1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 /* Middle-to-low level generation of rtx code and insns.
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
38 #include "coretypes.h"
48 #include "hard-reg-set.h"
50 #include "insn-config.h"
54 #include "basic-block.h"
57 #include "langhooks.h"
59 /* Commonly used modes. */
61 enum machine_mode byte_mode
; /* Mode whose width is BITS_PER_UNIT. */
62 enum machine_mode word_mode
; /* Mode whose width is BITS_PER_WORD. */
63 enum machine_mode double_mode
; /* Mode whose width is DOUBLE_TYPE_SIZE. */
64 enum machine_mode ptr_mode
; /* Mode whose width is POINTER_SIZE. */
67 /* This is *not* reset after each function. It gives each CODE_LABEL
68 in the entire compilation a unique label number. */
70 static GTY(()) int label_num
= 1;
72 /* Highest label number in current function.
73 Zero means use the value of label_num instead.
74 This is nonzero only when belatedly compiling an inline function. */
76 static int last_label_num
;
78 /* Value label_num had when set_new_last_label_num was called.
79 If label_num has not changed since then, last_label_num is valid. */
81 static int base_label_num
;
83 /* Nonzero means do not generate NOTEs for source line numbers. */
85 static int no_line_numbers
;
87 /* Commonly used rtx's, so that we only need space for one copy.
88 These are initialized once for the entire compilation.
89 All of these are unique; no other rtx-object will be equal to any
92 rtx global_rtl
[GR_MAX
];
94 /* Commonly used RTL for hard registers. These objects are not necessarily
95 unique, so we allocate them separately from global_rtl. They are
96 initialized once per compilation unit, then copied into regno_reg_rtx
97 at the beginning of each function. */
98 static GTY(()) rtx static_regno_reg_rtx
[FIRST_PSEUDO_REGISTER
];
100 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
101 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
102 record a copy of const[012]_rtx. */
104 rtx const_tiny_rtx
[3][(int) MAX_MACHINE_MODE
];
108 REAL_VALUE_TYPE dconst0
;
109 REAL_VALUE_TYPE dconst1
;
110 REAL_VALUE_TYPE dconst2
;
111 REAL_VALUE_TYPE dconst3
;
112 REAL_VALUE_TYPE dconst10
;
113 REAL_VALUE_TYPE dconstm1
;
114 REAL_VALUE_TYPE dconstm2
;
115 REAL_VALUE_TYPE dconsthalf
;
116 REAL_VALUE_TYPE dconstthird
;
117 REAL_VALUE_TYPE dconstpi
;
118 REAL_VALUE_TYPE dconste
;
120 /* All references to the following fixed hard registers go through
121 these unique rtl objects. On machines where the frame-pointer and
122 arg-pointer are the same register, they use the same unique object.
124 After register allocation, other rtl objects which used to be pseudo-regs
125 may be clobbered to refer to the frame-pointer register.
126 But references that were originally to the frame-pointer can be
127 distinguished from the others because they contain frame_pointer_rtx.
129 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
130 tricky: until register elimination has taken place hard_frame_pointer_rtx
131 should be used if it is being set, and frame_pointer_rtx otherwise. After
132 register elimination hard_frame_pointer_rtx should always be used.
133 On machines where the two registers are same (most) then these are the
136 In an inline procedure, the stack and frame pointer rtxs may not be
137 used for anything else. */
138 rtx static_chain_rtx
; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
139 rtx static_chain_incoming_rtx
; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
140 rtx pic_offset_table_rtx
; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
142 /* This is used to implement __builtin_return_address for some machines.
143 See for instance the MIPS port. */
144 rtx return_address_pointer_rtx
; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
146 /* We make one copy of (const_int C) where C is in
147 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
148 to save space during the compilation and simplify comparisons of
151 rtx const_int_rtx
[MAX_SAVED_CONST_INT
* 2 + 1];
153 /* A hash table storing CONST_INTs whose absolute value is greater
154 than MAX_SAVED_CONST_INT. */
156 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
157 htab_t const_int_htab
;
159 /* A hash table storing memory attribute structures. */
160 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs
)))
161 htab_t mem_attrs_htab
;
163 /* A hash table storing register attribute structures. */
164 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs
)))
165 htab_t reg_attrs_htab
;
167 /* A hash table storing all CONST_DOUBLEs. */
168 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
169 htab_t const_double_htab
;
171 #define first_insn (cfun->emit->x_first_insn)
172 #define last_insn (cfun->emit->x_last_insn)
173 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
174 #define last_location (cfun->emit->x_last_location)
175 #define first_label_num (cfun->emit->x_first_label_num)
177 static rtx
make_jump_insn_raw (rtx
);
178 static rtx
make_call_insn_raw (rtx
);
179 static rtx
find_line_note (rtx
);
180 static rtx
change_address_1 (rtx
, enum machine_mode
, rtx
, int);
181 static void unshare_all_decls (tree
);
182 static void reset_used_decls (tree
);
183 static void mark_label_nuses (rtx
);
184 static hashval_t
const_int_htab_hash (const void *);
185 static int const_int_htab_eq (const void *, const void *);
186 static hashval_t
const_double_htab_hash (const void *);
187 static int const_double_htab_eq (const void *, const void *);
188 static rtx
lookup_const_double (rtx
);
189 static hashval_t
mem_attrs_htab_hash (const void *);
190 static int mem_attrs_htab_eq (const void *, const void *);
191 static mem_attrs
*get_mem_attrs (HOST_WIDE_INT
, tree
, rtx
, rtx
, unsigned int,
193 static hashval_t
reg_attrs_htab_hash (const void *);
194 static int reg_attrs_htab_eq (const void *, const void *);
195 static reg_attrs
*get_reg_attrs (tree
, int);
196 static tree
component_ref_for_mem_expr (tree
);
197 static rtx
gen_const_vector (enum machine_mode
, int);
198 static rtx
gen_complex_constant_part (enum machine_mode
, rtx
, int);
199 static void copy_rtx_if_shared_1 (rtx
*orig
);
201 /* Probability of the conditional branch currently proceeded by try_split.
202 Set to -1 otherwise. */
203 int split_branch_probability
= -1;
205 /* Returns a hash code for X (which is a really a CONST_INT). */
208 const_int_htab_hash (const void *x
)
210 return (hashval_t
) INTVAL ((rtx
) x
);
213 /* Returns nonzero if the value represented by X (which is really a
214 CONST_INT) is the same as that given by Y (which is really a
218 const_int_htab_eq (const void *x
, const void *y
)
220 return (INTVAL ((rtx
) x
) == *((const HOST_WIDE_INT
*) y
));
223 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
225 const_double_htab_hash (const void *x
)
230 if (GET_MODE (value
) == VOIDmode
)
231 h
= CONST_DOUBLE_LOW (value
) ^ CONST_DOUBLE_HIGH (value
);
234 h
= real_hash (CONST_DOUBLE_REAL_VALUE (value
));
235 /* MODE is used in the comparison, so it should be in the hash. */
236 h
^= GET_MODE (value
);
241 /* Returns nonzero if the value represented by X (really a ...)
