[Ada] Ada2020: Reduction expressions
[official-gcc.git] / gcc / ada / sem_res.adb
blobe7ee70e6ed17542c20525a50ba709800e174d787
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ R E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Debug_A; use Debug_A;
30 with Einfo; use Einfo;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Disp; use Exp_Disp;
34 with Exp_Ch6; use Exp_Ch6;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Tss; use Exp_Tss;
37 with Exp_Util; use Exp_Util;
38 with Freeze; use Freeze;
39 with Ghost; use Ghost;
40 with Inline; use Inline;
41 with Itypes; use Itypes;
42 with Lib; use Lib;
43 with Lib.Xref; use Lib.Xref;
44 with Namet; use Namet;
45 with Nmake; use Nmake;
46 with Nlists; use Nlists;
47 with Opt; use Opt;
48 with Output; use Output;
49 with Par_SCO; use Par_SCO;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Aggr; use Sem_Aggr;
56 with Sem_Attr; use Sem_Attr;
57 with Sem_Cat; use Sem_Cat;
58 with Sem_Ch4; use Sem_Ch4;
59 with Sem_Ch3; use Sem_Ch3;
60 with Sem_Ch6; use Sem_Ch6;
61 with Sem_Ch8; use Sem_Ch8;
62 with Sem_Ch13; use Sem_Ch13;
63 with Sem_Dim; use Sem_Dim;
64 with Sem_Disp; use Sem_Disp;
65 with Sem_Dist; use Sem_Dist;
66 with Sem_Elab; use Sem_Elab;
67 with Sem_Elim; use Sem_Elim;
68 with Sem_Eval; use Sem_Eval;
69 with Sem_Intr; use Sem_Intr;
70 with Sem_Util; use Sem_Util;
71 with Targparm; use Targparm;
72 with Sem_Type; use Sem_Type;
73 with Sem_Warn; use Sem_Warn;
74 with Sinfo; use Sinfo;
75 with Sinfo.CN; use Sinfo.CN;
76 with Snames; use Snames;
77 with Stand; use Stand;
78 with Stringt; use Stringt;
79 with Style; use Style;
80 with Tbuild; use Tbuild;
81 with Uintp; use Uintp;
82 with Urealp; use Urealp;
84 package body Sem_Res is
86 -----------------------
87 -- Local Subprograms --
88 -----------------------
90 -- Second pass (top-down) type checking and overload resolution procedures
91 -- Typ is the type required by context. These procedures propagate the
92 -- type information recursively to the descendants of N. If the node is not
93 -- overloaded, its Etype is established in the first pass. If overloaded,
94 -- the Resolve routines set the correct type. For arithmetic operators, the
95 -- Etype is the base type of the context.
97 -- Note that Resolve_Attribute is separated off in Sem_Attr
99 procedure Check_Discriminant_Use (N : Node_Id);
100 -- Enforce the restrictions on the use of discriminants when constraining
101 -- a component of a discriminated type (record or concurrent type).
103 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id);
104 -- Given a node for an operator associated with type T, check that the
105 -- operator is visible. Operators all of whose operands are universal must
106 -- be checked for visibility during resolution because their type is not
107 -- determinable based on their operands.
109 procedure Check_Fully_Declared_Prefix
110 (Typ : Entity_Id;
111 Pref : Node_Id);
112 -- Check that the type of the prefix of a dereference is not incomplete
114 function Check_Infinite_Recursion (N : Node_Id) return Boolean;
115 -- Given a call node, N, which is known to occur immediately within the
116 -- subprogram being called, determines whether it is a detectable case of
117 -- an infinite recursion, and if so, outputs appropriate messages. Returns
118 -- True if an infinite recursion is detected, and False otherwise.
120 procedure Check_No_Direct_Boolean_Operators (N : Node_Id);
121 -- N is the node for a logical operator. If the operator is predefined, and
122 -- the root type of the operands is Standard.Boolean, then a check is made
123 -- for restriction No_Direct_Boolean_Operators. This procedure also handles
124 -- the style check for Style_Check_Boolean_And_Or.
126 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean;
127 -- N is either an indexed component or a selected component. This function
128 -- returns true if the prefix refers to an object that has an address
129 -- clause (the case in which we may want to issue a warning).
131 function Is_Definite_Access_Type (E : Entity_Id) return Boolean;
132 -- Determine whether E is an access type declared by an access declaration,
133 -- and not an (anonymous) allocator type.
135 function Is_Predefined_Op (Nam : Entity_Id) return Boolean;
136 -- Utility to check whether the entity for an operator is a predefined
137 -- operator, in which case the expression is left as an operator in the
138 -- tree (else it is rewritten into a call). An instance of an intrinsic
139 -- conversion operation may be given an operator name, but is not treated
140 -- like an operator. Note that an operator that is an imported back-end
141 -- builtin has convention Intrinsic, but is expected to be rewritten into
142 -- a call, so such an operator is not treated as predefined by this
143 -- predicate.
145 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id);
146 -- If a default expression in entry call N depends on the discriminants
147 -- of the task, it must be replaced with a reference to the discriminant
148 -- of the task being called.
150 procedure Resolve_Op_Concat_Arg
151 (N : Node_Id;
152 Arg : Node_Id;
153 Typ : Entity_Id;
154 Is_Comp : Boolean);
155 -- Internal procedure for Resolve_Op_Concat to resolve one operand of
156 -- concatenation operator. The operand is either of the array type or of
157 -- the component type. If the operand is an aggregate, and the component
158 -- type is composite, this is ambiguous if component type has aggregates.
160 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id);
161 -- Does the first part of the work of Resolve_Op_Concat
163 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id);
164 -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand
165 -- has been resolved. See Resolve_Op_Concat for details.
167 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id);
168 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id);
169 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id);
170 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id);
171 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id);
172 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id);
173 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id);
174 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id);
175 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id);
176 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id);
177 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id);
178 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id);
179 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id);
180 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id);
181 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id);
182 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id);
183 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id);
184 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id);
185 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id);
186 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id);
187 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id);
188 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id);
189 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id);
190 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id);
191 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id);
192 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id);
193 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id);
194 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id);
195 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id);
196 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id);
197 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id);
198 procedure Resolve_Target_Name (N : Node_Id; Typ : Entity_Id);
199 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id);
200 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id);
201 procedure Resolve_Unchecked_Expression (N : Node_Id; Typ : Entity_Id);
202 procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id);
204 function Operator_Kind
205 (Op_Name : Name_Id;
206 Is_Binary : Boolean) return Node_Kind;
207 -- Utility to map the name of an operator into the corresponding Node. Used
208 -- by other node rewriting procedures.
210 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id);
211 -- Resolve actuals of call, and add default expressions for missing ones.
212 -- N is the Node_Id for the subprogram call, and Nam is the entity of the
213 -- called subprogram.
215 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id);
216 -- Called from Resolve_Call, when the prefix denotes an entry or element
217 -- of entry family. Actuals are resolved as for subprograms, and the node
218 -- is rebuilt as an entry call. Also called for protected operations. Typ
219 -- is the context type, which is used when the operation is a protected
220 -- function with no arguments, and the return value is indexed.
222 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id);
223 -- A call to a user-defined intrinsic operator is rewritten as a call to
224 -- the corresponding predefined operator, with suitable conversions. Note
225 -- that this applies only for intrinsic operators that denote predefined
226 -- operators, not ones that are intrinsic imports of back-end builtins.
228 procedure Resolve_Intrinsic_Unary_Operator (N : Node_Id; Typ : Entity_Id);
229 -- Ditto, for arithmetic unary operators
231 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id);
232 -- If an operator node resolves to a call to a user-defined operator,
233 -- rewrite the node as a function call.
235 procedure Make_Call_Into_Operator
236 (N : Node_Id;
237 Typ : Entity_Id;
238 Op_Id : Entity_Id);
239 -- Inverse transformation: if an operator is given in functional notation,
240 -- then after resolving the node, transform into an operator node, so that
241 -- operands are resolved properly. Recall that predefined operators do not
242 -- have a full signature and special resolution rules apply.
244 procedure Rewrite_Renamed_Operator
245 (N : Node_Id;
246 Op : Entity_Id;
247 Typ : Entity_Id);
248 -- An operator can rename another, e.g. in an instantiation. In that
249 -- case, the proper operator node must be constructed and resolved.
251 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id);
252 -- The String_Literal_Subtype is built for all strings that are not
253 -- operands of a static concatenation operation. If the argument is not
254 -- a N_String_Literal node, then the call has no effect.
256 procedure Set_Slice_Subtype (N : Node_Id);
257 -- Build subtype of array type, with the range specified by the slice
259 procedure Simplify_Type_Conversion (N : Node_Id);
260 -- Called after N has been resolved and evaluated, but before range checks
261 -- have been applied. Currently simplifies a combination of floating-point
262 -- to integer conversion and Rounding or Truncation attribute.
264 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id;
265 -- A universal_fixed expression in an universal context is unambiguous if
266 -- there is only one applicable fixed point type. Determining whether there
267 -- is only one requires a search over all visible entities, and happens
268 -- only in very pathological cases (see 6115-006).
270 -------------------------
271 -- Ambiguous_Character --
272 -------------------------
274 procedure Ambiguous_Character (C : Node_Id) is
275 E : Entity_Id;
277 begin
278 if Nkind (C) = N_Character_Literal then
279 Error_Msg_N ("ambiguous character literal", C);
281 -- First the ones in Standard
283 Error_Msg_N ("\\possible interpretation: Character!", C);
284 Error_Msg_N ("\\possible interpretation: Wide_Character!", C);
286 -- Include Wide_Wide_Character in Ada 2005 mode
288 if Ada_Version >= Ada_2005 then
289 Error_Msg_N ("\\possible interpretation: Wide_Wide_Character!", C);
290 end if;
292 -- Now any other types that match
294 E := Current_Entity (C);
295 while Present (E) loop
296 Error_Msg_NE ("\\possible interpretation:}!", C, Etype (E));
297 E := Homonym (E);
298 end loop;
299 end if;
300 end Ambiguous_Character;
302 -------------------------
303 -- Analyze_And_Resolve --
304 -------------------------
306 procedure Analyze_And_Resolve (N : Node_Id) is
307 begin
308 Analyze (N);
309 Resolve (N);
310 end Analyze_And_Resolve;
312 procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id) is
313 begin
314 Analyze (N);
315 Resolve (N, Typ);
316 end Analyze_And_Resolve;
318 -- Versions with check(s) suppressed
320 procedure Analyze_And_Resolve
321 (N : Node_Id;
322 Typ : Entity_Id;
323 Suppress : Check_Id)
325 Scop : constant Entity_Id := Current_Scope;
327 begin
328 if Suppress = All_Checks then
329 declare
330 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
331 begin
332 Scope_Suppress.Suppress := (others => True);
333 Analyze_And_Resolve (N, Typ);
334 Scope_Suppress.Suppress := Sva;
335 end;
337 else
338 declare
339 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
340 begin
341 Scope_Suppress.Suppress (Suppress) := True;
342 Analyze_And_Resolve (N, Typ);
343 Scope_Suppress.Suppress (Suppress) := Svg;
344 end;
345 end if;
347 if Current_Scope /= Scop
348 and then Scope_Is_Transient
349 then
350 -- This can only happen if a transient scope was created for an inner
351 -- expression, which will be removed upon completion of the analysis
352 -- of an enclosing construct. The transient scope must have the
353 -- suppress status of the enclosing environment, not of this Analyze
354 -- call.
356 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
357 Scope_Suppress;
358 end if;
359 end Analyze_And_Resolve;
361 procedure Analyze_And_Resolve
362 (N : Node_Id;
363 Suppress : Check_Id)
365 Scop : constant Entity_Id := Current_Scope;
367 begin
368 if Suppress = All_Checks then
369 declare
370 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
371 begin
372 Scope_Suppress.Suppress := (others => True);
373 Analyze_And_Resolve (N);
374 Scope_Suppress.Suppress := Sva;
375 end;
377 else
378 declare
379 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
380 begin
381 Scope_Suppress.Suppress (Suppress) := True;
382 Analyze_And_Resolve (N);
383 Scope_Suppress.Suppress (Suppress) := Svg;
384 end;
385 end if;
387 if Current_Scope /= Scop and then Scope_Is_Transient then
388 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
389 Scope_Suppress;
390 end if;
391 end Analyze_And_Resolve;
393 ----------------------------
394 -- Check_Discriminant_Use --
395 ----------------------------
397 procedure Check_Discriminant_Use (N : Node_Id) is
398 PN : constant Node_Id := Parent (N);
399 Disc : constant Entity_Id := Entity (N);
400 P : Node_Id;
401 D : Node_Id;
403 begin
404 -- Any use in a spec-expression is legal
406 if In_Spec_Expression then
407 null;
409 elsif Nkind (PN) = N_Range then
411 -- Discriminant cannot be used to constrain a scalar type
413 P := Parent (PN);
415 if Nkind (P) = N_Range_Constraint
416 and then Nkind (Parent (P)) = N_Subtype_Indication
417 and then Nkind (Parent (Parent (P))) = N_Component_Definition
418 then
419 Error_Msg_N ("discriminant cannot constrain scalar type", N);
421 elsif Nkind (P) = N_Index_Or_Discriminant_Constraint then
423 -- The following check catches the unusual case where a
424 -- discriminant appears within an index constraint that is part
425 -- of a larger expression within a constraint on a component,
426 -- e.g. "C : Int range 1 .. F (new A(1 .. D))". For now we only
427 -- check case of record components, and note that a similar check
428 -- should also apply in the case of discriminant constraints
429 -- below. ???
431 -- Note that the check for N_Subtype_Declaration below is to
432 -- detect the valid use of discriminants in the constraints of a
433 -- subtype declaration when this subtype declaration appears
434 -- inside the scope of a record type (which is syntactically
435 -- illegal, but which may be created as part of derived type
436 -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
437 -- for more info.
439 if Ekind (Current_Scope) = E_Record_Type
440 and then Scope (Disc) = Current_Scope
441 and then not
442 (Nkind (Parent (P)) = N_Subtype_Indication
443 and then
444 Nkind_In (Parent (Parent (P)), N_Component_Definition,
445 N_Subtype_Declaration)
446 and then Paren_Count (N) = 0)
447 then
448 Error_Msg_N
449 ("discriminant must appear alone in component constraint", N);
450 return;
451 end if;
453 -- Detect a common error:
455 -- type R (D : Positive := 100) is record
456 -- Name : String (1 .. D);
457 -- end record;
459 -- The default value causes an object of type R to be allocated
460 -- with room for Positive'Last characters. The RM does not mandate
461 -- the allocation of the maximum size, but that is what GNAT does
462 -- so we should warn the programmer that there is a problem.
464 Check_Large : declare
465 SI : Node_Id;
466 T : Entity_Id;
467 TB : Node_Id;
468 CB : Entity_Id;
470 function Large_Storage_Type (T : Entity_Id) return Boolean;
471 -- Return True if type T has a large enough range that any
472 -- array whose index type covered the whole range of the type
473 -- would likely raise Storage_Error.
475 ------------------------
476 -- Large_Storage_Type --
477 ------------------------
479 function Large_Storage_Type (T : Entity_Id) return Boolean is
480 begin
481 -- The type is considered large if its bounds are known at
482 -- compile time and if it requires at least as many bits as
483 -- a Positive to store the possible values.
485 return Compile_Time_Known_Value (Type_Low_Bound (T))
486 and then Compile_Time_Known_Value (Type_High_Bound (T))
487 and then
488 Minimum_Size (T, Biased => True) >=
489 RM_Size (Standard_Positive);
490 end Large_Storage_Type;
492 -- Start of processing for Check_Large
494 begin
495 -- Check that the Disc has a large range
497 if not Large_Storage_Type (Etype (Disc)) then
498 goto No_Danger;
499 end if;
501 -- If the enclosing type is limited, we allocate only the
502 -- default value, not the maximum, and there is no need for
503 -- a warning.
505 if Is_Limited_Type (Scope (Disc)) then
506 goto No_Danger;
507 end if;
509 -- Check that it is the high bound
511 if N /= High_Bound (PN)
512 or else No (Discriminant_Default_Value (Disc))
513 then
514 goto No_Danger;
515 end if;
517 -- Check the array allows a large range at this bound. First
518 -- find the array
520 SI := Parent (P);
522 if Nkind (SI) /= N_Subtype_Indication then
523 goto No_Danger;
524 end if;
526 T := Entity (Subtype_Mark (SI));
528 if not Is_Array_Type (T) then
529 goto No_Danger;
530 end if;
532 -- Next, find the dimension
534 TB := First_Index (T);
535 CB := First (Constraints (P));
536 while True
537 and then Present (TB)
538 and then Present (CB)
539 and then CB /= PN
540 loop
541 Next_Index (TB);
542 Next (CB);
543 end loop;
545 if CB /= PN then
546 goto No_Danger;
547 end if;
549 -- Now, check the dimension has a large range
551 if not Large_Storage_Type (Etype (TB)) then
552 goto No_Danger;
553 end if;
555 -- Warn about the danger
557 Error_Msg_N
558 ("??creation of & object may raise Storage_Error!",
559 Scope (Disc));
561 <<No_Danger>>
562 null;
564 end Check_Large;
565 end if;
567 -- Legal case is in index or discriminant constraint
569 elsif Nkind_In (PN, N_Index_Or_Discriminant_Constraint,
570 N_Discriminant_Association)
571 then
572 if Paren_Count (N) > 0 then
573 Error_Msg_N
574 ("discriminant in constraint must appear alone", N);
576 elsif Nkind (N) = N_Expanded_Name
577 and then Comes_From_Source (N)
578 then
579 Error_Msg_N
580 ("discriminant must appear alone as a direct name", N);
581 end if;
583 return;
585 -- Otherwise, context is an expression. It should not be within (i.e. a
586 -- subexpression of) a constraint for a component.
588 else
589 D := PN;
590 P := Parent (PN);
591 while not Nkind_In (P, N_Component_Declaration,
592 N_Subtype_Indication,
593 N_Entry_Declaration)
594 loop
595 D := P;
596 P := Parent (P);
597 exit when No (P);
598 end loop;
600 -- If the discriminant is used in an expression that is a bound of a
601 -- scalar type, an Itype is created and the bounds are attached to
602 -- its range, not to the original subtype indication. Such use is of
603 -- course a double fault.
605 if (Nkind (P) = N_Subtype_Indication
606 and then Nkind_In (Parent (P), N_Component_Definition,
607 N_Derived_Type_Definition)
608 and then D = Constraint (P))
610 -- The constraint itself may be given by a subtype indication,
611 -- rather than by a more common discrete range.
613 or else (Nkind (P) = N_Subtype_Indication
614 and then
615 Nkind (Parent (P)) = N_Index_Or_Discriminant_Constraint)
616 or else Nkind (P) = N_Entry_Declaration
617 or else Nkind (D) = N_Defining_Identifier
618 then
619 Error_Msg_N
620 ("discriminant in constraint must appear alone", N);
621 end if;
622 end if;
623 end Check_Discriminant_Use;
625 --------------------------------
626 -- Check_For_Visible_Operator --
627 --------------------------------
629 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id) is
630 begin
631 if Is_Invisible_Operator (N, T) then
632 Error_Msg_NE -- CODEFIX
633 ("operator for} is not directly visible!", N, First_Subtype (T));
634 Error_Msg_N -- CODEFIX
635 ("use clause would make operation legal!", N);
636 end if;
637 end Check_For_Visible_Operator;
639 ----------------------------------
640 -- Check_Fully_Declared_Prefix --
641 ----------------------------------
643 procedure Check_Fully_Declared_Prefix
644 (Typ : Entity_Id;
645 Pref : Node_Id)
647 begin
648 -- Check that the designated type of the prefix of a dereference is
649 -- not an incomplete type. This cannot be done unconditionally, because
650 -- dereferences of private types are legal in default expressions. This
651 -- case is taken care of in Check_Fully_Declared, called below. There
652 -- are also 2005 cases where it is legal for the prefix to be unfrozen.
654 -- This consideration also applies to similar checks for allocators,
655 -- qualified expressions, and type conversions.
657 -- An additional exception concerns other per-object expressions that
658 -- are not directly related to component declarations, in particular
659 -- representation pragmas for tasks. These will be per-object
660 -- expressions if they depend on discriminants or some global entity.
661 -- If the task has access discriminants, the designated type may be
662 -- incomplete at the point the expression is resolved. This resolution
663 -- takes place within the body of the initialization procedure, where
664 -- the discriminant is replaced by its discriminal.
666 if Is_Entity_Name (Pref)
667 and then Ekind (Entity (Pref)) = E_In_Parameter
668 then
669 null;
671 -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
672 -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
673 -- Analyze_Object_Renaming, and Freeze_Entity.
675 elsif Ada_Version >= Ada_2005
676 and then Is_Entity_Name (Pref)
677 and then Is_Access_Type (Etype (Pref))
678 and then Ekind (Directly_Designated_Type (Etype (Pref))) =
679 E_Incomplete_Type
680 and then Is_Tagged_Type (Directly_Designated_Type (Etype (Pref)))
681 then
682 null;
683 else
684 Check_Fully_Declared (Typ, Parent (Pref));
685 end if;
686 end Check_Fully_Declared_Prefix;
688 ------------------------------
689 -- Check_Infinite_Recursion --
690 ------------------------------
692 function Check_Infinite_Recursion (N : Node_Id) return Boolean is
693 P : Node_Id;
694 C : Node_Id;
696 function Same_Argument_List return Boolean;
697 -- Check whether list of actuals is identical to list of formals of
698 -- called function (which is also the enclosing scope).
700 ------------------------
701 -- Same_Argument_List --
702 ------------------------
704 function Same_Argument_List return Boolean is
705 A : Node_Id;
706 F : Entity_Id;
707 Subp : Entity_Id;
709 begin
710 if not Is_Entity_Name (Name (N)) then
711 return False;
712 else
713 Subp := Entity (Name (N));
714 end if;
716 F := First_Formal (Subp);
717 A := First_Actual (N);
718 while Present (F) and then Present (A) loop
719 if not Is_Entity_Name (A) or else Entity (A) /= F then
720 return False;
721 end if;
723 Next_Actual (A);
724 Next_Formal (F);
725 end loop;
727 return True;
728 end Same_Argument_List;
730 -- Start of processing for Check_Infinite_Recursion
732 begin
733 -- Special case, if this is a procedure call and is a call to the
734 -- current procedure with the same argument list, then this is for
735 -- sure an infinite recursion and we insert a call to raise SE.
737 if Is_List_Member (N)
738 and then List_Length (List_Containing (N)) = 1
739 and then Same_Argument_List
740 then
741 declare
742 P : constant Node_Id := Parent (N);
743 begin
744 if Nkind (P) = N_Handled_Sequence_Of_Statements
745 and then Nkind (Parent (P)) = N_Subprogram_Body
746 and then Is_Empty_List (Declarations (Parent (P)))
747 then
748 Error_Msg_Warn := SPARK_Mode /= On;
749 Error_Msg_N ("!infinite recursion<<", N);
750 Error_Msg_N ("\!Storage_Error [<<", N);
751 Insert_Action (N,
752 Make_Raise_Storage_Error (Sloc (N),
753 Reason => SE_Infinite_Recursion));
754 return True;
755 end if;
756 end;
757 end if;
759 -- If not that special case, search up tree, quitting if we reach a
760 -- construct (e.g. a conditional) that tells us that this is not a
761 -- case for an infinite recursion warning.
763 C := N;
764 loop
765 P := Parent (C);
767 -- If no parent, then we were not inside a subprogram, this can for
768 -- example happen when processing certain pragmas in a spec. Just
769 -- return False in this case.
771 if No (P) then
772 return False;
773 end if;
775 -- Done if we get to subprogram body, this is definitely an infinite
776 -- recursion case if we did not find anything to stop us.
778 exit when Nkind (P) = N_Subprogram_Body;
780 -- If appearing in conditional, result is false
782 if Nkind_In (P, N_Or_Else,
783 N_And_Then,
784 N_Case_Expression,
785 N_Case_Statement,
786 N_If_Expression,
787 N_If_Statement)
788 then
789 return False;
791 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
792 and then C /= First (Statements (P))
793 then
794 -- If the call is the expression of a return statement and the
795 -- actuals are identical to the formals, it's worth a warning.
796 -- However, we skip this if there is an immediately preceding
797 -- raise statement, since the call is never executed.
799 -- Furthermore, this corresponds to a common idiom:
801 -- function F (L : Thing) return Boolean is
802 -- begin
803 -- raise Program_Error;
804 -- return F (L);
805 -- end F;
807 -- for generating a stub function
809 if Nkind (Parent (N)) = N_Simple_Return_Statement
810 and then Same_Argument_List
811 then
812 exit when not Is_List_Member (Parent (N));
814 -- OK, return statement is in a statement list, look for raise
816 declare
817 Nod : Node_Id;
819 begin
820 -- Skip past N_Freeze_Entity nodes generated by expansion
822 Nod := Prev (Parent (N));
823 while Present (Nod)
824 and then Nkind (Nod) = N_Freeze_Entity
825 loop
826 Prev (Nod);
827 end loop;
829 -- If no raise statement, give warning. We look at the
830 -- original node, because in the case of "raise ... with
831 -- ...", the node has been transformed into a call.
833 exit when Nkind (Original_Node (Nod)) /= N_Raise_Statement
834 and then
835 (Nkind (Nod) not in N_Raise_xxx_Error
836 or else Present (Condition (Nod)));
837 end;
838 end if;
840 return False;
842 else
843 C := P;
844 end if;
845 end loop;
847 Error_Msg_Warn := SPARK_Mode /= On;
848 Error_Msg_N ("!possible infinite recursion<<", N);
849 Error_Msg_N ("\!??Storage_Error ]<<", N);
851 return True;
852 end Check_Infinite_Recursion;
854 ---------------------------------------
855 -- Check_No_Direct_Boolean_Operators --
856 ---------------------------------------
858 procedure Check_No_Direct_Boolean_Operators (N : Node_Id) is
859 begin
860 if Scope (Entity (N)) = Standard_Standard
861 and then Root_Type (Etype (Left_Opnd (N))) = Standard_Boolean
862 then
863 -- Restriction only applies to original source code
865 if Comes_From_Source (N) then
866 Check_Restriction (No_Direct_Boolean_Operators, N);
867 end if;
868 end if;
870 -- Do style check (but skip if in instance, error is on template)
872 if Style_Check then
873 if not In_Instance then
874 Check_Boolean_Operator (N);
875 end if;
876 end if;
877 end Check_No_Direct_Boolean_Operators;
879 ------------------------------
880 -- Check_Parameterless_Call --
881 ------------------------------
883 procedure Check_Parameterless_Call (N : Node_Id) is
884 Nam : Node_Id;
886 function Prefix_Is_Access_Subp return Boolean;
887 -- If the prefix is of an access_to_subprogram type, the node must be
888 -- rewritten as a call. Ditto if the prefix is overloaded and all its
889 -- interpretations are access to subprograms.
891 ---------------------------
892 -- Prefix_Is_Access_Subp --
893 ---------------------------
895 function Prefix_Is_Access_Subp return Boolean is
896 I : Interp_Index;
897 It : Interp;
899 begin
900 -- If the context is an attribute reference that can apply to
901 -- functions, this is never a parameterless call (RM 4.1.4(6)).
903 if Nkind (Parent (N)) = N_Attribute_Reference
904 and then Nam_In (Attribute_Name (Parent (N)), Name_Address,
905 Name_Code_Address,
906 Name_Access)
907 then
908 return False;
909 end if;
911 if not Is_Overloaded (N) then
912 return
913 Ekind (Etype (N)) = E_Subprogram_Type
914 and then Base_Type (Etype (Etype (N))) /= Standard_Void_Type;
915 else
916 Get_First_Interp (N, I, It);
917 while Present (It.Typ) loop
918 if Ekind (It.Typ) /= E_Subprogram_Type
919 or else Base_Type (Etype (It.Typ)) = Standard_Void_Type
920 then
921 return False;
922 end if;
924 Get_Next_Interp (I, It);
925 end loop;
927 return True;
928 end if;
929 end Prefix_Is_Access_Subp;
931 -- Start of processing for Check_Parameterless_Call
933 begin
934 -- Defend against junk stuff if errors already detected
936 if Total_Errors_Detected /= 0 then
937 if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
938 return;
939 elsif Nkind (N) in N_Has_Chars
940 and then not Is_Valid_Name (Chars (N))
941 then
942 return;
943 end if;
945 Require_Entity (N);
946 end if;
948 -- If the context expects a value, and the name is a procedure, this is
949 -- most likely a missing 'Access. Don't try to resolve the parameterless
950 -- call, error will be caught when the outer call is analyzed.
952 if Is_Entity_Name (N)
953 and then Ekind (Entity (N)) = E_Procedure
954 and then not Is_Overloaded (N)
955 and then
956 Nkind_In (Parent (N), N_Parameter_Association,
957 N_Function_Call,
958 N_Procedure_Call_Statement)
959 then
960 return;
961 end if;
963 -- Rewrite as call if overloadable entity that is (or could be, in the
964 -- overloaded case) a function call. If we know for sure that the entity
965 -- is an enumeration literal, we do not rewrite it.
967 -- If the entity is the name of an operator, it cannot be a call because
968 -- operators cannot have default parameters. In this case, this must be
969 -- a string whose contents coincide with an operator name. Set the kind
970 -- of the node appropriately.
972 if (Is_Entity_Name (N)
973 and then Nkind (N) /= N_Operator_Symbol
974 and then Is_Overloadable (Entity (N))
975 and then (Ekind (Entity (N)) /= E_Enumeration_Literal
976 or else Is_Overloaded (N)))
978 -- Rewrite as call if it is an explicit dereference of an expression of
979 -- a subprogram access type, and the subprogram type is not that of a
980 -- procedure or entry.
982 or else
983 (Nkind (N) = N_Explicit_Dereference and then Prefix_Is_Access_Subp)
985 -- Rewrite as call if it is a selected component which is a function,
986 -- this is the case of a call to a protected function (which may be
987 -- overloaded with other protected operations).
989 or else
990 (Nkind (N) = N_Selected_Component
991 and then (Ekind (Entity (Selector_Name (N))) = E_Function
992 or else
993 (Ekind_In (Entity (Selector_Name (N)), E_Entry,
994 E_Procedure)
995 and then Is_Overloaded (Selector_Name (N)))))
997 -- If one of the above three conditions is met, rewrite as call. Apply
998 -- the rewriting only once.
1000 then
1001 if Nkind (Parent (N)) /= N_Function_Call
1002 or else N /= Name (Parent (N))
1003 then
1005 -- This may be a prefixed call that was not fully analyzed, e.g.
1006 -- an actual in an instance.
1008 if Ada_Version >= Ada_2005
1009 and then Nkind (N) = N_Selected_Component
1010 and then Is_Dispatching_Operation (Entity (Selector_Name (N)))
1011 then
1012 Analyze_Selected_Component (N);
1014 if Nkind (N) /= N_Selected_Component then
1015 return;
1016 end if;
1017 end if;
1019 -- The node is the name of the parameterless call. Preserve its
1020 -- descendants, which may be complex expressions.
1022 Nam := Relocate_Node (N);
1024 -- If overloaded, overload set belongs to new copy
1026 Save_Interps (N, Nam);
1028 -- Change node to parameterless function call (note that the
1029 -- Parameter_Associations associations field is left set to Empty,
1030 -- its normal default value since there are no parameters)
1032 Change_Node (N, N_Function_Call);
1033 Set_Name (N, Nam);
1034 Set_Sloc (N, Sloc (Nam));
1035 Analyze_Call (N);
1036 end if;
1038 elsif Nkind (N) = N_Parameter_Association then
1039 Check_Parameterless_Call (Explicit_Actual_Parameter (N));
1041 elsif Nkind (N) = N_Operator_Symbol then
1042 Change_Operator_Symbol_To_String_Literal (N);
1043 Set_Is_Overloaded (N, False);
1044 Set_Etype (N, Any_String);
1045 end if;
1046 end Check_Parameterless_Call;
1048 --------------------------------
1049 -- Is_Atomic_Ref_With_Address --
1050 --------------------------------
1052 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean is
1053 Pref : constant Node_Id := Prefix (N);
1055 begin
1056 if not Is_Entity_Name (Pref) then
1057 return False;
1059 else
1060 declare
1061 Pent : constant Entity_Id := Entity (Pref);
1062 Ptyp : constant Entity_Id := Etype (Pent);
1063 begin
1064 return not Is_Access_Type (Ptyp)
1065 and then (Is_Atomic (Ptyp) or else Is_Atomic (Pent))
1066 and then Present (Address_Clause (Pent));
1067 end;
1068 end if;
1069 end Is_Atomic_Ref_With_Address;
1071 -----------------------------
1072 -- Is_Definite_Access_Type --
1073 -----------------------------
1075 function Is_Definite_Access_Type (E : Entity_Id) return Boolean is
1076 Btyp : constant Entity_Id := Base_Type (E);
1077 begin
1078 return Ekind (Btyp) = E_Access_Type
1079 or else (Ekind (Btyp) = E_Access_Subprogram_Type
1080 and then Comes_From_Source (Btyp));
1081 end Is_Definite_Access_Type;
1083 ----------------------
1084 -- Is_Predefined_Op --
1085 ----------------------
1087 function Is_Predefined_Op (Nam : Entity_Id) return Boolean is
1088 begin
1089 -- Predefined operators are intrinsic subprograms
1091 if not Is_Intrinsic_Subprogram (Nam) then
1092 return False;
1093 end if;
1095 -- A call to a back-end builtin is never a predefined operator
1097 if Is_Imported (Nam) and then Present (Interface_Name (Nam)) then
1098 return False;
1099 end if;
1101 return not Is_Generic_Instance (Nam)
1102 and then Chars (Nam) in Any_Operator_Name
1103 and then (No (Alias (Nam)) or else Is_Predefined_Op (Alias (Nam)));
1104 end Is_Predefined_Op;
1106 -----------------------------
1107 -- Make_Call_Into_Operator --
1108 -----------------------------
1110 procedure Make_Call_Into_Operator
1111 (N : Node_Id;
1112 Typ : Entity_Id;
1113 Op_Id : Entity_Id)
1115 Op_Name : constant Name_Id := Chars (Op_Id);
1116 Act1 : Node_Id := First_Actual (N);
1117 Act2 : Node_Id := Next_Actual (Act1);
1118 Error : Boolean := False;
1119 Func : constant Entity_Id := Entity (Name (N));
1120 Is_Binary : constant Boolean := Present (Act2);
1121 Op_Node : Node_Id;
1122 Opnd_Type : Entity_Id := Empty;
1123 Orig_Type : Entity_Id := Empty;
1124 Pack : Entity_Id;
1126 type Kind_Test is access function (E : Entity_Id) return Boolean;
1128 function Operand_Type_In_Scope (S : Entity_Id) return Boolean;
1129 -- If the operand is not universal, and the operator is given by an
1130 -- expanded name, verify that the operand has an interpretation with a
1131 -- type defined in the given scope of the operator.
1133 function Type_In_P (Test : Kind_Test) return Entity_Id;
1134 -- Find a type of the given class in package Pack that contains the
1135 -- operator.
1137 ---------------------------
1138 -- Operand_Type_In_Scope --
1139 ---------------------------
1141 function Operand_Type_In_Scope (S : Entity_Id) return Boolean is
1142 Nod : constant Node_Id := Right_Opnd (Op_Node);
1143 I : Interp_Index;
1144 It : Interp;
1146 begin
1147 if not Is_Overloaded (Nod) then
1148 return Scope (Base_Type (Etype (Nod))) = S;
1150 else
1151 Get_First_Interp (Nod, I, It);
1152 while Present (It.Typ) loop
1153 if Scope (Base_Type (It.Typ)) = S then
1154 return True;
1155 end if;
1157 Get_Next_Interp (I, It);
1158 end loop;
1160 return False;
1161 end if;
1162 end Operand_Type_In_Scope;
1164 ---------------
1165 -- Type_In_P --
1166 ---------------
1168 function Type_In_P (Test : Kind_Test) return Entity_Id is
1169 E : Entity_Id;
1171 function In_Decl return Boolean;
1172 -- Verify that node is not part of the type declaration for the
1173 -- candidate type, which would otherwise be invisible.
1175 -------------
1176 -- In_Decl --
1177 -------------
1179 function In_Decl return Boolean is
1180 Decl_Node : constant Node_Id := Parent (E);
1181 N2 : Node_Id;
1183 begin
1184 N2 := N;
1186 if Etype (E) = Any_Type then
1187 return True;
1189 elsif No (Decl_Node) then
1190 return False;
1192 else
1193 while Present (N2)
1194 and then Nkind (N2) /= N_Compilation_Unit
1195 loop
1196 if N2 = Decl_Node then
1197 return True;
1198 else
1199 N2 := Parent (N2);
1200 end if;
1201 end loop;
1203 return False;
1204 end if;
1205 end In_Decl;
1207 -- Start of processing for Type_In_P
1209 begin
1210 -- If the context type is declared in the prefix package, this is the
1211 -- desired base type.
1213 if Scope (Base_Type (Typ)) = Pack and then Test (Typ) then
1214 return Base_Type (Typ);
1216 else
1217 E := First_Entity (Pack);
1218 while Present (E) loop
1219 if Test (E) and then not In_Decl then
1220 return E;
1221 end if;
1223 Next_Entity (E);
1224 end loop;
1226 return Empty;
1227 end if;
1228 end Type_In_P;
1230 -- Start of processing for Make_Call_Into_Operator
1232 begin
1233 Op_Node := New_Node (Operator_Kind (Op_Name, Is_Binary), Sloc (N));
1235 -- Ensure that the corresponding operator has the same parent as the
1236 -- original call. This guarantees that parent traversals performed by
1237 -- the ABE mechanism succeed.
1239 Set_Parent (Op_Node, Parent (N));
1241 -- Binary operator
1243 if Is_Binary then
1244 Set_Left_Opnd (Op_Node, Relocate_Node (Act1));
1245 Set_Right_Opnd (Op_Node, Relocate_Node (Act2));
1246 Save_Interps (Act1, Left_Opnd (Op_Node));
1247 Save_Interps (Act2, Right_Opnd (Op_Node));
1248 Act1 := Left_Opnd (Op_Node);
1249 Act2 := Right_Opnd (Op_Node);
1251 -- Unary operator
1253 else
1254 Set_Right_Opnd (Op_Node, Relocate_Node (Act1));
1255 Save_Interps (Act1, Right_Opnd (Op_Node));
1256 Act1 := Right_Opnd (Op_Node);
1257 end if;
1259 -- If the operator is denoted by an expanded name, and the prefix is
1260 -- not Standard, but the operator is a predefined one whose scope is
1261 -- Standard, then this is an implicit_operator, inserted as an
1262 -- interpretation by the procedure of the same name. This procedure
1263 -- overestimates the presence of implicit operators, because it does
1264 -- not examine the type of the operands. Verify now that the operand
1265 -- type appears in the given scope. If right operand is universal,
1266 -- check the other operand. In the case of concatenation, either
1267 -- argument can be the component type, so check the type of the result.
1268 -- If both arguments are literals, look for a type of the right kind
1269 -- defined in the given scope. This elaborate nonsense is brought to
1270 -- you courtesy of b33302a. The type itself must be frozen, so we must
1271 -- find the type of the proper class in the given scope.
1273 -- A final wrinkle is the multiplication operator for fixed point types,
1274 -- which is defined in Standard only, and not in the scope of the
1275 -- fixed point type itself.
1277 if Nkind (Name (N)) = N_Expanded_Name then
1278 Pack := Entity (Prefix (Name (N)));
1280 -- If this is a package renaming, get renamed entity, which will be
1281 -- the scope of the operands if operaton is type-correct.
1283 if Present (Renamed_Entity (Pack)) then
1284 Pack := Renamed_Entity (Pack);
1285 end if;
1287 -- If the entity being called is defined in the given package, it is
1288 -- a renaming of a predefined operator, and known to be legal.
1290 if Scope (Entity (Name (N))) = Pack
1291 and then Pack /= Standard_Standard
1292 then
1293 null;
1295 -- Visibility does not need to be checked in an instance: if the
1296 -- operator was not visible in the generic it has been diagnosed
1297 -- already, else there is an implicit copy of it in the instance.
1299 elsif In_Instance then
1300 null;
1302 elsif Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1303 and then Is_Fixed_Point_Type (Etype (Left_Opnd (Op_Node)))
1304 and then Is_Fixed_Point_Type (Etype (Right_Opnd (Op_Node)))
1305 then
1306 if Pack /= Standard_Standard then
1307 Error := True;
1308 end if;
1310 -- Ada 2005 AI-420: Predefined equality on Universal_Access is
1311 -- available.
1313 elsif Ada_Version >= Ada_2005
1314 and then Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1315 and then Ekind (Etype (Act1)) = E_Anonymous_Access_Type
1316 then
1317 null;
1319 else
1320 Opnd_Type := Base_Type (Etype (Right_Opnd (Op_Node)));
1322 if Op_Name = Name_Op_Concat then
1323 Opnd_Type := Base_Type (Typ);
1325 elsif (Scope (Opnd_Type) = Standard_Standard
1326 and then Is_Binary)
1327 or else (Nkind (Right_Opnd (Op_Node)) = N_Attribute_Reference
1328 and then Is_Binary
1329 and then not Comes_From_Source (Opnd_Type))
1330 then
1331 Opnd_Type := Base_Type (Etype (Left_Opnd (Op_Node)));
1332 end if;
1334 if Scope (Opnd_Type) = Standard_Standard then
1336 -- Verify that the scope contains a type that corresponds to
1337 -- the given literal. Optimize the case where Pack is Standard.
1339 if Pack /= Standard_Standard then
1340 if Opnd_Type = Universal_Integer then
1341 Orig_Type := Type_In_P (Is_Integer_Type'Access);
1343 elsif Opnd_Type = Universal_Real then
1344 Orig_Type := Type_In_P (Is_Real_Type'Access);
1346 elsif Opnd_Type = Any_String then
1347 Orig_Type := Type_In_P (Is_String_Type'Access);
1349 elsif Opnd_Type = Any_Access then
1350 Orig_Type := Type_In_P (Is_Definite_Access_Type'Access);
1352 elsif Opnd_Type = Any_Composite then
1353 Orig_Type := Type_In_P (Is_Composite_Type'Access);
1355 if Present (Orig_Type) then
1356 if Has_Private_Component (Orig_Type) then
1357 Orig_Type := Empty;
1358 else
1359 Set_Etype (Act1, Orig_Type);
1361 if Is_Binary then
1362 Set_Etype (Act2, Orig_Type);
1363 end if;
1364 end if;
1365 end if;
1367 else
1368 Orig_Type := Empty;
1369 end if;
1371 Error := No (Orig_Type);
1372 end if;
1374 elsif Ekind (Opnd_Type) = E_Allocator_Type
1375 and then No (Type_In_P (Is_Definite_Access_Type'Access))
1376 then
1377 Error := True;
1379 -- If the type is defined elsewhere, and the operator is not
1380 -- defined in the given scope (by a renaming declaration, e.g.)
1381 -- then this is an error as well. If an extension of System is
1382 -- present, and the type may be defined there, Pack must be
1383 -- System itself.
1385 elsif Scope (Opnd_Type) /= Pack
1386 and then Scope (Op_Id) /= Pack
1387 and then (No (System_Aux_Id)
1388 or else Scope (Opnd_Type) /= System_Aux_Id
1389 or else Pack /= Scope (System_Aux_Id))
1390 then
1391 if not Is_Overloaded (Right_Opnd (Op_Node)) then
1392 Error := True;
1393 else
1394 Error := not Operand_Type_In_Scope (Pack);
1395 end if;
1397 elsif Pack = Standard_Standard
1398 and then not Operand_Type_In_Scope (Standard_Standard)
1399 then
1400 Error := True;
1401 end if;
1402 end if;
1404 if Error then
1405 Error_Msg_Node_2 := Pack;
1406 Error_Msg_NE
1407 ("& not declared in&", N, Selector_Name (Name (N)));
1408 Set_Etype (N, Any_Type);
1409 return;
1411 -- Detect a mismatch between the context type and the result type
1412 -- in the named package, which is otherwise not detected if the
1413 -- operands are universal. Check is only needed if source entity is
1414 -- an operator, not a function that renames an operator.
1416 elsif Nkind (Parent (N)) /= N_Type_Conversion
1417 and then Ekind (Entity (Name (N))) = E_Operator
1418 and then Is_Numeric_Type (Typ)
1419 and then not Is_Universal_Numeric_Type (Typ)
1420 and then Scope (Base_Type (Typ)) /= Pack
1421 and then not In_Instance
1422 then
1423 if Is_Fixed_Point_Type (Typ)
1424 and then Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1425 then
1426 -- Already checked above
1428 null;
1430 -- Operator may be defined in an extension of System
1432 elsif Present (System_Aux_Id)
1433 and then Present (Opnd_Type)
1434 and then Scope (Opnd_Type) = System_Aux_Id
1435 then
1436 null;
1438 else
1439 -- Could we use Wrong_Type here??? (this would require setting
1440 -- Etype (N) to the actual type found where Typ was expected).
1442 Error_Msg_NE ("expect }", N, Typ);
1443 end if;
1444 end if;
1445 end if;
1447 Set_Chars (Op_Node, Op_Name);
1449 if not Is_Private_Type (Etype (N)) then
1450 Set_Etype (Op_Node, Base_Type (Etype (N)));
1451 else
1452 Set_Etype (Op_Node, Etype (N));
1453 end if;
1455 -- If this is a call to a function that renames a predefined equality,
1456 -- the renaming declaration provides a type that must be used to
1457 -- resolve the operands. This must be done now because resolution of
1458 -- the equality node will not resolve any remaining ambiguity, and it
1459 -- assumes that the first operand is not overloaded.
1461 if Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1462 and then Ekind (Func) = E_Function
1463 and then Is_Overloaded (Act1)
1464 then
1465 Resolve (Act1, Base_Type (Etype (First_Formal (Func))));
1466 Resolve (Act2, Base_Type (Etype (First_Formal (Func))));
1467 end if;
1469 Set_Entity (Op_Node, Op_Id);
1470 Generate_Reference (Op_Id, N, ' ');
1472 -- Do rewrite setting Comes_From_Source on the result if the original
1473 -- call came from source. Although it is not strictly the case that the
1474 -- operator as such comes from the source, logically it corresponds
1475 -- exactly to the function call in the source, so it should be marked
1476 -- this way (e.g. to make sure that validity checks work fine).
1478 declare
1479 CS : constant Boolean := Comes_From_Source (N);
1480 begin
1481 Rewrite (N, Op_Node);
1482 Set_Comes_From_Source (N, CS);
1483 end;
1485 -- If this is an arithmetic operator and the result type is private,
1486 -- the operands and the result must be wrapped in conversion to
1487 -- expose the underlying numeric type and expand the proper checks,
1488 -- e.g. on division.
1490 if Is_Private_Type (Typ) then
1491 case Nkind (N) is
1492 when N_Op_Add
1493 | N_Op_Divide
1494 | N_Op_Expon
1495 | N_Op_Mod
1496 | N_Op_Multiply
1497 | N_Op_Rem
1498 | N_Op_Subtract
1500 Resolve_Intrinsic_Operator (N, Typ);
1502 when N_Op_Abs
1503 | N_Op_Minus
1504 | N_Op_Plus
1506 Resolve_Intrinsic_Unary_Operator (N, Typ);
1508 when others =>
1509 Resolve (N, Typ);
1510 end case;
1511 else
1512 Resolve (N, Typ);
1513 end if;
1515 -- If in ASIS_Mode, propagate operand types to original actuals of
1516 -- function call, which would otherwise not be fully resolved. If
1517 -- the call has already been constant-folded, nothing to do. We
1518 -- relocate the operand nodes rather than copy them, to preserve
1519 -- original_node pointers, given that the operands themselves may
1520 -- have been rewritten. If the call was itself a rewriting of an
1521 -- operator node, nothing to do.
1523 if ASIS_Mode
1524 and then Nkind (N) in N_Op
1525 and then Nkind (Original_Node (N)) = N_Function_Call
1526 then
1527 declare
1528 L : Node_Id;
1529 R : constant Node_Id := Right_Opnd (N);
1531 Old_First : constant Node_Id :=
1532 First (Parameter_Associations (Original_Node (N)));
1533 Old_Sec : Node_Id;
1535 begin
1536 if Is_Binary then
1537 L := Left_Opnd (N);
1538 Old_Sec := Next (Old_First);
1540 -- If the original call has named associations, replace the
1541 -- explicit actual parameter in the association with the proper
1542 -- resolved operand.
1544 if Nkind (Old_First) = N_Parameter_Association then
1545 if Chars (Selector_Name (Old_First)) =
1546 Chars (First_Entity (Op_Id))
1547 then
1548 Rewrite (Explicit_Actual_Parameter (Old_First),
1549 Relocate_Node (L));
1550 else
1551 Rewrite (Explicit_Actual_Parameter (Old_First),
1552 Relocate_Node (R));
1553 end if;
1555 else
1556 Rewrite (Old_First, Relocate_Node (L));
1557 end if;
1559 if Nkind (Old_Sec) = N_Parameter_Association then
1560 if Chars (Selector_Name (Old_Sec)) =
1561 Chars (First_Entity (Op_Id))
1562 then
1563 Rewrite (Explicit_Actual_Parameter (Old_Sec),
1564 Relocate_Node (L));
1565 else
1566 Rewrite (Explicit_Actual_Parameter (Old_Sec),
1567 Relocate_Node (R));
1568 end if;
1570 else
1571 Rewrite (Old_Sec, Relocate_Node (R));
1572 end if;
1574 else
1575 if Nkind (Old_First) = N_Parameter_Association then
1576 Rewrite (Explicit_Actual_Parameter (Old_First),
1577 Relocate_Node (R));
1578 else
1579 Rewrite (Old_First, Relocate_Node (R));
1580 end if;
1581 end if;
1582 end;
1584 Set_Parent (Original_Node (N), Parent (N));
1585 end if;
1586 end Make_Call_Into_Operator;
1588 -------------------
1589 -- Operator_Kind --
1590 -------------------
1592 function Operator_Kind
1593 (Op_Name : Name_Id;
1594 Is_Binary : Boolean) return Node_Kind
1596 Kind : Node_Kind;
1598 begin
1599 -- Use CASE statement or array???
1601 if Is_Binary then
1602 if Op_Name = Name_Op_And then
1603 Kind := N_Op_And;
1604 elsif Op_Name = Name_Op_Or then
1605 Kind := N_Op_Or;
1606 elsif Op_Name = Name_Op_Xor then
1607 Kind := N_Op_Xor;
1608 elsif Op_Name = Name_Op_Eq then
1609 Kind := N_Op_Eq;
1610 elsif Op_Name = Name_Op_Ne then
1611 Kind := N_Op_Ne;
1612 elsif Op_Name = Name_Op_Lt then
1613 Kind := N_Op_Lt;
1614 elsif Op_Name = Name_Op_Le then
1615 Kind := N_Op_Le;
1616 elsif Op_Name = Name_Op_Gt then
1617 Kind := N_Op_Gt;
1618 elsif Op_Name = Name_Op_Ge then
1619 Kind := N_Op_Ge;
1620 elsif Op_Name = Name_Op_Add then
1621 Kind := N_Op_Add;
1622 elsif Op_Name = Name_Op_Subtract then
1623 Kind := N_Op_Subtract;
1624 elsif Op_Name = Name_Op_Concat then
1625 Kind := N_Op_Concat;
1626 elsif Op_Name = Name_Op_Multiply then
1627 Kind := N_Op_Multiply;
1628 elsif Op_Name = Name_Op_Divide then
1629 Kind := N_Op_Divide;
1630 elsif Op_Name = Name_Op_Mod then
1631 Kind := N_Op_Mod;
1632 elsif Op_Name = Name_Op_Rem then
1633 Kind := N_Op_Rem;
1634 elsif Op_Name = Name_Op_Expon then
1635 Kind := N_Op_Expon;
1636 else
1637 raise Program_Error;
1638 end if;
1640 -- Unary operators
1642 else
1643 if Op_Name = Name_Op_Add then
1644 Kind := N_Op_Plus;
1645 elsif Op_Name = Name_Op_Subtract then
1646 Kind := N_Op_Minus;
1647 elsif Op_Name = Name_Op_Abs then
1648 Kind := N_Op_Abs;
1649 elsif Op_Name = Name_Op_Not then
1650 Kind := N_Op_Not;
1651 else
1652 raise Program_Error;
1653 end if;
1654 end if;
1656 return Kind;
1657 end Operator_Kind;
1659 ----------------------------
1660 -- Preanalyze_And_Resolve --
1661 ----------------------------
1663 procedure Preanalyze_And_Resolve (N : Node_Id; T : Entity_Id) is
1664 Save_Full_Analysis : constant Boolean := Full_Analysis;
1666 begin
1667 Full_Analysis := False;
1668 Expander_Mode_Save_And_Set (False);
1670 -- Normally, we suppress all checks for this preanalysis. There is no
1671 -- point in processing them now, since they will be applied properly
1672 -- and in the proper location when the default expressions reanalyzed
1673 -- and reexpanded later on. We will also have more information at that
1674 -- point for possible suppression of individual checks.
1676 -- However, in SPARK mode, most expansion is suppressed, and this
1677 -- later reanalysis and reexpansion may not occur. SPARK mode does
1678 -- require the setting of checking flags for proof purposes, so we
1679 -- do the SPARK preanalysis without suppressing checks.
1681 -- This special handling for SPARK mode is required for example in the
1682 -- case of Ada 2012 constructs such as quantified expressions, which are
1683 -- expanded in two separate steps.
1685 if GNATprove_Mode then
1686 Analyze_And_Resolve (N, T);
1687 else
1688 Analyze_And_Resolve (N, T, Suppress => All_Checks);
1689 end if;
1691 Expander_Mode_Restore;
1692 Full_Analysis := Save_Full_Analysis;
1693 end Preanalyze_And_Resolve;
1695 -- Version without context type
1697 procedure Preanalyze_And_Resolve (N : Node_Id) is
1698 Save_Full_Analysis : constant Boolean := Full_Analysis;
1700 begin
1701 Full_Analysis := False;
1702 Expander_Mode_Save_And_Set (False);
1704 Analyze (N);
1705 Resolve (N, Etype (N), Suppress => All_Checks);
1707 Expander_Mode_Restore;
1708 Full_Analysis := Save_Full_Analysis;
1709 end Preanalyze_And_Resolve;
1711 ----------------------------------
1712 -- Replace_Actual_Discriminants --
1713 ----------------------------------
1715 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id) is
1716 Loc : constant Source_Ptr := Sloc (N);
1717 Tsk : Node_Id := Empty;
1719 function Process_Discr (Nod : Node_Id) return Traverse_Result;
1720 -- Comment needed???
