1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 /* This pass converts stack-like registers from the "flat register
23 file" model that gcc uses, to a stack convention that the 387 uses.
25 * The form of the input:
27 On input, the function consists of insn that have had their
28 registers fully allocated to a set of "virtual" registers. Note that
29 the word "virtual" is used differently here than elsewhere in gcc: for
30 each virtual stack reg, there is a hard reg, but the mapping between
31 them is not known until this pass is run. On output, hard register
32 numbers have been substituted, and various pop and exchange insns have
33 been emitted. The hard register numbers and the virtual register
34 numbers completely overlap - before this pass, all stack register
35 numbers are virtual, and afterward they are all hard.
37 The virtual registers can be manipulated normally by gcc, and their
38 semantics are the same as for normal registers. After the hard
39 register numbers are substituted, the semantics of an insn containing
40 stack-like regs are not the same as for an insn with normal regs: for
41 instance, it is not safe to delete an insn that appears to be a no-op
42 move. In general, no insn containing hard regs should be changed
43 after this pass is done.
45 * The form of the output:
47 After this pass, hard register numbers represent the distance from
48 the current top of stack to the desired register. A reference to
49 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
50 represents the register just below that, and so forth. Also, REG_DEAD
51 notes indicate whether or not a stack register should be popped.
53 A "swap" insn looks like a parallel of two patterns, where each
54 pattern is a SET: one sets A to B, the other B to A.
56 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
57 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
58 will replace the existing stack top, not push a new value.
60 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
61 SET_SRC is REG or MEM.
63 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
64 appears ambiguous. As a special case, the presence of a REG_DEAD note
65 for FIRST_STACK_REG differentiates between a load insn and a pop.
67 If a REG_DEAD is present, the insn represents a "pop" that discards
68 the top of the register stack. If there is no REG_DEAD note, then the
69 insn represents a "dup" or a push of the current top of stack onto the
74 Existing REG_DEAD and REG_UNUSED notes for stack registers are
75 deleted and recreated from scratch. REG_DEAD is never created for a
76 SET_DEST, only REG_UNUSED.
80 There are several rules on the usage of stack-like regs in
81 asm_operands insns. These rules apply only to the operands that are
84 1. Given a set of input regs that die in an asm_operands, it is
85 necessary to know which are implicitly popped by the asm, and
86 which must be explicitly popped by gcc.
88 An input reg that is implicitly popped by the asm must be
89 explicitly clobbered, unless it is constrained to match an
92 2. For any input reg that is implicitly popped by an asm, it is
93 necessary to know how to adjust the stack to compensate for the pop.
94 If any non-popped input is closer to the top of the reg-stack than
95 the implicitly popped reg, it would not be possible to know what the
96 stack looked like - it's not clear how the rest of the stack "slides
99 All implicitly popped input regs must be closer to the top of
100 the reg-stack than any input that is not implicitly popped.
102 3. It is possible that if an input dies in an insn, reload might
103 use the input reg for an output reload. Consider this example:
105 asm ("foo" : "=t" (a) : "f" (b));
107 This asm says that input B is not popped by the asm, and that
108 the asm pushes a result onto the reg-stack, i.e., the stack is one
109 deeper after the asm than it was before. But, it is possible that
110 reload will think that it can use the same reg for both the input and
111 the output, if input B dies in this insn.
113 If any input operand uses the "f" constraint, all output reg
114 constraints must use the "&" earlyclobber.
116 The asm above would be written as
118 asm ("foo" : "=&t" (a) : "f" (b));
120 4. Some operands need to be in particular places on the stack. All
121 output operands fall in this category - there is no other way to
122 know which regs the outputs appear in unless the user indicates
123 this in the constraints.
125 Output operands must specifically indicate which reg an output
126 appears in after an asm. "=f" is not allowed: the operand
127 constraints must select a class with a single reg.
129 5. Output operands may not be "inserted" between existing stack regs.
130 Since no 387 opcode uses a read/write operand, all output operands
131 are dead before the asm_operands, and are pushed by the asm_operands.
132 It makes no sense to push anywhere but the top of the reg-stack.
134 Output operands must start at the top of the reg-stack: output
135 operands may not "skip" a reg.
137 6. Some asm statements may need extra stack space for internal
138 calculations. This can be guaranteed by clobbering stack registers
139 unrelated to the inputs and outputs.
141 Here are a couple of reasonable asms to want to write. This asm
142 takes one input, which is internally popped, and produces two outputs.
144 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
146 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
147 and replaces them with one output. The user must code the "st(1)"
148 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
150 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
156 #include "coretypes.h"
161 #include "function.h"
162 #include "insn-config.h"
164 #include "hard-reg-set.h"
169 #include "basic-block.h"
174 /* We use this array to cache info about insns, because otherwise we
175 spend too much time in stack_regs_mentioned_p.
177 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
178 the insn uses stack registers, two indicates the insn does not use
180 static GTY(()) varray_type stack_regs_mentioned_data
;
184 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
186 /* This is the basic stack record. TOP is an index into REG[] such
187 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
189 If TOP is -2, REG[] is not yet initialized. Stack initialization
190 consists of placing each live reg in array `reg' and setting `top'
193 REG_SET indicates which registers are live. */
195 typedef struct stack_def
197 int top
; /* index to top stack element */
198 HARD_REG_SET reg_set
; /* set of live registers */
199 unsigned char reg
[REG_STACK_SIZE
];/* register - stack mapping */
202 /* This is used to carry information about basic blocks. It is
203 attached to the AUX field of the standard CFG block. */
205 typedef struct block_info_def
207 struct stack_def stack_in
; /* Input stack configuration. */
208 struct stack_def stack_out
; /* Output stack configuration. */
209 HARD_REG_SET out_reg_set
; /* Stack regs live on output. */
210 int done
; /* True if block already converted. */
211 int predecessors
; /* Number of predecessors that needs
215 #define BLOCK_INFO(B) ((block_info) (B)->aux)
217 /* Passed to change_stack to indicate where to emit insns. */
224 /* The block we're currently working on. */
225 static basic_block current_block
;
227 /* This is the register file for all register after conversion. */
229 FP_mode_reg
[LAST_STACK_REG
+1-FIRST_STACK_REG
][(int) MAX_MACHINE_MODE
];
231 #define FP_MODE_REG(regno,mode) \
232 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
234 /* Used to initialize uninitialized registers. */
235 static rtx not_a_num
;
237 /* Forward declarations */
239 static int stack_regs_mentioned_p (rtx pat
);
240 static void straighten_stack (rtx
, stack
);
241 static void pop_stack (stack
, int);
242 static rtx
*get_true_reg (rtx
*);
244 static int check_asm_stack_operands (rtx
);
245 static int get_asm_operand_n_inputs (rtx
);
246 static rtx
stack_result (tree
);
247 static void replace_reg (rtx
*, int);
248 static void remove_regno_note (rtx
, enum reg_note
, unsigned int);
249 static int get_hard_regnum (stack
, rtx
);
250 static rtx
emit_pop_insn (rtx
, stack
, rtx
, enum emit_where
);
251 static void emit_swap_insn (rtx
, stack
, rtx
);
252 static void swap_to_top(rtx
, stack
, rtx
, rtx
);
253 static bool move_for_stack_reg (rtx
, stack
, rtx
);
254 static int swap_rtx_condition_1 (rtx
);
255 static int swap_rtx_condition (rtx
);
256 static void compare_for_stack_reg (rtx
, stack
, rtx
);
257 static bool subst_stack_regs_pat (rtx
, stack
, rtx
);
258 static void subst_asm_stack_regs (rtx
, stack
);
259 static bool subst_stack_regs (rtx
, stack
);
260 static void change_stack (rtx
, stack
, stack
, enum emit_where
);
261 static int convert_regs_entry (void);
262 static void convert_regs_exit (void);
263 static int convert_regs_1 (FILE *, basic_block
);
264 static int convert_regs_2 (FILE *, basic_block
);
265 static int convert_regs (FILE *);
266 static void print_stack (FILE *, stack
);
267 static rtx
next_flags_user (rtx
);
268 static void record_label_references (rtx
, rtx
);
269 static bool compensate_edge (edge
, FILE *);
271 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
274 stack_regs_mentioned_p (rtx pat
)
279 if (STACK_REG_P (pat
))
282 fmt
= GET_RTX_FORMAT (GET_CODE (pat
));
283 for (i
= GET_RTX_LENGTH (GET_CODE (pat
)) - 1; i
>= 0; i
--)
289 for (j
= XVECLEN (pat
, i
) - 1; j
>= 0; j
--)
290 if (stack_regs_mentioned_p (XVECEXP (pat
, i
, j
)))
293 else if (fmt
[i
] == 'e' && stack_regs_mentioned_p (XEXP (pat
, i
)))
300 /* Return nonzero if INSN mentions stacked registers, else return zero. */
303 stack_regs_mentioned (rtx insn
)
305 unsigned int uid
, max
;
308 if (! INSN_P (insn
) || !stack_regs_mentioned_data
)
311 uid
= INSN_UID (insn
);
312 max
= VARRAY_SIZE (stack_regs_mentioned_data
);
315 /* Allocate some extra size to avoid too many reallocs, but
316 do not grow too quickly. */
317 max
= uid
+ uid
/ 20;
318 VARRAY_GROW (stack_regs_mentioned_data
, max
);
321 test
= VARRAY_CHAR (stack_regs_mentioned_data
, uid
);
324 /* This insn has yet to be examined. Do so now. */
325 test
= stack_regs_mentioned_p (PATTERN (insn
)) ? 1 : 2;
326 VARRAY_CHAR (stack_regs_mentioned_data
, uid
) = test
;
332 static rtx ix86_flags_rtx
;
335 next_flags_user (rtx insn
)
337 /* Search forward looking for the first use of this value.
338 Stop at block boundaries. */
340 while (insn
!= BB_END (current_block
))
342 insn
= NEXT_INSN (insn
);
344 if (INSN_P (insn
) && reg_mentioned_p (ix86_flags_rtx
, PATTERN (insn
)))
353 /* Reorganize the stack into ascending numbers,
357 straighten_stack (rtx insn
, stack regstack
)
359 struct stack_def temp_stack
;
362 /* If there is only a single register on the stack, then the stack is
363 already in increasing order and no reorganization is needed.
365 Similarly if the stack is empty. */
366 if (regstack
->top
<= 0)
369 COPY_HARD_REG_SET (temp_stack
.reg_set
, regstack
->reg_set
);
371 for (top
= temp_stack
.top
= regstack
->top
; top
>= 0; top
--)
372 temp_stack
.reg
[top
] = FIRST_STACK_REG
+ temp_stack
.top
- top
;
374 change_stack (insn
, regstack
, &temp_stack
, EMIT_AFTER
);
377 /* Pop a register from the stack. */
380 pop_stack (stack regstack
, int regno
)
382 int top
= regstack
->top
;
384 CLEAR_HARD_REG_BIT (regstack
->reg_set
, regno
);
386 /* If regno was not at the top of stack then adjust stack. */
387 if (regstack
->reg
[top
] != regno
)
390 for (i
= regstack
->top
; i
>= 0; i
--)
391 if (regstack
->reg
[i
] == regno
)
394 for (j
= i
; j
< top
; j
++)
395 regstack
->reg
[j
] = regstack
->reg
[j
+ 1];
401 /* Convert register usage from "flat" register file usage to a "stack
402 register file. FILE is the dump file, if used.
404 Construct a CFG and run life analysis. Then convert each insn one
405 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
406 code duplication created when the converter inserts pop insns on
410 reg_to_stack (FILE *file
)
416 /* Clean up previous run. */
417 stack_regs_mentioned_data
= 0;
419 /* See if there is something to do. Flow analysis is quite
420 expensive so we might save some compilation time. */
421 for (i
= FIRST_STACK_REG
; i
<= LAST_STACK_REG
; i
++)
422 if (regs_ever_live
[i
])
424 if (i
> LAST_STACK_REG
)
427 /* Ok, floating point instructions exist. If not optimizing,
428 build the CFG and run life analysis.
