* trans-stmt.c (gfc_trans_simple_do): New function.
[official-gcc.git] / gcc / regrename.c
blob330ed3b4284c342b1d47a5e8c47c42a5cffeec10
1 /* Register renaming for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "insn-config.h"
28 #include "regs.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "reload.h"
32 #include "output.h"
33 #include "function.h"
34 #include "recog.h"
35 #include "flags.h"
36 #include "toplev.h"
37 #include "obstack.h"
39 #ifndef REG_MODE_OK_FOR_BASE_P
40 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
41 #endif
43 static const char *const reg_class_names[] = REG_CLASS_NAMES;
45 struct du_chain
47 struct du_chain *next_chain;
48 struct du_chain *next_use;
50 rtx insn;
51 rtx *loc;
52 ENUM_BITFIELD(reg_class) cl : 16;
53 unsigned int need_caller_save_reg:1;
54 unsigned int earlyclobber:1;
57 enum scan_actions
59 terminate_all_read,
60 terminate_overlapping_read,
61 terminate_write,
62 terminate_dead,
63 mark_read,
64 mark_write
67 static const char * const scan_actions_name[] =
69 "terminate_all_read",
70 "terminate_overlapping_read",
71 "terminate_write",
72 "terminate_dead",
73 "mark_read",
74 "mark_write"
77 static struct obstack rename_obstack;
79 static void do_replace (struct du_chain *, int);
80 static void scan_rtx_reg (rtx, rtx *, enum reg_class,
81 enum scan_actions, enum op_type, int);
82 static void scan_rtx_address (rtx, rtx *, enum reg_class,
83 enum scan_actions, enum machine_mode);
84 static void scan_rtx (rtx, rtx *, enum reg_class, enum scan_actions,
85 enum op_type, int);
86 static struct du_chain *build_def_use (basic_block);
87 static void dump_def_use_chain (struct du_chain *);
88 static void note_sets (rtx, rtx, void *);
89 static void clear_dead_regs (HARD_REG_SET *, enum machine_mode, rtx);
90 static void merge_overlapping_regs (basic_block, HARD_REG_SET *,
91 struct du_chain *);
93 /* Called through note_stores from update_life. Find sets of registers, and
94 record them in *DATA (which is actually a HARD_REG_SET *). */
96 static void
97 note_sets (rtx x, rtx set ATTRIBUTE_UNUSED, void *data)
99 HARD_REG_SET *pset = (HARD_REG_SET *) data;
100 unsigned int regno;
101 int nregs;
102 if (!REG_P (x))
103 return;
104 regno = REGNO (x);
105 nregs = hard_regno_nregs[regno][GET_MODE (x)];
107 /* There must not be pseudos at this point. */
108 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
110 while (nregs-- > 0)
111 SET_HARD_REG_BIT (*pset, regno + nregs);
114 /* Clear all registers from *PSET for which a note of kind KIND can be found
115 in the list NOTES. */
117 static void
118 clear_dead_regs (HARD_REG_SET *pset, enum machine_mode kind, rtx notes)
120 rtx note;
121 for (note = notes; note; note = XEXP (note, 1))
122 if (REG_NOTE_KIND (note) == kind && REG_P (XEXP (note, 0)))
124 rtx reg = XEXP (note, 0);
125 unsigned int regno = REGNO (reg);
126 int nregs = hard_regno_nregs[regno][GET_MODE (reg)];
128 /* There must not be pseudos at this point. */
129 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
131 while (nregs-- > 0)
132 CLEAR_HARD_REG_BIT (*pset, regno + nregs);
136 /* For a def-use chain CHAIN in basic block B, find which registers overlap
137 its lifetime and set the corresponding bits in *PSET. */
139 static void
140 merge_overlapping_regs (basic_block b, HARD_REG_SET *pset,
141 struct du_chain *chain)
143 struct du_chain *t = chain;
144 rtx insn;
145 HARD_REG_SET live;
147 REG_SET_TO_HARD_REG_SET (live, b->global_live_at_start);
148 insn = BB_HEAD (b);
149 while (t)
151 /* Search forward until the next reference to the register to be
152 renamed. */
153 while (insn != t->insn)
155 if (INSN_P (insn))
157 clear_dead_regs (&live, REG_DEAD, REG_NOTES (insn));
158 note_stores (PATTERN (insn), note_sets, (void *) &live);
159 /* Only record currently live regs if we are inside the
160 reg's live range. */
161 if (t != chain)
162 IOR_HARD_REG_SET (*pset, live);
163 clear_dead_regs (&live, REG_UNUSED, REG_NOTES (insn));
165 insn = NEXT_INSN (insn);
168 IOR_HARD_REG_SET (*pset, live);
170 /* For the last reference, also merge in all registers set in the
171 same insn.
172 @@@ We only have take earlyclobbered sets into account. */
173 if (! t->next_use)
174 note_stores (PATTERN (insn), note_sets, (void *) pset);
176 t = t->next_use;
180 /* Perform register renaming on the current function. */
182 void
183 regrename_optimize (void)
185 int tick[FIRST_PSEUDO_REGISTER];
186 int this_tick = 0;
187 basic_block bb;
188 char *first_obj;
190 memset (tick, 0, sizeof tick);
192 gcc_obstack_init (&rename_obstack);
193 first_obj = obstack_alloc (&rename_obstack, 0);
195 FOR_EACH_BB (bb)
197 struct du_chain *all_chains = 0;
198 HARD_REG_SET unavailable;
199 HARD_REG_SET regs_seen;
201 CLEAR_HARD_REG_SET (unavailable);
203 if (dump_file)
204 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
206 all_chains = build_def_use (bb);
208 if (dump_file)
209 dump_def_use_chain (all_chains);
211 CLEAR_HARD_REG_SET (unavailable);
212 /* Don't clobber traceback for noreturn functions. */
213 if (frame_pointer_needed)
215 int i;
217 for (i = hard_regno_nregs[FRAME_POINTER_REGNUM][Pmode]; i--;)
218 SET_HARD_REG_BIT (unavailable, FRAME_POINTER_REGNUM + i);
220 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
221 for (i = hard_regno_nregs[HARD_FRAME_POINTER_REGNUM][Pmode]; i--;)
222 SET_HARD_REG_BIT (unavailable, HARD_FRAME_POINTER_REGNUM + i);
223 #endif
226 CLEAR_HARD_REG_SET (regs_seen);
227 while (all_chains)
229 int new_reg, best_new_reg;
230 int n_uses;
231 struct du_chain *this = all_chains;
232 struct du_chain *tmp, *last;
233 HARD_REG_SET this_unavailable;
234 int reg = REGNO (*this->loc);
235 int i;
237 all_chains = this->next_chain;
239 best_new_reg = reg;
241 #if 0 /* This just disables optimization opportunities. */
242 /* Only rename once we've seen the reg more than once. */
243 if (! TEST_HARD_REG_BIT (regs_seen, reg))
245 SET_HARD_REG_BIT (regs_seen, reg);
