
[(int) mode
];
2235 if (defattrs
->size_known_p
)
2236 size
= defattrs
->size
;
2238 /* If there are no changes, just return the original memory reference. */
2239 if (mode
== GET_MODE (memref
) && !offset
2240 && (size
== 0 || (attrs
.size_known_p
&& attrs
.size
== size
))
2241 && (!validate
|| memory_address_addr_space_p (mode
, addr
,
2245 /* ??? Prefer to create garbage instead of creating shared rtl.
2246 This may happen even if offset is nonzero -- consider
2247 (plus (plus reg reg) const_int) -- so do this always. */
2248 addr
= copy_rtx (addr
);
2250 /* Convert a possibly large offset to a signed value within the
2251 range of the target address space. */
2252 address_mode
= get_address_mode (memref
);
2253 pbits
= GET_MODE_BITSIZE (address_mode
);
2254 if (HOST_BITS_PER_WIDE_INT
> pbits
)
2256 int shift
= HOST_BITS_PER_WIDE_INT
- pbits
;
2257 offset
= (((HOST_WIDE_INT
) ((unsigned HOST_WIDE_INT
) offset
<< shift
))
2263 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2264 object, we can merge it into the LO_SUM. */
2265 if (GET_MODE (memref
) != BLKmode
&& GET_CODE (addr
) == LO_SUM
2267 && (unsigned HOST_WIDE_INT
) offset
2268 < GET_MODE_ALIGNMENT (GET_MODE (memref
)) / BITS_PER_UNIT
)
2269 addr
= gen_rtx_LO_SUM (address_mode
, XEXP (addr
, 0),
2270 plus_constant (address_mode
,
2271 XEXP (addr
, 1), offset
));
2272 #ifdef POINTERS_EXTEND_UNSIGNED
2273 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2274 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2275 the fact that pointers are not allowed to overflow. */
2276 else if (POINTERS_EXTEND_UNSIGNED
> 0
2277 && GET_CODE (addr
) == ZERO_EXTEND
2278 && GET_MODE (XEXP (addr
, 0)) == pointer_mode
2279 && trunc_int_for_mode (offset
, pointer_mode
) == offset
)
2280 addr
= gen_rtx_ZERO_EXTEND (address_mode
,
2281 plus_constant (pointer_mode
,
2282 XEXP (addr
, 0), offset
));
2285 addr
= plus_constant (address_mode
, addr
, offset
);
2288 new_rtx
= change_address_1 (memref
, mode
, addr
, validate
, false);
2290 /* If the address is a REG, change_address_1 rightfully returns memref,
2291 but this would destroy memref's MEM_ATTRS. */
2292 if (new_rtx
== memref
&& offset
!= 0)
2293 new_rtx
= copy_rtx (new_rtx
);
2295 /* Conservatively drop the object if we don't know where we start from. */
2296 if (adjust_object
&& (!attrs
.offset_known_p
|| !attrs
.size_known_p
))
2298 attrs
.expr
= NULL_TREE
;
2302 /* Compute the new values of the memory attributes due to this adjustment.
2303 We add the offsets and update the alignment. */
2304 if (attrs
.offset_known_p
)
2306 attrs
.offset
+= offset
;
2308 /* Drop the object if the new left end is not within its bounds. */
2309 if (adjust_object
&& attrs
.offset
< 0)
2311 attrs
.expr
= NULL_TREE
;
2316 /* Compute the new alignment by taking the MIN of the alignment and the
2317 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2321 max_align
= least_bit_hwi (offset
) * BITS_PER_UNIT
;
2322 attrs
.align
= MIN (attrs
.align
, max_align
);
2327 /* Drop the object if the new right end is not within its bounds. */
2328 if (adjust_object
&& (offset
+ size
) > attrs
.size
)
2330 attrs
.expr
= NULL_TREE
;
2333 attrs
.size_known_p
= true;
2336 else if (attrs
.size_known_p
)
2338 gcc_assert (!adjust_object
);
2339 attrs
.size
-= offset
;
2340 /* ??? The store_by_pieces machinery generates negative sizes,
2341 so don't assert for that here. */
2344 set_mem_attrs (new_rtx
, &attrs
);
2349 /* Return a memory reference like MEMREF, but with its mode changed
2350 to MODE and its address changed to ADDR, which is assumed to be
2351 MEMREF offset by OFFSET bytes. If VALIDATE is
2352 nonzero, the memory address is forced to be valid. */
2355 adjust_automodify_address_1 (rtx memref
, machine_mode mode
, rtx addr
,
2356 HOST_WIDE_INT offset
, int validate
)
2358 memref
= change_address_1 (memref
, VOIDmode
, addr
, validate
, false);
2359 return adjust_address_1 (memref
, mode
, offset
, validate
, 0, 0, 0);
2362 /* Return a memory reference like MEMREF, but whose address is changed by
2363 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2364 known to be in OFFSET (possibly 1). */
2367 offset_address (rtx memref
, rtx offset
, unsigned HOST_WIDE_INT pow2
)
2369 rtx new_rtx
, addr
= XEXP (memref
, 0);
2370 machine_mode address_mode
;
2371 struct mem_attrs attrs
, *defattrs
;
2373 attrs
= *get_mem_attrs (memref
);
2374 address_mode
= get_address_mode (memref
);
2375 new_rtx
= simplify_gen_binary (PLUS
, address_mode
, addr
, offset
);
2377 /* At this point we don't know _why_ the address is invalid. It
2378 could have secondary memory references, multiplies or anything.
2380 However, if we did go and rearrange things, we can wind up not
2381 being able to recognize the magic around pic_offset_table_rtx.
2382 This stuff is fragile, and is yet another example of why it is
2383 bad to expose PIC machinery too early. */
2384 if (! memory_address_addr_space_p (GET_MODE (memref
), new_rtx
,
2386 && GET_CODE (addr
) == PLUS
2387 && XEXP (addr
, 0) == pic_offset_table_rtx
)
2389 addr
= force_reg (GET_MODE (addr
), addr
);
2390 new_rtx
= simplify_gen_binary (PLUS
, address_mode
, addr
, offset
);
2393 update_temp_slot_address (XEXP (memref
, 0), new_rtx
);
2394 new_rtx
= change_address_1 (memref
, VOIDmode
, new_rtx
, 1, false);
2396 /* If there are no changes, just return the original memory reference. */
2397 if (new_rtx
== memref
)
2400 /* Update the alignment to reflect the offset. Reset the offset, which
2402 defattrs
= mode_mem_attrs
[(int) GET_MODE (new_rtx
)];
2403 attrs
.offset_known_p
= false;
2404 attrs
.size_known_p
= defattrs
->size_known_p
;
2405 attrs
.size
= defattrs
->size
;
2406 attrs
.align
= MIN (attrs
.align
, pow2
* BITS_PER_UNIT
);
2407 set_mem_attrs (new_rtx
, &attrs
);
2411 /* Return a memory reference like MEMREF, but with its address changed to
2412 ADDR. The caller is asserting that the actual piece of memory pointed
2413 to is the same, just the form of the address is being changed, such as
2414 by putting something into a register. INPLACE is true if any changes
2415 can be made directly to MEMREF or false if MEMREF must be treated as
2419 replace_equiv_address (rtx memref
, rtx addr
, bool inplace
)
2421 /* change_address_1 copies the memory attribute structure without change
2422 and that's exactly what we want here. */
2423 update_temp_slot_address (XEXP (memref
, 0), addr
);
2424 return change_address_1 (memref
, VOIDmode
, addr
, 1, inplace
);
2427 /* Likewise, but the reference is not required to be valid. */
2430 replace_equiv_address_nv (rtx memref
, rtx addr
, bool inplace
)
2432 return change_address_1 (memref
, VOIDmode
, addr
, 0, inplace
);
2435 /* Return a memory reference like MEMREF, but with its mode widened to
2436 MODE and offset by OFFSET. This would be used by targets that e.g.
2437 cannot issue QImode memory operations and have to use SImode memory
2438 operations plus masking logic. */
2441 widen_memory_access (rtx memref
, machine_mode mode
, HOST_WIDE_INT offset
)
2443 rtx new_rtx
= adjust_address_1 (memref
, mode
, offset
, 1, 1, 0, 0);
2444 struct mem_attrs attrs
;
2445 unsigned int size
= GET_MODE_SIZE (mode
);
2447 /* If there are no changes, just return the original memory reference. */
2448 if (new_rtx
== memref
)
2451 attrs
= *get_mem_attrs (new_rtx
);
2453 /* If we don't know what offset we were at within the expression, then
2454 we can't know if we've overstepped the bounds. */
2455 if (! attrs
.offset_known_p
)
2456 attrs
.expr
= NULL_TREE
;
2460 if (TREE_CODE (attrs
.expr
) == COMPONENT_REF
)
2462 tree field
= TREE_OPERAND (attrs
.expr
, 1);
2463 tree offset
= component_ref_field_offset (attrs
.expr
);
2465 if (! DECL_SIZE_UNIT (field
))
2467 attrs
.expr
= NULL_TREE
;
2471 /* Is the field at least as large as the access? If so, ok,
2472 otherwise strip back to the containing structure. */
2473 if (TREE_CODE (DECL_SIZE_UNIT (field
)) == INTEGER_CST
2474 && compare_tree_int (DECL_SIZE_UNIT (field
), size
) >= 0
2475 && attrs
.offset
>= 0)
2478 if (! tree_fits_uhwi_p (offset
))
2480 attrs
.expr
= NULL_TREE
;
2484 attrs
.expr
= TREE_OPERAND (attrs
.expr
, 0);
2485 attrs
.offset
+= tree_to_uhwi (offset
);
2486 attrs
.offset
+= (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
))
2489 /* Similarly for the decl. */
2490 else if (DECL_P (attrs
.expr
)
2491 && DECL_SIZE_UNIT (attrs
.expr
)
2492 && TREE_CODE (DECL_SIZE_UNIT (attrs
.expr
)) == INTEGER_CST
2493 && compare_tree_int (DECL_SIZE_UNIT (attrs
.expr
), size
) >= 0
2494 && (! attrs
.offset_known_p
|| attrs
.offset
>= 0))
2498 /* The widened memory access overflows the expression, which means
2499 that it could alias another expression. Zap it. */
2500 attrs
.expr
= NULL_TREE
;
2506 attrs
.offset_known_p
= false;
2508 /* The widened memory may alias other stuff, so zap the alias set. */
2509 /* ??? Maybe use get_alias_set on any remaining expression. */
2511 attrs
.size_known_p
= true;
2513 set_mem_attrs (new_rtx
, &attrs
);
2517 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2518 static GTY(()) tree spill_slot_decl
;
2521 get_spill_slot_decl (bool force_build_p
)
2523 tree d
= spill_slot_decl
;
2525 struct mem_attrs attrs
;
2527 if (d
|| !force_build_p
)
2530 d
= build_decl (DECL_SOURCE_LOCATION (current_function_decl
),
2531 VAR_DECL
, get_identifier ("%sfp"), void_type_node
);
2532 DECL_ARTIFICIAL (d
) = 1;
2533 DECL_IGNORED_P (d
) = 1;
2535 spill_slot_decl
= d
;
2537 rd
= gen_rtx_MEM (BLKmode
, frame_pointer_rtx
);
2538 MEM_NOTRAP_P (rd
) = 1;
2539 attrs
= *mode_mem_attrs
[(int) BLKmode
];
2540 attrs
.alias
= new_alias_set ();
2542 set_mem_attrs (rd
, &attrs
);
2543 SET_DECL_RTL (d
, rd
);
2548 /* Given MEM, a result from assign_stack_local, fill in the memory
2549 attributes as appropriate for a register allocator spill slot.
2550 These slots are not aliasable by other memory. We arrange for
2551 them all to use a single MEM_EXPR, so that the aliasing code can
2552 work properly in the case of shared spill slots. */
2555 set_mem_attrs_for_spill (rtx mem
)
2557 struct mem_attrs attrs
;
2560 attrs
= *get_mem_attrs (mem
);
2561 attrs
.expr
= get_spill_slot_decl (true);
2562 attrs
.alias
= MEM_ALIAS_SET (DECL_RTL (attrs
.expr
));
2563 attrs
.addrspace
= ADDR_SPACE_GENERIC
;
2565 /* We expect the incoming memory to be of the form:
2566 (mem:MODE (plus (reg sfp) (const_int offset)))
2567 with perhaps the plus missing for offset = 0. */
2568 addr
= XEXP (mem
, 0);
2569 attrs
.offset_known_p
= true;
2571 if (GET_CODE (addr
) == PLUS
2572 && CONST_INT_P (XEXP (addr
, 1)))
2573 attrs
.offset
= INTVAL (XEXP (addr
, 1));
2575 set_mem_attrs (mem
, &attrs
);
2576 MEM_NOTRAP_P (mem
) = 1;
2579 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2582 gen_label_rtx (void)
2584 return as_a
<rtx_code_label
*> (
2585 gen_rtx_CODE_LABEL (VOIDmode
, NULL_RTX
, NULL_RTX
,
2586 NULL
, label_num
++, NULL
));
2589 /* For procedure integration. */
2591 /* Install new pointers to the first and last insns in the chain.