429 Also need to rebuild life when superblock scheduling is done
430 as it don't update liveness yet. */
432 || (flag_sched2_use_superblocks
433 && flag_schedule_insns_after_reload
))
435 count_or_remove_death_notes (NULL
, 1);
436 life_analysis (file
, PROP_DEATH_NOTES
);
438 mark_dfs_back_edges ();
440 /* Set up block info for each basic block. */
441 alloc_aux_for_blocks (sizeof (struct block_info_def
));
442 FOR_EACH_BB_REVERSE (bb
)
447 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
448 if (!(e
->flags
& EDGE_DFS_BACK
)
449 && e
->src
!= ENTRY_BLOCK_PTR
)
450 BLOCK_INFO (bb
)->predecessors
++;
453 /* Create the replacement registers up front. */
454 for (i
= FIRST_STACK_REG
; i
<= LAST_STACK_REG
; i
++)
456 enum machine_mode mode
;
457 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
459 mode
= GET_MODE_WIDER_MODE (mode
))
460 FP_MODE_REG (i
, mode
) = gen_rtx_REG (mode
, i
);
461 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT
);
463 mode
= GET_MODE_WIDER_MODE (mode
))
464 FP_MODE_REG (i
, mode
) = gen_rtx_REG (mode
, i
);
467 ix86_flags_rtx
= gen_rtx_REG (CCmode
, FLAGS_REG
);
469 /* A QNaN for initializing uninitialized variables.
471 ??? We can't load from constant memory in PIC mode, because
472 we're inserting these instructions before the prologue and
473 the PIC register hasn't been set up. In that case, fall back
474 on zero, which we can get from `ldz'. */
477 not_a_num
= CONST0_RTX (SFmode
);
480 not_a_num
= gen_lowpart (SFmode
, GEN_INT (0x7fc00000));
481 not_a_num
= force_const_mem (SFmode
, not_a_num
);
484 /* Allocate a cache for stack_regs_mentioned. */
485 max_uid
= get_max_uid ();
486 VARRAY_CHAR_INIT (stack_regs_mentioned_data
, max_uid
+ 1,
487 "stack_regs_mentioned cache");
491 free_aux_for_blocks ();
495 /* Check PAT, which is in INSN, for LABEL_REFs. Add INSN to the
496 label's chain of references, and note which insn contains each
500 record_label_references (rtx insn
, rtx pat
)
502 enum rtx_code code
= GET_CODE (pat
);
506 if (code
== LABEL_REF
)
508 rtx label
= XEXP (pat
, 0);
511 gcc_assert (LABEL_P (label
));
513 /* If this is an undefined label, LABEL_REFS (label) contains
515 if (INSN_UID (label
) == 0)
518 /* Don't make a duplicate in the code_label's chain. */
520 for (ref
= LABEL_REFS (label
);
522 ref
= LABEL_NEXTREF (ref
))
523 if (CONTAINING_INSN (ref
) == insn
)
526 CONTAINING_INSN (pat
) = insn
;
527 LABEL_NEXTREF (pat
) = LABEL_REFS (label
);
528 LABEL_REFS (label
) = pat
;
533 fmt
= GET_RTX_FORMAT (code
);
534 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
537 record_label_references (insn
, XEXP (pat
, i
));
541 for (j
= 0; j
< XVECLEN (pat
, i
); j
++)
542 record_label_references (insn
, XVECEXP (pat
, i
, j
));
547 /* Return a pointer to the REG expression within PAT. If PAT is not a
548 REG, possible enclosed by a conversion rtx, return the inner part of
549 PAT that stopped the search. */
552 get_true_reg (rtx
*pat
)
555 switch (GET_CODE (*pat
))
558 /* Eliminate FP subregister accesses in favor of the
559 actual FP register in use. */
562 if (FP_REG_P (subreg
= SUBREG_REG (*pat
)))
564 int regno_off
= subreg_regno_offset (REGNO (subreg
),
568 *pat
= FP_MODE_REG (REGNO (subreg
) + regno_off
,
577 pat
= & XEXP (*pat
, 0);
581 if (!flag_unsafe_math_optimizations
)
583 pat
= & XEXP (*pat
, 0);
588 /* Set if we find any malformed asms in a block. */
589 static bool any_malformed_asm
;
591 /* There are many rules that an asm statement for stack-like regs must
592 follow. Those rules are explained at the top of this file: the rule
593 numbers below refer to that explanation. */
596 check_asm_stack_operands (rtx insn
)
600 int malformed_asm
= 0;
601 rtx body
= PATTERN (insn
);
603 char reg_used_as_output
[FIRST_PSEUDO_REGISTER
];
604 char implicitly_dies
[FIRST_PSEUDO_REGISTER
];
607 rtx
*clobber_reg
= 0;
608 int n_inputs
, n_outputs
;
610 /* Find out what the constraints require. If no constraint
611 alternative matches, this asm is malformed. */
613 constrain_operands (1);
614 alt
= which_alternative
;
616 preprocess_constraints ();
618 n_inputs
= get_asm_operand_n_inputs (body
);
619 n_outputs
= recog_data
.n_operands
- n_inputs
;
624 /* Avoid further trouble with this insn. */
625 PATTERN (insn
) = gen_rtx_USE (VOIDmode
, const0_rtx
);
629 /* Strip SUBREGs here to make the following code simpler. */
630 for (i
= 0; i
< recog_data
.n_operands
; i
++)
631 if (GET_CODE (recog_data
.operand
[i
]) == SUBREG
632 && REG_P (SUBREG_REG (recog_data
.operand
[i
])))
633 recog_data
.operand
[i
] = SUBREG_REG (recog_data
.operand
[i
]);
635 /* Set up CLOBBER_REG. */
639 if (GET_CODE (body
) == PARALLEL
)
641 clobber_reg
= alloca (XVECLEN (body
, 0) * sizeof (rtx
));
643 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
644 if (GET_CODE (XVECEXP (body
, 0, i
)) == CLOBBER
)
646 rtx clobber
= XVECEXP (body
, 0, i
);
647 rtx reg
= XEXP (clobber
, 0);
649 if (GET_CODE (reg
) == SUBREG
&& REG_P (SUBREG_REG (reg
)))
650 reg
= SUBREG_REG (reg
);
652 if (STACK_REG_P (reg
))
654 clobber_reg
[n_clobbers
] = reg
;
660 /* Enforce rule #4: Output operands must specifically indicate which
661 reg an output appears in after an asm. "=f" is not allowed: the
662 operand constraints must select a class with a single reg.
664 Also enforce rule #5: Output operands must start at the top of
665 the reg-stack: output operands may not "skip" a reg. */
667 memset (reg_used_as_output
, 0, sizeof (reg_used_as_output
));
668 for (i
= 0; i
< n_outputs
; i
++)
669 if (STACK_REG_P (recog_data
.operand
[i
]))
671 if (reg_class_size
[(int) recog_op_alt
[i
][alt
].cl
] != 1)
673 error_for_asm (insn
, "output constraint %d must specify a single register", i
);
680 for (j
= 0; j
< n_clobbers
; j
++)
681 if (REGNO (recog_data
.operand
[i
]) == REGNO (clobber_reg
[j
]))
683 error_for_asm (insn
, "output constraint %d cannot be specified together with \"%s\" clobber",
684 i
, reg_names
[REGNO (clobber_reg
[j
])]);
689 reg_used_as_output
[REGNO (recog_data
.operand
[i
])] = 1;
694 /* Search for first non-popped reg. */
695 for (i
= FIRST_STACK_REG
; i
< LAST_STACK_REG
+ 1; i
++)
696 if (! reg_used_as_output
[i
])
699 /* If there are any other popped regs, that's an error. */
700 for (; i
< LAST_STACK_REG
+ 1; i
++)
701 if (reg_used_as_output
[i
])
704 if (i
!= LAST_STACK_REG
+ 1)
706 error_for_asm (insn
, "output regs must be grouped at top of stack");
710 /* Enforce rule #2: All implicitly popped input regs must be closer
711 to the top of the reg-stack than any input that is not implicitly
714 memset (implicitly_dies
, 0, sizeof (implicitly_dies
));
715 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
716 if (STACK_REG_P (recog_data
.operand
[i
]))
718 /* An input reg is implicitly popped if it is tied to an
719 output, or if there is a CLOBBER for it. */
722 for (j
= 0; j
< n_clobbers
; j
++)
723 if (operands_match_p (clobber_reg
[j
], recog_data
.operand
[i
]))
726 if (j
< n_clobbers
|| recog_op_alt
[i
][alt
].matches
>= 0)
727 implicitly_dies
[REGNO (recog_data
.operand
[i
])] = 1;
730 /* Search for first non-popped reg. */
731 for (i
= FIRST_STACK_REG
; i
< LAST_STACK_REG
+ 1; i
++)
732 if (! implicitly_dies
[i
])
735 /* If there are any other popped regs, that's an error. */
736 for (; i
< LAST_STACK_REG
+ 1; i
++)
737 if (implicitly_dies
[i
])
740 if (i
!= LAST_STACK_REG
+ 1)
743 "implicitly popped regs must be grouped at top of stack");
747 /* Enforce rule #3: If any input operand uses the "f" constraint, all
748 output constraints must use the "&" earlyclobber.
750 ??? Detect this more deterministically by having constrain_asm_operands
751 record any earlyclobber. */
753 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
754 if (recog_op_alt
[i
][alt
].matches
== -1)
758 for (j
= 0; j
< n_outputs
; j
++)
759 if (operands_match_p (recog_data
.operand
[j
], recog_data
.operand
[i
]))
762 "output operand %d must use `&' constraint", j
);
769 /* Avoid further trouble with this insn. */
770 PATTERN (insn
) = gen_rtx_USE (VOIDmode
, const0_rtx
);
771 any_malformed_asm
= true;
778 /* Calculate the number of inputs and outputs in BODY, an
779 asm_operands. N_OPERANDS is the total number of operands, and
780 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
784 get_asm_operand_n_inputs (rtx body
)
786 switch (GET_CODE (body
))
789 gcc_assert (GET_CODE (SET_SRC (body
)) == ASM_OPERANDS
);
790 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body
));
793 return ASM_OPERANDS_INPUT_LENGTH (body
);
796 return get_asm_operand_n_inputs (XVECEXP (body
, 0, 0));
803 /* If current function returns its result in an fp stack register,
804 return the REG. Otherwise, return 0. */
807 stack_result (tree decl
)
811 /* If the value is supposed to be returned in memory, then clearly
812 it is not returned in a stack register. */
813 if (aggregate_value_p (DECL_RESULT (decl
), decl
))
816 result
= DECL_RTL_IF_SET (DECL_RESULT (decl
));
819 #ifdef FUNCTION_OUTGOING_VALUE
821 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (decl
)), decl
);
823 result
= FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (decl
)), decl
);
827 return result
!= 0 && STACK_REG_P (result
) ? result
: 0;
832 * This section deals with stack register substitution, and forms the second
836 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
837 the desired hard REGNO. */
840 replace_reg (rtx
*reg
, int regno
)
842 gcc_assert (regno
>= FIRST_STACK_REG
);
843 gcc_assert (regno
<= LAST_STACK_REG
);
844 gcc_assert (STACK_REG_P (*reg
));
846 gcc_assert (GET_MODE_CLASS (GET_MODE (*reg
)) == MODE_FLOAT
847 || GET_MODE_CLASS (GET_MODE (*reg
)) == MODE_COMPLEX_FLOAT
);
849 *reg
= FP_MODE_REG (regno
, GET_MODE (*reg
));
852 /* Remove a note of type NOTE, which must be found, for register
853 number REGNO from INSN. Remove only one such note. */
856 remove_regno_note (rtx insn
, enum reg_note note
, unsigned int regno
)
858 rtx
*note_link
, this;
860 note_link
= ®_NOTES (insn
);
861 for (this = *note_link
; this; this = XEXP (this, 1))
862 if (REG_NOTE_KIND (this) == note
863 && REG_P (XEXP (this, 0)) && REGNO (XEXP (this, 0)) == regno
)
865 *note_link
= XEXP (this, 1);
869 note_link
= &XEXP (this, 1);
874 /* Find the hard register number of virtual register REG in REGSTACK.
