Fix libsanitizer build with old kernel headers on ARM after r230739.
[official-gcc.git] / gcc / combine.c
blob4958d3bfc63607db3665d14ac743ebeb5d652d3a
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "predict.h"
86 #include "df.h"
87 #include "tm_p.h"
88 #include "optabs.h"
89 #include "regs.h"
90 #include "emit-rtl.h"
91 #include "recog.h"
92 #include "cgraph.h"
93 #include "stor-layout.h"
94 #include "cfgrtl.h"
95 #include "cfgcleanup.h"
96 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
97 #include "explow.h"
98 #include "insn-attr.h"
99 #include "rtlhooks-def.h"
100 #include "params.h"
101 #include "tree-pass.h"
102 #include "valtrack.h"
103 #include "rtl-iter.h"
104 #include "print-rtl.h"
106 #ifndef LOAD_EXTEND_OP
107 #define LOAD_EXTEND_OP(M) UNKNOWN
108 #endif
110 /* Number of attempts to combine instructions in this function. */
112 static int combine_attempts;
114 /* Number of attempts that got as far as substitution in this function. */
116 static int combine_merges;
118 /* Number of instructions combined with added SETs in this function. */
120 static int combine_extras;
122 /* Number of instructions combined in this function. */
124 static int combine_successes;
126 /* Totals over entire compilation. */
128 static int total_attempts, total_merges, total_extras, total_successes;
130 /* combine_instructions may try to replace the right hand side of the
131 second instruction with the value of an associated REG_EQUAL note
132 before throwing it at try_combine. That is problematic when there
133 is a REG_DEAD note for a register used in the old right hand side
134 and can cause distribute_notes to do wrong things. This is the
135 second instruction if it has been so modified, null otherwise. */
137 static rtx_insn *i2mod;
139 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
141 static rtx i2mod_old_rhs;
143 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
145 static rtx i2mod_new_rhs;
147 struct reg_stat_type {
148 /* Record last point of death of (hard or pseudo) register n. */
149 rtx_insn *last_death;
151 /* Record last point of modification of (hard or pseudo) register n. */
152 rtx_insn *last_set;
154 /* The next group of fields allows the recording of the last value assigned
155 to (hard or pseudo) register n. We use this information to see if an
156 operation being processed is redundant given a prior operation performed
157 on the register. For example, an `and' with a constant is redundant if
158 all the zero bits are already known to be turned off.
160 We use an approach similar to that used by cse, but change it in the
161 following ways:
163 (1) We do not want to reinitialize at each label.
164 (2) It is useful, but not critical, to know the actual value assigned
165 to a register. Often just its form is helpful.
167 Therefore, we maintain the following fields:
169 last_set_value the last value assigned
170 last_set_label records the value of label_tick when the
171 register was assigned
172 last_set_table_tick records the value of label_tick when a
173 value using the register is assigned
174 last_set_invalid set to nonzero when it is not valid
175 to use the value of this register in some
176 register's value
178 To understand the usage of these tables, it is important to understand
179 the distinction between the value in last_set_value being valid and
180 the register being validly contained in some other expression in the
181 table.
183 (The next two parameters are out of date).
185 reg_stat[i].last_set_value is valid if it is nonzero, and either
186 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
188 Register I may validly appear in any expression returned for the value
189 of another register if reg_n_sets[i] is 1. It may also appear in the
190 value for register J if reg_stat[j].last_set_invalid is zero, or
191 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
193 If an expression is found in the table containing a register which may
194 not validly appear in an expression, the register is replaced by
195 something that won't match, (clobber (const_int 0)). */
197 /* Record last value assigned to (hard or pseudo) register n. */
199 rtx last_set_value;
201 /* Record the value of label_tick when an expression involving register n
202 is placed in last_set_value. */
204 int last_set_table_tick;
206 /* Record the value of label_tick when the value for register n is placed in
207 last_set_value. */
209 int last_set_label;
211 /* These fields are maintained in parallel with last_set_value and are
212 used to store the mode in which the register was last set, the bits
213 that were known to be zero when it was last set, and the number of
214 sign bits copies it was known to have when it was last set. */
216 unsigned HOST_WIDE_INT last_set_nonzero_bits;
217 char last_set_sign_bit_copies;
218 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
220 /* Set nonzero if references to register n in expressions should not be
221 used. last_set_invalid is set nonzero when this register is being
222 assigned to and last_set_table_tick == label_tick. */
224 char last_set_invalid;
226 /* Some registers that are set more than once and used in more than one
227 basic block are nevertheless always set in similar ways. For example,
228 a QImode register may be loaded from memory in two places on a machine
229 where byte loads zero extend.
231 We record in the following fields if a register has some leading bits
232 that are always equal to the sign bit, and what we know about the
233 nonzero bits of a register, specifically which bits are known to be
234 zero.
236 If an entry is zero, it means that we don't know anything special. */
238 unsigned char sign_bit_copies;
240 unsigned HOST_WIDE_INT nonzero_bits;
242 /* Record the value of the label_tick when the last truncation
243 happened. The field truncated_to_mode is only valid if
244 truncation_label == label_tick. */
246 int truncation_label;
248 /* Record the last truncation seen for this register. If truncation
249 is not a nop to this mode we might be able to save an explicit
250 truncation if we know that value already contains a truncated
251 value. */
253 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
257 static vec<reg_stat_type> reg_stat;
259 /* One plus the highest pseudo for which we track REG_N_SETS.
260 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
261 but during combine_split_insns new pseudos can be created. As we don't have
262 updated DF information in that case, it is hard to initialize the array
263 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
264 so instead of growing the arrays, just assume all newly created pseudos
265 during combine might be set multiple times. */
267 static unsigned int reg_n_sets_max;
269 /* Record the luid of the last insn that invalidated memory
270 (anything that writes memory, and subroutine calls, but not pushes). */
272 static int mem_last_set;
274 /* Record the luid of the last CALL_INSN
275 so we can tell whether a potential combination crosses any calls. */
277 static int last_call_luid;
279 /* When `subst' is called, this is the insn that is being modified
280 (by combining in a previous insn). The PATTERN of this insn
281 is still the old pattern partially modified and it should not be
282 looked at, but this may be used to examine the successors of the insn
283 to judge whether a simplification is valid. */
285 static rtx_insn *subst_insn;
287 /* This is the lowest LUID that `subst' is currently dealing with.
288 get_last_value will not return a value if the register was set at or
289 after this LUID. If not for this mechanism, we could get confused if
290 I2 or I1 in try_combine were an insn that used the old value of a register
291 to obtain a new value. In that case, we might erroneously get the
292 new value of the register when we wanted the old one. */
294 static int subst_low_luid;
296 /* This contains any hard registers that are used in newpat; reg_dead_at_p
297 must consider all these registers to be always live. */
299 static HARD_REG_SET newpat_used_regs;
301 /* This is an insn to which a LOG_LINKS entry has been added. If this
302 insn is the earlier than I2 or I3, combine should rescan starting at
303 that location. */
305 static rtx_insn *added_links_insn;
307 /* Basic block in which we are performing combines. */
308 static basic_block this_basic_block;
309 static bool optimize_this_for_speed_p;
312 /* Length of the currently allocated uid_insn_cost array. */
314 static int max_uid_known;
316 /* The following array records the insn_rtx_cost for every insn
317 in the instruction stream. */
319 static int *uid_insn_cost;
321 /* The following array records the LOG_LINKS for every insn in the
322 instruction stream as struct insn_link pointers. */
324 struct insn_link {
325 rtx_insn *insn;
326 unsigned int regno;
327 struct insn_link *next;
330 static struct insn_link **uid_log_links;
332 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
333 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
335 #define FOR_EACH_LOG_LINK(L, INSN) \
336 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
338 /* Links for LOG_LINKS are allocated from this obstack. */
340 static struct obstack insn_link_obstack;
342 /* Allocate a link. */
344 static inline struct insn_link *
345 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
347 struct insn_link *l
348 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
349 sizeof (struct insn_link));
350 l->insn = insn;
351 l->regno = regno;
352 l->next = next;
353 return l;
356 /* Incremented for each basic block. */
358 static int label_tick;
360 /* Reset to label_tick for each extended basic block in scanning order. */
362 static int label_tick_ebb_start;
364 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
365 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
367 static machine_mode nonzero_bits_mode;
369 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
370 be safely used. It is zero while computing them and after combine has
371 completed. This former test prevents propagating values based on
372 previously set values, which can be incorrect if a variable is modified
373 in a loop. */
375 static int nonzero_sign_valid;
378 /* Record one modification to rtl structure
379 to be undone by storing old_contents into *where. */
381 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
383 struct undo
385 struct undo *next;
386 enum undo_kind kind;
387 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
388 union { rtx *r; int *i; struct insn_link **l; } where;
391 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
392 num_undo says how many are currently recorded.
394 other_insn is nonzero if we have modified some other insn in the process
395 of working on subst_insn. It must be verified too. */
397 struct undobuf
399 struct undo *undos;
400 struct undo *frees;
401 rtx_insn *other_insn;
404 static struct undobuf undobuf;
406 /* Number of times the pseudo being substituted for
407 was found and replaced. */
409 static int n_occurrences;
411 static rtx reg_nonzero_bits_for_combine (const_rtx, machine_mode, const_rtx,
412 machine_mode,
413 unsigned HOST_WIDE_INT,
414 unsigned HOST_WIDE_INT *);
415 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, machine_mode, const_rtx,
416 machine_mode,
417 unsigned int, unsigned int *);
418 static void do_SUBST (rtx *, rtx);
419 static void do_SUBST_INT (int *, int);
420 static void init_reg_last (void);
421 static void setup_incoming_promotions (rtx_insn *);
422 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
423 static int cant_combine_insn_p (rtx_insn *);
424 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
425 rtx_insn *, rtx_insn *, rtx *, rtx *);
426 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
427 static int contains_muldiv (rtx);
428 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
429 int *, rtx_insn *);
430 static void undo_all (void);
431 static void undo_commit (void);
432 static rtx *find_split_point (rtx *, rtx_insn *, bool);
433 static rtx subst (rtx, rtx, rtx, int, int, int);
434 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
435 static rtx simplify_if_then_else (rtx);
436 static rtx simplify_set (rtx);
437 static rtx simplify_logical (rtx);
438 static rtx expand_compound_operation (rtx);
439 static const_rtx expand_field_assignment (const_rtx);
440 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
441 rtx, unsigned HOST_WIDE_INT, int, int, int);
442 static rtx extract_left_shift (rtx, int);
443 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
444 unsigned HOST_WIDE_INT *);
445 static rtx canon_reg_for_combine (rtx, rtx);
446 static rtx force_to_mode (rtx, machine_mode,
447 unsigned HOST_WIDE_INT, int);
448 static rtx if_then_else_cond (rtx, rtx *, rtx *);
449 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
450 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
451 static rtx make_field_assignment (rtx);
452 static rtx apply_distributive_law (rtx);
453 static rtx distribute_and_simplify_rtx (rtx, int);
454 static rtx simplify_and_const_int_1 (machine_mode, rtx,
455 unsigned HOST_WIDE_INT);
456 static rtx simplify_and_const_int (rtx, machine_mode, rtx,
457 unsigned HOST_WIDE_INT);
458 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
459 HOST_WIDE_INT, machine_mode, int *);
460 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
461 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
462 int);
463 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
464 static rtx gen_lowpart_for_combine (machine_mode, rtx);
465 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
466 rtx, rtx *);
467 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
468 static void update_table_tick (rtx);
469 static void record_value_for_reg (rtx, rtx_insn *, rtx);
470 static void check_promoted_subreg (rtx_insn *, rtx);
471 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
472 static void record_dead_and_set_regs (rtx_insn *);
473 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
474 static rtx get_last_value (const_rtx);
475 static int use_crosses_set_p (const_rtx, int);
476 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
477 static int reg_dead_at_p (rtx, rtx_insn *);
478 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
479 static int reg_bitfield_target_p (rtx, rtx);
480 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
481 static void distribute_links (struct insn_link *);
482 static void mark_used_regs_combine (rtx);
483 static void record_promoted_value (rtx_insn *, rtx);
484 static bool unmentioned_reg_p (rtx, rtx);
485 static void record_truncated_values (rtx *, void *);
486 static bool reg_truncated_to_mode (machine_mode, const_rtx);
487 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
490 /* It is not safe to use ordinary gen_lowpart in combine.
491 See comments in gen_lowpart_for_combine. */
492 #undef RTL_HOOKS_GEN_LOWPART
493 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
495 /* Our implementation of gen_lowpart never emits a new pseudo. */
496 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
497 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
499 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
500 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
502 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
503 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
505 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
506 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
508 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
511 /* Convenience wrapper for the canonicalize_comparison target hook.
512 Target hooks cannot use enum rtx_code. */
513 static inline void
514 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
515 bool op0_preserve_value)
517 int code_int = (int)*code;
518 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
519 *code = (enum rtx_code)code_int;
522 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
523 PATTERN can not be split. Otherwise, it returns an insn sequence.
524 This is a wrapper around split_insns which ensures that the
525 reg_stat vector is made larger if the splitter creates a new
526 register. */
528 static rtx_insn *
529 combine_split_insns (rtx pattern, rtx_insn *insn)
531 rtx_insn *ret;
532 unsigned int nregs;
534 ret = split_insns (pattern, insn);
535 nregs = max_reg_num ();
536 if (nregs > reg_stat.length ())
537 reg_stat.safe_grow_cleared (nregs);
538 return ret;
541 /* This is used by find_single_use to locate an rtx in LOC that
542 contains exactly one use of DEST, which is typically either a REG
543 or CC0. It returns a pointer to the innermost rtx expression
544 containing DEST. Appearances of DEST that are being used to
545 totally replace it are not counted. */
547 static rtx *
548 find_single_use_1 (rtx dest, rtx *loc)
550 rtx x = *loc;
551 enum rtx_code code = GET_CODE (x);
552 rtx *result = NULL;
553 rtx *this_result;
554 int i;
555 const char *fmt;
557 switch (code)
559 case CONST:
560 case LABEL_REF:
561 case SYMBOL_REF:
562 CASE_CONST_ANY:
563 case CLOBBER:
564 return 0;
566 case SET:
567 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
568 of a REG that occupies all of the REG, the insn uses DEST if
569 it is mentioned in the destination or the source. Otherwise, we
570 need just check the source. */
571 if (GET_CODE (SET_DEST (x)) != CC0
572 && GET_CODE (SET_DEST (x)) != PC
573 && !REG_P (SET_DEST (x))
574 && ! (GET_CODE (SET_DEST (x)) == SUBREG
575 && REG_P (SUBREG_REG (SET_DEST (x)))
576 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
577 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
578 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
579 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
580 break;
582 return find_single_use_1 (dest, &SET_SRC (x));
584 case MEM:
585 case SUBREG:
586 return find_single_use_1 (dest, &XEXP (x, 0));
588 default:
589 break;
592 /* If it wasn't one of the common cases above, check each expression and
593 vector of this code. Look for a unique usage of DEST. */
595 fmt = GET_RTX_FORMAT (code);
596 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
598 if (fmt[i] == 'e')
600 if (dest == XEXP (x, i)
601 || (REG_P (dest) && REG_P (XEXP (x, i))
602 && REGNO (dest) == REGNO (XEXP (x, i))))
603 this_result = loc;
604 else
605 this_result = find_single_use_1 (dest, &XEXP (x, i));
607 if (result == NULL)
608 result = this_result;
609 else if (this_result)
610 /* Duplicate usage. */
611 return NULL;
613 else if (fmt[i] == 'E')
615 int j;
617 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
619 if (XVECEXP (x, i, j) == dest
620 || (REG_P (dest)
621 && REG_P (XVECEXP (x, i, j))
622 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
623 this_result = loc;
624 else
625 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
627 if (result == NULL)
628 result = this_result;
629 else if (this_result)
630 return NULL;
635 return result;
639 /* See if DEST, produced in INSN, is used only a single time in the
640 sequel. If so, return a pointer to the innermost rtx expression in which
641 it is used.
643 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
645 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
646 care about REG_DEAD notes or LOG_LINKS.
648 Otherwise, we find the single use by finding an insn that has a
649 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
650 only referenced once in that insn, we know that it must be the first
651 and last insn referencing DEST. */
653 static rtx *
654 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
656 basic_block bb;
657 rtx_insn *next;
658 rtx *result;
659 struct insn_link *link;
661 if (dest == cc0_rtx)
663 next = NEXT_INSN (insn);
664 if (next == 0
665 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
666 return 0;
668 result = find_single_use_1 (dest, &PATTERN (next));
669 if (result && ploc)
670 *ploc = next;
671 return result;
674 if (!REG_P (dest))
675 return 0;
677 bb = BLOCK_FOR_INSN (insn);
678 for (next = NEXT_INSN (insn);
679 next && BLOCK_FOR_INSN (next) == bb;
680 next = NEXT_INSN (next))
681 if (INSN_P (next) && dead_or_set_p (next, dest))
683 FOR_EACH_LOG_LINK (link, next)
684 if (link->insn == insn && link->regno == REGNO (dest))
685 break;
687 if (link)
689 result = find_single_use_1 (dest, &PATTERN (next));
690 if (ploc)
691 *ploc = next;
692 return result;
696 return 0;
699 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
700 insn. The substitution can be undone by undo_all. If INTO is already
701 set to NEWVAL, do not record this change. Because computing NEWVAL might
702 also call SUBST, we have to compute it before we put anything into
703 the undo table. */
705 static void
706 do_SUBST (rtx *into, rtx newval)
708 struct undo *buf;
709 rtx oldval = *into;
711 if (oldval == newval)
712 return;
714 /* We'd like to catch as many invalid transformations here as
715 possible. Unfortunately, there are way too many mode changes
716 that are perfectly valid, so we'd waste too much effort for
717 little gain doing the checks here. Focus on catching invalid
718 transformations involving integer constants. */
719 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
720 && CONST_INT_P (newval))
722 /* Sanity check that we're replacing oldval with a CONST_INT
723 that is a valid sign-extension for the original mode. */
724 gcc_assert (INTVAL (newval)
725 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
727 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
728 CONST_INT is not valid, because after the replacement, the
729 original mode would be gone. Unfortunately, we can't tell
730 when do_SUBST is called to replace the operand thereof, so we
731 perform this test on oldval instead, checking whether an
732 invalid replacement took place before we got here. */
733 gcc_assert (!(GET_CODE (oldval) == SUBREG
734 && CONST_INT_P (SUBREG_REG (oldval))));
735 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
736 && CONST_INT_P (XEXP (oldval, 0))));
739 if (undobuf.frees)
740 buf = undobuf.frees, undobuf.frees = buf->next;
741 else
742 buf = XNEW (struct undo);
744 buf->kind = UNDO_RTX;
745 buf->where.r = into;
746 buf->old_contents.r = oldval;
747 *into = newval;
749 buf->next = undobuf.undos, undobuf.undos = buf;
752 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
754 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
755 for the value of a HOST_WIDE_INT value (including CONST_INT) is
756 not safe. */
758 static void
759 do_SUBST_INT (int *into, int newval)
761 struct undo *buf;
762 int oldval = *into;
764 if (oldval == newval)
765 return;
767 if (undobuf.frees)
768 buf = undobuf.frees, undobuf.frees = buf->next;
769 else
770 buf = XNEW (struct undo);
772 buf->kind = UNDO_INT;
773 buf->where.i = into;
774 buf->old_contents.i = oldval;
775 *into = newval;
777 buf->next = undobuf.undos, undobuf.undos = buf;
780 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
782 /* Similar to SUBST, but just substitute the mode. This is used when
783 changing the mode of a pseudo-register, so that any other
784 references to the entry in the regno_reg_rtx array will change as
785 well. */
787 static void
788 do_SUBST_MODE (rtx *into, machine_mode newval)
790 struct undo *buf;
791 machine_mode oldval = GET_MODE (*into);
793 if (oldval == newval)
794 return;
796 if (undobuf.frees)
797 buf = undobuf.frees, undobuf.frees = buf->next;
798 else
799 buf = XNEW (struct undo);
801 buf->kind = UNDO_MODE;
802 buf->where.r = into;
803 buf->old_contents.m = oldval;
804 adjust_reg_mode (*into, newval);
806 buf->next = undobuf.undos, undobuf.undos = buf;
809 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
811 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
813 static void
814 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
816 struct undo *buf;
817 struct insn_link * oldval = *into;
819 if (oldval == newval)
820 return;
822 if (undobuf.frees)
823 buf = undobuf.frees, undobuf.frees = buf->next;
824 else
825 buf = XNEW (struct undo);
827 buf->kind = UNDO_LINKS;
828 buf->where.l = into;
829 buf->old_contents.l = oldval;
830 *into = newval;
832 buf->next = undobuf.undos, undobuf.undos = buf;
835 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
837 /* Subroutine of try_combine. Determine whether the replacement patterns
838 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
839 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
840 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
841 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
842 of all the instructions can be estimated and the replacements are more
843 expensive than the original sequence. */
845 static bool
846 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
847 rtx newpat, rtx newi2pat, rtx newotherpat)
849 int i0_cost, i1_cost, i2_cost, i3_cost;
850 int new_i2_cost, new_i3_cost;
851 int old_cost, new_cost;
853 /* Lookup the original insn_rtx_costs. */
854 i2_cost = INSN_COST (i2);
855 i3_cost = INSN_COST (i3);
857 if (i1)
859 i1_cost = INSN_COST (i1);
860 if (i0)
862 i0_cost = INSN_COST (i0);
863 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
864 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
866 else
868 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
869 ? i1_cost + i2_cost + i3_cost : 0);
870 i0_cost = 0;
873 else
875 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
876 i1_cost = i0_cost = 0;
879 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
880 correct that. */
881 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
882 old_cost -= i1_cost;
885 /* Calculate the replacement insn_rtx_costs. */
886 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
887 if (newi2pat)
889 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
890 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
891 ? new_i2_cost + new_i3_cost : 0;
893 else
895 new_cost = new_i3_cost;
896 new_i2_cost = 0;
899 if (undobuf.other_insn)
901 int old_other_cost, new_other_cost;
903 old_other_cost = INSN_COST (undobuf.other_insn);
904 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
905 if (old_other_cost > 0 && new_other_cost > 0)
907 old_cost += old_other_cost;
908 new_cost += new_other_cost;
910 else
911 old_cost = 0;
914 /* Disallow this combination if both new_cost and old_cost are greater than
915 zero, and new_cost is greater than old cost. */
916 int reject = old_cost > 0 && new_cost > old_cost;
918 if (dump_file)
920 fprintf (dump_file, "%s combination of insns ",
921 reject ? "rejecting" : "allowing");
922 if (i0)
923 fprintf (dump_file, "%d, ", INSN_UID (i0));
924 if (i1 && INSN_UID (i1) != INSN_UID (i2))
925 fprintf (dump_file, "%d, ", INSN_UID (i1));
926 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
928 fprintf (dump_file, "original costs ");
929 if (i0)
930 fprintf (dump_file, "%d + ", i0_cost);
931 if (i1 && INSN_UID (i1) != INSN_UID (i2))
932 fprintf (dump_file, "%d + ", i1_cost);
933 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
935 if (newi2pat)
936 fprintf (dump_file, "replacement costs %d + %d = %d\n",
937 new_i2_cost, new_i3_cost, new_cost);
938 else
939 fprintf (dump_file, "replacement cost %d\n", new_cost);
942 if (reject)
943 return false;
945 /* Update the uid_insn_cost array with the replacement costs. */
946 INSN_COST (i2) = new_i2_cost;
947 INSN_COST (i3) = new_i3_cost;
948 if (i1)
950 INSN_COST (i1) = 0;
951 if (i0)
952 INSN_COST (i0) = 0;
955 return true;
959 /* Delete any insns that copy a register to itself. */
961 static void
962 delete_noop_moves (void)
964 rtx_insn *insn, *next;
965 basic_block bb;
967 FOR_EACH_BB_FN (bb, cfun)
969 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
971 next = NEXT_INSN (insn);
972 if (INSN_P (insn) && noop_move_p (insn))
974 if (dump_file)
975 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
977 delete_insn_and_edges (insn);
984 /* Return false if we do not want to (or cannot) combine DEF. */
985 static bool
986 can_combine_def_p (df_ref def)
988 /* Do not consider if it is pre/post modification in MEM. */
989 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
990 return false;
992 unsigned int regno = DF_REF_REGNO (def);
994 /* Do not combine frame pointer adjustments. */
995 if ((regno == FRAME_POINTER_REGNUM
996 && (!reload_completed || frame_pointer_needed))
997 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
998 && regno == HARD_FRAME_POINTER_REGNUM
999 && (!reload_completed || frame_pointer_needed))
1000 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1001 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1002 return false;
1004 return true;
1007 /* Return false if we do not want to (or cannot) combine USE. */
1008 static bool
1009 can_combine_use_p (df_ref use)
1011 /* Do not consider the usage of the stack pointer by function call. */
1012 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1013 return false;
1015 return true;
1018 /* Fill in log links field for all insns. */
1020 static void
1021 create_log_links (void)
1023 basic_block bb;
1024 rtx_insn **next_use;
1025 rtx_insn *insn;
1026 df_ref def, use;
1028 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1030 /* Pass through each block from the end, recording the uses of each
1031 register and establishing log links when def is encountered.
1032 Note that we do not clear next_use array in order to save time,
1033 so we have to test whether the use is in the same basic block as def.
1035 There are a few cases below when we do not consider the definition or
1036 usage -- these are taken from original flow.c did. Don't ask me why it is
1037 done this way; I don't know and if it works, I don't want to know. */
1039 FOR_EACH_BB_FN (bb, cfun)
1041 FOR_BB_INSNS_REVERSE (bb, insn)
1043 if (!NONDEBUG_INSN_P (insn))
1044 continue;
1046 /* Log links are created only once. */
1047 gcc_assert (!LOG_LINKS (insn));
1049 FOR_EACH_INSN_DEF (def, insn)
1051 unsigned int regno = DF_REF_REGNO (def);
1052 rtx_insn *use_insn;
1054 if (!next_use[regno])
1055 continue;
1057 if (!can_combine_def_p (def))
1058 continue;
1060 use_insn = next_use[regno];
1061 next_use[regno] = NULL;
1063 if (BLOCK_FOR_INSN (use_insn) != bb)
1064 continue;
1066 /* flow.c claimed:
1068 We don't build a LOG_LINK for hard registers contained
1069 in ASM_OPERANDs. If these registers get replaced,
1070 we might wind up changing the semantics of the insn,
1071 even if reload can make what appear to be valid
1072 assignments later. */
1073 if (regno < FIRST_PSEUDO_REGISTER
1074 && asm_noperands (PATTERN (use_insn)) >= 0)
1075 continue;
1077 /* Don't add duplicate links between instructions. */
1078 struct insn_link *links;
1079 FOR_EACH_LOG_LINK (links, use_insn)
1080 if (insn == links->insn && regno == links->regno)
1081 break;
1083 if (!links)
1084 LOG_LINKS (use_insn)
1085 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1088 FOR_EACH_INSN_USE (use, insn)
1089 if (can_combine_use_p (use))
1090 next_use[DF_REF_REGNO (use)] = insn;
1094 free (next_use);
1097 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1098 true if we found a LOG_LINK that proves that A feeds B. This only works
1099 if there are no instructions between A and B which could have a link
1100 depending on A, since in that case we would not record a link for B.
1101 We also check the implicit dependency created by a cc0 setter/user
1102 pair. */
1104 static bool
1105 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1107 struct insn_link *links;
1108 FOR_EACH_LOG_LINK (links, b)
1109 if (links->insn == a)
1110 return true;
1111 if (HAVE_cc0 && sets_cc0_p (a))
1112 return true;
1113 return false;
1116 /* Main entry point for combiner. F is the first insn of the function.
1117 NREGS is the first unused pseudo-reg number.
1119 Return nonzero if the combiner has turned an indirect jump
1120 instruction into a direct jump. */
1121 static int
1122 combine_instructions (rtx_insn *f, unsigned int nregs)
1124 rtx_insn *insn, *next;
1125 rtx_insn *prev;
1126 struct insn_link *links, *nextlinks;
1127 rtx_insn *first;
1128 basic_block last_bb;
1130 int new_direct_jump_p = 0;
1132 for (first = f; first && !INSN_P (first); )
1133 first = NEXT_INSN (first);
1134 if (!first)
1135 return 0;
1137 combine_attempts = 0;
1138 combine_merges = 0;
1139 combine_extras = 0;
1140 combine_successes = 0;
1142 rtl_hooks = combine_rtl_hooks;
1144 reg_stat.safe_grow_cleared (nregs);
1146 init_recog_no_volatile ();
1148 /* Allocate array for insn info. */
1149 max_uid_known = get_max_uid ();
1150 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1151 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1152 gcc_obstack_init (&insn_link_obstack);
1154 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1156 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1157 problems when, for example, we have j <<= 1 in a loop. */
1159 nonzero_sign_valid = 0;
1160 label_tick = label_tick_ebb_start = 1;
1162 /* Scan all SETs and see if we can deduce anything about what
1163 bits are known to be zero for some registers and how many copies
1164 of the sign bit are known to exist for those registers.
1166 Also set any known values so that we can use it while searching
1167 for what bits are known to be set. */
1169 setup_incoming_promotions (first);
1170 /* Allow the entry block and the first block to fall into the same EBB.
1171 Conceptually the incoming promotions are assigned to the entry block. */
1172 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1174 create_log_links ();
1175 FOR_EACH_BB_FN (this_basic_block, cfun)
1177 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1178 last_call_luid = 0;
1179 mem_last_set = -1;
1181 label_tick++;
1182 if (!single_pred_p (this_basic_block)
1183 || single_pred (this_basic_block) != last_bb)
1184 label_tick_ebb_start = label_tick;
1185 last_bb = this_basic_block;
1187 FOR_BB_INSNS (this_basic_block, insn)
1188 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1190 rtx links;
1192 subst_low_luid = DF_INSN_LUID (insn);
1193 subst_insn = insn;
1195 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1196 insn);
1197 record_dead_and_set_regs (insn);
1199 if (AUTO_INC_DEC)
1200 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1201 if (REG_NOTE_KIND (links) == REG_INC)
1202 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1203 insn);
1205 /* Record the current insn_rtx_cost of this instruction. */
1206 if (NONJUMP_INSN_P (insn))
1207 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1208 optimize_this_for_speed_p);
1209 if (dump_file)
1210 fprintf (dump_file, "insn_cost %d: %d\n",
1211 INSN_UID (insn), INSN_COST (insn));
1215 nonzero_sign_valid = 1;
1217 /* Now scan all the insns in forward order. */
1218 label_tick = label_tick_ebb_start = 1;
1219 init_reg_last ();
1220 setup_incoming_promotions (first);
1221 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1222 int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1224 FOR_EACH_BB_FN (this_basic_block, cfun)
1226 rtx_insn *last_combined_insn = NULL;
1227 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1228 last_call_luid = 0;
1229 mem_last_set = -1;
1231 label_tick++;
1232 if (!single_pred_p (this_basic_block)
1233 || single_pred (this_basic_block) != last_bb)
1234 label_tick_ebb_start = label_tick;
1235 last_bb = this_basic_block;
1237 rtl_profile_for_bb (this_basic_block);
1238 for (insn = BB_HEAD (this_basic_block);
1239 insn != NEXT_INSN (BB_END (this_basic_block));
1240 insn = next ? next : NEXT_INSN (insn))
1242 next = 0;
1243 if (!NONDEBUG_INSN_P (insn))
1244 continue;
1246 while (last_combined_insn
1247 && last_combined_insn->deleted ())
1248 last_combined_insn = PREV_INSN (last_combined_insn);
1249 if (last_combined_insn == NULL_RTX
1250 || BARRIER_P (last_combined_insn)
1251 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1252 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1253 last_combined_insn = insn;
1255 /* See if we know about function return values before this
1256 insn based upon SUBREG flags. */
1257 check_promoted_subreg (insn, PATTERN (insn));
1259 /* See if we can find hardregs and subreg of pseudos in
1260 narrower modes. This could help turning TRUNCATEs
1261 into SUBREGs. */
1262 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1264 /* Try this insn with each insn it links back to. */
1266 FOR_EACH_LOG_LINK (links, insn)
1267 if ((next = try_combine (insn, links->insn, NULL,
1268 NULL, &new_direct_jump_p,
1269 last_combined_insn)) != 0)
1271 statistics_counter_event (cfun, "two-insn combine", 1);
1272 goto retry;
1275 /* Try each sequence of three linked insns ending with this one. */
1277 if (max_combine >= 3)
1278 FOR_EACH_LOG_LINK (links, insn)
1280 rtx_insn *link = links->insn;
1282 /* If the linked insn has been replaced by a note, then there
1283 is no point in pursuing this chain any further. */
1284 if (NOTE_P (link))
1285 continue;
1287 FOR_EACH_LOG_LINK (nextlinks, link)
1288 if ((next = try_combine (insn, link, nextlinks->insn,
1289 NULL, &new_direct_jump_p,
1290 last_combined_insn)) != 0)
1292 statistics_counter_event (cfun, "three-insn combine", 1);
1293 goto retry;
1297 /* Try to combine a jump insn that uses CC0
1298 with a preceding insn that sets CC0, and maybe with its
1299 logical predecessor as well.
1300 This is how we make decrement-and-branch insns.
1301 We need this special code because data flow connections
1302 via CC0 do not get entered in LOG_LINKS. */
1304 if (HAVE_cc0
1305 && JUMP_P (insn)
1306 && (prev = prev_nonnote_insn (insn)) != 0
1307 && NONJUMP_INSN_P (prev)
1308 && sets_cc0_p (PATTERN (prev)))
1310 if ((next = try_combine (insn, prev, NULL, NULL,
1311 &new_direct_jump_p,
1312 last_combined_insn)) != 0)
1313 goto retry;
1315 FOR_EACH_LOG_LINK (nextlinks, prev)
1316 if ((next = try_combine (insn, prev, nextlinks->insn,
1317 NULL, &new_direct_jump_p,
1318 last_combined_insn)) != 0)
1319 goto retry;
1322 /* Do the same for an insn that explicitly references CC0. */
1323 if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1324 && (prev = prev_nonnote_insn (insn)) != 0
1325 && NONJUMP_INSN_P (prev)
1326 && sets_cc0_p (PATTERN (prev))
1327 && GET_CODE (PATTERN (insn)) == SET
1328 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1330 if ((next = try_combine (insn, prev, NULL, NULL,
1331 &new_direct_jump_p,
1332 last_combined_insn)) != 0)
1333 goto retry;
1335 FOR_EACH_LOG_LINK (nextlinks, prev)
1336 if ((next = try_combine (insn, prev, nextlinks->insn,
1337 NULL, &new_direct_jump_p,
1338 last_combined_insn)) != 0)
1339 goto retry;
1342 /* Finally, see if any of the insns that this insn links to
1343 explicitly references CC0. If so, try this insn, that insn,
1344 and its predecessor if it sets CC0. */
1345 if (HAVE_cc0)
1347 FOR_EACH_LOG_LINK (links, insn)
1348 if (NONJUMP_INSN_P (links->insn)
1349 && GET_CODE (PATTERN (links->insn)) == SET
1350 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1351 && (prev = prev_nonnote_insn (links->insn)) != 0
1352 && NONJUMP_INSN_P (prev)
1353 && sets_cc0_p (PATTERN (prev))
1354 && (next = try_combine (insn, links->insn,
1355 prev, NULL, &new_direct_jump_p,
1356 last_combined_insn)) != 0)
1357 goto retry;
1360 /* Try combining an insn with two different insns whose results it
1361 uses. */
1362 if (max_combine >= 3)
1363 FOR_EACH_LOG_LINK (links, insn)
1364 for (nextlinks = links->next; nextlinks;
1365 nextlinks = nextlinks->next)
1366 if ((next = try_combine (insn, links->insn,
1367 nextlinks->insn, NULL,
1368 &new_direct_jump_p,
1369 last_combined_insn)) != 0)
1372 statistics_counter_event (cfun, "three-insn combine", 1);
1373 goto retry;
1376 /* Try four-instruction combinations. */
1377 if (max_combine >= 4)
1378 FOR_EACH_LOG_LINK (links, insn)
1380 struct insn_link *next1;
1381 rtx_insn *link = links->insn;
1383 /* If the linked insn has been replaced by a note, then there
1384 is no point in pursuing this chain any further. */
1385 if (NOTE_P (link))
1386 continue;
1388 FOR_EACH_LOG_LINK (next1, link)
1390 rtx_insn *link1 = next1->insn;
1391 if (NOTE_P (link1))
1392 continue;
1393 /* I0 -> I1 -> I2 -> I3. */
1394 FOR_EACH_LOG_LINK (nextlinks, link1)
1395 if ((next = try_combine (insn, link, link1,
1396 nextlinks->insn,
1397 &new_direct_jump_p,
1398 last_combined_insn)) != 0)
1400 statistics_counter_event (cfun, "four-insn combine", 1);
1401 goto retry;
1403 /* I0, I1 -> I2, I2 -> I3. */
1404 for (nextlinks = next1->next; nextlinks;
1405 nextlinks = nextlinks->next)
1406 if ((next = try_combine (insn, link, link1,
1407 nextlinks->insn,
1408 &new_direct_jump_p,
1409 last_combined_insn)) != 0)
1411 statistics_counter_event (cfun, "four-insn combine", 1);
1412 goto retry;
1416 for (next1 = links->next; next1; next1 = next1->next)
1418 rtx_insn *link1 = next1->insn;
1419 if (NOTE_P (link1))
1420 continue;
1421 /* I0 -> I2; I1, I2 -> I3. */
1422 FOR_EACH_LOG_LINK (nextlinks, link)
1423 if ((next = try_combine (insn, link, link1,
1424 nextlinks->insn,
1425 &new_direct_jump_p,
1426 last_combined_insn)) != 0)
1428 statistics_counter_event (cfun, "four-insn combine", 1);
1429 goto retry;
1431 /* I0 -> I1; I1, I2 -> I3. */
1432 FOR_EACH_LOG_LINK (nextlinks, link1)
1433 if ((next = try_combine (insn, link, link1,
1434 nextlinks->insn,
1435 &new_direct_jump_p,
1436 last_combined_insn)) != 0)
1438 statistics_counter_event (cfun, "four-insn combine", 1);
1439 goto retry;
1444 /* Try this insn with each REG_EQUAL note it links back to. */
1445 FOR_EACH_LOG_LINK (links, insn)
1447 rtx set, note;
1448 rtx_insn *temp = links->insn;
1449 if ((set = single_set (temp)) != 0
1450 && (note = find_reg_equal_equiv_note (temp)) != 0
1451 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1452 /* Avoid using a register that may already been marked
1453 dead by an earlier instruction. */
1454 && ! unmentioned_reg_p (note, SET_SRC (set))
1455 && (GET_MODE (note) == VOIDmode
1456 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1457 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1459 /* Temporarily replace the set's source with the
1460 contents of the REG_EQUAL note. The insn will
1461 be deleted or recognized by try_combine. */
1462 rtx orig = SET_SRC (set);
1463 SET_SRC (set) = note;
1464 i2mod = temp;
1465 i2mod_old_rhs = copy_rtx (orig);
1466 i2mod_new_rhs = copy_rtx (note);
1467 next = try_combine (insn, i2mod, NULL, NULL,
1468 &new_direct_jump_p,
1469 last_combined_insn);
1470 i2mod = NULL;
1471 if (next)
1473 statistics_counter_event (cfun, "insn-with-note combine", 1);
1474 goto retry;
1476 SET_SRC (set) = orig;
1480 if (!NOTE_P (insn))
1481 record_dead_and_set_regs (insn);
1483 retry:
1488 default_rtl_profile ();
1489 clear_bb_flags ();
1490 new_direct_jump_p |= purge_all_dead_edges ();
1491 delete_noop_moves ();
1493 /* Clean up. */
1494 obstack_free (&insn_link_obstack, NULL);
1495 free (uid_log_links);
1496 free (uid_insn_cost);
1497 reg_stat.release ();
1500 struct undo *undo, *next;
1501 for (undo = undobuf.frees; undo; undo = next)
1503 next = undo->next;
1504 free (undo);
1506 undobuf.frees = 0;
1509 total_attempts += combine_attempts;
1510 total_merges += combine_merges;
1511 total_extras += combine_extras;
1512 total_successes += combine_successes;
1514 nonzero_sign_valid = 0;
1515 rtl_hooks = general_rtl_hooks;
1517 /* Make recognizer allow volatile MEMs again. */
1518 init_recog ();
1520 return new_direct_jump_p;
1523 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1525 static void
1526 init_reg_last (void)
1528 unsigned int i;
1529 reg_stat_type *p;
1531 FOR_EACH_VEC_ELT (reg_stat, i, p)
1532 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1535 /* Set up any promoted values for incoming argument registers. */
1537 static void
1538 setup_incoming_promotions (rtx_insn *first)
1540 tree arg;
1541 bool strictly_local = false;
1543 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1544 arg = DECL_CHAIN (arg))
1546 rtx x, reg = DECL_INCOMING_RTL (arg);
1547 int uns1, uns3;
1548 machine_mode mode1, mode2, mode3, mode4;
1550 /* Only continue if the incoming argument is in a register. */
1551 if (!REG_P (reg))
1552 continue;
1554 /* Determine, if possible, whether all call sites of the current
1555 function lie within the current compilation unit. (This does
1556 take into account the exporting of a function via taking its
1557 address, and so forth.) */
1558 strictly_local = cgraph_node::local_info (current_function_decl)->local;
1560 /* The mode and signedness of the argument before any promotions happen
1561 (equal to the mode of the pseudo holding it at that stage). */
1562 mode1 = TYPE_MODE (TREE_TYPE (arg));
1563 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1565 /* The mode and signedness of the argument after any source language and
1566 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1567 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1568 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1570 /* The mode and signedness of the argument as it is actually passed,
1571 see assign_parm_setup_reg in function.c. */
1572 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1573 TREE_TYPE (cfun->decl), 0);
1575 /* The mode of the register in which the argument is being passed. */
1576 mode4 = GET_MODE (reg);
1578 /* Eliminate sign extensions in the callee when:
1579 (a) A mode promotion has occurred; */
1580 if (mode1 == mode3)
1581 continue;
1582 /* (b) The mode of the register is the same as the mode of
1583 the argument as it is passed; */
1584 if (mode3 != mode4)
1585 continue;
1586 /* (c) There's no language level extension; */
1587 if (mode1 == mode2)
1589 /* (c.1) All callers are from the current compilation unit. If that's
1590 the case we don't have to rely on an ABI, we only have to know
1591 what we're generating right now, and we know that we will do the
1592 mode1 to mode2 promotion with the given sign. */
1593 else if (!strictly_local)
1594 continue;
1595 /* (c.2) The combination of the two promotions is useful. This is
1596 true when the signs match, or if the first promotion is unsigned.
1597 In the later case, (sign_extend (zero_extend x)) is the same as
1598 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1599 else if (uns1)
1600 uns3 = true;
1601 else if (uns3)
1602 continue;
1604 /* Record that the value was promoted from mode1 to mode3,
1605 so that any sign extension at the head of the current
1606 function may be eliminated. */
1607 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1608 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1609 record_value_for_reg (reg, first, x);
1613 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1614 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1615 because some machines (maybe most) will actually do the sign-extension and
1616 this is the conservative approach.
1618 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1619 kludge. */
1621 static rtx
1622 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1624 if (GET_MODE_PRECISION (mode) < prec
1625 && CONST_INT_P (src)
1626 && INTVAL (src) > 0
1627 && val_signbit_known_set_p (mode, INTVAL (src)))
1628 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (mode));
1630 return src;
1633 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1634 and SET. */
1636 static void
1637 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1638 rtx x)
1640 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1641 unsigned HOST_WIDE_INT bits = 0;
1642 rtx reg_equal = NULL, src = SET_SRC (set);
1643 unsigned int num = 0;
1645 if (reg_equal_note)
1646 reg_equal = XEXP (reg_equal_note, 0);
1648 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1650 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1651 if (reg_equal)
1652 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1655 /* Don't call nonzero_bits if it cannot change anything. */
1656 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1658 bits = nonzero_bits (src, nonzero_bits_mode);
1659 if (reg_equal && bits)
1660 bits &= nonzero_bits (reg_equal, nonzero_bits_mode);
1661 rsp->nonzero_bits |= bits;
1664 /* Don't call num_sign_bit_copies if it cannot change anything. */
1665 if (rsp->sign_bit_copies != 1)
1667 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1668 if (reg_equal && num != GET_MODE_PRECISION (GET_MODE (x)))
1670 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1671 if (num == 0 || numeq > num)
1672 num = numeq;
1674 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1675 rsp->sign_bit_copies = num;
1679 /* Called via note_stores. If X is a pseudo that is narrower than
1680 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1682 If we are setting only a portion of X and we can't figure out what
1683 portion, assume all bits will be used since we don't know what will
1684 be happening.
1686 Similarly, set how many bits of X are known to be copies of the sign bit
1687 at all locations in the function. This is the smallest number implied
1688 by any set of X. */
1690 static void
1691 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1693 rtx_insn *insn = (rtx_insn *) data;
1695 if (REG_P (x)
1696 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1697 /* If this register is undefined at the start of the file, we can't
1698 say what its contents were. */
1699 && ! REGNO_REG_SET_P
1700 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1701 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
1703 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1705 if (set == 0 || GET_CODE (set) == CLOBBER)
1707 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1708 rsp->sign_bit_copies = 1;
1709 return;
1712 /* If this register is being initialized using itself, and the
1713 register is uninitialized in this basic block, and there are
1714 no LOG_LINKS which set the register, then part of the
1715 register is uninitialized. In that case we can't assume
1716 anything about the number of nonzero bits.
1718 ??? We could do better if we checked this in
1719 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1720 could avoid making assumptions about the insn which initially
1721 sets the register, while still using the information in other
1722 insns. We would have to be careful to check every insn
1723 involved in the combination. */
1725 if (insn
1726 && reg_referenced_p (x, PATTERN (insn))
1727 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1728 REGNO (x)))
1730 struct insn_link *link;
1732 FOR_EACH_LOG_LINK (link, insn)
1733 if (dead_or_set_p (link->insn, x))
1734 break;
1735 if (!link)
1737 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1738 rsp->sign_bit_copies = 1;
1739 return;
1743 /* If this is a complex assignment, see if we can convert it into a
1744 simple assignment. */
1745 set = expand_field_assignment (set);
1747 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1748 set what we know about X. */
1750 if (SET_DEST (set) == x
1751 || (paradoxical_subreg_p (SET_DEST (set))
1752 && SUBREG_REG (SET_DEST (set)) == x))
1753 update_rsp_from_reg_equal (rsp, insn, set, x);
1754 else
1756 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1757 rsp->sign_bit_copies = 1;
1762 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1763 optionally insns that were previously combined into I3 or that will be
1764 combined into the merger of INSN and I3. The order is PRED, PRED2,
1765 INSN, SUCC, SUCC2, I3.
1767 Return 0 if the combination is not allowed for any reason.
1769 If the combination is allowed, *PDEST will be set to the single
1770 destination of INSN and *PSRC to the single source, and this function
1771 will return 1. */
1773 static int
1774 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1775 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1776 rtx *pdest, rtx *psrc)
1778 int i;
1779 const_rtx set = 0;
1780 rtx src, dest;
1781 rtx_insn *p;
1782 rtx link;
1783 bool all_adjacent = true;
1784 int (*is_volatile_p) (const_rtx);
1786 if (succ)
1788 if (succ2)
1790 if (next_active_insn (succ2) != i3)
1791 all_adjacent = false;
1792 if (next_active_insn (succ) != succ2)
1793 all_adjacent = false;
1795 else if (next_active_insn (succ) != i3)
1796 all_adjacent = false;
1797 if (next_active_insn (insn) != succ)
1798 all_adjacent = false;
1800 else if (next_active_insn (insn) != i3)
1801 all_adjacent = false;
1803 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1804 or a PARALLEL consisting of such a SET and CLOBBERs.
1806 If INSN has CLOBBER parallel parts, ignore them for our processing.
1807 By definition, these happen during the execution of the insn. When it
1808 is merged with another insn, all bets are off. If they are, in fact,
1809 needed and aren't also supplied in I3, they may be added by
1810 recog_for_combine. Otherwise, it won't match.
1812 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1813 note.
1815 Get the source and destination of INSN. If more than one, can't
1816 combine. */
1818 if (GET_CODE (PATTERN (insn)) == SET)
1819 set = PATTERN (insn);
1820 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1821 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1823 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1825 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1827 switch (GET_CODE (elt))
1829 /* This is important to combine floating point insns
1830 for the SH4 port. */
1831 case USE:
1832 /* Combining an isolated USE doesn't make sense.
1833 We depend here on combinable_i3pat to reject them. */
1834 /* The code below this loop only verifies that the inputs of
1835 the SET in INSN do not change. We call reg_set_between_p
1836 to verify that the REG in the USE does not change between
1837 I3 and INSN.
1838 If the USE in INSN was for a pseudo register, the matching
1839 insn pattern will likely match any register; combining this
1840 with any other USE would only be safe if we knew that the
1841 used registers have identical values, or if there was
1842 something to tell them apart, e.g. different modes. For
1843 now, we forgo such complicated tests and simply disallow
1844 combining of USES of pseudo registers with any other USE. */
1845 if (REG_P (XEXP (elt, 0))
1846 && GET_CODE (PATTERN (i3)) == PARALLEL)
1848 rtx i3pat = PATTERN (i3);
1849 int i = XVECLEN (i3pat, 0) - 1;
1850 unsigned int regno = REGNO (XEXP (elt, 0));
1854 rtx i3elt = XVECEXP (i3pat, 0, i);
1856 if (GET_CODE (i3elt) == USE
1857 && REG_P (XEXP (i3elt, 0))
1858 && (REGNO (XEXP (i3elt, 0)) == regno
1859 ? reg_set_between_p (XEXP (elt, 0),
1860 PREV_INSN (insn), i3)
1861 : regno >= FIRST_PSEUDO_REGISTER))
1862 return 0;
1864 while (--i >= 0);
1866 break;
1868 /* We can ignore CLOBBERs. */
1869 case CLOBBER:
1870 break;
1872 case SET:
1873 /* Ignore SETs whose result isn't used but not those that
1874 have side-effects. */
1875 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1876 && insn_nothrow_p (insn)
1877 && !side_effects_p (elt))
1878 break;
1880 /* If we have already found a SET, this is a second one and
1881 so we cannot combine with this insn. */
1882 if (set)
1883 return 0;
1885 set = elt;
1886 break;
1888 default:
1889 /* Anything else means we can't combine. */
1890 return 0;
1894 if (set == 0
1895 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1896 so don't do anything with it. */
1897 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1898 return 0;
1900 else
1901 return 0;
1903 if (set == 0)
1904 return 0;
1906 /* The simplification in expand_field_assignment may call back to
1907 get_last_value, so set safe guard here. */
1908 subst_low_luid = DF_INSN_LUID (insn);
1910 set = expand_field_assignment (set);
1911 src = SET_SRC (set), dest = SET_DEST (set);
1913 /* Do not eliminate user-specified register if it is in an
1914 asm input because we may break the register asm usage defined
1915 in GCC manual if allow to do so.