1722 -------------------
1723 -- Process_Discr --
1724 -------------------
1726 function Process_Discr (Nod : Node_Id) return Traverse_Result is
1727 Ent : Entity_Id;
1729 begin
1730 if Nkind (Nod) = N_Identifier then
1731 Ent := Entity (Nod);
1733 if Present (Ent)
1734 and then Ekind (Ent) = E_Discriminant
1735 then
1736 Rewrite (Nod,
1737 Make_Selected_Component (Loc,
1738 Prefix => New_Copy_Tree (Tsk, New_Sloc => Loc),
1739 Selector_Name => Make_Identifier (Loc, Chars (Ent))));
1741 Set_Etype (Nod, Etype (Ent));
1742 end if;
1744 end if;
1746 return OK;
1747 end Process_Discr;
1749 procedure Replace_Discrs is new Traverse_Proc (Process_Discr);
1751 -- Start of processing for Replace_Actual_Discriminants
1753 begin
1754 if Expander_Active then
1755 null;
1757 -- Allow the replacement of concurrent discriminants in GNATprove even
1758 -- though this is a light expansion activity. Note that generic units
1759 -- are not modified.
1761 elsif GNATprove_Mode and not Inside_A_Generic then
1762 null;
1764 else
1765 return;
1766 end if;
1768 if Nkind (Name (N)) = N_Selected_Component then
1769 Tsk := Prefix (Name (N));
1771 elsif Nkind (Name (N)) = N_Indexed_Component then
1772 Tsk := Prefix (Prefix (Name (N)));
1773 end if;
1775 if Present (Tsk) then
1776 Replace_Discrs (Default);
1777 end if;
1778 end Replace_Actual_Discriminants;
1780 -------------
1781 -- Resolve --
1782 -------------
1784 procedure Resolve (N : Node_Id; Typ : Entity_Id) is
1785 Ambiguous : Boolean := False;
1786 Ctx_Type : Entity_Id := Typ;
1787 Expr_Type : Entity_Id := Empty; -- prevent junk warning
1788 Err_Type : Entity_Id := Empty;
1789 Found : Boolean := False;
1790 From_Lib : Boolean;
1791 I : Interp_Index;
1792 I1 : Interp_Index := 0; -- prevent junk warning
1793 It : Interp;
1794 It1 : Interp;
1795 Seen : Entity_Id := Empty; -- prevent junk warning
1797 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean;
1798 -- Determine whether a node comes from a predefined library unit or
1799 -- Standard.
1801 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id);
1802 -- Try and fix up a literal so that it matches its expected type. New
1803 -- literals are manufactured if necessary to avoid cascaded errors.
1805 procedure Report_Ambiguous_Argument;
1806 -- Additional diagnostics when an ambiguous call has an ambiguous
1807 -- argument (typically a controlling actual).
1809 procedure Resolution_Failed;
1810 -- Called when attempt at resolving current expression fails
1812 ------------------------------------
1813 -- Comes_From_Predefined_Lib_Unit --
1814 -------------------------------------
1816 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean is
1817 begin
1818 return
1819 Sloc (Nod) = Standard_Location or else In_Predefined_Unit (Nod);
1820 end Comes_From_Predefined_Lib_Unit;
1822 --------------------
1823 -- Patch_Up_Value --
1824 --------------------
1826 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id) is
1827 begin
1828 if Nkind (N) = N_Integer_Literal and then Is_Real_Type (Typ) then
1829 Rewrite (N,
1830 Make_Real_Literal (Sloc (N),
1831 Realval => UR_From_Uint (Intval (N))));
1832 Set_Etype (N, Universal_Real);
1833 Set_Is_Static_Expression (N);
1835 elsif Nkind (N) = N_Real_Literal and then Is_Integer_Type (Typ) then
1836 Rewrite (N,
1837 Make_Integer_Literal (Sloc (N),
1838 Intval => UR_To_Uint (Realval (N))));
1839 Set_Etype (N, Universal_Integer);
1840 Set_Is_Static_Expression (N);
1842 elsif Nkind (N) = N_String_Literal
1843 and then Is_Character_Type (Typ)
1844 then
1845 Set_Character_Literal_Name (Char_Code (Character'Pos ('A')));
1846 Rewrite (N,
1847 Make_Character_Literal (Sloc (N),
1848 Chars => Name_Find,
1849 Char_Literal_Value =>
1850 UI_From_Int (Character'Pos ('A'))));
1851 Set_Etype (N, Any_Character);
1852 Set_Is_Static_Expression (N);
1854 elsif Nkind (N) /= N_String_Literal and then Is_String_Type (Typ) then
1855 Rewrite (N,
1856 Make_String_Literal (Sloc (N),
1857 Strval => End_String));
1859 elsif Nkind (N) = N_Range then
1860 Patch_Up_Value (Low_Bound (N), Typ);
1861 Patch_Up_Value (High_Bound (N), Typ);
1862 end if;
1863 end Patch_Up_Value;
1865 -------------------------------
1866 -- Report_Ambiguous_Argument --
1867 -------------------------------
1869 procedure Report_Ambiguous_Argument is
1870 Arg : constant Node_Id := First (Parameter_Associations (N));
1871 I : Interp_Index;
1872 It : Interp;
1874 begin
1875 if Nkind (Arg) = N_Function_Call
1876 and then Is_Entity_Name (Name (Arg))
1877 and then Is_Overloaded (Name (Arg))
1878 then
1879 Error_Msg_NE ("ambiguous call to&", Arg, Name (Arg));
1881 -- Could use comments on what is going on here???
1883 Get_First_Interp (Name (Arg), I, It);
1884 while Present (It.Nam) loop
1885 Error_Msg_Sloc := Sloc (It.Nam);
1887 if Nkind (Parent (It.Nam)) = N_Full_Type_Declaration then
1888 Error_Msg_N ("interpretation (inherited) #!", Arg);
1889 else
1890 Error_Msg_N ("interpretation #!", Arg);
1891 end if;
1893 Get_Next_Interp (I, It);
1894 end loop;
1895 end if;
1896 end Report_Ambiguous_Argument;
1898 -----------------------
1899 -- Resolution_Failed --
1900 -----------------------
1902 procedure Resolution_Failed is
1903 begin
1904 Patch_Up_Value (N, Typ);
1906 -- Set the type to the desired one to minimize cascaded errors. Note
1907 -- that this is an approximation and does not work in all cases.
1909 Set_Etype (N, Typ);
1911 Debug_A_Exit ("resolving ", N, " (done, resolution failed)");
1912 Set_Is_Overloaded (N, False);
1914 -- The caller will return without calling the expander, so we need
1915 -- to set the analyzed flag. Note that it is fine to set Analyzed
1916 -- to True even if we are in the middle of a shallow analysis,
1917 -- (see the spec of sem for more details) since this is an error
1918 -- situation anyway, and there is no point in repeating the
1919 -- analysis later (indeed it won't work to repeat it later, since
1920 -- we haven't got a clear resolution of which entity is being
1921 -- referenced.)
1923 Set_Analyzed (N, True);
1924 return;
1925 end Resolution_Failed;
1927 -- Start of processing for Resolve
1929 begin
1930 if N = Error then
1931 return;
1932 end if;
1934 -- Access attribute on remote subprogram cannot be used for a non-remote
1935 -- access-to-subprogram type.
1937 if Nkind (N) = N_Attribute_Reference
1938 and then Nam_In (Attribute_Name (N), Name_Access,
1939 Name_Unrestricted_Access,
1940 Name_Unchecked_Access)
1941 and then Comes_From_Source (N)
1942 and then Is_Entity_Name (Prefix (N))
1943 and then Is_Subprogram (Entity (Prefix (N)))
1944 and then Is_Remote_Call_Interface (Entity (Prefix (N)))
1945 and then not Is_Remote_Access_To_Subprogram_Type (Typ)
1946 then
1947 Error_Msg_N
1948 ("prefix must statically denote a non-remote subprogram", N);
1949 end if;
1951 From_Lib := Comes_From_Predefined_Lib_Unit (N);
1953 -- If the context is a Remote_Access_To_Subprogram, access attributes
1954 -- must be resolved with the corresponding fat pointer. There is no need
1955 -- to check for the attribute name since the return type of an
1956 -- attribute is never a remote type.
1958 if Nkind (N) = N_Attribute_Reference
1959 and then Comes_From_Source (N)
1960 and then (Is_Remote_Call_Interface (Typ) or else Is_Remote_Types (Typ))
1961 then
1962 declare
1963 Attr : constant Attribute_Id :=
1964 Get_Attribute_Id (Attribute_Name (N));
1965 Pref : constant Node_Id := Prefix (N);
1966 Decl : Node_Id;
1967 Spec : Node_Id;
1968 Is_Remote : Boolean := True;
1970 begin
1971 -- Check that Typ is a remote access-to-subprogram type
1973 if Is_Remote_Access_To_Subprogram_Type (Typ) then
1975 -- Prefix (N) must statically denote a remote subprogram
1976 -- declared in a package specification.
1978 if Attr = Attribute_Access or else
1979 Attr = Attribute_Unchecked_Access or else
1980 Attr = Attribute_Unrestricted_Access
1981 then
1982 Decl := Unit_Declaration_Node (Entity (Pref));
1984 if Nkind (Decl) = N_Subprogram_Body then
1985 Spec := Corresponding_Spec (Decl);
1987 if Present (Spec) then
1988 Decl := Unit_Declaration_Node (Spec);
1989 end if;
1990 end if;
1992 Spec := Parent (Decl);
1994 if not Is_Entity_Name (Prefix (N))
1995 or else Nkind (Spec) /= N_Package_Specification
1996 or else
1997 not Is_Remote_Call_Interface (Defining_Entity (Spec))
1998 then
1999 Is_Remote := False;
2000 Error_Msg_N
2001 ("prefix must statically denote a remote subprogram ",
2003 end if;
2005 -- If we are generating code in distributed mode, perform
2006 -- semantic checks against corresponding remote entities.
2008 if Expander_Active
2009 and then Get_PCS_Name /= Name_No_DSA
2010 then
2011 Check_Subtype_Conformant
2012 (New_Id => Entity (Prefix (N)),
2013 Old_Id => Designated_Type
2014 (Corresponding_Remote_Type (Typ)),
2015 Err_Loc => N);
2017 if Is_Remote then
2018 Process_Remote_AST_Attribute (N, Typ);
2019 end if;
2020 end if;
2021 end if;
2022 end if;
2023 end;
2024 end if;
2026 Debug_A_Entry ("resolving ", N);
2028 if Debug_Flag_V then
2029 Write_Overloads (N);
2030 end if;
2032 if Comes_From_Source (N) then
2033 if Is_Fixed_Point_Type (Typ) then
2034 Check_Restriction (No_Fixed_Point, N);
2036 elsif Is_Floating_Point_Type (Typ)
2037 and then Typ /= Universal_Real
2038 and then Typ /= Any_Real
2039 then
2040 Check_Restriction (No_Floating_Point, N);
2041 end if;
2042 end if;
2044 -- Return if already analyzed
2046 if Analyzed (N) then
2047 Debug_A_Exit ("resolving ", N, " (done, already analyzed)");
2048 Analyze_Dimension (N);
2049 return;
2051 -- Any case of Any_Type as the Etype value means that we had a
2052 -- previous error.
2054 elsif Etype (N) = Any_Type then
2055 Debug_A_Exit ("resolving ", N, " (done, Etype = Any_Type)");
2056 return;
2057 end if;
2059 Check_Parameterless_Call (N);
2061 -- The resolution of an Expression_With_Actions is determined by
2062 -- its Expression.
2064 if Nkind (N) = N_Expression_With_Actions then
2065 Resolve (Expression (N), Typ);
2067 Found := True;
2068 Expr_Type := Etype (Expression (N));
2070 -- If not overloaded, then we know the type, and all that needs doing
2071 -- is to check that this type is compatible with the context.
2073 elsif not Is_Overloaded (N) then
2074 Found := Covers (Typ, Etype (N));
2075 Expr_Type := Etype (N);
2077 -- In the overloaded case, we must select the interpretation that
2078 -- is compatible with the context (i.e. the type passed to Resolve)
2080 else
2081 -- Loop through possible interpretations
2083 Get_First_Interp (N, I, It);
2084 Interp_Loop : while Present (It.Typ) loop
2085 if Debug_Flag_V then
2086 Write_Str ("Interp: ");
2087 Write_Interp (It);
2088 end if;
2090 -- We are only interested in interpretations that are compatible
2091 -- with the expected type, any other interpretations are ignored.
2093 if not Covers (Typ, It.Typ) then
2094 if Debug_Flag_V then
2095 Write_Str (" interpretation incompatible with context");
2096 Write_Eol;
2097 end if;
2099 else
2100 -- Skip the current interpretation if it is disabled by an
2101 -- abstract operator. This action is performed only when the
2102 -- type against which we are resolving is the same as the
2103 -- type of the interpretation.
2105 if Ada_Version >= Ada_2005
2106 and then It.Typ = Typ
2107 and then Typ /= Universal_Integer
2108 and then Typ /= Universal_Real
2109 and then Present (It.Abstract_Op)
2110 then
2111 if Debug_Flag_V then
2112 Write_Line ("Skip.");
2113 end if;
2115 goto Continue;
2116 end if;
2118 -- First matching interpretation
2120 if not Found then
2121 Found := True;
2122 I1 := I;
2123 Seen := It.Nam;
2124 Expr_Type := It.Typ;
2126 -- Matching interpretation that is not the first, maybe an
2127 -- error, but there are some cases where preference rules are
2128 -- used to choose between the two possibilities. These and
2129 -- some more obscure cases are handled in Disambiguate.
2131 else
2132 -- If the current statement is part of a predefined library
2133 -- unit, then all interpretations which come from user level
2134 -- packages should not be considered. Check previous and
2135 -- current one.
2137 if From_Lib then
2138 if not Comes_From_Predefined_Lib_Unit (It.Nam) then
2139 goto Continue;
2141 elsif not Comes_From_Predefined_Lib_Unit (Seen) then
2143 -- Previous interpretation must be discarded
2145 I1 := I;
2146 Seen := It.Nam;
2147 Expr_Type := It.Typ;
2148 Set_Entity (N, Seen);
2149 goto Continue;
2150 end if;
2151 end if;
2153 -- Otherwise apply further disambiguation steps
2155 Error_Msg_Sloc := Sloc (Seen);
2156 It1 := Disambiguate (N, I1, I, Typ);
2158 -- Disambiguation has succeeded. Skip the remaining
2159 -- interpretations.
2161 if It1 /= No_Interp then
2162 Seen := It1.Nam;
2163 Expr_Type := It1.Typ;
2165 while Present (It.Typ) loop
2166 Get_Next_Interp (I, It);
2167 end loop;
2169 else
2170 -- Before we issue an ambiguity complaint, check for the
2171 -- case of a subprogram call where at least one of the
2172 -- arguments is Any_Type, and if so suppress the message,
2173 -- since it is a cascaded error. This can also happen for
2174 -- a generalized indexing operation.
2176 if Nkind (N) in N_Subprogram_Call
2177 or else (Nkind (N) = N_Indexed_Component
2178 and then Present (Generalized_Indexing (N)))
2179 then
2180 declare
2181 A : Node_Id;
2182 E : Node_Id;
2184 begin
2185 if Nkind (N) = N_Indexed_Component then
2186 Rewrite (N, Generalized_Indexing (N));
2187 end if;
2189 A := First_Actual (N);
2190 while Present (A) loop
2191 E := A;
2193 if Nkind (E) = N_Parameter_Association then
2194 E := Explicit_Actual_Parameter (E);
2195 end if;
2197 if Etype (E) = Any_Type then
2198 if Debug_Flag_V then
2199 Write_Str ("Any_Type in call");
2200 Write_Eol;
2201 end if;
2203 exit Interp_Loop;
2204 end if;
2206 Next_Actual (A);
2207 end loop;
2208 end;
2210 elsif Nkind (N) in N_Binary_Op
2211 and then (Etype (Left_Opnd (N)) = Any_Type
2212 or else Etype (Right_Opnd (N)) = Any_Type)
2213 then
2214 exit Interp_Loop;
2216 elsif Nkind (N) in N_Unary_Op
2217 and then Etype (Right_Opnd (N)) = Any_Type
2218 then
2219 exit Interp_Loop;
2220 end if;
2222 -- Not that special case, so issue message using the flag
2223 -- Ambiguous to control printing of the header message
2224 -- only at the start of an ambiguous set.
2226 if not Ambiguous then
2227 if Nkind (N) = N_Function_Call
2228 and then Nkind (Name (N)) = N_Explicit_Dereference
2229 then
2230 Error_Msg_N
2231 ("ambiguous expression (cannot resolve indirect "
2232 & "call)!", N);
2233 else
2234 Error_Msg_NE -- CODEFIX
2235 ("ambiguous expression (cannot resolve&)!",
2236 N, It.Nam);
2237 end if;
2239 Ambiguous := True;
2241 if Nkind (Parent (Seen)) = N_Full_Type_Declaration then
2242 Error_Msg_N
2243 ("\\possible interpretation (inherited)#!", N);
2244 else
2245 Error_Msg_N -- CODEFIX
2246 ("\\possible interpretation#!", N);
2247 end if;
2249 if Nkind (N) in N_Subprogram_Call
2250 and then Present (Parameter_Associations (N))
2251 then
2252 Report_Ambiguous_Argument;
2253 end if;
2254 end if;
2256 Error_Msg_Sloc := Sloc (It.Nam);
2258 -- By default, the error message refers to the candidate
2259 -- interpretation. But if it is a predefined operator, it
2260 -- is implicitly declared at the declaration of the type
2261 -- of the operand. Recover the sloc of that declaration
2262 -- for the error message.
2264 if Nkind (N) in N_Op
2265 and then Scope (It.Nam) = Standard_Standard
2266 and then not Is_Overloaded (Right_Opnd (N))
2267 and then Scope (Base_Type (Etype (Right_Opnd (N)))) /=
2268 Standard_Standard
2269 then
2270 Err_Type := First_Subtype (Etype (Right_Opnd (N)));
2272 if Comes_From_Source (Err_Type)
2273 and then Present (Parent (Err_Type))
2274 then
2275 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2276 end if;
2278 elsif Nkind (N) in N_Binary_Op
2279 and then Scope (It.Nam) = Standard_Standard
2280 and then not Is_Overloaded (Left_Opnd (N))
2281 and then Scope (Base_Type (Etype (Left_Opnd (N)))) /=
2282 Standard_Standard
2283 then
2284 Err_Type := First_Subtype (Etype (Left_Opnd (N)));
2286 if Comes_From_Source (Err_Type)
2287 and then Present (Parent (Err_Type))
2288 then
2289 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2290 end if;
2292 -- If this is an indirect call, use the subprogram_type
2293 -- in the message, to have a meaningful location. Also
2294 -- indicate if this is an inherited operation, created
2295 -- by a type declaration.
2297 elsif Nkind (N) = N_Function_Call
2298 and then Nkind (Name (N)) = N_Explicit_Dereference
2299 and then Is_Type (It.Nam)
2300 then
2301 Err_Type := It.Nam;
2302 Error_Msg_Sloc :=
2303 Sloc (Associated_Node_For_Itype (Err_Type));
2304 else
2305 Err_Type := Empty;
2306 end if;
2308 if Nkind (N) in N_Op
2309 and then Scope (It.Nam) = Standard_Standard
2310 and then Present (Err_Type)
2311 then
2312 -- Special-case the message for universal_fixed
2313 -- operators, which are not declared with the type
2314 -- of the operand, but appear forever in Standard.
2316 if It.Typ = Universal_Fixed
2317 and then Scope (It.Nam) = Standard_Standard
2318 then
2319 Error_Msg_N
2320 ("\\possible interpretation as universal_fixed "
2321 & "operation (RM 4.5.5 (19))", N);
2322 else
2323 Error_Msg_N
2324 ("\\possible interpretation (predefined)#!", N);
2325 end if;
2327 elsif
2328 Nkind (Parent (It.Nam)) = N_Full_Type_Declaration
2329 then
2330 Error_Msg_N
2331 ("\\possible interpretation (inherited)#!", N);
2332 else
2333 Error_Msg_N -- CODEFIX
2334 ("\\possible interpretation#!", N);
2335 end if;
2337 end if;
2338 end if;
2340 -- We have a matching interpretation, Expr_Type is the type
2341 -- from this interpretation, and Seen is the entity.
2343 -- For an operator, just set the entity name. The type will be
2344 -- set by the specific operator resolution routine.
2346 if Nkind (N) in N_Op then
2347 Set_Entity (N, Seen);
2348 Generate_Reference (Seen, N);
2350 elsif Nkind_In (N, N_Case_Expression,
2351 N_Character_Literal,
2352 N_Delta_Aggregate,
2353 N_If_Expression)
2354 then
2355 Set_Etype (N, Expr_Type);
2357 -- AI05-0139-2: Expression is overloaded because type has
2358 -- implicit dereference. If type matches context, no implicit
2359 -- dereference is involved. If the expression is an entity,
2360 -- generate a reference to it, as this is not done for an
2361 -- overloaded construct during analysis.
2363 elsif Has_Implicit_Dereference (Expr_Type) then
2364 Set_Etype (N, Expr_Type);
2365 Set_Is_Overloaded (N, False);
2367 if Is_Entity_Name (N) then
2368 Generate_Reference (Entity (N), N);
2369 end if;
2371 exit Interp_Loop;
2373 elsif Is_Overloaded (N)
2374 and then Present (It.Nam)
2375 and then Ekind (It.Nam) = E_Discriminant
2376 and then Has_Implicit_Dereference (It.Nam)
2377 then
2378 -- If the node is a general indexing, the dereference is
2379 -- is inserted when resolving the rewritten form, else
2380 -- insert it now.
2382 if Nkind (N) /= N_Indexed_Component
2383 or else No (Generalized_Indexing (N))
2384 then
2385 Build_Explicit_Dereference (N, It.Nam);
2386 end if;
2388 -- For an explicit dereference, attribute reference, range,
2389 -- short-circuit form (which is not an operator node), or call
2390 -- with a name that is an explicit dereference, there is
2391 -- nothing to be done at this point.
2393 elsif Nkind_In (N, N_Attribute_Reference,
2394 N_And_Then,
2395 N_Explicit_Dereference,
2396 N_Identifier,
2397 N_Indexed_Component,
2398 N_Or_Else,
2399 N_Range,
2400 N_Selected_Component,
2401 N_Slice)
2402 or else Nkind (Name (N)) = N_Explicit_Dereference
2403 then
2404 null;
2406 -- For procedure or function calls, set the type of the name,
2407 -- and also the entity pointer for the prefix.
2409 elsif Nkind (N) in N_Subprogram_Call
2410 and then Is_Entity_Name (Name (N))
2411 then
2412 Set_Etype (Name (N), Expr_Type);
2413 Set_Entity (Name (N), Seen);
2414 Generate_Reference (Seen, Name (N));
2416 elsif Nkind (N) = N_Function_Call
2417 and then Nkind (Name (N)) = N_Selected_Component
2418 then
2419 Set_Etype (Name (N), Expr_Type);
2420 Set_Entity (Selector_Name (Name (N)), Seen);
2421 Generate_Reference (Seen, Selector_Name (Name (N)));
2423 -- For all other cases, just set the type of the Name
2425 else
2426 Set_Etype (Name (N), Expr_Type);
2427 end if;
2429 end if;
2431 <<Continue>>
2433 -- Move to next interpretation
2435 exit Interp_Loop when No (It.Typ);
2437 Get_Next_Interp (I, It);
2438 end loop Interp_Loop;
2439 end if;
2441 -- At this stage Found indicates whether or not an acceptable
2442 -- interpretation exists. If not, then we have an error, except that if
2443 -- the context is Any_Type as a result of some other error, then we
2444 -- suppress the error report.
2446 if not Found then
2447 if Typ /= Any_Type then
2449 -- If type we are looking for is Void, then this is the procedure
2450 -- call case, and the error is simply that what we gave is not a
2451 -- procedure name (we think of procedure calls as expressions with
2452 -- types internally, but the user doesn't think of them this way).
2454 if Typ = Standard_Void_Type then
2456 -- Special case message if function used as a procedure
2458 if Nkind (N) = N_Procedure_Call_Statement
2459 and then Is_Entity_Name (Name (N))
2460 and then Ekind (Entity (Name (N))) = E_Function
2461 then
2462 Error_Msg_NE
2463 ("cannot use call to function & as a statement",
2464 Name (N), Entity (Name (N)));
2465 Error_Msg_N
2466 ("\return value of a function call cannot be ignored",
2467 Name (N));
2469 -- Otherwise give general message (not clear what cases this
2470 -- covers, but no harm in providing for them).
2472 else
2473 Error_Msg_N ("expect procedure name in procedure call", N);
2474 end if;
2476 Found := True;
2478 -- Otherwise we do have a subexpression with the wrong type
2480 -- Check for the case of an allocator which uses an access type
2481 -- instead of the designated type. This is a common error and we
2482 -- specialize the message, posting an error on the operand of the
2483 -- allocator, complaining that we expected the designated type of
2484 -- the allocator.
2486 elsif Nkind (N) = N_Allocator
2487 and then Is_Access_Type (Typ)
2488 and then Is_Access_Type (Etype (N))
2489 and then Designated_Type (Etype (N)) = Typ
2490 then
2491 Wrong_Type (Expression (N), Designated_Type (Typ));
2492 Found := True;
2494 -- Check for view mismatch on Null in instances, for which the
2495 -- view-swapping mechanism has no identifier.
2497 elsif (In_Instance or else In_Inlined_Body)
2498 and then (Nkind (N) = N_Null)
2499 and then Is_Private_Type (Typ)
2500 and then Is_Access_Type (Full_View (Typ))
2501 then
2502 Resolve (N, Full_View (Typ));
2503 Set_Etype (N, Typ);
2504 return;
2506 -- Check for an aggregate. Sometimes we can get bogus aggregates
2507 -- from misuse of parentheses, and we are about to complain about
2508 -- the aggregate without even looking inside it.
2510 -- Instead, if we have an aggregate of type Any_Composite, then
2511 -- analyze and resolve the component fields, and then only issue
2512 -- another message if we get no errors doing this (otherwise
2513 -- assume that the errors in the aggregate caused the problem).
2515 elsif Nkind (N) = N_Aggregate
2516 and then Etype (N) = Any_Composite
2517 then
2518 -- Disable expansion in any case. If there is a type mismatch
2519 -- it may be fatal to try to expand the aggregate. The flag
2520 -- would otherwise be set to false when the error is posted.
2522 Expander_Active := False;
2524 declare
2525 procedure Check_Aggr (Aggr : Node_Id);
2526 -- Check one aggregate, and set Found to True if we have a
2527 -- definite error in any of its elements
2529 procedure Check_Elmt (Aelmt : Node_Id);
2530 -- Check one element of aggregate and set Found to True if
2531 -- we definitely have an error in the element.
2533 ----------------
2534 -- Check_Aggr --
2535 ----------------
2537 procedure Check_Aggr (Aggr : Node_Id) is
2538 Elmt : Node_Id;
2540 begin
2541 if Present (Expressions (Aggr)) then
2542 Elmt := First (Expressions (Aggr));
2543 while Present (Elmt) loop
2544 Check_Elmt (Elmt);
2545 Next (Elmt);
2546 end loop;
2547 end if;
2549 if Present (Component_Associations (Aggr)) then
2550 Elmt := First (Component_Associations (Aggr));
2551 while Present (Elmt) loop
2553 -- If this is a default-initialized component, then
2554 -- there is nothing to check. The box will be
2555 -- replaced by the appropriate call during late
2556 -- expansion.
2558 if Nkind (Elmt) /= N_Iterated_Component_Association
2559 and then not Box_Present (Elmt)
2560 then
2561 Check_Elmt (Expression (Elmt));
2562 end if;
2564 Next (Elmt);
2565 end loop;
2566 end if;
2567 end Check_Aggr;
2569 ----------------
2570 -- Check_Elmt --
2571 ----------------
2573 procedure Check_Elmt (Aelmt : Node_Id) is
2574 begin
2575 -- If we have a nested aggregate, go inside it (to
2576 -- attempt a naked analyze-resolve of the aggregate can
2577 -- cause undesirable cascaded errors). Do not resolve
2578 -- expression if it needs a type from context, as for
2579 -- integer * fixed expression.
2581 if Nkind (Aelmt) = N_Aggregate then
2582 Check_Aggr (Aelmt);
2584 else
2585 Analyze (Aelmt);
2587 if not Is_Overloaded (Aelmt)
2588 and then Etype (Aelmt) /= Any_Fixed
2589 then
2590 Resolve (Aelmt);
2591 end if;
2593 if Etype (Aelmt) = Any_Type then
2594 Found := True;
2595 end if;
2596 end if;
2597 end Check_Elmt;
2599 begin
2600 Check_Aggr (N);
2601 end;
2602 end if;
2604 -- Looks like we have a type error, but check for special case
2605 -- of Address wanted, integer found, with the configuration pragma
2606 -- Allow_Integer_Address active. If we have this case, introduce
2607 -- an unchecked conversion to allow the integer expression to be
2608 -- treated as an Address. The reverse case of integer wanted,
2609 -- Address found, is treated in an analogous manner.
2611 if Address_Integer_Convert_OK (Typ, Etype (N)) then
2612 Rewrite (N, Unchecked_Convert_To (Typ, Relocate_Node (N)));
2613 Analyze_And_Resolve (N, Typ);
2614 return;
2616 -- Under relaxed RM semantics silently replace occurrences of null
2617 -- by System.Address_Null.
2619 elsif Null_To_Null_Address_Convert_OK (N, Typ) then
2620 Replace_Null_By_Null_Address (N);
2621 Analyze_And_Resolve (N, Typ);
2622 return;
2623 end if;
2625 -- That special Allow_Integer_Address check did not apply, so we
2626 -- have a real type error. If an error message was issued already,
2627 -- Found got reset to True, so if it's still False, issue standard
2628 -- Wrong_Type message.
2630 if not Found then
2631 if Is_Overloaded (N) and then Nkind (N) = N_Function_Call then
2632 declare
2633 Subp_Name : Node_Id;
2635 begin
2636 if Is_Entity_Name (Name (N)) then
2637 Subp_Name := Name (N);
2639 elsif Nkind (Name (N)) = N_Selected_Component then
2641 -- Protected operation: retrieve operation name
2643 Subp_Name := Selector_Name (Name (N));
2645 else
2646 raise Program_Error;
2647 end if;
2649 Error_Msg_Node_2 := Typ;
2650 Error_Msg_NE
2651 ("no visible interpretation of& matches expected type&",
2652 N, Subp_Name);
2653 end;
2655 if All_Errors_Mode then
2656 declare
2657 Index : Interp_Index;
2658 It : Interp;
2660 begin
2661 Error_Msg_N ("\\possible interpretations:", N);
2663 Get_First_Interp (Name (N), Index, It);
2664 while Present (It.Nam) loop
2665 Error_Msg_Sloc := Sloc (It.Nam);
2666 Error_Msg_Node_2 := It.Nam;
2667 Error_Msg_NE
2668 ("\\ type& for & declared#", N, It.Typ);
2669 Get_Next_Interp (Index, It);
2670 end loop;
2671 end;
2673 else
2674 Error_Msg_N ("\use -gnatf for details", N);
2675 end if;
2677 else
2678 Wrong_Type (N, Typ);
2679 end if;
2680 end if;
2681 end if;
2683 Resolution_Failed;
2684 return;
2686 -- Test if we have more than one interpretation for the context
2688 elsif Ambiguous then
2689 Resolution_Failed;
2690 return;
2692 -- Only one intepretation
2694 else
2695 -- In Ada 2005, if we have something like "X : T := 2 + 2;", where
2696 -- the "+" on T is abstract, and the operands are of universal type,
2697 -- the above code will have (incorrectly) resolved the "+" to the
2698 -- universal one in Standard. Therefore check for this case and give
2699 -- an error. We can't do this earlier, because it would cause legal
2700 -- cases to get errors (when some other type has an abstract "+").
2702 if Ada_Version >= Ada_2005
2703 and then Nkind (N) in N_Op
2704 and then Is_Overloaded (N)
2705 and then Is_Universal_Numeric_Type (Etype (Entity (N)))
2706 then
2707 Get_First_Interp (N, I, It);
2708 while Present (It.Typ) loop
2709 if Present (It.Abstract_Op) and then
2710 Etype (It.Abstract_Op) = Typ
2711 then
2712 Error_Msg_NE
2713 ("cannot call abstract subprogram &!", N, It.Abstract_Op);
2714 return;
2715 end if;
2717 Get_Next_Interp (I, It);
2718 end loop;
2719 end if;
2721 -- Here we have an acceptable interpretation for the context
2723 -- Propagate type information and normalize tree for various
2724 -- predefined operations. If the context only imposes a class of
2725 -- types, rather than a specific type, propagate the actual type
2726 -- downward.
2728 if Typ = Any_Integer or else
2729 Typ = Any_Boolean or else
2730 Typ = Any_Modular or else
2731 Typ = Any_Real or else
2732 Typ = Any_Discrete
2733 then
2734 Ctx_Type := Expr_Type;
2736 -- Any_Fixed is legal in a real context only if a specific fixed-
2737 -- point type is imposed. If Norman Cohen can be confused by this,
2738 -- it deserves a separate message.
2740 if Typ = Any_Real
2741 and then Expr_Type = Any_Fixed
2742 then
2743 Error_Msg_N ("illegal context for mixed mode operation", N);
2744 Set_Etype (N, Universal_Real);
2745 Ctx_Type := Universal_Real;
2746 end if;
2747 end if;
2749 -- A user-defined operator is transformed into a function call at
2750 -- this point, so that further processing knows that operators are
2751 -- really operators (i.e. are predefined operators). User-defined
2752 -- operators that are intrinsic are just renamings of the predefined
2753 -- ones, and need not be turned into calls either, but if they rename
2754 -- a different operator, we must transform the node accordingly.
2755 -- Instantiations of Unchecked_Conversion are intrinsic but are
2756 -- treated as functions, even if given an operator designator.
2758 if Nkind (N) in N_Op
2759 and then Present (Entity (N))
2760 and then Ekind (Entity (N)) /= E_Operator
2761 then
2762 if not Is_Predefined_Op (Entity (N)) then
2763 Rewrite_Operator_As_Call (N, Entity (N));
2765 elsif Present (Alias (Entity (N)))
2766 and then
2767 Nkind (Parent (Parent (Entity (N)))) =
2768 N_Subprogram_Renaming_Declaration
2769 then
2770 Rewrite_Renamed_Operator (N, Alias (Entity (N)), Typ);
2772 -- If the node is rewritten, it will be fully resolved in
2773 -- Rewrite_Renamed_Operator.
2775 if Analyzed (N) then
2776 return;
2777 end if;
2778 end if;
2779 end if;
2781 case N_Subexpr'(Nkind (N)) is
2782 when N_Aggregate =>
2783 Resolve_Aggregate (N, Ctx_Type);
2785 when N_Allocator =>
2786 Resolve_Allocator (N, Ctx_Type);
2788 when N_Short_Circuit =>
2789 Resolve_Short_Circuit (N, Ctx_Type);
2791 when N_Attribute_Reference =>
2792 Resolve_Attribute (N, Ctx_Type);
2794 when N_Case_Expression =>
2795 Resolve_Case_Expression (N, Ctx_Type);
2797 when N_Character_Literal =>
2798 Resolve_Character_Literal (N, Ctx_Type);
2800 when N_Delta_Aggregate =>
2801 Resolve_Delta_Aggregate (N, Ctx_Type);
2803 when N_Expanded_Name =>
2804 Resolve_Entity_Name (N, Ctx_Type);
2806 when N_Explicit_Dereference =>
2807 Resolve_Explicit_Dereference (N, Ctx_Type);
2809 when N_Expression_With_Actions =>
2810 Resolve_Expression_With_Actions (N, Ctx_Type);
2812 when N_Extension_Aggregate =>
2813 Resolve_Extension_Aggregate (N, Ctx_Type);
2815 when N_Function_Call =>
2816 Resolve_Call (N, Ctx_Type);
2818 when N_Identifier =>
2819 Resolve_Entity_Name (N, Ctx_Type);
2821 when N_If_Expression =>
2822 Resolve_If_Expression (N, Ctx_Type);
2824 when N_Indexed_Component =>
2825 Resolve_Indexed_Component (N, Ctx_Type);
2827 when N_Integer_Literal =>
2828 Resolve_Integer_Literal (N, Ctx_Type);
2830 when N_Membership_Test =>
2831 Resolve_Membership_Op (N, Ctx_Type);
2833 when N_Null =>
2834 Resolve_Null (N, Ctx_Type);
2836 when N_Op_And
2837 | N_Op_Or
2838 | N_Op_Xor
2840 Resolve_Logical_Op (N, Ctx_Type);
2842 when N_Op_Eq
2843 | N_Op_Ne
2845 Resolve_Equality_Op (N, Ctx_Type);
2847 when N_Op_Ge
2848 | N_Op_Gt
2849 | N_Op_Le
2850 | N_Op_Lt
2852 Resolve_Comparison_Op (N, Ctx_Type);
2854 when N_Op_Not =>
2855 Resolve_Op_Not (N, Ctx_Type);
2857 when N_Op_Add
2858 | N_Op_Divide
2859 | N_Op_Mod
2860 | N_Op_Multiply
2861 | N_Op_Rem
2862 | N_Op_Subtract
2864 Resolve_Arithmetic_Op (N, Ctx_Type);
2866 when N_Op_Concat =>
2867 Resolve_Op_Concat (N, Ctx_Type);
2869 when N_Op_Expon =>
2870 Resolve_Op_Expon (N, Ctx_Type);
2872 when N_Op_Abs
2873 | N_Op_Minus
2874 | N_Op_Plus
2876 Resolve_Unary_Op (N, Ctx_Type);
2878 when N_Op_Shift =>
2879 Resolve_Shift (N, Ctx_Type);
2881 when N_Procedure_Call_Statement =>
2882 Resolve_Call (N, Ctx_Type);
2884 when N_Operator_Symbol =>
2885 Resolve_Operator_Symbol (N, Ctx_Type);
2887 when N_Qualified_Expression =>
2888 Resolve_Qualified_Expression (N, Ctx_Type);
2890 -- Why is the following null, needs a comment ???
2892 when N_Quantified_Expression =>
2893 null;
2895 when N_Raise_Expression =>
2896 Resolve_Raise_Expression (N, Ctx_Type);
2898 when N_Raise_xxx_Error =>
2899 Set_Etype (N, Ctx_Type);
2901 when N_Range =>
2902 Resolve_Range (N, Ctx_Type);
2904 when N_Real_Literal =>
2905 Resolve_Real_Literal (N, Ctx_Type);
2907 when N_Reference =>
2908 Resolve_Reference (N, Ctx_Type);
2910 when N_Selected_Component =>
2911 Resolve_Selected_Component (N, Ctx_Type);
2913 when N_Slice =>
2914 Resolve_Slice (N, Ctx_Type);
2916 when N_String_Literal =>
2917 Resolve_String_Literal (N, Ctx_Type);
2919 when N_Target_Name =>
2920 Resolve_Target_Name (N, Ctx_Type);
2922 when N_Type_Conversion =>
2923 Resolve_Type_Conversion (N, Ctx_Type);
2925 when N_Unchecked_Expression =>
2926 Resolve_Unchecked_Expression (N, Ctx_Type);
2928 when N_Unchecked_Type_Conversion =>
2929 Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
2930 end case;
2932 -- Mark relevant use-type and use-package clauses as effective using
2933 -- the original node because constant folding may have occured and
2934 -- removed references that need to be examined.
2936 if Nkind (Original_Node (N)) in N_Op then
2937 Mark_Use_Clauses (Original_Node (N));
2938 end if;
2940 -- Ada 2012 (AI05-0149): Apply an (implicit) conversion to an
2941 -- expression of an anonymous access type that occurs in the context
2942 -- of a named general access type, except when the expression is that
2943 -- of a membership test. This ensures proper legality checking in
2944 -- terms of allowed conversions (expressions that would be illegal to
2945 -- convert implicitly are allowed in membership tests).
2947 if Ada_Version >= Ada_2012
2948 and then Ekind (Ctx_Type) = E_General_Access_Type
2949 and then Ekind (Etype (N)) = E_Anonymous_Access_Type
2950 and then Nkind (Parent (N)) not in N_Membership_Test
2951 then
2952 Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N)));
2953 Analyze_And_Resolve (N, Ctx_Type);
2954 end if;
2956 -- If the subexpression was replaced by a non-subexpression, then
2957 -- all we do is to expand it. The only legitimate case we know of
2958 -- is converting procedure call statement to entry call statements,
2959 -- but there may be others, so we are making this test general.
2961 if Nkind (N) not in N_Subexpr then
2962 Debug_A_Exit ("resolving ", N, " (done)");
2963 Expand (N);
2964 return;
2965 end if;
2967 -- The expression is definitely NOT overloaded at this point, so
2968 -- we reset the Is_Overloaded flag to avoid any confusion when
2969 -- reanalyzing the node.
2971 Set_Is_Overloaded (N, False);
2973 -- Freeze expression type, entity if it is a name, and designated
2974 -- type if it is an allocator (RM 13.14(10,11,13)).
2976 -- Now that the resolution of the type of the node is complete, and
2977 -- we did not detect an error, we can expand this node. We skip the
2978 -- expand call if we are in a default expression, see section
2979 -- "Handling of Default Expressions" in Sem spec.
2981 Debug_A_Exit ("resolving ", N, " (done)");
2983 -- We unconditionally freeze the expression, even if we are in
2984 -- default expression mode (the Freeze_Expression routine tests this
2985 -- flag and only freezes static types if it is set).
2987 -- Ada 2012 (AI05-177): The declaration of an expression function
2988 -- does not cause freezing, but we never reach here in that case.
2989 -- Here we are resolving the corresponding expanded body, so we do
2990 -- need to perform normal freezing.
2992 -- As elsewhere we do not emit freeze node within a generic. We make
2993 -- an exception for entities that are expressions, only to detect
2994 -- misuses of deferred constants and preserve the output of various
2995 -- tests.
2997 if not Inside_A_Generic or else Is_Entity_Name (N) then
2998 Freeze_Expression (N);
2999 end if;
3001 -- Now we can do the expansion
3003 Expand (N);
3004 end if;
3005 end Resolve;
3007 -------------
3008 -- Resolve --
3009 -------------
3011 -- Version with check(s) suppressed
3013 procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
3014 begin
3015 if Suppress = All_Checks then
3016 declare
3017 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
3018 begin
3019 Scope_Suppress.Suppress := (others => True);
3020 Resolve (N, Typ);
3021 Scope_Suppress.Suppress := Sva;
3022 end;
3024 else
3025 declare
3026 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
3027 begin
3028 Scope_Suppress.Suppress (Suppress) := True;
3029 Resolve (N, Typ);
3030 Scope_Suppress.Suppress (Suppress) := Svg;
3031 end;
3032 end if;
3033 end Resolve;
3035 -------------
3036 -- Resolve --
3037 -------------
3039 -- Version with implicit type
3041 procedure Resolve (N : Node_Id) is
3042 begin
3043 Resolve (N, Etype (N));
3044 end Resolve;
3046 ---------------------
3047 -- Resolve_Actuals --
3048 ---------------------
3050 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
3051 Loc : constant Source_Ptr := Sloc (N);
3052 A : Node_Id;
3053 A_Id : Entity_Id;
3054 A_Typ : Entity_Id := Empty; -- init to avoid warning
3055 F : Entity_Id;
3056 F_Typ : Entity_Id;
3057 Prev : Node_Id := Empty;
3058 Orig_A : Node_Id;
3059 Real_F : Entity_Id := Empty; -- init to avoid warning
3061 Real_Subp : Entity_Id;
3062 -- If the subprogram being called is an inherited operation for
3063 -- a formal derived type in an instance, Real_Subp is the subprogram
3064 -- that will be called. It may have different formal names than the
3065 -- operation of the formal in the generic, so after actual is resolved
3066 -- the name of the actual in a named association must carry the name
3067 -- of the actual of the subprogram being called.
3069 procedure Check_Aliased_Parameter;
3070 -- Check rules on aliased parameters and related accessibility rules
3071 -- in (RM 3.10.2 (10.2-10.4)).
3073 procedure Check_Argument_Order;
3074 -- Performs a check for the case where the actuals are all simple
3075 -- identifiers that correspond to the formal names, but in the wrong
3076 -- order, which is considered suspicious and cause for a warning.
3078 procedure Check_Prefixed_Call;
3079 -- If the original node is an overloaded call in prefix notation,
3080 -- insert an 'Access or a dereference as needed over the first actual.
3081 -- Try_Object_Operation has already verified that there is a valid
3082 -- interpretation, but the form of the actual can only be determined
3083 -- once the primitive operation is identified.
3085 procedure Flag_Effectively_Volatile_Objects (Expr : Node_Id);
3086 -- Emit an error concerning the illegal usage of an effectively volatile
3087 -- object in interfering context (SPARK RM 7.13(12)).
3089 procedure Insert_Default;
3090 -- If the actual is missing in a call, insert in the actuals list
3091 -- an instance of the default expression. The insertion is always
3092 -- a named association.
3094 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean;
3095 -- Check whether T1 and T2, or their full views, are derived from a
3096 -- common type. Used to enforce the restrictions on array conversions
3097 -- of AI95-00246.
3099 function Static_Concatenation (N : Node_Id) return Boolean;
3100 -- Predicate to determine whether an actual that is a concatenation
3101 -- will be evaluated statically and does not need a transient scope.
3102 -- This must be determined before the actual is resolved and expanded
3103 -- because if needed the transient scope must be introduced earlier.
3105 -----------------------------
3106 -- Check_Aliased_Parameter --
3107 -----------------------------
3109 procedure Check_Aliased_Parameter is
3110 Nominal_Subt : Entity_Id;
3112 begin
3113 if Is_Aliased (F) then
3114 if Is_Tagged_Type (A_Typ) then
3115 null;
3117 elsif Is_Aliased_View (A) then
3118 if Is_Constr_Subt_For_U_Nominal (A_Typ) then
3119 Nominal_Subt := Base_Type (A_Typ);
3120 else
3121 Nominal_Subt := A_Typ;
3122 end if;
3124 if Subtypes_Statically_Match (F_Typ, Nominal_Subt) then
3125 null;
3127 -- In a generic body assume the worst for generic formals:
3128 -- they can have a constrained partial view (AI05-041).
3130 elsif Has_Discriminants (F_Typ)
3131 and then not Is_Constrained (F_Typ)
3132 and then not Has_Constrained_Partial_View (F_Typ)
3133 and then not Is_Generic_Type (F_Typ)
3134 then
3135 null;
3137 else
3138 Error_Msg_NE ("untagged actual does not match "
3139 & "aliased formal&", A, F);
3140 end if;
3142 else
3143 Error_Msg_NE ("actual for aliased formal& must be "
3144 & "aliased object", A, F);
3145 end if;
3147 if Ekind (Nam) = E_Procedure then
3148 null;
3150 elsif Ekind (Etype (Nam)) = E_Anonymous_Access_Type then
3151 if Nkind (Parent (N)) = N_Type_Conversion
3152 and then Type_Access_Level (Etype (Parent (N))) <
3153 Object_Access_Level (A)
3154 then
3155 Error_Msg_N ("aliased actual has wrong accessibility", A);
3156 end if;
3158 elsif Nkind (Parent (N)) = N_Qualified_Expression
3159 and then Nkind (Parent (Parent (N))) = N_Allocator
3160 and then Type_Access_Level (Etype (Parent (Parent (N)))) <
3161 Object_Access_Level (A)
3162 then
3163 Error_Msg_N
3164 ("aliased actual in allocator has wrong accessibility", A);
3165 end if;
3166 end if;
3167 end Check_Aliased_Parameter;
3169 --------------------------
3170 -- Check_Argument_Order --
3171 --------------------------
3173 procedure Check_Argument_Order is
3174 begin
3175 -- Nothing to do if no parameters, or original node is neither a
3176 -- function call nor a procedure call statement (happens in the
3177 -- operator-transformed-to-function call case), or the call does
3178 -- not come from source, or this warning is off.
3180 if not Warn_On_Parameter_Order
3181 or else No (Parameter_Associations (N))
3182 or else Nkind (Original_Node (N)) not in N_Subprogram_Call
3183 or else not Comes_From_Source (N)
3184 then
3185 return;
3186 end if;
3188 declare
3189 Nargs : constant Nat := List_Length (Parameter_Associations (N));
3191 begin
3192 -- Nothing to do if only one parameter
3194 if Nargs < 2 then
3195 return;
3196 end if;
3198 -- Here if at least two arguments
3200 declare
3201 Actuals : array (1 .. Nargs) of Node_Id;
3202 Actual : Node_Id;
3203 Formal : Node_Id;
3205 Wrong_Order : Boolean := False;
3206 -- Set True if an out of order case is found
3208 begin
3209 -- Collect identifier names of actuals, fail if any actual is
3210 -- not a simple identifier, and record max length of name.
3212 Actual := First (Parameter_Associations (N));
3213 for J in Actuals'Range loop
3214 if Nkind (Actual) /= N_Identifier then
3215 return;
3216 else
3217 Actuals (J) := Actual;
3218 Next (Actual);
3219 end if;
3220 end loop;
3222 -- If we got this far, all actuals are identifiers and the list
3223 -- of their names is stored in the Actuals array.
3225 Formal := First_Formal (Nam);
3226 for J in Actuals'Range loop
3228 -- If we ran out of formals, that's odd, probably an error
3229 -- which will be detected elsewhere, but abandon the search.
3231 if No (Formal) then
3232 return;
3233 end if;
3235 -- If name matches and is in order OK
3237 if Chars (Formal) = Chars (Actuals (J)) then
3238 null;
3240 else
3241 -- If no match, see if it is elsewhere in list and if so
3242 -- flag potential wrong order if type is compatible.
3244 for K in Actuals'Range loop
3245 if Chars (Formal) = Chars (Actuals (K))
3246 and then
3247 Has_Compatible_Type (Actuals (K), Etype (Formal))
3248 then
3249 Wrong_Order := True;
3250 goto Continue;
3251 end if;
3252 end loop;
3254 -- No match
3256 return;
3257 end if;
3259 <<Continue>> Next_Formal (Formal);
3260 end loop;
3262 -- If Formals left over, also probably an error, skip warning
3264 if Present (Formal) then
3265 return;
3266 end if;
3268 -- Here we give the warning if something was out of order
3270 if Wrong_Order then
3271 Error_Msg_N
3272 ("?P?actuals for this call may be in wrong order", N);
3273 end if;
3274 end;
3275 end;
3276 end Check_Argument_Order;
3278 -------------------------
3279 -- Check_Prefixed_Call --
3280 -------------------------
3282 procedure Check_Prefixed_Call is
3283 Act : constant Node_Id := First_Actual (N);
3284 A_Type : constant Entity_Id := Etype (Act);
3285 F_Type : constant Entity_Id := Etype (First_Formal (Nam));
3286 Orig : constant Node_Id := Original_Node (N);
3287 New_A : Node_Id;
3289 begin
3290 -- Check whether the call is a prefixed call, with or without
3291 -- additional actuals.
3293 if Nkind (Orig) = N_Selected_Component
3294 or else
3295 (Nkind (Orig) = N_Indexed_Component
3296 and then Nkind (Prefix (Orig)) = N_Selected_Component
3297 and then Is_Entity_Name (Prefix (Prefix (Orig)))
3298 and then Is_Entity_Name (Act)
3299 and then Chars (Act) = Chars (Prefix (Prefix (Orig))))
3300 then
3301 if Is_Access_Type (A_Type)
3302 and then not Is_Access_Type (F_Type)
3303 then
3304 -- Introduce dereference on object in prefix
3306 New_A :=
3307 Make_Explicit_Dereference (Sloc (Act),
3308 Prefix => Relocate_Node (Act));
3309 Rewrite (Act, New_A);
3310 Analyze (Act);
3312 elsif Is_Access_Type (F_Type)
3313 and then not Is_Access_Type (A_Type)
3314 then
3315 -- Introduce an implicit 'Access in prefix
3317 if not Is_Aliased_View (Act) then
3318 Error_Msg_NE
3319 ("object in prefixed call to& must be aliased "
3320 & "(RM 4.1.3 (13 1/2))",
3321 Prefix (Act), Nam);
3322 end if;
3324 Rewrite (Act,
3325 Make_Attribute_Reference (Loc,
3326 Attribute_Name => Name_Access,
3327 Prefix => Relocate_Node (Act)));
3328 end if;
3330 Analyze (Act);
3331 end if;
3332 end Check_Prefixed_Call;
3334 ---------------------------------------
3335 -- Flag_Effectively_Volatile_Objects --
3336 ---------------------------------------
3338 procedure Flag_Effectively_Volatile_Objects (Expr : Node_Id) is
3339 function Flag_Object (N : Node_Id) return Traverse_Result;
3340 -- Determine whether arbitrary node N denotes an effectively volatile
3341 -- object and if it does, emit an error.
3343 -----------------
3344 -- Flag_Object --
3345 -----------------
3347 function Flag_Object (N : Node_Id) return Traverse_Result is
3348 Id : Entity_Id;
3350 begin
3351 -- Do not consider nested function calls because they have already
3352 -- been processed during their own resolution.
3354 if Nkind (N) = N_Function_Call then
3355 return Skip;
3357 elsif Is_Entity_Name (N) and then Present (Entity (N)) then
3358 Id := Entity (N);
3360 if Is_Object (Id)
3361 and then Is_Effectively_Volatile (Id)
3362 and then (Async_Writers_Enabled (Id)
3363 or else Effective_Reads_Enabled (Id))
3364 then
3365 Error_Msg_N
3366 ("volatile object cannot appear in this context (SPARK "
3367 & "RM 7.1.3(11))", N);
3368 return Skip;
3369 end if;
3370 end if;
3372 return OK;
3373 end Flag_Object;
3375 procedure Flag_Objects is new Traverse_Proc (Flag_Object);
3377 -- Start of processing for Flag_Effectively_Volatile_Objects
3379 begin
3380 Flag_Objects (Expr);
3381 end Flag_Effectively_Volatile_Objects;
3383 --------------------
3384 -- Insert_Default --
3385 --------------------
3387 procedure Insert_Default is
3388 Actval : Node_Id;
3389 Assoc : Node_Id;
3391 begin
3392 -- Missing argument in call, nothing to insert
3394 if No (Default_Value (F)) then
3395 return;
3397 else
3398 -- Note that we do a full New_Copy_Tree, so that any associated
3399 -- Itypes are properly copied. This may not be needed any more,
3400 -- but it does no harm as a safety measure. Defaults of a generic
3401 -- formal may be out of bounds of the corresponding actual (see
3402 -- cc1311b) and an additional check may be required.
3404 Actval :=
3405 New_Copy_Tree
3406 (Default_Value (F),
3407 New_Scope => Current_Scope,
3408 New_Sloc => Loc);
3410 -- Propagate dimension information, if any.
