PR middle-end/80422
[official-gcc.git] / gcc / alias.c
blobefd89ce1679aff088dc3df20bac7b84d3727274f
1 /* Alias analysis for GNU C
2 Copyright (C) 1997-2017 Free Software Foundation, Inc.
3 Contributed by John Carr (jfc@mit.edu).
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "gimple-ssa.h"
33 #include "emit-rtl.h"
34 #include "alias.h"
35 #include "fold-const.h"
36 #include "varasm.h"
37 #include "cselib.h"
38 #include "langhooks.h"
39 #include "cfganal.h"
40 #include "rtl-iter.h"
41 #include "cgraph.h"
43 /* The aliasing API provided here solves related but different problems:
45 Say there exists (in c)
47 struct X {
48 struct Y y1;
49 struct Z z2;
50 } x1, *px1, *px2;
52 struct Y y2, *py;
53 struct Z z2, *pz;
56 py = &x1.y1;
57 px2 = &x1;
59 Consider the four questions:
61 Can a store to x1 interfere with px2->y1?
62 Can a store to x1 interfere with px2->z2?
63 Can a store to x1 change the value pointed to by with py?
64 Can a store to x1 change the value pointed to by with pz?
66 The answer to these questions can be yes, yes, yes, and maybe.
68 The first two questions can be answered with a simple examination
69 of the type system. If structure X contains a field of type Y then
70 a store through a pointer to an X can overwrite any field that is
71 contained (recursively) in an X (unless we know that px1 != px2).
73 The last two questions can be solved in the same way as the first
74 two questions but this is too conservative. The observation is
75 that in some cases we can know which (if any) fields are addressed
76 and if those addresses are used in bad ways. This analysis may be
77 language specific. In C, arbitrary operations may be applied to
78 pointers. However, there is some indication that this may be too
79 conservative for some C++ types.
81 The pass ipa-type-escape does this analysis for the types whose
82 instances do not escape across the compilation boundary.
84 Historically in GCC, these two problems were combined and a single
85 data structure that was used to represent the solution to these
86 problems. We now have two similar but different data structures,
87 The data structure to solve the last two questions is similar to
88 the first, but does not contain the fields whose address are never
89 taken. For types that do escape the compilation unit, the data
90 structures will have identical information.
93 /* The alias sets assigned to MEMs assist the back-end in determining
94 which MEMs can alias which other MEMs. In general, two MEMs in
95 different alias sets cannot alias each other, with one important
96 exception. Consider something like:
98 struct S { int i; double d; };
100 a store to an `S' can alias something of either type `int' or type
101 `double'. (However, a store to an `int' cannot alias a `double'
102 and vice versa.) We indicate this via a tree structure that looks
103 like:
104 struct S
107 |/_ _\|
108 int double
110 (The arrows are directed and point downwards.)
111 In this situation we say the alias set for `struct S' is the
112 `superset' and that those for `int' and `double' are `subsets'.
114 To see whether two alias sets can point to the same memory, we must
115 see if either alias set is a subset of the other. We need not trace
116 past immediate descendants, however, since we propagate all
117 grandchildren up one level.
119 Alias set zero is implicitly a superset of all other alias sets.
120 However, this is no actual entry for alias set zero. It is an
121 error to attempt to explicitly construct a subset of zero. */
123 struct alias_set_hash : int_hash <int, INT_MIN, INT_MIN + 1> {};
125 struct GTY(()) alias_set_entry {
126 /* The alias set number, as stored in MEM_ALIAS_SET. */
127 alias_set_type alias_set;
129 /* Nonzero if would have a child of zero: this effectively makes this
130 alias set the same as alias set zero. */
131 bool has_zero_child;
132 /* Nonzero if alias set corresponds to pointer type itself (i.e. not to
133 aggregate contaiing pointer.
134 This is used for a special case where we need an universal pointer type
135 compatible with all other pointer types. */
136 bool is_pointer;
137 /* Nonzero if is_pointer or if one of childs have has_pointer set. */
138 bool has_pointer;
140 /* The children of the alias set. These are not just the immediate
141 children, but, in fact, all descendants. So, if we have:
143 struct T { struct S s; float f; }
145 continuing our example above, the children here will be all of
146 `int', `double', `float', and `struct S'. */
147 hash_map<alias_set_hash, int> *children;
150 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
151 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
152 static void record_set (rtx, const_rtx, void *);
153 static int base_alias_check (rtx, rtx, rtx, rtx, machine_mode,
154 machine_mode);
155 static rtx find_base_value (rtx);
156 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
157 static alias_set_entry *get_alias_set_entry (alias_set_type);
158 static tree decl_for_component_ref (tree);
159 static int write_dependence_p (const_rtx,
160 const_rtx, machine_mode, rtx,
161 bool, bool, bool);
162 static int compare_base_symbol_refs (const_rtx, const_rtx);
164 static void memory_modified_1 (rtx, const_rtx, void *);
166 /* Query statistics for the different low-level disambiguators.
167 A high-level query may trigger multiple of them. */
169 static struct {
170 unsigned long long num_alias_zero;
171 unsigned long long num_same_alias_set;
172 unsigned long long num_same_objects;
173 unsigned long long num_volatile;
174 unsigned long long num_dag;
175 unsigned long long num_universal;
176 unsigned long long num_disambiguated;
177 } alias_stats;
180 /* Set up all info needed to perform alias analysis on memory references. */
182 /* Returns the size in bytes of the mode of X. */
183 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
185 /* Cap the number of passes we make over the insns propagating alias
186 information through set chains.
187 ??? 10 is a completely arbitrary choice. This should be based on the
188 maximum loop depth in the CFG, but we do not have this information
189 available (even if current_loops _is_ available). */
190 #define MAX_ALIAS_LOOP_PASSES 10
192 /* reg_base_value[N] gives an address to which register N is related.
193 If all sets after the first add or subtract to the current value
194 or otherwise modify it so it does not point to a different top level
195 object, reg_base_value[N] is equal to the address part of the source
196 of the first set.
198 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
199 expressions represent three types of base:
201 1. incoming arguments. There is just one ADDRESS to represent all
202 arguments, since we do not know at this level whether accesses
203 based on different arguments can alias. The ADDRESS has id 0.
205 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
206 (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
207 Each of these rtxes has a separate ADDRESS associated with it,
208 each with a negative id.
210 GCC is (and is required to be) precise in which register it
211 chooses to access a particular region of stack. We can therefore
212 assume that accesses based on one of these rtxes do not alias
213 accesses based on another of these rtxes.
215 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
216 Each such piece of memory has a separate ADDRESS associated
217 with it, each with an id greater than 0.
219 Accesses based on one ADDRESS do not alias accesses based on other
220 ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
221 alias globals either; the ADDRESSes have Pmode to indicate this.
222 The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
223 indicate this. */
225 static GTY(()) vec<rtx, va_gc> *reg_base_value;
226 static rtx *new_reg_base_value;
228 /* The single VOIDmode ADDRESS that represents all argument bases.
229 It has id 0. */
230 static GTY(()) rtx arg_base_value;
232 /* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
233 static int unique_id;
235 /* We preserve the copy of old array around to avoid amount of garbage
236 produced. About 8% of garbage produced were attributed to this
237 array. */
238 static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
240 /* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
241 registers. */
242 #define UNIQUE_BASE_VALUE_SP -1
243 #define UNIQUE_BASE_VALUE_ARGP -2
244 #define UNIQUE_BASE_VALUE_FP -3
245 #define UNIQUE_BASE_VALUE_HFP -4
247 #define static_reg_base_value \
248 (this_target_rtl->x_static_reg_base_value)
250 #define REG_BASE_VALUE(X) \
251 (REGNO (X) < vec_safe_length (reg_base_value) \
252 ? (*reg_base_value)[REGNO (X)] : 0)
254 /* Vector indexed by N giving the initial (unchanging) value known for
255 pseudo-register N. This vector is initialized in init_alias_analysis,
256 and does not change until end_alias_analysis is called. */
257 static GTY(()) vec<rtx, va_gc> *reg_known_value;
259 /* Vector recording for each reg_known_value whether it is due to a
260 REG_EQUIV note. Future passes (viz., reload) may replace the
261 pseudo with the equivalent expression and so we account for the
262 dependences that would be introduced if that happens.
264 The REG_EQUIV notes created in assign_parms may mention the arg
265 pointer, and there are explicit insns in the RTL that modify the
266 arg pointer. Thus we must ensure that such insns don't get
267 scheduled across each other because that would invalidate the
268 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
269 wrong, but solving the problem in the scheduler will likely give
270 better code, so we do it here. */
271 static sbitmap reg_known_equiv_p;
273 /* True when scanning insns from the start of the rtl to the
274 NOTE_INSN_FUNCTION_BEG note. */
275 static bool copying_arguments;
278 /* The splay-tree used to store the various alias set entries. */
279 static GTY (()) vec<alias_set_entry *, va_gc> *alias_sets;
281 /* Build a decomposed reference object for querying the alias-oracle
282 from the MEM rtx and store it in *REF.
283 Returns false if MEM is not suitable for the alias-oracle. */
285 static bool
286 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
288 tree expr = MEM_EXPR (mem);
289 tree base;
291 if (!expr)
292 return false;
294 ao_ref_init (ref, expr);
296 /* Get the base of the reference and see if we have to reject or
297 adjust it. */
298 base = ao_ref_base (ref);
299 if (base == NULL_TREE)
300 return false;
302 /* The tree oracle doesn't like bases that are neither decls
303 nor indirect references of SSA names. */
304 if (!(DECL_P (base)
305 || (TREE_CODE (base) == MEM_REF
306 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
307 || (TREE_CODE (base) == TARGET_MEM_REF
308 && TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
309 return false;
311 /* If this is a reference based on a partitioned decl replace the
312 base with a MEM_REF of the pointer representative we
313 created during stack slot partitioning. */
314 if (VAR_P (base)
315 && ! is_global_var (base)
316 && cfun->gimple_df->decls_to_pointers != NULL)
318 tree *namep = cfun->gimple_df->decls_to_pointers->get (base);
319 if (namep)
320 ref->base = build_simple_mem_ref (*namep);
323 ref->ref_alias_set = MEM_ALIAS_SET (mem);
325 /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
326 is conservative, so trust it. */
327 if (!MEM_OFFSET_KNOWN_P (mem)
328 || !MEM_SIZE_KNOWN_P (mem))
329 return true;
331 /* If MEM_OFFSET/MEM_SIZE get us outside of ref->offset/ref->max_size
332 drop ref->ref. */
333 if (MEM_OFFSET (mem) < 0
334 || (ref->max_size != -1
335 && ((MEM_OFFSET (mem) + MEM_SIZE (mem)) * BITS_PER_UNIT
336 > ref->max_size)))
337 ref->ref = NULL_TREE;
339 /* Refine size and offset we got from analyzing MEM_EXPR by using
340 MEM_SIZE and MEM_OFFSET. */
342 ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
343 ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
345 /* The MEM may extend into adjacent fields, so adjust max_size if
346 necessary. */
347 if (ref->max_size != -1
348 && ref->size > ref->max_size)
349 ref->max_size = ref->size;
351 /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
352 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
353 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
354 && (ref->offset < 0
355 || (DECL_P (ref->base)
356 && (DECL_SIZE (ref->base) == NULL_TREE
357 || TREE_CODE (DECL_SIZE (ref->base)) != INTEGER_CST
358 || wi::ltu_p (wi::to_offset (DECL_SIZE (ref->base)),
359 ref->offset + ref->size)))))
360 return false;
362 return true;
365 /* Query the alias-oracle on whether the two memory rtx X and MEM may
366 alias. If TBAA_P is set also apply TBAA. Returns true if the
367 two rtxen may alias, false otherwise. */
369 static bool
370 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
372 ao_ref ref1, ref2;
374 if (!ao_ref_from_mem (&ref1, x)
375 || !ao_ref_from_mem (&ref2, mem))
376 return true;
378 return refs_may_alias_p_1 (&ref1, &ref2,
379 tbaa_p
380 && MEM_ALIAS_SET (x) != 0
381 && MEM_ALIAS_SET (mem) != 0);
384 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
385 such an entry, or NULL otherwise. */
387 static inline alias_set_entry *
388 get_alias_set_entry (alias_set_type alias_set)
390 return (*alias_sets)[alias_set];
393 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
394 the two MEMs cannot alias each other. */
396 static inline int
397 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
399 return (flag_strict_aliasing
400 && ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1),
401 MEM_ALIAS_SET (mem2)));
404 /* Return true if the first alias set is a subset of the second. */
406 bool
407 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
409 alias_set_entry *ase2;
411 /* Disable TBAA oracle with !flag_strict_aliasing. */
412 if (!flag_strict_aliasing)
413 return true;
415 /* Everything is a subset of the "aliases everything" set. */
416 if (set2 == 0)
417 return true;
419 /* Check if set1 is a subset of set2. */
420 ase2 = get_alias_set_entry (set2);
421 if (ase2 != 0
422 && (ase2->has_zero_child
423 || (ase2->children && ase2->children->get (set1))))
424 return true;
426 /* As a special case we consider alias set of "void *" to be both subset
427 and superset of every alias set of a pointer. This extra symmetry does
428 not matter for alias_sets_conflict_p but it makes aliasing_component_refs_p
429 to return true on the following testcase:
431 void *ptr;
432 char **ptr2=(char **)&ptr;
433 *ptr2 = ...
