1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
25 #include "coretypes.h"
27 #include "diagnostic-core.h"
38 #include "hard-reg-set.h"
39 #include "insn-config.h"
42 #include "langhooks.h"
46 static rtx
break_out_memory_refs (rtx
);
49 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
52 trunc_int_for_mode (HOST_WIDE_INT c
, enum machine_mode mode
)
54 int width
= GET_MODE_BITSIZE (mode
);
56 /* You want to truncate to a _what_? */
57 gcc_assert (SCALAR_INT_MODE_P (mode
));
59 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
61 return c
& 1 ? STORE_FLAG_VALUE
: 0;
63 /* Sign-extend for the requested mode. */
65 if (width
< HOST_BITS_PER_WIDE_INT
)
67 HOST_WIDE_INT sign
= 1;
77 /* Return an rtx for the sum of X and the integer C. */
80 plus_constant (rtx x
, HOST_WIDE_INT c
)
84 enum machine_mode mode
;
100 return GEN_INT (INTVAL (x
) + c
);
104 unsigned HOST_WIDE_INT l1
= CONST_DOUBLE_LOW (x
);
105 HOST_WIDE_INT h1
= CONST_DOUBLE_HIGH (x
);
106 unsigned HOST_WIDE_INT l2
= c
;
107 HOST_WIDE_INT h2
= c
< 0 ? ~0 : 0;
108 unsigned HOST_WIDE_INT lv
;
111 add_double (l1
, h1
, l2
, h2
, &lv
, &hv
);
113 return immed_double_const (lv
, hv
, VOIDmode
);
117 /* If this is a reference to the constant pool, try replacing it with
118 a reference to a new constant. If the resulting address isn't
119 valid, don't return it because we have no way to validize it. */
120 if (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
121 && CONSTANT_POOL_ADDRESS_P (XEXP (x
, 0)))
124 = force_const_mem (GET_MODE (x
),
125 plus_constant (get_pool_constant (XEXP (x
, 0)),
127 if (memory_address_p (GET_MODE (tem
), XEXP (tem
, 0)))
133 /* If adding to something entirely constant, set a flag
134 so that we can add a CONST around the result. */
145 /* The interesting case is adding the integer to a sum.
146 Look for constant term in the sum and combine
147 with C. For an integer constant term, we make a combined
148 integer. For a constant term that is not an explicit integer,
149 we cannot really combine, but group them together anyway.
151 Restart or use a recursive call in case the remaining operand is
152 something that we handle specially, such as a SYMBOL_REF.
154 We may not immediately return from the recursive call here, lest
155 all_constant gets lost. */
157 if (CONST_INT_P (XEXP (x
, 1)))
159 c
+= INTVAL (XEXP (x
, 1));
161 if (GET_MODE (x
) != VOIDmode
)
162 c
= trunc_int_for_mode (c
, GET_MODE (x
));
167 else if (CONSTANT_P (XEXP (x
, 1)))
169 x
= gen_rtx_PLUS (mode
, XEXP (x
, 0), plus_constant (XEXP (x
, 1), c
));
172 else if (find_constant_term_loc (&y
))
174 /* We need to be careful since X may be shared and we can't
175 modify it in place. */
176 rtx copy
= copy_rtx (x
);
177 rtx
*const_loc
= find_constant_term_loc (©
);
179 *const_loc
= plus_constant (*const_loc
, c
);
190 x
= gen_rtx_PLUS (mode
, x
, GEN_INT (c
));
192 if (GET_CODE (x
) == SYMBOL_REF
|| GET_CODE (x
) == LABEL_REF
)
194 else if (all_constant
)
195 return gen_rtx_CONST (mode
, x
);
200 /* If X is a sum, return a new sum like X but lacking any constant terms.
201 Add all the removed constant terms into *CONSTPTR.
202 X itself is not altered. The result != X if and only if
203 it is not isomorphic to X. */
206 eliminate_constant_term (rtx x
, rtx
*constptr
)
211 if (GET_CODE (x
) != PLUS
)
214 /* First handle constants appearing at this level explicitly. */
215 if (CONST_INT_P (XEXP (x
, 1))
216 && 0 != (tem
= simplify_binary_operation (PLUS
, GET_MODE (x
), *constptr
,
218 && CONST_INT_P (tem
))
221 return eliminate_constant_term (XEXP (x
, 0), constptr
);
225 x0
= eliminate_constant_term (XEXP (x
, 0), &tem
);
226 x1
= eliminate_constant_term (XEXP (x
, 1), &tem
);
227 if ((x1
!= XEXP (x
, 1) || x0
!= XEXP (x
, 0))
228 && 0 != (tem
= simplify_binary_operation (PLUS
, GET_MODE (x
),
230 && CONST_INT_P (tem
))
233 return gen_rtx_PLUS (GET_MODE (x
), x0
, x1
);
239 /* Return an rtx for the size in bytes of the value of EXP. */
246 if (TREE_CODE (exp
) == WITH_SIZE_EXPR
)
247 size
= TREE_OPERAND (exp
, 1);
250 size
= tree_expr_size (exp
);
252 gcc_assert (size
== SUBSTITUTE_PLACEHOLDER_IN_EXPR (size
, exp
));
255 return expand_expr (size
, NULL_RTX
, TYPE_MODE (sizetype
), EXPAND_NORMAL
);
258 /* Return a wide integer for the size in bytes of the value of EXP, or -1
259 if the size can vary or is larger than an integer. */
262 int_expr_size (tree exp
)
266 if (TREE_CODE (exp
) == WITH_SIZE_EXPR
)
267 size
= TREE_OPERAND (exp
, 1);
270 size
= tree_expr_size (exp
);
274 if (size
== 0 || !host_integerp (size
, 0))
277 return tree_low_cst (size
, 0);
280 /* Return a copy of X in which all memory references
281 and all constants that involve symbol refs
282 have been replaced with new temporary registers.
283 Also emit code to load the memory locations and constants
284 into those registers.
