1 /* Perform simple optimizations to clean up the result of reload.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
24 #include "coretypes.h"
28 #include "hard-reg-set.h"
32 #include "insn-config.h"
38 #include "basic-block.h"
48 static int reload_cse_noop_set_p (rtx
);
49 static void reload_cse_simplify (rtx
, rtx
);
50 static void reload_cse_regs_1 (rtx
);
51 static int reload_cse_simplify_set (rtx
, rtx
);
52 static int reload_cse_simplify_operands (rtx
, rtx
);
54 static void reload_combine (void);
55 static void reload_combine_note_use (rtx
*, rtx
);
56 static void reload_combine_note_store (rtx
, rtx
, void *);
58 static void reload_cse_move2add (rtx
);
59 static void move2add_note_store (rtx
, rtx
, void *);
61 /* Call cse / combine like post-reload optimization phases.
62 FIRST is the first instruction. */
64 reload_cse_regs (rtx first ATTRIBUTE_UNUSED
)
66 reload_cse_regs_1 (first
);
68 reload_cse_move2add (first
);
69 if (flag_expensive_optimizations
)
70 reload_cse_regs_1 (first
);
73 /* See whether a single set SET is a noop. */
75 reload_cse_noop_set_p (rtx set
)
77 if (cselib_reg_set_mode (SET_DEST (set
)) != GET_MODE (SET_DEST (set
)))
80 return rtx_equal_for_cselib_p (SET_DEST (set
), SET_SRC (set
));
83 /* Try to simplify INSN. */
85 reload_cse_simplify (rtx insn
, rtx testreg
)
87 rtx body
= PATTERN (insn
);
89 if (GET_CODE (body
) == SET
)
93 /* Simplify even if we may think it is a no-op.
94 We may think a memory load of a value smaller than WORD_SIZE
95 is redundant because we haven't taken into account possible
96 implicit extension. reload_cse_simplify_set() will bring
97 this out, so it's safer to simplify before we delete. */
98 count
+= reload_cse_simplify_set (body
, insn
);
100 if (!count
&& reload_cse_noop_set_p (body
))
102 rtx value
= SET_DEST (body
);
104 && ! REG_FUNCTION_VALUE_P (value
))
106 delete_insn_and_edges (insn
);
111 apply_change_group ();
113 reload_cse_simplify_operands (insn
, testreg
);
115 else if (GET_CODE (body
) == PARALLEL
)
119 rtx value
= NULL_RTX
;
121 /* Registers mentioned in the clobber list for an asm cannot be reused
122 within the body of the asm. Invalidate those registers now so that
123 we don't try to substitute values for them. */
124 if (asm_noperands (body
) >= 0)
126 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; --i
)
128 rtx part
= XVECEXP (body
, 0, i
);
129 if (GET_CODE (part
) == CLOBBER
&& REG_P (XEXP (part
, 0)))
130 cselib_invalidate_rtx (XEXP (part
, 0));
134 /* If every action in a PARALLEL is a noop, we can delete
135 the entire PARALLEL. */
136 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; --i
)
138 rtx part
= XVECEXP (body
, 0, i
);
139 if (GET_CODE (part
) == SET
)
141 if (! reload_cse_noop_set_p (part
))
143 if (REG_P (SET_DEST (part
))
144 && REG_FUNCTION_VALUE_P (SET_DEST (part
)))
148 value
= SET_DEST (part
);
151 else if (GET_CODE (part
) != CLOBBER
)
157 delete_insn_and_edges (insn
);
158 /* We're done with this insn. */
162 /* It's not a no-op, but we can try to simplify it. */
163 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; --i
)
164 if (GET_CODE (XVECEXP (body
, 0, i
)) == SET
)
165 count
+= reload_cse_simplify_set (XVECEXP (body
, 0, i
), insn
);
168 apply_change_group ();
170 reload_cse_simplify_operands (insn
, testreg
);
174 /* Do a very simple CSE pass over the hard registers.
176 This function detects no-op moves where we happened to assign two
177 different pseudo-registers to the same hard register, and then
178 copied one to the other. Reload will generate a useless
179 instruction copying a register to itself.
181 This function also detects cases where we load a value from memory
182 into two different registers, and (if memory is more expensive than
183 registers) changes it to simply copy the first register into the
186 Another optimization is performed that scans the operands of each
187 instruction to see whether the value is already available in a
188 hard register. It then replaces the operand with the hard register
189 if possible, much like an optional reload would. */
192 reload_cse_regs_1 (rtx first
)
195 rtx testreg
= gen_rtx_REG (VOIDmode
, -1);
198 init_alias_analysis ();
200 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
203 reload_cse_simplify (insn
, testreg
);
205 cselib_process_insn (insn
);
209 end_alias_analysis ();
213 /* Try to simplify a single SET instruction. SET is the set pattern.