3412 Copy_Dimensions (Default_Value (F), Actval);
3414 if Is_Concurrent_Type (Scope (Nam))
3415 and then Has_Discriminants (Scope (Nam))
3416 then
3417 Replace_Actual_Discriminants (N, Actval);
3418 end if;
3420 if Is_Overloadable (Nam)
3421 and then Present (Alias (Nam))
3422 then
3423 if Base_Type (Etype (F)) /= Base_Type (Etype (Actval))
3424 and then not Is_Tagged_Type (Etype (F))
3425 then
3426 -- If default is a real literal, do not introduce a
3427 -- conversion whose effect may depend on the run-time
3428 -- size of universal real.
3430 if Nkind (Actval) = N_Real_Literal then
3431 Set_Etype (Actval, Base_Type (Etype (F)));
3432 else
3433 Actval := Unchecked_Convert_To (Etype (F), Actval);
3434 end if;
3435 end if;
3437 if Is_Scalar_Type (Etype (F)) then
3438 Enable_Range_Check (Actval);
3439 end if;
3441 Set_Parent (Actval, N);
3443 -- Resolve aggregates with their base type, to avoid scope
3444 -- anomalies: the subtype was first built in the subprogram
3445 -- declaration, and the current call may be nested.
3447 if Nkind (Actval) = N_Aggregate then
3448 Analyze_And_Resolve (Actval, Etype (F));
3449 else
3450 Analyze_And_Resolve (Actval, Etype (Actval));
3451 end if;
3453 else
3454 Set_Parent (Actval, N);
3456 -- See note above concerning aggregates
3458 if Nkind (Actval) = N_Aggregate
3459 and then Has_Discriminants (Etype (Actval))
3460 then
3461 Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
3463 -- Resolve entities with their own type, which may differ from
3464 -- the type of a reference in a generic context (the view
3465 -- swapping mechanism did not anticipate the re-analysis of
3466 -- default values in calls).
3468 elsif Is_Entity_Name (Actval) then
3469 Analyze_And_Resolve (Actval, Etype (Entity (Actval)));
3471 else
3472 Analyze_And_Resolve (Actval, Etype (Actval));
3473 end if;
3474 end if;
3476 -- If default is a tag indeterminate function call, propagate tag
3477 -- to obtain proper dispatching.
3479 if Is_Controlling_Formal (F)
3480 and then Nkind (Default_Value (F)) = N_Function_Call
3481 then
3482 Set_Is_Controlling_Actual (Actval);
3483 end if;
3484 end if;
3486 -- If the default expression raises constraint error, then just
3487 -- silently replace it with an N_Raise_Constraint_Error node, since
3488 -- we already gave the warning on the subprogram spec. If node is
3489 -- already a Raise_Constraint_Error leave as is, to prevent loops in
3490 -- the warnings removal machinery.
3492 if Raises_Constraint_Error (Actval)
3493 and then Nkind (Actval) /= N_Raise_Constraint_Error
3494 then
3495 Rewrite (Actval,
3496 Make_Raise_Constraint_Error (Loc,
3497 Reason => CE_Range_Check_Failed));
3499 Set_Raises_Constraint_Error (Actval);
3500 Set_Etype (Actval, Etype (F));
3501 end if;
3503 Assoc :=
3504 Make_Parameter_Association (Loc,
3505 Explicit_Actual_Parameter => Actval,
3506 Selector_Name => Make_Identifier (Loc, Chars (F)));
3508 -- Case of insertion is first named actual
3510 if No (Prev)
3511 or else Nkind (Parent (Prev)) /= N_Parameter_Association
3512 then
3513 Set_Next_Named_Actual (Assoc, First_Named_Actual (N));
3514 Set_First_Named_Actual (N, Actval);
3516 if No (Prev) then
3517 if No (Parameter_Associations (N)) then
3518 Set_Parameter_Associations (N, New_List (Assoc));
3519 else
3520 Append (Assoc, Parameter_Associations (N));
3521 end if;
3523 else
3524 Insert_After (Prev, Assoc);
3525 end if;
3527 -- Case of insertion is not first named actual
3529 else
3530 Set_Next_Named_Actual
3531 (Assoc, Next_Named_Actual (Parent (Prev)));
3532 Set_Next_Named_Actual (Parent (Prev), Actval);
3533 Append (Assoc, Parameter_Associations (N));
3534 end if;
3536 Mark_Rewrite_Insertion (Assoc);
3537 Mark_Rewrite_Insertion (Actval);
3539 Prev := Actval;
3540 end Insert_Default;
3542 -------------------
3543 -- Same_Ancestor --
3544 -------------------
3546 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean is
3547 FT1 : Entity_Id := T1;
3548 FT2 : Entity_Id := T2;
3550 begin
3551 if Is_Private_Type (T1)
3552 and then Present (Full_View (T1))
3553 then
3554 FT1 := Full_View (T1);
3555 end if;
3557 if Is_Private_Type (T2)
3558 and then Present (Full_View (T2))
3559 then
3560 FT2 := Full_View (T2);
3561 end if;
3563 return Root_Type (Base_Type (FT1)) = Root_Type (Base_Type (FT2));
3564 end Same_Ancestor;
3566 --------------------------
3567 -- Static_Concatenation --
3568 --------------------------
3570 function Static_Concatenation (N : Node_Id) return Boolean is
3571 begin
3572 case Nkind (N) is
3573 when N_String_Literal =>
3574 return True;
3576 when N_Op_Concat =>
3578 -- Concatenation is static when both operands are static and
3579 -- the concatenation operator is a predefined one.
3581 return Scope (Entity (N)) = Standard_Standard
3582 and then
3583 Static_Concatenation (Left_Opnd (N))
3584 and then
3585 Static_Concatenation (Right_Opnd (N));
3587 when others =>
3588 if Is_Entity_Name (N) then
3589 declare
3590 Ent : constant Entity_Id := Entity (N);
3591 begin
3592 return Ekind (Ent) = E_Constant
3593 and then Present (Constant_Value (Ent))
3594 and then
3595 Is_OK_Static_Expression (Constant_Value (Ent));
3596 end;
3598 else
3599 return False;
3600 end if;
3601 end case;
3602 end Static_Concatenation;
3604 -- Start of processing for Resolve_Actuals
3606 begin
3607 Check_Argument_Order;
3609 if Is_Overloadable (Nam)
3610 and then Is_Inherited_Operation (Nam)
3611 and then In_Instance
3612 and then Present (Alias (Nam))
3613 and then Present (Overridden_Operation (Alias (Nam)))
3614 then
3615 Real_Subp := Alias (Nam);
3616 else
3617 Real_Subp := Empty;
3618 end if;
3620 if Present (First_Actual (N)) then
3621 Check_Prefixed_Call;
3622 end if;
3624 A := First_Actual (N);
3625 F := First_Formal (Nam);
3627 if Present (Real_Subp) then
3628 Real_F := First_Formal (Real_Subp);
3629 end if;
3631 while Present (F) loop
3632 if No (A) and then Needs_No_Actuals (Nam) then
3633 null;
3635 -- If we have an error in any actual or formal, indicated by a type
3636 -- of Any_Type, then abandon resolution attempt, and set result type
3637 -- to Any_Type. Skip this if the actual is a Raise_Expression, whose
3638 -- type is imposed from context.
3640 elsif (Present (A) and then Etype (A) = Any_Type)
3641 or else Etype (F) = Any_Type
3642 then
3643 if Nkind (A) /= N_Raise_Expression then
3644 Set_Etype (N, Any_Type);
3645 return;
3646 end if;
3647 end if;
3649 -- Case where actual is present
3651 -- If the actual is an entity, generate a reference to it now. We
3652 -- do this before the actual is resolved, because a formal of some
3653 -- protected subprogram, or a task discriminant, will be rewritten
3654 -- during expansion, and the source entity reference may be lost.
3656 if Present (A)
3657 and then Is_Entity_Name (A)
3658 and then Comes_From_Source (A)
3659 then
3660 -- Annotate the tree by creating a variable reference marker when
3661 -- the actual denotes a variable reference, in case the reference
3662 -- is folded or optimized away. The variable reference marker is
3663 -- automatically saved for later examination by the ABE Processing
3664 -- phase. The status of the reference is set as follows:
3666 -- status mode
3667 -- read IN, IN OUT
3668 -- write IN OUT, OUT
3670 Build_Variable_Reference_Marker
3671 (N => A,
3672 Read => Ekind (F) /= E_Out_Parameter,
3673 Write => Ekind (F) /= E_In_Parameter);
3675 Orig_A := Entity (A);
3677 if Present (Orig_A) then
3678 if Is_Formal (Orig_A)
3679 and then Ekind (F) /= E_In_Parameter
3680 then
3681 Generate_Reference (Orig_A, A, 'm');
3683 elsif not Is_Overloaded (A) then
3684 if Ekind (F) /= E_Out_Parameter then
3685 Generate_Reference (Orig_A, A);
3687 -- RM 6.4.1(12): For an out parameter that is passed by
3688 -- copy, the formal parameter object is created, and:
3690 -- * For an access type, the formal parameter is initialized
3691 -- from the value of the actual, without checking that the
3692 -- value satisfies any constraint, any predicate, or any
3693 -- exclusion of the null value.
3695 -- * For a scalar type that has the Default_Value aspect
3696 -- specified, the formal parameter is initialized from the
3697 -- value of the actual, without checking that the value
3698 -- satisfies any constraint or any predicate.
3699 -- I do not understand why this case is included??? this is
3700 -- not a case where an OUT parameter is treated as IN OUT.
3702 -- * For a composite type with discriminants or that has
3703 -- implicit initial values for any subcomponents, the
3704 -- behavior is as for an in out parameter passed by copy.
3706 -- Hence for these cases we generate the read reference now
3707 -- (the write reference will be generated later by
3708 -- Note_Possible_Modification).
3710 elsif Is_By_Copy_Type (Etype (F))
3711 and then
3712 (Is_Access_Type (Etype (F))
3713 or else
3714 (Is_Scalar_Type (Etype (F))
3715 and then
3716 Present (Default_Aspect_Value (Etype (F))))
3717 or else
3718 (Is_Composite_Type (Etype (F))
3719 and then (Has_Discriminants (Etype (F))
3720 or else Is_Partially_Initialized_Type
3721 (Etype (F)))))
3722 then
3723 Generate_Reference (Orig_A, A);
3724 end if;
3725 end if;
3726 end if;
3727 end if;
3729 if Present (A)
3730 and then (Nkind (Parent (A)) /= N_Parameter_Association
3731 or else Chars (Selector_Name (Parent (A))) = Chars (F))
3732 then
3733 -- If style checking mode on, check match of formal name
3735 if Style_Check then
3736 if Nkind (Parent (A)) = N_Parameter_Association then
3737 Check_Identifier (Selector_Name (Parent (A)), F);
3738 end if;
3739 end if;
3741 -- If the formal is Out or In_Out, do not resolve and expand the
3742 -- conversion, because it is subsequently expanded into explicit
3743 -- temporaries and assignments. However, the object of the
3744 -- conversion can be resolved. An exception is the case of tagged
3745 -- type conversion with a class-wide actual. In that case we want
3746 -- the tag check to occur and no temporary will be needed (no
3747 -- representation change can occur) and the parameter is passed by
3748 -- reference, so we go ahead and resolve the type conversion.
3749 -- Another exception is the case of reference to component or
3750 -- subcomponent of a bit-packed array, in which case we want to
3751 -- defer expansion to the point the in and out assignments are
3752 -- performed.
3754 if Ekind (F) /= E_In_Parameter
3755 and then Nkind (A) = N_Type_Conversion
3756 and then not Is_Class_Wide_Type (Etype (Expression (A)))
3757 then
3758 if Ekind (F) = E_In_Out_Parameter
3759 and then Is_Array_Type (Etype (F))
3760 then
3761 -- In a view conversion, the conversion must be legal in
3762 -- both directions, and thus both component types must be
3763 -- aliased, or neither (4.6 (8)).
3765 -- The extra rule in 4.6 (24.9.2) seems unduly restrictive:
3766 -- the privacy requirement should not apply to generic
3767 -- types, and should be checked in an instance. ARG query
3768 -- is in order ???
3770 if Has_Aliased_Components (Etype (Expression (A))) /=
3771 Has_Aliased_Components (Etype (F))
3772 then
3773 Error_Msg_N
3774 ("both component types in a view conversion must be"
3775 & " aliased, or neither", A);
3777 -- Comment here??? what set of cases???
3779 elsif
3780 not Same_Ancestor (Etype (F), Etype (Expression (A)))
3781 then
3782 -- Check view conv between unrelated by ref array types
3784 if Is_By_Reference_Type (Etype (F))
3785 or else Is_By_Reference_Type (Etype (Expression (A)))
3786 then
3787 Error_Msg_N
3788 ("view conversion between unrelated by reference "
3789 & "array types not allowed (\'A'I-00246)", A);
3791 -- In Ada 2005 mode, check view conversion component
3792 -- type cannot be private, tagged, or volatile. Note
3793 -- that we only apply this to source conversions. The
3794 -- generated code can contain conversions which are
3795 -- not subject to this test, and we cannot extract the
3796 -- component type in such cases since it is not present.
3798 elsif Comes_From_Source (A)
3799 and then Ada_Version >= Ada_2005
3800 then
3801 declare
3802 Comp_Type : constant Entity_Id :=
3803 Component_Type
3804 (Etype (Expression (A)));
3805 begin
3806 if (Is_Private_Type (Comp_Type)
3807 and then not Is_Generic_Type (Comp_Type))
3808 or else Is_Tagged_Type (Comp_Type)
3809 or else Is_Volatile (Comp_Type)
3810 then
3811 Error_Msg_N
3812 ("component type of a view conversion cannot"
3813 & " be private, tagged, or volatile"
3814 & " (RM 4.6 (24))",
3815 Expression (A));
3816 end if;
3817 end;
3818 end if;
3819 end if;
3820 end if;
3822 -- Resolve expression if conversion is all OK
3824 if (Conversion_OK (A)
3825 or else Valid_Conversion (A, Etype (A), Expression (A)))
3826 and then not Is_Ref_To_Bit_Packed_Array (Expression (A))
3827 then
3828 Resolve (Expression (A));
3829 end if;
3831 -- If the actual is a function call that returns a limited
3832 -- unconstrained object that needs finalization, create a
3833 -- transient scope for it, so that it can receive the proper
3834 -- finalization list.
3836 elsif Expander_Active
3837 and then Nkind (A) = N_Function_Call
3838 and then Is_Limited_Record (Etype (F))
3839 and then not Is_Constrained (Etype (F))
3840 and then (Needs_Finalization (Etype (F))
3841 or else Has_Task (Etype (F)))
3842 then
3843 Establish_Transient_Scope (A, Manage_Sec_Stack => False);
3844 Resolve (A, Etype (F));
3846 -- A small optimization: if one of the actuals is a concatenation
3847 -- create a block around a procedure call to recover stack space.
3848 -- This alleviates stack usage when several procedure calls in
3849 -- the same statement list use concatenation. We do not perform
3850 -- this wrapping for code statements, where the argument is a
3851 -- static string, and we want to preserve warnings involving
3852 -- sequences of such statements.
3854 elsif Expander_Active
3855 and then Nkind (A) = N_Op_Concat
3856 and then Nkind (N) = N_Procedure_Call_Statement
3857 and then not (Is_Intrinsic_Subprogram (Nam)
3858 and then Chars (Nam) = Name_Asm)
3859 and then not Static_Concatenation (A)
3860 then
3861 Establish_Transient_Scope (A, Manage_Sec_Stack => False);
3862 Resolve (A, Etype (F));
3864 else
3865 if Nkind (A) = N_Type_Conversion
3866 and then Is_Array_Type (Etype (F))
3867 and then not Same_Ancestor (Etype (F), Etype (Expression (A)))
3868 and then
3869 (Is_Limited_Type (Etype (F))
3870 or else Is_Limited_Type (Etype (Expression (A))))
3871 then
3872 Error_Msg_N
3873 ("conversion between unrelated limited array types not "
3874 & "allowed ('A'I-00246)", A);
3876 if Is_Limited_Type (Etype (F)) then
3877 Explain_Limited_Type (Etype (F), A);
3878 end if;
3880 if Is_Limited_Type (Etype (Expression (A))) then
3881 Explain_Limited_Type (Etype (Expression (A)), A);
3882 end if;
3883 end if;
3885 -- (Ada 2005: AI-251): If the actual is an allocator whose
3886 -- directly designated type is a class-wide interface, we build
3887 -- an anonymous access type to use it as the type of the
3888 -- allocator. Later, when the subprogram call is expanded, if
3889 -- the interface has a secondary dispatch table the expander
3890 -- will add a type conversion to force the correct displacement
3891 -- of the pointer.
3893 if Nkind (A) = N_Allocator then
3894 declare
3895 DDT : constant Entity_Id :=
3896 Directly_Designated_Type (Base_Type (Etype (F)));
3898 New_Itype : Entity_Id;
3900 begin
3901 if Is_Class_Wide_Type (DDT)
3902 and then Is_Interface (DDT)
3903 then
3904 New_Itype := Create_Itype (E_Anonymous_Access_Type, A);
3905 Set_Etype (New_Itype, Etype (A));
3906 Set_Directly_Designated_Type
3907 (New_Itype, Directly_Designated_Type (Etype (A)));
3908 Set_Etype (A, New_Itype);
3909 end if;
3911 -- Ada 2005, AI-162:If the actual is an allocator, the
3912 -- innermost enclosing statement is the master of the
3913 -- created object. This needs to be done with expansion
3914 -- enabled only, otherwise the transient scope will not
3915 -- be removed in the expansion of the wrapped construct.
3917 if Expander_Active
3918 and then (Needs_Finalization (DDT)
3919 or else Has_Task (DDT))
3920 then
3921 Establish_Transient_Scope
3922 (A, Manage_Sec_Stack => False);
3923 end if;
3924 end;
3926 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
3927 Check_Restriction (No_Access_Parameter_Allocators, A);
3928 end if;
3929 end if;
3931 -- (Ada 2005): The call may be to a primitive operation of a
3932 -- tagged synchronized type, declared outside of the type. In
3933 -- this case the controlling actual must be converted to its
3934 -- corresponding record type, which is the formal type. The
3935 -- actual may be a subtype, either because of a constraint or
3936 -- because it is a generic actual, so use base type to locate
3937 -- concurrent type.
3939 F_Typ := Base_Type (Etype (F));
3941 if Is_Tagged_Type (F_Typ)
3942 and then (Is_Concurrent_Type (F_Typ)
3943 or else Is_Concurrent_Record_Type (F_Typ))
3944 then
3945 -- If the actual is overloaded, look for an interpretation
3946 -- that has a synchronized type.
3948 if not Is_Overloaded (A) then
3949 A_Typ := Base_Type (Etype (A));
3951 else
3952 declare
3953 Index : Interp_Index;
3954 It : Interp;
3956 begin
3957 Get_First_Interp (A, Index, It);
3958 while Present (It.Typ) loop
3959 if Is_Concurrent_Type (It.Typ)
3960 or else Is_Concurrent_Record_Type (It.Typ)
3961 then
3962 A_Typ := Base_Type (It.Typ);
3963 exit;
3964 end if;
3966 Get_Next_Interp (Index, It);
3967 end loop;
3968 end;
3969 end if;
3971 declare
3972 Full_A_Typ : Entity_Id;
3974 begin
3975 if Present (Full_View (A_Typ)) then
3976 Full_A_Typ := Base_Type (Full_View (A_Typ));
3977 else
3978 Full_A_Typ := A_Typ;
3979 end if;
3981 -- Tagged synchronized type (case 1): the actual is a
3982 -- concurrent type.
3984 if Is_Concurrent_Type (A_Typ)
3985 and then Corresponding_Record_Type (A_Typ) = F_Typ
3986 then
3987 Rewrite (A,
3988 Unchecked_Convert_To
3989 (Corresponding_Record_Type (A_Typ), A));
3990 Resolve (A, Etype (F));
3992 -- Tagged synchronized type (case 2): the formal is a
3993 -- concurrent type.
3995 elsif Ekind (Full_A_Typ) = E_Record_Type
3996 and then Present
3997 (Corresponding_Concurrent_Type (Full_A_Typ))
3998 and then Is_Concurrent_Type (F_Typ)
3999 and then Present (Corresponding_Record_Type (F_Typ))
4000 and then Full_A_Typ = Corresponding_Record_Type (F_Typ)
4001 then
4002 Resolve (A, Corresponding_Record_Type (F_Typ));
4004 -- Common case
4006 else
4007 Resolve (A, Etype (F));
4008 end if;
4009 end;
4011 -- Not a synchronized operation
4013 else
4014 Resolve (A, Etype (F));
4015 end if;
4016 end if;
4018 A_Typ := Etype (A);
4019 F_Typ := Etype (F);
4021 -- An actual cannot be an untagged formal incomplete type
4023 if Ekind (A_Typ) = E_Incomplete_Type
4024 and then not Is_Tagged_Type (A_Typ)
4025 and then Is_Generic_Type (A_Typ)
4026 then
4027 Error_Msg_N
4028 ("invalid use of untagged formal incomplete type", A);
4029 end if;
4031 if Comes_From_Source (Original_Node (N))
4032 and then Nkind_In (Original_Node (N), N_Function_Call,
4033 N_Procedure_Call_Statement)
4034 then
4035 -- In formal mode, check that actual parameters matching
4036 -- formals of tagged types are objects (or ancestor type
4037 -- conversions of objects), not general expressions.
4039 if Is_Actual_Tagged_Parameter (A) then
4040 if Is_SPARK_05_Object_Reference (A) then
4041 null;
4043 elsif Nkind (A) = N_Type_Conversion then
4044 declare
4045 Operand : constant Node_Id := Expression (A);
4046 Operand_Typ : constant Entity_Id := Etype (Operand);
4047 Target_Typ : constant Entity_Id := A_Typ;
4049 begin
4050 if not Is_SPARK_05_Object_Reference (Operand) then
4051 Check_SPARK_05_Restriction
4052 ("object required", Operand);
4054 -- In formal mode, the only view conversions are those
4055 -- involving ancestor conversion of an extended type.
4057 elsif not
4058 (Is_Tagged_Type (Target_Typ)
4059 and then not Is_Class_Wide_Type (Target_Typ)
4060 and then Is_Tagged_Type (Operand_Typ)
4061 and then not Is_Class_Wide_Type (Operand_Typ)
4062 and then Is_Ancestor (Target_Typ, Operand_Typ))
4063 then
4064 if Ekind_In
4065 (F, E_Out_Parameter, E_In_Out_Parameter)
4066 then
4067 Check_SPARK_05_Restriction
4068 ("ancestor conversion is the only permitted "
4069 & "view conversion", A);
4070 else
4071 Check_SPARK_05_Restriction
4072 ("ancestor conversion required", A);
4073 end if;
4075 else
4076 null;
4077 end if;
4078 end;
4080 else
4081 Check_SPARK_05_Restriction ("object required", A);
4082 end if;
4084 -- In formal mode, the only view conversions are those
4085 -- involving ancestor conversion of an extended type.
4087 elsif Nkind (A) = N_Type_Conversion
4088 and then Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
4089 then
4090 Check_SPARK_05_Restriction
4091 ("ancestor conversion is the only permitted view "
4092 & "conversion", A);
4093 end if;
4094 end if;
4096 -- has warnings suppressed, then we reset Never_Set_In_Source for
4097 -- the calling entity. The reason for this is to catch cases like
4098 -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
4099 -- uses trickery to modify an IN parameter.
4101 if Ekind (F) = E_In_Parameter
4102 and then Is_Entity_Name (A)
4103 and then Present (Entity (A))
4104 and then Ekind (Entity (A)) = E_Variable
4105 and then Has_Warnings_Off (F_Typ)
4106 then
4107 Set_Never_Set_In_Source (Entity (A), False);
4108 end if;
4110 -- Perform error checks for IN and IN OUT parameters
4112 if Ekind (F) /= E_Out_Parameter then
4114 -- Check unset reference. For scalar parameters, it is clearly
4115 -- wrong to pass an uninitialized value as either an IN or
4116 -- IN-OUT parameter. For composites, it is also clearly an
4117 -- error to pass a completely uninitialized value as an IN
4118 -- parameter, but the case of IN OUT is trickier. We prefer
4119 -- not to give a warning here. For example, suppose there is
4120 -- a routine that sets some component of a record to False.
4121 -- It is perfectly reasonable to make this IN-OUT and allow
4122 -- either initialized or uninitialized records to be passed
4123 -- in this case.
4125 -- For partially initialized composite values, we also avoid
4126 -- warnings, since it is quite likely that we are passing a
4127 -- partially initialized value and only the initialized fields
4128 -- will in fact be read in the subprogram.
4130 if Is_Scalar_Type (A_Typ)
4131 or else (Ekind (F) = E_In_Parameter
4132 and then not Is_Partially_Initialized_Type (A_Typ))
4133 then
4134 Check_Unset_Reference (A);
4135 end if;
4137 -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
4138 -- actual to a nested call, since this constitutes a reading of
4139 -- the parameter, which is not allowed.
4141 if Ada_Version = Ada_83
4142 and then Is_Entity_Name (A)
4143 and then Ekind (Entity (A)) = E_Out_Parameter
4144 then
4145 Error_Msg_N ("(Ada 83) illegal reading of out parameter", A);
4146 end if;
4147 end if;
4149 -- In -gnatd.q mode, forget that a given array is constant when
4150 -- it is passed as an IN parameter to a foreign-convention
4151 -- subprogram. This is in case the subprogram evilly modifies the
4152 -- object. Of course, correct code would use IN OUT.
4154 if Debug_Flag_Dot_Q
4155 and then Ekind (F) = E_In_Parameter
4156 and then Has_Foreign_Convention (Nam)
4157 and then Is_Array_Type (F_Typ)
4158 and then Nkind (A) in N_Has_Entity
4159 and then Present (Entity (A))
4160 then
4161 Set_Is_True_Constant (Entity (A), False);
4162 end if;
4164 -- Case of OUT or IN OUT parameter
4166 if Ekind (F) /= E_In_Parameter then
4168 -- For an Out parameter, check for useless assignment. Note
4169 -- that we can't set Last_Assignment this early, because we may
4170 -- kill current values in Resolve_Call, and that call would
4171 -- clobber the Last_Assignment field.
4173 -- Note: call Warn_On_Useless_Assignment before doing the check
4174 -- below for Is_OK_Variable_For_Out_Formal so that the setting
4175 -- of Referenced_As_LHS/Referenced_As_Out_Formal properly
4176 -- reflects the last assignment, not this one.
4178 if Ekind (F) = E_Out_Parameter then
4179 if Warn_On_Modified_As_Out_Parameter (F)
4180 and then Is_Entity_Name (A)
4181 and then Present (Entity (A))
4182 and then Comes_From_Source (N)
4183 then
4184 Warn_On_Useless_Assignment (Entity (A), A);
4185 end if;
4186 end if;
4188 -- Validate the form of the actual. Note that the call to
4189 -- Is_OK_Variable_For_Out_Formal generates the required
4190 -- reference in this case.
4192 -- A call to an initialization procedure for an aggregate
4193 -- component may initialize a nested component of a constant
4194 -- designated object. In this context the object is variable.
4196 if not Is_OK_Variable_For_Out_Formal (A)
4197 and then not Is_Init_Proc (Nam)
4198 then
4199 Error_Msg_NE ("actual for& must be a variable", A, F);
4201 if Is_Subprogram (Current_Scope) then
4202 if Is_Invariant_Procedure (Current_Scope)
4203 or else Is_Partial_Invariant_Procedure (Current_Scope)
4204 then
4205 Error_Msg_N
4206 ("function used in invariant cannot modify its "
4207 & "argument", F);
4209 elsif Is_Predicate_Function (Current_Scope) then
4210 Error_Msg_N
4211 ("function used in predicate cannot modify its "
4212 & "argument", F);
4213 end if;
4214 end if;
4215 end if;
4217 -- What's the following about???
4219 if Is_Entity_Name (A) then
4220 Kill_Checks (Entity (A));
4221 else
4222 Kill_All_Checks;
4223 end if;
4224 end if;
4226 if Etype (A) = Any_Type then
4227 Set_Etype (N, Any_Type);
4228 return;
4229 end if;
4231 -- Apply appropriate constraint/predicate checks for IN [OUT] case
4233 if Ekind_In (F, E_In_Parameter, E_In_Out_Parameter) then
4235 -- Apply predicate tests except in certain special cases. Note
4236 -- that it might be more consistent to apply these only when
4237 -- expansion is active (in Exp_Ch6.Expand_Actuals), as we do
4238 -- for the outbound predicate tests ??? In any case indicate
4239 -- the function being called, for better warnings if the call
4240 -- leads to an infinite recursion.
4242 if Predicate_Tests_On_Arguments (Nam) then
4243 Apply_Predicate_Check (A, F_Typ, Nam);
4244 end if;
4246 -- Apply required constraint checks
4248 -- Gigi looks at the check flag and uses the appropriate types.
4249 -- For now since one flag is used there is an optimization
4250 -- which might not be done in the IN OUT case since Gigi does
4251 -- not do any analysis. More thought required about this ???
4253 -- In fact is this comment obsolete??? doesn't the expander now
4254 -- generate all these tests anyway???
4256 if Is_Scalar_Type (Etype (A)) then
4257 Apply_Scalar_Range_Check (A, F_Typ);
4259 elsif Is_Array_Type (Etype (A)) then
4260 Apply_Length_Check (A, F_Typ);
4262 elsif Is_Record_Type (F_Typ)
4263 and then Has_Discriminants (F_Typ)
4264 and then Is_Constrained (F_Typ)
4265 and then (not Is_Derived_Type (F_Typ)
4266 or else Comes_From_Source (Nam))
4267 then
4268 Apply_Discriminant_Check (A, F_Typ);
4270 -- For view conversions of a discriminated object, apply
4271 -- check to object itself, the conversion alreay has the
4272 -- proper type.
4274 if Nkind (A) = N_Type_Conversion
4275 and then Is_Constrained (Etype (Expression (A)))
4276 then
4277 Apply_Discriminant_Check (Expression (A), F_Typ);
4278 end if;
4280 elsif Is_Access_Type (F_Typ)
4281 and then Is_Array_Type (Designated_Type (F_Typ))
4282 and then Is_Constrained (Designated_Type (F_Typ))
4283 then
4284 Apply_Length_Check (A, F_Typ);
4286 elsif Is_Access_Type (F_Typ)
4287 and then Has_Discriminants (Designated_Type (F_Typ))
4288 and then Is_Constrained (Designated_Type (F_Typ))
4289 then
4290 Apply_Discriminant_Check (A, F_Typ);
4292 else
4293 Apply_Range_Check (A, F_Typ);
4294 end if;
4296 -- Ada 2005 (AI-231): Note that the controlling parameter case
4297 -- already existed in Ada 95, which is partially checked
4298 -- elsewhere (see Checks), and we don't want the warning
4299 -- message to differ.
4301 if Is_Access_Type (F_Typ)
4302 and then Can_Never_Be_Null (F_Typ)
4303 and then Known_Null (A)
4304 then
4305 if Is_Controlling_Formal (F) then
4306 Apply_Compile_Time_Constraint_Error
4307 (N => A,
4308 Msg => "null value not allowed here??",
4309 Reason => CE_Access_Check_Failed);
4311 elsif Ada_Version >= Ada_2005 then
4312 Apply_Compile_Time_Constraint_Error
4313 (N => A,
4314 Msg => "(Ada 2005) null not allowed in "
4315 & "null-excluding formal??",
4316 Reason => CE_Null_Not_Allowed);
4317 end if;
4318 end if;
4319 end if;
4321 -- Checks for OUT parameters and IN OUT parameters
4323 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter) then
4325 -- If there is a type conversion, make sure the return value
4326 -- meets the constraints of the variable before the conversion.
4328 if Nkind (A) = N_Type_Conversion then
4329 if Is_Scalar_Type (A_Typ) then
4330 Apply_Scalar_Range_Check
4331 (Expression (A), Etype (Expression (A)), A_Typ);
4333 -- In addition, the returned value of the parameter must
4334 -- satisfy the bounds of the object type (see comment
4335 -- below).
4337 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4339 else
4340 Apply_Range_Check
4341 (Expression (A), Etype (Expression (A)), A_Typ);
4342 end if;
4344 -- If no conversion, apply scalar range checks and length check
4345 -- based on the subtype of the actual (NOT that of the formal).
4346 -- This indicates that the check takes place on return from the
4347 -- call. During expansion the required constraint checks are
4348 -- inserted. In GNATprove mode, in the absence of expansion,
4349 -- the flag indicates that the returned value is valid.
4351 else
4352 if Is_Scalar_Type (F_Typ) then
4353 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4355 elsif Is_Array_Type (F_Typ)
4356 and then Ekind (F) = E_Out_Parameter
4357 then
4358 Apply_Length_Check (A, F_Typ);
4359 else
4360 Apply_Range_Check (A, A_Typ, F_Typ);
4361 end if;
4362 end if;
4364 -- Note: we do not apply the predicate checks for the case of
4365 -- OUT and IN OUT parameters. They are instead applied in the
4366 -- Expand_Actuals routine in Exp_Ch6.
4367 end if;
4369 -- An actual associated with an access parameter is implicitly
4370 -- converted to the anonymous access type of the formal and must
4371 -- satisfy the legality checks for access conversions.
4373 if Ekind (F_Typ) = E_Anonymous_Access_Type then
4374 if not Valid_Conversion (A, F_Typ, A) then
4375 Error_Msg_N
4376 ("invalid implicit conversion for access parameter", A);
4377 end if;
4379 -- If the actual is an access selected component of a variable,
4380 -- the call may modify its designated object. It is reasonable
4381 -- to treat this as a potential modification of the enclosing
4382 -- record, to prevent spurious warnings that it should be
4383 -- declared as a constant, because intuitively programmers
4384 -- regard the designated subcomponent as part of the record.
4386 if Nkind (A) = N_Selected_Component
4387 and then Is_Entity_Name (Prefix (A))
4388 and then not Is_Constant_Object (Entity (Prefix (A)))
4389 then
4390 Note_Possible_Modification (A, Sure => False);
4391 end if;
4392 end if;
4394 -- Check bad case of atomic/volatile argument (RM C.6(12))
4396 if Is_By_Reference_Type (Etype (F))
4397 and then Comes_From_Source (N)
4398 then
4399 if Is_Atomic_Object (A)
4400 and then not Is_Atomic (Etype (F))
4401 then
4402 Error_Msg_NE
4403 ("cannot pass atomic argument to non-atomic formal&",
4404 A, F);
4406 elsif Is_Volatile_Object (A)
4407 and then not Is_Volatile (Etype (F))
4408 then
4409 Error_Msg_NE
4410 ("cannot pass volatile argument to non-volatile formal&",
4411 A, F);
4412 end if;
4413 end if;
4415 -- Check that subprograms don't have improper controlling
4416 -- arguments (RM 3.9.2 (9)).
4418 -- A primitive operation may have an access parameter of an
4419 -- incomplete tagged type, but a dispatching call is illegal
4420 -- if the type is still incomplete.
4422 if Is_Controlling_Formal (F) then
4423 Set_Is_Controlling_Actual (A);
4425 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
4426 declare
4427 Desig : constant Entity_Id := Designated_Type (Etype (F));
4428 begin
4429 if Ekind (Desig) = E_Incomplete_Type
4430 and then No (Full_View (Desig))
4431 and then No (Non_Limited_View (Desig))
4432 then
4433 Error_Msg_NE
4434 ("premature use of incomplete type& "
4435 & "in dispatching call", A, Desig);
4436 end if;
4437 end;
4438 end if;
4440 elsif Nkind (A) = N_Explicit_Dereference then
4441 Validate_Remote_Access_To_Class_Wide_Type (A);
4442 end if;
4444 -- Apply legality rule 3.9.2 (9/1)
4446 if (Is_Class_Wide_Type (A_Typ) or else Is_Dynamically_Tagged (A))
4447 and then not Is_Class_Wide_Type (F_Typ)
4448 and then not Is_Controlling_Formal (F)
4449 and then not In_Instance
4450 then
4451 Error_Msg_N ("class-wide argument not allowed here!", A);
4453 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4454 Error_Msg_Node_2 := F_Typ;
4455 Error_Msg_NE
4456 ("& is not a dispatching operation of &!", A, Nam);
4457 end if;
4459 -- Apply the checks described in 3.10.2(27): if the context is a
4460 -- specific access-to-object, the actual cannot be class-wide.
4461 -- Use base type to exclude access_to_subprogram cases.
4463 elsif Is_Access_Type (A_Typ)
4464 and then Is_Access_Type (F_Typ)
4465 and then not Is_Access_Subprogram_Type (Base_Type (F_Typ))
4466 and then (Is_Class_Wide_Type (Designated_Type (A_Typ))
4467 or else (Nkind (A) = N_Attribute_Reference
4468 and then
4469 Is_Class_Wide_Type (Etype (Prefix (A)))))
4470 and then not Is_Class_Wide_Type (Designated_Type (F_Typ))
4471 and then not Is_Controlling_Formal (F)
4473 -- Disable these checks for call to imported C++ subprograms
4475 and then not
4476 (Is_Entity_Name (Name (N))
4477 and then Is_Imported (Entity (Name (N)))
4478 and then Convention (Entity (Name (N))) = Convention_CPP)
4479 then
4480 Error_Msg_N
4481 ("access to class-wide argument not allowed here!", A);
4483 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4484 Error_Msg_Node_2 := Designated_Type (F_Typ);
4485 Error_Msg_NE
4486 ("& is not a dispatching operation of &!", A, Nam);
4487 end if;
4488 end if;
4490 Check_Aliased_Parameter;
4492 Eval_Actual (A);
4494 -- If it is a named association, treat the selector_name as a
4495 -- proper identifier, and mark the corresponding entity.
4497 if Nkind (Parent (A)) = N_Parameter_Association
4499 -- Ignore reference in SPARK mode, as it refers to an entity not
4500 -- in scope at the point of reference, so the reference should
4501 -- be ignored for computing effects of subprograms.
4503 and then not GNATprove_Mode
4504 then
4505 -- If subprogram is overridden, use name of formal that
4506 -- is being called.
4508 if Present (Real_Subp) then
4509 Set_Entity (Selector_Name (Parent (A)), Real_F);
4510 Set_Etype (Selector_Name (Parent (A)), Etype (Real_F));
4512 else
4513 Set_Entity (Selector_Name (Parent (A)), F);
4514 Generate_Reference (F, Selector_Name (Parent (A)));
4515 Set_Etype (Selector_Name (Parent (A)), F_Typ);
4516 Generate_Reference (F_Typ, N, ' ');
4517 end if;
4518 end if;
4520 Prev := A;
4522 if Ekind (F) /= E_Out_Parameter then
4523 Check_Unset_Reference (A);
4524 end if;
4526 -- The following checks are only relevant when SPARK_Mode is on as
4527 -- they are not standard Ada legality rule. Internally generated
4528 -- temporaries are ignored.
4530 if SPARK_Mode = On and then Comes_From_Source (A) then
4532 -- An effectively volatile object may act as an actual when the
4533 -- corresponding formal is of a non-scalar effectively volatile
4534 -- type (SPARK RM 7.1.3(11)).
4536 if not Is_Scalar_Type (Etype (F))
4537 and then Is_Effectively_Volatile (Etype (F))
4538 then
4539 null;
4541 -- An effectively volatile object may act as an actual in a
4542 -- call to an instance of Unchecked_Conversion.
4543 -- (SPARK RM 7.1.3(11)).
4545 elsif Is_Unchecked_Conversion_Instance (Nam) then
4546 null;
4548 -- The actual denotes an object
4550 elsif Is_Effectively_Volatile_Object (A) then
4551 Error_Msg_N
4552 ("volatile object cannot act as actual in a call (SPARK "
4553 & "RM 7.1.3(11))", A);
4555 -- Otherwise the actual denotes an expression. Inspect the
4556 -- expression and flag each effectively volatile object with
4557 -- enabled property Async_Writers or Effective_Reads as illegal
4558 -- because it apprears within an interfering context. Note that
4559 -- this is usually done in Resolve_Entity_Name, but when the
4560 -- effectively volatile object appears as an actual in a call,
4561 -- the call must be resolved first.
4563 else
4564 Flag_Effectively_Volatile_Objects (A);
4565 end if;
4567 -- An effectively volatile variable cannot act as an actual
4568 -- parameter in a procedure call when the variable has enabled
4569 -- property Effective_Reads and the corresponding formal is of
4570 -- mode IN (SPARK RM 7.1.3(10)).
4572 if Ekind (Nam) = E_Procedure
4573 and then Ekind (F) = E_In_Parameter
4574 and then Is_Entity_Name (A)
4575 then
4576 A_Id := Entity (A);
4578 if Ekind (A_Id) = E_Variable
4579 and then Is_Effectively_Volatile (Etype (A_Id))
4580 and then Effective_Reads_Enabled (A_Id)
4581 then
4582 Error_Msg_NE
4583 ("effectively volatile variable & cannot appear as "
4584 & "actual in procedure call", A, A_Id);
4586 Error_Msg_Name_1 := Name_Effective_Reads;
4587 Error_Msg_N ("\\variable has enabled property %", A);
4588 Error_Msg_N ("\\corresponding formal has mode IN", A);
4589 end if;
4590 end if;
4591 end if;
4593 -- A formal parameter of a specific tagged type whose related
4594 -- subprogram is subject to pragma Extensions_Visible with value
4595 -- "False" cannot act as an actual in a subprogram with value
4596 -- "True" (SPARK RM 6.1.7(3)).
4598 if Is_EVF_Expression (A)
4599 and then Extensions_Visible_Status (Nam) =
4600 Extensions_Visible_True
4601 then
4602 Error_Msg_N
4603 ("formal parameter cannot act as actual parameter when "
4604 & "Extensions_Visible is False", A);
4605 Error_Msg_NE
4606 ("\subprogram & has Extensions_Visible True", A, Nam);
4607 end if;
4609 -- The actual parameter of a Ghost subprogram whose formal is of
4610 -- mode IN OUT or OUT must be a Ghost variable (SPARK RM 6.9(12)).
4612 if Comes_From_Source (Nam)
4613 and then Is_Ghost_Entity (Nam)
4614 and then Ekind_In (F, E_In_Out_Parameter, E_Out_Parameter)
4615 and then Is_Entity_Name (A)
4616 and then Present (Entity (A))
4617 and then not Is_Ghost_Entity (Entity (A))
4618 then
4619 Error_Msg_NE
4620 ("non-ghost variable & cannot appear as actual in call to "
4621 & "ghost procedure", A, Entity (A));
4623 if Ekind (F) = E_In_Out_Parameter then
4624 Error_Msg_N ("\corresponding formal has mode `IN OUT`", A);
4625 else
4626 Error_Msg_N ("\corresponding formal has mode OUT", A);
4627 end if;
4628 end if;
4630 Next_Actual (A);
4632 -- Case where actual is not present
4634 else
4635 Insert_Default;
4636 end if;
4638 Next_Formal (F);
4640 if Present (Real_Subp) then
4641 Next_Formal (Real_F);
4642 end if;
4643 end loop;
4644 end Resolve_Actuals;
4646 -----------------------
4647 -- Resolve_Allocator --
4648 -----------------------
4650 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id) is
4651 Desig_T : constant Entity_Id := Designated_Type (Typ);
4652 E : constant Node_Id := Expression (N);
4653 Subtyp : Entity_Id;
4654 Discrim : Entity_Id;
4655 Constr : Node_Id;
4656 Aggr : Node_Id;
4657 Assoc : Node_Id := Empty;
4658 Disc_Exp : Node_Id;
4660 procedure Check_Allocator_Discrim_Accessibility
4661 (Disc_Exp : Node_Id;
4662 Alloc_Typ : Entity_Id);
4663 -- Check that accessibility level associated with an access discriminant
4664 -- initialized in an allocator by the expression Disc_Exp is not deeper
4665 -- than the level of the allocator type Alloc_Typ. An error message is
4666 -- issued if this condition is violated. Specialized checks are done for
4667 -- the cases of a constraint expression which is an access attribute or
4668 -- an access discriminant.
4670 function In_Dispatching_Context return Boolean;
4671 -- If the allocator is an actual in a call, it is allowed to be class-
4672 -- wide when the context is not because it is a controlling actual.
4674 -------------------------------------------
4675 -- Check_Allocator_Discrim_Accessibility --
4676 -------------------------------------------
4678 procedure Check_Allocator_Discrim_Accessibility
4679 (Disc_Exp : Node_Id;
4680 Alloc_Typ : Entity_Id)
4682 begin
4683 if Type_Access_Level (Etype (Disc_Exp)) >
4684 Deepest_Type_Access_Level (Alloc_Typ)
4685 then
4686 Error_Msg_N
4687 ("operand type has deeper level than allocator type", Disc_Exp);
4689 -- When the expression is an Access attribute the level of the prefix
4690 -- object must not be deeper than that of the allocator's type.
4692 elsif Nkind (Disc_Exp) = N_Attribute_Reference
4693 and then Get_Attribute_Id (Attribute_Name (Disc_Exp)) =
4694 Attribute_Access
4695 and then Object_Access_Level (Prefix (Disc_Exp)) >
4696 Deepest_Type_Access_Level (Alloc_Typ)
4697 then
4698 Error_Msg_N
4699 ("prefix of attribute has deeper level than allocator type",
4700 Disc_Exp);
4702 -- When the expression is an access discriminant the check is against
4703 -- the level of the prefix object.
4705 elsif Ekind (Etype (Disc_Exp)) = E_Anonymous_Access_Type
4706 and then Nkind (Disc_Exp) = N_Selected_Component
4707 and then Object_Access_Level (Prefix (Disc_Exp)) >
4708 Deepest_Type_Access_Level (Alloc_Typ)
4709 then
4710 Error_Msg_N
4711 ("access discriminant has deeper level than allocator type",
4712 Disc_Exp);
4714 -- All other cases are legal
4716 else
4717 null;
4718 end if;
4719 end Check_Allocator_Discrim_Accessibility;
4721 ----------------------------
4722 -- In_Dispatching_Context --
4723 ----------------------------
4725 function In_Dispatching_Context return Boolean is
4726 Par : constant Node_Id := Parent (N);
4728 begin
4729 return Nkind (Par) in N_Subprogram_Call
4730 and then Is_Entity_Name (Name (Par))
4731 and then Is_Dispatching_Operation (Entity (Name (Par)));
4732 end In_Dispatching_Context;
4734 -- Start of processing for Resolve_Allocator
4736 begin
4737 -- Replace general access with specific type
4739 if Ekind (Etype (N)) = E_Allocator_Type then
4740 Set_Etype (N, Base_Type (Typ));
4741 end if;
4743 if Is_Abstract_Type (Typ) then
4744 Error_Msg_N ("type of allocator cannot be abstract", N);
4745 end if;
4747 -- For qualified expression, resolve the expression using the given
4748 -- subtype (nothing to do for type mark, subtype indication)
4750 if Nkind (E) = N_Qualified_Expression then
4751 if Is_Class_Wide_Type (Etype (E))
4752 and then not Is_Class_Wide_Type (Desig_T)
4753 and then not In_Dispatching_Context
4754 then
4755 Error_Msg_N
4756 ("class-wide allocator not allowed for this access type", N);
4757 end if;
4759 Resolve (Expression (E), Etype (E));
4760 Check_Non_Static_Context (Expression (E));
4761 Check_Unset_Reference (Expression (E));
4763 -- Allocators generated by the build-in-place expansion mechanism
4764 -- are explicitly marked as coming from source but do not need to be
4765 -- checked for limited initialization. To exclude this case, ensure
4766 -- that the parent of the allocator is a source node.
4767 -- The return statement constructed for an Expression_Function does
4768 -- not come from source but requires a limited check.
4770 if Is_Limited_Type (Etype (E))
4771 and then Comes_From_Source (N)
4772 and then
4773 (Comes_From_Source (Parent (N))
4774 or else
4775 (Ekind (Current_Scope) = E_Function
4776 and then Nkind (Original_Node (Unit_Declaration_Node
4777 (Current_Scope))) = N_Expression_Function))
4778 and then not In_Instance_Body
4779 then
4780 if not OK_For_Limited_Init (Etype (E), Expression (E)) then
4781 if Nkind (Parent (N)) = N_Assignment_Statement then
4782 Error_Msg_N
4783 ("illegal expression for initialized allocator of a "
4784 & "limited type (RM 7.5 (2.7/2))", N);
4785 else
4786 Error_Msg_N
4787 ("initialization not allowed for limited types", N);
4788 end if;
4790 Explain_Limited_Type (Etype (E), N);
4791 end if;
4792 end if;
4794 -- A qualified expression requires an exact match of the type. Class-
4795 -- wide matching is not allowed.
4797 if (Is_Class_Wide_Type (Etype (Expression (E)))
4798 or else Is_Class_Wide_Type (Etype (E)))
4799 and then Base_Type (Etype (Expression (E))) /= Base_Type (Etype (E))
4800 then
4801 Wrong_Type (Expression (E), Etype (E));
4802 end if;
4804 -- Calls to build-in-place functions are not currently supported in
4805 -- allocators for access types associated with a simple storage pool.
4806 -- Supporting such allocators may require passing additional implicit
4807 -- parameters to build-in-place functions (or a significant revision
4808 -- of the current b-i-p implementation to unify the handling for
4809 -- multiple kinds of storage pools). ???
4811 if Is_Limited_View (Desig_T)
4812 and then Nkind (Expression (E)) = N_Function_Call
4813 then
4814 declare
4815 Pool : constant Entity_Id :=
4816 Associated_Storage_Pool (Root_Type (Typ));
4817 begin
4818 if Present (Pool)
4819 and then
4820 Present (Get_Rep_Pragma
4821 (Etype (Pool), Name_Simple_Storage_Pool_Type))
4822 then
4823 Error_Msg_N
4824 ("limited function calls not yet supported in simple "
4825 & "storage pool allocators", Expression (E));
4826 end if;
4827 end;
4828 end if;
4830 -- A special accessibility check is needed for allocators that
4831 -- constrain access discriminants. The level of the type of the
4832 -- expression used to constrain an access discriminant cannot be
4833 -- deeper than the type of the allocator (in contrast to access
4834 -- parameters, where the level of the actual can be arbitrary).
4836 -- We can't use Valid_Conversion to perform this check because in
4837 -- general the type of the allocator is unrelated to the type of
4838 -- the access discriminant.
4840 if Ekind (Typ) /= E_Anonymous_Access_Type
4841 or else Is_Local_Anonymous_Access (Typ)
4842 then
4843 Subtyp := Entity (Subtype_Mark (E));
4845 Aggr := Original_Node (Expression (E));
4847 if Has_Discriminants (Subtyp)
4848 and then Nkind_In (Aggr, N_Aggregate, N_Extension_Aggregate)
4849 then
4850 Discrim := First_Discriminant (Base_Type (Subtyp));
4852 -- Get the first component expression of the aggregate
4854 if Present (Expressions (Aggr)) then
4855 Disc_Exp := First (Expressions (Aggr));
4857 elsif Present (Component_Associations (Aggr)) then
4858 Assoc := First (Component_Associations (Aggr));
4860 if Present (Assoc) then
4861 Disc_Exp := Expression (Assoc);
4862 else
4863 Disc_Exp := Empty;
4864 end if;
4866 else
4867 Disc_Exp := Empty;
4868 end if;
4870 while Present (Discrim) and then Present (Disc_Exp) loop
4871 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4872 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4873 end if;
4875 Next_Discriminant (Discrim);
4877 if Present (Discrim) then
4878 if Present (Assoc) then
4879 Next (Assoc);
4880 Disc_Exp := Expression (Assoc);
4882 elsif Present (Next (Disc_Exp)) then
4883 Next (Disc_Exp);
4885 else
4886 Assoc := First (Component_Associations (Aggr));
4888 if Present (Assoc) then
4889 Disc_Exp := Expression (Assoc);
4890 else
4891 Disc_Exp := Empty;
4892 end if;
4893 end if;
4894 end if;
4895 end loop;
4896 end if;
4897 end if;
4899 -- For a subtype mark or subtype indication, freeze the subtype
4901 else
4902 Freeze_Expression (E);
4904 if Is_Access_Constant (Typ) and then not No_Initialization (N) then
4905 Error_Msg_N
4906 ("initialization required for access-to-constant allocator", N);
4907 end if;
4909 -- A special accessibility check is needed for allocators that
4910 -- constrain access discriminants. The level of the type of the
4911 -- expression used to constrain an access discriminant cannot be
4912 -- deeper than the type of the allocator (in contrast to access
4913 -- parameters, where the level of the actual can be arbitrary).
4914 -- We can't use Valid_Conversion to perform this check because
4915 -- in general the type of the allocator is unrelated to the type
4916 -- of the access discriminant.
4918 if Nkind (Original_Node (E)) = N_Subtype_Indication
4919 and then (Ekind (Typ) /= E_Anonymous_Access_Type
4920 or else Is_Local_Anonymous_Access (Typ))
4921 then
4922 Subtyp := Entity (Subtype_Mark (Original_Node (E)));
4924 if Has_Discriminants (Subtyp) then
4925 Discrim := First_Discriminant (Base_Type (Subtyp));
4926 Constr := First (Constraints (Constraint (Original_Node (E))));
4927 while Present (Discrim) and then Present (Constr) loop
4928 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4929 if Nkind (Constr) = N_Discriminant_Association then
4930 Disc_Exp := Original_Node (Expression (Constr));
4931 else
4932 Disc_Exp := Original_Node (Constr);
4933 end if;
4935 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4936 end if;
4938 Next_Discriminant (Discrim);
4939 Next (Constr);
4940 end loop;
4941 end if;
4942 end if;
4943 end if;
4945 -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
4946 -- check that the level of the type of the created object is not deeper
4947 -- than the level of the allocator's access type, since extensions can
4948 -- now occur at deeper levels than their ancestor types. This is a
4949 -- static accessibility level check; a run-time check is also needed in
4950 -- the case of an initialized allocator with a class-wide argument (see
4951 -- Expand_Allocator_Expression).
4953 if Ada_Version >= Ada_2005
4954 and then Is_Class_Wide_Type (Desig_T)
4955 then
4956 declare
4957 Exp_Typ : Entity_Id;
4959 begin
4960 if Nkind (E) = N_Qualified_Expression then
4961 Exp_Typ := Etype (E);
4962 elsif Nkind (E) = N_Subtype_Indication then
4963 Exp_Typ := Entity (Subtype_Mark (Original_Node (E)));
4964 else
4965 Exp_Typ := Entity (E);
4966 end if;
4968 if Type_Access_Level (Exp_Typ) >
4969 Deepest_Type_Access_Level (Typ)
4970 then
4971 if In_Instance_Body then
4972 Error_Msg_Warn := SPARK_Mode /= On;
4973 Error_Msg_N
4974 ("type in allocator has deeper level than "
4975 & "designated class-wide type<<", E);
4976 Error_Msg_N ("\Program_Error [<<", E);
4977 Rewrite (N,
4978 Make_Raise_Program_Error (Sloc (N),
4979 Reason => PE_Accessibility_Check_Failed));
4980 Set_Etype (N, Typ);
4982 -- Do not apply Ada 2005 accessibility checks on a class-wide
4983 -- allocator if the type given in the allocator is a formal
4984 -- type. A run-time check will be performed in the instance.