286 If X contains no such constants or memory references,
287 X itself (not a copy) is returned.
289 If a constant is found in the address that is not a legitimate constant
290 in an insn, it is left alone in the hope that it might be valid in the
293 X may contain no arithmetic except addition, subtraction and multiplication.
294 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
297 break_out_memory_refs (rtx x
)
300 || (CONSTANT_P (x
) && CONSTANT_ADDRESS_P (x
)
301 && GET_MODE (x
) != VOIDmode
))
302 x
= force_reg (GET_MODE (x
), x
);
303 else if (GET_CODE (x
) == PLUS
|| GET_CODE (x
) == MINUS
304 || GET_CODE (x
) == MULT
)
306 rtx op0
= break_out_memory_refs (XEXP (x
, 0));
307 rtx op1
= break_out_memory_refs (XEXP (x
, 1));
309 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
310 x
= simplify_gen_binary (GET_CODE (x
), GET_MODE (x
), op0
, op1
);
316 /* Given X, a memory address in address space AS' pointer mode, convert it to
317 an address in the address space's address mode, or vice versa (TO_MODE says
318 which way). We take advantage of the fact that pointers are not allowed to
319 overflow by commuting arithmetic operations over conversions so that address
320 arithmetic insns can be used. */
323 convert_memory_address_addr_space (enum machine_mode to_mode ATTRIBUTE_UNUSED
,
324 rtx x
, addr_space_t as ATTRIBUTE_UNUSED
)
326 #ifndef POINTERS_EXTEND_UNSIGNED
327 gcc_assert (GET_MODE (x
) == to_mode
|| GET_MODE (x
) == VOIDmode
);
329 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
330 enum machine_mode pointer_mode
, address_mode
, from_mode
;
334 /* If X already has the right mode, just return it. */
335 if (GET_MODE (x
) == to_mode
)
338 pointer_mode
= targetm
.addr_space
.pointer_mode (as
);
339 address_mode
= targetm
.addr_space
.address_mode (as
);
340 from_mode
= to_mode
== pointer_mode
? address_mode
: pointer_mode
;
342 /* Here we handle some special cases. If none of them apply, fall through
343 to the default case. */
344 switch (GET_CODE (x
))
348 if (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (from_mode
))
350 else if (POINTERS_EXTEND_UNSIGNED
< 0)
352 else if (POINTERS_EXTEND_UNSIGNED
> 0)
356 temp
= simplify_unary_operation (code
, to_mode
, x
, from_mode
);
362 if ((SUBREG_PROMOTED_VAR_P (x
) || REG_POINTER (SUBREG_REG (x
)))
363 && GET_MODE (SUBREG_REG (x
)) == to_mode
)
364 return SUBREG_REG (x
);
368 temp
= gen_rtx_LABEL_REF (to_mode
, XEXP (x
, 0));
369 LABEL_REF_NONLOCAL_P (temp
) = LABEL_REF_NONLOCAL_P (x
);
374 temp
= shallow_copy_rtx (x
);
375 PUT_MODE (temp
, to_mode
);
380 return gen_rtx_CONST (to_mode
,
381 convert_memory_address_addr_space
382 (to_mode
, XEXP (x
, 0), as
));
387 /* For addition we can safely permute the conversion and addition
388 operation if one operand is a constant and converting the constant
389 does not change it or if one operand is a constant and we are
390 using a ptr_extend instruction (POINTERS_EXTEND_UNSIGNED < 0).
391 We can always safely permute them if we are making the address
393 if (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (from_mode
)
394 || (GET_CODE (x
) == PLUS
395 && CONST_INT_P (XEXP (x
, 1))
396 && (XEXP (x
, 1) == convert_memory_address_addr_space
397 (to_mode
, XEXP (x
, 1), as
)
398 || POINTERS_EXTEND_UNSIGNED
< 0)))
399 return gen_rtx_fmt_ee (GET_CODE (x
), to_mode
,
400 convert_memory_address_addr_space
401 (to_mode
, XEXP (x
, 0), as
),
409 return convert_modes (to_mode
, from_mode
,
410 x
, POINTERS_EXTEND_UNSIGNED
);
411 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
414 /* Return something equivalent to X but valid as a memory address for something
415 of mode MODE in the named address space AS. When X is not itself valid,
416 this works by copying X or subexpressions of it into registers. */
419 memory_address_addr_space (enum machine_mode mode
, rtx x
, addr_space_t as
)
422 enum machine_mode address_mode
= targetm
.addr_space
.address_mode (as
);
424 x
= convert_memory_address_addr_space (address_mode
, x
, as
);
426 /* By passing constant addresses through registers
427 we get a chance to cse them. */
428 if (! cse_not_expected
&& CONSTANT_P (x
) && CONSTANT_ADDRESS_P (x
))
429 x
= force_reg (address_mode
, x
);
431 /* We get better cse by rejecting indirect addressing at this stage.
432 Let the combiner create indirect addresses where appropriate.
433 For now, generate the code so that the subexpressions useful to share
434 are visible. But not if cse won't be done! */
437 if (! cse_not_expected
&& !REG_P (x
))
438 x
= break_out_memory_refs (x
);
440 /* At this point, any valid address is accepted. */
441 if (memory_address_addr_space_p (mode
, x
, as
))
444 /* If it was valid before but breaking out memory refs invalidated it,
445 use it the old way. */
446 if (memory_address_addr_space_p (mode
, oldx
, as
))
452 /* Perform machine-dependent transformations on X
453 in certain cases. This is not necessary since the code
454 below can handle all possible cases, but machine-dependent
455 transformations can make better code. */
458 x
= targetm
.addr_space
.legitimize_address (x
, oldx
, mode
, as
);
459 if (orig_x
!= x
&& memory_address_addr_space_p (mode
, x
, as
))
463 /* PLUS and MULT can appear in special ways
464 as the result of attempts to make an address usable for indexing.