242 is the same as that represented by Y (really a ...) */
244 const_double_htab_eq (const void *x
, const void *y
)
246 rtx a
= (rtx
)x
, b
= (rtx
)y
;
248 if (GET_MODE (a
) != GET_MODE (b
))
250 if (GET_MODE (a
) == VOIDmode
)
251 return (CONST_DOUBLE_LOW (a
) == CONST_DOUBLE_LOW (b
)
252 && CONST_DOUBLE_HIGH (a
) == CONST_DOUBLE_HIGH (b
));
254 return real_identical (CONST_DOUBLE_REAL_VALUE (a
),
255 CONST_DOUBLE_REAL_VALUE (b
));
258 /* Returns a hash code for X (which is a really a mem_attrs *). */
261 mem_attrs_htab_hash (const void *x
)
263 mem_attrs
*p
= (mem_attrs
*) x
;
265 return (p
->alias
^ (p
->align
* 1000)
266 ^ ((p
->offset
? INTVAL (p
->offset
) : 0) * 50000)
267 ^ ((p
->size
? INTVAL (p
->size
) : 0) * 2500000)
271 /* Returns nonzero if the value represented by X (which is really a
272 mem_attrs *) is the same as that given by Y (which is also really a
276 mem_attrs_htab_eq (const void *x
, const void *y
)
278 mem_attrs
*p
= (mem_attrs
*) x
;
279 mem_attrs
*q
= (mem_attrs
*) y
;
281 return (p
->alias
== q
->alias
&& p
->expr
== q
->expr
&& p
->offset
== q
->offset
282 && p
->size
== q
->size
&& p
->align
== q
->align
);
285 /* Allocate a new mem_attrs structure and insert it into the hash table if
286 one identical to it is not already in the table. We are doing this for
290 get_mem_attrs (HOST_WIDE_INT alias
, tree expr
, rtx offset
, rtx size
,
291 unsigned int align
, enum machine_mode mode
)
296 /* If everything is the default, we can just return zero.
297 This must match what the corresponding MEM_* macros return when the
298 field is not present. */
299 if (alias
== 0 && expr
== 0 && offset
== 0
301 || (mode
!= BLKmode
&& GET_MODE_SIZE (mode
) == INTVAL (size
)))
302 && (STRICT_ALIGNMENT
&& mode
!= BLKmode
303 ? align
== GET_MODE_ALIGNMENT (mode
) : align
== BITS_PER_UNIT
))
308 attrs
.offset
= offset
;
312 slot
= htab_find_slot (mem_attrs_htab
, &attrs
, INSERT
);
315 *slot
= ggc_alloc (sizeof (mem_attrs
));
316 memcpy (*slot
, &attrs
, sizeof (mem_attrs
));
322 /* Returns a hash code for X (which is a really a reg_attrs *). */
325 reg_attrs_htab_hash (const void *x
)
327 reg_attrs
*p
= (reg_attrs
*) x
;
329 return ((p
->offset
* 1000) ^ (long) p
->decl
);
332 /* Returns nonzero if the value represented by X (which is really a
333 reg_attrs *) is the same as that given by Y (which is also really a
337 reg_attrs_htab_eq (const void *x
, const void *y
)
339 reg_attrs
*p
= (reg_attrs
*) x
;
340 reg_attrs
*q
= (reg_attrs
*) y
;
342 return (p
->decl
== q
->decl
&& p
->offset
== q
->offset
);
344 /* Allocate a new reg_attrs structure and insert it into the hash table if
345 one identical to it is not already in the table. We are doing this for
349 get_reg_attrs (tree decl
, int offset
)
354 /* If everything is the default, we can just return zero. */
355 if (decl
== 0 && offset
== 0)
359 attrs
.offset
= offset
;
361 slot
= htab_find_slot (reg_attrs_htab
, &attrs
, INSERT
);
364 *slot
= ggc_alloc (sizeof (reg_attrs
));
365 memcpy (*slot
, &attrs
, sizeof (reg_attrs
));
371 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
372 don't attempt to share with the various global pieces of rtl (such as
373 frame_pointer_rtx). */
376 gen_raw_REG (enum machine_mode mode
, int regno
)
378 rtx x
= gen_rtx_raw_REG (mode
, regno
);
379 ORIGINAL_REGNO (x
) = regno
;
383 /* There are some RTL codes that require special attention; the generation
384 functions do the raw handling. If you add to this list, modify
385 special_rtx in gengenrtl.c as well. */
388 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED
, HOST_WIDE_INT arg
)
392 if (arg
>= - MAX_SAVED_CONST_INT
&& arg
<= MAX_SAVED_CONST_INT
)
393 return const_int_rtx
[arg
+ MAX_SAVED_CONST_INT
];
395 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
396 if (const_true_rtx
&& arg
== STORE_FLAG_VALUE
)
397 return const_true_rtx
;
400 /* Look up the CONST_INT in the hash table. */
401 slot
= htab_find_slot_with_hash (const_int_htab
, &arg
,
402 (hashval_t
) arg
, INSERT
);
404 *slot
= gen_rtx_raw_CONST_INT (VOIDmode
, arg
);
410 gen_int_mode (HOST_WIDE_INT c
, enum machine_mode mode
)
412 return GEN_INT (trunc_int_for_mode (c
, mode
));
415 /* CONST_DOUBLEs might be created from pairs of integers, or from
416 REAL_VALUE_TYPEs. Also, their length is known only at run time,
417 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
419 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
420 hash table. If so, return its counterpart; otherwise add it
421 to the hash table and return it. */
423 lookup_const_double (rtx real
)
425 void **slot
= htab_find_slot (const_double_htab
, real
, INSERT
);
432 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
433 VALUE in mode MODE. */
435 const_double_from_real_value (REAL_VALUE_TYPE value
, enum machine_mode mode
)
437 rtx real
= rtx_alloc (CONST_DOUBLE
);
438 PUT_MODE (real
, mode
);
440 memcpy (&CONST_DOUBLE_LOW (real
), &value
, sizeof (REAL_VALUE_TYPE
));
442 return lookup_const_double (real
);
445 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
446 of ints: I0 is the low-order word and I1 is the high-order word.
447 Do not use this routine for non-integer modes; convert to
448 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
451 immed_double_const (HOST_WIDE_INT i0
, HOST_WIDE_INT i1
, enum machine_mode mode
)
456 if (mode
!= VOIDmode
)
460 gcc_assert (GET_MODE_CLASS (mode
) == MODE_INT
461 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
462 /* We can get a 0 for an error mark. */
463 || GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
464 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
);
466 /* We clear out all bits that don't belong in MODE, unless they and
467 our sign bit are all one. So we get either a reasonable negative
468 value or a reasonable unsigned value for this mode. */
469 width
= GET_MODE_BITSIZE (mode
);
470 if (width
< HOST_BITS_PER_WIDE_INT
471 && ((i0
& ((HOST_WIDE_INT
) (-1) << (width
- 1)))
472 != ((HOST_WIDE_INT
) (-1) << (width
- 1))))
473 i0
&= ((HOST_WIDE_INT
) 1 << width
) - 1, i1
= 0;
474 else if (width
== HOST_BITS_PER_WIDE_INT
475 && ! (i1
== ~0 && i0
< 0))
478 /* We should be able to represent this value as a constant. */
479 gcc_assert (width
<= 2 * HOST_BITS_PER_WIDE_INT
);
481 /* If this would be an entire word for the target, but is not for
482 the host, then sign-extend on the host so that the number will
483 look the same way on the host that it would on the target.