1916 Be aware that this may cover more cases than we expect but this
1917 should be harmless. */
1918 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1919 && extract_asm_operands (PATTERN (i3)))
1920 return 0;
1922 /* Don't eliminate a store in the stack pointer. */
1923 if (dest == stack_pointer_rtx
1924 /* Don't combine with an insn that sets a register to itself if it has
1925 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1926 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1927 /* Can't merge an ASM_OPERANDS. */
1928 || GET_CODE (src) == ASM_OPERANDS
1929 /* Can't merge a function call. */
1930 || GET_CODE (src) == CALL
1931 /* Don't eliminate a function call argument. */
1932 || (CALL_P (i3)
1933 && (find_reg_fusage (i3, USE, dest)
1934 || (REG_P (dest)
1935 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1936 && global_regs[REGNO (dest)])))
1937 /* Don't substitute into an incremented register. */
1938 || FIND_REG_INC_NOTE (i3, dest)
1939 || (succ && FIND_REG_INC_NOTE (succ, dest))
1940 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1941 /* Don't substitute into a non-local goto, this confuses CFG. */
1942 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1943 /* Make sure that DEST is not used after SUCC but before I3. */
1944 || (!all_adjacent
1945 && ((succ2
1946 && (reg_used_between_p (dest, succ2, i3)
1947 || reg_used_between_p (dest, succ, succ2)))
1948 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1949 /* Make sure that the value that is to be substituted for the register
1950 does not use any registers whose values alter in between. However,
1951 If the insns are adjacent, a use can't cross a set even though we
1952 think it might (this can happen for a sequence of insns each setting
1953 the same destination; last_set of that register might point to
1954 a NOTE). If INSN has a REG_EQUIV note, the register is always
1955 equivalent to the memory so the substitution is valid even if there
1956 are intervening stores. Also, don't move a volatile asm or
1957 UNSPEC_VOLATILE across any other insns. */
1958 || (! all_adjacent
1959 && (((!MEM_P (src)
1960 || ! find_reg_note (insn, REG_EQUIV, src))
1961 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1962 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1963 || GET_CODE (src) == UNSPEC_VOLATILE))
1964 /* Don't combine across a CALL_INSN, because that would possibly
1965 change whether the life span of some REGs crosses calls or not,
1966 and it is a pain to update that information.
1967 Exception: if source is a constant, moving it later can't hurt.
1968 Accept that as a special case. */
1969 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1970 return 0;
1972 /* DEST must either be a REG or CC0. */
1973 if (REG_P (dest))
1975 /* If register alignment is being enforced for multi-word items in all
1976 cases except for parameters, it is possible to have a register copy
1977 insn referencing a hard register that is not allowed to contain the
1978 mode being copied and which would not be valid as an operand of most
1979 insns. Eliminate this problem by not combining with such an insn.
1981 Also, on some machines we don't want to extend the life of a hard
1982 register. */
1984 if (REG_P (src)
1985 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1986 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1987 /* Don't extend the life of a hard register unless it is
1988 user variable (if we have few registers) or it can't
1989 fit into the desired register (meaning something special
1990 is going on).
1991 Also avoid substituting a return register into I3, because
1992 reload can't handle a conflict with constraints of other
1993 inputs. */
1994 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1995 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1996 return 0;
1998 else if (GET_CODE (dest) != CC0)
1999 return 0;
2002 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2003 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2004 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2006 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2008 /* If the clobber represents an earlyclobber operand, we must not
2009 substitute an expression containing the clobbered register.
2010 As we do not analyze the constraint strings here, we have to
2011 make the conservative assumption. However, if the register is
2012 a fixed hard reg, the clobber cannot represent any operand;
2013 we leave it up to the machine description to either accept or
2014 reject use-and-clobber patterns. */
2015 if (!REG_P (reg)
2016 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2017 || !fixed_regs[REGNO (reg)])
2018 if (reg_overlap_mentioned_p (reg, src))
2019 return 0;
2022 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2023 or not), reject, unless nothing volatile comes between it and I3 */
2025 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2027 /* Make sure neither succ nor succ2 contains a volatile reference. */
2028 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2029 return 0;
2030 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2031 return 0;
2032 /* We'll check insns between INSN and I3 below. */
2035 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2036 to be an explicit register variable, and was chosen for a reason. */
2038 if (GET_CODE (src) == ASM_OPERANDS
2039 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2040 return 0;
2042 /* If INSN contains volatile references (specifically volatile MEMs),
2043 we cannot combine across any other volatile references.
2044 Even if INSN doesn't contain volatile references, any intervening
2045 volatile insn might affect machine state. */
2047 is_volatile_p = volatile_refs_p (PATTERN (insn))
2048 ? volatile_refs_p
2049 : volatile_insn_p;
2051 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2052 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2053 return 0;
2055 /* If INSN contains an autoincrement or autodecrement, make sure that
2056 register is not used between there and I3, and not already used in
2057 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2058 Also insist that I3 not be a jump; if it were one
2059 and the incremented register were spilled, we would lose. */
2061 if (AUTO_INC_DEC)
2062 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2063 if (REG_NOTE_KIND (link) == REG_INC
2064 && (JUMP_P (i3)
2065 || reg_used_between_p (XEXP (link, 0), insn, i3)
2066 || (pred != NULL_RTX
2067 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2068 || (pred2 != NULL_RTX
2069 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2070 || (succ != NULL_RTX
2071 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2072 || (succ2 != NULL_RTX
2073 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2074 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2075 return 0;
2077 /* Don't combine an insn that follows a CC0-setting insn.
2078 An insn that uses CC0 must not be separated from the one that sets it.
2079 We do, however, allow I2 to follow a CC0-setting insn if that insn
2080 is passed as I1; in that case it will be deleted also.
2081 We also allow combining in this case if all the insns are adjacent
2082 because that would leave the two CC0 insns adjacent as well.
2083 It would be more logical to test whether CC0 occurs inside I1 or I2,
2084 but that would be much slower, and this ought to be equivalent. */
2086 if (HAVE_cc0)
2088 p = prev_nonnote_insn (insn);
2089 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2090 && ! all_adjacent)
2091 return 0;
2094 /* If we get here, we have passed all the tests and the combination is
2095 to be allowed. */
2097 *pdest = dest;
2098 *psrc = src;
2100 return 1;
2103 /* LOC is the location within I3 that contains its pattern or the component
2104 of a PARALLEL of the pattern. We validate that it is valid for combining.
2106 One problem is if I3 modifies its output, as opposed to replacing it
2107 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2108 doing so would produce an insn that is not equivalent to the original insns.
2110 Consider:
2112 (set (reg:DI 101) (reg:DI 100))
2113 (set (subreg:SI (reg:DI 101) 0) <foo>)
2115 This is NOT equivalent to:
2117 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2118 (set (reg:DI 101) (reg:DI 100))])
2120 Not only does this modify 100 (in which case it might still be valid
2121 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2123 We can also run into a problem if I2 sets a register that I1
2124 uses and I1 gets directly substituted into I3 (not via I2). In that
2125 case, we would be getting the wrong value of I2DEST into I3, so we
2126 must reject the combination. This case occurs when I2 and I1 both
2127 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2128 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2129 of a SET must prevent combination from occurring. The same situation
2130 can occur for I0, in which case I0_NOT_IN_SRC is set.
2132 Before doing the above check, we first try to expand a field assignment
2133 into a set of logical operations.
2135 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2136 we place a register that is both set and used within I3. If more than one
2137 such register is detected, we fail.
2139 Return 1 if the combination is valid, zero otherwise. */
2141 static int
2142 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2143 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2145 rtx x = *loc;
2147 if (GET_CODE (x) == SET)
2149 rtx set = x ;
2150 rtx dest = SET_DEST (set);
2151 rtx src = SET_SRC (set);
2152 rtx inner_dest = dest;
2153 rtx subdest;
2155 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2156 || GET_CODE (inner_dest) == SUBREG
2157 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2158 inner_dest = XEXP (inner_dest, 0);
2160 /* Check for the case where I3 modifies its output, as discussed
2161 above. We don't want to prevent pseudos from being combined
2162 into the address of a MEM, so only prevent the combination if
2163 i1 or i2 set the same MEM. */
2164 if ((inner_dest != dest &&
2165 (!MEM_P (inner_dest)
2166 || rtx_equal_p (i2dest, inner_dest)
2167 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2168 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2169 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2170 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2171 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2173 /* This is the same test done in can_combine_p except we can't test
2174 all_adjacent; we don't have to, since this instruction will stay
2175 in place, thus we are not considering increasing the lifetime of
2176 INNER_DEST.
2178 Also, if this insn sets a function argument, combining it with
2179 something that might need a spill could clobber a previous
2180 function argument; the all_adjacent test in can_combine_p also
2181 checks this; here, we do a more specific test for this case. */
2183 || (REG_P (inner_dest)
2184 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2185 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2186 GET_MODE (inner_dest))))
2187 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2188 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2189 return 0;
2191 /* If DEST is used in I3, it is being killed in this insn, so
2192 record that for later. We have to consider paradoxical
2193 subregs here, since they kill the whole register, but we
2194 ignore partial subregs, STRICT_LOW_PART, etc.
2195 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2196 STACK_POINTER_REGNUM, since these are always considered to be
2197 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2198 subdest = dest;
2199 if (GET_CODE (subdest) == SUBREG
2200 && (GET_MODE_SIZE (GET_MODE (subdest))
2201 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2202 subdest = SUBREG_REG (subdest);
2203 if (pi3dest_killed
2204 && REG_P (subdest)
2205 && reg_referenced_p (subdest, PATTERN (i3))
2206 && REGNO (subdest) != FRAME_POINTER_REGNUM
2207 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2208 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2209 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2210 || (REGNO (subdest) != ARG_POINTER_REGNUM
2211 || ! fixed_regs [REGNO (subdest)]))
2212 && REGNO (subdest) != STACK_POINTER_REGNUM)
2214 if (*pi3dest_killed)
2215 return 0;
2217 *pi3dest_killed = subdest;
2221 else if (GET_CODE (x) == PARALLEL)
2223 int i;
2225 for (i = 0; i < XVECLEN (x, 0); i++)
2226 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2227 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2228 return 0;
2231 return 1;
2234 /* Return 1 if X is an arithmetic expression that contains a multiplication
2235 and division. We don't count multiplications by powers of two here. */
2237 static int
2238 contains_muldiv (rtx x)
2240 switch (GET_CODE (x))
2242 case MOD: case DIV: case UMOD: case UDIV:
2243 return 1;
2245 case MULT:
2246 return ! (CONST_INT_P (XEXP (x, 1))
2247 && exact_log2 (UINTVAL (XEXP (x, 1))) >= 0);
2248 default:
2249 if (BINARY_P (x))
2250 return contains_muldiv (XEXP (x, 0))
2251 || contains_muldiv (XEXP (x, 1));
2253 if (UNARY_P (x))
2254 return contains_muldiv (XEXP (x, 0));
2256 return 0;
2260 /* Determine whether INSN can be used in a combination. Return nonzero if
2261 not. This is used in try_combine to detect early some cases where we
2262 can't perform combinations. */
2264 static int
2265 cant_combine_insn_p (rtx_insn *insn)
2267 rtx set;
2268 rtx src, dest;
2270 /* If this isn't really an insn, we can't do anything.
2271 This can occur when flow deletes an insn that it has merged into an
2272 auto-increment address. */
2273 if (! INSN_P (insn))
2274 return 1;
2276 /* Never combine loads and stores involving hard regs that are likely
2277 to be spilled. The register allocator can usually handle such
2278 reg-reg moves by tying. If we allow the combiner to make
2279 substitutions of likely-spilled regs, reload might die.
2280 As an exception, we allow combinations involving fixed regs; these are
2281 not available to the register allocator so there's no risk involved. */
2283 set = single_set (insn);
2284 if (! set)
2285 return 0;
2286 src = SET_SRC (set);
2287 dest = SET_DEST (set);
2288 if (GET_CODE (src) == SUBREG)
2289 src = SUBREG_REG (src);
2290 if (GET_CODE (dest) == SUBREG)
2291 dest = SUBREG_REG (dest);
2292 if (REG_P (src) && REG_P (dest)
2293 && ((HARD_REGISTER_P (src)
2294 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2295 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2296 || (HARD_REGISTER_P (dest)
2297 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2298 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2299 return 1;
2301 return 0;
2304 struct likely_spilled_retval_info
2306 unsigned regno, nregs;
2307 unsigned mask;
2310 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2311 hard registers that are known to be written to / clobbered in full. */
2312 static void
2313 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2315 struct likely_spilled_retval_info *const info =
2316 (struct likely_spilled_retval_info *) data;
2317 unsigned regno, nregs;
2318 unsigned new_mask;
2320 if (!REG_P (XEXP (set, 0)))
2321 return;
2322 regno = REGNO (x);
2323 if (regno >= info->regno + info->nregs)
2324 return;
2325 nregs = REG_NREGS (x);
2326 if (regno + nregs <= info->regno)
2327 return;
2328 new_mask = (2U << (nregs - 1)) - 1;
2329 if (regno < info->regno)
2330 new_mask >>= info->regno - regno;
2331 else
2332 new_mask <<= regno - info->regno;
2333 info->mask &= ~new_mask;
2336 /* Return nonzero iff part of the return value is live during INSN, and
2337 it is likely spilled. This can happen when more than one insn is needed
2338 to copy the return value, e.g. when we consider to combine into the
2339 second copy insn for a complex value. */
2341 static int
2342 likely_spilled_retval_p (rtx_insn *insn)
2344 rtx_insn *use = BB_END (this_basic_block);
2345 rtx reg;
2346 rtx_insn *p;
2347 unsigned regno, nregs;
2348 /* We assume here that no machine mode needs more than
2349 32 hard registers when the value overlaps with a register
2350 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2351 unsigned mask;
2352 struct likely_spilled_retval_info info;
2354 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2355 return 0;
2356 reg = XEXP (PATTERN (use), 0);
2357 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2358 return 0;
2359 regno = REGNO (reg);
2360 nregs = REG_NREGS (reg);
2361 if (nregs == 1)
2362 return 0;
2363 mask = (2U << (nregs - 1)) - 1;
2365 /* Disregard parts of the return value that are set later. */
2366 info.regno = regno;
2367 info.nregs = nregs;
2368 info.mask = mask;
2369 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2370 if (INSN_P (p))
2371 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2372 mask = info.mask;
2374 /* Check if any of the (probably) live return value registers is
2375 likely spilled. */
2376 nregs --;
2379 if ((mask & 1 << nregs)
2380 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2381 return 1;
2382 } while (nregs--);
2383 return 0;
2386 /* Adjust INSN after we made a change to its destination.
2388 Changing the destination can invalidate notes that say something about
2389 the results of the insn and a LOG_LINK pointing to the insn. */
2391 static void
2392 adjust_for_new_dest (rtx_insn *insn)
2394 /* For notes, be conservative and simply remove them. */
2395 remove_reg_equal_equiv_notes (insn);
2397 /* The new insn will have a destination that was previously the destination
2398 of an insn just above it. Call distribute_links to make a LOG_LINK from
2399 the next use of that destination. */
2401 rtx set = single_set (insn);
2402 gcc_assert (set);
2404 rtx reg = SET_DEST (set);
2406 while (GET_CODE (reg) == ZERO_EXTRACT
2407 || GET_CODE (reg) == STRICT_LOW_PART
2408 || GET_CODE (reg) == SUBREG)
2409 reg = XEXP (reg, 0);
2410 gcc_assert (REG_P (reg));
2412 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2414 df_insn_rescan (insn);
2417 /* Return TRUE if combine can reuse reg X in mode MODE.
2418 ADDED_SETS is nonzero if the original set is still required. */
2419 static bool
2420 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2422 unsigned int regno;
2424 if (!REG_P (x))
2425 return false;
2427 regno = REGNO (x);
2428 /* Allow hard registers if the new mode is legal, and occupies no more
2429 registers than the old mode. */
2430 if (regno < FIRST_PSEUDO_REGISTER)
2431 return (HARD_REGNO_MODE_OK (regno, mode)
2432 && REG_NREGS (x) >= hard_regno_nregs[regno][mode]);
2434 /* Or a pseudo that is only used once. */
2435 return (regno < reg_n_sets_max
2436 && REG_N_SETS (regno) == 1
2437 && !added_sets
2438 && !REG_USERVAR_P (x));
2442 /* Check whether X, the destination of a set, refers to part of
2443 the register specified by REG. */
2445 static bool
2446 reg_subword_p (rtx x, rtx reg)
2448 /* Check that reg is an integer mode register. */
2449 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2450 return false;
2452 if (GET_CODE (x) == STRICT_LOW_PART
2453 || GET_CODE (x) == ZERO_EXTRACT)
2454 x = XEXP (x, 0);
2456 return GET_CODE (x) == SUBREG
2457 && SUBREG_REG (x) == reg
2458 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2461 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2462 Note that the INSN should be deleted *after* removing dead edges, so
2463 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2464 but not for a (set (pc) (label_ref FOO)). */
2466 static void
2467 update_cfg_for_uncondjump (rtx_insn *insn)
2469 basic_block bb = BLOCK_FOR_INSN (insn);
2470 gcc_assert (BB_END (bb) == insn);
2472 purge_dead_edges (bb);
2474 delete_insn (insn);
2475 if (EDGE_COUNT (bb->succs) == 1)
2477 rtx_insn *insn;
2479 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2481 /* Remove barriers from the footer if there are any. */
2482 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2483 if (BARRIER_P (insn))
2485 if (PREV_INSN (insn))
2486 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2487 else
2488 BB_FOOTER (bb) = NEXT_INSN (insn);
2489 if (NEXT_INSN (insn))
2490 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2492 else if (LABEL_P (insn))
2493 break;
2497 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2498 by an arbitrary number of CLOBBERs. */
2499 static bool
2500 is_parallel_of_n_reg_sets (rtx pat, int n)
2502 if (GET_CODE (pat) != PARALLEL)
2503 return false;
2505 int len = XVECLEN (pat, 0);
2506 if (len < n)
2507 return false;
2509 int i;
2510 for (i = 0; i < n; i++)
2511 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2512 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2513 return false;
2514 for ( ; i < len; i++)
2515 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER
2516 || XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2517 return false;
2519 return true;
2522 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2523 CLOBBERs), can be split into individual SETs in that order, without
2524 changing semantics. */
2525 static bool
2526 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2528 if (!insn_nothrow_p (insn))
2529 return false;
2531 rtx pat = PATTERN (insn);
2533 int i, j;
2534 for (i = 0; i < n; i++)
2536 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2537 return false;
2539 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2541 for (j = i + 1; j < n; j++)
2542 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2543 return false;
2546 return true;
2549 /* Try to combine the insns I0, I1 and I2 into I3.
2550 Here I0, I1 and I2 appear earlier than I3.
2551 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2554 If we are combining more than two insns and the resulting insn is not
2555 recognized, try splitting it into two insns. If that happens, I2 and I3
2556 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2557 Otherwise, I0, I1 and I2 are pseudo-deleted.
2559 Return 0 if the combination does not work. Then nothing is changed.
2560 If we did the combination, return the insn at which combine should
2561 resume scanning.
2563 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2564 new direct jump instruction.
2566 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2567 been I3 passed to an earlier try_combine within the same basic
2568 block. */
2570 static rtx_insn *
2571 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2572 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2574 /* New patterns for I3 and I2, respectively. */
2575 rtx newpat, newi2pat = 0;
2576 rtvec newpat_vec_with_clobbers = 0;
2577 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2578 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2579 dead. */
2580 int added_sets_0, added_sets_1, added_sets_2;
2581 /* Total number of SETs to put into I3. */
2582 int total_sets;
2583 /* Nonzero if I2's or I1's body now appears in I3. */
2584 int i2_is_used = 0, i1_is_used = 0;
2585 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2586 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2587 /* Contains I3 if the destination of I3 is used in its source, which means
2588 that the old life of I3 is being killed. If that usage is placed into
2589 I2 and not in I3, a REG_DEAD note must be made. */
2590 rtx i3dest_killed = 0;
2591 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2592 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2593 /* Copy of SET_SRC of I1 and I0, if needed. */
2594 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2595 /* Set if I2DEST was reused as a scratch register. */
2596 bool i2scratch = false;
2597 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2598 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2599 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2600 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2601 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2602 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2603 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2604 /* Notes that must be added to REG_NOTES in I3 and I2. */
2605 rtx new_i3_notes, new_i2_notes;
2606 /* Notes that we substituted I3 into I2 instead of the normal case. */
2607 int i3_subst_into_i2 = 0;
2608 /* Notes that I1, I2 or I3 is a MULT operation. */
2609 int have_mult = 0;
2610 int swap_i2i3 = 0;
2611 int changed_i3_dest = 0;
2613 int maxreg;
2614 rtx_insn *temp_insn;
2615 rtx temp_expr;
2616 struct insn_link *link;
2617 rtx other_pat = 0;
2618 rtx new_other_notes;
2619 int i;
2621 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2622 never be). */
2623 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2624 return 0;
2626 /* Only try four-insn combinations when there's high likelihood of
2627 success. Look for simple insns, such as loads of constants or
2628 binary operations involving a constant. */
2629 if (i0)
2631 int i;
2632 int ngood = 0;
2633 int nshift = 0;
2634 rtx set0, set3;
2636 if (!flag_expensive_optimizations)
2637 return 0;
2639 for (i = 0; i < 4; i++)
2641 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2642 rtx set = single_set (insn);
2643 rtx src;
2644 if (!set)
2645 continue;
2646 src = SET_SRC (set);
2647 if (CONSTANT_P (src))
2649 ngood += 2;
2650 break;
2652 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2653 ngood++;
2654 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2655 || GET_CODE (src) == LSHIFTRT)
2656 nshift++;
2659 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2660 are likely manipulating its value. Ideally we'll be able to combine
2661 all four insns into a bitfield insertion of some kind.
2663 Note the source in I0 might be inside a sign/zero extension and the
2664 memory modes in I0 and I3 might be different. So extract the address
2665 from the destination of I3 and search for it in the source of I0.
2667 In the event that there's a match but the source/dest do not actually
2668 refer to the same memory, the worst that happens is we try some
2669 combinations that we wouldn't have otherwise. */
2670 if ((set0 = single_set (i0))
2671 /* Ensure the source of SET0 is a MEM, possibly buried inside
2672 an extension. */
2673 && (GET_CODE (SET_SRC (set0)) == MEM
2674 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2675 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2676 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2677 && (set3 = single_set (i3))
2678 /* Ensure the destination of SET3 is a MEM. */
2679 && GET_CODE (SET_DEST (set3)) == MEM
2680 /* Would it be better to extract the base address for the MEM
2681 in SET3 and look for that? I don't have cases where it matters
2682 but I could envision such cases. */
2683 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2684 ngood += 2;
2686 if (ngood < 2 && nshift < 2)
2687 return 0;
2690 /* Exit early if one of the insns involved can't be used for
2691 combinations. */
2692 if (CALL_P (i2)
2693 || (i1 && CALL_P (i1))
2694 || (i0 && CALL_P (i0))
2695 || cant_combine_insn_p (i3)
2696 || cant_combine_insn_p (i2)
2697 || (i1 && cant_combine_insn_p (i1))
2698 || (i0 && cant_combine_insn_p (i0))
2699 || likely_spilled_retval_p (i3))
2700 return 0;
2702 combine_attempts++;
2703 undobuf.other_insn = 0;
2705 /* Reset the hard register usage information. */
2706 CLEAR_HARD_REG_SET (newpat_used_regs);
2708 if (dump_file && (dump_flags & TDF_DETAILS))
2710 if (i0)
2711 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2712 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2713 else if (i1)
2714 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2715 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2716 else
2717 fprintf (dump_file, "\nTrying %d -> %d:\n",
2718 INSN_UID (i2), INSN_UID (i3));
2721 /* If multiple insns feed into one of I2 or I3, they can be in any
2722 order. To simplify the code below, reorder them in sequence. */
2723 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2724 std::swap (i0, i2);
2725 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2726 std::swap (i0, i1);
2727 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2728 std::swap (i1, i2);
2730 added_links_insn = 0;
2732 /* First check for one important special case that the code below will
2733 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2734 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2735 we may be able to replace that destination with the destination of I3.
2736 This occurs in the common code where we compute both a quotient and
2737 remainder into a structure, in which case we want to do the computation
2738 directly into the structure to avoid register-register copies.
2740 Note that this case handles both multiple sets in I2 and also cases
2741 where I2 has a number of CLOBBERs inside the PARALLEL.
2743 We make very conservative checks below and only try to handle the
2744 most common cases of this. For example, we only handle the case
2745 where I2 and I3 are adjacent to avoid making difficult register
2746 usage tests. */
2748 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2749 && REG_P (SET_SRC (PATTERN (i3)))
2750 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2751 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2752 && GET_CODE (PATTERN (i2)) == PARALLEL
2753 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2754 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2755 below would need to check what is inside (and reg_overlap_mentioned_p
2756 doesn't support those codes anyway). Don't allow those destinations;
2757 the resulting insn isn't likely to be recognized anyway. */
2758 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2759 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2760 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2761 SET_DEST (PATTERN (i3)))
2762 && next_active_insn (i2) == i3)
2764 rtx p2 = PATTERN (i2);
2766 /* Make sure that the destination of I3,
2767 which we are going to substitute into one output of I2,
2768 is not used within another output of I2. We must avoid making this:
2769 (parallel [(set (mem (reg 69)) ...)
2770 (set (reg 69) ...)])
2771 which is not well-defined as to order of actions.
2772 (Besides, reload can't handle output reloads for this.)
2774 The problem can also happen if the dest of I3 is a memory ref,
2775 if another dest in I2 is an indirect memory ref. */
2776 for (i = 0; i < XVECLEN (p2, 0); i++)
2777 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2778 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2779 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2780 SET_DEST (XVECEXP (p2, 0, i))))
2781 break;
2783 /* Make sure this PARALLEL is not an asm. We do not allow combining
2784 that usually (see can_combine_p), so do not here either. */
2785 for (i = 0; i < XVECLEN (p2, 0); i++)
2786 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2787 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2788 break;
2790 if (i == XVECLEN (p2, 0))
2791 for (i = 0; i < XVECLEN (p2, 0); i++)
2792 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2793 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2795 combine_merges++;
2797 subst_insn = i3;
2798 subst_low_luid = DF_INSN_LUID (i2);
2800 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2801 i2src = SET_SRC (XVECEXP (p2, 0, i));
2802 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2803 i2dest_killed = dead_or_set_p (i2, i2dest);
2805 /* Replace the dest in I2 with our dest and make the resulting
2806 insn the new pattern for I3. Then skip to where we validate
2807 the pattern. Everything was set up above. */
2808 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2809 newpat = p2;
2810 i3_subst_into_i2 = 1;
2811 goto validate_replacement;
2815 /* If I2 is setting a pseudo to a constant and I3 is setting some
2816 sub-part of it to another constant, merge them by making a new
2817 constant. */
2818 if (i1 == 0
2819 && (temp_expr = single_set (i2)) != 0
2820 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2821 && GET_CODE (PATTERN (i3)) == SET
2822 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2823 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2825 rtx dest = SET_DEST (PATTERN (i3));
2826 int offset = -1;
2827 int width = 0;
2829 if (GET_CODE (dest) == ZERO_EXTRACT)
2831 if (CONST_INT_P (XEXP (dest, 1))
2832 && CONST_INT_P (XEXP (dest, 2)))
2834 width = INTVAL (XEXP (dest, 1));
2835 offset = INTVAL (XEXP (dest, 2));
2836 dest = XEXP (dest, 0);
2837 if (BITS_BIG_ENDIAN)
2838 offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2841 else
2843 if (GET_CODE (dest) == STRICT_LOW_PART)
2844 dest = XEXP (dest, 0);
2845 width = GET_MODE_PRECISION (GET_MODE (dest));
2846 offset = 0;
2849 if (offset >= 0)
2851 /* If this is the low part, we're done. */
2852 if (subreg_lowpart_p (dest))
2854 /* Handle the case where inner is twice the size of outer. */
2855 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp_expr)))
2856 == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2857 offset += GET_MODE_PRECISION (GET_MODE (dest));
2858 /* Otherwise give up for now. */
2859 else
2860 offset = -1;
2863 if (offset >= 0)
2865 rtx inner = SET_SRC (PATTERN (i3));
2866 rtx outer = SET_SRC (temp_expr);
2868 wide_int o
2869 = wi::insert (std::make_pair (outer, GET_MODE (SET_DEST (temp_expr))),
2870 std::make_pair (inner, GET_MODE (dest)),
2871 offset, width);
2873 combine_merges++;
2874 subst_insn = i3;
2875 subst_low_luid = DF_INSN_LUID (i2);
2876 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2877 i2dest = SET_DEST (temp_expr);
2878 i2dest_killed = dead_or_set_p (i2, i2dest);
2880 /* Replace the source in I2 with the new constant and make the
2881 resulting insn the new pattern for I3. Then skip to where we
2882 validate the pattern. Everything was set up above. */
2883 SUBST (SET_SRC (temp_expr),
2884 immed_wide_int_const (o, GET_MODE (SET_DEST (temp_expr))));
2886 newpat = PATTERN (i2);
2888 /* The dest of I3 has been replaced with the dest of I2. */
2889 changed_i3_dest = 1;
2890 goto validate_replacement;
2894 /* If we have no I1 and I2 looks like:
2895 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2896 (set Y OP)])
2897 make up a dummy I1 that is
2898 (set Y OP)
2899 and change I2 to be
2900 (set (reg:CC X) (compare:CC Y (const_int 0)))
2902 (We can ignore any trailing CLOBBERs.)
2904 This undoes a previous combination and allows us to match a branch-and-
2905 decrement insn. */
2907 if (!HAVE_cc0 && i1 == 0
2908 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2909 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2910 == MODE_CC)
2911 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2912 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2913 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2914 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2915 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2916 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2918 /* We make I1 with the same INSN_UID as I2. This gives it
2919 the same DF_INSN_LUID for value tracking. Our fake I1 will
2920 never appear in the insn stream so giving it the same INSN_UID
2921 as I2 will not cause a problem. */
2923 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2924 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
2925 -1, NULL_RTX);
2926 INSN_UID (i1) = INSN_UID (i2);
2928 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2929 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2930 SET_DEST (PATTERN (i1)));
2931 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
2932 SUBST_LINK (LOG_LINKS (i2),
2933 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
2936 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
2937 make those two SETs separate I1 and I2 insns, and make an I0 that is
2938 the original I1. */
2939 if (!HAVE_cc0 && i0 == 0
2940 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2941 && can_split_parallel_of_n_reg_sets (i2, 2)
2942 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2943 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2945 /* If there is no I1, there is no I0 either. */
2946 i0 = i1;
2948 /* We make I1 with the same INSN_UID as I2. This gives it
2949 the same DF_INSN_LUID for value tracking. Our fake I1 will
2950 never appear in the insn stream so giving it the same INSN_UID
2951 as I2 will not cause a problem. */
2953 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2954 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
2955 -1, NULL_RTX);
2956 INSN_UID (i1) = INSN_UID (i2);
2958 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
2961 /* Verify that I2 and I1 are valid for combining. */
2962 if (! can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src)
2963 || (i1 && ! can_combine_p (i1, i3, i0, NULL, i2, NULL,
2964 &i1dest, &i1src))
2965 || (i0 && ! can_combine_p (i0, i3, NULL, NULL, i1, i2,
2966 &i0dest, &i0src)))
2968 undo_all ();
2969 return 0;
2972 /* Record whether I2DEST is used in I2SRC and similarly for the other
2973 cases. Knowing this will help in register status updating below. */
2974 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2975 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2976 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2977 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2978 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2979 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2980 i2dest_killed = dead_or_set_p (i2, i2dest);
2981 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2982 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2984 /* For the earlier insns, determine which of the subsequent ones they
2985 feed. */
2986 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
2987 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
2988 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
2989 : (!reg_overlap_mentioned_p (i1dest, i0dest)
2990 && reg_overlap_mentioned_p (i0dest, i2src))));
2992 /* Ensure that I3's pattern can be the destination of combines. */
2993 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
2994 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
2995 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
2996 || (i1dest_in_i0src && !i0_feeds_i1_n)),
2997 &i3dest_killed))
2999 undo_all ();
3000 return 0;
3003 /* See if any of the insns is a MULT operation. Unless one is, we will
3004 reject a combination that is, since it must be slower. Be conservative
3005 here. */
3006 if (GET_CODE (i2src) == MULT
3007 || (i1 != 0 && GET_CODE (i1src) == MULT)
3008 || (i0 != 0 && GET_CODE (i0src) == MULT)
3009 || (GET_CODE (PATTERN (i3)) == SET
3010 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3011 have_mult = 1;
3013 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3014 We used to do this EXCEPT in one case: I3 has a post-inc in an
3015 output operand. However, that exception can give rise to insns like
3016 mov r3,(r3)+
3017 which is a famous insn on the PDP-11 where the value of r3 used as the
3018 source was model-dependent. Avoid this sort of thing. */
3020 #if 0
3021 if (!(GET_CODE (PATTERN (i3)) == SET
3022 && REG_P (SET_SRC (PATTERN (i3)))
3023 && MEM_P (SET_DEST (PATTERN (i3)))
3024 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3025 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3026 /* It's not the exception. */
3027 #endif
3028 if (AUTO_INC_DEC)
3030 rtx link;
3031 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3032 if (REG_NOTE_KIND (link) == REG_INC
3033 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3034 || (i1 != 0
3035 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3037 undo_all ();
3038 return 0;
3042 /* See if the SETs in I1 or I2 need to be kept around in the merged
3043 instruction: whenever the value set there is still needed past I3.
3044 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3046 For the SET in I1, we have two cases: if I1 and I2 independently feed
3047 into I3, the set in I1 needs to be kept around unless I1DEST dies
3048 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3049 in I1 needs to be kept around unless I1DEST dies or is set in either
3050 I2 or I3. The same considerations apply to I0. */
3052 added_sets_2 = !dead_or_set_p (i3, i2dest);
3054 if (i1)
3055 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3056 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3057 else
3058 added_sets_1 = 0;
3060 if (i0)
3061 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3062 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3063 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3064 && dead_or_set_p (i2, i0dest)));
3065 else
3066 added_sets_0 = 0;
3068 /* We are about to copy insns for the case where they need to be kept
3069 around. Check that they can be copied in the merged instruction. */
3071 if (targetm.cannot_copy_insn_p
3072 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3073 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3074 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3076 undo_all ();
3077 return 0;
3080 /* If the set in I2 needs to be kept around, we must make a copy of
3081 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3082 PATTERN (I2), we are only substituting for the original I1DEST, not into
3083 an already-substituted copy. This also prevents making self-referential
3084 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3085 I2DEST. */
3087 if (added_sets_2)
3089 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3090 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3091 else
3092 i2pat = copy_rtx (PATTERN (i2));
3095 if (added_sets_1)
3097 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3098 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3099 else
3100 i1pat = copy_rtx (PATTERN (i1));
3103 if (added_sets_0)
3105 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3106 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3107 else
3108 i0pat = copy_rtx (PATTERN (i0));
3111 combine_merges++;
3113 /* Substitute in the latest insn for the regs set by the earlier ones. */
3115 maxreg = max_reg_num ();
3117 subst_insn = i3;
3119 /* Many machines that don't use CC0 have insns that can both perform an
3120 arithmetic operation and set the condition code. These operations will
3121 be represented as a PARALLEL with the first element of the vector
3122 being a COMPARE of an arithmetic operation with the constant zero.
3123 The second element of the vector will set some pseudo to the result
3124 of the same arithmetic operation. If we simplify the COMPARE, we won't
3125 match such a pattern and so will generate an extra insn. Here we test
3126 for this case, where both the comparison and the operation result are
3127 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3128 I2SRC. Later we will make the PARALLEL that contains I2. */
3130 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3131 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3132 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3133 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3135 rtx newpat_dest;
3136 rtx *cc_use_loc = NULL;
3137 rtx_insn *cc_use_insn = NULL;
3138 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3139 machine_mode compare_mode, orig_compare_mode;
3140 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3142 newpat = PATTERN (i3);
3143 newpat_dest = SET_DEST (newpat);
3144 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3146 if (undobuf.other_insn == 0
3147 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3148 &cc_use_insn)))
3150 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3151 compare_code = simplify_compare_const (compare_code,
3152 GET_MODE (i2dest), op0, &op1);
3153 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3156 /* Do the rest only if op1 is const0_rtx, which may be the
3157 result of simplification. */
3158 if (op1 == const0_rtx)
3160 /* If a single use of the CC is found, prepare to modify it
3161 when SELECT_CC_MODE returns a new CC-class mode, or when
3162 the above simplify_compare_const() returned a new comparison
3163 operator. undobuf.other_insn is assigned the CC use insn
3164 when modifying it. */
3165 if (cc_use_loc)
3167 #ifdef SELECT_CC_MODE
3168 machine_mode new_mode
3169 = SELECT_CC_MODE (compare_code, op0, op1);
3170 if (new_mode != orig_compare_mode
3171 && can_change_dest_mode (SET_DEST (newpat),
3172 added_sets_2, new_mode))
3174 unsigned int regno = REGNO (newpat_dest);
3175 compare_mode = new_mode;
3176 if (regno < FIRST_PSEUDO_REGISTER)
3177 newpat_dest = gen_rtx_REG (compare_mode, regno);
3178 else
3180 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3181 newpat_dest = regno_reg_rtx[regno];
3184 #endif
3185 /* Cases for modifying the CC-using comparison. */
3186 if (compare_code != orig_compare_code
3187 /* ??? Do we need to verify the zero rtx? */
3188 && XEXP (*cc_use_loc, 1) == const0_rtx)
3190 /* Replace cc_use_loc with entire new RTX. */
3191 SUBST (*cc_use_loc,
3192 gen_rtx_fmt_ee (compare_code, compare_mode,
3193 newpat_dest, const0_rtx));
3194 undobuf.other_insn = cc_use_insn;
3196 else if (compare_mode != orig_compare_mode)
3198 /* Just replace the CC reg with a new mode. */
3199 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3200 undobuf.other_insn = cc_use_insn;
3204 /* Now we modify the current newpat:
3205 First, SET_DEST(newpat) is updated if the CC mode has been
3206 altered. For targets without SELECT_CC_MODE, this should be
3207 optimized away. */
3208 if (compare_mode != orig_compare_mode)
3209 SUBST (SET_DEST (newpat), newpat_dest);
3210 /* This is always done to propagate i2src into newpat. */
3211 SUBST (SET_SRC (newpat),
3212 gen_rtx_COMPARE (compare_mode, op0, op1));
3213 /* Create new version of i2pat if needed; the below PARALLEL
3214 creation needs this to work correctly. */
3215 if (! rtx_equal_p (i2src, op0))
3216 i2pat = gen_rtx_SET (i2dest, op0);
3217 i2_is_used = 1;
3221 if (i2_is_used == 0)
3223 /* It is possible that the source of I2 or I1 may be performing
3224 an unneeded operation, such as a ZERO_EXTEND of something
3225 that is known to have the high part zero. Handle that case
3226 by letting subst look at the inner insns.
3228 Another way to do this would be to have a function that tries
3229 to simplify a single insn instead of merging two or more
3230 insns. We don't do this because of the potential of infinite
3231 loops and because of the potential extra memory required.
3232 However, doing it the way we are is a bit of a kludge and
3233 doesn't catch all cases.
3235 But only do this if -fexpensive-optimizations since it slows
3236 things down and doesn't usually win.
3238 This is not done in the COMPARE case above because the
3239 unmodified I2PAT is used in the PARALLEL and so a pattern
3240 with a modified I2SRC would not match. */
3242 if (flag_expensive_optimizations)
3244 /* Pass pc_rtx so no substitutions are done, just
3245 simplifications. */
3246 if (i1)
3248 subst_low_luid = DF_INSN_LUID (i1);
3249 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3252 subst_low_luid = DF_INSN_LUID (i2);
3253 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3256 n_occurrences = 0; /* `subst' counts here */
3257 subst_low_luid = DF_INSN_LUID (i2);
3259 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3260 copy of I2SRC each time we substitute it, in order to avoid creating
3261 self-referential RTL when we will be substituting I1SRC for I1DEST
3262 later. Likewise if I0 feeds into I2, either directly or indirectly
3263 through I1, and I0DEST is in I0SRC. */
3264 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3265 (i1_feeds_i2_n && i1dest_in_i1src)
3266 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3267 && i0dest_in_i0src));
3268 substed_i2 = 1;
3270 /* Record whether I2's body now appears within I3's body. */
3271 i2_is_used = n_occurrences;
3274 /* If we already got a failure, don't try to do more. Otherwise, try to
3275 substitute I1 if we have it. */
3277 if (i1 && GET_CODE (newpat) != CLOBBER)
3279 /* Check that an autoincrement side-effect on I1 has not been lost.
3280 This happens if I1DEST is mentioned in I2 and dies there, and
3281 has disappeared from the new pattern. */
3282 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3283 && i1_feeds_i2_n
3284 && dead_or_set_p (i2, i1dest)
3285 && !reg_overlap_mentioned_p (i1dest, newpat))
3286 /* Before we can do this substitution, we must redo the test done
3287 above (see detailed comments there) that ensures I1DEST isn't
3288 mentioned in any SETs in NEWPAT that are field assignments. */
3289 || !combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3290 0, 0, 0))
3292 undo_all ();
3293 return 0;
3296 n_occurrences = 0;
3297 subst_low_luid = DF_INSN_LUID (i1);
3299 /* If the following substitution will modify I1SRC, make a copy of it
3300 for the case where it is substituted for I1DEST in I2PAT later. */
3301 if (added_sets_2 && i1_feeds_i2_n)
3302 i1src_copy = copy_rtx (i1src);
3304 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3305 copy of I1SRC each time we substitute it, in order to avoid creating
3306 self-referential RTL when we will be substituting I0SRC for I0DEST
3307 later. */
3308 newpat = subst (newpat, i1dest, i1src, 0, 0,
3309 i0_feeds_i1_n && i0dest_in_i0src);
3310 substed_i1 = 1;
3312 /* Record whether I1's body now appears within I3's body. */
3313 i1_is_used = n_occurrences;
3316 /* Likewise for I0 if we have it. */
3318 if (i0 && GET_CODE (newpat) != CLOBBER)
3320 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3321 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3322 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3323 && !reg_overlap_mentioned_p (i0dest, newpat))
3324 || !combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3325 0, 0, 0))
3327 undo_all ();
3328 return 0;
3331 /* If the following substitution will modify I0SRC, make a copy of it
3332 for the case where it is substituted for I0DEST in I1PAT later. */
3333 if (added_sets_1 && i0_feeds_i1_n)
3334 i0src_copy = copy_rtx (i0src);
3335 /* And a copy for I0DEST in I2PAT substitution. */
3336 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3337 || (i0_feeds_i2_n)))
3338 i0src_copy2 = copy_rtx (i0src);
3340 n_occurrences = 0;
3341 subst_low_luid = DF_INSN_LUID (i0);
3342 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3343 substed_i0 = 1;
3346 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3347 to count all the ways that I2SRC and I1SRC can be used. */
3348 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3349 && i2_is_used + added_sets_2 > 1)
3350 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3351 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3352 > 1))
3353 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3354 && (n_occurrences + added_sets_0
3355 + (added_sets_1 && i0_feeds_i1_n)
3356 + (added_sets_2 && i0_feeds_i2_n)
3357 > 1))
3358 /* Fail if we tried to make a new register. */
3359 || max_reg_num () != maxreg
3360 /* Fail if we couldn't do something and have a CLOBBER. */
3361 || GET_CODE (newpat) == CLOBBER
3362 /* Fail if this new pattern is a MULT and we didn't have one before
3363 at the outer level. */
3364 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3365 && ! have_mult))
3367 undo_all ();
3368 return 0;
3371 /* If the actions of the earlier insns must be kept
3372 in addition to substituting them into the latest one,
3373 we must make a new PARALLEL for the latest insn
3374 to hold additional the SETs. */
3376 if (added_sets_0 || added_sets_1 || added_sets_2)
3378 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3379 combine_extras++;
3381 if (GET_CODE (newpat) == PARALLEL)
3383 rtvec old = XVEC (newpat, 0);
3384 total_sets = XVECLEN (newpat, 0) + extra_sets;
3385 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3386 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3387 sizeof (old->elem[0]) * old->num_elem);
3389 else
3391 rtx old = newpat;
3392 total_sets = 1 + extra_sets;
3393 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3394 XVECEXP (newpat, 0, 0) = old;
3397 if (added_sets_0)
3398 XVECEXP (newpat, 0, --total_sets) = i0pat;
3400 if (added_sets_1)
3402 rtx t = i1pat;
3403 if (i0_feeds_i1_n)
3404 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3406 XVECEXP (newpat, 0, --total_sets) = t;
3408 if (added_sets_2)
3410 rtx t = i2pat;
3411 if (i1_feeds_i2_n)
3412 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3413 i0_feeds_i1_n && i0dest_in_i0src);
3414 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3415 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3417 XVECEXP (newpat, 0, --total_sets) = t;
3421 validate_replacement:
3423 /* Note which hard regs this insn has as inputs. */
3424 mark_used_regs_combine (newpat);
3426 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3427 consider splitting this pattern, we might need these clobbers. */
3428 if (i1 && GET_CODE (newpat) == PARALLEL
3429 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3431 int len = XVECLEN (newpat, 0);
3433 newpat_vec_with_clobbers = rtvec_alloc (len);
3434 for (i = 0; i < len; i++)
3435 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3438 /* We have recognized nothing yet. */
3439 insn_code_number = -1;
3441 /* See if this is a PARALLEL of two SETs where one SET's destination is
3442 a register that is unused and this isn't marked as an instruction that
3443 might trap in an EH region. In that case, we just need the other SET.
3444 We prefer this over the PARALLEL.
3446 This can occur when simplifying a divmod insn. We *must* test for this
3447 case here because the code below that splits two independent SETs doesn't
3448 handle this case correctly when it updates the register status.
3450 It's pointless doing this if we originally had two sets, one from
3451 i3, and one from i2. Combining then splitting the parallel results
3452 in the original i2 again plus an invalid insn (which we delete).
3453 The net effect is only to move instructions around, which makes
3454 debug info less accurate. */
3456 if (!(added_sets_2 && i1 == 0)
3457 && is_parallel_of_n_reg_sets (newpat, 2)
3458 && asm_noperands (newpat) < 0)
3460 rtx set0 = XVECEXP (newpat, 0, 0);
3461 rtx set1 = XVECEXP (newpat, 0, 1);
3462 rtx oldpat = newpat;
3464 if (((REG_P (SET_DEST (set1))
3465 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3466 || (GET_CODE (SET_DEST (set1)) == SUBREG
3467 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3468 && insn_nothrow_p (i3)
3469 && !side_effects_p (SET_SRC (set1)))
3471 newpat = set0;
3472 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3475 else if (((REG_P (SET_DEST (set0))
3476 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3477 || (GET_CODE (SET_DEST (set0)) == SUBREG
3478 && find_reg_note (i3, REG_UNUSED,
3479 SUBREG_REG (SET_DEST (set0)))))
3480 && insn_nothrow_p (i3)
3481 && !side_effects_p (SET_SRC (set0)))
3483 newpat = set1;
3484 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3486 if (insn_code_number >= 0)
3487 changed_i3_dest = 1;
3490 if (insn_code_number < 0)
3491 newpat = oldpat;
3494 /* Is the result of combination a valid instruction? */
3495 if (insn_code_number < 0)
3496 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3498 /* If we were combining three insns and the result is a simple SET
3499 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3500 insns. There are two ways to do this. It can be split using a
3501 machine-specific method (like when you have an addition of a large
3502 constant) or by combine in the function find_split_point. */
3504 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3505 && asm_noperands (newpat) < 0)
3507 rtx parallel, *split;
3508 rtx_insn *m_split_insn;
3510 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3511 use I2DEST as a scratch register will help. In the latter case,
3512 convert I2DEST to the mode of the source of NEWPAT if we can. */
3514 m_split_insn = combine_split_insns (newpat, i3);
3516 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3517 inputs of NEWPAT. */
3519 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3520 possible to try that as a scratch reg. This would require adding
3521 more code to make it work though. */
3523 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3525 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3527 /* First try to split using the original register as a
3528 scratch register. */
3529 parallel = gen_rtx_PARALLEL (VOIDmode,
3530 gen_rtvec (2, newpat,
3531 gen_rtx_CLOBBER (VOIDmode,
3532 i2dest)));
3533 m_split_insn = combine_split_insns (parallel, i3);
3535 /* If that didn't work, try changing the mode of I2DEST if
3536 we can. */
3537 if (m_split_insn == 0
3538 && new_mode != GET_MODE (i2dest)
3539 && new_mode != VOIDmode
3540 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3542 machine_mode old_mode = GET_MODE (i2dest);
3543 rtx ni2dest;
3545 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3546 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3547 else
3549 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3550 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3553 parallel = (gen_rtx_PARALLEL
3554 (VOIDmode,
3555 gen_rtvec (2, newpat,
3556 gen_rtx_CLOBBER (VOIDmode,
3557 ni2dest))));
3558 m_split_insn = combine_split_insns (parallel, i3);
3560 if (m_split_insn == 0
3561 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3563 struct undo *buf;
3565 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3566 buf = undobuf.undos;
3567 undobuf.undos = buf->next;
3568 buf->next = undobuf.frees;
3569 undobuf.frees = buf;
3573 i2scratch = m_split_insn != 0;
3576 /* If recog_for_combine has discarded clobbers, try to use them
3577 again for the split. */
3578 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3580 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3581 m_split_insn = combine_split_insns (parallel, i3);
3584 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3586 rtx m_split_pat = PATTERN (m_split_insn);
3587 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3588 if (insn_code_number >= 0)
3589 newpat = m_split_pat;
3591 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3592 && (next_nonnote_nondebug_insn (i2) == i3
3593 || ! use_crosses_set_p (PATTERN (m_split_insn), DF_INSN_LUID (i2))))
3595 rtx i2set, i3set;
3596 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3597 newi2pat = PATTERN (m_split_insn);
3599 i3set = single_set (NEXT_INSN (m_split_insn));
3600 i2set = single_set (m_split_insn);
3602 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3604 /* If I2 or I3 has multiple SETs, we won't know how to track
3605 register status, so don't use these insns. If I2's destination
3606 is used between I2 and I3, we also can't use these insns. */
3608 if (i2_code_number >= 0 && i2set && i3set
3609 && (next_nonnote_nondebug_insn (i2) == i3
3610 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3611 insn_code_number = recog_for_combine (&newi3pat, i3,
3612 &new_i3_notes);
3613 if (insn_code_number >= 0)
3614 newpat = newi3pat;
3616 /* It is possible that both insns now set the destination of I3.
3617 If so, we must show an extra use of it. */
3619 if (insn_code_number >= 0)
3621 rtx new_i3_dest = SET_DEST (i3set);
3622 rtx new_i2_dest = SET_DEST (i2set);
3624 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3625 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3626 || GET_CODE (new_i3_dest) == SUBREG)
3627 new_i3_dest = XEXP (new_i3_dest, 0);
3629 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3630 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3631 || GET_CODE (new_i2_dest) == SUBREG)
3632 new_i2_dest = XEXP (new_i2_dest, 0);
3634 if (REG_P (new_i3_dest)
3635 && REG_P (new_i2_dest)
3636 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3637 && REGNO (new_i2_dest) < reg_n_sets_max)
3638 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3642 /* If we can split it and use I2DEST, go ahead and see if that
3643 helps things be recognized. Verify that none of the registers
3644 are set between I2 and I3. */
3645 if (insn_code_number < 0
3646 && (split = find_split_point (&newpat, i3, false)) != 0
3647 && (!HAVE_cc0 || REG_P (i2dest))
3648 /* We need I2DEST in the proper mode. If it is a hard register
3649 or the only use of a pseudo, we can change its mode.