435 Additionally if a set contains universal pointer, we consider every pointer
436 to be a subset of it, but we do not represent this explicitely - doing so
437 would require us to update transitive closure each time we introduce new
438 pointer type. This makes aliasing_component_refs_p to return true
439 on the following testcase:
441 struct a {void *ptr;}
442 char **ptr = (char **)&a.ptr;
443 ptr = ...
445 This makes void * truly universal pointer type. See pointer handling in
446 get_alias_set for more details. */
447 if (ase2 && ase2->has_pointer)
449 alias_set_entry *ase1 = get_alias_set_entry (set1);
451 if (ase1 && ase1->is_pointer)
453 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
454 /* If one is ptr_type_node and other is pointer, then we consider
455 them subset of each other. */
456 if (set1 == voidptr_set || set2 == voidptr_set)
457 return true;
458 /* If SET2 contains universal pointer's alias set, then we consdier
459 every (non-universal) pointer. */
460 if (ase2->children && set1 != voidptr_set
461 && ase2->children->get (voidptr_set))
462 return true;
465 return false;
468 /* Return 1 if the two specified alias sets may conflict. */
471 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
473 alias_set_entry *ase1;
474 alias_set_entry *ase2;
476 /* The easy case. */
477 if (alias_sets_must_conflict_p (set1, set2))
478 return 1;
480 /* See if the first alias set is a subset of the second. */
481 ase1 = get_alias_set_entry (set1);
482 if (ase1 != 0
483 && ase1->children && ase1->children->get (set2))
485 ++alias_stats.num_dag;
486 return 1;
489 /* Now do the same, but with the alias sets reversed. */
490 ase2 = get_alias_set_entry (set2);
491 if (ase2 != 0
492 && ase2->children && ase2->children->get (set1))
494 ++alias_stats.num_dag;
495 return 1;
498 /* We want void * to be compatible with any other pointer without
499 really dropping it to alias set 0. Doing so would make it
500 compatible with all non-pointer types too.
502 This is not strictly necessary by the C/C++ language
503 standards, but avoids common type punning mistakes. In
504 addition to that, we need the existence of such universal
505 pointer to implement Fortran's C_PTR type (which is defined as
506 type compatible with all C pointers). */
507 if (ase1 && ase2 && ase1->has_pointer && ase2->has_pointer)
509 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
511 /* If one of the sets corresponds to universal pointer,
512 we consider it to conflict with anything that is
513 or contains pointer. */
514 if (set1 == voidptr_set || set2 == voidptr_set)
516 ++alias_stats.num_universal;
517 return true;
519 /* If one of sets is (non-universal) pointer and the other
520 contains universal pointer, we also get conflict. */
521 if (ase1->is_pointer && set2 != voidptr_set
522 && ase2->children && ase2->children->get (voidptr_set))
524 ++alias_stats.num_universal;
525 return true;
527 if (ase2->is_pointer && set1 != voidptr_set
528 && ase1->children && ase1->children->get (voidptr_set))
530 ++alias_stats.num_universal;
531 return true;
535 ++alias_stats.num_disambiguated;
537 /* The two alias sets are distinct and neither one is the
538 child of the other. Therefore, they cannot conflict. */
539 return 0;
542 /* Return 1 if the two specified alias sets will always conflict. */
545 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
547 /* Disable TBAA oracle with !flag_strict_aliasing. */
548 if (!flag_strict_aliasing)
549 return 1;
550 if (set1 == 0 || set2 == 0)
552 ++alias_stats.num_alias_zero;
553 return 1;
555 if (set1 == set2)
557 ++alias_stats.num_same_alias_set;
558 return 1;
561 return 0;
564 /* Return 1 if any MEM object of type T1 will always conflict (using the
565 dependency routines in this file) with any MEM object of type T2.
566 This is used when allocating temporary storage. If T1 and/or T2 are
567 NULL_TREE, it means we know nothing about the storage. */
570 objects_must_conflict_p (tree t1, tree t2)
572 alias_set_type set1, set2;
574 /* If neither has a type specified, we don't know if they'll conflict
575 because we may be using them to store objects of various types, for
576 example the argument and local variables areas of inlined functions. */
577 if (t1 == 0 && t2 == 0)
578 return 0;
580 /* If they are the same type, they must conflict. */
581 if (t1 == t2)
583 ++alias_stats.num_same_objects;
584 return 1;
586 /* Likewise if both are volatile. */
587 if (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2))
589 ++alias_stats.num_volatile;
590 return 1;
593 set1 = t1 ? get_alias_set (t1) : 0;
594 set2 = t2 ? get_alias_set (t2) : 0;
596 /* We can't use alias_sets_conflict_p because we must make sure
597 that every subtype of t1 will conflict with every subtype of
598 t2 for which a pair of subobjects of these respective subtypes
599 overlaps on the stack. */
600 return alias_sets_must_conflict_p (set1, set2);
603 /* Return the outermost parent of component present in the chain of
604 component references handled by get_inner_reference in T with the
605 following property:
606 - the component is non-addressable, or
607 - the parent has alias set zero,
608 or NULL_TREE if no such parent exists. In the former cases, the alias
609 set of this parent is the alias set that must be used for T itself. */
611 tree
612 component_uses_parent_alias_set_from (const_tree t)
614 const_tree found = NULL_TREE;
616 if (AGGREGATE_TYPE_P (TREE_TYPE (t))
617 && TYPE_TYPELESS_STORAGE (TREE_TYPE (t)))
618 return const_cast <tree> (t);
620 while (handled_component_p (t))
622 switch (TREE_CODE (t))
624 case COMPONENT_REF:
625 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
626 found = t;
627 /* Permit type-punning when accessing a union, provided the access
628 is directly through the union. For example, this code does not
629 permit taking the address of a union member and then storing
630 through it. Even the type-punning allowed here is a GCC
631 extension, albeit a common and useful one; the C standard says
632 that such accesses have implementation-defined behavior. */
633 else if (TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == UNION_TYPE)
634 found = t;
635 break;
637 case ARRAY_REF:
638 case ARRAY_RANGE_REF:
639 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
640 found = t;
641 break;
643 case REALPART_EXPR:
644 case IMAGPART_EXPR:
645 break;
647 case BIT_FIELD_REF:
648 case VIEW_CONVERT_EXPR:
649 /* Bitfields and casts are never addressable. */
650 found = t;
651 break;
653 default:
654 gcc_unreachable ();
657 if (get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) == 0)
658 found = t;
660 t = TREE_OPERAND (t, 0);
663 if (found)
664 return TREE_OPERAND (found, 0);
666 return NULL_TREE;
670 /* Return whether the pointer-type T effective for aliasing may
671 access everything and thus the reference has to be assigned
672 alias-set zero. */
674 static bool
675 ref_all_alias_ptr_type_p (const_tree t)
677 return (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
678 || TYPE_REF_CAN_ALIAS_ALL (t));
681 /* Return the alias set for the memory pointed to by T, which may be
682 either a type or an expression. Return -1 if there is nothing
683 special about dereferencing T. */
685 static alias_set_type
686 get_deref_alias_set_1 (tree t)
688 /* All we care about is the type. */
689 if (! TYPE_P (t))
690 t = TREE_TYPE (t);
692 /* If we have an INDIRECT_REF via a void pointer, we don't
693 know anything about what that might alias. Likewise if the
694 pointer is marked that way. */
695 if (ref_all_alias_ptr_type_p (t))
696 return 0;
698 return -1;
701 /* Return the alias set for the memory pointed to by T, which may be
702 either a type or an expression. */
704 alias_set_type
705 get_deref_alias_set (tree t)
707 /* If we're not doing any alias analysis, just assume everything
708 aliases everything else. */
709 if (!flag_strict_aliasing)
710 return 0;
712 alias_set_type set = get_deref_alias_set_1 (t);
714 /* Fall back to the alias-set of the pointed-to type. */
715 if (set == -1)
717 if (! TYPE_P (t))
718 t = TREE_TYPE (t);
719 set = get_alias_set (TREE_TYPE (t));
722 return set;
725 /* Return the pointer-type relevant for TBAA purposes from the
726 memory reference tree *T or NULL_TREE in which case *T is
727 adjusted to point to the outermost component reference that
728 can be used for assigning an alias set. */
730 static tree
731 reference_alias_ptr_type_1 (tree *t)
733 tree inner;
735 /* Get the base object of the reference. */
736 inner = *t;
737 while (handled_component_p (inner))
739 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
740 the type of any component references that wrap it to
741 determine the alias-set. */
742 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
743 *t = TREE_OPERAND (inner, 0);
744 inner = TREE_OPERAND (inner, 0);
747 /* Handle pointer dereferences here, they can override the
748 alias-set. */
749 if (INDIRECT_REF_P (inner)
750 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 0))))
751 return TREE_TYPE (TREE_OPERAND (inner, 0));
752 else if (TREE_CODE (inner) == TARGET_MEM_REF)
753 return TREE_TYPE (TMR_OFFSET (inner));
754 else if (TREE_CODE (inner) == MEM_REF
755 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 1))))
756 return TREE_TYPE (TREE_OPERAND (inner, 1));
758 /* If the innermost reference is a MEM_REF that has a
759 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
760 using the memory access type for determining the alias-set. */
761 if (TREE_CODE (inner) == MEM_REF
762 && (TYPE_MAIN_VARIANT (TREE_TYPE (inner))
763 != TYPE_MAIN_VARIANT
764 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1))))))
765 return TREE_TYPE (TREE_OPERAND (inner, 1));
767 /* Otherwise, pick up the outermost object that we could have
768 a pointer to. */
769 tree tem = component_uses_parent_alias_set_from (*t);
770 if (tem)
771 *t = tem;
773 return NULL_TREE;
776 /* Return the pointer-type relevant for TBAA purposes from the
777 gimple memory reference tree T. This is the type to be used for
778 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
779 and guarantees that get_alias_set will return the same alias
780 set for T and the replacement. */
782 tree
783 reference_alias_ptr_type (tree t)
785 /* If the frontend assigns this alias-set zero, preserve that. */
786 if (lang_hooks.get_alias_set (t) == 0)
787 return ptr_type_node;
789 tree ptype = reference_alias_ptr_type_1 (&t);
790 /* If there is a given pointer type for aliasing purposes, return it. */
791 if (ptype != NULL_TREE)
792 return ptype;
794 /* Otherwise build one from the outermost component reference we
795 may use. */
796 if (TREE_CODE (t) == MEM_REF
797 || TREE_CODE (t) == TARGET_MEM_REF)
798 return TREE_TYPE (TREE_OPERAND (t, 1));
799 else
800 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t)));
803 /* Return whether the pointer-types T1 and T2 used to determine
804 two alias sets of two references will yield the same answer
805 from get_deref_alias_set. */
807 bool
808 alias_ptr_types_compatible_p (tree t1, tree t2)
810 if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
811 return true;
813 if (ref_all_alias_ptr_type_p (t1)
814 || ref_all_alias_ptr_type_p (t2))
815 return false;
817 return (TYPE_MAIN_VARIANT (TREE_TYPE (t1))
818 == TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
821 /* Create emptry alias set entry. */
823 alias_set_entry *
824 init_alias_set_entry (alias_set_type set)
826 alias_set_entry *ase = ggc_alloc<alias_set_entry> ();
827 ase->alias_set = set;
828 ase->children = NULL;
829 ase->has_zero_child = false;
830 ase->is_pointer = false;
831 ase->has_pointer = false;
832 gcc_checking_assert (!get_alias_set_entry (set));
833 (*alias_sets)[set] = ase;
834 return ase;
837 /* Return the alias set for T, which may be either a type or an
838 expression. Call language-specific routine for help, if needed. */
840 alias_set_type
841 get_alias_set (tree t)
843 alias_set_type set;
845 /* We can not give up with -fno-strict-aliasing because we need to build
846 proper type representation for possible functions which are build with
847 -fstrict-aliasing. */
849 /* return 0 if this or its type is an error. */
850 if (t == error_mark_node
851 || (! TYPE_P (t)
852 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
853 return 0;
855 /* We can be passed either an expression or a type. This and the
856 language-specific routine may make mutually-recursive calls to each other
857 to figure out what to do. At each juncture, we see if this is a tree
858 that the language may need to handle specially. First handle things that
859 aren't types. */
860 if (! TYPE_P (t))
862 /* Give the language a chance to do something with this tree
863 before we look at it. */
864 STRIP_NOPS (t);
865 set = lang_hooks.get_alias_set (t);
866 if (set != -1)
867 return set;
869 /* Get the alias pointer-type to use or the outermost object
870 that we could have a pointer to. */
871 tree ptype = reference_alias_ptr_type_1 (&t);
872 if (ptype != NULL)
873 return get_deref_alias_set (ptype);
875 /* If we've already determined the alias set for a decl, just return
876 it. This is necessary for C++ anonymous unions, whose component
877 variables don't look like union members (boo!). */
878 if (VAR_P (t)
879 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
880 return MEM_ALIAS_SET (DECL_RTL (t));
882 /* Now all we care about is the type. */
883 t = TREE_TYPE (t);
886 /* Variant qualifiers don't affect the alias set, so get the main
887 variant. */
888 t = TYPE_MAIN_VARIANT (t);
890 if (AGGREGATE_TYPE_P (t)
891 && TYPE_TYPELESS_STORAGE (t))
892 return 0;
894 /* Always use the canonical type as well. If this is a type that
895 requires structural comparisons to identify compatible types
896 use alias set zero. */
897 if (TYPE_STRUCTURAL_EQUALITY_P (t))
899 /* Allow the language to specify another alias set for this
900 type. */
901 set = lang_hooks.get_alias_set (t);
902 if (set != -1)
903 return set;
904 /* Handle structure type equality for pointer types, arrays and vectors.