485 For example, when building a 64 bit alpha hosted 32 bit sparc
486 targeted compiler, then we want the 32 bit unsigned value -1 to be
487 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
488 The latter confuses the sparc backend. */
490 if (width
< HOST_BITS_PER_WIDE_INT
491 && (i0
& ((HOST_WIDE_INT
) 1 << (width
- 1))))
492 i0
|= ((HOST_WIDE_INT
) (-1) << width
);
494 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
497 ??? Strictly speaking, this is wrong if we create a CONST_INT for
498 a large unsigned constant with the size of MODE being
499 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
500 in a wider mode. In that case we will mis-interpret it as a
503 Unfortunately, the only alternative is to make a CONST_DOUBLE for
504 any constant in any mode if it is an unsigned constant larger
505 than the maximum signed integer in an int on the host. However,
506 doing this will break everyone that always expects to see a
507 CONST_INT for SImode and smaller.
509 We have always been making CONST_INTs in this case, so nothing
510 new is being broken. */
512 if (width
<= HOST_BITS_PER_WIDE_INT
)
513 i1
= (i0
< 0) ? ~(HOST_WIDE_INT
) 0 : 0;
516 /* If this integer fits in one word, return a CONST_INT. */
517 if ((i1
== 0 && i0
>= 0) || (i1
== ~0 && i0
< 0))
520 /* We use VOIDmode for integers. */
521 value
= rtx_alloc (CONST_DOUBLE
);
522 PUT_MODE (value
, VOIDmode
);
524 CONST_DOUBLE_LOW (value
) = i0
;
525 CONST_DOUBLE_HIGH (value
) = i1
;
527 for (i
= 2; i
< (sizeof CONST_DOUBLE_FORMAT
- 1); i
++)
528 XWINT (value
, i
) = 0;
530 return lookup_const_double (value
);
534 gen_rtx_REG (enum machine_mode mode
, unsigned int regno
)
536 /* In case the MD file explicitly references the frame pointer, have
537 all such references point to the same frame pointer. This is
538 used during frame pointer elimination to distinguish the explicit
539 references to these registers from pseudos that happened to be
542 If we have eliminated the frame pointer or arg pointer, we will
543 be using it as a normal register, for example as a spill
544 register. In such cases, we might be accessing it in a mode that
545 is not Pmode and therefore cannot use the pre-allocated rtx.
547 Also don't do this when we are making new REGs in reload, since
548 we don't want to get confused with the real pointers. */
550 if (mode
== Pmode
&& !reload_in_progress
)
552 if (regno
== FRAME_POINTER_REGNUM
553 && (!reload_completed
|| frame_pointer_needed
))
554 return frame_pointer_rtx
;
555 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
556 if (regno
== HARD_FRAME_POINTER_REGNUM
557 && (!reload_completed
|| frame_pointer_needed
))
558 return hard_frame_pointer_rtx
;
560 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
561 if (regno
== ARG_POINTER_REGNUM
)
562 return arg_pointer_rtx
;
564 #ifdef RETURN_ADDRESS_POINTER_REGNUM
565 if (regno
== RETURN_ADDRESS_POINTER_REGNUM
)
566 return return_address_pointer_rtx
;
568 if (regno
== (unsigned) PIC_OFFSET_TABLE_REGNUM
569 && fixed_regs
[PIC_OFFSET_TABLE_REGNUM
])
570 return pic_offset_table_rtx
;
571 if (regno
== STACK_POINTER_REGNUM
)
572 return stack_pointer_rtx
;
576 /* If the per-function register table has been set up, try to re-use
577 an existing entry in that table to avoid useless generation of RTL.
579 This code is disabled for now until we can fix the various backends
580 which depend on having non-shared hard registers in some cases. Long
581 term we want to re-enable this code as it can significantly cut down
582 on the amount of useless RTL that gets generated.
584 We'll also need to fix some code that runs after reload that wants to
585 set ORIGINAL_REGNO. */
590 && regno
< FIRST_PSEUDO_REGISTER
591 && reg_raw_mode
[regno
] == mode
)
592 return regno_reg_rtx
[regno
];
595 return gen_raw_REG (mode
, regno
);
599 gen_rtx_MEM (enum machine_mode mode
, rtx addr
)
601 rtx rt
= gen_rtx_raw_MEM (mode
, addr
);
603 /* This field is not cleared by the mere allocation of the rtx, so
610 /* Generate a memory referring to non-trapping constant memory. */
613 gen_const_mem (enum machine_mode mode
, rtx addr
)
615 rtx mem
= gen_rtx_MEM (mode
, addr
);
616 MEM_READONLY_P (mem
) = 1;
617 MEM_NOTRAP_P (mem
) = 1;
622 gen_rtx_SUBREG (enum machine_mode mode
, rtx reg
, int offset
)
624 /* This is the most common failure type.
625 Catch it early so we can see who does it. */
626 gcc_assert (!(offset
% GET_MODE_SIZE (mode
)));
628 /* This check isn't usable right now because combine will
629 throw arbitrary crap like a CALL into a SUBREG in
630 gen_lowpart_for_combine so we must just eat it. */
632 /* Check for this too. */
633 gcc_assert (offset
< GET_MODE_SIZE (GET_MODE (reg
)));
635 return gen_rtx_raw_SUBREG (mode
, reg
, offset
);
638 /* Generate a SUBREG representing the least-significant part of REG if MODE
639 is smaller than mode of REG, otherwise paradoxical SUBREG. */
642 gen_lowpart_SUBREG (enum machine_mode mode
, rtx reg
)
644 enum machine_mode inmode
;
646 inmode
= GET_MODE (reg
);
647 if (inmode
== VOIDmode
)
649 return gen_rtx_SUBREG (mode
, reg
,
650 subreg_lowpart_offset (mode
, inmode
));
653 /* gen_rtvec (n, [rt1, ..., rtn])
655 ** This routine creates an rtvec and stores within it the
656 ** pointers to rtx's which are its arguments.
661 gen_rtvec (int n
, ...)
670 return NULL_RTVEC
; /* Don't allocate an empty rtvec... */
672 vector
= alloca (n
* sizeof (rtx
));
674 for (i
= 0; i
< n
; i
++)
675 vector
[i
] = va_arg (p
, rtx
);
677 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
681 return gen_rtvec_v (save_n
, vector
);
685 gen_rtvec_v (int n
, rtx
*argp
)
691 return NULL_RTVEC
; /* Don't allocate an empty rtvec... */
693 rt_val
= rtvec_alloc (n
); /* Allocate an rtvec... */
695 for (i
= 0; i
< n
; i
++)
696 rt_val
->elem
[i
] = *argp
++;
701 /* Generate a REG rtx for a new pseudo register of mode MODE.
702 This pseudo is assigned the next sequential register number. */
705 gen_reg_rtx (enum machine_mode mode
)
707 struct function
*f
= cfun
;
710 /* Don't let anything called after initial flow analysis create new
712 gcc_assert (!no_new_pseudos
);
714 if (generating_concat_p
715 && (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
716 || GET_MODE_CLASS (mode
) == MODE_COMPLEX_INT
))
718 /* For complex modes, don't make a single pseudo.