246 continue;
248 #endif
250 if (fixed_regs[reg] || global_regs[reg]
251 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
252 || (frame_pointer_needed && reg == HARD_FRAME_POINTER_REGNUM)
253 #else
254 || (frame_pointer_needed && reg == FRAME_POINTER_REGNUM)
255 #endif
257 continue;
259 COPY_HARD_REG_SET (this_unavailable, unavailable);
261 /* Find last entry on chain (which has the need_caller_save bit),
262 count number of uses, and narrow the set of registers we can
263 use for renaming. */
264 n_uses = 0;
265 for (last = this; last->next_use; last = last->next_use)
267 n_uses++;
268 IOR_COMPL_HARD_REG_SET (this_unavailable,
269 reg_class_contents[last->cl]);
271 if (n_uses < 1)
272 continue;
274 IOR_COMPL_HARD_REG_SET (this_unavailable,
275 reg_class_contents[last->cl]);
277 if (this->need_caller_save_reg)
278 IOR_HARD_REG_SET (this_unavailable, call_used_reg_set);
280 merge_overlapping_regs (bb, &this_unavailable, this);
282 /* Now potential_regs is a reasonable approximation, let's
283 have a closer look at each register still in there. */
284 for (new_reg = 0; new_reg < FIRST_PSEUDO_REGISTER; new_reg++)
286 int nregs = hard_regno_nregs[new_reg][GET_MODE (*this->loc)];
288 for (i = nregs - 1; i >= 0; --i)
289 if (TEST_HARD_REG_BIT (this_unavailable, new_reg + i)
290 || fixed_regs[new_reg + i]
291 || global_regs[new_reg + i]
292 /* Can't use regs which aren't saved by the prologue. */
293 || (! regs_ever_live[new_reg + i]
294 && ! call_used_regs[new_reg + i])
295 #ifdef LEAF_REGISTERS
296 /* We can't use a non-leaf register if we're in a
297 leaf function. */
298 || (current_function_is_leaf
299 && !LEAF_REGISTERS[new_reg + i])
300 #endif
301 #ifdef HARD_REGNO_RENAME_OK
302 || ! HARD_REGNO_RENAME_OK (reg + i, new_reg + i)
303 #endif
305 break;
306 if (i >= 0)
307 continue;
309 /* See whether it accepts all modes that occur in
310 definition and uses. */
311 for (tmp = this; tmp; tmp = tmp->next_use)
312 if (! HARD_REGNO_MODE_OK (new_reg, GET_MODE (*tmp->loc))
313 || (tmp->need_caller_save_reg
314 && ! (HARD_REGNO_CALL_PART_CLOBBERED
315 (reg, GET_MODE (*tmp->loc)))
316 && (HARD_REGNO_CALL_PART_CLOBBERED
317 (new_reg, GET_MODE (*tmp->loc)))))
318 break;
319 if (! tmp)
321 if (tick[best_new_reg] > tick[new_reg])
322 best_new_reg = new_reg;
326 if (dump_file)
328 fprintf (dump_file, "Register %s in insn %d",
329 reg_names[reg], INSN_UID (last->insn));
330 if (last->need_caller_save_reg)
331 fprintf (dump_file, " crosses a call");
334 if (best_new_reg == reg)
336 tick[reg] = ++this_tick;
337 if (dump_file)
338 fprintf (dump_file, "; no available better choice\n");
339 continue;
342 do_replace (this, best_new_reg);
343 tick[best_new_reg] = ++this_tick;
344 regs_ever_live[best_new_reg] = 1;
346 if (dump_file)
347 fprintf (dump_file, ", renamed as %s\n", reg_names[best_new_reg]);
350 obstack_free (&rename_obstack, first_obj);
353 obstack_free (&rename_obstack, NULL);
355 if (dump_file)
356 fputc ('\n', dump_file);
358 count_or_remove_death_notes (NULL, 1);
359 update_life_info (NULL, UPDATE_LIFE_LOCAL,
360 PROP_DEATH_NOTES);
363 static void
364 do_replace (struct du_chain *chain, int reg)
366 while (chain)
368 unsigned int regno = ORIGINAL_REGNO (*chain->loc);
369 struct reg_attrs * attr = REG_ATTRS (*chain->loc);
371 *chain->loc = gen_raw_REG (GET_MODE (*chain->loc), reg);
372 if (regno >= FIRST_PSEUDO_REGISTER)
373 ORIGINAL_REGNO (*chain->loc) = regno;
374 REG_ATTRS (*chain->loc) = attr;
375 chain = chain->next_use;
380 static struct du_chain *open_chains;
381 static struct du_chain *closed_chains;
383 static void
384 scan_rtx_reg (rtx insn, rtx *loc, enum reg_class cl,
385 enum scan_actions action, enum op_type type, int earlyclobber)
387 struct du_chain **p;
388 rtx x = *loc;
389 enum machine_mode mode = GET_MODE (x);
390 int this_regno = REGNO (x);
391 int this_nregs = hard_regno_nregs[this_regno][mode];
393 if (action == mark_write)
395 if (type == OP_OUT)
397 struct du_chain *this
398 = obstack_alloc (&rename_obstack, sizeof (struct du_chain));
399 this->next_use = 0;
400 this->next_chain = open_chains;
401 this->loc = loc;
402 this->insn = insn;
403 this->cl = cl;
404 this->need_caller_save_reg = 0;
405 this->earlyclobber = earlyclobber;
406 open_chains = this;
408 return;
411 if ((type == OP_OUT && action != terminate_write)
412 || (type != OP_OUT && action == terminate_write))
413 return;
415 for (p = &open_chains; *p;)
417 struct du_chain *this = *p;
419 /* Check if the chain has been terminated if it has then skip to
420 the next chain.
422 This can happen when we've already appended the location to
423 the chain in Step 3, but are trying to hide in-out operands
424 from terminate_write in Step 5. */
426 if (*this->loc == cc0_rtx)
427 p = &this->next_chain;
428 else
430 int regno = REGNO (*this->loc);
431 int nregs = hard_regno_nregs[regno][GET_MODE (*this->loc)];
432 int exact_match = (regno == this_regno && nregs == this_nregs);
434 if (regno + nregs <= this_regno
435 || this_regno + this_nregs <= regno)
437 p = &this->next_chain;
438 continue;
441 if (action == mark_read)
443 gcc_assert (exact_match);
445 /* ??? Class NO_REGS can happen if the md file makes use of
446 EXTRA_CONSTRAINTS to match registers. Which is arguably
447 wrong, but there we are. Since we know not what this may
448 be replaced with, terminate the chain. */
449 if (cl != NO_REGS)
451 this = obstack_alloc (&rename_obstack, sizeof (struct du_chain));
452 this->next_use = 0;
453 this->next_chain = (*p)->next_chain;
454 this->loc = loc;
455 this->insn = insn;
456 this->cl = cl;
457 this->need_caller_save_reg = 0;
458 while (*p)
459 p = &(*p)->next_use;
460 *p = this;
461 return;
465 if (action != terminate_overlapping_read || ! exact_match)
467 struct du_chain *next = this->next_chain;
469 /* Whether the terminated chain can be used for renaming
470 depends on the action and this being an exact match.