2592 Also, set cur_insn_uid to one higher than the last in use.
2593 Used for an inline-procedure after copying the insn chain. */
2596 set_new_first_and_last_insn (rtx_insn
*first
, rtx_insn
*last
)
2600 set_first_insn (first
);
2601 set_last_insn (last
);
2604 if (MIN_NONDEBUG_INSN_UID
|| MAY_HAVE_DEBUG_INSNS
)
2606 int debug_count
= 0;
2608 cur_insn_uid
= MIN_NONDEBUG_INSN_UID
- 1;
2609 cur_debug_insn_uid
= 0;
2611 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2612 if (INSN_UID (insn
) < MIN_NONDEBUG_INSN_UID
)
2613 cur_debug_insn_uid
= MAX (cur_debug_insn_uid
, INSN_UID (insn
));
2616 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2617 if (DEBUG_INSN_P (insn
))
2622 cur_debug_insn_uid
= MIN_NONDEBUG_INSN_UID
+ debug_count
;
2624 cur_debug_insn_uid
++;
2627 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2628 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2633 /* Go through all the RTL insn bodies and copy any invalid shared
2634 structure. This routine should only be called once. */
2637 unshare_all_rtl_1 (rtx_insn
*insn
)
2639 /* Unshare just about everything else. */
2640 unshare_all_rtl_in_chain (insn
);
2642 /* Make sure the addresses of stack slots found outside the insn chain
2643 (such as, in DECL_RTL of a variable) are not shared
2644 with the insn chain.
2646 This special care is necessary when the stack slot MEM does not
2647 actually appear in the insn chain. If it does appear, its address
2648 is unshared from all else at that point. */
2651 FOR_EACH_VEC_SAFE_ELT (stack_slot_list
, i
, temp
)
2652 (*stack_slot_list
)[i
] = copy_rtx_if_shared (temp
);
2655 /* Go through all the RTL insn bodies and copy any invalid shared
2656 structure, again. This is a fairly expensive thing to do so it
2657 should be done sparingly. */
2660 unshare_all_rtl_again (rtx_insn
*insn
)
2665 for (p
= insn
; p
; p
= NEXT_INSN (p
))
2668 reset_used_flags (PATTERN (p
));
2669 reset_used_flags (REG_NOTES (p
));
2671 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p
));
2674 /* Make sure that virtual stack slots are not shared. */
2675 set_used_decls (DECL_INITIAL (cfun
->decl
));
2677 /* Make sure that virtual parameters are not shared. */
2678 for (decl
= DECL_ARGUMENTS (cfun
->decl
); decl
; decl
= DECL_CHAIN (decl
))
2679 set_used_flags (DECL_RTL (decl
));
2683 FOR_EACH_VEC_SAFE_ELT (stack_slot_list
, i
, temp
)
2684 reset_used_flags (temp
);
2686 unshare_all_rtl_1 (insn
);
2690 unshare_all_rtl (void)
2692 unshare_all_rtl_1 (get_insns ());
2694 for (tree decl
= DECL_ARGUMENTS (cfun
->decl
); decl
; decl
= DECL_CHAIN (decl
))
2696 if (DECL_RTL_SET_P (decl
))
2697 SET_DECL_RTL (decl
, copy_rtx_if_shared (DECL_RTL (decl
)));
2698 DECL_INCOMING_RTL (decl
) = copy_rtx_if_shared (DECL_INCOMING_RTL (decl
));
2705 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2706 Recursively does the same for subexpressions. */
2709 verify_rtx_sharing (rtx orig
, rtx insn
)
2714 const char *format_ptr
;
2719 code
= GET_CODE (x
);
2721 /* These types may be freely shared. */
2737 /* SCRATCH must be shared because they represent distinct values. */
2740 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2741 clobbers or clobbers of hard registers that originated as pseudos.
2742 This is needed to allow safe register renaming. */
2743 if (REG_P (XEXP (x
, 0))
2744 && HARD_REGISTER_NUM_P (REGNO (XEXP (x
, 0)))
2745 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x
, 0))))
2750 if (shared_const_p (orig
))
2755 /* A MEM is allowed to be shared if its address is constant. */
2756 if (CONSTANT_ADDRESS_P (XEXP (x
, 0))
2757 || reload_completed
|| reload_in_progress
)
2766 /* This rtx may not be shared. If it has already been seen,
2767 replace it with a copy of itself. */
2768 if (flag_checking
&& RTX_FLAG (x
, used
))
2770 error ("invalid rtl sharing found in the insn");
2772 error ("shared rtx");
2774 internal_error ("internal consistency failure");
2776 gcc_assert (!RTX_FLAG (x
, used
));
2778 RTX_FLAG (x
, used
) = 1;
2780 /* Now scan the subexpressions recursively. */
2782 format_ptr
= GET_RTX_FORMAT (code
);
2784 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2786 switch (*format_ptr
++)
2789 verify_rtx_sharing (XEXP (x
, i
), insn
);
2793 if (XVEC (x
, i
) != NULL
)
2796 int len
= XVECLEN (x
, i
);
2798 for (j
= 0; j
< len
; j
++)
2800 /* We allow sharing of ASM_OPERANDS inside single
2802 if (j
&& GET_CODE (XVECEXP (x
, i
, j
)) == SET
2803 && (GET_CODE (SET_SRC (XVECEXP (x
, i
, j
)))
2805 verify_rtx_sharing (SET_DEST (XVECEXP (x
, i
, j
)), insn
);
2807 verify_rtx_sharing (XVECEXP (x
, i
, j
), insn
);
2816 /* Reset used-flags for INSN. */
2819 reset_insn_used_flags (rtx insn
)
2821 gcc_assert (INSN_P (insn
));
2822 reset_used_flags (PATTERN (insn
));
2823 reset_used_flags (REG_NOTES (insn
));
2825 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn
));
2828 /* Go through all the RTL insn bodies and clear all the USED bits. */
2831 reset_all_used_flags (void)
2835 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2838 rtx pat
= PATTERN (p
);
2839 if (GET_CODE (pat
) != SEQUENCE
)
2840 reset_insn_used_flags (p
);
2843 gcc_assert (REG_NOTES (p
) == NULL
);
2844 for (int i
= 0; i
< XVECLEN (pat
, 0); i
++)
2846 rtx insn
= XVECEXP (pat
, 0, i
);
2848 reset_insn_used_flags (insn
);
2854 /* Verify sharing in INSN. */
2857 verify_insn_sharing (rtx insn
)
2859 gcc_assert (INSN_P (insn
));
2860 verify_rtx_sharing (PATTERN (insn
), insn
);
2861 verify_rtx_sharing (REG_NOTES (insn
), insn
);
2863 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (insn
), insn
);
2866 /* Go through all the RTL insn bodies and check that there is no unexpected
2867 sharing in between the subexpressions. */
2870 verify_rtl_sharing (void)
2874 timevar_push (TV_VERIFY_RTL_SHARING
);
2876 reset_all_used_flags ();
2878 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2881 rtx pat
= PATTERN (p
);
2882 if (GET_CODE (pat
) != SEQUENCE
)
2883 verify_insn_sharing (p
);
2885 for (int i
= 0; i
< XVECLEN (pat
, 0); i
++)
2887 rtx insn
= XVECEXP (pat
, 0, i
);
2889 verify_insn_sharing (insn
);
2893 reset_all_used_flags ();
2895 timevar_pop (TV_VERIFY_RTL_SHARING
);
2898 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2899 Assumes the mark bits are cleared at entry. */
2902 unshare_all_rtl_in_chain (rtx_insn
*insn
)
2904 for (; insn
; insn
= NEXT_INSN (insn
))
2907 PATTERN (insn
) = copy_rtx_if_shared (PATTERN (insn
));
2908 REG_NOTES (insn
) = copy_rtx_if_shared (REG_NOTES (insn
));
2910 CALL_INSN_FUNCTION_USAGE (insn
)
2911 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn
));
2915 /* Go through all virtual stack slots of a function and mark them as
2916 shared. We never replace the DECL_RTLs themselves with a copy,
2917 but expressions mentioned into a DECL_RTL cannot be shared with
2918 expressions in the instruction stream.
2920 Note that reload may convert pseudo registers into memories in-place.
2921 Pseudo registers are always shared, but MEMs never are. Thus if we
2922 reset the used flags on MEMs in the instruction stream, we must set
2923 them again on MEMs that appear in DECL_RTLs. */
2926 set_used_decls (tree blk
)
2931 for (t
= BLOCK_VARS (blk
); t
; t
= DECL_CHAIN (t
))
2932 if (DECL_RTL_SET_P (t
))
2933 set_used_flags (DECL_RTL (t
));
2935 /* Now process sub-blocks. */
2936 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= BLOCK_CHAIN (t
))
2940 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2941 Recursively does the same for subexpressions. Uses
2942 copy_rtx_if_shared_1 to reduce stack space. */
2945 copy_rtx_if_shared (rtx orig
)
2947 copy_rtx_if_shared_1 (&orig
);
2951 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2952 use. Recursively does the same for subexpressions. */
2955 copy_rtx_if_shared_1 (rtx
*orig1
)
2961 const char *format_ptr
;
2965 /* Repeat is used to turn tail-recursion into iteration. */
2972 code
= GET_CODE (x
);
2974 /* These types may be freely shared. */
2990 /* SCRATCH must be shared because they represent distinct values. */
2993 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2994 clobbers or clobbers of hard registers that originated as pseudos.
2995 This is needed to allow safe register renaming. */
2996 if (REG_P (XEXP (x
, 0))
2997 && HARD_REGISTER_NUM_P (REGNO (XEXP (x
, 0)))
2998 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x
, 0))))
3003 if (shared_const_p (x
))
3013 /* The chain of insns is not being copied. */
3020 /* This rtx may not be shared. If it has already been seen,
3021 replace it with a copy of itself. */
3023 if (RTX_FLAG (x
, used
))
3025 x
= shallow_copy_rtx (x
);
3028 RTX_FLAG (x
, used
) = 1;
3030 /* Now scan the subexpressions recursively.
3031 We can store any replaced subexpressions directly into X
3032 since we know X is not shared! Any vectors in X
3033 must be copied if X was copied. */
3035 format_ptr
= GET_RTX_FORMAT (code
);
3036 length
= GET_RTX_LENGTH (code
);
3039 for (i
= 0; i
< length
; i
++)
3041 switch (*format_ptr
++)
3045 copy_rtx_if_shared_1 (last_ptr
);
3046 last_ptr
= &XEXP (x
, i
);
3050 if (XVEC (x
, i
) != NULL
)
3053 int len
= XVECLEN (x
, i
);
3055 /* Copy the vector iff I copied the rtx and the length
3057 if (copied
&& len
> 0)
3058 XVEC (x
, i
) = gen_rtvec_v (len
, XVEC (x
, i
)->elem
);
3060 /* Call recursively on all inside the vector. */
3061 for (j
= 0; j
< len
; j
++)
3064 copy_rtx_if_shared_1 (last_ptr
);
3065 last_ptr
= &XVECEXP (x
, i
, j
);
3080 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
3083 mark_used_flags (rtx x
, int flag
)
3087 const char *format_ptr
;
3090 /* Repeat is used to turn tail-recursion into iteration. */
3095 code
= GET_CODE (x
);
3097 /* These types may be freely shared so we needn't do any resetting
3121 /* The chain of insns is not being copied. */
3128 RTX_FLAG (x
, used
) = flag
;
3130 format_ptr
= GET_RTX_FORMAT (code
);
3131 length
= GET_RTX_LENGTH (code
);
3133 for (i
= 0; i
< length
; i
++)
3135 switch (*format_ptr
++)
3143 mark_used_flags (XEXP (x
, i
), flag
);
3147 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3148 mark_used_flags (XVECEXP (x
, i
, j
), flag
);
3154 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
3155 to look for shared sub-parts. */
3158 reset_used_flags (rtx x
)
3160 mark_used_flags (x
, 0);
3163 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3164 to look for shared sub-parts. */
3167 set_used_flags (rtx x
)
3169 mark_used_flags (x
, 1);
3172 /* Copy X if necessary so that it won't be altered by changes in OTHER.