719 Instead, make a CONCAT of two pseudos.
720 This allows noncontiguous allocation of the real and imaginary parts,
721 which makes much better code. Besides, allocating DCmode
722 pseudos overstrains reload on some machines like the 386. */
723 rtx realpart
, imagpart
;
724 enum machine_mode partmode
= GET_MODE_INNER (mode
);
726 realpart
= gen_reg_rtx (partmode
);
727 imagpart
= gen_reg_rtx (partmode
);
728 return gen_rtx_CONCAT (mode
, realpart
, imagpart
);
731 /* Make sure regno_pointer_align, and regno_reg_rtx are large
732 enough to have an element for this pseudo reg number. */
734 if (reg_rtx_no
== f
->emit
->regno_pointer_align_length
)
736 int old_size
= f
->emit
->regno_pointer_align_length
;
740 new = ggc_realloc (f
->emit
->regno_pointer_align
, old_size
* 2);
741 memset (new + old_size
, 0, old_size
);
742 f
->emit
->regno_pointer_align
= (unsigned char *) new;
744 new1
= ggc_realloc (f
->emit
->x_regno_reg_rtx
,
745 old_size
* 2 * sizeof (rtx
));
746 memset (new1
+ old_size
, 0, old_size
* sizeof (rtx
));
747 regno_reg_rtx
= new1
;
749 f
->emit
->regno_pointer_align_length
= old_size
* 2;
752 val
= gen_raw_REG (mode
, reg_rtx_no
);
753 regno_reg_rtx
[reg_rtx_no
++] = val
;
757 /* Generate a register with same attributes as REG, but offsetted by OFFSET.
758 Do the big endian correction if needed. */
761 gen_rtx_REG_offset (rtx reg
, enum machine_mode mode
, unsigned int regno
, int offset
)
763 rtx
new = gen_rtx_REG (mode
, regno
);
765 HOST_WIDE_INT var_size
;
767 /* PR middle-end/14084
768 The problem appears when a variable is stored in a larger register
769 and later it is used in the original mode or some mode in between
770 or some part of variable is accessed.
772 On little endian machines there is no problem because
773 the REG_OFFSET of the start of the variable is the same when
774 accessed in any mode (it is 0).
776 However, this is not true on big endian machines.
777 The offset of the start of the variable is different when accessed
779 When we are taking a part of the REG we have to change the OFFSET
780 from offset WRT size of mode of REG to offset WRT size of variable.
782 If we would not do the big endian correction the resulting REG_OFFSET
783 would be larger than the size of the DECL.
785 Examples of correction, for BYTES_BIG_ENDIAN WORDS_BIG_ENDIAN machine:
787 REG.mode MODE DECL size old offset new offset description
788 DI SI 4 4 0 int32 in SImode
789 DI SI 1 4 0 char in SImode
790 DI QI 1 7 0 char in QImode
791 DI QI 4 5 1 1st element in QImode
793 DI HI 4 6 2 1st element in HImode
796 If the size of DECL is equal or greater than the size of REG
797 we can't do this correction because the register holds the
798 whole variable or a part of the variable and thus the REG_OFFSET
799 is already correct. */
801 decl
= REG_EXPR (reg
);
802 if ((BYTES_BIG_ENDIAN
|| WORDS_BIG_ENDIAN
)
805 && GET_MODE_SIZE (GET_MODE (reg
)) > GET_MODE_SIZE (mode
)
806 && ((var_size
= int_size_in_bytes (TREE_TYPE (decl
))) > 0
807 && var_size
< GET_MODE_SIZE (GET_MODE (reg
))))
811 /* Convert machine endian to little endian WRT size of mode of REG. */
812 if (WORDS_BIG_ENDIAN
)
813 offset_le
= ((GET_MODE_SIZE (GET_MODE (reg
)) - 1 - offset
)
814 / UNITS_PER_WORD
) * UNITS_PER_WORD
;
816 offset_le
= (offset
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
818 if (BYTES_BIG_ENDIAN
)
819 offset_le
+= ((GET_MODE_SIZE (GET_MODE (reg
)) - 1 - offset
)
822 offset_le
+= offset
% UNITS_PER_WORD
;
824 if (offset_le
>= var_size
)
826 /* MODE is wider than the variable so the new reg will cover
827 the whole variable so the resulting OFFSET should be 0. */
832 /* Convert little endian to machine endian WRT size of variable. */
833 if (WORDS_BIG_ENDIAN
)
834 offset
= ((var_size
- 1 - offset_le
)
835 / UNITS_PER_WORD
) * UNITS_PER_WORD
;
837 offset
= (offset_le
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
839 if (BYTES_BIG_ENDIAN
)
840 offset
+= ((var_size
- 1 - offset_le
)
843 offset
+= offset_le
% UNITS_PER_WORD
;
847 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg
),
848 REG_OFFSET (reg
) + offset
);
852 /* Set the decl for MEM to DECL. */
855 set_reg_attrs_from_mem (rtx reg
, rtx mem
)
857 if (MEM_OFFSET (mem
) && GET_CODE (MEM_OFFSET (mem
)) == CONST_INT
)
859 = get_reg_attrs (MEM_EXPR (mem
), INTVAL (MEM_OFFSET (mem
)));
862 /* Set the register attributes for registers contained in PARM_RTX.
863 Use needed values from memory attributes of MEM. */
866 set_reg_attrs_for_parm (rtx parm_rtx
, rtx mem
)
868 if (REG_P (parm_rtx
))
869 set_reg_attrs_from_mem (parm_rtx
, mem
);
870 else if (GET_CODE (parm_rtx
) == PARALLEL
)
872 /* Check for a NULL entry in the first slot, used to indicate that the
873 parameter goes both on the stack and in registers. */
874 int i
= XEXP (XVECEXP (parm_rtx
, 0, 0), 0) ? 0 : 1;
875 for (; i
< XVECLEN (parm_rtx
, 0); i
++)
877 rtx x
= XVECEXP (parm_rtx
, 0, i
);
878 if (REG_P (XEXP (x
, 0)))
879 REG_ATTRS (XEXP (x
, 0))
880 = get_reg_attrs (MEM_EXPR (mem
),
881 INTVAL (XEXP (x
, 1)));
886 /* Assign the RTX X to declaration T. */
888 set_decl_rtl (tree t
, rtx x
)
890 DECL_CHECK (t
)->decl
.rtl
= x
;
894 /* For register, we maintain the reverse information too. */
896 REG_ATTRS (x
) = get_reg_attrs (t
, 0);
897 else if (GET_CODE (x
) == SUBREG
)
898 REG_ATTRS (SUBREG_REG (x
))
899 = get_reg_attrs (t
, -SUBREG_BYTE (x
));
900 if (GET_CODE (x
) == CONCAT
)
902 if (REG_P (XEXP (x
, 0)))
903 REG_ATTRS (XEXP (x
, 0)) = get_reg_attrs (t
, 0);
904 if (REG_P (XEXP (x
, 1)))
905 REG_ATTRS (XEXP (x
, 1))
906 = get_reg_attrs (t
, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x
, 0))));
908 if (GET_CODE (x
) == PARALLEL
)
911 for (i
= 0; i
< XVECLEN (x
, 0); i
++)
913 rtx y
= XVECEXP (x
, 0, i
);
914 if (REG_P (XEXP (y
, 0)))
915 REG_ATTRS (XEXP (y
, 0)) = get_reg_attrs (t
, INTVAL (XEXP (y
, 1)));
920 /* Assign the RTX X to parameter declaration T. */
922 set_decl_incoming_rtl (tree t
, rtx x
)
924 DECL_INCOMING_RTL (t
) = x
;
928 /* For register, we maintain the reverse information too. */
930 REG_ATTRS (x
) = get_reg_attrs (t
, 0);
931 else if (GET_CODE (x
) == SUBREG
)
932 REG_ATTRS (SUBREG_REG (x
))
933 = get_reg_attrs (t
, -SUBREG_BYTE (x
));
934 if (GET_CODE (x
) == CONCAT
)
936 if (REG_P (XEXP (x
, 0)))
937 REG_ATTRS (XEXP (x
, 0)) = get_reg_attrs (t
, 0);