875 The hard register number is relative to the top of the stack. -1 is
876 returned if the register is not found. */
879 get_hard_regnum (stack regstack
, rtx reg
)
883 gcc_assert (STACK_REG_P (reg
));
885 for (i
= regstack
->top
; i
>= 0; i
--)
886 if (regstack
->reg
[i
] == REGNO (reg
))
889 return i
>= 0 ? (FIRST_STACK_REG
+ regstack
->top
- i
) : -1;
892 /* Emit an insn to pop virtual register REG before or after INSN.
893 REGSTACK is the stack state after INSN and is updated to reflect this
894 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
895 is represented as a SET whose destination is the register to be popped
896 and source is the top of stack. A death note for the top of stack
897 cases the movdf pattern to pop. */
900 emit_pop_insn (rtx insn
, stack regstack
, rtx reg
, enum emit_where where
)
902 rtx pop_insn
, pop_rtx
;
905 /* For complex types take care to pop both halves. These may survive in
906 CLOBBER and USE expressions. */
907 if (COMPLEX_MODE_P (GET_MODE (reg
)))
909 rtx reg1
= FP_MODE_REG (REGNO (reg
), DFmode
);
910 rtx reg2
= FP_MODE_REG (REGNO (reg
) + 1, DFmode
);
913 if (get_hard_regnum (regstack
, reg1
) >= 0)
914 pop_insn
= emit_pop_insn (insn
, regstack
, reg1
, where
);
915 if (get_hard_regnum (regstack
, reg2
) >= 0)
916 pop_insn
= emit_pop_insn (insn
, regstack
, reg2
, where
);
917 gcc_assert (pop_insn
);
921 hard_regno
= get_hard_regnum (regstack
, reg
);
923 gcc_assert (hard_regno
>= FIRST_STACK_REG
);
925 pop_rtx
= gen_rtx_SET (VOIDmode
, FP_MODE_REG (hard_regno
, DFmode
),
926 FP_MODE_REG (FIRST_STACK_REG
, DFmode
));
928 if (where
== EMIT_AFTER
)
929 pop_insn
= emit_insn_after (pop_rtx
, insn
);
931 pop_insn
= emit_insn_before (pop_rtx
, insn
);
934 = gen_rtx_EXPR_LIST (REG_DEAD
, FP_MODE_REG (FIRST_STACK_REG
, DFmode
),
935 REG_NOTES (pop_insn
));
937 regstack
->reg
[regstack
->top
- (hard_regno
- FIRST_STACK_REG
)]
938 = regstack
->reg
[regstack
->top
];
940 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (reg
));
945 /* Emit an insn before or after INSN to swap virtual register REG with
946 the top of stack. REGSTACK is the stack state before the swap, and
947 is updated to reflect the swap. A swap insn is represented as a
948 PARALLEL of two patterns: each pattern moves one reg to the other.
950 If REG is already at the top of the stack, no insn is emitted. */
953 emit_swap_insn (rtx insn
, stack regstack
, rtx reg
)
957 int tmp
, other_reg
; /* swap regno temps */
958 rtx i1
; /* the stack-reg insn prior to INSN */
959 rtx i1set
= NULL_RTX
; /* the SET rtx within I1 */
961 hard_regno
= get_hard_regnum (regstack
, reg
);
963 gcc_assert (hard_regno
>= FIRST_STACK_REG
);
964 if (hard_regno
== FIRST_STACK_REG
)
967 other_reg
= regstack
->top
- (hard_regno
- FIRST_STACK_REG
);
969 tmp
= regstack
->reg
[other_reg
];
970 regstack
->reg
[other_reg
] = regstack
->reg
[regstack
->top
];
971 regstack
->reg
[regstack
->top
] = tmp
;
973 /* Find the previous insn involving stack regs, but don't pass a
976 if (current_block
&& insn
!= BB_HEAD (current_block
))
978 rtx tmp
= PREV_INSN (insn
);
979 rtx limit
= PREV_INSN (BB_HEAD (current_block
));
984 || NOTE_INSN_BASIC_BLOCK_P (tmp
)
986 && NOTE_LINE_NUMBER (tmp
) == NOTE_INSN_UNLIKELY_EXECUTED_CODE
)
987 || (NONJUMP_INSN_P (tmp
)
988 && stack_regs_mentioned (tmp
)))
993 tmp
= PREV_INSN (tmp
);
998 && (i1set
= single_set (i1
)) != NULL_RTX
)
1000 rtx i1src
= *get_true_reg (&SET_SRC (i1set
));
1001 rtx i1dest
= *get_true_reg (&SET_DEST (i1set
));
1003 /* If the previous register stack push was from the reg we are to
1004 swap with, omit the swap. */
1006 if (REG_P (i1dest
) && REGNO (i1dest
) == FIRST_STACK_REG
1008 && REGNO (i1src
) == (unsigned) hard_regno
- 1
1009 && find_regno_note (i1
, REG_DEAD
, FIRST_STACK_REG
) == NULL_RTX
)
1012 /* If the previous insn wrote to the reg we are to swap with,
1015 if (REG_P (i1dest
) && REGNO (i1dest
) == (unsigned) hard_regno
1016 && REG_P (i1src
) && REGNO (i1src
) == FIRST_STACK_REG
1017 && find_regno_note (i1
, REG_DEAD
, FIRST_STACK_REG
) == NULL_RTX
)
1021 swap_rtx
= gen_swapxf (FP_MODE_REG (hard_regno
, XFmode
),
1022 FP_MODE_REG (FIRST_STACK_REG
, XFmode
));
1025 emit_insn_after (swap_rtx
, i1
);
1026 else if (current_block
)
1027 emit_insn_before (swap_rtx
, BB_HEAD (current_block
));
1029 emit_insn_before (swap_rtx
, insn
);
1032 /* Emit an insns before INSN to swap virtual register SRC1 with
1033 the top of stack and virtual register SRC2 with second stack
1034 slot. REGSTACK is the stack state before the swaps, and
1035 is updated to reflect the swaps. A swap insn is represented as a
1036 PARALLEL of two patterns: each pattern moves one reg to the other.
1038 If SRC1 and/or SRC2 are already at the right place, no swap insn
1042 swap_to_top (rtx insn
, stack regstack
, rtx src1
, rtx src2
)
1044 struct stack_def temp_stack
;
1045 int regno
, j
, k
, temp
;
1047 temp_stack
= *regstack
;
1049 /* Place operand 1 at the top of stack. */
1050 regno
= get_hard_regnum (&temp_stack
, src1
);
1051 gcc_assert (regno
>= 0);
1052 if (regno
!= FIRST_STACK_REG
)
1054 k
= temp_stack
.top
- (regno
- FIRST_STACK_REG
);
1057 temp
= temp_stack
.reg
[k
];
1058 temp_stack
.reg
[k
] = temp_stack
.reg
[j
];
1059 temp_stack
.reg
[j
] = temp
;
1062 /* Place operand 2 next on the stack. */
1063 regno
= get_hard_regnum (&temp_stack
, src2
);
1064 gcc_assert (regno
>= 0);
1065 if (regno
!= FIRST_STACK_REG
+ 1)
1067 k
= temp_stack
.top
- (regno
- FIRST_STACK_REG
);
1068 j
= temp_stack
.top
- 1;
1070 temp
= temp_stack
.reg
[k
];
1071 temp_stack
.reg
[k
] = temp_stack
.reg
[j
];
1072 temp_stack
.reg
[j
] = temp
;
1075 change_stack (insn
, regstack
, &temp_stack
, EMIT_BEFORE
);
1078 /* Handle a move to or from a stack register in PAT, which is in INSN.
1079 REGSTACK is the current stack. Return whether a control flow insn
1080 was deleted in the process. */
1083 move_for_stack_reg (rtx insn
, stack regstack
, rtx pat
)
1085 rtx
*psrc
= get_true_reg (&SET_SRC (pat
));
1086 rtx
*pdest
= get_true_reg (&SET_DEST (pat
));
1089 bool control_flow_insn_deleted
= false;
1091 src
= *psrc
; dest
= *pdest
;
1093 if (STACK_REG_P (src
) && STACK_REG_P (dest
))
1095 /* Write from one stack reg to another. If SRC dies here, then
1096 just change the register mapping and delete the insn. */
1098 note
= find_regno_note (insn
, REG_DEAD
, REGNO (src
));
1103 /* If this is a no-op move, there must not be a REG_DEAD note. */
1104 gcc_assert (REGNO (src
) != REGNO (dest
));
1106 for (i
= regstack
->top
; i
>= 0; i
--)
1107 if (regstack
->reg
[i
] == REGNO (src
))
1110 /* The source must be live, and the dest must be dead. */
1111 gcc_assert (i
>= 0);
1112 gcc_assert (get_hard_regnum (regstack
, dest
) < FIRST_STACK_REG
);
1114 /* It is possible that the dest is unused after this insn.
1115 If so, just pop the src. */
1117 if (find_regno_note (insn
, REG_UNUSED
, REGNO (dest
)))
1118 emit_pop_insn (insn
, regstack
, src
, EMIT_AFTER
);
1121 regstack
->reg
[i
] = REGNO (dest
);
1122 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (dest
));
1123 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (src
));
1126 control_flow_insn_deleted
|= control_flow_insn_p (insn
);
1128 return control_flow_insn_deleted
;
1131 /* The source reg does not die. */
1133 /* If this appears to be a no-op move, delete it, or else it
1134 will confuse the machine description output patterns. But if
1135 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1136 for REG_UNUSED will not work for deleted insns. */
1138 if (REGNO (src
) == REGNO (dest
))
1140 if (find_regno_note (insn
, REG_UNUSED
, REGNO (dest
)))
1141 emit_pop_insn (insn
, regstack
, dest
, EMIT_AFTER
);
1143 control_flow_insn_deleted
|= control_flow_insn_p (insn
);
1145 return control_flow_insn_deleted
;
1148 /* The destination ought to be dead. */
1149 gcc_assert (get_hard_regnum (regstack
, dest
) < FIRST_STACK_REG
);
1151 replace_reg (psrc
, get_hard_regnum (regstack
, src
));
1153 regstack
->reg
[++regstack
->top
] = REGNO (dest
);
1154 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (dest
));
1155 replace_reg (pdest
, FIRST_STACK_REG
);
1157 else if (STACK_REG_P (src
))
1159 /* Save from a stack reg to MEM, or possibly integer reg. Since
1160 only top of stack may be saved, emit an exchange first if
1163 emit_swap_insn (insn
, regstack
, src
);
1165 note
= find_regno_note (insn
, REG_DEAD
, REGNO (src
));
1168 replace_reg (&XEXP (note
, 0), FIRST_STACK_REG
);
1170 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (src
));
1172 else if ((GET_MODE (src
) == XFmode
)
1173 && regstack
->top
< REG_STACK_SIZE
- 1)
1175 /* A 387 cannot write an XFmode value to a MEM without
1176 clobbering the source reg. The output code can handle
1177 this by reading back the value from the MEM.