3650 Make sure we don't change a hard register to have a mode that
3651 isn't valid for it, or change the number of registers. */
3652 && (GET_MODE (*split) == GET_MODE (i2dest)
3653 || GET_MODE (*split) == VOIDmode
3654 || can_change_dest_mode (i2dest, added_sets_2,
3655 GET_MODE (*split)))
3656 && (next_nonnote_nondebug_insn (i2) == i3
3657 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3658 /* We can't overwrite I2DEST if its value is still used by
3659 NEWPAT. */
3660 && ! reg_referenced_p (i2dest, newpat))
3662 rtx newdest = i2dest;
3663 enum rtx_code split_code = GET_CODE (*split);
3664 machine_mode split_mode = GET_MODE (*split);
3665 bool subst_done = false;
3666 newi2pat = NULL_RTX;
3668 i2scratch = true;
3670 /* *SPLIT may be part of I2SRC, so make sure we have the
3671 original expression around for later debug processing.
3672 We should not need I2SRC any more in other cases. */
3673 if (MAY_HAVE_DEBUG_INSNS)
3674 i2src = copy_rtx (i2src);
3675 else
3676 i2src = NULL;
3678 /* Get NEWDEST as a register in the proper mode. We have already
3679 validated that we can do this. */
3680 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3682 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3683 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3684 else
3686 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3687 newdest = regno_reg_rtx[REGNO (i2dest)];
3691 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3692 an ASHIFT. This can occur if it was inside a PLUS and hence
3693 appeared to be a memory address. This is a kludge. */
3694 if (split_code == MULT
3695 && CONST_INT_P (XEXP (*split, 1))
3696 && INTVAL (XEXP (*split, 1)) > 0
3697 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3699 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3700 XEXP (*split, 0), GEN_INT (i)));
3701 /* Update split_code because we may not have a multiply
3702 anymore. */
3703 split_code = GET_CODE (*split);
3706 /* Similarly for (plus (mult FOO (const_int pow2))). */
3707 if (split_code == PLUS
3708 && GET_CODE (XEXP (*split, 0)) == MULT
3709 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3710 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3711 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3713 rtx nsplit = XEXP (*split, 0);
3714 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3715 XEXP (nsplit, 0), GEN_INT (i)));
3716 /* Update split_code because we may not have a multiply
3717 anymore. */
3718 split_code = GET_CODE (*split);
3721 #ifdef INSN_SCHEDULING
3722 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3723 be written as a ZERO_EXTEND. */
3724 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3726 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3727 what it really is. */
3728 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3729 == SIGN_EXTEND)
3730 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3731 SUBREG_REG (*split)));
3732 else
3733 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3734 SUBREG_REG (*split)));
3736 #endif
3738 /* Attempt to split binary operators using arithmetic identities. */
3739 if (BINARY_P (SET_SRC (newpat))
3740 && split_mode == GET_MODE (SET_SRC (newpat))
3741 && ! side_effects_p (SET_SRC (newpat)))
3743 rtx setsrc = SET_SRC (newpat);
3744 machine_mode mode = GET_MODE (setsrc);
3745 enum rtx_code code = GET_CODE (setsrc);
3746 rtx src_op0 = XEXP (setsrc, 0);
3747 rtx src_op1 = XEXP (setsrc, 1);
3749 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3750 if (rtx_equal_p (src_op0, src_op1))
3752 newi2pat = gen_rtx_SET (newdest, src_op0);
3753 SUBST (XEXP (setsrc, 0), newdest);
3754 SUBST (XEXP (setsrc, 1), newdest);
3755 subst_done = true;
3757 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3758 else if ((code == PLUS || code == MULT)
3759 && GET_CODE (src_op0) == code
3760 && GET_CODE (XEXP (src_op0, 0)) == code
3761 && (INTEGRAL_MODE_P (mode)
3762 || (FLOAT_MODE_P (mode)
3763 && flag_unsafe_math_optimizations)))
3765 rtx p = XEXP (XEXP (src_op0, 0), 0);
3766 rtx q = XEXP (XEXP (src_op0, 0), 1);
3767 rtx r = XEXP (src_op0, 1);
3768 rtx s = src_op1;
3770 /* Split both "((X op Y) op X) op Y" and
3771 "((X op Y) op Y) op X" as "T op T" where T is
3772 "X op Y". */
3773 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3774 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3776 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3777 SUBST (XEXP (setsrc, 0), newdest);
3778 SUBST (XEXP (setsrc, 1), newdest);
3779 subst_done = true;
3781 /* Split "((X op X) op Y) op Y)" as "T op T" where
3782 T is "X op Y". */
3783 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3785 rtx tmp = simplify_gen_binary (code, mode, p, r);
3786 newi2pat = gen_rtx_SET (newdest, tmp);
3787 SUBST (XEXP (setsrc, 0), newdest);
3788 SUBST (XEXP (setsrc, 1), newdest);
3789 subst_done = true;
3794 if (!subst_done)
3796 newi2pat = gen_rtx_SET (newdest, *split);
3797 SUBST (*split, newdest);
3800 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3802 /* recog_for_combine might have added CLOBBERs to newi2pat.
3803 Make sure NEWPAT does not depend on the clobbered regs. */
3804 if (GET_CODE (newi2pat) == PARALLEL)
3805 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3806 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3808 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3809 if (reg_overlap_mentioned_p (reg, newpat))
3811 undo_all ();
3812 return 0;
3816 /* If the split point was a MULT and we didn't have one before,
3817 don't use one now. */
3818 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3819 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3823 /* Check for a case where we loaded from memory in a narrow mode and
3824 then sign extended it, but we need both registers. In that case,
3825 we have a PARALLEL with both loads from the same memory location.
3826 We can split this into a load from memory followed by a register-register
3827 copy. This saves at least one insn, more if register allocation can
3828 eliminate the copy.
3830 We cannot do this if the destination of the first assignment is a
3831 condition code register or cc0. We eliminate this case by making sure
3832 the SET_DEST and SET_SRC have the same mode.
3834 We cannot do this if the destination of the second assignment is
3835 a register that we have already assumed is zero-extended. Similarly
3836 for a SUBREG of such a register. */
3838 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3839 && GET_CODE (newpat) == PARALLEL
3840 && XVECLEN (newpat, 0) == 2
3841 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3842 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3843 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3844 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3845 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3846 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3847 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3848 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3849 DF_INSN_LUID (i2))
3850 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3851 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3852 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3853 (REG_P (temp_expr)
3854 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3855 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3856 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3857 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3858 != GET_MODE_MASK (word_mode))))
3859 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3860 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3861 (REG_P (temp_expr)
3862 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3863 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3864 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3865 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3866 != GET_MODE_MASK (word_mode)))))
3867 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3868 SET_SRC (XVECEXP (newpat, 0, 1)))
3869 && ! find_reg_note (i3, REG_UNUSED,
3870 SET_DEST (XVECEXP (newpat, 0, 0))))
3872 rtx ni2dest;
3874 newi2pat = XVECEXP (newpat, 0, 0);
3875 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3876 newpat = XVECEXP (newpat, 0, 1);
3877 SUBST (SET_SRC (newpat),
3878 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3879 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3881 if (i2_code_number >= 0)
3882 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3884 if (insn_code_number >= 0)
3885 swap_i2i3 = 1;
3888 /* Similarly, check for a case where we have a PARALLEL of two independent
3889 SETs but we started with three insns. In this case, we can do the sets
3890 as two separate insns. This case occurs when some SET allows two
3891 other insns to combine, but the destination of that SET is still live.
3893 Also do this if we started with two insns and (at least) one of the
3894 resulting sets is a noop; this noop will be deleted later. */
3896 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
3897 && GET_CODE (newpat) == PARALLEL
3898 && XVECLEN (newpat, 0) == 2
3899 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3900 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3901 && (i1 || set_noop_p (XVECEXP (newpat, 0, 0))
3902 || set_noop_p (XVECEXP (newpat, 0, 1)))
3903 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3904 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3905 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3906 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3907 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3908 XVECEXP (newpat, 0, 0))
3909 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3910 XVECEXP (newpat, 0, 1))
3911 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3912 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3914 rtx set0 = XVECEXP (newpat, 0, 0);
3915 rtx set1 = XVECEXP (newpat, 0, 1);
3917 /* Normally, it doesn't matter which of the two is done first,
3918 but the one that references cc0 can't be the second, and
3919 one which uses any regs/memory set in between i2 and i3 can't
3920 be first. The PARALLEL might also have been pre-existing in i3,
3921 so we need to make sure that we won't wrongly hoist a SET to i2
3922 that would conflict with a death note present in there. */
3923 if (!use_crosses_set_p (SET_SRC (set1), DF_INSN_LUID (i2))
3924 && !(REG_P (SET_DEST (set1))
3925 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
3926 && !(GET_CODE (SET_DEST (set1)) == SUBREG
3927 && find_reg_note (i2, REG_DEAD,
3928 SUBREG_REG (SET_DEST (set1))))
3929 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
3930 /* If I3 is a jump, ensure that set0 is a jump so that
3931 we do not create invalid RTL. */
3932 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
3935 newi2pat = set1;
3936 newpat = set0;
3938 else if (!use_crosses_set_p (SET_SRC (set0), DF_INSN_LUID (i2))
3939 && !(REG_P (SET_DEST (set0))
3940 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
3941 && !(GET_CODE (SET_DEST (set0)) == SUBREG
3942 && find_reg_note (i2, REG_DEAD,
3943 SUBREG_REG (SET_DEST (set0))))
3944 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
3945 /* If I3 is a jump, ensure that set1 is a jump so that
3946 we do not create invalid RTL. */
3947 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
3950 newi2pat = set0;
3951 newpat = set1;
3953 else
3955 undo_all ();
3956 return 0;
3959 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3961 if (i2_code_number >= 0)
3963 /* recog_for_combine might have added CLOBBERs to newi2pat.
3964 Make sure NEWPAT does not depend on the clobbered regs. */
3965 if (GET_CODE (newi2pat) == PARALLEL)
3967 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3968 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3970 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3971 if (reg_overlap_mentioned_p (reg, newpat))
3973 undo_all ();
3974 return 0;
3979 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3983 /* If it still isn't recognized, fail and change things back the way they
3984 were. */
3985 if ((insn_code_number < 0
3986 /* Is the result a reasonable ASM_OPERANDS? */
3987 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3989 undo_all ();
3990 return 0;
3993 /* If we had to change another insn, make sure it is valid also. */
3994 if (undobuf.other_insn)
3996 CLEAR_HARD_REG_SET (newpat_used_regs);
3998 other_pat = PATTERN (undobuf.other_insn);
3999 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4000 &new_other_notes);
4002 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4004 undo_all ();
4005 return 0;
4009 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4010 they are adjacent to each other or not. */
4011 if (HAVE_cc0)
4013 rtx_insn *p = prev_nonnote_insn (i3);
4014 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4015 && sets_cc0_p (newi2pat))
4017 undo_all ();
4018 return 0;
4022 /* Only allow this combination if insn_rtx_costs reports that the
4023 replacement instructions are cheaper than the originals. */
4024 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4026 undo_all ();
4027 return 0;
4030 if (MAY_HAVE_DEBUG_INSNS)
4032 struct undo *undo;
4034 for (undo = undobuf.undos; undo; undo = undo->next)
4035 if (undo->kind == UNDO_MODE)
4037 rtx reg = *undo->where.r;
4038 machine_mode new_mode = GET_MODE (reg);
4039 machine_mode old_mode = undo->old_contents.m;
4041 /* Temporarily revert mode back. */
4042 adjust_reg_mode (reg, old_mode);
4044 if (reg == i2dest && i2scratch)
4046 /* If we used i2dest as a scratch register with a
4047 different mode, substitute it for the original
4048 i2src while its original mode is temporarily
4049 restored, and then clear i2scratch so that we don't
4050 do it again later. */
4051 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4052 this_basic_block);
4053 i2scratch = false;
4054 /* Put back the new mode. */
4055 adjust_reg_mode (reg, new_mode);
4057 else
4059 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4060 rtx_insn *first, *last;
4062 if (reg == i2dest)
4064 first = i2;
4065 last = last_combined_insn;
4067 else
4069 first = i3;
4070 last = undobuf.other_insn;
4071 gcc_assert (last);
4072 if (DF_INSN_LUID (last)
4073 < DF_INSN_LUID (last_combined_insn))
4074 last = last_combined_insn;
4077 /* We're dealing with a reg that changed mode but not
4078 meaning, so we want to turn it into a subreg for
4079 the new mode. However, because of REG sharing and
4080 because its mode had already changed, we have to do
4081 it in two steps. First, replace any debug uses of
4082 reg, with its original mode temporarily restored,
4083 with this copy we have created; then, replace the
4084 copy with the SUBREG of the original shared reg,
4085 once again changed to the new mode. */
4086 propagate_for_debug (first, last, reg, tempreg,
4087 this_basic_block);
4088 adjust_reg_mode (reg, new_mode);
4089 propagate_for_debug (first, last, tempreg,
4090 lowpart_subreg (old_mode, reg, new_mode),
4091 this_basic_block);
4096 /* If we will be able to accept this, we have made a
4097 change to the destination of I3. This requires us to
4098 do a few adjustments. */
4100 if (changed_i3_dest)
4102 PATTERN (i3) = newpat;
4103 adjust_for_new_dest (i3);
4106 /* We now know that we can do this combination. Merge the insns and
4107 update the status of registers and LOG_LINKS. */
4109 if (undobuf.other_insn)
4111 rtx note, next;
4113 PATTERN (undobuf.other_insn) = other_pat;
4115 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4116 ensure that they are still valid. Then add any non-duplicate
4117 notes added by recog_for_combine. */
4118 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4120 next = XEXP (note, 1);
4122 if ((REG_NOTE_KIND (note) == REG_DEAD
4123 && !reg_referenced_p (XEXP (note, 0),
4124 PATTERN (undobuf.other_insn)))
4125 ||(REG_NOTE_KIND (note) == REG_UNUSED
4126 && !reg_set_p (XEXP (note, 0),
4127 PATTERN (undobuf.other_insn))))
4128 remove_note (undobuf.other_insn, note);
4131 distribute_notes (new_other_notes, undobuf.other_insn,
4132 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4133 NULL_RTX);
4136 if (swap_i2i3)
4138 rtx_insn *insn;
4139 struct insn_link *link;
4140 rtx ni2dest;
4142 /* I3 now uses what used to be its destination and which is now
4143 I2's destination. This requires us to do a few adjustments. */
4144 PATTERN (i3) = newpat;
4145 adjust_for_new_dest (i3);
4147 /* We need a LOG_LINK from I3 to I2. But we used to have one,
4148 so we still will.
4150 However, some later insn might be using I2's dest and have
4151 a LOG_LINK pointing at I3. We must remove this link.
4152 The simplest way to remove the link is to point it at I1,
4153 which we know will be a NOTE. */
4155 /* newi2pat is usually a SET here; however, recog_for_combine might
4156 have added some clobbers. */
4157 if (GET_CODE (newi2pat) == PARALLEL)
4158 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
4159 else
4160 ni2dest = SET_DEST (newi2pat);
4162 for (insn = NEXT_INSN (i3);
4163 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4164 || insn != BB_HEAD (this_basic_block->next_bb));
4165 insn = NEXT_INSN (insn))
4167 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
4169 FOR_EACH_LOG_LINK (link, insn)
4170 if (link->insn == i3)
4171 link->insn = i1;
4173 break;
4179 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4180 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4181 rtx midnotes = 0;
4182 int from_luid;
4183 /* Compute which registers we expect to eliminate. newi2pat may be setting
4184 either i3dest or i2dest, so we must check it. */
4185 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4186 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4187 || !i2dest_killed
4188 ? 0 : i2dest);
4189 /* For i1, we need to compute both local elimination and global
4190 elimination information with respect to newi2pat because i1dest
4191 may be the same as i3dest, in which case newi2pat may be setting
4192 i1dest. Global information is used when distributing REG_DEAD
4193 note for i2 and i3, in which case it does matter if newi2pat sets
4194 i1dest or not.
4196 Local information is used when distributing REG_DEAD note for i1,
4197 in which case it doesn't matter if newi2pat sets i1dest or not.
4198 See PR62151, if we have four insns combination:
4199 i0: r0 <- i0src
4200 i1: r1 <- i1src (using r0)
4201 REG_DEAD (r0)
4202 i2: r0 <- i2src (using r1)
4203 i3: r3 <- i3src (using r0)
4204 ix: using r0
4205 From i1's point of view, r0 is eliminated, no matter if it is set
4206 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4207 should be discarded.
4209 Note local information only affects cases in forms like "I1->I2->I3",
4210 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4211 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4212 i0dest anyway. */
4213 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4214 || !i1dest_killed
4215 ? 0 : i1dest);
4216 rtx elim_i1 = (local_elim_i1 == 0
4217 || (newi2pat && reg_set_p (i1dest, newi2pat))
4218 ? 0 : i1dest);
4219 /* Same case as i1. */
4220 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4221 ? 0 : i0dest);
4222 rtx elim_i0 = (local_elim_i0 == 0
4223 || (newi2pat && reg_set_p (i0dest, newi2pat))
4224 ? 0 : i0dest);
4226 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4227 clear them. */
4228 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4229 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4230 if (i1)
4231 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4232 if (i0)
4233 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4235 /* Ensure that we do not have something that should not be shared but
4236 occurs multiple times in the new insns. Check this by first
4237 resetting all the `used' flags and then copying anything is shared. */
4239 reset_used_flags (i3notes);
4240 reset_used_flags (i2notes);
4241 reset_used_flags (i1notes);
4242 reset_used_flags (i0notes);
4243 reset_used_flags (newpat);
4244 reset_used_flags (newi2pat);
4245 if (undobuf.other_insn)
4246 reset_used_flags (PATTERN (undobuf.other_insn));
4248 i3notes = copy_rtx_if_shared (i3notes);
4249 i2notes = copy_rtx_if_shared (i2notes);
4250 i1notes = copy_rtx_if_shared (i1notes);
4251 i0notes = copy_rtx_if_shared (i0notes);
4252 newpat = copy_rtx_if_shared (newpat);
4253 newi2pat = copy_rtx_if_shared (newi2pat);
4254 if (undobuf.other_insn)
4255 reset_used_flags (PATTERN (undobuf.other_insn));
4257 INSN_CODE (i3) = insn_code_number;
4258 PATTERN (i3) = newpat;
4260 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4262 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
4264 reset_used_flags (call_usage);
4265 call_usage = copy_rtx (call_usage);
4267 if (substed_i2)
4269 /* I2SRC must still be meaningful at this point. Some splitting
4270 operations can invalidate I2SRC, but those operations do not
4271 apply to calls. */
4272 gcc_assert (i2src);
4273 replace_rtx (call_usage, i2dest, i2src);
4276 if (substed_i1)
4277 replace_rtx (call_usage, i1dest, i1src);
4278 if (substed_i0)
4279 replace_rtx (call_usage, i0dest, i0src);
4281 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4284 if (undobuf.other_insn)
4285 INSN_CODE (undobuf.other_insn) = other_code_number;
4287 /* We had one special case above where I2 had more than one set and
4288 we replaced a destination of one of those sets with the destination
4289 of I3. In that case, we have to update LOG_LINKS of insns later
4290 in this basic block. Note that this (expensive) case is rare.
4292 Also, in this case, we must pretend that all REG_NOTEs for I2
4293 actually came from I3, so that REG_UNUSED notes from I2 will be
4294 properly handled. */
4296 if (i3_subst_into_i2)
4298 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4299 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4300 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4301 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4302 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4303 && ! find_reg_note (i2, REG_UNUSED,
4304 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4305 for (temp_insn = NEXT_INSN (i2);
4306 temp_insn
4307 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4308 || BB_HEAD (this_basic_block) != temp_insn);
4309 temp_insn = NEXT_INSN (temp_insn))
4310 if (temp_insn != i3 && INSN_P (temp_insn))
4311 FOR_EACH_LOG_LINK (link, temp_insn)
4312 if (link->insn == i2)
4313 link->insn = i3;
4315 if (i3notes)
4317 rtx link = i3notes;
4318 while (XEXP (link, 1))
4319 link = XEXP (link, 1);
4320 XEXP (link, 1) = i2notes;
4322 else
4323 i3notes = i2notes;
4324 i2notes = 0;
4327 LOG_LINKS (i3) = NULL;
4328 REG_NOTES (i3) = 0;
4329 LOG_LINKS (i2) = NULL;
4330 REG_NOTES (i2) = 0;
4332 if (newi2pat)
4334 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4335 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4336 this_basic_block);
4337 INSN_CODE (i2) = i2_code_number;
4338 PATTERN (i2) = newi2pat;
4340 else
4342 if (MAY_HAVE_DEBUG_INSNS && i2src)
4343 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4344 this_basic_block);
4345 SET_INSN_DELETED (i2);
4348 if (i1)
4350 LOG_LINKS (i1) = NULL;
4351 REG_NOTES (i1) = 0;
4352 if (MAY_HAVE_DEBUG_INSNS)
4353 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4354 this_basic_block);
4355 SET_INSN_DELETED (i1);
4358 if (i0)
4360 LOG_LINKS (i0) = NULL;
4361 REG_NOTES (i0) = 0;
4362 if (MAY_HAVE_DEBUG_INSNS)
4363 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4364 this_basic_block);
4365 SET_INSN_DELETED (i0);
4368 /* Get death notes for everything that is now used in either I3 or
4369 I2 and used to die in a previous insn. If we built two new
4370 patterns, move from I1 to I2 then I2 to I3 so that we get the
4371 proper movement on registers that I2 modifies. */
4373 if (i0)
4374 from_luid = DF_INSN_LUID (i0);
4375 else if (i1)
4376 from_luid = DF_INSN_LUID (i1);
4377 else
4378 from_luid = DF_INSN_LUID (i2);
4379 if (newi2pat)
4380 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4381 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4383 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4384 if (i3notes)
4385 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4386 elim_i2, elim_i1, elim_i0);
4387 if (i2notes)
4388 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4389 elim_i2, elim_i1, elim_i0);
4390 if (i1notes)
4391 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4392 elim_i2, local_elim_i1, local_elim_i0);
4393 if (i0notes)
4394 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4395 elim_i2, elim_i1, local_elim_i0);
4396 if (midnotes)
4397 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4398 elim_i2, elim_i1, elim_i0);
4400 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4401 know these are REG_UNUSED and want them to go to the desired insn,
4402 so we always pass it as i3. */
4404 if (newi2pat && new_i2_notes)
4405 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4406 NULL_RTX);
4408 if (new_i3_notes)
4409 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4410 NULL_RTX);
4412 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4413 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4414 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4415 in that case, it might delete I2. Similarly for I2 and I1.
4416 Show an additional death due to the REG_DEAD note we make here. If
4417 we discard it in distribute_notes, we will decrement it again. */
4419 if (i3dest_killed)
4421 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4422 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4423 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4424 elim_i1, elim_i0);
4425 else
4426 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4427 elim_i2, elim_i1, elim_i0);
4430 if (i2dest_in_i2src)
4432 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4433 if (newi2pat && reg_set_p (i2dest, newi2pat))
4434 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4435 NULL_RTX, NULL_RTX);
4436 else
4437 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4438 NULL_RTX, NULL_RTX, NULL_RTX);
4441 if (i1dest_in_i1src)
4443 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4444 if (newi2pat && reg_set_p (i1dest, newi2pat))
4445 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4446 NULL_RTX, NULL_RTX);
4447 else
4448 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4449 NULL_RTX, NULL_RTX, NULL_RTX);
4452 if (i0dest_in_i0src)
4454 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4455 if (newi2pat && reg_set_p (i0dest, newi2pat))
4456 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4457 NULL_RTX, NULL_RTX);
4458 else
4459 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4460 NULL_RTX, NULL_RTX, NULL_RTX);
4463 distribute_links (i3links);
4464 distribute_links (i2links);
4465 distribute_links (i1links);
4466 distribute_links (i0links);
4468 if (REG_P (i2dest))
4470 struct insn_link *link;
4471 rtx_insn *i2_insn = 0;
4472 rtx i2_val = 0, set;
4474 /* The insn that used to set this register doesn't exist, and
4475 this life of the register may not exist either. See if one of
4476 I3's links points to an insn that sets I2DEST. If it does,
4477 that is now the last known value for I2DEST. If we don't update
4478 this and I2 set the register to a value that depended on its old
4479 contents, we will get confused. If this insn is used, thing
4480 will be set correctly in combine_instructions. */
4481 FOR_EACH_LOG_LINK (link, i3)
4482 if ((set = single_set (link->insn)) != 0
4483 && rtx_equal_p (i2dest, SET_DEST (set)))
4484 i2_insn = link->insn, i2_val = SET_SRC (set);
4486 record_value_for_reg (i2dest, i2_insn, i2_val);
4488 /* If the reg formerly set in I2 died only once and that was in I3,
4489 zero its use count so it won't make `reload' do any work. */
4490 if (! added_sets_2
4491 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4492 && ! i2dest_in_i2src
4493 && REGNO (i2dest) < reg_n_sets_max)
4494 INC_REG_N_SETS (REGNO (i2dest), -1);
4497 if (i1 && REG_P (i1dest))
4499 struct insn_link *link;
4500 rtx_insn *i1_insn = 0;
4501 rtx i1_val = 0, set;
4503 FOR_EACH_LOG_LINK (link, i3)
4504 if ((set = single_set (link->insn)) != 0
4505 && rtx_equal_p (i1dest, SET_DEST (set)))
4506 i1_insn = link->insn, i1_val = SET_SRC (set);
4508 record_value_for_reg (i1dest, i1_insn, i1_val);
4510 if (! added_sets_1
4511 && ! i1dest_in_i1src
4512 && REGNO (i1dest) < reg_n_sets_max)
4513 INC_REG_N_SETS (REGNO (i1dest), -1);
4516 if (i0 && REG_P (i0dest))
4518 struct insn_link *link;
4519 rtx_insn *i0_insn = 0;
4520 rtx i0_val = 0, set;
4522 FOR_EACH_LOG_LINK (link, i3)
4523 if ((set = single_set (link->insn)) != 0
4524 && rtx_equal_p (i0dest, SET_DEST (set)))
4525 i0_insn = link->insn, i0_val = SET_SRC (set);
4527 record_value_for_reg (i0dest, i0_insn, i0_val);
4529 if (! added_sets_0
4530 && ! i0dest_in_i0src
4531 && REGNO (i0dest) < reg_n_sets_max)
4532 INC_REG_N_SETS (REGNO (i0dest), -1);
4535 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4536 been made to this insn. The order is important, because newi2pat
4537 can affect nonzero_bits of newpat. */
4538 if (newi2pat)
4539 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4540 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4543 if (undobuf.other_insn != NULL_RTX)
4545 if (dump_file)
4547 fprintf (dump_file, "modifying other_insn ");
4548 dump_insn_slim (dump_file, undobuf.other_insn);
4550 df_insn_rescan (undobuf.other_insn);
4553 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4555 if (dump_file)
4557 fprintf (dump_file, "modifying insn i0 ");
4558 dump_insn_slim (dump_file, i0);
4560 df_insn_rescan (i0);
4563 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4565 if (dump_file)
4567 fprintf (dump_file, "modifying insn i1 ");
4568 dump_insn_slim (dump_file, i1);
4570 df_insn_rescan (i1);
4573 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4575 if (dump_file)
4577 fprintf (dump_file, "modifying insn i2 ");
4578 dump_insn_slim (dump_file, i2);
4580 df_insn_rescan (i2);
4583 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4585 if (dump_file)
4587 fprintf (dump_file, "modifying insn i3 ");
4588 dump_insn_slim (dump_file, i3);
4590 df_insn_rescan (i3);
4593 /* Set new_direct_jump_p if a new return or simple jump instruction
4594 has been created. Adjust the CFG accordingly. */
4595 if (returnjump_p (i3) || any_uncondjump_p (i3))
4597 *new_direct_jump_p = 1;
4598 mark_jump_label (PATTERN (i3), i3, 0);
4599 update_cfg_for_uncondjump (i3);
4602 if (undobuf.other_insn != NULL_RTX
4603 && (returnjump_p (undobuf.other_insn)
4604 || any_uncondjump_p (undobuf.other_insn)))
4606 *new_direct_jump_p = 1;
4607 update_cfg_for_uncondjump (undobuf.other_insn);
4610 /* A noop might also need cleaning up of CFG, if it comes from the
4611 simplification of a jump. */
4612 if (JUMP_P (i3)
4613 && GET_CODE (newpat) == SET
4614 && SET_SRC (newpat) == pc_rtx
4615 && SET_DEST (newpat) == pc_rtx)
4617 *new_direct_jump_p = 1;
4618 update_cfg_for_uncondjump (i3);
4621 if (undobuf.other_insn != NULL_RTX
4622 && JUMP_P (undobuf.other_insn)
4623 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4624 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4625 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4627 *new_direct_jump_p = 1;
4628 update_cfg_for_uncondjump (undobuf.other_insn);
4631 combine_successes++;
4632 undo_commit ();
4634 if (added_links_insn
4635 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4636 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4637 return added_links_insn;
4638 else
4639 return newi2pat ? i2 : i3;
4642 /* Get a marker for undoing to the current state. */
4644 static void *
4645 get_undo_marker (void)
4647 return undobuf.undos;
4650 /* Undo the modifications up to the marker. */
4652 static void
4653 undo_to_marker (void *marker)
4655 struct undo *undo, *next;
4657 for (undo = undobuf.undos; undo != marker; undo = next)
4659 gcc_assert (undo);
4661 next = undo->next;
4662 switch (undo->kind)
4664 case UNDO_RTX:
4665 *undo->where.r = undo->old_contents.r;
4666 break;
4667 case UNDO_INT:
4668 *undo->where.i = undo->old_contents.i;
4669 break;
4670 case UNDO_MODE:
4671 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4672 break;
4673 case UNDO_LINKS:
4674 *undo->where.l = undo->old_contents.l;
4675 break;
4676 default:
4677 gcc_unreachable ();
4680 undo->next = undobuf.frees;
4681 undobuf.frees = undo;
4684 undobuf.undos = (struct undo *) marker;
4687 /* Undo all the modifications recorded in undobuf. */
4689 static void
4690 undo_all (void)
4692 undo_to_marker (0);
4695 /* We've committed to accepting the changes we made. Move all
4696 of the undos to the free list. */
4698 static void
4699 undo_commit (void)
4701 struct undo *undo, *next;
4703 for (undo = undobuf.undos; undo; undo = next)
4705 next = undo->next;
4706 undo->next = undobuf.frees;
4707 undobuf.frees = undo;
4709 undobuf.undos = 0;
4712 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4713 where we have an arithmetic expression and return that point. LOC will
4714 be inside INSN.
4716 try_combine will call this function to see if an insn can be split into
4717 two insns. */
4719 static rtx *
4720 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4722 rtx x = *loc;
4723 enum rtx_code code = GET_CODE (x);
4724 rtx *split;
4725 unsigned HOST_WIDE_INT len = 0;
4726 HOST_WIDE_INT pos = 0;
4727 int unsignedp = 0;
4728 rtx inner = NULL_RTX;
4730 /* First special-case some codes. */
4731 switch (code)
4733 case SUBREG:
4734 #ifdef INSN_SCHEDULING
4735 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4736 point. */
4737 if (MEM_P (SUBREG_REG (x)))
4738 return loc;
4739 #endif
4740 return find_split_point (&SUBREG_REG (x), insn, false);
4742 case MEM:
4743 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4744 using LO_SUM and HIGH. */
4745 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4746 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4748 machine_mode address_mode = get_address_mode (x);
4750 SUBST (XEXP (x, 0),
4751 gen_rtx_LO_SUM (address_mode,
4752 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4753 XEXP (x, 0)));
4754 return &XEXP (XEXP (x, 0), 0);
4757 /* If we have a PLUS whose second operand is a constant and the
4758 address is not valid, perhaps will can split it up using
4759 the machine-specific way to split large constants. We use
4760 the first pseudo-reg (one of the virtual regs) as a placeholder;
4761 it will not remain in the result. */
4762 if (GET_CODE (XEXP (x, 0)) == PLUS
4763 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4764 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4765 MEM_ADDR_SPACE (x)))
4767 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4768 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4769 subst_insn);
4771 /* This should have produced two insns, each of which sets our
4772 placeholder. If the source of the second is a valid address,
4773 we can make put both sources together and make a split point
4774 in the middle. */
4776 if (seq
4777 && NEXT_INSN (seq) != NULL_RTX
4778 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4779 && NONJUMP_INSN_P (seq)
4780 && GET_CODE (PATTERN (seq)) == SET
4781 && SET_DEST (PATTERN (seq)) == reg
4782 && ! reg_mentioned_p (reg,
4783 SET_SRC (PATTERN (seq)))
4784 && NONJUMP_INSN_P (NEXT_INSN (seq))
4785 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4786 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4787 && memory_address_addr_space_p
4788 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4789 MEM_ADDR_SPACE (x)))
4791 rtx src1 = SET_SRC (PATTERN (seq));
4792 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4794 /* Replace the placeholder in SRC2 with SRC1. If we can
4795 find where in SRC2 it was placed, that can become our
4796 split point and we can replace this address with SRC2.
4797 Just try two obvious places. */
4799 src2 = replace_rtx (src2, reg, src1);
4800 split = 0;
4801 if (XEXP (src2, 0) == src1)
4802 split = &XEXP (src2, 0);
4803 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4804 && XEXP (XEXP (src2, 0), 0) == src1)
4805 split = &XEXP (XEXP (src2, 0), 0);
4807 if (split)
4809 SUBST (XEXP (x, 0), src2);
4810 return split;
4814 /* If that didn't work, perhaps the first operand is complex and
4815 needs to be computed separately, so make a split point there.
4816 This will occur on machines that just support REG + CONST
4817 and have a constant moved through some previous computation. */
4819 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4820 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4821 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4822 return &XEXP (XEXP (x, 0), 0);
4825 /* If we have a PLUS whose first operand is complex, try computing it
4826 separately by making a split there. */
4827 if (GET_CODE (XEXP (x, 0)) == PLUS
4828 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4829 MEM_ADDR_SPACE (x))
4830 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4831 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4832 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4833 return &XEXP (XEXP (x, 0), 0);
4834 break;
4836 case SET:
4837 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4838 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4839 we need to put the operand into a register. So split at that
4840 point. */
4842 if (SET_DEST (x) == cc0_rtx
4843 && GET_CODE (SET_SRC (x)) != COMPARE
4844 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4845 && !OBJECT_P (SET_SRC (x))
4846 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4847 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4848 return &SET_SRC (x);
4850 /* See if we can split SET_SRC as it stands. */
4851 split = find_split_point (&SET_SRC (x), insn, true);
4852 if (split && split != &SET_SRC (x))
4853 return split;
4855 /* See if we can split SET_DEST as it stands. */
4856 split = find_split_point (&SET_DEST (x), insn, false);
4857 if (split && split != &SET_DEST (x))
4858 return split;
4860 /* See if this is a bitfield assignment with everything constant. If
4861 so, this is an IOR of an AND, so split it into that. */
4862 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4863 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x), 0)))
4864 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4865 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4866 && CONST_INT_P (SET_SRC (x))
4867 && ((INTVAL (XEXP (SET_DEST (x), 1))
4868 + INTVAL (XEXP (SET_DEST (x), 2)))
4869 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0))))
4870 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4872 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4873 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4874 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4875 rtx dest = XEXP (SET_DEST (x), 0);
4876 machine_mode mode = GET_MODE (dest);
4877 unsigned HOST_WIDE_INT mask
4878 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
4879 rtx or_mask;
4881 if (BITS_BIG_ENDIAN)
4882 pos = GET_MODE_PRECISION (mode) - len - pos;
4884 or_mask = gen_int_mode (src << pos, mode);
4885 if (src == mask)
4886 SUBST (SET_SRC (x),
4887 simplify_gen_binary (IOR, mode, dest, or_mask));
4888 else
4890 rtx negmask = gen_int_mode (~(mask << pos), mode);
4891 SUBST (SET_SRC (x),
4892 simplify_gen_binary (IOR, mode,
4893 simplify_gen_binary (AND, mode,
4894 dest, negmask),
4895 or_mask));
4898 SUBST (SET_DEST (x), dest);
4900 split = find_split_point (&SET_SRC (x), insn, true);
4901 if (split && split != &SET_SRC (x))
4902 return split;
4905 /* Otherwise, see if this is an operation that we can split into two.
4906 If so, try to split that. */
4907 code = GET_CODE (SET_SRC (x));
4909 switch (code)
4911 case AND:
4912 /* If we are AND'ing with a large constant that is only a single
4913 bit and the result is only being used in a context where we
4914 need to know if it is zero or nonzero, replace it with a bit
4915 extraction. This will avoid the large constant, which might
4916 have taken more than one insn to make. If the constant were
4917 not a valid argument to the AND but took only one insn to make,
4918 this is no worse, but if it took more than one insn, it will
4919 be better. */
4921 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4922 && REG_P (XEXP (SET_SRC (x), 0))
4923 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4924 && REG_P (SET_DEST (x))
4925 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
4926 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4927 && XEXP (*split, 0) == SET_DEST (x)
4928 && XEXP (*split, 1) == const0_rtx)
4930 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4931 XEXP (SET_SRC (x), 0),
4932 pos, NULL_RTX, 1, 1, 0, 0);
4933 if (extraction != 0)
4935 SUBST (SET_SRC (x), extraction);
4936 return find_split_point (loc, insn, false);
4939 break;
4941 case NE:
4942 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4943 is known to be on, this can be converted into a NEG of a shift. */
4944 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4945 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4946 && 1 <= (pos = exact_log2
4947 (nonzero_bits (XEXP (SET_SRC (x), 0),
4948 GET_MODE (XEXP (SET_SRC (x), 0))))))
4950 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4952 SUBST (SET_SRC (x),
4953 gen_rtx_NEG (mode,
4954 gen_rtx_LSHIFTRT (mode,
4955 XEXP (SET_SRC (x), 0),
4956 GEN_INT (pos))));
4958 split = find_split_point (&SET_SRC (x), insn, true);
4959 if (split && split != &SET_SRC (x))
4960 return split;
4962 break;
4964 case SIGN_EXTEND:
4965 inner = XEXP (SET_SRC (x), 0);
4967 /* We can't optimize if either mode is a partial integer
4968 mode as we don't know how many bits are significant
4969 in those modes. */
4970 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4971 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4972 break;
4974 pos = 0;
4975 len = GET_MODE_PRECISION (GET_MODE (inner));
4976 unsignedp = 0;
4977 break;
4979 case SIGN_EXTRACT:
4980 case ZERO_EXTRACT:
4981 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4982 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4984 inner = XEXP (SET_SRC (x), 0);
4985 len = INTVAL (XEXP (SET_SRC (x), 1));
4986 pos = INTVAL (XEXP (SET_SRC (x), 2));
4988 if (BITS_BIG_ENDIAN)
4989 pos = GET_MODE_PRECISION (GET_MODE (inner)) - len - pos;
4990 unsignedp = (code == ZERO_EXTRACT);
4992 break;
4994 default:
4995 break;
4998 if (len && pos >= 0
4999 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner)))
5001 machine_mode mode = GET_MODE (SET_SRC (x));
5003 /* For unsigned, we have a choice of a shift followed by an
5004 AND or two shifts. Use two shifts for field sizes where the
5005 constant might be too large. We assume here that we can
5006 always at least get 8-bit constants in an AND insn, which is
5007 true for every current RISC. */
5009 if (unsignedp && len <= 8)
5011 unsigned HOST_WIDE_INT mask
5012 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
5013 SUBST (SET_SRC (x),
5014 gen_rtx_AND (mode,
5015 gen_rtx_LSHIFTRT
5016 (mode, gen_lowpart (mode, inner),
5017 GEN_INT (pos)),
5018 gen_int_mode (mask, mode)));
5020 split = find_split_point (&SET_SRC (x), insn, true);
5021 if (split && split != &SET_SRC (x))
5022 return split;
5024 else
5026 SUBST (SET_SRC (x),
5027 gen_rtx_fmt_ee
5028 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5029 gen_rtx_ASHIFT (mode,
5030 gen_lowpart (mode, inner),
5031 GEN_INT (GET_MODE_PRECISION (mode)
5032 - len - pos)),
5033 GEN_INT (GET_MODE_PRECISION (mode) - len)));
5035 split = find_split_point (&SET_SRC (x), insn, true);
5036 if (split && split != &SET_SRC (x))
5037 return split;
5041 /* See if this is a simple operation with a constant as the second
5042 operand. It might be that this constant is out of range and hence
5043 could be used as a split point. */
5044 if (BINARY_P (SET_SRC (x))
5045 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5046 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5047 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5048 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5049 return &XEXP (SET_SRC (x), 1);
5051 /* Finally, see if this is a simple operation with its first operand
5052 not in a register. The operation might require this operand in a
5053 register, so return it as a split point. We can always do this
5054 because if the first operand were another operation, we would have
5055 already found it as a split point. */
5056 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5057 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5058 return &XEXP (SET_SRC (x), 0);
5060 return 0;
5062 case AND:
5063 case IOR:
5064 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5065 it is better to write this as (not (ior A B)) so we can split it.
5066 Similarly for IOR. */
5067 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5069 SUBST (*loc,
5070 gen_rtx_NOT (GET_MODE (x),
5071 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5072 GET_MODE (x),
5073 XEXP (XEXP (x, 0), 0),
5074 XEXP (XEXP (x, 1), 0))));
5075 return find_split_point (loc, insn, set_src);
5078 /* Many RISC machines have a large set of logical insns. If the
5079 second operand is a NOT, put it first so we will try to split the
5080 other operand first. */
5081 if (GET_CODE (XEXP (x, 1)) == NOT)
5083 rtx tem = XEXP (x, 0);
5084 SUBST (XEXP (x, 0), XEXP (x, 1));
5085 SUBST (XEXP (x, 1), tem);
5087 break;
5089 case PLUS:
5090 case MINUS:
5091 /* Canonicalization can produce (minus A (mult B C)), where C is a
5092 constant. It may be better to try splitting (plus (mult B -C) A)
5093 instead if this isn't a multiply by a power of two. */
5094 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5095 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5096 && exact_log2 (INTVAL (XEXP (XEXP (x, 1), 1))) < 0)
5098 machine_mode mode = GET_MODE (x);
5099 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5100 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5101 SUBST (*loc, gen_rtx_PLUS (mode,
5102 gen_rtx_MULT (mode,
5103 XEXP (XEXP (x, 1), 0),
5104 gen_int_mode (other_int,
5105 mode)),
5106 XEXP (x, 0)));
5107 return find_split_point (loc, insn, set_src);
5110 /* Split at a multiply-accumulate instruction. However if this is
5111 the SET_SRC, we likely do not have such an instruction and it's
5112 worthless to try this split. */
5113 if (!set_src
5114 && (GET_CODE (XEXP (x, 0)) == MULT
5115 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5116 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5117 return loc;
5119 default:
5120 break;
5123 /* Otherwise, select our actions depending on our rtx class. */
5124 switch (GET_RTX_CLASS (code))
5126 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5127 case RTX_TERNARY:
5128 split = find_split_point (&XEXP (x, 2), insn, false);
5129 if (split)
5130 return split;
5131 /* ... fall through ... */
5132 case RTX_BIN_ARITH:
5133 case RTX_COMM_ARITH:
5134 case RTX_COMPARE:
5135 case RTX_COMM_COMPARE:
5136 split = find_split_point (&XEXP (x, 1), insn, false);
5137 if (split)
5138 return split;
5139 /* ... fall through ... */
5140 case RTX_UNARY:
5141 /* Some machines have (and (shift ...) ...) insns. If X is not
5142 an AND, but XEXP (X, 0) is, use it as our split point. */
5143 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5144 return &XEXP (x, 0);
5146 split = find_split_point (&XEXP (x, 0), insn, false);
5147 if (split)
5148 return split;
5149 return loc;
5151 default:
5152 /* Otherwise, we don't have a split point. */
5153 return 0;
5157 /* Throughout X, replace FROM with TO, and return the result.
5158 The result is TO if X is FROM;
5159 otherwise the result is X, but its contents may have been modified.
5160 If they were modified, a record was made in undobuf so that
5161 undo_all will (among other things) return X to its original state.
5163 If the number of changes necessary is too much to record to undo,
5164 the excess changes are not made, so the result is invalid.
5165 The changes already made can still be undone.
5166 undobuf.num_undo is incremented for such changes, so by testing that
5167 the caller can tell whether the result is valid.
5169 `n_occurrences' is incremented each time FROM is replaced.
5171 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5173 IN_COND is nonzero if we are at the top level of a condition.
5175 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5176 by copying if `n_occurrences' is nonzero. */
5178 static rtx
5179 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5181 enum rtx_code code = GET_CODE (x);
5182 machine_mode op0_mode = VOIDmode;
5183 const char *fmt;
5184 int len, i;
5185 rtx new_rtx;
5187 /* Two expressions are equal if they are identical copies of a shared
5188 RTX or if they are both registers with the same register number
5189 and mode. */
5191 #define COMBINE_RTX_EQUAL_P(X,Y) \
5192 ((X) == (Y) \
5193 || (REG_P (X) && REG_P (Y) \
5194 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5196 /* Do not substitute into clobbers of regs -- this will never result in
5197 valid RTL. */
5198 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5199 return x;
5201 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5203 n_occurrences++;
5204 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5207 /* If X and FROM are the same register but different modes, they
5208 will not have been seen as equal above. However, the log links code
5209 will make a LOG_LINKS entry for that case. If we do nothing, we
5210 will try to rerecognize our original insn and, when it succeeds,
5211 we will delete the feeding insn, which is incorrect.
5213 So force this insn not to match in this (rare) case. */
5214 if (! in_dest && code == REG && REG_P (from)
5215 && reg_overlap_mentioned_p (x, from))
5216 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5218 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5219 of which may contain things that can be combined. */
5220 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5221 return x;
5223 /* It is possible to have a subexpression appear twice in the insn.
5224 Suppose that FROM is a register that appears within TO.
5225 Then, after that subexpression has been scanned once by `subst',
5226 the second time it is scanned, TO may be found. If we were
5227 to scan TO here, we would find FROM within it and create a
5228 self-referent rtl structure which is completely wrong. */
5229 if (COMBINE_RTX_EQUAL_P (x, to))
5230 return to;
5232 /* Parallel asm_operands need special attention because all of the
5233 inputs are shared across the arms. Furthermore, unsharing the
5234 rtl results in recognition failures. Failure to handle this case
5235 specially can result in circular rtl.
5237 Solve this by doing a normal pass across the first entry of the
5238 parallel, and only processing the SET_DESTs of the subsequent
5239 entries. Ug. */
5241 if (code == PARALLEL
5242 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5243 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5245 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5247 /* If this substitution failed, this whole thing fails. */
5248 if (GET_CODE (new_rtx) == CLOBBER
5249 && XEXP (new_rtx, 0) == const0_rtx)
5250 return new_rtx;
5252 SUBST (XVECEXP (x, 0, 0), new_rtx);
5254 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5256 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5258 if (!REG_P (dest)
5259 && GET_CODE (dest) != CC0
5260 && GET_CODE (dest) != PC)
5262 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5264 /* If this substitution failed, this whole thing fails. */
5265 if (GET_CODE (new_rtx) == CLOBBER
5266 && XEXP (new_rtx, 0) == const0_rtx)
5267 return new_rtx;
5269 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5273 else
5275 len = GET_RTX_LENGTH (code);
5276 fmt = GET_RTX_FORMAT (code);
5278 /* We don't need to process a SET_DEST that is a register, CC0,
5279 or PC, so set up to skip this common case. All other cases
5280 where we want to suppress replacing something inside a
5281 SET_SRC are handled via the IN_DEST operand. */
5282 if (code == SET
5283 && (REG_P (SET_DEST (x))
5284 || GET_CODE (SET_DEST (x)) == CC0
5285 || GET_CODE (SET_DEST (x)) == PC))
5286 fmt = "ie";
5288 /* Substituting into the operands of a widening MULT is not likely
5289 to create RTL matching a machine insn. */
5290 if (code == MULT
5291 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5292 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5293 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5294 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5295 && REG_P (XEXP (XEXP (x, 0), 0))
5296 && REG_P (XEXP (XEXP (x, 1), 0)))
5298 if (from == to)
5299 return x;
5300 else
5301 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5304 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5305 constant. */
5306 if (fmt[0] == 'e')
5307 op0_mode = GET_MODE (XEXP (x, 0));
5309 for (i = 0; i < len; i++)
5311 if (fmt[i] == 'E')
5313 int j;
5314 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5316 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5318 new_rtx = (unique_copy && n_occurrences
5319 ? copy_rtx (to) : to);
5320 n_occurrences++;
5322 else
5324 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5325 unique_copy);
5327 /* If this substitution failed, this whole thing
5328 fails. */
5329 if (GET_CODE (new_rtx) == CLOBBER
5330 && XEXP (new_rtx, 0) == const0_rtx)
5331 return new_rtx;
5334 SUBST (XVECEXP (x, i, j), new_rtx);
5337 else if (fmt[i] == 'e')
5339 /* If this is a register being set, ignore it. */
5340 new_rtx = XEXP (x, i);
5341 if (in_dest
5342 && i == 0
5343 && (((code == SUBREG || code == ZERO_EXTRACT)
5344 && REG_P (new_rtx))
5345 || code == STRICT_LOW_PART))
5348 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5350 /* In general, don't install a subreg involving two
5351 modes not tieable. It can worsen register
5352 allocation, and can even make invalid reload
5353 insns, since the reg inside may need to be copied
5354 from in the outside mode, and that may be invalid
5355 if it is an fp reg copied in integer mode.
5357 We allow two exceptions to this: It is valid if
5358 it is inside another SUBREG and the mode of that
5359 SUBREG and the mode of the inside of TO is
5360 tieable and it is valid if X is a SET that copies
5361 FROM to CC0. */
5363 if (GET_CODE (to) == SUBREG
5364 && ! MODES_TIEABLE_P (GET_MODE (to),
5365 GET_MODE (SUBREG_REG (to)))
5366 && ! (code == SUBREG
5367 && MODES_TIEABLE_P (GET_MODE (x),
5368 GET_MODE (SUBREG_REG (to))))
5369 && (!HAVE_cc0
5370 || (! (code == SET
5371 && i == 1
5372 && XEXP (x, 0) == cc0_rtx))))
5373 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5375 if (code == SUBREG
5376 && REG_P (to)
5377 && REGNO (to) < FIRST_PSEUDO_REGISTER
5378 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5379 SUBREG_BYTE (x),
5380 GET_MODE (x)) < 0)
5381 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5383 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5384 n_occurrences++;
5386 else
5387 /* If we are in a SET_DEST, suppress most cases unless we
5388 have gone inside a MEM, in which case we want to
5389 simplify the address. We assume here that things that
5390 are actually part of the destination have their inner
5391 parts in the first expression. This is true for SUBREG,
5392 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5393 things aside from REG and MEM that should appear in a
5394 SET_DEST. */
5395 new_rtx = subst (XEXP (x, i), from, to,
5396 (((in_dest
5397 && (code == SUBREG || code == STRICT_LOW_PART
5398 || code == ZERO_EXTRACT))
5399 || code == SET)
5400 && i == 0),
5401 code == IF_THEN_ELSE && i == 0,
5402 unique_copy);
5404 /* If we found that we will have to reject this combination,
5405 indicate that by returning the CLOBBER ourselves, rather than
5406 an expression containing it. This will speed things up as
5407 well as prevent accidents where two CLOBBERs are considered
5408 to be equal, thus producing an incorrect simplification. */
5410 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5411 return new_rtx;
5413 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5415 machine_mode mode = GET_MODE (x);
5417 x = simplify_subreg (GET_MODE (x), new_rtx,
5418 GET_MODE (SUBREG_REG (x)),
5419 SUBREG_BYTE (x));
5420 if (! x)
5421 x = gen_rtx_CLOBBER (mode, const0_rtx);
5423 else if (CONST_SCALAR_INT_P (new_rtx)
5424 && GET_CODE (x) == ZERO_EXTEND)
5426 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5427 new_rtx, GET_MODE (XEXP (x, 0)));
5428 gcc_assert (x);
5430 else
5431 SUBST (XEXP (x, i), new_rtx);
5436 /* Check if we are loading something from the constant pool via float
5437 extension; in this case we would undo compress_float_constant
5438 optimization and degenerate constant load to an immediate value. */
5439 if (GET_CODE (x) == FLOAT_EXTEND
5440 && MEM_P (XEXP (x, 0))
5441 && MEM_READONLY_P (XEXP (x, 0)))
5443 rtx tmp = avoid_constant_pool_reference (x);
5444 if (x != tmp)
5445 return x;
5448 /* Try to simplify X. If the simplification changed the code, it is likely
5449 that further simplification will help, so loop, but limit the number
5450 of repetitions that will be performed. */
5452 for (i = 0; i < 4; i++)
5454 /* If X is sufficiently simple, don't bother trying to do anything
5455 with it. */
5456 if (code != CONST_INT && code != REG && code != CLOBBER)
5457 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5459 if (GET_CODE (x) == code)
5460 break;
5462 code = GET_CODE (x);
5464 /* We no longer know the original mode of operand 0 since we
5465 have changed the form of X) */
5466 op0_mode = VOIDmode;
5469 return x;
5472 /* Simplify X, a piece of RTL. We just operate on the expression at the
5473 outer level; call `subst' to simplify recursively. Return the new
5474 expression.