214 INSN is the instruction it came from.
215 This function only handles one case: if we set a register to a value
216 which is not a register, we try to find that value in some other register
217 and change the set into a register copy. */
220 reload_cse_simplify_set (rtx set
, rtx insn
)
225 enum reg_class dclass
;
228 struct elt_loc_list
*l
;
229 #ifdef LOAD_EXTEND_OP
230 enum rtx_code extend_op
= UNKNOWN
;
233 dreg
= true_regnum (SET_DEST (set
));
238 if (side_effects_p (src
) || true_regnum (src
) >= 0)
241 dclass
= REGNO_REG_CLASS (dreg
);
243 #ifdef LOAD_EXTEND_OP
244 /* When replacing a memory with a register, we need to honor assumptions
245 that combine made wrt the contents of sign bits. We'll do this by
246 generating an extend instruction instead of a reg->reg copy. Thus
247 the destination must be a register that we can widen. */
249 && GET_MODE_BITSIZE (GET_MODE (src
)) < BITS_PER_WORD
250 && (extend_op
= LOAD_EXTEND_OP (GET_MODE (src
))) != UNKNOWN
251 && !REG_P (SET_DEST (set
)))
255 val
= cselib_lookup (src
, GET_MODE (SET_DEST (set
)), 0);
259 /* If memory loads are cheaper than register copies, don't change them. */
261 old_cost
= MEMORY_MOVE_COST (GET_MODE (src
), dclass
, 1);
262 else if (REG_P (src
))
263 old_cost
= REGISTER_MOVE_COST (GET_MODE (src
),
264 REGNO_REG_CLASS (REGNO (src
)), dclass
);
266 old_cost
= rtx_cost (src
, SET
);
268 for (l
= val
->locs
; l
; l
= l
->next
)
270 rtx this_rtx
= l
->loc
;
273 if (CONSTANT_P (this_rtx
) && ! references_value_p (this_rtx
, 0))
275 #ifdef LOAD_EXTEND_OP
276 if (extend_op
!= UNKNOWN
)
278 HOST_WIDE_INT this_val
;
280 /* ??? I'm lazy and don't wish to handle CONST_DOUBLE. Other
281 constants, such as SYMBOL_REF, cannot be extended. */
282 if (GET_CODE (this_rtx
) != CONST_INT
)
285 this_val
= INTVAL (this_rtx
);
289 this_val
&= GET_MODE_MASK (GET_MODE (src
));
292 /* ??? In theory we're already extended. */
293 if (this_val
== trunc_int_for_mode (this_val
, GET_MODE (src
)))
298 this_rtx
= GEN_INT (this_val
);
301 this_cost
= rtx_cost (this_rtx
, SET
);
303 else if (REG_P (this_rtx
))
305 #ifdef LOAD_EXTEND_OP
306 if (extend_op
!= UNKNOWN
)
308 this_rtx
= gen_rtx_fmt_e (extend_op
, word_mode
, this_rtx
);
309 this_cost
= rtx_cost (this_rtx
, SET
);
313 this_cost
= REGISTER_MOVE_COST (GET_MODE (this_rtx
),
314 REGNO_REG_CLASS (REGNO (this_rtx
)),
320 /* If equal costs, prefer registers over anything else. That
321 tends to lead to smaller instructions on some machines. */
322 if (this_cost
< old_cost
323 || (this_cost
== old_cost
325 && !REG_P (SET_SRC (set
))))
327 #ifdef LOAD_EXTEND_OP
328 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set
))) < BITS_PER_WORD
329 && extend_op
!= UNKNOWN
330 #ifdef CANNOT_CHANGE_MODE_CLASS
331 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set
)),
333 REGNO_REG_CLASS (REGNO (SET_DEST (set
))))
337 rtx wide_dest
= gen_rtx_REG (word_mode
, REGNO (SET_DEST (set
)));
338 ORIGINAL_REGNO (wide_dest
) = ORIGINAL_REGNO (SET_DEST (set
));
339 validate_change (insn
, &SET_DEST (set
), wide_dest
, 1);
343 validate_change (insn
, &SET_SRC (set
), copy_rtx (this_rtx
), 1);
344 old_cost
= this_cost
, did_change
= 1;
351 /* Try to replace operands in INSN with equivalent values that are already
352 in registers. This can be viewed as optional reloading.
354 For each non-register operand in the insn, see if any hard regs are
355 known to be equivalent to that operand. Record the alternatives which
356 can accept these hard registers. Among all alternatives, select the
357 ones which are better or equal to the one currently matching, where
358 "better" is in terms of '?' and '!' constraints. Among the remaining
359 alternatives, select the one which replaces most operands with
363 reload_cse_simplify_operands (rtx insn
, rtx testreg
)
367 /* For each operand, all registers that are equivalent to it. */
368 HARD_REG_SET equiv_regs
[MAX_RECOG_OPERANDS
];
370 const char *constraints
[MAX_RECOG_OPERANDS
];
372 /* Vector recording how bad an alternative is. */
373 int *alternative_reject
;
374 /* Vector recording how many registers can be introduced by choosing
376 int *alternative_nregs
;
377 /* Array of vectors recording, for each operand and each alternative,
378 which hard register to substitute, or -1 if the operand should be
380 int *op_alt_regno
[MAX_RECOG_OPERANDS
];
381 /* Array of alternatives, sorted in order of decreasing desirability. */
382 int *alternative_order
;
386 if (recog_data
.n_alternatives
== 0 || recog_data
.n_operands
== 0)
389 /* Figure out which alternative currently matches. */
390 if (! constrain_operands (1))
391 fatal_insn_not_found (insn
);
393 alternative_reject
= alloca (recog_data
.n_alternatives
* sizeof (int));
394 alternative_nregs
= alloca (recog_data
.n_alternatives
* sizeof (int));
395 alternative_order
= alloca (recog_data
.n_alternatives
* sizeof (int));
396 memset (alternative_reject
, 0, recog_data
.n_alternatives
* sizeof (int));
397 memset (alternative_nregs
, 0, recog_data
.n_alternatives
* sizeof (int));
399 /* For each operand, find out which regs are equivalent. */
400 for (i
= 0; i
< recog_data
.n_operands
; i
++)
403 struct elt_loc_list
*l
;
405 enum machine_mode mode
;
407 CLEAR_HARD_REG_SET (equiv_regs
[i
]);
409 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
410 right, so avoid the problem here. Likewise if we have a constant
411 and the insn pattern doesn't tell us the mode we need. */
412 if (LABEL_P (recog_data
.operand
[i
])
413 || (CONSTANT_P (recog_data
.operand
[i
])
414 && recog_data
.operand_mode
[i
] == VOIDmode
))
417 op
= recog_data
.operand
[i
];
418 mode
= GET_MODE (op
);
419 #ifdef LOAD_EXTEND_OP
421 && GET_MODE_BITSIZE (mode
) < BITS_PER_WORD
422 && LOAD_EXTEND_OP (mode
) != UNKNOWN
)
424 rtx set
= single_set (insn
);
426 /* We might have multiple sets, some of which do implicit
427 extension. Punt on this for now. */
430 /* If the destination is a also MEM or a STRICT_LOW_PART, no
432 Also, if there is an explicit extension, we don't have to
433 worry about an implicit one. */