905 This is easy to do, because the code bellow ignore canonical types on
906 these anyway. This is important for LTO, where TYPE_CANONICAL for
907 pointers can not be meaningfuly computed by the frotnend. */
908 if (canonical_type_used_p (t))
910 /* In LTO we set canonical types for all types where it makes
911 sense to do so. Double check we did not miss some type. */
912 gcc_checking_assert (!in_lto_p || !type_with_alias_set_p (t));
913 return 0;
916 else
918 t = TYPE_CANONICAL (t);
919 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
922 /* If this is a type with a known alias set, return it. */
923 gcc_checking_assert (t == TYPE_MAIN_VARIANT (t));
924 if (TYPE_ALIAS_SET_KNOWN_P (t))
925 return TYPE_ALIAS_SET (t);
927 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
928 if (!COMPLETE_TYPE_P (t))
930 /* For arrays with unknown size the conservative answer is the
931 alias set of the element type. */
932 if (TREE_CODE (t) == ARRAY_TYPE)
933 return get_alias_set (TREE_TYPE (t));
935 /* But return zero as a conservative answer for incomplete types. */
936 return 0;
939 /* See if the language has special handling for this type. */
940 set = lang_hooks.get_alias_set (t);
941 if (set != -1)
942 return set;
944 /* There are no objects of FUNCTION_TYPE, so there's no point in
945 using up an alias set for them. (There are, of course, pointers
946 and references to functions, but that's different.) */
947 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
948 set = 0;
950 /* Unless the language specifies otherwise, let vector types alias
951 their components. This avoids some nasty type punning issues in
952 normal usage. And indeed lets vectors be treated more like an
953 array slice. */
954 else if (TREE_CODE (t) == VECTOR_TYPE)
955 set = get_alias_set (TREE_TYPE (t));
957 /* Unless the language specifies otherwise, treat array types the
958 same as their components. This avoids the asymmetry we get
959 through recording the components. Consider accessing a
960 character(kind=1) through a reference to a character(kind=1)[1:1].
961 Or consider if we want to assign integer(kind=4)[0:D.1387] and
962 integer(kind=4)[4] the same alias set or not.
963 Just be pragmatic here and make sure the array and its element
964 type get the same alias set assigned. */
965 else if (TREE_CODE (t) == ARRAY_TYPE
966 && (!TYPE_NONALIASED_COMPONENT (t)
967 || TYPE_STRUCTURAL_EQUALITY_P (t)))
968 set = get_alias_set (TREE_TYPE (t));
970 /* From the former common C and C++ langhook implementation:
972 Unfortunately, there is no canonical form of a pointer type.
973 In particular, if we have `typedef int I', then `int *', and
974 `I *' are different types. So, we have to pick a canonical
975 representative. We do this below.
977 Technically, this approach is actually more conservative that
978 it needs to be. In particular, `const int *' and `int *'
979 should be in different alias sets, according to the C and C++
980 standard, since their types are not the same, and so,
981 technically, an `int **' and `const int **' cannot point at
982 the same thing.
984 But, the standard is wrong. In particular, this code is
985 legal C++:
987 int *ip;
988 int **ipp = &ip;
989 const int* const* cipp = ipp;
990 And, it doesn't make sense for that to be legal unless you
991 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
992 the pointed-to types. This issue has been reported to the
993 C++ committee.
995 For this reason go to canonical type of the unqalified pointer type.
996 Until GCC 6 this code set all pointers sets to have alias set of
997 ptr_type_node but that is a bad idea, because it prevents disabiguations
998 in between pointers. For Firefox this accounts about 20% of all
999 disambiguations in the program. */
1000 else if (POINTER_TYPE_P (t) && t != ptr_type_node)
1002 tree p;
1003 auto_vec <bool, 8> reference;
1005 /* Unnest all pointers and references.
1006 We also want to make pointer to array/vector equivalent to pointer to
1007 its element (see the reasoning above). Skip all those types, too. */
1008 for (p = t; POINTER_TYPE_P (p)
1009 || (TREE_CODE (p) == ARRAY_TYPE
1010 && (!TYPE_NONALIASED_COMPONENT (p)
1011 || !COMPLETE_TYPE_P (p)
1012 || TYPE_STRUCTURAL_EQUALITY_P (p)))
1013 || TREE_CODE (p) == VECTOR_TYPE;
1014 p = TREE_TYPE (p))
1016 /* Ada supports recusive pointers. Instead of doing recrusion check
1017 just give up once the preallocated space of 8 elements is up.
1018 In this case just punt to void * alias set. */
1019 if (reference.length () == 8)
1021 p = ptr_type_node;
1022 break;
1024 if (TREE_CODE (p) == REFERENCE_TYPE)
1025 /* In LTO we want languages that use references to be compatible
1026 with languages that use pointers. */
1027 reference.safe_push (true && !in_lto_p);
1028 if (TREE_CODE (p) == POINTER_TYPE)
1029 reference.safe_push (false);
1031 p = TYPE_MAIN_VARIANT (p);
1033 /* Make void * compatible with char * and also void **.
1034 Programs are commonly violating TBAA by this.
1036 We also make void * to conflict with every pointer
1037 (see record_component_aliases) and thus it is safe it to use it for
1038 pointers to types with TYPE_STRUCTURAL_EQUALITY_P. */
1039 if (TREE_CODE (p) == VOID_TYPE || TYPE_STRUCTURAL_EQUALITY_P (p))
1040 set = get_alias_set (ptr_type_node);
1041 else
1043 /* Rebuild pointer type starting from canonical types using
1044 unqualified pointers and references only. This way all such
1045 pointers will have the same alias set and will conflict with
1046 each other.
1048 Most of time we already have pointers or references of a given type.
1049 If not we build new one just to be sure that if someone later
1050 (probably only middle-end can, as we should assign all alias
1051 classes only after finishing translation unit) builds the pointer
1052 type, the canonical type will match. */
1053 p = TYPE_CANONICAL (p);
1054 while (!reference.is_empty ())
1056 if (reference.pop ())
1057 p = build_reference_type (p);
1058 else
1059 p = build_pointer_type (p);
1060 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1061 /* build_pointer_type should always return the canonical type.
1062 For LTO TYPE_CANOINCAL may be NULL, because we do not compute
1063 them. Be sure that frontends do not glob canonical types of
1064 pointers in unexpected way and that p == TYPE_CANONICAL (p)
1065 in all other cases. */
1066 gcc_checking_assert (!TYPE_CANONICAL (p)
1067 || p == TYPE_CANONICAL (p));
1070 /* Assign the alias set to both p and t.
1071 We can not call get_alias_set (p) here as that would trigger
1072 infinite recursion when p == t. In other cases it would just
1073 trigger unnecesary legwork of rebuilding the pointer again. */
1074 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1075 if (TYPE_ALIAS_SET_KNOWN_P (p))
1076 set = TYPE_ALIAS_SET (p);
1077 else
1079 set = new_alias_set ();
1080 TYPE_ALIAS_SET (p) = set;
1084 /* Alias set of ptr_type_node is special and serve as universal pointer which
1085 is TBAA compatible with every other pointer type. Be sure we have the
1086 alias set built even for LTO which otherwise keeps all TYPE_CANONICAL
1087 of pointer types NULL. */
1088 else if (t == ptr_type_node)
1089 set = new_alias_set ();
1091 /* Otherwise make a new alias set for this type. */
1092 else
1094 /* Each canonical type gets its own alias set, so canonical types
1095 shouldn't form a tree. It doesn't really matter for types
1096 we handle specially above, so only check it where it possibly
1097 would result in a bogus alias set. */
1098 gcc_checking_assert (TYPE_CANONICAL (t) == t);
1100 set = new_alias_set ();
1103 TYPE_ALIAS_SET (t) = set;
1105 /* If this is an aggregate type or a complex type, we must record any
1106 component aliasing information. */
1107 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
1108 record_component_aliases (t);
1110 /* We treat pointer types specially in alias_set_subset_of. */
1111 if (POINTER_TYPE_P (t) && set)
1113 alias_set_entry *ase = get_alias_set_entry (set);
1114 if (!ase)
1115 ase = init_alias_set_entry (set);
1116 ase->is_pointer = true;
1117 ase->has_pointer = true;
1120 return set;
1123 /* Return a brand-new alias set. */
1125 alias_set_type
1126 new_alias_set (void)
1128 if (alias_sets == 0)
1129 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1130 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1131 return alias_sets->length () - 1;
1134 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
1135 not everything that aliases SUPERSET also aliases SUBSET. For example,
1136 in C, a store to an `int' can alias a load of a structure containing an
1137 `int', and vice versa. But it can't alias a load of a 'double' member
1138 of the same structure. Here, the structure would be the SUPERSET and
1139 `int' the SUBSET. This relationship is also described in the comment at
1140 the beginning of this file.
1142 This function should be called only once per SUPERSET/SUBSET pair.
1144 It is illegal for SUPERSET to be zero; everything is implicitly a
1145 subset of alias set zero. */
1147 void
1148 record_alias_subset (alias_set_type superset, alias_set_type subset)
1150 alias_set_entry *superset_entry;
1151 alias_set_entry *subset_entry;
1153 /* It is possible in complex type situations for both sets to be the same,
1154 in which case we can ignore this operation. */
1155 if (superset == subset)
1156 return;
1158 gcc_assert (superset);
1160 superset_entry = get_alias_set_entry (superset);
1161 if (superset_entry == 0)
1163 /* Create an entry for the SUPERSET, so that we have a place to
1164 attach the SUBSET. */
1165 superset_entry = init_alias_set_entry (superset);
1168 if (subset == 0)
1169 superset_entry->has_zero_child = 1;
1170 else
1172 subset_entry = get_alias_set_entry (subset);
1173 if (!superset_entry->children)
1174 superset_entry->children
1175 = hash_map<alias_set_hash, int>::create_ggc (64);
1176 /* If there is an entry for the subset, enter all of its children
1177 (if they are not already present) as children of the SUPERSET. */
1178 if (subset_entry)
1180 if (subset_entry->has_zero_child)
1181 superset_entry->has_zero_child = true;
1182 if (subset_entry->has_pointer)
1183 superset_entry->has_pointer = true;
1185 if (subset_entry->children)
1187 hash_map<alias_set_hash, int>::iterator iter
1188 = subset_entry->children->begin ();
1189 for (; iter != subset_entry->children->end (); ++iter)
1190 superset_entry->children->put ((*iter).first, (*iter).second);
1194 /* Enter the SUBSET itself as a child of the SUPERSET. */
1195 superset_entry->children->put (subset, 0);
1199 /* Record that component types of TYPE, if any, are part of that type for
1200 aliasing purposes. For record types, we only record component types
1201 for fields that are not marked non-addressable. For array types, we
1202 only record the component type if it is not marked non-aliased. */
1204 void
1205 record_component_aliases (tree type)
1207 alias_set_type superset = get_alias_set (type);
1208 tree field;
1210 if (superset == 0)
1211 return;
1213 switch (TREE_CODE (type))
1215 case RECORD_TYPE:
1216 case UNION_TYPE:
1217 case QUAL_UNION_TYPE:
1218 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
1219 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
1221 /* LTO type merging does not make any difference between
1222 component pointer types. We may have
1224 struct foo {int *a;};
1226 as TYPE_CANONICAL of
1228 struct bar {float *a;};
1230 Because accesses to int * and float * do not alias, we would get
1231 false negative when accessing the same memory location by
1232 float ** and bar *. We thus record the canonical type as:
1234 struct {void *a;};
1236 void * is special cased and works as a universal pointer type.