5476 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5477 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5478 of a condition. */
5480 static rtx
5481 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5482 int in_cond)
5484 enum rtx_code code = GET_CODE (x);
5485 machine_mode mode = GET_MODE (x);
5486 rtx temp;
5487 int i;
5489 /* If this is a commutative operation, put a constant last and a complex
5490 expression first. We don't need to do this for comparisons here. */
5491 if (COMMUTATIVE_ARITH_P (x)
5492 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5494 temp = XEXP (x, 0);
5495 SUBST (XEXP (x, 0), XEXP (x, 1));
5496 SUBST (XEXP (x, 1), temp);
5499 /* Try to fold this expression in case we have constants that weren't
5500 present before. */
5501 temp = 0;
5502 switch (GET_RTX_CLASS (code))
5504 case RTX_UNARY:
5505 if (op0_mode == VOIDmode)
5506 op0_mode = GET_MODE (XEXP (x, 0));
5507 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5508 break;
5509 case RTX_COMPARE:
5510 case RTX_COMM_COMPARE:
5512 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5513 if (cmp_mode == VOIDmode)
5515 cmp_mode = GET_MODE (XEXP (x, 1));
5516 if (cmp_mode == VOIDmode)
5517 cmp_mode = op0_mode;
5519 temp = simplify_relational_operation (code, mode, cmp_mode,
5520 XEXP (x, 0), XEXP (x, 1));
5522 break;
5523 case RTX_COMM_ARITH:
5524 case RTX_BIN_ARITH:
5525 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5526 break;
5527 case RTX_BITFIELD_OPS:
5528 case RTX_TERNARY:
5529 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5530 XEXP (x, 1), XEXP (x, 2));
5531 break;
5532 default:
5533 break;
5536 if (temp)
5538 x = temp;
5539 code = GET_CODE (temp);
5540 op0_mode = VOIDmode;
5541 mode = GET_MODE (temp);
5544 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5545 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5546 things. Check for cases where both arms are testing the same
5547 condition.
5549 Don't do anything if all operands are very simple. */
5551 if ((BINARY_P (x)
5552 && ((!OBJECT_P (XEXP (x, 0))
5553 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5554 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5555 || (!OBJECT_P (XEXP (x, 1))
5556 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5557 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5558 || (UNARY_P (x)
5559 && (!OBJECT_P (XEXP (x, 0))
5560 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5561 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5563 rtx cond, true_rtx, false_rtx;
5565 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5566 if (cond != 0
5567 /* If everything is a comparison, what we have is highly unlikely
5568 to be simpler, so don't use it. */
5569 && ! (COMPARISON_P (x)
5570 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5572 rtx cop1 = const0_rtx;
5573 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5575 if (cond_code == NE && COMPARISON_P (cond))
5576 return x;
5578 /* Simplify the alternative arms; this may collapse the true and
5579 false arms to store-flag values. Be careful to use copy_rtx
5580 here since true_rtx or false_rtx might share RTL with x as a
5581 result of the if_then_else_cond call above. */
5582 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5583 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5585 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5586 is unlikely to be simpler. */
5587 if (general_operand (true_rtx, VOIDmode)
5588 && general_operand (false_rtx, VOIDmode))
5590 enum rtx_code reversed;
5592 /* Restarting if we generate a store-flag expression will cause
5593 us to loop. Just drop through in this case. */
5595 /* If the result values are STORE_FLAG_VALUE and zero, we can
5596 just make the comparison operation. */
5597 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5598 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5599 cond, cop1);
5600 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5601 && ((reversed = reversed_comparison_code_parts
5602 (cond_code, cond, cop1, NULL))
5603 != UNKNOWN))
5604 x = simplify_gen_relational (reversed, mode, VOIDmode,
5605 cond, cop1);
5607 /* Likewise, we can make the negate of a comparison operation
5608 if the result values are - STORE_FLAG_VALUE and zero. */
5609 else if (CONST_INT_P (true_rtx)
5610 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5611 && false_rtx == const0_rtx)
5612 x = simplify_gen_unary (NEG, mode,
5613 simplify_gen_relational (cond_code,
5614 mode, VOIDmode,
5615 cond, cop1),
5616 mode);
5617 else if (CONST_INT_P (false_rtx)
5618 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5619 && true_rtx == const0_rtx
5620 && ((reversed = reversed_comparison_code_parts
5621 (cond_code, cond, cop1, NULL))
5622 != UNKNOWN))
5623 x = simplify_gen_unary (NEG, mode,
5624 simplify_gen_relational (reversed,
5625 mode, VOIDmode,
5626 cond, cop1),
5627 mode);
5628 else
5629 return gen_rtx_IF_THEN_ELSE (mode,
5630 simplify_gen_relational (cond_code,
5631 mode,
5632 VOIDmode,
5633 cond,
5634 cop1),
5635 true_rtx, false_rtx);
5637 code = GET_CODE (x);
5638 op0_mode = VOIDmode;
5643 /* First see if we can apply the inverse distributive law. */
5644 if (code == PLUS || code == MINUS
5645 || code == AND || code == IOR || code == XOR)
5647 x = apply_distributive_law (x);
5648 code = GET_CODE (x);
5649 op0_mode = VOIDmode;
5652 /* If CODE is an associative operation not otherwise handled, see if we
5653 can associate some operands. This can win if they are constants or
5654 if they are logically related (i.e. (a & b) & a). */
5655 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5656 || code == AND || code == IOR || code == XOR
5657 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5658 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5659 || (flag_associative_math && FLOAT_MODE_P (mode))))
5661 if (GET_CODE (XEXP (x, 0)) == code)
5663 rtx other = XEXP (XEXP (x, 0), 0);
5664 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5665 rtx inner_op1 = XEXP (x, 1);
5666 rtx inner;
5668 /* Make sure we pass the constant operand if any as the second
5669 one if this is a commutative operation. */
5670 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5671 std::swap (inner_op0, inner_op1);
5672 inner = simplify_binary_operation (code == MINUS ? PLUS
5673 : code == DIV ? MULT
5674 : code,
5675 mode, inner_op0, inner_op1);
5677 /* For commutative operations, try the other pair if that one
5678 didn't simplify. */
5679 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5681 other = XEXP (XEXP (x, 0), 1);
5682 inner = simplify_binary_operation (code, mode,
5683 XEXP (XEXP (x, 0), 0),
5684 XEXP (x, 1));
5687 if (inner)
5688 return simplify_gen_binary (code, mode, other, inner);
5692 /* A little bit of algebraic simplification here. */
5693 switch (code)
5695 case MEM:
5696 /* Ensure that our address has any ASHIFTs converted to MULT in case
5697 address-recognizing predicates are called later. */
5698 temp = make_compound_operation (XEXP (x, 0), MEM);
5699 SUBST (XEXP (x, 0), temp);
5700 break;
5702 case SUBREG:
5703 if (op0_mode == VOIDmode)
5704 op0_mode = GET_MODE (SUBREG_REG (x));
5706 /* See if this can be moved to simplify_subreg. */
5707 if (CONSTANT_P (SUBREG_REG (x))
5708 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5709 /* Don't call gen_lowpart if the inner mode
5710 is VOIDmode and we cannot simplify it, as SUBREG without
5711 inner mode is invalid. */
5712 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5713 || gen_lowpart_common (mode, SUBREG_REG (x))))
5714 return gen_lowpart (mode, SUBREG_REG (x));
5716 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5717 break;
5719 rtx temp;
5720 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5721 SUBREG_BYTE (x));
5722 if (temp)
5723 return temp;
5725 /* If op is known to have all lower bits zero, the result is zero. */
5726 if (!in_dest
5727 && SCALAR_INT_MODE_P (mode)
5728 && SCALAR_INT_MODE_P (op0_mode)
5729 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (op0_mode)
5730 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5731 && HWI_COMPUTABLE_MODE_P (op0_mode)
5732 && (nonzero_bits (SUBREG_REG (x), op0_mode)
5733 & GET_MODE_MASK (mode)) == 0)
5734 return CONST0_RTX (mode);
5737 /* Don't change the mode of the MEM if that would change the meaning
5738 of the address. */
5739 if (MEM_P (SUBREG_REG (x))
5740 && (MEM_VOLATILE_P (SUBREG_REG (x))
5741 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5742 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5743 return gen_rtx_CLOBBER (mode, const0_rtx);
5745 /* Note that we cannot do any narrowing for non-constants since
5746 we might have been counting on using the fact that some bits were
5747 zero. We now do this in the SET. */
5749 break;
5751 case NEG:
5752 temp = expand_compound_operation (XEXP (x, 0));
5754 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5755 replaced by (lshiftrt X C). This will convert
5756 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5758 if (GET_CODE (temp) == ASHIFTRT
5759 && CONST_INT_P (XEXP (temp, 1))
5760 && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5761 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5762 INTVAL (XEXP (temp, 1)));
5764 /* If X has only a single bit that might be nonzero, say, bit I, convert
5765 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5766 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5767 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5768 or a SUBREG of one since we'd be making the expression more
5769 complex if it was just a register. */
5771 if (!REG_P (temp)
5772 && ! (GET_CODE (temp) == SUBREG
5773 && REG_P (SUBREG_REG (temp)))
5774 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5776 rtx temp1 = simplify_shift_const
5777 (NULL_RTX, ASHIFTRT, mode,
5778 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5779 GET_MODE_PRECISION (mode) - 1 - i),
5780 GET_MODE_PRECISION (mode) - 1 - i);
5782 /* If all we did was surround TEMP with the two shifts, we
5783 haven't improved anything, so don't use it. Otherwise,
5784 we are better off with TEMP1. */
5785 if (GET_CODE (temp1) != ASHIFTRT
5786 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5787 || XEXP (XEXP (temp1, 0), 0) != temp)
5788 return temp1;
5790 break;
5792 case TRUNCATE:
5793 /* We can't handle truncation to a partial integer mode here
5794 because we don't know the real bitsize of the partial
5795 integer mode. */
5796 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5797 break;
5799 if (HWI_COMPUTABLE_MODE_P (mode))
5800 SUBST (XEXP (x, 0),
5801 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5802 GET_MODE_MASK (mode), 0));
5804 /* We can truncate a constant value and return it. */
5805 if (CONST_INT_P (XEXP (x, 0)))
5806 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5808 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5809 whose value is a comparison can be replaced with a subreg if
5810 STORE_FLAG_VALUE permits. */
5811 if (HWI_COMPUTABLE_MODE_P (mode)
5812 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5813 && (temp = get_last_value (XEXP (x, 0)))
5814 && COMPARISON_P (temp))
5815 return gen_lowpart (mode, XEXP (x, 0));
5816 break;
5818 case CONST:
5819 /* (const (const X)) can become (const X). Do it this way rather than
5820 returning the inner CONST since CONST can be shared with a
5821 REG_EQUAL note. */
5822 if (GET_CODE (XEXP (x, 0)) == CONST)
5823 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5824 break;
5826 case LO_SUM:
5827 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5828 can add in an offset. find_split_point will split this address up
5829 again if it doesn't match. */
5830 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
5831 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5832 return XEXP (x, 1);
5833 break;
5835 case PLUS:
5836 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5837 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5838 bit-field and can be replaced by either a sign_extend or a
5839 sign_extract. The `and' may be a zero_extend and the two
5840 <c>, -<c> constants may be reversed. */
5841 if (GET_CODE (XEXP (x, 0)) == XOR
5842 && CONST_INT_P (XEXP (x, 1))
5843 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5844 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5845 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5846 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5847 && HWI_COMPUTABLE_MODE_P (mode)
5848 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5849 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5850 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5851 == ((unsigned HOST_WIDE_INT) 1 << (i + 1)) - 1))
5852 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5853 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5854 == (unsigned int) i + 1))))
5855 return simplify_shift_const
5856 (NULL_RTX, ASHIFTRT, mode,
5857 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5858 XEXP (XEXP (XEXP (x, 0), 0), 0),
5859 GET_MODE_PRECISION (mode) - (i + 1)),
5860 GET_MODE_PRECISION (mode) - (i + 1));
5862 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5863 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5864 the bitsize of the mode - 1. This allows simplification of
5865 "a = (b & 8) == 0;" */
5866 if (XEXP (x, 1) == constm1_rtx
5867 && !REG_P (XEXP (x, 0))
5868 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5869 && REG_P (SUBREG_REG (XEXP (x, 0))))
5870 && nonzero_bits (XEXP (x, 0), mode) == 1)
5871 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5872 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5873 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5874 GET_MODE_PRECISION (mode) - 1),
5875 GET_MODE_PRECISION (mode) - 1);
5877 /* If we are adding two things that have no bits in common, convert
5878 the addition into an IOR. This will often be further simplified,
5879 for example in cases like ((a & 1) + (a & 2)), which can
5880 become a & 3. */
5882 if (HWI_COMPUTABLE_MODE_P (mode)
5883 && (nonzero_bits (XEXP (x, 0), mode)
5884 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5886 /* Try to simplify the expression further. */
5887 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5888 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5890 /* If we could, great. If not, do not go ahead with the IOR
5891 replacement, since PLUS appears in many special purpose
5892 address arithmetic instructions. */
5893 if (GET_CODE (temp) != CLOBBER
5894 && (GET_CODE (temp) != IOR
5895 || ((XEXP (temp, 0) != XEXP (x, 0)
5896 || XEXP (temp, 1) != XEXP (x, 1))
5897 && (XEXP (temp, 0) != XEXP (x, 1)
5898 || XEXP (temp, 1) != XEXP (x, 0)))))
5899 return temp;
5901 break;
5903 case MINUS:
5904 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5905 (and <foo> (const_int pow2-1)) */
5906 if (GET_CODE (XEXP (x, 1)) == AND
5907 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5908 && exact_log2 (-UINTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5909 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5910 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5911 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5912 break;
5914 case MULT:
5915 /* If we have (mult (plus A B) C), apply the distributive law and then
5916 the inverse distributive law to see if things simplify. This
5917 occurs mostly in addresses, often when unrolling loops. */
5919 if (GET_CODE (XEXP (x, 0)) == PLUS)
5921 rtx result = distribute_and_simplify_rtx (x, 0);
5922 if (result)
5923 return result;
5926 /* Try simplify a*(b/c) as (a*b)/c. */
5927 if (FLOAT_MODE_P (mode) && flag_associative_math
5928 && GET_CODE (XEXP (x, 0)) == DIV)
5930 rtx tem = simplify_binary_operation (MULT, mode,
5931 XEXP (XEXP (x, 0), 0),
5932 XEXP (x, 1));
5933 if (tem)
5934 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5936 break;
5938 case UDIV:
5939 /* If this is a divide by a power of two, treat it as a shift if
5940 its first operand is a shift. */
5941 if (CONST_INT_P (XEXP (x, 1))
5942 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
5943 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5944 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5945 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5946 || GET_CODE (XEXP (x, 0)) == ROTATE
5947 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5948 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5949 break;
5951 case EQ: case NE:
5952 case GT: case GTU: case GE: case GEU:
5953 case LT: case LTU: case LE: case LEU:
5954 case UNEQ: case LTGT:
5955 case UNGT: case UNGE:
5956 case UNLT: case UNLE:
5957 case UNORDERED: case ORDERED:
5958 /* If the first operand is a condition code, we can't do anything
5959 with it. */
5960 if (GET_CODE (XEXP (x, 0)) == COMPARE
5961 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5962 && ! CC0_P (XEXP (x, 0))))
5964 rtx op0 = XEXP (x, 0);
5965 rtx op1 = XEXP (x, 1);
5966 enum rtx_code new_code;
5968 if (GET_CODE (op0) == COMPARE)
5969 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5971 /* Simplify our comparison, if possible. */
5972 new_code = simplify_comparison (code, &op0, &op1);
5974 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5975 if only the low-order bit is possibly nonzero in X (such as when
5976 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5977 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5978 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5979 (plus X 1).
5981 Remove any ZERO_EXTRACT we made when thinking this was a
5982 comparison. It may now be simpler to use, e.g., an AND. If a
5983 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5984 the call to make_compound_operation in the SET case.
5986 Don't apply these optimizations if the caller would
5987 prefer a comparison rather than a value.
5988 E.g., for the condition in an IF_THEN_ELSE most targets need
5989 an explicit comparison. */
5991 if (in_cond)
5994 else if (STORE_FLAG_VALUE == 1
5995 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5996 && op1 == const0_rtx
5997 && mode == GET_MODE (op0)
5998 && nonzero_bits (op0, mode) == 1)
5999 return gen_lowpart (mode,
6000 expand_compound_operation (op0));
6002 else if (STORE_FLAG_VALUE == 1
6003 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6004 && op1 == const0_rtx
6005 && mode == GET_MODE (op0)
6006 && (num_sign_bit_copies (op0, mode)
6007 == GET_MODE_PRECISION (mode)))
6009 op0 = expand_compound_operation (op0);
6010 return simplify_gen_unary (NEG, mode,
6011 gen_lowpart (mode, op0),
6012 mode);
6015 else if (STORE_FLAG_VALUE == 1
6016 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6017 && op1 == const0_rtx
6018 && mode == GET_MODE (op0)
6019 && nonzero_bits (op0, mode) == 1)
6021 op0 = expand_compound_operation (op0);
6022 return simplify_gen_binary (XOR, mode,
6023 gen_lowpart (mode, op0),
6024 const1_rtx);
6027 else if (STORE_FLAG_VALUE == 1
6028 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6029 && op1 == const0_rtx
6030 && mode == GET_MODE (op0)
6031 && (num_sign_bit_copies (op0, mode)
6032 == GET_MODE_PRECISION (mode)))
6034 op0 = expand_compound_operation (op0);
6035 return plus_constant (mode, gen_lowpart (mode, op0), 1);
6038 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6039 those above. */
6040 if (in_cond)
6043 else if (STORE_FLAG_VALUE == -1
6044 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6045 && op1 == const0_rtx
6046 && mode == GET_MODE (op0)
6047 && (num_sign_bit_copies (op0, mode)
6048 == GET_MODE_PRECISION (mode)))
6049 return gen_lowpart (mode,
6050 expand_compound_operation (op0));
6052 else if (STORE_FLAG_VALUE == -1
6053 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6054 && op1 == const0_rtx
6055 && mode == GET_MODE (op0)
6056 && nonzero_bits (op0, mode) == 1)
6058 op0 = expand_compound_operation (op0);
6059 return simplify_gen_unary (NEG, mode,
6060 gen_lowpart (mode, op0),
6061 mode);
6064 else if (STORE_FLAG_VALUE == -1
6065 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6066 && op1 == const0_rtx
6067 && mode == GET_MODE (op0)
6068 && (num_sign_bit_copies (op0, mode)
6069 == GET_MODE_PRECISION (mode)))
6071 op0 = expand_compound_operation (op0);
6072 return simplify_gen_unary (NOT, mode,
6073 gen_lowpart (mode, op0),
6074 mode);
6077 /* If X is 0/1, (eq X 0) is X-1. */
6078 else if (STORE_FLAG_VALUE == -1
6079 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6080 && op1 == const0_rtx
6081 && mode == GET_MODE (op0)
6082 && nonzero_bits (op0, mode) == 1)
6084 op0 = expand_compound_operation (op0);
6085 return plus_constant (mode, gen_lowpart (mode, op0), -1);
6088 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6089 one bit that might be nonzero, we can convert (ne x 0) to
6090 (ashift x c) where C puts the bit in the sign bit. Remove any
6091 AND with STORE_FLAG_VALUE when we are done, since we are only
6092 going to test the sign bit. */
6093 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6094 && HWI_COMPUTABLE_MODE_P (mode)
6095 && val_signbit_p (mode, STORE_FLAG_VALUE)
6096 && op1 == const0_rtx
6097 && mode == GET_MODE (op0)
6098 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
6100 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6101 expand_compound_operation (op0),
6102 GET_MODE_PRECISION (mode) - 1 - i);
6103 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6104 return XEXP (x, 0);
6105 else
6106 return x;
6109 /* If the code changed, return a whole new comparison.
6110 We also need to avoid using SUBST in cases where
6111 simplify_comparison has widened a comparison with a CONST_INT,
6112 since in that case the wider CONST_INT may fail the sanity
6113 checks in do_SUBST. */
6114 if (new_code != code
6115 || (CONST_INT_P (op1)
6116 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6117 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6118 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6120 /* Otherwise, keep this operation, but maybe change its operands.
6121 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6122 SUBST (XEXP (x, 0), op0);
6123 SUBST (XEXP (x, 1), op1);
6125 break;
6127 case IF_THEN_ELSE:
6128 return simplify_if_then_else (x);
6130 case ZERO_EXTRACT:
6131 case SIGN_EXTRACT:
6132 case ZERO_EXTEND:
6133 case SIGN_EXTEND:
6134 /* If we are processing SET_DEST, we are done. */
6135 if (in_dest)
6136 return x;
6138 return expand_compound_operation (x);
6140 case SET:
6141 return simplify_set (x);
6143 case AND:
6144 case IOR:
6145 return simplify_logical (x);
6147 case ASHIFT:
6148 case LSHIFTRT:
6149 case ASHIFTRT:
6150 case ROTATE:
6151 case ROTATERT:
6152 /* If this is a shift by a constant amount, simplify it. */
6153 if (CONST_INT_P (XEXP (x, 1)))
6154 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6155 INTVAL (XEXP (x, 1)));
6157 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6158 SUBST (XEXP (x, 1),
6159 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6160 ((unsigned HOST_WIDE_INT) 1
6161 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
6162 - 1,
6163 0));
6164 break;
6166 default:
6167 break;
6170 return x;
6173 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6175 static rtx
6176 simplify_if_then_else (rtx x)
6178 machine_mode mode = GET_MODE (x);
6179 rtx cond = XEXP (x, 0);
6180 rtx true_rtx = XEXP (x, 1);
6181 rtx false_rtx = XEXP (x, 2);
6182 enum rtx_code true_code = GET_CODE (cond);
6183 int comparison_p = COMPARISON_P (cond);
6184 rtx temp;
6185 int i;
6186 enum rtx_code false_code;
6187 rtx reversed;
6189 /* Simplify storing of the truth value. */
6190 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6191 return simplify_gen_relational (true_code, mode, VOIDmode,
6192 XEXP (cond, 0), XEXP (cond, 1));
6194 /* Also when the truth value has to be reversed. */
6195 if (comparison_p
6196 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6197 && (reversed = reversed_comparison (cond, mode)))
6198 return reversed;
6200 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6201 in it is being compared against certain values. Get the true and false
6202 comparisons and see if that says anything about the value of each arm. */
6204 if (comparison_p
6205 && ((false_code = reversed_comparison_code (cond, NULL))
6206 != UNKNOWN)
6207 && REG_P (XEXP (cond, 0)))
6209 HOST_WIDE_INT nzb;
6210 rtx from = XEXP (cond, 0);
6211 rtx true_val = XEXP (cond, 1);
6212 rtx false_val = true_val;
6213 int swapped = 0;
6215 /* If FALSE_CODE is EQ, swap the codes and arms. */
6217 if (false_code == EQ)
6219 swapped = 1, true_code = EQ, false_code = NE;
6220 std::swap (true_rtx, false_rtx);
6223 /* If we are comparing against zero and the expression being tested has
6224 only a single bit that might be nonzero, that is its value when it is
6225 not equal to zero. Similarly if it is known to be -1 or 0. */
6227 if (true_code == EQ && true_val == const0_rtx
6228 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
6230 false_code = EQ;
6231 false_val = gen_int_mode (nzb, GET_MODE (from));
6233 else if (true_code == EQ && true_val == const0_rtx
6234 && (num_sign_bit_copies (from, GET_MODE (from))
6235 == GET_MODE_PRECISION (GET_MODE (from))))
6237 false_code = EQ;
6238 false_val = constm1_rtx;
6241 /* Now simplify an arm if we know the value of the register in the
6242 branch and it is used in the arm. Be careful due to the potential
6243 of locally-shared RTL. */
6245 if (reg_mentioned_p (from, true_rtx))
6246 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6247 from, true_val),
6248 pc_rtx, pc_rtx, 0, 0, 0);
6249 if (reg_mentioned_p (from, false_rtx))
6250 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6251 from, false_val),
6252 pc_rtx, pc_rtx, 0, 0, 0);
6254 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6255 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6257 true_rtx = XEXP (x, 1);
6258 false_rtx = XEXP (x, 2);
6259 true_code = GET_CODE (cond);
6262 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6263 reversed, do so to avoid needing two sets of patterns for
6264 subtract-and-branch insns. Similarly if we have a constant in the true
6265 arm, the false arm is the same as the first operand of the comparison, or
6266 the false arm is more complicated than the true arm. */
6268 if (comparison_p
6269 && reversed_comparison_code (cond, NULL) != UNKNOWN
6270 && (true_rtx == pc_rtx
6271 || (CONSTANT_P (true_rtx)
6272 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6273 || true_rtx == const0_rtx
6274 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6275 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6276 && !OBJECT_P (false_rtx))
6277 || reg_mentioned_p (true_rtx, false_rtx)
6278 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6280 true_code = reversed_comparison_code (cond, NULL);
6281 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6282 SUBST (XEXP (x, 1), false_rtx);
6283 SUBST (XEXP (x, 2), true_rtx);
6285 std::swap (true_rtx, false_rtx);
6286 cond = XEXP (x, 0);
6288 /* It is possible that the conditional has been simplified out. */
6289 true_code = GET_CODE (cond);
6290 comparison_p = COMPARISON_P (cond);
6293 /* If the two arms are identical, we don't need the comparison. */
6295 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6296 return true_rtx;
6298 /* Convert a == b ? b : a to "a". */
6299 if (true_code == EQ && ! side_effects_p (cond)
6300 && !HONOR_NANS (mode)
6301 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6302 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6303 return false_rtx;
6304 else if (true_code == NE && ! side_effects_p (cond)
6305 && !HONOR_NANS (mode)
6306 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6307 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6308 return true_rtx;
6310 /* Look for cases where we have (abs x) or (neg (abs X)). */
6312 if (GET_MODE_CLASS (mode) == MODE_INT
6313 && comparison_p
6314 && XEXP (cond, 1) == const0_rtx
6315 && GET_CODE (false_rtx) == NEG
6316 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6317 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6318 && ! side_effects_p (true_rtx))
6319 switch (true_code)
6321 case GT:
6322 case GE:
6323 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6324 case LT:
6325 case LE:
6326 return
6327 simplify_gen_unary (NEG, mode,
6328 simplify_gen_unary (ABS, mode, true_rtx, mode),
6329 mode);
6330 default:
6331 break;
6334 /* Look for MIN or MAX. */
6336 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6337 && comparison_p
6338 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6339 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6340 && ! side_effects_p (cond))
6341 switch (true_code)
6343 case GE:
6344 case GT:
6345 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6346 case LE:
6347 case LT:
6348 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6349 case GEU:
6350 case GTU:
6351 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6352 case LEU:
6353 case LTU:
6354 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6355 default:
6356 break;
6359 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6360 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6361 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6362 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6363 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6364 neither 1 or -1, but it isn't worth checking for. */
6366 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6367 && comparison_p
6368 && GET_MODE_CLASS (mode) == MODE_INT
6369 && ! side_effects_p (x))
6371 rtx t = make_compound_operation (true_rtx, SET);
6372 rtx f = make_compound_operation (false_rtx, SET);
6373 rtx cond_op0 = XEXP (cond, 0);
6374 rtx cond_op1 = XEXP (cond, 1);
6375 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6376 machine_mode m = mode;
6377 rtx z = 0, c1 = NULL_RTX;
6379 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6380 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6381 || GET_CODE (t) == ASHIFT
6382 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6383 && rtx_equal_p (XEXP (t, 0), f))
6384 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6386 /* If an identity-zero op is commutative, check whether there
6387 would be a match if we swapped the operands. */
6388 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6389 || GET_CODE (t) == XOR)
6390 && rtx_equal_p (XEXP (t, 1), f))
6391 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6392 else if (GET_CODE (t) == SIGN_EXTEND
6393 && (GET_CODE (XEXP (t, 0)) == PLUS
6394 || GET_CODE (XEXP (t, 0)) == MINUS
6395 || GET_CODE (XEXP (t, 0)) == IOR
6396 || GET_CODE (XEXP (t, 0)) == XOR
6397 || GET_CODE (XEXP (t, 0)) == ASHIFT
6398 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6399 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6400 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6401 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6402 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6403 && (num_sign_bit_copies (f, GET_MODE (f))
6404 > (unsigned int)
6405 (GET_MODE_PRECISION (mode)
6406 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6408 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6409 extend_op = SIGN_EXTEND;
6410 m = GET_MODE (XEXP (t, 0));
6412 else if (GET_CODE (t) == SIGN_EXTEND
6413 && (GET_CODE (XEXP (t, 0)) == PLUS
6414 || GET_CODE (XEXP (t, 0)) == IOR
6415 || GET_CODE (XEXP (t, 0)) == XOR)
6416 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6417 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6418 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6419 && (num_sign_bit_copies (f, GET_MODE (f))
6420 > (unsigned int)
6421 (GET_MODE_PRECISION (mode)
6422 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6424 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6425 extend_op = SIGN_EXTEND;
6426 m = GET_MODE (XEXP (t, 0));
6428 else if (GET_CODE (t) == ZERO_EXTEND
6429 && (GET_CODE (XEXP (t, 0)) == PLUS
6430 || GET_CODE (XEXP (t, 0)) == MINUS
6431 || GET_CODE (XEXP (t, 0)) == IOR
6432 || GET_CODE (XEXP (t, 0)) == XOR
6433 || GET_CODE (XEXP (t, 0)) == ASHIFT
6434 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6435 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6436 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6437 && HWI_COMPUTABLE_MODE_P (mode)
6438 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6439 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6440 && ((nonzero_bits (f, GET_MODE (f))
6441 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6442 == 0))
6444 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6445 extend_op = ZERO_EXTEND;
6446 m = GET_MODE (XEXP (t, 0));
6448 else if (GET_CODE (t) == ZERO_EXTEND
6449 && (GET_CODE (XEXP (t, 0)) == PLUS
6450 || GET_CODE (XEXP (t, 0)) == IOR
6451 || GET_CODE (XEXP (t, 0)) == XOR)
6452 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6453 && HWI_COMPUTABLE_MODE_P (mode)
6454 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6455 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6456 && ((nonzero_bits (f, GET_MODE (f))
6457 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6458 == 0))
6460 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6461 extend_op = ZERO_EXTEND;
6462 m = GET_MODE (XEXP (t, 0));
6465 if (z)
6467 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6468 cond_op0, cond_op1),
6469 pc_rtx, pc_rtx, 0, 0, 0);
6470 temp = simplify_gen_binary (MULT, m, temp,
6471 simplify_gen_binary (MULT, m, c1,
6472 const_true_rtx));
6473 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6474 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6476 if (extend_op != UNKNOWN)
6477 temp = simplify_gen_unary (extend_op, mode, temp, m);
6479 return temp;
6483 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6484 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6485 negation of a single bit, we can convert this operation to a shift. We
6486 can actually do this more generally, but it doesn't seem worth it. */
6488 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6489 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6490 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6491 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6492 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6493 == GET_MODE_PRECISION (mode))
6494 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6495 return
6496 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6497 gen_lowpart (mode, XEXP (cond, 0)), i);
6499 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
6500 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6501 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6502 && GET_MODE (XEXP (cond, 0)) == mode
6503 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6504 == nonzero_bits (XEXP (cond, 0), mode)
6505 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6506 return XEXP (cond, 0);
6508 return x;
6511 /* Simplify X, a SET expression. Return the new expression. */
6513 static rtx
6514 simplify_set (rtx x)
6516 rtx src = SET_SRC (x);
6517 rtx dest = SET_DEST (x);
6518 machine_mode mode
6519 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6520 rtx_insn *other_insn;
6521 rtx *cc_use;
6523 /* (set (pc) (return)) gets written as (return). */
6524 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6525 return src;
6527 /* Now that we know for sure which bits of SRC we are using, see if we can
6528 simplify the expression for the object knowing that we only need the
6529 low-order bits. */
6531 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6533 src = force_to_mode (src, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
6534 SUBST (SET_SRC (x), src);
6537 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6538 the comparison result and try to simplify it unless we already have used
6539 undobuf.other_insn. */
6540 if ((GET_MODE_CLASS (mode) == MODE_CC
6541 || GET_CODE (src) == COMPARE
6542 || CC0_P (dest))
6543 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6544 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6545 && COMPARISON_P (*cc_use)
6546 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6548 enum rtx_code old_code = GET_CODE (*cc_use);
6549 enum rtx_code new_code;
6550 rtx op0, op1, tmp;
6551 int other_changed = 0;
6552 rtx inner_compare = NULL_RTX;
6553 machine_mode compare_mode = GET_MODE (dest);
6555 if (GET_CODE (src) == COMPARE)
6557 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6558 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6560 inner_compare = op0;
6561 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6564 else
6565 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6567 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6568 op0, op1);
6569 if (!tmp)
6570 new_code = old_code;
6571 else if (!CONSTANT_P (tmp))
6573 new_code = GET_CODE (tmp);
6574 op0 = XEXP (tmp, 0);
6575 op1 = XEXP (tmp, 1);
6577 else
6579 rtx pat = PATTERN (other_insn);
6580 undobuf.other_insn = other_insn;
6581 SUBST (*cc_use, tmp);
6583 /* Attempt to simplify CC user. */
6584 if (GET_CODE (pat) == SET)
6586 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6587 if (new_rtx != NULL_RTX)
6588 SUBST (SET_SRC (pat), new_rtx);
6591 /* Convert X into a no-op move. */
6592 SUBST (SET_DEST (x), pc_rtx);
6593 SUBST (SET_SRC (x), pc_rtx);
6594 return x;
6597 /* Simplify our comparison, if possible. */
6598 new_code = simplify_comparison (new_code, &op0, &op1);
6600 #ifdef SELECT_CC_MODE
6601 /* If this machine has CC modes other than CCmode, check to see if we
6602 need to use a different CC mode here. */
6603 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6604 compare_mode = GET_MODE (op0);
6605 else if (inner_compare
6606 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6607 && new_code == old_code
6608 && op0 == XEXP (inner_compare, 0)
6609 && op1 == XEXP (inner_compare, 1))
6610 compare_mode = GET_MODE (inner_compare);
6611 else
6612 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6614 /* If the mode changed, we have to change SET_DEST, the mode in the
6615 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6616 a hard register, just build new versions with the proper mode. If it
6617 is a pseudo, we lose unless it is only time we set the pseudo, in
6618 which case we can safely change its mode. */
6619 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6621 if (can_change_dest_mode (dest, 0, compare_mode))
6623 unsigned int regno = REGNO (dest);
6624 rtx new_dest;
6626 if (regno < FIRST_PSEUDO_REGISTER)
6627 new_dest = gen_rtx_REG (compare_mode, regno);
6628 else
6630 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6631 new_dest = regno_reg_rtx[regno];
6634 SUBST (SET_DEST (x), new_dest);
6635 SUBST (XEXP (*cc_use, 0), new_dest);
6636 other_changed = 1;
6638 dest = new_dest;
6641 #endif /* SELECT_CC_MODE */
6643 /* If the code changed, we have to build a new comparison in
6644 undobuf.other_insn. */
6645 if (new_code != old_code)
6647 int other_changed_previously = other_changed;
6648 unsigned HOST_WIDE_INT mask;
6649 rtx old_cc_use = *cc_use;
6651 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6652 dest, const0_rtx));
6653 other_changed = 1;
6655 /* If the only change we made was to change an EQ into an NE or
6656 vice versa, OP0 has only one bit that might be nonzero, and OP1
6657 is zero, check if changing the user of the condition code will
6658 produce a valid insn. If it won't, we can keep the original code
6659 in that insn by surrounding our operation with an XOR. */
6661 if (((old_code == NE && new_code == EQ)
6662 || (old_code == EQ && new_code == NE))
6663 && ! other_changed_previously && op1 == const0_rtx
6664 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6665 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
6667 rtx pat = PATTERN (other_insn), note = 0;
6669 if ((recog_for_combine (&pat, other_insn, &note) < 0
6670 && ! check_asm_operands (pat)))
6672 *cc_use = old_cc_use;
6673 other_changed = 0;
6675 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6676 gen_int_mode (mask,
6677 GET_MODE (op0)));
6682 if (other_changed)
6683 undobuf.other_insn = other_insn;
6685 /* Don't generate a compare of a CC with 0, just use that CC. */
6686 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6688 SUBST (SET_SRC (x), op0);
6689 src = SET_SRC (x);
6691 /* Otherwise, if we didn't previously have the same COMPARE we
6692 want, create it from scratch. */
6693 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6694 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6696 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6697 src = SET_SRC (x);
6700 else
6702 /* Get SET_SRC in a form where we have placed back any
6703 compound expressions. Then do the checks below. */
6704 src = make_compound_operation (src, SET);
6705 SUBST (SET_SRC (x), src);
6708 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6709 and X being a REG or (subreg (reg)), we may be able to convert this to
6710 (set (subreg:m2 x) (op)).
6712 We can always do this if M1 is narrower than M2 because that means that
6713 we only care about the low bits of the result.
6715 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6716 perform a narrower operation than requested since the high-order bits will
6717 be undefined. On machine where it is defined, this transformation is safe
6718 as long as M1 and M2 have the same number of words. */
6720 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6721 && !OBJECT_P (SUBREG_REG (src))
6722 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6723 / UNITS_PER_WORD)
6724 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6725 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6726 && (WORD_REGISTER_OPERATIONS
6727 || (GET_MODE_SIZE (GET_MODE (src))
6728 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
6729 #ifdef CANNOT_CHANGE_MODE_CLASS
6730 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6731 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6732 GET_MODE (SUBREG_REG (src)),
6733 GET_MODE (src)))
6734 #endif
6735 && (REG_P (dest)
6736 || (GET_CODE (dest) == SUBREG
6737 && REG_P (SUBREG_REG (dest)))))
6739 SUBST (SET_DEST (x),
6740 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6741 dest));
6742 SUBST (SET_SRC (x), SUBREG_REG (src));
6744 src = SET_SRC (x), dest = SET_DEST (x);
6747 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6748 in SRC. */
6749 if (dest == cc0_rtx
6750 && GET_CODE (src) == SUBREG
6751 && subreg_lowpart_p (src)
6752 && (GET_MODE_PRECISION (GET_MODE (src))
6753 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6755 rtx inner = SUBREG_REG (src);
6756 machine_mode inner_mode = GET_MODE (inner);
6758 /* Here we make sure that we don't have a sign bit on. */
6759 if (val_signbit_known_clear_p (GET_MODE (src),
6760 nonzero_bits (inner, inner_mode)))
6762 SUBST (SET_SRC (x), inner);
6763 src = SET_SRC (x);
6767 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6768 would require a paradoxical subreg. Replace the subreg with a
6769 zero_extend to avoid the reload that would otherwise be required. */
6771 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6772 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6773 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6774 && SUBREG_BYTE (src) == 0
6775 && paradoxical_subreg_p (src)
6776 && MEM_P (SUBREG_REG (src)))
6778 SUBST (SET_SRC (x),
6779 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6780 GET_MODE (src), SUBREG_REG (src)));
6782 src = SET_SRC (x);
6785 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6786 are comparing an item known to be 0 or -1 against 0, use a logical
6787 operation instead. Check for one of the arms being an IOR of the other
6788 arm with some value. We compute three terms to be IOR'ed together. In
6789 practice, at most two will be nonzero. Then we do the IOR's. */
6791 if (GET_CODE (dest) != PC
6792 && GET_CODE (src) == IF_THEN_ELSE
6793 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6794 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6795 && XEXP (XEXP (src, 0), 1) == const0_rtx
6796 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6797 && (!HAVE_conditional_move
6798 || ! can_conditionally_move_p (GET_MODE (src)))
6799 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6800 GET_MODE (XEXP (XEXP (src, 0), 0)))
6801 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src, 0), 0))))
6802 && ! side_effects_p (src))
6804 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6805 ? XEXP (src, 1) : XEXP (src, 2));
6806 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6807 ? XEXP (src, 2) : XEXP (src, 1));
6808 rtx term1 = const0_rtx, term2, term3;
6810 if (GET_CODE (true_rtx) == IOR
6811 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6812 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6813 else if (GET_CODE (true_rtx) == IOR
6814 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6815 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6816 else if (GET_CODE (false_rtx) == IOR
6817 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6818 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6819 else if (GET_CODE (false_rtx) == IOR
6820 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6821 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6823 term2 = simplify_gen_binary (AND, GET_MODE (src),
6824 XEXP (XEXP (src, 0), 0), true_rtx);
6825 term3 = simplify_gen_binary (AND, GET_MODE (src),
6826 simplify_gen_unary (NOT, GET_MODE (src),
6827 XEXP (XEXP (src, 0), 0),
6828 GET_MODE (src)),
6829 false_rtx);
6831 SUBST (SET_SRC (x),
6832 simplify_gen_binary (IOR, GET_MODE (src),
6833 simplify_gen_binary (IOR, GET_MODE (src),
6834 term1, term2),
6835 term3));
6837 src = SET_SRC (x);
6840 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6841 whole thing fail. */
6842 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6843 return src;
6844 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6845 return dest;
6846 else
6847 /* Convert this into a field assignment operation, if possible. */
6848 return make_field_assignment (x);
6851 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6852 result. */
6854 static rtx
6855 simplify_logical (rtx x)
6857 machine_mode mode = GET_MODE (x);
6858 rtx op0 = XEXP (x, 0);
6859 rtx op1 = XEXP (x, 1);
6861 switch (GET_CODE (x))
6863 case AND:
6864 /* We can call simplify_and_const_int only if we don't lose
6865 any (sign) bits when converting INTVAL (op1) to
6866 "unsigned HOST_WIDE_INT". */
6867 if (CONST_INT_P (op1)
6868 && (HWI_COMPUTABLE_MODE_P (mode)
6869 || INTVAL (op1) > 0))
6871 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6872 if (GET_CODE (x) != AND)
6873 return x;
6875 op0 = XEXP (x, 0);
6876 op1 = XEXP (x, 1);
6879 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6880 apply the distributive law and then the inverse distributive
6881 law to see if things simplify. */
6882 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6884 rtx result = distribute_and_simplify_rtx (x, 0);
6885 if (result)
6886 return result;
6888 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6890 rtx result = distribute_and_simplify_rtx (x, 1);
6891 if (result)
6892 return result;
6894 break;
6896 case IOR:
6897 /* If we have (ior (and A B) C), apply the distributive law and then
6898 the inverse distributive law to see if things simplify. */
6900 if (GET_CODE (op0) == AND)
6902 rtx result = distribute_and_simplify_rtx (x, 0);
6903 if (result)
6904 return result;
6907 if (GET_CODE (op1) == AND)
6909 rtx result = distribute_and_simplify_rtx (x, 1);
6910 if (result)
6911 return result;
6913 break;
6915 default:
6916 gcc_unreachable ();
6919 return x;
6922 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6923 operations" because they can be replaced with two more basic operations.
6924 ZERO_EXTEND is also considered "compound" because it can be replaced with
6925 an AND operation, which is simpler, though only one operation.
6927 The function expand_compound_operation is called with an rtx expression
6928 and will convert it to the appropriate shifts and AND operations,
6929 simplifying at each stage.
6931 The function make_compound_operation is called to convert an expression
6932 consisting of shifts and ANDs into the equivalent compound expression.
6933 It is the inverse of this function, loosely speaking. */
6935 static rtx
6936 expand_compound_operation (rtx x)
6938 unsigned HOST_WIDE_INT pos = 0, len;
6939 int unsignedp = 0;
6940 unsigned int modewidth;
6941 rtx tem;
6943 switch (GET_CODE (x))
6945 case ZERO_EXTEND:
6946 unsignedp = 1;
6947 case SIGN_EXTEND:
6948 /* We can't necessarily use a const_int for a multiword mode;
6949 it depends on implicitly extending the value.
6950 Since we don't know the right way to extend it,
6951 we can't tell whether the implicit way is right.
6953 Even for a mode that is no wider than a const_int,
6954 we can't win, because we need to sign extend one of its bits through
6955 the rest of it, and we don't know which bit. */
6956 if (CONST_INT_P (XEXP (x, 0)))
6957 return x;
6959 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6960 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6961 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6962 reloaded. If not for that, MEM's would very rarely be safe.
6964 Reject MODEs bigger than a word, because we might not be able
6965 to reference a two-register group starting with an arbitrary register
6966 (and currently gen_lowpart might crash for a SUBREG). */
6968 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6969 return x;
6971 /* Reject MODEs that aren't scalar integers because turning vector
6972 or complex modes into shifts causes problems. */
6974 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6975 return x;
6977 len = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
6978 /* If the inner object has VOIDmode (the only way this can happen
6979 is if it is an ASM_OPERANDS), we can't do anything since we don't
6980 know how much masking to do. */
6981 if (len == 0)
6982 return x;
6984 break;
6986 case ZERO_EXTRACT:
6987 unsignedp = 1;
6989 /* ... fall through ... */
6991 case SIGN_EXTRACT:
6992 /* If the operand is a CLOBBER, just return it. */
6993 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6994 return XEXP (x, 0);
6996 if (!CONST_INT_P (XEXP (x, 1))
6997 || !CONST_INT_P (XEXP (x, 2))
6998 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6999 return x;
7001 /* Reject MODEs that aren't scalar integers because turning vector
7002 or complex modes into shifts causes problems. */
7004 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
7005 return x;
7007 len = INTVAL (XEXP (x, 1));
7008 pos = INTVAL (XEXP (x, 2));
7010 /* This should stay within the object being extracted, fail otherwise. */
7011 if (len + pos > GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))))
7012 return x;
7014 if (BITS_BIG_ENDIAN)
7015 pos = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))) - len - pos;
7017 break;
7019 default:
7020 return x;
7022 /* Convert sign extension to zero extension, if we know that the high
7023 bit is not set, as this is easier to optimize. It will be converted
7024 back to cheaper alternative in make_extraction. */
7025 if (GET_CODE (x) == SIGN_EXTEND
7026 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7027 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7028 & ~(((unsigned HOST_WIDE_INT)
7029 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
7030 >> 1))
7031 == 0)))
7033 machine_mode mode = GET_MODE (x);
7034 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7035 rtx temp2 = expand_compound_operation (temp);
7037 /* Make sure this is a profitable operation. */
7038 if (set_src_cost (x, mode, optimize_this_for_speed_p)
7039 > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7040 return temp2;
7041 else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7042 > set_src_cost (temp, mode, optimize_this_for_speed_p))
7043 return temp;
7044 else
7045 return x;
7048 /* We can optimize some special cases of ZERO_EXTEND. */
7049 if (GET_CODE (x) == ZERO_EXTEND)
7051 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7052 know that the last value didn't have any inappropriate bits
7053 set. */
7054 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7055 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7056 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7057 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
7058 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7059 return XEXP (XEXP (x, 0), 0);
7061 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7062 if (GET_CODE (XEXP (x, 0)) == SUBREG
7063 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7064 && subreg_lowpart_p (XEXP (x, 0))
7065 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7066 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
7067 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7068 return SUBREG_REG (XEXP (x, 0));
7070 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7071 is a comparison and STORE_FLAG_VALUE permits. This is like
7072 the first case, but it works even when GET_MODE (x) is larger
7073 than HOST_WIDE_INT. */
7074 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7075 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7076 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7077 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7078 <= HOST_BITS_PER_WIDE_INT)
7079 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7080 return XEXP (XEXP (x, 0), 0);
7082 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7083 if (GET_CODE (XEXP (x, 0)) == SUBREG
7084 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7085 && subreg_lowpart_p (XEXP (x, 0))
7086 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7087 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7088 <= HOST_BITS_PER_WIDE_INT)
7089 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7090 return SUBREG_REG (XEXP (x, 0));
7094 /* If we reach here, we want to return a pair of shifts. The inner
7095 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7096 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7097 logical depending on the value of UNSIGNEDP.
7099 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7100 converted into an AND of a shift.
7102 We must check for the case where the left shift would have a negative
7103 count. This can happen in a case like (x >> 31) & 255 on machines
7104 that can't shift by a constant. On those machines, we would first
7105 combine the shift with the AND to produce a variable-position
7106 extraction. Then the constant of 31 would be substituted in
7107 to produce such a position. */
7109 modewidth = GET_MODE_PRECISION (GET_MODE (x));
7110 if (modewidth >= pos + len)
7112 machine_mode mode = GET_MODE (x);
7113 tem = gen_lowpart (mode, XEXP (x, 0));
7114 if (!tem || GET_CODE (tem) == CLOBBER)
7115 return x;
7116 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7117 tem, modewidth - pos - len);
7118 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7119 mode, tem, modewidth - len);
7121 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7122 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
7123 simplify_shift_const (NULL_RTX, LSHIFTRT,
7124 GET_MODE (x),
7125 XEXP (x, 0), pos),
7126 ((unsigned HOST_WIDE_INT) 1 << len) - 1);
7127 else
7128 /* Any other cases we can't handle. */
7129 return x;
7131 /* If we couldn't do this for some reason, return the original
7132 expression. */
7133 if (GET_CODE (tem) == CLOBBER)
7134 return x;
7136 return tem;
7139 /* X is a SET which contains an assignment of one object into
7140 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7141 or certain SUBREGS). If possible, convert it into a series of
7142 logical operations.