4986 elsif not Is_Generic_Type (Exp_Typ) then
4987 Error_Msg_N ("type in allocator has deeper level than "
4988 & "designated class-wide type", E);
4989 end if;
4990 end if;
4991 end;
4992 end if;
4994 -- Check for allocation from an empty storage pool
4996 if No_Pool_Assigned (Typ) then
4997 Error_Msg_N ("allocation from empty storage pool!", N);
4999 -- If the context is an unchecked conversion, as may happen within an
5000 -- inlined subprogram, the allocator is being resolved with its own
5001 -- anonymous type. In that case, if the target type has a specific
5002 -- storage pool, it must be inherited explicitly by the allocator type.
5004 elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
5005 and then No (Associated_Storage_Pool (Typ))
5006 then
5007 Set_Associated_Storage_Pool
5008 (Typ, Associated_Storage_Pool (Etype (Parent (N))));
5009 end if;
5011 if Ekind (Etype (N)) = E_Anonymous_Access_Type then
5012 Check_Restriction (No_Anonymous_Allocators, N);
5013 end if;
5015 -- Check that an allocator with task parts isn't for a nested access
5016 -- type when restriction No_Task_Hierarchy applies.
5018 if not Is_Library_Level_Entity (Base_Type (Typ))
5019 and then Has_Task (Base_Type (Desig_T))
5020 then
5021 Check_Restriction (No_Task_Hierarchy, N);
5022 end if;
5024 -- An illegal allocator may be rewritten as a raise Program_Error
5025 -- statement.
5027 if Nkind (N) = N_Allocator then
5029 -- Avoid coextension processing for an allocator that is the
5030 -- expansion of a build-in-place function call.
5032 if Nkind (Original_Node (N)) = N_Allocator
5033 and then Nkind (Expression (Original_Node (N))) =
5034 N_Qualified_Expression
5035 and then Nkind (Expression (Expression (Original_Node (N)))) =
5036 N_Function_Call
5037 and then Is_Expanded_Build_In_Place_Call
5038 (Expression (Expression (Original_Node (N))))
5039 then
5040 null; -- b-i-p function call case
5042 else
5043 -- An anonymous access discriminant is the definition of a
5044 -- coextension.
5046 if Ekind (Typ) = E_Anonymous_Access_Type
5047 and then Nkind (Associated_Node_For_Itype (Typ)) =
5048 N_Discriminant_Specification
5049 then
5050 declare
5051 Discr : constant Entity_Id :=
5052 Defining_Identifier (Associated_Node_For_Itype (Typ));
5054 begin
5055 Check_Restriction (No_Coextensions, N);
5057 -- Ada 2012 AI05-0052: If the designated type of the
5058 -- allocator is limited, then the allocator shall not
5059 -- be used to define the value of an access discriminant
5060 -- unless the discriminated type is immutably limited.
5062 if Ada_Version >= Ada_2012
5063 and then Is_Limited_Type (Desig_T)
5064 and then not Is_Limited_View (Scope (Discr))
5065 then
5066 Error_Msg_N
5067 ("only immutably limited types can have anonymous "
5068 & "access discriminants designating a limited type",
5070 end if;
5071 end;
5073 -- Avoid marking an allocator as a dynamic coextension if it is
5074 -- within a static construct.
5076 if not Is_Static_Coextension (N) then
5077 Set_Is_Dynamic_Coextension (N);
5079 -- Finalization and deallocation of coextensions utilizes an
5080 -- approximate implementation which does not directly adhere
5081 -- to the semantic rules. Warn on potential issues involving
5082 -- coextensions.
5084 if Is_Controlled (Desig_T) then
5085 Error_Msg_N
5086 ("??coextension will not be finalized when its "
5087 & "associated owner is deallocated or finalized", N);
5088 else
5089 Error_Msg_N
5090 ("??coextension will not be deallocated when its "
5091 & "associated owner is deallocated", N);
5092 end if;
5093 end if;
5095 -- Cleanup for potential static coextensions
5097 else
5098 Set_Is_Dynamic_Coextension (N, False);
5099 Set_Is_Static_Coextension (N, False);
5101 -- Anonymous access-to-controlled objects are not finalized on
5102 -- time because this involves run-time ownership and currently
5103 -- this property is not available. In rare cases the object may
5104 -- not be finalized at all. Warn on potential issues involving
5105 -- anonymous access-to-controlled objects.
5107 if Ekind (Typ) = E_Anonymous_Access_Type
5108 and then Is_Controlled_Active (Desig_T)
5109 then
5110 Error_Msg_N
5111 ("??object designated by anonymous access object might "
5112 & "not be finalized until its enclosing library unit "
5113 & "goes out of scope", N);
5114 Error_Msg_N ("\use named access type instead", N);
5115 end if;
5116 end if;
5117 end if;
5118 end if;
5120 -- Report a simple error: if the designated object is a local task,
5121 -- its body has not been seen yet, and its activation will fail an
5122 -- elaboration check.
5124 if Is_Task_Type (Desig_T)
5125 and then Scope (Base_Type (Desig_T)) = Current_Scope
5126 and then Is_Compilation_Unit (Current_Scope)
5127 and then Ekind (Current_Scope) = E_Package
5128 and then not In_Package_Body (Current_Scope)
5129 then
5130 Error_Msg_Warn := SPARK_Mode /= On;
5131 Error_Msg_N ("cannot activate task before body seen<<", N);
5132 Error_Msg_N ("\Program_Error [<<", N);
5133 end if;
5135 -- Ada 2012 (AI05-0111-3): Detect an attempt to allocate a task or a
5136 -- type with a task component on a subpool. This action must raise
5137 -- Program_Error at runtime.
5139 if Ada_Version >= Ada_2012
5140 and then Nkind (N) = N_Allocator
5141 and then Present (Subpool_Handle_Name (N))
5142 and then Has_Task (Desig_T)
5143 then
5144 Error_Msg_Warn := SPARK_Mode /= On;
5145 Error_Msg_N ("cannot allocate task on subpool<<", N);
5146 Error_Msg_N ("\Program_Error [<<", N);
5148 Rewrite (N,
5149 Make_Raise_Program_Error (Sloc (N),
5150 Reason => PE_Explicit_Raise));
5151 Set_Etype (N, Typ);
5152 end if;
5153 end Resolve_Allocator;
5155 ---------------------------
5156 -- Resolve_Arithmetic_Op --
5157 ---------------------------
5159 -- Used for resolving all arithmetic operators except exponentiation
5161 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id) is
5162 L : constant Node_Id := Left_Opnd (N);
5163 R : constant Node_Id := Right_Opnd (N);
5164 TL : constant Entity_Id := Base_Type (Etype (L));
5165 TR : constant Entity_Id := Base_Type (Etype (R));
5166 T : Entity_Id;
5167 Rop : Node_Id;
5169 B_Typ : constant Entity_Id := Base_Type (Typ);
5170 -- We do the resolution using the base type, because intermediate values
5171 -- in expressions always are of the base type, not a subtype of it.
5173 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean;
5174 -- Returns True if N is in a context that expects "any real type"
5176 function Is_Integer_Or_Universal (N : Node_Id) return Boolean;
5177 -- Return True iff given type is Integer or universal real/integer
5179 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id);
5180 -- Choose type of integer literal in fixed-point operation to conform
5181 -- to available fixed-point type. T is the type of the other operand,
5182 -- which is needed to determine the expected type of N.
5184 procedure Set_Operand_Type (N : Node_Id);
5185 -- Set operand type to T if universal
5187 -------------------------------
5188 -- Expected_Type_Is_Any_Real --
5189 -------------------------------
5191 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean is
5192 begin
5193 -- N is the expression after "delta" in a fixed_point_definition;
5194 -- see RM-3.5.9(6):
5196 return Nkind_In (Parent (N), N_Ordinary_Fixed_Point_Definition,
5197 N_Decimal_Fixed_Point_Definition,
5199 -- N is one of the bounds in a real_range_specification;
5200 -- see RM-3.5.7(5):
5202 N_Real_Range_Specification,
5204 -- N is the expression of a delta_constraint;
5205 -- see RM-J.3(3):
5207 N_Delta_Constraint);
5208 end Expected_Type_Is_Any_Real;
5210 -----------------------------
5211 -- Is_Integer_Or_Universal --
5212 -----------------------------
5214 function Is_Integer_Or_Universal (N : Node_Id) return Boolean is
5215 T : Entity_Id;
5216 Index : Interp_Index;
5217 It : Interp;
5219 begin
5220 if not Is_Overloaded (N) then
5221 T := Etype (N);
5222 return Base_Type (T) = Base_Type (Standard_Integer)
5223 or else T = Universal_Integer
5224 or else T = Universal_Real;
5225 else
5226 Get_First_Interp (N, Index, It);
5227 while Present (It.Typ) loop
5228 if Base_Type (It.Typ) = Base_Type (Standard_Integer)
5229 or else It.Typ = Universal_Integer
5230 or else It.Typ = Universal_Real
5231 then
5232 return True;
5233 end if;
5235 Get_Next_Interp (Index, It);
5236 end loop;
5237 end if;
5239 return False;
5240 end Is_Integer_Or_Universal;
5242 ----------------------------
5243 -- Set_Mixed_Mode_Operand --
5244 ----------------------------
5246 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id) is
5247 Index : Interp_Index;
5248 It : Interp;
5250 begin
5251 if Universal_Interpretation (N) = Universal_Integer then
5253 -- A universal integer literal is resolved as standard integer
5254 -- except in the case of a fixed-point result, where we leave it
5255 -- as universal (to be handled by Exp_Fixd later on)
5257 if Is_Fixed_Point_Type (T) then
5258 Resolve (N, Universal_Integer);
5259 else
5260 Resolve (N, Standard_Integer);
5261 end if;
5263 elsif Universal_Interpretation (N) = Universal_Real
5264 and then (T = Base_Type (Standard_Integer)
5265 or else T = Universal_Integer
5266 or else T = Universal_Real)
5267 then
5268 -- A universal real can appear in a fixed-type context. We resolve
5269 -- the literal with that context, even though this might raise an
5270 -- exception prematurely (the other operand may be zero).
5272 Resolve (N, B_Typ);
5274 elsif Etype (N) = Base_Type (Standard_Integer)
5275 and then T = Universal_Real
5276 and then Is_Overloaded (N)
5277 then
5278 -- Integer arg in mixed-mode operation. Resolve with universal
5279 -- type, in case preference rule must be applied.
5281 Resolve (N, Universal_Integer);
5283 elsif Etype (N) = T
5284 and then B_Typ /= Universal_Fixed
5285 then
5286 -- Not a mixed-mode operation, resolve with context
5288 Resolve (N, B_Typ);
5290 elsif Etype (N) = Any_Fixed then
5292 -- N may itself be a mixed-mode operation, so use context type
5294 Resolve (N, B_Typ);
5296 elsif Is_Fixed_Point_Type (T)
5297 and then B_Typ = Universal_Fixed
5298 and then Is_Overloaded (N)
5299 then
5300 -- Must be (fixed * fixed) operation, operand must have one
5301 -- compatible interpretation.
5303 Resolve (N, Any_Fixed);
5305 elsif Is_Fixed_Point_Type (B_Typ)
5306 and then (T = Universal_Real or else Is_Fixed_Point_Type (T))
5307 and then Is_Overloaded (N)
5308 then
5309 -- C * F(X) in a fixed context, where C is a real literal or a
5310 -- fixed-point expression. F must have either a fixed type
5311 -- interpretation or an integer interpretation, but not both.
5313 Get_First_Interp (N, Index, It);
5314 while Present (It.Typ) loop
5315 if Base_Type (It.Typ) = Base_Type (Standard_Integer) then
5316 if Analyzed (N) then
5317 Error_Msg_N ("ambiguous operand in fixed operation", N);
5318 else
5319 Resolve (N, Standard_Integer);
5320 end if;
5322 elsif Is_Fixed_Point_Type (It.Typ) then
5323 if Analyzed (N) then
5324 Error_Msg_N ("ambiguous operand in fixed operation", N);
5325 else
5326 Resolve (N, It.Typ);
5327 end if;
5328 end if;
5330 Get_Next_Interp (Index, It);
5331 end loop;
5333 -- Reanalyze the literal with the fixed type of the context. If
5334 -- context is Universal_Fixed, we are within a conversion, leave
5335 -- the literal as a universal real because there is no usable
5336 -- fixed type, and the target of the conversion plays no role in
5337 -- the resolution.
5339 declare
5340 Op2 : Node_Id;
5341 T2 : Entity_Id;
5343 begin
5344 if N = L then
5345 Op2 := R;
5346 else
5347 Op2 := L;
5348 end if;
5350 if B_Typ = Universal_Fixed
5351 and then Nkind (Op2) = N_Real_Literal
5352 then
5353 T2 := Universal_Real;
5354 else
5355 T2 := B_Typ;
5356 end if;
5358 Set_Analyzed (Op2, False);
5359 Resolve (Op2, T2);
5360 end;
5362 -- A universal real conditional expression can appear in a fixed-type
5363 -- context and must be resolved with that context to facilitate the
5364 -- code generation to the backend.
5366 elsif Nkind_In (N, N_Case_Expression, N_If_Expression)
5367 and then Etype (N) = Universal_Real
5368 and then Is_Fixed_Point_Type (B_Typ)
5369 then
5370 Resolve (N, B_Typ);
5372 else
5373 Resolve (N);
5374 end if;
5375 end Set_Mixed_Mode_Operand;
5377 ----------------------
5378 -- Set_Operand_Type --
5379 ----------------------
5381 procedure Set_Operand_Type (N : Node_Id) is
5382 begin
5383 if Etype (N) = Universal_Integer
5384 or else Etype (N) = Universal_Real
5385 then
5386 Set_Etype (N, T);
5387 end if;
5388 end Set_Operand_Type;
5390 -- Start of processing for Resolve_Arithmetic_Op
5392 begin
5393 if Comes_From_Source (N)
5394 and then Ekind (Entity (N)) = E_Function
5395 and then Is_Imported (Entity (N))
5396 and then Is_Intrinsic_Subprogram (Entity (N))
5397 then
5398 Resolve_Intrinsic_Operator (N, Typ);
5399 return;
5401 -- Special-case for mixed-mode universal expressions or fixed point type
5402 -- operation: each argument is resolved separately. The same treatment
5403 -- is required if one of the operands of a fixed point operation is
5404 -- universal real, since in this case we don't do a conversion to a
5405 -- specific fixed-point type (instead the expander handles the case).
5407 -- Set the type of the node to its universal interpretation because
5408 -- legality checks on an exponentiation operand need the context.
5410 elsif (B_Typ = Universal_Integer or else B_Typ = Universal_Real)
5411 and then Present (Universal_Interpretation (L))
5412 and then Present (Universal_Interpretation (R))
5413 then
5414 Set_Etype (N, B_Typ);
5415 Resolve (L, Universal_Interpretation (L));
5416 Resolve (R, Universal_Interpretation (R));
5418 elsif (B_Typ = Universal_Real
5419 or else Etype (N) = Universal_Fixed
5420 or else (Etype (N) = Any_Fixed
5421 and then Is_Fixed_Point_Type (B_Typ))
5422 or else (Is_Fixed_Point_Type (B_Typ)
5423 and then (Is_Integer_Or_Universal (L)
5424 or else
5425 Is_Integer_Or_Universal (R))))
5426 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5427 then
5428 if TL = Universal_Integer or else TR = Universal_Integer then
5429 Check_For_Visible_Operator (N, B_Typ);
5430 end if;
5432 -- If context is a fixed type and one operand is integer, the other
5433 -- is resolved with the type of the context.
5435 if Is_Fixed_Point_Type (B_Typ)
5436 and then (Base_Type (TL) = Base_Type (Standard_Integer)
5437 or else TL = Universal_Integer)
5438 then
5439 Resolve (R, B_Typ);
5440 Resolve (L, TL);
5442 elsif Is_Fixed_Point_Type (B_Typ)
5443 and then (Base_Type (TR) = Base_Type (Standard_Integer)
5444 or else TR = Universal_Integer)
5445 then
5446 Resolve (L, B_Typ);
5447 Resolve (R, TR);
5449 -- If both operands are universal and the context is a floating
5450 -- point type, the operands are resolved to the type of the context.
5452 elsif Is_Floating_Point_Type (B_Typ) then
5453 Resolve (L, B_Typ);
5454 Resolve (R, B_Typ);
5456 else
5457 Set_Mixed_Mode_Operand (L, TR);
5458 Set_Mixed_Mode_Operand (R, TL);
5459 end if;
5461 -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
5462 -- multiplying operators from being used when the expected type is
5463 -- also universal_fixed. Note that B_Typ will be Universal_Fixed in
5464 -- some cases where the expected type is actually Any_Real;
5465 -- Expected_Type_Is_Any_Real takes care of that case.
5467 if Etype (N) = Universal_Fixed
5468 or else Etype (N) = Any_Fixed
5469 then
5470 if B_Typ = Universal_Fixed
5471 and then not Expected_Type_Is_Any_Real (N)
5472 and then not Nkind_In (Parent (N), N_Type_Conversion,
5473 N_Unchecked_Type_Conversion)
5474 then
5475 Error_Msg_N ("type cannot be determined from context!", N);
5476 Error_Msg_N ("\explicit conversion to result type required", N);
5478 Set_Etype (L, Any_Type);
5479 Set_Etype (R, Any_Type);
5481 else
5482 if Ada_Version = Ada_83
5483 and then Etype (N) = Universal_Fixed
5484 and then not
5485 Nkind_In (Parent (N), N_Type_Conversion,
5486 N_Unchecked_Type_Conversion)
5487 then
5488 Error_Msg_N
5489 ("(Ada 83) fixed-point operation needs explicit "
5490 & "conversion", N);
5491 end if;
5493 -- The expected type is "any real type" in contexts like
5495 -- type T is delta <universal_fixed-expression> ...
5497 -- in which case we need to set the type to Universal_Real
5498 -- so that static expression evaluation will work properly.
5500 if Expected_Type_Is_Any_Real (N) then
5501 Set_Etype (N, Universal_Real);
5502 else
5503 Set_Etype (N, B_Typ);
5504 end if;
5505 end if;
5507 elsif Is_Fixed_Point_Type (B_Typ)
5508 and then (Is_Integer_Or_Universal (L)
5509 or else Nkind (L) = N_Real_Literal
5510 or else Nkind (R) = N_Real_Literal
5511 or else Is_Integer_Or_Universal (R))
5512 then
5513 Set_Etype (N, B_Typ);
5515 elsif Etype (N) = Any_Fixed then
5517 -- If no previous errors, this is only possible if one operand is
5518 -- overloaded and the context is universal. Resolve as such.
5520 Set_Etype (N, B_Typ);
5521 end if;
5523 else
5524 if (TL = Universal_Integer or else TL = Universal_Real)
5525 and then
5526 (TR = Universal_Integer or else TR = Universal_Real)
5527 then
5528 Check_For_Visible_Operator (N, B_Typ);
5529 end if;
5531 -- If the context is Universal_Fixed and the operands are also
5532 -- universal fixed, this is an error, unless there is only one
5533 -- applicable fixed_point type (usually Duration).
5535 if B_Typ = Universal_Fixed and then Etype (L) = Universal_Fixed then
5536 T := Unique_Fixed_Point_Type (N);
5538 if T = Any_Type then
5539 Set_Etype (N, T);
5540 return;
5541 else
5542 Resolve (L, T);
5543 Resolve (R, T);
5544 end if;
5546 else
5547 Resolve (L, B_Typ);
5548 Resolve (R, B_Typ);
5549 end if;
5551 -- If one of the arguments was resolved to a non-universal type.
5552 -- label the result of the operation itself with the same type.
5553 -- Do the same for the universal argument, if any.
5555 T := Intersect_Types (L, R);
5556 Set_Etype (N, Base_Type (T));
5557 Set_Operand_Type (L);
5558 Set_Operand_Type (R);
5559 end if;
5561 Generate_Operator_Reference (N, Typ);
5562 Analyze_Dimension (N);
5563 Eval_Arithmetic_Op (N);
5565 -- In SPARK, a multiplication or division with operands of fixed point
5566 -- types must be qualified or explicitly converted to identify the
5567 -- result type.
5569 if (Is_Fixed_Point_Type (Etype (L))
5570 or else Is_Fixed_Point_Type (Etype (R)))
5571 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5572 and then
5573 not Nkind_In (Parent (N), N_Qualified_Expression, N_Type_Conversion)
5574 then
5575 Check_SPARK_05_Restriction
5576 ("operation should be qualified or explicitly converted", N);
5577 end if;
5579 -- Set overflow and division checking bit
5581 if Nkind (N) in N_Op then
5582 if not Overflow_Checks_Suppressed (Etype (N)) then
5583 Enable_Overflow_Check (N);
5584 end if;
5586 -- Give warning if explicit division by zero
5588 if Nkind_In (N, N_Op_Divide, N_Op_Rem, N_Op_Mod)
5589 and then not Division_Checks_Suppressed (Etype (N))
5590 then
5591 Rop := Right_Opnd (N);
5593 if Compile_Time_Known_Value (Rop)
5594 and then ((Is_Integer_Type (Etype (Rop))
5595 and then Expr_Value (Rop) = Uint_0)
5596 or else
5597 (Is_Real_Type (Etype (Rop))
5598 and then Expr_Value_R (Rop) = Ureal_0))
5599 then
5600 -- Specialize the warning message according to the operation.
5601 -- When SPARK_Mode is On, force a warning instead of an error
5602 -- in that case, as this likely corresponds to deactivated
5603 -- code. The following warnings are for the case
5605 case Nkind (N) is
5606 when N_Op_Divide =>
5608 -- For division, we have two cases, for float division
5609 -- of an unconstrained float type, on a machine where
5610 -- Machine_Overflows is false, we don't get an exception
5611 -- at run-time, but rather an infinity or Nan. The Nan
5612 -- case is pretty obscure, so just warn about infinities.
5614 if Is_Floating_Point_Type (Typ)
5615 and then not Is_Constrained (Typ)
5616 and then not Machine_Overflows_On_Target
5617 then
5618 Error_Msg_N
5619 ("float division by zero, may generate "
5620 & "'+'/'- infinity??", Right_Opnd (N));
5622 -- For all other cases, we get a Constraint_Error
5624 else
5625 Apply_Compile_Time_Constraint_Error
5626 (N, "division by zero??", CE_Divide_By_Zero,
5627 Loc => Sloc (Right_Opnd (N)),
5628 Warn => SPARK_Mode = On);
5629 end if;
5631 when N_Op_Rem =>
5632 Apply_Compile_Time_Constraint_Error
5633 (N, "rem with zero divisor??", CE_Divide_By_Zero,
5634 Loc => Sloc (Right_Opnd (N)),
5635 Warn => SPARK_Mode = On);
5637 when N_Op_Mod =>
5638 Apply_Compile_Time_Constraint_Error
5639 (N, "mod with zero divisor??", CE_Divide_By_Zero,
5640 Loc => Sloc (Right_Opnd (N)),
5641 Warn => SPARK_Mode = On);
5643 -- Division by zero can only happen with division, rem,
5644 -- and mod operations.
5646 when others =>
5647 raise Program_Error;
5648 end case;
5650 -- In GNATprove mode, we enable the division check so that
5651 -- GNATprove will issue a message if it cannot be proved.
5653 if GNATprove_Mode then
5654 Activate_Division_Check (N);
5655 end if;
5657 -- Otherwise just set the flag to check at run time
5659 else
5660 Activate_Division_Check (N);
5661 end if;
5662 end if;
5664 -- If Restriction No_Implicit_Conditionals is active, then it is
5665 -- violated if either operand can be negative for mod, or for rem
5666 -- if both operands can be negative.
5668 if Restriction_Check_Required (No_Implicit_Conditionals)
5669 and then Nkind_In (N, N_Op_Rem, N_Op_Mod)
5670 then
5671 declare
5672 Lo : Uint;
5673 Hi : Uint;
5674 OK : Boolean;
5676 LNeg : Boolean;
5677 RNeg : Boolean;
5678 -- Set if corresponding operand might be negative
5680 begin
5681 Determine_Range
5682 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5683 LNeg := (not OK) or else Lo < 0;
5685 Determine_Range
5686 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5687 RNeg := (not OK) or else Lo < 0;
5689 -- Check if we will be generating conditionals. There are two
5690 -- cases where that can happen, first for REM, the only case
5691 -- is largest negative integer mod -1, where the division can
5692 -- overflow, but we still have to give the right result. The
5693 -- front end generates a test for this annoying case. Here we
5694 -- just test if both operands can be negative (that's what the
5695 -- expander does, so we match its logic here).
5697 -- The second case is mod where either operand can be negative.
5698 -- In this case, the back end has to generate additional tests.
5700 if (Nkind (N) = N_Op_Rem and then (LNeg and RNeg))
5701 or else
5702 (Nkind (N) = N_Op_Mod and then (LNeg or RNeg))
5703 then
5704 Check_Restriction (No_Implicit_Conditionals, N);
5705 end if;
5706 end;
5707 end if;
5708 end if;
5710 Check_Unset_Reference (L);
5711 Check_Unset_Reference (R);
5712 end Resolve_Arithmetic_Op;
5714 ------------------
5715 -- Resolve_Call --
5716 ------------------
5718 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id) is
5719 function Same_Or_Aliased_Subprograms
5720 (S : Entity_Id;
5721 E : Entity_Id) return Boolean;
5722 -- Returns True if the subprogram entity S is the same as E or else
5723 -- S is an alias of E.
5725 ---------------------------------
5726 -- Same_Or_Aliased_Subprograms --
5727 ---------------------------------
5729 function Same_Or_Aliased_Subprograms
5730 (S : Entity_Id;
5731 E : Entity_Id) return Boolean
5733 Subp_Alias : constant Entity_Id := Alias (S);
5734 begin
5735 return S = E or else (Present (Subp_Alias) and then Subp_Alias = E);
5736 end Same_Or_Aliased_Subprograms;
5738 -- Local variables
5740 Loc : constant Source_Ptr := Sloc (N);
5741 Subp : constant Node_Id := Name (N);
5742 Body_Id : Entity_Id;
5743 I : Interp_Index;
5744 It : Interp;
5745 Nam : Entity_Id;
5746 Nam_Decl : Node_Id;
5747 Nam_UA : Entity_Id;
5748 Norm_OK : Boolean;
5749 Rtype : Entity_Id;
5750 Scop : Entity_Id;
5752 -- Start of processing for Resolve_Call
5754 begin
5755 -- Preserve relevant elaboration-related attributes of the context which
5756 -- are no longer available or very expensive to recompute once analysis,
5757 -- resolution, and expansion are over.
5759 Mark_Elaboration_Attributes
5760 (N_Id => N,
5761 Checks => True,
5762 Modes => True,
5763 Warnings => True);
5765 -- The context imposes a unique interpretation with type Typ on a
5766 -- procedure or function call. Find the entity of the subprogram that
5767 -- yields the expected type, and propagate the corresponding formal
5768 -- constraints on the actuals. The caller has established that an
5769 -- interpretation exists, and emitted an error if not unique.
5771 -- First deal with the case of a call to an access-to-subprogram,
5772 -- dereference made explicit in Analyze_Call.
5774 if Ekind (Etype (Subp)) = E_Subprogram_Type then
5775 if not Is_Overloaded (Subp) then
5776 Nam := Etype (Subp);
5778 else
5779 -- Find the interpretation whose type (a subprogram type) has a
5780 -- return type that is compatible with the context. Analysis of
5781 -- the node has established that one exists.
5783 Nam := Empty;
5785 Get_First_Interp (Subp, I, It);
5786 while Present (It.Typ) loop
5787 if Covers (Typ, Etype (It.Typ)) then
5788 Nam := It.Typ;
5789 exit;
5790 end if;
5792 Get_Next_Interp (I, It);
5793 end loop;
5795 if No (Nam) then
5796 raise Program_Error;
5797 end if;
5798 end if;
5800 -- If the prefix is not an entity, then resolve it
5802 if not Is_Entity_Name (Subp) then
5803 Resolve (Subp, Nam);
5804 end if;
5806 -- For an indirect call, we always invalidate checks, since we do not
5807 -- know whether the subprogram is local or global. Yes we could do
5808 -- better here, e.g. by knowing that there are no local subprograms,
5809 -- but it does not seem worth the effort. Similarly, we kill all
5810 -- knowledge of current constant values.
5812 Kill_Current_Values;
5814 -- If this is a procedure call which is really an entry call, do
5815 -- the conversion of the procedure call to an entry call. Protected
5816 -- operations use the same circuitry because the name in the call
5817 -- can be an arbitrary expression with special resolution rules.
5819 elsif Nkind_In (Subp, N_Selected_Component, N_Indexed_Component)
5820 or else (Is_Entity_Name (Subp)
5821 and then Ekind_In (Entity (Subp), E_Entry, E_Entry_Family))
5822 then
5823 Resolve_Entry_Call (N, Typ);
5825 if Legacy_Elaboration_Checks then
5826 Check_Elab_Call (N);
5827 end if;
5829 -- Annotate the tree by creating a call marker in case the original
5830 -- call is transformed by expansion. The call marker is automatically
5831 -- saved for later examination by the ABE Processing phase.
5833 Build_Call_Marker (N);
5835 -- Kill checks and constant values, as above for indirect case
5836 -- Who knows what happens when another task is activated?
5838 Kill_Current_Values;
5839 return;
5841 -- Normal subprogram call with name established in Resolve
5843 elsif not (Is_Type (Entity (Subp))) then
5844 Nam := Entity (Subp);
5845 Set_Entity_With_Checks (Subp, Nam);
5847 -- Otherwise we must have the case of an overloaded call
5849 else
5850 pragma Assert (Is_Overloaded (Subp));
5852 -- Initialize Nam to prevent warning (we know it will be assigned
5853 -- in the loop below, but the compiler does not know that).
5855 Nam := Empty;
5857 Get_First_Interp (Subp, I, It);
5858 while Present (It.Typ) loop
5859 if Covers (Typ, It.Typ) then
5860 Nam := It.Nam;
5861 Set_Entity_With_Checks (Subp, Nam);
5862 exit;
5863 end if;
5865 Get_Next_Interp (I, It);
5866 end loop;
5867 end if;
5869 if Is_Access_Subprogram_Type (Base_Type (Etype (Nam)))
5870 and then not Is_Access_Subprogram_Type (Base_Type (Typ))
5871 and then Nkind (Subp) /= N_Explicit_Dereference
5872 and then Present (Parameter_Associations (N))
5873 then
5874 -- The prefix is a parameterless function call that returns an access
5875 -- to subprogram. If parameters are present in the current call, add
5876 -- add an explicit dereference. We use the base type here because
5877 -- within an instance these may be subtypes.
5879 -- The dereference is added either in Analyze_Call or here. Should
5880 -- be consolidated ???
5882 Set_Is_Overloaded (Subp, False);
5883 Set_Etype (Subp, Etype (Nam));
5884 Insert_Explicit_Dereference (Subp);
5885 Nam := Designated_Type (Etype (Nam));
5886 Resolve (Subp, Nam);
5887 end if;
5889 -- Check that a call to Current_Task does not occur in an entry body
5891 if Is_RTE (Nam, RE_Current_Task) then
5892 declare
5893 P : Node_Id;
5895 begin
5896 P := N;
5897 loop
5898 P := Parent (P);
5900 -- Exclude calls that occur within the default of a formal
5901 -- parameter of the entry, since those are evaluated outside
5902 -- of the body.
5904 exit when No (P) or else Nkind (P) = N_Parameter_Specification;
5906 if Nkind (P) = N_Entry_Body
5907 or else (Nkind (P) = N_Subprogram_Body
5908 and then Is_Entry_Barrier_Function (P))
5909 then
5910 Rtype := Etype (N);
5911 Error_Msg_Warn := SPARK_Mode /= On;
5912 Error_Msg_NE
5913 ("& should not be used in entry body (RM C.7(17))<<",
5914 N, Nam);
5915 Error_Msg_NE ("\Program_Error [<<", N, Nam);
5916 Rewrite (N,
5917 Make_Raise_Program_Error (Loc,
5918 Reason => PE_Current_Task_In_Entry_Body));
5919 Set_Etype (N, Rtype);
5920 return;
5921 end if;
5922 end loop;
5923 end;
5924 end if;
5926 -- Check that a procedure call does not occur in the context of the
5927 -- entry call statement of a conditional or timed entry call. Note that
5928 -- the case of a call to a subprogram renaming of an entry will also be
5929 -- rejected. The test for N not being an N_Entry_Call_Statement is
5930 -- defensive, covering the possibility that the processing of entry
5931 -- calls might reach this point due to later modifications of the code
5932 -- above.
5934 if Nkind (Parent (N)) = N_Entry_Call_Alternative
5935 and then Nkind (N) /= N_Entry_Call_Statement
5936 and then Entry_Call_Statement (Parent (N)) = N
5937 then
5938 if Ada_Version < Ada_2005 then
5939 Error_Msg_N ("entry call required in select statement", N);
5941 -- Ada 2005 (AI-345): If a procedure_call_statement is used
5942 -- for a procedure_or_entry_call, the procedure_name or
5943 -- procedure_prefix of the procedure_call_statement shall denote
5944 -- an entry renamed by a procedure, or (a view of) a primitive
5945 -- subprogram of a limited interface whose first parameter is
5946 -- a controlling parameter.
5948 elsif Nkind (N) = N_Procedure_Call_Statement
5949 and then not Is_Renamed_Entry (Nam)
5950 and then not Is_Controlling_Limited_Procedure (Nam)
5951 then
5952 Error_Msg_N
5953 ("entry call or dispatching primitive of interface required", N);
5954 end if;
5955 end if;
5957 -- If the SPARK_05 restriction is active, we are not allowed
5958 -- to have a call to a subprogram before we see its completion.
5960 if not Has_Completion (Nam)
5961 and then Restriction_Check_Required (SPARK_05)
5963 -- Don't flag strange internal calls
5965 and then Comes_From_Source (N)
5966 and then Comes_From_Source (Nam)
5968 -- Only flag calls in extended main source
5970 and then In_Extended_Main_Source_Unit (Nam)
5971 and then In_Extended_Main_Source_Unit (N)
5973 -- Exclude enumeration literals from this processing
5975 and then Ekind (Nam) /= E_Enumeration_Literal
5976 then
5977 Check_SPARK_05_Restriction
5978 ("call to subprogram cannot appear before its body", N);
5979 end if;
5981 -- Check that this is not a call to a protected procedure or entry from
5982 -- within a protected function.
5984 Check_Internal_Protected_Use (N, Nam);
5986 -- Freeze the subprogram name if not in a spec-expression. Note that
5987 -- we freeze procedure calls as well as function calls. Procedure calls
5988 -- are not frozen according to the rules (RM 13.14(14)) because it is
5989 -- impossible to have a procedure call to a non-frozen procedure in
5990 -- pure Ada, but in the code that we generate in the expander, this
5991 -- rule needs extending because we can generate procedure calls that
5992 -- need freezing.
5994 -- In Ada 2012, expression functions may be called within pre/post
5995 -- conditions of subsequent functions or expression functions. Such
5996 -- calls do not freeze when they appear within generated bodies,
5997 -- (including the body of another expression function) which would
5998 -- place the freeze node in the wrong scope. An expression function
5999 -- is frozen in the usual fashion, by the appearance of a real body,
6000 -- or at the end of a declarative part.
6002 if Is_Entity_Name (Subp)
6003 and then not In_Spec_Expression
6004 and then not Is_Expression_Function_Or_Completion (Current_Scope)
6005 and then
6006 (not Is_Expression_Function_Or_Completion (Entity (Subp))
6007 or else Scope (Entity (Subp)) = Current_Scope)
6008 then
6009 Freeze_Expression (Subp);
6010 end if;
6012 -- For a predefined operator, the type of the result is the type imposed
6013 -- by context, except for a predefined operation on universal fixed.
6014 -- Otherwise The type of the call is the type returned by the subprogram
6015 -- being called.
6017 if Is_Predefined_Op (Nam) then
6018 if Etype (N) /= Universal_Fixed then
6019 Set_Etype (N, Typ);
6020 end if;
6022 -- If the subprogram returns an array type, and the context requires the
6023 -- component type of that array type, the node is really an indexing of
6024 -- the parameterless call. Resolve as such. A pathological case occurs
6025 -- when the type of the component is an access to the array type. In
6026 -- this case the call is truly ambiguous. If the call is to an intrinsic
6027 -- subprogram, it can't be an indexed component. This check is necessary
6028 -- because if it's Unchecked_Conversion, and we have "type T_Ptr is
6029 -- access T;" and "type T is array (...) of T_Ptr;" (i.e. an array of
6030 -- pointers to the same array), the compiler gets confused and does an
6031 -- infinite recursion.
6033 elsif (Needs_No_Actuals (Nam) or else Needs_One_Actual (Nam))
6034 and then
6035 ((Is_Array_Type (Etype (Nam))
6036 and then Covers (Typ, Component_Type (Etype (Nam))))
6037 or else
6038 (Is_Access_Type (Etype (Nam))
6039 and then Is_Array_Type (Designated_Type (Etype (Nam)))
6040 and then
6041 Covers (Typ, Component_Type (Designated_Type (Etype (Nam))))
6042 and then not Is_Intrinsic_Subprogram (Entity (Subp))))
6043 then
6044 declare
6045 Index_Node : Node_Id;
6046 New_Subp : Node_Id;
6047 Ret_Type : constant Entity_Id := Etype (Nam);
6049 begin
6050 if Is_Access_Type (Ret_Type)
6051 and then Ret_Type = Component_Type (Designated_Type (Ret_Type))
6052 then
6053 Error_Msg_N
6054 ("cannot disambiguate function call and indexing", N);
6055 else
6056 New_Subp := Relocate_Node (Subp);
6058 -- The called entity may be an explicit dereference, in which
6059 -- case there is no entity to set.
6061 if Nkind (New_Subp) /= N_Explicit_Dereference then
6062 Set_Entity (Subp, Nam);
6063 end if;
6065 if (Is_Array_Type (Ret_Type)
6066 and then Component_Type (Ret_Type) /= Any_Type)
6067 or else
6068 (Is_Access_Type (Ret_Type)
6069 and then
6070 Component_Type (Designated_Type (Ret_Type)) /= Any_Type)
6071 then
6072 if Needs_No_Actuals (Nam) then
6074 -- Indexed call to a parameterless function
6076 Index_Node :=
6077 Make_Indexed_Component (Loc,
6078 Prefix =>
6079 Make_Function_Call (Loc, Name => New_Subp),
6080 Expressions => Parameter_Associations (N));
6081 else
6082 -- An Ada 2005 prefixed call to a primitive operation
6083 -- whose first parameter is the prefix. This prefix was
6084 -- prepended to the parameter list, which is actually a
6085 -- list of indexes. Remove the prefix in order to build
6086 -- the proper indexed component.
6088 Index_Node :=
6089 Make_Indexed_Component (Loc,
6090 Prefix =>
6091 Make_Function_Call (Loc,
6092 Name => New_Subp,
6093 Parameter_Associations =>
6094 New_List
6095 (Remove_Head (Parameter_Associations (N)))),
6096 Expressions => Parameter_Associations (N));
6097 end if;
6099 -- Preserve the parenthesis count of the node
6101 Set_Paren_Count (Index_Node, Paren_Count (N));
6103 -- Since we are correcting a node classification error made
6104 -- by the parser, we call Replace rather than Rewrite.
6106 Replace (N, Index_Node);
6108 Set_Etype (Prefix (N), Ret_Type);
6109 Set_Etype (N, Typ);
6110 Resolve_Indexed_Component (N, Typ);
6112 if Legacy_Elaboration_Checks then
6113 Check_Elab_Call (Prefix (N));
6114 end if;
6116 -- Annotate the tree by creating a call marker in case
6117 -- the original call is transformed by expansion. The call
6118 -- marker is automatically saved for later examination by
6119 -- the ABE Processing phase.
6121 Build_Call_Marker (Prefix (N));
6122 end if;
6123 end if;
6125 return;
6126 end;
6128 else
6129 -- If the called function is not declared in the main unit and it
6130 -- returns the limited view of type then use the available view (as
6131 -- is done in Try_Object_Operation) to prevent back-end confusion;
6132 -- for the function entity itself. The call must appear in a context
6133 -- where the nonlimited view is available. If the function entity is
6134 -- in the extended main unit then no action is needed, because the
6135 -- back end handles this case. In either case the type of the call
6136 -- is the nonlimited view.
6138 if From_Limited_With (Etype (Nam))
6139 and then Present (Available_View (Etype (Nam)))
6140 then
6141 Set_Etype (N, Available_View (Etype (Nam)));
6143 if not In_Extended_Main_Code_Unit (Nam) then
6144 Set_Etype (Nam, Available_View (Etype (Nam)));
6145 end if;
6147 else
6148 Set_Etype (N, Etype (Nam));
6149 end if;
6150 end if;
6152 -- In the case where the call is to an overloaded subprogram, Analyze
6153 -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
6154 -- such a case Normalize_Actuals needs to be called once more to order
6155 -- the actuals correctly. Otherwise the call will have the ordering
6156 -- given by the last overloaded subprogram whether this is the correct
6157 -- one being called or not.
6159 if Is_Overloaded (Subp) then
6160 Normalize_Actuals (N, Nam, False, Norm_OK);
6161 pragma Assert (Norm_OK);
6162 end if;
6164 -- In any case, call is fully resolved now. Reset Overload flag, to
6165 -- prevent subsequent overload resolution if node is analyzed again
6167 Set_Is_Overloaded (Subp, False);
6168 Set_Is_Overloaded (N, False);
6170 -- A Ghost entity must appear in a specific context
6172 if Is_Ghost_Entity (Nam) and then Comes_From_Source (N) then
6173 Check_Ghost_Context (Nam, N);
6174 end if;
6176 -- If we are calling the current subprogram from immediately within its
6177 -- body, then that is the case where we can sometimes detect cases of
6178 -- infinite recursion statically. Do not try this in case restriction
6179 -- No_Recursion is in effect anyway, and do it only for source calls.
6181 if Comes_From_Source (N) then
6182 Scop := Current_Scope;
6184 -- Check violation of SPARK_05 restriction which does not permit
6185 -- a subprogram body to contain a call to the subprogram directly.
6187 if Restriction_Check_Required (SPARK_05)
6188 and then Same_Or_Aliased_Subprograms (Nam, Scop)
6189 then
6190 Check_SPARK_05_Restriction
6191 ("subprogram may not contain direct call to itself", N);
6192 end if;
6194 -- Issue warning for possible infinite recursion in the absence
6195 -- of the No_Recursion restriction.
6197 if Same_Or_Aliased_Subprograms (Nam, Scop)
6198 and then not Restriction_Active (No_Recursion)
6199 and then Check_Infinite_Recursion (N)
6200 then
6201 -- Here we detected and flagged an infinite recursion, so we do
6202 -- not need to test the case below for further warnings. Also we
6203 -- are all done if we now have a raise SE node.
6205 if Nkind (N) = N_Raise_Storage_Error then
6206 return;
6207 end if;
6209 -- If call is to immediately containing subprogram, then check for
6210 -- the case of a possible run-time detectable infinite recursion.
6212 else
6213 Scope_Loop : while Scop /= Standard_Standard loop
6214 if Same_Or_Aliased_Subprograms (Nam, Scop) then
6216 -- Although in general case, recursion is not statically
6217 -- checkable, the case of calling an immediately containing
6218 -- subprogram is easy to catch.
6220 Check_Restriction (No_Recursion, N);
6222 -- If the recursive call is to a parameterless subprogram,
6223 -- then even if we can't statically detect infinite
6224 -- recursion, this is pretty suspicious, and we output a
6225 -- warning. Furthermore, we will try later to detect some
6226 -- cases here at run time by expanding checking code (see
6227 -- Detect_Infinite_Recursion in package Exp_Ch6).
6229 -- If the recursive call is within a handler, do not emit a
6230 -- warning, because this is a common idiom: loop until input
6231 -- is correct, catch illegal input in handler and restart.
6233 if No (First_Formal (Nam))
6234 and then Etype (Nam) = Standard_Void_Type
6235 and then not Error_Posted (N)
6236 and then Nkind (Parent (N)) /= N_Exception_Handler
6237 then
6238 -- For the case of a procedure call. We give the message
6239 -- only if the call is the first statement in a sequence
6240 -- of statements, or if all previous statements are
6241 -- simple assignments. This is simply a heuristic to
6242 -- decrease false positives, without losing too many good
6243 -- warnings. The idea is that these previous statements
6244 -- may affect global variables the procedure depends on.
6245 -- We also exclude raise statements, that may arise from
6246 -- constraint checks and are probably unrelated to the
6247 -- intended control flow.
6249 if Nkind (N) = N_Procedure_Call_Statement
6250 and then Is_List_Member (N)
6251 then
6252 declare
6253 P : Node_Id;
6254 begin
6255 P := Prev (N);
6256 while Present (P) loop
6257 if not Nkind_In (P, N_Assignment_Statement,
6258 N_Raise_Constraint_Error)
6259 then
6260 exit Scope_Loop;
6261 end if;
6263 Prev (P);
6264 end loop;
6265 end;
6266 end if;
6268 -- Do not give warning if we are in a conditional context
6270 declare
6271 K : constant Node_Kind := Nkind (Parent (N));
6272 begin
6273 if (K = N_Loop_Statement
6274 and then Present (Iteration_Scheme (Parent (N))))
6275 or else K = N_If_Statement
6276 or else K = N_Elsif_Part
6277 or else K = N_Case_Statement_Alternative
6278 then
6279 exit Scope_Loop;
6280 end if;
6281 end;
6283 -- Here warning is to be issued
6285 Set_Has_Recursive_Call (Nam);
6286 Error_Msg_Warn := SPARK_Mode /= On;
6287 Error_Msg_N ("possible infinite recursion<<!", N);
6288 Error_Msg_N ("\Storage_Error ]<<!", N);
6289 end if;
6291 exit Scope_Loop;
6292 end if;
6294 Scop := Scope (Scop);
6295 end loop Scope_Loop;
6296 end if;
6297 end if;
6299 -- Check obsolescent reference to Ada.Characters.Handling subprogram
6301 Check_Obsolescent_2005_Entity (Nam, Subp);
6303 -- If subprogram name is a predefined operator, it was given in
6304 -- functional notation. Replace call node with operator node, so
6305 -- that actuals can be resolved appropriately.
6307 if Is_Predefined_Op (Nam) or else Ekind (Nam) = E_Operator then
6308 Make_Call_Into_Operator (N, Typ, Entity (Name (N)));
6309 return;
6311 elsif Present (Alias (Nam))
6312 and then Is_Predefined_Op (Alias (Nam))
6313 then
6314 Resolve_Actuals (N, Nam);
6315 Make_Call_Into_Operator (N, Typ, Alias (Nam));
6316 return;
6317 end if;
6319 -- Create a transient scope if the resulting type requires it
6321 -- There are several notable exceptions:
6323 -- a) In init procs, the transient scope overhead is not needed, and is
6324 -- even incorrect when the call is a nested initialization call for a
6325 -- component whose expansion may generate adjust calls. However, if the
6326 -- call is some other procedure call within an initialization procedure
6327 -- (for example a call to Create_Task in the init_proc of the task
6328 -- run-time record) a transient scope must be created around this call.
6330 -- b) Enumeration literal pseudo-calls need no transient scope
6332 -- c) Intrinsic subprograms (Unchecked_Conversion and source info
6333 -- functions) do not use the secondary stack even though the return
6334 -- type may be unconstrained.
6336 -- d) Calls to a build-in-place function, since such functions may
6337 -- allocate their result directly in a target object, and cases where
6338 -- the result does get allocated in the secondary stack are checked for
6339 -- within the specialized Exp_Ch6 procedures for expanding those
6340 -- build-in-place calls.
6342 -- e) Calls to inlinable expression functions do not use the secondary
6343 -- stack (since the call will be replaced by its returned object).
6345 -- f) If the subprogram is marked Inline_Always, then even if it returns
6346 -- an unconstrained type the call does not require use of the secondary
6347 -- stack. However, inlining will only take place if the body to inline
6348 -- is already present. It may not be available if e.g. the subprogram is
6349 -- declared in a child instance.
6351 if Is_Inlined (Nam)
6352 and then Has_Pragma_Inline (Nam)
6353 and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
6354 and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
6355 then
6356 null;
6358 elsif Ekind (Nam) = E_Enumeration_Literal
6359 or else Is_Build_In_Place_Function (Nam)
6360 or else Is_Intrinsic_Subprogram (Nam)
6361 or else Is_Inlinable_Expression_Function (Nam)
6362 then
6363 null;
6365 elsif Expander_Active
6366 and then Ekind (Nam) = E_Function
6367 and then Requires_Transient_Scope (Etype (Nam))
6368 then
6369 Establish_Transient_Scope (N, Manage_Sec_Stack => True);
6371 -- If the call appears within the bounds of a loop, it will be
6372 -- rewritten and reanalyzed, nothing left to do here.
6374 if Nkind (N) /= N_Function_Call then
6375 return;
6376 end if;
6377 end if;
6379 -- A protected function cannot be called within the definition of the
6380 -- enclosing protected type, unless it is part of a pre/postcondition
6381 -- on another protected operation. This may appear in the entry wrapper
6382 -- created for an entry with preconditions.
6384 if Is_Protected_Type (Scope (Nam))
6385 and then In_Open_Scopes (Scope (Nam))
6386 and then not Has_Completion (Scope (Nam))
6387 and then not In_Spec_Expression
6388 and then not Is_Entry_Wrapper (Current_Scope)
6389 then
6390 Error_Msg_NE
6391 ("& cannot be called before end of protected definition", N, Nam);
6392 end if;
6394 -- Propagate interpretation to actuals, and add default expressions
6395 -- where needed.
6397 if Present (First_Formal (Nam)) then
6398 Resolve_Actuals (N, Nam);
6400 -- Overloaded literals are rewritten as function calls, for purpose of
6401 -- resolution. After resolution, we can replace the call with the
6402 -- literal itself.
6404 elsif Ekind (Nam) = E_Enumeration_Literal then
6405 Copy_Node (Subp, N);
6406 Resolve_Entity_Name (N, Typ);
6408 -- Avoid validation, since it is a static function call
6410 Generate_Reference (Nam, Subp);
6411 return;
6412 end if;
6414 -- If the subprogram is not global, then kill all saved values and
6415 -- checks. This is a bit conservative, since in many cases we could do
6416 -- better, but it is not worth the effort. Similarly, we kill constant
6417 -- values. However we do not need to do this for internal entities
6418 -- (unless they are inherited user-defined subprograms), since they
6419 -- are not in the business of molesting local values.
6421 -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
6422 -- kill all checks and values for calls to global subprograms. This
6423 -- takes care of the case where an access to a local subprogram is
6424 -- taken, and could be passed directly or indirectly and then called
6425 -- from almost any context.
6427 -- Note: we do not do this step till after resolving the actuals. That
6428 -- way we still take advantage of the current value information while
6429 -- scanning the actuals.
6431 -- We suppress killing values if we are processing the nodes associated
6432 -- with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
6433 -- type kills all the values as part of analyzing the code that
6434 -- initializes the dispatch tables.
6436 if Inside_Freezing_Actions = 0
6437 and then (not Is_Library_Level_Entity (Nam)
6438 or else Suppress_Value_Tracking_On_Call
6439 (Nearest_Dynamic_Scope (Current_Scope)))
6440 and then (Comes_From_Source (Nam)
6441 or else (Present (Alias (Nam))
6442 and then Comes_From_Source (Alias (Nam))))
6443 then
6444 Kill_Current_Values;
6445 end if;
6447 -- If we are warning about unread OUT parameters, this is the place to
6448 -- set Last_Assignment for OUT and IN OUT parameters. We have to do this
6449 -- after the above call to Kill_Current_Values (since that call clears
6450 -- the Last_Assignment field of all local variables).
6452 if (Warn_On_Modified_Unread or Warn_On_All_Unread_Out_Parameters)
6453 and then Comes_From_Source (N)
6454 and then In_Extended_Main_Source_Unit (N)
6455 then
6456 declare
6457 F : Entity_Id;
6458 A : Node_Id;
6460 begin
6461 F := First_Formal (Nam);
6462 A := First_Actual (N);
6463 while Present (F) and then Present (A) loop
6464 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
6465 and then Warn_On_Modified_As_Out_Parameter (F)
6466 and then Is_Entity_Name (A)
6467 and then Present (Entity (A))
6468 and then Comes_From_Source (N)
6469 and then Safe_To_Capture_Value (N, Entity (A))
6470 then
6471 Set_Last_Assignment (Entity (A), A);
6472 end if;
6474 Next_Formal (F);
6475 Next_Actual (A);
6476 end loop;
6477 end;
6478 end if;
6480 -- If the subprogram is a primitive operation, check whether or not
6481 -- it is a correct dispatching call.
6483 if Is_Overloadable (Nam)
6484 and then Is_Dispatching_Operation (Nam)
6485 then
6486 Check_Dispatching_Call (N);
6488 elsif Ekind (Nam) /= E_Subprogram_Type
6489 and then Is_Abstract_Subprogram (Nam)
6490 and then not In_Instance
6491 then
6492 Error_Msg_NE ("cannot call abstract subprogram &!", N, Nam);
6493 end if;
6495 -- If this is a dispatching call, generate the appropriate reference,
6496 -- for better source navigation in GPS.
6498 if Is_Overloadable (Nam)
6499 and then Present (Controlling_Argument (N))
6500 then
6501 Generate_Reference (Nam, Subp, 'R');
6503 -- Normal case, not a dispatching call: generate a call reference
6505 else
6506 Generate_Reference (Nam, Subp, 's');
6507 end if;
6509 if Is_Intrinsic_Subprogram (Nam) then
6510 Check_Intrinsic_Call (N);
6511 end if;
6513 -- Check for violation of restriction No_Specific_Termination_Handlers
6514 -- and warn on a potentially blocking call to Abort_Task.
6516 if Restriction_Check_Required (No_Specific_Termination_Handlers)
6517 and then (Is_RTE (Nam, RE_Set_Specific_Handler)
6518 or else
6519 Is_RTE (Nam, RE_Specific_Handler))
6520 then
6521 Check_Restriction (No_Specific_Termination_Handlers, N);
6523 elsif Is_RTE (Nam, RE_Abort_Task) then
6524 Check_Potentially_Blocking_Operation (N);
6525 end if;
6527 -- A call to Ada.Real_Time.Timing_Events.Set_Handler to set a relative
6528 -- timing event violates restriction No_Relative_Delay (AI-0211). We
6529 -- need to check the second argument to determine whether it is an
6530 -- absolute or relative timing event.