1237 Accesses to it conflicts with accesses to any other pointer
1238 type. */
1239 tree t = TREE_TYPE (field);
1240 if (in_lto_p)
1242 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1243 element type and that type has to be normalized to void *,
1244 too, in the case it is a pointer. */
1245 while (!canonical_type_used_p (t) && !POINTER_TYPE_P (t))
1247 gcc_checking_assert (TYPE_STRUCTURAL_EQUALITY_P (t));
1248 t = TREE_TYPE (t);
1250 if (POINTER_TYPE_P (t))
1251 t = ptr_type_node;
1252 else if (flag_checking)
1253 gcc_checking_assert (get_alias_set (t)
1254 == get_alias_set (TREE_TYPE (field)));
1257 record_alias_subset (superset, get_alias_set (t));
1259 break;
1261 case COMPLEX_TYPE:
1262 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
1263 break;
1265 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1266 element type. */
1268 default:
1269 break;
1273 /* Allocate an alias set for use in storing and reading from the varargs
1274 spill area. */
1276 static GTY(()) alias_set_type varargs_set = -1;
1278 alias_set_type
1279 get_varargs_alias_set (void)
1281 #if 1
1282 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
1283 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
1284 consistently use the varargs alias set for loads from the varargs
1285 area. So don't use it anywhere. */
1286 return 0;
1287 #else
1288 if (varargs_set == -1)
1289 varargs_set = new_alias_set ();
1291 return varargs_set;
1292 #endif
1295 /* Likewise, but used for the fixed portions of the frame, e.g., register
1296 save areas. */
1298 static GTY(()) alias_set_type frame_set = -1;
1300 alias_set_type
1301 get_frame_alias_set (void)
1303 if (frame_set == -1)
1304 frame_set = new_alias_set ();
1306 return frame_set;
1309 /* Create a new, unique base with id ID. */
1311 static rtx
1312 unique_base_value (HOST_WIDE_INT id)
1314 return gen_rtx_ADDRESS (Pmode, id);
1317 /* Return true if accesses based on any other base value cannot alias
1318 those based on X. */
1320 static bool
1321 unique_base_value_p (rtx x)
1323 return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1326 /* Return true if X is known to be a base value. */
1328 static bool
1329 known_base_value_p (rtx x)
1331 switch (GET_CODE (x))
1333 case LABEL_REF:
1334 case SYMBOL_REF:
1335 return true;
1337 case ADDRESS:
1338 /* Arguments may or may not be bases; we don't know for sure. */
1339 return GET_MODE (x) != VOIDmode;
1341 default:
1342 return false;
1346 /* Inside SRC, the source of a SET, find a base address. */
1348 static rtx
1349 find_base_value (rtx src)
1351 unsigned int regno;
1353 #if defined (FIND_BASE_TERM)
1354 /* Try machine-dependent ways to find the base term. */
1355 src = FIND_BASE_TERM (src);
1356 #endif
1358 switch (GET_CODE (src))
1360 case SYMBOL_REF:
1361 case LABEL_REF:
1362 return src;
1364 case REG:
1365 regno = REGNO (src);
1366 /* At the start of a function, argument registers have known base
1367 values which may be lost later. Returning an ADDRESS
1368 expression here allows optimization based on argument values
1369 even when the argument registers are used for other purposes. */
1370 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1371 return new_reg_base_value[regno];
1373 /* If a pseudo has a known base value, return it. Do not do this
1374 for non-fixed hard regs since it can result in a circular
1375 dependency chain for registers which have values at function entry.
1377 The test above is not sufficient because the scheduler may move
1378 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
1379 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
1380 && regno < vec_safe_length (reg_base_value))
1382 /* If we're inside init_alias_analysis, use new_reg_base_value
1383 to reduce the number of relaxation iterations. */
1384 if (new_reg_base_value && new_reg_base_value[regno]
1385 && DF_REG_DEF_COUNT (regno) == 1)
1386 return new_reg_base_value[regno];
1388 if ((*reg_base_value)[regno])
1389 return (*reg_base_value)[regno];
1392 return 0;
1394 case MEM:
1395 /* Check for an argument passed in memory. Only record in the
1396 copying-arguments block; it is too hard to track changes
1397 otherwise. */
1398 if (copying_arguments
1399 && (XEXP (src, 0) == arg_pointer_rtx
1400 || (GET_CODE (XEXP (src, 0)) == PLUS
1401 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
1402 return arg_base_value;
1403 return 0;
1405 case CONST:
1406 src = XEXP (src, 0);
1407 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1408 break;
1410 /* fall through */
1412 case PLUS:
1413 case MINUS:
1415 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1417 /* If either operand is a REG that is a known pointer, then it
1418 is the base. */
1419 if (REG_P (src_0) && REG_POINTER (src_0))
1420 return find_base_value (src_0);
1421 if (REG_P (src_1) && REG_POINTER (src_1))
1422 return find_base_value (src_1);
1424 /* If either operand is a REG, then see if we already have
1425 a known value for it. */
1426 if (REG_P (src_0))
1428 temp = find_base_value (src_0);
1429 if (temp != 0)
1430 src_0 = temp;
1433 if (REG_P (src_1))
1435 temp = find_base_value (src_1);
1436 if (temp!= 0)
1437 src_1 = temp;
1440 /* If either base is named object or a special address
1441 (like an argument or stack reference), then use it for the
1442 base term. */
1443 if (src_0 != 0 && known_base_value_p (src_0))
1444 return src_0;
1446 if (src_1 != 0 && known_base_value_p (src_1))
1447 return src_1;
1449 /* Guess which operand is the base address:
1450 If either operand is a symbol, then it is the base. If
1451 either operand is a CONST_INT, then the other is the base. */
1452 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1453 return find_base_value (src_0);
1454 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1455 return find_base_value (src_1);
1457 return 0;
1460 case LO_SUM:
1461 /* The standard form is (lo_sum reg sym) so look only at the
1462 second operand. */
1463 return find_base_value (XEXP (src, 1));
1465 case AND:
1466 /* If the second operand is constant set the base
1467 address to the first operand. */
1468 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
1469 return find_base_value (XEXP (src, 0));
1470 return 0;
1472 case TRUNCATE:
1473 /* As we do not know which address space the pointer is referring to, we can
1474 handle this only if the target does not support different pointer or
1475 address modes depending on the address space. */
1476 if (!target_default_pointer_address_modes_p ())
1477 break;
1478 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
1479 break;
1480 /* Fall through. */
1481 case HIGH:
1482 case PRE_INC:
1483 case PRE_DEC:
1484 case POST_INC:
1485 case POST_DEC:
1486 case PRE_MODIFY:
1487 case POST_MODIFY:
1488 return find_base_value (XEXP (src, 0));
1490 case ZERO_EXTEND:
1491 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1492 /* As we do not know which address space the pointer is referring to, we can
1493 handle this only if the target does not support different pointer or
1494 address modes depending on the address space. */
1495 if (!target_default_pointer_address_modes_p ())
1496 break;
1499 rtx temp = find_base_value (XEXP (src, 0));
1501 if (temp != 0 && CONSTANT_P (temp))
1502 temp = convert_memory_address (Pmode, temp);
1504 return temp;
1507 default:
1508 break;
1511 return 0;
1514 /* Called from init_alias_analysis indirectly through note_stores,
1515 or directly if DEST is a register with a REG_NOALIAS note attached.
1516 SET is null in the latter case. */
1518 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1519 register N has been set in this function. */
1520 static sbitmap reg_seen;
1522 static void
1523 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1525 unsigned regno;
1526 rtx src;
1527 int n;
1529 if (!REG_P (dest))
1530 return;
1532 regno = REGNO (dest);
1534 gcc_checking_assert (regno < reg_base_value->length ());
1536 n = REG_NREGS (dest);
1537 if (n != 1)
1539 while (--n >= 0)
1541 bitmap_set_bit (reg_seen, regno + n);
1542 new_reg_base_value[regno + n] = 0;
1544 return;
1547 if (set)
1549 /* A CLOBBER wipes out any old value but does not prevent a previously
1550 unset register from acquiring a base address (i.e. reg_seen is not
1551 set). */
1552 if (GET_CODE (set) == CLOBBER)
1554 new_reg_base_value[regno] = 0;
1555 return;
1557 src = SET_SRC (set);
1559 else
1561 /* There's a REG_NOALIAS note against DEST. */
1562 if (bitmap_bit_p (reg_seen, regno))
1564 new_reg_base_value[regno] = 0;
1565 return;
1567 bitmap_set_bit (reg_seen, regno);
1568 new_reg_base_value[regno] = unique_base_value (unique_id++);
1569 return;
1572 /* If this is not the first set of REGNO, see whether the new value
1573 is related to the old one. There are two cases of interest:
1575 (1) The register might be assigned an entirely new value
1576 that has the same base term as the original set.
1578 (2) The set might be a simple self-modification that
1579 cannot change REGNO's base value.
1581 If neither case holds, reject the original base value as invalid.
1582 Note that the following situation is not detected:
1584 extern int x, y; int *p = &x; p += (&y-&x);
1586 ANSI C does not allow computing the difference of addresses
1587 of distinct top level objects. */
1588 if (new_reg_base_value[regno] != 0
1589 && find_base_value (src) != new_reg_base_value[regno])
1590 switch (GET_CODE (src))
1592 case LO_SUM:
1593 case MINUS:
1594 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1595 new_reg_base_value[regno] = 0;
1596 break;
1597 case PLUS:
1598 /* If the value we add in the PLUS is also a valid base value,
1599 this might be the actual base value, and the original value
1600 an index. */
1602 rtx other = NULL_RTX;
1604 if (XEXP (src, 0) == dest)
1605 other = XEXP (src, 1);
1606 else if (XEXP (src, 1) == dest)
1607 other = XEXP (src, 0);
1609 if (! other || find_base_value (other))
1610 new_reg_base_value[regno] = 0;
1611 break;
1613 case AND:
1614 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1615 new_reg_base_value[regno] = 0;
1616 break;
1617 default:
1618 new_reg_base_value[regno] = 0;
1619 break;
1621 /* If this is the first set of a register, record the value. */
1622 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1623 && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
1624 new_reg_base_value[regno] = find_base_value (src);
1626 bitmap_set_bit (reg_seen, regno);
1629 /* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1630 using hard registers with non-null REG_BASE_VALUE for renaming. */
1632 get_reg_base_value (unsigned int regno)
1634 return (*reg_base_value)[regno];
1637 /* If a value is known for REGNO, return it. */
1640 get_reg_known_value (unsigned int regno)
1642 if (regno >= FIRST_PSEUDO_REGISTER)
1644 regno -= FIRST_PSEUDO_REGISTER;
1645 if (regno < vec_safe_length (reg_known_value))
1646 return (*reg_known_value)[regno];
1648 return NULL;
1651 /* Set it. */
1653 static void
1654 set_reg_known_value (unsigned int regno, rtx val)
1656 if (regno >= FIRST_PSEUDO_REGISTER)
1658 regno -= FIRST_PSEUDO_REGISTER;
1659 if (regno < vec_safe_length (reg_known_value))
1660 (*reg_known_value)[regno] = val;
1664 /* Similarly for reg_known_equiv_p. */
1666 bool
1667 get_reg_known_equiv_p (unsigned int regno)
1669 if (regno >= FIRST_PSEUDO_REGISTER)
1671 regno -= FIRST_PSEUDO_REGISTER;
1672 if (regno < vec_safe_length (reg_known_value))
1673 return bitmap_bit_p (reg_known_equiv_p, regno);
1675 return false;
1678 static void
1679 set_reg_known_equiv_p (unsigned int regno, bool val)
1681 if (regno >= FIRST_PSEUDO_REGISTER)
1683 regno -= FIRST_PSEUDO_REGISTER;
1684 if (regno < vec_safe_length (reg_known_value))
1686 if (val)
1687 bitmap_set_bit (reg_known_equiv_p, regno);
1688 else
1689 bitmap_clear_bit (reg_known_equiv_p, regno);
1695 /* Returns a canonical version of X, from the point of view alias
1696 analysis. (For example, if X is a MEM whose address is a register,
1697 and the register has a known value (say a SYMBOL_REF), then a MEM
1698 whose address is the SYMBOL_REF is returned.) */
1701 canon_rtx (rtx x)
1703 /* Recursively look for equivalences. */
1704 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1706 rtx t = get_reg_known_value (REGNO (x));
1707 if (t == x)
1708 return x;
1709 if (t)
1710 return canon_rtx (t);
1713 if (GET_CODE (x) == PLUS)
1715 rtx x0 = canon_rtx (XEXP (x, 0));
1716 rtx x1 = canon_rtx (XEXP (x, 1));
1718 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1719 return simplify_gen_binary (PLUS, GET_MODE (x), x0, x1);
1722 /* This gives us much better alias analysis when called from
1723 the loop optimizer. Note we want to leave the original
1724 MEM alone, but need to return the canonicalized MEM with
1725 all the flags with their original values. */
1726 else if (MEM_P (x))
1727 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1729 return x;
1732 /* Return 1 if X and Y are identical-looking rtx's.
1733 Expect that X and Y has been already canonicalized.
1735 We use the data in reg_known_value above to see if two registers with
1736 different numbers are, in fact, equivalent. */
1738 static int
1739 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1741 int i;
1742 int j;
1743 enum rtx_code code;
1744 const char *fmt;
1746 if (x == 0 && y == 0)
1747 return 1;
1748 if (x == 0 || y == 0)
1749 return 0;
1751 if (x == y)
1752 return 1;
1754 code = GET_CODE (x);
1755 /* Rtx's of different codes cannot be equal. */
1756 if (code != GET_CODE (y))
1757 return 0;
1759 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1760 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1762 if (GET_MODE (x) != GET_MODE (y))
1763 return 0;
1765 /* Some RTL can be compared without a recursive examination. */
1766 switch (code)
1768 case REG:
1769 return REGNO (x) == REGNO (y);
1771 case LABEL_REF:
1772 return label_ref_label (x) == label_ref_label (y);
1774 case SYMBOL_REF:
1775 return compare_base_symbol_refs (x, y) == 1;
1777 case ENTRY_VALUE:
1778 /* This is magic, don't go through canonicalization et al. */
1779 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
1781 case VALUE:
1782 CASE_CONST_UNIQUE:
1783 /* Pointer equality guarantees equality for these nodes. */
1784 return 0;
1786 default:
1787 break;
1790 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1791 if (code == PLUS)
1792 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1793 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1794 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1795 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1796 /* For commutative operations, the RTX match if the operand match in any
1797 order. Also handle the simple binary and unary cases without a loop. */
1798 if (COMMUTATIVE_P (x))
1800 rtx xop0 = canon_rtx (XEXP (x, 0));
1801 rtx yop0 = canon_rtx (XEXP (y, 0));
1802 rtx yop1 = canon_rtx (XEXP (y, 1));
1804 return ((rtx_equal_for_memref_p (xop0, yop0)
1805 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1806 || (rtx_equal_for_memref_p (xop0, yop1)
1807 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1809 else if (NON_COMMUTATIVE_P (x))
1811 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1812 canon_rtx (XEXP (y, 0)))
1813 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1814 canon_rtx (XEXP (y, 1))));
1816 else if (UNARY_P (x))
1817 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1818 canon_rtx (XEXP (y, 0)));
1820 /* Compare the elements. If any pair of corresponding elements
1821 fail to match, return 0 for the whole things.