434 else if (MEM_P (SET_DEST (set
))
435 || GET_CODE (SET_DEST (set
)) == STRICT_LOW_PART
436 || GET_CODE (SET_SRC (set
)) == ZERO_EXTEND
437 || GET_CODE (SET_SRC (set
)) == SIGN_EXTEND
)
438 ; /* Continue ordinary processing. */
439 #ifdef CANNOT_CHANGE_MODE_CLASS
440 /* If the register cannot change mode to word_mode, it follows that
441 it cannot have been used in word_mode. */
442 else if (REG_P (SET_DEST (set
))
443 && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set
)),
445 REGNO_REG_CLASS (REGNO (SET_DEST (set
)))))
446 ; /* Continue ordinary processing. */
448 /* If this is a straight load, make the extension explicit. */
449 else if (REG_P (SET_DEST (set
))
450 && recog_data
.n_operands
== 2
451 && SET_SRC (set
) == op
452 && SET_DEST (set
) == recog_data
.operand
[1-i
])
454 validate_change (insn
, recog_data
.operand_loc
[i
],
455 gen_rtx_fmt_e (LOAD_EXTEND_OP (mode
),
458 validate_change (insn
, recog_data
.operand_loc
[1-i
],
459 gen_rtx_REG (word_mode
, REGNO (SET_DEST (set
))),
461 if (! apply_change_group ())
463 return reload_cse_simplify_operands (insn
, testreg
);
466 /* ??? There might be arithmetic operations with memory that are
467 safe to optimize, but is it worth the trouble? */
470 #endif /* LOAD_EXTEND_OP */
471 v
= cselib_lookup (op
, recog_data
.operand_mode
[i
], 0);
475 for (l
= v
->locs
; l
; l
= l
->next
)
477 SET_HARD_REG_BIT (equiv_regs
[i
], REGNO (l
->loc
));
480 for (i
= 0; i
< recog_data
.n_operands
; i
++)
482 enum machine_mode mode
;
486 op_alt_regno
[i
] = alloca (recog_data
.n_alternatives
* sizeof (int));
487 for (j
= 0; j
< recog_data
.n_alternatives
; j
++)
488 op_alt_regno
[i
][j
] = -1;
490 p
= constraints
[i
] = recog_data
.constraints
[i
];
491 mode
= recog_data
.operand_mode
[i
];
493 /* Add the reject values for each alternative given by the constraints
502 alternative_reject
[j
] += 3;
504 alternative_reject
[j
] += 300;
507 /* We won't change operands which are already registers. We
508 also don't want to modify output operands. */
509 regno
= true_regnum (recog_data
.operand
[i
]);
511 || constraints
[i
][0] == '='
512 || constraints
[i
][0] == '+')
515 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
517 int class = (int) NO_REGS
;
519 if (! TEST_HARD_REG_BIT (equiv_regs
[i
], regno
))
522 REGNO (testreg
) = regno
;
523 PUT_MODE (testreg
, mode
);
525 /* We found a register equal to this operand. Now look for all
526 alternatives that can accept this register and have not been
527 assigned a register they can use yet. */
536 case '=': case '+': case '?':
537 case '#': case '&': case '!':
539 case '0': case '1': case '2': case '3': case '4':
540 case '5': case '6': case '7': case '8': case '9':
541 case 'm': case '<': case '>': case 'V': case 'o':
542 case 'E': case 'F': case 'G': case 'H':
543 case 's': case 'i': case 'n':
544 case 'I': case 'J': case 'K': case 'L':
545 case 'M': case 'N': case 'O': case 'P':
547 /* These don't say anything we care about. */
551 class = reg_class_subunion
[(int) class][(int) GENERAL_REGS
];
556 = (reg_class_subunion
558 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c
, p
)]);
562 /* See if REGNO fits this alternative, and set it up as the
563 replacement register if we don't have one for this
564 alternative yet and the operand being replaced is not
565 a cheap CONST_INT. */
566 if (op_alt_regno
[i
][j
] == -1
567 && reg_fits_class_p (testreg
, class, 0, mode
)
568 && (GET_CODE (recog_data
.operand
[i
]) != CONST_INT
569 || (rtx_cost (recog_data
.operand
[i
], SET
)
570 > rtx_cost (testreg
, SET
))))
572 alternative_nregs
[j
]++;
573 op_alt_regno
[i
][j
] = regno
;
578 p
+= CONSTRAINT_LEN (c
, p
);
586 /* Record all alternatives which are better or equal to the currently
587 matching one in the alternative_order array. */
588 for (i
= j
= 0; i
< recog_data
.n_alternatives
; i
++)
589 if (alternative_reject
[i
] <= alternative_reject
[which_alternative
])
590 alternative_order
[j
++] = i
;
591 recog_data
.n_alternatives
= j
;
593 /* Sort it. Given a small number of alternatives, a dumb algorithm
594 won't hurt too much. */
595 for (i
= 0; i
< recog_data
.n_alternatives
- 1; i
++)
598 int best_reject
= alternative_reject
[alternative_order
[i
]];
599 int best_nregs
= alternative_nregs
[alternative_order
[i
]];
602 for (j
= i
+ 1; j
< recog_data
.n_alternatives
; j
++)
604 int this_reject
= alternative_reject
[alternative_order
[j
]];
605 int this_nregs
= alternative_nregs
[alternative_order
[j
]];
607 if (this_reject
< best_reject
608 || (this_reject
== best_reject
&& this_nregs
< best_nregs
))
611 best_reject
= this_reject
;
612 best_nregs
= this_nregs
;
616 tmp
= alternative_order
[best
];
617 alternative_order
[best
] = alternative_order
[i
];
618 alternative_order
[i
] = tmp
;
621 /* Substitute the operands as determined by op_alt_regno for the best
623 j
= alternative_order
[0];
625 for (i
= 0; i
< recog_data
.n_operands
; i
++)
627 enum machine_mode mode
= recog_data
.operand_mode
[i
];
628 if (op_alt_regno
[i
][j
] == -1)
631 validate_change (insn
, recog_data
.operand_loc
[i
],
632 gen_rtx_REG (mode
, op_alt_regno
[i
][j
]), 1);
635 for (i
= recog_data
.n_dups
- 1; i
>= 0; i
--)
637 int op
= recog_data
.dup_num
[i
];
638 enum machine_mode mode
= recog_data
.operand_mode
[op
];
640 if (op_alt_regno
[op
][j
] == -1)
643 validate_change (insn
, recog_data
.dup_loc
[i
],
644 gen_rtx_REG (mode
, op_alt_regno
[op
][j
]), 1);
647 return apply_change_group ();
650 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
652 This code might also be useful when reload gave up on reg+reg addressing
653 because of clashes between the return register and INDEX_REG_CLASS. */
655 /* The maximum number of uses of a register we can keep track of to
656 replace them with reg+reg addressing. */
657 #define RELOAD_COMBINE_MAX_USES 6
659 /* INSN is the insn where a register has ben used, and USEP points to the
660 location of the register within the rtl. */
661 struct reg_use
{ rtx insn
, *usep
; };
663 /* If the register is used in some unknown fashion, USE_INDEX is negative.