6532 if Restriction_Check_Required (No_Relative_Delay)
6533 and then Is_RTE (Nam, RE_Set_Handler)
6534 and then Is_RTE (Etype (Next_Actual (First_Actual (N))), RE_Time_Span)
6535 then
6536 Check_Restriction (No_Relative_Delay, N);
6537 end if;
6539 -- Issue an error for a call to an eliminated subprogram. This routine
6540 -- will not perform the check if the call appears within a default
6541 -- expression.
6543 Check_For_Eliminated_Subprogram (Subp, Nam);
6545 -- In formal mode, the primitive operations of a tagged type or type
6546 -- extension do not include functions that return the tagged type.
6548 if Nkind (N) = N_Function_Call
6549 and then Is_Tagged_Type (Etype (N))
6550 and then Is_Entity_Name (Name (N))
6551 and then Is_Inherited_Operation_For_Type (Entity (Name (N)), Etype (N))
6552 then
6553 Check_SPARK_05_Restriction ("function not inherited", N);
6554 end if;
6556 -- Implement rule in 12.5.1 (23.3/2): In an instance, if the actual is
6557 -- class-wide and the call dispatches on result in a context that does
6558 -- not provide a tag, the call raises Program_Error.
6560 if Nkind (N) = N_Function_Call
6561 and then In_Instance
6562 and then Is_Generic_Actual_Type (Typ)
6563 and then Is_Class_Wide_Type (Typ)
6564 and then Has_Controlling_Result (Nam)
6565 and then Nkind (Parent (N)) = N_Object_Declaration
6566 then
6567 -- Verify that none of the formals are controlling
6569 declare
6570 Call_OK : Boolean := False;
6571 F : Entity_Id;
6573 begin
6574 F := First_Formal (Nam);
6575 while Present (F) loop
6576 if Is_Controlling_Formal (F) then
6577 Call_OK := True;
6578 exit;
6579 end if;
6581 Next_Formal (F);
6582 end loop;
6584 if not Call_OK then
6585 Error_Msg_Warn := SPARK_Mode /= On;
6586 Error_Msg_N ("!cannot determine tag of result<<", N);
6587 Error_Msg_N ("\Program_Error [<<!", N);
6588 Insert_Action (N,
6589 Make_Raise_Program_Error (Sloc (N),
6590 Reason => PE_Explicit_Raise));
6591 end if;
6592 end;
6593 end if;
6595 -- Check for calling a function with OUT or IN OUT parameter when the
6596 -- calling context (us right now) is not Ada 2012, so does not allow
6597 -- OUT or IN OUT parameters in function calls. Functions declared in
6598 -- a predefined unit are OK, as they may be called indirectly from a
6599 -- user-declared instantiation.
6601 if Ada_Version < Ada_2012
6602 and then Ekind (Nam) = E_Function
6603 and then Has_Out_Or_In_Out_Parameter (Nam)
6604 and then not In_Predefined_Unit (Nam)
6605 then
6606 Error_Msg_NE ("& has at least one OUT or `IN OUT` parameter", N, Nam);
6607 Error_Msg_N ("\call to this function only allowed in Ada 2012", N);
6608 end if;
6610 -- Check the dimensions of the actuals in the call. For function calls,
6611 -- propagate the dimensions from the returned type to N.
6613 Analyze_Dimension_Call (N, Nam);
6615 -- All done, evaluate call and deal with elaboration issues
6617 Eval_Call (N);
6619 if Legacy_Elaboration_Checks then
6620 Check_Elab_Call (N);
6621 end if;
6623 -- Annotate the tree by creating a call marker in case the original call
6624 -- is transformed by expansion. The call marker is automatically saved
6625 -- for later examination by the ABE Processing phase.
6627 Build_Call_Marker (N);
6629 -- In GNATprove mode, expansion is disabled, but we want to inline some
6630 -- subprograms to facilitate formal verification. Indirect calls through
6631 -- a subprogram type or within a generic cannot be inlined. Inlining is
6632 -- performed only for calls subject to SPARK_Mode on.
6634 if GNATprove_Mode
6635 and then SPARK_Mode = On
6636 and then Is_Overloadable (Nam)
6637 and then not Inside_A_Generic
6638 then
6639 Nam_UA := Ultimate_Alias (Nam);
6640 Nam_Decl := Unit_Declaration_Node (Nam_UA);
6642 if Nkind (Nam_Decl) = N_Subprogram_Declaration then
6643 Body_Id := Corresponding_Body (Nam_Decl);
6645 -- Nothing to do if the subprogram is not eligible for inlining in
6646 -- GNATprove mode, or inlining is disabled with switch -gnatdm
6648 if not Is_Inlined_Always (Nam_UA)
6649 or else not Can_Be_Inlined_In_GNATprove_Mode (Nam_UA, Body_Id)
6650 or else Debug_Flag_M
6651 then
6652 null;
6654 -- Calls cannot be inlined inside assertions, as GNATprove treats
6655 -- assertions as logic expressions. Only issue a message when the
6656 -- body has been seen, otherwise this leads to spurious messages
6657 -- on expression functions.
6659 elsif In_Assertion_Expr /= 0 then
6660 if Present (Body_Id) then
6661 Cannot_Inline
6662 ("cannot inline & (in assertion expression)?", N, Nam_UA);
6663 end if;
6665 -- Calls cannot be inlined inside default expressions
6667 elsif In_Default_Expr then
6668 Cannot_Inline
6669 ("cannot inline & (in default expression)?", N, Nam_UA);
6671 -- Inlining should not be performed during pre-analysis
6673 elsif Full_Analysis then
6675 -- Do not inline calls inside expression functions, as this
6676 -- would prevent interpreting them as logical formulas in
6677 -- GNATprove. Only issue a message when the body has been seen,
6678 -- otherwise this leads to spurious messages on callees that
6679 -- are themselves expression functions.
6681 if Present (Current_Subprogram)
6682 and then Is_Expression_Function_Or_Completion
6683 (Current_Subprogram)
6684 then
6685 if Present (Body_Id)
6686 and then Present (Body_To_Inline (Nam_Decl))
6687 then
6688 Cannot_Inline
6689 ("cannot inline & (inside expression function)?",
6690 N, Nam_UA);
6691 end if;
6693 -- With the one-pass inlining technique, a call cannot be
6694 -- inlined if the corresponding body has not been seen yet.
6696 elsif No (Body_Id) then
6697 Cannot_Inline
6698 ("cannot inline & (body not seen yet)?", N, Nam_UA);
6700 -- Nothing to do if there is no body to inline, indicating that
6701 -- the subprogram is not suitable for inlining in GNATprove
6702 -- mode.
6704 elsif No (Body_To_Inline (Nam_Decl)) then
6705 null;
6707 -- Calls cannot be inlined inside potentially unevaluated
6708 -- expressions, as this would create complex actions inside
6709 -- expressions, that are not handled by GNATprove.
6711 elsif Is_Potentially_Unevaluated (N) then
6712 Cannot_Inline
6713 ("cannot inline & (in potentially unevaluated context)?",
6714 N, Nam_UA);
6716 -- Do not inline calls which would possibly lead to missing a
6717 -- type conversion check on an input parameter.
6719 elsif not Call_Can_Be_Inlined_In_GNATprove_Mode (N, Nam) then
6720 Cannot_Inline
6721 ("cannot inline & (possible check on input parameters)?",
6722 N, Nam_UA);
6724 -- Otherwise, inline the call
6726 else
6727 Expand_Inlined_Call (N, Nam_UA, Nam);
6728 end if;
6729 end if;
6730 end if;
6731 end if;
6733 Mark_Use_Clauses (Subp);
6735 Warn_On_Overlapping_Actuals (Nam, N);
6736 end Resolve_Call;
6738 -----------------------------
6739 -- Resolve_Case_Expression --
6740 -----------------------------
6742 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id) is
6743 Alt : Node_Id;
6744 Alt_Expr : Node_Id;
6745 Alt_Typ : Entity_Id;
6746 Is_Dyn : Boolean;
6748 begin
6749 Alt := First (Alternatives (N));
6750 while Present (Alt) loop
6751 Alt_Expr := Expression (Alt);
6753 if Error_Posted (Alt_Expr) then
6754 return;
6755 end if;
6757 Resolve (Alt_Expr, Typ);
6758 Alt_Typ := Etype (Alt_Expr);
6760 -- When the expression is of a scalar subtype different from the
6761 -- result subtype, then insert a conversion to ensure the generation
6762 -- of a constraint check.
6764 if Is_Scalar_Type (Alt_Typ) and then Alt_Typ /= Typ then
6765 Rewrite (Alt_Expr, Convert_To (Typ, Alt_Expr));
6766 Analyze_And_Resolve (Alt_Expr, Typ);
6767 end if;
6769 Next (Alt);
6770 end loop;
6772 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
6773 -- dynamically tagged must be known statically.
6775 if Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
6776 Alt := First (Alternatives (N));
6777 Is_Dyn := Is_Dynamically_Tagged (Expression (Alt));
6779 while Present (Alt) loop
6780 if Is_Dynamically_Tagged (Expression (Alt)) /= Is_Dyn then
6781 Error_Msg_N
6782 ("all or none of the dependent expressions can be "
6783 & "dynamically tagged", N);
6784 end if;
6786 Next (Alt);
6787 end loop;
6788 end if;
6790 Set_Etype (N, Typ);
6791 Eval_Case_Expression (N);
6792 Analyze_Dimension (N);
6793 end Resolve_Case_Expression;
6795 -------------------------------
6796 -- Resolve_Character_Literal --
6797 -------------------------------
6799 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id) is
6800 B_Typ : constant Entity_Id := Base_Type (Typ);
6801 C : Entity_Id;
6803 begin
6804 -- Verify that the character does belong to the type of the context
6806 Set_Etype (N, B_Typ);
6807 Eval_Character_Literal (N);
6809 -- Wide_Wide_Character literals must always be defined, since the set
6810 -- of wide wide character literals is complete, i.e. if a character
6811 -- literal is accepted by the parser, then it is OK for wide wide
6812 -- character (out of range character literals are rejected).
6814 if Root_Type (B_Typ) = Standard_Wide_Wide_Character then
6815 return;
6817 -- Always accept character literal for type Any_Character, which
6818 -- occurs in error situations and in comparisons of literals, both
6819 -- of which should accept all literals.
6821 elsif B_Typ = Any_Character then
6822 return;
6824 -- For Standard.Character or a type derived from it, check that the
6825 -- literal is in range.
6827 elsif Root_Type (B_Typ) = Standard_Character then
6828 if In_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6829 return;
6830 end if;
6832 -- For Standard.Wide_Character or a type derived from it, check that the
6833 -- literal is in range.
6835 elsif Root_Type (B_Typ) = Standard_Wide_Character then
6836 if In_Wide_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6837 return;
6838 end if;
6840 -- If the entity is already set, this has already been resolved in a
6841 -- generic context, or comes from expansion. Nothing else to do.
6843 elsif Present (Entity (N)) then
6844 return;
6846 -- Otherwise we have a user defined character type, and we can use the
6847 -- standard visibility mechanisms to locate the referenced entity.
6849 else
6850 C := Current_Entity (N);
6851 while Present (C) loop
6852 if Etype (C) = B_Typ then
6853 Set_Entity_With_Checks (N, C);
6854 Generate_Reference (C, N);
6855 return;
6856 end if;
6858 C := Homonym (C);
6859 end loop;
6860 end if;
6862 -- If we fall through, then the literal does not match any of the
6863 -- entries of the enumeration type. This isn't just a constraint error
6864 -- situation, it is an illegality (see RM 4.2).
6866 Error_Msg_NE
6867 ("character not defined for }", N, First_Subtype (B_Typ));
6868 end Resolve_Character_Literal;
6870 ---------------------------
6871 -- Resolve_Comparison_Op --
6872 ---------------------------
6874 -- Context requires a boolean type, and plays no role in resolution.
6875 -- Processing identical to that for equality operators. The result type is
6876 -- the base type, which matters when pathological subtypes of booleans with
6877 -- limited ranges are used.
6879 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id) is
6880 L : constant Node_Id := Left_Opnd (N);
6881 R : constant Node_Id := Right_Opnd (N);
6882 T : Entity_Id;
6884 begin
6885 -- If this is an intrinsic operation which is not predefined, use the
6886 -- types of its declared arguments to resolve the possibly overloaded
6887 -- operands. Otherwise the operands are unambiguous and specify the
6888 -- expected type.
6890 if Scope (Entity (N)) /= Standard_Standard then
6891 T := Etype (First_Entity (Entity (N)));
6893 else
6894 T := Find_Unique_Type (L, R);
6896 if T = Any_Fixed then
6897 T := Unique_Fixed_Point_Type (L);
6898 end if;
6899 end if;
6901 Set_Etype (N, Base_Type (Typ));
6902 Generate_Reference (T, N, ' ');
6904 -- Skip remaining processing if already set to Any_Type
6906 if T = Any_Type then
6907 return;
6908 end if;
6910 -- Deal with other error cases
6912 if T = Any_String or else
6913 T = Any_Composite or else
6914 T = Any_Character
6915 then
6916 if T = Any_Character then
6917 Ambiguous_Character (L);
6918 else
6919 Error_Msg_N ("ambiguous operands for comparison", N);
6920 end if;
6922 Set_Etype (N, Any_Type);
6923 return;
6924 end if;
6926 -- Resolve the operands if types OK
6928 Resolve (L, T);
6929 Resolve (R, T);
6930 Check_Unset_Reference (L);
6931 Check_Unset_Reference (R);
6932 Generate_Operator_Reference (N, T);
6933 Check_Low_Bound_Tested (N);
6935 -- In SPARK, ordering operators <, <=, >, >= are not defined for Boolean
6936 -- types or array types except String.
6938 if Is_Boolean_Type (T) then
6939 Check_SPARK_05_Restriction
6940 ("comparison is not defined on Boolean type", N);
6942 elsif Is_Array_Type (T)
6943 and then Base_Type (T) /= Standard_String
6944 then
6945 Check_SPARK_05_Restriction
6946 ("comparison is not defined on array types other than String", N);
6947 end if;
6949 -- Check comparison on unordered enumeration
6951 if Bad_Unordered_Enumeration_Reference (N, Etype (L)) then
6952 Error_Msg_Sloc := Sloc (Etype (L));
6953 Error_Msg_NE
6954 ("comparison on unordered enumeration type& declared#?U?",
6955 N, Etype (L));
6956 end if;
6958 Analyze_Dimension (N);
6960 -- Evaluate the relation (note we do this after the above check since
6961 -- this Eval call may change N to True/False. Skip this evaluation
6962 -- inside assertions, in order to keep assertions as written by users
6963 -- for tools that rely on these, e.g. GNATprove for loop invariants.
6964 -- Except evaluation is still performed even inside assertions for
6965 -- comparisons between values of universal type, which are useless
6966 -- for static analysis tools, and not supported even by GNATprove.
6968 if In_Assertion_Expr = 0
6969 or else (Is_Universal_Numeric_Type (Etype (L))
6970 and then
6971 Is_Universal_Numeric_Type (Etype (R)))
6972 then
6973 Eval_Relational_Op (N);
6974 end if;
6975 end Resolve_Comparison_Op;
6977 -----------------------------------------
6978 -- Resolve_Discrete_Subtype_Indication --
6979 -----------------------------------------
6981 procedure Resolve_Discrete_Subtype_Indication
6982 (N : Node_Id;
6983 Typ : Entity_Id)
6985 R : Node_Id;
6986 S : Entity_Id;
6988 begin
6989 Analyze (Subtype_Mark (N));
6990 S := Entity (Subtype_Mark (N));
6992 if Nkind (Constraint (N)) /= N_Range_Constraint then
6993 Error_Msg_N ("expect range constraint for discrete type", N);
6994 Set_Etype (N, Any_Type);
6996 else
6997 R := Range_Expression (Constraint (N));
6999 if R = Error then
7000 return;
7001 end if;
7003 Analyze (R);
7005 if Base_Type (S) /= Base_Type (Typ) then
7006 Error_Msg_NE
7007 ("expect subtype of }", N, First_Subtype (Typ));
7009 -- Rewrite the constraint as a range of Typ
7010 -- to allow compilation to proceed further.
7012 Set_Etype (N, Typ);
7013 Rewrite (Low_Bound (R),
7014 Make_Attribute_Reference (Sloc (Low_Bound (R)),
7015 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
7016 Attribute_Name => Name_First));
7017 Rewrite (High_Bound (R),
7018 Make_Attribute_Reference (Sloc (High_Bound (R)),
7019 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
7020 Attribute_Name => Name_First));
7022 else
7023 Resolve (R, Typ);
7024 Set_Etype (N, Etype (R));
7026 -- Additionally, we must check that the bounds are compatible
7027 -- with the given subtype, which might be different from the
7028 -- type of the context.
7030 Apply_Range_Check (R, S);
7032 -- ??? If the above check statically detects a Constraint_Error
7033 -- it replaces the offending bound(s) of the range R with a
7034 -- Constraint_Error node. When the itype which uses these bounds
7035 -- is frozen the resulting call to Duplicate_Subexpr generates
7036 -- a new temporary for the bounds.
7038 -- Unfortunately there are other itypes that are also made depend
7039 -- on these bounds, so when Duplicate_Subexpr is called they get
7040 -- a forward reference to the newly created temporaries and Gigi
7041 -- aborts on such forward references. This is probably sign of a
7042 -- more fundamental problem somewhere else in either the order of
7043 -- itype freezing or the way certain itypes are constructed.
7045 -- To get around this problem we call Remove_Side_Effects right
7046 -- away if either bounds of R are a Constraint_Error.
7048 declare
7049 L : constant Node_Id := Low_Bound (R);
7050 H : constant Node_Id := High_Bound (R);
7052 begin
7053 if Nkind (L) = N_Raise_Constraint_Error then
7054 Remove_Side_Effects (L);
7055 end if;
7057 if Nkind (H) = N_Raise_Constraint_Error then
7058 Remove_Side_Effects (H);
7059 end if;
7060 end;
7062 Check_Unset_Reference (Low_Bound (R));
7063 Check_Unset_Reference (High_Bound (R));
7064 end if;
7065 end if;
7066 end Resolve_Discrete_Subtype_Indication;
7068 -------------------------
7069 -- Resolve_Entity_Name --
7070 -------------------------
7072 -- Used to resolve identifiers and expanded names
7074 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id) is
7075 function Is_Assignment_Or_Object_Expression
7076 (Context : Node_Id;
7077 Expr : Node_Id) return Boolean;
7078 -- Determine whether node Context denotes an assignment statement or an
7079 -- object declaration whose expression is node Expr.
7081 ----------------------------------------
7082 -- Is_Assignment_Or_Object_Expression --
7083 ----------------------------------------
7085 function Is_Assignment_Or_Object_Expression
7086 (Context : Node_Id;
7087 Expr : Node_Id) return Boolean
7089 begin
7090 if Nkind_In (Context, N_Assignment_Statement,
7091 N_Object_Declaration)
7092 and then Expression (Context) = Expr
7093 then
7094 return True;
7096 -- Check whether a construct that yields a name is the expression of
7097 -- an assignment statement or an object declaration.
7099 elsif (Nkind_In (Context, N_Attribute_Reference,
7100 N_Explicit_Dereference,
7101 N_Indexed_Component,
7102 N_Selected_Component,
7103 N_Slice)
7104 and then Prefix (Context) = Expr)
7105 or else
7106 (Nkind_In (Context, N_Type_Conversion,
7107 N_Unchecked_Type_Conversion)
7108 and then Expression (Context) = Expr)
7109 then
7110 return
7111 Is_Assignment_Or_Object_Expression
7112 (Context => Parent (Context),
7113 Expr => Context);
7115 -- Otherwise the context is not an assignment statement or an object
7116 -- declaration.
7118 else
7119 return False;
7120 end if;
7121 end Is_Assignment_Or_Object_Expression;
7123 -- Local variables
7125 E : constant Entity_Id := Entity (N);
7126 Par : Node_Id;
7128 -- Start of processing for Resolve_Entity_Name
7130 begin
7131 -- If garbage from errors, set to Any_Type and return
7133 if No (E) and then Total_Errors_Detected /= 0 then
7134 Set_Etype (N, Any_Type);
7135 return;
7136 end if;
7138 -- Replace named numbers by corresponding literals. Note that this is
7139 -- the one case where Resolve_Entity_Name must reset the Etype, since
7140 -- it is currently marked as universal.
7142 if Ekind (E) = E_Named_Integer then
7143 Set_Etype (N, Typ);
7144 Eval_Named_Integer (N);
7146 elsif Ekind (E) = E_Named_Real then
7147 Set_Etype (N, Typ);
7148 Eval_Named_Real (N);
7150 -- For enumeration literals, we need to make sure that a proper style
7151 -- check is done, since such literals are overloaded, and thus we did
7152 -- not do a style check during the first phase of analysis.
7154 elsif Ekind (E) = E_Enumeration_Literal then
7155 Set_Entity_With_Checks (N, E);
7156 Eval_Entity_Name (N);
7158 -- Case of (sub)type name appearing in a context where an expression
7159 -- is expected. This is legal if occurrence is a current instance.
7160 -- See RM 8.6 (17/3).
7162 elsif Is_Type (E) then
7163 if Is_Current_Instance (N) then
7164 null;
7166 -- Any other use is an error
7168 else
7169 Error_Msg_N
7170 ("invalid use of subtype mark in expression or call", N);
7171 end if;
7173 -- Check discriminant use if entity is discriminant in current scope,
7174 -- i.e. discriminant of record or concurrent type currently being
7175 -- analyzed. Uses in corresponding body are unrestricted.
7177 elsif Ekind (E) = E_Discriminant
7178 and then Scope (E) = Current_Scope
7179 and then not Has_Completion (Current_Scope)
7180 then
7181 Check_Discriminant_Use (N);
7183 -- A parameterless generic function cannot appear in a context that
7184 -- requires resolution.
7186 elsif Ekind (E) = E_Generic_Function then
7187 Error_Msg_N ("illegal use of generic function", N);
7189 -- In Ada 83 an OUT parameter cannot be read, but attributes of
7190 -- array types (i.e. bounds and length) are legal.
7192 elsif Ekind (E) = E_Out_Parameter
7193 and then (Nkind (Parent (N)) /= N_Attribute_Reference
7194 or else Is_Scalar_Type (Etype (E)))
7196 and then (Nkind (Parent (N)) in N_Op
7197 or else Nkind (Parent (N)) = N_Explicit_Dereference
7198 or else Is_Assignment_Or_Object_Expression
7199 (Context => Parent (N),
7200 Expr => N))
7201 then
7202 if Ada_Version = Ada_83 then
7203 Error_Msg_N ("(Ada 83) illegal reading of out parameter", N);
7204 end if;
7206 -- In all other cases, just do the possible static evaluation
7208 else
7209 -- A deferred constant that appears in an expression must have a
7210 -- completion, unless it has been removed by in-place expansion of
7211 -- an aggregate. A constant that is a renaming does not need
7212 -- initialization.
7214 if Ekind (E) = E_Constant
7215 and then Comes_From_Source (E)
7216 and then No (Constant_Value (E))
7217 and then Is_Frozen (Etype (E))
7218 and then not In_Spec_Expression
7219 and then not Is_Imported (E)
7220 and then Nkind (Parent (E)) /= N_Object_Renaming_Declaration
7221 then
7222 if No_Initialization (Parent (E))
7223 or else (Present (Full_View (E))
7224 and then No_Initialization (Parent (Full_View (E))))
7225 then
7226 null;
7227 else
7228 Error_Msg_N
7229 ("deferred constant is frozen before completion", N);
7230 end if;
7231 end if;
7233 Eval_Entity_Name (N);
7234 end if;
7236 Par := Parent (N);
7238 -- When the entity appears in a parameter association, retrieve the
7239 -- related subprogram call.
7241 if Nkind (Par) = N_Parameter_Association then
7242 Par := Parent (Par);
7243 end if;
7245 if Comes_From_Source (N) then
7247 -- The following checks are only relevant when SPARK_Mode is on as
7248 -- they are not standard Ada legality rules.
7250 if SPARK_Mode = On then
7252 -- An effectively volatile object subject to enabled properties
7253 -- Async_Writers or Effective_Reads must appear in non-interfering
7254 -- context (SPARK RM 7.1.3(12)).
7256 if Is_Object (E)
7257 and then Is_Effectively_Volatile (E)
7258 and then (Async_Writers_Enabled (E)
7259 or else Effective_Reads_Enabled (E))
7260 and then not Is_OK_Volatile_Context (Par, N)
7261 then
7262 SPARK_Msg_N
7263 ("volatile object cannot appear in this context "
7264 & "(SPARK RM 7.1.3(12))", N);
7265 end if;
7267 -- Check for possible elaboration issues with respect to reads of
7268 -- variables. The act of renaming the variable is not considered a
7269 -- read as it simply establishes an alias.
7271 if Legacy_Elaboration_Checks
7272 and then Ekind (E) = E_Variable
7273 and then Dynamic_Elaboration_Checks
7274 and then Nkind (Par) /= N_Object_Renaming_Declaration
7275 then
7276 Check_Elab_Call (N);
7277 end if;
7278 end if;
7280 -- The variable may eventually become a constituent of a single
7281 -- protected/task type. Record the reference now and verify its
7282 -- legality when analyzing the contract of the variable
7283 -- (SPARK RM 9.3).
7285 if Ekind (E) = E_Variable then
7286 Record_Possible_Part_Of_Reference (E, N);
7287 end if;
7289 -- A Ghost entity must appear in a specific context
7291 if Is_Ghost_Entity (E) then
7292 Check_Ghost_Context (E, N);
7293 end if;
7294 end if;
7296 Mark_Use_Clauses (E);
7297 end Resolve_Entity_Name;
7299 -------------------
7300 -- Resolve_Entry --
7301 -------------------
7303 procedure Resolve_Entry (Entry_Name : Node_Id) is
7304 Loc : constant Source_Ptr := Sloc (Entry_Name);
7305 Nam : Entity_Id;
7306 New_N : Node_Id;
7307 S : Entity_Id;
7308 Tsk : Entity_Id;
7309 E_Name : Node_Id;
7310 Index : Node_Id;
7312 function Actual_Index_Type (E : Entity_Id) return Entity_Id;
7313 -- If the bounds of the entry family being called depend on task
7314 -- discriminants, build a new index subtype where a discriminant is
7315 -- replaced with the value of the discriminant of the target task.
7316 -- The target task is the prefix of the entry name in the call.
7318 -----------------------
7319 -- Actual_Index_Type --
7320 -----------------------
7322 function Actual_Index_Type (E : Entity_Id) return Entity_Id is
7323 Typ : constant Entity_Id := Entry_Index_Type (E);
7324 Tsk : constant Entity_Id := Scope (E);
7325 Lo : constant Node_Id := Type_Low_Bound (Typ);
7326 Hi : constant Node_Id := Type_High_Bound (Typ);
7327 New_T : Entity_Id;
7329 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id;
7330 -- If the bound is given by a discriminant, replace with a reference
7331 -- to the discriminant of the same name in the target task. If the
7332 -- entry name is the target of a requeue statement and the entry is
7333 -- in the current protected object, the bound to be used is the
7334 -- discriminal of the object (see Apply_Range_Checks for details of
7335 -- the transformation).
7337 -----------------------------
7338 -- Actual_Discriminant_Ref --
7339 -----------------------------
7341 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is
7342 Typ : constant Entity_Id := Etype (Bound);
7343 Ref : Node_Id;
7345 begin
7346 Remove_Side_Effects (Bound);
7348 if not Is_Entity_Name (Bound)
7349 or else Ekind (Entity (Bound)) /= E_Discriminant
7350 then
7351 return Bound;
7353 elsif Is_Protected_Type (Tsk)
7354 and then In_Open_Scopes (Tsk)
7355 and then Nkind (Parent (Entry_Name)) = N_Requeue_Statement
7356 then
7357 -- Note: here Bound denotes a discriminant of the corresponding
7358 -- record type tskV, whose discriminal is a formal of the
7359 -- init-proc tskVIP. What we want is the body discriminal,
7360 -- which is associated to the discriminant of the original
7361 -- concurrent type tsk.
7363 return New_Occurrence_Of
7364 (Find_Body_Discriminal (Entity (Bound)), Loc);
7366 else
7367 Ref :=
7368 Make_Selected_Component (Loc,
7369 Prefix => New_Copy_Tree (Prefix (Prefix (Entry_Name))),
7370 Selector_Name => New_Occurrence_Of (Entity (Bound), Loc));
7371 Analyze (Ref);
7372 Resolve (Ref, Typ);
7373 return Ref;
7374 end if;
7375 end Actual_Discriminant_Ref;
7377 -- Start of processing for Actual_Index_Type
7379 begin
7380 if not Has_Discriminants (Tsk)
7381 or else (not Is_Entity_Name (Lo) and then not Is_Entity_Name (Hi))
7382 then
7383 return Entry_Index_Type (E);
7385 else
7386 New_T := Create_Itype (Ekind (Typ), Parent (Entry_Name));
7387 Set_Etype (New_T, Base_Type (Typ));
7388 Set_Size_Info (New_T, Typ);
7389 Set_RM_Size (New_T, RM_Size (Typ));
7390 Set_Scalar_Range (New_T,
7391 Make_Range (Sloc (Entry_Name),
7392 Low_Bound => Actual_Discriminant_Ref (Lo),
7393 High_Bound => Actual_Discriminant_Ref (Hi)));
7395 return New_T;
7396 end if;
7397 end Actual_Index_Type;
7399 -- Start of processing for Resolve_Entry
7401 begin
7402 -- Find name of entry being called, and resolve prefix of name with its
7403 -- own type. The prefix can be overloaded, and the name and signature of
7404 -- the entry must be taken into account.
7406 if Nkind (Entry_Name) = N_Indexed_Component then
7408 -- Case of dealing with entry family within the current tasks
7410 E_Name := Prefix (Entry_Name);
7412 else
7413 E_Name := Entry_Name;
7414 end if;
7416 if Is_Entity_Name (E_Name) then
7418 -- Entry call to an entry (or entry family) in the current task. This
7419 -- is legal even though the task will deadlock. Rewrite as call to
7420 -- current task.
7422 -- This can also be a call to an entry in an enclosing task. If this
7423 -- is a single task, we have to retrieve its name, because the scope
7424 -- of the entry is the task type, not the object. If the enclosing
7425 -- task is a task type, the identity of the task is given by its own
7426 -- self variable.
7428 -- Finally this can be a requeue on an entry of the same task or
7429 -- protected object.
7431 S := Scope (Entity (E_Name));
7433 for J in reverse 0 .. Scope_Stack.Last loop
7434 if Is_Task_Type (Scope_Stack.Table (J).Entity)
7435 and then not Comes_From_Source (S)
7436 then
7437 -- S is an enclosing task or protected object. The concurrent
7438 -- declaration has been converted into a type declaration, and
7439 -- the object itself has an object declaration that follows
7440 -- the type in the same declarative part.
7442 Tsk := Next_Entity (S);
7443 while Etype (Tsk) /= S loop
7444 Next_Entity (Tsk);
7445 end loop;
7447 S := Tsk;
7448 exit;
7450 elsif S = Scope_Stack.Table (J).Entity then
7452 -- Call to current task. Will be transformed into call to Self
7454 exit;
7456 end if;
7457 end loop;
7459 New_N :=
7460 Make_Selected_Component (Loc,
7461 Prefix => New_Occurrence_Of (S, Loc),
7462 Selector_Name =>
7463 New_Occurrence_Of (Entity (E_Name), Loc));
7464 Rewrite (E_Name, New_N);
7465 Analyze (E_Name);
7467 elsif Nkind (Entry_Name) = N_Selected_Component
7468 and then Is_Overloaded (Prefix (Entry_Name))
7469 then
7470 -- Use the entry name (which must be unique at this point) to find
7471 -- the prefix that returns the corresponding task/protected type.
7473 declare
7474 Pref : constant Node_Id := Prefix (Entry_Name);
7475 Ent : constant Entity_Id := Entity (Selector_Name (Entry_Name));
7476 I : Interp_Index;
7477 It : Interp;
7479 begin
7480 Get_First_Interp (Pref, I, It);
7481 while Present (It.Typ) loop
7482 if Scope (Ent) = It.Typ then
7483 Set_Etype (Pref, It.Typ);
7484 exit;
7485 end if;
7487 Get_Next_Interp (I, It);
7488 end loop;
7489 end;
7490 end if;
7492 if Nkind (Entry_Name) = N_Selected_Component then
7493 Resolve (Prefix (Entry_Name));
7495 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7496 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7497 Resolve (Prefix (Prefix (Entry_Name)));
7498 Index := First (Expressions (Entry_Name));
7499 Resolve (Index, Entry_Index_Type (Nam));
7501 -- Generate a reference for the index when it denotes an entity
7503 if Is_Entity_Name (Index) then
7504 Generate_Reference (Entity (Index), Nam);
7505 end if;
7507 -- Up to this point the expression could have been the actual in a
7508 -- simple entry call, and be given by a named association.
7510 if Nkind (Index) = N_Parameter_Association then
7511 Error_Msg_N ("expect expression for entry index", Index);
7512 else
7513 Apply_Range_Check (Index, Actual_Index_Type (Nam));
7514 end if;
7515 end if;
7516 end Resolve_Entry;
7518 ------------------------
7519 -- Resolve_Entry_Call --
7520 ------------------------
7522 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id) is
7523 Entry_Name : constant Node_Id := Name (N);
7524 Loc : constant Source_Ptr := Sloc (Entry_Name);
7526 Nam : Entity_Id;
7527 Norm_OK : Boolean;
7528 Obj : Node_Id;
7529 Was_Over : Boolean;
7531 begin
7532 -- We kill all checks here, because it does not seem worth the effort to
7533 -- do anything better, an entry call is a big operation.
7535 Kill_All_Checks;
7537 -- Processing of the name is similar for entry calls and protected
7538 -- operation calls. Once the entity is determined, we can complete
7539 -- the resolution of the actuals.
7541 -- The selector may be overloaded, in the case of a protected object
7542 -- with overloaded functions. The type of the context is used for
7543 -- resolution.
7545 if Nkind (Entry_Name) = N_Selected_Component
7546 and then Is_Overloaded (Selector_Name (Entry_Name))
7547 and then Typ /= Standard_Void_Type
7548 then
7549 declare
7550 I : Interp_Index;
7551 It : Interp;
7553 begin
7554 Get_First_Interp (Selector_Name (Entry_Name), I, It);
7555 while Present (It.Typ) loop
7556 if Covers (Typ, It.Typ) then
7557 Set_Entity (Selector_Name (Entry_Name), It.Nam);
7558 Set_Etype (Entry_Name, It.Typ);
7560 Generate_Reference (It.Typ, N, ' ');
7561 end if;
7563 Get_Next_Interp (I, It);
7564 end loop;
7565 end;
7566 end if;
7568 Resolve_Entry (Entry_Name);
7570 if Nkind (Entry_Name) = N_Selected_Component then
7572 -- Simple entry or protected operation call
7574 Nam := Entity (Selector_Name (Entry_Name));
7575 Obj := Prefix (Entry_Name);
7577 if Is_Subprogram (Nam) then
7578 Check_For_Eliminated_Subprogram (Entry_Name, Nam);
7579 end if;
7581 Was_Over := Is_Overloaded (Selector_Name (Entry_Name));
7583 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7585 -- Call to member of entry family
7587 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7588 Obj := Prefix (Prefix (Entry_Name));
7589 Was_Over := Is_Overloaded (Selector_Name (Prefix (Entry_Name)));
7590 end if;
7592 -- We cannot in general check the maximum depth of protected entry calls
7593 -- at compile time. But we can tell that any protected entry call at all
7594 -- violates a specified nesting depth of zero.
7596 if Is_Protected_Type (Scope (Nam)) then
7597 Check_Restriction (Max_Entry_Queue_Length, N);
7598 end if;
7600 -- Use context type to disambiguate a protected function that can be
7601 -- called without actuals and that returns an array type, and where the
7602 -- argument list may be an indexing of the returned value.
7604 if Ekind (Nam) = E_Function
7605 and then Needs_No_Actuals (Nam)
7606 and then Present (Parameter_Associations (N))
7607 and then
7608 ((Is_Array_Type (Etype (Nam))
7609 and then Covers (Typ, Component_Type (Etype (Nam))))
7611 or else (Is_Access_Type (Etype (Nam))
7612 and then Is_Array_Type (Designated_Type (Etype (Nam)))
7613 and then
7614 Covers
7615 (Typ,
7616 Component_Type (Designated_Type (Etype (Nam))))))
7617 then
7618 declare
7619 Index_Node : Node_Id;
7621 begin
7622 Index_Node :=
7623 Make_Indexed_Component (Loc,
7624 Prefix =>
7625 Make_Function_Call (Loc, Name => Relocate_Node (Entry_Name)),
7626 Expressions => Parameter_Associations (N));
7628 -- Since we are correcting a node classification error made by the
7629 -- parser, we call Replace rather than Rewrite.
7631 Replace (N, Index_Node);
7632 Set_Etype (Prefix (N), Etype (Nam));
7633 Set_Etype (N, Typ);
7634 Resolve_Indexed_Component (N, Typ);
7635 return;
7636 end;
7637 end if;
7639 if Ekind_In (Nam, E_Entry, E_Entry_Family)
7640 and then Present (Contract_Wrapper (Nam))
7641 and then Current_Scope /= Contract_Wrapper (Nam)
7642 then
7643 -- Note the entity being called before rewriting the call, so that
7644 -- it appears used at this point.
7646 Generate_Reference (Nam, Entry_Name, 'r');
7648 -- Rewrite as call to the precondition wrapper, adding the task
7649 -- object to the list of actuals. If the call is to a member of an
7650 -- entry family, include the index as well.
7652 declare
7653 New_Call : Node_Id;
7654 New_Actuals : List_Id;
7656 begin
7657 New_Actuals := New_List (Obj);
7659 if Nkind (Entry_Name) = N_Indexed_Component then
7660 Append_To (New_Actuals,
7661 New_Copy_Tree (First (Expressions (Entry_Name))));
7662 end if;
7664 Append_List (Parameter_Associations (N), New_Actuals);
7665 New_Call :=
7666 Make_Procedure_Call_Statement (Loc,
7667 Name =>
7668 New_Occurrence_Of (Contract_Wrapper (Nam), Loc),
7669 Parameter_Associations => New_Actuals);
7670 Rewrite (N, New_Call);
7672 -- Preanalyze and resolve new call. Current procedure is called
7673 -- from Resolve_Call, after which expansion will take place.
7675 Preanalyze_And_Resolve (N);
7676 return;
7677 end;
7678 end if;
7680 -- The operation name may have been overloaded. Order the actuals
7681 -- according to the formals of the resolved entity, and set the return
7682 -- type to that of the operation.
7684 if Was_Over then
7685 Normalize_Actuals (N, Nam, False, Norm_OK);
7686 pragma Assert (Norm_OK);
7687 Set_Etype (N, Etype (Nam));
7689 -- Reset the Is_Overloaded flag, since resolution is now completed
7691 -- Simple entry call
7693 if Nkind (Entry_Name) = N_Selected_Component then
7694 Set_Is_Overloaded (Selector_Name (Entry_Name), False);
7696 -- Call to a member of an entry family
7698 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7699 Set_Is_Overloaded (Selector_Name (Prefix (Entry_Name)), False);
7700 end if;
7701 end if;
7703 Resolve_Actuals (N, Nam);
7704 Check_Internal_Protected_Use (N, Nam);
7706 -- Create a call reference to the entry
7708 Generate_Reference (Nam, Entry_Name, 's');
7710 if Ekind_In (Nam, E_Entry, E_Entry_Family) then
7711 Check_Potentially_Blocking_Operation (N);
7712 end if;
7714 -- Verify that a procedure call cannot masquerade as an entry
7715 -- call where an entry call is expected.
7717 if Ekind (Nam) = E_Procedure then
7718 if Nkind (Parent (N)) = N_Entry_Call_Alternative
7719 and then N = Entry_Call_Statement (Parent (N))
7720 then
7721 Error_Msg_N ("entry call required in select statement", N);
7723 elsif Nkind (Parent (N)) = N_Triggering_Alternative
7724 and then N = Triggering_Statement (Parent (N))
7725 then
7726 Error_Msg_N ("triggering statement cannot be procedure call", N);
7728 elsif Ekind (Scope (Nam)) = E_Task_Type
7729 and then not In_Open_Scopes (Scope (Nam))
7730 then
7731 Error_Msg_N ("task has no entry with this name", Entry_Name);
7732 end if;
7733 end if;
7735 -- After resolution, entry calls and protected procedure calls are
7736 -- changed into entry calls, for expansion. The structure of the node
7737 -- does not change, so it can safely be done in place. Protected
7738 -- function calls must keep their structure because they are
7739 -- subexpressions.
7741 if Ekind (Nam) /= E_Function then
7743 -- A protected operation that is not a function may modify the
7744 -- corresponding object, and cannot apply to a constant. If this
7745 -- is an internal call, the prefix is the type itself.
7747 if Is_Protected_Type (Scope (Nam))
7748 and then not Is_Variable (Obj)
7749 and then (not Is_Entity_Name (Obj)
7750 or else not Is_Type (Entity (Obj)))
7751 then
7752 Error_Msg_N
7753 ("prefix of protected procedure or entry call must be variable",
7754 Entry_Name);
7755 end if;
7757 declare
7758 Entry_Call : Node_Id;
7760 begin
7761 Entry_Call :=
7762 Make_Entry_Call_Statement (Loc,
7763 Name => Entry_Name,
7764 Parameter_Associations => Parameter_Associations (N));
7766 -- Inherit relevant attributes from the original call
7768 Set_First_Named_Actual
7769 (Entry_Call, First_Named_Actual (N));
7771 Set_Is_Elaboration_Checks_OK_Node
7772 (Entry_Call, Is_Elaboration_Checks_OK_Node (N));
7774 Set_Is_Elaboration_Warnings_OK_Node
7775 (Entry_Call, Is_Elaboration_Warnings_OK_Node (N));
7777 Set_Is_SPARK_Mode_On_Node
7778 (Entry_Call, Is_SPARK_Mode_On_Node (N));
7780 Rewrite (N, Entry_Call);
7781 Set_Analyzed (N, True);
7782 end;
7784 -- Protected functions can return on the secondary stack, in which case
7785 -- we must trigger the transient scope mechanism.
7787 elsif Expander_Active
7788 and then Requires_Transient_Scope (Etype (Nam))
7789 then
7790 Establish_Transient_Scope (N, Manage_Sec_Stack => True);
7791 end if;
7792 end Resolve_Entry_Call;
7794 -------------------------
7795 -- Resolve_Equality_Op --
7796 -------------------------
7798 -- Both arguments must have the same type, and the boolean context does
7799 -- not participate in the resolution. The first pass verifies that the
7800 -- interpretation is not ambiguous, and the type of the left argument is
7801 -- correctly set, or is Any_Type in case of ambiguity. If both arguments
7802 -- are strings or aggregates, allocators, or Null, they are ambiguous even
7803 -- though they carry a single (universal) type. Diagnose this case here.
7805 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id) is
7806 L : constant Node_Id := Left_Opnd (N);
7807 R : constant Node_Id := Right_Opnd (N);
7808 T : Entity_Id := Find_Unique_Type (L, R);
7810 procedure Check_If_Expression (Cond : Node_Id);
7811 -- The resolution rule for if expressions requires that each such must
7812 -- have a unique type. This means that if several dependent expressions
7813 -- are of a non-null anonymous access type, and the context does not
7814 -- impose an expected type (as can be the case in an equality operation)
7815 -- the expression must be rejected.
7817 procedure Explain_Redundancy (N : Node_Id);
7818 -- Attempt to explain the nature of a redundant comparison with True. If
7819 -- the expression N is too complex, this routine issues a general error
7820 -- message.
7822 function Find_Unique_Access_Type return Entity_Id;
7823 -- In the case of allocators and access attributes, the context must
7824 -- provide an indication of the specific access type to be used. If
7825 -- one operand is of such a "generic" access type, check whether there
7826 -- is a specific visible access type that has the same designated type.
7827 -- This is semantically dubious, and of no interest to any real code,
7828 -- but c48008a makes it all worthwhile.
7830 -------------------------
7831 -- Check_If_Expression --
7832 -------------------------
7834 procedure Check_If_Expression (Cond : Node_Id) is
7835 Then_Expr : Node_Id;
7836 Else_Expr : Node_Id;
7838 begin
7839 if Nkind (Cond) = N_If_Expression then
7840 Then_Expr := Next (First (Expressions (Cond)));
7841 Else_Expr := Next (Then_Expr);
7843 if Nkind (Then_Expr) /= N_Null
7844 and then Nkind (Else_Expr) /= N_Null
7845 then
7846 Error_Msg_N ("cannot determine type of if expression", Cond);
7847 end if;
7848 end if;
7849 end Check_If_Expression;
7851 ------------------------
7852 -- Explain_Redundancy --
7853 ------------------------
7855 procedure Explain_Redundancy (N : Node_Id) is
7856 Error : Name_Id;
7857 Val : Node_Id;
7858 Val_Id : Entity_Id;
7860 begin
7861 Val := N;
7863 -- Strip the operand down to an entity
7865 loop
7866 if Nkind (Val) = N_Selected_Component then
7867 Val := Selector_Name (Val);
7868 else
7869 exit;
7870 end if;
7871 end loop;
7873 -- The construct denotes an entity
7875 if Is_Entity_Name (Val) and then Present (Entity (Val)) then
7876 Val_Id := Entity (Val);
7878 -- Do not generate an error message when the comparison is done
7879 -- against the enumeration literal Standard.True.
7881 if Ekind (Val_Id) /= E_Enumeration_Literal then
7883 -- Build a customized error message
7885 Name_Len := 0;
7886 Add_Str_To_Name_Buffer ("?r?");
7888 if Ekind (Val_Id) = E_Component then
7889 Add_Str_To_Name_Buffer ("component ");
7891 elsif Ekind (Val_Id) = E_Constant then
7892 Add_Str_To_Name_Buffer ("constant ");
7894 elsif Ekind (Val_Id) = E_Discriminant then
7895 Add_Str_To_Name_Buffer ("discriminant ");
7897 elsif Is_Formal (Val_Id) then
7898 Add_Str_To_Name_Buffer ("parameter ");
7900 elsif Ekind (Val_Id) = E_Variable then
7901 Add_Str_To_Name_Buffer ("variable ");
7902 end if;
7904 Add_Str_To_Name_Buffer ("& is always True!");
7905 Error := Name_Find;
7907 Error_Msg_NE (Get_Name_String (Error), Val, Val_Id);
7908 end if;
7910 -- The construct is too complex to disect, issue a general message
7912 else
7913 Error_Msg_N ("?r?expression is always True!", Val);
7914 end if;
7915 end Explain_Redundancy;
7917 -----------------------------
7918 -- Find_Unique_Access_Type --
7919 -----------------------------
7921 function Find_Unique_Access_Type return Entity_Id is
7922 Acc : Entity_Id;
7923 E : Entity_Id;
7924 S : Entity_Id;
7926 begin
7927 if Ekind_In (Etype (R), E_Allocator_Type,
7928 E_Access_Attribute_Type)
7929 then
7930 Acc := Designated_Type (Etype (R));
7932 elsif Ekind_In (Etype (L), E_Allocator_Type,
7933 E_Access_Attribute_Type)
7934 then
7935 Acc := Designated_Type (Etype (L));
7936 else
7937 return Empty;
7938 end if;
7940 S := Current_Scope;
7941 while S /= Standard_Standard loop
7942 E := First_Entity (S);
7943 while Present (E) loop
7944 if Is_Type (E)
7945 and then Is_Access_Type (E)
7946 and then Ekind (E) /= E_Allocator_Type
7947 and then Designated_Type (E) = Base_Type (Acc)
7948 then
7949 return E;
7950 end if;
7952 Next_Entity (E);
7953 end loop;
7955 S := Scope (S);
7956 end loop;
7958 return Empty;
7959 end Find_Unique_Access_Type;
7961 -- Start of processing for Resolve_Equality_Op
7963 begin
7964 Set_Etype (N, Base_Type (Typ));
7965 Generate_Reference (T, N, ' ');
7967 if T = Any_Fixed then
7968 T := Unique_Fixed_Point_Type (L);
7969 end if;
7971 if T /= Any_Type then
7972 if T = Any_String or else
7973 T = Any_Composite or else
7974 T = Any_Character
7975 then
7976 if T = Any_Character then
7977 Ambiguous_Character (L);
7978 else
7979 Error_Msg_N ("ambiguous operands for equality", N);
7980 end if;
7982 Set_Etype (N, Any_Type);
7983 return;
7985 elsif T = Any_Access
7986 or else Ekind_In (T, E_Allocator_Type, E_Access_Attribute_Type)
7987 then
7988 T := Find_Unique_Access_Type;
7990 if No (T) then
7991 Error_Msg_N ("ambiguous operands for equality", N);
7992 Set_Etype (N, Any_Type);
7993 return;
7994 end if;
7996 -- If expressions must have a single type, and if the context does
7997 -- not impose one the dependent expressions cannot be anonymous
7998 -- access types.
8000 -- Why no similar processing for case expressions???
8002 elsif Ada_Version >= Ada_2012
8003 and then Ekind_In (Etype (L), E_Anonymous_Access_Type,
8004 E_Anonymous_Access_Subprogram_Type)
8005 and then Ekind_In (Etype (R), E_Anonymous_Access_Type,
8006 E_Anonymous_Access_Subprogram_Type)
8007 then
8008 Check_If_Expression (L);
8009 Check_If_Expression (R);
8010 end if;
8012 Resolve (L, T);
8013 Resolve (R, T);
8015 -- In SPARK, equality operators = and /= for array types other than
8016 -- String are only defined when, for each index position, the
8017 -- operands have equal static bounds.
8019 if Is_Array_Type (T) then
8021 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8022 -- operation if not needed.
8024 if Restriction_Check_Required (SPARK_05)
8025 and then Base_Type (T) /= Standard_String
8026 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
8027 and then Etype (L) /= Any_Composite -- or else L in error
8028 and then Etype (R) /= Any_Composite -- or else R in error
8029 and then not Matching_Static_Array_Bounds (Etype (L), Etype (R))
8030 then
8031 Check_SPARK_05_Restriction
8032 ("array types should have matching static bounds", N);
8033 end if;
8034 end if;
8036 -- If the unique type is a class-wide type then it will be expanded
8037 -- into a dispatching call to the predefined primitive. Therefore we
8038 -- check here for potential violation of such restriction.
8040 if Is_Class_Wide_Type (T) then
8041 Check_Restriction (No_Dispatching_Calls, N);
8042 end if;
8044 -- Only warn for redundant equality comparison to True for objects
8045 -- (e.g. "X = True") and operations (e.g. "(X < Y) = True"). For
8046 -- other expressions, it may be a matter of preference to write
8047 -- "Expr = True" or "Expr".
8049 if Warn_On_Redundant_Constructs
8050 and then Comes_From_Source (N)
8051 and then Comes_From_Source (R)
8052 and then Is_Entity_Name (R)
8053 and then Entity (R) = Standard_True
8054 and then
8055 ((Is_Entity_Name (L) and then Is_Object (Entity (L)))
8056 or else
8057 Nkind (L) in N_Op)
8058 then
8059 Error_Msg_N -- CODEFIX
8060 ("?r?comparison with True is redundant!", N);
8061 Explain_Redundancy (Original_Node (R));
8062 end if;
8064 Check_Unset_Reference (L);
8065 Check_Unset_Reference (R);
8066 Generate_Operator_Reference (N, T);
8067 Check_Low_Bound_Tested (N);
8069 -- If this is an inequality, it may be the implicit inequality
8070 -- created for a user-defined operation, in which case the corres-
8071 -- ponding equality operation is not intrinsic, and the operation
8072 -- cannot be constant-folded. Else fold.
8074 if Nkind (N) = N_Op_Eq
8075 or else Comes_From_Source (Entity (N))
8076 or else Ekind (Entity (N)) = E_Operator
8077 or else Is_Intrinsic_Subprogram
8078 (Corresponding_Equality (Entity (N)))
8079 then
8080 Analyze_Dimension (N);
8081 Eval_Relational_Op (N);
8083 elsif Nkind (N) = N_Op_Ne
8084 and then Is_Abstract_Subprogram (Entity (N))
8085 then
8086 Error_Msg_NE ("cannot call abstract subprogram &!", N, Entity (N));
8087 end if;
8089 -- Ada 2005: If one operand is an anonymous access type, convert the
8090 -- other operand to it, to ensure that the underlying types match in
8091 -- the back-end. Same for access_to_subprogram, and the conversion
8092 -- verifies that the types are subtype conformant.
8094 -- We apply the same conversion in the case one of the operands is a
8095 -- private subtype of the type of the other.
8097 -- Why the Expander_Active test here ???
8099 if Expander_Active
8100 and then
8101 (Ekind_In (T, E_Anonymous_Access_Type,
8102 E_Anonymous_Access_Subprogram_Type)
8103 or else Is_Private_Type (T))
8104 then
8105 if Etype (L) /= T then
8106 Rewrite (L,
8107 Make_Unchecked_Type_Conversion (Sloc (L),
8108 Subtype_Mark => New_Occurrence_Of (T, Sloc (L)),
8109 Expression => Relocate_Node (L)));
8110 Analyze_And_Resolve (L, T);
8111 end if;
8113 if (Etype (R)) /= T then
8114 Rewrite (R,
8115 Make_Unchecked_Type_Conversion (Sloc (R),
8116 Subtype_Mark => New_Occurrence_Of (Etype (L), Sloc (R)),
8117 Expression => Relocate_Node (R)));
8118 Analyze_And_Resolve (R, T);
8119 end if;
8120 end if;
8121 end if;
8122 end Resolve_Equality_Op;
8124 ----------------------------------
8125 -- Resolve_Explicit_Dereference --
8126 ----------------------------------
8128 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id) is
8129 Loc : constant Source_Ptr := Sloc (N);
8130 New_N : Node_Id;
8131 P : constant Node_Id := Prefix (N);
8133 P_Typ : Entity_Id;
8134 -- The candidate prefix type, if overloaded
8136 I : Interp_Index;
8137 It : Interp;
8139 begin
8140 Check_Fully_Declared_Prefix (Typ, P);
8141 P_Typ := Empty;
8143 -- A useful optimization: check whether the dereference denotes an
8144 -- element of a container, and if so rewrite it as a call to the
8145 -- corresponding Element function.
8147 -- Disabled for now, on advice of ARG. A more restricted form of the
8148 -- predicate might be acceptable ???
8150 -- if Is_Container_Element (N) then
8151 -- return;
8152 -- end if;
8154 if Is_Overloaded (P) then
8156 -- Use the context type to select the prefix that has the correct
8157 -- designated type. Keep the first match, which will be the inner-
8158 -- most.