465 Usually they are dealt with by calling force_operand, below.
466 But a sum containing constant terms is special
467 if removing them makes the sum a valid address:
468 then we generate that address in a register
469 and index off of it. We do this because it often makes
470 shorter code, and because the addresses thus generated
471 in registers often become common subexpressions. */
472 if (GET_CODE (x
) == PLUS
)
474 rtx constant_term
= const0_rtx
;
475 rtx y
= eliminate_constant_term (x
, &constant_term
);
476 if (constant_term
== const0_rtx
477 || ! memory_address_addr_space_p (mode
, y
, as
))
478 x
= force_operand (x
, NULL_RTX
);
481 y
= gen_rtx_PLUS (GET_MODE (x
), copy_to_reg (y
), constant_term
);
482 if (! memory_address_addr_space_p (mode
, y
, as
))
483 x
= force_operand (x
, NULL_RTX
);
489 else if (GET_CODE (x
) == MULT
|| GET_CODE (x
) == MINUS
)
490 x
= force_operand (x
, NULL_RTX
);
492 /* If we have a register that's an invalid address,
493 it must be a hard reg of the wrong class. Copy it to a pseudo. */
497 /* Last resort: copy the value to a register, since
498 the register is a valid address. */
500 x
= force_reg (address_mode
, x
);
505 gcc_assert (memory_address_addr_space_p (mode
, x
, as
));
506 /* If we didn't change the address, we are done. Otherwise, mark
507 a reg as a pointer if we have REG or REG + CONST_INT. */
511 mark_reg_pointer (x
, BITS_PER_UNIT
);
512 else if (GET_CODE (x
) == PLUS
513 && REG_P (XEXP (x
, 0))
514 && CONST_INT_P (XEXP (x
, 1)))
515 mark_reg_pointer (XEXP (x
, 0), BITS_PER_UNIT
);
517 /* OLDX may have been the address on a temporary. Update the address
518 to indicate that X is now used. */
519 update_temp_slot_address (oldx
, x
);
524 /* Convert a mem ref into one with a valid memory address.
525 Pass through anything else unchanged. */
528 validize_mem (rtx ref
)
532 ref
= use_anchored_address (ref
);
533 if (memory_address_addr_space_p (GET_MODE (ref
), XEXP (ref
, 0),
534 MEM_ADDR_SPACE (ref
)))
537 /* Don't alter REF itself, since that is probably a stack slot. */
538 return replace_equiv_address (ref
, XEXP (ref
, 0));
541 /* If X is a memory reference to a member of an object block, try rewriting
542 it to use an anchor instead. Return the new memory reference on success
543 and the old one on failure. */
546 use_anchored_address (rtx x
)
549 HOST_WIDE_INT offset
;
551 if (!flag_section_anchors
)
557 /* Split the address into a base and offset. */
560 if (GET_CODE (base
) == CONST
561 && GET_CODE (XEXP (base
, 0)) == PLUS
562 && CONST_INT_P (XEXP (XEXP (base
, 0), 1)))
564 offset
+= INTVAL (XEXP (XEXP (base
, 0), 1));
565 base
= XEXP (XEXP (base
, 0), 0);
568 /* Check whether BASE is suitable for anchors. */
569 if (GET_CODE (base
) != SYMBOL_REF
570 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base
)
571 || SYMBOL_REF_ANCHOR_P (base
)
572 || SYMBOL_REF_BLOCK (base
) == NULL
573 || !targetm
.use_anchors_for_symbol_p (base
))
576 /* Decide where BASE is going to be. */
577 place_block_symbol (base
);
579 /* Get the anchor we need to use. */
580 offset
+= SYMBOL_REF_BLOCK_OFFSET (base
);
581 base
= get_section_anchor (SYMBOL_REF_BLOCK (base
), offset
,
582 SYMBOL_REF_TLS_MODEL (base
));
584 /* Work out the offset from the anchor. */
585 offset
-= SYMBOL_REF_BLOCK_OFFSET (base
);
587 /* If we're going to run a CSE pass, force the anchor into a register.
588 We will then be able to reuse registers for several accesses, if the
589 target costs say that that's worthwhile. */
590 if (!cse_not_expected
)
591 base
= force_reg (GET_MODE (base
), base
);
593 return replace_equiv_address (x
, plus_constant (base
, offset
));
596 /* Copy the value or contents of X to a new temp reg and return that reg. */
601 rtx temp
= gen_reg_rtx (GET_MODE (x
));
603 /* If not an operand, must be an address with PLUS and MULT so
604 do the computation. */
605 if (! general_operand (x
, VOIDmode
))
606 x
= force_operand (x
, temp
);
609 emit_move_insn (temp
, x
);
614 /* Like copy_to_reg but always give the new register mode Pmode
615 in case X is a constant. */
618 copy_addr_to_reg (rtx x
)
620 return copy_to_mode_reg (Pmode
, x
);
623 /* Like copy_to_reg but always give the new register mode MODE
624 in case X is a constant. */
627 copy_to_mode_reg (enum machine_mode mode
, rtx x
)
629 rtx temp
= gen_reg_rtx (mode
);
631 /* If not an operand, must be an address with PLUS and MULT so
632 do the computation. */
633 if (! general_operand (x
, VOIDmode
))
634 x
= force_operand (x
, temp
);
636 gcc_assert (GET_MODE (x
) == mode
|| GET_MODE (x
) == VOIDmode
);
638 emit_move_insn (temp
, x
);
642 /* Load X into a register if it is not already one.
643 Use mode MODE for the register.
644 X should be valid for mode MODE, but it may be a constant which
645 is valid for all integer modes; that's why caller must specify MODE.
647 The caller must not alter the value in the register we return,
648 since we mark it as a "constant" register. */
651 force_reg (enum machine_mode mode
, rtx x
)
658 if (general_operand (x
, mode
))
660 temp
= gen_reg_rtx (mode
);
661 insn
= emit_move_insn (temp
, x
);
665 temp
= force_operand (x
, NULL_RTX
);
667 insn
= get_last_insn ();
670 rtx temp2
= gen_reg_rtx (mode
);
671 insn
= emit_move_insn (temp2
, temp
);
676 /* Let optimizers know that TEMP's value never changes
677 and that X can be substituted for it. Don't get confused
678 if INSN set something else (such as a SUBREG of TEMP). */
680 && (set
= single_set (insn
)) != 0
681 && SET_DEST (set
) == temp
682 && ! rtx_equal_p (x
, SET_SRC (set
)))
683 set_unique_reg_note (insn
, REG_EQUAL
, x
);
685 /* Let optimizers know that TEMP is a pointer, and if so, the
686 known alignment of that pointer. */
689 if (GET_CODE (x
) == SYMBOL_REF
)
691 align
= BITS_PER_UNIT
;
692 if (SYMBOL_REF_DECL (x
) && DECL_P (SYMBOL_REF_DECL (x
)))
693 align
= DECL_ALIGN (SYMBOL_REF_DECL (x
));
695 else if (GET_CODE (x
) == LABEL_REF
)
696 align
= BITS_PER_UNIT
;
697 else if (GET_CODE (x
) == CONST
698 && GET_CODE (XEXP (x
, 0)) == PLUS
699 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == SYMBOL_REF
700 && CONST_INT_P (XEXP (XEXP (x
, 0), 1)))
702 rtx s
= XEXP (XEXP (x
, 0), 0);
703 rtx c
= XEXP (XEXP (x
, 0), 1);
707 if (SYMBOL_REF_DECL (s
) && DECL_P (SYMBOL_REF_DECL (s
)))
708 sa
= DECL_ALIGN (SYMBOL_REF_DECL (s
));
714 ca
= ctz_hwi (INTVAL (c
)) * BITS_PER_UNIT
;
715 align
= MIN (sa
, ca
);
719 if (align
|| (MEM_P (x
) && MEM_POINTER (x
)))
720 mark_reg_pointer (temp
, align
);
726 /* If X is a memory ref, copy its contents to a new temp reg and return
727 that reg. Otherwise, return X. */
730 force_not_mem (rtx x
)
734 if (!MEM_P (x
) || GET_MODE (x
) == BLKmode
)
737 temp
= gen_reg_rtx (GET_MODE (x
));
740 REG_POINTER (temp
) = 1;
742 emit_move_insn (temp
, x
);
746 /* Copy X to TARGET (if it's nonzero and a reg)
747 or to a new temp reg and return that reg.
