* trans-stmt.c (gfc_trans_simple_do): New function.
[official-gcc.git] / gcc / explow.c
blob62ca87c3ca0b8ac6b0b0750327e65fa7ddf3b223
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "flags.h"
32 #include "function.h"
33 #include "expr.h"
34 #include "optabs.h"
35 #include "hard-reg-set.h"
36 #include "insn-config.h"
37 #include "ggc.h"
38 #include "recog.h"
39 #include "langhooks.h"
41 static rtx break_out_memory_refs (rtx);
42 static void emit_stack_probe (rtx);
45 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
47 HOST_WIDE_INT
48 trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
50 int width = GET_MODE_BITSIZE (mode);
52 /* You want to truncate to a _what_? */
53 gcc_assert (SCALAR_INT_MODE_P (mode));
55 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
56 if (mode == BImode)
57 return c & 1 ? STORE_FLAG_VALUE : 0;
59 /* Sign-extend for the requested mode. */
61 if (width < HOST_BITS_PER_WIDE_INT)
63 HOST_WIDE_INT sign = 1;
64 sign <<= width - 1;
65 c &= (sign << 1) - 1;
66 c ^= sign;
67 c -= sign;
70 return c;
73 /* Return an rtx for the sum of X and the integer C. */
75 rtx
76 plus_constant (rtx x, HOST_WIDE_INT c)
78 RTX_CODE code;
79 rtx y;
80 enum machine_mode mode;
81 rtx tem;
82 int all_constant = 0;
84 if (c == 0)
85 return x;
87 restart:
89 code = GET_CODE (x);
90 mode = GET_MODE (x);
91 y = x;
93 switch (code)
95 case CONST_INT:
96 return GEN_INT (INTVAL (x) + c);
98 case CONST_DOUBLE:
100 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
101 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
102 unsigned HOST_WIDE_INT l2 = c;
103 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
104 unsigned HOST_WIDE_INT lv;
105 HOST_WIDE_INT hv;
107 add_double (l1, h1, l2, h2, &lv, &hv);
109 return immed_double_const (lv, hv, VOIDmode);
112 case MEM:
113 /* If this is a reference to the constant pool, try replacing it with
114 a reference to a new constant. If the resulting address isn't
115 valid, don't return it because we have no way to validize it. */
116 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
117 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
120 = force_const_mem (GET_MODE (x),
121 plus_constant (get_pool_constant (XEXP (x, 0)),
122 c));
123 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
124 return tem;
126 break;
128 case CONST:
129 /* If adding to something entirely constant, set a flag
130 so that we can add a CONST around the result. */
131 x = XEXP (x, 0);
132 all_constant = 1;
133 goto restart;
135 case SYMBOL_REF:
136 case LABEL_REF:
137 all_constant = 1;
138 break;
140 case PLUS:
141 /* The interesting case is adding the integer to a sum.
142 Look for constant term in the sum and combine
143 with C. For an integer constant term, we make a combined
144 integer. For a constant term that is not an explicit integer,
145 we cannot really combine, but group them together anyway.
147 Restart or use a recursive call in case the remaining operand is
148 something that we handle specially, such as a SYMBOL_REF.
150 We may not immediately return from the recursive call here, lest
151 all_constant gets lost. */
153 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
155 c += INTVAL (XEXP (x, 1));
157 if (GET_MODE (x) != VOIDmode)
158 c = trunc_int_for_mode (c, GET_MODE (x));
160 x = XEXP (x, 0);
161 goto restart;
163 else if (CONSTANT_P (XEXP (x, 1)))
165 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
166 c = 0;
168 else if (find_constant_term_loc (&y))
170 /* We need to be careful since X may be shared and we can't
171 modify it in place. */
172 rtx copy = copy_rtx (x);
173 rtx *const_loc = find_constant_term_loc (&copy);
175 *const_loc = plus_constant (*const_loc, c);
176 x = copy;
177 c = 0;
179 break;
181 default:
182 break;
185 if (c != 0)
186 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
188 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
189 return x;
190 else if (all_constant)
191 return gen_rtx_CONST (mode, x);
192 else
193 return x;
196 /* If X is a sum, return a new sum like X but lacking any constant terms.
197 Add all the removed constant terms into *CONSTPTR.
198 X itself is not altered. The result != X if and only if
199 it is not isomorphic to X. */
202 eliminate_constant_term (rtx x, rtx *constptr)
204 rtx x0, x1;
205 rtx tem;
207 if (GET_CODE (x) != PLUS)
208 return x;
210 /* First handle constants appearing at this level explicitly. */
211 if (GET_CODE (XEXP (x, 1)) == CONST_INT
212 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
213 XEXP (x, 1)))
214 && GET_CODE (tem) == CONST_INT)
216 *constptr = tem;
217 return eliminate_constant_term (XEXP (x, 0), constptr);
220 tem = const0_rtx;
221 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
222 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
223 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
224 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
225 *constptr, tem))
226 && GET_CODE (tem) == CONST_INT)
228 *constptr = tem;
229 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
232 return x;
235 /* Return an rtx for the size in bytes of the value of EXP. */
238 expr_size (tree exp)
240 tree size;
242 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
243 size = TREE_OPERAND (exp, 1);
244 else
245 size = SUBSTITUTE_PLACEHOLDER_IN_EXPR (lang_hooks.expr_size (exp), exp);
247 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), 0);
250 /* Return a wide integer for the size in bytes of the value of EXP, or -1
251 if the size can vary or is larger than an integer. */
253 HOST_WIDE_INT
254 int_expr_size (tree exp)
256 tree size;
258 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
259 size = TREE_OPERAND (exp, 1);
260 else
261 size = lang_hooks.expr_size (exp);
263 if (size == 0 || !host_integerp (size, 0))
264 return -1;
266 return tree_low_cst (size, 0);
269 /* Return a copy of X in which all memory references
270 and all constants that involve symbol refs
271 have been replaced with new temporary registers.
