* trans-stmt.c (gfc_trans_simple_do): New function.
[official-gcc.git] / gcc / tree-ssa-operands.c
blobac5f6075f74a4a65129ccceb442b0726a65b5572
1 /* SSA operands management for trees.
2 Copyright (C) 2003, 2004 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "function.h"
28 #include "diagnostic.h"
29 #include "errors.h"
30 #include "tree-flow.h"
31 #include "tree-inline.h"
32 #include "tree-pass.h"
33 #include "ggc.h"
34 #include "timevar.h"
35 #include "cgraph.h"
37 #include "langhooks.h"
39 /* This file contains the code required to manage the operands cache of the
40 SSA optimizer. For every stmt, we maintain an operand cache in the stmt
41 annotation. This cache contains operands that will be of interest to
42 optimizers and other passes wishing to manipulate the IL.
44 The operand type are broken up into REAL and VIRTUAL operands. The real
45 operands are represented as pointers into the stmt's operand tree. Thus
46 any manipulation of the real operands will be reflected in the actual tree.
47 Virtual operands are represented solely in the cache, although the base
48 variable for the SSA_NAME may, or may not occur in the stmt's tree.
49 Manipulation of the virtual operands will not be reflected in the stmt tree.
51 The routines in this file are concerned with creating this operand cache
52 from a stmt tree.
54 get_stmt_operands() in the primary entry point.
56 The operand tree is the parsed by the various get_* routines which look
57 through the stmt tree for the occurrence of operands which may be of
58 interest, and calls are made to the append_* routines whenever one is
59 found. There are 5 of these routines, each representing one of the
60 5 types of operands. Defs, Uses, Virtual Uses, Virtual May Defs, and
61 Virtual Must Defs.
63 The append_* routines check for duplication, and simply keep a list of
64 unique objects for each operand type in the build_* extendable vectors.
66 Once the stmt tree is completely parsed, the finalize_ssa_operands()
67 routine is called, which proceeds to perform the finalization routine
68 on each of the 5 operand vectors which have been built up.
70 If the stmt had a previous operand cache, the finalization routines
71 attempt to match up the new operands with the old ones. If its a perfect
72 match, the old vector is simply reused. If it isn't a perfect match, then
73 a new vector is created and the new operands are placed there. For
74 virtual operands, if the previous cache had SSA_NAME version of a
75 variable, and that same variable occurs in the same operands cache, then
76 the new cache vector will also get the same SSA_NAME.
78 i.e., if a stmt had a VUSE of 'a_5', and 'a' occurs in the new operand
79 vector for VUSE, then the new vector will also be modified such that
80 it contains 'a_5' rather than 'a'.
85 /* Flags to describe operand properties in get_stmt_operands and helpers. */
87 /* By default, operands are loaded. */
88 #define opf_none 0
90 /* Operand is the target of an assignment expression or a
91 call-clobbered variable */
92 #define opf_is_def (1 << 0)
94 /* Operand is the target of an assignment expression. */
95 #define opf_kill_def (1 << 1)
97 /* No virtual operands should be created in the expression. This is used
98 when traversing ADDR_EXPR nodes which have different semantics than
99 other expressions. Inside an ADDR_EXPR node, the only operands that we
100 need to consider are indices into arrays. For instance, &a.b[i] should
101 generate a USE of 'i' but it should not generate a VUSE for 'a' nor a
102 VUSE for 'b'. */
103 #define opf_no_vops (1 << 2)
105 /* Array for building all the def operands. */
106 static GTY (()) varray_type build_defs;
108 /* Array for building all the use operands. */
109 static GTY (()) varray_type build_uses;
111 /* Array for building all the v_may_def operands. */
112 static GTY (()) varray_type build_v_may_defs;
114 /* Array for building all the vuse operands. */
115 static GTY (()) varray_type build_vuses;
117 /* Array for building all the v_must_def operands. */
118 static GTY (()) varray_type build_v_must_defs;
121 #ifdef ENABLE_CHECKING
122 /* Used to make sure operand construction is working on the proper stmt. */
123 tree check_build_stmt;
124 #endif
126 def_operand_p NULL_DEF_OPERAND_P = { NULL };
127 use_operand_p NULL_USE_OPERAND_P = { NULL };
129 static void note_addressable (tree, stmt_ann_t);
130 static void get_expr_operands (tree, tree *, int);
131 static void get_asm_expr_operands (tree);
132 static void get_indirect_ref_operands (tree, tree, int);
133 static void get_call_expr_operands (tree, tree);
134 static inline void append_def (tree *);
135 static inline void append_use (tree *);
136 static void append_v_may_def (tree);
137 static void append_v_must_def (tree);
138 static void add_call_clobber_ops (tree, tree);
139 static void add_call_read_ops (tree, tree);
140 static void add_stmt_operand (tree *, tree, int);
142 /* Return a vector of contiguous memory for NUM def operands. */
144 static inline def_optype
145 allocate_def_optype (unsigned num)
147 def_optype def_ops;
148 unsigned size;
149 size = sizeof (struct def_optype_d) + sizeof (tree *) * (num - 1);
150 def_ops = ggc_alloc (size);
151 def_ops->num_defs = num;
152 return def_ops;
156 /* Return a vector of contiguous memory for NUM use operands. */
158 static inline use_optype
159 allocate_use_optype (unsigned num)
161 use_optype use_ops;
162 unsigned size;
163 size = sizeof (struct use_optype_d) + sizeof (tree *) * (num - 1);
164 use_ops = ggc_alloc (size);
165 use_ops->num_uses = num;
166 return use_ops;
170 /* Return a vector of contiguous memory for NUM v_may_def operands. */
172 static inline v_may_def_optype
173 allocate_v_may_def_optype (unsigned num)
175 v_may_def_optype v_may_def_ops;
176 unsigned size;
177 size = sizeof (struct v_may_def_optype_d)
178 + sizeof (v_may_def_operand_type_t) * (num - 1);
179 v_may_def_ops = ggc_alloc (size);
180 v_may_def_ops->num_v_may_defs = num;
181 return v_may_def_ops;
185 /* Return a vector of contiguous memory for NUM v_use operands. */
187 static inline vuse_optype
188 allocate_vuse_optype (unsigned num)
190 vuse_optype vuse_ops;
191 unsigned size;
192 size = sizeof (struct vuse_optype_d) + sizeof (tree) * (num - 1);
193 vuse_ops = ggc_alloc (size);
194 vuse_ops->num_vuses = num;
195 return vuse_ops;
199 /* Return a vector of contiguous memory for NUM v_must_def operands. */
201 static inline v_must_def_optype
202 allocate_v_must_def_optype (unsigned num)
204 v_must_def_optype v_must_def_ops;
205 unsigned size;
206 size = sizeof (struct v_must_def_optype_d) + sizeof (tree) * (num - 1);
207 v_must_def_ops = ggc_alloc (size);