1178 But it is more efficient to use a temp register if one is
1179 available. Push the source value here if the register
1180 stack is not full, and then write the value to memory via
1182 rtx push_rtx
, push_insn
;
1183 rtx top_stack_reg
= FP_MODE_REG (FIRST_STACK_REG
, GET_MODE (src
));
1185 push_rtx
= gen_movxf (top_stack_reg
, top_stack_reg
);
1186 push_insn
= emit_insn_before (push_rtx
, insn
);
1187 REG_NOTES (insn
) = gen_rtx_EXPR_LIST (REG_DEAD
, top_stack_reg
,
1191 replace_reg (psrc
, FIRST_STACK_REG
);
1195 gcc_assert (STACK_REG_P (dest
));
1197 /* Load from MEM, or possibly integer REG or constant, into the
1198 stack regs. The actual target is always the top of the
1199 stack. The stack mapping is changed to reflect that DEST is
1200 now at top of stack. */
1202 /* The destination ought to be dead. */
1203 gcc_assert (get_hard_regnum (regstack
, dest
) < FIRST_STACK_REG
);
1205 gcc_assert (regstack
->top
< REG_STACK_SIZE
);
1207 regstack
->reg
[++regstack
->top
] = REGNO (dest
);
1208 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (dest
));
1209 replace_reg (pdest
, FIRST_STACK_REG
);
1212 return control_flow_insn_deleted
;
1215 /* Swap the condition on a branch, if there is one. Return true if we
1216 found a condition to swap. False if the condition was not used as
1220 swap_rtx_condition_1 (rtx pat
)
1225 if (COMPARISON_P (pat
))
1227 PUT_CODE (pat
, swap_condition (GET_CODE (pat
)));
1232 fmt
= GET_RTX_FORMAT (GET_CODE (pat
));
1233 for (i
= GET_RTX_LENGTH (GET_CODE (pat
)) - 1; i
>= 0; i
--)
1239 for (j
= XVECLEN (pat
, i
) - 1; j
>= 0; j
--)
1240 r
|= swap_rtx_condition_1 (XVECEXP (pat
, i
, j
));
1242 else if (fmt
[i
] == 'e')
1243 r
|= swap_rtx_condition_1 (XEXP (pat
, i
));
1251 swap_rtx_condition (rtx insn
)
1253 rtx pat
= PATTERN (insn
);
1255 /* We're looking for a single set to cc0 or an HImode temporary. */
1257 if (GET_CODE (pat
) == SET
1258 && REG_P (SET_DEST (pat
))
1259 && REGNO (SET_DEST (pat
)) == FLAGS_REG
)
1261 insn
= next_flags_user (insn
);
1262 if (insn
== NULL_RTX
)
1264 pat
= PATTERN (insn
);
1267 /* See if this is, or ends in, a fnstsw, aka unspec 9. If so, we're
1268 not doing anything with the cc value right now. We may be able to
1269 search for one though. */
1271 if (GET_CODE (pat
) == SET
1272 && GET_CODE (SET_SRC (pat
)) == UNSPEC
1273 && XINT (SET_SRC (pat
), 1) == UNSPEC_FNSTSW
)
1275 rtx dest
= SET_DEST (pat
);
1277 /* Search forward looking for the first use of this value.
1278 Stop at block boundaries. */
1279 while (insn
!= BB_END (current_block
))
1281 insn
= NEXT_INSN (insn
);
1282 if (INSN_P (insn
) && reg_mentioned_p (dest
, insn
))
1288 /* So we've found the insn using this value. If it is anything
1289 other than sahf, aka unspec 10, or the value does not die
1290 (meaning we'd have to search further), then we must give up. */
1291 pat
= PATTERN (insn
);
1292 if (GET_CODE (pat
) != SET
1293 || GET_CODE (SET_SRC (pat
)) != UNSPEC
1294 || XINT (SET_SRC (pat
), 1) != UNSPEC_SAHF
1295 || ! dead_or_set_p (insn
, dest
))
1298 /* Now we are prepared to handle this as a normal cc0 setter. */
1299 insn
= next_flags_user (insn
);
1300 if (insn
== NULL_RTX
)
1302 pat
= PATTERN (insn
);
1305 if (swap_rtx_condition_1 (pat
))
1308 INSN_CODE (insn
) = -1;
1309 if (recog_memoized (insn
) == -1)
1311 /* In case the flags don't die here, recurse to try fix
1312 following user too. */
1313 else if (! dead_or_set_p (insn
, ix86_flags_rtx
))
1315 insn
= next_flags_user (insn
);
1316 if (!insn
|| !swap_rtx_condition (insn
))
1321 swap_rtx_condition_1 (pat
);
1329 /* Handle a comparison. Special care needs to be taken to avoid
1330 causing comparisons that a 387 cannot do correctly, such as EQ.
1332 Also, a pop insn may need to be emitted. The 387 does have an
1333 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1334 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1338 compare_for_stack_reg (rtx insn
, stack regstack
, rtx pat_src
)
1341 rtx src1_note
, src2_note
;
1344 src1
= get_true_reg (&XEXP (pat_src
, 0));
1345 src2
= get_true_reg (&XEXP (pat_src
, 1));
1346 flags_user
= next_flags_user (insn
);
1348 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1349 registers that die in this insn - move those to stack top first. */
1350 if ((! STACK_REG_P (*src1
)
1351 || (STACK_REG_P (*src2
)
1352 && get_hard_regnum (regstack
, *src2
) == FIRST_STACK_REG
))
1353 && swap_rtx_condition (insn
))
1356 temp
= XEXP (pat_src
, 0);
1357 XEXP (pat_src
, 0) = XEXP (pat_src
, 1);
1358 XEXP (pat_src
, 1) = temp
;
1360 src1
= get_true_reg (&XEXP (pat_src
, 0));
1361 src2
= get_true_reg (&XEXP (pat_src
, 1));
1363 INSN_CODE (insn
) = -1;
1366 /* We will fix any death note later. */
1368 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1370 if (STACK_REG_P (*src2
))
1371 src2_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src2
));
1373 src2_note
= NULL_RTX
;
1375 emit_swap_insn (insn
, regstack
, *src1
);
1377 replace_reg (src1
, FIRST_STACK_REG
);
1379 if (STACK_REG_P (*src2
))
1380 replace_reg (src2
, get_hard_regnum (regstack
, *src2
));
1384 pop_stack (regstack
, REGNO (XEXP (src1_note
, 0)));
1385 replace_reg (&XEXP (src1_note
, 0), FIRST_STACK_REG
);
1388 /* If the second operand dies, handle that. But if the operands are
1389 the same stack register, don't bother, because only one death is
1390 needed, and it was just handled. */
1393 && ! (STACK_REG_P (*src1
) && STACK_REG_P (*src2
)
1394 && REGNO (*src1
) == REGNO (*src2
)))
1396 /* As a special case, two regs may die in this insn if src2 is
1397 next to top of stack and the top of stack also dies. Since
1398 we have already popped src1, "next to top of stack" is really
1399 at top (FIRST_STACK_REG) now. */
1401 if (get_hard_regnum (regstack
, XEXP (src2_note
, 0)) == FIRST_STACK_REG
1404 pop_stack (regstack
, REGNO (XEXP (src2_note
, 0)));
1405 replace_reg (&XEXP (src2_note
, 0), FIRST_STACK_REG
+ 1);
1409 /* The 386 can only represent death of the first operand in
1410 the case handled above. In all other cases, emit a separate
1411 pop and remove the death note from here. */
1413 /* link_cc0_insns (insn); */
1415 remove_regno_note (insn
, REG_DEAD
, REGNO (XEXP (src2_note
, 0)));
1417 emit_pop_insn (insn
, regstack
, XEXP (src2_note
, 0),
1423 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1424 is the current register layout. Return whether a control flow insn
1425 was deleted in the process. */
1428 subst_stack_regs_pat (rtx insn
, stack regstack
, rtx pat
)
1431 bool control_flow_insn_deleted
= false;
1433 switch (GET_CODE (pat
))
1436 /* Deaths in USE insns can happen in non optimizing compilation.
1437 Handle them by popping the dying register. */
1438 src
= get_true_reg (&XEXP (pat
, 0));
1439 if (STACK_REG_P (*src
)
1440 && find_regno_note (insn
, REG_DEAD
, REGNO (*src
)))
1442 emit_pop_insn (insn
, regstack
, *src
, EMIT_AFTER
);
1443 return control_flow_insn_deleted
;
1445 /* ??? Uninitialized USE should not happen. */
1447 gcc_assert (get_hard_regnum (regstack
, *src
) != -1);
1454 dest
= get_true_reg (&XEXP (pat
, 0));
1455 if (STACK_REG_P (*dest
))
1457 note
= find_reg_note (insn
, REG_DEAD
, *dest
);
1459 if (pat
!= PATTERN (insn
))
1461 /* The fix_truncdi_1 pattern wants to be able to allocate
1462 it's own scratch register. It does this by clobbering
1463 an fp reg so that it is assured of an empty reg-stack
1464 register. If the register is live, kill it now.
1465 Remove the DEAD/UNUSED note so we don't try to kill it
1469 emit_pop_insn (insn
, regstack
, *dest
, EMIT_BEFORE
);
1472 note
= find_reg_note (insn
, REG_UNUSED
, *dest
);
1475 remove_note (insn
, note
);
1476 replace_reg (dest
, FIRST_STACK_REG
+ 1);
1480 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1481 indicates an uninitialized value. Because reload removed
1482 all other clobbers, this must be due to a function
1483 returning without a value. Load up a NaN. */
1486 && get_hard_regnum (regstack
, *dest
) == -1)
1488 pat
= gen_rtx_SET (VOIDmode
,
1489 FP_MODE_REG (REGNO (*dest
), SFmode
),
1491 PATTERN (insn
) = pat
;
1492 control_flow_insn_deleted
|= move_for_stack_reg (insn
, regstack
, pat
);
1494 if (! note
&& COMPLEX_MODE_P (GET_MODE (*dest
))
1495 && get_hard_regnum (regstack
, FP_MODE_REG (REGNO (*dest
), DFmode
)) == -1)
1497 pat
= gen_rtx_SET (VOIDmode
,
1498 FP_MODE_REG (REGNO (*dest
) + 1, SFmode
),
1500 PATTERN (insn
) = pat
;
1501 control_flow_insn_deleted
|= move_for_stack_reg (insn
, regstack
, pat
);
1510 rtx
*src1
= (rtx
*) 0, *src2
;
1511 rtx src1_note
, src2_note
;
1514 dest
= get_true_reg (&SET_DEST (pat
));
1515 src
= get_true_reg (&SET_SRC (pat
));
1516 pat_src
= SET_SRC (pat
);
1518 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1519 if (STACK_REG_P (*src
)
1520 || (STACK_REG_P (*dest
)
1521 && (REG_P (*src
) || MEM_P (*src
)
1522 || GET_CODE (*src
) == CONST_DOUBLE
)))
1524 control_flow_insn_deleted
|= move_for_stack_reg (insn
, regstack
, pat
);
1528 switch (GET_CODE (pat_src
))
1531 compare_for_stack_reg (insn
, regstack
, pat_src
);
1537 for (count
= hard_regno_nregs
[REGNO (*dest
)][GET_MODE (*dest
)];
1540 regstack
->reg
[++regstack
->top
] = REGNO (*dest
) + count
;
1541 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
) + count
);
1544 replace_reg (dest
, FIRST_STACK_REG
);
1548 /* This is a `tstM2' case. */
1549 gcc_assert (*dest
== cc0_rtx
);
1554 case FLOAT_TRUNCATE
:
1558 /* These insns only operate on the top of the stack. DEST might
1559 be cc0_rtx if we're processing a tstM pattern. Also, it's
1560 possible that the tstM case results in a REG_DEAD note on the
1564 src1
= get_true_reg (&XEXP (pat_src
, 0));
1566 emit_swap_insn (insn
, regstack
, *src1
);
1568 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1570 if (STACK_REG_P (*dest
))
1571 replace_reg (dest
, FIRST_STACK_REG
);
1575 replace_reg (&XEXP (src1_note
, 0), FIRST_STACK_REG
);
1577 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (*src1
));
1580 replace_reg (src1
, FIRST_STACK_REG
);
1585 /* On i386, reversed forms of subM3 and divM3 exist for
1586 MODE_FLOAT, so the same code that works for addM3 and mulM3
1590 /* These insns can accept the top of stack as a destination
1591 from a stack reg or mem, or can use the top of stack as a
1592 source and some other stack register (possibly top of stack)
1593 as a destination. */
1595 src1
= get_true_reg (&XEXP (pat_src
, 0));
1596 src2
= get_true_reg (&XEXP (pat_src
, 1));
1598 /* We will fix any death note later. */
1600 if (STACK_REG_P (*src1
))
1601 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1603 src1_note
= NULL_RTX
;
1604 if (STACK_REG_P (*src2
))
1605 src2_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src2
));
1607 src2_note
= NULL_RTX
;
1609 /* If either operand is not a stack register, then the dest
1610 must be top of stack. */
1612 if (! STACK_REG_P (*src1
) || ! STACK_REG_P (*src2
))
1613 emit_swap_insn (insn
, regstack
, *dest
);
1616 /* Both operands are REG. If neither operand is already
1617 at the top of stack, choose to make the one that is the dest
1618 the new top of stack. */
1620 int src1_hard_regnum
, src2_hard_regnum
;
1622 src1_hard_regnum
= get_hard_regnum (regstack
, *src1
);
1623 src2_hard_regnum
= get_hard_regnum (regstack
, *src2
);
1624 gcc_assert (src1_hard_regnum
!= -1);
1625 gcc_assert (src2_hard_regnum
!= -1);
1627 if (src1_hard_regnum
!= FIRST_STACK_REG
1628 && src2_hard_regnum
!= FIRST_STACK_REG
)
1629 emit_swap_insn (insn
, regstack
, *dest
);
1632 if (STACK_REG_P (*src1
))
1633 replace_reg (src1
, get_hard_regnum (regstack
, *src1
));
1634 if (STACK_REG_P (*src2
))
1635 replace_reg (src2
, get_hard_regnum (regstack
, *src2
));
1639 rtx src1_reg
= XEXP (src1_note
, 0);
1641 /* If the register that dies is at the top of stack, then
1642 the destination is somewhere else - merely substitute it.