272 Also emit code to load the memory locations and constants
273 into those registers.
275 If X contains no such constants or memory references,
276 X itself (not a copy) is returned.
278 If a constant is found in the address that is not a legitimate constant
279 in an insn, it is left alone in the hope that it might be valid in the
280 address.
282 X may contain no arithmetic except addition, subtraction and multiplication.
283 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
285 static rtx
286 break_out_memory_refs (rtx x)
288 if (MEM_P (x)
289 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
290 && GET_MODE (x) != VOIDmode))
291 x = force_reg (GET_MODE (x), x);
292 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
293 || GET_CODE (x) == MULT)
295 rtx op0 = break_out_memory_refs (XEXP (x, 0));
296 rtx op1 = break_out_memory_refs (XEXP (x, 1));
298 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
299 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
302 return x;
305 /* Given X, a memory address in ptr_mode, convert it to an address
306 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
307 the fact that pointers are not allowed to overflow by commuting arithmetic
308 operations over conversions so that address arithmetic insns can be
309 used. */
312 convert_memory_address (enum machine_mode to_mode ATTRIBUTE_UNUSED,
313 rtx x)
315 #ifndef POINTERS_EXTEND_UNSIGNED
316 return x;
317 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
318 enum machine_mode from_mode;
319 rtx temp;
320 enum rtx_code code;
322 /* If X already has the right mode, just return it. */
323 if (GET_MODE (x) == to_mode)
324 return x;
326 from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
328 /* Here we handle some special cases. If none of them apply, fall through
329 to the default case. */
330 switch (GET_CODE (x))
332 case CONST_INT:
333 case CONST_DOUBLE:
334 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
335 code = TRUNCATE;
336 else if (POINTERS_EXTEND_UNSIGNED < 0)
337 break;
338 else if (POINTERS_EXTEND_UNSIGNED > 0)
339 code = ZERO_EXTEND;
340 else
341 code = SIGN_EXTEND;
342 temp = simplify_unary_operation (code, to_mode, x, from_mode);
343 if (temp)
344 return temp;
345 break;
347 case SUBREG:
348 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
349 && GET_MODE (SUBREG_REG (x)) == to_mode)
350 return SUBREG_REG (x);
351 break;
353 case LABEL_REF:
354 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
355 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
356 return temp;
357 break;
359 case SYMBOL_REF:
360 temp = shallow_copy_rtx (x);
361 PUT_MODE (temp, to_mode);
362 return temp;
363 break;
365 case CONST:
366 return gen_rtx_CONST (to_mode,
367 convert_memory_address (to_mode, XEXP (x, 0)));
368 break;
370 case PLUS:
371 case MULT:
372 /* For addition we can safely permute the conversion and addition
373 operation if one operand is a constant and converting the constant
374 does not change it. We can always safely permute them if we are
375 making the address narrower. */
376 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
377 || (GET_CODE (x) == PLUS
378 && GET_CODE (XEXP (x, 1)) == CONST_INT
379 && XEXP (x, 1) == convert_memory_address (to_mode, XEXP (x, 1))))
380 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
381 convert_memory_address (to_mode, XEXP (x, 0)),
382 XEXP (x, 1));
383 break;
385 default:
386 break;
389 return convert_modes (to_mode, from_mode,
390 x, POINTERS_EXTEND_UNSIGNED);
391 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
394 /* Given a memory address or facsimile X, construct a new address,
395 currently equivalent, that is stable: future stores won't change it.
397 X must be composed of constants, register and memory references
398 combined with addition, subtraction and multiplication:
399 in other words, just what you can get from expand_expr if sum_ok is 1.
401 Works by making copies of all regs and memory locations used
402 by X and combining them the same way X does.
403 You could also stabilize the reference to this address
404 by copying the address to a register with copy_to_reg;
405 but then you wouldn't get indexed addressing in the reference. */
408 copy_all_regs (rtx x)
410 if (REG_P (x))
412 if (REGNO (x) != FRAME_POINTER_REGNUM
413 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
414 && REGNO (x) != HARD_FRAME_POINTER_REGNUM
415 #endif
417 x = copy_to_reg (x);
419 else if (MEM_P (x))
420 x = copy_to_reg (x);
421 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
422 || GET_CODE (x) == MULT)
424 rtx op0 = copy_all_regs (XEXP (x, 0));
425 rtx op1 = copy_all_regs (XEXP (x, 1));
426 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
427 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
429 return x;
432 /* Return something equivalent to X but valid as a memory address
433 for something of mode MODE. When X is not itself valid, this
434 works by copying X or subexpressions of it into registers. */
437 memory_address (enum machine_mode mode, rtx x)
439 rtx oldx = x;
441 x = convert_memory_address (Pmode, x);
443 /* By passing constant addresses through registers
444 we get a chance to cse them. */
445 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
446 x = force_reg (Pmode, x);
448 /* We get better cse by rejecting indirect addressing at this stage.
449 Let the combiner create indirect addresses where appropriate.
450 For now, generate the code so that the subexpressions useful to share
451 are visible. But not if cse won't be done! */
452 else
454 if (! cse_not_expected && !REG_P (x))
455 x = break_out_memory_refs (x);
457 /* At this point, any valid address is accepted. */
458 if (memory_address_p (mode, x))
459 goto win;
461 /* If it was valid before but breaking out memory refs invalidated it,
462 use it the old way. */
463 if (memory_address_p (mode, oldx))
464 goto win2;
466 /* Perform machine-dependent transformations on X
467 in certain cases. This is not necessary since the code
468 below can handle all possible cases, but machine-dependent
469 transformations can make better code. */
470 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
472 /* PLUS and MULT can appear in special ways
473 as the result of attempts to make an address usable for indexing.