664 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
665 indicates where it becomes live again.
666 Otherwise, USE_INDEX is the index of the last encountered use of the
667 register (which is first among these we have seen since we scan backwards),
668 OFFSET contains the constant offset that is added to the register in
669 all encountered uses, and USE_RUID indicates the first encountered, i.e.
671 STORE_RUID is always meaningful if we only want to use a value in a
672 register in a different place: it denotes the next insn in the insn
673 stream (i.e. the last encountered) that sets or clobbers the register. */
676 struct reg_use reg_use
[RELOAD_COMBINE_MAX_USES
];
681 } reg_state
[FIRST_PSEUDO_REGISTER
];
683 /* Reverse linear uid. This is increased in reload_combine while scanning
684 the instructions from last to first. It is used to set last_label_ruid
685 and the store_ruid / use_ruid fields in reg_state. */
686 static int reload_combine_ruid
;
688 #define LABEL_LIVE(LABEL) \
689 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
692 reload_combine (void)
695 int first_index_reg
= -1;
696 int last_index_reg
= 0;
701 int min_labelno
, n_labels
;
702 HARD_REG_SET ever_live_at_start
, *label_live
;
704 /* If reg+reg can be used in offsetable memory addresses, the main chunk of
705 reload has already used it where appropriate, so there is no use in
706 trying to generate it now. */
707 if (double_reg_address_ok
&& INDEX_REG_CLASS
!= NO_REGS
)
710 /* To avoid wasting too much time later searching for an index register,
711 determine the minimum and maximum index register numbers. */
712 for (r
= 0; r
< FIRST_PSEUDO_REGISTER
; r
++)
713 if (TEST_HARD_REG_BIT (reg_class_contents
[INDEX_REG_CLASS
], r
))
715 if (first_index_reg
== -1)
721 /* If no index register is available, we can quit now. */
722 if (first_index_reg
== -1)
725 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
726 information is a bit fuzzy immediately after reload, but it's
727 still good enough to determine which registers are live at a jump
729 min_labelno
= get_first_label_num ();
730 n_labels
= max_label_num () - min_labelno
;
731 label_live
= xmalloc (n_labels
* sizeof (HARD_REG_SET
));
732 CLEAR_HARD_REG_SET (ever_live_at_start
);
734 FOR_EACH_BB_REVERSE (bb
)
741 REG_SET_TO_HARD_REG_SET (live
,
742 bb
->global_live_at_start
);
743 compute_use_by_pseudos (&live
,
744 bb
->global_live_at_start
);
745 COPY_HARD_REG_SET (LABEL_LIVE (insn
), live
);
746 IOR_HARD_REG_SET (ever_live_at_start
, live
);
750 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
751 last_label_ruid
= reload_combine_ruid
= 0;
752 for (r
= 0; r
< FIRST_PSEUDO_REGISTER
; r
++)
754 reg_state
[r
].store_ruid
= reload_combine_ruid
;
756 reg_state
[r
].use_index
= -1;
758 reg_state
[r
].use_index
= RELOAD_COMBINE_MAX_USES
;
761 for (insn
= get_last_insn (); insn
; insn
= PREV_INSN (insn
))
765 /* We cannot do our optimization across labels. Invalidating all the use
766 information we have would be costly, so we just note where the label
767 is and then later disable any optimization that would cross it. */
769 last_label_ruid
= reload_combine_ruid
;
770 else if (BARRIER_P (insn
))
771 for (r
= 0; r
< FIRST_PSEUDO_REGISTER
; r
++)
773 reg_state
[r
].use_index
= RELOAD_COMBINE_MAX_USES
;
778 reload_combine_ruid
++;
780 /* Look for (set (REGX) (CONST_INT))
781 (set (REGX) (PLUS (REGX) (REGY)))
785 (set (REGZ) (CONST_INT))
787 ... (MEM (PLUS (REGZ) (REGY)))... .
789 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
790 and that we know all uses of REGX before it dies.
791 Also, explicitly check that REGX != REGY; our life information
792 does not yet show whether REGY changes in this insn. */
793 set
= single_set (insn
);
795 && REG_P (SET_DEST (set
))
796 && (hard_regno_nregs
[REGNO (SET_DEST (set
))]
797 [GET_MODE (SET_DEST (set
))]
799 && GET_CODE (SET_SRC (set
)) == PLUS
800 && REG_P (XEXP (SET_SRC (set
), 1))
801 && rtx_equal_p (XEXP (SET_SRC (set
), 0), SET_DEST (set
))
802 && !rtx_equal_p (XEXP (SET_SRC (set
), 1), SET_DEST (set
))
803 && last_label_ruid
< reg_state
[REGNO (SET_DEST (set
))].use_ruid
)
805 rtx reg
= SET_DEST (set
);
806 rtx plus
= SET_SRC (set
);
807 rtx base
= XEXP (plus
, 1);
808 rtx prev
= prev_nonnote_insn (insn
);
809 rtx prev_set
= prev
? single_set (prev
) : NULL_RTX
;
810 unsigned int regno
= REGNO (reg
);
811 rtx const_reg
= NULL_RTX
;
812 rtx reg_sum
= NULL_RTX
;
814 /* Now, we need an index register.