208 v_must_def_ops->num_v_must_defs = num;
209 return v_must_def_ops;
213 /* Free memory for USES. */
215 static inline void
216 free_uses (use_optype *uses)
218 if (*uses)
220 ggc_free (*uses);
221 *uses = NULL;
226 /* Free memory for DEFS. */
228 static inline void
229 free_defs (def_optype *defs)
231 if (*defs)
233 ggc_free (*defs);
234 *defs = NULL;
239 /* Free memory for VUSES. */
241 static inline void
242 free_vuses (vuse_optype *vuses)
244 if (*vuses)
246 ggc_free (*vuses);
247 *vuses = NULL;
252 /* Free memory for V_MAY_DEFS. */
254 static inline void
255 free_v_may_defs (v_may_def_optype *v_may_defs)
257 if (*v_may_defs)
259 ggc_free (*v_may_defs);
260 *v_may_defs = NULL;
265 /* Free memory for V_MUST_DEFS. */
267 static inline void
268 free_v_must_defs (v_must_def_optype *v_must_defs)
270 if (*v_must_defs)
272 ggc_free (*v_must_defs);
273 *v_must_defs = NULL;
278 /* Initialize the operand cache routines. */
280 void
281 init_ssa_operands (void)
283 VARRAY_TREE_PTR_INIT (build_defs, 5, "build defs");
284 VARRAY_TREE_PTR_INIT (build_uses, 10, "build uses");
285 VARRAY_TREE_INIT (build_v_may_defs, 10, "build v_may_defs");
286 VARRAY_TREE_INIT (build_vuses, 10, "build vuses");
287 VARRAY_TREE_INIT (build_v_must_defs, 10, "build v_must_defs");
291 /* Dispose of anything required by the operand routines. */
293 void
294 fini_ssa_operands (void)
296 ggc_free (build_defs);
297 ggc_free (build_uses);
298 ggc_free (build_v_may_defs);
299 ggc_free (build_vuses);
300 ggc_free (build_v_must_defs);
301 build_defs = NULL;
302 build_uses = NULL;
303 build_v_may_defs = NULL;
304 build_vuses = NULL;
305 build_v_must_defs = NULL;
309 /* All the finalize_ssa_* routines do the work required to turn the build_
310 VARRAY into an operand_vector of the appropriate type. The original vector,
311 if any, is passed in for comparison and virtual SSA_NAME reuse. If the
312 old vector is reused, the pointer passed in is set to NULL so that
313 the memory is not freed when the old operands are freed. */
315 /* Return a new def operand vector for STMT, comparing to OLD_OPS_P. */
317 static def_optype
318 finalize_ssa_defs (def_optype *old_ops_p, tree stmt ATTRIBUTE_UNUSED)
320 unsigned num, x;
321 def_optype def_ops, old_ops;
322 bool build_diff;
324 num = VARRAY_ACTIVE_SIZE (build_defs);
325 if (num == 0)
326 return NULL;
328 /* There should only be a single real definition per assignment. */
329 gcc_assert (TREE_CODE (stmt) != MODIFY_EXPR || num <= 1);
331 old_ops = *old_ops_p;
333 /* Compare old vector and new array. */
334 build_diff = true;
335 if (old_ops && old_ops->num_defs == num)
337 build_diff = false;
338 for (x = 0; x < num; x++)
339 if (old_ops->defs[x].def != VARRAY_TREE_PTR (build_defs, x))
341 build_diff = true;
342 break;
346 if (!build_diff)
348 def_ops = old_ops;
349 *old_ops_p = NULL;
351 else
353 def_ops = allocate_def_optype (num);
354 for (x = 0; x < num ; x++)
355 def_ops->defs[x].def = VARRAY_TREE_PTR (build_defs, x);
358 VARRAY_POP_ALL (build_defs);
360 return def_ops;
364 /* Return a new use operand vector for STMT, comparing to OLD_OPS_P. */
366 static use_optype
367 finalize_ssa_uses (use_optype *old_ops_p, tree stmt ATTRIBUTE_UNUSED)
369 unsigned num, x;
370 use_optype use_ops, old_ops;
371 bool build_diff;
373 num = VARRAY_ACTIVE_SIZE (build_uses);
374 if (num == 0)
375 return NULL;
377 #ifdef ENABLE_CHECKING
379 unsigned x;
380 /* If the pointer to the operand is the statement itself, something is
381 wrong. It means that we are pointing to a local variable (the
382 initial call to get_stmt_operands does not pass a pointer to a
383 statement). */
384 for (x = 0; x < num; x++)
385 gcc_assert (*(VARRAY_TREE_PTR (build_uses, x)) != stmt);
387 #endif
388 old_ops = *old_ops_p;
390 /* Check if the old vector and the new array are the same. */
391 build_diff = true;
392 if (old_ops && old_ops->num_uses == num)
394 build_diff = false;
395 for (x = 0; x < num; x++)
396 if (old_ops->uses[x].use != VARRAY_TREE_PTR (build_uses, x))
398 build_diff = true;
399 break;
403 if (!build_diff)
405 use_ops = old_ops;
406 *old_ops_p = NULL;
408 else
410 use_ops = allocate_use_optype (num);
411 for (x = 0; x < num ; x++)
412 use_ops->uses[x].use = VARRAY_TREE_PTR (build_uses, x);
414 VARRAY_POP_ALL (build_uses);
416 return use_ops;
420 /* Return a new v_may_def operand vector for STMT, comparing to OLD_OPS_P. */
422 static v_may_def_optype
423 finalize_ssa_v_may_defs (v_may_def_optype *old_ops_p)
425 unsigned num, x, i, old_num;
426 v_may_def_optype v_may_def_ops, old_ops;
427 tree result, var;
428 bool build_diff;
430 num = VARRAY_ACTIVE_SIZE (build_v_may_defs);
431 if (num == 0)
432 return NULL;
434 old_ops = *old_ops_p;
436 /* Check if the old vector and the new array are the same. */
437 build_diff = true;
438 if (old_ops && old_ops->num_v_may_defs == num)
440 old_num = num;
441 build_diff = false;
442 for (x = 0; x < num; x++)
444 var = old_ops->v_may_defs[x].def;
445 if (TREE_CODE (var) == SSA_NAME)
446 var = SSA_NAME_VAR (var);
447 if (var != VARRAY_TREE (build_v_may_defs, x))
449 build_diff = true;
450 break;
454 else
455 old_num = (old_ops ? old_ops->num_v_may_defs : 0);
457 if (!build_diff)
459 v_may_def_ops = old_ops;
460 *old_ops_p = NULL;
462 else
464 v_may_def_ops = allocate_v_may_def_optype (num);
465 for (x = 0; x < num; x++)
467 var = VARRAY_TREE (build_v_may_defs, x);
468 /* Look for VAR in the old operands vector. */
469 for (i = 0; i < old_num; i++)
471 result = old_ops->v_may_defs[i].def;
472 if (TREE_CODE (result) == SSA_NAME)
473 result = SSA_NAME_VAR (result);
474 if (result == var)
476 v_may_def_ops->v_may_defs[x] = old_ops->v_may_defs[i];
477 break;
480 if (i == old_num)
482 v_may_def_ops->v_may_defs[x].def = var;
483 v_may_def_ops->v_may_defs[x].use = var;
488 /* Empty the V_MAY_DEF build vector after VUSES have been processed. */
490 return v_may_def_ops;
494 /* Return a new vuse operand vector, comparing to OLD_OPS_P. */
496 static vuse_optype
497 finalize_ssa_vuses (vuse_optype *old_ops_p)
499 unsigned num, x, i, num_v_may_defs, old_num;
500 vuse_optype vuse_ops, old_ops;
501 bool build_diff;
503 num = VARRAY_ACTIVE_SIZE (build_vuses);
504 if (num == 0)
506 VARRAY_POP_ALL (build_v_may_defs);
507 return NULL;
510 /* Remove superfluous VUSE operands. If the statement already has a
511 V_MAY_DEF operation for a variable 'a', then a VUSE for 'a' is not
512 needed because V_MAY_DEFs imply a VUSE of the variable. For instance,
513 suppose that variable 'a' is aliased:
515 # VUSE <a_2>
516 # a_3 = V_MAY_DEF <a_2>
517 a = a + 1;
519 The VUSE <a_2> is superfluous because it is implied by the V_MAY_DEF
520 operation. */
522 num_v_may_defs = VARRAY_ACTIVE_SIZE (build_v_may_defs);