471 In either case, we remove this element from open_chains. */
473 if ((action == terminate_dead || action == terminate_write)
474 && exact_match)
476 this->next_chain = closed_chains;
477 closed_chains = this;
478 if (dump_file)
479 fprintf (dump_file,
480 "Closing chain %s at insn %d (%s)\n",
481 reg_names[REGNO (*this->loc)], INSN_UID (insn),
482 scan_actions_name[(int) action]);
484 else
486 if (dump_file)
487 fprintf (dump_file,
488 "Discarding chain %s at insn %d (%s)\n",
489 reg_names[REGNO (*this->loc)], INSN_UID (insn),
490 scan_actions_name[(int) action]);
492 *p = next;
494 else
495 p = &this->next_chain;
500 /* Adapted from find_reloads_address_1. CL is INDEX_REG_CLASS or
501 BASE_REG_CLASS depending on how the register is being considered. */
503 static void
504 scan_rtx_address (rtx insn, rtx *loc, enum reg_class cl,
505 enum scan_actions action, enum machine_mode mode)
507 rtx x = *loc;
508 RTX_CODE code = GET_CODE (x);
509 const char *fmt;
510 int i, j;
512 if (action == mark_write)
513 return;
515 switch (code)
517 case PLUS:
519 rtx orig_op0 = XEXP (x, 0);
520 rtx orig_op1 = XEXP (x, 1);
521 RTX_CODE code0 = GET_CODE (orig_op0);
522 RTX_CODE code1 = GET_CODE (orig_op1);
523 rtx op0 = orig_op0;
524 rtx op1 = orig_op1;
525 rtx *locI = NULL;
526 rtx *locB = NULL;
528 if (GET_CODE (op0) == SUBREG)
530 op0 = SUBREG_REG (op0);
531 code0 = GET_CODE (op0);
534 if (GET_CODE (op1) == SUBREG)
536 op1 = SUBREG_REG (op1);
537 code1 = GET_CODE (op1);
540 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
541 || code0 == ZERO_EXTEND || code1 == MEM)
543 locI = &XEXP (x, 0);
544 locB = &XEXP (x, 1);
546 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
547 || code1 == ZERO_EXTEND || code0 == MEM)
549 locI = &XEXP (x, 1);
550 locB = &XEXP (x, 0);
552 else if (code0 == CONST_INT || code0 == CONST
553 || code0 == SYMBOL_REF || code0 == LABEL_REF)
554 locB = &XEXP (x, 1);
555 else if (code1 == CONST_INT || code1 == CONST
556 || code1 == SYMBOL_REF || code1 == LABEL_REF)
557 locB = &XEXP (x, 0);
558 else if (code0 == REG && code1 == REG)
560 int index_op;
562 if (REG_OK_FOR_INDEX_P (op0)
563 && REG_MODE_OK_FOR_BASE_P (op1, mode))
564 index_op = 0;
565 else if (REG_OK_FOR_INDEX_P (op1)
566 && REG_MODE_OK_FOR_BASE_P (op0, mode))
567 index_op = 1;
568 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
569 index_op = 0;
570 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
571 index_op = 1;
572 else if (REG_OK_FOR_INDEX_P (op1))
573 index_op = 1;
574 else
575 index_op = 0;
577 locI = &XEXP (x, index_op);
578 locB = &XEXP (x, !index_op);
580 else if (code0 == REG)
582 locI = &XEXP (x, 0);
583 locB = &XEXP (x, 1);
585 else if (code1 == REG)
587 locI = &XEXP (x, 1);
588 locB = &XEXP (x, 0);
591 if (locI)
592 scan_rtx_address (insn, locI, INDEX_REG_CLASS, action, mode);
593 if (locB)
594 scan_rtx_address (insn, locB, MODE_BASE_REG_CLASS (mode), action, mode);
595 return;
598 case POST_INC:
599 case POST_DEC:
600 case POST_MODIFY:
601 case PRE_INC:
602 case PRE_DEC:
603 case PRE_MODIFY:
604 #ifndef AUTO_INC_DEC
605 /* If the target doesn't claim to handle autoinc, this must be
606 something special, like a stack push. Kill this chain. */
607 action = terminate_all_read;
608 #endif
609 break;
611 case MEM:
612 scan_rtx_address (insn, &XEXP (x, 0),
613 MODE_BASE_REG_CLASS (GET_MODE (x)), action,
614 GET_MODE (x));
615 return;
617 case REG:
618 scan_rtx_reg (insn, loc, cl, action, OP_IN, 0);
619 return;
621 default:
622 break;
625 fmt = GET_RTX_FORMAT (code);
626 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
628 if (fmt[i] == 'e')
629 scan_rtx_address (insn, &XEXP (x, i), cl, action, mode);
630 else if (fmt[i] == 'E')
631 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
632 scan_rtx_address (insn, &XVECEXP (x, i, j), cl, action, mode);
636 static void
637 scan_rtx (rtx insn, rtx *loc, enum reg_class cl,
638 enum scan_actions action, enum op_type type, int earlyclobber)
640 const char *fmt;
641 rtx x = *loc;
642 enum rtx_code code = GET_CODE (x);
643 int i, j;
645 code = GET_CODE (x);
646 switch (code)
648 case CONST:
649 case CONST_INT:
650 case CONST_DOUBLE:
651 case CONST_VECTOR:
652 case SYMBOL_REF:
653 case LABEL_REF:
654 case CC0:
655 case PC:
656 return;
658 case REG:
659 scan_rtx_reg (insn, loc, cl, action, type, earlyclobber);
660 return;
662 case MEM:
663 scan_rtx_address (insn, &XEXP (x, 0),
664 MODE_BASE_REG_CLASS (GET_MODE (x)), action,
665 GET_MODE (x));
666 return;
668 case SET:
669 scan_rtx (insn, &SET_SRC (x), cl, action, OP_IN, 0);
670 scan_rtx (insn, &SET_DEST (x), cl, action, OP_OUT, 0);
671 return;
673 case STRICT_LOW_PART:
674 scan_rtx (insn, &XEXP (x, 0), cl, action, OP_INOUT, earlyclobber);
675 return;
677 case ZERO_EXTRACT:
678 case SIGN_EXTRACT:
679 scan_rtx (insn, &XEXP (x, 0), cl, action,
680 type == OP_IN ? OP_IN : OP_INOUT, earlyclobber);
681 scan_rtx (insn, &XEXP (x, 1), cl, action, OP_IN, 0);
682 scan_rtx (insn, &XEXP (x, 2), cl, action, OP_IN, 0);
683 return;
685 case POST_INC:
686 case PRE_INC:
687 case POST_DEC:
688 case PRE_DEC:
689 case POST_MODIFY:
690 case PRE_MODIFY:
691 /* Should only happen inside MEM. */
692 gcc_unreachable ();
694 case CLOBBER:
695 scan_rtx (insn, &SET_DEST (x), cl, action, OP_OUT, 1);
696 return;
698 case EXPR_LIST:
699 scan_rtx (insn, &XEXP (x, 0), cl, action, type, 0);
700 if (XEXP (x, 1))
701 scan_rtx (insn, &XEXP (x, 1), cl, action, type, 0);
702 return;
704 default:
705 break;
708 fmt = GET_RTX_FORMAT (code);
709 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
711 if (fmt[i] == 'e')
712 scan_rtx (insn, &XEXP (x, i), cl, action, type, 0);
713 else if (fmt[i] == 'E')
714 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
715 scan_rtx (insn, &XVECEXP (x, i, j), cl, action, type, 0);
719 /* Build def/use chain. */
721 static struct du_chain *
722 build_def_use (basic_block bb)
724 rtx insn;
726 open_chains = closed_chains = NULL;
728 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
730 if (INSN_P (insn))
732 int n_ops;
733 rtx note;
734 rtx old_operands[MAX_RECOG_OPERANDS];
735 rtx old_dups[MAX_DUP_OPERANDS];
736 int i, icode;
737 int alt;
738 int predicated;
740 /* Process the insn, determining its effect on the def-use
741 chains. We perform the following steps with the register
742 references in the insn:
743 (1) Any read that overlaps an open chain, but doesn't exactly
744 match, causes that chain to be closed. We can't deal
745 with overlaps yet.
746 (2) Any read outside an operand causes any chain it overlaps
747 with to be closed, since we can't replace it.
748 (3) Any read inside an operand is added if there's already
749 an open chain for it.
750 (4) For any REG_DEAD note we find, close open chains that
751 overlap it.
752 (5) For any write we find, close open chains that overlap it.
753 (6) For any write we find in an operand, make a new chain.
754 (7) For any REG_UNUSED, close any chains we just opened. */
756 icode = recog_memoized (insn);
757 extract_insn (insn);
758 if (! constrain_operands (1))
759 fatal_insn_not_found (insn);
760 preprocess_constraints ();
761 alt = which_alternative;
762 n_ops = recog_data.n_operands;
764 /* Simplify the code below by rewriting things to reflect
765 matching constraints. Also promote OP_OUT to OP_INOUT
766 in predicated instructions. */
768 predicated = GET_CODE (PATTERN (insn)) == COND_EXEC;
769 for (i = 0; i < n_ops; ++i)
771 int matches = recog_op_alt[i][alt].matches;
772 if (matches >= 0)
773 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
774 if (matches >= 0 || recog_op_alt[i][alt].matched >= 0
775 || (predicated && recog_data.operand_type[i] == OP_OUT))
776 recog_data.operand_type[i] = OP_INOUT;
779 /* Step 1: Close chains for which we have overlapping reads. */
780 for (i = 0; i < n_ops; i++)
781 scan_rtx (insn, recog_data.operand_loc[i],
782 NO_REGS, terminate_overlapping_read,
783 recog_data.operand_type[i], 0);
785 /* Step 2: Close chains for which we have reads outside operands.