815 We'll set index_reg to this index register, const_reg to the
816 register that is to be loaded with the constant
817 (denoted as REGZ in the substitution illustration above),
818 and reg_sum to the register-register that we want to use to
819 substitute uses of REG (typically in MEMs) with.
820 First check REG and BASE for being index registers;
821 we can use them even if they are not dead. */
822 if (TEST_HARD_REG_BIT (reg_class_contents
[INDEX_REG_CLASS
], regno
)
823 || TEST_HARD_REG_BIT (reg_class_contents
[INDEX_REG_CLASS
],
831 /* Otherwise, look for a free index register. Since we have
832 checked above that neither REG nor BASE are index registers,
833 if we find anything at all, it will be different from these
835 for (i
= first_index_reg
; i
<= last_index_reg
; i
++)
837 if (TEST_HARD_REG_BIT (reg_class_contents
[INDEX_REG_CLASS
],
839 && reg_state
[i
].use_index
== RELOAD_COMBINE_MAX_USES
840 && reg_state
[i
].store_ruid
<= reg_state
[regno
].use_ruid
841 && hard_regno_nregs
[i
][GET_MODE (reg
)] == 1)
843 rtx index_reg
= gen_rtx_REG (GET_MODE (reg
), i
);
845 const_reg
= index_reg
;
846 reg_sum
= gen_rtx_PLUS (GET_MODE (reg
), index_reg
, base
);
852 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
853 (REGY), i.e. BASE, is not clobbered before the last use we'll
856 && GET_CODE (SET_SRC (prev_set
)) == CONST_INT
857 && rtx_equal_p (SET_DEST (prev_set
), reg
)
858 && reg_state
[regno
].use_index
>= 0
859 && (reg_state
[REGNO (base
)].store_ruid
860 <= reg_state
[regno
].use_ruid
)
865 /* Change destination register and, if necessary, the
866 constant value in PREV, the constant loading instruction. */
867 validate_change (prev
, &SET_DEST (prev_set
), const_reg
, 1);
868 if (reg_state
[regno
].offset
!= const0_rtx
)
869 validate_change (prev
,
871 GEN_INT (INTVAL (SET_SRC (prev_set
))
872 + INTVAL (reg_state
[regno
].offset
)),
875 /* Now for every use of REG that we have recorded, replace REG
877 for (i
= reg_state
[regno
].use_index
;
878 i
< RELOAD_COMBINE_MAX_USES
; i
++)
879 validate_change (reg_state
[regno
].reg_use
[i
].insn
,
880 reg_state
[regno
].reg_use
[i
].usep
,
881 /* Each change must have its own
883 copy_rtx (reg_sum
), 1);
885 if (apply_change_group ())
889 /* Delete the reg-reg addition. */
892 if (reg_state
[regno
].offset
!= const0_rtx
)
893 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
895 for (np
= ®_NOTES (prev
); *np
;)
897 if (REG_NOTE_KIND (*np
) == REG_EQUAL
898 || REG_NOTE_KIND (*np
) == REG_EQUIV
)
904 reg_state
[regno
].use_index
= RELOAD_COMBINE_MAX_USES
;
905 reg_state
[REGNO (const_reg
)].store_ruid
906 = reload_combine_ruid
;
912 note_stores (PATTERN (insn
), reload_combine_note_store
, NULL
);
918 for (r
= 0; r
< FIRST_PSEUDO_REGISTER
; r
++)
919 if (call_used_regs
[r
])
921 reg_state
[r
].use_index
= RELOAD_COMBINE_MAX_USES
;
922 reg_state
[r
].store_ruid
= reload_combine_ruid
;
925 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
;
926 link
= XEXP (link
, 1))
928 rtx usage_rtx
= XEXP (XEXP (link
, 0), 0);
929 if (REG_P (usage_rtx
))
932 unsigned int start_reg
= REGNO (usage_rtx
);
933 unsigned int num_regs
=
934 hard_regno_nregs
[start_reg
][GET_MODE (usage_rtx
)];
935 unsigned int end_reg
= start_reg
+ num_regs
- 1;
936 for (i
= start_reg
; i
<= end_reg
; i
++)
937 if (GET_CODE (XEXP (link
, 0)) == CLOBBER
)
939 reg_state
[i
].use_index
= RELOAD_COMBINE_MAX_USES
;
940 reg_state
[i
].store_ruid
= reload_combine_ruid
;
943 reg_state
[i
].use_index
= -1;
948 else if (JUMP_P (insn
)
949 && GET_CODE (PATTERN (insn
)) != RETURN
)
951 /* Non-spill registers might be used at the call destination in
952 some unknown fashion, so we have to mark the unknown use. */
955 if ((condjump_p (insn
) || condjump_in_parallel_p (insn
))
956 && JUMP_LABEL (insn
))
957 live
= &LABEL_LIVE (JUMP_LABEL (insn
));
959 live
= &ever_live_at_start
;
961 for (i
= FIRST_PSEUDO_REGISTER
- 1; i
>= 0; --i
)
962 if (TEST_HARD_REG_BIT (*live
, i
))
963 reg_state
[i
].use_index
= -1;
966 reload_combine_note_use (&PATTERN (insn
), insn
);
967 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
969 if (REG_NOTE_KIND (note
) == REG_INC
970 && REG_P (XEXP (note
, 0)))
972 int regno
= REGNO (XEXP (note
, 0));
974 reg_state
[regno
].store_ruid
= reload_combine_ruid
;
975 reg_state
[regno
].use_index
= -1;
983 /* Check if DST is a register or a subreg of a register; if it is,
984 update reg_state[regno].store_ruid and reg_state[regno].use_index
985 accordingly. Called via note_stores from reload_combine. */
988 reload_combine_note_store (rtx dst
, rtx set
, void *data ATTRIBUTE_UNUSED
)
992 enum machine_mode mode
= GET_MODE (dst
);
994 if (GET_CODE (dst
) == SUBREG
)
996 regno
= subreg_regno_offset (REGNO (SUBREG_REG (dst
)),
997 GET_MODE (SUBREG_REG (dst
)),
1000 dst
= SUBREG_REG (dst
);
1004 regno
+= REGNO (dst
);
1006 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1007 careful with registers / register parts that are not full words.