524 if (num_v_may_defs > 0)
526 size_t i, j;
527 tree vuse;
528 for (i = 0; i < VARRAY_ACTIVE_SIZE (build_vuses); i++)
530 vuse = VARRAY_TREE (build_vuses, i);
531 for (j = 0; j < num_v_may_defs; j++)
533 if (vuse == VARRAY_TREE (build_v_may_defs, j))
534 break;
537 /* If we found a useless VUSE operand, remove it from the
538 operand array by replacing it with the last active element
539 in the operand array (unless the useless VUSE was the
540 last operand, in which case we simply remove it. */
541 if (j != num_v_may_defs)
543 if (i != VARRAY_ACTIVE_SIZE (build_vuses) - 1)
545 VARRAY_TREE (build_vuses, i)
546 = VARRAY_TREE (build_vuses,
547 VARRAY_ACTIVE_SIZE (build_vuses) - 1);
549 VARRAY_POP (build_vuses);
551 /* We want to rescan the element at this index, unless
552 this was the last element, in which case the loop
553 terminates. */
554 i--;
559 num = VARRAY_ACTIVE_SIZE (build_vuses);
560 /* We could have reduced the size to zero now, however. */
561 if (num == 0)
563 VARRAY_POP_ALL (build_v_may_defs);
564 return NULL;
567 old_ops = *old_ops_p;
569 /* Determine whether vuses is the same as the old vector. */
570 build_diff = true;
571 if (old_ops && old_ops->num_vuses == num)
573 old_num = num;
574 build_diff = false;
575 for (x = 0; x < num ; x++)
577 tree v;
578 v = old_ops->vuses[x];
579 if (TREE_CODE (v) == SSA_NAME)
580 v = SSA_NAME_VAR (v);
581 if (v != VARRAY_TREE (build_vuses, x))
583 build_diff = true;
584 break;
588 else
589 old_num = (old_ops ? old_ops->num_vuses : 0);
591 if (!build_diff)
593 vuse_ops = old_ops;
594 *old_ops_p = NULL;
596 else
598 vuse_ops = allocate_vuse_optype (num);
599 for (x = 0; x < num; x++)
601 tree result, var = VARRAY_TREE (build_vuses, x);
602 /* Look for VAR in the old vector, and use that SSA_NAME. */
603 for (i = 0; i < old_num; i++)
605 result = old_ops->vuses[i];
606 if (TREE_CODE (result) == SSA_NAME)
607 result = SSA_NAME_VAR (result);
608 if (result == var)
610 vuse_ops->vuses[x] = old_ops->vuses[i];
611 break;
614 if (i == old_num)
615 vuse_ops->vuses[x] = var;
619 /* The v_may_def build vector wasn't freed because we needed it here.
620 Free it now with the vuses build vector. */
621 VARRAY_POP_ALL (build_vuses);
622 VARRAY_POP_ALL (build_v_may_defs);
624 return vuse_ops;
627 /* Return a new v_must_def operand vector for STMT, comparing to OLD_OPS_P. */
629 static v_must_def_optype
630 finalize_ssa_v_must_defs (v_must_def_optype *old_ops_p,
631 tree stmt ATTRIBUTE_UNUSED)
633 unsigned num, x, i, old_num = 0;
634 v_must_def_optype v_must_def_ops, old_ops;
635 bool build_diff;
637 num = VARRAY_ACTIVE_SIZE (build_v_must_defs);
638 if (num == 0)
639 return NULL;
641 /* There should only be a single V_MUST_DEF per assignment. */
642 gcc_assert (TREE_CODE (stmt) != MODIFY_EXPR || num <= 1);
644 old_ops = *old_ops_p;
646 /* Check if the old vector and the new array are the same. */
647 build_diff = true;
648 if (old_ops && old_ops->num_v_must_defs == num)
650 old_num = num;
651 build_diff = false;
652 for (x = 0; x < num; x++)
654 tree var = old_ops->v_must_defs[x];
655 if (TREE_CODE (var) == SSA_NAME)
656 var = SSA_NAME_VAR (var);
657 if (var != VARRAY_TREE (build_v_must_defs, x))
659 build_diff = true;
660 break;
664 else
665 old_num = (old_ops ? old_ops->num_v_must_defs : 0);
667 if (!build_diff)
669 v_must_def_ops = old_ops;
670 *old_ops_p = NULL;
672 else
674 v_must_def_ops = allocate_v_must_def_optype (num);
675 for (x = 0; x < num ; x++)
677 tree result, var = VARRAY_TREE (build_v_must_defs, x);
678 /* Look for VAR in the original vector. */
679 for (i = 0; i < old_num; i++)
681 result = old_ops->v_must_defs[i];
682 if (TREE_CODE (result) == SSA_NAME)
683 result = SSA_NAME_VAR (result);
684 if (result == var)
686 v_must_def_ops->v_must_defs[x] = old_ops->v_must_defs[i];
687 break;
690 if (i == old_num)
691 v_must_def_ops->v_must_defs[x] = var;
694 VARRAY_POP_ALL (build_v_must_defs);
696 return v_must_def_ops;
700 /* Finalize all the build vectors, fill the new ones into INFO. */
702 static inline void
703 finalize_ssa_stmt_operands (tree stmt, stmt_operands_p old_ops,
704 stmt_operands_p new_ops)
706 new_ops->def_ops = finalize_ssa_defs (&(old_ops->def_ops), stmt);
707 new_ops->use_ops = finalize_ssa_uses (&(old_ops->use_ops), stmt);
708 new_ops->v_must_def_ops
709 = finalize_ssa_v_must_defs (&(old_ops->v_must_def_ops), stmt);
710 new_ops->v_may_def_ops = finalize_ssa_v_may_defs (&(old_ops->v_may_def_ops));
711 new_ops->vuse_ops = finalize_ssa_vuses (&(old_ops->vuse_ops));
715 /* Start the process of building up operands vectors in INFO. */
717 static inline void
718 start_ssa_stmt_operands (void)
720 gcc_assert (VARRAY_ACTIVE_SIZE (build_defs) == 0);
721 gcc_assert (VARRAY_ACTIVE_SIZE (build_uses) == 0);
722 gcc_assert (VARRAY_ACTIVE_SIZE (build_vuses) == 0);
723 gcc_assert (VARRAY_ACTIVE_SIZE (build_v_may_defs) == 0);
724 gcc_assert (VARRAY_ACTIVE_SIZE (build_v_must_defs) == 0);
728 /* Add DEF_P to the list of pointers to operands. */
730 static inline void
731 append_def (tree *def_p)
733 VARRAY_PUSH_TREE_PTR (build_defs, def_p);
737 /* Add USE_P to the list of pointers to operands. */
739 static inline void
740 append_use (tree *use_p)
742 VARRAY_PUSH_TREE_PTR (build_uses, use_p);
746 /* Add a new virtual may def for variable VAR to the build array. */
748 static inline void
749 append_v_may_def (tree var)
751 unsigned i;
753 /* Don't allow duplicate entries. */
754 for (i = 0; i < VARRAY_ACTIVE_SIZE (build_v_may_defs); i++)
755 if (var == VARRAY_TREE (build_v_may_defs, i))
756 return;
758 VARRAY_PUSH_TREE (build_v_may_defs, var);
762 /* Add VAR to the list of virtual uses. */
764 static inline void
765 append_vuse (tree var)
767 size_t i;
769 /* Don't allow duplicate entries. */
770 for (i = 0; i < VARRAY_ACTIVE_SIZE (build_vuses); i++)
771 if (var == VARRAY_TREE (build_vuses, i))
772 return;
774 VARRAY_PUSH_TREE (build_vuses, var);
778 /* Add VAR to the list of virtual must definitions for INFO. */
780 static inline void
781 append_v_must_def (tree var)
783 unsigned i;
785 /* Don't allow duplicate entries. */
786 for (i = 0; i < VARRAY_ACTIVE_SIZE (build_v_must_defs); i++)
787 if (var == VARRAY_TREE (build_v_must_defs, i))
788 return;
790 VARRAY_PUSH_TREE (build_v_must_defs, var);
793 /* Create an operands cache for STMT, returning it in NEW_OPS. OLD_OPS are the
794 original operands, and if ANN is non-null, appropriate stmt flags are set
795 in the stmt's annotation. Note that some fields in old_ops may
796 change to NULL, although none of the memory they originally pointed to
797 will be destroyed. It is appropriate to call free_stmt_operands() on
798 the value returned in old_ops.