1643 But if the reg that dies is not at top of stack, then
1644 move the top of stack to the dead reg, as though we had
1645 done the insn and then a store-with-pop. */
1647 if (REGNO (src1_reg
) == regstack
->reg
[regstack
->top
])
1649 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1650 replace_reg (dest
, get_hard_regnum (regstack
, *dest
));
1654 int regno
= get_hard_regnum (regstack
, src1_reg
);
1656 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1657 replace_reg (dest
, regno
);
1659 regstack
->reg
[regstack
->top
- (regno
- FIRST_STACK_REG
)]
1660 = regstack
->reg
[regstack
->top
];
1663 CLEAR_HARD_REG_BIT (regstack
->reg_set
,
1664 REGNO (XEXP (src1_note
, 0)));
1665 replace_reg (&XEXP (src1_note
, 0), FIRST_STACK_REG
);
1670 rtx src2_reg
= XEXP (src2_note
, 0);
1671 if (REGNO (src2_reg
) == regstack
->reg
[regstack
->top
])
1673 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1674 replace_reg (dest
, get_hard_regnum (regstack
, *dest
));
1678 int regno
= get_hard_regnum (regstack
, src2_reg
);
1680 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1681 replace_reg (dest
, regno
);
1683 regstack
->reg
[regstack
->top
- (regno
- FIRST_STACK_REG
)]
1684 = regstack
->reg
[regstack
->top
];
1687 CLEAR_HARD_REG_BIT (regstack
->reg_set
,
1688 REGNO (XEXP (src2_note
, 0)));
1689 replace_reg (&XEXP (src2_note
, 0), FIRST_STACK_REG
);
1694 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1695 replace_reg (dest
, get_hard_regnum (regstack
, *dest
));
1698 /* Keep operand 1 matching with destination. */
1699 if (COMMUTATIVE_ARITH_P (pat_src
)
1700 && REG_P (*src1
) && REG_P (*src2
)
1701 && REGNO (*src1
) != REGNO (*dest
))
1703 int tmp
= REGNO (*src1
);
1704 replace_reg (src1
, REGNO (*src2
));
1705 replace_reg (src2
, tmp
);
1710 switch (XINT (pat_src
, 1))
1714 case UNSPEC_FRNDINT
:
1717 case UNSPEC_FRNDINT_FLOOR
:
1718 case UNSPEC_FRNDINT_CEIL
:
1719 case UNSPEC_FRNDINT_TRUNC
:
1720 case UNSPEC_FRNDINT_MASK_PM
:
1722 /* These insns only operate on the top of the stack. */
1724 src1
= get_true_reg (&XVECEXP (pat_src
, 0, 0));
1726 emit_swap_insn (insn
, regstack
, *src1
);
1728 /* Input should never die, it is
1729 replaced with output. */
1730 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1731 gcc_assert (!src1_note
);
1733 if (STACK_REG_P (*dest
))
1734 replace_reg (dest
, FIRST_STACK_REG
);
1736 replace_reg (src1
, FIRST_STACK_REG
);
1741 case UNSPEC_FYL2XP1
:
1742 /* These insns operate on the top two stack slots. */
1744 src1
= get_true_reg (&XVECEXP (pat_src
, 0, 0));
1745 src2
= get_true_reg (&XVECEXP (pat_src
, 0, 1));
1747 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1748 src2_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src2
));
1750 swap_to_top (insn
, regstack
, *src1
, *src2
);
1752 replace_reg (src1
, FIRST_STACK_REG
);
1753 replace_reg (src2
, FIRST_STACK_REG
+ 1);
1756 replace_reg (&XEXP (src1_note
, 0), FIRST_STACK_REG
);
1758 replace_reg (&XEXP (src2_note
, 0), FIRST_STACK_REG
+ 1);
1760 /* Pop both input operands from the stack. */
1761 CLEAR_HARD_REG_BIT (regstack
->reg_set
,
1762 regstack
->reg
[regstack
->top
]);
1763 CLEAR_HARD_REG_BIT (regstack
->reg_set
,
1764 regstack
->reg
[regstack
->top
- 1]);
1767 /* Push the result back onto the stack. */
1768 regstack
->reg
[++regstack
->top
] = REGNO (*dest
);
1769 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1770 replace_reg (dest
, FIRST_STACK_REG
);
1773 case UNSPEC_FSCALE_FRACT
:
1774 case UNSPEC_FPREM_F
:
1775 case UNSPEC_FPREM1_F
:
1776 /* These insns operate on the top two stack slots.
1777 first part of double input, double output insn. */
1779 src1
= get_true_reg (&XVECEXP (pat_src
, 0, 0));
1780 src2
= get_true_reg (&XVECEXP (pat_src
, 0, 1));
1782 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1783 src2_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src2
));
1785 /* Inputs should never die, they are
1786 replaced with outputs. */
1787 gcc_assert (!src1_note
);
1788 gcc_assert (!src2_note
);
1790 swap_to_top (insn
, regstack
, *src1
, *src2
);
1792 /* Push the result back onto stack. Empty stack slot
1793 will be filled in second part of insn. */
1794 if (STACK_REG_P (*dest
)) {
1795 regstack
->reg
[regstack
->top
] = REGNO (*dest
);
1796 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1797 replace_reg (dest
, FIRST_STACK_REG
);
1800 replace_reg (src1
, FIRST_STACK_REG
);
1801 replace_reg (src2
, FIRST_STACK_REG
+ 1);
1804 case UNSPEC_FSCALE_EXP
:
1805 case UNSPEC_FPREM_U
:
1806 case UNSPEC_FPREM1_U
:
1807 /* These insns operate on the top two stack slots./
1808 second part of double input, double output insn. */
1810 src1
= get_true_reg (&XVECEXP (pat_src
, 0, 0));
1811 src2
= get_true_reg (&XVECEXP (pat_src
, 0, 1));
1813 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1814 src2_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src2
));
1816 /* Inputs should never die, they are
1817 replaced with outputs. */
1818 gcc_assert (!src1_note
);
1819 gcc_assert (!src2_note
);
1821 swap_to_top (insn
, regstack
, *src1
, *src2
);
1823 /* Push the result back onto stack. Fill empty slot from
1824 first part of insn and fix top of stack pointer. */
1825 if (STACK_REG_P (*dest
)) {
1826 regstack
->reg
[regstack
->top
- 1] = REGNO (*dest
);
1827 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1828 replace_reg (dest
, FIRST_STACK_REG
+ 1);
1831 replace_reg (src1
, FIRST_STACK_REG
);
1832 replace_reg (src2
, FIRST_STACK_REG
+ 1);
1835 case UNSPEC_SINCOS_COS
:
1836 case UNSPEC_TAN_ONE
:
1837 case UNSPEC_XTRACT_FRACT
:
1838 /* These insns operate on the top two stack slots,
1839 first part of one input, double output insn. */
1841 src1
= get_true_reg (&XVECEXP (pat_src
, 0, 0));
1843 emit_swap_insn (insn
, regstack
, *src1
);
1845 /* Input should never die, it is
1846 replaced with output. */
1847 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1848 gcc_assert (!src1_note
);
1850 /* Push the result back onto stack. Empty stack slot
1851 will be filled in second part of insn. */
1852 if (STACK_REG_P (*dest
)) {
1853 regstack
->reg
[regstack
->top
+ 1] = REGNO (*dest
);
1854 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1855 replace_reg (dest
, FIRST_STACK_REG
);
1858 replace_reg (src1
, FIRST_STACK_REG
);
1861 case UNSPEC_SINCOS_SIN
:
1862 case UNSPEC_TAN_TAN
:
1863 case UNSPEC_XTRACT_EXP
:
1864 /* These insns operate on the top two stack slots,
1865 second part of one input, double output insn. */
1867 src1
= get_true_reg (&XVECEXP (pat_src
, 0, 0));
1869 emit_swap_insn (insn
, regstack
, *src1
);
1871 /* Input should never die, it is
1872 replaced with output. */
1873 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1874 gcc_assert (!src1_note
);
1876 /* Push the result back onto stack. Fill empty slot from
1877 first part of insn and fix top of stack pointer. */
1878 if (STACK_REG_P (*dest
)) {
1879 regstack
->reg
[regstack
->top
] = REGNO (*dest
);
1880 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1881 replace_reg (dest
, FIRST_STACK_REG
+ 1);
1886 replace_reg (src1
, FIRST_STACK_REG
);
1890 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1891 The combination matches the PPRO fcomi instruction. */
1893 pat_src
= XVECEXP (pat_src
, 0, 0);
1894 gcc_assert (GET_CODE (pat_src
) == UNSPEC
);
1895 gcc_assert (XINT (pat_src
, 1) == UNSPEC_FNSTSW
);
1899 /* Combined fcomp+fnstsw generated for doing well with
1900 CSE. When optimizing this would have been broken
1903 pat_src
= XVECEXP (pat_src
, 0, 0);
1904 gcc_assert (GET_CODE (pat_src
) == COMPARE
);
1906 compare_for_stack_reg (insn
, regstack
, pat_src
);
1915 /* This insn requires the top of stack to be the destination. */
1917 src1
= get_true_reg (&XEXP (pat_src
, 1));
1918 src2
= get_true_reg (&XEXP (pat_src
, 2));
1920 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1921 src2_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src2
));
1923 /* If the comparison operator is an FP comparison operator,
1924 it is handled correctly by compare_for_stack_reg () who
1925 will move the destination to the top of stack. But if the
1926 comparison operator is not an FP comparison operator, we
1927 have to handle it here. */
1928 if (get_hard_regnum (regstack
, *dest
) >= FIRST_STACK_REG
1929 && REGNO (*dest
) != regstack
->reg
[regstack
->top
])
1931 /* In case one of operands is the top of stack and the operands
1932 dies, it is safe to make it the destination operand by
1933 reversing the direction of cmove and avoid fxch. */
1934 if ((REGNO (*src1
) == regstack
->reg
[regstack
->top
]
1936 || (REGNO (*src2
) == regstack
->reg
[regstack
->top
]
1939 int idx1
= (get_hard_regnum (regstack
, *src1
)
1941 int idx2
= (get_hard_regnum (regstack
, *src2
)
1944 /* Make reg-stack believe that the operands are already
1945 swapped on the stack */
1946 regstack
->reg
[regstack
->top
- idx1
] = REGNO (*src2
);
1947 regstack
->reg
[regstack
->top
- idx2
] = REGNO (*src1
);
1949 /* Reverse condition to compensate the operand swap.