1823 Limit cases to types which actually appear in addresses. */
1825 fmt = GET_RTX_FORMAT (code);
1826 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1828 switch (fmt[i])
1830 case 'i':
1831 if (XINT (x, i) != XINT (y, i))
1832 return 0;
1833 break;
1835 case 'E':
1836 /* Two vectors must have the same length. */
1837 if (XVECLEN (x, i) != XVECLEN (y, i))
1838 return 0;
1840 /* And the corresponding elements must match. */
1841 for (j = 0; j < XVECLEN (x, i); j++)
1842 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1843 canon_rtx (XVECEXP (y, i, j))) == 0)
1844 return 0;
1845 break;
1847 case 'e':
1848 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1849 canon_rtx (XEXP (y, i))) == 0)
1850 return 0;
1851 break;
1853 /* This can happen for asm operands. */
1854 case 's':
1855 if (strcmp (XSTR (x, i), XSTR (y, i)))
1856 return 0;
1857 break;
1859 /* This can happen for an asm which clobbers memory. */
1860 case '0':
1861 break;
1863 /* It is believed that rtx's at this level will never
1864 contain anything but integers and other rtx's,
1865 except for within LABEL_REFs and SYMBOL_REFs. */
1866 default:
1867 gcc_unreachable ();
1870 return 1;
1873 static rtx
1874 find_base_term (rtx x)
1876 cselib_val *val;
1877 struct elt_loc_list *l, *f;
1878 rtx ret;
1880 #if defined (FIND_BASE_TERM)
1881 /* Try machine-dependent ways to find the base term. */
1882 x = FIND_BASE_TERM (x);
1883 #endif
1885 switch (GET_CODE (x))
1887 case REG:
1888 return REG_BASE_VALUE (x);
1890 case TRUNCATE:
1891 /* As we do not know which address space the pointer is referring to, we can
1892 handle this only if the target does not support different pointer or
1893 address modes depending on the address space. */
1894 if (!target_default_pointer_address_modes_p ())
1895 return 0;
1896 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1897 return 0;
1898 /* Fall through. */
1899 case HIGH:
1900 case PRE_INC:
1901 case PRE_DEC:
1902 case POST_INC:
1903 case POST_DEC:
1904 case PRE_MODIFY:
1905 case POST_MODIFY:
1906 return find_base_term (XEXP (x, 0));
1908 case ZERO_EXTEND:
1909 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1910 /* As we do not know which address space the pointer is referring to, we can
1911 handle this only if the target does not support different pointer or
1912 address modes depending on the address space. */
1913 if (!target_default_pointer_address_modes_p ())
1914 return 0;
1917 rtx temp = find_base_term (XEXP (x, 0));
1919 if (temp != 0 && CONSTANT_P (temp))
1920 temp = convert_memory_address (Pmode, temp);
1922 return temp;
1925 case VALUE:
1926 val = CSELIB_VAL_PTR (x);
1927 ret = NULL_RTX;
1929 if (!val)
1930 return ret;
1932 if (cselib_sp_based_value_p (val))
1933 return static_reg_base_value[STACK_POINTER_REGNUM];
1935 f = val->locs;
1936 /* Temporarily reset val->locs to avoid infinite recursion. */
1937 val->locs = NULL;
1939 for (l = f; l; l = l->next)
1940 if (GET_CODE (l->loc) == VALUE
1941 && CSELIB_VAL_PTR (l->loc)->locs
1942 && !CSELIB_VAL_PTR (l->loc)->locs->next
1943 && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
1944 continue;
1945 else if ((ret = find_base_term (l->loc)) != 0)
1946 break;
1948 val->locs = f;
1949 return ret;
1951 case LO_SUM:
1952 /* The standard form is (lo_sum reg sym) so look only at the
1953 second operand. */
1954 return find_base_term (XEXP (x, 1));
1956 case CONST:
1957 x = XEXP (x, 0);
1958 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1959 return 0;
1960 /* Fall through. */
1961 case PLUS:
1962 case MINUS:
1964 rtx tmp1 = XEXP (x, 0);
1965 rtx tmp2 = XEXP (x, 1);
1967 /* This is a little bit tricky since we have to determine which of
1968 the two operands represents the real base address. Otherwise this
1969 routine may return the index register instead of the base register.
1971 That may cause us to believe no aliasing was possible, when in
1972 fact aliasing is possible.
1974 We use a few simple tests to guess the base register. Additional
1975 tests can certainly be added. For example, if one of the operands
1976 is a shift or multiply, then it must be the index register and the
1977 other operand is the base register. */
1979 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1980 return find_base_term (tmp2);
1982 /* If either operand is known to be a pointer, then prefer it
1983 to determine the base term. */
1984 if (REG_P (tmp1) && REG_POINTER (tmp1))
1986 else if (REG_P (tmp2) && REG_POINTER (tmp2))
1987 std::swap (tmp1, tmp2);
1988 /* If second argument is constant which has base term, prefer it
1989 over variable tmp1. See PR64025. */
1990 else if (CONSTANT_P (tmp2) && !CONST_INT_P (tmp2))
1991 std::swap (tmp1, tmp2);
1993 /* Go ahead and find the base term for both operands. If either base
1994 term is from a pointer or is a named object or a special address
1995 (like an argument or stack reference), then use it for the
1996 base term. */
1997 rtx base = find_base_term (tmp1);
1998 if (base != NULL_RTX
1999 && ((REG_P (tmp1) && REG_POINTER (tmp1))
2000 || known_base_value_p (base)))
2001 return base;
2002 base = find_base_term (tmp2);
2003 if (base != NULL_RTX
2004 && ((REG_P (tmp2) && REG_POINTER (tmp2))
2005 || known_base_value_p (base)))
2006 return base;
2008 /* We could not determine which of the two operands was the
2009 base register and which was the index. So we can determine
2010 nothing from the base alias check. */
2011 return 0;
2014 case AND:
2015 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
2016 return find_base_term (XEXP (x, 0));
2017 return 0;
2019 case SYMBOL_REF:
2020 case LABEL_REF:
2021 return x;
2023 default:
2024 return 0;
2028 /* Return true if accesses to address X may alias accesses based
2029 on the stack pointer. */
2031 bool
2032 may_be_sp_based_p (rtx x)
2034 rtx base = find_base_term (x);
2035 return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
2038 /* BASE1 and BASE2 are decls. Return 1 if they refer to same object, 0
2039 if they refer to different objects and -1 if we can not decide. */
2042 compare_base_decls (tree base1, tree base2)
2044 int ret;
2045 gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
2046 if (base1 == base2)
2047 return 1;
2049 /* Declarations of non-automatic variables may have aliases. All other
2050 decls are unique. */
2051 if (!decl_in_symtab_p (base1)
2052 || !decl_in_symtab_p (base2))
2053 return 0;
2055 /* Don't cause symbols to be inserted by the act of checking. */
2056 symtab_node *node1 = symtab_node::get (base1);
2057 if (!node1)
2058 return 0;
2059 symtab_node *node2 = symtab_node::get (base2);
2060 if (!node2)
2061 return 0;
2063 ret = node1->equal_address_to (node2, true);
2064 return ret;
2067 /* Same as compare_base_decls but for SYMBOL_REF. */
2069 static int
2070 compare_base_symbol_refs (const_rtx x_base, const_rtx y_base)
2072 tree x_decl = SYMBOL_REF_DECL (x_base);
2073 tree y_decl = SYMBOL_REF_DECL (y_base);
2074 bool binds_def = true;
2076 if (XSTR (x_base, 0) == XSTR (y_base, 0))
2077 return 1;
2078 if (x_decl && y_decl)
2079 return compare_base_decls (x_decl, y_decl);
2080 if (x_decl || y_decl)
2082 if (!x_decl)
2084 std::swap (x_decl, y_decl);
2085 std::swap (x_base, y_base);
2087 /* We handle specially only section anchors and assume that other
2088 labels may overlap with user variables in an arbitrary way. */
2089 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2090 return -1;
2091 /* Anchors contains static VAR_DECLs and CONST_DECLs. We are safe
2092 to ignore CONST_DECLs because they are readonly. */
2093 if (!VAR_P (x_decl)
2094 || (!TREE_STATIC (x_decl) && !TREE_PUBLIC (x_decl)))
2095 return 0;
2097 symtab_node *x_node = symtab_node::get_create (x_decl)
2098 ->ultimate_alias_target ();
2099 /* External variable can not be in section anchor. */
2100 if (!x_node->definition)
2101 return 0;
2102 x_base = XEXP (DECL_RTL (x_node->decl), 0);
2103 /* If not in anchor, we can disambiguate. */
2104 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (x_base))
2105 return 0;
2107 /* We have an alias of anchored variable. If it can be interposed;
2108 we must assume it may or may not alias its anchor. */
2109 binds_def = decl_binds_to_current_def_p (x_decl);
2111 /* If we have variable in section anchor, we can compare by offset. */
2112 if (SYMBOL_REF_HAS_BLOCK_INFO_P (x_base)
2113 && SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2115 if (SYMBOL_REF_BLOCK (x_base) != SYMBOL_REF_BLOCK (y_base))
2116 return 0;
2117 if (SYMBOL_REF_BLOCK_OFFSET (x_base) == SYMBOL_REF_BLOCK_OFFSET (y_base))
2118 return binds_def ? 1 : -1;
2119 if (SYMBOL_REF_ANCHOR_P (x_base) != SYMBOL_REF_ANCHOR_P (y_base))
2120 return -1;
2121 return 0;
2123 /* In general we assume that memory locations pointed to by different labels
2124 may overlap in undefined ways. */
2125 return -1;
2128 /* Return 0 if the addresses X and Y are known to point to different
2129 objects, 1 if they might be pointers to the same object. */
2131 static int
2132 base_alias_check (rtx x, rtx x_base, rtx y, rtx y_base,
2133 machine_mode x_mode, machine_mode y_mode)
2135 /* If the address itself has no known base see if a known equivalent
2136 value has one. If either address still has no known base, nothing
2137 is known about aliasing. */
2138 if (x_base == 0)
2140 rtx x_c;
2142 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
2143 return 1;
2145 x_base = find_base_term (x_c);
2146 if (x_base == 0)
2147 return 1;
2150 if (y_base == 0)
2152 rtx y_c;
2153 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
2154 return 1;
2156 y_base = find_base_term (y_c);
2157 if (y_base == 0)
2158 return 1;
2161 /* If the base addresses are equal nothing is known about aliasing. */
2162 if (rtx_equal_p (x_base, y_base))
2163 return 1;
2165 /* The base addresses are different expressions. If they are not accessed
2166 via AND, there is no conflict. We can bring knowledge of object
2167 alignment into play here. For example, on alpha, "char a, b;" can
2168 alias one another, though "char a; long b;" cannot. AND addresses may
2169 implicitly alias surrounding objects; i.e. unaligned access in DImode
2170 via AND address can alias all surrounding object types except those
2171 with aligment 8 or higher. */
2172 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
2173 return 1;
2174 if (GET_CODE (x) == AND
2175 && (!CONST_INT_P (XEXP (x, 1))
2176 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
2177 return 1;
2178 if (GET_CODE (y) == AND
2179 && (!CONST_INT_P (XEXP (y, 1))
2180 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
2181 return 1;
2183 /* Differing symbols not accessed via AND never alias. */
2184 if (GET_CODE (x_base) == SYMBOL_REF && GET_CODE (y_base) == SYMBOL_REF)
2185 return compare_base_symbol_refs (x_base, y_base) != 0;
2187 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
2188 return 0;
2190 if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
2191 return 0;
2193 return 1;
2196 /* Return TRUE if EXPR refers to a VALUE whose uid is greater than
2197 (or equal to) that of V. */
2199 static bool
2200 refs_newer_value_p (const_rtx expr, rtx v)
2202 int minuid = CSELIB_VAL_PTR (v)->uid;
2203 subrtx_iterator::array_type array;
2204 FOR_EACH_SUBRTX (iter, array, expr, NONCONST)
2205 if (GET_CODE (*iter) == VALUE && CSELIB_VAL_PTR (*iter)->uid >= minuid)
2206 return true;
2207 return false;
2210 /* Convert the address X into something we can use. This is done by returning
2211 it unchanged unless it is a VALUE or VALUE +/- constant; for VALUE
2212 we call cselib to get a more useful rtx. */
2215 get_addr (rtx x)
2217 cselib_val *v;
2218 struct elt_loc_list *l;
2220 if (GET_CODE (x) != VALUE)
2222 if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
2223 && GET_CODE (XEXP (x, 0)) == VALUE
2224 && CONST_SCALAR_INT_P (XEXP (x, 1)))
2226 rtx op0 = get_addr (XEXP (x, 0));
2227 if (op0 != XEXP (x, 0))
2229 if (GET_CODE (x) == PLUS
2230 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2231 return plus_constant (GET_MODE (x), op0, INTVAL (XEXP (x, 1)));
2232 return simplify_gen_binary (GET_CODE (x), GET_MODE (x),
2233 op0, XEXP (x, 1));
2236 return x;
2238 v = CSELIB_VAL_PTR (x);
2239 if (v)
2241 bool have_equivs = cselib_have_permanent_equivalences ();
2242 if (have_equivs)
2243 v = canonical_cselib_val (v);
2244 for (l = v->locs; l; l = l->next)
2245 if (CONSTANT_P (l->loc))
2246 return l->loc;
2247 for (l = v->locs; l; l = l->next)
2248 if (!REG_P (l->loc) && !MEM_P (l->loc)
2249 /* Avoid infinite recursion when potentially dealing with
2250 var-tracking artificial equivalences, by skipping the
2251 equivalences themselves, and not choosing expressions
2252 that refer to newer VALUEs. */
2253 && (!have_equivs
2254 || (GET_CODE (l->loc) != VALUE
2255 && !refs_newer_value_p (l->loc, x))))
2256 return l->loc;
2257 if (have_equivs)
2259 for (l = v->locs; l; l = l->next)
2260 if (REG_P (l->loc)
2261 || (GET_CODE (l->loc) != VALUE
2262 && !refs_newer_value_p (l->loc, x)))
2263 return l->loc;
2264 /* Return the canonical value. */
2265 return v->val_rtx;
2267 if (v->locs)
2268 return v->locs->loc;
2270 return x;
2273 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
2274 where SIZE is the size in bytes of the memory reference. If ADDR
2275 is not modified by the memory reference then ADDR is returned. */
2277 static rtx
2278 addr_side_effect_eval (rtx addr, int size, int n_refs)
2280 int offset = 0;
2282 switch (GET_CODE (addr))
2284 case PRE_INC:
2285 offset = (n_refs + 1) * size;
2286 break;
2287 case PRE_DEC:
2288 offset = -(n_refs + 1) * size;
2289 break;
2290 case POST_INC:
2291 offset = n_refs * size;
2292 break;
2293 case POST_DEC:
2294 offset = -n_refs * size;
2295 break;
2297 default:
2298 return addr;
2301 if (offset)
2302 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
2303 gen_int_mode (offset, GET_MODE (addr)));
2304 else
2305 addr = XEXP (addr, 0);
2306 addr = canon_rtx (addr);
2308 return addr;
2311 /* Return TRUE if an object X sized at XSIZE bytes and another object
2312 Y sized at YSIZE bytes, starting C bytes after X, may overlap. If
2313 any of the sizes is zero, assume an overlap, otherwise use the
2314 absolute value of the sizes as the actual sizes. */
2316 static inline bool
2317 offset_overlap_p (HOST_WIDE_INT c, int xsize, int ysize)
2319 return (xsize == 0 || ysize == 0
2320 || (c >= 0
2321 ? (abs (xsize) > c)
2322 : (abs (ysize) > -c)));
2325 /* Return one if X and Y (memory addresses) reference the
2326 same location in memory or if the references overlap.