800 The rationale for this: Certain optimizations wish to examine the difference
801 between new_ops and old_ops after processing. If a set of operands don't
802 change, new_ops will simply assume the pointer in old_ops, and the old_ops
803 pointer will be set to NULL, indicating no memory needs to be cleared.
804 Usage might appear something like:
806 old_ops_copy = old_ops = stmt_ann(stmt)->operands;
807 build_ssa_operands (stmt, NULL, &old_ops, &new_ops);
808 <* compare old_ops_copy and new_ops *>
809 free_ssa_operands (old_ops); */
811 void
812 build_ssa_operands (tree stmt, stmt_ann_t ann, stmt_operands_p old_ops,
813 stmt_operands_p new_ops)
815 enum tree_code code;
816 tree_ann_t saved_ann = stmt->common.ann;
818 /* Replace stmt's annotation with the one passed in for the duration
819 of the operand building process. This allows "fake" stmts to be built
820 and not be included in other data structures which can be built here. */
821 stmt->common.ann = (tree_ann_t) ann;
823 /* Initially assume that the statement has no volatile operands, nor
824 makes aliased loads or stores. */
825 if (ann)
827 ann->has_volatile_ops = false;
828 ann->makes_aliased_stores = false;
829 ann->makes_aliased_loads = false;
832 start_ssa_stmt_operands ();
834 code = TREE_CODE (stmt);
835 switch (code)
837 case MODIFY_EXPR:
838 get_expr_operands (stmt, &TREE_OPERAND (stmt, 1), opf_none);
839 if (TREE_CODE (TREE_OPERAND (stmt, 0)) == ARRAY_REF
840 || TREE_CODE (TREE_OPERAND (stmt, 0)) == ARRAY_RANGE_REF
841 || TREE_CODE (TREE_OPERAND (stmt, 0)) == COMPONENT_REF
842 || TREE_CODE (TREE_OPERAND (stmt, 0)) == REALPART_EXPR
843 || TREE_CODE (TREE_OPERAND (stmt, 0)) == IMAGPART_EXPR
844 /* Use a V_MAY_DEF if the RHS might throw, as the LHS won't be
845 modified in that case. FIXME we should represent somehow
846 that it is killed on the fallthrough path. */
847 || tree_could_throw_p (TREE_OPERAND (stmt, 1)))
848 get_expr_operands (stmt, &TREE_OPERAND (stmt, 0), opf_is_def);
849 else
850 get_expr_operands (stmt, &TREE_OPERAND (stmt, 0),
851 opf_is_def | opf_kill_def);
852 break;
854 case COND_EXPR:
855 get_expr_operands (stmt, &COND_EXPR_COND (stmt), opf_none);
856 break;
858 case SWITCH_EXPR:
859 get_expr_operands (stmt, &SWITCH_COND (stmt), opf_none);
860 break;
862 case ASM_EXPR:
863 get_asm_expr_operands (stmt);
864 break;
866 case RETURN_EXPR:
867 get_expr_operands (stmt, &TREE_OPERAND (stmt, 0), opf_none);
868 break;
870 case GOTO_EXPR:
871 get_expr_operands (stmt, &GOTO_DESTINATION (stmt), opf_none);
872 break;
874 case LABEL_EXPR:
875 get_expr_operands (stmt, &LABEL_EXPR_LABEL (stmt), opf_none);
876 break;
878 /* These nodes contain no variable references. */
879 case BIND_EXPR:
880 case CASE_LABEL_EXPR:
881 case TRY_CATCH_EXPR:
882 case TRY_FINALLY_EXPR:
883 case EH_FILTER_EXPR:
884 case CATCH_EXPR:
885 case RESX_EXPR:
886 break;
888 default:
889 /* Notice that if get_expr_operands tries to use &STMT as the operand
890 pointer (which may only happen for USE operands), we will abort in
891 append_use. This default will handle statements like empty
892 statements, or CALL_EXPRs that may appear on the RHS of a statement
893 or as statements themselves. */
894 get_expr_operands (stmt, &stmt, opf_none);
895 break;
898 finalize_ssa_stmt_operands (stmt, old_ops, new_ops);
899 stmt->common.ann = saved_ann;
903 /* Free any operands vectors in OPS. */
905 static void
906 free_ssa_operands (stmt_operands_p ops)
908 if (ops->def_ops)
909 free_defs (&(ops->def_ops));
910 if (ops->use_ops)
911 free_uses (&(ops->use_ops));
912 if (ops->vuse_ops)
913 free_vuses (&(ops->vuse_ops));
914 if (ops->v_may_def_ops)
915 free_v_may_defs (&(ops->v_may_def_ops));
916 if (ops->v_must_def_ops)
917 free_v_must_defs (&(ops->v_must_def_ops));
921 /* Get the operands of statement STMT. Note that repeated calls to
922 get_stmt_operands for the same statement will do nothing until the
923 statement is marked modified by a call to modify_stmt(). */
925 void
926 get_stmt_operands (tree stmt)
928 stmt_ann_t ann;
929 stmt_operands_t old_operands;
931 /* The optimizers cannot handle statements that are nothing but a
932 _DECL. This indicates a bug in the gimplifier. */
933 gcc_assert (!SSA_VAR_P (stmt));
935 /* Ignore error statements. */
936 if (TREE_CODE (stmt) == ERROR_MARK)
937 return;
939 ann = get_stmt_ann (stmt);
941 /* If the statement has not been modified, the operands are still valid. */
942 if (!ann->modified)
943 return;
945 timevar_push (TV_TREE_OPS);
947 old_operands = ann->operands;
948 memset (&(ann->operands), 0, sizeof (stmt_operands_t));
950 build_ssa_operands (stmt, ann, &old_operands, &(ann->operands));
951 free_ssa_operands (&old_operands);
953 /* Clear the modified bit for STMT. Subsequent calls to
954 get_stmt_operands for this statement will do nothing until the
955 statement is marked modified by a call to modify_stmt(). */
956 ann->modified = 0;
958 timevar_pop (TV_TREE_OPS);
962 /* Recursively scan the expression pointed by EXPR_P in statement referred to
963 by INFO. FLAGS is one of the OPF_* constants modifying how to interpret the
964 operands found. */
966 static void
967 get_expr_operands (tree stmt, tree *expr_p, int flags)
969 enum tree_code code;
970 enum tree_code_class class;