1950 i386 do have comparison always reversible. */
1951 PUT_CODE (XEXP (pat_src
, 0),
1952 reversed_comparison_code (XEXP (pat_src
, 0), insn
));
1955 emit_swap_insn (insn
, regstack
, *dest
);
1963 src_note
[1] = src1_note
;
1964 src_note
[2] = src2_note
;
1966 if (STACK_REG_P (*src1
))
1967 replace_reg (src1
, get_hard_regnum (regstack
, *src1
));
1968 if (STACK_REG_P (*src2
))
1969 replace_reg (src2
, get_hard_regnum (regstack
, *src2
));
1971 for (i
= 1; i
<= 2; i
++)
1974 int regno
= REGNO (XEXP (src_note
[i
], 0));
1976 /* If the register that dies is not at the top of
1977 stack, then move the top of stack to the dead reg.
1978 Top of stack should never die, as it is the
1980 gcc_assert (regno
!= regstack
->reg
[regstack
->top
]);
1981 remove_regno_note (insn
, REG_DEAD
, regno
);
1982 emit_pop_insn (insn
, regstack
, XEXP (src_note
[i
], 0),
1987 /* Make dest the top of stack. Add dest to regstack if
1989 if (get_hard_regnum (regstack
, *dest
) < FIRST_STACK_REG
)
1990 regstack
->reg
[++regstack
->top
] = REGNO (*dest
);
1991 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1992 replace_reg (dest
, FIRST_STACK_REG
);
2005 return control_flow_insn_deleted
;
2008 /* Substitute hard regnums for any stack regs in INSN, which has
2009 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
2010 before the insn, and is updated with changes made here.
2012 There are several requirements and assumptions about the use of
2013 stack-like regs in asm statements. These rules are enforced by
2014 record_asm_stack_regs; see comments there for details. Any
2015 asm_operands left in the RTL at this point may be assume to meet the
2016 requirements, since record_asm_stack_regs removes any problem asm. */
2019 subst_asm_stack_regs (rtx insn
, stack regstack
)
2021 rtx body
= PATTERN (insn
);
2024 rtx
*note_reg
; /* Array of note contents */
2025 rtx
**note_loc
; /* Address of REG field of each note */
2026 enum reg_note
*note_kind
; /* The type of each note */
2028 rtx
*clobber_reg
= 0;
2029 rtx
**clobber_loc
= 0;
2031 struct stack_def temp_stack
;
2036 int n_inputs
, n_outputs
;
2038 if (! check_asm_stack_operands (insn
))
2041 /* Find out what the constraints required. If no constraint
2042 alternative matches, that is a compiler bug: we should have caught
2043 such an insn in check_asm_stack_operands. */
2044 extract_insn (insn
);
2045 constrain_operands (1);
2046 alt
= which_alternative
;
2048 preprocess_constraints ();
2050 n_inputs
= get_asm_operand_n_inputs (body
);
2051 n_outputs
= recog_data
.n_operands
- n_inputs
;
2053 gcc_assert (alt
>= 0);
2055 /* Strip SUBREGs here to make the following code simpler. */
2056 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2057 if (GET_CODE (recog_data
.operand
[i
]) == SUBREG
2058 && REG_P (SUBREG_REG (recog_data
.operand
[i
])))
2060 recog_data
.operand_loc
[i
] = & SUBREG_REG (recog_data
.operand
[i
]);
2061 recog_data
.operand
[i
] = SUBREG_REG (recog_data
.operand
[i
]);
2064 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
2066 for (i
= 0, note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
2069 note_reg
= alloca (i
* sizeof (rtx
));
2070 note_loc
= alloca (i
* sizeof (rtx
*));
2071 note_kind
= alloca (i
* sizeof (enum reg_note
));
2074 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
2076 rtx reg
= XEXP (note
, 0);
2077 rtx
*loc
= & XEXP (note
, 0);
2079 if (GET_CODE (reg
) == SUBREG
&& REG_P (SUBREG_REG (reg
)))
2081 loc
= & SUBREG_REG (reg
);
2082 reg
= SUBREG_REG (reg
);
2085 if (STACK_REG_P (reg
)
2086 && (REG_NOTE_KIND (note
) == REG_DEAD
2087 || REG_NOTE_KIND (note
) == REG_UNUSED
))
2089 note_reg
[n_notes
] = reg
;
2090 note_loc
[n_notes
] = loc
;
2091 note_kind
[n_notes
] = REG_NOTE_KIND (note
);
2096 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2100 if (GET_CODE (body
) == PARALLEL
)
2102 clobber_reg
= alloca (XVECLEN (body
, 0) * sizeof (rtx
));
2103 clobber_loc
= alloca (XVECLEN (body
, 0) * sizeof (rtx
*));
2105 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
2106 if (GET_CODE (XVECEXP (body
, 0, i
)) == CLOBBER
)
2108 rtx clobber
= XVECEXP (body
, 0, i
);
2109 rtx reg
= XEXP (clobber
, 0);
2110 rtx
*loc
= & XEXP (clobber
, 0);
2112 if (GET_CODE (reg
) == SUBREG
&& REG_P (SUBREG_REG (reg
)))
2114 loc
= & SUBREG_REG (reg
);
2115 reg
= SUBREG_REG (reg
);
2118 if (STACK_REG_P (reg
))
2120 clobber_reg
[n_clobbers
] = reg
;
2121 clobber_loc
[n_clobbers
] = loc
;
2127 temp_stack
= *regstack
;
2129 /* Put the input regs into the desired place in TEMP_STACK. */
2131 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
2132 if (STACK_REG_P (recog_data
.operand
[i
])
2133 && reg_class_subset_p (recog_op_alt
[i
][alt
].cl
,
2135 && recog_op_alt
[i
][alt
].cl
!= FLOAT_REGS
)
2137 /* If an operand needs to be in a particular reg in
2138 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2139 these constraints are for single register classes, and
2140 reload guaranteed that operand[i] is already in that class,
2141 we can just use REGNO (recog_data.operand[i]) to know which
2142 actual reg this operand needs to be in. */
2144 int regno
= get_hard_regnum (&temp_stack
, recog_data
.operand
[i
]);
2146 gcc_assert (regno
>= 0);
2148 if ((unsigned int) regno
!= REGNO (recog_data
.operand
[i
]))
2150 /* recog_data.operand[i] is not in the right place. Find
2151 it and swap it with whatever is already in I's place.
2152 K is where recog_data.operand[i] is now. J is where it
2156 k
= temp_stack
.top
- (regno
- FIRST_STACK_REG
);
2158 - (REGNO (recog_data
.operand
[i
]) - FIRST_STACK_REG
));
2160 temp
= temp_stack
.reg
[k
];
2161 temp_stack
.reg
[k
] = temp_stack
.reg
[j
];
2162 temp_stack
.reg
[j
] = temp
;
2166 /* Emit insns before INSN to make sure the reg-stack is in the right
2169 change_stack (insn
, regstack
, &temp_stack
, EMIT_BEFORE
);
2171 /* Make the needed input register substitutions. Do death notes and
2172 clobbers too, because these are for inputs, not outputs. */
2174 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
2175 if (STACK_REG_P (recog_data
.operand
[i
]))
2177 int regnum
= get_hard_regnum (regstack
, recog_data
.operand
[i
]);
2179 gcc_assert (regnum
>= 0);
2181 replace_reg (recog_data
.operand_loc
[i
], regnum
);
2184 for (i
= 0; i
< n_notes
; i
++)
2185 if (note_kind
[i
] == REG_DEAD
)
2187 int regnum
= get_hard_regnum (regstack
, note_reg
[i
]);
2189 gcc_assert (regnum
>= 0);
2191 replace_reg (note_loc
[i
], regnum
);
2194 for (i
= 0; i
< n_clobbers
; i
++)
2196 /* It's OK for a CLOBBER to reference a reg that is not live.
2197 Don't try to replace it in that case. */
2198 int regnum
= get_hard_regnum (regstack
, clobber_reg
[i
]);
2202 /* Sigh - clobbers always have QImode. But replace_reg knows
2203 that these regs can't be MODE_INT and will assert. Just put
2204 the right reg there without calling replace_reg. */
2206 *clobber_loc
[i
] = FP_MODE_REG (regnum
, DFmode
);
2210 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2212 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
2213 if (STACK_REG_P (recog_data
.operand
[i
]))
2215 /* An input reg is implicitly popped if it is tied to an
2216 output, or if there is a CLOBBER for it. */
2219 for (j
= 0; j
< n_clobbers
; j
++)
2220 if (operands_match_p (clobber_reg
[j
], recog_data
.operand
[i
]))
2223 if (j
< n_clobbers
|| recog_op_alt
[i
][alt
].matches
>= 0)
2225 /* recog_data.operand[i] might not be at the top of stack.
2226 But that's OK, because all we need to do is pop the
2227 right number of regs off of the top of the reg-stack.
2228 record_asm_stack_regs guaranteed that all implicitly
2229 popped regs were grouped at the top of the reg-stack. */
2231 CLEAR_HARD_REG_BIT (regstack
->reg_set
,
2232 regstack
->reg
[regstack
->top
]);
2237 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2238 Note that there isn't any need to substitute register numbers.
2239 ??? Explain why this is true. */
2241 for (i
= LAST_STACK_REG
; i
>= FIRST_STACK_REG
; i
--)
2243 /* See if there is an output for this hard reg. */
2246 for (j
= 0; j
< n_outputs
; j
++)
2247 if (STACK_REG_P (recog_data
.operand
[j
])
2248 && REGNO (recog_data
.operand
[j
]) == (unsigned) i
)
2250 regstack
->reg
[++regstack
->top
] = i
;
2251 SET_HARD_REG_BIT (regstack
->reg_set
, i
);
2256 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2257 input that the asm didn't implicitly pop. If the asm didn't
2258 implicitly pop an input reg, that reg will still be live.