474 Usually they are dealt with by calling force_operand, below.
475 But a sum containing constant terms is special
476 if removing them makes the sum a valid address:
477 then we generate that address in a register
478 and index off of it. We do this because it often makes
479 shorter code, and because the addresses thus generated
480 in registers often become common subexpressions. */
481 if (GET_CODE (x) == PLUS)
483 rtx constant_term = const0_rtx;
484 rtx y = eliminate_constant_term (x, &constant_term);
485 if (constant_term == const0_rtx
486 || ! memory_address_p (mode, y))
487 x = force_operand (x, NULL_RTX);
488 else
490 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
491 if (! memory_address_p (mode, y))
492 x = force_operand (x, NULL_RTX);
493 else
494 x = y;
498 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
499 x = force_operand (x, NULL_RTX);
501 /* If we have a register that's an invalid address,
502 it must be a hard reg of the wrong class. Copy it to a pseudo. */
503 else if (REG_P (x))
504 x = copy_to_reg (x);
506 /* Last resort: copy the value to a register, since
507 the register is a valid address. */
508 else
509 x = force_reg (Pmode, x);
511 goto done;
513 win2:
514 x = oldx;
515 win:
516 if (flag_force_addr && ! cse_not_expected && !REG_P (x)
517 /* Don't copy an addr via a reg if it is one of our stack slots. */
518 && ! (GET_CODE (x) == PLUS
519 && (XEXP (x, 0) == virtual_stack_vars_rtx
520 || XEXP (x, 0) == virtual_incoming_args_rtx)))
522 if (general_operand (x, Pmode))
523 x = force_reg (Pmode, x);
524 else
525 x = force_operand (x, NULL_RTX);
529 done:
531 /* If we didn't change the address, we are done. Otherwise, mark
532 a reg as a pointer if we have REG or REG + CONST_INT. */
533 if (oldx == x)
534 return x;
535 else if (REG_P (x))
536 mark_reg_pointer (x, BITS_PER_UNIT);
537 else if (GET_CODE (x) == PLUS
538 && REG_P (XEXP (x, 0))
539 && GET_CODE (XEXP (x, 1)) == CONST_INT)
540 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
542 /* OLDX may have been the address on a temporary. Update the address
543 to indicate that X is now used. */
544 update_temp_slot_address (oldx, x);
546 return x;
549 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
552 memory_address_noforce (enum machine_mode mode, rtx x)
554 int ambient_force_addr = flag_force_addr;
555 rtx val;
557 flag_force_addr = 0;
558 val = memory_address (mode, x);
559 flag_force_addr = ambient_force_addr;
560 return val;
563 /* Convert a mem ref into one with a valid memory address.
564 Pass through anything else unchanged. */
567 validize_mem (rtx ref)
569 if (!MEM_P (ref))
570 return ref;
571 if (! (flag_force_addr && CONSTANT_ADDRESS_P (XEXP (ref, 0)))
572 && memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
573 return ref;
575 /* Don't alter REF itself, since that is probably a stack slot. */
576 return replace_equiv_address (ref, XEXP (ref, 0));
579 /* Return a modified copy of X with its memory address copied
580 into a temporary register to protect it from side effects.
581 If X is not a MEM, it is returned unchanged (and not copied).
582 Perhaps even if it is a MEM, if there is no need to change it. */
585 stabilize (rtx x)
587 if (!MEM_P (x)
588 || ! rtx_unstable_p (XEXP (x, 0)))
589 return x;
591 return
592 replace_equiv_address (x, force_reg (Pmode, copy_all_regs (XEXP (x, 0))));
595 /* Copy the value or contents of X to a new temp reg and return that reg. */
598 copy_to_reg (rtx x)
600 rtx temp = gen_reg_rtx (GET_MODE (x));
602 /* If not an operand, must be an address with PLUS and MULT so
603 do the computation. */
604 if (! general_operand (x, VOIDmode))
605 x = force_operand (x, temp);
607 if (x != temp)
608 emit_move_insn (temp, x);
610 return temp;
613 /* Like copy_to_reg but always give the new register mode Pmode
614 in case X is a constant. */
617 copy_addr_to_reg (rtx x)
619 return copy_to_mode_reg (Pmode, x);
622 /* Like copy_to_reg but always give the new register mode MODE
623 in case X is a constant. */
626 copy_to_mode_reg (enum machine_mode mode, rtx x)
628 rtx temp = gen_reg_rtx (mode);
630 /* If not an operand, must be an address with PLUS and MULT so
631 do the computation. */
632 if (! general_operand (x, VOIDmode))
633 x = force_operand (x, temp);
635 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
636 if (x != temp)
637 emit_move_insn (temp, x);
638 return temp;
641 /* Load X into a register if it is not already one.
642 Use mode MODE for the register.
643 X should be valid for mode MODE, but it may be a constant which
644 is valid for all integer modes; that's why caller must specify MODE.