971 tree expr = *expr_p;
973 if (expr == NULL || expr == error_mark_node)
974 return;
976 code = TREE_CODE (expr);
977 class = TREE_CODE_CLASS (code);
979 switch (code)
981 case ADDR_EXPR:
982 /* We could have the address of a component, array member,
983 etc which has interesting variable references. */
984 /* Taking the address of a variable does not represent a
985 reference to it, but the fact that the stmt takes its address will be
986 of interest to some passes (e.g. alias resolution). */
987 add_stmt_operand (expr_p, stmt, 0);
989 /* If the address is invariant, there may be no interesting variable
990 references inside. */
991 if (is_gimple_min_invariant (expr))
992 return;
994 /* There should be no VUSEs created, since the referenced objects are
995 not really accessed. The only operands that we should find here
996 are ARRAY_REF indices which will always be real operands (GIMPLE
997 does not allow non-registers as array indices). */
998 flags |= opf_no_vops;
1000 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
1001 return;
1003 case SSA_NAME:
1004 case VAR_DECL:
1005 case PARM_DECL:
1006 case RESULT_DECL:
1007 case CONST_DECL:
1008 /* If we found a variable, add it to DEFS or USES depending
1009 on the operand flags. */
1010 add_stmt_operand (expr_p, stmt, flags);
1011 return;
1013 case MISALIGNED_INDIRECT_REF:
1014 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), flags);
1015 /* fall through */
1017 case ALIGN_INDIRECT_REF:
1018 case INDIRECT_REF:
1019 get_indirect_ref_operands (stmt, expr, flags);
1020 return;
1022 case ARRAY_REF:
1023 case ARRAY_RANGE_REF:
1024 /* Treat array references as references to the virtual variable
1025 representing the array. The virtual variable for an ARRAY_REF
1026 is the VAR_DECL for the array. */
1028 /* Add the virtual variable for the ARRAY_REF to VDEFS or VUSES
1029 according to the value of IS_DEF. Recurse if the LHS of the
1030 ARRAY_REF node is not a regular variable. */
1031 if (SSA_VAR_P (TREE_OPERAND (expr, 0)))
1032 add_stmt_operand (expr_p, stmt, flags);
1033 else
1034 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
1036 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none);
1037 get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none);
1038 get_expr_operands (stmt, &TREE_OPERAND (expr, 3), opf_none);
1039 return;
1041 case COMPONENT_REF:
1042 case REALPART_EXPR:
1043 case IMAGPART_EXPR:
1044 /* Similarly to arrays, references to compound variables (complex
1045 types and structures/unions) are globbed.
1047 FIXME: This means that
1049 a.x = 6;
1050 a.y = 7;
1051 foo (a.x, a.y);
1053 will not be constant propagated because the two partial
1054 definitions to 'a' will kill each other. Note that SRA may be
1055 able to fix this problem if 'a' can be scalarized. */
1057 /* If the LHS of the compound reference is not a regular variable,
1058 recurse to keep looking for more operands in the subexpression. */
1059 if (SSA_VAR_P (TREE_OPERAND (expr, 0)))
1060 add_stmt_operand (expr_p, stmt, flags);
1061 else
1062 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
1064 if (code == COMPONENT_REF)
1065 get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none);
1066 return;
1068 case WITH_SIZE_EXPR:
1069 /* WITH_SIZE_EXPR is a pass-through reference to its first argument,
1070 and an rvalue reference to its second argument. */
1071 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none);
1072 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
1073 return;
1075 case CALL_EXPR:
1076 get_call_expr_operands (stmt, expr);
1077 return;
1079 case COND_EXPR:
1080 case VEC_COND_EXPR:
1081 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), opf_none);
1082 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none);
1083 get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none);
1084 return;
1086 case MODIFY_EXPR:
1088 int subflags;
1089 tree op;
1091 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none);
1093 op = TREE_OPERAND (expr, 0);
1094 if (TREE_CODE (op) == WITH_SIZE_EXPR)
1095 op = TREE_OPERAND (expr, 0);
1096 if (TREE_CODE (op) == ARRAY_REF
1097 || TREE_CODE (op) == ARRAY_RANGE_REF
1098 || TREE_CODE (op) == COMPONENT_REF
1099 || TREE_CODE (op) == REALPART_EXPR
1100 || TREE_CODE (op) == IMAGPART_EXPR)
1101 subflags = opf_is_def;
1102 else
1103 subflags = opf_is_def | opf_kill_def;
1105 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), subflags);
1106 return;
1109 case CONSTRUCTOR:
1111 /* General aggregate CONSTRUCTORs have been decomposed, but they
1112 are still in use as the COMPLEX_EXPR equivalent for vectors. */
1114 tree t;
1115 for (t = TREE_OPERAND (expr, 0); t ; t = TREE_CHAIN (t))
1116 get_expr_operands (stmt, &TREE_VALUE (t), opf_none);
1118 return;
1121 case TRUTH_NOT_EXPR:
1122 case BIT_FIELD_REF:
1123 case VIEW_CONVERT_EXPR:
1124 do_unary:
1125 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
1126 return;
1128 case TRUTH_AND_EXPR:
1129 case TRUTH_OR_EXPR:
1130 case TRUTH_XOR_EXPR:
1131 case COMPOUND_EXPR:
1132 case OBJ_TYPE_REF:
1133 do_binary:
1135 tree op0 = TREE_OPERAND (expr, 0);
1136 tree op1 = TREE_OPERAND (expr, 1);
1138 /* If it would be profitable to swap the operands, then do so to
1139 canonicalize the statement, enabling better optimization.