786 We do this by munging all operands into CC0, and closing
787 everything remaining. */
789 for (i = 0; i < n_ops; i++)
791 old_operands[i] = recog_data.operand[i];
792 /* Don't squash match_operator or match_parallel here, since
793 we don't know that all of the contained registers are
794 reachable by proper operands. */
795 if (recog_data.constraints[i][0] == '\0')
796 continue;
797 *recog_data.operand_loc[i] = cc0_rtx;
799 for (i = 0; i < recog_data.n_dups; i++)
801 int dup_num = recog_data.dup_num[i];
803 old_dups[i] = *recog_data.dup_loc[i];
804 *recog_data.dup_loc[i] = cc0_rtx;
806 /* For match_dup of match_operator or match_parallel, share
807 them, so that we don't miss changes in the dup. */
808 if (icode >= 0
809 && insn_data[icode].operand[dup_num].eliminable == 0)
810 old_dups[i] = recog_data.operand[dup_num];
813 scan_rtx (insn, &PATTERN (insn), NO_REGS, terminate_all_read,
814 OP_IN, 0);
816 for (i = 0; i < recog_data.n_dups; i++)
817 *recog_data.dup_loc[i] = old_dups[i];
818 for (i = 0; i < n_ops; i++)
819 *recog_data.operand_loc[i] = old_operands[i];
821 /* Step 2B: Can't rename function call argument registers. */
822 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
823 scan_rtx (insn, &CALL_INSN_FUNCTION_USAGE (insn),
824 NO_REGS, terminate_all_read, OP_IN, 0);
826 /* Step 2C: Can't rename asm operands that were originally
827 hard registers. */
828 if (asm_noperands (PATTERN (insn)) > 0)
829 for (i = 0; i < n_ops; i++)
831 rtx *loc = recog_data.operand_loc[i];
832 rtx op = *loc;
834 if (REG_P (op)
835 && REGNO (op) == ORIGINAL_REGNO (op)
836 && (recog_data.operand_type[i] == OP_IN
837 || recog_data.operand_type[i] == OP_INOUT))
838 scan_rtx (insn, loc, NO_REGS, terminate_all_read, OP_IN, 0);
841 /* Step 3: Append to chains for reads inside operands. */
842 for (i = 0; i < n_ops + recog_data.n_dups; i++)
844 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
845 rtx *loc = (i < n_ops
846 ? recog_data.operand_loc[opn]
847 : recog_data.dup_loc[i - n_ops]);
848 enum reg_class cl = recog_op_alt[opn][alt].cl;
849 enum op_type type = recog_data.operand_type[opn];
851 /* Don't scan match_operand here, since we've no reg class
852 information to pass down. Any operands that we could
853 substitute in will be represented elsewhere. */
854 if (recog_data.constraints[opn][0] == '\0')
855 continue;
857 if (recog_op_alt[opn][alt].is_address)
858 scan_rtx_address (insn, loc, cl, mark_read, VOIDmode);
859 else
860 scan_rtx (insn, loc, cl, mark_read, type, 0);
863 /* Step 4: Close chains for registers that die here.
864 Also record updates for REG_INC notes. */
865 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
867 if (REG_NOTE_KIND (note) == REG_DEAD)
868 scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
869 OP_IN, 0);
870 else if (REG_NOTE_KIND (note) == REG_INC)
871 scan_rtx (insn, &XEXP (note, 0), ALL_REGS, mark_read,
872 OP_INOUT, 0);
875 /* Step 4B: If this is a call, any chain live at this point
876 requires a caller-saved reg. */
877 if (CALL_P (insn))
879 struct du_chain *p;
880 for (p = open_chains; p; p = p->next_chain)
881 p->need_caller_save_reg = 1;
884 /* Step 5: Close open chains that overlap writes. Similar to
885 step 2, we hide in-out operands, since we do not want to
886 close these chains. */
888 for (i = 0; i < n_ops; i++)
890 old_operands[i] = recog_data.operand[i];
891 if (recog_data.operand_type[i] == OP_INOUT)
892 *recog_data.operand_loc[i] = cc0_rtx;
894 for (i = 0; i < recog_data.n_dups; i++)
896 int opn = recog_data.dup_num[i];
897 old_dups[i] = *recog_data.dup_loc[i];
898 if (recog_data.operand_type[opn] == OP_INOUT)
899 *recog_data.dup_loc[i] = cc0_rtx;
902 scan_rtx (insn, &PATTERN (insn), NO_REGS, terminate_write, OP_IN, 0);
904 for (i = 0; i < recog_data.n_dups; i++)
905 *recog_data.dup_loc[i] = old_dups[i];
906 for (i = 0; i < n_ops; i++)
907 *recog_data.operand_loc[i] = old_operands[i];
909 /* Step 6: Begin new chains for writes inside operands. */
910 /* ??? Many targets have output constraints on the SET_DEST
911 of a call insn, which is stupid, since these are certainly
912 ABI defined hard registers. Don't change calls at all.
913 Similarly take special care for asm statement that originally
914 referenced hard registers. */
915 if (asm_noperands (PATTERN (insn)) > 0)
917 for (i = 0; i < n_ops; i++)
918 if (recog_data.operand_type[i] == OP_OUT)
920 rtx *loc = recog_data.operand_loc[i];
921 rtx op = *loc;
922 enum reg_class cl = recog_op_alt[i][alt].cl;
924 if (REG_P (op)
925 && REGNO (op) == ORIGINAL_REGNO (op))
926 continue;
928 scan_rtx (insn, loc, cl, mark_write, OP_OUT,
929 recog_op_alt[i][alt].earlyclobber);
932 else if (!CALL_P (insn))
933 for (i = 0; i < n_ops + recog_data.n_dups; i++)
935 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
936 rtx *loc = (i < n_ops
937 ? recog_data.operand_loc[opn]
938 : recog_data.dup_loc[i - n_ops]);
939 enum reg_class cl = recog_op_alt[opn][alt].cl;
941 if (recog_data.operand_type[opn] == OP_OUT)
942 scan_rtx (insn, loc, cl, mark_write, OP_OUT,
943 recog_op_alt[opn][alt].earlyclobber);
946 /* Step 7: Close chains for registers that were never
947 really used here. */
948 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
949 if (REG_NOTE_KIND (note) == REG_UNUSED)
950 scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
951 OP_IN, 0);
953 if (insn == BB_END (bb))
954 break;
957 /* Since we close every chain when we find a REG_DEAD note, anything that
958 is still open lives past the basic block, so it can't be renamed. */
959 return closed_chains;
962 /* Dump all def/use chains in CHAINS to DUMP_FILE. They are
963 printed in reverse order as that's how we build them. */
965 static void
966 dump_def_use_chain (struct du_chain *chains)
968 while (chains)
970 struct du_chain *this = chains;
971 int r = REGNO (*this->loc);
972 int nregs = hard_regno_nregs[r][GET_MODE (*this->loc)];
973 fprintf (dump_file, "Register %s (%d):", reg_names[r], nregs);
974 while (this)
976 fprintf (dump_file, " %d [%s]", INSN_UID (this->insn),
977 reg_class_names[this->cl]);
978 this = this->next_use;
980 fprintf (dump_file, "\n");
981 chains = chains->next_chain;
985 /* The following code does forward propagation of hard register copies.