7144 We half-heartedly support variable positions, but do not at all
7145 support variable lengths. */
7147 static const_rtx
7148 expand_field_assignment (const_rtx x)
7150 rtx inner;
7151 rtx pos; /* Always counts from low bit. */
7152 int len;
7153 rtx mask, cleared, masked;
7154 machine_mode compute_mode;
7156 /* Loop until we find something we can't simplify. */
7157 while (1)
7159 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7160 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7162 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7163 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
7164 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
7166 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7167 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7169 inner = XEXP (SET_DEST (x), 0);
7170 len = INTVAL (XEXP (SET_DEST (x), 1));
7171 pos = XEXP (SET_DEST (x), 2);
7173 /* A constant position should stay within the width of INNER. */
7174 if (CONST_INT_P (pos)
7175 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
7176 break;
7178 if (BITS_BIG_ENDIAN)
7180 if (CONST_INT_P (pos))
7181 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
7182 - INTVAL (pos));
7183 else if (GET_CODE (pos) == MINUS
7184 && CONST_INT_P (XEXP (pos, 1))
7185 && (INTVAL (XEXP (pos, 1))
7186 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
7187 /* If position is ADJUST - X, new position is X. */
7188 pos = XEXP (pos, 0);
7189 else
7191 HOST_WIDE_INT prec = GET_MODE_PRECISION (GET_MODE (inner));
7192 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7193 gen_int_mode (prec - len,
7194 GET_MODE (pos)),
7195 pos);
7200 /* A SUBREG between two modes that occupy the same numbers of words
7201 can be done by moving the SUBREG to the source. */
7202 else if (GET_CODE (SET_DEST (x)) == SUBREG
7203 /* We need SUBREGs to compute nonzero_bits properly. */
7204 && nonzero_sign_valid
7205 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
7206 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
7207 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
7208 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
7210 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7211 gen_lowpart
7212 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7213 SET_SRC (x)));
7214 continue;
7216 else
7217 break;
7219 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7220 inner = SUBREG_REG (inner);
7222 compute_mode = GET_MODE (inner);
7224 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7225 if (! SCALAR_INT_MODE_P (compute_mode))
7227 machine_mode imode;
7229 /* Don't do anything for vector or complex integral types. */
7230 if (! FLOAT_MODE_P (compute_mode))
7231 break;
7233 /* Try to find an integral mode to pun with. */
7234 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
7235 if (imode == BLKmode)
7236 break;
7238 compute_mode = imode;
7239 inner = gen_lowpart (imode, inner);
7242 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7243 if (len >= HOST_BITS_PER_WIDE_INT)
7244 break;
7246 /* Now compute the equivalent expression. Make a copy of INNER
7247 for the SET_DEST in case it is a MEM into which we will substitute;
7248 we don't want shared RTL in that case. */
7249 mask = gen_int_mode (((unsigned HOST_WIDE_INT) 1 << len) - 1,
7250 compute_mode);
7251 cleared = simplify_gen_binary (AND, compute_mode,
7252 simplify_gen_unary (NOT, compute_mode,
7253 simplify_gen_binary (ASHIFT,
7254 compute_mode,
7255 mask, pos),
7256 compute_mode),
7257 inner);
7258 masked = simplify_gen_binary (ASHIFT, compute_mode,
7259 simplify_gen_binary (
7260 AND, compute_mode,
7261 gen_lowpart (compute_mode, SET_SRC (x)),
7262 mask),
7263 pos);
7265 x = gen_rtx_SET (copy_rtx (inner),
7266 simplify_gen_binary (IOR, compute_mode,
7267 cleared, masked));
7270 return x;
7273 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7274 it is an RTX that represents the (variable) starting position; otherwise,
7275 POS is the (constant) starting bit position. Both are counted from the LSB.
7277 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7279 IN_DEST is nonzero if this is a reference in the destination of a SET.
7280 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7281 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7282 be used.
7284 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7285 ZERO_EXTRACT should be built even for bits starting at bit 0.
7287 MODE is the desired mode of the result (if IN_DEST == 0).
7289 The result is an RTX for the extraction or NULL_RTX if the target
7290 can't handle it. */
7292 static rtx
7293 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7294 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7295 int in_dest, int in_compare)
7297 /* This mode describes the size of the storage area
7298 to fetch the overall value from. Within that, we
7299 ignore the POS lowest bits, etc. */
7300 machine_mode is_mode = GET_MODE (inner);
7301 machine_mode inner_mode;
7302 machine_mode wanted_inner_mode;
7303 machine_mode wanted_inner_reg_mode = word_mode;
7304 machine_mode pos_mode = word_mode;
7305 machine_mode extraction_mode = word_mode;
7306 machine_mode tmode = mode_for_size (len, MODE_INT, 1);
7307 rtx new_rtx = 0;
7308 rtx orig_pos_rtx = pos_rtx;
7309 HOST_WIDE_INT orig_pos;
7311 if (pos_rtx && CONST_INT_P (pos_rtx))
7312 pos = INTVAL (pos_rtx), pos_rtx = 0;
7314 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7316 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7317 consider just the QI as the memory to extract from.
7318 The subreg adds or removes high bits; its mode is
7319 irrelevant to the meaning of this extraction,
7320 since POS and LEN count from the lsb. */
7321 if (MEM_P (SUBREG_REG (inner)))
7322 is_mode = GET_MODE (SUBREG_REG (inner));
7323 inner = SUBREG_REG (inner);
7325 else if (GET_CODE (inner) == ASHIFT
7326 && CONST_INT_P (XEXP (inner, 1))
7327 && pos_rtx == 0 && pos == 0
7328 && len > UINTVAL (XEXP (inner, 1)))
7330 /* We're extracting the least significant bits of an rtx
7331 (ashift X (const_int C)), where LEN > C. Extract the
7332 least significant (LEN - C) bits of X, giving an rtx
7333 whose mode is MODE, then shift it left C times. */
7334 new_rtx = make_extraction (mode, XEXP (inner, 0),
7335 0, 0, len - INTVAL (XEXP (inner, 1)),
7336 unsignedp, in_dest, in_compare);
7337 if (new_rtx != 0)
7338 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7340 else if (GET_CODE (inner) == TRUNCATE)
7341 inner = XEXP (inner, 0);
7343 inner_mode = GET_MODE (inner);
7345 /* See if this can be done without an extraction. We never can if the
7346 width of the field is not the same as that of some integer mode. For
7347 registers, we can only avoid the extraction if the position is at the
7348 low-order bit and this is either not in the destination or we have the
7349 appropriate STRICT_LOW_PART operation available.
7351 For MEM, we can avoid an extract if the field starts on an appropriate
7352 boundary and we can change the mode of the memory reference. */
7354 if (tmode != BLKmode
7355 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7356 && !MEM_P (inner)
7357 && (inner_mode == tmode
7358 || !REG_P (inner)
7359 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7360 || reg_truncated_to_mode (tmode, inner))
7361 && (! in_dest
7362 || (REG_P (inner)
7363 && have_insn_for (STRICT_LOW_PART, tmode))))
7364 || (MEM_P (inner) && pos_rtx == 0
7365 && (pos
7366 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7367 : BITS_PER_UNIT)) == 0
7368 /* We can't do this if we are widening INNER_MODE (it
7369 may not be aligned, for one thing). */
7370 && GET_MODE_PRECISION (inner_mode) >= GET_MODE_PRECISION (tmode)
7371 && (inner_mode == tmode
7372 || (! mode_dependent_address_p (XEXP (inner, 0),
7373 MEM_ADDR_SPACE (inner))
7374 && ! MEM_VOLATILE_P (inner))))))
7376 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7377 field. If the original and current mode are the same, we need not
7378 adjust the offset. Otherwise, we do if bytes big endian.
7380 If INNER is not a MEM, get a piece consisting of just the field
7381 of interest (in this case POS % BITS_PER_WORD must be 0). */
7383 if (MEM_P (inner))
7385 HOST_WIDE_INT offset;
7387 /* POS counts from lsb, but make OFFSET count in memory order. */
7388 if (BYTES_BIG_ENDIAN)
7389 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7390 else
7391 offset = pos / BITS_PER_UNIT;
7393 new_rtx = adjust_address_nv (inner, tmode, offset);
7395 else if (REG_P (inner))
7397 if (tmode != inner_mode)
7399 /* We can't call gen_lowpart in a DEST since we
7400 always want a SUBREG (see below) and it would sometimes
7401 return a new hard register. */
7402 if (pos || in_dest)
7404 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7406 if (WORDS_BIG_ENDIAN
7407 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7408 final_word = ((GET_MODE_SIZE (inner_mode)
7409 - GET_MODE_SIZE (tmode))
7410 / UNITS_PER_WORD) - final_word;
7412 final_word *= UNITS_PER_WORD;
7413 if (BYTES_BIG_ENDIAN &&
7414 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7415 final_word += (GET_MODE_SIZE (inner_mode)
7416 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7418 /* Avoid creating invalid subregs, for example when
7419 simplifying (x>>32)&255. */
7420 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7421 return NULL_RTX;
7423 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7425 else
7426 new_rtx = gen_lowpart (tmode, inner);
7428 else
7429 new_rtx = inner;
7431 else
7432 new_rtx = force_to_mode (inner, tmode,
7433 len >= HOST_BITS_PER_WIDE_INT
7434 ? ~(unsigned HOST_WIDE_INT) 0
7435 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7438 /* If this extraction is going into the destination of a SET,
7439 make a STRICT_LOW_PART unless we made a MEM. */
7441 if (in_dest)
7442 return (MEM_P (new_rtx) ? new_rtx
7443 : (GET_CODE (new_rtx) != SUBREG
7444 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7445 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7447 if (mode == tmode)
7448 return new_rtx;
7450 if (CONST_SCALAR_INT_P (new_rtx))
7451 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7452 mode, new_rtx, tmode);
7454 /* If we know that no extraneous bits are set, and that the high
7455 bit is not set, convert the extraction to the cheaper of
7456 sign and zero extension, that are equivalent in these cases. */
7457 if (flag_expensive_optimizations
7458 && (HWI_COMPUTABLE_MODE_P (tmode)
7459 && ((nonzero_bits (new_rtx, tmode)
7460 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7461 == 0)))
7463 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7464 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7466 /* Prefer ZERO_EXTENSION, since it gives more information to
7467 backends. */
7468 if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7469 <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7470 return temp;
7471 return temp1;
7474 /* Otherwise, sign- or zero-extend unless we already are in the
7475 proper mode. */
7477 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7478 mode, new_rtx));
7481 /* Unless this is a COMPARE or we have a funny memory reference,
7482 don't do anything with zero-extending field extracts starting at
7483 the low-order bit since they are simple AND operations. */
7484 if (pos_rtx == 0 && pos == 0 && ! in_dest
7485 && ! in_compare && unsignedp)
7486 return 0;
7488 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7489 if the position is not a constant and the length is not 1. In all
7490 other cases, we would only be going outside our object in cases when
7491 an original shift would have been undefined. */
7492 if (MEM_P (inner)
7493 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7494 || (pos_rtx != 0 && len != 1)))
7495 return 0;
7497 enum extraction_pattern pattern = (in_dest ? EP_insv
7498 : unsignedp ? EP_extzv : EP_extv);
7500 /* If INNER is not from memory, we want it to have the mode of a register
7501 extraction pattern's structure operand, or word_mode if there is no
7502 such pattern. The same applies to extraction_mode and pos_mode
7503 and their respective operands.
7505 For memory, assume that the desired extraction_mode and pos_mode
7506 are the same as for a register operation, since at present we don't
7507 have named patterns for aligned memory structures. */
7508 struct extraction_insn insn;
7509 if (get_best_reg_extraction_insn (&insn, pattern,
7510 GET_MODE_BITSIZE (inner_mode), mode))
7512 wanted_inner_reg_mode = insn.struct_mode;
7513 pos_mode = insn.pos_mode;
7514 extraction_mode = insn.field_mode;
7517 /* Never narrow an object, since that might not be safe. */
7519 if (mode != VOIDmode
7520 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7521 extraction_mode = mode;
7523 if (!MEM_P (inner))
7524 wanted_inner_mode = wanted_inner_reg_mode;
7525 else
7527 /* Be careful not to go beyond the extracted object and maintain the
7528 natural alignment of the memory. */
7529 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7530 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7531 > GET_MODE_BITSIZE (wanted_inner_mode))
7533 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7534 gcc_assert (wanted_inner_mode != VOIDmode);
7538 orig_pos = pos;
7540 if (BITS_BIG_ENDIAN)
7542 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7543 BITS_BIG_ENDIAN style. If position is constant, compute new
7544 position. Otherwise, build subtraction.
7545 Note that POS is relative to the mode of the original argument.
7546 If it's a MEM we need to recompute POS relative to that.
7547 However, if we're extracting from (or inserting into) a register,
7548 we want to recompute POS relative to wanted_inner_mode. */
7549 int width = (MEM_P (inner)
7550 ? GET_MODE_BITSIZE (is_mode)
7551 : GET_MODE_BITSIZE (wanted_inner_mode));
7553 if (pos_rtx == 0)
7554 pos = width - len - pos;
7555 else
7556 pos_rtx
7557 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7558 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7559 pos_rtx);
7560 /* POS may be less than 0 now, but we check for that below.
7561 Note that it can only be less than 0 if !MEM_P (inner). */
7564 /* If INNER has a wider mode, and this is a constant extraction, try to
7565 make it smaller and adjust the byte to point to the byte containing
7566 the value. */
7567 if (wanted_inner_mode != VOIDmode
7568 && inner_mode != wanted_inner_mode
7569 && ! pos_rtx
7570 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7571 && MEM_P (inner)
7572 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7573 && ! MEM_VOLATILE_P (inner))
7575 int offset = 0;
7577 /* The computations below will be correct if the machine is big
7578 endian in both bits and bytes or little endian in bits and bytes.
7579 If it is mixed, we must adjust. */
7581 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7582 adjust OFFSET to compensate. */
7583 if (BYTES_BIG_ENDIAN
7584 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7585 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7587 /* We can now move to the desired byte. */
7588 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7589 * GET_MODE_SIZE (wanted_inner_mode);
7590 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7592 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7593 && is_mode != wanted_inner_mode)
7594 offset = (GET_MODE_SIZE (is_mode)
7595 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7597 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7600 /* If INNER is not memory, get it into the proper mode. If we are changing
7601 its mode, POS must be a constant and smaller than the size of the new
7602 mode. */
7603 else if (!MEM_P (inner))
7605 /* On the LHS, don't create paradoxical subregs implicitely truncating
7606 the register unless TRULY_NOOP_TRUNCATION. */
7607 if (in_dest
7608 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7609 wanted_inner_mode))
7610 return NULL_RTX;
7612 if (GET_MODE (inner) != wanted_inner_mode
7613 && (pos_rtx != 0
7614 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7615 return NULL_RTX;
7617 if (orig_pos < 0)
7618 return NULL_RTX;
7620 inner = force_to_mode (inner, wanted_inner_mode,
7621 pos_rtx
7622 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7623 ? ~(unsigned HOST_WIDE_INT) 0
7624 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
7625 << orig_pos),
7629 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7630 have to zero extend. Otherwise, we can just use a SUBREG. */
7631 if (pos_rtx != 0
7632 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7634 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7635 GET_MODE (pos_rtx));
7637 /* If we know that no extraneous bits are set, and that the high
7638 bit is not set, convert extraction to cheaper one - either
7639 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7640 cases. */
7641 if (flag_expensive_optimizations
7642 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7643 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7644 & ~(((unsigned HOST_WIDE_INT)
7645 GET_MODE_MASK (GET_MODE (pos_rtx)))
7646 >> 1))
7647 == 0)))
7649 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7650 GET_MODE (pos_rtx));
7652 /* Prefer ZERO_EXTENSION, since it gives more information to
7653 backends. */
7654 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7655 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7656 temp = temp1;
7658 pos_rtx = temp;
7661 /* Make POS_RTX unless we already have it and it is correct. If we don't
7662 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7663 be a CONST_INT. */
7664 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7665 pos_rtx = orig_pos_rtx;
7667 else if (pos_rtx == 0)
7668 pos_rtx = GEN_INT (pos);
7670 /* Make the required operation. See if we can use existing rtx. */
7671 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7672 extraction_mode, inner, GEN_INT (len), pos_rtx);
7673 if (! in_dest)
7674 new_rtx = gen_lowpart (mode, new_rtx);
7676 return new_rtx;
7679 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7680 with any other operations in X. Return X without that shift if so. */
7682 static rtx
7683 extract_left_shift (rtx x, int count)
7685 enum rtx_code code = GET_CODE (x);
7686 machine_mode mode = GET_MODE (x);
7687 rtx tem;
7689 switch (code)
7691 case ASHIFT:
7692 /* This is the shift itself. If it is wide enough, we will return
7693 either the value being shifted if the shift count is equal to
7694 COUNT or a shift for the difference. */
7695 if (CONST_INT_P (XEXP (x, 1))
7696 && INTVAL (XEXP (x, 1)) >= count)
7697 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7698 INTVAL (XEXP (x, 1)) - count);
7699 break;
7701 case NEG: case NOT:
7702 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7703 return simplify_gen_unary (code, mode, tem, mode);
7705 break;
7707 case PLUS: case IOR: case XOR: case AND:
7708 /* If we can safely shift this constant and we find the inner shift,
7709 make a new operation. */
7710 if (CONST_INT_P (XEXP (x, 1))
7711 && (UINTVAL (XEXP (x, 1))
7712 & ((((unsigned HOST_WIDE_INT) 1 << count)) - 1)) == 0
7713 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7715 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7716 return simplify_gen_binary (code, mode, tem,
7717 gen_int_mode (val, mode));
7719 break;
7721 default:
7722 break;
7725 return 0;
7728 /* Look at the expression rooted at X. Look for expressions
7729 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7730 Form these expressions.
7732 Return the new rtx, usually just X.
7734 Also, for machines like the VAX that don't have logical shift insns,
7735 try to convert logical to arithmetic shift operations in cases where
7736 they are equivalent. This undoes the canonicalizations to logical
7737 shifts done elsewhere.
7739 We try, as much as possible, to re-use rtl expressions to save memory.
7741 IN_CODE says what kind of expression we are processing. Normally, it is
7742 SET. In a memory address it is MEM. When processing the arguments of
7743 a comparison or a COMPARE against zero, it is COMPARE. */
7746 make_compound_operation (rtx x, enum rtx_code in_code)
7748 enum rtx_code code = GET_CODE (x);
7749 machine_mode mode = GET_MODE (x);
7750 int mode_width = GET_MODE_PRECISION (mode);
7751 rtx rhs, lhs;
7752 enum rtx_code next_code;
7753 int i, j;
7754 rtx new_rtx = 0;
7755 rtx tem;
7756 const char *fmt;
7758 /* Select the code to be used in recursive calls. Once we are inside an
7759 address, we stay there. If we have a comparison, set to COMPARE,
7760 but once inside, go back to our default of SET. */
7762 next_code = (code == MEM ? MEM
7763 : ((code == COMPARE || COMPARISON_P (x))
7764 && XEXP (x, 1) == const0_rtx) ? COMPARE
7765 : in_code == COMPARE ? SET : in_code);
7767 /* Process depending on the code of this operation. If NEW is set
7768 nonzero, it will be returned. */
7770 switch (code)
7772 case ASHIFT:
7773 /* Convert shifts by constants into multiplications if inside
7774 an address. */
7775 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7776 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7777 && INTVAL (XEXP (x, 1)) >= 0
7778 && SCALAR_INT_MODE_P (mode))
7780 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7781 HOST_WIDE_INT multval = (HOST_WIDE_INT) 1 << count;
7783 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7784 if (GET_CODE (new_rtx) == NEG)
7786 new_rtx = XEXP (new_rtx, 0);
7787 multval = -multval;
7789 multval = trunc_int_for_mode (multval, mode);
7790 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
7792 break;
7794 case PLUS:
7795 lhs = XEXP (x, 0);
7796 rhs = XEXP (x, 1);
7797 lhs = make_compound_operation (lhs, next_code);
7798 rhs = make_compound_operation (rhs, next_code);
7799 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG
7800 && SCALAR_INT_MODE_P (mode))
7802 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7803 XEXP (lhs, 1));
7804 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7806 else if (GET_CODE (lhs) == MULT
7807 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7809 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7810 simplify_gen_unary (NEG, mode,
7811 XEXP (lhs, 1),
7812 mode));
7813 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7815 else
7817 SUBST (XEXP (x, 0), lhs);
7818 SUBST (XEXP (x, 1), rhs);
7819 goto maybe_swap;
7821 x = gen_lowpart (mode, new_rtx);
7822 goto maybe_swap;
7824 case MINUS:
7825 lhs = XEXP (x, 0);
7826 rhs = XEXP (x, 1);
7827 lhs = make_compound_operation (lhs, next_code);
7828 rhs = make_compound_operation (rhs, next_code);
7829 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG
7830 && SCALAR_INT_MODE_P (mode))
7832 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7833 XEXP (rhs, 1));
7834 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7836 else if (GET_CODE (rhs) == MULT
7837 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7839 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7840 simplify_gen_unary (NEG, mode,
7841 XEXP (rhs, 1),
7842 mode));
7843 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7845 else
7847 SUBST (XEXP (x, 0), lhs);
7848 SUBST (XEXP (x, 1), rhs);
7849 return x;
7851 return gen_lowpart (mode, new_rtx);
7853 case AND:
7854 /* If the second operand is not a constant, we can't do anything
7855 with it. */
7856 if (!CONST_INT_P (XEXP (x, 1)))
7857 break;
7859 /* If the constant is a power of two minus one and the first operand
7860 is a logical right shift, make an extraction. */
7861 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7862 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7864 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7865 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7866 0, in_code == COMPARE);
7869 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7870 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7871 && subreg_lowpart_p (XEXP (x, 0))
7872 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7873 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7875 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
7876 next_code);
7877 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
7878 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
7879 0, in_code == COMPARE);
7881 /* If that didn't give anything, see if the AND simplifies on
7882 its own. */
7883 if (!new_rtx && i >= 0)
7885 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7886 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
7887 0, in_code == COMPARE);
7890 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7891 else if ((GET_CODE (XEXP (x, 0)) == XOR
7892 || GET_CODE (XEXP (x, 0)) == IOR)
7893 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7894 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7895 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7897 /* Apply the distributive law, and then try to make extractions. */
7898 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7899 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7900 XEXP (x, 1)),
7901 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7902 XEXP (x, 1)));
7903 new_rtx = make_compound_operation (new_rtx, in_code);
7906 /* If we are have (and (rotate X C) M) and C is larger than the number
7907 of bits in M, this is an extraction. */
7909 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7910 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7911 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7912 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7914 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7915 new_rtx = make_extraction (mode, new_rtx,
7916 (GET_MODE_PRECISION (mode)
7917 - INTVAL (XEXP (XEXP (x, 0), 1))),
7918 NULL_RTX, i, 1, 0, in_code == COMPARE);
7921 /* On machines without logical shifts, if the operand of the AND is
7922 a logical shift and our mask turns off all the propagated sign
7923 bits, we can replace the logical shift with an arithmetic shift. */
7924 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7925 && !have_insn_for (LSHIFTRT, mode)
7926 && have_insn_for (ASHIFTRT, mode)
7927 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7928 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7929 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7930 && mode_width <= HOST_BITS_PER_WIDE_INT)
7932 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7934 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7935 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7936 SUBST (XEXP (x, 0),
7937 gen_rtx_ASHIFTRT (mode,
7938 make_compound_operation
7939 (XEXP (XEXP (x, 0), 0), next_code),
7940 XEXP (XEXP (x, 0), 1)));
7943 /* If the constant is one less than a power of two, this might be
7944 representable by an extraction even if no shift is present.
7945 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7946 we are in a COMPARE. */
7947 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7948 new_rtx = make_extraction (mode,
7949 make_compound_operation (XEXP (x, 0),
7950 next_code),
7951 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7953 /* If we are in a comparison and this is an AND with a power of two,
7954 convert this into the appropriate bit extract. */
7955 else if (in_code == COMPARE
7956 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
7957 new_rtx = make_extraction (mode,
7958 make_compound_operation (XEXP (x, 0),
7959 next_code),
7960 i, NULL_RTX, 1, 1, 0, 1);
7962 break;
7964 case LSHIFTRT:
7965 /* If the sign bit is known to be zero, replace this with an
7966 arithmetic shift. */
7967 if (have_insn_for (ASHIFTRT, mode)
7968 && ! have_insn_for (LSHIFTRT, mode)
7969 && mode_width <= HOST_BITS_PER_WIDE_INT
7970 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
7972 new_rtx = gen_rtx_ASHIFTRT (mode,
7973 make_compound_operation (XEXP (x, 0),
7974 next_code),
7975 XEXP (x, 1));
7976 break;
7979 /* ... fall through ... */
7981 case ASHIFTRT:
7982 lhs = XEXP (x, 0);
7983 rhs = XEXP (x, 1);
7985 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7986 this is a SIGN_EXTRACT. */
7987 if (CONST_INT_P (rhs)
7988 && GET_CODE (lhs) == ASHIFT
7989 && CONST_INT_P (XEXP (lhs, 1))
7990 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7991 && INTVAL (XEXP (lhs, 1)) >= 0
7992 && INTVAL (rhs) < mode_width)
7994 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7995 new_rtx = make_extraction (mode, new_rtx,
7996 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7997 NULL_RTX, mode_width - INTVAL (rhs),
7998 code == LSHIFTRT, 0, in_code == COMPARE);
7999 break;
8002 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8003 If so, try to merge the shifts into a SIGN_EXTEND. We could
8004 also do this for some cases of SIGN_EXTRACT, but it doesn't
8005 seem worth the effort; the case checked for occurs on Alpha. */
8007 if (!OBJECT_P (lhs)
8008 && ! (GET_CODE (lhs) == SUBREG
8009 && (OBJECT_P (SUBREG_REG (lhs))))
8010 && CONST_INT_P (rhs)
8011 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8012 && INTVAL (rhs) < mode_width
8013 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
8014 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
8015 0, NULL_RTX, mode_width - INTVAL (rhs),
8016 code == LSHIFTRT, 0, in_code == COMPARE);
8018 break;
8020 case SUBREG:
8021 /* Call ourselves recursively on the inner expression. If we are
8022 narrowing the object and it has a different RTL code from
8023 what it originally did, do this SUBREG as a force_to_mode. */
8025 rtx inner = SUBREG_REG (x), simplified;
8026 enum rtx_code subreg_code = in_code;
8028 /* If in_code is COMPARE, it isn't always safe to pass it through
8029 to the recursive make_compound_operation call. */
8030 if (subreg_code == COMPARE
8031 && (!subreg_lowpart_p (x)
8032 || GET_CODE (inner) == SUBREG
8033 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8034 is (const_int 0), rather than
8035 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0). */
8036 || (GET_CODE (inner) == AND
8037 && CONST_INT_P (XEXP (inner, 1))
8038 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8039 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8040 >= GET_MODE_BITSIZE (mode))))
8041 subreg_code = SET;
8043 tem = make_compound_operation (inner, subreg_code);
8045 simplified
8046 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8047 if (simplified)
8048 tem = simplified;
8050 if (GET_CODE (tem) != GET_CODE (inner)
8051 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8052 && subreg_lowpart_p (x))
8054 rtx newer
8055 = force_to_mode (tem, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
8057 /* If we have something other than a SUBREG, we might have
8058 done an expansion, so rerun ourselves. */
8059 if (GET_CODE (newer) != SUBREG)
8060 newer = make_compound_operation (newer, in_code);
8062 /* force_to_mode can expand compounds. If it just re-expanded the
8063 compound, use gen_lowpart to convert to the desired mode. */
8064 if (rtx_equal_p (newer, x)
8065 /* Likewise if it re-expanded the compound only partially.
8066 This happens for SUBREG of ZERO_EXTRACT if they extract
8067 the same number of bits. */
8068 || (GET_CODE (newer) == SUBREG
8069 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8070 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8071 && GET_CODE (inner) == AND
8072 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8073 return gen_lowpart (GET_MODE (x), tem);
8075 return newer;
8078 if (simplified)
8079 return tem;
8081 break;
8083 default:
8084 break;
8087 if (new_rtx)
8089 x = gen_lowpart (mode, new_rtx);
8090 code = GET_CODE (x);
8093 /* Now recursively process each operand of this operation. We need to
8094 handle ZERO_EXTEND specially so that we don't lose track of the
8095 inner mode. */
8096 if (GET_CODE (x) == ZERO_EXTEND)
8098 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8099 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8100 new_rtx, GET_MODE (XEXP (x, 0)));
8101 if (tem)
8102 return tem;
8103 SUBST (XEXP (x, 0), new_rtx);
8104 return x;
8107 fmt = GET_RTX_FORMAT (code);
8108 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8109 if (fmt[i] == 'e')
8111 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8112 SUBST (XEXP (x, i), new_rtx);
8114 else if (fmt[i] == 'E')
8115 for (j = 0; j < XVECLEN (x, i); j++)
8117 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8118 SUBST (XVECEXP (x, i, j), new_rtx);
8121 maybe_swap:
8122 /* If this is a commutative operation, the changes to the operands
8123 may have made it noncanonical. */
8124 if (COMMUTATIVE_ARITH_P (x)
8125 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
8127 tem = XEXP (x, 0);
8128 SUBST (XEXP (x, 0), XEXP (x, 1));
8129 SUBST (XEXP (x, 1), tem);
8132 return x;
8135 /* Given M see if it is a value that would select a field of bits
8136 within an item, but not the entire word. Return -1 if not.
8137 Otherwise, return the starting position of the field, where 0 is the
8138 low-order bit.
8140 *PLEN is set to the length of the field. */
8142 static int
8143 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8145 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8146 int pos = m ? ctz_hwi (m) : -1;
8147 int len = 0;
8149 if (pos >= 0)
8150 /* Now shift off the low-order zero bits and see if we have a
8151 power of two minus 1. */
8152 len = exact_log2 ((m >> pos) + 1);
8154 if (len <= 0)
8155 pos = -1;
8157 *plen = len;
8158 return pos;
8161 /* If X refers to a register that equals REG in value, replace these
8162 references with REG. */
8163 static rtx
8164 canon_reg_for_combine (rtx x, rtx reg)
8166 rtx op0, op1, op2;
8167 const char *fmt;
8168 int i;
8169 bool copied;
8171 enum rtx_code code = GET_CODE (x);
8172 switch (GET_RTX_CLASS (code))
8174 case RTX_UNARY:
8175 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8176 if (op0 != XEXP (x, 0))
8177 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8178 GET_MODE (reg));
8179 break;
8181 case RTX_BIN_ARITH:
8182 case RTX_COMM_ARITH:
8183 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8184 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8185 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8186 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8187 break;
8189 case RTX_COMPARE:
8190 case RTX_COMM_COMPARE:
8191 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8192 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8193 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8194 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8195 GET_MODE (op0), op0, op1);
8196 break;
8198 case RTX_TERNARY:
8199 case RTX_BITFIELD_OPS:
8200 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8201 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8202 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8203 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8204 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8205 GET_MODE (op0), op0, op1, op2);
8207 case RTX_OBJ:
8208 if (REG_P (x))
8210 if (rtx_equal_p (get_last_value (reg), x)
8211 || rtx_equal_p (reg, get_last_value (x)))
8212 return reg;
8213 else
8214 break;
8217 /* fall through */
8219 default:
8220 fmt = GET_RTX_FORMAT (code);
8221 copied = false;
8222 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8223 if (fmt[i] == 'e')
8225 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8226 if (op != XEXP (x, i))
8228 if (!copied)
8230 copied = true;
8231 x = copy_rtx (x);
8233 XEXP (x, i) = op;
8236 else if (fmt[i] == 'E')
8238 int j;
8239 for (j = 0; j < XVECLEN (x, i); j++)
8241 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8242 if (op != XVECEXP (x, i, j))
8244 if (!copied)
8246 copied = true;
8247 x = copy_rtx (x);
8249 XVECEXP (x, i, j) = op;
8254 break;
8257 return x;
8260 /* Return X converted to MODE. If the value is already truncated to
8261 MODE we can just return a subreg even though in the general case we
8262 would need an explicit truncation. */
8264 static rtx
8265 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8267 if (!CONST_INT_P (x)
8268 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
8269 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8270 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8272 /* Bit-cast X into an integer mode. */
8273 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8274 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
8275 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
8276 x, GET_MODE (x));
8279 return gen_lowpart (mode, x);
8282 /* See if X can be simplified knowing that we will only refer to it in
8283 MODE and will only refer to those bits that are nonzero in MASK.
8284 If other bits are being computed or if masking operations are done
8285 that select a superset of the bits in MASK, they can sometimes be
8286 ignored.
8288 Return a possibly simplified expression, but always convert X to
8289 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8291 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8292 are all off in X. This is used when X will be complemented, by either
8293 NOT, NEG, or XOR. */
8295 static rtx
8296 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8297 int just_select)
8299 enum rtx_code code = GET_CODE (x);
8300 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8301 machine_mode op_mode;
8302 unsigned HOST_WIDE_INT fuller_mask, nonzero;
8303 rtx op0, op1, temp;
8305 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8306 code below will do the wrong thing since the mode of such an
8307 expression is VOIDmode.
8309 Also do nothing if X is a CLOBBER; this can happen if X was
8310 the return value from a call to gen_lowpart. */
8311 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8312 return x;
8314 /* We want to perform the operation in its present mode unless we know
8315 that the operation is valid in MODE, in which case we do the operation
8316 in MODE. */
8317 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8318 && have_insn_for (code, mode))
8319 ? mode : GET_MODE (x));
8321 /* It is not valid to do a right-shift in a narrower mode
8322 than the one it came in with. */
8323 if ((code == LSHIFTRT || code == ASHIFTRT)
8324 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
8325 op_mode = GET_MODE (x);
8327 /* Truncate MASK to fit OP_MODE. */
8328 if (op_mode)
8329 mask &= GET_MODE_MASK (op_mode);
8331 /* When we have an arithmetic operation, or a shift whose count we
8332 do not know, we need to assume that all bits up to the highest-order
8333 bit in MASK will be needed. This is how we form such a mask. */
8334 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
8335 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
8336 else
8337 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
8338 - 1);
8340 /* Determine what bits of X are guaranteed to be (non)zero. */
8341 nonzero = nonzero_bits (x, mode);
8343 /* If none of the bits in X are needed, return a zero. */
8344 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8345 x = const0_rtx;
8347 /* If X is a CONST_INT, return a new one. Do this here since the
8348 test below will fail. */
8349 if (CONST_INT_P (x))
8351 if (SCALAR_INT_MODE_P (mode))
8352 return gen_int_mode (INTVAL (x) & mask, mode);
8353 else
8355 x = GEN_INT (INTVAL (x) & mask);
8356 return gen_lowpart_common (mode, x);
8360 /* If X is narrower than MODE and we want all the bits in X's mode, just
8361 get X in the proper mode. */
8362 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8363 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8364 return gen_lowpart (mode, x);
8366 /* We can ignore the effect of a SUBREG if it narrows the mode or
8367 if the constant masks to zero all the bits the mode doesn't have. */
8368 if (GET_CODE (x) == SUBREG
8369 && subreg_lowpart_p (x)
8370 && ((GET_MODE_SIZE (GET_MODE (x))
8371 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8372 || (0 == (mask
8373 & GET_MODE_MASK (GET_MODE (x))
8374 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8375 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8377 /* The arithmetic simplifications here only work for scalar integer modes. */
8378 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8379 return gen_lowpart_or_truncate (mode, x);
8381 switch (code)
8383 case CLOBBER:
8384 /* If X is a (clobber (const_int)), return it since we know we are
8385 generating something that won't match. */
8386 return x;
8388 case SIGN_EXTEND:
8389 case ZERO_EXTEND:
8390 case ZERO_EXTRACT:
8391 case SIGN_EXTRACT:
8392 x = expand_compound_operation (x);
8393 if (GET_CODE (x) != code)
8394 return force_to_mode (x, mode, mask, next_select);
8395 break;
8397 case TRUNCATE:
8398 /* Similarly for a truncate. */
8399 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8401 case AND:
8402 /* If this is an AND with a constant, convert it into an AND
8403 whose constant is the AND of that constant with MASK. If it
8404 remains an AND of MASK, delete it since it is redundant. */
8406 if (CONST_INT_P (XEXP (x, 1)))
8408 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8409 mask & INTVAL (XEXP (x, 1)));
8411 /* If X is still an AND, see if it is an AND with a mask that
8412 is just some low-order bits. If so, and it is MASK, we don't
8413 need it. */
8415 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8416 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8417 == mask))
8418 x = XEXP (x, 0);
8420 /* If it remains an AND, try making another AND with the bits
8421 in the mode mask that aren't in MASK turned on. If the
8422 constant in the AND is wide enough, this might make a
8423 cheaper constant. */
8425 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8426 && GET_MODE_MASK (GET_MODE (x)) != mask
8427 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
8429 unsigned HOST_WIDE_INT cval
8430 = UINTVAL (XEXP (x, 1))
8431 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8432 rtx y;
8434 y = simplify_gen_binary (AND, GET_MODE (x), XEXP (x, 0),
8435 gen_int_mode (cval, GET_MODE (x)));
8436 if (set_src_cost (y, GET_MODE (x), optimize_this_for_speed_p)
8437 < set_src_cost (x, GET_MODE (x), optimize_this_for_speed_p))
8438 x = y;
8441 break;
8444 goto binop;
8446 case PLUS:
8447 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8448 low-order bits (as in an alignment operation) and FOO is already
8449 aligned to that boundary, mask C1 to that boundary as well.
8450 This may eliminate that PLUS and, later, the AND. */
8453 unsigned int width = GET_MODE_PRECISION (mode);
8454 unsigned HOST_WIDE_INT smask = mask;
8456 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8457 number, sign extend it. */
8459 if (width < HOST_BITS_PER_WIDE_INT
8460 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8461 smask |= HOST_WIDE_INT_M1U << width;
8463 if (CONST_INT_P (XEXP (x, 1))
8464 && exact_log2 (- smask) >= 0
8465 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8466 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8467 return force_to_mode (plus_constant (GET_MODE (x), XEXP (x, 0),
8468 (INTVAL (XEXP (x, 1)) & smask)),
8469 mode, smask, next_select);
8472 /* ... fall through ... */
8474 case MULT:
8475 /* Substituting into the operands of a widening MULT is not likely to
8476 create RTL matching a machine insn. */
8477 if (code == MULT
8478 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8479 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8480 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8481 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8482 && REG_P (XEXP (XEXP (x, 0), 0))
8483 && REG_P (XEXP (XEXP (x, 1), 0)))
8484 return gen_lowpart_or_truncate (mode, x);
8486 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8487 most significant bit in MASK since carries from those bits will
8488 affect the bits we are interested in. */
8489 mask = fuller_mask;
8490 goto binop;
8492 case MINUS:
8493 /* If X is (minus C Y) where C's least set bit is larger than any bit
8494 in the mask, then we may replace with (neg Y). */
8495 if (CONST_INT_P (XEXP (x, 0))
8496 && ((UINTVAL (XEXP (x, 0)) & -UINTVAL (XEXP (x, 0))) > mask))
8498 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8499 GET_MODE (x));
8500 return force_to_mode (x, mode, mask, next_select);
8503 /* Similarly, if C contains every bit in the fuller_mask, then we may
8504 replace with (not Y). */
8505 if (CONST_INT_P (XEXP (x, 0))
8506 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8508 x = simplify_gen_unary (NOT, GET_MODE (x),
8509 XEXP (x, 1), GET_MODE (x));
8510 return force_to_mode (x, mode, mask, next_select);
8513 mask = fuller_mask;
8514 goto binop;
8516 case IOR:
8517 case XOR:
8518 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8519 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8520 operation which may be a bitfield extraction. Ensure that the
8521 constant we form is not wider than the mode of X. */
8523 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8524 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8525 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8526 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8527 && CONST_INT_P (XEXP (x, 1))
8528 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8529 + floor_log2 (INTVAL (XEXP (x, 1))))
8530 < GET_MODE_PRECISION (GET_MODE (x)))
8531 && (UINTVAL (XEXP (x, 1))
8532 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8534 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8535 << INTVAL (XEXP (XEXP (x, 0), 1)),
8536 GET_MODE (x));
8537 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8538 XEXP (XEXP (x, 0), 0), temp);
8539 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8540 XEXP (XEXP (x, 0), 1));
8541 return force_to_mode (x, mode, mask, next_select);
8544 binop:
8545 /* For most binary operations, just propagate into the operation and
8546 change the mode if we have an operation of that mode. */
8548 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8549 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8551 /* If we ended up truncating both operands, truncate the result of the
8552 operation instead. */
8553 if (GET_CODE (op0) == TRUNCATE
8554 && GET_CODE (op1) == TRUNCATE)
8556 op0 = XEXP (op0, 0);
8557 op1 = XEXP (op1, 0);
8560 op0 = gen_lowpart_or_truncate (op_mode, op0);
8561 op1 = gen_lowpart_or_truncate (op_mode, op1);
8563 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8564 x = simplify_gen_binary (code, op_mode, op0, op1);
8565 break;
8567 case ASHIFT:
8568 /* For left shifts, do the same, but just for the first operand.
8569 However, we cannot do anything with shifts where we cannot
8570 guarantee that the counts are smaller than the size of the mode
8571 because such a count will have a different meaning in a
8572 wider mode. */
8574 if (! (CONST_INT_P (XEXP (x, 1))
8575 && INTVAL (XEXP (x, 1)) >= 0
8576 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8577 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8578 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8579 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8580 break;
8582 /* If the shift count is a constant and we can do arithmetic in
8583 the mode of the shift, refine which bits we need. Otherwise, use the
8584 conservative form of the mask. */
8585 if (CONST_INT_P (XEXP (x, 1))
8586 && INTVAL (XEXP (x, 1)) >= 0
8587 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8588 && HWI_COMPUTABLE_MODE_P (op_mode))
8589 mask >>= INTVAL (XEXP (x, 1));
8590 else
8591 mask = fuller_mask;
8593 op0 = gen_lowpart_or_truncate (op_mode,
8594 force_to_mode (XEXP (x, 0), op_mode,
8595 mask, next_select));
8597 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8598 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8599 break;
8601 case LSHIFTRT:
8602 /* Here we can only do something if the shift count is a constant,
8603 this shift constant is valid for the host, and we can do arithmetic
8604 in OP_MODE. */
8606 if (CONST_INT_P (XEXP (x, 1))
8607 && INTVAL (XEXP (x, 1)) >= 0
8608 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8609 && HWI_COMPUTABLE_MODE_P (op_mode))
8611 rtx inner = XEXP (x, 0);
8612 unsigned HOST_WIDE_INT inner_mask;
8614 /* Select the mask of the bits we need for the shift operand. */
8615 inner_mask = mask << INTVAL (XEXP (x, 1));
8617 /* We can only change the mode of the shift if we can do arithmetic
8618 in the mode of the shift and INNER_MASK is no wider than the
8619 width of X's mode. */
8620 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8621 op_mode = GET_MODE (x);
8623 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8625 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8626 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8629 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8630 shift and AND produces only copies of the sign bit (C2 is one less
8631 than a power of two), we can do this with just a shift. */
8633 if (GET_CODE (x) == LSHIFTRT
8634 && CONST_INT_P (XEXP (x, 1))
8635 /* The shift puts one of the sign bit copies in the least significant
8636 bit. */
8637 && ((INTVAL (XEXP (x, 1))
8638 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8639 >= GET_MODE_PRECISION (GET_MODE (x)))
8640 && exact_log2 (mask + 1) >= 0
8641 /* Number of bits left after the shift must be more than the mask
8642 needs. */
8643 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8644 <= GET_MODE_PRECISION (GET_MODE (x)))
8645 /* Must be more sign bit copies than the mask needs. */
8646 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8647 >= exact_log2 (mask + 1)))
8648 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8649 GEN_INT (GET_MODE_PRECISION (GET_MODE (x))
8650 - exact_log2 (mask + 1)));
8652 goto shiftrt;
8654 case ASHIFTRT:
8655 /* If we are just looking for the sign bit, we don't need this shift at
8656 all, even if it has a variable count. */
8657 if (val_signbit_p (GET_MODE (x), mask))
8658 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8660 /* If this is a shift by a constant, get a mask that contains those bits
8661 that are not copies of the sign bit. We then have two cases: If
8662 MASK only includes those bits, this can be a logical shift, which may
8663 allow simplifications. If MASK is a single-bit field not within
8664 those bits, we are requesting a copy of the sign bit and hence can
8665 shift the sign bit to the appropriate location. */
8667 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8668 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8670 int i;
8672 /* If the considered data is wider than HOST_WIDE_INT, we can't
8673 represent a mask for all its bits in a single scalar.
8674 But we only care about the lower bits, so calculate these. */
8676 if (GET_MODE_PRECISION (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8678 nonzero = ~(unsigned HOST_WIDE_INT) 0;
8680 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8681 is the number of bits a full-width mask would have set.
8682 We need only shift if these are fewer than nonzero can
8683 hold. If not, we must keep all bits set in nonzero. */
8685 if (GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8686 < HOST_BITS_PER_WIDE_INT)
8687 nonzero >>= INTVAL (XEXP (x, 1))
8688 + HOST_BITS_PER_WIDE_INT
8689 - GET_MODE_PRECISION (GET_MODE (x)) ;
8691 else
8693 nonzero = GET_MODE_MASK (GET_MODE (x));
8694 nonzero >>= INTVAL (XEXP (x, 1));
8697 if ((mask & ~nonzero) == 0)
8699 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8700 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8701 if (GET_CODE (x) != ASHIFTRT)
8702 return force_to_mode (x, mode, mask, next_select);
8705 else if ((i = exact_log2 (mask)) >= 0)
8707 x = simplify_shift_const
8708 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8709 GET_MODE_PRECISION (GET_MODE (x)) - 1 - i);
8711 if (GET_CODE (x) != ASHIFTRT)
8712 return force_to_mode (x, mode, mask, next_select);
8716 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8717 even if the shift count isn't a constant. */
8718 if (mask == 1)
8719 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8720 XEXP (x, 0), XEXP (x, 1));
8722 shiftrt:
8724 /* If this is a zero- or sign-extension operation that just affects bits
8725 we don't care about, remove it. Be sure the call above returned
8726 something that is still a shift. */
8728 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8729 && CONST_INT_P (XEXP (x, 1))
8730 && INTVAL (XEXP (x, 1)) >= 0
8731 && (INTVAL (XEXP (x, 1))
8732 <= GET_MODE_PRECISION (GET_MODE (x)) - (floor_log2 (mask) + 1))
8733 && GET_CODE (XEXP (x, 0)) == ASHIFT
8734 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8735 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8736 next_select);
8738 break;
8740 case ROTATE:
8741 case ROTATERT:
8742 /* If the shift count is constant and we can do computations
8743 in the mode of X, compute where the bits we care about are.
8744 Otherwise, we can't do anything. Don't change the mode of
8745 the shift or propagate MODE into the shift, though. */
8746 if (CONST_INT_P (XEXP (x, 1))
8747 && INTVAL (XEXP (x, 1)) >= 0)
8749 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8750 GET_MODE (x),
8751 gen_int_mode (mask, GET_MODE (x)),
8752 XEXP (x, 1));
8753 if (temp && CONST_INT_P (temp))
8754 x = simplify_gen_binary (code, GET_MODE (x),
8755 force_to_mode (XEXP (x, 0), GET_MODE (x),
8756 INTVAL (temp), next_select),
8757 XEXP (x, 1));
8759 break;
8761 case NEG:
8762 /* If we just want the low-order bit, the NEG isn't needed since it
8763 won't change the low-order bit. */
8764 if (mask == 1)
8765 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8767 /* We need any bits less significant than the most significant bit in
8768 MASK since carries from those bits will affect the bits we are
8769 interested in. */
8770 mask = fuller_mask;
8771 goto unop;
8773 case NOT:
8774 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8775 same as the XOR case above. Ensure that the constant we form is not
8776 wider than the mode of X. */
8778 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8779 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8780 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8781 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8782 < GET_MODE_PRECISION (GET_MODE (x)))
8783 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8785 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8786 GET_MODE (x));
8787 temp = simplify_gen_binary (XOR, GET_MODE (x),
8788 XEXP (XEXP (x, 0), 0), temp);
8789 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8790 temp, XEXP (XEXP (x, 0), 1));
8792 return force_to_mode (x, mode, mask, next_select);
8795 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8796 use the full mask inside the NOT. */
8797 mask = fuller_mask;
8799 unop:
8800 op0 = gen_lowpart_or_truncate (op_mode,
8801 force_to_mode (XEXP (x, 0), mode, mask,
8802 next_select));
8803 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8804 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8805 break;
8807 case NE:
8808 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8809 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8810 which is equal to STORE_FLAG_VALUE. */
8811 if ((mask & ~STORE_FLAG_VALUE) == 0
8812 && XEXP (x, 1) == const0_rtx
8813 && GET_MODE (XEXP (x, 0)) == mode
8814 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
8815 && (nonzero_bits (XEXP (x, 0), mode)
8816 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8817 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8819 break;
8821 case IF_THEN_ELSE:
8822 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8823 written in a narrower mode. We play it safe and do not do so. */
8825 op0 = gen_lowpart_or_truncate (GET_MODE (x),
8826 force_to_mode (XEXP (x, 1), mode,
8827 mask, next_select));
8828 op1 = gen_lowpart_or_truncate (GET_MODE (x),
8829 force_to_mode (XEXP (x, 2), mode,
8830 mask, next_select));
8831 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
8832 x = simplify_gen_ternary (IF_THEN_ELSE, GET_MODE (x),
8833 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
8834 op0, op1);
8835 break;
8837 default:
8838 break;
8841 /* Ensure we return a value of the proper mode. */
8842 return gen_lowpart_or_truncate (mode, x);
8845 /* Return nonzero if X is an expression that has one of two values depending on
8846 whether some other value is zero or nonzero. In that case, we return the
8847 value that is being tested, *PTRUE is set to the value if the rtx being
8848 returned has a nonzero value, and *PFALSE is set to the other alternative.