3173 Return X or the rtx for the pseudo reg the value of X was copied into.
3174 OTHER must be valid as a SET_DEST. */
3177 make_safe_from (rtx x
, rtx other
)
3180 switch (GET_CODE (other
))
3183 other
= SUBREG_REG (other
);
3185 case STRICT_LOW_PART
:
3188 other
= XEXP (other
, 0);
3197 && GET_CODE (x
) != SUBREG
)
3199 && (REGNO (other
) < FIRST_PSEUDO_REGISTER
3200 || reg_mentioned_p (other
, x
))))
3202 rtx temp
= gen_reg_rtx (GET_MODE (x
));
3203 emit_move_insn (temp
, x
);
3209 /* Emission of insns (adding them to the doubly-linked list). */
3211 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3214 get_last_insn_anywhere (void)
3216 struct sequence_stack
*seq
;
3217 for (seq
= get_current_sequence (); seq
; seq
= seq
->next
)
3223 /* Return the first nonnote insn emitted in current sequence or current
3224 function. This routine looks inside SEQUENCEs. */
3227 get_first_nonnote_insn (void)
3229 rtx_insn
*insn
= get_insns ();
3234 for (insn
= next_insn (insn
);
3235 insn
&& NOTE_P (insn
);
3236 insn
= next_insn (insn
))
3240 if (NONJUMP_INSN_P (insn
)
3241 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3242 insn
= as_a
<rtx_sequence
*> (PATTERN (insn
))->insn (0);
3249 /* Return the last nonnote insn emitted in current sequence or current
3250 function. This routine looks inside SEQUENCEs. */
3253 get_last_nonnote_insn (void)
3255 rtx_insn
*insn
= get_last_insn ();
3260 for (insn
= previous_insn (insn
);
3261 insn
&& NOTE_P (insn
);
3262 insn
= previous_insn (insn
))
3266 if (NONJUMP_INSN_P (insn
))
3267 if (rtx_sequence
*seq
= dyn_cast
<rtx_sequence
*> (PATTERN (insn
)))
3268 insn
= seq
->insn (seq
->len () - 1);
3275 /* Return the number of actual (non-debug) insns emitted in this
3279 get_max_insn_count (void)
3281 int n
= cur_insn_uid
;
3283 /* The table size must be stable across -g, to avoid codegen
3284 differences due to debug insns, and not be affected by
3285 -fmin-insn-uid, to avoid excessive table size and to simplify
3286 debugging of -fcompare-debug failures. */
3287 if (cur_debug_insn_uid
> MIN_NONDEBUG_INSN_UID
)
3288 n
-= cur_debug_insn_uid
;
3290 n
-= MIN_NONDEBUG_INSN_UID
;
3296 /* Return the next insn. If it is a SEQUENCE, return the first insn
3300 next_insn (rtx_insn
*insn
)
3304 insn
= NEXT_INSN (insn
);
3305 if (insn
&& NONJUMP_INSN_P (insn
)
3306 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3307 insn
= as_a
<rtx_sequence
*> (PATTERN (insn
))->insn (0);
3313 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3317 previous_insn (rtx_insn
*insn
)
3321 insn
= PREV_INSN (insn
);
3322 if (insn
&& NONJUMP_INSN_P (insn
))
3323 if (rtx_sequence
*seq
= dyn_cast
<rtx_sequence
*> (PATTERN (insn
)))
3324 insn
= seq
->insn (seq
->len () - 1);
3330 /* Return the next insn after INSN that is not a NOTE. This routine does not
3331 look inside SEQUENCEs. */
3334 next_nonnote_insn (rtx_insn
*insn
)
3338 insn
= NEXT_INSN (insn
);
3339 if (insn
== 0 || !NOTE_P (insn
))
3346 /* Return the next insn after INSN that is not a NOTE, but stop the
3347 search before we enter another basic block. This routine does not
3348 look inside SEQUENCEs. */
3351 next_nonnote_insn_bb (rtx_insn
*insn
)
3355 insn
= NEXT_INSN (insn
);
3356 if (insn
== 0 || !NOTE_P (insn
))
3358 if (NOTE_INSN_BASIC_BLOCK_P (insn
))
3365 /* Return the previous insn before INSN that is not a NOTE. This routine does
3366 not look inside SEQUENCEs. */
3369 prev_nonnote_insn (rtx_insn
*insn
)
3373 insn
= PREV_INSN (insn
);
3374 if (insn
== 0 || !NOTE_P (insn
))
3381 /* Return the previous insn before INSN that is not a NOTE, but stop
3382 the search before we enter another basic block. This routine does
3383 not look inside SEQUENCEs. */
3386 prev_nonnote_insn_bb (rtx_insn
*insn
)
3391 insn
= PREV_INSN (insn
);
3392 if (insn
== 0 || !NOTE_P (insn
))
3394 if (NOTE_INSN_BASIC_BLOCK_P (insn
))
3401 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3402 routine does not look inside SEQUENCEs. */
3405 next_nondebug_insn (rtx_insn
*insn
)
3409 insn
= NEXT_INSN (insn
);
3410 if (insn
== 0 || !DEBUG_INSN_P (insn
))
3417 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3418 This routine does not look inside SEQUENCEs. */
3421 prev_nondebug_insn (rtx_insn
*insn
)
3425 insn
= PREV_INSN (insn
);
3426 if (insn
== 0 || !DEBUG_INSN_P (insn
))
3433 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3434 This routine does not look inside SEQUENCEs. */
3437 next_nonnote_nondebug_insn (rtx_insn
*insn
)
3441 insn
= NEXT_INSN (insn
);
3442 if (insn
== 0 || (!NOTE_P (insn
) && !DEBUG_INSN_P (insn
)))
3449 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3450 This routine does not look inside SEQUENCEs. */
3453 prev_nonnote_nondebug_insn (rtx_insn
*insn
)
3457 insn
= PREV_INSN (insn
);
3458 if (insn
== 0 || (!NOTE_P (insn
) && !DEBUG_INSN_P (insn
)))
3465 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3466 or 0, if there is none. This routine does not look inside
3470 next_real_insn (rtx uncast_insn
)
3472 rtx_insn
*insn
= safe_as_a
<rtx_insn
*> (uncast_insn
);
3476 insn
= NEXT_INSN (insn
);
3477 if (insn
== 0 || INSN_P (insn
))
3484 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3485 or 0, if there is none. This routine does not look inside
3489 prev_real_insn (rtx_insn
*insn
)
3493 insn
= PREV_INSN (insn
);
3494 if (insn
== 0 || INSN_P (insn
))
3501 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3502 This routine does not look inside SEQUENCEs. */
3505 last_call_insn (void)
3509 for (insn
= get_last_insn ();
3510 insn
&& !CALL_P (insn
);
3511 insn
= PREV_INSN (insn
))
3514 return safe_as_a
<rtx_call_insn
*> (insn
);
3517 /* Find the next insn after INSN that really does something. This routine
3518 does not look inside SEQUENCEs. After reload this also skips over
3519 standalone USE and CLOBBER insn. */
3522 active_insn_p (const rtx_insn
*insn
)
3524 return (CALL_P (insn
) || JUMP_P (insn
)
3525 || JUMP_TABLE_DATA_P (insn
) /* FIXME */
3526 || (NONJUMP_INSN_P (insn
)
3527 && (! reload_completed
3528 || (GET_CODE (PATTERN (insn
)) != USE
3529 && GET_CODE (PATTERN (insn
)) != CLOBBER
))));
3533 next_active_insn (rtx_insn
*insn
)
3537 insn
= NEXT_INSN (insn
);
3538 if (insn
== 0 || active_insn_p (insn
))
3545 /* Find the last insn before INSN that really does something. This routine
3546 does not look inside SEQUENCEs. After reload this also skips over
3547 standalone USE and CLOBBER insn. */
3550 prev_active_insn (rtx_insn
*insn
)
3554 insn
= PREV_INSN (insn
);
3555 if (insn
== 0 || active_insn_p (insn
))
3562 /* Return the next insn that uses CC0 after INSN, which is assumed to
3563 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3564 applied to the result of this function should yield INSN).
3566 Normally, this is simply the next insn. However, if a REG_CC_USER note
3567 is present, it contains the insn that uses CC0.
3569 Return 0 if we can't find the insn. */
3572 next_cc0_user (rtx_insn
*insn
)
3574 rtx note
= find_reg_note (insn
, REG_CC_USER
, NULL_RTX
);
3577 return safe_as_a
<rtx_insn
*> (XEXP (note
, 0));
3579 insn
= next_nonnote_insn (insn
);
3580 if (insn
&& NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3581 insn
= as_a
<rtx_sequence
*> (PATTERN (insn
))->insn (0);
3583 if (insn
&& INSN_P (insn
) && reg_mentioned_p (cc0_rtx
, PATTERN (insn
)))
3589 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3590 note, it is the previous insn. */
3593 prev_cc0_setter (rtx_insn
*insn
)
3595 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
3598 return safe_as_a
<rtx_insn
*> (XEXP (note
, 0));
3600 insn
= prev_nonnote_insn (insn
);
3601 gcc_assert (sets_cc0_p (PATTERN (insn
)));
3606 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3609 find_auto_inc (const_rtx x
, const_rtx reg
)
3611 subrtx_iterator::array_type array
;
3612 FOR_EACH_SUBRTX (iter
, array
, x
, NONCONST
)
3614 const_rtx x
= *iter
;
3615 if (GET_RTX_CLASS (GET_CODE (x
)) == RTX_AUTOINC
3616 && rtx_equal_p (reg
, XEXP (x
, 0)))
3622 /* Increment the label uses for all labels present in rtx. */
3625 mark_label_nuses (rtx x
)
3631 code
= GET_CODE (x
);
3632 if (code
== LABEL_REF
&& LABEL_P (label_ref_label (x
)))
3633 LABEL_NUSES (label_ref_label (x
))++;
3635 fmt
= GET_RTX_FORMAT (code
);
3636 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3639 mark_label_nuses (XEXP (x
, i
));
3640 else if (fmt
[i
] == 'E')
3641 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3642 mark_label_nuses (XVECEXP (x
, i
, j
));
3647 /* Try splitting insns that can be split for better scheduling.
3648 PAT is the pattern which might split.
3649 TRIAL is the insn providing PAT.
3650 LAST is nonzero if we should return the last insn of the sequence produced.
3652 If this routine succeeds in splitting, it returns the first or last
3653 replacement insn depending on the value of LAST. Otherwise, it
3654 returns TRIAL. If the insn to be returned can be split, it will be. */
3657 try_split (rtx pat
, rtx_insn
*trial
, int last
)
3659 rtx_insn
*before
, *after
;
3661 rtx_insn
*seq
, *tem
;
3663 rtx_insn
*insn_last
, *insn
;
3665 rtx_insn
*call_insn
= NULL
;
3667 /* We're not good at redistributing frame information. */
3668 if (RTX_FRAME_RELATED_P (trial
))
3671 if (any_condjump_p (trial
)
3672 && (note
= find_reg_note (trial
, REG_BR_PROB
, 0)))
3673 split_branch_probability
= XINT (note
, 0);
3674 probability
= split_branch_probability
;
3676 seq
= split_insns (pat
, trial
);
3678 split_branch_probability
= -1;
3683 /* Avoid infinite loop if any insn of the result matches
3684 the original pattern. */
3688 if (INSN_P (insn_last
)
3689 && rtx_equal_p (PATTERN (insn_last
), pat
))
3691 if (!NEXT_INSN (insn_last
))
3693 insn_last
= NEXT_INSN (insn_last
);
3696 /* We will be adding the new sequence to the function. The splitters
3697 may have introduced invalid RTL sharing, so unshare the sequence now. */
3698 unshare_all_rtl_in_chain (seq
);
3700 /* Mark labels and copy flags. */
3701 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3706 CROSSING_JUMP_P (insn
) = CROSSING_JUMP_P (trial
);
3707 mark_jump_label (PATTERN (insn
), insn
, 0);
3709 if (probability
!= -1
3710 && any_condjump_p (insn
)
3711 && !find_reg_note (insn
, REG_BR_PROB
, 0))
3713 /* We can preserve the REG_BR_PROB notes only if exactly
3714 one jump is created, otherwise the machine description
3715 is responsible for this step using
3716 split_branch_probability variable. */
3717 gcc_assert (njumps
== 1);
3718 add_int_reg_note (insn
, REG_BR_PROB
, probability
);
3723 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3724 in SEQ and copy any additional information across. */
3727 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3733 gcc_assert (call_insn
== NULL_RTX
);
3736 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3737 target may have explicitly specified. */
3738 p
= &CALL_INSN_FUNCTION_USAGE (insn
);
3741 *p
= CALL_INSN_FUNCTION_USAGE (trial
);
3743 /* If the old call was a sibling call, the new one must
3745 SIBLING_CALL_P (insn
) = SIBLING_CALL_P (trial
);
3747 /* If the new call is the last instruction in the sequence,
3748 it will effectively replace the old call in-situ. Otherwise
3749 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3750 so that it comes immediately after the new call. */
3751 if (NEXT_INSN (insn
))
3752 for (next
= NEXT_INSN (trial
);
3753 next
&& NOTE_P (next
);
3754 next
= NEXT_INSN (next
))
3755 if (NOTE_KIND (next
) == NOTE_INSN_CALL_ARG_LOCATION
)
3758 add_insn_after (next
, insn
, NULL
);
3764 /* Copy notes, particularly those related to the CFG. */
3765 for (note
= REG_NOTES (trial
); note
; note
= XEXP (note
, 1))
3767 switch (REG_NOTE_KIND (note
))
3770 copy_reg_eh_region_note_backward (note
, insn_last
, NULL
);
3776 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3779 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3783 case REG_NON_LOCAL_GOTO
:
3784 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3787 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3795 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3797 rtx reg
= XEXP (note
, 0);
3798 if (!FIND_REG_INC_NOTE (insn
, reg
)
3799 && find_auto_inc (PATTERN (insn
), reg
))
3800 add_reg_note (insn
, REG_INC
, reg
);
3805 fixup_args_size_notes (NULL
, insn_last
, INTVAL (XEXP (note
, 0)));
3809 gcc_assert (call_insn
!= NULL_RTX
);
3810 add_reg_note (call_insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3818 /* If there are LABELS inside the split insns increment the
3819 usage count so we don't delete the label. */
3823 while (insn
!= NULL_RTX
)
3825 /* JUMP_P insns have already been "marked" above. */
3826 if (NONJUMP_INSN_P (insn
))
3827 mark_label_nuses (PATTERN (insn
));
3829 insn
= PREV_INSN (insn
);
3833 before
= PREV_INSN (trial
);
3834 after
= NEXT_INSN (trial
);
3836 tem
= emit_insn_after_setloc (seq
, trial
, INSN_LOCATION (trial
));
3838 delete_insn (trial
);
3840 /* Recursively call try_split for each new insn created; by the
3841 time control returns here that insn will be fully split, so
3842 set LAST and continue from the insn after the one returned.
3843 We can't use next_active_insn here since AFTER may be a note.
3844 Ignore deleted insns, which can be occur if not optimizing. */
3845 for (tem
= NEXT_INSN (before
); tem
!= after
; tem
= NEXT_INSN (tem
))
3846 if (! tem
->deleted () && INSN_P (tem
))
3847 tem
= try_split (PATTERN (tem
), tem
, 1);
3849 /* Return either the first or the last insn, depending on which was
3852 ? (after
? PREV_INSN (after
) : get_last_insn ())
3853 : NEXT_INSN (before
);
3856 /* Make and return an INSN rtx, initializing all its slots.