2260 Note that we can't use find_regno_note here: the register numbers
2261 in the death notes have already been substituted. */
2263 for (i
= 0; i
< n_outputs
; i
++)
2264 if (STACK_REG_P (recog_data
.operand
[i
]))
2268 for (j
= 0; j
< n_notes
; j
++)
2269 if (REGNO (recog_data
.operand
[i
]) == REGNO (note_reg
[j
])
2270 && note_kind
[j
] == REG_UNUSED
)
2272 insn
= emit_pop_insn (insn
, regstack
, recog_data
.operand
[i
],
2278 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
2279 if (STACK_REG_P (recog_data
.operand
[i
]))
2283 for (j
= 0; j
< n_notes
; j
++)
2284 if (REGNO (recog_data
.operand
[i
]) == REGNO (note_reg
[j
])
2285 && note_kind
[j
] == REG_DEAD
2286 && TEST_HARD_REG_BIT (regstack
->reg_set
,
2287 REGNO (recog_data
.operand
[i
])))
2289 insn
= emit_pop_insn (insn
, regstack
, recog_data
.operand
[i
],
2296 /* Substitute stack hard reg numbers for stack virtual registers in
2297 INSN. Non-stack register numbers are not changed. REGSTACK is the
2298 current stack content. Insns may be emitted as needed to arrange the
2299 stack for the 387 based on the contents of the insn. Return whether
2300 a control flow insn was deleted in the process. */
2303 subst_stack_regs (rtx insn
, stack regstack
)
2305 rtx
*note_link
, note
;
2306 bool control_flow_insn_deleted
= false;
2311 int top
= regstack
->top
;
2313 /* If there are any floating point parameters to be passed in
2314 registers for this call, make sure they are in the right
2319 straighten_stack (PREV_INSN (insn
), regstack
);
2321 /* Now mark the arguments as dead after the call. */
2323 while (regstack
->top
>= 0)
2325 CLEAR_HARD_REG_BIT (regstack
->reg_set
, FIRST_STACK_REG
+ regstack
->top
);
2331 /* Do the actual substitution if any stack regs are mentioned.
2332 Since we only record whether entire insn mentions stack regs, and
2333 subst_stack_regs_pat only works for patterns that contain stack regs,
2334 we must check each pattern in a parallel here. A call_value_pop could
2337 if (stack_regs_mentioned (insn
))
2339 int n_operands
= asm_noperands (PATTERN (insn
));
2340 if (n_operands
>= 0)
2342 /* This insn is an `asm' with operands. Decode the operands,
2343 decide how many are inputs, and do register substitution.
2344 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2346 subst_asm_stack_regs (insn
, regstack
);
2347 return control_flow_insn_deleted
;
2350 if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
2351 for (i
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
2353 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn
), 0, i
)))
2355 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, i
)) == CLOBBER
)
2356 XVECEXP (PATTERN (insn
), 0, i
)
2357 = shallow_copy_rtx (XVECEXP (PATTERN (insn
), 0, i
));
2358 control_flow_insn_deleted
2359 |= subst_stack_regs_pat (insn
, regstack
,
2360 XVECEXP (PATTERN (insn
), 0, i
));
2364 control_flow_insn_deleted
2365 |= subst_stack_regs_pat (insn
, regstack
, PATTERN (insn
));
2368 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2369 REG_UNUSED will already have been dealt with, so just return. */
2371 if (NOTE_P (insn
) || INSN_DELETED_P (insn
))
2372 return control_flow_insn_deleted
;
2374 /* If there is a REG_UNUSED note on a stack register on this insn,
2375 the indicated reg must be popped. The REG_UNUSED note is removed,
2376 since the form of the newly emitted pop insn references the reg,
2377 making it no longer `unset'. */
2379 note_link
= ®_NOTES (insn
);
2380 for (note
= *note_link
; note
; note
= XEXP (note
, 1))
2381 if (REG_NOTE_KIND (note
) == REG_UNUSED
&& STACK_REG_P (XEXP (note
, 0)))
2383 *note_link
= XEXP (note
, 1);
2384 insn
= emit_pop_insn (insn
, regstack
, XEXP (note
, 0), EMIT_AFTER
);
2387 note_link
= &XEXP (note
, 1);
2389 return control_flow_insn_deleted
;
2392 /* Change the organization of the stack so that it fits a new basic
2393 block. Some registers might have to be popped, but there can never be
2394 a register live in the new block that is not now live.
2396 Insert any needed insns before or after INSN, as indicated by
2397 WHERE. OLD is the original stack layout, and NEW is the desired
2398 form. OLD is updated to reflect the code emitted, i.e., it will be
2399 the same as NEW upon return.
2401 This function will not preserve block_end[]. But that information
2402 is no longer needed once this has executed. */
2405 change_stack (rtx insn
, stack old
, stack
new, enum emit_where where
)
2410 /* We will be inserting new insns "backwards". If we are to insert
2411 after INSN, find the next insn, and insert before it. */
2413 if (where
== EMIT_AFTER
)
2415 if (current_block
&& BB_END (current_block
) == insn
)
2417 insn
= NEXT_INSN (insn
);
2420 /* Pop any registers that are not needed in the new block. */
2422 for (reg
= old
->top
; reg
>= 0; reg
--)
2423 if (! TEST_HARD_REG_BIT (new->reg_set
, old
->reg
[reg
]))
2424 emit_pop_insn (insn
, old
, FP_MODE_REG (old
->reg
[reg
], DFmode
),
2429 /* If the new block has never been processed, then it can inherit
2430 the old stack order. */
2432 new->top
= old
->top
;
2433 memcpy (new->reg
, old
->reg
, sizeof (new->reg
));
2437 /* This block has been entered before, and we must match the
2438 previously selected stack order. */
2440 /* By now, the only difference should be the order of the stack,
2441 not their depth or liveliness. */
2443 GO_IF_HARD_REG_EQUAL (old
->reg_set
, new->reg_set
, win
);
2446 gcc_assert (old
->top
== new->top
);
2448 /* If the stack is not empty (new->top != -1), loop here emitting
2449 swaps until the stack is correct.
2451 The worst case number of swaps emitted is N + 2, where N is the
2452 depth of the stack. In some cases, the reg at the top of
2453 stack may be correct, but swapped anyway in order to fix
2454 other regs. But since we never swap any other reg away from
2455 its correct slot, this algorithm will converge. */
2460 /* Swap the reg at top of stack into the position it is
2461 supposed to be in, until the correct top of stack appears. */
2463 while (old
->reg
[old
->top
] != new->reg
[new->top
])
2465 for (reg
= new->top
; reg
>= 0; reg
--)
2466 if (new->reg
[reg
] == old
->reg
[old
->top
])
2469 gcc_assert (reg
!= -1);
2471 emit_swap_insn (insn
, old
,
2472 FP_MODE_REG (old
->reg
[reg
], DFmode
));
2475 /* See if any regs remain incorrect. If so, bring an
2476 incorrect reg to the top of stack, and let the while loop
2479 for (reg
= new->top
; reg
>= 0; reg
--)
2480 if (new->reg
[reg
] != old
->reg
[reg
])
2482 emit_swap_insn (insn
, old
,
2483 FP_MODE_REG (old
->reg
[reg
], DFmode
));
2488 /* At this point there must be no differences. */
2490 for (reg
= old
->top
; reg
>= 0; reg
--)
2491 gcc_assert (old
->reg
[reg
] == new->reg
[reg
]);
2495 BB_END (current_block
) = PREV_INSN (insn
);
2498 /* Print stack configuration. */
2501 print_stack (FILE *file
, stack s
)
2507 fprintf (file
, "uninitialized\n");
2508 else if (s
->top
== -1)
2509 fprintf (file
, "empty\n");
2514 for (i
= 0; i
<= s
->top
; ++i
)
2515 fprintf (file
, "%d ", s
->reg
[i
]);
2516 fputs ("]\n", file
);
2520 /* This function was doing life analysis. We now let the regular live
2521 code do it's job, so we only need to check some extra invariants
2522 that reg-stack expects. Primary among these being that all registers
2523 are initialized before use.
2525 The function returns true when code was emitted to CFG edges and
2526 commit_edge_insertions needs to be called. */
2529 convert_regs_entry (void)
2536 FOR_EACH_BB_REVERSE (block
)
2538 block_info bi
= BLOCK_INFO (block
);
2541 /* Set current register status at last instruction `uninitialized'. */
2542 bi
->stack_in
.top
= -2;
2544 /* Copy live_at_end and live_at_start into temporaries. */
2545 for (reg
= FIRST_STACK_REG
; reg
<= LAST_STACK_REG
; reg
++)
2547 if (REGNO_REG_SET_P (block
->global_live_at_end
, reg
))
2548 SET_HARD_REG_BIT (bi
->out_reg_set
, reg
);
2549 if (REGNO_REG_SET_P (block
->global_live_at_start
, reg
))
2550 SET_HARD_REG_BIT (bi
->stack_in
.reg_set
, reg
);
2554 /* Load something into each stack register live at function entry.
2555 Such live registers can be caused by uninitialized variables or
2556 functions not returning values on all paths. In order to keep
2557 the push/pop code happy, and to not scrog the register stack, we
2558 must put something in these registers. Use a QNaN.
2560 Note that we are inserting converted code here. This code is
2561 never seen by the convert_regs pass. */
2563 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR
->succs
)
2565 basic_block block
= e
->dest
;
2566 block_info bi
= BLOCK_INFO (block
);
2569 for (reg
= LAST_STACK_REG
; reg
>= FIRST_STACK_REG
; --reg
)
2570 if (TEST_HARD_REG_BIT (bi
->stack_in
.reg_set
, reg
))
2574 bi
->stack_in
.reg
[++top
] = reg
;
2576 init
= gen_rtx_SET (VOIDmode
,
2577 FP_MODE_REG (FIRST_STACK_REG
, SFmode
),
2579 insert_insn_on_edge (init
, e
);
2583 bi
->stack_in
.top
= top
;
2589 /* Construct the desired stack for function exit. This will either
2590 be `empty', or the function return value at top-of-stack. */
2593 convert_regs_exit (void)
2595 int value_reg_low
, value_reg_high
;
2599 retvalue
= stack_result (current_function_decl
);
2600 value_reg_low
= value_reg_high
= -1;
2603 value_reg_low
= REGNO (retvalue
);
2604 value_reg_high
= value_reg_low
2605 + hard_regno_nregs
[value_reg_low
][GET_MODE (retvalue
)] - 1;
2608 output_stack
= &BLOCK_INFO (EXIT_BLOCK_PTR
)->stack_in
;
2609 if (value_reg_low
== -1)
2610 output_stack
->top
= -1;
2615 output_stack
->top
= value_reg_high
- value_reg_low
;
2616 for (reg
= value_reg_low
; reg
<= value_reg_high
; ++reg
)
2618 output_stack
->reg
[value_reg_high
- reg
] = reg
;
2619 SET_HARD_REG_BIT (output_stack
->reg_set
, reg
);
2624 /* Adjust the stack of this block on exit to match the stack of the
2625 target block, or copy stack info into the stack of the successor
2626 of the successor hasn't been processed yet. */
2628 compensate_edge (edge e
, FILE *file
)
2630 basic_block block
= e
->src
, target
= e
->dest
;
2631 block_info bi
= BLOCK_INFO (block
);
2632 struct stack_def regstack
, tmpstack
;
2633 stack target_stack
= &BLOCK_INFO (target
)->stack_in
;
2636 current_block
= block
;
2637 regstack
= bi
->stack_out
;
2639 fprintf (file
, "Edge %d->%d: ", block
->index
, target
->index
);
2641 if (target_stack
->top
== -2)
2643 /* The target block hasn't had a stack order selected.