646 The caller must not alter the value in the register we return,
647 since we mark it as a "constant" register. */
650 force_reg (enum machine_mode mode, rtx x)
652 rtx temp, insn, set;
654 if (REG_P (x))
655 return x;
657 if (general_operand (x, mode))
659 temp = gen_reg_rtx (mode);
660 insn = emit_move_insn (temp, x);
662 else
664 temp = force_operand (x, NULL_RTX);
665 if (REG_P (temp))
666 insn = get_last_insn ();
667 else
669 rtx temp2 = gen_reg_rtx (mode);
670 insn = emit_move_insn (temp2, temp);
671 temp = temp2;
675 /* Let optimizers know that TEMP's value never changes
676 and that X can be substituted for it. Don't get confused
677 if INSN set something else (such as a SUBREG of TEMP). */
678 if (CONSTANT_P (x)
679 && (set = single_set (insn)) != 0
680 && SET_DEST (set) == temp
681 && ! rtx_equal_p (x, SET_SRC (set)))
682 set_unique_reg_note (insn, REG_EQUAL, x);
684 /* Let optimizers know that TEMP is a pointer, and if so, the
685 known alignment of that pointer. */
687 unsigned align = 0;
688 if (GET_CODE (x) == SYMBOL_REF)
690 align = BITS_PER_UNIT;
691 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
692 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
694 else if (GET_CODE (x) == LABEL_REF)
695 align = BITS_PER_UNIT;
696 else if (GET_CODE (x) == CONST
697 && GET_CODE (XEXP (x, 0)) == PLUS
698 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
699 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
701 rtx s = XEXP (XEXP (x, 0), 0);
702 rtx c = XEXP (XEXP (x, 0), 1);
703 unsigned sa, ca;
705 sa = BITS_PER_UNIT;
706 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
707 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
709 ca = exact_log2 (INTVAL (c) & -INTVAL (c)) * BITS_PER_UNIT;
711 align = MIN (sa, ca);
714 if (align)
715 mark_reg_pointer (temp, align);
718 return temp;
721 /* If X is a memory ref, copy its contents to a new temp reg and return
722 that reg. Otherwise, return X. */
725 force_not_mem (rtx x)
727 rtx temp;
729 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
730 return x;
732 temp = gen_reg_rtx (GET_MODE (x));
734 if (MEM_POINTER (x))
735 REG_POINTER (temp) = 1;
737 emit_move_insn (temp, x);
738 return temp;
741 /* Copy X to TARGET (if it's nonzero and a reg)
742 or to a new temp reg and return that reg.
743 MODE is the mode to use for X in case it is a constant. */
746 copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
748 rtx temp;
750 if (target && REG_P (target))
751 temp = target;
752 else
753 temp = gen_reg_rtx (mode);
755 emit_move_insn (temp, x);
756 return temp;
759 /* Return the mode to use to store a scalar of TYPE and MODE.
760 PUNSIGNEDP points to the signedness of the type and may be adjusted
761 to show what signedness to use on extension operations.
763 FOR_CALL is nonzero if this call is promoting args for a call. */
765 #if defined(PROMOTE_MODE) && !defined(PROMOTE_FUNCTION_MODE)
766 #define PROMOTE_FUNCTION_MODE PROMOTE_MODE
767 #endif
769 enum machine_mode
770 promote_mode (tree type, enum machine_mode mode, int *punsignedp,
771 int for_call ATTRIBUTE_UNUSED)
773 enum tree_code code = TREE_CODE (type);
774 int unsignedp = *punsignedp;
776 #ifndef PROMOTE_MODE
777 if (! for_call)
778 return mode;
779 #endif
781 switch (code)
783 #ifdef PROMOTE_FUNCTION_MODE
784 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
785 case CHAR_TYPE: case REAL_TYPE: case OFFSET_TYPE:
786 #ifdef PROMOTE_MODE
787 if (for_call)
789 #endif
790 PROMOTE_FUNCTION_MODE (mode, unsignedp, type);
791 #ifdef PROMOTE_MODE
793 else
795 PROMOTE_MODE (mode, unsignedp, type);
797 #endif
798 break;
799 #endif
801 #ifdef POINTERS_EXTEND_UNSIGNED
802 case REFERENCE_TYPE:
803 case POINTER_TYPE:
804 mode = Pmode;
805 unsignedp = POINTERS_EXTEND_UNSIGNED;
806 break;
807 #endif
809 default:
810 break;
813 *punsignedp = unsignedp;
814 return mode;
817 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
818 This pops when ADJUST is positive. ADJUST need not be constant. */
820 void
821 adjust_stack (rtx adjust)
823 rtx temp;
825 if (adjust == const0_rtx)
826 return;
828 /* We expect all variable sized adjustments to be multiple of
829 PREFERRED_STACK_BOUNDARY. */
830 if (GET_CODE (adjust) == CONST_INT)
831 stack_pointer_delta -= INTVAL (adjust);
833 temp = expand_binop (Pmode,
834 #ifdef STACK_GROWS_DOWNWARD
835 add_optab,
836 #else
837 sub_optab,
838 #endif
839 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
840 OPTAB_LIB_WIDEN);
842 if (temp != stack_pointer_rtx)
843 emit_move_insn (stack_pointer_rtx, temp);
846 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
847 This pushes when ADJUST is positive. ADJUST need not be constant. */
849 void
850 anti_adjust_stack (rtx adjust)
852 rtx temp;
854 if (adjust == const0_rtx)
855 return;
857 /* We expect all variable sized adjustments to be multiple of
858 PREFERRED_STACK_BOUNDARY. */
859 if (GET_CODE (adjust) == CONST_INT)
860 stack_pointer_delta += INTVAL (adjust);
862 temp = expand_binop (Pmode,
863 #ifdef STACK_GROWS_DOWNWARD
864 sub_optab,
865 #else
866 add_optab,
867 #endif
868 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
869 OPTAB_LIB_WIDEN);
871 if (temp != stack_pointer_rtx)
872 emit_move_insn (stack_pointer_rtx, temp);
875 /* Round the size of a block to be pushed up to the boundary required
876 by this machine. SIZE is the desired size, which need not be constant. */
879 round_push (rtx size)
881 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
883 if (align == 1)
884 return size;
886 if (GET_CODE (size) == CONST_INT)
888 HOST_WIDE_INT new = (INTVAL (size) + align - 1) / align * align;
890 if (INTVAL (size) != new)
891 size = GEN_INT (new);
893 else
895 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
896 but we know it can't. So add ourselves and then do
897 TRUNC_DIV_EXPR. */
898 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
899 NULL_RTX, 1, OPTAB_LIB_WIDEN);
900 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
901 NULL_RTX, 1);
902 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
905 return size;
908 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
909 to a previously-created save area. If no save area has been allocated,
910 this function will allocate one. If a save area is specified, it
911 must be of the proper mode.