2327 Return zero if they do not overlap, else return
2328 minus one in which case they still might reference the same location.
2330 C is an offset accumulator. When
2331 C is nonzero, we are testing aliases between X and Y + C.
2332 XSIZE is the size in bytes of the X reference,
2333 similarly YSIZE is the size in bytes for Y.
2334 Expect that canon_rtx has been already called for X and Y.
2336 If XSIZE or YSIZE is zero, we do not know the amount of memory being
2337 referenced (the reference was BLKmode), so make the most pessimistic
2338 assumptions.
2340 If XSIZE or YSIZE is negative, we may access memory outside the object
2341 being referenced as a side effect. This can happen when using AND to
2342 align memory references, as is done on the Alpha.
2344 Nice to notice that varying addresses cannot conflict with fp if no
2345 local variables had their addresses taken, but that's too hard now.
2347 ??? Contrary to the tree alias oracle this does not return
2348 one for X + non-constant and Y + non-constant when X and Y are equal.
2349 If that is fixed the TBAA hack for union type-punning can be removed. */
2351 static int
2352 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
2354 if (GET_CODE (x) == VALUE)
2356 if (REG_P (y))
2358 struct elt_loc_list *l = NULL;
2359 if (CSELIB_VAL_PTR (x))
2360 for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
2361 l; l = l->next)
2362 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
2363 break;
2364 if (l)
2365 x = y;
2366 else
2367 x = get_addr (x);
2369 /* Don't call get_addr if y is the same VALUE. */
2370 else if (x != y)
2371 x = get_addr (x);
2373 if (GET_CODE (y) == VALUE)
2375 if (REG_P (x))
2377 struct elt_loc_list *l = NULL;
2378 if (CSELIB_VAL_PTR (y))
2379 for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
2380 l; l = l->next)
2381 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
2382 break;
2383 if (l)
2384 y = x;
2385 else
2386 y = get_addr (y);
2388 /* Don't call get_addr if x is the same VALUE. */
2389 else if (y != x)
2390 y = get_addr (y);
2392 if (GET_CODE (x) == HIGH)
2393 x = XEXP (x, 0);
2394 else if (GET_CODE (x) == LO_SUM)
2395 x = XEXP (x, 1);
2396 else
2397 x = addr_side_effect_eval (x, abs (xsize), 0);
2398 if (GET_CODE (y) == HIGH)
2399 y = XEXP (y, 0);
2400 else if (GET_CODE (y) == LO_SUM)
2401 y = XEXP (y, 1);
2402 else
2403 y = addr_side_effect_eval (y, abs (ysize), 0);
2405 if (GET_CODE (x) == SYMBOL_REF && GET_CODE (y) == SYMBOL_REF)
2407 int cmp = compare_base_symbol_refs (x,y);
2409 /* If both decls are the same, decide by offsets. */
2410 if (cmp == 1)
2411 return offset_overlap_p (c, xsize, ysize);
2412 /* Assume a potential overlap for symbolic addresses that went
2413 through alignment adjustments (i.e., that have negative
2414 sizes), because we can't know how far they are from each
2415 other. */
2416 if (xsize < 0 || ysize < 0)
2417 return -1;
2418 /* If decls are different or we know by offsets that there is no overlap,
2419 we win. */
2420 if (!cmp || !offset_overlap_p (c, xsize, ysize))
2421 return 0;
2422 /* Decls may or may not be different and offsets overlap....*/
2423 return -1;
2425 else if (rtx_equal_for_memref_p (x, y))
2427 return offset_overlap_p (c, xsize, ysize);
2430 /* This code used to check for conflicts involving stack references and
2431 globals but the base address alias code now handles these cases. */
2433 if (GET_CODE (x) == PLUS)
2435 /* The fact that X is canonicalized means that this
2436 PLUS rtx is canonicalized. */
2437 rtx x0 = XEXP (x, 0);
2438 rtx x1 = XEXP (x, 1);
2440 /* However, VALUEs might end up in different positions even in
2441 canonical PLUSes. Comparing their addresses is enough. */
2442 if (x0 == y)
2443 return memrefs_conflict_p (xsize, x1, ysize, const0_rtx, c);
2444 else if (x1 == y)
2445 return memrefs_conflict_p (xsize, x0, ysize, const0_rtx, c);
2447 if (GET_CODE (y) == PLUS)
2449 /* The fact that Y is canonicalized means that this
2450 PLUS rtx is canonicalized. */
2451 rtx y0 = XEXP (y, 0);
2452 rtx y1 = XEXP (y, 1);
2454 if (x0 == y1)
2455 return memrefs_conflict_p (xsize, x1, ysize, y0, c);
2456 if (x1 == y0)
2457 return memrefs_conflict_p (xsize, x0, ysize, y1, c);
2459 if (rtx_equal_for_memref_p (x1, y1))
2460 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2461 if (rtx_equal_for_memref_p (x0, y0))
2462 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
2463 if (CONST_INT_P (x1))
2465 if (CONST_INT_P (y1))
2466 return memrefs_conflict_p (xsize, x0, ysize, y0,
2467 c - INTVAL (x1) + INTVAL (y1));
2468 else
2469 return memrefs_conflict_p (xsize, x0, ysize, y,
2470 c - INTVAL (x1));
2472 else if (CONST_INT_P (y1))
2473 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2475 return -1;
2477 else if (CONST_INT_P (x1))
2478 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
2480 else if (GET_CODE (y) == PLUS)
2482 /* The fact that Y is canonicalized means that this
2483 PLUS rtx is canonicalized. */
2484 rtx y0 = XEXP (y, 0);
2485 rtx y1 = XEXP (y, 1);
2487 if (x == y0)
2488 return memrefs_conflict_p (xsize, const0_rtx, ysize, y1, c);
2489 if (x == y1)
2490 return memrefs_conflict_p (xsize, const0_rtx, ysize, y0, c);
2492 if (CONST_INT_P (y1))
2493 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2494 else
2495 return -1;
2498 if (GET_CODE (x) == GET_CODE (y))
2499 switch (GET_CODE (x))
2501 case MULT:
2503 /* Handle cases where we expect the second operands to be the
2504 same, and check only whether the first operand would conflict
2505 or not. */
2506 rtx x0, y0;
2507 rtx x1 = canon_rtx (XEXP (x, 1));
2508 rtx y1 = canon_rtx (XEXP (y, 1));
2509 if (! rtx_equal_for_memref_p (x1, y1))
2510 return -1;
2511 x0 = canon_rtx (XEXP (x, 0));
2512 y0 = canon_rtx (XEXP (y, 0));
2513 if (rtx_equal_for_memref_p (x0, y0))
2514 return offset_overlap_p (c, xsize, ysize);
2516 /* Can't properly adjust our sizes. */
2517 if (!CONST_INT_P (x1))
2518 return -1;
2519 xsize /= INTVAL (x1);
2520 ysize /= INTVAL (x1);
2521 c /= INTVAL (x1);
2522 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2525 default:
2526 break;
2529 /* Deal with alignment ANDs by adjusting offset and size so as to
2530 cover the maximum range, without taking any previously known
2531 alignment into account. Make a size negative after such an
2532 adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2533 assume a potential overlap, because they may end up in contiguous
2534 memory locations and the stricter-alignment access may span over
2535 part of both. */
2536 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
2538 HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2539 unsigned HOST_WIDE_INT uc = sc;
2540 if (sc < 0 && pow2_or_zerop (-uc))
2542 if (xsize > 0)
2543 xsize = -xsize;
2544 if (xsize)
2545 xsize += sc + 1;
2546 c -= sc + 1;
2547 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2548 ysize, y, c);
2551 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
2553 HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2554 unsigned HOST_WIDE_INT uc = sc;
2555 if (sc < 0 && pow2_or_zerop (-uc))
2557 if (ysize > 0)
2558 ysize = -ysize;
2559 if (ysize)
2560 ysize += sc + 1;
2561 c += sc + 1;
2562 return memrefs_conflict_p (xsize, x,
2563 ysize, canon_rtx (XEXP (y, 0)), c);
2567 if (CONSTANT_P (x))
2569 if (CONST_INT_P (x) && CONST_INT_P (y))
2571 c += (INTVAL (y) - INTVAL (x));
2572 return offset_overlap_p (c, xsize, ysize);
2575 if (GET_CODE (x) == CONST)
2577 if (GET_CODE (y) == CONST)
2578 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2579 ysize, canon_rtx (XEXP (y, 0)), c);
2580 else
2581 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2582 ysize, y, c);
2584 if (GET_CODE (y) == CONST)
2585 return memrefs_conflict_p (xsize, x, ysize,
2586 canon_rtx (XEXP (y, 0)), c);
2588 /* Assume a potential overlap for symbolic addresses that went
2589 through alignment adjustments (i.e., that have negative
2590 sizes), because we can't know how far they are from each
2591 other. */
2592 if (CONSTANT_P (y))
2593 return (xsize < 0 || ysize < 0 || offset_overlap_p (c, xsize, ysize));
2595 return -1;
2598 return -1;
2601 /* Functions to compute memory dependencies.
2603 Since we process the insns in execution order, we can build tables
2604 to keep track of what registers are fixed (and not aliased), what registers
2605 are varying in known ways, and what registers are varying in unknown
2606 ways.
2608 If both memory references are volatile, then there must always be a
2609 dependence between the two references, since their order can not be
2610 changed. A volatile and non-volatile reference can be interchanged
2611 though.