8160 Get_First_Interp (P, I, It);
8162 while Present (It.Typ) loop
8163 if Is_Access_Type (It.Typ)
8164 and then Covers (Typ, Designated_Type (It.Typ))
8165 then
8166 if No (P_Typ) then
8167 P_Typ := It.Typ;
8168 end if;
8170 -- Remove access types that do not match, but preserve access
8171 -- to subprogram interpretations, in case a further dereference
8172 -- is needed (see below).
8174 elsif Ekind (It.Typ) /= E_Access_Subprogram_Type then
8175 Remove_Interp (I);
8176 end if;
8178 Get_Next_Interp (I, It);
8179 end loop;
8181 if Present (P_Typ) then
8182 Resolve (P, P_Typ);
8183 Set_Etype (N, Designated_Type (P_Typ));
8185 else
8186 -- If no interpretation covers the designated type of the prefix,
8187 -- this is the pathological case where not all implementations of
8188 -- the prefix allow the interpretation of the node as a call. Now
8189 -- that the expected type is known, Remove other interpretations
8190 -- from prefix, rewrite it as a call, and resolve again, so that
8191 -- the proper call node is generated.
8193 Get_First_Interp (P, I, It);
8194 while Present (It.Typ) loop
8195 if Ekind (It.Typ) /= E_Access_Subprogram_Type then
8196 Remove_Interp (I);
8197 end if;
8199 Get_Next_Interp (I, It);
8200 end loop;
8202 New_N :=
8203 Make_Function_Call (Loc,
8204 Name =>
8205 Make_Explicit_Dereference (Loc,
8206 Prefix => P),
8207 Parameter_Associations => New_List);
8209 Save_Interps (N, New_N);
8210 Rewrite (N, New_N);
8211 Analyze_And_Resolve (N, Typ);
8212 return;
8213 end if;
8215 -- If not overloaded, resolve P with its own type
8217 else
8218 Resolve (P);
8219 end if;
8221 -- If the prefix might be null, add an access check
8223 if Is_Access_Type (Etype (P))
8224 and then not Can_Never_Be_Null (Etype (P))
8225 then
8226 Apply_Access_Check (N);
8227 end if;
8229 -- If the designated type is a packed unconstrained array type, and the
8230 -- explicit dereference is not in the context of an attribute reference,
8231 -- then we must compute and set the actual subtype, since it is needed
8232 -- by Gigi. The reason we exclude the attribute case is that this is
8233 -- handled fine by Gigi, and in fact we use such attributes to build the
8234 -- actual subtype. We also exclude generated code (which builds actual
8235 -- subtypes directly if they are needed).
8237 if Is_Array_Type (Etype (N))
8238 and then Is_Packed (Etype (N))
8239 and then not Is_Constrained (Etype (N))
8240 and then Nkind (Parent (N)) /= N_Attribute_Reference
8241 and then Comes_From_Source (N)
8242 then
8243 Set_Etype (N, Get_Actual_Subtype (N));
8244 end if;
8246 Analyze_Dimension (N);
8248 -- Note: No Eval processing is required for an explicit dereference,
8249 -- because such a name can never be static.
8251 end Resolve_Explicit_Dereference;
8253 -------------------------------------
8254 -- Resolve_Expression_With_Actions --
8255 -------------------------------------
8257 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id) is
8258 begin
8259 Set_Etype (N, Typ);
8261 -- If N has no actions, and its expression has been constant folded,
8262 -- then rewrite N as just its expression. Note, we can't do this in
8263 -- the general case of Is_Empty_List (Actions (N)) as this would cause
8264 -- Expression (N) to be expanded again.
8266 if Is_Empty_List (Actions (N))
8267 and then Compile_Time_Known_Value (Expression (N))
8268 then
8269 Rewrite (N, Expression (N));
8270 end if;
8271 end Resolve_Expression_With_Actions;
8273 ----------------------------------
8274 -- Resolve_Generalized_Indexing --
8275 ----------------------------------
8277 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id) is
8278 Indexing : constant Node_Id := Generalized_Indexing (N);
8279 Call : Node_Id;
8280 Indexes : List_Id;
8281 Pref : Node_Id;
8283 begin
8284 -- In ASIS mode, propagate the information about the indexes back to
8285 -- to the original indexing node. The generalized indexing is either
8286 -- a function call, or a dereference of one. The actuals include the
8287 -- prefix of the original node, which is the container expression.
8289 if ASIS_Mode then
8290 Resolve (Indexing, Typ);
8291 Set_Etype (N, Etype (Indexing));
8292 Set_Is_Overloaded (N, False);
8294 Call := Indexing;
8295 while Nkind_In (Call, N_Explicit_Dereference, N_Selected_Component)
8296 loop
8297 Call := Prefix (Call);
8298 end loop;
8300 if Nkind (Call) = N_Function_Call then
8301 Indexes := New_Copy_List (Parameter_Associations (Call));
8302 Pref := Remove_Head (Indexes);
8303 Set_Expressions (N, Indexes);
8305 -- If expression is to be reanalyzed, reset Generalized_Indexing
8306 -- to recreate call node, as is the case when the expression is
8307 -- part of an expression function.
8309 if In_Spec_Expression then
8310 Set_Generalized_Indexing (N, Empty);
8311 end if;
8313 Set_Prefix (N, Pref);
8314 end if;
8316 else
8317 Rewrite (N, Indexing);
8318 Resolve (N, Typ);
8319 end if;
8320 end Resolve_Generalized_Indexing;
8322 ---------------------------
8323 -- Resolve_If_Expression --
8324 ---------------------------
8326 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id) is
8327 Condition : constant Node_Id := First (Expressions (N));
8328 Then_Expr : Node_Id;
8329 Else_Expr : Node_Id;
8330 Else_Typ : Entity_Id;
8331 Then_Typ : Entity_Id;
8333 begin
8334 -- Defend against malformed expressions
8336 if No (Condition) then
8337 return;
8338 end if;
8340 Then_Expr := Next (Condition);
8342 if No (Then_Expr) then
8343 return;
8344 end if;
8346 Else_Expr := Next (Then_Expr);
8348 Resolve (Condition, Any_Boolean);
8349 Resolve (Then_Expr, Typ);
8350 Then_Typ := Etype (Then_Expr);
8352 -- When the "then" expression is of a scalar subtype different from the
8353 -- result subtype, then insert a conversion to ensure the generation of
8354 -- a constraint check. The same is done for the else part below, again
8355 -- comparing subtypes rather than base types.
8357 if Is_Scalar_Type (Then_Typ) and then Then_Typ /= Typ then
8358 Rewrite (Then_Expr, Convert_To (Typ, Then_Expr));
8359 Analyze_And_Resolve (Then_Expr, Typ);
8360 end if;
8362 -- If ELSE expression present, just resolve using the determined type
8363 -- If type is universal, resolve to any member of the class.
8365 if Present (Else_Expr) then
8366 if Typ = Universal_Integer then
8367 Resolve (Else_Expr, Any_Integer);
8369 elsif Typ = Universal_Real then
8370 Resolve (Else_Expr, Any_Real);
8372 else
8373 Resolve (Else_Expr, Typ);
8374 end if;
8376 Else_Typ := Etype (Else_Expr);
8378 if Is_Scalar_Type (Else_Typ) and then Else_Typ /= Typ then
8379 Rewrite (Else_Expr, Convert_To (Typ, Else_Expr));
8380 Analyze_And_Resolve (Else_Expr, Typ);
8382 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
8383 -- dynamically tagged must be known statically.
8385 elsif Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
8386 if Is_Dynamically_Tagged (Then_Expr) /=
8387 Is_Dynamically_Tagged (Else_Expr)
8388 then
8389 Error_Msg_N ("all or none of the dependent expressions "
8390 & "can be dynamically tagged", N);
8391 end if;
8392 end if;
8394 -- If no ELSE expression is present, root type must be Standard.Boolean
8395 -- and we provide a Standard.True result converted to the appropriate
8396 -- Boolean type (in case it is a derived boolean type).
8398 elsif Root_Type (Typ) = Standard_Boolean then
8399 Else_Expr :=
8400 Convert_To (Typ, New_Occurrence_Of (Standard_True, Sloc (N)));
8401 Analyze_And_Resolve (Else_Expr, Typ);
8402 Append_To (Expressions (N), Else_Expr);
8404 else
8405 Error_Msg_N ("can only omit ELSE expression in Boolean case", N);
8406 Append_To (Expressions (N), Error);
8407 end if;
8409 Set_Etype (N, Typ);
8411 if not Error_Posted (N) then
8412 Eval_If_Expression (N);
8413 end if;
8415 Analyze_Dimension (N);
8416 end Resolve_If_Expression;
8418 -------------------------------
8419 -- Resolve_Indexed_Component --
8420 -------------------------------
8422 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id) is
8423 Name : constant Node_Id := Prefix (N);
8424 Expr : Node_Id;
8425 Array_Type : Entity_Id := Empty; -- to prevent junk warning
8426 Index : Node_Id;
8428 begin
8429 if Present (Generalized_Indexing (N)) then
8430 Resolve_Generalized_Indexing (N, Typ);
8431 return;
8432 end if;
8434 if Is_Overloaded (Name) then
8436 -- Use the context type to select the prefix that yields the correct
8437 -- component type.
8439 declare
8440 I : Interp_Index;
8441 It : Interp;
8442 I1 : Interp_Index := 0;
8443 P : constant Node_Id := Prefix (N);
8444 Found : Boolean := False;
8446 begin
8447 Get_First_Interp (P, I, It);
8448 while Present (It.Typ) loop
8449 if (Is_Array_Type (It.Typ)
8450 and then Covers (Typ, Component_Type (It.Typ)))
8451 or else (Is_Access_Type (It.Typ)
8452 and then Is_Array_Type (Designated_Type (It.Typ))
8453 and then
8454 Covers
8455 (Typ,
8456 Component_Type (Designated_Type (It.Typ))))
8457 then
8458 if Found then
8459 It := Disambiguate (P, I1, I, Any_Type);
8461 if It = No_Interp then
8462 Error_Msg_N ("ambiguous prefix for indexing", N);
8463 Set_Etype (N, Typ);
8464 return;
8466 else
8467 Found := True;
8468 Array_Type := It.Typ;
8469 I1 := I;
8470 end if;
8472 else
8473 Found := True;
8474 Array_Type := It.Typ;
8475 I1 := I;
8476 end if;
8477 end if;
8479 Get_Next_Interp (I, It);
8480 end loop;
8481 end;
8483 else
8484 Array_Type := Etype (Name);
8485 end if;
8487 Resolve (Name, Array_Type);
8488 Array_Type := Get_Actual_Subtype_If_Available (Name);
8490 -- If prefix is access type, dereference to get real array type.
8491 -- Note: we do not apply an access check because the expander always
8492 -- introduces an explicit dereference, and the check will happen there.
8494 if Is_Access_Type (Array_Type) then
8495 Array_Type := Designated_Type (Array_Type);
8496 end if;
8498 -- If name was overloaded, set component type correctly now
8499 -- If a misplaced call to an entry family (which has no index types)
8500 -- return. Error will be diagnosed from calling context.
8502 if Is_Array_Type (Array_Type) then
8503 Set_Etype (N, Component_Type (Array_Type));
8504 else
8505 return;
8506 end if;
8508 Index := First_Index (Array_Type);
8509 Expr := First (Expressions (N));
8511 -- The prefix may have resolved to a string literal, in which case its
8512 -- etype has a special representation. This is only possible currently
8513 -- if the prefix is a static concatenation, written in functional
8514 -- notation.
8516 if Ekind (Array_Type) = E_String_Literal_Subtype then
8517 Resolve (Expr, Standard_Positive);
8519 else
8520 while Present (Index) and Present (Expr) loop
8521 Resolve (Expr, Etype (Index));
8522 Check_Unset_Reference (Expr);
8524 if Is_Scalar_Type (Etype (Expr)) then
8525 Apply_Scalar_Range_Check (Expr, Etype (Index));
8526 else
8527 Apply_Range_Check (Expr, Get_Actual_Subtype (Index));
8528 end if;
8530 Next_Index (Index);
8531 Next (Expr);
8532 end loop;
8533 end if;
8535 Analyze_Dimension (N);
8537 -- Do not generate the warning on suspicious index if we are analyzing
8538 -- package Ada.Tags; otherwise we will report the warning with the
8539 -- Prims_Ptr field of the dispatch table.
8541 if Scope (Etype (Prefix (N))) = Standard_Standard
8542 or else not
8543 Is_RTU (Cunit_Entity (Get_Source_Unit (Etype (Prefix (N)))),
8544 Ada_Tags)
8545 then
8546 Warn_On_Suspicious_Index (Name, First (Expressions (N)));
8547 Eval_Indexed_Component (N);
8548 end if;
8550 -- If the array type is atomic, and the component is not atomic, then
8551 -- this is worth a warning, since we have a situation where the access
8552 -- to the component may cause extra read/writes of the atomic array
8553 -- object, or partial word accesses, which could be unexpected.
8555 if Nkind (N) = N_Indexed_Component
8556 and then Is_Atomic_Ref_With_Address (N)
8557 and then not (Has_Atomic_Components (Array_Type)
8558 or else (Is_Entity_Name (Prefix (N))
8559 and then Has_Atomic_Components
8560 (Entity (Prefix (N)))))
8561 and then not Is_Atomic (Component_Type (Array_Type))
8562 then
8563 Error_Msg_N
8564 ("??access to non-atomic component of atomic array", Prefix (N));
8565 Error_Msg_N
8566 ("??\may cause unexpected accesses to atomic object", Prefix (N));
8567 end if;
8568 end Resolve_Indexed_Component;
8570 -----------------------------
8571 -- Resolve_Integer_Literal --
8572 -----------------------------
8574 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id) is
8575 begin
8576 Set_Etype (N, Typ);
8577 Eval_Integer_Literal (N);
8578 end Resolve_Integer_Literal;
8580 --------------------------------
8581 -- Resolve_Intrinsic_Operator --
8582 --------------------------------
8584 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id) is
8585 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8586 Op : Entity_Id;
8587 Arg1 : Node_Id;
8588 Arg2 : Node_Id;
8590 function Convert_Operand (Opnd : Node_Id) return Node_Id;
8591 -- If the operand is a literal, it cannot be the expression in a
8592 -- conversion. Use a qualified expression instead.
8594 ---------------------
8595 -- Convert_Operand --
8596 ---------------------
8598 function Convert_Operand (Opnd : Node_Id) return Node_Id is
8599 Loc : constant Source_Ptr := Sloc (Opnd);
8600 Res : Node_Id;
8602 begin
8603 if Nkind_In (Opnd, N_Integer_Literal, N_Real_Literal) then
8604 Res :=
8605 Make_Qualified_Expression (Loc,
8606 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
8607 Expression => Relocate_Node (Opnd));
8608 Analyze (Res);
8610 else
8611 Res := Unchecked_Convert_To (Btyp, Opnd);
8612 end if;
8614 return Res;
8615 end Convert_Operand;
8617 -- Start of processing for Resolve_Intrinsic_Operator
8619 begin
8620 -- We must preserve the original entity in a generic setting, so that
8621 -- the legality of the operation can be verified in an instance.
8623 if not Expander_Active then
8624 return;
8625 end if;
8627 Op := Entity (N);
8628 while Scope (Op) /= Standard_Standard loop
8629 Op := Homonym (Op);
8630 pragma Assert (Present (Op));
8631 end loop;
8633 Set_Entity (N, Op);
8634 Set_Is_Overloaded (N, False);
8636 -- If the result or operand types are private, rewrite with unchecked
8637 -- conversions on the operands and the result, to expose the proper
8638 -- underlying numeric type.
8640 if Is_Private_Type (Typ)
8641 or else Is_Private_Type (Etype (Left_Opnd (N)))
8642 or else Is_Private_Type (Etype (Right_Opnd (N)))
8643 then
8644 Arg1 := Convert_Operand (Left_Opnd (N));
8646 if Nkind (N) = N_Op_Expon then
8647 Arg2 := Unchecked_Convert_To (Standard_Integer, Right_Opnd (N));
8648 else
8649 Arg2 := Convert_Operand (Right_Opnd (N));
8650 end if;
8652 if Nkind (Arg1) = N_Type_Conversion then
8653 Save_Interps (Left_Opnd (N), Expression (Arg1));
8654 end if;
8656 if Nkind (Arg2) = N_Type_Conversion then
8657 Save_Interps (Right_Opnd (N), Expression (Arg2));
8658 end if;
8660 Set_Left_Opnd (N, Arg1);
8661 Set_Right_Opnd (N, Arg2);
8663 Set_Etype (N, Btyp);
8664 Rewrite (N, Unchecked_Convert_To (Typ, N));
8665 Resolve (N, Typ);
8667 elsif Typ /= Etype (Left_Opnd (N))
8668 or else Typ /= Etype (Right_Opnd (N))
8669 then
8670 -- Add explicit conversion where needed, and save interpretations in
8671 -- case operands are overloaded.
8673 Arg1 := Convert_To (Typ, Left_Opnd (N));
8674 Arg2 := Convert_To (Typ, Right_Opnd (N));
8676 if Nkind (Arg1) = N_Type_Conversion then
8677 Save_Interps (Left_Opnd (N), Expression (Arg1));
8678 else
8679 Save_Interps (Left_Opnd (N), Arg1);
8680 end if;
8682 if Nkind (Arg2) = N_Type_Conversion then
8683 Save_Interps (Right_Opnd (N), Expression (Arg2));
8684 else
8685 Save_Interps (Right_Opnd (N), Arg2);
8686 end if;
8688 Rewrite (Left_Opnd (N), Arg1);
8689 Rewrite (Right_Opnd (N), Arg2);
8690 Analyze (Arg1);
8691 Analyze (Arg2);
8692 Resolve_Arithmetic_Op (N, Typ);
8694 else
8695 Resolve_Arithmetic_Op (N, Typ);
8696 end if;
8697 end Resolve_Intrinsic_Operator;
8699 --------------------------------------
8700 -- Resolve_Intrinsic_Unary_Operator --
8701 --------------------------------------
8703 procedure Resolve_Intrinsic_Unary_Operator
8704 (N : Node_Id;
8705 Typ : Entity_Id)
8707 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8708 Op : Entity_Id;
8709 Arg2 : Node_Id;
8711 begin
8712 Op := Entity (N);
8713 while Scope (Op) /= Standard_Standard loop
8714 Op := Homonym (Op);
8715 pragma Assert (Present (Op));
8716 end loop;
8718 Set_Entity (N, Op);
8720 if Is_Private_Type (Typ) then
8721 Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
8722 Save_Interps (Right_Opnd (N), Expression (Arg2));
8724 Set_Right_Opnd (N, Arg2);
8726 Set_Etype (N, Btyp);
8727 Rewrite (N, Unchecked_Convert_To (Typ, N));
8728 Resolve (N, Typ);
8730 else
8731 Resolve_Unary_Op (N, Typ);
8732 end if;
8733 end Resolve_Intrinsic_Unary_Operator;
8735 ------------------------
8736 -- Resolve_Logical_Op --
8737 ------------------------
8739 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id) is
8740 B_Typ : Entity_Id;
8742 begin
8743 Check_No_Direct_Boolean_Operators (N);
8745 -- Predefined operations on scalar types yield the base type. On the
8746 -- other hand, logical operations on arrays yield the type of the
8747 -- arguments (and the context).
8749 if Is_Array_Type (Typ) then
8750 B_Typ := Typ;
8751 else
8752 B_Typ := Base_Type (Typ);
8753 end if;
8755 -- The following test is required because the operands of the operation
8756 -- may be literals, in which case the resulting type appears to be
8757 -- compatible with a signed integer type, when in fact it is compatible
8758 -- only with modular types. If the context itself is universal, the
8759 -- operation is illegal.
8761 if not Valid_Boolean_Arg (Typ) then
8762 Error_Msg_N ("invalid context for logical operation", N);
8763 Set_Etype (N, Any_Type);
8764 return;
8766 elsif Typ = Any_Modular then
8767 Error_Msg_N
8768 ("no modular type available in this context", N);
8769 Set_Etype (N, Any_Type);
8770 return;
8772 elsif Is_Modular_Integer_Type (Typ)
8773 and then Etype (Left_Opnd (N)) = Universal_Integer
8774 and then Etype (Right_Opnd (N)) = Universal_Integer
8775 then
8776 Check_For_Visible_Operator (N, B_Typ);
8777 end if;
8779 -- Replace AND by AND THEN, or OR by OR ELSE, if Short_Circuit_And_Or
8780 -- is active and the result type is standard Boolean (do not mess with
8781 -- ops that return a nonstandard Boolean type, because something strange
8782 -- is going on).
8784 -- Note: you might expect this replacement to be done during expansion,
8785 -- but that doesn't work, because when the pragma Short_Circuit_And_Or
8786 -- is used, no part of the right operand of an "and" or "or" operator
8787 -- should be executed if the left operand would short-circuit the
8788 -- evaluation of the corresponding "and then" or "or else". If we left
8789 -- the replacement to expansion time, then run-time checks associated
8790 -- with such operands would be evaluated unconditionally, due to being
8791 -- before the condition prior to the rewriting as short-circuit forms
8792 -- during expansion.
8794 if Short_Circuit_And_Or
8795 and then B_Typ = Standard_Boolean
8796 and then Nkind_In (N, N_Op_And, N_Op_Or)
8797 then
8798 -- Mark the corresponding putative SCO operator as truly a logical
8799 -- (and short-circuit) operator.
8801 if Generate_SCO and then Comes_From_Source (N) then
8802 Set_SCO_Logical_Operator (N);
8803 end if;
8805 if Nkind (N) = N_Op_And then
8806 Rewrite (N,
8807 Make_And_Then (Sloc (N),
8808 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8809 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8810 Analyze_And_Resolve (N, B_Typ);
8812 -- Case of OR changed to OR ELSE
8814 else
8815 Rewrite (N,
8816 Make_Or_Else (Sloc (N),
8817 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8818 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8819 Analyze_And_Resolve (N, B_Typ);
8820 end if;
8822 -- Return now, since analysis of the rewritten ops will take care of
8823 -- other reference bookkeeping and expression folding.
8825 return;
8826 end if;
8828 Resolve (Left_Opnd (N), B_Typ);
8829 Resolve (Right_Opnd (N), B_Typ);
8831 Check_Unset_Reference (Left_Opnd (N));
8832 Check_Unset_Reference (Right_Opnd (N));
8834 Set_Etype (N, B_Typ);
8835 Generate_Operator_Reference (N, B_Typ);
8836 Eval_Logical_Op (N);
8838 -- In SPARK, logical operations AND, OR and XOR for arrays are defined
8839 -- only when both operands have same static lower and higher bounds. Of
8840 -- course the types have to match, so only check if operands are
8841 -- compatible and the node itself has no errors.
8843 if Is_Array_Type (B_Typ)
8844 and then Nkind (N) in N_Binary_Op
8845 then
8846 declare
8847 Left_Typ : constant Node_Id := Etype (Left_Opnd (N));
8848 Right_Typ : constant Node_Id := Etype (Right_Opnd (N));
8850 begin
8851 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8852 -- operation if not needed.
8854 if Restriction_Check_Required (SPARK_05)
8855 and then Base_Type (Left_Typ) = Base_Type (Right_Typ)
8856 and then Left_Typ /= Any_Composite -- or Left_Opnd in error
8857 and then Right_Typ /= Any_Composite -- or Right_Opnd in error
8858 and then not Matching_Static_Array_Bounds (Left_Typ, Right_Typ)
8859 then
8860 Check_SPARK_05_Restriction
8861 ("array types should have matching static bounds", N);
8862 end if;
8863 end;
8864 end if;
8865 end Resolve_Logical_Op;
8867 ---------------------------
8868 -- Resolve_Membership_Op --
8869 ---------------------------
8871 -- The context can only be a boolean type, and does not determine the
8872 -- arguments. Arguments should be unambiguous, but the preference rule for
8873 -- universal types applies.
8875 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id) is
8876 pragma Warnings (Off, Typ);
8878 L : constant Node_Id := Left_Opnd (N);
8879 R : constant Node_Id := Right_Opnd (N);
8880 T : Entity_Id;
8882 procedure Resolve_Set_Membership;
8883 -- Analysis has determined a unique type for the left operand. Use it to
8884 -- resolve the disjuncts.
8886 ----------------------------
8887 -- Resolve_Set_Membership --
8888 ----------------------------
8890 procedure Resolve_Set_Membership is
8891 Alt : Node_Id;
8892 Ltyp : Entity_Id;
8894 begin
8895 -- If the left operand is overloaded, find type compatible with not
8896 -- overloaded alternative of the right operand.
8898 if Is_Overloaded (L) then
8899 Ltyp := Empty;
8900 Alt := First (Alternatives (N));
8901 while Present (Alt) loop
8902 if not Is_Overloaded (Alt) then
8903 Ltyp := Intersect_Types (L, Alt);
8904 exit;
8905 else
8906 Next (Alt);
8907 end if;
8908 end loop;
8910 -- Unclear how to resolve expression if all alternatives are also
8911 -- overloaded.
8913 if No (Ltyp) then
8914 Error_Msg_N ("ambiguous expression", N);
8915 end if;
8917 else
8918 Ltyp := Etype (L);
8919 end if;
8921 Resolve (L, Ltyp);
8923 Alt := First (Alternatives (N));
8924 while Present (Alt) loop
8926 -- Alternative is an expression, a range
8927 -- or a subtype mark.
8929 if not Is_Entity_Name (Alt)
8930 or else not Is_Type (Entity (Alt))
8931 then
8932 Resolve (Alt, Ltyp);
8933 end if;
8935 Next (Alt);
8936 end loop;
8938 -- Check for duplicates for discrete case
8940 if Is_Discrete_Type (Ltyp) then
8941 declare
8942 type Ent is record
8943 Alt : Node_Id;
8944 Val : Uint;
8945 end record;
8947 Alts : array (0 .. List_Length (Alternatives (N))) of Ent;
8948 Nalts : Nat;
8950 begin
8951 -- Loop checking duplicates. This is quadratic, but giant sets
8952 -- are unlikely in this context so it's a reasonable choice.
8954 Nalts := 0;
8955 Alt := First (Alternatives (N));
8956 while Present (Alt) loop
8957 if Is_OK_Static_Expression (Alt)
8958 and then (Nkind_In (Alt, N_Integer_Literal,
8959 N_Character_Literal)
8960 or else Nkind (Alt) in N_Has_Entity)
8961 then
8962 Nalts := Nalts + 1;
8963 Alts (Nalts) := (Alt, Expr_Value (Alt));
8965 for J in 1 .. Nalts - 1 loop
8966 if Alts (J).Val = Alts (Nalts).Val then
8967 Error_Msg_Sloc := Sloc (Alts (J).Alt);
8968 Error_Msg_N ("duplicate of value given#??", Alt);
8969 end if;
8970 end loop;
8971 end if;
8973 Alt := Next (Alt);
8974 end loop;
8975 end;
8976 end if;
8978 -- RM 4.5.2 (28.1/3) specifies that for types other than records or
8979 -- limited types, evaluation of a membership test uses the predefined
8980 -- equality for the type. This may be confusing to users, and the
8981 -- following warning appears useful for the most common case.
8983 if Is_Scalar_Type (Ltyp)
8984 and then Present (Get_User_Defined_Eq (Ltyp))
8985 then
8986 Error_Msg_NE
8987 ("membership test on& uses predefined equality?", N, Ltyp);
8988 Error_Msg_N
8989 ("\even if user-defined equality exists (RM 4.5.2 (28.1/3)?", N);
8990 end if;
8991 end Resolve_Set_Membership;
8993 -- Start of processing for Resolve_Membership_Op
8995 begin
8996 if L = Error or else R = Error then
8997 return;
8998 end if;
9000 if Present (Alternatives (N)) then
9001 Resolve_Set_Membership;
9002 goto SM_Exit;
9004 elsif not Is_Overloaded (R)
9005 and then
9006 (Etype (R) = Universal_Integer
9007 or else
9008 Etype (R) = Universal_Real)
9009 and then Is_Overloaded (L)
9010 then
9011 T := Etype (R);
9013 -- Ada 2005 (AI-251): Support the following case:
9015 -- type I is interface;
9016 -- type T is tagged ...
9018 -- function Test (O : I'Class) is
9019 -- begin
9020 -- return O in T'Class.
9021 -- end Test;
9023 -- In this case we have nothing else to do. The membership test will be
9024 -- done at run time.
9026 elsif Ada_Version >= Ada_2005
9027 and then Is_Class_Wide_Type (Etype (L))
9028 and then Is_Interface (Etype (L))
9029 and then Is_Class_Wide_Type (Etype (R))
9030 and then not Is_Interface (Etype (R))
9031 then
9032 return;
9033 else
9034 T := Intersect_Types (L, R);
9035 end if;
9037 -- If mixed-mode operations are present and operands are all literal,
9038 -- the only interpretation involves Duration, which is probably not
9039 -- the intention of the programmer.
9041 if T = Any_Fixed then
9042 T := Unique_Fixed_Point_Type (N);
9044 if T = Any_Type then
9045 return;
9046 end if;
9047 end if;
9049 Resolve (L, T);
9050 Check_Unset_Reference (L);
9052 if Nkind (R) = N_Range
9053 and then not Is_Scalar_Type (T)
9054 then
9055 Error_Msg_N ("scalar type required for range", R);
9056 end if;
9058 if Is_Entity_Name (R) then
9059 Freeze_Expression (R);
9060 else
9061 Resolve (R, T);
9062 Check_Unset_Reference (R);
9063 end if;
9065 -- Here after resolving membership operation
9067 <<SM_Exit>>
9069 Eval_Membership_Op (N);
9070 end Resolve_Membership_Op;
9072 ------------------
9073 -- Resolve_Null --
9074 ------------------
9076 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id) is
9077 Loc : constant Source_Ptr := Sloc (N);
9079 begin
9080 -- Handle restriction against anonymous null access values This
9081 -- restriction can be turned off using -gnatdj.
9083 -- Ada 2005 (AI-231): Remove restriction
9085 if Ada_Version < Ada_2005
9086 and then not Debug_Flag_J
9087 and then Ekind (Typ) = E_Anonymous_Access_Type
9088 and then Comes_From_Source (N)
9089 then
9090 -- In the common case of a call which uses an explicitly null value
9091 -- for an access parameter, give specialized error message.
9093 if Nkind (Parent (N)) in N_Subprogram_Call then
9094 Error_Msg_N
9095 ("null is not allowed as argument for an access parameter", N);
9097 -- Standard message for all other cases (are there any?)
9099 else
9100 Error_Msg_N
9101 ("null cannot be of an anonymous access type", N);
9102 end if;
9103 end if;
9105 -- Ada 2005 (AI-231): Generate the null-excluding check in case of
9106 -- assignment to a null-excluding object
9108 if Ada_Version >= Ada_2005
9109 and then Can_Never_Be_Null (Typ)
9110 and then Nkind (Parent (N)) = N_Assignment_Statement
9111 then
9112 if not Inside_Init_Proc then
9113 Insert_Action
9114 (Compile_Time_Constraint_Error (N,
9115 "(Ada 2005) null not allowed in null-excluding objects??"),
9116 Make_Raise_Constraint_Error (Loc,
9117 Reason => CE_Access_Check_Failed));
9118 else
9119 Insert_Action (N,
9120 Make_Raise_Constraint_Error (Loc,
9121 Reason => CE_Access_Check_Failed));
9122 end if;
9123 end if;
9125 -- In a distributed context, null for a remote access to subprogram may
9126 -- need to be replaced with a special record aggregate. In this case,
9127 -- return after having done the transformation.
9129 if (Ekind (Typ) = E_Record_Type
9130 or else Is_Remote_Access_To_Subprogram_Type (Typ))
9131 and then Remote_AST_Null_Value (N, Typ)
9132 then
9133 return;
9134 end if;
9136 -- The null literal takes its type from the context
9138 Set_Etype (N, Typ);
9139 end Resolve_Null;
9141 -----------------------
9142 -- Resolve_Op_Concat --
9143 -----------------------
9145 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id) is
9147 -- We wish to avoid deep recursion, because concatenations are often
9148 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
9149 -- operands nonrecursively until we find something that is not a simple
9150 -- concatenation (A in this case). We resolve that, and then walk back
9151 -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
9152 -- to do the rest of the work at each level. The Parent pointers allow
9153 -- us to avoid recursion, and thus avoid running out of memory. See also
9154 -- Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
9156 NN : Node_Id := N;
9157 Op1 : Node_Id;
9159 begin
9160 -- The following code is equivalent to:
9162 -- Resolve_Op_Concat_First (NN, Typ);
9163 -- Resolve_Op_Concat_Arg (N, ...);
9164 -- Resolve_Op_Concat_Rest (N, Typ);
9166 -- where the Resolve_Op_Concat_Arg call recurses back here if the left
9167 -- operand is a concatenation.
9169 -- Walk down left operands
9171 loop
9172 Resolve_Op_Concat_First (NN, Typ);
9173 Op1 := Left_Opnd (NN);
9174 exit when not (Nkind (Op1) = N_Op_Concat
9175 and then not Is_Array_Type (Component_Type (Typ))
9176 and then Entity (Op1) = Entity (NN));
9177 NN := Op1;
9178 end loop;
9180 -- Now (given the above example) NN is A&B and Op1 is A
9182 -- First resolve Op1 ...
9184 Resolve_Op_Concat_Arg (NN, Op1, Typ, Is_Component_Left_Opnd (NN));
9186 -- ... then walk NN back up until we reach N (where we started), calling
9187 -- Resolve_Op_Concat_Rest along the way.
9189 loop
9190 Resolve_Op_Concat_Rest (NN, Typ);
9191 exit when NN = N;
9192 NN := Parent (NN);
9193 end loop;
9195 if Base_Type (Etype (N)) /= Standard_String then
9196 Check_SPARK_05_Restriction
9197 ("result of concatenation should have type String", N);
9198 end if;
9199 end Resolve_Op_Concat;
9201 ---------------------------
9202 -- Resolve_Op_Concat_Arg --
9203 ---------------------------
9205 procedure Resolve_Op_Concat_Arg
9206 (N : Node_Id;
9207 Arg : Node_Id;
9208 Typ : Entity_Id;
9209 Is_Comp : Boolean)
9211 Btyp : constant Entity_Id := Base_Type (Typ);
9212 Ctyp : constant Entity_Id := Component_Type (Typ);
9214 begin
9215 if In_Instance then
9216 if Is_Comp
9217 or else (not Is_Overloaded (Arg)
9218 and then Etype (Arg) /= Any_Composite
9219 and then Covers (Ctyp, Etype (Arg)))
9220 then
9221 Resolve (Arg, Ctyp);
9222 else
9223 Resolve (Arg, Btyp);
9224 end if;
9226 -- If both Array & Array and Array & Component are visible, there is a
9227 -- potential ambiguity that must be reported.
9229 elsif Has_Compatible_Type (Arg, Ctyp) then
9230 if Nkind (Arg) = N_Aggregate
9231 and then Is_Composite_Type (Ctyp)
9232 then
9233 if Is_Private_Type (Ctyp) then
9234 Resolve (Arg, Btyp);
9236 -- If the operation is user-defined and not overloaded use its
9237 -- profile. The operation may be a renaming, in which case it has
9238 -- been rewritten, and we want the original profile.
9240 elsif not Is_Overloaded (N)
9241 and then Comes_From_Source (Entity (Original_Node (N)))
9242 and then Ekind (Entity (Original_Node (N))) = E_Function
9243 then
9244 Resolve (Arg,
9245 Etype
9246 (Next_Formal (First_Formal (Entity (Original_Node (N))))));
9247 return;
9249 -- Otherwise an aggregate may match both the array type and the
9250 -- component type.
9252 else
9253 Error_Msg_N ("ambiguous aggregate must be qualified", Arg);
9254 Set_Etype (Arg, Any_Type);
9255 end if;
9257 else
9258 if Is_Overloaded (Arg)
9259 and then Has_Compatible_Type (Arg, Typ)
9260 and then Etype (Arg) /= Any_Type
9261 then
9262 declare
9263 I : Interp_Index;
9264 It : Interp;
9265 Func : Entity_Id;
9267 begin
9268 Get_First_Interp (Arg, I, It);
9269 Func := It.Nam;
9270 Get_Next_Interp (I, It);
9272 -- Special-case the error message when the overloading is
9273 -- caused by a function that yields an array and can be
9274 -- called without parameters.
9276 if It.Nam = Func then
9277 Error_Msg_Sloc := Sloc (Func);
9278 Error_Msg_N ("ambiguous call to function#", Arg);
9279 Error_Msg_NE
9280 ("\\interpretation as call yields&", Arg, Typ);
9281 Error_Msg_NE
9282 ("\\interpretation as indexing of call yields&",
9283 Arg, Component_Type (Typ));
9285 else
9286 Error_Msg_N ("ambiguous operand for concatenation!", Arg);
9288 Get_First_Interp (Arg, I, It);
9289 while Present (It.Nam) loop
9290 Error_Msg_Sloc := Sloc (It.Nam);
9292 if Base_Type (It.Typ) = Btyp
9293 or else
9294 Base_Type (It.Typ) = Base_Type (Ctyp)
9295 then
9296 Error_Msg_N -- CODEFIX
9297 ("\\possible interpretation#", Arg);
9298 end if;
9300 Get_Next_Interp (I, It);
9301 end loop;
9302 end if;
9303 end;
9304 end if;
9306 Resolve (Arg, Component_Type (Typ));
9308 if Nkind (Arg) = N_String_Literal then
9309 Set_Etype (Arg, Component_Type (Typ));
9310 end if;
9312 if Arg = Left_Opnd (N) then
9313 Set_Is_Component_Left_Opnd (N);
9314 else
9315 Set_Is_Component_Right_Opnd (N);
9316 end if;
9317 end if;
9319 else
9320 Resolve (Arg, Btyp);
9321 end if;
9323 -- Concatenation is restricted in SPARK: each operand must be either a
9324 -- string literal, the name of a string constant, a static character or
9325 -- string expression, or another concatenation. Arg cannot be a
9326 -- concatenation here as callers of Resolve_Op_Concat_Arg call it
9327 -- separately on each final operand, past concatenation operations.
9329 if Is_Character_Type (Etype (Arg)) then
9330 if not Is_OK_Static_Expression (Arg) then
9331 Check_SPARK_05_Restriction
9332 ("character operand for concatenation should be static", Arg);
9333 end if;
9335 elsif Is_String_Type (Etype (Arg)) then
9336 if not (Nkind_In (Arg, N_Identifier, N_Expanded_Name)
9337 and then Is_Constant_Object (Entity (Arg)))
9338 and then not Is_OK_Static_Expression (Arg)
9339 then
9340 Check_SPARK_05_Restriction
9341 ("string operand for concatenation should be static", Arg);
9342 end if;
9344 -- Do not issue error on an operand that is neither a character nor a
9345 -- string, as the error is issued in Resolve_Op_Concat.
9347 else
9348 null;
9349 end if;
9351 Check_Unset_Reference (Arg);
9352 end Resolve_Op_Concat_Arg;
9354 -----------------------------
9355 -- Resolve_Op_Concat_First --
9356 -----------------------------
9358 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id) is
9359 Btyp : constant Entity_Id := Base_Type (Typ);
9360 Op1 : constant Node_Id := Left_Opnd (N);
9361 Op2 : constant Node_Id := Right_Opnd (N);
9363 begin
9364 -- The parser folds an enormous sequence of concatenations of string
9365 -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
9366 -- in the right operand. If the expression resolves to a predefined "&"
9367 -- operator, all is well. Otherwise, the parser's folding is wrong, so
9368 -- we give an error. See P_Simple_Expression in Par.Ch4.
9370 if Nkind (Op2) = N_String_Literal
9371 and then Is_Folded_In_Parser (Op2)
9372 and then Ekind (Entity (N)) = E_Function
9373 then
9374 pragma Assert (Nkind (Op1) = N_String_Literal -- should be ""
9375 and then String_Length (Strval (Op1)) = 0);
9376 Error_Msg_N ("too many user-defined concatenations", N);
9377 return;
9378 end if;
9380 Set_Etype (N, Btyp);
9382 if Is_Limited_Composite (Btyp) then
9383 Error_Msg_N ("concatenation not available for limited array", N);
9384 Explain_Limited_Type (Btyp, N);
9385 end if;
9386 end Resolve_Op_Concat_First;
9388 ----------------------------
9389 -- Resolve_Op_Concat_Rest --
9390 ----------------------------
9392 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id) is
9393 Op1 : constant Node_Id := Left_Opnd (N);
9394 Op2 : constant Node_Id := Right_Opnd (N);
9396 begin
9397 Resolve_Op_Concat_Arg (N, Op2, Typ, Is_Component_Right_Opnd (N));
9399 Generate_Operator_Reference (N, Typ);
9401 if Is_String_Type (Typ) then
9402 Eval_Concatenation (N);
9403 end if;
9405 -- If this is not a static concatenation, but the result is a string
9406 -- type (and not an array of strings) ensure that static string operands
9407 -- have their subtypes properly constructed.
9409 if Nkind (N) /= N_String_Literal
9410 and then Is_Character_Type (Component_Type (Typ))
9411 then
9412 Set_String_Literal_Subtype (Op1, Typ);
9413 Set_String_Literal_Subtype (Op2, Typ);
9414 end if;
9415 end Resolve_Op_Concat_Rest;
9417 ----------------------
9418 -- Resolve_Op_Expon --
9419 ----------------------
9421 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id) is
9422 B_Typ : constant Entity_Id := Base_Type (Typ);
9424 begin
9425 -- Catch attempts to do fixed-point exponentiation with universal
9426 -- operands, which is a case where the illegality is not caught during
9427 -- normal operator analysis. This is not done in preanalysis mode
9428 -- since the tree is not fully decorated during preanalysis.
9430 if Full_Analysis then
9431 if Is_Fixed_Point_Type (Typ) and then Comes_From_Source (N) then
9432 Error_Msg_N ("exponentiation not available for fixed point", N);
9433 return;
9435 elsif Nkind (Parent (N)) in N_Op
9436 and then Present (Etype (Parent (N)))
9437 and then Is_Fixed_Point_Type (Etype (Parent (N)))
9438 and then Etype (N) = Universal_Real
9439 and then Comes_From_Source (N)
9440 then
9441 Error_Msg_N ("exponentiation not available for fixed point", N);
9442 return;
9443 end if;
9444 end if;
9446 if Comes_From_Source (N)
9447 and then Ekind (Entity (N)) = E_Function
9448 and then Is_Imported (Entity (N))
9449 and then Is_Intrinsic_Subprogram (Entity (N))
9450 then
9451 Resolve_Intrinsic_Operator (N, Typ);
9452 return;
9453 end if;
9455 if Etype (Left_Opnd (N)) = Universal_Integer
9456 or else Etype (Left_Opnd (N)) = Universal_Real
9457 then
9458 Check_For_Visible_Operator (N, B_Typ);
9459 end if;
9461 -- We do the resolution using the base type, because intermediate values
9462 -- in expressions are always of the base type, not a subtype of it.
9464 Resolve (Left_Opnd (N), B_Typ);
9465 Resolve (Right_Opnd (N), Standard_Integer);
9467 -- For integer types, right argument must be in Natural range
9469 if Is_Integer_Type (Typ) then
9470 Apply_Scalar_Range_Check (Right_Opnd (N), Standard_Natural);
9471 end if;
9473 Check_Unset_Reference (Left_Opnd (N));
9474 Check_Unset_Reference (Right_Opnd (N));
9476 Set_Etype (N, B_Typ);
9477 Generate_Operator_Reference (N, B_Typ);
9479 Analyze_Dimension (N);
9481 if Ada_Version >= Ada_2012 and then Has_Dimension_System (B_Typ) then
9482 -- Evaluate the exponentiation operator for dimensioned type
9484 Eval_Op_Expon_For_Dimensioned_Type (N, B_Typ);
9485 else
9486 Eval_Op_Expon (N);
9487 end if;
9489 -- Set overflow checking bit. Much cleverer code needed here eventually
9490 -- and perhaps the Resolve routines should be separated for the various
9491 -- arithmetic operations, since they will need different processing. ???
9493 if Nkind (N) in N_Op then
9494 if not Overflow_Checks_Suppressed (Etype (N)) then
9495 Enable_Overflow_Check (N);
9496 end if;
9497 end if;
9498 end Resolve_Op_Expon;
9500 --------------------
9501 -- Resolve_Op_Not --
9502 --------------------
9504 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id) is
9505 B_Typ : Entity_Id;
9507 function Parent_Is_Boolean return Boolean;
9508 -- This function determines if the parent node is a boolean operator or
9509 -- operation (comparison op, membership test, or short circuit form) and
9510 -- the not in question is the left operand of this operation. Note that
9511 -- if the not is in parens, then false is returned.
9513 -----------------------
9514 -- Parent_Is_Boolean --
9515 -----------------------
9517 function Parent_Is_Boolean return Boolean is
9518 begin
9519 if Paren_Count (N) /= 0 then
9520 return False;
9522 else
9523 case Nkind (Parent (N)) is
9524 when N_And_Then
9525 | N_In
9526 | N_Not_In
9527 | N_Op_And
9528 | N_Op_Eq
9529 | N_Op_Ge
9530 | N_Op_Gt
9531 | N_Op_Le
9532 | N_Op_Lt
9533 | N_Op_Ne
9534 | N_Op_Or
9535 | N_Op_Xor
9536 | N_Or_Else
9538 return Left_Opnd (Parent (N)) = N;
9540 when others =>
9541 return False;
9542 end case;
9543 end if;
9544 end Parent_Is_Boolean;
9546 -- Start of processing for Resolve_Op_Not
9548 begin
9549 -- Predefined operations on scalar types yield the base type. On the
9550 -- other hand, logical operations on arrays yield the type of the
9551 -- arguments (and the context).
9553 if Is_Array_Type (Typ) then
9554 B_Typ := Typ;
9555 else
9556 B_Typ := Base_Type (Typ);
9557 end if;
9559 -- Straightforward case of incorrect arguments
9561 if not Valid_Boolean_Arg (Typ) then
9562 Error_Msg_N ("invalid operand type for operator&", N);
9563 Set_Etype (N, Any_Type);
9564 return;
9566 -- Special case of probable missing parens
9568 elsif Typ = Universal_Integer or else Typ = Any_Modular then
9569 if Parent_Is_Boolean then
9570 Error_Msg_N
9571 ("operand of not must be enclosed in parentheses",
9572 Right_Opnd (N));
9573 else
9574 Error_Msg_N
9575 ("no modular type available in this context", N);
9576 end if;
9578 Set_Etype (N, Any_Type);
9579 return;
9581 -- OK resolution of NOT
9583 else
9584 -- Warn if non-boolean types involved. This is a case like not a < b
9585 -- where a and b are modular, where we will get (not a) < b and most
9586 -- likely not (a < b) was intended.
9588 if Warn_On_Questionable_Missing_Parens
9589 and then not Is_Boolean_Type (Typ)
9590 and then Parent_Is_Boolean
9591 then
9592 Error_Msg_N ("?q?not expression should be parenthesized here!", N);
9593 end if;
9595 -- Warn on double negation if checking redundant constructs
9597 if Warn_On_Redundant_Constructs
9598 and then Comes_From_Source (N)
9599 and then Comes_From_Source (Right_Opnd (N))
9600 and then Root_Type (Typ) = Standard_Boolean
9601 and then Nkind (Right_Opnd (N)) = N_Op_Not
9602 then
9603 Error_Msg_N ("redundant double negation?r?", N);
9604 end if;
9606 -- Complete resolution and evaluation of NOT
9608 Resolve (Right_Opnd (N), B_Typ);
9609 Check_Unset_Reference (Right_Opnd (N));
9610 Set_Etype (N, B_Typ);
9611 Generate_Operator_Reference (N, B_Typ);
9612 Eval_Op_Not (N);
9613 end if;
9614 end Resolve_Op_Not;
9616 -----------------------------
9617 -- Resolve_Operator_Symbol --
9618 -----------------------------
9620 -- Nothing to be done, all resolved already
9622 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id) is
9623 pragma Warnings (Off, N);
9624 pragma Warnings (Off, Typ);
9626 begin
9627 null;
9628 end Resolve_Operator_Symbol;
9630 ----------------------------------
9631 -- Resolve_Qualified_Expression --
9632 ----------------------------------
9634 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id) is
9635 pragma Warnings (Off, Typ);
9637 Target_Typ : constant Entity_Id := Entity (Subtype_Mark (N));
9638 Expr : constant Node_Id := Expression (N);
9640 begin
9641 Resolve (Expr, Target_Typ);
9643 -- Protect call to Matching_Static_Array_Bounds to avoid costly
9644 -- operation if not needed.
9646 if Restriction_Check_Required (SPARK_05)
9647 and then Is_Array_Type (Target_Typ)
9648 and then Is_Array_Type (Etype (Expr))
9649 and then Etype (Expr) /= Any_Composite -- or else Expr in error
9650 and then not Matching_Static_Array_Bounds (Target_Typ, Etype (Expr))
9651 then
9652 Check_SPARK_05_Restriction
9653 ("array types should have matching static bounds", N);
9654 end if;
9656 -- A qualified expression requires an exact match of the type, class-
9657 -- wide matching is not allowed. However, if the qualifying type is
9658 -- specific and the expression has a class-wide type, it may still be
9659 -- okay, since it can be the result of the expansion of a call to a
9660 -- dispatching function, so we also have to check class-wideness of the
9661 -- type of the expression's original node.
9663 if (Is_Class_Wide_Type (Target_Typ)
9664 or else
9665 (Is_Class_Wide_Type (Etype (Expr))
9666 and then Is_Class_Wide_Type (Etype (Original_Node (Expr)))))
9667 and then Base_Type (Etype (Expr)) /= Base_Type (Target_Typ)
9668 then
9669 Wrong_Type (Expr, Target_Typ);
9670 end if;
9672 -- If the target type is unconstrained, then we reset the type of the
9673 -- result from the type of the expression. For other cases, the actual
9674 -- subtype of the expression is the target type.
9676 if Is_Composite_Type (Target_Typ)
9677 and then not Is_Constrained (Target_Typ)
9678 then
9679 Set_Etype (N, Etype (Expr));
9680 end if;
9682 Analyze_Dimension (N);
9683 Eval_Qualified_Expression (N);
9685 -- If we still have a qualified expression after the static evaluation,
9686 -- then apply a scalar range check if needed. The reason that we do this
9687 -- after the Eval call is that otherwise, the application of the range
9688 -- check may convert an illegal static expression and result in warning
9689 -- rather than giving an error (e.g Integer'(Integer'Last + 1)).
9691 if Nkind (N) = N_Qualified_Expression and then Is_Scalar_Type (Typ) then
9692 Apply_Scalar_Range_Check (Expr, Typ);
9693 end if;
9695 -- Finally, check whether a predicate applies to the target type. This
9696 -- comes from AI12-0100. As for type conversions, check the enclosing
9697 -- context to prevent an infinite expansion.
9699 if Has_Predicates (Target_Typ) then
9700 if Nkind (Parent (N)) = N_Function_Call
9701 and then Present (Name (Parent (N)))
9702 and then (Is_Predicate_Function (Entity (Name (Parent (N))))
9703 or else
9704 Is_Predicate_Function_M (Entity (Name (Parent (N)))))
9705 then
9706 null;
9708 -- In the case of a qualified expression in an allocator, the check
9709 -- is applied when expanding the allocator, so avoid redundant check.
9711 elsif Nkind (N) = N_Qualified_Expression
9712 and then Nkind (Parent (N)) /= N_Allocator
9713 then
9714 Apply_Predicate_Check (N, Target_Typ);
9715 end if;
9716 end if;
9717 end Resolve_Qualified_Expression;
9719 ------------------------------
9720 -- Resolve_Raise_Expression --
9721 ------------------------------
9723 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id) is
9724 begin
9725 if Typ = Raise_Type then
9726 Error_Msg_N ("cannot find unique type for raise expression", N);
9727 Set_Etype (N, Any_Type);
9728 else
9729 Set_Etype (N, Typ);
9730 end if;
9731 end Resolve_Raise_Expression;
9733 -------------------
9734 -- Resolve_Range --
9735 -------------------
9737 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id) is
9738 L : constant Node_Id := Low_Bound (N);
9739 H : constant Node_Id := High_Bound (N);
9741 function First_Last_Ref return Boolean;
9742 -- Returns True if N is of the form X'First .. X'Last where X is the
9743 -- same entity for both attributes.
9745 --------------------
9746 -- First_Last_Ref --
9747 --------------------
9749 function First_Last_Ref return Boolean is
9750 Lorig : constant Node_Id := Original_Node (L);
9751 Horig : constant Node_Id := Original_Node (H);
9753 begin
9754 if Nkind (Lorig) = N_Attribute_Reference
9755 and then Nkind (Horig) = N_Attribute_Reference
9756 and then Attribute_Name (Lorig) = Name_First
9757 and then Attribute_Name (Horig) = Name_Last
9758 then
9759 declare
9760 PL : constant Node_Id := Prefix (Lorig);
9761 PH : constant Node_Id := Prefix (Horig);
9762 begin
9763 if Is_Entity_Name (PL)
9764 and then Is_Entity_Name (PH)
9765 and then Entity (PL) = Entity (PH)
9766 then
9767 return True;
9768 end if;
9769 end;
9770 end if;
9772 return False;
9773 end First_Last_Ref;
9775 -- Start of processing for Resolve_Range
9777 begin
9778 Set_Etype (N, Typ);
9780 -- The lower bound should be in Typ. The higher bound can be in Typ's
9781 -- base type if the range is null. It may still be invalid if it is
9782 -- higher than the lower bound. This is checked later in the context in
9783 -- which the range appears.
9785 Resolve (L, Typ);
9786 Resolve (H, Base_Type (Typ));
9788 -- Check for inappropriate range on unordered enumeration type
9790 if Bad_Unordered_Enumeration_Reference (N, Typ)
9792 -- Exclude X'First .. X'Last if X is the same entity for both
9794 and then not First_Last_Ref
9795 then
9796 Error_Msg_Sloc := Sloc (Typ);
9797 Error_Msg_NE
9798 ("subrange of unordered enumeration type& declared#?U?", N, Typ);
9799 end if;
9801 Check_Unset_Reference (L);
9802 Check_Unset_Reference (H);
9804 -- We have to check the bounds for being within the base range as
9805 -- required for a non-static context. Normally this is automatic and
9806 -- done as part of evaluating expressions, but the N_Range node is an
9807 -- exception, since in GNAT we consider this node to be a subexpression,
9808 -- even though in Ada it is not. The circuit in Sem_Eval could check for
9809 -- this, but that would put the test on the main evaluation path for
9810 -- expressions.
9812 Check_Non_Static_Context (L);
9813 Check_Non_Static_Context (H);
9815 -- Check for an ambiguous range over character literals. This will
9816 -- happen with a membership test involving only literals.