913 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
914 are emitted at the current position. */
916 void
917 emit_stack_save (enum save_level save_level, rtx *psave, rtx after)
919 rtx sa = *psave;
920 /* The default is that we use a move insn and save in a Pmode object. */
921 rtx (*fcn) (rtx, rtx) = gen_move_insn;
922 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
924 /* See if this machine has anything special to do for this kind of save. */
925 switch (save_level)
927 #ifdef HAVE_save_stack_block
928 case SAVE_BLOCK:
929 if (HAVE_save_stack_block)
930 fcn = gen_save_stack_block;
931 break;
932 #endif
933 #ifdef HAVE_save_stack_function
934 case SAVE_FUNCTION:
935 if (HAVE_save_stack_function)
936 fcn = gen_save_stack_function;
937 break;
938 #endif
939 #ifdef HAVE_save_stack_nonlocal
940 case SAVE_NONLOCAL:
941 if (HAVE_save_stack_nonlocal)
942 fcn = gen_save_stack_nonlocal;
943 break;
944 #endif
945 default:
946 break;
949 /* If there is no save area and we have to allocate one, do so. Otherwise
950 verify the save area is the proper mode. */
952 if (sa == 0)
954 if (mode != VOIDmode)
956 if (save_level == SAVE_NONLOCAL)
957 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
958 else
959 *psave = sa = gen_reg_rtx (mode);
963 if (after)
965 rtx seq;
967 start_sequence ();
968 /* We must validize inside the sequence, to ensure that any instructions
969 created by the validize call also get moved to the right place. */
970 if (sa != 0)
971 sa = validize_mem (sa);
972 emit_insn (fcn (sa, stack_pointer_rtx));
973 seq = get_insns ();
974 end_sequence ();
975 emit_insn_after (seq, after);
977 else
979 if (sa != 0)
980 sa = validize_mem (sa);
981 emit_insn (fcn (sa, stack_pointer_rtx));
985 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
986 area made by emit_stack_save. If it is zero, we have nothing to do.
988 Put any emitted insns after insn AFTER, if nonzero, otherwise at
989 current position. */
991 void
992 emit_stack_restore (enum save_level save_level, rtx sa, rtx after)
994 /* The default is that we use a move insn. */
995 rtx (*fcn) (rtx, rtx) = gen_move_insn;
997 /* See if this machine has anything special to do for this kind of save. */
998 switch (save_level)
1000 #ifdef HAVE_restore_stack_block
1001 case SAVE_BLOCK:
1002 if (HAVE_restore_stack_block)
1003 fcn = gen_restore_stack_block;
1004 break;
1005 #endif
1006 #ifdef HAVE_restore_stack_function
1007 case SAVE_FUNCTION:
1008 if (HAVE_restore_stack_function)
1009 fcn = gen_restore_stack_function;
1010 break;
1011 #endif
1012 #ifdef HAVE_restore_stack_nonlocal
1013 case SAVE_NONLOCAL:
1014 if (HAVE_restore_stack_nonlocal)
1015 fcn = gen_restore_stack_nonlocal;
1016 break;
1017 #endif
1018 default:
1019 break;
1022 if (sa != 0)
1024 sa = validize_mem (sa);
1025 /* These clobbers prevent the scheduler from moving
1026 references to variable arrays below the code
1027 that deletes (pops) the arrays. */
1028 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1029 gen_rtx_MEM (BLKmode,
1030 gen_rtx_SCRATCH (VOIDmode))));
1031 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1032 gen_rtx_MEM (BLKmode, stack_pointer_rtx)));
1035 if (after)
1037 rtx seq;
1039 start_sequence ();
1040 emit_insn (fcn (stack_pointer_rtx, sa));
1041 seq = get_insns ();
1042 end_sequence ();
1043 emit_insn_after (seq, after);
1045 else
1046 emit_insn (fcn (stack_pointer_rtx, sa));
1049 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1050 function. This function should be called whenever we allocate or
1051 deallocate dynamic stack space. */
1053 void
1054 update_nonlocal_goto_save_area (void)
1056 tree t_save;
1057 rtx r_save;
1059 /* The nonlocal_goto_save_area object is an array of N pointers. The
1060 first one is used for the frame pointer save; the rest are sized by
1061 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1062 of the stack save area slots. */
1063 t_save = build4 (ARRAY_REF, ptr_type_node, cfun->nonlocal_goto_save_area,
1064 integer_one_node, NULL_TREE, NULL_TREE);
1065 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1067 emit_stack_save (SAVE_NONLOCAL, &r_save, NULL_RTX);
1070 #ifdef SETJMP_VIA_SAVE_AREA
1071 /* Optimize RTL generated by allocate_dynamic_stack_space for targets
1072 where SETJMP_VIA_SAVE_AREA is true. The problem is that on these
1073 platforms, the dynamic stack space used can corrupt the original
1074 frame, thus causing a crash if a longjmp unwinds to it. */
1076 void
1077 optimize_save_area_alloca (void)
1079 rtx insn;
1081 for (insn = get_insns (); insn; insn = NEXT_INSN(insn))
1083 rtx note;
1085 if (!NONJUMP_INSN_P (insn))
1086 continue;
1088 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1090 if (REG_NOTE_KIND (note) != REG_SAVE_AREA)
1091 continue;
1093 if (!current_function_calls_setjmp)
1095 rtx pat = PATTERN (insn);
1097 /* If we do not see the note in a pattern matching
1098 these precise characteristics, we did something
1099 entirely wrong in allocate_dynamic_stack_space.