748 MODE is the mode to use for X in case it is a constant. */
751 copy_to_suggested_reg (rtx x
, rtx target
, enum machine_mode mode
)
755 if (target
&& REG_P (target
))
758 temp
= gen_reg_rtx (mode
);
760 emit_move_insn (temp
, x
);
764 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
765 PUNSIGNEDP points to the signedness of the type and may be adjusted
766 to show what signedness to use on extension operations.
768 FOR_RETURN is nonzero if the caller is promoting the return value
769 of FNDECL, else it is for promoting args. */
772 promote_function_mode (const_tree type
, enum machine_mode mode
, int *punsignedp
,
773 const_tree funtype
, int for_return
)
775 switch (TREE_CODE (type
))
777 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
778 case REAL_TYPE
: case OFFSET_TYPE
: case FIXED_POINT_TYPE
:
779 case POINTER_TYPE
: case REFERENCE_TYPE
:
780 return targetm
.calls
.promote_function_mode (type
, mode
, punsignedp
, funtype
,
787 /* Return the mode to use to store a scalar of TYPE and MODE.
788 PUNSIGNEDP points to the signedness of the type and may be adjusted
789 to show what signedness to use on extension operations. */
792 promote_mode (const_tree type ATTRIBUTE_UNUSED
, enum machine_mode mode
,
793 int *punsignedp ATTRIBUTE_UNUSED
)
795 /* FIXME: this is the same logic that was there until GCC 4.4, but we
796 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
797 is not defined. The affected targets are M32C, S390, SPARC. */
799 const enum tree_code code
= TREE_CODE (type
);
800 int unsignedp
= *punsignedp
;
804 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
805 case REAL_TYPE
: case OFFSET_TYPE
: case FIXED_POINT_TYPE
:
806 PROMOTE_MODE (mode
, unsignedp
, type
);
807 *punsignedp
= unsignedp
;
811 #ifdef POINTERS_EXTEND_UNSIGNED
814 *punsignedp
= POINTERS_EXTEND_UNSIGNED
;
815 return targetm
.addr_space
.address_mode
816 (TYPE_ADDR_SPACE (TREE_TYPE (type
)));
829 /* Use one of promote_mode or promote_function_mode to find the promoted
830 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
831 of DECL after promotion. */
834 promote_decl_mode (const_tree decl
, int *punsignedp
)
836 tree type
= TREE_TYPE (decl
);
837 int unsignedp
= TYPE_UNSIGNED (type
);
838 enum machine_mode mode
= DECL_MODE (decl
);
839 enum machine_mode pmode
;
841 if (TREE_CODE (decl
) == RESULT_DECL
842 || TREE_CODE (decl
) == PARM_DECL
)
843 pmode
= promote_function_mode (type
, mode
, &unsignedp
,
844 TREE_TYPE (current_function_decl
), 2);
846 pmode
= promote_mode (type
, mode
, &unsignedp
);
849 *punsignedp
= unsignedp
;
854 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
855 This pops when ADJUST is positive. ADJUST need not be constant. */
858 adjust_stack (rtx adjust
)
862 if (adjust
== const0_rtx
)
865 /* We expect all variable sized adjustments to be multiple of
866 PREFERRED_STACK_BOUNDARY. */
867 if (CONST_INT_P (adjust
))
868 stack_pointer_delta
-= INTVAL (adjust
);
870 temp
= expand_binop (Pmode
,
871 #ifdef STACK_GROWS_DOWNWARD
876 stack_pointer_rtx
, adjust
, stack_pointer_rtx
, 0,
879 if (temp
!= stack_pointer_rtx
)
880 emit_move_insn (stack_pointer_rtx
, temp
);
883 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
884 This pushes when ADJUST is positive. ADJUST need not be constant. */
887 anti_adjust_stack (rtx adjust
)
891 if (adjust
== const0_rtx
)
894 /* We expect all variable sized adjustments to be multiple of
895 PREFERRED_STACK_BOUNDARY. */
896 if (CONST_INT_P (adjust
))
897 stack_pointer_delta
+= INTVAL (adjust
);
899 temp
= expand_binop (Pmode
,
900 #ifdef STACK_GROWS_DOWNWARD
905 stack_pointer_rtx
, adjust
, stack_pointer_rtx
, 0,
908 if (temp
!= stack_pointer_rtx
)
909 emit_move_insn (stack_pointer_rtx
, temp
);
912 /* Round the size of a block to be pushed up to the boundary required
913 by this machine. SIZE is the desired size, which need not be constant. */
916 round_push (rtx size
)
918 int align
= PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
;
923 if (CONST_INT_P (size
))
925 HOST_WIDE_INT new_size
= (INTVAL (size
) + align
- 1) / align
* align
;
927 if (INTVAL (size
) != new_size
)
928 size
= GEN_INT (new_size
);
932 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
933 but we know it can't. So add ourselves and then do
935 size
= expand_binop (Pmode
, add_optab
, size
, GEN_INT (align
- 1),
936 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
937 size
= expand_divmod (0, TRUNC_DIV_EXPR
, Pmode
, size
, GEN_INT (align
),
939 size
= expand_mult (Pmode
, size
, GEN_INT (align
), NULL_RTX
, 1);
945 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
946 to a previously-created save area. If no save area has been allocated,
947 this function will allocate one. If a save area is specified, it
948 must be of the proper mode.