2613 We also must allow AND addresses, because they may generate accesses
2614 outside the object being referenced. This is used to generate aligned
2615 addresses from unaligned addresses, for instance, the alpha
2616 storeqi_unaligned pattern. */
2618 /* Read dependence: X is read after read in MEM takes place. There can
2619 only be a dependence here if both reads are volatile, or if either is
2620 an explicit barrier. */
2623 read_dependence (const_rtx mem, const_rtx x)
2625 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2626 return true;
2627 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2628 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2629 return true;
2630 return false;
2633 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2635 static tree
2636 decl_for_component_ref (tree x)
2640 x = TREE_OPERAND (x, 0);
2642 while (x && TREE_CODE (x) == COMPONENT_REF);
2644 return x && DECL_P (x) ? x : NULL_TREE;
2647 /* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2648 for the offset of the field reference. *KNOWN_P says whether the
2649 offset is known. */
2651 static void
2652 adjust_offset_for_component_ref (tree x, bool *known_p,
2653 HOST_WIDE_INT *offset)
2655 if (!*known_p)
2656 return;
2659 tree xoffset = component_ref_field_offset (x);
2660 tree field = TREE_OPERAND (x, 1);
2661 if (TREE_CODE (xoffset) != INTEGER_CST)
2663 *known_p = false;
2664 return;
2667 offset_int woffset
2668 = (wi::to_offset (xoffset)
2669 + (wi::to_offset (DECL_FIELD_BIT_OFFSET (field))
2670 >> LOG2_BITS_PER_UNIT));
2671 if (!wi::fits_uhwi_p (woffset))
2673 *known_p = false;
2674 return;
2676 *offset += woffset.to_uhwi ();
2678 x = TREE_OPERAND (x, 0);
2680 while (x && TREE_CODE (x) == COMPONENT_REF);
2683 /* Return nonzero if we can determine the exprs corresponding to memrefs
2684 X and Y and they do not overlap.
2685 If LOOP_VARIANT is set, skip offset-based disambiguation */
2688 nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
2690 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2691 rtx rtlx, rtly;
2692 rtx basex, basey;
2693 bool moffsetx_known_p, moffsety_known_p;
2694 HOST_WIDE_INT moffsetx = 0, moffsety = 0;
2695 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey;
2697 /* Unless both have exprs, we can't tell anything. */
2698 if (exprx == 0 || expry == 0)
2699 return 0;
2701 /* For spill-slot accesses make sure we have valid offsets. */
2702 if ((exprx == get_spill_slot_decl (false)
2703 && ! MEM_OFFSET_KNOWN_P (x))
2704 || (expry == get_spill_slot_decl (false)
2705 && ! MEM_OFFSET_KNOWN_P (y)))
2706 return 0;
2708 /* If the field reference test failed, look at the DECLs involved. */
2709 moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2710 if (moffsetx_known_p)
2711 moffsetx = MEM_OFFSET (x);
2712 if (TREE_CODE (exprx) == COMPONENT_REF)
2714 tree t = decl_for_component_ref (exprx);
2715 if (! t)
2716 return 0;
2717 adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2718 exprx = t;
2721 moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2722 if (moffsety_known_p)
2723 moffsety = MEM_OFFSET (y);
2724 if (TREE_CODE (expry) == COMPONENT_REF)
2726 tree t = decl_for_component_ref (expry);
2727 if (! t)
2728 return 0;
2729 adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2730 expry = t;
2733 if (! DECL_P (exprx) || ! DECL_P (expry))
2734 return 0;
2736 /* If we refer to different gimple registers, or one gimple register
2737 and one non-gimple-register, we know they can't overlap. First,
2738 gimple registers don't have their addresses taken. Now, there
2739 could be more than one stack slot for (different versions of) the
2740 same gimple register, but we can presumably tell they don't
2741 overlap based on offsets from stack base addresses elsewhere.
2742 It's important that we don't proceed to DECL_RTL, because gimple
2743 registers may not pass DECL_RTL_SET_P, and make_decl_rtl won't be
2744 able to do anything about them since no SSA information will have
2745 remained to guide it. */
2746 if (is_gimple_reg (exprx) || is_gimple_reg (expry))
2747 return exprx != expry
2748 || (moffsetx_known_p && moffsety_known_p
2749 && MEM_SIZE_KNOWN_P (x) && MEM_SIZE_KNOWN_P (y)
2750 && !offset_overlap_p (moffsety - moffsetx,
2751 MEM_SIZE (x), MEM_SIZE (y)));
2753 /* With invalid code we can end up storing into the constant pool.
2754 Bail out to avoid ICEing when creating RTL for this.
2755 See gfortran.dg/lto/20091028-2_0.f90. */
2756 if (TREE_CODE (exprx) == CONST_DECL
2757 || TREE_CODE (expry) == CONST_DECL)
2758 return 1;
2760 /* If one decl is known to be a function or label in a function and
2761 the other is some kind of data, they can't overlap. */
2762 if ((TREE_CODE (exprx) == FUNCTION_DECL
2763 || TREE_CODE (exprx) == LABEL_DECL)
2764 != (TREE_CODE (expry) == FUNCTION_DECL
2765 || TREE_CODE (expry) == LABEL_DECL))
2766 return 1;
2768 /* If either of the decls doesn't have DECL_RTL set (e.g. marked as
2769 living in multiple places), we can't tell anything. Exception
2770 are FUNCTION_DECLs for which we can create DECL_RTL on demand. */
2771 if ((!DECL_RTL_SET_P (exprx) && TREE_CODE (exprx) != FUNCTION_DECL)
2772 || (!DECL_RTL_SET_P (expry) && TREE_CODE (expry) != FUNCTION_DECL))
2773 return 0;
2775 rtlx = DECL_RTL (exprx);
2776 rtly = DECL_RTL (expry);
2778 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2779 can't overlap unless they are the same because we never reuse that part
2780 of the stack frame used for locals for spilled pseudos. */
2781 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2782 && ! rtx_equal_p (rtlx, rtly))
2783 return 1;
2785 /* If we have MEMs referring to different address spaces (which can
2786 potentially overlap), we cannot easily tell from the addresses
2787 whether the references overlap. */
2788 if (MEM_P (rtlx) && MEM_P (rtly)
2789 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2790 return 0;
2792 /* Get the base and offsets of both decls. If either is a register, we
2793 know both are and are the same, so use that as the base. The only
2794 we can avoid overlap is if we can deduce that they are nonoverlapping
2795 pieces of that decl, which is very rare. */
2796 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2797 if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1)))
2798 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2800 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2801 if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1)))
2802 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2804 /* If the bases are different, we know they do not overlap if both
2805 are constants or if one is a constant and the other a pointer into the
2806 stack frame. Otherwise a different base means we can't tell if they
2807 overlap or not. */
2808 if (compare_base_decls (exprx, expry) == 0)
2809 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2810 || (CONSTANT_P (basex) && REG_P (basey)
2811 && REGNO_PTR_FRAME_P (REGNO (basey)))
2812 || (CONSTANT_P (basey) && REG_P (basex)
2813 && REGNO_PTR_FRAME_P (REGNO (basex))));
2815 /* Offset based disambiguation not appropriate for loop invariant */
2816 if (loop_invariant)
2817 return 0;
2819 /* Offset based disambiguation is OK even if we do not know that the
2820 declarations are necessarily different
2821 (i.e. compare_base_decls (exprx, expry) == -1) */
2823 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2824 : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
2825 : -1);
2826 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2827 : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2828 : -1);
2830 /* If we have an offset for either memref, it can update the values computed
2831 above. */
2832 if (moffsetx_known_p)
2833 offsetx += moffsetx, sizex -= moffsetx;
2834 if (moffsety_known_p)
2835 offsety += moffsety, sizey -= moffsety;
2837 /* If a memref has both a size and an offset, we can use the smaller size.
2838 We can't do this if the offset isn't known because we must view this
2839 memref as being anywhere inside the DECL's MEM. */
2840 if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
2841 sizex = MEM_SIZE (x);
2842 if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
2843 sizey = MEM_SIZE (y);
2845 /* Put the values of the memref with the lower offset in X's values. */
2846 if (offsetx > offsety)
2848 std::swap (offsetx, offsety);
2849 std::swap (sizex, sizey);
2852 /* If we don't know the size of the lower-offset value, we can't tell
2853 if they conflict. Otherwise, we do the test. */
2854 return sizex >= 0 && offsety >= offsetx + sizex;
2857 /* Helper for true_dependence and canon_true_dependence.
2858 Checks for true dependence: X is read after store in MEM takes place.
2860 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2861 NULL_RTX, and the canonical addresses of MEM and X are both computed
2862 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2864 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2866 Returns 1 if there is a true dependence, 0 otherwise. */
2868 static int
2869 true_dependence_1 (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
2870 const_rtx x, rtx x_addr, bool mem_canonicalized)
2872 rtx true_mem_addr;
2873 rtx base;
2874 int ret;
2876 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2877 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2879 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2880 return 1;
2882 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2883 This is used in epilogue deallocation functions, and in cselib. */
2884 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2885 return 1;
2886 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2887 return 1;
2888 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2889 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2890 return 1;
2892 if (! x_addr)
2893 x_addr = XEXP (x, 0);
2894 x_addr = get_addr (x_addr);
2896 if (! mem_addr)
2898 mem_addr = XEXP (mem, 0);
2899 if (mem_mode == VOIDmode)
2900 mem_mode = GET_MODE (mem);
2902 true_mem_addr = get_addr (mem_addr);
2904 /* Read-only memory is by definition never modified, and therefore can't
2905 conflict with anything. However, don't assume anything when AND
2906 addresses are involved and leave to the code below to determine
2907 dependence. We don't expect to find read-only set on MEM, but
2908 stupid user tricks can produce them, so don't die. */
2909 if (MEM_READONLY_P (x)
2910 && GET_CODE (x_addr) != AND
2911 && GET_CODE (true_mem_addr) != AND)
2912 return 0;
2914 /* If we have MEMs referring to different address spaces (which can
2915 potentially overlap), we cannot easily tell from the addresses
2916 whether the references overlap. */
2917 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2918 return 1;
2920 base = find_base_term (x_addr);
2921 if (base && (GET_CODE (base) == LABEL_REF
2922 || (GET_CODE (base) == SYMBOL_REF
2923 && CONSTANT_POOL_ADDRESS_P (base))))
2924 return 0;
2926 rtx mem_base = find_base_term (true_mem_addr);
2927 if (! base_alias_check (x_addr, base, true_mem_addr, mem_base,
2928 GET_MODE (x), mem_mode))
2929 return 0;
2931 x_addr = canon_rtx (x_addr);
2932 if (!mem_canonicalized)
2933 mem_addr = canon_rtx (true_mem_addr);
2935 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2936 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2937 return ret;
2939 if (mems_in_disjoint_alias_sets_p (x, mem))
2940 return 0;
2942 if (nonoverlapping_memrefs_p (mem, x, false))
2943 return 0;
2945 return rtx_refs_may_alias_p (x, mem, true);
2948 /* True dependence: X is read after store in MEM takes place. */
2951 true_dependence (const_rtx mem, machine_mode mem_mode, const_rtx x)
2953 return true_dependence_1 (mem, mem_mode, NULL_RTX,
2954 x, NULL_RTX, /*mem_canonicalized=*/false);
2957 /* Canonical true dependence: X is read after store in MEM takes place.
2958 Variant of true_dependence which assumes MEM has already been
2959 canonicalized (hence we no longer do that here).
2960 The mem_addr argument has been added, since true_dependence_1 computed
2961 this value prior to canonicalizing. */
2964 canon_true_dependence (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
2965 const_rtx x, rtx x_addr)
2967 return true_dependence_1 (mem, mem_mode, mem_addr,
2968 x, x_addr, /*mem_canonicalized=*/true);
2971 /* Returns nonzero if a write to X might alias a previous read from
2972 (or, if WRITEP is true, a write to) MEM.
2973 If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X,
2974 and X_MODE the mode for that access.
2975 If MEM_CANONICALIZED is true, MEM is canonicalized. */
2977 static int
2978 write_dependence_p (const_rtx mem,
2979 const_rtx x, machine_mode x_mode, rtx x_addr,
2980 bool mem_canonicalized, bool x_canonicalized, bool writep)
2982 rtx mem_addr;
2983 rtx true_mem_addr, true_x_addr;
2984 rtx base;
2985 int ret;
2987 gcc_checking_assert (x_canonicalized
2988 ? (x_addr != NULL_RTX && x_mode != VOIDmode)
2989 : (x_addr == NULL_RTX && x_mode == VOIDmode));
2991 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2992 return 1;
2994 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2995 This is used in epilogue deallocation functions. */
2996 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2997 return 1;
2998 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2999 return 1;
3000 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3001 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3002 return 1;
3004 if (!x_addr)
3005 x_addr = XEXP (x, 0);
3006 true_x_addr = get_addr (x_addr);
3008 mem_addr = XEXP (mem, 0);
3009 true_mem_addr = get_addr (mem_addr);
3011 /* A read from read-only memory can't conflict with read-write memory.