8850 If we return zero, we set *PTRUE and *PFALSE to X. */
8852 static rtx
8853 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8855 machine_mode mode = GET_MODE (x);
8856 enum rtx_code code = GET_CODE (x);
8857 rtx cond0, cond1, true0, true1, false0, false1;
8858 unsigned HOST_WIDE_INT nz;
8860 /* If we are comparing a value against zero, we are done. */
8861 if ((code == NE || code == EQ)
8862 && XEXP (x, 1) == const0_rtx)
8864 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8865 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8866 return XEXP (x, 0);
8869 /* If this is a unary operation whose operand has one of two values, apply
8870 our opcode to compute those values. */
8871 else if (UNARY_P (x)
8872 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8874 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8875 *pfalse = simplify_gen_unary (code, mode, false0,
8876 GET_MODE (XEXP (x, 0)));
8877 return cond0;
8880 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8881 make can't possibly match and would suppress other optimizations. */
8882 else if (code == COMPARE)
8885 /* If this is a binary operation, see if either side has only one of two
8886 values. If either one does or if both do and they are conditional on
8887 the same value, compute the new true and false values. */
8888 else if (BINARY_P (x))
8890 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8891 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8893 if ((cond0 != 0 || cond1 != 0)
8894 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8896 /* If if_then_else_cond returned zero, then true/false are the
8897 same rtl. We must copy one of them to prevent invalid rtl
8898 sharing. */
8899 if (cond0 == 0)
8900 true0 = copy_rtx (true0);
8901 else if (cond1 == 0)
8902 true1 = copy_rtx (true1);
8904 if (COMPARISON_P (x))
8906 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8907 true0, true1);
8908 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8909 false0, false1);
8911 else
8913 *ptrue = simplify_gen_binary (code, mode, true0, true1);
8914 *pfalse = simplify_gen_binary (code, mode, false0, false1);
8917 return cond0 ? cond0 : cond1;
8920 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8921 operands is zero when the other is nonzero, and vice-versa,
8922 and STORE_FLAG_VALUE is 1 or -1. */
8924 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8925 && (code == PLUS || code == IOR || code == XOR || code == MINUS
8926 || code == UMAX)
8927 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8929 rtx op0 = XEXP (XEXP (x, 0), 1);
8930 rtx op1 = XEXP (XEXP (x, 1), 1);
8932 cond0 = XEXP (XEXP (x, 0), 0);
8933 cond1 = XEXP (XEXP (x, 1), 0);
8935 if (COMPARISON_P (cond0)
8936 && COMPARISON_P (cond1)
8937 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8938 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8939 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8940 || ((swap_condition (GET_CODE (cond0))
8941 == reversed_comparison_code (cond1, NULL))
8942 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8943 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8944 && ! side_effects_p (x))
8946 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
8947 *pfalse = simplify_gen_binary (MULT, mode,
8948 (code == MINUS
8949 ? simplify_gen_unary (NEG, mode,
8950 op1, mode)
8951 : op1),
8952 const_true_rtx);
8953 return cond0;
8957 /* Similarly for MULT, AND and UMIN, except that for these the result
8958 is always zero. */
8959 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8960 && (code == MULT || code == AND || code == UMIN)
8961 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8963 cond0 = XEXP (XEXP (x, 0), 0);
8964 cond1 = XEXP (XEXP (x, 1), 0);
8966 if (COMPARISON_P (cond0)
8967 && COMPARISON_P (cond1)
8968 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8969 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8970 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8971 || ((swap_condition (GET_CODE (cond0))
8972 == reversed_comparison_code (cond1, NULL))
8973 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8974 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8975 && ! side_effects_p (x))
8977 *ptrue = *pfalse = const0_rtx;
8978 return cond0;
8983 else if (code == IF_THEN_ELSE)
8985 /* If we have IF_THEN_ELSE already, extract the condition and
8986 canonicalize it if it is NE or EQ. */
8987 cond0 = XEXP (x, 0);
8988 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
8989 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
8990 return XEXP (cond0, 0);
8991 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
8993 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
8994 return XEXP (cond0, 0);
8996 else
8997 return cond0;
9000 /* If X is a SUBREG, we can narrow both the true and false values
9001 if the inner expression, if there is a condition. */
9002 else if (code == SUBREG
9003 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
9004 &true0, &false0)))
9006 true0 = simplify_gen_subreg (mode, true0,
9007 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9008 false0 = simplify_gen_subreg (mode, false0,
9009 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9010 if (true0 && false0)
9012 *ptrue = true0;
9013 *pfalse = false0;
9014 return cond0;
9018 /* If X is a constant, this isn't special and will cause confusions
9019 if we treat it as such. Likewise if it is equivalent to a constant. */
9020 else if (CONSTANT_P (x)
9021 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9024 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9025 will be least confusing to the rest of the compiler. */
9026 else if (mode == BImode)
9028 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9029 return x;
9032 /* If X is known to be either 0 or -1, those are the true and
9033 false values when testing X. */
9034 else if (x == constm1_rtx || x == const0_rtx
9035 || (mode != VOIDmode
9036 && num_sign_bit_copies (x, mode) == GET_MODE_PRECISION (mode)))
9038 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9039 return x;
9042 /* Likewise for 0 or a single bit. */
9043 else if (HWI_COMPUTABLE_MODE_P (mode)
9044 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
9046 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9047 return x;
9050 /* Otherwise fail; show no condition with true and false values the same. */
9051 *ptrue = *pfalse = x;
9052 return 0;
9055 /* Return the value of expression X given the fact that condition COND
9056 is known to be true when applied to REG as its first operand and VAL
9057 as its second. X is known to not be shared and so can be modified in
9058 place.
9060 We only handle the simplest cases, and specifically those cases that
9061 arise with IF_THEN_ELSE expressions. */
9063 static rtx
9064 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9066 enum rtx_code code = GET_CODE (x);
9067 const char *fmt;
9068 int i, j;
9070 if (side_effects_p (x))
9071 return x;
9073 /* If either operand of the condition is a floating point value,
9074 then we have to avoid collapsing an EQ comparison. */
9075 if (cond == EQ
9076 && rtx_equal_p (x, reg)
9077 && ! FLOAT_MODE_P (GET_MODE (x))
9078 && ! FLOAT_MODE_P (GET_MODE (val)))
9079 return val;
9081 if (cond == UNEQ && rtx_equal_p (x, reg))
9082 return val;
9084 /* If X is (abs REG) and we know something about REG's relationship
9085 with zero, we may be able to simplify this. */
9087 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9088 switch (cond)
9090 case GE: case GT: case EQ:
9091 return XEXP (x, 0);
9092 case LT: case LE:
9093 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9094 XEXP (x, 0),
9095 GET_MODE (XEXP (x, 0)));
9096 default:
9097 break;
9100 /* The only other cases we handle are MIN, MAX, and comparisons if the
9101 operands are the same as REG and VAL. */
9103 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9105 if (rtx_equal_p (XEXP (x, 0), val))
9107 std::swap (val, reg);
9108 cond = swap_condition (cond);
9111 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9113 if (COMPARISON_P (x))
9115 if (comparison_dominates_p (cond, code))
9116 return const_true_rtx;
9118 code = reversed_comparison_code (x, NULL);
9119 if (code != UNKNOWN
9120 && comparison_dominates_p (cond, code))
9121 return const0_rtx;
9122 else
9123 return x;
9125 else if (code == SMAX || code == SMIN
9126 || code == UMIN || code == UMAX)
9128 int unsignedp = (code == UMIN || code == UMAX);
9130 /* Do not reverse the condition when it is NE or EQ.
9131 This is because we cannot conclude anything about
9132 the value of 'SMAX (x, y)' when x is not equal to y,
9133 but we can when x equals y. */
9134 if ((code == SMAX || code == UMAX)
9135 && ! (cond == EQ || cond == NE))
9136 cond = reverse_condition (cond);
9138 switch (cond)
9140 case GE: case GT:
9141 return unsignedp ? x : XEXP (x, 1);
9142 case LE: case LT:
9143 return unsignedp ? x : XEXP (x, 0);
9144 case GEU: case GTU:
9145 return unsignedp ? XEXP (x, 1) : x;
9146 case LEU: case LTU:
9147 return unsignedp ? XEXP (x, 0) : x;
9148 default:
9149 break;
9154 else if (code == SUBREG)
9156 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9157 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9159 if (SUBREG_REG (x) != r)
9161 /* We must simplify subreg here, before we lose track of the
9162 original inner_mode. */
9163 new_rtx = simplify_subreg (GET_MODE (x), r,
9164 inner_mode, SUBREG_BYTE (x));
9165 if (new_rtx)
9166 return new_rtx;
9167 else
9168 SUBST (SUBREG_REG (x), r);
9171 return x;
9173 /* We don't have to handle SIGN_EXTEND here, because even in the
9174 case of replacing something with a modeless CONST_INT, a
9175 CONST_INT is already (supposed to be) a valid sign extension for
9176 its narrower mode, which implies it's already properly
9177 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9178 story is different. */
9179 else if (code == ZERO_EXTEND)
9181 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9182 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9184 if (XEXP (x, 0) != r)
9186 /* We must simplify the zero_extend here, before we lose
9187 track of the original inner_mode. */
9188 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9189 r, inner_mode);
9190 if (new_rtx)
9191 return new_rtx;
9192 else
9193 SUBST (XEXP (x, 0), r);
9196 return x;
9199 fmt = GET_RTX_FORMAT (code);
9200 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9202 if (fmt[i] == 'e')
9203 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9204 else if (fmt[i] == 'E')
9205 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9206 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9207 cond, reg, val));
9210 return x;
9213 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9214 assignment as a field assignment. */
9216 static int
9217 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9219 if (widen_x && GET_MODE (x) != GET_MODE (y))
9221 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (y)))
9222 return 0;
9223 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9224 return 0;
9225 /* For big endian, adjust the memory offset. */
9226 if (BYTES_BIG_ENDIAN)
9227 x = adjust_address_nv (x, GET_MODE (y),
9228 -subreg_lowpart_offset (GET_MODE (x),
9229 GET_MODE (y)));
9230 else
9231 x = adjust_address_nv (x, GET_MODE (y), 0);
9234 if (x == y || rtx_equal_p (x, y))
9235 return 1;
9237 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9238 return 0;
9240 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9241 Note that all SUBREGs of MEM are paradoxical; otherwise they
9242 would have been rewritten. */
9243 if (MEM_P (x) && GET_CODE (y) == SUBREG
9244 && MEM_P (SUBREG_REG (y))
9245 && rtx_equal_p (SUBREG_REG (y),
9246 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9247 return 1;
9249 if (MEM_P (y) && GET_CODE (x) == SUBREG
9250 && MEM_P (SUBREG_REG (x))
9251 && rtx_equal_p (SUBREG_REG (x),
9252 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9253 return 1;
9255 /* We used to see if get_last_value of X and Y were the same but that's
9256 not correct. In one direction, we'll cause the assignment to have
9257 the wrong destination and in the case, we'll import a register into this
9258 insn that might have already have been dead. So fail if none of the
9259 above cases are true. */
9260 return 0;
9263 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9264 Return that assignment if so.
9266 We only handle the most common cases. */
9268 static rtx
9269 make_field_assignment (rtx x)
9271 rtx dest = SET_DEST (x);
9272 rtx src = SET_SRC (x);
9273 rtx assign;
9274 rtx rhs, lhs;
9275 HOST_WIDE_INT c1;
9276 HOST_WIDE_INT pos;
9277 unsigned HOST_WIDE_INT len;
9278 rtx other;
9279 machine_mode mode;
9281 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9282 a clear of a one-bit field. We will have changed it to
9283 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9284 for a SUBREG. */
9286 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9287 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9288 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9289 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9291 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9292 1, 1, 1, 0);
9293 if (assign != 0)
9294 return gen_rtx_SET (assign, const0_rtx);
9295 return x;
9298 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9299 && subreg_lowpart_p (XEXP (src, 0))
9300 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
9301 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
9302 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9303 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9304 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9305 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9307 assign = make_extraction (VOIDmode, dest, 0,
9308 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9309 1, 1, 1, 0);
9310 if (assign != 0)
9311 return gen_rtx_SET (assign, const0_rtx);
9312 return x;
9315 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9316 one-bit field. */
9317 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9318 && XEXP (XEXP (src, 0), 0) == const1_rtx
9319 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9321 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9322 1, 1, 1, 0);
9323 if (assign != 0)
9324 return gen_rtx_SET (assign, const1_rtx);
9325 return x;
9328 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9329 SRC is an AND with all bits of that field set, then we can discard
9330 the AND. */
9331 if (GET_CODE (dest) == ZERO_EXTRACT
9332 && CONST_INT_P (XEXP (dest, 1))
9333 && GET_CODE (src) == AND
9334 && CONST_INT_P (XEXP (src, 1)))
9336 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9337 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9338 unsigned HOST_WIDE_INT ze_mask;
9340 if (width >= HOST_BITS_PER_WIDE_INT)
9341 ze_mask = -1;
9342 else
9343 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9345 /* Complete overlap. We can remove the source AND. */
9346 if ((and_mask & ze_mask) == ze_mask)
9347 return gen_rtx_SET (dest, XEXP (src, 0));
9349 /* Partial overlap. We can reduce the source AND. */
9350 if ((and_mask & ze_mask) != and_mask)
9352 mode = GET_MODE (src);
9353 src = gen_rtx_AND (mode, XEXP (src, 0),
9354 gen_int_mode (and_mask & ze_mask, mode));
9355 return gen_rtx_SET (dest, src);
9359 /* The other case we handle is assignments into a constant-position
9360 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9361 a mask that has all one bits except for a group of zero bits and
9362 OTHER is known to have zeros where C1 has ones, this is such an
9363 assignment. Compute the position and length from C1. Shift OTHER
9364 to the appropriate position, force it to the required mode, and
9365 make the extraction. Check for the AND in both operands. */
9367 /* One or more SUBREGs might obscure the constant-position field
9368 assignment. The first one we are likely to encounter is an outer
9369 narrowing SUBREG, which we can just strip for the purposes of
9370 identifying the constant-field assignment. */
9371 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src))
9372 src = SUBREG_REG (src);
9374 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9375 return x;
9377 rhs = expand_compound_operation (XEXP (src, 0));
9378 lhs = expand_compound_operation (XEXP (src, 1));
9380 if (GET_CODE (rhs) == AND
9381 && CONST_INT_P (XEXP (rhs, 1))
9382 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9383 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9384 /* The second SUBREG that might get in the way is a paradoxical
9385 SUBREG around the first operand of the AND. We want to
9386 pretend the operand is as wide as the destination here. We
9387 do this by adjusting the MEM to wider mode for the sole
9388 purpose of the call to rtx_equal_for_field_assignment_p. Also
9389 note this trick only works for MEMs. */
9390 else if (GET_CODE (rhs) == AND
9391 && paradoxical_subreg_p (XEXP (rhs, 0))
9392 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9393 && CONST_INT_P (XEXP (rhs, 1))
9394 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9395 dest, true))
9396 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9397 else if (GET_CODE (lhs) == AND
9398 && CONST_INT_P (XEXP (lhs, 1))
9399 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9400 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9401 /* The second SUBREG that might get in the way is a paradoxical
9402 SUBREG around the first operand of the AND. We want to
9403 pretend the operand is as wide as the destination here. We
9404 do this by adjusting the MEM to wider mode for the sole
9405 purpose of the call to rtx_equal_for_field_assignment_p. Also
9406 note this trick only works for MEMs. */
9407 else if (GET_CODE (lhs) == AND
9408 && paradoxical_subreg_p (XEXP (lhs, 0))
9409 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9410 && CONST_INT_P (XEXP (lhs, 1))
9411 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9412 dest, true))
9413 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9414 else
9415 return x;
9417 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9418 if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest))
9419 || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9420 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9421 return x;
9423 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9424 if (assign == 0)
9425 return x;
9427 /* The mode to use for the source is the mode of the assignment, or of
9428 what is inside a possible STRICT_LOW_PART. */
9429 mode = (GET_CODE (assign) == STRICT_LOW_PART
9430 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9432 /* Shift OTHER right POS places and make it the source, restricting it
9433 to the proper length and mode. */
9435 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9436 GET_MODE (src),
9437 other, pos),
9438 dest);
9439 src = force_to_mode (src, mode,
9440 GET_MODE_PRECISION (mode) >= HOST_BITS_PER_WIDE_INT
9441 ? ~(unsigned HOST_WIDE_INT) 0
9442 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
9445 /* If SRC is masked by an AND that does not make a difference in
9446 the value being stored, strip it. */
9447 if (GET_CODE (assign) == ZERO_EXTRACT
9448 && CONST_INT_P (XEXP (assign, 1))
9449 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9450 && GET_CODE (src) == AND
9451 && CONST_INT_P (XEXP (src, 1))
9452 && UINTVAL (XEXP (src, 1))
9453 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1)
9454 src = XEXP (src, 0);
9456 return gen_rtx_SET (assign, src);
9459 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9460 if so. */
9462 static rtx
9463 apply_distributive_law (rtx x)
9465 enum rtx_code code = GET_CODE (x);
9466 enum rtx_code inner_code;
9467 rtx lhs, rhs, other;
9468 rtx tem;
9470 /* Distributivity is not true for floating point as it can change the
9471 value. So we don't do it unless -funsafe-math-optimizations. */
9472 if (FLOAT_MODE_P (GET_MODE (x))
9473 && ! flag_unsafe_math_optimizations)
9474 return x;
9476 /* The outer operation can only be one of the following: */
9477 if (code != IOR && code != AND && code != XOR
9478 && code != PLUS && code != MINUS)
9479 return x;
9481 lhs = XEXP (x, 0);
9482 rhs = XEXP (x, 1);
9484 /* If either operand is a primitive we can't do anything, so get out
9485 fast. */
9486 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9487 return x;
9489 lhs = expand_compound_operation (lhs);
9490 rhs = expand_compound_operation (rhs);
9491 inner_code = GET_CODE (lhs);
9492 if (inner_code != GET_CODE (rhs))
9493 return x;
9495 /* See if the inner and outer operations distribute. */
9496 switch (inner_code)
9498 case LSHIFTRT:
9499 case ASHIFTRT:
9500 case AND:
9501 case IOR:
9502 /* These all distribute except over PLUS. */
9503 if (code == PLUS || code == MINUS)
9504 return x;
9505 break;
9507 case MULT:
9508 if (code != PLUS && code != MINUS)
9509 return x;
9510 break;
9512 case ASHIFT:
9513 /* This is also a multiply, so it distributes over everything. */
9514 break;
9516 /* This used to handle SUBREG, but this turned out to be counter-
9517 productive, since (subreg (op ...)) usually is not handled by
9518 insn patterns, and this "optimization" therefore transformed
9519 recognizable patterns into unrecognizable ones. Therefore the
9520 SUBREG case was removed from here.
9522 It is possible that distributing SUBREG over arithmetic operations
9523 leads to an intermediate result than can then be optimized further,
9524 e.g. by moving the outer SUBREG to the other side of a SET as done
9525 in simplify_set. This seems to have been the original intent of
9526 handling SUBREGs here.
9528 However, with current GCC this does not appear to actually happen,
9529 at least on major platforms. If some case is found where removing
9530 the SUBREG case here prevents follow-on optimizations, distributing
9531 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9533 default:
9534 return x;
9537 /* Set LHS and RHS to the inner operands (A and B in the example
9538 above) and set OTHER to the common operand (C in the example).
9539 There is only one way to do this unless the inner operation is
9540 commutative. */
9541 if (COMMUTATIVE_ARITH_P (lhs)
9542 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9543 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9544 else if (COMMUTATIVE_ARITH_P (lhs)
9545 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9546 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9547 else if (COMMUTATIVE_ARITH_P (lhs)
9548 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9549 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9550 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9551 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9552 else
9553 return x;
9555 /* Form the new inner operation, seeing if it simplifies first. */
9556 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9558 /* There is one exception to the general way of distributing:
9559 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9560 if (code == XOR && inner_code == IOR)
9562 inner_code = AND;
9563 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9566 /* We may be able to continuing distributing the result, so call
9567 ourselves recursively on the inner operation before forming the
9568 outer operation, which we return. */
9569 return simplify_gen_binary (inner_code, GET_MODE (x),
9570 apply_distributive_law (tem), other);
9573 /* See if X is of the form (* (+ A B) C), and if so convert to
9574 (+ (* A C) (* B C)) and try to simplify.
9576 Most of the time, this results in no change. However, if some of
9577 the operands are the same or inverses of each other, simplifications
9578 will result.
9580 For example, (and (ior A B) (not B)) can occur as the result of
9581 expanding a bit field assignment. When we apply the distributive
9582 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9583 which then simplifies to (and (A (not B))).
9585 Note that no checks happen on the validity of applying the inverse
9586 distributive law. This is pointless since we can do it in the
9587 few places where this routine is called.
9589 N is the index of the term that is decomposed (the arithmetic operation,
9590 i.e. (+ A B) in the first example above). !N is the index of the term that
9591 is distributed, i.e. of C in the first example above. */
9592 static rtx
9593 distribute_and_simplify_rtx (rtx x, int n)
9595 machine_mode mode;
9596 enum rtx_code outer_code, inner_code;
9597 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9599 /* Distributivity is not true for floating point as it can change the
9600 value. So we don't do it unless -funsafe-math-optimizations. */
9601 if (FLOAT_MODE_P (GET_MODE (x))
9602 && ! flag_unsafe_math_optimizations)
9603 return NULL_RTX;
9605 decomposed = XEXP (x, n);
9606 if (!ARITHMETIC_P (decomposed))
9607 return NULL_RTX;
9609 mode = GET_MODE (x);
9610 outer_code = GET_CODE (x);
9611 distributed = XEXP (x, !n);
9613 inner_code = GET_CODE (decomposed);
9614 inner_op0 = XEXP (decomposed, 0);
9615 inner_op1 = XEXP (decomposed, 1);
9617 /* Special case (and (xor B C) (not A)), which is equivalent to
9618 (xor (ior A B) (ior A C)) */
9619 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9621 distributed = XEXP (distributed, 0);
9622 outer_code = IOR;
9625 if (n == 0)
9627 /* Distribute the second term. */
9628 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9629 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9631 else
9633 /* Distribute the first term. */
9634 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9635 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9638 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9639 new_op0, new_op1));
9640 if (GET_CODE (tmp) != outer_code
9641 && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
9642 < set_src_cost (x, mode, optimize_this_for_speed_p)))
9643 return tmp;
9645 return NULL_RTX;
9648 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9649 in MODE. Return an equivalent form, if different from (and VAROP
9650 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9652 static rtx
9653 simplify_and_const_int_1 (machine_mode mode, rtx varop,
9654 unsigned HOST_WIDE_INT constop)
9656 unsigned HOST_WIDE_INT nonzero;
9657 unsigned HOST_WIDE_INT orig_constop;
9658 rtx orig_varop;
9659 int i;
9661 orig_varop = varop;
9662 orig_constop = constop;
9663 if (GET_CODE (varop) == CLOBBER)
9664 return NULL_RTX;
9666 /* Simplify VAROP knowing that we will be only looking at some of the
9667 bits in it.
9669 Note by passing in CONSTOP, we guarantee that the bits not set in
9670 CONSTOP are not significant and will never be examined. We must
9671 ensure that is the case by explicitly masking out those bits
9672 before returning. */
9673 varop = force_to_mode (varop, mode, constop, 0);
9675 /* If VAROP is a CLOBBER, we will fail so return it. */
9676 if (GET_CODE (varop) == CLOBBER)
9677 return varop;
9679 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9680 to VAROP and return the new constant. */
9681 if (CONST_INT_P (varop))
9682 return gen_int_mode (INTVAL (varop) & constop, mode);
9684 /* See what bits may be nonzero in VAROP. Unlike the general case of
9685 a call to nonzero_bits, here we don't care about bits outside
9686 MODE. */
9688 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9690 /* Turn off all bits in the constant that are known to already be zero.
9691 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9692 which is tested below. */
9694 constop &= nonzero;
9696 /* If we don't have any bits left, return zero. */
9697 if (constop == 0)
9698 return const0_rtx;
9700 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9701 a power of two, we can replace this with an ASHIFT. */
9702 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9703 && (i = exact_log2 (constop)) >= 0)
9704 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9706 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9707 or XOR, then try to apply the distributive law. This may eliminate
9708 operations if either branch can be simplified because of the AND.
9709 It may also make some cases more complex, but those cases probably
9710 won't match a pattern either with or without this. */
9712 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9713 return
9714 gen_lowpart
9715 (mode,
9716 apply_distributive_law
9717 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9718 simplify_and_const_int (NULL_RTX,
9719 GET_MODE (varop),
9720 XEXP (varop, 0),
9721 constop),
9722 simplify_and_const_int (NULL_RTX,
9723 GET_MODE (varop),
9724 XEXP (varop, 1),
9725 constop))));
9727 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9728 the AND and see if one of the operands simplifies to zero. If so, we
9729 may eliminate it. */
9731 if (GET_CODE (varop) == PLUS
9732 && exact_log2 (constop + 1) >= 0)
9734 rtx o0, o1;
9736 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9737 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9738 if (o0 == const0_rtx)
9739 return o1;
9740 if (o1 == const0_rtx)
9741 return o0;
9744 /* Make a SUBREG if necessary. If we can't make it, fail. */
9745 varop = gen_lowpart (mode, varop);
9746 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9747 return NULL_RTX;
9749 /* If we are only masking insignificant bits, return VAROP. */
9750 if (constop == nonzero)
9751 return varop;
9753 if (varop == orig_varop && constop == orig_constop)
9754 return NULL_RTX;
9756 /* Otherwise, return an AND. */
9757 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9761 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9762 in MODE.
9764 Return an equivalent form, if different from X. Otherwise, return X. If
9765 X is zero, we are to always construct the equivalent form. */
9767 static rtx
9768 simplify_and_const_int (rtx x, machine_mode mode, rtx varop,
9769 unsigned HOST_WIDE_INT constop)
9771 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9772 if (tem)
9773 return tem;
9775 if (!x)
9776 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9777 gen_int_mode (constop, mode));
9778 if (GET_MODE (x) != mode)
9779 x = gen_lowpart (mode, x);
9780 return x;
9783 /* Given a REG, X, compute which bits in X can be nonzero.
9784 We don't care about bits outside of those defined in MODE.
9786 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9787 a shift, AND, or zero_extract, we can do better. */
9789 static rtx
9790 reg_nonzero_bits_for_combine (const_rtx x, machine_mode mode,
9791 const_rtx known_x ATTRIBUTE_UNUSED,
9792 machine_mode known_mode ATTRIBUTE_UNUSED,
9793 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9794 unsigned HOST_WIDE_INT *nonzero)
9796 rtx tem;
9797 reg_stat_type *rsp;
9799 /* If X is a register whose nonzero bits value is current, use it.
9800 Otherwise, if X is a register whose value we can find, use that
9801 value. Otherwise, use the previously-computed global nonzero bits
9802 for this register. */
9804 rsp = &reg_stat[REGNO (x)];
9805 if (rsp->last_set_value != 0
9806 && (rsp->last_set_mode == mode
9807 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9808 && GET_MODE_CLASS (mode) == MODE_INT))
9809 && ((rsp->last_set_label >= label_tick_ebb_start
9810 && rsp->last_set_label < label_tick)
9811 || (rsp->last_set_label == label_tick
9812 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9813 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9814 && REGNO (x) < reg_n_sets_max
9815 && REG_N_SETS (REGNO (x)) == 1
9816 && !REGNO_REG_SET_P
9817 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
9818 REGNO (x)))))
9820 unsigned HOST_WIDE_INT mask = rsp->last_set_nonzero_bits;
9822 if (GET_MODE_PRECISION (rsp->last_set_mode) < GET_MODE_PRECISION (mode))
9823 /* We don't know anything about the upper bits. */
9824 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (rsp->last_set_mode);
9826 *nonzero &= mask;
9827 return NULL;
9830 tem = get_last_value (x);
9832 if (tem)
9834 if (SHORT_IMMEDIATES_SIGN_EXTEND)
9835 tem = sign_extend_short_imm (tem, GET_MODE (x),
9836 GET_MODE_PRECISION (mode));
9838 return tem;
9840 else if (nonzero_sign_valid && rsp->nonzero_bits)
9842 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9844 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
9845 /* We don't know anything about the upper bits. */
9846 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9848 *nonzero &= mask;
9851 return NULL;
9854 /* Return the number of bits at the high-order end of X that are known to
9855 be equal to the sign bit. X will be used in mode MODE; if MODE is
9856 VOIDmode, X will be used in its own mode. The returned value will always
9857 be between 1 and the number of bits in MODE. */
9859 static rtx
9860 reg_num_sign_bit_copies_for_combine (const_rtx x, machine_mode mode,
9861 const_rtx known_x ATTRIBUTE_UNUSED,
9862 machine_mode known_mode
9863 ATTRIBUTE_UNUSED,
9864 unsigned int known_ret ATTRIBUTE_UNUSED,
9865 unsigned int *result)
9867 rtx tem;
9868 reg_stat_type *rsp;
9870 rsp = &reg_stat[REGNO (x)];
9871 if (rsp->last_set_value != 0
9872 && rsp->last_set_mode == mode
9873 && ((rsp->last_set_label >= label_tick_ebb_start
9874 && rsp->last_set_label < label_tick)
9875 || (rsp->last_set_label == label_tick
9876 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9877 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9878 && REGNO (x) < reg_n_sets_max
9879 && REG_N_SETS (REGNO (x)) == 1
9880 && !REGNO_REG_SET_P
9881 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
9882 REGNO (x)))))
9884 *result = rsp->last_set_sign_bit_copies;
9885 return NULL;
9888 tem = get_last_value (x);
9889 if (tem != 0)
9890 return tem;
9892 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9893 && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
9894 *result = rsp->sign_bit_copies;
9896 return NULL;
9899 /* Return the number of "extended" bits there are in X, when interpreted
9900 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9901 unsigned quantities, this is the number of high-order zero bits.
9902 For signed quantities, this is the number of copies of the sign bit
9903 minus 1. In both case, this function returns the number of "spare"
9904 bits. For example, if two quantities for which this function returns
9905 at least 1 are added, the addition is known not to overflow.
9907 This function will always return 0 unless called during combine, which
9908 implies that it must be called from a define_split. */
9910 unsigned int
9911 extended_count (const_rtx x, machine_mode mode, int unsignedp)
9913 if (nonzero_sign_valid == 0)
9914 return 0;
9916 return (unsignedp
9917 ? (HWI_COMPUTABLE_MODE_P (mode)
9918 ? (unsigned int) (GET_MODE_PRECISION (mode) - 1
9919 - floor_log2 (nonzero_bits (x, mode)))
9920 : 0)
9921 : num_sign_bit_copies (x, mode) - 1);
9924 /* This function is called from `simplify_shift_const' to merge two
9925 outer operations. Specifically, we have already found that we need
9926 to perform operation *POP0 with constant *PCONST0 at the outermost
9927 position. We would now like to also perform OP1 with constant CONST1
9928 (with *POP0 being done last).
9930 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9931 the resulting operation. *PCOMP_P is set to 1 if we would need to
9932 complement the innermost operand, otherwise it is unchanged.
9934 MODE is the mode in which the operation will be done. No bits outside
9935 the width of this mode matter. It is assumed that the width of this mode
9936 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9938 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9939 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9940 result is simply *PCONST0.
9942 If the resulting operation cannot be expressed as one operation, we
9943 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9945 static int
9946 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
9948 enum rtx_code op0 = *pop0;
9949 HOST_WIDE_INT const0 = *pconst0;
9951 const0 &= GET_MODE_MASK (mode);
9952 const1 &= GET_MODE_MASK (mode);
9954 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9955 if (op0 == AND)
9956 const1 &= const0;
9958 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9959 if OP0 is SET. */
9961 if (op1 == UNKNOWN || op0 == SET)
9962 return 1;
9964 else if (op0 == UNKNOWN)
9965 op0 = op1, const0 = const1;
9967 else if (op0 == op1)
9969 switch (op0)
9971 case AND:
9972 const0 &= const1;
9973 break;
9974 case IOR:
9975 const0 |= const1;
9976 break;
9977 case XOR:
9978 const0 ^= const1;
9979 break;
9980 case PLUS:
9981 const0 += const1;
9982 break;
9983 case NEG:
9984 op0 = UNKNOWN;
9985 break;
9986 default:
9987 break;
9991 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9992 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9993 return 0;
9995 /* If the two constants aren't the same, we can't do anything. The
9996 remaining six cases can all be done. */
9997 else if (const0 != const1)
9998 return 0;
10000 else
10001 switch (op0)
10003 case IOR:
10004 if (op1 == AND)
10005 /* (a & b) | b == b */
10006 op0 = SET;
10007 else /* op1 == XOR */
10008 /* (a ^ b) | b == a | b */
10010 break;
10012 case XOR:
10013 if (op1 == AND)
10014 /* (a & b) ^ b == (~a) & b */
10015 op0 = AND, *pcomp_p = 1;
10016 else /* op1 == IOR */
10017 /* (a | b) ^ b == a & ~b */
10018 op0 = AND, const0 = ~const0;
10019 break;
10021 case AND:
10022 if (op1 == IOR)
10023 /* (a | b) & b == b */
10024 op0 = SET;
10025 else /* op1 == XOR */
10026 /* (a ^ b) & b) == (~a) & b */
10027 *pcomp_p = 1;
10028 break;
10029 default:
10030 break;
10033 /* Check for NO-OP cases. */
10034 const0 &= GET_MODE_MASK (mode);
10035 if (const0 == 0
10036 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10037 op0 = UNKNOWN;
10038 else if (const0 == 0 && op0 == AND)
10039 op0 = SET;
10040 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10041 && op0 == AND)
10042 op0 = UNKNOWN;
10044 *pop0 = op0;
10046 /* ??? Slightly redundant with the above mask, but not entirely.
10047 Moving this above means we'd have to sign-extend the mode mask
10048 for the final test. */
10049 if (op0 != UNKNOWN && op0 != NEG)
10050 *pconst0 = trunc_int_for_mode (const0, mode);
10052 return 1;
10055 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10056 the shift in. The original shift operation CODE is performed on OP in
10057 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10058 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10059 result of the shift is subject to operation OUTER_CODE with operand
10060 OUTER_CONST. */
10062 static machine_mode
10063 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10064 machine_mode orig_mode, machine_mode mode,
10065 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10067 if (orig_mode == mode)
10068 return mode;
10069 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10071 /* In general we can't perform in wider mode for right shift and rotate. */
10072 switch (code)
10074 case ASHIFTRT:
10075 /* We can still widen if the bits brought in from the left are identical
10076 to the sign bit of ORIG_MODE. */
10077 if (num_sign_bit_copies (op, mode)
10078 > (unsigned) (GET_MODE_PRECISION (mode)
10079 - GET_MODE_PRECISION (orig_mode)))
10080 return mode;
10081 return orig_mode;
10083 case LSHIFTRT:
10084 /* Similarly here but with zero bits. */
10085 if (HWI_COMPUTABLE_MODE_P (mode)
10086 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10087 return mode;
10089 /* We can also widen if the bits brought in will be masked off. This
10090 operation is performed in ORIG_MODE. */
10091 if (outer_code == AND)
10093 int care_bits = low_bitmask_len (orig_mode, outer_const);
10095 if (care_bits >= 0
10096 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10097 return mode;
10099 /* fall through */
10101 case ROTATE:
10102 return orig_mode;
10104 case ROTATERT:
10105 gcc_unreachable ();
10107 default:
10108 return mode;
10112 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10113 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10114 if we cannot simplify it. Otherwise, return a simplified value.
10116 The shift is normally computed in the widest mode we find in VAROP, as
10117 long as it isn't a different number of words than RESULT_MODE. Exceptions
10118 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10120 static rtx
10121 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10122 rtx varop, int orig_count)
10124 enum rtx_code orig_code = code;
10125 rtx orig_varop = varop;
10126 int count;
10127 machine_mode mode = result_mode;
10128 machine_mode shift_mode, tmode;
10129 unsigned int mode_words
10130 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
10131 /* We form (outer_op (code varop count) (outer_const)). */
10132 enum rtx_code outer_op = UNKNOWN;
10133 HOST_WIDE_INT outer_const = 0;
10134 int complement_p = 0;
10135 rtx new_rtx, x;
10137 /* Make sure and truncate the "natural" shift on the way in. We don't
10138 want to do this inside the loop as it makes it more difficult to
10139 combine shifts. */
10140 if (SHIFT_COUNT_TRUNCATED)
10141 orig_count &= GET_MODE_BITSIZE (mode) - 1;
10143 /* If we were given an invalid count, don't do anything except exactly
10144 what was requested. */
10146 if (orig_count < 0 || orig_count >= (int) GET_MODE_PRECISION (mode))
10147 return NULL_RTX;
10149 count = orig_count;
10151 /* Unless one of the branches of the `if' in this loop does a `continue',
10152 we will `break' the loop after the `if'. */
10154 while (count != 0)
10156 /* If we have an operand of (clobber (const_int 0)), fail. */
10157 if (GET_CODE (varop) == CLOBBER)
10158 return NULL_RTX;
10160 /* Convert ROTATERT to ROTATE. */
10161 if (code == ROTATERT)
10163 unsigned int bitsize = GET_MODE_PRECISION (result_mode);
10164 code = ROTATE;
10165 if (VECTOR_MODE_P (result_mode))
10166 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
10167 else
10168 count = bitsize - count;
10171 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
10172 mode, outer_op, outer_const);
10174 /* Handle cases where the count is greater than the size of the mode
10175 minus 1. For ASHIFT, use the size minus one as the count (this can
10176 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10177 take the count modulo the size. For other shifts, the result is
10178 zero.
10180 Since these shifts are being produced by the compiler by combining
10181 multiple operations, each of which are defined, we know what the
10182 result is supposed to be. */
10184 if (count > (GET_MODE_PRECISION (shift_mode) - 1))
10186 if (code == ASHIFTRT)
10187 count = GET_MODE_PRECISION (shift_mode) - 1;
10188 else if (code == ROTATE || code == ROTATERT)
10189 count %= GET_MODE_PRECISION (shift_mode);
10190 else
10192 /* We can't simply return zero because there may be an
10193 outer op. */
10194 varop = const0_rtx;
10195 count = 0;
10196 break;
10200 /* If we discovered we had to complement VAROP, leave. Making a NOT
10201 here would cause an infinite loop. */
10202 if (complement_p)
10203 break;
10205 /* An arithmetic right shift of a quantity known to be -1 or 0
10206 is a no-op. */
10207 if (code == ASHIFTRT
10208 && (num_sign_bit_copies (varop, shift_mode)
10209 == GET_MODE_PRECISION (shift_mode)))
10211 count = 0;
10212 break;
10215 /* If we are doing an arithmetic right shift and discarding all but
10216 the sign bit copies, this is equivalent to doing a shift by the
10217 bitsize minus one. Convert it into that shift because it will often
10218 allow other simplifications. */
10220 if (code == ASHIFTRT
10221 && (count + num_sign_bit_copies (varop, shift_mode)
10222 >= GET_MODE_PRECISION (shift_mode)))
10223 count = GET_MODE_PRECISION (shift_mode) - 1;
10225 /* We simplify the tests below and elsewhere by converting
10226 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10227 `make_compound_operation' will convert it to an ASHIFTRT for
10228 those machines (such as VAX) that don't have an LSHIFTRT. */
10229 if (code == ASHIFTRT
10230 && val_signbit_known_clear_p (shift_mode,
10231 nonzero_bits (varop, shift_mode)))
10232 code = LSHIFTRT;
10234 if (((code == LSHIFTRT
10235 && HWI_COMPUTABLE_MODE_P (shift_mode)
10236 && !(nonzero_bits (varop, shift_mode) >> count))
10237 || (code == ASHIFT
10238 && HWI_COMPUTABLE_MODE_P (shift_mode)
10239 && !((nonzero_bits (varop, shift_mode) << count)
10240 & GET_MODE_MASK (shift_mode))))
10241 && !side_effects_p (varop))
10242 varop = const0_rtx;
10244 switch (GET_CODE (varop))
10246 case SIGN_EXTEND:
10247 case ZERO_EXTEND:
10248 case SIGN_EXTRACT:
10249 case ZERO_EXTRACT:
10250 new_rtx = expand_compound_operation (varop);
10251 if (new_rtx != varop)
10253 varop = new_rtx;
10254 continue;
10256 break;
10258 case MEM:
10259 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10260 minus the width of a smaller mode, we can do this with a
10261 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10262 if ((code == ASHIFTRT || code == LSHIFTRT)
10263 && ! mode_dependent_address_p (XEXP (varop, 0),
10264 MEM_ADDR_SPACE (varop))
10265 && ! MEM_VOLATILE_P (varop)
10266 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
10267 MODE_INT, 1)) != BLKmode)
10269 new_rtx = adjust_address_nv (varop, tmode,
10270 BYTES_BIG_ENDIAN ? 0
10271 : count / BITS_PER_UNIT);
10273 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10274 : ZERO_EXTEND, mode, new_rtx);
10275 count = 0;
10276 continue;
10278 break;
10280 case SUBREG:
10281 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10282 the same number of words as what we've seen so far. Then store
10283 the widest mode in MODE. */
10284 if (subreg_lowpart_p (varop)
10285 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10286 > GET_MODE_SIZE (GET_MODE (varop)))
10287 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10288 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
10289 == mode_words
10290 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
10291 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
10293 varop = SUBREG_REG (varop);
10294 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
10295 mode = GET_MODE (varop);
10296 continue;
10298 break;
10300 case MULT:
10301 /* Some machines use MULT instead of ASHIFT because MULT
10302 is cheaper. But it is still better on those machines to
10303 merge two shifts into one. */
10304 if (CONST_INT_P (XEXP (varop, 1))
10305 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10307 varop
10308 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10309 XEXP (varop, 0),
10310 GEN_INT (exact_log2 (
10311 UINTVAL (XEXP (varop, 1)))));
10312 continue;
10314 break;
10316 case UDIV:
10317 /* Similar, for when divides are cheaper. */
10318 if (CONST_INT_P (XEXP (varop, 1))
10319 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10321 varop
10322 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10323 XEXP (varop, 0),
10324 GEN_INT (exact_log2 (
10325 UINTVAL (XEXP (varop, 1)))));
10326 continue;
10328 break;
10330 case ASHIFTRT:
10331 /* If we are extracting just the sign bit of an arithmetic
10332 right shift, that shift is not needed. However, the sign
10333 bit of a wider mode may be different from what would be
10334 interpreted as the sign bit in a narrower mode, so, if
10335 the result is narrower, don't discard the shift. */
10336 if (code == LSHIFTRT
10337 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10338 && (GET_MODE_BITSIZE (result_mode)
10339 >= GET_MODE_BITSIZE (GET_MODE (varop))))
10341 varop = XEXP (varop, 0);
10342 continue;
10345 /* ... fall through ... */
10347 case LSHIFTRT:
10348 case ASHIFT:
10349 case ROTATE:
10350 /* Here we have two nested shifts. The result is usually the
10351 AND of a new shift with a mask. We compute the result below. */
10352 if (CONST_INT_P (XEXP (varop, 1))
10353 && INTVAL (XEXP (varop, 1)) >= 0
10354 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (GET_MODE (varop))
10355 && HWI_COMPUTABLE_MODE_P (result_mode)
10356 && HWI_COMPUTABLE_MODE_P (mode)
10357 && !VECTOR_MODE_P (result_mode))
10359 enum rtx_code first_code = GET_CODE (varop);
10360 unsigned int first_count = INTVAL (XEXP (varop, 1));
10361 unsigned HOST_WIDE_INT mask;
10362 rtx mask_rtx;
10364 /* We have one common special case. We can't do any merging if
10365 the inner code is an ASHIFTRT of a smaller mode. However, if
10366 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10367 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10368 we can convert it to
10369 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10370 This simplifies certain SIGN_EXTEND operations. */
10371 if (code == ASHIFT && first_code == ASHIFTRT
10372 && count == (GET_MODE_PRECISION (result_mode)
10373 - GET_MODE_PRECISION (GET_MODE (varop))))
10375 /* C3 has the low-order C1 bits zero. */
10377 mask = GET_MODE_MASK (mode)
10378 & ~(((unsigned HOST_WIDE_INT) 1 << first_count) - 1);
10380 varop = simplify_and_const_int (NULL_RTX, result_mode,
10381 XEXP (varop, 0), mask);
10382 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10383 varop, count);
10384 count = first_count;
10385 code = ASHIFTRT;
10386 continue;
10389 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10390 than C1 high-order bits equal to the sign bit, we can convert
10391 this to either an ASHIFT or an ASHIFTRT depending on the
10392 two counts.
10394 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10396 if (code == ASHIFTRT && first_code == ASHIFT
10397 && GET_MODE (varop) == shift_mode
10398 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10399 > first_count))
10401 varop = XEXP (varop, 0);
10402 count -= first_count;
10403 if (count < 0)
10405 count = -count;
10406 code = ASHIFT;
10409 continue;
10412 /* There are some cases we can't do. If CODE is ASHIFTRT,
10413 we can only do this if FIRST_CODE is also ASHIFTRT.
10415 We can't do the case when CODE is ROTATE and FIRST_CODE is
10416 ASHIFTRT.
10418 If the mode of this shift is not the mode of the outer shift,
10419 we can't do this if either shift is a right shift or ROTATE.
10421 Finally, we can't do any of these if the mode is too wide
10422 unless the codes are the same.
10424 Handle the case where the shift codes are the same
10425 first. */
10427 if (code == first_code)
10429 if (GET_MODE (varop) != result_mode
10430 && (code == ASHIFTRT || code == LSHIFTRT
10431 || code == ROTATE))
10432 break;
10434 count += first_count;
10435 varop = XEXP (varop, 0);
10436 continue;
10439 if (code == ASHIFTRT
10440 || (code == ROTATE && first_code == ASHIFTRT)
10441 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
10442 || (GET_MODE (varop) != result_mode
10443 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10444 || first_code == ROTATE
10445 || code == ROTATE)))
10446 break;
10448 /* To compute the mask to apply after the shift, shift the
10449 nonzero bits of the inner shift the same way the
10450 outer shift will. */
10452 mask_rtx = gen_int_mode (nonzero_bits (varop, GET_MODE (varop)),
10453 result_mode);
10455 mask_rtx
10456 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10457 GEN_INT (count));
10459 /* Give up if we can't compute an outer operation to use. */
10460 if (mask_rtx == 0
10461 || !CONST_INT_P (mask_rtx)
10462 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10463 INTVAL (mask_rtx),
10464 result_mode, &complement_p))
10465 break;
10467 /* If the shifts are in the same direction, we add the
10468 counts. Otherwise, we subtract them. */
10469 if ((code == ASHIFTRT || code == LSHIFTRT)
10470 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10471 count += first_count;
10472 else
10473 count -= first_count;
10475 /* If COUNT is positive, the new shift is usually CODE,
10476 except for the two exceptions below, in which case it is
10477 FIRST_CODE. If the count is negative, FIRST_CODE should
10478 always be used */
10479 if (count > 0
10480 && ((first_code == ROTATE && code == ASHIFT)
10481 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10482 code = first_code;
10483 else if (count < 0)
10484 code = first_code, count = -count;
10486 varop = XEXP (varop, 0);
10487 continue;
10490 /* If we have (A << B << C) for any shift, we can convert this to
10491 (A << C << B). This wins if A is a constant. Only try this if
10492 B is not a constant. */
10494 else if (GET_CODE (varop) == code
10495 && CONST_INT_P (XEXP (varop, 0))
10496 && !CONST_INT_P (XEXP (varop, 1)))
10498 rtx new_rtx = simplify_const_binary_operation (code, mode,
10499 XEXP (varop, 0),
10500 GEN_INT (count));
10501 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10502 count = 0;
10503 continue;
10505 break;
10507 case NOT:
10508 if (VECTOR_MODE_P (mode))
10509 break;
10511 /* Make this fit the case below. */
10512 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10513 continue;
10515 case IOR:
10516 case AND:
10517 case XOR:
10518 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10519 with C the size of VAROP - 1 and the shift is logical if
10520 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10521 we have an (le X 0) operation. If we have an arithmetic shift
10522 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10523 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10525 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10526 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10527 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10528 && (code == LSHIFTRT || code == ASHIFTRT)
10529 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10530 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10532 count = 0;
10533 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10534 const0_rtx);
10536 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10537 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10539 continue;
10542 /* If we have (shift (logical)), move the logical to the outside
10543 to allow it to possibly combine with another logical and the
10544 shift to combine with another shift. This also canonicalizes to
10545 what a ZERO_EXTRACT looks like. Also, some machines have
10546 (and (shift)) insns. */
10548 if (CONST_INT_P (XEXP (varop, 1))
10549 /* We can't do this if we have (ashiftrt (xor)) and the
10550 constant has its sign bit set in shift_mode with shift_mode
10551 wider than result_mode. */
10552 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10553 && result_mode != shift_mode
10554 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10555 shift_mode))
10556 && (new_rtx = simplify_const_binary_operation
10557 (code, result_mode,
10558 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10559 GEN_INT (count))) != 0
10560 && CONST_INT_P (new_rtx)
10561 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10562 INTVAL (new_rtx), result_mode, &complement_p))
10564 varop = XEXP (varop, 0);
10565 continue;
10568 /* If we can't do that, try to simplify the shift in each arm of the
10569 logical expression, make a new logical expression, and apply
10570 the inverse distributive law. This also can't be done for
10571 (ashiftrt (xor)) where we've widened the shift and the constant
10572 changes the sign bit. */
10573 if (CONST_INT_P (XEXP (varop, 1))
10574 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10575 && result_mode != shift_mode
10576 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10577 shift_mode)))
10579 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10580 XEXP (varop, 0), count);
10581 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10582 XEXP (varop, 1), count);
10584 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10585 lhs, rhs);
10586 varop = apply_distributive_law (varop);
10588 count = 0;
10589 continue;
10591 break;
10593 case EQ:
10594 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10595 says that the sign bit can be tested, FOO has mode MODE, C is
10596 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10597 that may be nonzero. */
10598 if (code == LSHIFTRT
10599 && XEXP (varop, 1) == const0_rtx
10600 && GET_MODE (XEXP (varop, 0)) == result_mode
10601 && count == (GET_MODE_PRECISION (result_mode) - 1)
10602 && HWI_COMPUTABLE_MODE_P (result_mode)
10603 && STORE_FLAG_VALUE == -1
10604 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10605 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10606 &complement_p))
10608 varop = XEXP (varop, 0);
10609 count = 0;
10610 continue;
10612 break;
10614 case NEG:
10615 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10616 than the number of bits in the mode is equivalent to A. */
10617 if (code == LSHIFTRT
10618 && count == (GET_MODE_PRECISION (result_mode) - 1)
10619 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10621 varop = XEXP (varop, 0);
10622 count = 0;
10623 continue;
10626 /* NEG commutes with ASHIFT since it is multiplication. Move the
10627 NEG outside to allow shifts to combine. */
10628 if (code == ASHIFT
10629 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10630 &complement_p))
10632 varop = XEXP (varop, 0);
10633 continue;
10635 break;
10637 case PLUS:
10638 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10639 is one less than the number of bits in the mode is
10640 equivalent to (xor A 1). */
10641 if (code == LSHIFTRT
10642 && count == (GET_MODE_PRECISION (result_mode) - 1)
10643 && XEXP (varop, 1) == constm1_rtx
10644 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10645 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10646 &complement_p))
10648 count = 0;
10649 varop = XEXP (varop, 0);
10650 continue;
10653 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10654 that might be nonzero in BAR are those being shifted out and those
10655 bits are known zero in FOO, we can replace the PLUS with FOO.