3857 Store PATTERN in the pattern slots. */
3860 make_insn_raw (rtx pattern
)
3864 insn
= as_a
<rtx_insn
*> (rtx_alloc (INSN
));
3866 INSN_UID (insn
) = cur_insn_uid
++;
3867 PATTERN (insn
) = pattern
;
3868 INSN_CODE (insn
) = -1;
3869 REG_NOTES (insn
) = NULL
;
3870 INSN_LOCATION (insn
) = curr_insn_location ();
3871 BLOCK_FOR_INSN (insn
) = NULL
;
3873 #ifdef ENABLE_RTL_CHECKING
3876 && (returnjump_p (insn
)
3877 || (GET_CODE (insn
) == SET
3878 && SET_DEST (insn
) == pc_rtx
)))
3880 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3888 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3891 make_debug_insn_raw (rtx pattern
)
3893 rtx_debug_insn
*insn
;
3895 insn
= as_a
<rtx_debug_insn
*> (rtx_alloc (DEBUG_INSN
));
3896 INSN_UID (insn
) = cur_debug_insn_uid
++;
3897 if (cur_debug_insn_uid
> MIN_NONDEBUG_INSN_UID
)
3898 INSN_UID (insn
) = cur_insn_uid
++;
3900 PATTERN (insn
) = pattern
;
3901 INSN_CODE (insn
) = -1;
3902 REG_NOTES (insn
) = NULL
;
3903 INSN_LOCATION (insn
) = curr_insn_location ();
3904 BLOCK_FOR_INSN (insn
) = NULL
;
3909 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3912 make_jump_insn_raw (rtx pattern
)
3914 rtx_jump_insn
*insn
;
3916 insn
= as_a
<rtx_jump_insn
*> (rtx_alloc (JUMP_INSN
));
3917 INSN_UID (insn
) = cur_insn_uid
++;
3919 PATTERN (insn
) = pattern
;
3920 INSN_CODE (insn
) = -1;
3921 REG_NOTES (insn
) = NULL
;
3922 JUMP_LABEL (insn
) = NULL
;
3923 INSN_LOCATION (insn
) = curr_insn_location ();
3924 BLOCK_FOR_INSN (insn
) = NULL
;
3929 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3932 make_call_insn_raw (rtx pattern
)
3934 rtx_call_insn
*insn
;
3936 insn
= as_a
<rtx_call_insn
*> (rtx_alloc (CALL_INSN
));
3937 INSN_UID (insn
) = cur_insn_uid
++;
3939 PATTERN (insn
) = pattern
;
3940 INSN_CODE (insn
) = -1;
3941 REG_NOTES (insn
) = NULL
;
3942 CALL_INSN_FUNCTION_USAGE (insn
) = NULL
;
3943 INSN_LOCATION (insn
) = curr_insn_location ();
3944 BLOCK_FOR_INSN (insn
) = NULL
;
3949 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
3952 make_note_raw (enum insn_note subtype
)
3954 /* Some notes are never created this way at all. These notes are
3955 only created by patching out insns. */
3956 gcc_assert (subtype
!= NOTE_INSN_DELETED_LABEL
3957 && subtype
!= NOTE_INSN_DELETED_DEBUG_LABEL
);
3959 rtx_note
*note
= as_a
<rtx_note
*> (rtx_alloc (NOTE
));
3960 INSN_UID (note
) = cur_insn_uid
++;
3961 NOTE_KIND (note
) = subtype
;
3962 BLOCK_FOR_INSN (note
) = NULL
;
3963 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
3967 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
3968 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
3969 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
3972 link_insn_into_chain (rtx_insn
*insn
, rtx_insn
*prev
, rtx_insn
*next
)
3974 SET_PREV_INSN (insn
) = prev
;
3975 SET_NEXT_INSN (insn
) = next
;
3978 SET_NEXT_INSN (prev
) = insn
;
3979 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3981 rtx_sequence
*sequence
= as_a
<rtx_sequence
*> (PATTERN (prev
));
3982 SET_NEXT_INSN (sequence
->insn (sequence
->len () - 1)) = insn
;
3987 SET_PREV_INSN (next
) = insn
;
3988 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3990 rtx_sequence
*sequence
= as_a
<rtx_sequence
*> (PATTERN (next
));
3991 SET_PREV_INSN (sequence
->insn (0)) = insn
;
3995 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3997 rtx_sequence
*sequence
= as_a
<rtx_sequence
*> (PATTERN (insn
));
3998 SET_PREV_INSN (sequence
->insn (0)) = prev
;
3999 SET_NEXT_INSN (sequence
->insn (sequence
->len () - 1)) = next
;
4003 /* Add INSN to the end of the doubly-linked list.
4004 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
4007 add_insn (rtx_insn
*insn
)
4009 rtx_insn
*prev
= get_last_insn ();
4010 link_insn_into_chain (insn
, prev
, NULL
);
4011 if (NULL
== get_insns ())
4012 set_first_insn (insn
);
4013 set_last_insn (insn
);
4016 /* Add INSN into the doubly-linked list after insn AFTER. */
4019 add_insn_after_nobb (rtx_insn
*insn
, rtx_insn
*after
)
4021 rtx_insn
*next
= NEXT_INSN (after
);
4023 gcc_assert (!optimize
|| !after
->deleted ());
4025 link_insn_into_chain (insn
, after
, next
);
4029 struct sequence_stack
*seq
;
4031 for (seq
= get_current_sequence (); seq
; seq
= seq
->next
)
4032 if (after
== seq
->last
)
4040 /* Add INSN into the doubly-linked list before insn BEFORE. */
4043 add_insn_before_nobb (rtx_insn
*insn
, rtx_insn
*before
)
4045 rtx_insn
*prev
= PREV_INSN (before
);
4047 gcc_assert (!optimize
|| !before
->deleted ());
4049 link_insn_into_chain (insn
, prev
, before
);
4053 struct sequence_stack
*seq
;
4055 for (seq
= get_current_sequence (); seq
; seq
= seq
->next
)
4056 if (before
== seq
->first
)
4066 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
4067 If BB is NULL, an attempt is made to infer the bb from before.
4069 This and the next function should be the only functions called
4070 to insert an insn once delay slots have been filled since only
4071 they know how to update a SEQUENCE. */
4074 add_insn_after (rtx uncast_insn
, rtx uncast_after
, basic_block bb
)
4076 rtx_insn
*insn
= as_a
<rtx_insn
*> (uncast_insn
);
4077 rtx_insn
*after
= as_a
<rtx_insn
*> (uncast_after
);
4078 add_insn_after_nobb (insn
, after
);
4079 if (!BARRIER_P (after
)
4080 && !BARRIER_P (insn
)
4081 && (bb
= BLOCK_FOR_INSN (after
)))
4083 set_block_for_insn (insn
, bb
);
4085 df_insn_rescan (insn
);
4086 /* Should not happen as first in the BB is always
4087 either NOTE or LABEL. */
4088 if (BB_END (bb
) == after
4089 /* Avoid clobbering of structure when creating new BB. */
4090 && !BARRIER_P (insn
)
4091 && !NOTE_INSN_BASIC_BLOCK_P (insn
))
4096 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4097 If BB is NULL, an attempt is made to infer the bb from before.
4099 This and the previous function should be the only functions called
4100 to insert an insn once delay slots have been filled since only
4101 they know how to update a SEQUENCE. */
4104 add_insn_before (rtx uncast_insn
, rtx uncast_before
, basic_block bb
)
4106 rtx_insn
*insn
= as_a
<rtx_insn
*> (uncast_insn
);
4107 rtx_insn
*before
= as_a
<rtx_insn
*> (uncast_before
);
4108 add_insn_before_nobb (insn
, before
);
4111 && !BARRIER_P (before
)
4112 && !BARRIER_P (insn
))
4113 bb
= BLOCK_FOR_INSN (before
);
4117 set_block_for_insn (insn
, bb
);
4119 df_insn_rescan (insn
);
4120 /* Should not happen as first in the BB is always either NOTE or
4122 gcc_assert (BB_HEAD (bb
) != insn
4123 /* Avoid clobbering of structure when creating new BB. */
4125 || NOTE_INSN_BASIC_BLOCK_P (insn
));
4129 /* Replace insn with an deleted instruction note. */
4132 set_insn_deleted (rtx insn
)
4135 df_insn_delete (as_a
<rtx_insn
*> (insn
));
4136 PUT_CODE (insn
, NOTE
);
4137 NOTE_KIND (insn
) = NOTE_INSN_DELETED
;
4141 /* Unlink INSN from the insn chain.
4143 This function knows how to handle sequences.
4145 This function does not invalidate data flow information associated with
4146 INSN (i.e. does not call df_insn_delete). That makes this function
4147 usable for only disconnecting an insn from the chain, and re-emit it
4150 To later insert INSN elsewhere in the insn chain via add_insn and
4151 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4152 the caller. Nullifying them here breaks many insn chain walks.
4154 To really delete an insn and related DF information, use delete_insn. */
4157 remove_insn (rtx uncast_insn
)
4159 rtx_insn
*insn
= as_a
<rtx_insn
*> (uncast_insn
);
4160 rtx_insn
*next
= NEXT_INSN (insn
);
4161 rtx_insn
*prev
= PREV_INSN (insn
);
4166 SET_NEXT_INSN (prev
) = next
;
4167 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
4169 rtx_sequence
*sequence
= as_a
<rtx_sequence
*> (PATTERN (prev
));
4170 SET_NEXT_INSN (sequence
->insn (sequence
->len () - 1)) = next
;
4175 struct sequence_stack
*seq
;
4177 for (seq
= get_current_sequence (); seq
; seq
= seq
->next
)
4178 if (insn
== seq
->first
)
4189 SET_PREV_INSN (next
) = prev
;
4190 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
4192 rtx_sequence
*sequence
= as_a
<rtx_sequence
*> (PATTERN (next
));
4193 SET_PREV_INSN (sequence
->insn (0)) = prev
;
4198 struct sequence_stack
*seq
;
4200 for (seq
= get_current_sequence (); seq
; seq
= seq
->next
)
4201 if (insn
== seq
->last
)
4210 /* Fix up basic block boundaries, if necessary. */
4211 if (!BARRIER_P (insn
)
4212 && (bb
= BLOCK_FOR_INSN (insn
)))
4214 if (BB_HEAD (bb
) == insn
)
4216 /* Never ever delete the basic block note without deleting whole
4218 gcc_assert (!NOTE_P (insn
));
4219 BB_HEAD (bb
) = next
;
4221 if (BB_END (bb
) == insn
)
4226 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4229 add_function_usage_to (rtx call_insn
, rtx call_fusage
)
4231 gcc_assert (call_insn
&& CALL_P (call_insn
));
4233 /* Put the register usage information on the CALL. If there is already
4234 some usage information, put ours at the end. */
4235 if (CALL_INSN_FUNCTION_USAGE (call_insn
))
4239 for (link
= CALL_INSN_FUNCTION_USAGE (call_insn
); XEXP (link
, 1) != 0;
4240 link
= XEXP (link
, 1))
4243 XEXP (link
, 1) = call_fusage
;
4246 CALL_INSN_FUNCTION_USAGE (call_insn
) = call_fusage
;
4249 /* Delete all insns made since FROM.
4250 FROM becomes the new last instruction. */
4253 delete_insns_since (rtx_insn
*from
)
4258 SET_NEXT_INSN (from
) = 0;
4259 set_last_insn (from
);
4262 /* This function is deprecated, please use sequences instead.
4264 Move a consecutive bunch of insns to a different place in the chain.
4265 The insns to be moved are those between FROM and TO.
4266 They are moved to a new position after the insn AFTER.
4267 AFTER must not be FROM or TO or any insn in between.
4269 This function does not know about SEQUENCEs and hence should not be
4270 called after delay-slot filling has been done. */
4273 reorder_insns_nobb (rtx_insn
*from
, rtx_insn
*to
, rtx_insn
*after
)
4277 for (rtx_insn
*x
= from
; x
!= to
; x
= NEXT_INSN (x
))
4278 gcc_assert (after
!= x
);
4279 gcc_assert (after
!= to
);
4282 /* Splice this bunch out of where it is now. */
4283 if (PREV_INSN (from
))
4284 SET_NEXT_INSN (PREV_INSN (from
)) = NEXT_INSN (to
);
4286 SET_PREV_INSN (NEXT_INSN (to
)) = PREV_INSN (from
);
4287 if (get_last_insn () == to
)
4288 set_last_insn (PREV_INSN (from
));
4289 if (get_insns () == from
)
4290 set_first_insn (NEXT_INSN (to
));
4292 /* Make the new neighbors point to it and it to them. */
4293 if (NEXT_INSN (after
))
4294 SET_PREV_INSN (NEXT_INSN (after
)) = to
;
4296 SET_NEXT_INSN (to
) = NEXT_INSN (after
);
4297 SET_PREV_INSN (from
) = after
;
4298 SET_NEXT_INSN (after
) = from
;
4299 if (after
== get_last_insn ())
4303 /* Same as function above, but take care to update BB boundaries. */
4305 reorder_insns (rtx_insn
*from
, rtx_insn
*to
, rtx_insn
*after
)
4307 rtx_insn
*prev
= PREV_INSN (from
);
4308 basic_block bb
, bb2
;
4310 reorder_insns_nobb (from
, to
, after
);
4312 if (!BARRIER_P (after
)
4313 && (bb
= BLOCK_FOR_INSN (after
)))
4316 df_set_bb_dirty (bb
);
4318 if (!BARRIER_P (from
)
4319 && (bb2
= BLOCK_FOR_INSN (from
)))
4321 if (BB_END (bb2
) == to
)
4322 BB_END (bb2
) = prev
;
4323 df_set_bb_dirty (bb2
);
4326 if (BB_END (bb
) == after
)
4329 for (x
= from
; x
!= NEXT_INSN (to
); x
= NEXT_INSN (x
))
4331 df_insn_change_bb (x
, bb
);
4336 /* Emit insn(s) of given code and pattern
4337 at a specified place within the doubly-linked list.