938 if (REG_P (XEXP (x
, 1)))
939 REG_ATTRS (XEXP (x
, 1))
940 = get_reg_attrs (t
, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x
, 0))));
942 if (GET_CODE (x
) == PARALLEL
)
946 /* Check for a NULL entry, used to indicate that the parameter goes
947 both on the stack and in registers. */
948 if (XEXP (XVECEXP (x
, 0, 0), 0))
953 for (i
= start
; i
< XVECLEN (x
, 0); i
++)
955 rtx y
= XVECEXP (x
, 0, i
);
956 if (REG_P (XEXP (y
, 0)))
957 REG_ATTRS (XEXP (y
, 0)) = get_reg_attrs (t
, INTVAL (XEXP (y
, 1)));
962 /* Identify REG (which may be a CONCAT) as a user register. */
965 mark_user_reg (rtx reg
)
967 if (GET_CODE (reg
) == CONCAT
)
969 REG_USERVAR_P (XEXP (reg
, 0)) = 1;
970 REG_USERVAR_P (XEXP (reg
, 1)) = 1;
974 gcc_assert (REG_P (reg
));
975 REG_USERVAR_P (reg
) = 1;
979 /* Identify REG as a probable pointer register and show its alignment
980 as ALIGN, if nonzero. */
983 mark_reg_pointer (rtx reg
, int align
)
985 if (! REG_POINTER (reg
))
987 REG_POINTER (reg
) = 1;
990 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
992 else if (align
&& align
< REGNO_POINTER_ALIGN (REGNO (reg
)))
993 /* We can no-longer be sure just how aligned this pointer is. */
994 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
997 /* Return 1 plus largest pseudo reg number used in the current function. */
1005 /* Return 1 + the largest label number used so far in the current function. */
1008 max_label_num (void)
1010 if (last_label_num
&& label_num
== base_label_num
)
1011 return last_label_num
;
1015 /* Return first label number used in this function (if any were used). */
1018 get_first_label_num (void)
1020 return first_label_num
;
1023 /* If the rtx for label was created during the expansion of a nested
1024 function, then first_label_num won't include this label number.
1025 Fix this now so that array indicies work later. */
1028 maybe_set_first_label_num (rtx x
)
1030 if (CODE_LABEL_NUMBER (x
) < first_label_num
)
1031 first_label_num
= CODE_LABEL_NUMBER (x
);
1034 /* Return the final regno of X, which is a SUBREG of a hard
1037 subreg_hard_regno (rtx x
, int check_mode
)
1039 enum machine_mode mode
= GET_MODE (x
);
1040 unsigned int byte_offset
, base_regno
, final_regno
;
1041 rtx reg
= SUBREG_REG (x
);
1043 /* This is where we attempt to catch illegal subregs
1044 created by the compiler. */
1045 gcc_assert (GET_CODE (x
) == SUBREG
&& REG_P (reg
));
1046 base_regno
= REGNO (reg
);
1047 gcc_assert (base_regno
< FIRST_PSEUDO_REGISTER
);
1048 gcc_assert (!check_mode
|| HARD_REGNO_MODE_OK (base_regno
, GET_MODE (reg
)));
1049 #ifdef ENABLE_CHECKING
1050 gcc_assert (subreg_offset_representable_p (REGNO (reg
), GET_MODE (reg
),
1051 SUBREG_BYTE (x
), mode
));
1053 /* Catch non-congruent offsets too. */
1054 byte_offset
= SUBREG_BYTE (x
);
1055 gcc_assert (!(byte_offset
% GET_MODE_SIZE (mode
)));
1057 final_regno
= subreg_regno (x
);
1062 /* Return a value representing some low-order bits of X, where the number
1063 of low-order bits is given by MODE. Note that no conversion is done
1064 between floating-point and fixed-point values, rather, the bit
1065 representation is returned.
1067 This function handles the cases in common between gen_lowpart, below,
1068 and two variants in cse.c and combine.c. These are the cases that can
1069 be safely handled at all points in the compilation.
1071 If this is not a case we can handle, return 0. */
1074 gen_lowpart_common (enum machine_mode mode
, rtx x
)
1076 int msize
= GET_MODE_SIZE (mode
);
1079 enum machine_mode innermode
;
1081 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1082 so we have to make one up. Yuk. */
1083 innermode
= GET_MODE (x
);
1084 if (GET_CODE (x
) == CONST_INT
&& msize
<= HOST_BITS_PER_WIDE_INT
)
1085 innermode
= mode_for_size (HOST_BITS_PER_WIDE_INT
, MODE_INT
, 0);
1086 else if (innermode
== VOIDmode
)
1087 innermode
= mode_for_size (HOST_BITS_PER_WIDE_INT
* 2, MODE_INT
, 0);
1089 xsize
= GET_MODE_SIZE (innermode
);
1091 gcc_assert (innermode
!= VOIDmode
&& innermode
!= BLKmode
);
1093 if (innermode
== mode
)
1096 /* MODE must occupy no more words than the mode of X. */
1097 if ((msize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
1098 > ((xsize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))
1101 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1102 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
&& msize
> xsize
)
1105 offset
= subreg_lowpart_offset (mode
, innermode
);
1107 if ((GET_CODE (x
) == ZERO_EXTEND
|| GET_CODE (x
) == SIGN_EXTEND
)
1108 && (GET_MODE_CLASS (mode
) == MODE_INT
1109 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
))
1111 /* If we are getting the low-order part of something that has been
1112 sign- or zero-extended, we can either just use the object being
1113 extended or make a narrower extension. If we want an even smaller
1114 piece than the size of the object being extended, call ourselves
1117 This case is used mostly by combine and cse. */
1119 if (GET_MODE (XEXP (x
, 0)) == mode
)
1121 else if (msize
< GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))))
1122 return gen_lowpart_common (mode
, XEXP (x
, 0));
1123 else if (msize
< xsize
)
1124 return gen_rtx_fmt_e (GET_CODE (x
), mode
, XEXP (x
, 0));
1126 else if (GET_CODE (x
) == SUBREG
|| REG_P (x
)
1127 || GET_CODE (x
) == CONCAT
|| GET_CODE (x
) == CONST_VECTOR
1128 || GET_CODE (x
) == CONST_DOUBLE
|| GET_CODE (x
) == CONST_INT
)
1129 return simplify_gen_subreg (mode
, x
, innermode
, offset
);
1131 /* Otherwise, we can't do this. */
1135 /* Return the constant real or imaginary part (which has mode MODE)
1136 of a complex value X. The IMAGPART_P argument determines whether
1137 the real or complex component should be returned. This function
1138 returns NULL_RTX if the component isn't a constant. */
1141 gen_complex_constant_part (enum machine_mode mode
, rtx x
, int imagpart_p
)
1146 && GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
)
1148 decl
= SYMBOL_REF_DECL (XEXP (x
, 0));
1149 if (decl
!= NULL_TREE
&& TREE_CODE (decl
) == COMPLEX_CST
)
1151 part
= imagpart_p
? TREE_IMAGPART (decl
) : TREE_REALPART (decl
);
1152 if (TREE_CODE (part
) == REAL_CST
1153 || TREE_CODE (part
) == INTEGER_CST
)
1154 return expand_expr (part
, NULL_RTX
, mode
, 0);
1160 /* Return the real part (which has mode MODE) of a complex value X.