1141 By placing canonicalization of such expressions here we
1142 transparently keep statements in canonical form, even
1143 when the statement is modified. */
1144 if (tree_swap_operands_p (op0, op1, false))
1146 /* For relationals we need to swap the operands
1147 and change the code. */
1148 if (code == LT_EXPR
1149 || code == GT_EXPR
1150 || code == LE_EXPR
1151 || code == GE_EXPR)
1153 TREE_SET_CODE (expr, swap_tree_comparison (code));
1154 TREE_OPERAND (expr, 0) = op1;
1155 TREE_OPERAND (expr, 1) = op0;
1158 /* For a commutative operator we can just swap the operands. */
1159 else if (commutative_tree_code (code))
1161 TREE_OPERAND (expr, 0) = op1;
1162 TREE_OPERAND (expr, 1) = op0;
1166 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
1167 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), flags);
1168 return;
1171 case REALIGN_LOAD_EXPR:
1173 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
1174 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), flags);
1175 get_expr_operands (stmt, &TREE_OPERAND (expr, 2), flags);
1176 return;
1179 case BLOCK:
1180 case FUNCTION_DECL:
1181 case EXC_PTR_EXPR:
1182 case FILTER_EXPR:
1183 case LABEL_DECL:
1184 /* Expressions that make no memory references. */
1185 return;
1187 default:
1188 if (class == tcc_unary)
1189 goto do_unary;
1190 if (class == tcc_binary || class == tcc_comparison)
1191 goto do_binary;
1192 if (class == tcc_constant || class == tcc_type)
1193 return;
1196 /* If we get here, something has gone wrong. */
1197 #ifdef ENABLE_CHECKING
1198 fprintf (stderr, "unhandled expression in get_expr_operands():\n");
1199 debug_tree (expr);
1200 fputs ("\n", stderr);
1201 internal_error ("internal error");
1202 #endif
1203 gcc_unreachable ();
1207 /* Scan operands in the ASM_EXPR stmt referred to in INFO. */
1209 static void
1210 get_asm_expr_operands (tree stmt)
1212 stmt_ann_t s_ann = stmt_ann (stmt);
1213 int noutputs = list_length (ASM_OUTPUTS (stmt));
1214 const char **oconstraints
1215 = (const char **) alloca ((noutputs) * sizeof (const char *));
1216 int i;
1217 tree link;
1218 const char *constraint;
1219 bool allows_mem, allows_reg, is_inout;
1221 for (i=0, link = ASM_OUTPUTS (stmt); link; ++i, link = TREE_CHAIN (link))
1223 oconstraints[i] = constraint
1224 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
1225 parse_output_constraint (&constraint, i, 0, 0,
1226 &allows_mem, &allows_reg, &is_inout);
1228 /* This should have been split in gimplify_asm_expr. */
1229 gcc_assert (!allows_reg || !is_inout);
1231 /* Memory operands are addressable. Note that STMT needs the
1232 address of this operand. */
1233 if (!allows_reg && allows_mem)
1235 tree t = get_base_address (TREE_VALUE (link));
1236 if (t && DECL_P (t))
1237 note_addressable (t, s_ann);
1240 get_expr_operands (stmt, &TREE_VALUE (link), opf_is_def);
1243 for (link = ASM_INPUTS (stmt); link; link = TREE_CHAIN (link))
1245 constraint
1246 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
1247 parse_input_constraint (&constraint, 0, 0, noutputs, 0,
1248 oconstraints, &allows_mem, &allows_reg);
1250 /* Memory operands are addressable. Note that STMT needs the
1251 address of this operand. */
1252 if (!allows_reg && allows_mem)
1254 tree t = get_base_address (TREE_VALUE (link));
1255 if (t && DECL_P (t))
1256 note_addressable (t, s_ann);
1259 get_expr_operands (stmt, &TREE_VALUE (link), 0);
1263 /* Clobber memory for asm ("" : : : "memory"); */
1264 for (link = ASM_CLOBBERS (stmt); link; link = TREE_CHAIN (link))
1265 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (link)), "memory") == 0)
1267 size_t i;
1268 bitmap_iterator bi;
1270 /* Clobber all call-clobbered variables (or .GLOBAL_VAR if we
1271 decided to group them). */
1272 if (global_var)
1273 add_stmt_operand (&global_var, stmt, opf_is_def);
1274 else
1275 EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, i, bi)
1277 tree var = referenced_var (i);
1278 add_stmt_operand (&var, stmt, opf_is_def);
1281 /* Now clobber all addressables. */
1282 EXECUTE_IF_SET_IN_BITMAP (addressable_vars, 0, i, bi)
1284 tree var = referenced_var (i);
1285 add_stmt_operand (&var, stmt, opf_is_def);
1288 break;
1292 /* A subroutine of get_expr_operands to handle INDIRECT_REF,
1293 ALIGN_INDIRECT_REF and MISALIGNED_INDIRECT_REF. */
1295 static void
1296 get_indirect_ref_operands (tree stmt, tree expr, int flags)
1298 tree *pptr = &TREE_OPERAND (expr, 0);
1299 tree ptr = *pptr;
1300 stmt_ann_t ann = stmt_ann (stmt);
1302 /* Stores into INDIRECT_REF operands are never killing definitions. */
1303 flags &= ~opf_kill_def;
1305 if (REF_ORIGINAL (expr))
1307 enum tree_code ocode = TREE_CODE (REF_ORIGINAL (expr));
1309 /* If we originally accessed part of a structure, we do it still. */
1310 if (ocode == ARRAY_REF
1311 || ocode == COMPONENT_REF
1312 || ocode == REALPART_EXPR
1313 || ocode == IMAGPART_EXPR)
1314 flags &= ~opf_kill_def;
1317 if (SSA_VAR_P (ptr))
1319 struct ptr_info_def *pi = NULL;
1321 /* If PTR has flow-sensitive points-to information, use it. */
1322 if (TREE_CODE (ptr) == SSA_NAME
1323 && (pi = SSA_NAME_PTR_INFO (ptr)) != NULL
1324 && pi->name_mem_tag)
1326 /* PTR has its own memory tag. Use it. */
1327 add_stmt_operand (&pi->name_mem_tag, stmt, flags);
1329 else
1331 /* If PTR is not an SSA_NAME or it doesn't have a name
1332 tag, use its type memory tag. */
1333 var_ann_t ann;
1335 /* If we are emitting debugging dumps, display a warning if
1336 PTR is an SSA_NAME with no flow-sensitive alias
1337 information. That means that we may need to compute
1338 aliasing again. */
1339 if (dump_file
1340 && TREE_CODE (ptr) == SSA_NAME
1341 && pi == NULL)
1343 fprintf (dump_file,
1344 "NOTE: no flow-sensitive alias info for ");
1345 print_generic_expr (dump_file, ptr, dump_flags);
1346 fprintf (dump_file, " in ");
1347 print_generic_stmt (dump_file, stmt, dump_flags);
1350 if (TREE_CODE (ptr) == SSA_NAME)
1351 ptr = SSA_NAME_VAR (ptr);
1352 ann = var_ann (ptr);
1353 if (ann->type_mem_tag)
1354 add_stmt_operand (&ann->type_mem_tag, stmt, flags);
1358 /* If a constant is used as a pointer, we can't generate a real
1359 operand for it but we mark the statement volatile to prevent
1360 optimizations from messing things up. */
1361 else if (TREE_CODE (ptr) == INTEGER_CST)
1363 if (ann)
1364 ann->has_volatile_ops = true;
1365 return;
1368 /* Everything else *should* have been folded elsewhere, but users
1369 are smarter than we in finding ways to write invalid code. We
1370 cannot just abort here. If we were absolutely certain that we
1371 do handle all valid cases, then we could just do nothing here.