3012 Don't assume anything when AND addresses are involved and leave to
3013 the code below to determine dependence. */
3014 if (!writep
3015 && MEM_READONLY_P (mem)
3016 && GET_CODE (true_x_addr) != AND
3017 && GET_CODE (true_mem_addr) != AND)
3018 return 0;
3020 /* If we have MEMs referring to different address spaces (which can
3021 potentially overlap), we cannot easily tell from the addresses
3022 whether the references overlap. */
3023 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3024 return 1;
3026 base = find_base_term (true_mem_addr);
3027 if (! writep
3028 && base
3029 && (GET_CODE (base) == LABEL_REF
3030 || (GET_CODE (base) == SYMBOL_REF
3031 && CONSTANT_POOL_ADDRESS_P (base))))
3032 return 0;
3034 rtx x_base = find_base_term (true_x_addr);
3035 if (! base_alias_check (true_x_addr, x_base, true_mem_addr, base,
3036 GET_MODE (x), GET_MODE (mem)))
3037 return 0;
3039 if (!x_canonicalized)
3041 x_addr = canon_rtx (true_x_addr);
3042 x_mode = GET_MODE (x);
3044 if (!mem_canonicalized)
3045 mem_addr = canon_rtx (true_mem_addr);
3047 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
3048 GET_MODE_SIZE (x_mode), x_addr, 0)) != -1)
3049 return ret;
3051 if (nonoverlapping_memrefs_p (x, mem, false))
3052 return 0;
3054 return rtx_refs_may_alias_p (x, mem, false);
3057 /* Anti dependence: X is written after read in MEM takes place. */
3060 anti_dependence (const_rtx mem, const_rtx x)
3062 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3063 /*mem_canonicalized=*/false,
3064 /*x_canonicalized*/false, /*writep=*/false);
3067 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3068 Also, consider X in X_MODE (which might be from an enclosing
3069 STRICT_LOW_PART / ZERO_EXTRACT).
3070 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3073 canon_anti_dependence (const_rtx mem, bool mem_canonicalized,
3074 const_rtx x, machine_mode x_mode, rtx x_addr)
3076 return write_dependence_p (mem, x, x_mode, x_addr,
3077 mem_canonicalized, /*x_canonicalized=*/true,
3078 /*writep=*/false);
3081 /* Output dependence: X is written after store in MEM takes place. */
3084 output_dependence (const_rtx mem, const_rtx x)
3086 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3087 /*mem_canonicalized=*/false,
3088 /*x_canonicalized*/false, /*writep=*/true);
3091 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3092 Also, consider X in X_MODE (which might be from an enclosing
3093 STRICT_LOW_PART / ZERO_EXTRACT).
3094 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3097 canon_output_dependence (const_rtx mem, bool mem_canonicalized,
3098 const_rtx x, machine_mode x_mode, rtx x_addr)
3100 return write_dependence_p (mem, x, x_mode, x_addr,
3101 mem_canonicalized, /*x_canonicalized=*/true,
3102 /*writep=*/true);
3107 /* Check whether X may be aliased with MEM. Don't do offset-based
3108 memory disambiguation & TBAA. */
3110 may_alias_p (const_rtx mem, const_rtx x)
3112 rtx x_addr, mem_addr;
3114 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3115 return 1;
3117 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3118 This is used in epilogue deallocation functions. */
3119 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3120 return 1;
3121 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3122 return 1;
3123 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3124 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3125 return 1;
3127 x_addr = XEXP (x, 0);
3128 x_addr = get_addr (x_addr);
3130 mem_addr = XEXP (mem, 0);
3131 mem_addr = get_addr (mem_addr);
3133 /* Read-only memory is by definition never modified, and therefore can't
3134 conflict with anything. However, don't assume anything when AND
3135 addresses are involved and leave to the code below to determine
3136 dependence. We don't expect to find read-only set on MEM, but
3137 stupid user tricks can produce them, so don't die. */
3138 if (MEM_READONLY_P (x)
3139 && GET_CODE (x_addr) != AND
3140 && GET_CODE (mem_addr) != AND)
3141 return 0;
3143 /* If we have MEMs referring to different address spaces (which can
3144 potentially overlap), we cannot easily tell from the addresses
3145 whether the references overlap. */
3146 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3147 return 1;
3149 rtx x_base = find_base_term (x_addr);
3150 rtx mem_base = find_base_term (mem_addr);
3151 if (! base_alias_check (x_addr, x_base, mem_addr, mem_base,
3152 GET_MODE (x), GET_MODE (mem_addr)))
3153 return 0;
3155 if (nonoverlapping_memrefs_p (mem, x, true))
3156 return 0;
3158 /* TBAA not valid for loop_invarint */
3159 return rtx_refs_may_alias_p (x, mem, false);
3162 void
3163 init_alias_target (void)
3165 int i;
3167 if (!arg_base_value)
3168 arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
3170 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
3172 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3173 /* Check whether this register can hold an incoming pointer
3174 argument. FUNCTION_ARG_REGNO_P tests outgoing register
3175 numbers, so translate if necessary due to register windows. */
3176 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
3177 && HARD_REGNO_MODE_OK (i, Pmode))
3178 static_reg_base_value[i] = arg_base_value;
3180 static_reg_base_value[STACK_POINTER_REGNUM]
3181 = unique_base_value (UNIQUE_BASE_VALUE_SP);
3182 static_reg_base_value[ARG_POINTER_REGNUM]
3183 = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
3184 static_reg_base_value[FRAME_POINTER_REGNUM]
3185 = unique_base_value (UNIQUE_BASE_VALUE_FP);
3186 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
3187 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
3188 = unique_base_value (UNIQUE_BASE_VALUE_HFP);
3191 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
3192 to be memory reference. */
3193 static bool memory_modified;
3194 static void
3195 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3197 if (MEM_P (x))
3199 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
3200 memory_modified = true;
3205 /* Return true when INSN possibly modify memory contents of MEM
3206 (i.e. address can be modified). */
3207 bool
3208 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
3210 if (!INSN_P (insn))
3211 return false;
3212 memory_modified = false;
3213 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
3214 return memory_modified;
3217 /* Return TRUE if the destination of a set is rtx identical to
3218 ITEM. */
3219 static inline bool
3220 set_dest_equal_p (const_rtx set, const_rtx item)
3222 rtx dest = SET_DEST (set);
3223 return rtx_equal_p (dest, item);
3226 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
3227 array. */
3229 void
3230 init_alias_analysis (void)
3232 unsigned int maxreg = max_reg_num ();
3233 int changed, pass;
3234 int i;
3235 unsigned int ui;
3236 rtx_insn *insn;
3237 rtx val;
3238 int rpo_cnt;
3239 int *rpo;
3241 timevar_push (TV_ALIAS_ANALYSIS);
3243 vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER);
3244 reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
3245 bitmap_clear (reg_known_equiv_p);
3247 /* If we have memory allocated from the previous run, use it. */
3248 if (old_reg_base_value)
3249 reg_base_value = old_reg_base_value;
3251 if (reg_base_value)
3252 reg_base_value->truncate (0);
3254 vec_safe_grow_cleared (reg_base_value, maxreg);
3256 new_reg_base_value = XNEWVEC (rtx, maxreg);
3257 reg_seen = sbitmap_alloc (maxreg);
3259 /* The basic idea is that each pass through this loop will use the
3260 "constant" information from the previous pass to propagate alias
3261 information through another level of assignments.
3263 The propagation is done on the CFG in reverse post-order, to propagate
3264 things forward as far as possible in each iteration.
3266 This could get expensive if the assignment chains are long. Maybe
3267 we should throttle the number of iterations, possibly based on
3268 the optimization level or flag_expensive_optimizations.
3270 We could propagate more information in the first pass by making use
3271 of DF_REG_DEF_COUNT to determine immediately that the alias information
3272 for a pseudo is "constant".
3274 A program with an uninitialized variable can cause an infinite loop
3275 here. Instead of doing a full dataflow analysis to detect such problems
3276 we just cap the number of iterations for the loop.
3278 The state of the arrays for the set chain in question does not matter
3279 since the program has undefined behavior. */
3281 rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
3282 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
3284 /* The prologue/epilogue insns are not threaded onto the
3285 insn chain until after reload has completed. Thus,
3286 there is no sense wasting time checking if INSN is in
3287 the prologue/epilogue until after reload has completed. */
3288 bool could_be_prologue_epilogue = ((targetm.have_prologue ()
3289 || targetm.have_epilogue ())
3290 && reload_completed);
3292 pass = 0;
3295 /* Assume nothing will change this iteration of the loop. */
3296 changed = 0;
3298 /* We want to assign the same IDs each iteration of this loop, so
3299 start counting from one each iteration of the loop. */
3300 unique_id = 1;
3302 /* We're at the start of the function each iteration through the
3303 loop, so we're copying arguments. */
3304 copying_arguments = true;
3306 /* Wipe the potential alias information clean for this pass. */
3307 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
3309 /* Wipe the reg_seen array clean. */
3310 bitmap_clear (reg_seen);
3312 /* Initialize the alias information for this pass. */
3313 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3314 if (static_reg_base_value[i])
3316 new_reg_base_value[i] = static_reg_base_value[i];
3317 bitmap_set_bit (reg_seen, i);
3320 /* Walk the insns adding values to the new_reg_base_value array. */
3321 for (i = 0; i < rpo_cnt; i++)
3323 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
3324 FOR_BB_INSNS (bb, insn)
3326 if (NONDEBUG_INSN_P (insn))
3328 rtx note, set;
3330 if (could_be_prologue_epilogue
3331 && prologue_epilogue_contains (insn))
3332 continue;
3334 /* If this insn has a noalias note, process it, Otherwise,
3335 scan for sets. A simple set will have no side effects
3336 which could change the base value of any other register. */
3338 if (GET_CODE (PATTERN (insn)) == SET
3339 && REG_NOTES (insn) != 0
3340 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
3341 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
3342 else
3343 note_stores (PATTERN (insn), record_set, NULL);
3345 set = single_set (insn);
3347 if (set != 0
3348 && REG_P (SET_DEST (set))
3349 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3351 unsigned int regno = REGNO (SET_DEST (set));
3352 rtx src = SET_SRC (set);
3353 rtx t;
3355 note = find_reg_equal_equiv_note (insn);
3356 if (note && REG_NOTE_KIND (note) == REG_EQUAL
3357 && DF_REG_DEF_COUNT (regno) != 1)
3358 note = NULL_RTX;
3360 if (note != NULL_RTX
3361 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3362 && ! rtx_varies_p (XEXP (note, 0), 1)
3363 && ! reg_overlap_mentioned_p (SET_DEST (set),
3364 XEXP (note, 0)))
3366 set_reg_known_value (regno, XEXP (note, 0));
3367 set_reg_known_equiv_p (regno,
3368 REG_NOTE_KIND (note) == REG_EQUIV);
3370 else if (DF_REG_DEF_COUNT (regno) == 1
3371 && GET_CODE (src) == PLUS
3372 && REG_P (XEXP (src, 0))
3373 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
3374 && CONST_INT_P (XEXP (src, 1)))
3376 t = plus_constant (GET_MODE (src), t,
3377 INTVAL (XEXP (src, 1)));
3378 set_reg_known_value (regno, t);
3379 set_reg_known_equiv_p (regno, false);
3381 else if (DF_REG_DEF_COUNT (regno) == 1
3382 && ! rtx_varies_p (src, 1))
3384 set_reg_known_value (regno, src);
3385 set_reg_known_equiv_p (regno, false);
3389 else if (NOTE_P (insn)
3390 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3391 copying_arguments = false;
3395 /* Now propagate values from new_reg_base_value to reg_base_value. */
3396 gcc_assert (maxreg == (unsigned int) max_reg_num ());
3398 for (ui = 0; ui < maxreg; ui++)
3400 if (new_reg_base_value[ui]
3401 && new_reg_base_value[ui] != (*reg_base_value)[ui]
3402 && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
3404 (*reg_base_value)[ui] = new_reg_base_value[ui];
3405 changed = 1;
3409 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
3410 XDELETEVEC (rpo);
3412 /* Fill in the remaining entries. */
3413 FOR_EACH_VEC_ELT (*reg_known_value, i, val)
3415 int regno = i + FIRST_PSEUDO_REGISTER;
3416 if (! val)
3417 set_reg_known_value (regno, regno_reg_rtx[regno]);
3420 /* Clean up. */
3421 free (new_reg_base_value);
3422 new_reg_base_value = 0;
3423 sbitmap_free (reg_seen);
3424 reg_seen = 0;
3425 timevar_pop (TV_ALIAS_ANALYSIS);
3428 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
3429 Special API for var-tracking pass purposes. */
3431 void
3432 vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
3434 (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
3437 void
3438 end_alias_analysis (void)
3440 old_reg_base_value = reg_base_value;
3441 vec_free (reg_known_value);
3442 sbitmap_free (reg_known_equiv_p);
3445 void
3446 dump_alias_stats_in_alias_c (FILE *s)
3448 fprintf (s, " TBAA oracle: %llu disambiguations %llu queries\n"
3449 " %llu are in alias set 0\n"
3450 " %llu queries asked about the same object\n"
3451 " %llu queries asked about the same alias set\n"
3452 " %llu access volatile\n"
3453 " %llu are dependent in the DAG\n"
3454 " %llu are aritificially in conflict with void *\n",
3455 alias_stats.num_disambiguated,
3456 alias_stats.num_alias_zero + alias_stats.num_same_alias_set
3457 + alias_stats.num_same_objects + alias_stats.num_volatile
3458 + alias_stats.num_dag + alias_stats.num_disambiguated
3459 + alias_stats.num_universal,
3460 alias_stats.num_alias_zero, alias_stats.num_same_alias_set,
3461 alias_stats.num_same_objects, alias_stats.num_volatile,
3462 alias_stats.num_dag, alias_stats.num_universal);
3464 #include "gt-alias.h"