4339 All of the emit_foo global entry points accept an object
4340 X which is either an insn list or a PATTERN of a single
4343 There are thus a few canonical ways to generate code and
4344 emit it at a specific place in the instruction stream. For
4345 example, consider the instruction named SPOT and the fact that
4346 we would like to emit some instructions before SPOT. We might
4350 ... emit the new instructions ...
4351 insns_head = get_insns ();
4354 emit_insn_before (insns_head, SPOT);
4356 It used to be common to generate SEQUENCE rtl instead, but that
4357 is a relic of the past which no longer occurs. The reason is that
4358 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4359 generated would almost certainly die right after it was created. */
4362 emit_pattern_before_noloc (rtx x
, rtx before
, rtx last
, basic_block bb
,
4363 rtx_insn
*(*make_raw
) (rtx
))
4367 gcc_assert (before
);
4370 return safe_as_a
<rtx_insn
*> (last
);
4372 switch (GET_CODE (x
))
4381 insn
= as_a
<rtx_insn
*> (x
);
4384 rtx_insn
*next
= NEXT_INSN (insn
);
4385 add_insn_before (insn
, before
, bb
);
4391 #ifdef ENABLE_RTL_CHECKING
4398 last
= (*make_raw
) (x
);
4399 add_insn_before (last
, before
, bb
);
4403 return safe_as_a
<rtx_insn
*> (last
);
4406 /* Make X be output before the instruction BEFORE. */
4409 emit_insn_before_noloc (rtx x
, rtx_insn
*before
, basic_block bb
)
4411 return emit_pattern_before_noloc (x
, before
, before
, bb
, make_insn_raw
);
4414 /* Make an instruction with body X and code JUMP_INSN
4415 and output it before the instruction BEFORE. */
4418 emit_jump_insn_before_noloc (rtx x
, rtx_insn
*before
)
4420 return as_a
<rtx_jump_insn
*> (
4421 emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4422 make_jump_insn_raw
));
4425 /* Make an instruction with body X and code CALL_INSN
4426 and output it before the instruction BEFORE. */
4429 emit_call_insn_before_noloc (rtx x
, rtx_insn
*before
)
4431 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4432 make_call_insn_raw
);
4435 /* Make an instruction with body X and code DEBUG_INSN
4436 and output it before the instruction BEFORE. */
4439 emit_debug_insn_before_noloc (rtx x
, rtx before
)
4441 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4442 make_debug_insn_raw
);
4445 /* Make an insn of code BARRIER
4446 and output it before the insn BEFORE. */
4449 emit_barrier_before (rtx before
)
4451 rtx_barrier
*insn
= as_a
<rtx_barrier
*> (rtx_alloc (BARRIER
));
4453 INSN_UID (insn
) = cur_insn_uid
++;
4455 add_insn_before (insn
, before
, NULL
);
4459 /* Emit the label LABEL before the insn BEFORE. */
4462 emit_label_before (rtx label
, rtx_insn
*before
)
4464 gcc_checking_assert (INSN_UID (label
) == 0);
4465 INSN_UID (label
) = cur_insn_uid
++;
4466 add_insn_before (label
, before
, NULL
);
4467 return as_a
<rtx_code_label
*> (label
);
4470 /* Helper for emit_insn_after, handles lists of instructions
4474 emit_insn_after_1 (rtx_insn
*first
, rtx uncast_after
, basic_block bb
)
4476 rtx_insn
*after
= safe_as_a
<rtx_insn
*> (uncast_after
);
4478 rtx_insn
*after_after
;
4479 if (!bb
&& !BARRIER_P (after
))
4480 bb
= BLOCK_FOR_INSN (after
);
4484 df_set_bb_dirty (bb
);
4485 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4486 if (!BARRIER_P (last
))
4488 set_block_for_insn (last
, bb
);
4489 df_insn_rescan (last
);
4491 if (!BARRIER_P (last
))
4493 set_block_for_insn (last
, bb
);
4494 df_insn_rescan (last
);
4496 if (BB_END (bb
) == after
)
4500 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4503 after_after
= NEXT_INSN (after
);
4505 SET_NEXT_INSN (after
) = first
;
4506 SET_PREV_INSN (first
) = after
;
4507 SET_NEXT_INSN (last
) = after_after
;
4509 SET_PREV_INSN (after_after
) = last
;
4511 if (after
== get_last_insn ())
4512 set_last_insn (last
);
4518 emit_pattern_after_noloc (rtx x
, rtx uncast_after
, basic_block bb
,
4519 rtx_insn
*(*make_raw
)(rtx
))
4521 rtx_insn
*after
= safe_as_a
<rtx_insn
*> (uncast_after
);
4522 rtx_insn
*last
= after
;
4529 switch (GET_CODE (x
))
4538 last
= emit_insn_after_1 (as_a
<rtx_insn
*> (x
), after
, bb
);
4541 #ifdef ENABLE_RTL_CHECKING
4548 last
= (*make_raw
) (x
);
4549 add_insn_after (last
, after
, bb
);
4556 /* Make X be output after the insn AFTER and set the BB of insn. If
4557 BB is NULL, an attempt is made to infer the BB from AFTER. */
4560 emit_insn_after_noloc (rtx x
, rtx after
, basic_block bb
)
4562 return emit_pattern_after_noloc (x
, after
, bb
, make_insn_raw
);
4566 /* Make an insn of code JUMP_INSN with body X
4567 and output it after the insn AFTER. */
4570 emit_jump_insn_after_noloc (rtx x
, rtx after
)
4572 return as_a
<rtx_jump_insn
*> (
4573 emit_pattern_after_noloc (x
, after
, NULL
, make_jump_insn_raw
));
4576 /* Make an instruction with body X and code CALL_INSN
4577 and output it after the instruction AFTER. */
4580 emit_call_insn_after_noloc (rtx x
, rtx after
)
4582 return emit_pattern_after_noloc (x
, after
, NULL
, make_call_insn_raw
);
4585 /* Make an instruction with body X and code CALL_INSN
4586 and output it after the instruction AFTER. */
4589 emit_debug_insn_after_noloc (rtx x
, rtx after
)
4591 return emit_pattern_after_noloc (x
, after
, NULL
, make_debug_insn_raw
);
4594 /* Make an insn of code BARRIER
4595 and output it after the insn AFTER. */
4598 emit_barrier_after (rtx after
)
4600 rtx_barrier
*insn
= as_a
<rtx_barrier
*> (rtx_alloc (BARRIER
));
4602 INSN_UID (insn
) = cur_insn_uid
++;
4604 add_insn_after (insn
, after
, NULL
);
4608 /* Emit the label LABEL after the insn AFTER. */
4611 emit_label_after (rtx label
, rtx_insn
*after
)
4613 gcc_checking_assert (INSN_UID (label
) == 0);
4614 INSN_UID (label
) = cur_insn_uid
++;
4615 add_insn_after (label
, after
, NULL
);
4616 return as_a
<rtx_insn
*> (label
);
4619 /* Notes require a bit of special handling: Some notes need to have their
4620 BLOCK_FOR_INSN set, others should never have it set, and some should
4621 have it set or clear depending on the context. */
4623 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4624 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4625 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4628 note_outside_basic_block_p (enum insn_note subtype
, bool on_bb_boundary_p
)
4632 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4633 case NOTE_INSN_SWITCH_TEXT_SECTIONS
:
4636 /* Notes for var tracking and EH region markers can appear between or
4637 inside basic blocks. If the caller is emitting on the basic block
4638 boundary, do not set BLOCK_FOR_INSN on the new note. */
4639 case NOTE_INSN_VAR_LOCATION
:
4640 case NOTE_INSN_CALL_ARG_LOCATION
:
4641 case NOTE_INSN_EH_REGION_BEG
:
4642 case NOTE_INSN_EH_REGION_END
:
4643 return on_bb_boundary_p
;
4645 /* Otherwise, BLOCK_FOR_INSN must be set. */
4651 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4654 emit_note_after (enum insn_note subtype
, rtx_insn
*after
)
4656 rtx_note
*note
= make_note_raw (subtype
);
4657 basic_block bb
= BARRIER_P (after
) ? NULL
: BLOCK_FOR_INSN (after
);
4658 bool on_bb_boundary_p
= (bb
!= NULL
&& BB_END (bb
) == after
);
4660 if (note_outside_basic_block_p (subtype
, on_bb_boundary_p
))
4661 add_insn_after_nobb (note
, after
);
4663 add_insn_after (note
, after
, bb
);
4667 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4670 emit_note_before (enum insn_note subtype
, rtx_insn
*before
)
4672 rtx_note
*note
= make_note_raw (subtype
);
4673 basic_block bb
= BARRIER_P (before
) ? NULL
: BLOCK_FOR_INSN (before
);
4674 bool on_bb_boundary_p
= (bb
!= NULL
&& BB_HEAD (bb
) == before
);
4676 if (note_outside_basic_block_p (subtype
, on_bb_boundary_p
))
4677 add_insn_before_nobb (note
, before
);
4679 add_insn_before (note
, before
, bb
);
4683 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4684 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4687 emit_pattern_after_setloc (rtx pattern
, rtx uncast_after
, int loc
,
4688 rtx_insn
*(*make_raw
) (rtx
))
4690 rtx_insn
*after
= safe_as_a
<rtx_insn
*> (uncast_after
);
4691 rtx_insn
*last
= emit_pattern_after_noloc (pattern
, after
, NULL
, make_raw
);
4693 if (pattern
== NULL_RTX
|| !loc
)
4696 after
= NEXT_INSN (after
);
4699 if (active_insn_p (after
)
4700 && !JUMP_TABLE_DATA_P (after
) /* FIXME */
4701 && !INSN_LOCATION (after
))
4702 INSN_LOCATION (after
) = loc
;
4705 after
= NEXT_INSN (after
);
4710 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4711 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4715 emit_pattern_after (rtx pattern
, rtx uncast_after
, bool skip_debug_insns
,
4716 rtx_insn
*(*make_raw
) (rtx
))
4718 rtx_insn
*after
= safe_as_a
<rtx_insn
*> (uncast_after
);
4719 rtx_insn
*prev
= after
;
4721 if (skip_debug_insns
)
4722 while (DEBUG_INSN_P (prev
))
4723 prev
= PREV_INSN (prev
);
4726 return emit_pattern_after_setloc (pattern
, after
, INSN_LOCATION (prev
),
4729 return emit_pattern_after_noloc (pattern
, after
, NULL
, make_raw
);
4732 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4734 emit_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4736 return emit_pattern_after_setloc (pattern
, after
, loc
, make_insn_raw
);
4739 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4741 emit_insn_after (rtx pattern
, rtx after
)
4743 return emit_pattern_after (pattern
, after
, true, make_insn_raw
);
4746 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4748 emit_jump_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4750 return as_a
<rtx_jump_insn
*> (
4751 emit_pattern_after_setloc (pattern
, after
, loc
, make_jump_insn_raw
));
4754 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4756 emit_jump_insn_after (rtx pattern
, rtx after
)
4758 return as_a
<rtx_jump_insn
*> (
4759 emit_pattern_after (pattern
, after
, true, make_jump_insn_raw
));
4762 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4764 emit_call_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4766 return emit_pattern_after_setloc (pattern
, after
, loc
, make_call_insn_raw
);
4769 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4771 emit_call_insn_after (rtx pattern
, rtx after
)
4773 return emit_pattern_after (pattern
, after
, true, make_call_insn_raw
);
4776 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4778 emit_debug_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4780 return emit_pattern_after_setloc (pattern
, after
, loc
, make_debug_insn_raw
);
4783 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4785 emit_debug_insn_after (rtx pattern
, rtx after
)
4787 return emit_pattern_after (pattern
, after
, false, make_debug_insn_raw
);
4790 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4791 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4792 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4796 emit_pattern_before_setloc (rtx pattern
, rtx uncast_before
, int loc
, bool insnp
,
4797 rtx_insn
*(*make_raw
) (rtx
))
4799 rtx_insn
*before
= as_a
<rtx_insn
*> (uncast_before
);
4800 rtx_insn
*first
= PREV_INSN (before
);
4801 rtx_insn
*last
= emit_pattern_before_noloc (pattern
, before
,
4802 insnp
? before
: NULL_RTX
,
4805 if (pattern
== NULL_RTX
|| !loc
)
4809 first
= get_insns ();
4811 first
= NEXT_INSN (first
);
4814 if (active_insn_p (first
)
4815 && !JUMP_TABLE_DATA_P (first
) /* FIXME */
4816 && !INSN_LOCATION (first
))
4817 INSN_LOCATION (first
) = loc
;
4820 first
= NEXT_INSN (first
);
4825 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4826 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4827 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4828 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4831 emit_pattern_before (rtx pattern
, rtx uncast_before
, bool skip_debug_insns
,
4832 bool insnp
, rtx_insn
*(*make_raw
) (rtx
))
4834 rtx_insn
*before
= safe_as_a
<rtx_insn
*> (uncast_before
);
4835 rtx_insn
*next
= before
;
4837 if (skip_debug_insns
)
4838 while (DEBUG_INSN_P (next
))
4839 next
= PREV_INSN (next
);
4842 return emit_pattern_before_setloc (pattern
, before
, INSN_LOCATION (next
),
4845 return emit_pattern_before_noloc (pattern
, before
,
4846 insnp
? before
: NULL_RTX
,