1372 That seems optimistic, so attempt to do something logical... */
1373 else if ((TREE_CODE (ptr) == PLUS_EXPR || TREE_CODE (ptr) == MINUS_EXPR)
1374 && TREE_CODE (TREE_OPERAND (ptr, 0)) == ADDR_EXPR
1375 && TREE_CODE (TREE_OPERAND (ptr, 1)) == INTEGER_CST)
1377 /* Make sure we know the object is addressable. */
1378 pptr = &TREE_OPERAND (ptr, 0);
1379 add_stmt_operand (pptr, stmt, 0);
1381 /* Mark the object itself with a VUSE. */
1382 pptr = &TREE_OPERAND (*pptr, 0);
1383 get_expr_operands (stmt, pptr, flags);
1384 return;
1387 /* Ok, this isn't even is_gimple_min_invariant. Something's broke. */
1388 else
1389 gcc_unreachable ();
1391 /* Add a USE operand for the base pointer. */
1392 get_expr_operands (stmt, pptr, opf_none);
1395 /* A subroutine of get_expr_operands to handle CALL_EXPR. */
1397 static void
1398 get_call_expr_operands (tree stmt, tree expr)
1400 tree op;
1401 int call_flags = call_expr_flags (expr);
1402 tree callee = get_callee_fndecl (expr);
1404 /* Find uses in the called function. */
1405 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), opf_none);
1407 for (op = TREE_OPERAND (expr, 1); op; op = TREE_CHAIN (op))
1408 get_expr_operands (stmt, &TREE_VALUE (op), opf_none);
1410 get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none);
1412 if (bitmap_first_set_bit (call_clobbered_vars) >= 0)
1414 /* A 'pure' or a 'const' functions never call clobber anything.
1415 A 'noreturn' function might, but since we don't return anyway
1416 there is no point in recording that. */
1417 if (TREE_SIDE_EFFECTS (expr)
1418 && !(call_flags & (ECF_PURE | ECF_CONST | ECF_NORETURN)))
1419 add_call_clobber_ops (stmt, callee);
1420 else if (!(call_flags & ECF_CONST))
1421 add_call_read_ops (stmt, callee);
1426 /* Add *VAR_P to the appropriate operand array for INFO. FLAGS is as in
1427 get_expr_operands. If *VAR_P is a GIMPLE register, it will be added to
1428 the statement's real operands, otherwise it is added to virtual
1429 operands. */
1431 static void
1432 add_stmt_operand (tree *var_p, tree stmt, int flags)
1434 bool is_real_op;
1435 tree var, sym;
1436 stmt_ann_t s_ann = stmt_ann (stmt);
1437 var_ann_t v_ann;
1439 var = *var_p;
1440 STRIP_NOPS (var);
1442 /* If the operand is an ADDR_EXPR, add its operand to the list of
1443 variables that have had their address taken in this statement. */
1444 if (TREE_CODE (var) == ADDR_EXPR)
1446 note_addressable (TREE_OPERAND (var, 0), s_ann);
1447 return;
1450 /* If the original variable is not a scalar, it will be added to the list
1451 of virtual operands. In that case, use its base symbol as the virtual
1452 variable representing it. */
1453 is_real_op = is_gimple_reg (var);
1454 if (!is_real_op && !DECL_P (var))
1455 var = get_virtual_var (var);
1457 /* If VAR is not a variable that we care to optimize, do nothing. */
1458 if (var == NULL_TREE || !SSA_VAR_P (var))
1459 return;
1461 sym = (TREE_CODE (var) == SSA_NAME ? SSA_NAME_VAR (var) : var);
1462 v_ann = var_ann (sym);
1464 /* Don't expose volatile variables to the optimizers. */
1465 if (TREE_THIS_VOLATILE (sym))
1467 if (s_ann)
1468 s_ann->has_volatile_ops = true;
1469 return;
1472 if (is_real_op)
1474 /* The variable is a GIMPLE register. Add it to real operands. */
1475 if (flags & opf_is_def)
1476 append_def (var_p);
1477 else
1478 append_use (var_p);
1480 else
1482 varray_type aliases;
1484 /* The variable is not a GIMPLE register. Add it (or its aliases) to
1485 virtual operands, unless the caller has specifically requested
1486 not to add virtual operands (used when adding operands inside an
1487 ADDR_EXPR expression). */
1488 if (flags & opf_no_vops)
1489 return;
1491 aliases = v_ann->may_aliases;
1493 if (aliases == NULL)
1495 /* The variable is not aliased or it is an alias tag. */
1496 if (flags & opf_is_def)
1498 if (flags & opf_kill_def)
1500 /* Only regular variables may get a V_MUST_DEF
1501 operand. */
1502 gcc_assert (v_ann->mem_tag_kind == NOT_A_TAG);
1503 /* V_MUST_DEF for non-aliased, non-GIMPLE register
1504 variable definitions. */
1505 append_v_must_def (var);
1507 else
1509 /* Add a V_MAY_DEF for call-clobbered variables and
1510 memory tags. */
1511 append_v_may_def (var);
1514 else
1516 append_vuse (var);
1517 if (s_ann && v_ann->is_alias_tag)
1518 s_ann->makes_aliased_loads = 1;
1521 else
1523 size_t i;
1525 /* The variable is aliased. Add its aliases to the virtual
1526 operands. */
1527 gcc_assert (VARRAY_ACTIVE_SIZE (aliases) != 0);
1529 if (flags & opf_is_def)
1531 /* If the variable is also an alias tag, add a virtual
1532 operand for it, otherwise we will miss representing
1533 references to the members of the variable's alias set.