986 The object is to eliminate as many dependencies as possible, so that
987 we have the most scheduling freedom. As a side effect, we also clean
988 up some silly register allocation decisions made by reload. This
989 code may be obsoleted by a new register allocator. */
991 /* For each register, we have a list of registers that contain the same
992 value. The OLDEST_REGNO field points to the head of the list, and
993 the NEXT_REGNO field runs through the list. The MODE field indicates
994 what mode the data is known to be in; this field is VOIDmode when the
995 register is not known to contain valid data. */
997 struct value_data_entry
999 enum machine_mode mode;
1000 unsigned int oldest_regno;
1001 unsigned int next_regno;
1004 struct value_data
1006 struct value_data_entry e[FIRST_PSEUDO_REGISTER];
1007 unsigned int max_value_regs;
1010 static void kill_value_one_regno (unsigned, struct value_data *);
1011 static void kill_value_regno (unsigned, unsigned, struct value_data *);
1012 static void kill_value (rtx, struct value_data *);
1013 static void set_value_regno (unsigned, enum machine_mode, struct value_data *);
1014 static void init_value_data (struct value_data *);
1015 static void kill_clobbered_value (rtx, rtx, void *);
1016 static void kill_set_value (rtx, rtx, void *);
1017 static int kill_autoinc_value (rtx *, void *);
1018 static void copy_value (rtx, rtx, struct value_data *);
1019 static bool mode_change_ok (enum machine_mode, enum machine_mode,
1020 unsigned int);
1021 static rtx maybe_mode_change (enum machine_mode, enum machine_mode,
1022 enum machine_mode, unsigned int, unsigned int);
1023 static rtx find_oldest_value_reg (enum reg_class, rtx, struct value_data *);
1024 static bool replace_oldest_value_reg (rtx *, enum reg_class, rtx,
1025 struct value_data *);
1026 static bool replace_oldest_value_addr (rtx *, enum reg_class,
1027 enum machine_mode, rtx,
1028 struct value_data *);
1029 static bool replace_oldest_value_mem (rtx, rtx, struct value_data *);
1030 static bool copyprop_hardreg_forward_1 (basic_block, struct value_data *);
1031 extern void debug_value_data (struct value_data *);
1032 #ifdef ENABLE_CHECKING
1033 static void validate_value_data (struct value_data *);
1034 #endif
1036 /* Kill register REGNO. This involves removing it from any value
1037 lists, and resetting the value mode to VOIDmode. This is only a
1038 helper function; it does not handle any hard registers overlapping
1039 with REGNO. */
1041 static void
1042 kill_value_one_regno (unsigned int regno, struct value_data *vd)
1044 unsigned int i, next;
1046 if (vd->e[regno].oldest_regno != regno)
1048 for (i = vd->e[regno].oldest_regno;
1049 vd->e[i].next_regno != regno;
1050 i = vd->e[i].next_regno)
1051 continue;
1052 vd->e[i].next_regno = vd->e[regno].next_regno;
1054 else if ((next = vd->e[regno].next_regno) != INVALID_REGNUM)
1056 for (i = next; i != INVALID_REGNUM; i = vd->e[i].next_regno)
1057 vd->e[i].oldest_regno = next;
1060 vd->e[regno].mode = VOIDmode;
1061 vd->e[regno].oldest_regno = regno;
1062 vd->e[regno].next_regno = INVALID_REGNUM;
1064 #ifdef ENABLE_CHECKING
1065 validate_value_data (vd);
1066 #endif
1069 /* Kill the value in register REGNO for NREGS, and any other registers
1070 whose values overlap. */
1072 static void
1073 kill_value_regno (unsigned int regno, unsigned int nregs,
1074 struct value_data *vd)
1076 unsigned int j;
1078 /* Kill the value we're told to kill. */
1079 for (j = 0; j < nregs; ++j)
1080 kill_value_one_regno (regno + j, vd);
1082 /* Kill everything that overlapped what we're told to kill. */
1083 if (regno < vd->max_value_regs)
1084 j = 0;
1085 else
1086 j = regno - vd->max_value_regs;
1087 for (; j < regno; ++j)
1089 unsigned int i, n;
1090 if (vd->e[j].mode == VOIDmode)
1091 continue;
1092 n = hard_regno_nregs[j][vd->e[j].mode];
1093 if (j + n > regno)
1094 for (i = 0; i < n; ++i)
1095 kill_value_one_regno (j + i, vd);
1099 /* Kill X. This is a convenience function wrapping kill_value_regno
1100 so that we mind the mode the register is in. */
1102 static void
1103 kill_value (rtx x, struct value_data *vd)
1105 /* SUBREGS are supposed to have been eliminated by now. But some
1106 ports, e.g. i386 sse, use them to smuggle vector type information
1107 through to instruction selection. Each such SUBREG should simplify,
1108 so if we get a NULL we've done something wrong elsewhere. */
1110 if (GET_CODE (x) == SUBREG)
1111 x = simplify_subreg (GET_MODE (x), SUBREG_REG (x),
1112 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
1113 if (REG_P (x))
1115 unsigned int regno = REGNO (x);
1116 unsigned int n = hard_regno_nregs[regno][GET_MODE (x)];
1118 kill_value_regno (regno, n, vd);
1122 /* Remember that REGNO is valid in MODE. */
1124 static void
1125 set_value_regno (unsigned int regno, enum machine_mode mode,
1126 struct value_data *vd)
1128 unsigned int nregs;
1130 vd->e[regno].mode = mode;
1132 nregs = hard_regno_nregs[regno][mode];
1133 if (nregs > vd->max_value_regs)
1134 vd->max_value_regs = nregs;
1137 /* Initialize VD such that there are no known relationships between regs. */
1139 static void
1140 init_value_data (struct value_data *vd)
1142 int i;
1143 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1145 vd->e[i].mode = VOIDmode;
1146 vd->e[i].oldest_regno = i;
1147 vd->e[i].next_regno = INVALID_REGNUM;
1149 vd->max_value_regs = 0;
1152 /* Called through note_stores. If X is clobbered, kill its value. */
1154 static void
1155 kill_clobbered_value (rtx x, rtx set, void *data)
1157 struct value_data *vd = data;
1158 if (GET_CODE (set) == CLOBBER)
1159 kill_value (x, vd);
1162 /* Called through note_stores. If X is set, not clobbered, kill its
1163 current value and install it as the root of its own value list. */
1165 static void
1166 kill_set_value (rtx x, rtx set, void *data)
1168 struct value_data *vd = data;
1169 if (GET_CODE (set) != CLOBBER)
1171 kill_value (x, vd);
1172 if (REG_P (x))
1173 set_value_regno (REGNO (x), GET_MODE (x), vd);
1177 /* Called through for_each_rtx. Kill any register used as the base of an
1178 auto-increment expression, and install that register as the root of its
1179 own value list. */
1181 static int
1182 kill_autoinc_value (rtx *px, void *data)
1184 rtx x = *px;
1185 struct value_data *vd = data;
1187 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
1189 x = XEXP (x, 0);
1190 kill_value (x, vd);
1191 set_value_regno (REGNO (x), Pmode, vd);
1192 return -1;
1195 return 0;
1198 /* Assert that SRC has been copied to DEST. Adjust the data structures
1199 to reflect that SRC contains an older copy of the shared value. */
1201 static void
1202 copy_value (rtx dest, rtx src, struct value_data *vd)
1204 unsigned int dr = REGNO (dest);
1205 unsigned int sr = REGNO (src);
1206 unsigned int dn, sn;
1207 unsigned int i;
1209 /* ??? At present, it's possible to see noop sets. It'd be nice if
1210 this were cleaned up beforehand... */
1211 if (sr == dr)
1212 return;
1214 /* Do not propagate copies to the stack pointer, as that can leave
1215 memory accesses with no scheduling dependency on the stack update. */
1216 if (dr == STACK_POINTER_REGNUM)
1217 return;
1219 /* Likewise with the frame pointer, if we're using one. */
1220 if (frame_pointer_needed && dr == HARD_FRAME_POINTER_REGNUM)
1221 return;
1223 /* If SRC and DEST overlap, don't record anything. */
1224 dn = hard_regno_nregs[dr][GET_MODE (dest)];
1225 sn = hard_regno_nregs[sr][GET_MODE (dest)];
1226 if ((dr > sr && dr < sr + sn)
1227 || (sr > dr && sr < dr + dn))
1228 return;
1230 /* If SRC had no assigned mode (i.e. we didn't know it was live)
1231 assign it now and assume the value came from an input argument
1232 or somesuch. */
1233 if (vd->e[sr].mode == VOIDmode)
1234 set_value_regno (sr, vd->e[dr].mode, vd);
1236 /* If we are narrowing the input to a smaller number of hard regs,
1237 and it is in big endian, we are really extracting a high part.