1161 This always comes at the low address in memory. */
1164 gen_realpart (enum machine_mode mode
, rtx x
)
1168 /* Handle complex constants. */
1169 part
= gen_complex_constant_part (mode
, x
, 0);
1170 if (part
!= NULL_RTX
)
1173 if (WORDS_BIG_ENDIAN
1174 && GET_MODE_BITSIZE (mode
) < BITS_PER_WORD
1176 && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
1178 ("can't access real part of complex value in hard register");
1179 else if (WORDS_BIG_ENDIAN
)
1180 return gen_highpart (mode
, x
);
1182 return gen_lowpart (mode
, x
);
1185 /* Return the imaginary part (which has mode MODE) of a complex value X.
1186 This always comes at the high address in memory. */
1189 gen_imagpart (enum machine_mode mode
, rtx x
)
1193 /* Handle complex constants. */
1194 part
= gen_complex_constant_part (mode
, x
, 1);
1195 if (part
!= NULL_RTX
)
1198 if (WORDS_BIG_ENDIAN
)
1199 return gen_lowpart (mode
, x
);
1200 else if (! WORDS_BIG_ENDIAN
1201 && GET_MODE_BITSIZE (mode
) < BITS_PER_WORD
1203 && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
1205 ("can't access imaginary part of complex value in hard register");
1207 return gen_highpart (mode
, x
);
1211 gen_highpart (enum machine_mode mode
, rtx x
)
1213 unsigned int msize
= GET_MODE_SIZE (mode
);
1216 /* This case loses if X is a subreg. To catch bugs early,
1217 complain if an invalid MODE is used even in other cases. */
1218 gcc_assert (msize
<= UNITS_PER_WORD
1219 || msize
== (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x
)));
1221 result
= simplify_gen_subreg (mode
, x
, GET_MODE (x
),
1222 subreg_highpart_offset (mode
, GET_MODE (x
)));
1223 gcc_assert (result
);
1225 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1226 the target if we have a MEM. gen_highpart must return a valid operand,
1227 emitting code if necessary to do so. */
1230 result
= validize_mem (result
);
1231 gcc_assert (result
);
1237 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1238 be VOIDmode constant. */
1240 gen_highpart_mode (enum machine_mode outermode
, enum machine_mode innermode
, rtx exp
)
1242 if (GET_MODE (exp
) != VOIDmode
)
1244 gcc_assert (GET_MODE (exp
) == innermode
);
1245 return gen_highpart (outermode
, exp
);
1247 return simplify_gen_subreg (outermode
, exp
, innermode
,
1248 subreg_highpart_offset (outermode
, innermode
));
1251 /* Return offset in bytes to get OUTERMODE low part
1252 of the value in mode INNERMODE stored in memory in target format. */
1255 subreg_lowpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1257 unsigned int offset
= 0;
1258 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1262 if (WORDS_BIG_ENDIAN
)
1263 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1264 if (BYTES_BIG_ENDIAN
)
1265 offset
+= difference
% UNITS_PER_WORD
;
1271 /* Return offset in bytes to get OUTERMODE high part
1272 of the value in mode INNERMODE stored in memory in target format. */
1274 subreg_highpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1276 unsigned int offset
= 0;
1277 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1279 gcc_assert (GET_MODE_SIZE (innermode
) >= GET_MODE_SIZE (outermode
));
1283 if (! WORDS_BIG_ENDIAN
)
1284 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1285 if (! BYTES_BIG_ENDIAN
)
1286 offset
+= difference
% UNITS_PER_WORD
;
1292 /* Return 1 iff X, assumed to be a SUBREG,
1293 refers to the least significant part of its containing reg.
1294 If X is not a SUBREG, always return 1 (it is its own low part!). */
1297 subreg_lowpart_p (rtx x
)
1299 if (GET_CODE (x
) != SUBREG
)
1301 else if (GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
1304 return (subreg_lowpart_offset (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)))
1305 == SUBREG_BYTE (x
));
1308 /* Return subword OFFSET of operand OP.
1309 The word number, OFFSET, is interpreted as the word number starting
1310 at the low-order address. OFFSET 0 is the low-order word if not
1311 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1313 If we cannot extract the required word, we return zero. Otherwise,
1314 an rtx corresponding to the requested word will be returned.
1316 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1317 reload has completed, a valid address will always be returned. After
1318 reload, if a valid address cannot be returned, we return zero.
1320 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1321 it is the responsibility of the caller.
1323 MODE is the mode of OP in case it is a CONST_INT.
1325 ??? This is still rather broken for some cases. The problem for the
1326 moment is that all callers of this thing provide no 'goal mode' to
1327 tell us to work with. This exists because all callers were written
1328 in a word based SUBREG world.
1329 Now use of this function can be deprecated by simplify_subreg in most
1334 operand_subword (rtx op
, unsigned int offset
, int validate_address
, enum machine_mode mode
)
1336 if (mode
== VOIDmode
)
1337 mode
= GET_MODE (op
);
1339 gcc_assert (mode
!= VOIDmode
);
1341 /* If OP is narrower than a word, fail. */
1343 && (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
))
1346 /* If we want a word outside OP, return zero. */
1348 && (offset
+ 1) * UNITS_PER_WORD
> GET_MODE_SIZE (mode
))
1351 /* Form a new MEM at the requested address. */
1354 rtx
new = adjust_address_nv (op
, word_mode
, offset
* UNITS_PER_WORD
);
1356 if (! validate_address
)
1359 else if (reload_completed
)
1361 if (! strict_memory_address_p (word_mode
, XEXP (new, 0)))
1365 return replace_equiv_address (new, XEXP (new, 0));
1368 /* Rest can be handled by simplify_subreg. */
1369 return simplify_gen_subreg (word_mode
, op
, mode
, (offset
* UNITS_PER_WORD
));
1372 /* Similar to `operand_subword', but never return 0. If we can't extract
1373 the required subword, put OP into a register and try again. If that fails,
1374 abort. We always validate the address in this case.
1376 MODE is the mode of OP, in case it is CONST_INT. */
1379 operand_subword_force (rtx op
, unsigned int offset
, enum machine_mode mode
)
1381 rtx result
= operand_subword (op
, offset
, 1, mode
);
1386 if (mode
!= BLKmode
&& mode
!= VOIDmode
)
1388 /* If this is a register which can not be accessed by words, copy it
1389 to a pseudo register. */
1391 op
= copy_to_reg (op
);
1393 op
= force_reg (mode
, op
);
1396 result
= operand_subword (op
, offset
, 1, mode
);
1397 gcc_assert (result
);
1402 /* Given a compare instruction, swap the operands.