1534 This fixes the bug in gcc.c-torture/execute/20020503-1.c. */
1535 if (v_ann->is_alias_tag)
1536 append_v_may_def (var);
1538 for (i = 0; i < VARRAY_ACTIVE_SIZE (aliases); i++)
1539 append_v_may_def (VARRAY_TREE (aliases, i));
1541 if (s_ann)
1542 s_ann->makes_aliased_stores = 1;
1544 else
1546 /* Similarly, append a virtual uses for VAR itself, when
1547 it is an alias tag. */
1548 if (v_ann->is_alias_tag)
1549 append_vuse (var);
1551 for (i = 0; i < VARRAY_ACTIVE_SIZE (aliases); i++)
1552 append_vuse (VARRAY_TREE (aliases, i));
1554 if (s_ann)
1555 s_ann->makes_aliased_loads = 1;
1562 /* Record that VAR had its address taken in the statement with annotations
1563 S_ANN. */
1565 static void
1566 note_addressable (tree var, stmt_ann_t s_ann)
1568 if (!s_ann)
1569 return;
1571 var = get_base_address (var);
1572 if (var && SSA_VAR_P (var))
1574 if (s_ann->addresses_taken == NULL)
1575 s_ann->addresses_taken = BITMAP_GGC_ALLOC ();
1576 bitmap_set_bit (s_ann->addresses_taken, var_ann (var)->uid);
1581 /* Add clobbering definitions for .GLOBAL_VAR or for each of the call
1582 clobbered variables in the function. */
1584 static void
1585 add_call_clobber_ops (tree stmt, tree callee)
1587 /* Functions that are not const, pure or never return may clobber
1588 call-clobbered variables. */
1589 if (stmt_ann (stmt))
1590 stmt_ann (stmt)->makes_clobbering_call = true;
1592 /* If we had created .GLOBAL_VAR earlier, use it. Otherwise, add
1593 a V_MAY_DEF operand for every call clobbered variable. See
1594 compute_may_aliases for the heuristic used to decide whether
1595 to create .GLOBAL_VAR or not. */
1596 if (global_var)
1597 add_stmt_operand (&global_var, stmt, opf_is_def);
1598 else
1600 size_t i;
1601 bitmap not_read_b = NULL, not_written_b = NULL;
1602 bitmap_iterator bi;
1604 /* Get info for module level statics. There is a bit set for
1605 each static if the call being processed does not read or
1606 write that variable. */
1608 /* ??? Turn off the optimization until it gets fixed. */
1609 if (0 && callee)
1611 not_read_b = get_global_statics_not_read (callee);
1612 not_written_b = get_global_statics_not_written (callee);
1615 EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, i, bi)
1617 tree var = referenced_var (i);
1619 bool not_read
1620 = not_read_b ? bitmap_bit_p (not_read_b, i) : false;
1621 bool not_written
1622 = not_written_b ? bitmap_bit_p (not_written_b, i) : false;
1624 if (not_read)
1626 /* The var is not read during the call. */
1627 if (!not_written)
1628 add_stmt_operand (&var, stmt, opf_is_def);
1630 else
1632 /* The var is read during the call. */
1633 if (not_written)
1634 add_stmt_operand (&var, stmt, opf_none);
1636 /* The not_read and not_written bits are only set for module
1637 static variables. Neither is set here, so we may be dealing
1638 with a module static or we may not. So we still must look
1639 anywhere else we can (such as the TREE_READONLY) to get
1640 better info. */
1642 /* If VAR is read-only, don't add a V_MAY_DEF, just a
1643 VUSE operand. FIXME, this is quirky. TREE_READONLY
1644 by itself is not enough here. We can only decide
1645 that the call will not affect VAR if all these
1646 conditions are met. One would think that
1647 TREE_READONLY should be sufficient. */
1648 else if (TREE_READONLY (var)
1649 && (TREE_STATIC (var) || DECL_EXTERNAL (var)))
1650 add_stmt_operand (&var, stmt, opf_none);
1651 else
1652 add_stmt_operand (&var, stmt, opf_is_def);
1659 /* Add VUSE operands for .GLOBAL_VAR or all call clobbered variables in the
1660 function. */
1662 static void
1663 add_call_read_ops (tree stmt, tree callee)
1665 bitmap_iterator bi;
1667 /* Otherwise, if the function is not pure, it may reference memory. Add
1668 a VUSE for .GLOBAL_VAR if it has been created. Otherwise, add a VUSE
1669 for each call-clobbered variable. See add_referenced_var for the
1670 heuristic used to decide whether to create .GLOBAL_VAR. */
1671 if (global_var)
1672 add_stmt_operand (&global_var, stmt, opf_none);
1673 else
1675 size_t i;
1676 bitmap not_read_b = callee
1677 ? get_global_statics_not_read (callee) : NULL;
1679 EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, i, bi)
1681 tree var = referenced_var (i);
1682 bool not_read = not_read_b
1683 ? bitmap_bit_p(not_read_b, i) : false;
1684 if (!not_read)
1685 add_stmt_operand (&var, stmt, opf_none);
1690 /* Copies virtual operands from SRC to DST. */
1692 void
1693 copy_virtual_operands (tree dst, tree src)
1695 unsigned i;
1696 vuse_optype vuses = STMT_VUSE_OPS (src);
1697 v_may_def_optype v_may_defs = STMT_V_MAY_DEF_OPS (src);
1698 v_must_def_optype v_must_defs = STMT_V_MUST_DEF_OPS (src);
1699 vuse_optype *vuses_new = &stmt_ann (dst)->operands.vuse_ops;
1700 v_may_def_optype *v_may_defs_new = &stmt_ann (dst)->operands.v_may_def_ops;
1701 v_must_def_optype *v_must_defs_new = &stmt_ann (dst)->operands.v_must_def_ops;
1703 if (vuses)
1705 *vuses_new = allocate_vuse_optype (NUM_VUSES (vuses));
1706 for (i = 0; i < NUM_VUSES (vuses); i++)
1707 SET_VUSE_OP (*vuses_new, i, VUSE_OP (vuses, i));
1710 if (v_may_defs)
1712 *v_may_defs_new = allocate_v_may_def_optype (NUM_V_MAY_DEFS (v_may_defs));
1713 for (i = 0; i < NUM_V_MAY_DEFS (v_may_defs); i++)
1715 SET_V_MAY_DEF_OP (*v_may_defs_new, i, V_MAY_DEF_OP (v_may_defs, i));
1716 SET_V_MAY_DEF_RESULT (*v_may_defs_new, i,
1717 V_MAY_DEF_RESULT (v_may_defs, i));
1721 if (v_must_defs)
1723 *v_must_defs_new = allocate_v_must_def_optype (NUM_V_MUST_DEFS (v_must_defs));
1724 for (i = 0; i < NUM_V_MUST_DEFS (v_must_defs); i++)
1725 SET_V_MUST_DEF_OP (*v_must_defs_new, i, V_MUST_DEF_OP (v_must_defs, i));
1730 /* Specifically for use in DOM's expression analysis. Given a store, we
1731 create an artificial stmt which looks like a load from the store, this can
1732 be used to eliminate redundant loads. OLD_OPS are the operands from the
1733 store stmt, and NEW_STMT is the new load which represents a load of the
1734 values stored. */
1736 void
1737 create_ssa_artficial_load_stmt (stmt_operands_p old_ops, tree new_stmt)
1739 stmt_ann_t ann;
1740 tree op;
1741 stmt_operands_t tmp;
1742 unsigned j;
1744 memset (&tmp, 0, sizeof (stmt_operands_t));
1745 ann = get_stmt_ann (new_stmt);
1747 /* Free operands just in case is was an existing stmt. */
1748 free_ssa_operands (&(ann->operands));
1750 build_ssa_operands (new_stmt, NULL, &tmp, &(ann->operands));
1751 free_vuses (&(ann->operands.vuse_ops));
1752 free_v_may_defs (&(ann->operands.v_may_def_ops));
1753 free_v_must_defs (&(ann->operands.v_must_def_ops));
1755 /* For each VDEF on the original statement, we want to create a
1756 VUSE of the V_MAY_DEF result or V_MUST_DEF op on the new
1757 statement. */
1758 for (j = 0; j < NUM_V_MAY_DEFS (old_ops->v_may_def_ops); j++)
1760 op = V_MAY_DEF_RESULT (old_ops->v_may_def_ops, j);
1761 append_vuse (op);
1764 for (j = 0; j < NUM_V_MUST_DEFS (old_ops->v_must_def_ops); j++)
1766 op = V_MUST_DEF_OP (old_ops->v_must_def_ops, j);
1767 append_vuse (op);
1770 /* Now set the vuses for this new stmt. */
1771 ann->operands.vuse_ops = finalize_ssa_vuses (&(tmp.vuse_ops));
1774 #include "gt-tree-ssa-operands.h"