2644 We need merely ensure that no pops are needed. */
2645 for (reg
= regstack
.top
; reg
>= 0; --reg
)
2646 if (!TEST_HARD_REG_BIT (target_stack
->reg_set
, regstack
.reg
[reg
]))
2652 fprintf (file
, "new block; copying stack position\n");
2654 /* change_stack kills values in regstack. */
2655 tmpstack
= regstack
;
2657 change_stack (BB_END (block
), &tmpstack
, target_stack
, EMIT_AFTER
);
2662 fprintf (file
, "new block; pops needed\n");
2666 if (target_stack
->top
== regstack
.top
)
2668 for (reg
= target_stack
->top
; reg
>= 0; --reg
)
2669 if (target_stack
->reg
[reg
] != regstack
.reg
[reg
])
2675 fprintf (file
, "no changes needed\n");
2682 fprintf (file
, "correcting stack to ");
2683 print_stack (file
, target_stack
);
2687 /* Care for non-call EH edges specially. The normal return path have
2688 values in registers. These will be popped en masse by the unwind
2690 if ((e
->flags
& (EDGE_EH
| EDGE_ABNORMAL_CALL
)) == EDGE_EH
)
2691 target_stack
->top
= -1;
2693 /* Other calls may appear to have values live in st(0), but the
2694 abnormal return path will not have actually loaded the values. */
2695 else if (e
->flags
& EDGE_ABNORMAL_CALL
)
2697 /* Assert that the lifetimes are as we expect -- one value
2698 live at st(0) on the end of the source block, and no
2699 values live at the beginning of the destination block. */
2702 CLEAR_HARD_REG_SET (tmp
);
2703 GO_IF_HARD_REG_EQUAL (target_stack
->reg_set
, tmp
, eh1
);
2707 /* We are sure that there is st(0) live, otherwise we won't compensate.
2708 For complex return values, we may have st(1) live as well. */
2709 SET_HARD_REG_BIT (tmp
, FIRST_STACK_REG
);
2710 if (TEST_HARD_REG_BIT (regstack
.reg_set
, FIRST_STACK_REG
+ 1))
2711 SET_HARD_REG_BIT (tmp
, FIRST_STACK_REG
+ 1);
2712 GO_IF_HARD_REG_EQUAL (regstack
.reg_set
, tmp
, eh2
);
2716 target_stack
->top
= -1;
2719 /* It is better to output directly to the end of the block
2720 instead of to the edge, because emit_swap can do minimal
2721 insn scheduling. We can do this when there is only one
2722 edge out, and it is not abnormal. */
2723 else if (EDGE_COUNT (block
->succs
) == 1 && !(e
->flags
& EDGE_ABNORMAL
))
2725 /* change_stack kills values in regstack. */
2726 tmpstack
= regstack
;
2728 change_stack (BB_END (block
), &tmpstack
, target_stack
,
2729 (JUMP_P (BB_END (block
))
2730 ? EMIT_BEFORE
: EMIT_AFTER
));
2736 /* We don't support abnormal edges. Global takes care to
2737 avoid any live register across them, so we should never
2738 have to insert instructions on such edges. */
2739 gcc_assert (!(e
->flags
& EDGE_ABNORMAL
));
2741 current_block
= NULL
;
2744 /* ??? change_stack needs some point to emit insns after. */
2745 after
= emit_note (NOTE_INSN_DELETED
);
2747 tmpstack
= regstack
;
2748 change_stack (after
, &tmpstack
, target_stack
, EMIT_BEFORE
);
2753 insert_insn_on_edge (seq
, e
);
2759 /* Convert stack register references in one block. */
2762 convert_regs_1 (FILE *file
, basic_block block
)
2764 struct stack_def regstack
;
2765 block_info bi
= BLOCK_INFO (block
);
2766 int deleted
, inserted
, reg
;
2768 edge e
, beste
= NULL
;
2769 bool control_flow_insn_deleted
= false;
2774 any_malformed_asm
= false;
2776 /* Find the edge we will copy stack from. It should be the most frequent
2777 one as it will get cheapest after compensation code is generated,
2778 if multiple such exists, take one with largest count, prefer critical
2779 one (as splitting critical edges is more expensive), or one with lowest
2780 index, to avoid random changes with different orders of the edges. */
2781 FOR_EACH_EDGE (e
, ei
, block
->preds
)
2783 if (e
->flags
& EDGE_DFS_BACK
)
2787 else if (EDGE_FREQUENCY (beste
) < EDGE_FREQUENCY (e
))
2789 else if (EDGE_FREQUENCY (beste
) > EDGE_FREQUENCY (e
))
2791 else if (beste
->count
< e
->count
)
2793 else if (beste
->count
> e
->count
)
2795 else if ((EDGE_CRITICAL_P (e
) != 0)
2796 != (EDGE_CRITICAL_P (beste
) != 0))
2798 if (EDGE_CRITICAL_P (e
))
2801 else if (e
->src
->index
< beste
->src
->index
)
2805 /* Initialize stack at block entry. */
2806 if (bi
->stack_in
.top
== -2)
2809 inserted
|= compensate_edge (beste
, file
);
2812 /* No predecessors. Create an arbitrary input stack. */
2815 bi
->stack_in
.top
= -1;
2816 for (reg
= LAST_STACK_REG
; reg
>= FIRST_STACK_REG
; --reg
)
2817 if (TEST_HARD_REG_BIT (bi
->stack_in
.reg_set
, reg
))
2818 bi
->stack_in
.reg
[++bi
->stack_in
.top
] = reg
;
2822 /* Entry blocks do have stack already initialized. */
2825 current_block
= block
;
2829 fprintf (file
, "\nBasic block %d\nInput stack: ", block
->index
);
2830 print_stack (file
, &bi
->stack_in
);
2833 /* Process all insns in this block. Keep track of NEXT so that we
2834 don't process insns emitted while substituting in INSN. */
2835 next
= BB_HEAD (block
);
2836 regstack
= bi
->stack_in
;
2840 next
= NEXT_INSN (insn
);
2842 /* Ensure we have not missed a block boundary. */
2844 if (insn
== BB_END (block
))
2847 /* Don't bother processing unless there is a stack reg
2848 mentioned or if it's a CALL_INSN. */
2849 if (stack_regs_mentioned (insn
)
2854 fprintf (file
, " insn %d input stack: ",
2856 print_stack (file
, ®stack
);
2858 control_flow_insn_deleted
|= subst_stack_regs (insn
, ®stack
);
2865 fprintf (file
, "Expected live registers [");
2866 for (reg
= FIRST_STACK_REG
; reg
<= LAST_STACK_REG
; ++reg
)
2867 if (TEST_HARD_REG_BIT (bi
->out_reg_set
, reg
))
2868 fprintf (file
, " %d", reg
);
2869 fprintf (file
, " ]\nOutput stack: ");
2870 print_stack (file
, ®stack
);
2873 insn
= BB_END (block
);
2875 insn
= PREV_INSN (insn
);
2877 /* If the function is declared to return a value, but it returns one
2878 in only some cases, some registers might come live here. Emit
2879 necessary moves for them. */
2881 for (reg
= FIRST_STACK_REG
; reg
<= LAST_STACK_REG
; ++reg
)
2883 if (TEST_HARD_REG_BIT (bi
->out_reg_set
, reg
)
2884 && ! TEST_HARD_REG_BIT (regstack
.reg_set
, reg
))
2890 fprintf (file
, "Emitting insn initializing reg %d\n",
2894 set
= gen_rtx_SET (VOIDmode
, FP_MODE_REG (reg
, SFmode
),
2896 insn
= emit_insn_after (set
, insn
);
2897 control_flow_insn_deleted
|= subst_stack_regs (insn
, ®stack
);
2901 /* Amongst the insns possibly deleted during the substitution process above,
2902 might have been the only trapping insn in the block. We purge the now
2903 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
2904 called at the end of convert_regs. The order in which we process the
2905 blocks ensures that we never delete an already processed edge.
2907 Note that, at this point, the CFG may have been damaged by the emission
2908 of instructions after an abnormal call, which moves the basic block end
2909 (and is the reason why we call fixup_abnormal_edges later). So we must
2910 be sure that the trapping insn has been deleted before trying to purge
2911 dead edges, otherwise we risk purging valid edges.
2913 ??? We are normally supposed not to delete trapping insns, so we pretend
2914 that the insns deleted above don't actually trap. It would have been
2915 better to detect this earlier and avoid creating the EH edge in the first
2916 place, still, but we don't have enough information at that time. */
2918 if (control_flow_insn_deleted
)
2919 purge_dead_edges (block
);
2921 /* Something failed if the stack lives don't match. If we had malformed
2922 asms, we zapped the instruction itself, but that didn't produce the
2923 same pattern of register kills as before. */
2924 GO_IF_HARD_REG_EQUAL (regstack
.reg_set
, bi
->out_reg_set
, win
);
2925 gcc_assert (any_malformed_asm
);
2927 bi
->stack_out
= regstack
;
2929 /* Compensate the back edges, as those wasn't visited yet. */
2930 FOR_EACH_EDGE (e
, ei
, block
->succs
)
2932 if (e
->flags
& EDGE_DFS_BACK
2933 || (e
->dest
== EXIT_BLOCK_PTR
))
2935 gcc_assert (BLOCK_INFO (e
->dest
)->done
2936 || e
->dest
== block
);
2937 inserted
|= compensate_edge (e
, file
);
2940 FOR_EACH_EDGE (e
, ei
, block
->preds
)
2942 if (e
!= beste
&& !(e
->flags
& EDGE_DFS_BACK
)
2943 && e
->src
!= ENTRY_BLOCK_PTR
)
2945 gcc_assert (BLOCK_INFO (e
->src
)->done
);
2946 inserted
|= compensate_edge (e
, file
);
2953 /* Convert registers in all blocks reachable from BLOCK. */
2956 convert_regs_2 (FILE *file
, basic_block block
)
2958 basic_block
*stack
, *sp
;
2961 /* We process the blocks in a top-down manner, in a way such that one block
2962 is only processed after all its predecessors. The number of predecessors
2963 of every block has already been computed. */
2965 stack
= xmalloc (sizeof (*stack
) * n_basic_blocks
);
2978 /* Processing BLOCK is achieved by convert_regs_1, which may purge
2979 some dead EH outgoing edge after the deletion of the trapping
2980 insn inside the block. Since the number of predecessors of
2981 BLOCK's successors was computed based on the initial edge set,
2982 we check the necessity to process some of these successors
2983 before such an edge deletion may happen. However, there is
2984 a pitfall: if BLOCK is the only predecessor of a successor and
2985 the edge between them happens to be deleted, the successor
2986 becomes unreachable and should not be processed. The problem
2987 is that there is no way to preventively detect this case so we
2988 stack the successor in all cases and hand over the task of
2989 fixing up the discrepancy to convert_regs_1. */
2991 FOR_EACH_EDGE (e
, ei
, block
->succs
)
2992 if (! (e
->flags
& EDGE_DFS_BACK
))
2994 BLOCK_INFO (e
->dest
)->predecessors
--;
2995 if (!BLOCK_INFO (e
->dest
)->predecessors
)
2999 inserted
|= convert_regs_1 (file
, block
);
3000 BLOCK_INFO (block
)->done
= 1;
3002 while (sp
!= stack
);
3007 /* Traverse all basic blocks in a function, converting the register
3008 references in each insn from the "flat" register file that gcc uses,
3009 to the stack-like registers the 387 uses. */
3012 convert_regs (FILE *file
)
3019 /* Initialize uninitialized registers on function entry. */
3020 inserted
= convert_regs_entry ();
3022 /* Construct the desired stack for function exit. */
3023 convert_regs_exit ();
3024 BLOCK_INFO (EXIT_BLOCK_PTR
)->done
= 1;
3026 /* ??? Future: process inner loops first, and give them arbitrary
3027 initial stacks which emit_swap_insn can modify. This ought to
3028 prevent double fxch that often appears at the head of a loop. */
3030 /* Process all blocks reachable from all entry points. */
3031 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR
->succs
)
3032 inserted
|= convert_regs_2 (file
, e
->dest
);
3034 /* ??? Process all unreachable blocks. Though there's no excuse
3035 for keeping these even when not optimizing. */
3038 block_info bi
= BLOCK_INFO (b
);
3041 inserted
|= convert_regs_2 (file
, b
);
3043 clear_aux_for_blocks ();
3045 fixup_abnormal_edges ();
3047 commit_edge_insertions ();
3054 #endif /* STACK_REGS */
3056 #include "gt-reg-stack.h"