4850 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4852 emit_insn_before_setloc (rtx pattern
, rtx_insn
*before
, int loc
)
4854 return emit_pattern_before_setloc (pattern
, before
, loc
, true,
4858 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4860 emit_insn_before (rtx pattern
, rtx before
)
4862 return emit_pattern_before (pattern
, before
, true, true, make_insn_raw
);
4865 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4867 emit_jump_insn_before_setloc (rtx pattern
, rtx_insn
*before
, int loc
)
4869 return as_a
<rtx_jump_insn
*> (
4870 emit_pattern_before_setloc (pattern
, before
, loc
, false,
4871 make_jump_insn_raw
));
4874 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4876 emit_jump_insn_before (rtx pattern
, rtx before
)
4878 return as_a
<rtx_jump_insn
*> (
4879 emit_pattern_before (pattern
, before
, true, false,
4880 make_jump_insn_raw
));
4883 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4885 emit_call_insn_before_setloc (rtx pattern
, rtx_insn
*before
, int loc
)
4887 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4888 make_call_insn_raw
);
4891 /* Like emit_call_insn_before_noloc,
4892 but set insn_location according to BEFORE. */
4894 emit_call_insn_before (rtx pattern
, rtx_insn
*before
)
4896 return emit_pattern_before (pattern
, before
, true, false,
4897 make_call_insn_raw
);
4900 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4902 emit_debug_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4904 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4905 make_debug_insn_raw
);
4908 /* Like emit_debug_insn_before_noloc,
4909 but set insn_location according to BEFORE. */
4911 emit_debug_insn_before (rtx pattern
, rtx_insn
*before
)
4913 return emit_pattern_before (pattern
, before
, false, false,
4914 make_debug_insn_raw
);
4917 /* Take X and emit it at the end of the doubly-linked
4920 Returns the last insn emitted. */
4925 rtx_insn
*last
= get_last_insn ();
4931 switch (GET_CODE (x
))
4940 insn
= as_a
<rtx_insn
*> (x
);
4943 rtx_insn
*next
= NEXT_INSN (insn
);
4950 #ifdef ENABLE_RTL_CHECKING
4951 case JUMP_TABLE_DATA
:
4958 last
= make_insn_raw (x
);
4966 /* Make an insn of code DEBUG_INSN with pattern X
4967 and add it to the end of the doubly-linked list. */
4970 emit_debug_insn (rtx x
)
4972 rtx_insn
*last
= get_last_insn ();
4978 switch (GET_CODE (x
))
4987 insn
= as_a
<rtx_insn
*> (x
);
4990 rtx_insn
*next
= NEXT_INSN (insn
);
4997 #ifdef ENABLE_RTL_CHECKING
4998 case JUMP_TABLE_DATA
:
5005 last
= make_debug_insn_raw (x
);
5013 /* Make an insn of code JUMP_INSN with pattern X
5014 and add it to the end of the doubly-linked list. */
5017 emit_jump_insn (rtx x
)
5019 rtx_insn
*last
= NULL
;
5022 switch (GET_CODE (x
))
5031 insn
= as_a
<rtx_insn
*> (x
);
5034 rtx_insn
*next
= NEXT_INSN (insn
);
5041 #ifdef ENABLE_RTL_CHECKING
5042 case JUMP_TABLE_DATA
:
5049 last
= make_jump_insn_raw (x
);
5057 /* Make an insn of code CALL_INSN with pattern X
5058 and add it to the end of the doubly-linked list. */
5061 emit_call_insn (rtx x
)
5065 switch (GET_CODE (x
))
5074 insn
= emit_insn (x
);
5077 #ifdef ENABLE_RTL_CHECKING
5079 case JUMP_TABLE_DATA
:
5085 insn
= make_call_insn_raw (x
);
5093 /* Add the label LABEL to the end of the doubly-linked list. */
5096 emit_label (rtx uncast_label
)
5098 rtx_code_label
*label
= as_a
<rtx_code_label
*> (uncast_label
);
5100 gcc_checking_assert (INSN_UID (label
) == 0);
5101 INSN_UID (label
) = cur_insn_uid
++;
5106 /* Make an insn of code JUMP_TABLE_DATA
5107 and add it to the end of the doubly-linked list. */
5109 rtx_jump_table_data
*
5110 emit_jump_table_data (rtx table
)
5112 rtx_jump_table_data
*jump_table_data
=
5113 as_a
<rtx_jump_table_data
*> (rtx_alloc (JUMP_TABLE_DATA
));
5114 INSN_UID (jump_table_data
) = cur_insn_uid
++;
5115 PATTERN (jump_table_data
) = table
;
5116 BLOCK_FOR_INSN (jump_table_data
) = NULL
;
5117 add_insn (jump_table_data
);
5118 return jump_table_data
;
5121 /* Make an insn of code BARRIER
5122 and add it to the end of the doubly-linked list. */
5127 rtx_barrier
*barrier
= as_a
<rtx_barrier
*> (rtx_alloc (BARRIER
));
5128 INSN_UID (barrier
) = cur_insn_uid
++;
5133 /* Emit a copy of note ORIG. */
5136 emit_note_copy (rtx_note
*orig
)
5138 enum insn_note kind
= (enum insn_note
) NOTE_KIND (orig
);
5139 rtx_note
*note
= make_note_raw (kind
);
5140 NOTE_DATA (note
) = NOTE_DATA (orig
);
5145 /* Make an insn of code NOTE or type NOTE_NO
5146 and add it to the end of the doubly-linked list. */
5149 emit_note (enum insn_note kind
)
5151 rtx_note
*note
= make_note_raw (kind
);
5156 /* Emit a clobber of lvalue X. */
5159 emit_clobber (rtx x
)
5161 /* CONCATs should not appear in the insn stream. */
5162 if (GET_CODE (x
) == CONCAT
)
5164 emit_clobber (XEXP (x
, 0));
5165 return emit_clobber (XEXP (x
, 1));
5167 return emit_insn (gen_rtx_CLOBBER (VOIDmode
, x
));
5170 /* Return a sequence of insns to clobber lvalue X. */
5184 /* Emit a use of rvalue X. */
5189 /* CONCATs should not appear in the insn stream. */
5190 if (GET_CODE (x
) == CONCAT
)
5192 emit_use (XEXP (x
, 0));
5193 return emit_use (XEXP (x
, 1));
5195 return emit_insn (gen_rtx_USE (VOIDmode
, x
));
5198 /* Return a sequence of insns to use rvalue X. */
5212 /* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5213 Return the set in INSN that such notes describe, or NULL if the notes
5214 have no meaning for INSN. */
5217 set_for_reg_notes (rtx insn
)
5224 pat
= PATTERN (insn
);
5225 if (GET_CODE (pat
) == PARALLEL
)
5227 /* We do not use single_set because that ignores SETs of unused
5228 registers. REG_EQUAL and REG_EQUIV notes really do require the
5229 PARALLEL to have a single SET. */
5230 if (multiple_sets (insn
))
5232 pat
= XVECEXP (pat
, 0, 0);
5235 if (GET_CODE (pat
) != SET
)
5238 reg
= SET_DEST (pat
);
5240 /* Notes apply to the contents of a STRICT_LOW_PART. */
5241 if (GET_CODE (reg
) == STRICT_LOW_PART
5242 || GET_CODE (reg
) == ZERO_EXTRACT
)
5243 reg
= XEXP (reg
, 0);
5245 /* Check that we have a register. */
5246 if (!(REG_P (reg
) || GET_CODE (reg
) == SUBREG
))
5252 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5253 note of this type already exists, remove it first. */
5256 set_unique_reg_note (rtx insn
, enum reg_note kind
, rtx datum
)
5258 rtx note
= find_reg_note (insn
, kind
, NULL_RTX
);
5264 /* We need to support the REG_EQUAL on USE trick of find_reloads. */
5265 if (!set_for_reg_notes (insn
) && GET_CODE (PATTERN (insn
)) != USE
)
5268 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5269 It serves no useful purpose and breaks eliminate_regs. */
5270 if (GET_CODE (datum
) == ASM_OPERANDS
)
5273 /* Notes with side effects are dangerous. Even if the side-effect
5274 initially mirrors one in PATTERN (INSN), later optimizations
5275 might alter the way that the final register value is calculated
5276 and so move or alter the side-effect in some way. The note would
5277 then no longer be a valid substitution for SET_SRC. */
5278 if (side_effects_p (datum
))
5287 XEXP (note
, 0) = datum
;
5290 add_reg_note (insn
, kind
, datum
);
5291 note
= REG_NOTES (insn
);
5298 df_notes_rescan (as_a
<rtx_insn
*> (insn
));
5307 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5309 set_dst_reg_note (rtx insn
, enum reg_note kind
, rtx datum
, rtx dst
)
5311 rtx set
= set_for_reg_notes (insn
);
5313 if (set
&& SET_DEST (set
) == dst
)
5314 return set_unique_reg_note (insn
, kind
, datum
);
5318 /* Emit the rtl pattern X as an appropriate kind of insn. Also emit a
5319 following barrier if the instruction needs one and if ALLOW_BARRIER_P
5322 If X is a label, it is simply added into the insn chain. */
5325 emit (rtx x
, bool allow_barrier_p
)
5327 enum rtx_code code
= classify_insn (x
);
5332 return emit_label (x
);
5334 return emit_insn (x
);
5337 rtx_insn
*insn
= emit_jump_insn (x
);
5339 && (any_uncondjump_p (insn
) || GET_CODE (x
) == RETURN
))
5340 return emit_barrier ();
5344 return emit_call_insn (x
);
5346 return emit_debug_insn (x
);
5352 /* Space for free sequence stack entries. */
5353 static GTY ((deletable
)) struct sequence_stack
*free_sequence_stack
;
5355 /* Begin emitting insns to a sequence. If this sequence will contain
5356 something that might cause the compiler to pop arguments to function
5357 calls (because those pops have previously been deferred; see
5358 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5359 before calling this function. That will ensure that the deferred
5360 pops are not accidentally emitted in the middle of this sequence. */
5363 start_sequence (void)
5365 struct sequence_stack
*tem
;
5367 if (free_sequence_stack
!= NULL
)
5369 tem
= free_sequence_stack
;
5370 free_sequence_stack
= tem
->next
;
5373 tem
= ggc_alloc
<sequence_stack
> ();
5375 tem
->next
= get_current_sequence ()->next
;
5376 tem
->first
= get_insns ();
5377 tem
->last
= get_last_insn ();
5378 get_current_sequence ()->next
= tem
;
5384 /* Set up the insn chain starting with FIRST as the current sequence,
5385 saving the previously current one. See the documentation for
5386 start_sequence for more information about how to use this function. */
5389 push_to_sequence (rtx_insn
*first
)
5395 for (last
= first
; last
&& NEXT_INSN (last
); last
= NEXT_INSN (last
))
5398 set_first_insn (first
);
5399 set_last_insn (last
);
5402 /* Like push_to_sequence, but take the last insn as an argument to avoid
5403 looping through the list. */
5406 push_to_sequence2 (rtx_insn
*first
, rtx_insn
*last
)
5410 set_first_insn (first
);
5411 set_last_insn (last
);
5414 /* Set up the outer-level insn chain
5415 as the current sequence, saving the previously current one. */
5418 push_topmost_sequence (void)
5420 struct sequence_stack
*top
;
5424 top
= get_topmost_sequence ();
5425 set_first_insn (top
->first
);
5426 set_last_insn (top
->last
);
5429 /* After emitting to the outer-level insn chain, update the outer-level
5430 insn chain, and restore the previous saved state. */
5433 pop_topmost_sequence (void)
5435 struct sequence_stack
*top
;
5437 top
= get_topmost_sequence ();
5438 top
->first
= get_insns ();
5439 top
->last
= get_last_insn ();
5444 /* After emitting to a sequence, restore previous saved state.
5446 To get the contents of the sequence just made, you must call
5447 `get_insns' *before* calling here.
5449 If the compiler might have deferred popping arguments while
5450 generating this sequence, and this sequence will not be immediately
5451 inserted into the instruction stream, use do_pending_stack_adjust
5452 before calling get_insns. That will ensure that the deferred
5453 pops are inserted into this sequence, and not into some random
5454 location in the instruction stream. See INHIBIT_DEFER_POP for more
5455 information about deferred popping of arguments. */
5460 struct sequence_stack
*tem
= get_current_sequence ()->next
;
5462 set_first_insn (tem
->first
);
5463 set_last_insn (tem
->last
);
5464 get_current_sequence ()->next
= tem
->next
;
5466 memset (tem
, 0, sizeof (*tem
));
5467 tem
->next
= free_sequence_stack
;
5468 free_sequence_stack
= tem
;
5471 /* Return 1 if currently emitting into a sequence. */
5474 in_sequence_p (void)
5476 return get_current_sequence ()->next
!= 0;
5479 /* Put the various virtual registers into REGNO_REG_RTX. */
5482 init_virtual_regs (void)
5484 regno_reg_rtx
[VIRTUAL_INCOMING_ARGS_REGNUM
] = virtual_incoming_args_rtx
;
5485 regno_reg_rtx
[VIRTUAL_STACK_VARS_REGNUM
] = virtual_stack_vars_rtx
;
5486 regno_reg_rtx
[VIRTUAL_STACK_DYNAMIC_REGNUM
] = virtual_stack_dynamic_rtx
;
5487 regno_reg_rtx
[VIRTUAL_OUTGOING_ARGS_REGNUM
] = virtual_outgoing_args_rtx
;
5488 regno_reg_rtx
[VIRTUAL_CFA_REGNUM
] = virtual_cfa_rtx
;
5489 regno_reg_rtx
[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM
]
5490 = virtual_preferred_stack_boundary_rtx
;
5494 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5495 static rtx copy_insn_scratch_in
[MAX_RECOG_OPERANDS
];
5496 static rtx copy_insn_scratch_out
[MAX_RECOG_OPERANDS
];
5497 static int copy_insn_n_scratches
;
5499 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5500 copied an ASM_OPERANDS.