1238 Since we generally associate a low part of a value with the value itself,
1239 we must not do the same for the high part.
1240 Note we can still get low parts for the same mode combination through
1241 a two-step copy involving differently sized hard regs.
1242 Assume hard regs fr* are 32 bits bits each, while r* are 64 bits each:
1243 (set (reg:DI r0) (reg:DI fr0))
1244 (set (reg:SI fr2) (reg:SI r0))
1245 loads the low part of (reg:DI fr0) - i.e. fr1 - into fr2, while:
1246 (set (reg:SI fr2) (reg:SI fr0))
1247 loads the high part of (reg:DI fr0) into fr2.
1249 We can't properly represent the latter case in our tables, so don't
1250 record anything then. */
1251 else if (sn < (unsigned int) hard_regno_nregs[sr][vd->e[sr].mode]
1252 && (GET_MODE_SIZE (vd->e[sr].mode) > UNITS_PER_WORD
1253 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
1254 return;
1256 /* If SRC had been assigned a mode narrower than the copy, we can't
1257 link DEST into the chain, because not all of the pieces of the
1258 copy came from oldest_regno. */
1259 else if (sn > (unsigned int) hard_regno_nregs[sr][vd->e[sr].mode])
1260 return;
1262 /* Link DR at the end of the value chain used by SR. */
1264 vd->e[dr].oldest_regno = vd->e[sr].oldest_regno;
1266 for (i = sr; vd->e[i].next_regno != INVALID_REGNUM; i = vd->e[i].next_regno)
1267 continue;
1268 vd->e[i].next_regno = dr;
1270 #ifdef ENABLE_CHECKING
1271 validate_value_data (vd);
1272 #endif
1275 /* Return true if a mode change from ORIG to NEW is allowed for REGNO. */
1277 static bool
1278 mode_change_ok (enum machine_mode orig_mode, enum machine_mode new_mode,
1279 unsigned int regno ATTRIBUTE_UNUSED)
1281 if (GET_MODE_SIZE (orig_mode) < GET_MODE_SIZE (new_mode))
1282 return false;
1284 #ifdef CANNOT_CHANGE_MODE_CLASS
1285 return !REG_CANNOT_CHANGE_MODE_P (regno, orig_mode, new_mode);
1286 #endif
1288 return true;
1291 /* Register REGNO was originally set in ORIG_MODE. It - or a copy of it -
1292 was copied in COPY_MODE to COPY_REGNO, and then COPY_REGNO was accessed
1293 in NEW_MODE.
1294 Return a NEW_MODE rtx for REGNO if that's OK, otherwise return NULL_RTX. */
1296 static rtx
1297 maybe_mode_change (enum machine_mode orig_mode, enum machine_mode copy_mode,
1298 enum machine_mode new_mode, unsigned int regno,
1299 unsigned int copy_regno ATTRIBUTE_UNUSED)
1301 if (orig_mode == new_mode)
1302 return gen_rtx_raw_REG (new_mode, regno);
1303 else if (mode_change_ok (orig_mode, new_mode, regno))
1305 int copy_nregs = hard_regno_nregs[copy_regno][copy_mode];
1306 int use_nregs = hard_regno_nregs[copy_regno][new_mode];
1307 int copy_offset
1308 = GET_MODE_SIZE (copy_mode) / copy_nregs * (copy_nregs - use_nregs);
1309 int offset
1310 = GET_MODE_SIZE (orig_mode) - GET_MODE_SIZE (new_mode) - copy_offset;
1311 int byteoffset = offset % UNITS_PER_WORD;
1312 int wordoffset = offset - byteoffset;
1314 offset = ((WORDS_BIG_ENDIAN ? wordoffset : 0)
1315 + (BYTES_BIG_ENDIAN ? byteoffset : 0));
1316 return gen_rtx_raw_REG (new_mode,
1317 regno + subreg_regno_offset (regno, orig_mode,
1318 offset,
1319 new_mode));
1321 return NULL_RTX;
1324 /* Find the oldest copy of the value contained in REGNO that is in
1325 register class CL and has mode MODE. If found, return an rtx
1326 of that oldest register, otherwise return NULL. */
1328 static rtx
1329 find_oldest_value_reg (enum reg_class cl, rtx reg, struct value_data *vd)
1331 unsigned int regno = REGNO (reg);
1332 enum machine_mode mode = GET_MODE (reg);
1333 unsigned int i;
1335 /* If we are accessing REG in some mode other that what we set it in,
1336 make sure that the replacement is valid. In particular, consider
1337 (set (reg:DI r11) (...))
1338 (set (reg:SI r9) (reg:SI r11))
1339 (set (reg:SI r10) (...))
1340 (set (...) (reg:DI r9))
1341 Replacing r9 with r11 is invalid. */
1342 if (mode != vd->e[regno].mode)
1344 if (hard_regno_nregs[regno][mode]
1345 > hard_regno_nregs[regno][vd->e[regno].mode])
1346 return NULL_RTX;
1349 for (i = vd->e[regno].oldest_regno; i != regno; i = vd->e[i].next_regno)
1351 enum machine_mode oldmode = vd->e[i].mode;
1352 rtx new;
1353 unsigned int last;
1355 for (last = i; last < i + hard_regno_nregs[i][mode]; last++)
1356 if (!TEST_HARD_REG_BIT (reg_class_contents[cl], last))
1357 return NULL_RTX;
1359 new = maybe_mode_change (oldmode, vd->e[regno].mode, mode, i, regno);
1360 if (new)
1362 ORIGINAL_REGNO (new) = ORIGINAL_REGNO (reg);
1363 REG_ATTRS (new) = REG_ATTRS (reg);
1364 return new;
1368 return NULL_RTX;
1371 /* If possible, replace the register at *LOC with the oldest register
1372 in register class CL. Return true if successfully replaced. */
1374 static bool
1375 replace_oldest_value_reg (rtx *loc, enum reg_class cl, rtx insn,
1376 struct value_data *vd)
1378 rtx new = find_oldest_value_reg (cl, *loc, vd);
1379 if (new)
1381 if (dump_file)
1382 fprintf (dump_file, "insn %u: replaced reg %u with %u\n",
1383 INSN_UID (insn), REGNO (*loc), REGNO (new));
1385 *loc = new;
1386 return true;
1388 return false;
1391 /* Similar to replace_oldest_value_reg, but *LOC contains an address.