1009 Similarly for ZERO_EXTRACT and SIGN_EXTRACT. */
1010 if (GET_CODE (set
) != SET
1011 || GET_CODE (SET_DEST (set
)) == ZERO_EXTRACT
1012 || GET_CODE (SET_DEST (set
)) == SIGN_EXTRACT
1013 || GET_CODE (SET_DEST (set
)) == STRICT_LOW_PART
)
1015 for (i
= hard_regno_nregs
[regno
][mode
] - 1 + regno
; i
>= regno
; i
--)
1017 reg_state
[i
].use_index
= -1;
1018 reg_state
[i
].store_ruid
= reload_combine_ruid
;
1023 for (i
= hard_regno_nregs
[regno
][mode
] - 1 + regno
; i
>= regno
; i
--)
1025 reg_state
[i
].store_ruid
= reload_combine_ruid
;
1026 reg_state
[i
].use_index
= RELOAD_COMBINE_MAX_USES
;
1031 /* XP points to a piece of rtl that has to be checked for any uses of
1033 *XP is the pattern of INSN, or a part of it.
1034 Called from reload_combine, and recursively by itself. */
1036 reload_combine_note_use (rtx
*xp
, rtx insn
)
1039 enum rtx_code code
= x
->code
;
1042 rtx offset
= const0_rtx
; /* For the REG case below. */
1047 if (REG_P (SET_DEST (x
)))
1049 reload_combine_note_use (&SET_SRC (x
), insn
);
1055 /* If this is the USE of a return value, we can't change it. */
1056 if (REG_P (XEXP (x
, 0)) && REG_FUNCTION_VALUE_P (XEXP (x
, 0)))
1058 /* Mark the return register as used in an unknown fashion. */
1059 rtx reg
= XEXP (x
, 0);
1060 int regno
= REGNO (reg
);
1061 int nregs
= hard_regno_nregs
[regno
][GET_MODE (reg
)];
1063 while (--nregs
>= 0)
1064 reg_state
[regno
+ nregs
].use_index
= -1;
1070 if (REG_P (SET_DEST (x
)))
1072 /* No spurious CLOBBERs of pseudo registers may remain. */
1073 if (REGNO (SET_DEST (x
)) >= FIRST_PSEUDO_REGISTER
)
1080 /* We are interested in (plus (reg) (const_int)) . */
1081 if (!REG_P (XEXP (x
, 0))
1082 || GET_CODE (XEXP (x
, 1)) != CONST_INT
)
1084 offset
= XEXP (x
, 1);
1089 int regno
= REGNO (x
);
1093 /* No spurious USEs of pseudo registers may remain. */
1094 if (regno
>= FIRST_PSEUDO_REGISTER
)
1097 nregs
= hard_regno_nregs
[regno
][GET_MODE (x
)];
1099 /* We can't substitute into multi-hard-reg uses. */
1102 while (--nregs
>= 0)
1103 reg_state
[regno
+ nregs
].use_index
= -1;
1107 /* If this register is already used in some unknown fashion, we
1109 If we decrement the index from zero to -1, we can't store more
1110 uses, so this register becomes used in an unknown fashion. */
1111 use_index
= --reg_state
[regno
].use_index
;
1115 if (use_index
!= RELOAD_COMBINE_MAX_USES
- 1)
1117 /* We have found another use for a register that is already
1118 used later. Check if the offsets match; if not, mark the
1119 register as used in an unknown fashion. */
1120 if (! rtx_equal_p (offset
, reg_state
[regno
].offset
))
1122 reg_state
[regno
].use_index
= -1;
1128 /* This is the first use of this register we have seen since we
1129 marked it as dead. */
1130 reg_state
[regno
].offset
= offset
;
1131 reg_state
[regno
].use_ruid
= reload_combine_ruid
;
1133 reg_state
[regno
].reg_use
[use_index
].insn
= insn
;
1134 reg_state
[regno
].reg_use
[use_index
].usep
= xp
;
1142 /* Recursively process the components of X. */
1143 fmt
= GET_RTX_FORMAT (code
);
1144 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1147 reload_combine_note_use (&XEXP (x
, i
), insn
);
1148 else if (fmt
[i
] == 'E')
1150 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1151 reload_combine_note_use (&XVECEXP (x
, i
, j
), insn
);
1156 /* See if we can reduce the cost of a constant by replacing a move
1157 with an add. We track situations in which a register is set to a
1158 constant or to a register plus a constant. */
1159 /* We cannot do our optimization across labels. Invalidating all the
1160 information about register contents we have would be costly, so we
1161 use move2add_last_label_luid to note where the label is and then
1162 later disable any optimization that would cross it.
1163 reg_offset[n] / reg_base_reg[n] / reg_mode[n] are only valid if
1164 reg_set_luid[n] is greater than move2add_last_label_luid. */
1165 static int reg_set_luid
[FIRST_PSEUDO_REGISTER
];
1167 /* If reg_base_reg[n] is negative, register n has been set to
1168 reg_offset[n] in mode reg_mode[n] .