1101 Note, one way this could happen is if SETJMP_VIA_SAVE_AREA
1102 was defined on a machine where stacks grow towards higher
1103 addresses.
1105 Right now only supported port with stack that grow upward
1106 is the HPPA and it does not define SETJMP_VIA_SAVE_AREA. */
1107 gcc_assert (GET_CODE (pat) == SET
1108 && SET_DEST (pat) == stack_pointer_rtx
1109 && GET_CODE (SET_SRC (pat)) == MINUS
1110 && XEXP (SET_SRC (pat), 0) == stack_pointer_rtx);
1112 /* This will now be transformed into a (set REG REG)
1113 so we can just blow away all the other notes. */
1114 XEXP (SET_SRC (pat), 1) = XEXP (note, 0);
1115 REG_NOTES (insn) = NULL_RTX;
1117 else
1119 /* setjmp was called, we must remove the REG_SAVE_AREA
1120 note so that later passes do not get confused by its
1121 presence. */
1122 if (note == REG_NOTES (insn))
1124 REG_NOTES (insn) = XEXP (note, 1);
1126 else
1128 rtx srch;
1130 for (srch = REG_NOTES (insn); srch; srch = XEXP (srch, 1))
1131 if (XEXP (srch, 1) == note)
1132 break;
1134 gcc_assert (srch);
1136 XEXP (srch, 1) = XEXP (note, 1);
1139 /* Once we've seen the note of interest, we need not look at
1140 the rest of them. */
1141 break;
1145 #endif /* SETJMP_VIA_SAVE_AREA */
1147 /* Return an rtx representing the address of an area of memory dynamically
1148 pushed on the stack. This region of memory is always aligned to
1149 a multiple of BIGGEST_ALIGNMENT.
1151 Any required stack pointer alignment is preserved.
1153 SIZE is an rtx representing the size of the area.
1154 TARGET is a place in which the address can be placed.
1156 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1159 allocate_dynamic_stack_space (rtx size, rtx target, int known_align)
1161 #ifdef SETJMP_VIA_SAVE_AREA
1162 rtx setjmpless_size = NULL_RTX;
1163 #endif
1165 /* If we're asking for zero bytes, it doesn't matter what we point
1166 to since we can't dereference it. But return a reasonable
1167 address anyway. */
1168 if (size == const0_rtx)
1169 return virtual_stack_dynamic_rtx;
1171 /* Otherwise, show we're calling alloca or equivalent. */
1172 current_function_calls_alloca = 1;
1174 /* Ensure the size is in the proper mode. */
1175 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1176 size = convert_to_mode (Pmode, size, 1);
1178 /* We can't attempt to minimize alignment necessary, because we don't
1179 know the final value of preferred_stack_boundary yet while executing
1180 this code. */
1181 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1183 /* We will need to ensure that the address we return is aligned to
1184 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1185 always know its final value at this point in the compilation (it
1186 might depend on the size of the outgoing parameter lists, for
1187 example), so we must align the value to be returned in that case.
1188 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1189 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1190 We must also do an alignment operation on the returned value if
1191 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1193 If we have to align, we must leave space in SIZE for the hole
1194 that might result from the alignment operation. */
1196 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1197 #define MUST_ALIGN 1
1198 #else
1199 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1200 #endif
1202 if (MUST_ALIGN)
1203 size
1204 = force_operand (plus_constant (size,
1205 BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1206 NULL_RTX);
1208 #ifdef SETJMP_VIA_SAVE_AREA
1209 /* If setjmp restores regs from a save area in the stack frame,
1210 avoid clobbering the reg save area. Note that the offset of
1211 virtual_incoming_args_rtx includes the preallocated stack args space.
1212 It would be no problem to clobber that, but it's on the wrong side
1213 of the old save area. */
1215 rtx dynamic_offset
1216 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1217 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1219 if (!current_function_calls_setjmp)
1221 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1223 /* See optimize_save_area_alloca to understand what is being
1224 set up here. */
1226 /* ??? Code below assumes that the save area needs maximal
1227 alignment. This constraint may be too strong. */
1228 gcc_assert (PREFERRED_STACK_BOUNDARY == BIGGEST_ALIGNMENT);
1230 if (GET_CODE (size) == CONST_INT)
1232 HOST_WIDE_INT new = INTVAL (size) / align * align;
1234 if (INTVAL (size) != new)
1235 setjmpless_size = GEN_INT (new);
1236 else
1237 setjmpless_size = size;
1239 else
1241 /* Since we know overflow is not possible, we avoid using
1242 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1243 setjmpless_size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1244 GEN_INT (align), NULL_RTX, 1);
1245 setjmpless_size = expand_mult (Pmode, setjmpless_size,
1246 GEN_INT (align), NULL_RTX, 1);
1248 /* Our optimization works based upon being able to perform a simple
1249 transformation of this RTL into a (set REG REG) so make sure things
1250 did in fact end up in a REG. */
1251 if (!register_operand (setjmpless_size, Pmode))
1252 setjmpless_size = force_reg (Pmode, setjmpless_size);
1255 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1256 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1258 #endif /* SETJMP_VIA_SAVE_AREA */
1260 /* Round the size to a multiple of the required stack alignment.
1261 Since the stack if presumed to be rounded before this allocation,
1262 this will maintain the required alignment.