9818 if Typ = Any_Character then
9819 Ambiguous_Character (L);
9820 Set_Etype (N, Any_Type);
9821 return;
9822 end if;
9824 -- If bounds are static, constant-fold them, so size computations are
9825 -- identical between front-end and back-end. Do not perform this
9826 -- transformation while analyzing generic units, as type information
9827 -- would be lost when reanalyzing the constant node in the instance.
9829 if Is_Discrete_Type (Typ) and then Expander_Active then
9830 if Is_OK_Static_Expression (L) then
9831 Fold_Uint (L, Expr_Value (L), Is_OK_Static_Expression (L));
9832 end if;
9834 if Is_OK_Static_Expression (H) then
9835 Fold_Uint (H, Expr_Value (H), Is_OK_Static_Expression (H));
9836 end if;
9837 end if;
9838 end Resolve_Range;
9840 --------------------------
9841 -- Resolve_Real_Literal --
9842 --------------------------
9844 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id) is
9845 Actual_Typ : constant Entity_Id := Etype (N);
9847 begin
9848 -- Special processing for fixed-point literals to make sure that the
9849 -- value is an exact multiple of small where this is required. We skip
9850 -- this for the universal real case, and also for generic types.
9852 if Is_Fixed_Point_Type (Typ)
9853 and then Typ /= Universal_Fixed
9854 and then Typ /= Any_Fixed
9855 and then not Is_Generic_Type (Typ)
9856 then
9857 declare
9858 Val : constant Ureal := Realval (N);
9859 Cintr : constant Ureal := Val / Small_Value (Typ);
9860 Cint : constant Uint := UR_Trunc (Cintr);
9861 Den : constant Uint := Norm_Den (Cintr);
9862 Stat : Boolean;
9864 begin
9865 -- Case of literal is not an exact multiple of the Small
9867 if Den /= 1 then
9869 -- For a source program literal for a decimal fixed-point type,
9870 -- this is statically illegal (RM 4.9(36)).
9872 if Is_Decimal_Fixed_Point_Type (Typ)
9873 and then Actual_Typ = Universal_Real
9874 and then Comes_From_Source (N)
9875 then
9876 Error_Msg_N ("value has extraneous low order digits", N);
9877 end if;
9879 -- Generate a warning if literal from source
9881 if Is_OK_Static_Expression (N)
9882 and then Warn_On_Bad_Fixed_Value
9883 then
9884 Error_Msg_N
9885 ("?b?static fixed-point value is not a multiple of Small!",
9887 end if;
9889 -- Replace literal by a value that is the exact representation
9890 -- of a value of the type, i.e. a multiple of the small value,
9891 -- by truncation, since Machine_Rounds is false for all GNAT
9892 -- fixed-point types (RM 4.9(38)).
9894 Stat := Is_OK_Static_Expression (N);
9895 Rewrite (N,
9896 Make_Real_Literal (Sloc (N),
9897 Realval => Small_Value (Typ) * Cint));
9899 Set_Is_Static_Expression (N, Stat);
9900 end if;
9902 -- In all cases, set the corresponding integer field
9904 Set_Corresponding_Integer_Value (N, Cint);
9905 end;
9906 end if;
9908 -- Now replace the actual type by the expected type as usual
9910 Set_Etype (N, Typ);
9911 Eval_Real_Literal (N);
9912 end Resolve_Real_Literal;
9914 -----------------------
9915 -- Resolve_Reference --
9916 -----------------------
9918 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id) is
9919 P : constant Node_Id := Prefix (N);
9921 begin
9922 -- Replace general access with specific type
9924 if Ekind (Etype (N)) = E_Allocator_Type then
9925 Set_Etype (N, Base_Type (Typ));
9926 end if;
9928 Resolve (P, Designated_Type (Etype (N)));
9930 -- If we are taking the reference of a volatile entity, then treat it as
9931 -- a potential modification of this entity. This is too conservative,
9932 -- but necessary because remove side effects can cause transformations
9933 -- of normal assignments into reference sequences that otherwise fail to
9934 -- notice the modification.
9936 if Is_Entity_Name (P) and then Treat_As_Volatile (Entity (P)) then
9937 Note_Possible_Modification (P, Sure => False);
9938 end if;
9939 end Resolve_Reference;
9941 --------------------------------
9942 -- Resolve_Selected_Component --
9943 --------------------------------
9945 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id) is
9946 Comp : Entity_Id;
9947 Comp1 : Entity_Id := Empty; -- prevent junk warning
9948 P : constant Node_Id := Prefix (N);
9949 S : constant Node_Id := Selector_Name (N);
9950 T : Entity_Id := Etype (P);
9951 I : Interp_Index;
9952 I1 : Interp_Index := 0; -- prevent junk warning
9953 It : Interp;
9954 It1 : Interp;
9955 Found : Boolean;
9957 function Init_Component return Boolean;
9958 -- Check whether this is the initialization of a component within an
9959 -- init proc (by assignment or call to another init proc). If true,
9960 -- there is no need for a discriminant check.
9962 --------------------
9963 -- Init_Component --
9964 --------------------
9966 function Init_Component return Boolean is
9967 begin
9968 return Inside_Init_Proc
9969 and then Nkind (Prefix (N)) = N_Identifier
9970 and then Chars (Prefix (N)) = Name_uInit
9971 and then Nkind (Parent (Parent (N))) = N_Case_Statement_Alternative;
9972 end Init_Component;
9974 -- Start of processing for Resolve_Selected_Component
9976 begin
9977 if Is_Overloaded (P) then
9979 -- Use the context type to select the prefix that has a selector
9980 -- of the correct name and type.
9982 Found := False;
9983 Get_First_Interp (P, I, It);
9985 Search : while Present (It.Typ) loop
9986 if Is_Access_Type (It.Typ) then
9987 T := Designated_Type (It.Typ);
9988 else
9989 T := It.Typ;
9990 end if;
9992 -- Locate selected component. For a private prefix the selector
9993 -- can denote a discriminant.
9995 if Is_Record_Type (T) or else Is_Private_Type (T) then
9997 -- The visible components of a class-wide type are those of
9998 -- the root type.
10000 if Is_Class_Wide_Type (T) then
10001 T := Etype (T);
10002 end if;
10004 Comp := First_Entity (T);
10005 while Present (Comp) loop
10006 if Chars (Comp) = Chars (S)
10007 and then Covers (Typ, Etype (Comp))
10008 then
10009 if not Found then
10010 Found := True;
10011 I1 := I;
10012 It1 := It;
10013 Comp1 := Comp;
10015 else
10016 It := Disambiguate (P, I1, I, Any_Type);
10018 if It = No_Interp then
10019 Error_Msg_N
10020 ("ambiguous prefix for selected component", N);
10021 Set_Etype (N, Typ);
10022 return;
10024 else
10025 It1 := It;
10027 -- There may be an implicit dereference. Retrieve
10028 -- designated record type.
10030 if Is_Access_Type (It1.Typ) then
10031 T := Designated_Type (It1.Typ);
10032 else
10033 T := It1.Typ;
10034 end if;
10036 if Scope (Comp1) /= T then
10038 -- Resolution chooses the new interpretation.
10039 -- Find the component with the right name.
10041 Comp1 := First_Entity (T);
10042 while Present (Comp1)
10043 and then Chars (Comp1) /= Chars (S)
10044 loop
10045 Comp1 := Next_Entity (Comp1);
10046 end loop;
10047 end if;
10049 exit Search;
10050 end if;
10051 end if;
10052 end if;
10054 Comp := Next_Entity (Comp);
10055 end loop;
10056 end if;
10058 Get_Next_Interp (I, It);
10059 end loop Search;
10061 -- There must be a legal interpretation at this point
10063 pragma Assert (Found);
10064 Resolve (P, It1.Typ);
10065 Set_Etype (N, Typ);
10066 Set_Entity_With_Checks (S, Comp1);
10068 else
10069 -- Resolve prefix with its type
10071 Resolve (P, T);
10072 end if;
10074 -- Generate cross-reference. We needed to wait until full overloading
10075 -- resolution was complete to do this, since otherwise we can't tell if
10076 -- we are an lvalue or not.
10078 if May_Be_Lvalue (N) then
10079 Generate_Reference (Entity (S), S, 'm');
10080 else
10081 Generate_Reference (Entity (S), S, 'r');
10082 end if;
10084 -- If prefix is an access type, the node will be transformed into an
10085 -- explicit dereference during expansion. The type of the node is the
10086 -- designated type of that of the prefix.
10088 if Is_Access_Type (Etype (P)) then
10089 T := Designated_Type (Etype (P));
10090 Check_Fully_Declared_Prefix (T, P);
10091 else
10092 T := Etype (P);
10093 end if;
10095 -- Set flag for expander if discriminant check required on a component
10096 -- appearing within a variant.
10098 if Has_Discriminants (T)
10099 and then Ekind (Entity (S)) = E_Component
10100 and then Present (Original_Record_Component (Entity (S)))
10101 and then Ekind (Original_Record_Component (Entity (S))) = E_Component
10102 and then
10103 Is_Declared_Within_Variant (Original_Record_Component (Entity (S)))
10104 and then not Discriminant_Checks_Suppressed (T)
10105 and then not Init_Component
10106 then
10107 Set_Do_Discriminant_Check (N);
10108 end if;
10110 if Ekind (Entity (S)) = E_Void then
10111 Error_Msg_N ("premature use of component", S);
10112 end if;
10114 -- If the prefix is a record conversion, this may be a renamed
10115 -- discriminant whose bounds differ from those of the original
10116 -- one, so we must ensure that a range check is performed.
10118 if Nkind (P) = N_Type_Conversion
10119 and then Ekind (Entity (S)) = E_Discriminant
10120 and then Is_Discrete_Type (Typ)
10121 then
10122 Set_Etype (N, Base_Type (Typ));
10123 end if;
10125 -- Note: No Eval processing is required, because the prefix is of a
10126 -- record type, or protected type, and neither can possibly be static.
10128 -- If the record type is atomic, and the component is non-atomic, then
10129 -- this is worth a warning, since we have a situation where the access
10130 -- to the component may cause extra read/writes of the atomic array
10131 -- object, or partial word accesses, both of which may be unexpected.
10133 if Nkind (N) = N_Selected_Component
10134 and then Is_Atomic_Ref_With_Address (N)
10135 and then not Is_Atomic (Entity (S))
10136 and then not Is_Atomic (Etype (Entity (S)))
10137 then
10138 Error_Msg_N
10139 ("??access to non-atomic component of atomic record",
10140 Prefix (N));
10141 Error_Msg_N
10142 ("\??may cause unexpected accesses to atomic object",
10143 Prefix (N));
10144 end if;
10146 Analyze_Dimension (N);
10147 end Resolve_Selected_Component;
10149 -------------------
10150 -- Resolve_Shift --
10151 -------------------
10153 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id) is
10154 B_Typ : constant Entity_Id := Base_Type (Typ);
10155 L : constant Node_Id := Left_Opnd (N);
10156 R : constant Node_Id := Right_Opnd (N);
10158 begin
10159 -- We do the resolution using the base type, because intermediate values
10160 -- in expressions always are of the base type, not a subtype of it.
10162 Resolve (L, B_Typ);
10163 Resolve (R, Standard_Natural);
10165 Check_Unset_Reference (L);
10166 Check_Unset_Reference (R);
10168 Set_Etype (N, B_Typ);
10169 Generate_Operator_Reference (N, B_Typ);
10170 Eval_Shift (N);
10171 end Resolve_Shift;
10173 ---------------------------
10174 -- Resolve_Short_Circuit --
10175 ---------------------------
10177 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id) is
10178 B_Typ : constant Entity_Id := Base_Type (Typ);
10179 L : constant Node_Id := Left_Opnd (N);
10180 R : constant Node_Id := Right_Opnd (N);
10182 begin
10183 -- Ensure all actions associated with the left operand (e.g.
10184 -- finalization of transient objects) are fully evaluated locally within
10185 -- an expression with actions. This is particularly helpful for coverage
10186 -- analysis. However this should not happen in generics or if option
10187 -- Minimize_Expression_With_Actions is set.
10189 if Expander_Active and not Minimize_Expression_With_Actions then
10190 declare
10191 Reloc_L : constant Node_Id := Relocate_Node (L);
10192 begin
10193 Save_Interps (Old_N => L, New_N => Reloc_L);
10195 Rewrite (L,
10196 Make_Expression_With_Actions (Sloc (L),
10197 Actions => New_List,
10198 Expression => Reloc_L));
10200 -- Set Comes_From_Source on L to preserve warnings for unset
10201 -- reference.
10203 Set_Comes_From_Source (L, Comes_From_Source (Reloc_L));
10204 end;
10205 end if;
10207 Resolve (L, B_Typ);
10208 Resolve (R, B_Typ);
10210 -- Check for issuing warning for always False assert/check, this happens
10211 -- when assertions are turned off, in which case the pragma Assert/Check
10212 -- was transformed into:
10214 -- if False and then <condition> then ...
10216 -- and we detect this pattern
10218 if Warn_On_Assertion_Failure
10219 and then Is_Entity_Name (R)
10220 and then Entity (R) = Standard_False
10221 and then Nkind (Parent (N)) = N_If_Statement
10222 and then Nkind (N) = N_And_Then
10223 and then Is_Entity_Name (L)
10224 and then Entity (L) = Standard_False
10225 then
10226 declare
10227 Orig : constant Node_Id := Original_Node (Parent (N));
10229 begin
10230 -- Special handling of Asssert pragma
10232 if Nkind (Orig) = N_Pragma
10233 and then Pragma_Name (Orig) = Name_Assert
10234 then
10235 declare
10236 Expr : constant Node_Id :=
10237 Original_Node
10238 (Expression
10239 (First (Pragma_Argument_Associations (Orig))));
10241 begin
10242 -- Don't warn if original condition is explicit False,
10243 -- since obviously the failure is expected in this case.
10245 if Is_Entity_Name (Expr)
10246 and then Entity (Expr) = Standard_False
10247 then
10248 null;
10250 -- Issue warning. We do not want the deletion of the
10251 -- IF/AND-THEN to take this message with it. We achieve this
10252 -- by making sure that the expanded code points to the Sloc
10253 -- of the expression, not the original pragma.
10255 else
10256 -- Note: Use Error_Msg_F here rather than Error_Msg_N.
10257 -- The source location of the expression is not usually
10258 -- the best choice here. For example, it gets located on
10259 -- the last AND keyword in a chain of boolean expressiond
10260 -- AND'ed together. It is best to put the message on the
10261 -- first character of the assertion, which is the effect
10262 -- of the First_Node call here.
10264 Error_Msg_F
10265 ("?A?assertion would fail at run time!",
10266 Expression
10267 (First (Pragma_Argument_Associations (Orig))));
10268 end if;
10269 end;
10271 -- Similar processing for Check pragma
10273 elsif Nkind (Orig) = N_Pragma
10274 and then Pragma_Name (Orig) = Name_Check
10275 then
10276 -- Don't want to warn if original condition is explicit False
10278 declare
10279 Expr : constant Node_Id :=
10280 Original_Node
10281 (Expression
10282 (Next (First (Pragma_Argument_Associations (Orig)))));
10283 begin
10284 if Is_Entity_Name (Expr)
10285 and then Entity (Expr) = Standard_False
10286 then
10287 null;
10289 -- Post warning
10291 else
10292 -- Again use Error_Msg_F rather than Error_Msg_N, see
10293 -- comment above for an explanation of why we do this.
10295 Error_Msg_F
10296 ("?A?check would fail at run time!",
10297 Expression
10298 (Last (Pragma_Argument_Associations (Orig))));
10299 end if;
10300 end;
10301 end if;
10302 end;
10303 end if;
10305 -- Continue with processing of short circuit
10307 Check_Unset_Reference (L);
10308 Check_Unset_Reference (R);
10310 Set_Etype (N, B_Typ);
10311 Eval_Short_Circuit (N);
10312 end Resolve_Short_Circuit;
10314 -------------------
10315 -- Resolve_Slice --
10316 -------------------
10318 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id) is
10319 Drange : constant Node_Id := Discrete_Range (N);
10320 Name : constant Node_Id := Prefix (N);
10321 Array_Type : Entity_Id := Empty;
10322 Dexpr : Node_Id := Empty;
10323 Index_Type : Entity_Id;
10325 begin
10326 if Is_Overloaded (Name) then
10328 -- Use the context type to select the prefix that yields the correct
10329 -- array type.
10331 declare
10332 I : Interp_Index;
10333 I1 : Interp_Index := 0;
10334 It : Interp;
10335 P : constant Node_Id := Prefix (N);
10336 Found : Boolean := False;
10338 begin
10339 Get_First_Interp (P, I, It);
10340 while Present (It.Typ) loop
10341 if (Is_Array_Type (It.Typ)
10342 and then Covers (Typ, It.Typ))
10343 or else (Is_Access_Type (It.Typ)
10344 and then Is_Array_Type (Designated_Type (It.Typ))
10345 and then Covers (Typ, Designated_Type (It.Typ)))
10346 then
10347 if Found then
10348 It := Disambiguate (P, I1, I, Any_Type);
10350 if It = No_Interp then
10351 Error_Msg_N ("ambiguous prefix for slicing", N);
10352 Set_Etype (N, Typ);
10353 return;
10354 else
10355 Found := True;
10356 Array_Type := It.Typ;
10357 I1 := I;
10358 end if;
10359 else
10360 Found := True;
10361 Array_Type := It.Typ;
10362 I1 := I;
10363 end if;
10364 end if;
10366 Get_Next_Interp (I, It);
10367 end loop;
10368 end;
10370 else
10371 Array_Type := Etype (Name);
10372 end if;
10374 Resolve (Name, Array_Type);
10376 if Is_Access_Type (Array_Type) then
10377 Apply_Access_Check (N);
10378 Array_Type := Designated_Type (Array_Type);
10380 -- If the prefix is an access to an unconstrained array, we must use
10381 -- the actual subtype of the object to perform the index checks. The
10382 -- object denoted by the prefix is implicit in the node, so we build
10383 -- an explicit representation for it in order to compute the actual
10384 -- subtype.
10386 if not Is_Constrained (Array_Type) then
10387 Remove_Side_Effects (Prefix (N));
10389 declare
10390 Obj : constant Node_Id :=
10391 Make_Explicit_Dereference (Sloc (N),
10392 Prefix => New_Copy_Tree (Prefix (N)));
10393 begin
10394 Set_Etype (Obj, Array_Type);
10395 Set_Parent (Obj, Parent (N));
10396 Array_Type := Get_Actual_Subtype (Obj);
10397 end;
10398 end if;
10400 elsif Is_Entity_Name (Name)
10401 or else Nkind (Name) = N_Explicit_Dereference
10402 or else (Nkind (Name) = N_Function_Call
10403 and then not Is_Constrained (Etype (Name)))
10404 then
10405 Array_Type := Get_Actual_Subtype (Name);
10407 -- If the name is a selected component that depends on discriminants,
10408 -- build an actual subtype for it. This can happen only when the name
10409 -- itself is overloaded; otherwise the actual subtype is created when
10410 -- the selected component is analyzed.
10412 elsif Nkind (Name) = N_Selected_Component
10413 and then Full_Analysis
10414 and then Depends_On_Discriminant (First_Index (Array_Type))
10415 then
10416 declare
10417 Act_Decl : constant Node_Id :=
10418 Build_Actual_Subtype_Of_Component (Array_Type, Name);
10419 begin
10420 Insert_Action (N, Act_Decl);
10421 Array_Type := Defining_Identifier (Act_Decl);
10422 end;
10424 -- Maybe this should just be "else", instead of checking for the
10425 -- specific case of slice??? This is needed for the case where the
10426 -- prefix is an Image attribute, which gets expanded to a slice, and so
10427 -- has a constrained subtype which we want to use for the slice range
10428 -- check applied below (the range check won't get done if the
10429 -- unconstrained subtype of the 'Image is used).
10431 elsif Nkind (Name) = N_Slice then
10432 Array_Type := Etype (Name);
10433 end if;
10435 -- Obtain the type of the array index
10437 if Ekind (Array_Type) = E_String_Literal_Subtype then
10438 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
10439 else
10440 Index_Type := Etype (First_Index (Array_Type));
10441 end if;
10443 -- If name was overloaded, set slice type correctly now
10445 Set_Etype (N, Array_Type);
10447 -- Handle the generation of a range check that compares the array index
10448 -- against the discrete_range. The check is not applied to internally
10449 -- built nodes associated with the expansion of dispatch tables. Check
10450 -- that Ada.Tags has already been loaded to avoid extra dependencies on
10451 -- the unit.
10453 if Tagged_Type_Expansion
10454 and then RTU_Loaded (Ada_Tags)
10455 and then Nkind (Prefix (N)) = N_Selected_Component
10456 and then Present (Entity (Selector_Name (Prefix (N))))
10457 and then Entity (Selector_Name (Prefix (N))) =
10458 RTE_Record_Component (RE_Prims_Ptr)
10459 then
10460 null;
10462 -- The discrete_range is specified by a subtype indication. Create a
10463 -- shallow copy and inherit the type, parent and source location from
10464 -- the discrete_range. This ensures that the range check is inserted
10465 -- relative to the slice and that the runtime exception points to the
10466 -- proper construct.
10468 elsif Is_Entity_Name (Drange) then
10469 Dexpr := New_Copy (Scalar_Range (Entity (Drange)));
10471 Set_Etype (Dexpr, Etype (Drange));
10472 Set_Parent (Dexpr, Parent (Drange));
10473 Set_Sloc (Dexpr, Sloc (Drange));
10475 -- The discrete_range is a regular range. Resolve the bounds and remove
10476 -- their side effects.
10478 else
10479 Resolve (Drange, Base_Type (Index_Type));
10481 if Nkind (Drange) = N_Range then
10482 Force_Evaluation (Low_Bound (Drange));
10483 Force_Evaluation (High_Bound (Drange));
10485 Dexpr := Drange;
10486 end if;
10487 end if;
10489 if Present (Dexpr) then
10490 Apply_Range_Check (Dexpr, Index_Type);
10491 end if;
10493 Set_Slice_Subtype (N);
10495 -- Check bad use of type with predicates
10497 declare
10498 Subt : Entity_Id;
10500 begin
10501 if Nkind (Drange) = N_Subtype_Indication
10502 and then Has_Predicates (Entity (Subtype_Mark (Drange)))
10503 then
10504 Subt := Entity (Subtype_Mark (Drange));
10505 else
10506 Subt := Etype (Drange);
10507 end if;
10509 if Has_Predicates (Subt) then
10510 Bad_Predicated_Subtype_Use
10511 ("subtype& has predicate, not allowed in slice", Drange, Subt);
10512 end if;
10513 end;
10515 -- Otherwise here is where we check suspicious indexes
10517 if Nkind (Drange) = N_Range then
10518 Warn_On_Suspicious_Index (Name, Low_Bound (Drange));
10519 Warn_On_Suspicious_Index (Name, High_Bound (Drange));
10520 end if;
10522 Analyze_Dimension (N);
10523 Eval_Slice (N);
10524 end Resolve_Slice;
10526 ----------------------------
10527 -- Resolve_String_Literal --
10528 ----------------------------
10530 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id) is
10531 C_Typ : constant Entity_Id := Component_Type (Typ);
10532 R_Typ : constant Entity_Id := Root_Type (C_Typ);
10533 Loc : constant Source_Ptr := Sloc (N);
10534 Str : constant String_Id := Strval (N);
10535 Strlen : constant Nat := String_Length (Str);
10536 Subtype_Id : Entity_Id;
10537 Need_Check : Boolean;
10539 begin
10540 -- For a string appearing in a concatenation, defer creation of the
10541 -- string_literal_subtype until the end of the resolution of the
10542 -- concatenation, because the literal may be constant-folded away. This
10543 -- is a useful optimization for long concatenation expressions.
10545 -- If the string is an aggregate built for a single character (which
10546 -- happens in a non-static context) or a is null string to which special
10547 -- checks may apply, we build the subtype. Wide strings must also get a
10548 -- string subtype if they come from a one character aggregate. Strings
10549 -- generated by attributes might be static, but it is often hard to
10550 -- determine whether the enclosing context is static, so we generate
10551 -- subtypes for them as well, thus losing some rarer optimizations ???
10552 -- Same for strings that come from a static conversion.
10554 Need_Check :=
10555 (Strlen = 0 and then Typ /= Standard_String)
10556 or else Nkind (Parent (N)) /= N_Op_Concat
10557 or else (N /= Left_Opnd (Parent (N))
10558 and then N /= Right_Opnd (Parent (N)))
10559 or else ((Typ = Standard_Wide_String
10560 or else Typ = Standard_Wide_Wide_String)
10561 and then Nkind (Original_Node (N)) /= N_String_Literal);
10563 -- If the resolving type is itself a string literal subtype, we can just
10564 -- reuse it, since there is no point in creating another.
10566 if Ekind (Typ) = E_String_Literal_Subtype then
10567 Subtype_Id := Typ;
10569 elsif Nkind (Parent (N)) = N_Op_Concat
10570 and then not Need_Check
10571 and then not Nkind_In (Original_Node (N), N_Character_Literal,
10572 N_Attribute_Reference,
10573 N_Qualified_Expression,
10574 N_Type_Conversion)
10575 then
10576 Subtype_Id := Typ;
10578 -- Do not generate a string literal subtype for the default expression
10579 -- of a formal parameter in GNATprove mode. This is because the string
10580 -- subtype is associated with the freezing actions of the subprogram,
10581 -- however freezing is disabled in GNATprove mode and as a result the
10582 -- subtype is unavailable.
10584 elsif GNATprove_Mode
10585 and then Nkind (Parent (N)) = N_Parameter_Specification
10586 then
10587 Subtype_Id := Typ;
10589 -- Otherwise we must create a string literal subtype. Note that the
10590 -- whole idea of string literal subtypes is simply to avoid the need
10591 -- for building a full fledged array subtype for each literal.
10593 else
10594 Set_String_Literal_Subtype (N, Typ);
10595 Subtype_Id := Etype (N);
10596 end if;
10598 if Nkind (Parent (N)) /= N_Op_Concat
10599 or else Need_Check
10600 then
10601 Set_Etype (N, Subtype_Id);
10602 Eval_String_Literal (N);
10603 end if;
10605 if Is_Limited_Composite (Typ)
10606 or else Is_Private_Composite (Typ)
10607 then
10608 Error_Msg_N ("string literal not available for private array", N);
10609 Set_Etype (N, Any_Type);
10610 return;
10611 end if;
10613 -- The validity of a null string has been checked in the call to
10614 -- Eval_String_Literal.
10616 if Strlen = 0 then
10617 return;
10619 -- Always accept string literal with component type Any_Character, which
10620 -- occurs in error situations and in comparisons of literals, both of
10621 -- which should accept all literals.
10623 elsif R_Typ = Any_Character then
10624 return;
10626 -- If the type is bit-packed, then we always transform the string
10627 -- literal into a full fledged aggregate.
10629 elsif Is_Bit_Packed_Array (Typ) then
10630 null;
10632 -- Deal with cases of Wide_Wide_String, Wide_String, and String
10634 else
10635 -- For Standard.Wide_Wide_String, or any other type whose component
10636 -- type is Standard.Wide_Wide_Character, we know that all the
10637 -- characters in the string must be acceptable, since the parser
10638 -- accepted the characters as valid character literals.
10640 if R_Typ = Standard_Wide_Wide_Character then
10641 null;
10643 -- For the case of Standard.String, or any other type whose component
10644 -- type is Standard.Character, we must make sure that there are no
10645 -- wide characters in the string, i.e. that it is entirely composed
10646 -- of characters in range of type Character.
10648 -- If the string literal is the result of a static concatenation, the
10649 -- test has already been performed on the components, and need not be
10650 -- repeated.
10652 elsif R_Typ = Standard_Character
10653 and then Nkind (Original_Node (N)) /= N_Op_Concat
10654 then
10655 for J in 1 .. Strlen loop
10656 if not In_Character_Range (Get_String_Char (Str, J)) then
10658 -- If we are out of range, post error. This is one of the
10659 -- very few places that we place the flag in the middle of
10660 -- a token, right under the offending wide character. Not
10661 -- quite clear if this is right wrt wide character encoding
10662 -- sequences, but it's only an error message.
10664 Error_Msg
10665 ("literal out of range of type Standard.Character",
10666 Source_Ptr (Int (Loc) + J));
10667 return;
10668 end if;
10669 end loop;
10671 -- For the case of Standard.Wide_String, or any other type whose
10672 -- component type is Standard.Wide_Character, we must make sure that
10673 -- there are no wide characters in the string, i.e. that it is
10674 -- entirely composed of characters in range of type Wide_Character.
10676 -- If the string literal is the result of a static concatenation,
10677 -- the test has already been performed on the components, and need
10678 -- not be repeated.
10680 elsif R_Typ = Standard_Wide_Character
10681 and then Nkind (Original_Node (N)) /= N_Op_Concat
10682 then
10683 for J in 1 .. Strlen loop
10684 if not In_Wide_Character_Range (Get_String_Char (Str, J)) then
10686 -- If we are out of range, post error. This is one of the
10687 -- very few places that we place the flag in the middle of
10688 -- a token, right under the offending wide character.
10690 -- This is not quite right, because characters in general
10691 -- will take more than one character position ???
10693 Error_Msg
10694 ("literal out of range of type Standard.Wide_Character",
10695 Source_Ptr (Int (Loc) + J));
10696 return;
10697 end if;
10698 end loop;
10700 -- If the root type is not a standard character, then we will convert
10701 -- the string into an aggregate and will let the aggregate code do
10702 -- the checking. Standard Wide_Wide_Character is also OK here.
10704 else
10705 null;
10706 end if;
10708 -- See if the component type of the array corresponding to the string
10709 -- has compile time known bounds. If yes we can directly check
10710 -- whether the evaluation of the string will raise constraint error.
10711 -- Otherwise we need to transform the string literal into the
10712 -- corresponding character aggregate and let the aggregate code do
10713 -- the checking.
10715 if Is_Standard_Character_Type (R_Typ) then
10717 -- Check for the case of full range, where we are definitely OK
10719 if Component_Type (Typ) = Base_Type (Component_Type (Typ)) then
10720 return;
10721 end if;
10723 -- Here the range is not the complete base type range, so check
10725 declare
10726 Comp_Typ_Lo : constant Node_Id :=
10727 Type_Low_Bound (Component_Type (Typ));
10728 Comp_Typ_Hi : constant Node_Id :=
10729 Type_High_Bound (Component_Type (Typ));
10731 Char_Val : Uint;
10733 begin
10734 if Compile_Time_Known_Value (Comp_Typ_Lo)
10735 and then Compile_Time_Known_Value (Comp_Typ_Hi)
10736 then
10737 for J in 1 .. Strlen loop
10738 Char_Val := UI_From_Int (Int (Get_String_Char (Str, J)));
10740 if Char_Val < Expr_Value (Comp_Typ_Lo)
10741 or else Char_Val > Expr_Value (Comp_Typ_Hi)
10742 then
10743 Apply_Compile_Time_Constraint_Error
10744 (N, "character out of range??",
10745 CE_Range_Check_Failed,
10746 Loc => Source_Ptr (Int (Loc) + J));
10747 end if;
10748 end loop;
10750 return;
10751 end if;
10752 end;
10753 end if;
10754 end if;
10756 -- If we got here we meed to transform the string literal into the
10757 -- equivalent qualified positional array aggregate. This is rather
10758 -- heavy artillery for this situation, but it is hard work to avoid.
10760 declare
10761 Lits : constant List_Id := New_List;
10762 P : Source_Ptr := Loc + 1;
10763 C : Char_Code;
10765 begin
10766 -- Build the character literals, we give them source locations that
10767 -- correspond to the string positions, which is a bit tricky given
10768 -- the possible presence of wide character escape sequences.
10770 for J in 1 .. Strlen loop
10771 C := Get_String_Char (Str, J);
10772 Set_Character_Literal_Name (C);
10774 Append_To (Lits,
10775 Make_Character_Literal (P,
10776 Chars => Name_Find,
10777 Char_Literal_Value => UI_From_CC (C)));
10779 if In_Character_Range (C) then
10780 P := P + 1;
10782 -- Should we have a call to Skip_Wide here ???
10784 -- ??? else
10785 -- Skip_Wide (P);
10787 end if;
10788 end loop;
10790 Rewrite (N,
10791 Make_Qualified_Expression (Loc,
10792 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
10793 Expression =>
10794 Make_Aggregate (Loc, Expressions => Lits)));
10796 Analyze_And_Resolve (N, Typ);
10797 end;
10798 end Resolve_String_Literal;
10800 -------------------------
10801 -- Resolve_Target_Name --
10802 -------------------------
10804 procedure Resolve_Target_Name (N : Node_Id; Typ : Entity_Id) is
10805 begin
10806 Set_Etype (N, Typ);
10807 end Resolve_Target_Name;
10809 -----------------------------
10810 -- Resolve_Type_Conversion --
10811 -----------------------------
10813 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id) is
10814 Conv_OK : constant Boolean := Conversion_OK (N);
10815 Operand : constant Node_Id := Expression (N);
10816 Operand_Typ : constant Entity_Id := Etype (Operand);
10817 Target_Typ : constant Entity_Id := Etype (N);
10818 Rop : Node_Id;
10819 Orig_N : Node_Id;
10820 Orig_T : Node_Id;
10822 Test_Redundant : Boolean := Warn_On_Redundant_Constructs;
10823 -- Set to False to suppress cases where we want to suppress the test
10824 -- for redundancy to avoid possible false positives on this warning.
10826 begin
10827 if not Conv_OK
10828 and then not Valid_Conversion (N, Target_Typ, Operand)
10829 then
10830 return;
10831 end if;
10833 -- If the Operand Etype is Universal_Fixed, then the conversion is
10834 -- never redundant. We need this check because by the time we have
10835 -- finished the rather complex transformation, the conversion looks
10836 -- redundant when it is not.
10838 if Operand_Typ = Universal_Fixed then
10839 Test_Redundant := False;
10841 -- If the operand is marked as Any_Fixed, then special processing is
10842 -- required. This is also a case where we suppress the test for a
10843 -- redundant conversion, since most certainly it is not redundant.
10845 elsif Operand_Typ = Any_Fixed then
10846 Test_Redundant := False;
10848 -- Mixed-mode operation involving a literal. Context must be a fixed
10849 -- type which is applied to the literal subsequently.
10851 -- Multiplication and division involving two fixed type operands must
10852 -- yield a universal real because the result is computed in arbitrary
10853 -- precision.
10855 if Is_Fixed_Point_Type (Typ)
10856 and then Nkind_In (Operand, N_Op_Divide, N_Op_Multiply)
10857 and then Etype (Left_Opnd (Operand)) = Any_Fixed
10858 and then Etype (Right_Opnd (Operand)) = Any_Fixed
10859 then
10860 Set_Etype (Operand, Universal_Real);
10862 elsif Is_Numeric_Type (Typ)
10863 and then Nkind_In (Operand, N_Op_Multiply, N_Op_Divide)
10864 and then (Etype (Right_Opnd (Operand)) = Universal_Real
10865 or else
10866 Etype (Left_Opnd (Operand)) = Universal_Real)
10867 then
10868 -- Return if expression is ambiguous
10870 if Unique_Fixed_Point_Type (N) = Any_Type then
10871 return;
10873 -- If nothing else, the available fixed type is Duration
10875 else
10876 Set_Etype (Operand, Standard_Duration);
10877 end if;
10879 -- Resolve the real operand with largest available precision
10881 if Etype (Right_Opnd (Operand)) = Universal_Real then
10882 Rop := New_Copy_Tree (Right_Opnd (Operand));
10883 else
10884 Rop := New_Copy_Tree (Left_Opnd (Operand));
10885 end if;
10887 Resolve (Rop, Universal_Real);
10889 -- If the operand is a literal (it could be a non-static and
10890 -- illegal exponentiation) check whether the use of Duration
10891 -- is potentially inaccurate.
10893 if Nkind (Rop) = N_Real_Literal
10894 and then Realval (Rop) /= Ureal_0
10895 and then abs (Realval (Rop)) < Delta_Value (Standard_Duration)
10896 then
10897 Error_Msg_N
10898 ("??universal real operand can only "
10899 & "be interpreted as Duration!", Rop);
10900 Error_Msg_N
10901 ("\??precision will be lost in the conversion!", Rop);
10902 end if;
10904 elsif Is_Numeric_Type (Typ)
10905 and then Nkind (Operand) in N_Op
10906 and then Unique_Fixed_Point_Type (N) /= Any_Type
10907 then
10908 Set_Etype (Operand, Standard_Duration);
10910 else
10911 Error_Msg_N ("invalid context for mixed mode operation", N);
10912 Set_Etype (Operand, Any_Type);
10913 return;
10914 end if;
10915 end if;
10917 Resolve (Operand);
10919 -- In SPARK, a type conversion between array types should be restricted
10920 -- to types which have matching static bounds.
10922 -- Protect call to Matching_Static_Array_Bounds to avoid costly
10923 -- operation if not needed.
10925 if Restriction_Check_Required (SPARK_05)
10926 and then Is_Array_Type (Target_Typ)
10927 and then Is_Array_Type (Operand_Typ)
10928 and then Operand_Typ /= Any_Composite -- or else Operand in error
10929 and then not Matching_Static_Array_Bounds (Target_Typ, Operand_Typ)
10930 then
10931 Check_SPARK_05_Restriction
10932 ("array types should have matching static bounds", N);
10933 end if;
10935 -- In formal mode, the operand of an ancestor type conversion must be an
10936 -- object (not an expression).
10938 if Is_Tagged_Type (Target_Typ)
10939 and then not Is_Class_Wide_Type (Target_Typ)
10940 and then Is_Tagged_Type (Operand_Typ)
10941 and then not Is_Class_Wide_Type (Operand_Typ)
10942 and then Is_Ancestor (Target_Typ, Operand_Typ)
10943 and then not Is_SPARK_05_Object_Reference (Operand)
10944 then
10945 Check_SPARK_05_Restriction ("object required", Operand);
10946 end if;
10948 Analyze_Dimension (N);
10950 -- Note: we do the Eval_Type_Conversion call before applying the
10951 -- required checks for a subtype conversion. This is important, since
10952 -- both are prepared under certain circumstances to change the type
10953 -- conversion to a constraint error node, but in the case of
10954 -- Eval_Type_Conversion this may reflect an illegality in the static
10955 -- case, and we would miss the illegality (getting only a warning
10956 -- message), if we applied the type conversion checks first.
10958 Eval_Type_Conversion (N);
10960 -- Even when evaluation is not possible, we may be able to simplify the
10961 -- conversion or its expression. This needs to be done before applying
10962 -- checks, since otherwise the checks may use the original expression
10963 -- and defeat the simplifications. This is specifically the case for
10964 -- elimination of the floating-point Truncation attribute in
10965 -- float-to-int conversions.
10967 Simplify_Type_Conversion (N);
10969 -- If after evaluation we still have a type conversion, then we may need
10970 -- to apply checks required for a subtype conversion.
10972 -- Skip these type conversion checks if universal fixed operands
10973 -- operands involved, since range checks are handled separately for
10974 -- these cases (in the appropriate Expand routines in unit Exp_Fixd).
10976 if Nkind (N) = N_Type_Conversion
10977 and then not Is_Generic_Type (Root_Type (Target_Typ))
10978 and then Target_Typ /= Universal_Fixed
10979 and then Operand_Typ /= Universal_Fixed
10980 then
10981 Apply_Type_Conversion_Checks (N);
10982 end if;
10984 -- Issue warning for conversion of simple object to its own type. We
10985 -- have to test the original nodes, since they may have been rewritten
10986 -- by various optimizations.
10988 Orig_N := Original_Node (N);
10990 -- Here we test for a redundant conversion if the warning mode is
10991 -- active (and was not locally reset), and we have a type conversion
10992 -- from source not appearing in a generic instance.
10994 if Test_Redundant
10995 and then Nkind (Orig_N) = N_Type_Conversion
10996 and then Comes_From_Source (Orig_N)
10997 and then not In_Instance
10998 then
10999 Orig_N := Original_Node (Expression (Orig_N));
11000 Orig_T := Target_Typ;
11002 -- If the node is part of a larger expression, the Target_Type
11003 -- may not be the original type of the node if the context is a
11004 -- condition. Recover original type to see if conversion is needed.
11006 if Is_Boolean_Type (Orig_T)
11007 and then Nkind (Parent (N)) in N_Op
11008 then
11009 Orig_T := Etype (Parent (N));
11010 end if;
11012 -- If we have an entity name, then give the warning if the entity
11013 -- is the right type, or if it is a loop parameter covered by the
11014 -- original type (that's needed because loop parameters have an
11015 -- odd subtype coming from the bounds).
11017 if (Is_Entity_Name (Orig_N)
11018 and then
11019 (Etype (Entity (Orig_N)) = Orig_T
11020 or else
11021 (Ekind (Entity (Orig_N)) = E_Loop_Parameter
11022 and then Covers (Orig_T, Etype (Entity (Orig_N))))))
11024 -- If not an entity, then type of expression must match
11026 or else Etype (Orig_N) = Orig_T
11027 then
11028 -- One more check, do not give warning if the analyzed conversion
11029 -- has an expression with non-static bounds, and the bounds of the
11030 -- target are static. This avoids junk warnings in cases where the
11031 -- conversion is necessary to establish staticness, for example in
11032 -- a case statement.
11034 if not Is_OK_Static_Subtype (Operand_Typ)
11035 and then Is_OK_Static_Subtype (Target_Typ)
11036 then
11037 null;
11039 -- Finally, if this type conversion occurs in a context requiring
11040 -- a prefix, and the expression is a qualified expression then the
11041 -- type conversion is not redundant, since a qualified expression
11042 -- is not a prefix, whereas a type conversion is. For example, "X
11043 -- := T'(Funx(...)).Y;" is illegal because a selected component
11044 -- requires a prefix, but a type conversion makes it legal: "X :=
11045 -- T(T'(Funx(...))).Y;"
11047 -- In Ada 2012, a qualified expression is a name, so this idiom is
11048 -- no longer needed, but we still suppress the warning because it
11049 -- seems unfriendly for warnings to pop up when you switch to the
11050 -- newer language version.
11052 elsif Nkind (Orig_N) = N_Qualified_Expression
11053 and then Nkind_In (Parent (N), N_Attribute_Reference,
11054 N_Indexed_Component,
11055 N_Selected_Component,
11056 N_Slice,
11057 N_Explicit_Dereference)
11058 then
11059 null;
11061 -- Never warn on conversion to Long_Long_Integer'Base since
11062 -- that is most likely an artifact of the extended overflow
11063 -- checking and comes from complex expanded code.
11065 elsif Orig_T = Base_Type (Standard_Long_Long_Integer) then
11066 null;
11068 -- Here we give the redundant conversion warning. If it is an
11069 -- entity, give the name of the entity in the message. If not,
11070 -- just mention the expression.
11072 -- Shoudn't we test Warn_On_Redundant_Constructs here ???
11074 else
11075 if Is_Entity_Name (Orig_N) then
11076 Error_Msg_Node_2 := Orig_T;
11077 Error_Msg_NE -- CODEFIX
11078 ("??redundant conversion, & is of type &!",
11079 N, Entity (Orig_N));
11080 else
11081 Error_Msg_NE
11082 ("??redundant conversion, expression is of type&!",
11083 N, Orig_T);
11084 end if;
11085 end if;
11086 end if;
11087 end if;
11089 -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
11090 -- No need to perform any interface conversion if the type of the
11091 -- expression coincides with the target type.
11093 if Ada_Version >= Ada_2005
11094 and then Expander_Active
11095 and then Operand_Typ /= Target_Typ
11096 then
11097 declare
11098 Opnd : Entity_Id := Operand_Typ;
11099 Target : Entity_Id := Target_Typ;
11101 begin
11102 -- If the type of the operand is a limited view, use nonlimited
11103 -- view when available. If it is a class-wide type, recover the
11104 -- class-wide type of the nonlimited view.
11106 if From_Limited_With (Opnd)
11107 and then Has_Non_Limited_View (Opnd)
11108 then
11109 Opnd := Non_Limited_View (Opnd);
11110 Set_Etype (Expression (N), Opnd);
11111 end if;
11113 if Is_Access_Type (Opnd) then
11114 Opnd := Designated_Type (Opnd);
11115 end if;
11117 if Is_Access_Type (Target_Typ) then
11118 Target := Designated_Type (Target);
11119 end if;
11121 if Opnd = Target then
11122 null;
11124 -- Conversion from interface type
11126 elsif Is_Interface (Opnd) then
11128 -- Ada 2005 (AI-217): Handle entities from limited views
11130 if From_Limited_With (Opnd) then
11131 Error_Msg_Qual_Level := 99;
11132 Error_Msg_NE -- CODEFIX
11133 ("missing WITH clause on package &", N,
11134 Cunit_Entity (Get_Source_Unit (Base_Type (Opnd))));
11135 Error_Msg_N
11136 ("type conversions require visibility of the full view",
11139 elsif From_Limited_With (Target)
11140 and then not
11141 (Is_Access_Type (Target_Typ)
11142 and then Present (Non_Limited_View (Etype (Target))))
11143 then
11144 Error_Msg_Qual_Level := 99;
11145 Error_Msg_NE -- CODEFIX
11146 ("missing WITH clause on package &", N,
11147 Cunit_Entity (Get_Source_Unit (Base_Type (Target))));
11148 Error_Msg_N
11149 ("type conversions require visibility of the full view",
11152 else
11153 Expand_Interface_Conversion (N);
11154 end if;
11156 -- Conversion to interface type
11158 elsif Is_Interface (Target) then
11160 -- Handle subtypes
11162 if Ekind_In (Opnd, E_Protected_Subtype, E_Task_Subtype) then
11163 Opnd := Etype (Opnd);
11164 end if;
11166 if Is_Class_Wide_Type (Opnd)
11167 or else Interface_Present_In_Ancestor
11168 (Typ => Opnd,
11169 Iface => Target)
11170 then
11171 Expand_Interface_Conversion (N);
11172 else
11173 Error_Msg_Name_1 := Chars (Etype (Target));
11174 Error_Msg_Name_2 := Chars (Opnd);
11175 Error_Msg_N
11176 ("wrong interface conversion (% is not a progenitor "
11177 & "of %)", N);
11178 end if;
11179 end if;
11180 end;
11181 end if;
11183 -- Ada 2012: once the type conversion is resolved, check whether the
11184 -- operand statisfies the static predicate of the target type.
11186 if Has_Predicates (Target_Typ) then
11187 Check_Expression_Against_Static_Predicate (N, Target_Typ);
11188 end if;
11190 -- If at this stage we have a real to integer conversion, make sure that
11191 -- the Do_Range_Check flag is set, because such conversions in general
11192 -- need a range check. We only need this if expansion is off.
11193 -- In GNATprove mode, we only do that when converting from fixed-point
11194 -- (as floating-point to integer conversions are now handled in
11195 -- GNATprove mode).
11197 if Nkind (N) = N_Type_Conversion
11198 and then not Expander_Active
11199 and then Is_Integer_Type (Target_Typ)
11200 and then (Is_Fixed_Point_Type (Operand_Typ)
11201 or else (not GNATprove_Mode
11202 and then Is_Floating_Point_Type (Operand_Typ)))
11203 then
11204 Set_Do_Range_Check (Operand);
11205 end if;
11207 -- Generating C code a type conversion of an access to constrained
11208 -- array type to access to unconstrained array type involves building
11209 -- a fat pointer which in general cannot be generated on the fly. We
11210 -- remove side effects in order to store the result of the conversion
11211 -- into a temporary.
11213 if Modify_Tree_For_C
11214 and then Nkind (N) = N_Type_Conversion
11215 and then Nkind (Parent (N)) /= N_Object_Declaration
11216 and then Is_Access_Type (Etype (N))
11217 and then Is_Array_Type (Designated_Type (Etype (N)))
11218 and then not Is_Constrained (Designated_Type (Etype (N)))
11219 and then Is_Constrained (Designated_Type (Etype (Expression (N))))
11220 then
11221 Remove_Side_Effects (N);
11222 end if;
11223 end Resolve_Type_Conversion;
11225 ----------------------
11226 -- Resolve_Unary_Op --
11227 ----------------------
11229 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id) is
11230 B_Typ : constant Entity_Id := Base_Type (Typ);
11231 R : constant Node_Id := Right_Opnd (N);
11232 OK : Boolean;
11233 Lo : Uint;
11234 Hi : Uint;
11236 begin
11237 if Is_Modular_Integer_Type (Typ) and then Nkind (N) /= N_Op_Not then
11238 Error_Msg_Name_1 := Chars (Typ);
11239 Check_SPARK_05_Restriction
11240 ("unary operator not defined for modular type%", N);
11241 end if;
11243 -- Deal with intrinsic unary operators
11245 if Comes_From_Source (N)
11246 and then Ekind (Entity (N)) = E_Function
11247 and then Is_Imported (Entity (N))
11248 and then Is_Intrinsic_Subprogram (Entity (N))
11249 then
11250 Resolve_Intrinsic_Unary_Operator (N, Typ);
11251 return;
11252 end if;
11254 -- Deal with universal cases
11256 if Etype (R) = Universal_Integer
11257 or else
11258 Etype (R) = Universal_Real
11259 then
11260 Check_For_Visible_Operator (N, B_Typ);
11261 end if;
11263 Set_Etype (N, B_Typ);
11264 Resolve (R, B_Typ);
11266 -- Generate warning for expressions like abs (x mod 2)
11268 if Warn_On_Redundant_Constructs
11269 and then Nkind (N) = N_Op_Abs
11270 then
11271 Determine_Range (Right_Opnd (N), OK, Lo, Hi);
11273 if OK and then Hi >= Lo and then Lo >= 0 then
11274 Error_Msg_N -- CODEFIX
11275 ("?r?abs applied to known non-negative value has no effect", N);
11276 end if;
11277 end if;
11279 -- Deal with reference generation
11281 Check_Unset_Reference (R);
11282 Generate_Operator_Reference (N, B_Typ);
11283 Analyze_Dimension (N);
11284 Eval_Unary_Op (N);
11286 -- Set overflow checking bit. Much cleverer code needed here eventually
11287 -- and perhaps the Resolve routines should be separated for the various
11288 -- arithmetic operations, since they will need different processing ???
11290 if Nkind (N) in N_Op then
11291 if not Overflow_Checks_Suppressed (Etype (N)) then
11292 Enable_Overflow_Check (N);
11293 end if;
11294 end if;
11296 -- Generate warning for expressions like -5 mod 3 for integers. No need
11297 -- to worry in the floating-point case, since parens do not affect the
11298 -- result so there is no point in giving in a warning.
11300 declare
11301 Norig : constant Node_Id := Original_Node (N);
11302 Rorig : Node_Id;
11303 Val : Uint;
11304 HB : Uint;
11305 LB : Uint;
11306 Lval : Uint;
11307 Opnd : Node_Id;
11309 begin
11310 if Warn_On_Questionable_Missing_Parens
11311 and then Comes_From_Source (Norig)
11312 and then Is_Integer_Type (Typ)
11313 and then Nkind (Norig) = N_Op_Minus
11314 then
11315 Rorig := Original_Node (Right_Opnd (Norig));
11317 -- We are looking for cases where the right operand is not
11318 -- parenthesized, and is a binary operator, multiply, divide, or
11319 -- mod. These are the cases where the grouping can affect results.
11321 if Paren_Count (Rorig) = 0
11322 and then Nkind_In (Rorig, N_Op_Mod, N_Op_Multiply, N_Op_Divide)
11323 then
11324 -- For mod, we always give the warning, since the value is
11325 -- affected by the parenthesization (e.g. (-5) mod 315 /=
11326 -- -(5 mod 315)). But for the other cases, the only concern is
11327 -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
11328 -- overflows, but (-2) * 64 does not). So we try to give the
11329 -- message only when overflow is possible.
11331 if Nkind (Rorig) /= N_Op_Mod
11332 and then Compile_Time_Known_Value (R)
11333 then
11334 Val := Expr_Value (R);
11336 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
11337 HB := Expr_Value (Type_High_Bound (Typ));
11338 else
11339 HB := Expr_Value (Type_High_Bound (Base_Type (Typ)));
11340 end if;
11342 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
11343 LB := Expr_Value (Type_Low_Bound (Typ));
11344 else
11345 LB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
11346 end if;
11348 -- Note that the test below is deliberately excluding the
11349 -- largest negative number, since that is a potentially
11350 -- troublesome case (e.g. -2 * x, where the result is the
11351 -- largest negative integer has an overflow with 2 * x).
11353 if Val > LB and then Val <= HB then
11354 return;
11355 end if;
11356 end if;
11358 -- For the multiplication case, the only case we have to worry
11359 -- about is when (-a)*b is exactly the largest negative number
11360 -- so that -(a*b) can cause overflow. This can only happen if
11361 -- a is a power of 2, and more generally if any operand is a
11362 -- constant that is not a power of 2, then the parentheses
11363 -- cannot affect whether overflow occurs. We only bother to
11364 -- test the left most operand
11366 -- Loop looking at left operands for one that has known value
11368 Opnd := Rorig;
11369 Opnd_Loop : while Nkind (Opnd) = N_Op_Multiply loop
11370 if Compile_Time_Known_Value (Left_Opnd (Opnd)) then
11371 Lval := UI_Abs (Expr_Value (Left_Opnd (Opnd)));
11373 -- Operand value of 0 or 1 skips warning
11375 if Lval <= 1 then
11376 return;
11378 -- Otherwise check power of 2, if power of 2, warn, if
11379 -- anything else, skip warning.
11381 else
11382 while Lval /= 2 loop
11383 if Lval mod 2 = 1 then
11384 return;
11385 else
11386 Lval := Lval / 2;
11387 end if;
11388 end loop;
11390 exit Opnd_Loop;
11391 end if;
11392 end if;
11394 -- Keep looking at left operands
11396 Opnd := Left_Opnd (Opnd);
11397 end loop Opnd_Loop;
11399 -- For rem or "/" we can only have a problematic situation
11400 -- if the divisor has a value of minus one or one. Otherwise
11401 -- overflow is impossible (divisor > 1) or we have a case of
11402 -- division by zero in any case.
11404 if Nkind_In (Rorig, N_Op_Divide, N_Op_Rem)
11405 and then Compile_Time_Known_Value (Right_Opnd (Rorig))
11406 and then UI_Abs (Expr_Value (Right_Opnd (Rorig))) /= 1
11407 then
11408 return;
11409 end if;
11411 -- If we fall through warning should be issued
11413 -- Shouldn't we test Warn_On_Questionable_Missing_Parens ???