1403 A test instruction is changed into a compare of 0 against the operand. */
1406 reverse_comparison (rtx insn
)
1408 rtx body
= PATTERN (insn
);
1411 if (GET_CODE (body
) == SET
)
1412 comp
= SET_SRC (body
);
1414 comp
= SET_SRC (XVECEXP (body
, 0, 0));
1416 if (GET_CODE (comp
) == COMPARE
)
1418 rtx op0
= XEXP (comp
, 0);
1419 rtx op1
= XEXP (comp
, 1);
1420 XEXP (comp
, 0) = op1
;
1421 XEXP (comp
, 1) = op0
;
1425 rtx
new = gen_rtx_COMPARE (VOIDmode
,
1426 CONST0_RTX (GET_MODE (comp
)), comp
);
1427 if (GET_CODE (body
) == SET
)
1428 SET_SRC (body
) = new;
1430 SET_SRC (XVECEXP (body
, 0, 0)) = new;
1434 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1435 or (2) a component ref of something variable. Represent the later with
1436 a NULL expression. */
1439 component_ref_for_mem_expr (tree ref
)
1441 tree inner
= TREE_OPERAND (ref
, 0);
1443 if (TREE_CODE (inner
) == COMPONENT_REF
)
1444 inner
= component_ref_for_mem_expr (inner
);
1447 /* Now remove any conversions: they don't change what the underlying
1448 object is. Likewise for SAVE_EXPR. */
1449 while (TREE_CODE (inner
) == NOP_EXPR
|| TREE_CODE (inner
) == CONVERT_EXPR
1450 || TREE_CODE (inner
) == NON_LVALUE_EXPR
1451 || TREE_CODE (inner
) == VIEW_CONVERT_EXPR
1452 || TREE_CODE (inner
) == SAVE_EXPR
)
1453 inner
= TREE_OPERAND (inner
, 0);
1455 if (! DECL_P (inner
))
1459 if (inner
== TREE_OPERAND (ref
, 0))
1462 return build3 (COMPONENT_REF
, TREE_TYPE (ref
), inner
,
1463 TREE_OPERAND (ref
, 1), NULL_TREE
);
1466 /* Returns 1 if both MEM_EXPR can be considered equal
1470 mem_expr_equal_p (tree expr1
, tree expr2
)
1475 if (! expr1
|| ! expr2
)
1478 if (TREE_CODE (expr1
) != TREE_CODE (expr2
))
1481 if (TREE_CODE (expr1
) == COMPONENT_REF
)
1483 mem_expr_equal_p (TREE_OPERAND (expr1
, 0),
1484 TREE_OPERAND (expr2
, 0))
1485 && mem_expr_equal_p (TREE_OPERAND (expr1
, 1), /* field decl */
1486 TREE_OPERAND (expr2
, 1));
1488 if (INDIRECT_REF_P (expr1
))
1489 return mem_expr_equal_p (TREE_OPERAND (expr1
, 0),
1490 TREE_OPERAND (expr2
, 0));
1492 /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1493 have been resolved here. */
1494 gcc_assert (DECL_P (expr1
));
1496 /* Decls with different pointers can't be equal. */
1500 /* Given REF, a MEM, and T, either the type of X or the expression
1501 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1502 if we are making a new object of this type. BITPOS is nonzero if
1503 there is an offset outstanding on T that will be applied later. */
1506 set_mem_attributes_minus_bitpos (rtx ref
, tree t
, int objectp
,
1507 HOST_WIDE_INT bitpos
)
1509 HOST_WIDE_INT alias
= MEM_ALIAS_SET (ref
);
1510 tree expr
= MEM_EXPR (ref
);
1511 rtx offset
= MEM_OFFSET (ref
);
1512 rtx size
= MEM_SIZE (ref
);
1513 unsigned int align
= MEM_ALIGN (ref
);
1514 HOST_WIDE_INT apply_bitpos
= 0;
1517 /* It can happen that type_for_mode was given a mode for which there
1518 is no language-level type. In which case it returns NULL, which
1523 type
= TYPE_P (t
) ? t
: TREE_TYPE (t
);
1524 if (type
== error_mark_node
)
1527 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1528 wrong answer, as it assumes that DECL_RTL already has the right alias
1529 info. Callers should not set DECL_RTL until after the call to
1530 set_mem_attributes. */
1531 gcc_assert (!DECL_P (t
) || ref
!= DECL_RTL_IF_SET (t
));
1533 /* Get the alias set from the expression or type (perhaps using a
1534 front-end routine) and use it. */
1535 alias
= get_alias_set (t
);
1537 MEM_VOLATILE_P (ref
) |= TYPE_VOLATILE (type
);
1538 MEM_IN_STRUCT_P (ref
) = AGGREGATE_TYPE_P (type
);
1539 MEM_POINTER (ref
) = POINTER_TYPE_P (type
);
1540 MEM_NOTRAP_P (ref
) = TREE_THIS_NOTRAP (t
);
1542 /* If we are making an object of this type, or if this is a DECL, we know
1543 that it is a scalar if the type is not an aggregate. */
1544 if ((objectp
|| DECL_P (t
)) && ! AGGREGATE_TYPE_P (type
))
1545 MEM_SCALAR_P (ref
) = 1;
1547 /* We can set the alignment from the type if we are making an object,
1548 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1549 if (objectp
|| TREE_CODE (t
) == INDIRECT_REF
1550 || TREE_CODE (t
) == ALIGN_INDIRECT_REF
1551 || TYPE_ALIGN_OK (type
))
1552 align
= MAX (align
, TYPE_ALIGN (type
));
1554 if (TREE_CODE (t
) == MISALIGNED_INDIRECT_REF
)
1556 if (integer_zerop (TREE_OPERAND (t
, 1)))
1557 /* We don't know anything about the alignment. */
1558 align
= BITS_PER_UNIT
;
1560 align
= tree_low_cst (TREE_OPERAND (t
, 1), 1);
1563 /* If the size is known, we can set that. */
1564 if (TYPE_SIZE_UNIT (type
) && host_integerp (TYPE_SIZE_UNIT (type
), 1))
1565 size
= GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type
), 1));
1567 /* If T is not a type, we may be able to deduce some more information about
1571 tree base
= get_base_address (t
);
1572 if (base
&& DECL_P (base
)
1573 && TREE_READONLY (base
)
1574 && (TREE_STATIC (base
) || DECL_EXTERNAL (base
)))
1575 MEM_READONLY_P (ref
) = 1;
1577 if (TREE_THIS_VOLATILE (t
))
1578 MEM_VOLATILE_P (ref
) = 1;
1580 /* Now remove any conversions: they don't change what the underlying
1581 object is. Likewise for SAVE_EXPR. */
1582 while (TREE_CODE (t
) == NOP_EXPR
|| TREE_CODE (t
) == CONVERT_EXPR
1583 || TREE_CODE (t
) == NON_LVALUE_EXPR
1584 || TREE_CODE (t
) == VIEW_CONVERT_EXPR
1585 || TREE_CODE (t
) == SAVE_EXPR
)
1586 t
= TREE_OPERAND (t
, 0);
1588 /* If this expression can't be addressed (e.g., it contains a reference
1589 to a non-addressable field), show we don't change its alias set. */
1590 if (! can_address_p (t
))
1591 MEM_KEEP_ALIAS_SET_P (ref
) = 1;
1593 /* If this is a decl, set the attributes of the MEM from it. */
1597 offset
= const0_rtx
;
1598 apply_bitpos
= bitpos
;
1599 size
= (DECL_SIZE_UNIT (t
)
1600 && host_integerp (DECL_SIZE_UNIT (t
), 1)
1601 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t
), 1)) : 0);
1602 align
= DECL_ALIGN (t
);
1605 /* If this is a constant, we know the alignment. */
1606 else if (CONSTANT_CLASS_P (t
))
1608 align
= TYPE_ALIGN (type
);
1609 #ifdef CONSTANT_ALIGNMENT
1610 align
= CONSTANT_ALIGNMENT (t
, align
);
1614 /* If this is a field reference and not a bit-field, record it. */
1615 /* ??? There is some information that can be gleened from bit-fields,
1616 such as the word offset in the structure that might be modified.