1169 If reg_base_reg[n] is non-negative, register n has been set to the
1170 sum of reg_offset[n] and the value of register reg_base_reg[n]
1171 before reg_set_luid[n], calculated in mode reg_mode[n] . */
1172 static HOST_WIDE_INT reg_offset
[FIRST_PSEUDO_REGISTER
];
1173 static int reg_base_reg
[FIRST_PSEUDO_REGISTER
];
1174 static enum machine_mode reg_mode
[FIRST_PSEUDO_REGISTER
];
1176 /* move2add_luid is linearly increased while scanning the instructions
1177 from first to last. It is used to set reg_set_luid in
1178 reload_cse_move2add and move2add_note_store. */
1179 static int move2add_luid
;
1181 /* move2add_last_label_luid is set whenever a label is found. Labels
1182 invalidate all previously collected reg_offset data. */
1183 static int move2add_last_label_luid
;
1185 /* ??? We don't know how zero / sign extension is handled, hence we
1186 can't go from a narrower to a wider mode. */
1187 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1188 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1189 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
1190 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (OUTMODE), \
1191 GET_MODE_BITSIZE (INMODE))))
1194 reload_cse_move2add (rtx first
)
1199 for (i
= FIRST_PSEUDO_REGISTER
- 1; i
>= 0; i
--)
1200 reg_set_luid
[i
] = 0;
1202 move2add_last_label_luid
= 0;
1204 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
), move2add_luid
++)
1210 move2add_last_label_luid
= move2add_luid
;
1211 /* We're going to increment move2add_luid twice after a
1212 label, so that we can use move2add_last_label_luid + 1 as
1213 the luid for constants. */
1217 if (! INSN_P (insn
))
1219 pat
= PATTERN (insn
);
1220 /* For simplicity, we only perform this optimization on
1221 straightforward SETs. */
1222 if (GET_CODE (pat
) == SET
1223 && REG_P (SET_DEST (pat
)))
1225 rtx reg
= SET_DEST (pat
);
1226 int regno
= REGNO (reg
);
1227 rtx src
= SET_SRC (pat
);
1229 /* Check if we have valid information on the contents of this
1230 register in the mode of REG. */
1231 if (reg_set_luid
[regno
] > move2add_last_label_luid
1232 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg
), reg_mode
[regno
]))
1234 /* Try to transform (set (REGX) (CONST_INT A))
1236 (set (REGX) (CONST_INT B))
1238 (set (REGX) (CONST_INT A))
1240 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1242 (set (REGX) (CONST_INT A))
1244 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1247 if (GET_CODE (src
) == CONST_INT
&& reg_base_reg
[regno
] < 0)
1250 GEN_INT (trunc_int_for_mode (INTVAL (src
)
1251 - reg_offset
[regno
],
1253 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1254 use (set (reg) (reg)) instead.
1255 We don't delete this insn, nor do we convert it into a
1256 note, to avoid losing register notes or the return
1257 value flag. jump2 already knows how to get rid of
1259 if (new_src
== const0_rtx
)
1261 /* If the constants are different, this is a
1262 truncation, that, if turned into (set (reg)
1263 (reg)), would be discarded. Maybe we should
1264 try a truncMN pattern? */
1265 if (INTVAL (src
) == reg_offset
[regno
])
1266 validate_change (insn
, &SET_SRC (pat
), reg
, 0);
1268 else if (rtx_cost (new_src
, PLUS
) < rtx_cost (src
, SET
)
1269 && have_add2_insn (reg
, new_src
))
1271 rtx tem
= gen_rtx_PLUS (GET_MODE (reg
), reg
, new_src
);
1272 validate_change (insn
, &SET_SRC (pat
), tem
, 0);
1276 enum machine_mode narrow_mode
;
1277 for (narrow_mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
1278 narrow_mode
!= GET_MODE (reg
);
1279 narrow_mode
= GET_MODE_WIDER_MODE (narrow_mode
))
1281 if (have_insn_for (STRICT_LOW_PART
, narrow_mode
)
1282 && ((reg_offset
[regno
]
1283 & ~GET_MODE_MASK (narrow_mode
))
1285 & ~GET_MODE_MASK (narrow_mode
))))
1287 rtx narrow_reg
= gen_rtx_REG (narrow_mode
,
1290 GEN_INT (trunc_int_for_mode (INTVAL (src
),
1293 gen_rtx_SET (VOIDmode
,
1294 gen_rtx_STRICT_LOW_PART (VOIDmode
,
1297 if (validate_change (insn
, &PATTERN (insn
),
1303 reg_set_luid
[regno
] = move2add_luid
;
1304 reg_mode
[regno
] = GET_MODE (reg
);
1305 reg_offset
[regno
] = INTVAL (src
);
1309 /* Try to transform (set (REGX) (REGY))
1310 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1313 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1316 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1318 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
1319 else if (REG_P (src
)
1320 && reg_set_luid
[regno
] == reg_set_luid
[REGNO (src
)]
1321 && reg_base_reg
[regno
] == reg_base_reg
[REGNO (src
)]
1322 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg
),
1323 reg_mode
[REGNO (src
)]))
1325 rtx next
= next_nonnote_insn (insn
);
1328 set
= single_set (next
);
1330 && SET_DEST (set
) == reg
1331 && GET_CODE (SET_SRC (set
)) == PLUS
1332 && XEXP (SET_SRC (set
), 0) == reg
1333 && GET_CODE (XEXP (SET_SRC (set
), 1)) == CONST_INT
)
1335 rtx src3
= XEXP (SET_SRC (set
), 1);
1336 HOST_WIDE_INT added_offset
= INTVAL (src3
);
1337 HOST_WIDE_INT base_offset
= reg_offset
[REGNO (src
)];
1338 HOST_WIDE_INT regno_offset
= reg_offset
[regno
];
1340 GEN_INT (trunc_int_for_mode (added_offset
1346 if (new_src
== const0_rtx
)
1347 /* See above why we create (set (reg) (reg)) here. */
1349 = validate_change (next
, &SET_SRC (set
), reg
, 0);
1350 else if ((rtx_cost (new_src
, PLUS
)
1351 < COSTS_N_INSNS (1) + rtx_cost (src3
, SET
))
1352 && have_add2_insn (reg
, new_src
))
1354 rtx newpat
= gen_rtx_SET (VOIDmode
,
1356 gen_rtx_PLUS (GET_MODE (reg
),
1360 = validate_change (next
, &PATTERN (next
),
1366 reg_mode
[regno
] = GET_MODE (reg
);
1368 trunc_int_for_mode (added_offset
+ base_offset
,
1376 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1378 if (REG_NOTE_KIND (note
) == REG_INC
1379 && REG_P (XEXP (note
, 0)))
1381 /* Reset the information about this register. */
1382 int regno
= REGNO (XEXP (note
, 0));
1383 if (regno
< FIRST_PSEUDO_REGISTER
)
1384 reg_set_luid
[regno
] = 0;
1387 note_stores (PATTERN (insn
), move2add_note_store
, NULL
);
1389 /* If INSN is a conditional branch, we try to extract an
1390 implicit set out of it. */
1391 if (any_condjump_p (insn
))
1393 rtx cnd
= fis_get_condition (insn
);
1396 && GET_CODE (cnd
) == NE
1397 && REG_P (XEXP (cnd
, 0))
1398 && !reg_set_p (XEXP (cnd
, 0), insn
)
1399 /* The following two checks, which are also in
1400 move2add_note_store, are intended to reduce the
1401 number of calls to gen_rtx_SET to avoid memory
1402 allocation if possible. */
1403 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd
, 0)))
1404 && hard_regno_nregs
[REGNO (XEXP (cnd
, 0))][GET_MODE (XEXP (cnd
, 0))] == 1
1405 && GET_CODE (XEXP (cnd
, 1)) == CONST_INT
)
1408 gen_rtx_SET (VOIDmode
, XEXP (cnd
, 0), XEXP (cnd
, 1));
1409 move2add_note_store (SET_DEST (implicit_set
), implicit_set
, 0);
1413 /* If this is a CALL_INSN, all call used registers are stored with
1417 for (i
= FIRST_PSEUDO_REGISTER
- 1; i
>= 0; i
--)
1419 if (call_used_regs
[i
])
1420 /* Reset the information about this register. */
1421 reg_set_luid
[i
] = 0;
1427 /* SET is a SET or CLOBBER that sets DST.