1264 If the stack grows downward, we could save an insn by subtracting
1265 SIZE from the stack pointer and then aligning the stack pointer.
1266 The problem with this is that the stack pointer may be unaligned
1267 between the execution of the subtraction and alignment insns and
1268 some machines do not allow this. Even on those that do, some
1269 signal handlers malfunction if a signal should occur between those
1270 insns. Since this is an extremely rare event, we have no reliable
1271 way of knowing which systems have this problem. So we avoid even
1272 momentarily mis-aligning the stack. */
1274 /* If we added a variable amount to SIZE,
1275 we can no longer assume it is aligned. */
1276 #if !defined (SETJMP_VIA_SAVE_AREA)
1277 if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1278 #endif
1279 size = round_push (size);
1281 do_pending_stack_adjust ();
1283 /* We ought to be called always on the toplevel and stack ought to be aligned
1284 properly. */
1285 gcc_assert (!(stack_pointer_delta
1286 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1288 /* If needed, check that we have the required amount of stack. Take into
1289 account what has already been checked. */
1290 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1291 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1293 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1294 if (target == 0 || !REG_P (target)
1295 || REGNO (target) < FIRST_PSEUDO_REGISTER
1296 || GET_MODE (target) != Pmode)
1297 target = gen_reg_rtx (Pmode);
1299 mark_reg_pointer (target, known_align);
1301 /* Perform the required allocation from the stack. Some systems do
1302 this differently than simply incrementing/decrementing from the
1303 stack pointer, such as acquiring the space by calling malloc(). */
1304 #ifdef HAVE_allocate_stack
1305 if (HAVE_allocate_stack)
1307 enum machine_mode mode = STACK_SIZE_MODE;
1308 insn_operand_predicate_fn pred;
1310 /* We don't have to check against the predicate for operand 0 since
1311 TARGET is known to be a pseudo of the proper mode, which must
1312 be valid for the operand. For operand 1, convert to the
1313 proper mode and validate. */
1314 if (mode == VOIDmode)
1315 mode = insn_data[(int) CODE_FOR_allocate_stack].operand[1].mode;
1317 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1318 if (pred && ! ((*pred) (size, mode)))
1319 size = copy_to_mode_reg (mode, convert_to_mode (mode, size, 1));
1321 emit_insn (gen_allocate_stack (target, size));
1323 else
1324 #endif
1326 #ifndef STACK_GROWS_DOWNWARD
1327 emit_move_insn (target, virtual_stack_dynamic_rtx);
1328 #endif
1330 /* Check stack bounds if necessary. */
1331 if (current_function_limit_stack)
1333 rtx available;
1334 rtx space_available = gen_label_rtx ();
1335 #ifdef STACK_GROWS_DOWNWARD
1336 available = expand_binop (Pmode, sub_optab,
1337 stack_pointer_rtx, stack_limit_rtx,
1338 NULL_RTX, 1, OPTAB_WIDEN);
1339 #else
1340 available = expand_binop (Pmode, sub_optab,
1341 stack_limit_rtx, stack_pointer_rtx,
1342 NULL_RTX, 1, OPTAB_WIDEN);
1343 #endif
1344 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1345 space_available);
1346 #ifdef HAVE_trap
1347 if (HAVE_trap)
1348 emit_insn (gen_trap ());
1349 else
1350 #endif
1351 error ("stack limits not supported on this target");
1352 emit_barrier ();
1353 emit_label (space_available);
1356 anti_adjust_stack (size);
1357 #ifdef SETJMP_VIA_SAVE_AREA
1358 if (setjmpless_size != NULL_RTX)
1360 rtx note_target = get_last_insn ();
1362 REG_NOTES (note_target)
1363 = gen_rtx_EXPR_LIST (REG_SAVE_AREA, setjmpless_size,
1364 REG_NOTES (note_target));
1366 #endif /* SETJMP_VIA_SAVE_AREA */
1368 #ifdef STACK_GROWS_DOWNWARD
1369 emit_move_insn (target, virtual_stack_dynamic_rtx);
1370 #endif
1373 if (MUST_ALIGN)
1375 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1376 but we know it can't. So add ourselves and then do
1377 TRUNC_DIV_EXPR. */
1378 target = expand_binop (Pmode, add_optab, target,
1379 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1380 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1381 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1382 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1383 NULL_RTX, 1);
1384 target = expand_mult (Pmode, target,
1385 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1386 NULL_RTX, 1);
1389 /* Record the new stack level for nonlocal gotos. */
1390 if (cfun->nonlocal_goto_save_area != 0)
1391 update_nonlocal_goto_save_area ();
1393 return target;
1396 /* A front end may want to override GCC's stack checking by providing a
1397 run-time routine to call to check the stack, so provide a mechanism for
1398 calling that routine. */
1400 static GTY(()) rtx stack_check_libfunc;
1402 void
1403 set_stack_check_libfunc (rtx libfunc)
1405 stack_check_libfunc = libfunc;
1408 /* Emit one stack probe at ADDRESS, an address within the stack. */
1410 static void
1411 emit_stack_probe (rtx address)
1413 rtx memref = gen_rtx_MEM (word_mode, address);
1415 MEM_VOLATILE_P (memref) = 1;
1417 if (STACK_CHECK_PROBE_LOAD)
1418 emit_move_insn (gen_reg_rtx (word_mode), memref);
1419 else
1420 emit_move_insn (memref, const0_rtx);
1423 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1424 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1425 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1426 subtract from the stack. If SIZE is constant, this is done
1427 with a fixed number of probes. Otherwise, we must make a loop. */
1429 #ifdef STACK_GROWS_DOWNWARD
1430 #define STACK_GROW_OP MINUS
1431 #else
1432 #define STACK_GROW_OP PLUS
1433 #endif
1435 void
1436 probe_stack_range (HOST_WIDE_INT first, rtx size)
1438 /* First ensure SIZE is Pmode. */