11415 Error_Msg_N
11416 ("??unary minus expression should be parenthesized here!", N);
11417 end if;
11418 end if;
11419 end;
11420 end Resolve_Unary_Op;
11422 ----------------------------------
11423 -- Resolve_Unchecked_Expression --
11424 ----------------------------------
11426 procedure Resolve_Unchecked_Expression
11427 (N : Node_Id;
11428 Typ : Entity_Id)
11430 begin
11431 Resolve (Expression (N), Typ, Suppress => All_Checks);
11432 Set_Etype (N, Typ);
11433 end Resolve_Unchecked_Expression;
11435 ---------------------------------------
11436 -- Resolve_Unchecked_Type_Conversion --
11437 ---------------------------------------
11439 procedure Resolve_Unchecked_Type_Conversion
11440 (N : Node_Id;
11441 Typ : Entity_Id)
11443 pragma Warnings (Off, Typ);
11445 Operand : constant Node_Id := Expression (N);
11446 Opnd_Type : constant Entity_Id := Etype (Operand);
11448 begin
11449 -- Resolve operand using its own type
11451 Resolve (Operand, Opnd_Type);
11453 -- In an inlined context, the unchecked conversion may be applied
11454 -- to a literal, in which case its type is the type of the context.
11455 -- (In other contexts conversions cannot apply to literals).
11457 if In_Inlined_Body
11458 and then (Opnd_Type = Any_Character or else
11459 Opnd_Type = Any_Integer or else
11460 Opnd_Type = Any_Real)
11461 then
11462 Set_Etype (Operand, Typ);
11463 end if;
11465 Analyze_Dimension (N);
11466 Eval_Unchecked_Conversion (N);
11467 end Resolve_Unchecked_Type_Conversion;
11469 ------------------------------
11470 -- Rewrite_Operator_As_Call --
11471 ------------------------------
11473 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id) is
11474 Loc : constant Source_Ptr := Sloc (N);
11475 Actuals : constant List_Id := New_List;
11476 New_N : Node_Id;
11478 begin
11479 if Nkind (N) in N_Binary_Op then
11480 Append (Left_Opnd (N), Actuals);
11481 end if;
11483 Append (Right_Opnd (N), Actuals);
11485 New_N :=
11486 Make_Function_Call (Sloc => Loc,
11487 Name => New_Occurrence_Of (Nam, Loc),
11488 Parameter_Associations => Actuals);
11490 Preserve_Comes_From_Source (New_N, N);
11491 Preserve_Comes_From_Source (Name (New_N), N);
11492 Rewrite (N, New_N);
11493 Set_Etype (N, Etype (Nam));
11494 end Rewrite_Operator_As_Call;
11496 ------------------------------
11497 -- Rewrite_Renamed_Operator --
11498 ------------------------------
11500 procedure Rewrite_Renamed_Operator
11501 (N : Node_Id;
11502 Op : Entity_Id;
11503 Typ : Entity_Id)
11505 Nam : constant Name_Id := Chars (Op);
11506 Is_Binary : constant Boolean := Nkind (N) in N_Binary_Op;
11507 Op_Node : Node_Id;
11509 begin
11510 -- Do not perform this transformation within a pre/postcondition,
11511 -- because the expression will be reanalyzed, and the transformation
11512 -- might affect the visibility of the operator, e.g. in an instance.
11513 -- Note that fully analyzed and expanded pre/postconditions appear as
11514 -- pragma Check equivalents.
11516 if In_Pre_Post_Condition (N) then
11517 return;
11518 end if;
11520 -- Likewise when an expression function is being preanalyzed, since the
11521 -- expression will be reanalyzed as part of the generated body.
11523 if In_Spec_Expression then
11524 declare
11525 S : constant Entity_Id := Current_Scope_No_Loops;
11526 begin
11527 if Ekind (S) = E_Function
11528 and then Nkind (Original_Node (Unit_Declaration_Node (S))) =
11529 N_Expression_Function
11530 then
11531 return;
11532 end if;
11533 end;
11534 end if;
11536 -- Rewrite the operator node using the real operator, not its renaming.
11537 -- Exclude user-defined intrinsic operations of the same name, which are
11538 -- treated separately and rewritten as calls.
11540 if Ekind (Op) /= E_Function or else Chars (N) /= Nam then
11541 Op_Node := New_Node (Operator_Kind (Nam, Is_Binary), Sloc (N));
11542 Set_Chars (Op_Node, Nam);
11543 Set_Etype (Op_Node, Etype (N));
11544 Set_Entity (Op_Node, Op);
11545 Set_Right_Opnd (Op_Node, Right_Opnd (N));
11547 -- Indicate that both the original entity and its renaming are
11548 -- referenced at this point.
11550 Generate_Reference (Entity (N), N);
11551 Generate_Reference (Op, N);
11553 if Is_Binary then
11554 Set_Left_Opnd (Op_Node, Left_Opnd (N));
11555 end if;
11557 Rewrite (N, Op_Node);
11559 -- If the context type is private, add the appropriate conversions so
11560 -- that the operator is applied to the full view. This is done in the
11561 -- routines that resolve intrinsic operators.
11563 if Is_Intrinsic_Subprogram (Op) and then Is_Private_Type (Typ) then
11564 case Nkind (N) is
11565 when N_Op_Add
11566 | N_Op_Divide
11567 | N_Op_Expon
11568 | N_Op_Mod
11569 | N_Op_Multiply
11570 | N_Op_Rem
11571 | N_Op_Subtract
11573 Resolve_Intrinsic_Operator (N, Typ);
11575 when N_Op_Abs
11576 | N_Op_Minus
11577 | N_Op_Plus
11579 Resolve_Intrinsic_Unary_Operator (N, Typ);
11581 when others =>
11582 Resolve (N, Typ);
11583 end case;
11584 end if;
11586 elsif Ekind (Op) = E_Function and then Is_Intrinsic_Subprogram (Op) then
11588 -- Operator renames a user-defined operator of the same name. Use the
11589 -- original operator in the node, which is the one Gigi knows about.
11591 Set_Entity (N, Op);
11592 Set_Is_Overloaded (N, False);
11593 end if;
11594 end Rewrite_Renamed_Operator;
11596 -----------------------
11597 -- Set_Slice_Subtype --
11598 -----------------------
11600 -- Build an implicit subtype declaration to represent the type delivered by
11601 -- the slice. This is an abbreviated version of an array subtype. We define
11602 -- an index subtype for the slice, using either the subtype name or the
11603 -- discrete range of the slice. To be consistent with index usage elsewhere
11604 -- we create a list header to hold the single index. This list is not
11605 -- otherwise attached to the syntax tree.
11607 procedure Set_Slice_Subtype (N : Node_Id) is
11608 Loc : constant Source_Ptr := Sloc (N);
11609 Index_List : constant List_Id := New_List;
11610 Index : Node_Id;
11611 Index_Subtype : Entity_Id;
11612 Index_Type : Entity_Id;
11613 Slice_Subtype : Entity_Id;
11614 Drange : constant Node_Id := Discrete_Range (N);
11616 begin
11617 Index_Type := Base_Type (Etype (Drange));
11619 if Is_Entity_Name (Drange) then
11620 Index_Subtype := Entity (Drange);
11622 else
11623 -- We force the evaluation of a range. This is definitely needed in
11624 -- the renamed case, and seems safer to do unconditionally. Note in
11625 -- any case that since we will create and insert an Itype referring
11626 -- to this range, we must make sure any side effect removal actions
11627 -- are inserted before the Itype definition.
11629 if Nkind (Drange) = N_Range then
11630 Force_Evaluation (Low_Bound (Drange));
11631 Force_Evaluation (High_Bound (Drange));
11633 -- If the discrete range is given by a subtype indication, the
11634 -- type of the slice is the base of the subtype mark.
11636 elsif Nkind (Drange) = N_Subtype_Indication then
11637 declare
11638 R : constant Node_Id := Range_Expression (Constraint (Drange));
11639 begin
11640 Index_Type := Base_Type (Entity (Subtype_Mark (Drange)));
11641 Force_Evaluation (Low_Bound (R));
11642 Force_Evaluation (High_Bound (R));
11643 end;
11644 end if;
11646 Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11648 -- Take a new copy of Drange (where bounds have been rewritten to
11649 -- reference side-effect-free names). Using a separate tree ensures
11650 -- that further expansion (e.g. while rewriting a slice assignment
11651 -- into a FOR loop) does not attempt to remove side effects on the
11652 -- bounds again (which would cause the bounds in the index subtype
11653 -- definition to refer to temporaries before they are defined) (the
11654 -- reason is that some names are considered side effect free here
11655 -- for the subtype, but not in the context of a loop iteration
11656 -- scheme).
11658 Set_Scalar_Range (Index_Subtype, New_Copy_Tree (Drange));
11659 Set_Parent (Scalar_Range (Index_Subtype), Index_Subtype);
11660 Set_Etype (Index_Subtype, Index_Type);
11661 Set_Size_Info (Index_Subtype, Index_Type);
11662 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
11663 end if;
11665 Slice_Subtype := Create_Itype (E_Array_Subtype, N);
11667 Index := New_Occurrence_Of (Index_Subtype, Loc);
11668 Set_Etype (Index, Index_Subtype);
11669 Append (Index, Index_List);
11671 Set_First_Index (Slice_Subtype, Index);
11672 Set_Etype (Slice_Subtype, Base_Type (Etype (N)));
11673 Set_Is_Constrained (Slice_Subtype, True);
11675 Check_Compile_Time_Size (Slice_Subtype);
11677 -- The Etype of the existing Slice node is reset to this slice subtype.
11678 -- Its bounds are obtained from its first index.
11680 Set_Etype (N, Slice_Subtype);
11682 -- For bit-packed slice subtypes, freeze immediately (except in the case
11683 -- of being in a "spec expression" where we never freeze when we first
11684 -- see the expression).
11686 if Is_Bit_Packed_Array (Slice_Subtype) and not In_Spec_Expression then
11687 Freeze_Itype (Slice_Subtype, N);
11689 -- For all other cases insert an itype reference in the slice's actions
11690 -- so that the itype is frozen at the proper place in the tree (i.e. at
11691 -- the point where actions for the slice are analyzed). Note that this
11692 -- is different from freezing the itype immediately, which might be
11693 -- premature (e.g. if the slice is within a transient scope). This needs
11694 -- to be done only if expansion is enabled.
11696 elsif Expander_Active then
11697 Ensure_Defined (Typ => Slice_Subtype, N => N);
11698 end if;
11699 end Set_Slice_Subtype;
11701 --------------------------------
11702 -- Set_String_Literal_Subtype --
11703 --------------------------------
11705 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id) is
11706 Loc : constant Source_Ptr := Sloc (N);
11707 Low_Bound : constant Node_Id :=
11708 Type_Low_Bound (Etype (First_Index (Typ)));
11709 Subtype_Id : Entity_Id;
11711 begin
11712 if Nkind (N) /= N_String_Literal then
11713 return;
11714 end if;
11716 Subtype_Id := Create_Itype (E_String_Literal_Subtype, N);
11717 Set_String_Literal_Length (Subtype_Id, UI_From_Int
11718 (String_Length (Strval (N))));
11719 Set_Etype (Subtype_Id, Base_Type (Typ));
11720 Set_Is_Constrained (Subtype_Id);
11721 Set_Etype (N, Subtype_Id);
11723 -- The low bound is set from the low bound of the corresponding index
11724 -- type. Note that we do not store the high bound in the string literal
11725 -- subtype, but it can be deduced if necessary from the length and the
11726 -- low bound.
11728 if Is_OK_Static_Expression (Low_Bound) then
11729 Set_String_Literal_Low_Bound (Subtype_Id, Low_Bound);
11731 -- If the lower bound is not static we create a range for the string
11732 -- literal, using the index type and the known length of the literal.
11733 -- The index type is not necessarily Positive, so the upper bound is
11734 -- computed as T'Val (T'Pos (Low_Bound) + L - 1).
11736 else
11737 declare
11738 Index_List : constant List_Id := New_List;
11739 Index_Type : constant Entity_Id := Etype (First_Index (Typ));
11740 High_Bound : constant Node_Id :=
11741 Make_Attribute_Reference (Loc,
11742 Attribute_Name => Name_Val,
11743 Prefix =>
11744 New_Occurrence_Of (Index_Type, Loc),
11745 Expressions => New_List (
11746 Make_Op_Add (Loc,
11747 Left_Opnd =>
11748 Make_Attribute_Reference (Loc,
11749 Attribute_Name => Name_Pos,
11750 Prefix =>
11751 New_Occurrence_Of (Index_Type, Loc),
11752 Expressions =>
11753 New_List (New_Copy_Tree (Low_Bound))),
11754 Right_Opnd =>
11755 Make_Integer_Literal (Loc,
11756 String_Length (Strval (N)) - 1))));
11758 Array_Subtype : Entity_Id;
11759 Drange : Node_Id;
11760 Index : Node_Id;
11761 Index_Subtype : Entity_Id;
11763 begin
11764 if Is_Integer_Type (Index_Type) then
11765 Set_String_Literal_Low_Bound
11766 (Subtype_Id, Make_Integer_Literal (Loc, 1));
11768 else
11769 -- If the index type is an enumeration type, build bounds
11770 -- expression with attributes.
11772 Set_String_Literal_Low_Bound
11773 (Subtype_Id,
11774 Make_Attribute_Reference (Loc,
11775 Attribute_Name => Name_First,
11776 Prefix =>
11777 New_Occurrence_Of (Base_Type (Index_Type), Loc)));
11778 Set_Etype (String_Literal_Low_Bound (Subtype_Id), Index_Type);
11779 end if;
11781 Analyze_And_Resolve (String_Literal_Low_Bound (Subtype_Id));
11783 -- Build bona fide subtype for the string, and wrap it in an
11784 -- unchecked conversion, because the backend expects the
11785 -- String_Literal_Subtype to have a static lower bound.
11787 Index_Subtype :=
11788 Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11789 Drange := Make_Range (Loc, New_Copy_Tree (Low_Bound), High_Bound);
11790 Set_Scalar_Range (Index_Subtype, Drange);
11791 Set_Parent (Drange, N);
11792 Analyze_And_Resolve (Drange, Index_Type);
11794 -- In the context, the Index_Type may already have a constraint,
11795 -- so use common base type on string subtype. The base type may
11796 -- be used when generating attributes of the string, for example
11797 -- in the context of a slice assignment.
11799 Set_Etype (Index_Subtype, Base_Type (Index_Type));
11800 Set_Size_Info (Index_Subtype, Index_Type);
11801 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
11803 Array_Subtype := Create_Itype (E_Array_Subtype, N);
11805 Index := New_Occurrence_Of (Index_Subtype, Loc);
11806 Set_Etype (Index, Index_Subtype);
11807 Append (Index, Index_List);
11809 Set_First_Index (Array_Subtype, Index);
11810 Set_Etype (Array_Subtype, Base_Type (Typ));
11811 Set_Is_Constrained (Array_Subtype, True);
11813 Rewrite (N,
11814 Make_Unchecked_Type_Conversion (Loc,
11815 Subtype_Mark => New_Occurrence_Of (Array_Subtype, Loc),
11816 Expression => Relocate_Node (N)));
11817 Set_Etype (N, Array_Subtype);
11818 end;
11819 end if;
11820 end Set_String_Literal_Subtype;
11822 ------------------------------
11823 -- Simplify_Type_Conversion --
11824 ------------------------------
11826 procedure Simplify_Type_Conversion (N : Node_Id) is
11827 begin
11828 if Nkind (N) = N_Type_Conversion then
11829 declare
11830 Operand : constant Node_Id := Expression (N);
11831 Target_Typ : constant Entity_Id := Etype (N);
11832 Opnd_Typ : constant Entity_Id := Etype (Operand);
11834 begin
11835 -- Special processing if the conversion is the expression of a
11836 -- Rounding or Truncation attribute reference. In this case we
11837 -- replace:
11839 -- ityp (ftyp'Rounding (x)) or ityp (ftyp'Truncation (x))
11841 -- by
11843 -- ityp (x)
11845 -- with the Float_Truncate flag set to False or True respectively,
11846 -- which is more efficient.
11848 if Is_Floating_Point_Type (Opnd_Typ)
11849 and then
11850 (Is_Integer_Type (Target_Typ)
11851 or else (Is_Fixed_Point_Type (Target_Typ)
11852 and then Conversion_OK (N)))
11853 and then Nkind (Operand) = N_Attribute_Reference
11854 and then Nam_In (Attribute_Name (Operand), Name_Rounding,
11855 Name_Truncation)
11856 then
11857 declare
11858 Truncate : constant Boolean :=
11859 Attribute_Name (Operand) = Name_Truncation;
11860 begin
11861 Rewrite (Operand,
11862 Relocate_Node (First (Expressions (Operand))));
11863 Set_Float_Truncate (N, Truncate);
11864 end;
11865 end if;
11866 end;
11867 end if;
11868 end Simplify_Type_Conversion;
11870 -----------------------------
11871 -- Unique_Fixed_Point_Type --
11872 -----------------------------
11874 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id is
11875 procedure Fixed_Point_Error (T1 : Entity_Id; T2 : Entity_Id);
11876 -- Give error messages for true ambiguity. Messages are posted on node
11877 -- N, and entities T1, T2 are the possible interpretations.
11879 -----------------------
11880 -- Fixed_Point_Error --
11881 -----------------------
11883 procedure Fixed_Point_Error (T1 : Entity_Id; T2 : Entity_Id) is
11884 begin
11885 Error_Msg_N ("ambiguous universal_fixed_expression", N);
11886 Error_Msg_NE ("\\possible interpretation as}", N, T1);
11887 Error_Msg_NE ("\\possible interpretation as}", N, T2);
11888 end Fixed_Point_Error;
11890 -- Local variables
11892 ErrN : Node_Id;
11893 Item : Node_Id;
11894 Scop : Entity_Id;
11895 T1 : Entity_Id;
11896 T2 : Entity_Id;
11898 -- Start of processing for Unique_Fixed_Point_Type
11900 begin
11901 -- The operations on Duration are visible, so Duration is always a
11902 -- possible interpretation.
11904 T1 := Standard_Duration;
11906 -- Look for fixed-point types in enclosing scopes
11908 Scop := Current_Scope;
11909 while Scop /= Standard_Standard loop
11910 T2 := First_Entity (Scop);
11911 while Present (T2) loop
11912 if Is_Fixed_Point_Type (T2)
11913 and then Current_Entity (T2) = T2
11914 and then Scope (Base_Type (T2)) = Scop
11915 then
11916 if Present (T1) then
11917 Fixed_Point_Error (T1, T2);
11918 return Any_Type;
11919 else
11920 T1 := T2;
11921 end if;
11922 end if;
11924 Next_Entity (T2);
11925 end loop;
11927 Scop := Scope (Scop);
11928 end loop;
11930 -- Look for visible fixed type declarations in the context
11932 Item := First (Context_Items (Cunit (Current_Sem_Unit)));
11933 while Present (Item) loop
11934 if Nkind (Item) = N_With_Clause then
11935 Scop := Entity (Name (Item));
11936 T2 := First_Entity (Scop);
11937 while Present (T2) loop
11938 if Is_Fixed_Point_Type (T2)
11939 and then Scope (Base_Type (T2)) = Scop
11940 and then (Is_Potentially_Use_Visible (T2) or else In_Use (T2))
11941 then
11942 if Present (T1) then
11943 Fixed_Point_Error (T1, T2);
11944 return Any_Type;
11945 else
11946 T1 := T2;
11947 end if;
11948 end if;
11950 Next_Entity (T2);
11951 end loop;
11952 end if;
11954 Next (Item);
11955 end loop;
11957 if Nkind (N) = N_Real_Literal then
11958 Error_Msg_NE ("??real literal interpreted as }!", N, T1);
11960 else
11961 -- When the context is a type conversion, issue the warning on the
11962 -- expression of the conversion because it is the actual operation.
11964 if Nkind_In (N, N_Type_Conversion, N_Unchecked_Type_Conversion) then
11965 ErrN := Expression (N);
11966 else
11967 ErrN := N;
11968 end if;
11970 Error_Msg_NE
11971 ("??universal_fixed expression interpreted as }!", ErrN, T1);
11972 end if;
11974 return T1;
11975 end Unique_Fixed_Point_Type;
11977 ----------------------
11978 -- Valid_Conversion --
11979 ----------------------
11981 function Valid_Conversion
11982 (N : Node_Id;
11983 Target : Entity_Id;
11984 Operand : Node_Id;
11985 Report_Errs : Boolean := True) return Boolean
11987 Target_Type : constant Entity_Id := Base_Type (Target);
11988 Opnd_Type : Entity_Id := Etype (Operand);
11989 Inc_Ancestor : Entity_Id;
11991 function Conversion_Check
11992 (Valid : Boolean;
11993 Msg : String) return Boolean;
11994 -- Little routine to post Msg if Valid is False, returns Valid value
11996 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id);
11997 -- If Report_Errs, then calls Errout.Error_Msg_N with its arguments
11999 procedure Conversion_Error_NE
12000 (Msg : String;
12001 N : Node_Or_Entity_Id;
12002 E : Node_Or_Entity_Id);
12003 -- If Report_Errs, then calls Errout.Error_Msg_NE with its arguments
12005 function In_Instance_Code return Boolean;
12006 -- Return True if expression is within an instance but is not in one of
12007 -- the actuals of the instantiation. Type conversions within an instance
12008 -- are not rechecked because type visbility may lead to spurious errors,
12009 -- but conversions in an actual for a formal object must be checked.
12011 function Valid_Tagged_Conversion
12012 (Target_Type : Entity_Id;
12013 Opnd_Type : Entity_Id) return Boolean;
12014 -- Specifically test for validity of tagged conversions
12016 function Valid_Array_Conversion return Boolean;
12017 -- Check index and component conformance, and accessibility levels if
12018 -- the component types are anonymous access types (Ada 2005).
12020 ----------------------
12021 -- Conversion_Check --
12022 ----------------------
12024 function Conversion_Check
12025 (Valid : Boolean;
12026 Msg : String) return Boolean
12028 begin
12029 if not Valid
12031 -- A generic unit has already been analyzed and we have verified
12032 -- that a particular conversion is OK in that context. Since the
12033 -- instance is reanalyzed without relying on the relationships
12034 -- established during the analysis of the generic, it is possible
12035 -- to end up with inconsistent views of private types. Do not emit
12036 -- the error message in such cases. The rest of the machinery in
12037 -- Valid_Conversion still ensures the proper compatibility of
12038 -- target and operand types.
12040 and then not In_Instance_Code
12041 then
12042 Conversion_Error_N (Msg, Operand);
12043 end if;
12045 return Valid;
12046 end Conversion_Check;
12048 ------------------------
12049 -- Conversion_Error_N --
12050 ------------------------
12052 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id) is
12053 begin
12054 if Report_Errs then
12055 Error_Msg_N (Msg, N);
12056 end if;
12057 end Conversion_Error_N;
12059 -------------------------
12060 -- Conversion_Error_NE --
12061 -------------------------
12063 procedure Conversion_Error_NE
12064 (Msg : String;
12065 N : Node_Or_Entity_Id;
12066 E : Node_Or_Entity_Id)
12068 begin
12069 if Report_Errs then
12070 Error_Msg_NE (Msg, N, E);
12071 end if;
12072 end Conversion_Error_NE;
12074 ----------------------
12075 -- In_Instance_Code --
12076 ----------------------
12078 function In_Instance_Code return Boolean is
12079 Par : Node_Id;
12081 begin
12082 if not In_Instance then
12083 return False;
12085 else
12086 Par := Parent (N);
12087 while Present (Par) loop
12089 -- The expression is part of an actual object if it appears in
12090 -- the generated object declaration in the instance.
12092 if Nkind (Par) = N_Object_Declaration
12093 and then Present (Corresponding_Generic_Association (Par))
12094 then
12095 return False;
12097 else
12098 exit when
12099 Nkind (Par) in N_Statement_Other_Than_Procedure_Call
12100 or else Nkind (Par) in N_Subprogram_Call
12101 or else Nkind (Par) in N_Declaration;
12102 end if;
12104 Par := Parent (Par);
12105 end loop;
12107 -- Otherwise the expression appears within the instantiated unit
12109 return True;
12110 end if;
12111 end In_Instance_Code;
12113 ----------------------------
12114 -- Valid_Array_Conversion --
12115 ----------------------------
12117 function Valid_Array_Conversion return Boolean is
12118 Opnd_Comp_Type : constant Entity_Id := Component_Type (Opnd_Type);
12119 Opnd_Comp_Base : constant Entity_Id := Base_Type (Opnd_Comp_Type);
12121 Opnd_Index : Node_Id;
12122 Opnd_Index_Type : Entity_Id;
12124 Target_Comp_Type : constant Entity_Id :=
12125 Component_Type (Target_Type);
12126 Target_Comp_Base : constant Entity_Id :=
12127 Base_Type (Target_Comp_Type);
12129 Target_Index : Node_Id;
12130 Target_Index_Type : Entity_Id;
12132 begin
12133 -- Error if wrong number of dimensions
12136 Number_Dimensions (Target_Type) /= Number_Dimensions (Opnd_Type)
12137 then
12138 Conversion_Error_N
12139 ("incompatible number of dimensions for conversion", Operand);
12140 return False;
12142 -- Number of dimensions matches
12144 else
12145 -- Loop through indexes of the two arrays
12147 Target_Index := First_Index (Target_Type);
12148 Opnd_Index := First_Index (Opnd_Type);
12149 while Present (Target_Index) and then Present (Opnd_Index) loop
12150 Target_Index_Type := Etype (Target_Index);
12151 Opnd_Index_Type := Etype (Opnd_Index);
12153 -- Error if index types are incompatible
12155 if not (Is_Integer_Type (Target_Index_Type)
12156 and then Is_Integer_Type (Opnd_Index_Type))
12157 and then (Root_Type (Target_Index_Type)
12158 /= Root_Type (Opnd_Index_Type))
12159 then
12160 Conversion_Error_N
12161 ("incompatible index types for array conversion",
12162 Operand);
12163 return False;
12164 end if;
12166 Next_Index (Target_Index);
12167 Next_Index (Opnd_Index);
12168 end loop;
12170 -- If component types have same base type, all set
12172 if Target_Comp_Base = Opnd_Comp_Base then
12173 null;
12175 -- Here if base types of components are not the same. The only
12176 -- time this is allowed is if we have anonymous access types.
12178 -- The conversion of arrays of anonymous access types can lead
12179 -- to dangling pointers. AI-392 formalizes the accessibility
12180 -- checks that must be applied to such conversions to prevent
12181 -- out-of-scope references.
12183 elsif Ekind_In
12184 (Target_Comp_Base, E_Anonymous_Access_Type,
12185 E_Anonymous_Access_Subprogram_Type)
12186 and then Ekind (Opnd_Comp_Base) = Ekind (Target_Comp_Base)
12187 and then
12188 Subtypes_Statically_Match (Target_Comp_Type, Opnd_Comp_Type)
12189 then
12190 if Type_Access_Level (Target_Type) <
12191 Deepest_Type_Access_Level (Opnd_Type)
12192 then
12193 if In_Instance_Body then
12194 Error_Msg_Warn := SPARK_Mode /= On;
12195 Conversion_Error_N
12196 ("source array type has deeper accessibility "
12197 & "level than target<<", Operand);
12198 Conversion_Error_N ("\Program_Error [<<", Operand);
12199 Rewrite (N,
12200 Make_Raise_Program_Error (Sloc (N),
12201 Reason => PE_Accessibility_Check_Failed));
12202 Set_Etype (N, Target_Type);
12203 return False;
12205 -- Conversion not allowed because of accessibility levels
12207 else
12208 Conversion_Error_N
12209 ("source array type has deeper accessibility "
12210 & "level than target", Operand);
12211 return False;
12212 end if;
12214 else
12215 null;
12216 end if;
12218 -- All other cases where component base types do not match
12220 else
12221 Conversion_Error_N
12222 ("incompatible component types for array conversion",
12223 Operand);
12224 return False;
12225 end if;
12227 -- Check that component subtypes statically match. For numeric
12228 -- types this means that both must be either constrained or
12229 -- unconstrained. For enumeration types the bounds must match.
12230 -- All of this is checked in Subtypes_Statically_Match.
12232 if not Subtypes_Statically_Match
12233 (Target_Comp_Type, Opnd_Comp_Type)
12234 then
12235 Conversion_Error_N
12236 ("component subtypes must statically match", Operand);
12237 return False;
12238 end if;
12239 end if;
12241 return True;
12242 end Valid_Array_Conversion;
12244 -----------------------------
12245 -- Valid_Tagged_Conversion --
12246 -----------------------------
12248 function Valid_Tagged_Conversion
12249 (Target_Type : Entity_Id;
12250 Opnd_Type : Entity_Id) return Boolean
12252 begin
12253 -- Upward conversions are allowed (RM 4.6(22))
12255 if Covers (Target_Type, Opnd_Type)
12256 or else Is_Ancestor (Target_Type, Opnd_Type)
12257 then
12258 return True;
12260 -- Downward conversion are allowed if the operand is class-wide
12261 -- (RM 4.6(23)).
12263 elsif Is_Class_Wide_Type (Opnd_Type)
12264 and then Covers (Opnd_Type, Target_Type)
12265 then
12266 return True;
12268 elsif Covers (Opnd_Type, Target_Type)
12269 or else Is_Ancestor (Opnd_Type, Target_Type)
12270 then
12271 return
12272 Conversion_Check (False,
12273 "downward conversion of tagged objects not allowed");
12275 -- Ada 2005 (AI-251): The conversion to/from interface types is
12276 -- always valid. The types involved may be class-wide (sub)types.
12278 elsif Is_Interface (Etype (Base_Type (Target_Type)))
12279 or else Is_Interface (Etype (Base_Type (Opnd_Type)))
12280 then
12281 return True;
12283 -- If the operand is a class-wide type obtained through a limited_
12284 -- with clause, and the context includes the nonlimited view, use
12285 -- it to determine whether the conversion is legal.
12287 elsif Is_Class_Wide_Type (Opnd_Type)
12288 and then From_Limited_With (Opnd_Type)
12289 and then Present (Non_Limited_View (Etype (Opnd_Type)))
12290 and then Is_Interface (Non_Limited_View (Etype (Opnd_Type)))
12291 then
12292 return True;
12294 elsif Is_Access_Type (Opnd_Type)
12295 and then Is_Interface (Directly_Designated_Type (Opnd_Type))
12296 then
12297 return True;
12299 else
12300 Conversion_Error_NE
12301 ("invalid tagged conversion, not compatible with}",
12302 N, First_Subtype (Opnd_Type));
12303 return False;
12304 end if;
12305 end Valid_Tagged_Conversion;
12307 -- Start of processing for Valid_Conversion
12309 begin
12310 Check_Parameterless_Call (Operand);
12312 if Is_Overloaded (Operand) then
12313 declare
12314 I : Interp_Index;
12315 I1 : Interp_Index;
12316 It : Interp;
12317 It1 : Interp;
12318 N1 : Entity_Id;
12319 T1 : Entity_Id;
12321 begin
12322 -- Remove procedure calls, which syntactically cannot appear in
12323 -- this context, but which cannot be removed by type checking,
12324 -- because the context does not impose a type.
12326 -- The node may be labelled overloaded, but still contain only one
12327 -- interpretation because others were discarded earlier. If this
12328 -- is the case, retain the single interpretation if legal.
12330 Get_First_Interp (Operand, I, It);
12331 Opnd_Type := It.Typ;
12332 Get_Next_Interp (I, It);
12334 if Present (It.Typ)
12335 and then Opnd_Type /= Standard_Void_Type
12336 then
12337 -- More than one candidate interpretation is available
12339 Get_First_Interp (Operand, I, It);
12340 while Present (It.Typ) loop
12341 if It.Typ = Standard_Void_Type then
12342 Remove_Interp (I);
12343 end if;
12345 -- When compiling for a system where Address is of a visible
12346 -- integer type, spurious ambiguities can be produced when
12347 -- arithmetic operations have a literal operand and return
12348 -- System.Address or a descendant of it. These ambiguities
12349 -- are usually resolved by the context, but for conversions
12350 -- there is no context type and the removal of the spurious
12351 -- operations must be done explicitly here.
12353 if not Address_Is_Private
12354 and then Is_Descendant_Of_Address (It.Typ)
12355 then
12356 Remove_Interp (I);
12357 end if;
12359 Get_Next_Interp (I, It);
12360 end loop;
12361 end if;
12363 Get_First_Interp (Operand, I, It);
12364 I1 := I;
12365 It1 := It;
12367 if No (It.Typ) then
12368 Conversion_Error_N ("illegal operand in conversion", Operand);
12369 return False;
12370 end if;
12372 Get_Next_Interp (I, It);
12374 if Present (It.Typ) then
12375 N1 := It1.Nam;
12376 T1 := It1.Typ;
12377 It1 := Disambiguate (Operand, I1, I, Any_Type);
12379 if It1 = No_Interp then
12380 Conversion_Error_N
12381 ("ambiguous operand in conversion", Operand);
12383 -- If the interpretation involves a standard operator, use
12384 -- the location of the type, which may be user-defined.
12386 if Sloc (It.Nam) = Standard_Location then
12387 Error_Msg_Sloc := Sloc (It.Typ);
12388 else
12389 Error_Msg_Sloc := Sloc (It.Nam);
12390 end if;
12392 Conversion_Error_N -- CODEFIX
12393 ("\\possible interpretation#!", Operand);
12395 if Sloc (N1) = Standard_Location then
12396 Error_Msg_Sloc := Sloc (T1);
12397 else
12398 Error_Msg_Sloc := Sloc (N1);
12399 end if;
12401 Conversion_Error_N -- CODEFIX
12402 ("\\possible interpretation#!", Operand);
12404 return False;
12405 end if;
12406 end if;
12408 Set_Etype (Operand, It1.Typ);
12409 Opnd_Type := It1.Typ;
12410 end;
12411 end if;
12413 -- Deal with conversion of integer type to address if the pragma
12414 -- Allow_Integer_Address is in effect. We convert the conversion to
12415 -- an unchecked conversion in this case and we are all done.
12417 if Address_Integer_Convert_OK (Opnd_Type, Target_Type) then
12418 Rewrite (N, Unchecked_Convert_To (Target_Type, Expression (N)));
12419 Analyze_And_Resolve (N, Target_Type);
12420 return True;
12421 end if;
12423 -- If we are within a child unit, check whether the type of the
12424 -- expression has an ancestor in a parent unit, in which case it
12425 -- belongs to its derivation class even if the ancestor is private.
12426 -- See RM 7.3.1 (5.2/3).
12428 Inc_Ancestor := Get_Incomplete_View_Of_Ancestor (Opnd_Type);
12430 -- Numeric types
12432 if Is_Numeric_Type (Target_Type) then
12434 -- A universal fixed expression can be converted to any numeric type
12436 if Opnd_Type = Universal_Fixed then
12437 return True;
12439 -- Also no need to check when in an instance or inlined body, because
12440 -- the legality has been established when the template was analyzed.
12441 -- Furthermore, numeric conversions may occur where only a private
12442 -- view of the operand type is visible at the instantiation point.
12443 -- This results in a spurious error if we check that the operand type
12444 -- is a numeric type.
12446 -- Note: in a previous version of this unit, the following tests were
12447 -- applied only for generated code (Comes_From_Source set to False),
12448 -- but in fact the test is required for source code as well, since
12449 -- this situation can arise in source code.
12451 elsif In_Instance_Code or else In_Inlined_Body then
12452 return True;
12454 -- Otherwise we need the conversion check
12456 else
12457 return Conversion_Check
12458 (Is_Numeric_Type (Opnd_Type)
12459 or else
12460 (Present (Inc_Ancestor)
12461 and then Is_Numeric_Type (Inc_Ancestor)),
12462 "illegal operand for numeric conversion");
12463 end if;
12465 -- Array types
12467 elsif Is_Array_Type (Target_Type) then
12468 if not Is_Array_Type (Opnd_Type)
12469 or else Opnd_Type = Any_Composite
12470 or else Opnd_Type = Any_String
12471 then
12472 Conversion_Error_N
12473 ("illegal operand for array conversion", Operand);
12474 return False;
12476 else
12477 return Valid_Array_Conversion;
12478 end if;
12480 -- Ada 2005 (AI-251): Internally generated conversions of access to
12481 -- interface types added to force the displacement of the pointer to
12482 -- reference the corresponding dispatch table.
12484 elsif not Comes_From_Source (N)
12485 and then Is_Access_Type (Target_Type)
12486 and then Is_Interface (Designated_Type (Target_Type))
12487 then
12488 return True;
12490 -- Ada 2005 (AI-251): Anonymous access types where target references an
12491 -- interface type.
12493 elsif Is_Access_Type (Opnd_Type)
12494 and then Ekind_In (Target_Type, E_General_Access_Type,
12495 E_Anonymous_Access_Type)
12496 and then Is_Interface (Directly_Designated_Type (Target_Type))
12497 then
12498 -- Check the static accessibility rule of 4.6(17). Note that the
12499 -- check is not enforced when within an instance body, since the
12500 -- RM requires such cases to be caught at run time.
12502 -- If the operand is a rewriting of an allocator no check is needed
12503 -- because there are no accessibility issues.
12505 if Nkind (Original_Node (N)) = N_Allocator then
12506 null;
12508 elsif Ekind (Target_Type) /= E_Anonymous_Access_Type then
12509 if Type_Access_Level (Opnd_Type) >
12510 Deepest_Type_Access_Level (Target_Type)
12511 then
12512 -- In an instance, this is a run-time check, but one we know
12513 -- will fail, so generate an appropriate warning. The raise
12514 -- will be generated by Expand_N_Type_Conversion.
12516 if In_Instance_Body then
12517 Error_Msg_Warn := SPARK_Mode /= On;
12518 Conversion_Error_N
12519 ("cannot convert local pointer to non-local access type<<",
12520 Operand);
12521 Conversion_Error_N ("\Program_Error [<<", Operand);
12523 else
12524 Conversion_Error_N
12525 ("cannot convert local pointer to non-local access type",
12526 Operand);
12527 return False;
12528 end if;
12530 -- Special accessibility checks are needed in the case of access
12531 -- discriminants declared for a limited type.
12533 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12534 and then not Is_Local_Anonymous_Access (Opnd_Type)
12535 then
12536 -- When the operand is a selected access discriminant the check
12537 -- needs to be made against the level of the object denoted by
12538 -- the prefix of the selected name (Object_Access_Level handles
12539 -- checking the prefix of the operand for this case).
12541 if Nkind (Operand) = N_Selected_Component
12542 and then Object_Access_Level (Operand) >
12543 Deepest_Type_Access_Level (Target_Type)
12544 then
12545 -- In an instance, this is a run-time check, but one we know
12546 -- will fail, so generate an appropriate warning. The raise
12547 -- will be generated by Expand_N_Type_Conversion.
12549 if In_Instance_Body then
12550 Error_Msg_Warn := SPARK_Mode /= On;
12551 Conversion_Error_N
12552 ("cannot convert access discriminant to non-local "
12553 & "access type<<", Operand);
12554 Conversion_Error_N ("\Program_Error [<<", Operand);
12556 -- Real error if not in instance body
12558 else
12559 Conversion_Error_N
12560 ("cannot convert access discriminant to non-local "
12561 & "access type", Operand);
12562 return False;
12563 end if;
12564 end if;
12566 -- The case of a reference to an access discriminant from
12567 -- within a limited type declaration (which will appear as
12568 -- a discriminal) is always illegal because the level of the
12569 -- discriminant is considered to be deeper than any (nameable)
12570 -- access type.
12572 if Is_Entity_Name (Operand)
12573 and then not Is_Local_Anonymous_Access (Opnd_Type)
12574 and then
12575 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12576 and then Present (Discriminal_Link (Entity (Operand)))
12577 then
12578 Conversion_Error_N
12579 ("discriminant has deeper accessibility level than target",
12580 Operand);
12581 return False;
12582 end if;
12583 end if;
12584 end if;
12586 return True;
12588 -- General and anonymous access types
12590 elsif Ekind_In (Target_Type, E_General_Access_Type,
12591 E_Anonymous_Access_Type)
12592 and then
12593 Conversion_Check
12594 (Is_Access_Type (Opnd_Type)
12595 and then not
12596 Ekind_In (Opnd_Type, E_Access_Subprogram_Type,
12597 E_Access_Protected_Subprogram_Type),
12598 "must be an access-to-object type")
12599 then
12600 if Is_Access_Constant (Opnd_Type)
12601 and then not Is_Access_Constant (Target_Type)
12602 then
12603 Conversion_Error_N
12604 ("access-to-constant operand type not allowed", Operand);
12605 return False;
12606 end if;
12608 -- Check the static accessibility rule of 4.6(17). Note that the
12609 -- check is not enforced when within an instance body, since the RM
12610 -- requires such cases to be caught at run time.
12612 if Ekind (Target_Type) /= E_Anonymous_Access_Type
12613 or else Is_Local_Anonymous_Access (Target_Type)
12614 or else Nkind (Associated_Node_For_Itype (Target_Type)) =
12615 N_Object_Declaration
12616 then
12617 -- Ada 2012 (AI05-0149): Perform legality checking on implicit
12618 -- conversions from an anonymous access type to a named general
12619 -- access type. Such conversions are not allowed in the case of
12620 -- access parameters and stand-alone objects of an anonymous
12621 -- access type. The implicit conversion case is recognized by
12622 -- testing that Comes_From_Source is False and that it's been
12623 -- rewritten. The Comes_From_Source test isn't sufficient because
12624 -- nodes in inlined calls to predefined library routines can have
12625 -- Comes_From_Source set to False. (Is there a better way to test
12626 -- for implicit conversions???)
12628 if Ada_Version >= Ada_2012
12629 and then not Comes_From_Source (N)
12630 and then N /= Original_Node (N)
12631 and then Ekind (Target_Type) = E_General_Access_Type
12632 and then Ekind (Opnd_Type) = E_Anonymous_Access_Type
12633 then
12634 if Is_Itype (Opnd_Type) then
12636 -- Implicit conversions aren't allowed for objects of an
12637 -- anonymous access type, since such objects have nonstatic
12638 -- levels in Ada 2012.
12640 if Nkind (Associated_Node_For_Itype (Opnd_Type)) =
12641 N_Object_Declaration
12642 then
12643 Conversion_Error_N
12644 ("implicit conversion of stand-alone anonymous "
12645 & "access object not allowed", Operand);
12646 return False;
12648 -- Implicit conversions aren't allowed for anonymous access
12649 -- parameters. The "not Is_Local_Anonymous_Access_Type" test
12650 -- is done to exclude anonymous access results.
12652 elsif not Is_Local_Anonymous_Access (Opnd_Type)
12653 and then Nkind_In (Associated_Node_For_Itype (Opnd_Type),
12654 N_Function_Specification,
12655 N_Procedure_Specification)
12656 then
12657 Conversion_Error_N
12658 ("implicit conversion of anonymous access formal "
12659 & "not allowed", Operand);
12660 return False;
12662 -- This is a case where there's an enclosing object whose
12663 -- to which the "statically deeper than" relationship does
12664 -- not apply (such as an access discriminant selected from
12665 -- a dereference of an access parameter).
12667 elsif Object_Access_Level (Operand)
12668 = Scope_Depth (Standard_Standard)
12669 then
12670 Conversion_Error_N
12671 ("implicit conversion of anonymous access value "
12672 & "not allowed", Operand);
12673 return False;
12675 -- In other cases, the level of the operand's type must be
12676 -- statically less deep than that of the target type, else
12677 -- implicit conversion is disallowed (by RM12-8.6(27.1/3)).
12679 elsif Type_Access_Level (Opnd_Type) >
12680 Deepest_Type_Access_Level (Target_Type)
12681 then
12682 Conversion_Error_N
12683 ("implicit conversion of anonymous access value "
12684 & "violates accessibility", Operand);
12685 return False;
12686 end if;
12687 end if;
12689 elsif Type_Access_Level (Opnd_Type) >
12690 Deepest_Type_Access_Level (Target_Type)
12691 then
12692 -- In an instance, this is a run-time check, but one we know
12693 -- will fail, so generate an appropriate warning. The raise
12694 -- will be generated by Expand_N_Type_Conversion.
12696 if In_Instance_Body then
12697 Error_Msg_Warn := SPARK_Mode /= On;
12698 Conversion_Error_N
12699 ("cannot convert local pointer to non-local access type<<",
12700 Operand);
12701 Conversion_Error_N ("\Program_Error [<<", Operand);
12703 -- If not in an instance body, this is a real error
12705 else
12706 -- Avoid generation of spurious error message
12708 if not Error_Posted (N) then
12709 Conversion_Error_N
12710 ("cannot convert local pointer to non-local access type",
12711 Operand);
12712 end if;
12714 return False;
12715 end if;
12717 -- Special accessibility checks are needed in the case of access
12718 -- discriminants declared for a limited type.
12720 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12721 and then not Is_Local_Anonymous_Access (Opnd_Type)
12722 then
12723 -- When the operand is a selected access discriminant the check
12724 -- needs to be made against the level of the object denoted by
12725 -- the prefix of the selected name (Object_Access_Level handles
12726 -- checking the prefix of the operand for this case).
12728 if Nkind (Operand) = N_Selected_Component
12729 and then Object_Access_Level (Operand) >
12730 Deepest_Type_Access_Level (Target_Type)
12731 then
12732 -- In an instance, this is a run-time check, but one we know
12733 -- will fail, so generate an appropriate warning. The raise
12734 -- will be generated by Expand_N_Type_Conversion.
12736 if In_Instance_Body then
12737 Error_Msg_Warn := SPARK_Mode /= On;
12738 Conversion_Error_N
12739 ("cannot convert access discriminant to non-local "
12740 & "access type<<", Operand);
12741 Conversion_Error_N ("\Program_Error [<<", Operand);
12743 -- If not in an instance body, this is a real error
12745 else
12746 Conversion_Error_N
12747 ("cannot convert access discriminant to non-local "
12748 & "access type", Operand);
12749 return False;
12750 end if;
12751 end if;
12753 -- The case of a reference to an access discriminant from
12754 -- within a limited type declaration (which will appear as
12755 -- a discriminal) is always illegal because the level of the
12756 -- discriminant is considered to be deeper than any (nameable)
12757 -- access type.
12759 if Is_Entity_Name (Operand)
12760 and then
12761 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12762 and then Present (Discriminal_Link (Entity (Operand)))
12763 then
12764 Conversion_Error_N
12765 ("discriminant has deeper accessibility level than target",
12766 Operand);
12767 return False;
12768 end if;
12769 end if;
12770 end if;
12772 -- In the presence of limited_with clauses we have to use nonlimited
12773 -- views, if available.
12775 Check_Limited : declare
12776 function Full_Designated_Type (T : Entity_Id) return Entity_Id;
12777 -- Helper function to handle limited views
12779 --------------------------
12780 -- Full_Designated_Type --
12781 --------------------------
12783 function Full_Designated_Type (T : Entity_Id) return Entity_Id is
12784 Desig : constant Entity_Id := Designated_Type (T);
12786 begin
12787 -- Handle the limited view of a type
12789 if From_Limited_With (Desig)
12790 and then Has_Non_Limited_View (Desig)
12791 then
12792 return Available_View (Desig);
12793 else
12794 return Desig;
12795 end if;
12796 end Full_Designated_Type;
12798 -- Local Declarations
12800 Target : constant Entity_Id := Full_Designated_Type (Target_Type);
12801 Opnd : constant Entity_Id := Full_Designated_Type (Opnd_Type);
12803 Same_Base : constant Boolean :=
12804 Base_Type (Target) = Base_Type (Opnd);
12806 -- Start of processing for Check_Limited
12808 begin
12809 if Is_Tagged_Type (Target) then
12810 return Valid_Tagged_Conversion (Target, Opnd);
12812 else
12813 if not Same_Base then
12814 Conversion_Error_NE
12815 ("target designated type not compatible with }",
12816 N, Base_Type (Opnd));
12817 return False;
12819 -- Ada 2005 AI-384: legality rule is symmetric in both
12820 -- designated types. The conversion is legal (with possible
12821 -- constraint check) if either designated type is
12822 -- unconstrained.
12824 elsif Subtypes_Statically_Match (Target, Opnd)
12825 or else
12826 (Has_Discriminants (Target)
12827 and then
12828 (not Is_Constrained (Opnd)
12829 or else not Is_Constrained (Target)))
12830 then
12831 -- Special case, if Value_Size has been used to make the
12832 -- sizes different, the conversion is not allowed even
12833 -- though the subtypes statically match.
12835 if Known_Static_RM_Size (Target)
12836 and then Known_Static_RM_Size (Opnd)
12837 and then RM_Size (Target) /= RM_Size (Opnd)
12838 then
12839 Conversion_Error_NE
12840 ("target designated subtype not compatible with }",
12841 N, Opnd);
12842 Conversion_Error_NE
12843 ("\because sizes of the two designated subtypes differ",
12844 N, Opnd);
12845 return False;
12847 -- Normal case where conversion is allowed
12849 else
12850 return True;
12851 end if;
12853 else
12854 Error_Msg_NE
12855 ("target designated subtype not compatible with }",
12856 N, Opnd);
12857 return False;
12858 end if;
12859 end if;
12860 end Check_Limited;
12862 -- Access to subprogram types. If the operand is an access parameter,
12863 -- the type has a deeper accessibility that any master, and cannot be
12864 -- assigned. We must make an exception if the conversion is part of an
12865 -- assignment and the target is the return object of an extended return
12866 -- statement, because in that case the accessibility check takes place
12867 -- after the return.
12869 elsif Is_Access_Subprogram_Type (Target_Type)
12871 -- Note: this test of Opnd_Type is there to prevent entering this
12872 -- branch in the case of a remote access to subprogram type, which
12873 -- is internally represented as an E_Record_Type.
12875 and then Is_Access_Type (Opnd_Type)
12876 then
12877 if Ekind (Base_Type (Opnd_Type)) = E_Anonymous_Access_Subprogram_Type
12878 and then Is_Entity_Name (Operand)
12879 and then Ekind (Entity (Operand)) = E_In_Parameter
12880 and then
12881 (Nkind (Parent (N)) /= N_Assignment_Statement
12882 or else not Is_Entity_Name (Name (Parent (N)))
12883 or else not Is_Return_Object (Entity (Name (Parent (N)))))
12884 then
12885 Conversion_Error_N
12886 ("illegal attempt to store anonymous access to subprogram",
12887 Operand);
12888 Conversion_Error_N
12889 ("\value has deeper accessibility than any master "
12890 & "(RM 3.10.2 (13))",
12891 Operand);
12893 Error_Msg_NE
12894 ("\use named access type for& instead of access parameter",
12895 Operand, Entity (Operand));
12896 end if;
12898 -- Check that the designated types are subtype conformant
12900 Check_Subtype_Conformant (New_Id => Designated_Type (Target_Type),
12901 Old_Id => Designated_Type (Opnd_Type),
12902 Err_Loc => N);
12904 -- Check the static accessibility rule of 4.6(20)
12906 if Type_Access_Level (Opnd_Type) >
12907 Deepest_Type_Access_Level (Target_Type)
12908 then
12909 Conversion_Error_N
12910 ("operand type has deeper accessibility level than target",
12911 Operand);
12913 -- Check that if the operand type is declared in a generic body,
12914 -- then the target type must be declared within that same body
12915 -- (enforces last sentence of 4.6(20)).
12917 elsif Present (Enclosing_Generic_Body (Opnd_Type)) then
12918 declare
12919 O_Gen : constant Node_Id :=
12920 Enclosing_Generic_Body (Opnd_Type);
12922 T_Gen : Node_Id;
12924 begin
12925 T_Gen := Enclosing_Generic_Body (Target_Type);
12926 while Present (T_Gen) and then T_Gen /= O_Gen loop
12927 T_Gen := Enclosing_Generic_Body (T_Gen);
12928 end loop;
12930 if T_Gen /= O_Gen then
12931 Conversion_Error_N
12932 ("target type must be declared in same generic body "
12933 & "as operand type", N);
12934 end if;
12935 end;
12936 end if;
12938 return True;
12940 -- Remote access to subprogram types
12942 elsif Is_Remote_Access_To_Subprogram_Type (Target_Type)
12943 and then Is_Remote_Access_To_Subprogram_Type (Opnd_Type)
12944 then
12945 -- It is valid to convert from one RAS type to another provided
12946 -- that their specification statically match.
12948 -- Note: at this point, remote access to subprogram types have been
12949 -- expanded to their E_Record_Type representation, and we need to
12950 -- go back to the original access type definition using the
12951 -- Corresponding_Remote_Type attribute in order to check that the
12952 -- designated profiles match.
12954 pragma Assert (Ekind (Target_Type) = E_Record_Type);
12955 pragma Assert (Ekind (Opnd_Type) = E_Record_Type);
12957 Check_Subtype_Conformant
12958 (New_Id =>
12959 Designated_Type (Corresponding_Remote_Type (Target_Type)),
12960 Old_Id =>
12961 Designated_Type (Corresponding_Remote_Type (Opnd_Type)),
12962 Err_Loc =>
12964 return True;
12966 -- If it was legal in the generic, it's legal in the instance
12968 elsif In_Instance_Body then
12969 return True;
12971 -- If both are tagged types, check legality of view conversions
12973 elsif Is_Tagged_Type (Target_Type)
12974 and then
12975 Is_Tagged_Type (Opnd_Type)
12976 then
12977 return Valid_Tagged_Conversion (Target_Type, Opnd_Type);
12979 -- Types derived from the same root type are convertible
12981 elsif Root_Type (Target_Type) = Root_Type (Opnd_Type) then
12982 return True;
12984 -- In an instance or an inlined body, there may be inconsistent views of
12985 -- the same type, or of types derived from a common root.
12987 elsif (In_Instance or In_Inlined_Body)
12988 and then
12989 Root_Type (Underlying_Type (Target_Type)) =
12990 Root_Type (Underlying_Type (Opnd_Type))
12991 then
12992 return True;
12994 -- Special check for common access type error case
12996 elsif Ekind (Target_Type) = E_Access_Type
12997 and then Is_Access_Type (Opnd_Type)
12998 then
12999 Conversion_Error_N ("target type must be general access type!", N);
13000 Conversion_Error_NE -- CODEFIX
13001 ("add ALL to }!", N, Target_Type);
13002 return False;
13004 -- Here we have a real conversion error
13006 else
13007 -- Check for missing regular with_clause when only a limited view of
13008 -- target is available.
13010 if From_Limited_With (Opnd_Type) and then In_Package_Body then
13011 Conversion_Error_NE
13012 ("invalid conversion, not compatible with limited view of }",
13013 N, Opnd_Type);
13014 Conversion_Error_NE
13015 ("\add with_clause for& to current unit!", N, Scope (Opnd_Type));
13017 elsif Is_Access_Type (Opnd_Type)
13018 and then From_Limited_With (Designated_Type (Opnd_Type))
13019 and then In_Package_Body
13020 then
13021 Conversion_Error_NE
13022 ("invalid conversion, not compatible with }", N, Opnd_Type);
13023 Conversion_Error_NE
13024 ("\add with_clause for& to current unit!",
13025 N, Scope (Designated_Type (Opnd_Type)));
13027 else
13028 Conversion_Error_NE
13029 ("invalid conversion, not compatible with }", N, Opnd_Type);
13030 end if;
13032 return False;
13033 end if;
13034 end Valid_Conversion;
13036 end Sem_Res;