1428 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
1429 Called from reload_cse_move2add via note_stores. */
1432 move2add_note_store (rtx dst
, rtx set
, void *data ATTRIBUTE_UNUSED
)
1434 unsigned int regno
= 0;
1436 enum machine_mode mode
= GET_MODE (dst
);
1438 if (GET_CODE (dst
) == SUBREG
)
1440 regno
= subreg_regno_offset (REGNO (SUBREG_REG (dst
)),
1441 GET_MODE (SUBREG_REG (dst
)),
1444 dst
= SUBREG_REG (dst
);
1447 /* Some targets do argument pushes without adding REG_INC notes. */
1451 dst
= XEXP (dst
, 0);
1452 if (GET_CODE (dst
) == PRE_INC
|| GET_CODE (dst
) == POST_INC
1453 || GET_CODE (dst
) == PRE_DEC
|| GET_CODE (dst
) == POST_DEC
)
1454 reg_set_luid
[REGNO (XEXP (dst
, 0))] = 0;
1460 regno
+= REGNO (dst
);
1462 if (SCALAR_INT_MODE_P (mode
)
1463 && hard_regno_nregs
[regno
][mode
] == 1 && GET_CODE (set
) == SET
1464 && GET_CODE (SET_DEST (set
)) != ZERO_EXTRACT
1465 && GET_CODE (SET_DEST (set
)) != SIGN_EXTRACT
1466 && GET_CODE (SET_DEST (set
)) != STRICT_LOW_PART
)
1468 rtx src
= SET_SRC (set
);
1470 HOST_WIDE_INT offset
;
1472 /* This may be different from mode, if SET_DEST (set) is a
1474 enum machine_mode dst_mode
= GET_MODE (dst
);
1476 switch (GET_CODE (src
))
1479 if (REG_P (XEXP (src
, 0)))
1481 base_reg
= XEXP (src
, 0);
1483 if (GET_CODE (XEXP (src
, 1)) == CONST_INT
)
1484 offset
= INTVAL (XEXP (src
, 1));
1485 else if (REG_P (XEXP (src
, 1))
1486 && (reg_set_luid
[REGNO (XEXP (src
, 1))]
1487 > move2add_last_label_luid
)
1488 && (MODES_OK_FOR_MOVE2ADD
1489 (dst_mode
, reg_mode
[REGNO (XEXP (src
, 1))])))
1491 if (reg_base_reg
[REGNO (XEXP (src
, 1))] < 0)
1492 offset
= reg_offset
[REGNO (XEXP (src
, 1))];
1493 /* Maybe the first register is known to be a
1495 else if (reg_set_luid
[REGNO (base_reg
)]
1496 > move2add_last_label_luid
1497 && (MODES_OK_FOR_MOVE2ADD
1498 (dst_mode
, reg_mode
[REGNO (XEXP (src
, 1))]))
1499 && reg_base_reg
[REGNO (base_reg
)] < 0)
1501 offset
= reg_offset
[REGNO (base_reg
)];
1502 base_reg
= XEXP (src
, 1);
1521 /* Start tracking the register as a constant. */
1522 reg_base_reg
[regno
] = -1;
1523 reg_offset
[regno
] = INTVAL (SET_SRC (set
));
1524 /* We assign the same luid to all registers set to constants. */
1525 reg_set_luid
[regno
] = move2add_last_label_luid
+ 1;
1526 reg_mode
[regno
] = mode
;
1531 /* Invalidate the contents of the register. */
1532 reg_set_luid
[regno
] = 0;
1536 base_regno
= REGNO (base_reg
);
1537 /* If information about the base register is not valid, set it
1538 up as a new base register, pretending its value is known
1539 starting from the current insn. */
1540 if (reg_set_luid
[base_regno
] <= move2add_last_label_luid
)
1542 reg_base_reg
[base_regno
] = base_regno
;
1543 reg_offset
[base_regno
] = 0;
1544 reg_set_luid
[base_regno
] = move2add_luid
;
1545 reg_mode
[base_regno
] = mode
;
1547 else if (! MODES_OK_FOR_MOVE2ADD (dst_mode
,
1548 reg_mode
[base_regno
]))
1551 reg_mode
[regno
] = mode
;
1553 /* Copy base information from our base register. */
1554 reg_set_luid
[regno
] = reg_set_luid
[base_regno
];
1555 reg_base_reg
[regno
] = reg_base_reg
[base_regno
];
1557 /* Compute the sum of the offsets or constants. */
1558 reg_offset
[regno
] = trunc_int_for_mode (offset
1559 + reg_offset
[base_regno
],
1564 unsigned int endregno
= regno
+ hard_regno_nregs
[regno
][mode
];
1566 for (i
= regno
; i
< endregno
; i
++)
1567 /* Reset the information about this register. */
1568 reg_set_luid
[i
] = 0;