10656 Similarly in the other operand order. This code occurs when
10657 we are computing the size of a variable-size array. */
10659 if ((code == ASHIFTRT || code == LSHIFTRT)
10660 && count < HOST_BITS_PER_WIDE_INT
10661 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10662 && (nonzero_bits (XEXP (varop, 1), result_mode)
10663 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10665 varop = XEXP (varop, 0);
10666 continue;
10668 else if ((code == ASHIFTRT || code == LSHIFTRT)
10669 && count < HOST_BITS_PER_WIDE_INT
10670 && HWI_COMPUTABLE_MODE_P (result_mode)
10671 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10672 >> count)
10673 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10674 & nonzero_bits (XEXP (varop, 1),
10675 result_mode)))
10677 varop = XEXP (varop, 1);
10678 continue;
10681 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10682 if (code == ASHIFT
10683 && CONST_INT_P (XEXP (varop, 1))
10684 && (new_rtx = simplify_const_binary_operation
10685 (ASHIFT, result_mode,
10686 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10687 GEN_INT (count))) != 0
10688 && CONST_INT_P (new_rtx)
10689 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10690 INTVAL (new_rtx), result_mode, &complement_p))
10692 varop = XEXP (varop, 0);
10693 continue;
10696 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10697 signbit', and attempt to change the PLUS to an XOR and move it to
10698 the outer operation as is done above in the AND/IOR/XOR case
10699 leg for shift(logical). See details in logical handling above
10700 for reasoning in doing so. */
10701 if (code == LSHIFTRT
10702 && CONST_INT_P (XEXP (varop, 1))
10703 && mode_signbit_p (result_mode, XEXP (varop, 1))
10704 && (new_rtx = simplify_const_binary_operation
10705 (code, result_mode,
10706 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10707 GEN_INT (count))) != 0
10708 && CONST_INT_P (new_rtx)
10709 && merge_outer_ops (&outer_op, &outer_const, XOR,
10710 INTVAL (new_rtx), result_mode, &complement_p))
10712 varop = XEXP (varop, 0);
10713 continue;
10716 break;
10718 case MINUS:
10719 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10720 with C the size of VAROP - 1 and the shift is logical if
10721 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10722 we have a (gt X 0) operation. If the shift is arithmetic with
10723 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10724 we have a (neg (gt X 0)) operation. */
10726 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10727 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10728 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10729 && (code == LSHIFTRT || code == ASHIFTRT)
10730 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10731 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10732 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10734 count = 0;
10735 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10736 const0_rtx);
10738 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10739 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10741 continue;
10743 break;
10745 case TRUNCATE:
10746 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10747 if the truncate does not affect the value. */
10748 if (code == LSHIFTRT
10749 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10750 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10751 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10752 >= (GET_MODE_PRECISION (GET_MODE (XEXP (varop, 0)))
10753 - GET_MODE_PRECISION (GET_MODE (varop)))))
10755 rtx varop_inner = XEXP (varop, 0);
10757 varop_inner
10758 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10759 XEXP (varop_inner, 0),
10760 GEN_INT
10761 (count + INTVAL (XEXP (varop_inner, 1))));
10762 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10763 count = 0;
10764 continue;
10766 break;
10768 default:
10769 break;
10772 break;
10775 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
10776 outer_op, outer_const);
10778 /* We have now finished analyzing the shift. The result should be
10779 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10780 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10781 to the result of the shift. OUTER_CONST is the relevant constant,
10782 but we must turn off all bits turned off in the shift. */
10784 if (outer_op == UNKNOWN
10785 && orig_code == code && orig_count == count
10786 && varop == orig_varop
10787 && shift_mode == GET_MODE (varop))
10788 return NULL_RTX;
10790 /* Make a SUBREG if necessary. If we can't make it, fail. */
10791 varop = gen_lowpart (shift_mode, varop);
10792 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10793 return NULL_RTX;
10795 /* If we have an outer operation and we just made a shift, it is
10796 possible that we could have simplified the shift were it not
10797 for the outer operation. So try to do the simplification
10798 recursively. */
10800 if (outer_op != UNKNOWN)
10801 x = simplify_shift_const_1 (code, shift_mode, varop, count);
10802 else
10803 x = NULL_RTX;
10805 if (x == NULL_RTX)
10806 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10808 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10809 turn off all the bits that the shift would have turned off. */
10810 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10811 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10812 GET_MODE_MASK (result_mode) >> orig_count);
10814 /* Do the remainder of the processing in RESULT_MODE. */
10815 x = gen_lowpart_or_truncate (result_mode, x);
10817 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10818 operation. */
10819 if (complement_p)
10820 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10822 if (outer_op != UNKNOWN)
10824 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10825 && GET_MODE_PRECISION (result_mode) < HOST_BITS_PER_WIDE_INT)
10826 outer_const = trunc_int_for_mode (outer_const, result_mode);
10828 if (outer_op == AND)
10829 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10830 else if (outer_op == SET)
10832 /* This means that we have determined that the result is
10833 equivalent to a constant. This should be rare. */
10834 if (!side_effects_p (x))
10835 x = GEN_INT (outer_const);
10837 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10838 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10839 else
10840 x = simplify_gen_binary (outer_op, result_mode, x,
10841 GEN_INT (outer_const));
10844 return x;
10847 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10848 The result of the shift is RESULT_MODE. If we cannot simplify it,
10849 return X or, if it is NULL, synthesize the expression with
10850 simplify_gen_binary. Otherwise, return a simplified value.
10852 The shift is normally computed in the widest mode we find in VAROP, as
10853 long as it isn't a different number of words than RESULT_MODE. Exceptions
10854 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10856 static rtx
10857 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
10858 rtx varop, int count)
10860 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10861 if (tem)
10862 return tem;
10864 if (!x)
10865 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10866 if (GET_MODE (x) != result_mode)
10867 x = gen_lowpart (result_mode, x);
10868 return x;
10872 /* A subroutine of recog_for_combine. See there for arguments and
10873 return value. */
10875 static int
10876 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
10878 rtx pat = *pnewpat;
10879 rtx pat_without_clobbers;
10880 int insn_code_number;
10881 int num_clobbers_to_add = 0;
10882 int i;
10883 rtx notes = NULL_RTX;
10884 rtx old_notes, old_pat;
10885 int old_icode;
10887 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10888 we use to indicate that something didn't match. If we find such a
10889 thing, force rejection. */
10890 if (GET_CODE (pat) == PARALLEL)
10891 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10892 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10893 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10894 return -1;
10896 old_pat = PATTERN (insn);
10897 old_notes = REG_NOTES (insn);
10898 PATTERN (insn) = pat;
10899 REG_NOTES (insn) = NULL_RTX;
10901 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10902 if (dump_file && (dump_flags & TDF_DETAILS))
10904 if (insn_code_number < 0)
10905 fputs ("Failed to match this instruction:\n", dump_file);
10906 else
10907 fputs ("Successfully matched this instruction:\n", dump_file);
10908 print_rtl_single (dump_file, pat);
10911 /* If it isn't, there is the possibility that we previously had an insn
10912 that clobbered some register as a side effect, but the combined
10913 insn doesn't need to do that. So try once more without the clobbers
10914 unless this represents an ASM insn. */
10916 if (insn_code_number < 0 && ! check_asm_operands (pat)
10917 && GET_CODE (pat) == PARALLEL)
10919 int pos;
10921 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10922 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10924 if (i != pos)
10925 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10926 pos++;
10929 SUBST_INT (XVECLEN (pat, 0), pos);
10931 if (pos == 1)
10932 pat = XVECEXP (pat, 0, 0);
10934 PATTERN (insn) = pat;
10935 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10936 if (dump_file && (dump_flags & TDF_DETAILS))
10938 if (insn_code_number < 0)
10939 fputs ("Failed to match this instruction:\n", dump_file);
10940 else
10941 fputs ("Successfully matched this instruction:\n", dump_file);
10942 print_rtl_single (dump_file, pat);
10946 pat_without_clobbers = pat;
10948 PATTERN (insn) = old_pat;
10949 REG_NOTES (insn) = old_notes;
10951 /* Recognize all noop sets, these will be killed by followup pass. */
10952 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10953 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10955 /* If we had any clobbers to add, make a new pattern than contains
10956 them. Then check to make sure that all of them are dead. */
10957 if (num_clobbers_to_add)
10959 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10960 rtvec_alloc (GET_CODE (pat) == PARALLEL
10961 ? (XVECLEN (pat, 0)
10962 + num_clobbers_to_add)
10963 : num_clobbers_to_add + 1));
10965 if (GET_CODE (pat) == PARALLEL)
10966 for (i = 0; i < XVECLEN (pat, 0); i++)
10967 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10968 else
10969 XVECEXP (newpat, 0, 0) = pat;
10971 add_clobbers (newpat, insn_code_number);
10973 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10974 i < XVECLEN (newpat, 0); i++)
10976 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
10977 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10978 return -1;
10979 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
10981 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
10982 notes = alloc_reg_note (REG_UNUSED,
10983 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10986 pat = newpat;
10989 if (insn_code_number >= 0
10990 && insn_code_number != NOOP_MOVE_INSN_CODE)
10992 old_pat = PATTERN (insn);
10993 old_notes = REG_NOTES (insn);
10994 old_icode = INSN_CODE (insn);
10995 PATTERN (insn) = pat;
10996 REG_NOTES (insn) = notes;
10998 /* Allow targets to reject combined insn. */
10999 if (!targetm.legitimate_combined_insn (insn))
11001 if (dump_file && (dump_flags & TDF_DETAILS))
11002 fputs ("Instruction not appropriate for target.",
11003 dump_file);
11005 /* Callers expect recog_for_combine to strip
11006 clobbers from the pattern on failure. */
11007 pat = pat_without_clobbers;
11008 notes = NULL_RTX;
11010 insn_code_number = -1;
11013 PATTERN (insn) = old_pat;
11014 REG_NOTES (insn) = old_notes;
11015 INSN_CODE (insn) = old_icode;
11018 *pnewpat = pat;
11019 *pnotes = notes;
11021 return insn_code_number;
11024 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11025 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11026 Return whether anything was so changed. */
11028 static bool
11029 change_zero_ext (rtx *src)
11031 bool changed = false;
11033 subrtx_ptr_iterator::array_type array;
11034 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11036 rtx x = **iter;
11037 machine_mode mode = GET_MODE (x);
11038 int size;
11040 if (GET_CODE (x) == ZERO_EXTRACT
11041 && CONST_INT_P (XEXP (x, 1))
11042 && CONST_INT_P (XEXP (x, 2))
11043 && GET_MODE (XEXP (x, 0)) == mode)
11045 size = INTVAL (XEXP (x, 1));
11047 int start = INTVAL (XEXP (x, 2));
11048 if (BITS_BIG_ENDIAN)
11049 start = GET_MODE_PRECISION (mode) - size - start;
11051 x = gen_rtx_LSHIFTRT (mode, XEXP (x, 0), GEN_INT (start));
11053 else if (GET_CODE (x) == ZERO_EXTEND
11054 && GET_CODE (XEXP (x, 0)) == SUBREG
11055 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
11056 && subreg_lowpart_p (XEXP (x, 0)))
11058 size = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
11059 x = SUBREG_REG (XEXP (x, 0));
11061 else
11062 continue;
11064 unsigned HOST_WIDE_INT mask = 1;
11065 mask <<= size;
11066 mask--;
11068 x = gen_rtx_AND (mode, x, GEN_INT (mask));
11070 SUBST (**iter, x);
11071 changed = true;
11074 return changed;
11077 /* Like recog, but we receive the address of a pointer to a new pattern.
11078 We try to match the rtx that the pointer points to.
11079 If that fails, we may try to modify or replace the pattern,
11080 storing the replacement into the same pointer object.
11082 Modifications include deletion or addition of CLOBBERs. If the
11083 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11084 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11085 (and undo if that fails).
11087 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11088 the CLOBBERs are placed.
11090 The value is the final insn code from the pattern ultimately matched,
11091 or -1. */
11093 static int
11094 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11096 rtx pat = PATTERN (insn);
11097 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11098 if (insn_code_number >= 0 || check_asm_operands (pat))
11099 return insn_code_number;
11101 void *marker = get_undo_marker ();
11102 bool changed = false;
11104 if (GET_CODE (pat) == SET)
11105 changed = change_zero_ext (&SET_SRC (pat));
11106 else if (GET_CODE (pat) == PARALLEL)
11108 int i;
11109 for (i = 0; i < XVECLEN (pat, 0); i++)
11111 rtx set = XVECEXP (pat, 0, i);
11112 if (GET_CODE (set) == SET)
11113 changed |= change_zero_ext (&SET_SRC (set));
11117 if (changed)
11119 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11121 if (insn_code_number < 0)
11122 undo_to_marker (marker);
11125 return insn_code_number;
11128 /* Like gen_lowpart_general but for use by combine. In combine it
11129 is not possible to create any new pseudoregs. However, it is
11130 safe to create invalid memory addresses, because combine will
11131 try to recognize them and all they will do is make the combine
11132 attempt fail.
11134 If for some reason this cannot do its job, an rtx
11135 (clobber (const_int 0)) is returned.
11136 An insn containing that will not be recognized. */
11138 static rtx
11139 gen_lowpart_for_combine (machine_mode omode, rtx x)
11141 machine_mode imode = GET_MODE (x);
11142 unsigned int osize = GET_MODE_SIZE (omode);
11143 unsigned int isize = GET_MODE_SIZE (imode);
11144 rtx result;
11146 if (omode == imode)
11147 return x;
11149 /* We can only support MODE being wider than a word if X is a
11150 constant integer or has a mode the same size. */
11151 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
11152 && ! (CONST_SCALAR_INT_P (x) || isize == osize))
11153 goto fail;
11155 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11156 won't know what to do. So we will strip off the SUBREG here and
11157 process normally. */
11158 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11160 x = SUBREG_REG (x);
11162 /* For use in case we fall down into the address adjustments
11163 further below, we need to adjust the known mode and size of
11164 x; imode and isize, since we just adjusted x. */
11165 imode = GET_MODE (x);
11167 if (imode == omode)
11168 return x;
11170 isize = GET_MODE_SIZE (imode);
11173 result = gen_lowpart_common (omode, x);
11175 if (result)
11176 return result;
11178 if (MEM_P (x))
11180 int offset = 0;
11182 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11183 address. */
11184 if (MEM_VOLATILE_P (x)
11185 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11186 goto fail;
11188 /* If we want to refer to something bigger than the original memref,
11189 generate a paradoxical subreg instead. That will force a reload
11190 of the original memref X. */
11191 if (isize < osize)
11192 return gen_rtx_SUBREG (omode, x, 0);
11194 if (WORDS_BIG_ENDIAN)
11195 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
11197 /* Adjust the address so that the address-after-the-data is
11198 unchanged. */
11199 if (BYTES_BIG_ENDIAN)
11200 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
11202 return adjust_address_nv (x, omode, offset);
11205 /* If X is a comparison operator, rewrite it in a new mode. This
11206 probably won't match, but may allow further simplifications. */
11207 else if (COMPARISON_P (x))
11208 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11210 /* If we couldn't simplify X any other way, just enclose it in a
11211 SUBREG. Normally, this SUBREG won't match, but some patterns may
11212 include an explicit SUBREG or we may simplify it further in combine. */
11213 else
11215 rtx res;
11217 if (imode == VOIDmode)
11219 imode = int_mode_for_mode (omode);
11220 x = gen_lowpart_common (imode, x);
11221 if (x == NULL)
11222 goto fail;
11224 res = lowpart_subreg (omode, x, imode);
11225 if (res)
11226 return res;
11229 fail:
11230 return gen_rtx_CLOBBER (omode, const0_rtx);
11233 /* Try to simplify a comparison between OP0 and a constant OP1,
11234 where CODE is the comparison code that will be tested, into a
11235 (CODE OP0 const0_rtx) form.
11237 The result is a possibly different comparison code to use.
11238 *POP1 may be updated. */
11240 static enum rtx_code
11241 simplify_compare_const (enum rtx_code code, machine_mode mode,
11242 rtx op0, rtx *pop1)
11244 unsigned int mode_width = GET_MODE_PRECISION (mode);
11245 HOST_WIDE_INT const_op = INTVAL (*pop1);
11247 /* Get the constant we are comparing against and turn off all bits
11248 not on in our mode. */
11249 if (mode != VOIDmode)
11250 const_op = trunc_int_for_mode (const_op, mode);
11252 /* If we are comparing against a constant power of two and the value
11253 being compared can only have that single bit nonzero (e.g., it was
11254 `and'ed with that bit), we can replace this with a comparison
11255 with zero. */
11256 if (const_op
11257 && (code == EQ || code == NE || code == GE || code == GEU
11258 || code == LT || code == LTU)
11259 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11260 && exact_log2 (const_op & GET_MODE_MASK (mode)) >= 0
11261 && (nonzero_bits (op0, mode)
11262 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (mode))))
11264 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11265 const_op = 0;
11268 /* Similarly, if we are comparing a value known to be either -1 or
11269 0 with -1, change it to the opposite comparison against zero. */
11270 if (const_op == -1
11271 && (code == EQ || code == NE || code == GT || code == LE
11272 || code == GEU || code == LTU)
11273 && num_sign_bit_copies (op0, mode) == mode_width)
11275 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11276 const_op = 0;
11279 /* Do some canonicalizations based on the comparison code. We prefer
11280 comparisons against zero and then prefer equality comparisons.
11281 If we can reduce the size of a constant, we will do that too. */
11282 switch (code)
11284 case LT:
11285 /* < C is equivalent to <= (C - 1) */
11286 if (const_op > 0)
11288 const_op -= 1;
11289 code = LE;
11290 /* ... fall through to LE case below. */
11292 else
11293 break;
11295 case LE:
11296 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11297 if (const_op < 0)
11299 const_op += 1;
11300 code = LT;
11303 /* If we are doing a <= 0 comparison on a value known to have
11304 a zero sign bit, we can replace this with == 0. */
11305 else if (const_op == 0
11306 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11307 && (nonzero_bits (op0, mode)
11308 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11309 == 0)
11310 code = EQ;
11311 break;
11313 case GE:
11314 /* >= C is equivalent to > (C - 1). */
11315 if (const_op > 0)
11317 const_op -= 1;
11318 code = GT;
11319 /* ... fall through to GT below. */
11321 else
11322 break;
11324 case GT:
11325 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11326 if (const_op < 0)
11328 const_op += 1;
11329 code = GE;
11332 /* If we are doing a > 0 comparison on a value known to have
11333 a zero sign bit, we can replace this with != 0. */
11334 else if (const_op == 0
11335 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11336 && (nonzero_bits (op0, mode)
11337 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11338 == 0)
11339 code = NE;
11340 break;
11342 case LTU:
11343 /* < C is equivalent to <= (C - 1). */
11344 if (const_op > 0)
11346 const_op -= 1;
11347 code = LEU;
11348 /* ... fall through ... */
11350 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11351 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11352 && (unsigned HOST_WIDE_INT) const_op
11353 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11355 const_op = 0;
11356 code = GE;
11357 break;
11359 else
11360 break;
11362 case LEU:
11363 /* unsigned <= 0 is equivalent to == 0 */
11364 if (const_op == 0)
11365 code = EQ;
11366 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11367 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11368 && (unsigned HOST_WIDE_INT) const_op
11369 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11371 const_op = 0;
11372 code = GE;
11374 break;
11376 case GEU:
11377 /* >= C is equivalent to > (C - 1). */
11378 if (const_op > 1)
11380 const_op -= 1;
11381 code = GTU;
11382 /* ... fall through ... */
11385 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11386 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11387 && (unsigned HOST_WIDE_INT) const_op
11388 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11390 const_op = 0;
11391 code = LT;
11392 break;
11394 else
11395 break;
11397 case GTU:
11398 /* unsigned > 0 is equivalent to != 0 */
11399 if (const_op == 0)
11400 code = NE;
11401 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11402 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11403 && (unsigned HOST_WIDE_INT) const_op
11404 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11406 const_op = 0;
11407 code = LT;
11409 break;
11411 default:
11412 break;
11415 *pop1 = GEN_INT (const_op);
11416 return code;
11419 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11420 comparison code that will be tested.
11422 The result is a possibly different comparison code to use. *POP0 and
11423 *POP1 may be updated.
11425 It is possible that we might detect that a comparison is either always
11426 true or always false. However, we do not perform general constant
11427 folding in combine, so this knowledge isn't useful. Such tautologies
11428 should have been detected earlier. Hence we ignore all such cases. */
11430 static enum rtx_code
11431 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11433 rtx op0 = *pop0;
11434 rtx op1 = *pop1;
11435 rtx tem, tem1;
11436 int i;
11437 machine_mode mode, tmode;
11439 /* Try a few ways of applying the same transformation to both operands. */
11440 while (1)
11442 #if !WORD_REGISTER_OPERATIONS
11443 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11444 so check specially. */
11445 if (code != GTU && code != GEU && code != LTU && code != LEU
11446 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11447 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11448 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11449 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11450 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11451 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
11452 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
11453 && CONST_INT_P (XEXP (op0, 1))
11454 && XEXP (op0, 1) == XEXP (op1, 1)
11455 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11456 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11457 && (INTVAL (XEXP (op0, 1))
11458 == (GET_MODE_PRECISION (GET_MODE (op0))
11459 - (GET_MODE_PRECISION
11460 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
11462 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11463 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11465 #endif
11467 /* If both operands are the same constant shift, see if we can ignore the
11468 shift. We can if the shift is a rotate or if the bits shifted out of
11469 this shift are known to be zero for both inputs and if the type of
11470 comparison is compatible with the shift. */
11471 if (GET_CODE (op0) == GET_CODE (op1)
11472 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
11473 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11474 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11475 && (code != GT && code != LT && code != GE && code != LE))
11476 || (GET_CODE (op0) == ASHIFTRT
11477 && (code != GTU && code != LTU
11478 && code != GEU && code != LEU)))
11479 && CONST_INT_P (XEXP (op0, 1))
11480 && INTVAL (XEXP (op0, 1)) >= 0
11481 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11482 && XEXP (op0, 1) == XEXP (op1, 1))
11484 machine_mode mode = GET_MODE (op0);
11485 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11486 int shift_count = INTVAL (XEXP (op0, 1));
11488 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11489 mask &= (mask >> shift_count) << shift_count;
11490 else if (GET_CODE (op0) == ASHIFT)
11491 mask = (mask & (mask << shift_count)) >> shift_count;
11493 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11494 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11495 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11496 else
11497 break;
11500 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11501 SUBREGs are of the same mode, and, in both cases, the AND would
11502 be redundant if the comparison was done in the narrower mode,
11503 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11504 and the operand's possibly nonzero bits are 0xffffff01; in that case
11505 if we only care about QImode, we don't need the AND). This case
11506 occurs if the output mode of an scc insn is not SImode and
11507 STORE_FLAG_VALUE == 1 (e.g., the 386).
11509 Similarly, check for a case where the AND's are ZERO_EXTEND
11510 operations from some narrower mode even though a SUBREG is not
11511 present. */
11513 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11514 && CONST_INT_P (XEXP (op0, 1))
11515 && CONST_INT_P (XEXP (op1, 1)))
11517 rtx inner_op0 = XEXP (op0, 0);
11518 rtx inner_op1 = XEXP (op1, 0);
11519 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11520 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11521 int changed = 0;
11523 if (paradoxical_subreg_p (inner_op0)
11524 && GET_CODE (inner_op1) == SUBREG
11525 && (GET_MODE (SUBREG_REG (inner_op0))
11526 == GET_MODE (SUBREG_REG (inner_op1)))
11527 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11528 <= HOST_BITS_PER_WIDE_INT)
11529 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11530 GET_MODE (SUBREG_REG (inner_op0)))))
11531 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11532 GET_MODE (SUBREG_REG (inner_op1))))))
11534 op0 = SUBREG_REG (inner_op0);
11535 op1 = SUBREG_REG (inner_op1);
11537 /* The resulting comparison is always unsigned since we masked
11538 off the original sign bit. */
11539 code = unsigned_condition (code);
11541 changed = 1;
11544 else if (c0 == c1)
11545 for (tmode = GET_CLASS_NARROWEST_MODE
11546 (GET_MODE_CLASS (GET_MODE (op0)));
11547 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
11548 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11550 op0 = gen_lowpart_or_truncate (tmode, inner_op0);
11551 op1 = gen_lowpart_or_truncate (tmode, inner_op1);
11552 code = unsigned_condition (code);
11553 changed = 1;
11554 break;
11557 if (! changed)
11558 break;
11561 /* If both operands are NOT, we can strip off the outer operation
11562 and adjust the comparison code for swapped operands; similarly for
11563 NEG, except that this must be an equality comparison. */
11564 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11565 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11566 && (code == EQ || code == NE)))
11567 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11569 else
11570 break;
11573 /* If the first operand is a constant, swap the operands and adjust the
11574 comparison code appropriately, but don't do this if the second operand
11575 is already a constant integer. */
11576 if (swap_commutative_operands_p (op0, op1))
11578 std::swap (op0, op1);
11579 code = swap_condition (code);
11582 /* We now enter a loop during which we will try to simplify the comparison.
11583 For the most part, we only are concerned with comparisons with zero,
11584 but some things may really be comparisons with zero but not start
11585 out looking that way. */
11587 while (CONST_INT_P (op1))
11589 machine_mode mode = GET_MODE (op0);
11590 unsigned int mode_width = GET_MODE_PRECISION (mode);
11591 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11592 int equality_comparison_p;
11593 int sign_bit_comparison_p;
11594 int unsigned_comparison_p;
11595 HOST_WIDE_INT const_op;
11597 /* We only want to handle integral modes. This catches VOIDmode,
11598 CCmode, and the floating-point modes. An exception is that we
11599 can handle VOIDmode if OP0 is a COMPARE or a comparison
11600 operation. */
11602 if (GET_MODE_CLASS (mode) != MODE_INT
11603 && ! (mode == VOIDmode
11604 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
11605 break;
11607 /* Try to simplify the compare to constant, possibly changing the
11608 comparison op, and/or changing op1 to zero. */
11609 code = simplify_compare_const (code, mode, op0, &op1);
11610 const_op = INTVAL (op1);
11612 /* Compute some predicates to simplify code below. */
11614 equality_comparison_p = (code == EQ || code == NE);
11615 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11616 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11617 || code == GEU);
11619 /* If this is a sign bit comparison and we can do arithmetic in
11620 MODE, say that we will only be needing the sign bit of OP0. */
11621 if (sign_bit_comparison_p && HWI_COMPUTABLE_MODE_P (mode))
11622 op0 = force_to_mode (op0, mode,
11623 (unsigned HOST_WIDE_INT) 1
11624 << (GET_MODE_PRECISION (mode) - 1),
11627 /* Now try cases based on the opcode of OP0. If none of the cases
11628 does a "continue", we exit this loop immediately after the
11629 switch. */
11631 switch (GET_CODE (op0))
11633 case ZERO_EXTRACT:
11634 /* If we are extracting a single bit from a variable position in
11635 a constant that has only a single bit set and are comparing it
11636 with zero, we can convert this into an equality comparison
11637 between the position and the location of the single bit. */
11638 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11639 have already reduced the shift count modulo the word size. */
11640 if (!SHIFT_COUNT_TRUNCATED
11641 && CONST_INT_P (XEXP (op0, 0))
11642 && XEXP (op0, 1) == const1_rtx
11643 && equality_comparison_p && const_op == 0
11644 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11646 if (BITS_BIG_ENDIAN)
11647 i = BITS_PER_WORD - 1 - i;
11649 op0 = XEXP (op0, 2);
11650 op1 = GEN_INT (i);
11651 const_op = i;
11653 /* Result is nonzero iff shift count is equal to I. */
11654 code = reverse_condition (code);
11655 continue;
11658 /* ... fall through ... */
11660 case SIGN_EXTRACT:
11661 tem = expand_compound_operation (op0);
11662 if (tem != op0)
11664 op0 = tem;
11665 continue;
11667 break;
11669 case NOT:
11670 /* If testing for equality, we can take the NOT of the constant. */
11671 if (equality_comparison_p
11672 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11674 op0 = XEXP (op0, 0);
11675 op1 = tem;
11676 continue;
11679 /* If just looking at the sign bit, reverse the sense of the
11680 comparison. */
11681 if (sign_bit_comparison_p)
11683 op0 = XEXP (op0, 0);
11684 code = (code == GE ? LT : GE);
11685 continue;
11687 break;
11689 case NEG:
11690 /* If testing for equality, we can take the NEG of the constant. */
11691 if (equality_comparison_p
11692 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11694 op0 = XEXP (op0, 0);
11695 op1 = tem;
11696 continue;
11699 /* The remaining cases only apply to comparisons with zero. */
11700 if (const_op != 0)
11701 break;
11703 /* When X is ABS or is known positive,
11704 (neg X) is < 0 if and only if X != 0. */
11706 if (sign_bit_comparison_p
11707 && (GET_CODE (XEXP (op0, 0)) == ABS
11708 || (mode_width <= HOST_BITS_PER_WIDE_INT
11709 && (nonzero_bits (XEXP (op0, 0), mode)
11710 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11711 == 0)))
11713 op0 = XEXP (op0, 0);
11714 code = (code == LT ? NE : EQ);
11715 continue;
11718 /* If we have NEG of something whose two high-order bits are the
11719 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11720 if (num_sign_bit_copies (op0, mode) >= 2)
11722 op0 = XEXP (op0, 0);
11723 code = swap_condition (code);
11724 continue;
11726 break;
11728 case ROTATE:
11729 /* If we are testing equality and our count is a constant, we
11730 can perform the inverse operation on our RHS. */
11731 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
11732 && (tem = simplify_binary_operation (ROTATERT, mode,
11733 op1, XEXP (op0, 1))) != 0)
11735 op0 = XEXP (op0, 0);
11736 op1 = tem;
11737 continue;
11740 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11741 a particular bit. Convert it to an AND of a constant of that
11742 bit. This will be converted into a ZERO_EXTRACT. */
11743 if (const_op == 0 && sign_bit_comparison_p
11744 && CONST_INT_P (XEXP (op0, 1))
11745 && mode_width <= HOST_BITS_PER_WIDE_INT)
11747 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11748 ((unsigned HOST_WIDE_INT) 1
11749 << (mode_width - 1
11750 - INTVAL (XEXP (op0, 1)))));
11751 code = (code == LT ? NE : EQ);
11752 continue;
11755 /* Fall through. */
11757 case ABS:
11758 /* ABS is ignorable inside an equality comparison with zero. */
11759 if (const_op == 0 && equality_comparison_p)
11761 op0 = XEXP (op0, 0);
11762 continue;
11764 break;
11766 case SIGN_EXTEND:
11767 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11768 (compare FOO CONST) if CONST fits in FOO's mode and we
11769 are either testing inequality or have an unsigned
11770 comparison with ZERO_EXTEND or a signed comparison with
11771 SIGN_EXTEND. But don't do it if we don't have a compare
11772 insn of the given mode, since we'd have to revert it
11773 later on, and then we wouldn't know whether to sign- or
11774 zero-extend. */
11775 mode = GET_MODE (XEXP (op0, 0));
11776 if (GET_MODE_CLASS (mode) == MODE_INT
11777 && ! unsigned_comparison_p
11778 && HWI_COMPUTABLE_MODE_P (mode)
11779 && trunc_int_for_mode (const_op, mode) == const_op
11780 && have_insn_for (COMPARE, mode))
11782 op0 = XEXP (op0, 0);
11783 continue;
11785 break;
11787 case SUBREG:
11788 /* Check for the case where we are comparing A - C1 with C2, that is
11790 (subreg:MODE (plus (A) (-C1))) op (C2)
11792 with C1 a constant, and try to lift the SUBREG, i.e. to do the
11793 comparison in the wider mode. One of the following two conditions
11794 must be true in order for this to be valid:
11796 1. The mode extension results in the same bit pattern being added
11797 on both sides and the comparison is equality or unsigned. As
11798 C2 has been truncated to fit in MODE, the pattern can only be
11799 all 0s or all 1s.
11801 2. The mode extension results in the sign bit being copied on
11802 each side.
11804 The difficulty here is that we have predicates for A but not for
11805 (A - C1) so we need to check that C1 is within proper bounds so
11806 as to perturbate A as little as possible. */
11808 if (mode_width <= HOST_BITS_PER_WIDE_INT
11809 && subreg_lowpart_p (op0)
11810 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) > mode_width
11811 && GET_CODE (SUBREG_REG (op0)) == PLUS
11812 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
11814 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
11815 rtx a = XEXP (SUBREG_REG (op0), 0);
11816 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
11818 if ((c1 > 0
11819 && (unsigned HOST_WIDE_INT) c1
11820 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
11821 && (equality_comparison_p || unsigned_comparison_p)
11822 /* (A - C1) zero-extends if it is positive and sign-extends
11823 if it is negative, C2 both zero- and sign-extends. */
11824 && ((0 == (nonzero_bits (a, inner_mode)
11825 & ~GET_MODE_MASK (mode))
11826 && const_op >= 0)
11827 /* (A - C1) sign-extends if it is positive and 1-extends
11828 if it is negative, C2 both sign- and 1-extends. */
11829 || (num_sign_bit_copies (a, inner_mode)
11830 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11831 - mode_width)
11832 && const_op < 0)))
11833 || ((unsigned HOST_WIDE_INT) c1
11834 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
11835 /* (A - C1) always sign-extends, like C2. */
11836 && num_sign_bit_copies (a, inner_mode)
11837 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11838 - (mode_width - 1))))
11840 op0 = SUBREG_REG (op0);
11841 continue;
11845 /* If the inner mode is narrower and we are extracting the low part,
11846 we can treat the SUBREG as if it were a ZERO_EXTEND. */
11847 if (subreg_lowpart_p (op0)
11848 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) < mode_width)
11849 /* Fall through */ ;
11850 else
11851 break;
11853 /* ... fall through ... */
11855 case ZERO_EXTEND:
11856 mode = GET_MODE (XEXP (op0, 0));
11857 if (GET_MODE_CLASS (mode) == MODE_INT
11858 && (unsigned_comparison_p || equality_comparison_p)
11859 && HWI_COMPUTABLE_MODE_P (mode)
11860 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
11861 && const_op >= 0
11862 && have_insn_for (COMPARE, mode))
11864 op0 = XEXP (op0, 0);
11865 continue;
11867 break;
11869 case PLUS:
11870 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
11871 this for equality comparisons due to pathological cases involving
11872 overflows. */
11873 if (equality_comparison_p
11874 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11875 op1, XEXP (op0, 1))))
11877 op0 = XEXP (op0, 0);
11878 op1 = tem;
11879 continue;
11882 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
11883 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
11884 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
11886 op0 = XEXP (XEXP (op0, 0), 0);
11887 code = (code == LT ? EQ : NE);
11888 continue;
11890 break;
11892 case MINUS:
11893 /* We used to optimize signed comparisons against zero, but that
11894 was incorrect. Unsigned comparisons against zero (GTU, LEU)
11895 arrive here as equality comparisons, or (GEU, LTU) are
11896 optimized away. No need to special-case them. */
11898 /* (eq (minus A B) C) -> (eq A (plus B C)) or
11899 (eq B (minus A C)), whichever simplifies. We can only do
11900 this for equality comparisons due to pathological cases involving
11901 overflows. */
11902 if (equality_comparison_p
11903 && 0 != (tem = simplify_binary_operation (PLUS, mode,
11904 XEXP (op0, 1), op1)))
11906 op0 = XEXP (op0, 0);
11907 op1 = tem;
11908 continue;
11911 if (equality_comparison_p
11912 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11913 XEXP (op0, 0), op1)))
11915 op0 = XEXP (op0, 1);
11916 op1 = tem;
11917 continue;
11920 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11921 of bits in X minus 1, is one iff X > 0. */
11922 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
11923 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11924 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
11925 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11927 op0 = XEXP (op0, 1);
11928 code = (code == GE ? LE : GT);
11929 continue;
11931 break;
11933 case XOR:
11934 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11935 if C is zero or B is a constant. */
11936 if (equality_comparison_p
11937 && 0 != (tem = simplify_binary_operation (XOR, mode,
11938 XEXP (op0, 1), op1)))
11940 op0 = XEXP (op0, 0);
11941 op1 = tem;
11942 continue;
11944 break;
11946 case EQ: case NE:
11947 case UNEQ: case LTGT:
11948 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
11949 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
11950 case UNORDERED: case ORDERED:
11951 /* We can't do anything if OP0 is a condition code value, rather
11952 than an actual data value. */
11953 if (const_op != 0
11954 || CC0_P (XEXP (op0, 0))
11955 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
11956 break;
11958 /* Get the two operands being compared. */
11959 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
11960 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
11961 else
11962 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
11964 /* Check for the cases where we simply want the result of the
11965 earlier test or the opposite of that result. */
11966 if (code == NE || code == EQ
11967 || (val_signbit_known_set_p (GET_MODE (op0), STORE_FLAG_VALUE)
11968 && (code == LT || code == GE)))
11970 enum rtx_code new_code;
11971 if (code == LT || code == NE)
11972 new_code = GET_CODE (op0);
11973 else
11974 new_code = reversed_comparison_code (op0, NULL);
11976 if (new_code != UNKNOWN)
11978 code = new_code;
11979 op0 = tem;
11980 op1 = tem1;
11981 continue;
11984 break;
11986 case IOR:
11987 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11988 iff X <= 0. */
11989 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
11990 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
11991 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11993 op0 = XEXP (op0, 1);
11994 code = (code == GE ? GT : LE);
11995 continue;
11997 break;
11999 case AND:
12000 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12001 will be converted to a ZERO_EXTRACT later. */
12002 if (const_op == 0 && equality_comparison_p
12003 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12004 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12006 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12007 XEXP (XEXP (op0, 0), 1));
12008 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12009 continue;
12012 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12013 zero and X is a comparison and C1 and C2 describe only bits set
12014 in STORE_FLAG_VALUE, we can compare with X. */
12015 if (const_op == 0 && equality_comparison_p
12016 && mode_width <= HOST_BITS_PER_WIDE_INT
12017 && CONST_INT_P (XEXP (op0, 1))
12018 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12019 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12020 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12021 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12023 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12024 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12025 if ((~STORE_FLAG_VALUE & mask) == 0
12026 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12027 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12028 && COMPARISON_P (tem))))
12030 op0 = XEXP (XEXP (op0, 0), 0);
12031 continue;
12035 /* If we are doing an equality comparison of an AND of a bit equal
12036 to the sign bit, replace this with a LT or GE comparison of
12037 the underlying value. */
12038 if (equality_comparison_p
12039 && const_op == 0
12040 && CONST_INT_P (XEXP (op0, 1))
12041 && mode_width <= HOST_BITS_PER_WIDE_INT
12042 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12043 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
12045 op0 = XEXP (op0, 0);
12046 code = (code == EQ ? GE : LT);
12047 continue;
12050 /* If this AND operation is really a ZERO_EXTEND from a narrower
12051 mode, the constant fits within that mode, and this is either an
12052 equality or unsigned comparison, try to do this comparison in
12053 the narrower mode.
12055 Note that in:
12057 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12058 -> (ne:DI (reg:SI 4) (const_int 0))
12060 unless TRULY_NOOP_TRUNCATION allows it or the register is
12061 known to hold a value of the required mode the
12062 transformation is invalid. */
12063 if ((equality_comparison_p || unsigned_comparison_p)
12064 && CONST_INT_P (XEXP (op0, 1))
12065 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12066 & GET_MODE_MASK (mode))
12067 + 1)) >= 0
12068 && const_op >> i == 0
12069 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
12071 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12072 continue;
12075 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12076 fits in both M1 and M2 and the SUBREG is either paradoxical
12077 or represents the low part, permute the SUBREG and the AND
12078 and try again. */
12079 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12080 && CONST_INT_P (XEXP (op0, 1)))
12082 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
12083 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12084 /* Require an integral mode, to avoid creating something like
12085 (AND:SF ...). */
12086 if (SCALAR_INT_MODE_P (tmode)
12087 /* It is unsafe to commute the AND into the SUBREG if the
12088 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12089 not defined. As originally written the upper bits
12090 have a defined value due to the AND operation.
12091 However, if we commute the AND inside the SUBREG then
12092 they no longer have defined values and the meaning of
12093 the code has been changed.
12094 Also C1 should not change value in the smaller mode,
12095 see PR67028 (a positive C1 can become negative in the
12096 smaller mode, so that the AND does no longer mask the
12097 upper bits). */
12098 && ((WORD_REGISTER_OPERATIONS
12099 && mode_width > GET_MODE_PRECISION (tmode)
12100 && mode_width <= BITS_PER_WORD
12101 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12102 || (mode_width <= GET_MODE_PRECISION (tmode)
12103 && subreg_lowpart_p (XEXP (op0, 0))))
12104 && mode_width <= HOST_BITS_PER_WIDE_INT
12105 && HWI_COMPUTABLE_MODE_P (tmode)
12106 && (c1 & ~mask) == 0
12107 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12108 && c1 != mask
12109 && c1 != GET_MODE_MASK (tmode))
12111 op0 = simplify_gen_binary (AND, tmode,
12112 SUBREG_REG (XEXP (op0, 0)),
12113 gen_int_mode (c1, tmode));
12114 op0 = gen_lowpart (mode, op0);
12115 continue;
12119 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12120 if (const_op == 0 && equality_comparison_p
12121 && XEXP (op0, 1) == const1_rtx
12122 && GET_CODE (XEXP (op0, 0)) == NOT)
12124 op0 = simplify_and_const_int (NULL_RTX, mode,
12125 XEXP (XEXP (op0, 0), 0), 1);
12126 code = (code == NE ? EQ : NE);
12127 continue;
12130 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12131 (eq (and (lshiftrt X) 1) 0).
12132 Also handle the case where (not X) is expressed using xor. */
12133 if (const_op == 0 && equality_comparison_p
12134 && XEXP (op0, 1) == const1_rtx
12135 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12137 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12138 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12140 if (GET_CODE (shift_op) == NOT
12141 || (GET_CODE (shift_op) == XOR
12142 && CONST_INT_P (XEXP (shift_op, 1))
12143 && CONST_INT_P (shift_count)
12144 && HWI_COMPUTABLE_MODE_P (mode)
12145 && (UINTVAL (XEXP (shift_op, 1))
12146 == (unsigned HOST_WIDE_INT) 1
12147 << INTVAL (shift_count))))
12150 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12151 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12152 code = (code == NE ? EQ : NE);
12153 continue;
12156 break;
12158 case ASHIFT:
12159 /* If we have (compare (ashift FOO N) (const_int C)) and
12160 the high order N bits of FOO (N+1 if an inequality comparison)
12161 are known to be zero, we can do this by comparing FOO with C
12162 shifted right N bits so long as the low-order N bits of C are
12163 zero. */
12164 if (CONST_INT_P (XEXP (op0, 1))
12165 && INTVAL (XEXP (op0, 1)) >= 0
12166 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12167 < HOST_BITS_PER_WIDE_INT)
12168 && (((unsigned HOST_WIDE_INT) const_op
12169 & (((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1)))
12170 - 1)) == 0)
12171 && mode_width <= HOST_BITS_PER_WIDE_INT
12172 && (nonzero_bits (XEXP (op0, 0), mode)
12173 & ~(mask >> (INTVAL (XEXP (op0, 1))
12174 + ! equality_comparison_p))) == 0)
12176 /* We must perform a logical shift, not an arithmetic one,
12177 as we want the top N bits of C to be zero. */
12178 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12180 temp >>= INTVAL (XEXP (op0, 1));
12181 op1 = gen_int_mode (temp, mode);
12182 op0 = XEXP (op0, 0);
12183 continue;
12186 /* If we are doing a sign bit comparison, it means we are testing
12187 a particular bit. Convert it to the appropriate AND. */
12188 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12189 && mode_width <= HOST_BITS_PER_WIDE_INT)
12191 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12192 ((unsigned HOST_WIDE_INT) 1
12193 << (mode_width - 1
12194 - INTVAL (XEXP (op0, 1)))));
12195 code = (code == LT ? NE : EQ);
12196 continue;
12199 /* If this an equality comparison with zero and we are shifting
12200 the low bit to the sign bit, we can convert this to an AND of the
12201 low-order bit. */
12202 if (const_op == 0 && equality_comparison_p
12203 && CONST_INT_P (XEXP (op0, 1))
12204 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12206 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12207 continue;
12209 break;
12211 case ASHIFTRT:
12212 /* If this is an equality comparison with zero, we can do this
12213 as a logical shift, which might be much simpler. */
12214 if (equality_comparison_p && const_op == 0
12215 && CONST_INT_P (XEXP (op0, 1)))
12217 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12218 XEXP (op0, 0),
12219 INTVAL (XEXP (op0, 1)));
12220 continue;
12223 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12224 do the comparison in a narrower mode. */
12225 if (! unsigned_comparison_p
12226 && CONST_INT_P (XEXP (op0, 1))
12227 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12228 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12229 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12230 MODE_INT, 1)) != BLKmode
12231 && (((unsigned HOST_WIDE_INT) const_op
12232 + (GET_MODE_MASK (tmode) >> 1) + 1)
12233 <= GET_MODE_MASK (tmode)))
12235 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12236 continue;
12239 /* Likewise if OP0 is a PLUS of a sign extension with a
12240 constant, which is usually represented with the PLUS
12241 between the shifts. */
12242 if (! unsigned_comparison_p
12243 && CONST_INT_P (XEXP (op0, 1))
12244 && GET_CODE (XEXP (op0, 0)) == PLUS
12245 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12246 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12247 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12248 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12249 MODE_INT, 1)) != BLKmode
12250 && (((unsigned HOST_WIDE_INT) const_op
12251 + (GET_MODE_MASK (tmode) >> 1) + 1)
12252 <= GET_MODE_MASK (tmode)))
12254 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12255 rtx add_const = XEXP (XEXP (op0, 0), 1);
12256 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
12257 add_const, XEXP (op0, 1));
12259 op0 = simplify_gen_binary (PLUS, tmode,
12260 gen_lowpart (tmode, inner),
12261 new_const);
12262 continue;
12265 /* ... fall through ... */
12266 case LSHIFTRT:
12267 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12268 the low order N bits of FOO are known to be zero, we can do this
12269 by comparing FOO with C shifted left N bits so long as no
12270 overflow occurs. Even if the low order N bits of FOO aren't known
12271 to be zero, if the comparison is >= or < we can use the same
12272 optimization and for > or <= by setting all the low
12273 order N bits in the comparison constant. */
12274 if (CONST_INT_P (XEXP (op0, 1))
12275 && INTVAL (XEXP (op0, 1)) > 0
12276 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12277 && mode_width <= HOST_BITS_PER_WIDE_INT
12278 && (((unsigned HOST_WIDE_INT) const_op
12279 + (GET_CODE (op0) != LSHIFTRT
12280 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12281 + 1)
12282 : 0))
12283 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12285 unsigned HOST_WIDE_INT low_bits
12286 = (nonzero_bits (XEXP (op0, 0), mode)
12287 & (((unsigned HOST_WIDE_INT) 1
12288 << INTVAL (XEXP (op0, 1))) - 1));
12289 if (low_bits == 0 || !equality_comparison_p)
12291 /* If the shift was logical, then we must make the condition
12292 unsigned. */
12293 if (GET_CODE (op0) == LSHIFTRT)
12294 code = unsigned_condition (code);
12296 const_op <<= INTVAL (XEXP (op0, 1));
12297 if (low_bits != 0
12298 && (code == GT || code == GTU
12299 || code == LE || code == LEU))
12300 const_op
12301 |= (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1);
12302 op1 = GEN_INT (const_op);
12303 op0 = XEXP (op0, 0);
12304 continue;
12308 /* If we are using this shift to extract just the sign bit, we
12309 can replace this with an LT or GE comparison. */
12310 if (const_op == 0
12311 && (equality_comparison_p || sign_bit_comparison_p)
12312 && CONST_INT_P (XEXP (op0, 1))
12313 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12315 op0 = XEXP (op0, 0);
12316 code = (code == NE || code == GT ? LT : GE);
12317 continue;
12319 break;
12321 default:
12322 break;
12325 break;
12328 /* Now make any compound operations involved in this comparison. Then,
12329 check for an outmost SUBREG on OP0 that is not doing anything or is
12330 paradoxical. The latter transformation must only be performed when
12331 it is known that the "extra" bits will be the same in op0 and op1 or
12332 that they don't matter. There are three cases to consider:
12334 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12335 care bits and we can assume they have any convenient value. So
12336 making the transformation is safe.
12338 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
12339 In this case the upper bits of op0 are undefined. We should not make
12340 the simplification in that case as we do not know the contents of
12341 those bits.
12343 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
12344 UNKNOWN. In that case we know those bits are zeros or ones. We must
12345 also be sure that they are the same as the upper bits of op1.
12347 We can never remove a SUBREG for a non-equality comparison because
12348 the sign bit is in a different place in the underlying object. */
12350 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
12351 op1 = make_compound_operation (op1, SET);
12353 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12354 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
12355 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
12356 && (code == NE || code == EQ))
12358 if (paradoxical_subreg_p (op0))
12360 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12361 implemented. */
12362 if (REG_P (SUBREG_REG (op0)))
12364 op0 = SUBREG_REG (op0);
12365 op1 = gen_lowpart (GET_MODE (op0), op1);
12368 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
12369 <= HOST_BITS_PER_WIDE_INT)
12370 && (nonzero_bits (SUBREG_REG (op0),
12371 GET_MODE (SUBREG_REG (op0)))
12372 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12374 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
12376 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
12377 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12378 op0 = SUBREG_REG (op0), op1 = tem;
12382 /* We now do the opposite procedure: Some machines don't have compare
12383 insns in all modes. If OP0's mode is an integer mode smaller than a
12384 word and we can't do a compare in that mode, see if there is a larger
12385 mode for which we can do the compare. There are a number of cases in
12386 which we can use the wider mode. */
12388 mode = GET_MODE (op0);
12389 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
12390 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12391 && ! have_insn_for (COMPARE, mode))
12392 for (tmode = GET_MODE_WIDER_MODE (mode);
12393 (tmode != VOIDmode && HWI_COMPUTABLE_MODE_P (tmode));
12394 tmode = GET_MODE_WIDER_MODE (tmode))
12395 if (have_insn_for (COMPARE, tmode))
12397 int zero_extended;
12399 /* If this is a test for negative, we can make an explicit
12400 test of the sign bit. Test this first so we can use
12401 a paradoxical subreg to extend OP0. */
12403 if (op1 == const0_rtx && (code == LT || code == GE)
12404 && HWI_COMPUTABLE_MODE_P (mode))
12406 unsigned HOST_WIDE_INT sign
12407 = (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1);
12408 op0 = simplify_gen_binary (AND, tmode,
12409 gen_lowpart (tmode, op0),
12410 gen_int_mode (sign, tmode));
12411 code = (code == LT) ? NE : EQ;
12412 break;
12415 /* If the only nonzero bits in OP0 and OP1 are those in the
12416 narrower mode and this is an equality or unsigned comparison,
12417 we can use the wider mode. Similarly for sign-extended
12418 values, in which case it is true for all comparisons. */
12419 zero_extended = ((code == EQ || code == NE
12420 || code == GEU || code == GTU
12421 || code == LEU || code == LTU)
12422 && (nonzero_bits (op0, tmode)
12423 & ~GET_MODE_MASK (mode)) == 0
12424 && ((CONST_INT_P (op1)
12425 || (nonzero_bits (op1, tmode)
12426 & ~GET_MODE_MASK (mode)) == 0)));
12428 if (zero_extended
12429 || ((num_sign_bit_copies (op0, tmode)
12430 > (unsigned int) (GET_MODE_PRECISION (tmode)
12431 - GET_MODE_PRECISION (mode)))
12432 && (num_sign_bit_copies (op1, tmode)
12433 > (unsigned int) (GET_MODE_PRECISION (tmode)
12434 - GET_MODE_PRECISION (mode)))))
12436 /* If OP0 is an AND and we don't have an AND in MODE either,
12437 make a new AND in the proper mode. */
12438 if (GET_CODE (op0) == AND
12439 && !have_insn_for (AND, mode))
12440 op0 = simplify_gen_binary (AND, tmode,
12441 gen_lowpart (tmode,
12442 XEXP (op0, 0)),
12443 gen_lowpart (tmode,
12444 XEXP (op0, 1)));
12445 else
12447 if (zero_extended)
12449 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
12450 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
12452 else
12454 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
12455 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
12457 break;
12462 /* We may have changed the comparison operands. Re-canonicalize. */
12463 if (swap_commutative_operands_p (op0, op1))
12465 std::swap (op0, op1);
12466 code = swap_condition (code);
12469 /* If this machine only supports a subset of valid comparisons, see if we
12470 can convert an unsupported one into a supported one. */
12471 target_canonicalize_comparison (&code, &op0, &op1, 0);
12473 *pop0 = op0;
12474 *pop1 = op1;
12476 return code;
12479 /* Utility function for record_value_for_reg. Count number of
12480 rtxs in X. */
12481 static int
12482 count_rtxs (rtx x)
12484 enum rtx_code code = GET_CODE (x);
12485 const char *fmt;
12486 int i, j, ret = 1;
12488 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
12489 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
12491 rtx x0 = XEXP (x, 0);
12492 rtx x1 = XEXP (x, 1);
12494 if (x0 == x1)
12495 return 1 + 2 * count_rtxs (x0);
12497 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
12498 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
12499 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12500 return 2 + 2 * count_rtxs (x0)
12501 + count_rtxs (x == XEXP (x1, 0)
12502 ? XEXP (x1, 1) : XEXP (x1, 0));
12504 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
12505 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
12506 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12507 return 2 + 2 * count_rtxs (x1)
12508 + count_rtxs (x == XEXP (x0, 0)
12509 ? XEXP (x0, 1) : XEXP (x0, 0));
12512 fmt = GET_RTX_FORMAT (code);
12513 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12514 if (fmt[i] == 'e')
12515 ret += count_rtxs (XEXP (x, i));
12516 else if (fmt[i] == 'E')
12517 for (j = 0; j < XVECLEN (x, i); j++)
12518 ret += count_rtxs (XVECEXP (x, i, j));
12520 return ret;
12523 /* Utility function for following routine. Called when X is part of a value
12524 being stored into last_set_value. Sets last_set_table_tick
12525 for each register mentioned. Similar to mention_regs in cse.c */
12527 static void
12528 update_table_tick (rtx x)
12530 enum rtx_code code = GET_CODE (x);
12531 const char *fmt = GET_RTX_FORMAT (code);
12532 int i, j;
12534 if (code == REG)
12536 unsigned int regno = REGNO (x);
12537 unsigned int endregno = END_REGNO (x);
12538 unsigned int r;
12540 for (r = regno; r < endregno; r++)
12542 reg_stat_type *rsp = &reg_stat[r];
12543 rsp->last_set_table_tick = label_tick;
12546 return;
12549 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12550 if (fmt[i] == 'e')
12552 /* Check for identical subexpressions. If x contains
12553 identical subexpression we only have to traverse one of
12554 them. */
12555 if (i == 0 && ARITHMETIC_P (x))
12557 /* Note that at this point x1 has already been
12558 processed. */
12559 rtx x0 = XEXP (x, 0);
12560 rtx x1 = XEXP (x, 1);
12562 /* If x0 and x1 are identical then there is no need to
12563 process x0. */
12564 if (x0 == x1)
12565 break;
12567 /* If x0 is identical to a subexpression of x1 then while
12568 processing x1, x0 has already been processed. Thus we
12569 are done with x. */
12570 if (ARITHMETIC_P (x1)
12571 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12572 break;
12574 /* If x1 is identical to a subexpression of x0 then we
12575 still have to process the rest of x0. */
12576 if (ARITHMETIC_P (x0)
12577 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12579 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12580 break;
12584 update_table_tick (XEXP (x, i));
12586 else if (fmt[i] == 'E')
12587 for (j = 0; j < XVECLEN (x, i); j++)
12588 update_table_tick (XVECEXP (x, i, j));
12591 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12592 are saying that the register is clobbered and we no longer know its
12593 value. If INSN is zero, don't update reg_stat[].last_set; this is
12594 only permitted with VALUE also zero and is used to invalidate the
12595 register. */
12597 static void
12598 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
12600 unsigned int regno = REGNO (reg);
12601 unsigned int endregno = END_REGNO (reg);
12602 unsigned int i;
12603 reg_stat_type *rsp;
12605 /* If VALUE contains REG and we have a previous value for REG, substitute
12606 the previous value. */
12607 if (value && insn && reg_overlap_mentioned_p (reg, value))
12609 rtx tem;
12611 /* Set things up so get_last_value is allowed to see anything set up to
12612 our insn. */
12613 subst_low_luid = DF_INSN_LUID (insn);
12614 tem = get_last_value (reg);
12616 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12617 it isn't going to be useful and will take a lot of time to process,
12618 so just use the CLOBBER. */
12620 if (tem)
12622 if (ARITHMETIC_P (tem)
12623 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12624 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12625 tem = XEXP (tem, 0);
12626 else if (count_occurrences (value, reg, 1) >= 2)
12628 /* If there are two or more occurrences of REG in VALUE,
12629 prevent the value from growing too much. */
12630 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12631 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12634 value = replace_rtx (copy_rtx (value), reg, tem);
12638 /* For each register modified, show we don't know its value, that
12639 we don't know about its bitwise content, that its value has been
12640 updated, and that we don't know the location of the death of the
12641 register. */
12642 for (i = regno; i < endregno; i++)
12644 rsp = &reg_stat[i];
12646 if (insn)
12647 rsp->last_set = insn;
12649 rsp->last_set_value = 0;
12650 rsp->last_set_mode = VOIDmode;
12651 rsp->last_set_nonzero_bits = 0;
12652 rsp->last_set_sign_bit_copies = 0;
12653 rsp->last_death = 0;
12654 rsp->truncated_to_mode = VOIDmode;
12657 /* Mark registers that are being referenced in this value. */
12658 if (value)
12659 update_table_tick (value);
12661 /* Now update the status of each register being set.