950 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
951 are emitted at the current position. */
954 emit_stack_save (enum save_level save_level
, rtx
*psave
, rtx after
)
957 /* The default is that we use a move insn and save in a Pmode object. */
958 rtx (*fcn
) (rtx
, rtx
) = gen_move_insn
;
959 enum machine_mode mode
= STACK_SAVEAREA_MODE (save_level
);
961 /* See if this machine has anything special to do for this kind of save. */
964 #ifdef HAVE_save_stack_block
966 if (HAVE_save_stack_block
)
967 fcn
= gen_save_stack_block
;
970 #ifdef HAVE_save_stack_function
972 if (HAVE_save_stack_function
)
973 fcn
= gen_save_stack_function
;
976 #ifdef HAVE_save_stack_nonlocal
978 if (HAVE_save_stack_nonlocal
)
979 fcn
= gen_save_stack_nonlocal
;
986 /* If there is no save area and we have to allocate one, do so. Otherwise
987 verify the save area is the proper mode. */
991 if (mode
!= VOIDmode
)
993 if (save_level
== SAVE_NONLOCAL
)
994 *psave
= sa
= assign_stack_local (mode
, GET_MODE_SIZE (mode
), 0);
996 *psave
= sa
= gen_reg_rtx (mode
);
1005 do_pending_stack_adjust ();
1006 /* We must validize inside the sequence, to ensure that any instructions
1007 created by the validize call also get moved to the right place. */
1009 sa
= validize_mem (sa
);
1010 emit_insn (fcn (sa
, stack_pointer_rtx
));
1013 emit_insn_after (seq
, after
);
1017 do_pending_stack_adjust ();
1019 sa
= validize_mem (sa
);
1020 emit_insn (fcn (sa
, stack_pointer_rtx
));
1024 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1025 area made by emit_stack_save. If it is zero, we have nothing to do.
1027 Put any emitted insns after insn AFTER, if nonzero, otherwise at
1028 current position. */
1031 emit_stack_restore (enum save_level save_level
, rtx sa
, rtx after
)
1033 /* The default is that we use a move insn. */
1034 rtx (*fcn
) (rtx
, rtx
) = gen_move_insn
;
1036 /* See if this machine has anything special to do for this kind of save. */
1039 #ifdef HAVE_restore_stack_block
1041 if (HAVE_restore_stack_block
)
1042 fcn
= gen_restore_stack_block
;
1045 #ifdef HAVE_restore_stack_function
1047 if (HAVE_restore_stack_function
)
1048 fcn
= gen_restore_stack_function
;
1051 #ifdef HAVE_restore_stack_nonlocal
1053 if (HAVE_restore_stack_nonlocal
)
1054 fcn
= gen_restore_stack_nonlocal
;
1063 sa
= validize_mem (sa
);
1064 /* These clobbers prevent the scheduler from moving
1065 references to variable arrays below the code
1066 that deletes (pops) the arrays. */
1067 emit_clobber (gen_rtx_MEM (BLKmode
, gen_rtx_SCRATCH (VOIDmode
)));
1068 emit_clobber (gen_rtx_MEM (BLKmode
, stack_pointer_rtx
));
1071 discard_pending_stack_adjust ();
1078 emit_insn (fcn (stack_pointer_rtx
, sa
));
1081 emit_insn_after (seq
, after
);
1084 emit_insn (fcn (stack_pointer_rtx
, sa
));
1087 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1088 function. This function should be called whenever we allocate or
1089 deallocate dynamic stack space. */
1092 update_nonlocal_goto_save_area (void)
1097 /* The nonlocal_goto_save_area object is an array of N pointers. The
1098 first one is used for the frame pointer save; the rest are sized by
1099 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1100 of the stack save area slots. */
1101 t_save
= build4 (ARRAY_REF
, ptr_type_node
, cfun
->nonlocal_goto_save_area
,
1102 integer_one_node
, NULL_TREE
, NULL_TREE
);
1103 r_save
= expand_expr (t_save
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
1105 emit_stack_save (SAVE_NONLOCAL
, &r_save
, NULL_RTX
);
1108 /* Return an rtx representing the address of an area of memory dynamically
1109 pushed on the stack. This region of memory is always aligned to
1110 a multiple of BIGGEST_ALIGNMENT.
1112 Any required stack pointer alignment is preserved.
1114 SIZE is an rtx representing the size of the area.
1115 TARGET is a place in which the address can be placed.
1117 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1120 allocate_dynamic_stack_space (rtx size
, rtx target
, int known_align
)
1122 /* If we're asking for zero bytes, it doesn't matter what we point
1123 to since we can't dereference it. But return a reasonable
1125 if (size
== const0_rtx
)
1126 return virtual_stack_dynamic_rtx
;
1128 /* Otherwise, show we're calling alloca or equivalent. */
1129 cfun
->calls_alloca
= 1;
1131 /* Ensure the size is in the proper mode. */
1132 if (GET_MODE (size
) != VOIDmode
&& GET_MODE (size
) != Pmode
)
1133 size
= convert_to_mode (Pmode
, size
, 1);
1135 /* We can't attempt to minimize alignment necessary, because we don't
1136 know the final value of preferred_stack_boundary yet while executing
1138 crtl
->preferred_stack_boundary
= PREFERRED_STACK_BOUNDARY
;
1140 /* We will need to ensure that the address we return is aligned to
1141 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1142 always know its final value at this point in the compilation (it
1143 might depend on the size of the outgoing parameter lists, for
1144 example), so we must align the value to be returned in that case.
1145 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1146 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1147 We must also do an alignment operation on the returned value if
1148 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1150 If we have to align, we must leave space in SIZE for the hole
1151 that might result from the alignment operation. */
1153 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1154 #define MUST_ALIGN 1
1156 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1161 = force_operand (plus_constant (size
,
1162 BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
- 1),
1165 #ifdef SETJMP_VIA_SAVE_AREA
1166 /* If setjmp restores regs from a save area in the stack frame,
1167 avoid clobbering the reg save area. Note that the offset of
1168 virtual_incoming_args_rtx includes the preallocated stack args space.
1169 It would be no problem to clobber that, but it's on the wrong side
1170 of the old save area.