5501 In that case, it is the original input-operand vector. */
5502 static rtvec orig_asm_operands_vector
;
5504 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5505 copied an ASM_OPERANDS.
5506 In that case, it is the copied input-operand vector. */
5507 static rtvec copy_asm_operands_vector
;
5509 /* Likewise for the constraints vector. */
5510 static rtvec orig_asm_constraints_vector
;
5511 static rtvec copy_asm_constraints_vector
;
5513 /* Recursively create a new copy of an rtx for copy_insn.
5514 This function differs from copy_rtx in that it handles SCRATCHes and
5515 ASM_OPERANDs properly.
5516 Normally, this function is not used directly; use copy_insn as front end.
5517 However, you could first copy an insn pattern with copy_insn and then use
5518 this function afterwards to properly copy any REG_NOTEs containing
5522 copy_insn_1 (rtx orig
)
5527 const char *format_ptr
;
5532 code
= GET_CODE (orig
);
5547 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5548 clobbers or clobbers of hard registers that originated as pseudos.
5549 This is needed to allow safe register renaming. */
5550 if (REG_P (XEXP (orig
, 0))
5551 && HARD_REGISTER_NUM_P (REGNO (XEXP (orig
, 0)))
5552 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (orig
, 0))))
5557 for (i
= 0; i
< copy_insn_n_scratches
; i
++)
5558 if (copy_insn_scratch_in
[i
] == orig
)
5559 return copy_insn_scratch_out
[i
];
5563 if (shared_const_p (orig
))
5567 /* A MEM with a constant address is not sharable. The problem is that
5568 the constant address may need to be reloaded. If the mem is shared,
5569 then reloading one copy of this mem will cause all copies to appear
5570 to have been reloaded. */
5576 /* Copy the various flags, fields, and other information. We assume
5577 that all fields need copying, and then clear the fields that should
5578 not be copied. That is the sensible default behavior, and forces
5579 us to explicitly document why we are *not* copying a flag. */
5580 copy
= shallow_copy_rtx (orig
);
5582 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5585 RTX_FLAG (copy
, jump
) = 0;
5586 RTX_FLAG (copy
, call
) = 0;
5587 RTX_FLAG (copy
, frame_related
) = 0;
5590 format_ptr
= GET_RTX_FORMAT (GET_CODE (copy
));
5592 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (copy
)); i
++)
5593 switch (*format_ptr
++)
5596 if (XEXP (orig
, i
) != NULL
)
5597 XEXP (copy
, i
) = copy_insn_1 (XEXP (orig
, i
));
5602 if (XVEC (orig
, i
) == orig_asm_constraints_vector
)
5603 XVEC (copy
, i
) = copy_asm_constraints_vector
;
5604 else if (XVEC (orig
, i
) == orig_asm_operands_vector
)
5605 XVEC (copy
, i
) = copy_asm_operands_vector
;
5606 else if (XVEC (orig
, i
) != NULL
)
5608 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (orig
, i
));
5609 for (j
= 0; j
< XVECLEN (copy
, i
); j
++)
5610 XVECEXP (copy
, i
, j
) = copy_insn_1 (XVECEXP (orig
, i
, j
));
5621 /* These are left unchanged. */
5628 if (code
== SCRATCH
)
5630 i
= copy_insn_n_scratches
++;
5631 gcc_assert (i
< MAX_RECOG_OPERANDS
);
5632 copy_insn_scratch_in
[i
] = orig
;
5633 copy_insn_scratch_out
[i
] = copy
;
5635 else if (code
== ASM_OPERANDS
)
5637 orig_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (orig
);
5638 copy_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (copy
);
5639 orig_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig
);
5640 copy_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy
);
5646 /* Create a new copy of an rtx.
5647 This function differs from copy_rtx in that it handles SCRATCHes and
5648 ASM_OPERANDs properly.
5649 INSN doesn't really have to be a full INSN; it could be just the
5652 copy_insn (rtx insn
)
5654 copy_insn_n_scratches
= 0;
5655 orig_asm_operands_vector
= 0;
5656 orig_asm_constraints_vector
= 0;
5657 copy_asm_operands_vector
= 0;
5658 copy_asm_constraints_vector
= 0;
5659 return copy_insn_1 (insn
);
5662 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5663 on that assumption that INSN itself remains in its original place. */
5666 copy_delay_slot_insn (rtx_insn
*insn
)
5668 /* Copy INSN with its rtx_code, all its notes, location etc. */
5669 insn
= as_a
<rtx_insn
*> (copy_rtx (insn
));
5670 INSN_UID (insn
) = cur_insn_uid
++;
5674 /* Initialize data structures and variables in this file
5675 before generating rtl for each function. */
5680 set_first_insn (NULL
);
5681 set_last_insn (NULL
);
5682 if (MIN_NONDEBUG_INSN_UID
)
5683 cur_insn_uid
= MIN_NONDEBUG_INSN_UID
;
5686 cur_debug_insn_uid
= 1;
5687 reg_rtx_no
= LAST_VIRTUAL_REGISTER
+ 1;
5688 first_label_num
= label_num
;
5689 get_current_sequence ()->next
= NULL
;
5691 /* Init the tables that describe all the pseudo regs. */
5693 crtl
->emit
.regno_pointer_align_length
= LAST_VIRTUAL_REGISTER
+ 101;
5695 crtl
->emit
.regno_pointer_align
5696 = XCNEWVEC (unsigned char, crtl
->emit
.regno_pointer_align_length
);
5699 = ggc_cleared_vec_alloc
<rtx
> (crtl
->emit
.regno_pointer_align_length
);
5701 /* Put copies of all the hard registers into regno_reg_rtx. */
5702 memcpy (regno_reg_rtx
,
5703 initial_regno_reg_rtx
,
5704 FIRST_PSEUDO_REGISTER
* sizeof (rtx
));
5706 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5707 init_virtual_regs ();
5709 /* Indicate that the virtual registers and stack locations are
5711 REG_POINTER (stack_pointer_rtx
) = 1;
5712 REG_POINTER (frame_pointer_rtx
) = 1;
5713 REG_POINTER (hard_frame_pointer_rtx
) = 1;
5714 REG_POINTER (arg_pointer_rtx
) = 1;
5716 REG_POINTER (virtual_incoming_args_rtx
) = 1;
5717 REG_POINTER (virtual_stack_vars_rtx
) = 1;
5718 REG_POINTER (virtual_stack_dynamic_rtx
) = 1;
5719 REG_POINTER (virtual_outgoing_args_rtx
) = 1;
5720 REG_POINTER (virtual_cfa_rtx
) = 1;
5722 #ifdef STACK_BOUNDARY
5723 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM
) = STACK_BOUNDARY
;
5724 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5725 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5726 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM
) = STACK_BOUNDARY
;
5728 /* ??? These are problematic (for example, 3 out of 4 are wrong on
5729 32-bit SPARC and cannot be all fixed because of the ABI). */
5730 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5731 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM
) = STACK_BOUNDARY
;
5732 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM
) = STACK_BOUNDARY
;
5733 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5735 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM
) = BITS_PER_WORD
;
5738 #ifdef INIT_EXPANDERS
5743 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5746 gen_const_vector (machine_mode mode
, int constant
)
5753 units
= GET_MODE_NUNITS (mode
);
5754 inner
= GET_MODE_INNER (mode
);
5756 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner
));
5758 v
= rtvec_alloc (units
);
5760 /* We need to call this function after we set the scalar const_tiny_rtx
5762 gcc_assert (const_tiny_rtx
[constant
][(int) inner
]);
5764 for (i
= 0; i
< units
; ++i
)
5765 RTVEC_ELT (v
, i
) = const_tiny_rtx
[constant
][(int) inner
];
5767 tem
= gen_rtx_raw_CONST_VECTOR (mode
, v
);
5771 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5772 all elements are zero, and the one vector when all elements are one. */
5774 gen_rtx_CONST_VECTOR (machine_mode mode
, rtvec v
)
5776 machine_mode inner
= GET_MODE_INNER (mode
);
5777 int nunits
= GET_MODE_NUNITS (mode
);
5781 /* Check to see if all of the elements have the same value. */
5782 x
= RTVEC_ELT (v
, nunits
- 1);
5783 for (i
= nunits
- 2; i
>= 0; i
--)
5784 if (RTVEC_ELT (v
, i
) != x
)
5787 /* If the values are all the same, check to see if we can use one of the
5788 standard constant vectors. */
5791 if (x
== CONST0_RTX (inner
))
5792 return CONST0_RTX (mode
);
5793 else if (x
== CONST1_RTX (inner
))
5794 return CONST1_RTX (mode
);
5795 else if (x
== CONSTM1_RTX (inner
))
5796 return CONSTM1_RTX (mode
);
5799 return gen_rtx_raw_CONST_VECTOR (mode
, v
);
5802 /* Initialise global register information required by all functions. */
5805 init_emit_regs (void)
5811 /* Reset register attributes */
5812 reg_attrs_htab
->empty ();
5814 /* We need reg_raw_mode, so initialize the modes now. */
5815 init_reg_modes_target ();
5817 /* Assign register numbers to the globally defined register rtx. */
5818 stack_pointer_rtx
= gen_raw_REG (Pmode
, STACK_POINTER_REGNUM
);
5819 frame_pointer_rtx
= gen_raw_REG (Pmode
, FRAME_POINTER_REGNUM
);
5820 hard_frame_pointer_rtx
= gen_raw_REG (Pmode
, HARD_FRAME_POINTER_REGNUM
);
5821 arg_pointer_rtx
= gen_raw_REG (Pmode
, ARG_POINTER_REGNUM
);
5822 virtual_incoming_args_rtx
=
5823 gen_raw_REG (Pmode
, VIRTUAL_INCOMING_ARGS_REGNUM
);
5824 virtual_stack_vars_rtx
=
5825 gen_raw_REG (Pmode
, VIRTUAL_STACK_VARS_REGNUM
);
5826 virtual_stack_dynamic_rtx
=
5827 gen_raw_REG (Pmode
, VIRTUAL_STACK_DYNAMIC_REGNUM
);
5828 virtual_outgoing_args_rtx
=
5829 gen_raw_REG (Pmode
, VIRTUAL_OUTGOING_ARGS_REGNUM
);
5830 virtual_cfa_rtx
= gen_raw_REG (Pmode
, VIRTUAL_CFA_REGNUM
);
5831 virtual_preferred_stack_boundary_rtx
=
5832 gen_raw_REG (Pmode
, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM
);
5834 /* Initialize RTL for commonly used hard registers. These are
5835 copied into regno_reg_rtx as we begin to compile each function. */
5836 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
5837 initial_regno_reg_rtx
[i
] = gen_raw_REG (reg_raw_mode
[i
], i
);
5839 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5840 return_address_pointer_rtx
5841 = gen_raw_REG (Pmode
, RETURN_ADDRESS_POINTER_REGNUM
);
5844 pic_offset_table_rtx
= NULL_RTX
;
5845 if ((unsigned) PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
)
5846 pic_offset_table_rtx
= gen_raw_REG (Pmode
, PIC_OFFSET_TABLE_REGNUM
);
5848 for (i
= 0; i
< (int) MAX_MACHINE_MODE
; i
++)
5850 mode
= (machine_mode
) i
;
5851 attrs
= ggc_cleared_alloc
<mem_attrs
> ();
5852 attrs
->align
= BITS_PER_UNIT
;
5853 attrs
->addrspace
= ADDR_SPACE_GENERIC
;
5854 if (mode
!= BLKmode
)
5856 attrs
->size_known_p
= true;
5857 attrs
->size
= GET_MODE_SIZE (mode
);
5858 if (STRICT_ALIGNMENT
)
5859 attrs
->align
= GET_MODE_ALIGNMENT (mode
);
5861 mode_mem_attrs
[i
] = attrs
;
5865 /* Initialize global machine_mode variables. */
5868 init_derived_machine_modes (void)
5870 byte_mode
= VOIDmode
;
5871 word_mode
= VOIDmode
;
5873 for (machine_mode mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5875 mode
= GET_MODE_WIDER_MODE (mode
))
5877 if (GET_MODE_BITSIZE (mode
) == BITS_PER_UNIT
5878 && byte_mode
== VOIDmode
)
5881 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
5882 && word_mode
== VOIDmode
)
5886 ptr_mode
= mode_for_size (POINTER_SIZE
, GET_MODE_CLASS (Pmode
), 0);
5889 /* Create some permanent unique rtl objects shared between all functions. */
5892 init_emit_once (void)
5896 machine_mode double_mode
;
5898 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
5899 CONST_FIXED, and memory attribute hash tables. */
5900 const_int_htab
= hash_table
<const_int_hasher
>::create_ggc (37);
5902 #if TARGET_SUPPORTS_WIDE_INT
5903 const_wide_int_htab
= hash_table
<const_wide_int_hasher
>::create_ggc (37);
5905 const_double_htab
= hash_table
<const_double_hasher
>::create_ggc (37);
5907 const_fixed_htab
= hash_table
<const_fixed_hasher
>::create_ggc (37);
5909 reg_attrs_htab
= hash_table
<reg_attr_hasher
>::create_ggc (37);
5911 #ifdef INIT_EXPANDERS
5912 /* This is to initialize {init|mark|free}_machine_status before the first
5913 call to push_function_context_to. This is needed by the Chill front
5914 end which calls push_function_context_to before the first call to
5915 init_function_start. */
5919 /* Create the unique rtx's for certain rtx codes and operand values. */