1392 Adapted from find_reloads_address_1. CL is INDEX_REG_CLASS or
1393 BASE_REG_CLASS depending on how the register is being considered. */
1395 static bool
1396 replace_oldest_value_addr (rtx *loc, enum reg_class cl,
1397 enum machine_mode mode, rtx insn,
1398 struct value_data *vd)
1400 rtx x = *loc;
1401 RTX_CODE code = GET_CODE (x);
1402 const char *fmt;
1403 int i, j;
1404 bool changed = false;
1406 switch (code)
1408 case PLUS:
1410 rtx orig_op0 = XEXP (x, 0);
1411 rtx orig_op1 = XEXP (x, 1);
1412 RTX_CODE code0 = GET_CODE (orig_op0);
1413 RTX_CODE code1 = GET_CODE (orig_op1);
1414 rtx op0 = orig_op0;
1415 rtx op1 = orig_op1;
1416 rtx *locI = NULL;
1417 rtx *locB = NULL;
1419 if (GET_CODE (op0) == SUBREG)
1421 op0 = SUBREG_REG (op0);
1422 code0 = GET_CODE (op0);
1425 if (GET_CODE (op1) == SUBREG)
1427 op1 = SUBREG_REG (op1);
1428 code1 = GET_CODE (op1);
1431 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
1432 || code0 == ZERO_EXTEND || code1 == MEM)
1434 locI = &XEXP (x, 0);
1435 locB = &XEXP (x, 1);
1437 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
1438 || code1 == ZERO_EXTEND || code0 == MEM)
1440 locI = &XEXP (x, 1);
1441 locB = &XEXP (x, 0);
1443 else if (code0 == CONST_INT || code0 == CONST
1444 || code0 == SYMBOL_REF || code0 == LABEL_REF)
1445 locB = &XEXP (x, 1);
1446 else if (code1 == CONST_INT || code1 == CONST
1447 || code1 == SYMBOL_REF || code1 == LABEL_REF)
1448 locB = &XEXP (x, 0);
1449 else if (code0 == REG && code1 == REG)
1451 int index_op;
1453 if (REG_OK_FOR_INDEX_P (op0)
1454 && REG_MODE_OK_FOR_BASE_P (op1, mode))
1455 index_op = 0;
1456 else if (REG_OK_FOR_INDEX_P (op1)
1457 && REG_MODE_OK_FOR_BASE_P (op0, mode))
1458 index_op = 1;
1459 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
1460 index_op = 0;
1461 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
1462 index_op = 1;
1463 else if (REG_OK_FOR_INDEX_P (op1))
1464 index_op = 1;
1465 else
1466 index_op = 0;
1468 locI = &XEXP (x, index_op);
1469 locB = &XEXP (x, !index_op);
1471 else if (code0 == REG)
1473 locI = &XEXP (x, 0);
1474 locB = &XEXP (x, 1);
1476 else if (code1 == REG)
1478 locI = &XEXP (x, 1);
1479 locB = &XEXP (x, 0);
1482 if (locI)
1483 changed |= replace_oldest_value_addr (locI, INDEX_REG_CLASS, mode,
1484 insn, vd);
1485 if (locB)
1486 changed |= replace_oldest_value_addr (locB,
1487 MODE_BASE_REG_CLASS (mode),
1488 mode, insn, vd);
1489 return changed;
1492 case POST_INC:
1493 case POST_DEC:
1494 case POST_MODIFY:
1495 case PRE_INC:
1496 case PRE_DEC:
1497 case PRE_MODIFY:
1498 return false;
1500 case MEM:
1501 return replace_oldest_value_mem (x, insn, vd);
1503 case REG:
1504 return replace_oldest_value_reg (loc, cl, insn, vd);
1506 default:
1507 break;
1510 fmt = GET_RTX_FORMAT (code);
1511 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1513 if (fmt[i] == 'e')
1514 changed |= replace_oldest_value_addr (&XEXP (x, i), cl, mode,
1515 insn, vd);
1516 else if (fmt[i] == 'E')
1517 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1518 changed |= replace_oldest_value_addr (&XVECEXP (x, i, j), cl,
1519 mode, insn, vd);
1522 return changed;
1525 /* Similar to replace_oldest_value_reg, but X contains a memory. */
1527 static bool
1528 replace_oldest_value_mem (rtx x, rtx insn, struct value_data *vd)
1530 return replace_oldest_value_addr (&XEXP (x, 0),
1531 MODE_BASE_REG_CLASS (GET_MODE (x)),
1532 GET_MODE (x), insn, vd);
1535 /* Perform the forward copy propagation on basic block BB. */
1537 static bool
1538 copyprop_hardreg_forward_1 (basic_block bb, struct value_data *vd)
1540 bool changed = false;
1541 rtx insn;
1543 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
1545 int n_ops, i, alt, predicated;
1546 bool is_asm;
1547 rtx set;
1549 if (! INSN_P (insn))
1551 if (insn == BB_END (bb))
1552 break;
1553 else
1554 continue;
1557 set = single_set (insn);
1558 extract_insn (insn);
1559 if (! constrain_operands (1))
1560 fatal_insn_not_found (insn);
1561 preprocess_constraints ();
1562 alt = which_alternative;
1563 n_ops = recog_data.n_operands;
1564 is_asm = asm_noperands (PATTERN (insn)) >= 0;
1566 /* Simplify the code below by rewriting things to reflect
1567 matching constraints. Also promote OP_OUT to OP_INOUT
1568 in predicated instructions. */
1570 predicated = GET_CODE (PATTERN (insn)) == COND_EXEC;
1571 for (i = 0; i < n_ops; ++i)
1573 int matches = recog_op_alt[i][alt].matches;
1574 if (matches >= 0)
1575 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
1576 if (matches >= 0 || recog_op_alt[i][alt].matched >= 0
1577 || (predicated && recog_data.operand_type[i] == OP_OUT))
1578 recog_data.operand_type[i] = OP_INOUT;
1581 /* For each earlyclobber operand, zap the value data. */
1582 for (i = 0; i < n_ops; i++)
1583 if (recog_op_alt[i][alt].earlyclobber)
1584 kill_value (recog_data.operand[i], vd);
1586 /* Within asms, a clobber cannot overlap inputs or outputs.
1587 I wouldn't think this were true for regular insns, but
1588 scan_rtx treats them like that... */
1589 note_stores (PATTERN (insn), kill_clobbered_value, vd);
1591 /* Kill all auto-incremented values. */
1592 /* ??? REG_INC is useless, since stack pushes aren't done that way. */
1593 for_each_rtx (&PATTERN (insn), kill_autoinc_value, vd);
1595 /* Kill all early-clobbered operands. */
1596 for (i = 0; i < n_ops; i++)
1597 if (recog_op_alt[i][alt].earlyclobber)
1598 kill_value (recog_data.operand[i], vd);
1600 /* Special-case plain move instructions, since we may well
1601 be able to do the move from a different register class. */
1602 if (set && REG_P (SET_SRC (set)))
1604 rtx src = SET_SRC (set);
1605 unsigned int regno = REGNO (src);
1606 enum machine_mode mode = GET_MODE (src);
1607 unsigned int i;
1608 rtx new;
1610 /* If we are accessing SRC in some mode other that what we
1611 set it in, make sure that the replacement is valid. */
1612 if (mode != vd->e[regno].mode)
1614 if (hard_regno_nregs[regno][mode]
1615 > hard_regno_nregs[regno][vd->e[regno].mode])
1616 goto no_move_special_case;
1619 /* If the destination is also a register, try to find a source
1620 register in the same class. */
1621 if (REG_P (SET_DEST (set)))
1623 new = find_oldest_value_reg (REGNO_REG_CLASS (regno), src, vd);
1624 if (new && validate_change (insn, &SET_SRC (set), new, 0))
1626 if (dump_file)
1627 fprintf (dump_file,
1628 "insn %u: replaced reg %u with %u\n",
1629 INSN_UID (insn), regno, REGNO (new));
1630 changed = true;
1631 goto did_replacement;
1635 /* Otherwise, try all valid registers and see if its valid. */
1636 for (i = vd->e[regno].oldest_regno; i != regno;
1637 i = vd->e[i].next_regno)
1639 new = maybe_mode_change (vd->e[i].mode, vd->e[regno].mode,
1640 mode, i, regno);