1172 What used to happen is that, since we did not know for sure
1173 whether setjmp() was invoked until after RTL generation, we
1174 would use reg notes to store the "optimized" size and fix things
1175 up later. These days we know this information before we ever
1176 start building RTL so the reg notes are unnecessary. */
1177 if (!cfun
->calls_setjmp
)
1179 int align
= PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
;
1181 /* ??? Code below assumes that the save area needs maximal
1182 alignment. This constraint may be too strong. */
1183 gcc_assert (PREFERRED_STACK_BOUNDARY
== BIGGEST_ALIGNMENT
);
1185 if (CONST_INT_P (size
))
1187 HOST_WIDE_INT new_size
= INTVAL (size
) / align
* align
;
1189 if (INTVAL (size
) != new_size
)
1190 size
= GEN_INT (new_size
);
1194 /* Since we know overflow is not possible, we avoid using
1195 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1196 size
= expand_divmod (0, TRUNC_DIV_EXPR
, Pmode
, size
,
1197 GEN_INT (align
), NULL_RTX
, 1);
1198 size
= expand_mult (Pmode
, size
,
1199 GEN_INT (align
), NULL_RTX
, 1);
1205 = expand_binop (Pmode
, sub_optab
, virtual_stack_dynamic_rtx
,
1206 stack_pointer_rtx
, NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1208 size
= expand_binop (Pmode
, add_optab
, size
, dynamic_offset
,
1209 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1211 #endif /* SETJMP_VIA_SAVE_AREA */
1213 /* Round the size to a multiple of the required stack alignment.
1214 Since the stack if presumed to be rounded before this allocation,
1215 this will maintain the required alignment.
1217 If the stack grows downward, we could save an insn by subtracting
1218 SIZE from the stack pointer and then aligning the stack pointer.
1219 The problem with this is that the stack pointer may be unaligned
1220 between the execution of the subtraction and alignment insns and
1221 some machines do not allow this. Even on those that do, some
1222 signal handlers malfunction if a signal should occur between those
1223 insns. Since this is an extremely rare event, we have no reliable
1224 way of knowing which systems have this problem. So we avoid even
1225 momentarily mis-aligning the stack. */
1227 /* If we added a variable amount to SIZE,
1228 we can no longer assume it is aligned. */
1229 #if !defined (SETJMP_VIA_SAVE_AREA)
1230 if (MUST_ALIGN
|| known_align
% PREFERRED_STACK_BOUNDARY
!= 0)
1232 size
= round_push (size
);
1234 do_pending_stack_adjust ();
1236 /* We ought to be called always on the toplevel and stack ought to be aligned
1238 gcc_assert (!(stack_pointer_delta
1239 % (PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
)));
1241 /* If needed, check that we have the required amount of stack. Take into
1242 account what has already been checked. */
1243 if (STACK_CHECK_MOVING_SP
)
1245 else if (flag_stack_check
== GENERIC_STACK_CHECK
)
1246 probe_stack_range (STACK_OLD_CHECK_PROTECT
+ STACK_CHECK_MAX_FRAME_SIZE
,
1248 else if (flag_stack_check
== STATIC_BUILTIN_STACK_CHECK
)
1249 probe_stack_range (STACK_CHECK_PROTECT
, size
);
1251 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1252 if (target
== 0 || !REG_P (target
)
1253 || REGNO (target
) < FIRST_PSEUDO_REGISTER
1254 || GET_MODE (target
) != Pmode
)
1255 target
= gen_reg_rtx (Pmode
);
1257 mark_reg_pointer (target
, known_align
);
1259 /* Perform the required allocation from the stack. Some systems do
1260 this differently than simply incrementing/decrementing from the
1261 stack pointer, such as acquiring the space by calling malloc(). */
1262 #ifdef HAVE_allocate_stack
1263 if (HAVE_allocate_stack
)
1265 enum machine_mode mode
= STACK_SIZE_MODE
;
1266 insn_operand_predicate_fn pred
;
1268 /* We don't have to check against the predicate for operand 0 since
1269 TARGET is known to be a pseudo of the proper mode, which must
1270 be valid for the operand. For operand 1, convert to the
1271 proper mode and validate. */
1272 if (mode
== VOIDmode
)
1273 mode
= insn_data
[(int) CODE_FOR_allocate_stack
].operand
[1].mode
;
1275 pred
= insn_data
[(int) CODE_FOR_allocate_stack
].operand
[1].predicate
;
1276 if (pred
&& ! ((*pred
) (size
, mode
)))
1277 size
= copy_to_mode_reg (mode
, convert_to_mode (mode
, size
, 1));
1279 emit_insn (gen_allocate_stack (target
, size
));
1284 #ifndef STACK_GROWS_DOWNWARD
1285 emit_move_insn (target
, virtual_stack_dynamic_rtx
);
1288 /* Check stack bounds if necessary. */
1289 if (crtl
->limit_stack
)
1292 rtx space_available
= gen_label_rtx ();
1293 #ifdef STACK_GROWS_DOWNWARD
1294 available
= expand_binop (Pmode
, sub_optab
,
1295 stack_pointer_rtx
, stack_limit_rtx
,
1296 NULL_RTX
, 1, OPTAB_WIDEN
);
1298 available
= expand_binop (Pmode
, sub_optab
,
1299 stack_limit_rtx
, stack_pointer_rtx
,
1300 NULL_RTX
, 1, OPTAB_WIDEN
);
1302 emit_cmp_and_jump_insns (available
, size
, GEU
, NULL_RTX
, Pmode
, 1,
1306 emit_insn (gen_trap ());
1309 error ("stack limits not supported on this target");
1311 emit_label (space_available
);
1314 if (flag_stack_check
&& STACK_CHECK_MOVING_SP
)
1315 anti_adjust_stack_and_probe (size
, false);
1317 anti_adjust_stack (size
);
1319 #ifdef STACK_GROWS_DOWNWARD
1320 emit_move_insn (target
, virtual_stack_dynamic_rtx
);
1326 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1327 but we know it can't. So add ourselves and then do
1329 target
= expand_binop (Pmode
, add_optab
, target
,
1330 GEN_INT (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
- 1),
1331 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1332 target
= expand_divmod (0, TRUNC_DIV_EXPR
, Pmode
, target
,
1333 GEN_INT (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
),
1335 target
= expand_mult (Pmode
, target
,
1336 GEN_INT (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
),
1340 /* Record the new stack level for nonlocal gotos. */
1341 if (cfun