5921 /* Process stack-limiting command-line options. */
5922 if (opt_fstack_limit_symbol_arg
!= NULL
)
5924 = gen_rtx_SYMBOL_REF (Pmode
, ggc_strdup (opt_fstack_limit_symbol_arg
));
5925 if (opt_fstack_limit_register_no
>= 0)
5926 stack_limit_rtx
= gen_rtx_REG (Pmode
, opt_fstack_limit_register_no
);
5928 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5929 tries to use these variables. */
5930 for (i
= - MAX_SAVED_CONST_INT
; i
<= MAX_SAVED_CONST_INT
; i
++)
5931 const_int_rtx
[i
+ MAX_SAVED_CONST_INT
] =
5932 gen_rtx_raw_CONST_INT (VOIDmode
, (HOST_WIDE_INT
) i
);
5934 if (STORE_FLAG_VALUE
>= - MAX_SAVED_CONST_INT
5935 && STORE_FLAG_VALUE
<= MAX_SAVED_CONST_INT
)
5936 const_true_rtx
= const_int_rtx
[STORE_FLAG_VALUE
+ MAX_SAVED_CONST_INT
];
5938 const_true_rtx
= gen_rtx_CONST_INT (VOIDmode
, STORE_FLAG_VALUE
);
5940 double_mode
= mode_for_size (DOUBLE_TYPE_SIZE
, MODE_FLOAT
, 0);
5942 real_from_integer (&dconst0
, double_mode
, 0, SIGNED
);
5943 real_from_integer (&dconst1
, double_mode
, 1, SIGNED
);
5944 real_from_integer (&dconst2
, double_mode
, 2, SIGNED
);
5949 dconsthalf
= dconst1
;
5950 SET_REAL_EXP (&dconsthalf
, REAL_EXP (&dconsthalf
) - 1);
5952 for (i
= 0; i
< 3; i
++)
5954 const REAL_VALUE_TYPE
*const r
=
5955 (i
== 0 ? &dconst0
: i
== 1 ? &dconst1
: &dconst2
);
5957 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
5959 mode
= GET_MODE_WIDER_MODE (mode
))
5960 const_tiny_rtx
[i
][(int) mode
] =
5961 const_double_from_real_value (*r
, mode
);
5963 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT
);
5965 mode
= GET_MODE_WIDER_MODE (mode
))
5966 const_tiny_rtx
[i
][(int) mode
] =
5967 const_double_from_real_value (*r
, mode
);
5969 const_tiny_rtx
[i
][(int) VOIDmode
] = GEN_INT (i
);
5971 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5973 mode
= GET_MODE_WIDER_MODE (mode
))
5974 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5976 for (mode
= MIN_MODE_PARTIAL_INT
;
5977 mode
<= MAX_MODE_PARTIAL_INT
;
5978 mode
= (machine_mode
)((int)(mode
) + 1))
5979 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5982 const_tiny_rtx
[3][(int) VOIDmode
] = constm1_rtx
;
5984 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5986 mode
= GET_MODE_WIDER_MODE (mode
))
5987 const_tiny_rtx
[3][(int) mode
] = constm1_rtx
;
5989 for (mode
= MIN_MODE_PARTIAL_INT
;
5990 mode
<= MAX_MODE_PARTIAL_INT
;
5991 mode
= (machine_mode
)((int)(mode
) + 1))
5992 const_tiny_rtx
[3][(int) mode
] = constm1_rtx
;
5994 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT
);
5996 mode
= GET_MODE_WIDER_MODE (mode
))
5998 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
5999 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
6002 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT
);
6004 mode
= GET_MODE_WIDER_MODE (mode
))
6006 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
6007 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
6010 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT
);
6012 mode
= GET_MODE_WIDER_MODE (mode
))
6014 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
6015 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
6016 const_tiny_rtx
[3][(int) mode
] = gen_const_vector (mode
, 3);
6019 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT
);
6021 mode
= GET_MODE_WIDER_MODE (mode
))
6023 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
6024 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
6027 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FRACT
);
6029 mode
= GET_MODE_WIDER_MODE (mode
))
6031 FCONST0 (mode
).data
.high
= 0;
6032 FCONST0 (mode
).data
.low
= 0;
6033 FCONST0 (mode
).mode
= mode
;
6034 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
6035 FCONST0 (mode
), mode
);
6038 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_UFRACT
);
6040 mode
= GET_MODE_WIDER_MODE (mode
))
6042 FCONST0 (mode
).data
.high
= 0;
6043 FCONST0 (mode
).data
.low
= 0;
6044 FCONST0 (mode
).mode
= mode
;
6045 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
6046 FCONST0 (mode
), mode
);
6049 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_ACCUM
);
6051 mode
= GET_MODE_WIDER_MODE (mode
))
6053 FCONST0 (mode
).data
.high
= 0;
6054 FCONST0 (mode
).data
.low
= 0;
6055 FCONST0 (mode
).mode
= mode
;
6056 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
6057 FCONST0 (mode
), mode
);
6059 /* We store the value 1. */
6060 FCONST1 (mode
).data
.high
= 0;
6061 FCONST1 (mode
).data
.low
= 0;
6062 FCONST1 (mode
).mode
= mode
;
6064 = double_int_one
.lshift (GET_MODE_FBIT (mode
),
6065 HOST_BITS_PER_DOUBLE_INT
,
6066 SIGNED_FIXED_POINT_MODE_P (mode
));
6067 const_tiny_rtx
[1][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
6068 FCONST1 (mode
), mode
);
6071 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_UACCUM
);
6073 mode
= GET_MODE_WIDER_MODE (mode
))
6075 FCONST0 (mode
).data
.high
= 0;
6076 FCONST0 (mode
).data
.low
= 0;
6077 FCONST0 (mode
).mode
= mode
;
6078 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
6079 FCONST0 (mode
), mode
);
6081 /* We store the value 1. */
6082 FCONST1 (mode
).data
.high
= 0;
6083 FCONST1 (mode
).data
.low
= 0;
6084 FCONST1 (mode
).mode
= mode
;
6086 = double_int_one
.lshift (GET_MODE_FBIT (mode
),
6087 HOST_BITS_PER_DOUBLE_INT
,
6088 SIGNED_FIXED_POINT_MODE_P (mode
));
6089 const_tiny_rtx
[1][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
6090 FCONST1 (mode
), mode
);
6093 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT
);
6095 mode
= GET_MODE_WIDER_MODE (mode
))
6097 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
6100 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT
);
6102 mode
= GET_MODE_WIDER_MODE (mode
))
6104 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
6107 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM
);
6109 mode
= GET_MODE_WIDER_MODE (mode
))
6111 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
6112 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
6115 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM
);
6117 mode
= GET_MODE_WIDER_MODE (mode
))
6119 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
6120 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
6123 for (i
= (int) CCmode
; i
< (int) MAX_MACHINE_MODE
; ++i
)
6124 if (GET_MODE_CLASS ((machine_mode
) i
) == MODE_CC
)
6125 const_tiny_rtx
[0][i
] = const0_rtx
;
6127 const_tiny_rtx
[0][(int) BImode
] = const0_rtx
;
6128 if (STORE_FLAG_VALUE
== 1)
6129 const_tiny_rtx
[1][(int) BImode
] = const1_rtx
;
6131 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_POINTER_BOUNDS
);
6133 mode
= GET_MODE_WIDER_MODE (mode
))
6135 wide_int wi_zero
= wi::zero (GET_MODE_PRECISION (mode
));
6136 const_tiny_rtx
[0][mode
] = immed_wide_int_const (wi_zero
, mode
);
6139 pc_rtx
= gen_rtx_fmt_ (PC
, VOIDmode
);
6140 ret_rtx
= gen_rtx_fmt_ (RETURN
, VOIDmode
);
6141 simple_return_rtx
= gen_rtx_fmt_ (SIMPLE_RETURN
, VOIDmode
);
6142 cc0_rtx
= gen_rtx_fmt_ (CC0
, VOIDmode
);
6143 invalid_insn_rtx
= gen_rtx_INSN (VOIDmode
,
6147 /*pattern=*/NULL_RTX
,
6150 /*reg_notes=*/NULL_RTX
);
6153 /* Produce exact duplicate of insn INSN after AFTER.
6154 Care updating of libcall regions if present. */
6157 emit_copy_of_insn_after (rtx_insn
*insn
, rtx_insn
*after
)
6162 switch (GET_CODE (insn
))
6165 new_rtx
= emit_insn_after (copy_insn (PATTERN (insn
)), after
);
6169 new_rtx
= emit_jump_insn_after (copy_insn (PATTERN (insn
)), after
);
6170 CROSSING_JUMP_P (new_rtx
) = CROSSING_JUMP_P (insn
);
6174 new_rtx
= emit_debug_insn_after (copy_insn (PATTERN (insn
)), after
);
6178 new_rtx
= emit_call_insn_after (copy_insn (PATTERN (insn
)), after
);
6179 if (CALL_INSN_FUNCTION_USAGE (insn
))
6180 CALL_INSN_FUNCTION_USAGE (new_rtx
)
6181 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn
));
6182 SIBLING_CALL_P (new_rtx
) = SIBLING_CALL_P (insn
);
6183 RTL_CONST_CALL_P (new_rtx
) = RTL_CONST_CALL_P (insn
);
6184 RTL_PURE_CALL_P (new_rtx
) = RTL_PURE_CALL_P (insn
);
6185 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx
)
6186 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn
);
6193 /* Update LABEL_NUSES. */
6194 mark_jump_label (PATTERN (new_rtx
), new_rtx
, 0);
6196 INSN_LOCATION (new_rtx
) = INSN_LOCATION (insn
);
6198 /* If the old insn is frame related, then so is the new one. This is
6199 primarily needed for IA-64 unwind info which marks epilogue insns,
6200 which may be duplicated by the basic block reordering code. */
6201 RTX_FRAME_RELATED_P (new_rtx
) = RTX_FRAME_RELATED_P (insn
);
6203 /* Locate the end of existing REG_NOTES in NEW_RTX. */
6204 rtx
*ptail
= ®_NOTES (new_rtx
);
6205 while (*ptail
!= NULL_RTX
)
6206 ptail
= &XEXP (*ptail
, 1);
6208 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6209 will make them. REG_LABEL_TARGETs are created there too, but are
6210 supposed to be sticky, so we copy them. */
6211 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
6212 if (REG_NOTE_KIND (link
) != REG_LABEL_OPERAND
)
6214 *ptail
= duplicate_reg_note (link
);
6215 ptail
= &XEXP (*ptail
, 1);
6218 INSN_CODE (new_rtx
) = INSN_CODE (insn
);
6222 static GTY((deletable
)) rtx hard_reg_clobbers
[NUM_MACHINE_MODES
][FIRST_PSEUDO_REGISTER
];
6224 gen_hard_reg_clobber (machine_mode mode
, unsigned int regno
)
6226 if (hard_reg_clobbers
[mode
][regno
])
6227 return hard_reg_clobbers
[mode
][regno
];
6229 return (hard_reg_clobbers
[mode
][regno
] =
6230 gen_rtx_CLOBBER (VOIDmode
, gen_rtx_REG (mode
, regno
)));
6233 location_t prologue_location
;
6234 location_t epilogue_location
;
6236 /* Hold current location information and last location information, so the
6237 datastructures are built lazily only when some instructions in given
6238 place are needed. */
6239 static location_t curr_location
;
6241 /* Allocate insn location datastructure. */
6243 insn_locations_init (void)
6245 prologue_location
= epilogue_location
= 0;
6246 curr_location
= UNKNOWN_LOCATION
;
6249 /* At the end of emit stage, clear current location. */
6251 insn_locations_finalize (void)
6253 epilogue_location
= curr_location
;
6254 curr_location
= UNKNOWN_LOCATION
;
6257 /* Set current location. */
6259 set_curr_insn_location (location_t location
)
6261 curr_location
= location
;
6264 /* Get current location. */
6266 curr_insn_location (void)
6268 return curr_location
;
6271 /* Return lexical scope block insn belongs to. */
6273 insn_scope (const rtx_insn
*insn
)
6275 return LOCATION_BLOCK (INSN_LOCATION (insn
));
6278 /* Return line number of the statement that produced this insn. */
6280 insn_line (const rtx_insn
*insn
)
6282 return LOCATION_LINE (INSN_LOCATION (insn
));
6285 /* Return source file of the statement that produced this insn. */
6287 insn_file (const rtx_insn
*insn
)
6289 return LOCATION_FILE (INSN_LOCATION (insn
));
6292 /* Return expanded location of the statement that produced this insn. */
6294 insn_location (const rtx_insn
*insn
)
6296 return expand_location (INSN_LOCATION (insn
));
6299 /* Return true if memory model MODEL requires a pre-operation (release-style)
6300 barrier or a post-operation (acquire-style) barrier. While not universal,
6301 this function matches behavior of several targets. */
6304 need_atomic_barrier_p (enum memmodel model
, bool pre
)
6306 switch (model
& MEMMODEL_BASE_MASK
)
6308 case MEMMODEL_RELAXED
:
6309 case MEMMODEL_CONSUME
:
6311 case MEMMODEL_RELEASE
:
6313 case MEMMODEL_ACQUIRE
:
6315 case MEMMODEL_ACQ_REL
:
6316 case MEMMODEL_SEQ_CST
:
6323 /* Initialize fields of rtl_data related to stack alignment. */
6326 rtl_data::init_stack_alignment ()
6328 stack_alignment_needed
= STACK_BOUNDARY
;
6329 max_used_stack_slot_alignment
= STACK_BOUNDARY
;
6330 stack_alignment_estimated
= 0;
6331 preferred_stack_boundary
= STACK_BOUNDARY
;
6335 #include "gt-emit-rtl.h"