12662 If someone is using this register in this block, set this register
12663 to invalid since we will get confused between the two lives in this
12664 basic block. This makes using this register always invalid. In cse, we
12665 scan the table to invalidate all entries using this register, but this
12666 is too much work for us. */
12668 for (i = regno; i < endregno; i++)
12670 rsp = &reg_stat[i];
12671 rsp->last_set_label = label_tick;
12672 if (!insn
12673 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12674 rsp->last_set_invalid = 1;
12675 else
12676 rsp->last_set_invalid = 0;
12679 /* The value being assigned might refer to X (like in "x++;"). In that
12680 case, we must replace it with (clobber (const_int 0)) to prevent
12681 infinite loops. */
12682 rsp = &reg_stat[regno];
12683 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
12685 value = copy_rtx (value);
12686 if (!get_last_value_validate (&value, insn, label_tick, 1))
12687 value = 0;
12690 /* For the main register being modified, update the value, the mode, the
12691 nonzero bits, and the number of sign bit copies. */
12693 rsp->last_set_value = value;
12695 if (value)
12697 machine_mode mode = GET_MODE (reg);
12698 subst_low_luid = DF_INSN_LUID (insn);
12699 rsp->last_set_mode = mode;
12700 if (GET_MODE_CLASS (mode) == MODE_INT
12701 && HWI_COMPUTABLE_MODE_P (mode))
12702 mode = nonzero_bits_mode;
12703 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
12704 rsp->last_set_sign_bit_copies
12705 = num_sign_bit_copies (value, GET_MODE (reg));
12709 /* Called via note_stores from record_dead_and_set_regs to handle one
12710 SET or CLOBBER in an insn. DATA is the instruction in which the
12711 set is occurring. */
12713 static void
12714 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
12716 rtx_insn *record_dead_insn = (rtx_insn *) data;
12718 if (GET_CODE (dest) == SUBREG)
12719 dest = SUBREG_REG (dest);
12721 if (!record_dead_insn)
12723 if (REG_P (dest))
12724 record_value_for_reg (dest, NULL, NULL_RTX);
12725 return;
12728 if (REG_P (dest))
12730 /* If we are setting the whole register, we know its value. Otherwise
12731 show that we don't know the value. We can handle SUBREG in
12732 some cases. */
12733 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
12734 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
12735 else if (GET_CODE (setter) == SET
12736 && GET_CODE (SET_DEST (setter)) == SUBREG
12737 && SUBREG_REG (SET_DEST (setter)) == dest
12738 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
12739 && subreg_lowpart_p (SET_DEST (setter)))
12740 record_value_for_reg (dest, record_dead_insn,
12741 gen_lowpart (GET_MODE (dest),
12742 SET_SRC (setter)));
12743 else
12744 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
12746 else if (MEM_P (dest)
12747 /* Ignore pushes, they clobber nothing. */
12748 && ! push_operand (dest, GET_MODE (dest)))
12749 mem_last_set = DF_INSN_LUID (record_dead_insn);
12752 /* Update the records of when each REG was most recently set or killed
12753 for the things done by INSN. This is the last thing done in processing
12754 INSN in the combiner loop.
12756 We update reg_stat[], in particular fields last_set, last_set_value,
12757 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12758 last_death, and also the similar information mem_last_set (which insn
12759 most recently modified memory) and last_call_luid (which insn was the
12760 most recent subroutine call). */
12762 static void
12763 record_dead_and_set_regs (rtx_insn *insn)
12765 rtx link;
12766 unsigned int i;
12768 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
12770 if (REG_NOTE_KIND (link) == REG_DEAD
12771 && REG_P (XEXP (link, 0)))
12773 unsigned int regno = REGNO (XEXP (link, 0));
12774 unsigned int endregno = END_REGNO (XEXP (link, 0));
12776 for (i = regno; i < endregno; i++)
12778 reg_stat_type *rsp;
12780 rsp = &reg_stat[i];
12781 rsp->last_death = insn;
12784 else if (REG_NOTE_KIND (link) == REG_INC)
12785 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
12788 if (CALL_P (insn))
12790 hard_reg_set_iterator hrsi;
12791 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
12793 reg_stat_type *rsp;
12795 rsp = &reg_stat[i];
12796 rsp->last_set_invalid = 1;
12797 rsp->last_set = insn;
12798 rsp->last_set_value = 0;
12799 rsp->last_set_mode = VOIDmode;
12800 rsp->last_set_nonzero_bits = 0;
12801 rsp->last_set_sign_bit_copies = 0;
12802 rsp->last_death = 0;
12803 rsp->truncated_to_mode = VOIDmode;
12806 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
12808 /* We can't combine into a call pattern. Remember, though, that
12809 the return value register is set at this LUID. We could
12810 still replace a register with the return value from the
12811 wrong subroutine call! */
12812 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
12814 else
12815 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
12818 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12819 register present in the SUBREG, so for each such SUBREG go back and
12820 adjust nonzero and sign bit information of the registers that are
12821 known to have some zero/sign bits set.
12823 This is needed because when combine blows the SUBREGs away, the
12824 information on zero/sign bits is lost and further combines can be
12825 missed because of that. */
12827 static void
12828 record_promoted_value (rtx_insn *insn, rtx subreg)
12830 struct insn_link *links;
12831 rtx set;
12832 unsigned int regno = REGNO (SUBREG_REG (subreg));
12833 machine_mode mode = GET_MODE (subreg);
12835 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
12836 return;
12838 for (links = LOG_LINKS (insn); links;)
12840 reg_stat_type *rsp;
12842 insn = links->insn;
12843 set = single_set (insn);
12845 if (! set || !REG_P (SET_DEST (set))
12846 || REGNO (SET_DEST (set)) != regno
12847 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
12849 links = links->next;
12850 continue;
12853 rsp = &reg_stat[regno];
12854 if (rsp->last_set == insn)
12856 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
12857 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
12860 if (REG_P (SET_SRC (set)))
12862 regno = REGNO (SET_SRC (set));
12863 links = LOG_LINKS (insn);
12865 else
12866 break;
12870 /* Check if X, a register, is known to contain a value already
12871 truncated to MODE. In this case we can use a subreg to refer to
12872 the truncated value even though in the generic case we would need
12873 an explicit truncation. */
12875 static bool
12876 reg_truncated_to_mode (machine_mode mode, const_rtx x)
12878 reg_stat_type *rsp = &reg_stat[REGNO (x)];
12879 machine_mode truncated = rsp->truncated_to_mode;
12881 if (truncated == 0
12882 || rsp->truncation_label < label_tick_ebb_start)
12883 return false;
12884 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
12885 return true;
12886 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
12887 return true;
12888 return false;
12891 /* If X is a hard reg or a subreg record the mode that the register is
12892 accessed in. For non-TRULY_NOOP_TRUNCATION targets we might be able
12893 to turn a truncate into a subreg using this information. Return true
12894 if traversing X is complete. */
12896 static bool
12897 record_truncated_value (rtx x)
12899 machine_mode truncated_mode;
12900 reg_stat_type *rsp;
12902 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
12904 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
12905 truncated_mode = GET_MODE (x);
12907 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
12908 return true;
12910 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
12911 return true;
12913 x = SUBREG_REG (x);
12915 /* ??? For hard-regs we now record everything. We might be able to
12916 optimize this using last_set_mode. */
12917 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
12918 truncated_mode = GET_MODE (x);
12919 else
12920 return false;
12922 rsp = &reg_stat[REGNO (x)];
12923 if (rsp->truncated_to_mode == 0
12924 || rsp->truncation_label < label_tick_ebb_start
12925 || (GET_MODE_SIZE (truncated_mode)
12926 < GET_MODE_SIZE (rsp->truncated_to_mode)))
12928 rsp->truncated_to_mode = truncated_mode;
12929 rsp->truncation_label = label_tick;
12932 return true;
12935 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12936 the modes they are used in. This can help truning TRUNCATEs into
12937 SUBREGs. */
12939 static void
12940 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
12942 subrtx_var_iterator::array_type array;
12943 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
12944 if (record_truncated_value (*iter))
12945 iter.skip_subrtxes ();
12948 /* Scan X for promoted SUBREGs. For each one found,
12949 note what it implies to the registers used in it. */
12951 static void
12952 check_promoted_subreg (rtx_insn *insn, rtx x)
12954 if (GET_CODE (x) == SUBREG
12955 && SUBREG_PROMOTED_VAR_P (x)
12956 && REG_P (SUBREG_REG (x)))
12957 record_promoted_value (insn, x);
12958 else
12960 const char *format = GET_RTX_FORMAT (GET_CODE (x));
12961 int i, j;
12963 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
12964 switch (format[i])
12966 case 'e':
12967 check_promoted_subreg (insn, XEXP (x, i));
12968 break;
12969 case 'V':
12970 case 'E':
12971 if (XVEC (x, i) != 0)
12972 for (j = 0; j < XVECLEN (x, i); j++)
12973 check_promoted_subreg (insn, XVECEXP (x, i, j));
12974 break;
12979 /* Verify that all the registers and memory references mentioned in *LOC are
12980 still valid. *LOC was part of a value set in INSN when label_tick was
12981 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12982 the invalid references with (clobber (const_int 0)) and return 1. This
12983 replacement is useful because we often can get useful information about
12984 the form of a value (e.g., if it was produced by a shift that always
12985 produces -1 or 0) even though we don't know exactly what registers it
12986 was produced from. */
12988 static int
12989 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
12991 rtx x = *loc;
12992 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
12993 int len = GET_RTX_LENGTH (GET_CODE (x));
12994 int i, j;
12996 if (REG_P (x))
12998 unsigned int regno = REGNO (x);
12999 unsigned int endregno = END_REGNO (x);
13000 unsigned int j;
13002 for (j = regno; j < endregno; j++)
13004 reg_stat_type *rsp = &reg_stat[j];
13005 if (rsp->last_set_invalid
13006 /* If this is a pseudo-register that was only set once and not
13007 live at the beginning of the function, it is always valid. */
13008 || (! (regno >= FIRST_PSEUDO_REGISTER
13009 && regno < reg_n_sets_max
13010 && REG_N_SETS (regno) == 1
13011 && (!REGNO_REG_SET_P
13012 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13013 regno)))
13014 && rsp->last_set_label > tick))
13016 if (replace)
13017 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13018 return replace;
13022 return 1;
13024 /* If this is a memory reference, make sure that there were no stores after
13025 it that might have clobbered the value. We don't have alias info, so we
13026 assume any store invalidates it. Moreover, we only have local UIDs, so
13027 we also assume that there were stores in the intervening basic blocks. */
13028 else if (MEM_P (x) && !MEM_READONLY_P (x)
13029 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13031 if (replace)
13032 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13033 return replace;
13036 for (i = 0; i < len; i++)
13038 if (fmt[i] == 'e')
13040 /* Check for identical subexpressions. If x contains
13041 identical subexpression we only have to traverse one of
13042 them. */
13043 if (i == 1 && ARITHMETIC_P (x))
13045 /* Note that at this point x0 has already been checked
13046 and found valid. */
13047 rtx x0 = XEXP (x, 0);
13048 rtx x1 = XEXP (x, 1);
13050 /* If x0 and x1 are identical then x is also valid. */
13051 if (x0 == x1)
13052 return 1;
13054 /* If x1 is identical to a subexpression of x0 then
13055 while checking x0, x1 has already been checked. Thus
13056 it is valid and so as x. */
13057 if (ARITHMETIC_P (x0)
13058 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13059 return 1;
13061 /* If x0 is identical to a subexpression of x1 then x is
13062 valid iff the rest of x1 is valid. */
13063 if (ARITHMETIC_P (x1)
13064 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13065 return
13066 get_last_value_validate (&XEXP (x1,
13067 x0 == XEXP (x1, 0) ? 1 : 0),
13068 insn, tick, replace);
13071 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13072 replace) == 0)
13073 return 0;
13075 else if (fmt[i] == 'E')
13076 for (j = 0; j < XVECLEN (x, i); j++)
13077 if (get_last_value_validate (&XVECEXP (x, i, j),
13078 insn, tick, replace) == 0)
13079 return 0;
13082 /* If we haven't found a reason for it to be invalid, it is valid. */
13083 return 1;
13086 /* Get the last value assigned to X, if known. Some registers
13087 in the value may be replaced with (clobber (const_int 0)) if their value
13088 is known longer known reliably. */
13090 static rtx
13091 get_last_value (const_rtx x)
13093 unsigned int regno;
13094 rtx value;
13095 reg_stat_type *rsp;
13097 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13098 then convert it to the desired mode. If this is a paradoxical SUBREG,
13099 we cannot predict what values the "extra" bits might have. */
13100 if (GET_CODE (x) == SUBREG
13101 && subreg_lowpart_p (x)
13102 && !paradoxical_subreg_p (x)
13103 && (value = get_last_value (SUBREG_REG (x))) != 0)
13104 return gen_lowpart (GET_MODE (x), value);
13106 if (!REG_P (x))
13107 return 0;
13109 regno = REGNO (x);
13110 rsp = &reg_stat[regno];
13111 value = rsp->last_set_value;
13113 /* If we don't have a value, or if it isn't for this basic block and
13114 it's either a hard register, set more than once, or it's a live
13115 at the beginning of the function, return 0.
13117 Because if it's not live at the beginning of the function then the reg
13118 is always set before being used (is never used without being set).
13119 And, if it's set only once, and it's always set before use, then all
13120 uses must have the same last value, even if it's not from this basic
13121 block. */
13123 if (value == 0
13124 || (rsp->last_set_label < label_tick_ebb_start
13125 && (regno < FIRST_PSEUDO_REGISTER
13126 || regno >= reg_n_sets_max
13127 || REG_N_SETS (regno) != 1
13128 || REGNO_REG_SET_P
13129 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13130 return 0;
13132 /* If the value was set in a later insn than the ones we are processing,
13133 we can't use it even if the register was only set once. */
13134 if (rsp->last_set_label == label_tick
13135 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13136 return 0;
13138 /* If the value has all its registers valid, return it. */
13139 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13140 return value;
13142 /* Otherwise, make a copy and replace any invalid register with
13143 (clobber (const_int 0)). If that fails for some reason, return 0. */
13145 value = copy_rtx (value);
13146 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13147 return value;
13149 return 0;
13152 /* Return nonzero if expression X refers to a REG or to memory
13153 that is set in an instruction more recent than FROM_LUID. */
13155 static int
13156 use_crosses_set_p (const_rtx x, int from_luid)
13158 const char *fmt;
13159 int i;
13160 enum rtx_code code = GET_CODE (x);
13162 if (code == REG)
13164 unsigned int regno = REGNO (x);
13165 unsigned endreg = END_REGNO (x);
13167 #ifdef PUSH_ROUNDING
13168 /* Don't allow uses of the stack pointer to be moved,
13169 because we don't know whether the move crosses a push insn. */
13170 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
13171 return 1;
13172 #endif
13173 for (; regno < endreg; regno++)
13175 reg_stat_type *rsp = &reg_stat[regno];
13176 if (rsp->last_set
13177 && rsp->last_set_label == label_tick
13178 && DF_INSN_LUID (rsp->last_set) > from_luid)
13179 return 1;
13181 return 0;
13184 if (code == MEM && mem_last_set > from_luid)
13185 return 1;
13187 fmt = GET_RTX_FORMAT (code);
13189 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13191 if (fmt[i] == 'E')
13193 int j;
13194 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13195 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
13196 return 1;
13198 else if (fmt[i] == 'e'
13199 && use_crosses_set_p (XEXP (x, i), from_luid))
13200 return 1;
13202 return 0;
13205 /* Define three variables used for communication between the following
13206 routines. */
13208 static unsigned int reg_dead_regno, reg_dead_endregno;
13209 static int reg_dead_flag;
13211 /* Function called via note_stores from reg_dead_at_p.
13213 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13214 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13216 static void
13217 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13219 unsigned int regno, endregno;
13221 if (!REG_P (dest))
13222 return;
13224 regno = REGNO (dest);
13225 endregno = END_REGNO (dest);
13226 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13227 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13230 /* Return nonzero if REG is known to be dead at INSN.
13232 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13233 referencing REG, it is dead. If we hit a SET referencing REG, it is
13234 live. Otherwise, see if it is live or dead at the start of the basic
13235 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13236 must be assumed to be always live. */
13238 static int
13239 reg_dead_at_p (rtx reg, rtx_insn *insn)
13241 basic_block block;
13242 unsigned int i;
13244 /* Set variables for reg_dead_at_p_1. */
13245 reg_dead_regno = REGNO (reg);
13246 reg_dead_endregno = END_REGNO (reg);
13248 reg_dead_flag = 0;
13250 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13251 we allow the machine description to decide whether use-and-clobber
13252 patterns are OK. */
13253 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13255 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13256 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13257 return 0;
13260 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13261 beginning of basic block. */
13262 block = BLOCK_FOR_INSN (insn);
13263 for (;;)
13265 if (INSN_P (insn))
13267 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13268 return 1;
13270 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
13271 if (reg_dead_flag)
13272 return reg_dead_flag == 1 ? 1 : 0;
13274 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13275 return 1;
13278 if (insn == BB_HEAD (block))
13279 break;
13281 insn = PREV_INSN (insn);
13284 /* Look at live-in sets for the basic block that we were in. */
13285 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13286 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13287 return 0;
13289 return 1;
13292 /* Note hard registers in X that are used. */
13294 static void
13295 mark_used_regs_combine (rtx x)
13297 RTX_CODE code = GET_CODE (x);
13298 unsigned int regno;
13299 int i;
13301 switch (code)
13303 case LABEL_REF:
13304 case SYMBOL_REF:
13305 case CONST:
13306 CASE_CONST_ANY:
13307 case PC:
13308 case ADDR_VEC:
13309 case ADDR_DIFF_VEC:
13310 case ASM_INPUT:
13311 /* CC0 must die in the insn after it is set, so we don't need to take
13312 special note of it here. */
13313 case CC0:
13314 return;
13316 case CLOBBER:
13317 /* If we are clobbering a MEM, mark any hard registers inside the
13318 address as used. */
13319 if (MEM_P (XEXP (x, 0)))
13320 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13321 return;
13323 case REG:
13324 regno = REGNO (x);
13325 /* A hard reg in a wide mode may really be multiple registers.
13326 If so, mark all of them just like the first. */
13327 if (regno < FIRST_PSEUDO_REGISTER)
13329 /* None of this applies to the stack, frame or arg pointers. */
13330 if (regno == STACK_POINTER_REGNUM
13331 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13332 && regno == HARD_FRAME_POINTER_REGNUM)
13333 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13334 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13335 || regno == FRAME_POINTER_REGNUM)
13336 return;
13338 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13340 return;
13342 case SET:
13344 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13345 the address. */
13346 rtx testreg = SET_DEST (x);
13348 while (GET_CODE (testreg) == SUBREG
13349 || GET_CODE (testreg) == ZERO_EXTRACT
13350 || GET_CODE (testreg) == STRICT_LOW_PART)
13351 testreg = XEXP (testreg, 0);
13353 if (MEM_P (testreg))
13354 mark_used_regs_combine (XEXP (testreg, 0));
13356 mark_used_regs_combine (SET_SRC (x));
13358 return;
13360 default:
13361 break;
13364 /* Recursively scan the operands of this expression. */
13367 const char *fmt = GET_RTX_FORMAT (code);
13369 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13371 if (fmt[i] == 'e')
13372 mark_used_regs_combine (XEXP (x, i));
13373 else if (fmt[i] == 'E')
13375 int j;
13377 for (j = 0; j < XVECLEN (x, i); j++)
13378 mark_used_regs_combine (XVECEXP (x, i, j));
13384 /* Remove register number REGNO from the dead registers list of INSN.
13386 Return the note used to record the death, if there was one. */
13389 remove_death (unsigned int regno, rtx_insn *insn)
13391 rtx note = find_regno_note (insn, REG_DEAD, regno);
13393 if (note)
13394 remove_note (insn, note);
13396 return note;
13399 /* For each register (hardware or pseudo) used within expression X, if its
13400 death is in an instruction with luid between FROM_LUID (inclusive) and
13401 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13402 list headed by PNOTES.
13404 That said, don't move registers killed by maybe_kill_insn.
13406 This is done when X is being merged by combination into TO_INSN. These
13407 notes will then be distributed as needed. */
13409 static void
13410 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
13411 rtx *pnotes)
13413 const char *fmt;
13414 int len, i;
13415 enum rtx_code code = GET_CODE (x);
13417 if (code == REG)
13419 unsigned int regno = REGNO (x);
13420 rtx_insn *where_dead = reg_stat[regno].last_death;
13422 /* Don't move the register if it gets killed in between from and to. */
13423 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13424 && ! reg_referenced_p (x, maybe_kill_insn))
13425 return;
13427 if (where_dead
13428 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13429 && DF_INSN_LUID (where_dead) >= from_luid
13430 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13432 rtx note = remove_death (regno, where_dead);
13434 /* It is possible for the call above to return 0. This can occur
13435 when last_death points to I2 or I1 that we combined with.
13436 In that case make a new note.
13438 We must also check for the case where X is a hard register
13439 and NOTE is a death note for a range of hard registers
13440 including X. In that case, we must put REG_DEAD notes for
13441 the remaining registers in place of NOTE. */
13443 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13444 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13445 > GET_MODE_SIZE (GET_MODE (x))))
13447 unsigned int deadregno = REGNO (XEXP (note, 0));
13448 unsigned int deadend = END_REGNO (XEXP (note, 0));
13449 unsigned int ourend = END_REGNO (x);
13450 unsigned int i;
13452 for (i = deadregno; i < deadend; i++)
13453 if (i < regno || i >= ourend)
13454 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13457 /* If we didn't find any note, or if we found a REG_DEAD note that
13458 covers only part of the given reg, and we have a multi-reg hard
13459 register, then to be safe we must check for REG_DEAD notes
13460 for each register other than the first. They could have
13461 their own REG_DEAD notes lying around. */
13462 else if ((note == 0
13463 || (note != 0
13464 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13465 < GET_MODE_SIZE (GET_MODE (x)))))
13466 && regno < FIRST_PSEUDO_REGISTER
13467 && REG_NREGS (x) > 1)
13469 unsigned int ourend = END_REGNO (x);
13470 unsigned int i, offset;
13471 rtx oldnotes = 0;
13473 if (note)
13474 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
13475 else
13476 offset = 1;
13478 for (i = regno + offset; i < ourend; i++)
13479 move_deaths (regno_reg_rtx[i],
13480 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13483 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13485 XEXP (note, 1) = *pnotes;
13486 *pnotes = note;
13488 else
13489 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13492 return;
13495 else if (GET_CODE (x) == SET)
13497 rtx dest = SET_DEST (x);
13499 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13501 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13502 that accesses one word of a multi-word item, some
13503 piece of everything register in the expression is used by
13504 this insn, so remove any old death. */
13505 /* ??? So why do we test for equality of the sizes? */
13507 if (GET_CODE (dest) == ZERO_EXTRACT
13508 || GET_CODE (dest) == STRICT_LOW_PART
13509 || (GET_CODE (dest) == SUBREG
13510 && (((GET_MODE_SIZE (GET_MODE (dest))
13511 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13512 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13513 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13515 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13516 return;
13519 /* If this is some other SUBREG, we know it replaces the entire
13520 value, so use that as the destination. */
13521 if (GET_CODE (dest) == SUBREG)
13522 dest = SUBREG_REG (dest);
13524 /* If this is a MEM, adjust deaths of anything used in the address.
13525 For a REG (the only other possibility), the entire value is
13526 being replaced so the old value is not used in this insn. */
13528 if (MEM_P (dest))
13529 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13530 to_insn, pnotes);
13531 return;
13534 else if (GET_CODE (x) == CLOBBER)
13535 return;
13537 len = GET_RTX_LENGTH (code);
13538 fmt = GET_RTX_FORMAT (code);
13540 for (i = 0; i < len; i++)
13542 if (fmt[i] == 'E')
13544 int j;
13545 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13546 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13547 to_insn, pnotes);
13549 else if (fmt[i] == 'e')
13550 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13554 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13555 pattern of an insn. X must be a REG. */
13557 static int
13558 reg_bitfield_target_p (rtx x, rtx body)
13560 int i;
13562 if (GET_CODE (body) == SET)
13564 rtx dest = SET_DEST (body);
13565 rtx target;
13566 unsigned int regno, tregno, endregno, endtregno;
13568 if (GET_CODE (dest) == ZERO_EXTRACT)
13569 target = XEXP (dest, 0);
13570 else if (GET_CODE (dest) == STRICT_LOW_PART)
13571 target = SUBREG_REG (XEXP (dest, 0));
13572 else
13573 return 0;
13575 if (GET_CODE (target) == SUBREG)
13576 target = SUBREG_REG (target);
13578 if (!REG_P (target))
13579 return 0;
13581 tregno = REGNO (target), regno = REGNO (x);
13582 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13583 return target == x;
13585 endtregno = end_hard_regno (GET_MODE (target), tregno);
13586 endregno = end_hard_regno (GET_MODE (x), regno);
13588 return endregno > tregno && regno < endtregno;
13591 else if (GET_CODE (body) == PARALLEL)
13592 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13593 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13594 return 1;
13596 return 0;
13599 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13600 as appropriate. I3 and I2 are the insns resulting from the combination
13601 insns including FROM (I2 may be zero).
13603 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13604 not need REG_DEAD notes because they are being substituted for. This
13605 saves searching in the most common cases.
13607 Each note in the list is either ignored or placed on some insns, depending
13608 on the type of note. */
13610 static void
13611 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
13612 rtx elim_i2, rtx elim_i1, rtx elim_i0)
13614 rtx note, next_note;
13615 rtx tem_note;
13616 rtx_insn *tem_insn;
13618 for (note = notes; note; note = next_note)
13620 rtx_insn *place = 0, *place2 = 0;
13622 next_note = XEXP (note, 1);
13623 switch (REG_NOTE_KIND (note))
13625 case REG_BR_PROB:
13626 case REG_BR_PRED:
13627 /* Doesn't matter much where we put this, as long as it's somewhere.
13628 It is preferable to keep these notes on branches, which is most
13629 likely to be i3. */
13630 place = i3;
13631 break;
13633 case REG_NON_LOCAL_GOTO:
13634 if (JUMP_P (i3))
13635 place = i3;
13636 else
13638 gcc_assert (i2 && JUMP_P (i2));
13639 place = i2;
13641 break;
13643 case REG_EH_REGION:
13644 /* These notes must remain with the call or trapping instruction. */
13645 if (CALL_P (i3))
13646 place = i3;
13647 else if (i2 && CALL_P (i2))
13648 place = i2;
13649 else
13651 gcc_assert (cfun->can_throw_non_call_exceptions);
13652 if (may_trap_p (i3))
13653 place = i3;
13654 else if (i2 && may_trap_p (i2))
13655 place = i2;
13656 /* ??? Otherwise assume we've combined things such that we
13657 can now prove that the instructions can't trap. Drop the
13658 note in this case. */
13660 break;
13662 case REG_ARGS_SIZE:
13663 /* ??? How to distribute between i3-i1. Assume i3 contains the
13664 entire adjustment. Assert i3 contains at least some adjust. */
13665 if (!noop_move_p (i3))
13667 int old_size, args_size = INTVAL (XEXP (note, 0));
13668 /* fixup_args_size_notes looks at REG_NORETURN note,
13669 so ensure the note is placed there first. */
13670 if (CALL_P (i3))
13672 rtx *np;
13673 for (np = &next_note; *np; np = &XEXP (*np, 1))
13674 if (REG_NOTE_KIND (*np) == REG_NORETURN)
13676 rtx n = *np;
13677 *np = XEXP (n, 1);
13678 XEXP (n, 1) = REG_NOTES (i3);
13679 REG_NOTES (i3) = n;
13680 break;
13683 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
13684 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
13685 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
13686 gcc_assert (old_size != args_size
13687 || (CALL_P (i3)
13688 && !ACCUMULATE_OUTGOING_ARGS
13689 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
13691 break;
13693 case REG_NORETURN:
13694 case REG_SETJMP:
13695 case REG_TM:
13696 case REG_CALL_DECL:
13697 /* These notes must remain with the call. It should not be
13698 possible for both I2 and I3 to be a call. */
13699 if (CALL_P (i3))
13700 place = i3;
13701 else
13703 gcc_assert (i2 && CALL_P (i2));
13704 place = i2;
13706 break;
13708 case REG_UNUSED:
13709 /* Any clobbers for i3 may still exist, and so we must process
13710 REG_UNUSED notes from that insn.
13712 Any clobbers from i2 or i1 can only exist if they were added by
13713 recog_for_combine. In that case, recog_for_combine created the
13714 necessary REG_UNUSED notes. Trying to keep any original
13715 REG_UNUSED notes from these insns can cause incorrect output
13716 if it is for the same register as the original i3 dest.
13717 In that case, we will notice that the register is set in i3,
13718 and then add a REG_UNUSED note for the destination of i3, which
13719 is wrong. However, it is possible to have REG_UNUSED notes from
13720 i2 or i1 for register which were both used and clobbered, so
13721 we keep notes from i2 or i1 if they will turn into REG_DEAD
13722 notes. */
13724 /* If this register is set or clobbered in I3, put the note there
13725 unless there is one already. */
13726 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
13728 if (from_insn != i3)
13729 break;
13731 if (! (REG_P (XEXP (note, 0))
13732 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
13733 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
13734 place = i3;
13736 /* Otherwise, if this register is used by I3, then this register
13737 now dies here, so we must put a REG_DEAD note here unless there
13738 is one already. */
13739 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
13740 && ! (REG_P (XEXP (note, 0))
13741 ? find_regno_note (i3, REG_DEAD,
13742 REGNO (XEXP (note, 0)))
13743 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
13745 PUT_REG_NOTE_KIND (note, REG_DEAD);
13746 place = i3;
13748 break;
13750 case REG_EQUAL:
13751 case REG_EQUIV:
13752 case REG_NOALIAS:
13753 /* These notes say something about results of an insn. We can
13754 only support them if they used to be on I3 in which case they
13755 remain on I3. Otherwise they are ignored.
13757 If the note refers to an expression that is not a constant, we
13758 must also ignore the note since we cannot tell whether the
13759 equivalence is still true. It might be possible to do
13760 slightly better than this (we only have a problem if I2DEST
13761 or I1DEST is present in the expression), but it doesn't
13762 seem worth the trouble. */
13764 if (from_insn == i3
13765 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
13766 place = i3;
13767 break;
13769 case REG_INC:
13770 /* These notes say something about how a register is used. They must
13771 be present on any use of the register in I2 or I3. */
13772 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
13773 place = i3;
13775 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
13777 if (place)
13778 place2 = i2;
13779 else
13780 place = i2;
13782 break;
13784 case REG_LABEL_TARGET:
13785 case REG_LABEL_OPERAND:
13786 /* This can show up in several ways -- either directly in the
13787 pattern, or hidden off in the constant pool with (or without?)
13788 a REG_EQUAL note. */
13789 /* ??? Ignore the without-reg_equal-note problem for now. */
13790 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
13791 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
13792 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
13793 && LABEL_REF_LABEL (XEXP (tem_note, 0)) == XEXP (note, 0)))
13794 place = i3;
13796 if (i2
13797 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
13798 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
13799 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
13800 && LABEL_REF_LABEL (XEXP (tem_note, 0)) == XEXP (note, 0))))
13802 if (place)
13803 place2 = i2;
13804 else
13805 place = i2;
13808 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13809 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13810 there. */
13811 if (place && JUMP_P (place)
13812 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13813 && (JUMP_LABEL (place) == NULL
13814 || JUMP_LABEL (place) == XEXP (note, 0)))
13816 rtx label = JUMP_LABEL (place);
13818 if (!label)
13819 JUMP_LABEL (place) = XEXP (note, 0);
13820 else if (LABEL_P (label))
13821 LABEL_NUSES (label)--;
13824 if (place2 && JUMP_P (place2)
13825 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13826 && (JUMP_LABEL (place2) == NULL
13827 || JUMP_LABEL (place2) == XEXP (note, 0)))
13829 rtx label = JUMP_LABEL (place2);
13831 if (!label)
13832 JUMP_LABEL (place2) = XEXP (note, 0);
13833 else if (LABEL_P (label))
13834 LABEL_NUSES (label)--;
13835 place2 = 0;
13837 break;
13839 case REG_NONNEG:
13840 /* This note says something about the value of a register prior
13841 to the execution of an insn. It is too much trouble to see
13842 if the note is still correct in all situations. It is better
13843 to simply delete it. */
13844 break;
13846 case REG_DEAD:
13847 /* If we replaced the right hand side of FROM_INSN with a
13848 REG_EQUAL note, the original use of the dying register
13849 will not have been combined into I3 and I2. In such cases,
13850 FROM_INSN is guaranteed to be the first of the combined
13851 instructions, so we simply need to search back before
13852 FROM_INSN for the previous use or set of this register,
13853 then alter the notes there appropriately.
13855 If the register is used as an input in I3, it dies there.
13856 Similarly for I2, if it is nonzero and adjacent to I3.
13858 If the register is not used as an input in either I3 or I2
13859 and it is not one of the registers we were supposed to eliminate,
13860 there are two possibilities. We might have a non-adjacent I2
13861 or we might have somehow eliminated an additional register
13862 from a computation. For example, we might have had A & B where
13863 we discover that B will always be zero. In this case we will
13864 eliminate the reference to A.
13866 In both cases, we must search to see if we can find a previous
13867 use of A and put the death note there. */
13869 if (from_insn
13870 && from_insn == i2mod
13871 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
13872 tem_insn = from_insn;
13873 else
13875 if (from_insn
13876 && CALL_P (from_insn)
13877 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
13878 place = from_insn;
13879 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
13880 place = i3;
13881 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
13882 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13883 place = i2;
13884 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
13885 && !(i2mod
13886 && reg_overlap_mentioned_p (XEXP (note, 0),
13887 i2mod_old_rhs)))
13888 || rtx_equal_p (XEXP (note, 0), elim_i1)
13889 || rtx_equal_p (XEXP (note, 0), elim_i0))
13890 break;
13891 tem_insn = i3;
13892 /* If the new I2 sets the same register that is marked dead
13893 in the note, the note now should not be put on I2, as the
13894 note refers to a previous incarnation of the reg. */
13895 if (i2 != 0 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
13896 tem_insn = i2;
13899 if (place == 0)
13901 basic_block bb = this_basic_block;
13903 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
13905 if (!NONDEBUG_INSN_P (tem_insn))
13907 if (tem_insn == BB_HEAD (bb))
13908 break;
13909 continue;
13912 /* If the register is being set at TEM_INSN, see if that is all
13913 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
13914 into a REG_UNUSED note instead. Don't delete sets to
13915 global register vars. */
13916 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
13917 || !global_regs[REGNO (XEXP (note, 0))])
13918 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
13920 rtx set = single_set (tem_insn);
13921 rtx inner_dest = 0;
13922 rtx_insn *cc0_setter = NULL;
13924 if (set != 0)
13925 for (inner_dest = SET_DEST (set);
13926 (GET_CODE (inner_dest) == STRICT_LOW_PART
13927 || GET_CODE (inner_dest) == SUBREG
13928 || GET_CODE (inner_dest) == ZERO_EXTRACT);
13929 inner_dest = XEXP (inner_dest, 0))
13932 /* Verify that it was the set, and not a clobber that
13933 modified the register.
13935 CC0 targets must be careful to maintain setter/user
13936 pairs. If we cannot delete the setter due to side
13937 effects, mark the user with an UNUSED note instead
13938 of deleting it. */
13940 if (set != 0 && ! side_effects_p (SET_SRC (set))
13941 && rtx_equal_p (XEXP (note, 0), inner_dest)
13942 && (!HAVE_cc0
13943 || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
13944 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
13945 && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
13947 /* Move the notes and links of TEM_INSN elsewhere.
13948 This might delete other dead insns recursively.
13949 First set the pattern to something that won't use
13950 any register. */
13951 rtx old_notes = REG_NOTES (tem_insn);
13953 PATTERN (tem_insn) = pc_rtx;
13954 REG_NOTES (tem_insn) = NULL;
13956 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
13957 NULL_RTX, NULL_RTX, NULL_RTX);
13958 distribute_links (LOG_LINKS (tem_insn));
13960 SET_INSN_DELETED (tem_insn);
13961 if (tem_insn == i2)
13962 i2 = NULL;
13964 /* Delete the setter too. */
13965 if (cc0_setter)
13967 PATTERN (cc0_setter) = pc_rtx;
13968 old_notes = REG_NOTES (cc0_setter);
13969 REG_NOTES (cc0_setter) = NULL;
13971 distribute_notes (old_notes, cc0_setter,
13972 cc0_setter, NULL,
13973 NULL_RTX, NULL_RTX, NULL_RTX);
13974 distribute_links (LOG_LINKS (cc0_setter));
13976 SET_INSN_DELETED (cc0_setter);
13977 if (cc0_setter == i2)
13978 i2 = NULL;
13981 else
13983 PUT_REG_NOTE_KIND (note, REG_UNUSED);
13985 /* If there isn't already a REG_UNUSED note, put one
13986 here. Do not place a REG_DEAD note, even if
13987 the register is also used here; that would not
13988 match the algorithm used in lifetime analysis
13989 and can cause the consistency check in the
13990 scheduler to fail. */
13991 if (! find_regno_note (tem_insn, REG_UNUSED,
13992 REGNO (XEXP (note, 0))))
13993 place = tem_insn;
13994 break;
13997 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
13998 || (CALL_P (tem_insn)
13999 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14001 place = tem_insn;
14003 /* If we are doing a 3->2 combination, and we have a
14004 register which formerly died in i3 and was not used
14005 by i2, which now no longer dies in i3 and is used in
14006 i2 but does not die in i2, and place is between i2
14007 and i3, then we may need to move a link from place to
14008 i2. */
14009 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14010 && from_insn
14011 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14012 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14014 struct insn_link *links = LOG_LINKS (place);
14015 LOG_LINKS (place) = NULL;
14016 distribute_links (links);
14018 break;
14021 if (tem_insn == BB_HEAD (bb))
14022 break;
14027 /* If the register is set or already dead at PLACE, we needn't do
14028 anything with this note if it is still a REG_DEAD note.
14029 We check here if it is set at all, not if is it totally replaced,
14030 which is what `dead_or_set_p' checks, so also check for it being
14031 set partially. */
14033 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14035 unsigned int regno = REGNO (XEXP (note, 0));
14036 reg_stat_type *rsp = &reg_stat[regno];
14038 if (dead_or_set_p (place, XEXP (note, 0))
14039 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14041 /* Unless the register previously died in PLACE, clear
14042 last_death. [I no longer understand why this is
14043 being done.] */
14044 if (rsp->last_death != place)
14045 rsp->last_death = 0;
14046 place = 0;
14048 else
14049 rsp->last_death = place;
14051 /* If this is a death note for a hard reg that is occupying
14052 multiple registers, ensure that we are still using all
14053 parts of the object. If we find a piece of the object
14054 that is unused, we must arrange for an appropriate REG_DEAD
14055 note to be added for it. However, we can't just emit a USE
14056 and tag the note to it, since the register might actually
14057 be dead; so we recourse, and the recursive call then finds
14058 the previous insn that used this register. */
14060 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14062 unsigned int endregno = END_REGNO (XEXP (note, 0));
14063 bool all_used = true;
14064 unsigned int i;
14066 for (i = regno; i < endregno; i++)
14067 if ((! refers_to_regno_p (i, PATTERN (place))
14068 && ! find_regno_fusage (place, USE, i))
14069 || dead_or_set_regno_p (place, i))
14071 all_used = false;
14072 break;
14075 if (! all_used)
14077 /* Put only REG_DEAD notes for pieces that are
14078 not already dead or set. */
14080 for (i = regno; i < endregno;
14081 i += hard_regno_nregs[i][reg_raw_mode[i]])
14083 rtx piece = regno_reg_rtx[i];
14084 basic_block bb = this_basic_block;
14086 if (! dead_or_set_p (place, piece)
14087 && ! reg_bitfield_target_p (piece,
14088 PATTERN (place)))
14090 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14091 NULL_RTX);
14093 distribute_notes (new_note, place, place,
14094 NULL, NULL_RTX, NULL_RTX,
14095 NULL_RTX);
14097 else if (! refers_to_regno_p (i, PATTERN (place))
14098 && ! find_regno_fusage (place, USE, i))
14099 for (tem_insn = PREV_INSN (place); ;
14100 tem_insn = PREV_INSN (tem_insn))
14102 if (!NONDEBUG_INSN_P (tem_insn))
14104 if (tem_insn == BB_HEAD (bb))
14105 break;
14106 continue;
14108 if (dead_or_set_p (tem_insn, piece)
14109 || reg_bitfield_target_p (piece,
14110 PATTERN (tem_insn)))
14112 add_reg_note (tem_insn, REG_UNUSED, piece);
14113 break;
14118 place = 0;
14122 break;
14124 default:
14125 /* Any other notes should not be present at this point in the
14126 compilation. */
14127 gcc_unreachable ();
14130 if (place)
14132 XEXP (note, 1) = REG_NOTES (place);
14133 REG_NOTES (place) = note;
14136 if (place2)
14137 add_shallow_copy_of_reg_note (place2, note);
14141 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14142 I3, I2, and I1 to new locations. This is also called to add a link
14143 pointing at I3 when I3's destination is changed. */
14145 static void
14146 distribute_links (struct insn_link *links)
14148 struct insn_link *link, *next_link;
14150 for (link = links; link; link = next_link)
14152 rtx_insn *place = 0;
14153 rtx_insn *insn;
14154 rtx set, reg;
14156 next_link = link->next;
14158 /* If the insn that this link points to is a NOTE, ignore it. */
14159 if (NOTE_P (link->insn))
14160 continue;
14162 set = 0;
14163 rtx pat = PATTERN (link->insn);
14164 if (GET_CODE (pat) == SET)
14165 set = pat;
14166 else if (GET_CODE (pat) == PARALLEL)
14168 int i;
14169 for (i = 0; i < XVECLEN (pat, 0); i++)
14171 set = XVECEXP (pat, 0, i);
14172 if (GET_CODE (set) != SET)
14173 continue;
14175 reg = SET_DEST (set);
14176 while (GET_CODE (reg) == ZERO_EXTRACT
14177 || GET_CODE (reg) == STRICT_LOW_PART
14178 || GET_CODE (reg) == SUBREG)
14179 reg = XEXP (reg, 0);
14181 if (!REG_P (reg))
14182 continue;
14184 if (REGNO (reg) == link->regno)
14185 break;
14187 if (i == XVECLEN (pat, 0))
14188 continue;
14190 else
14191 continue;
14193 reg = SET_DEST (set);
14195 while (GET_CODE (reg) == ZERO_EXTRACT
14196 || GET_CODE (reg) == STRICT_LOW_PART
14197 || GET_CODE (reg) == SUBREG)
14198 reg = XEXP (reg, 0);
14200 /* A LOG_LINK is defined as being placed on the first insn that uses
14201 a register and points to the insn that sets the register. Start
14202 searching at the next insn after the target of the link and stop
14203 when we reach a set of the register or the end of the basic block.
14205 Note that this correctly handles the link that used to point from
14206 I3 to I2. Also note that not much searching is typically done here
14207 since most links don't point very far away. */
14209 for (insn = NEXT_INSN (link->insn);
14210 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14211 || BB_HEAD (this_basic_block->next_bb) != insn));
14212 insn = NEXT_INSN (insn))
14213 if (DEBUG_INSN_P (insn))
14214 continue;
14215 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14217 if (reg_referenced_p (reg, PATTERN (insn)))
14218 place = insn;
14219 break;
14221 else if (CALL_P (insn)
14222 && find_reg_fusage (insn, USE, reg))
14224 place = insn;
14225 break;
14227 else if (INSN_P (insn) && reg_set_p (reg, insn))
14228 break;
14230 /* If we found a place to put the link, place it there unless there
14231 is already a link to the same insn as LINK at that point. */
14233 if (place)
14235 struct insn_link *link2;
14237 FOR_EACH_LOG_LINK (link2, place)
14238 if (link2->insn == link->insn && link2->regno == link->regno)
14239 break;
14241 if (link2 == NULL)
14243 link->next = LOG_LINKS (place);
14244 LOG_LINKS (place) = link;
14246 /* Set added_links_insn to the earliest insn we added a
14247 link to. */
14248 if (added_links_insn == 0
14249 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14250 added_links_insn = place;
14256 /* Check for any register or memory mentioned in EQUIV that is not
14257 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14258 of EXPR where some registers may have been replaced by constants. */
14260 static bool
14261 unmentioned_reg_p (rtx equiv, rtx expr)
14263 subrtx_iterator::array_type array;
14264 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14266 const_rtx x = *iter;
14267 if ((REG_P (x) || MEM_P (x))
14268 && !reg_mentioned_p (x, expr))
14269 return true;
14271 return false;
14274 DEBUG_FUNCTION void
14275 dump_combine_stats (FILE *file)
14277 fprintf
14278 (file,
14279 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14280 combine_attempts, combine_merges, combine_extras, combine_successes);
14283 void
14284 dump_combine_total_stats (FILE *file)
14286 fprintf
14287 (file,
14288 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14289 total_attempts, total_merges, total_extras, total_successes);
14292 /* Try combining insns through substitution. */
14293 static unsigned int
14294 rest_of_handle_combine (void)
14296 int rebuild_jump_labels_after_combine;
14298 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
14299 df_note_add_problem ();
14300 df_analyze ();
14302 regstat_init_n_sets_and_refs ();
14303 reg_n_sets_max = max_reg_num ();
14305 rebuild_jump_labels_after_combine
14306 = combine_instructions (get_insns (), max_reg_num ());
14308 /* Combining insns may have turned an indirect jump into a
14309 direct jump. Rebuild the JUMP_LABEL fields of jumping
14310 instructions. */
14311 if (rebuild_jump_labels_after_combine)
14313 timevar_push (TV_JUMP);
14314 rebuild_jump_labels (get_insns ());
14315 cleanup_cfg (0);
14316 timevar_pop (TV_JUMP);
14319 regstat_free_n_sets_and_refs ();
14320 return 0;
14323 namespace {
14325 const pass_data pass_data_combine =
14327 RTL_PASS, /* type */
14328 "combine", /* name */
14329 OPTGROUP_NONE, /* optinfo_flags */
14330 TV_COMBINE, /* tv_id */
14331 PROP_cfglayout, /* properties_required */
14332 0, /* properties_provided */
14333 0, /* properties_destroyed */
14334 0, /* todo_flags_start */
14335 TODO_df_finish, /* todo_flags_finish */
14338 class pass_combine : public rtl_opt_pass
14340 public:
14341 pass_combine (gcc::context *ctxt)
14342 : rtl_opt_pass (pass_data_combine, ctxt)
14345 /* opt_pass methods: */
14346 virtual bool gate (function *) { return (optimize > 0); }
14347 virtual unsigned int execute (function *)
14349 return rest_of_handle_combine ();
14352 }; // class pass_combine
14354 } // anon namespace
14356 rtl_opt_pass *
14357 make_pass_combine (gcc::context *ctxt)
14359 return new pass_combine (ctxt);