->nonlocal_goto_save_area
!= 0)
1342 update_nonlocal_goto_save_area ();
1347 /* A front end may want to override GCC's stack checking by providing a
1348 run-time routine to call to check the stack, so provide a mechanism for
1349 calling that routine. */
1351 static GTY(()) rtx stack_check_libfunc
;
1354 set_stack_check_libfunc (const char *libfunc_name
)
1356 gcc_assert (stack_check_libfunc
== NULL_RTX
);
1357 stack_check_libfunc
= gen_rtx_SYMBOL_REF (Pmode
, libfunc_name
);
1360 /* Emit one stack probe at ADDRESS, an address within the stack. */
1363 emit_stack_probe (rtx address
)
1365 rtx memref
= gen_rtx_MEM (word_mode
, address
);
1367 MEM_VOLATILE_P (memref
) = 1;
1369 /* See if we have an insn to probe the stack. */
1370 #ifdef HAVE_probe_stack
1371 if (HAVE_probe_stack
)
1372 emit_insn (gen_probe_stack (memref
));
1375 emit_move_insn (memref
, const0_rtx
);
1378 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1379 FIRST is a constant and size is a Pmode RTX. These are offsets from
1380 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
1381 or subtract them from the stack pointer. */
1383 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1385 #ifdef STACK_GROWS_DOWNWARD
1386 #define STACK_GROW_OP MINUS
1387 #define STACK_GROW_OPTAB sub_optab
1388 #define STACK_GROW_OFF(off) -(off)
1390 #define STACK_GROW_OP PLUS
1391 #define STACK_GROW_OPTAB add_optab
1392 #define STACK_GROW_OFF(off) (off)
1396 probe_stack_range (HOST_WIDE_INT first
, rtx size
)
1398 /* First ensure SIZE is Pmode. */
1399 if (GET_MODE (size
) != VOIDmode
&& GET_MODE (size
) != Pmode
)
1400 size
= convert_to_mode (Pmode
, size
, 1);
1402 /* Next see if we have a function to check the stack. */
1403 if (stack_check_libfunc
)
1405 rtx addr
= memory_address (Pmode
,
1406 gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1408 plus_constant (size
, first
)));
1409 emit_library_call (stack_check_libfunc
, LCT_NORMAL
, VOIDmode
, 1, addr
,
1413 /* Next see if we have an insn to check the stack. */
1414 #ifdef HAVE_check_stack
1415 else if (HAVE_check_stack
)
1417 rtx addr
= memory_address (Pmode
,
1418 gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1420 plus_constant (size
, first
)));
1421 insn_operand_predicate_fn pred
1422 = insn_data
[(int) CODE_FOR_check_stack
].operand
[0].predicate
;
1423 if (pred
&& !((*pred
) (addr
, Pmode
)))
1424 addr
= copy_to_mode_reg (Pmode
, addr
);
1426 emit_insn (gen_check_stack (addr
));
1430 /* Otherwise we have to generate explicit probes. If we have a constant
1431 small number of them to generate, that's the easy case. */
1432 else if (CONST_INT_P (size
) && INTVAL (size
) < 7 * PROBE_INTERVAL
)
1434 HOST_WIDE_INT isize
= INTVAL (size
), i
;
1437 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1438 it exceeds SIZE. If only one probe is needed, this will not
1439 generate any code. Then probe at FIRST + SIZE. */
1440 for (i
= PROBE_INTERVAL
; i
< isize
; i
+= PROBE_INTERVAL
)
1442 addr
= memory_address (Pmode
,
1443 plus_constant (stack_pointer_rtx
,
1444 STACK_GROW_OFF (first
+ i
)));
1445 emit_stack_probe (addr
);
1448 addr
= memory_address (Pmode
,
1449 plus_constant (stack_pointer_rtx
,
1450 STACK_GROW_OFF (first
+ isize
)));
1451 emit_stack_probe (addr
);
1454 /* In the variable case, do the same as above, but in a loop. Note that we
1455 must be extra careful with variables wrapping around because we might be
1456 at the very top (or the very bottom) of the address space and we have to
1457 be able to handle this case properly; in particular, we use an equality
1458 test for the loop condition. */
1461 rtx rounded_size
, rounded_size_op
, test_addr
, last_addr
, temp
;
1462 rtx loop_lab
= gen_label_rtx ();
1463 rtx end_lab
= gen_label_rtx ();
1466 /* Step 1: round SIZE to the previous multiple of the interval. */
1468 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1470 = simplify_gen_binary (AND
, Pmode
, size
, GEN_INT (-PROBE_INTERVAL
));
1471 rounded_size_op
= force_operand (rounded_size
, NULL_RTX
);
1474 /* Step 2: compute initial and final value of the loop counter. */
1476 /* TEST_ADDR = SP + FIRST. */
1477 test_addr
= force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1479 GEN_INT (first
)), NULL_RTX
);
1481 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
1482 last_addr
= force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1484 rounded_size_op
), NULL_RTX
);
1489 while (TEST_ADDR != LAST_ADDR)
1491 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1495 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1496 until it is equal to ROUNDED_SIZE. */
1498 emit_label (loop_lab
);
1500 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
1501 emit_cmp_and_jump_insns (test_addr
, last_addr
, EQ
, NULL_RTX
, Pmode
, 1,
1504 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
1505 temp
= expand_binop (Pmode
, STACK_GROW_OPTAB
, test_addr
,
1506 GEN_INT (PROBE_INTERVAL
), test_addr
,
1509 gcc_assert (temp
== test_addr
);
1511 /* Probe at TEST_ADDR. */
1512 emit_stack_probe (test_addr
);
1514 emit_jump (loop_lab
);
1516 emit_label (end_lab
);
1519 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1520 that SIZE is equal to ROUNDED_SIZE. */
1522 /* TEMP = SIZE - ROUNDED_SIZE. */
1523 temp
= simplify_gen_binary (MINUS
, Pmode
, size
, rounded_size
);
1524 if (temp
!= const0_rtx
)
1528 if (GET_CODE (temp
) == CONST_INT
)
1530 /* Use [base + disp} addressing mode if supported. */
1531 HOST_WIDE_INT offset
= INTVAL (temp
);
1532 addr
= memory_address (Pmode
,
1533 plus_constant (last_addr
,
1534 STACK_GROW_OFF (offset
)));
1538 /* Manual CSE if the difference is not known at compile-time. */
1539 temp
= gen_rtx_MINUS (Pmode
, size
, rounded_size_op
);
1540 addr
= memory_address (Pmode
,
1541 gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1545 emit_stack_probe (addr
);