1641 if (new != NULL_RTX)
1643 if (validate_change (insn, &SET_SRC (set), new, 0))
1645 ORIGINAL_REGNO (new) = ORIGINAL_REGNO (src);
1646 REG_ATTRS (new) = REG_ATTRS (src);
1647 if (dump_file)
1648 fprintf (dump_file,
1649 "insn %u: replaced reg %u with %u\n",
1650 INSN_UID (insn), regno, REGNO (new));
1651 changed = true;
1652 goto did_replacement;
1657 no_move_special_case:
1659 /* For each input operand, replace a hard register with the
1660 eldest live copy that's in an appropriate register class. */
1661 for (i = 0; i < n_ops; i++)
1663 bool replaced = false;
1665 /* Don't scan match_operand here, since we've no reg class
1666 information to pass down. Any operands that we could
1667 substitute in will be represented elsewhere. */
1668 if (recog_data.constraints[i][0] == '\0')
1669 continue;
1671 /* Don't replace in asms intentionally referencing hard regs. */
1672 if (is_asm && REG_P (recog_data.operand[i])
1673 && (REGNO (recog_data.operand[i])
1674 == ORIGINAL_REGNO (recog_data.operand[i])))
1675 continue;
1677 if (recog_data.operand_type[i] == OP_IN)
1679 if (recog_op_alt[i][alt].is_address)
1680 replaced
1681 = replace_oldest_value_addr (recog_data.operand_loc[i],
1682 recog_op_alt[i][alt].cl,
1683 VOIDmode, insn, vd);
1684 else if (REG_P (recog_data.operand[i]))
1685 replaced
1686 = replace_oldest_value_reg (recog_data.operand_loc[i],
1687 recog_op_alt[i][alt].cl,
1688 insn, vd);
1689 else if (MEM_P (recog_data.operand[i]))
1690 replaced = replace_oldest_value_mem (recog_data.operand[i],
1691 insn, vd);
1693 else if (MEM_P (recog_data.operand[i]))
1694 replaced = replace_oldest_value_mem (recog_data.operand[i],
1695 insn, vd);
1697 /* If we performed any replacement, update match_dups. */
1698 if (replaced)
1700 int j;
1701 rtx new;
1703 changed = true;
1705 new = *recog_data.operand_loc[i];
1706 recog_data.operand[i] = new;
1707 for (j = 0; j < recog_data.n_dups; j++)
1708 if (recog_data.dup_num[j] == i)
1709 *recog_data.dup_loc[j] = new;
1713 did_replacement:
1714 /* Clobber call-clobbered registers. */
1715 if (CALL_P (insn))
1716 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1717 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1718 kill_value_regno (i, 1, vd);
1720 /* Notice stores. */
1721 note_stores (PATTERN (insn), kill_set_value, vd);
1723 /* Notice copies. */
1724 if (set && REG_P (SET_DEST (set)) && REG_P (SET_SRC (set)))
1725 copy_value (SET_DEST (set), SET_SRC (set), vd);
1727 if (insn == BB_END (bb))
1728 break;
1731 return changed;
1734 /* Main entry point for the forward copy propagation optimization. */
1736 void
1737 copyprop_hardreg_forward (void)
1739 struct value_data *all_vd;
1740 bool need_refresh;
1741 basic_block bb, bbp = 0;
1743 need_refresh = false;
1745 all_vd = xmalloc (sizeof (struct value_data) * last_basic_block);
1747 FOR_EACH_BB (bb)
1749 /* If a block has a single predecessor, that we've already
1750 processed, begin with the value data that was live at
1751 the end of the predecessor block. */
1752 /* ??? Ought to use more intelligent queuing of blocks. */
1753 if (EDGE_COUNT (bb->preds) > 0)
1754 for (bbp = bb; bbp && bbp != EDGE_PRED (bb, 0)->src; bbp = bbp->prev_bb);
1755 if (EDGE_COUNT (bb->preds) == 1
1756 && ! (EDGE_PRED (bb, 0)->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
1757 && EDGE_PRED (bb, 0)->src != ENTRY_BLOCK_PTR
1758 && bbp)
1759 all_vd[bb->index] = all_vd[EDGE_PRED (bb, 0)->src->index];
1760 else
1761 init_value_data (all_vd + bb->index);
1763 if (copyprop_hardreg_forward_1 (bb, all_vd + bb->index))
1764 need_refresh = true;
1767 if (need_refresh)
1769 if (dump_file)
1770 fputs ("\n\n", dump_file);
1772 /* ??? Irritatingly, delete_noop_moves does not take a set of blocks
1773 to scan, so we have to do a life update with no initial set of
1774 blocks Just In Case. */
1775 delete_noop_moves ();
1776 update_life_info (NULL, UPDATE_LIFE_GLOBAL_RM_NOTES,
1777 PROP_DEATH_NOTES
1778 | PROP_SCAN_DEAD_CODE
1779 | PROP_KILL_DEAD_CODE);
1782 free (all_vd);
1785 /* Dump the value chain data to stderr. */
1787 void
1788 debug_value_data (struct value_data *vd)
1790 HARD_REG_SET set;
1791 unsigned int i, j;
1793 CLEAR_HARD_REG_SET (set);
1795 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1796 if (vd->e[i].oldest_regno == i)
1798 if (vd->e[i].mode == VOIDmode)
1800 if (vd->e[i].next_regno != INVALID_REGNUM)
1801 fprintf (stderr, "[%u] Bad next_regno for empty chain (%u)\n",
1802 i, vd->e[i].next_regno);
1803 continue;
1806 SET_HARD_REG_BIT (set, i);
1807 fprintf (stderr, "[%u %s] ", i, GET_MODE_NAME (vd->e[i].mode));
1809 for (j = vd->e[i].next_regno;
1810 j != INVALID_REGNUM;
1811 j = vd->e[j].next_regno)
1813 if (TEST_HARD_REG_BIT (set, j))
1815 fprintf (stderr, "[%u] Loop in regno chain\n", j);
1816 return;
1819 if (vd->e[j].oldest_regno != i)
1821 fprintf (stderr, "[%u] Bad oldest_regno (%u)\n",
1822 j, vd->e[j].oldest_regno);
1823 return;
1825 SET_HARD_REG_BIT (set, j);
1826 fprintf (stderr, "[%u %s] ", j, GET_MODE_NAME (vd->e[j].mode));
1828 fputc ('\n', stderr);
1831 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1832 if (! TEST_HARD_REG_BIT (set, i)
1833 && (vd->e[i].mode != VOIDmode
1834 || vd->e[i].oldest_regno != i
1835 || vd->e[i].next_regno != INVALID_REGNUM))
1836 fprintf (stderr, "[%u] Non-empty reg in chain (%s %u %i)\n",
1837 i, GET_MODE_NAME (vd->e[i].mode), vd->e[i].oldest_regno,
1838 vd->e[i].next_regno);
1841 #ifdef ENABLE_CHECKING
1842 static void
1843 validate_value_data (struct value_data *vd)
1845 HARD_REG_SET set;
1846 unsigned int i, j;
1848 CLEAR_HARD_REG_SET (set);
1850 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1851 if (vd->e[i].oldest_regno == i)
1853 if (vd->e[i].mode == VOIDmode)
1855 if (vd->e[i].next_regno != INVALID_REGNUM)
1856 internal_error ("validate_value_data: [%u] Bad next_regno for empty chain (%u)",
1857 i, vd->e[i].next_regno);
1858 continue;
1861 SET_HARD_REG_BIT (set, i);
1863 for (j = vd->e[i].next_regno;
1864 j != INVALID_REGNUM;
1865 j = vd->e[j].next_regno)
1867 if (TEST_HARD_REG_BIT (set, j))
1868 internal_error ("validate_value_data: Loop in regno chain (%u)",
1870 if (vd->e[j].oldest_regno != i)
1871 internal_error ("validate_value_data: [%u] Bad oldest_regno (%u)",
1872 j, vd->e[j].oldest_regno);
1874 SET_HARD_REG_BIT (set, j);
1878 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1879 if (! TEST_HARD_REG_BIT (set, i)
1880 && (vd->e[i].mode != VOIDmode
1881 || vd->e[i].oldest_regno != i
1882 || vd->e[i].next_regno != INVALID_REGNUM))
1883 internal_error ("validate_value_data: [%u] Non-empty reg in chain (%s %u %i)",
1884 i, GET_MODE_NAME (vd->e[i].mode), vd->e[i].oldest_regno,
1885 vd->e[i].next_regno);
1887 #endif