1439 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1440 size = convert_to_mode (Pmode, size, 1);
1442 /* Next see if the front end has set up a function for us to call to
1443 check the stack. */
1444 if (stack_check_libfunc != 0)
1446 rtx addr = memory_address (QImode,
1447 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1448 stack_pointer_rtx,
1449 plus_constant (size, first)));
1451 addr = convert_memory_address (ptr_mode, addr);
1452 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1453 ptr_mode);
1456 /* Next see if we have an insn to check the stack. Use it if so. */
1457 #ifdef HAVE_check_stack
1458 else if (HAVE_check_stack)
1460 insn_operand_predicate_fn pred;
1461 rtx last_addr
1462 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1463 stack_pointer_rtx,
1464 plus_constant (size, first)),
1465 NULL_RTX);
1467 pred = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1468 if (pred && ! ((*pred) (last_addr, Pmode)))
1469 last_addr = copy_to_mode_reg (Pmode, last_addr);
1471 emit_insn (gen_check_stack (last_addr));
1473 #endif
1475 /* If we have to generate explicit probes, see if we have a constant
1476 small number of them to generate. If so, that's the easy case. */
1477 else if (GET_CODE (size) == CONST_INT
1478 && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1480 HOST_WIDE_INT offset;
1482 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1483 for values of N from 1 until it exceeds LAST. If only one
1484 probe is needed, this will not generate any code. Then probe
1485 at LAST. */
1486 for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1487 offset < INTVAL (size);
1488 offset = offset + STACK_CHECK_PROBE_INTERVAL)
1489 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1490 stack_pointer_rtx,
1491 GEN_INT (offset)));
1493 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1494 stack_pointer_rtx,
1495 plus_constant (size, first)));
1498 /* In the variable case, do the same as above, but in a loop. We emit loop
1499 notes so that loop optimization can be done. */
1500 else
1502 rtx test_addr
1503 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1504 stack_pointer_rtx,
1505 GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
1506 NULL_RTX);
1507 rtx last_addr
1508 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1509 stack_pointer_rtx,
1510 plus_constant (size, first)),
1511 NULL_RTX);
1512 rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1513 rtx loop_lab = gen_label_rtx ();
1514 rtx test_lab = gen_label_rtx ();
1515 rtx end_lab = gen_label_rtx ();
1516 rtx temp;
1518 if (!REG_P (test_addr)
1519 || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1520 test_addr = force_reg (Pmode, test_addr);
1522 emit_jump (test_lab);
1524 emit_label (loop_lab);
1525 emit_stack_probe (test_addr);
1527 #ifdef STACK_GROWS_DOWNWARD
1528 #define CMP_OPCODE GTU
1529 temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1530 1, OPTAB_WIDEN);
1531 #else
1532 #define CMP_OPCODE LTU
1533 temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1534 1, OPTAB_WIDEN);
1535 #endif
1537 gcc_assert (temp == test_addr);
1539 emit_label (test_lab);
1540 emit_cmp_and_jump_insns (test_addr, last_addr, CMP_OPCODE,
1541 NULL_RTX, Pmode, 1, loop_lab);
1542 emit_jump (end_lab);
1543 emit_label (end_lab);
1545 emit_stack_probe (last_addr);
1549 /* Return an rtx representing the register or memory location
1550 in which a scalar value of data type VALTYPE
1551 was returned by a function call to function FUNC.
1552 FUNC is a FUNCTION_DECL node if the precise function is known,
1553 otherwise 0.
1554 OUTGOING is 1 if on a machine with register windows this function
1555 should return the register in which the function will put its result
1556 and 0 otherwise. */
1559 hard_function_value (tree valtype, tree func ATTRIBUTE_UNUSED,
1560 int outgoing ATTRIBUTE_UNUSED)
1562 rtx val;
1564 #ifdef FUNCTION_OUTGOING_VALUE
1565 if (outgoing)
1566 val = FUNCTION_OUTGOING_VALUE (valtype, func);
1567 else
1568 #endif
1569 val = FUNCTION_VALUE (valtype, func);
1571 if (REG_P (val)
1572 && GET_MODE (val) == BLKmode)
1574 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1575 enum machine_mode tmpmode;
1577 /* int_size_in_bytes can return -1. We don't need a check here
1578 since the value of bytes will be large enough that no mode
1579 will match and we will abort later in this function. */
1581 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1582 tmpmode != VOIDmode;
1583 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1585 /* Have we found a large enough mode? */
1586 if (GET_MODE_SIZE (tmpmode) >= bytes)
1587 break;
1590 /* No suitable mode found. */
1591 gcc_assert (tmpmode != VOIDmode);
1593 PUT_MODE (val, tmpmode);
1595 return val;
1598 /* Return an rtx representing the register or memory location
1599 in which a scalar value of mode MODE was returned by a library call. */
1602 hard_libcall_value (enum machine_mode mode)
1604 return LIBCALL_VALUE (mode);
1607 /* Look up the tree code for a given rtx code
1608 to provide the arithmetic operation for REAL_ARITHMETIC.
1609 The function returns an int because the caller may not know
1610 what `enum tree_code' means. */
1613 rtx_to_tree_code (enum rtx_code code)
1615 enum tree_code tcode;
1617 switch (code)
1619 case PLUS:
1620 tcode = PLUS_EXPR;
1621 break;
1622 case MINUS:
1623 tcode = MINUS_EXPR;
1624 break;
1625 case MULT:
1626 tcode = MULT_EXPR;
1627 break;
1628 case DIV:
1629 tcode = RDIV_EXPR;
1630 break;
1631 case SMIN:
1632 tcode = MIN_EXPR;
1633 break;
1634 case SMAX:
1635 tcode = MAX_EXPR;
1636 break;
1637 default:
1638 tcode = LAST_AND_UNUSED_TREE_CODE;
1639 break;
1641 return ((int) tcode);
1644 #include "gt-explow.h"