1550 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1551 while probing it. This pushes when SIZE is positive. SIZE need not
1552 be constant. If ADJUST_BACK is true, adjust back the stack pointer
1553 by plus SIZE at the end. */
1556 anti_adjust_stack_and_probe (rtx size
, bool adjust_back
)
1558 /* We skip the probe for the first interval + a small dope of 4 words and
1559 probe that many bytes past the specified size to maintain a protection
1560 area at the botton of the stack. */
1561 const int dope
= 4 * UNITS_PER_WORD
;
1563 /* First ensure SIZE is Pmode. */
1564 if (GET_MODE (size
) != VOIDmode
&& GET_MODE (size
) != Pmode
)
1565 size
= convert_to_mode (Pmode
, size
, 1);
1567 /* If we have a constant small number of probes to generate, that's the
1569 if (GET_CODE (size
) == CONST_INT
&& INTVAL (size
) < 7 * PROBE_INTERVAL
)
1571 HOST_WIDE_INT isize
= INTVAL (size
), i
;
1572 bool first_probe
= true;
1574 /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
1575 values of N from 1 until it exceeds SIZE. If only one probe is
1576 needed, this will not generate any code. Then adjust and probe
1577 to PROBE_INTERVAL + SIZE. */
1578 for (i
= PROBE_INTERVAL
; i
< isize
; i
+= PROBE_INTERVAL
)
1582 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL
+ dope
));
1583 first_probe
= false;
1586 anti_adjust_stack (GEN_INT (PROBE_INTERVAL
));
1587 emit_stack_probe (stack_pointer_rtx
);
1591 anti_adjust_stack (plus_constant (size
, PROBE_INTERVAL
+ dope
));
1593 anti_adjust_stack (plus_constant (size
, PROBE_INTERVAL
- i
));
1594 emit_stack_probe (stack_pointer_rtx
);
1597 /* In the variable case, do the same as above, but in a loop. Note that we
1598 must be extra careful with variables wrapping around because we might be
1599 at the very top (or the very bottom) of the address space and we have to
1600 be able to handle this case properly; in particular, we use an equality
1601 test for the loop condition. */
1604 rtx rounded_size
, rounded_size_op
, last_addr
, temp
;
1605 rtx loop_lab
= gen_label_rtx ();
1606 rtx end_lab
= gen_label_rtx ();
1609 /* Step 1: round SIZE to the previous multiple of the interval. */
1611 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1613 = simplify_gen_binary (AND
, Pmode
, size
, GEN_INT (-PROBE_INTERVAL
));
1614 rounded_size_op
= force_operand (rounded_size
, NULL_RTX
);
1617 /* Step 2: compute initial and final value of the loop counter. */
1619 /* SP = SP_0 + PROBE_INTERVAL. */
1620 anti_adjust_stack (GEN_INT (PROBE_INTERVAL
+ dope
));
1622 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
1623 last_addr
= force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1625 rounded_size_op
), NULL_RTX
);
1630 while (SP != LAST_ADDR)
1632 SP = SP + PROBE_INTERVAL
1636 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
1637 values of N from 1 until it is equal to ROUNDED_SIZE. */
1639 emit_label (loop_lab
);
1641 /* Jump to END_LAB if SP == LAST_ADDR. */
1642 emit_cmp_and_jump_insns (stack_pointer_rtx
, last_addr
, EQ
, NULL_RTX
,
1645 /* SP = SP + PROBE_INTERVAL and probe at SP. */
1646 anti_adjust_stack (GEN_INT (PROBE_INTERVAL
));
1647 emit_stack_probe (stack_pointer_rtx
);
1649 emit_jump (loop_lab
);
1651 emit_label (end_lab
);
1654 /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
1655 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
1657 /* TEMP = SIZE - ROUNDED_SIZE. */
1658 temp
= simplify_gen_binary (MINUS
, Pmode
, size
, rounded_size
);
1659 if (temp
!= const0_rtx
)
1661 /* Manual CSE if the difference is not known at compile-time. */
1662 if (GET_CODE (temp
) != CONST_INT
)
1663 temp
= gen_rtx_MINUS (Pmode
, size
, rounded_size_op
);
1664 anti_adjust_stack (temp
);
1665 emit_stack_probe (stack_pointer_rtx
);
1669 /* Adjust back and account for the additional first interval. */
1671 adjust_stack (plus_constant (size
, PROBE_INTERVAL
+ dope
));
1673 adjust_stack (GEN_INT (PROBE_INTERVAL
+ dope
));
1676 /* Return an rtx representing the register or memory location
1677 in which a scalar value of data type VALTYPE
1678 was returned by a function call to function FUNC.
1679 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1680 function is known, otherwise 0.
1681 OUTGOING is 1 if on a machine with register windows this function
1682 should return the register in which the function will put its result
1686 hard_function_value (const_tree valtype
, const_tree func
, const_tree fntype
,
1687 int outgoing ATTRIBUTE_UNUSED
)
1691 val
= targetm
.calls
.function_value (valtype
, func
? func
: fntype
, outgoing
);
1694 && GET_MODE (val
) == BLKmode
)
1696 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (valtype
);
1697 enum machine_mode tmpmode
;
1699 /* int_size_in_bytes can return -1. We don't need a check here
1700 since the value of bytes will then be large enough that no
1701 mode will match anyway. */
1703 for (tmpmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
1704 tmpmode
!= VOIDmode
;
1705 tmpmode
= GET_MODE_WIDER_MODE (tmpmode
))
1707 /* Have we found a large enough mode? */
1708 if (GET_MODE_SIZE (tmpmode
) >= bytes
)
1712 /* No suitable mode found. */
1713 gcc_assert (tmpmode
!= VOIDmode
);
1715 PUT_MODE (val
, tmpmode
);
1720 /* Return an rtx representing the register or memory location
1721 in which a scalar value of mode MODE was returned by a library call. */
1724 hard_libcall_value (enum machine_mode mode
, rtx fun
)
1726 return targetm
.calls
.libcall_value (mode
, fun
);
1729 /* Look up the tree code for a given rtx code
1730 to provide the arithmetic operation for REAL_ARITHMETIC.
1731 The function returns an int because the caller may not know
1732 what `enum tree_code' means. */
1735 rtx_to_tree_code (enum rtx_code code
)
1737 enum tree_code tcode
;
1760 tcode
= LAST_AND_UNUSED_TREE_CODE
;
1763 return ((int) tcode
);
1766 #include "gt-explow.h"