1617 But skip it for now. */
1618 else if (TREE_CODE (t
) == COMPONENT_REF
1619 && ! DECL_BIT_FIELD (TREE_OPERAND (t
, 1)))
1621 expr
= component_ref_for_mem_expr (t
);
1622 offset
= const0_rtx
;
1623 apply_bitpos
= bitpos
;
1624 /* ??? Any reason the field size would be different than
1625 the size we got from the type? */
1628 /* If this is an array reference, look for an outer field reference. */
1629 else if (TREE_CODE (t
) == ARRAY_REF
)
1631 tree off_tree
= size_zero_node
;
1632 /* We can't modify t, because we use it at the end of the
1638 tree index
= TREE_OPERAND (t2
, 1);
1639 tree low_bound
= array_ref_low_bound (t2
);
1640 tree unit_size
= array_ref_element_size (t2
);
1642 /* We assume all arrays have sizes that are a multiple of a byte.
1643 First subtract the lower bound, if any, in the type of the
1644 index, then convert to sizetype and multiply by the size of
1645 the array element. */
1646 if (! integer_zerop (low_bound
))
1647 index
= fold (build2 (MINUS_EXPR
, TREE_TYPE (index
),
1650 off_tree
= size_binop (PLUS_EXPR
,
1651 size_binop (MULT_EXPR
, convert (sizetype
,
1655 t2
= TREE_OPERAND (t2
, 0);
1657 while (TREE_CODE (t2
) == ARRAY_REF
);
1663 if (host_integerp (off_tree
, 1))
1665 HOST_WIDE_INT ioff
= tree_low_cst (off_tree
, 1);
1666 HOST_WIDE_INT aoff
= (ioff
& -ioff
) * BITS_PER_UNIT
;
1667 align
= DECL_ALIGN (t2
);
1668 if (aoff
&& (unsigned HOST_WIDE_INT
) aoff
< align
)
1670 offset
= GEN_INT (ioff
);
1671 apply_bitpos
= bitpos
;
1674 else if (TREE_CODE (t2
) == COMPONENT_REF
)
1676 expr
= component_ref_for_mem_expr (t2
);
1677 if (host_integerp (off_tree
, 1))
1679 offset
= GEN_INT (tree_low_cst (off_tree
, 1));
1680 apply_bitpos
= bitpos
;
1682 /* ??? Any reason the field size would be different than
1683 the size we got from the type? */
1685 else if (flag_argument_noalias
> 1
1686 && (INDIRECT_REF_P (t2
))
1687 && TREE_CODE (TREE_OPERAND (t2
, 0)) == PARM_DECL
)
1694 /* If this is a Fortran indirect argument reference, record the
1696 else if (flag_argument_noalias
> 1
1697 && (INDIRECT_REF_P (t
))
1698 && TREE_CODE (TREE_OPERAND (t
, 0)) == PARM_DECL
)
1705 /* If we modified OFFSET based on T, then subtract the outstanding
1706 bit position offset. Similarly, increase the size of the accessed
1707 object to contain the negative offset. */
1710 offset
= plus_constant (offset
, -(apply_bitpos
/ BITS_PER_UNIT
));
1712 size
= plus_constant (size
, apply_bitpos
/ BITS_PER_UNIT
);
1715 if (TREE_CODE (t
) == ALIGN_INDIRECT_REF
)
1717 /* Force EXPR and OFFSE to NULL, since we don't know exactly what
1718 we're overlapping. */
1723 /* Now set the attributes we computed above. */
1725 = get_mem_attrs (alias
, expr
, offset
, size
, align
, GET_MODE (ref
));
1727 /* If this is already known to be a scalar or aggregate, we are done. */
1728 if (MEM_IN_STRUCT_P (ref
) || MEM_SCALAR_P (ref
))
1731 /* If it is a reference into an aggregate, this is part of an aggregate.
1732 Otherwise we don't know. */
1733 else if (TREE_CODE (t
) == COMPONENT_REF
|| TREE_CODE (t
) == ARRAY_REF
1734 || TREE_CODE (t
) == ARRAY_RANGE_REF
1735 || TREE_CODE (t
) == BIT_FIELD_REF
)
1736 MEM_IN_STRUCT_P (ref
) = 1;
1740 set_mem_attributes (rtx ref
, tree t
, int objectp
)
1742 set_mem_attributes_minus_bitpos (ref
, t
, objectp
, 0);
1745 /* Set the decl for MEM to DECL. */
1748 set_mem_attrs_from_reg (rtx mem
, rtx reg
)
1751 = get_mem_attrs (MEM_ALIAS_SET (mem
), REG_EXPR (reg
),
1752 GEN_INT (REG_OFFSET (reg
)),
1753 MEM_SIZE (mem
), MEM_ALIGN (mem
), GET_MODE (mem
));
1756 /* Set the alias set of MEM to SET. */
1759 set_mem_alias_set (rtx mem
, HOST_WIDE_INT set
)
1761 #ifdef ENABLE_CHECKING
1762 /* If the new and old alias sets don't conflict, something is wrong. */
1763 gcc_assert (alias_sets_conflict_p (set
, MEM_ALIAS_SET (mem
)));
1766 MEM_ATTRS (mem
) = get_mem_attrs (set
, MEM_EXPR (mem
), MEM_OFFSET (mem
),
1767 MEM_SIZE (mem
), MEM_ALIGN (mem
),
1771 /* Set the alignment of MEM to ALIGN bits. */
1774 set_mem_align (rtx mem
, unsigned int align
)
1776 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1777 MEM_OFFSET (mem
), MEM_SIZE (mem
), align
,
1781 /* Set the expr for MEM to EXPR. */
1784 set_mem_expr (rtx mem
, tree expr
)
1787 = get_mem_attrs (MEM_ALIAS_SET (mem
), expr
, MEM_OFFSET (mem
),
1788 MEM_SIZE (mem
), MEM_ALIGN (mem
), GET_MODE (mem
));
1791 /* Set the offset of MEM to OFFSET. */
1794 set_mem_offset (rtx mem
, rtx offset
)
1796 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1797 offset
, MEM_SIZE (mem
), MEM_ALIGN (mem
),
1801 /* Set the size of MEM to SIZE. */
1804 set_mem_size (rtx mem
, rtx size
)
1806 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1807 MEM_OFFSET (mem
), size
, MEM_ALIGN (mem
),
1811 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1812 and its address changed to ADDR. (VOIDmode means don't change the mode.
1813 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1814 returned memory location is required to be valid. The memory
1815 attributes are not changed. */
1818 change_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
, int validate
)
1822 gcc_assert (MEM_P (memref
));
1823 if (mode
== VOIDmode
)
1824 mode
= GET_MODE (memref
);
1826 addr
= XEXP (memref
, 0);
1827 if (mode
== GET_MODE (memref
) && addr
== XEXP (memref
, 0)
1828 && (!validate
|| memory_address_p (mode
, addr
)))
1833 if (reload_in_progress
|| reload_completed
)
1834 gcc_assert (memory_address_p (mode
, addr
));
1836 addr
= memory_address (mode
, addr
);
1839 if (rtx_equal_p (addr
, XEXP (memref
, 0)) && mode
== GET_MODE (memref
))
1842 new = gen_rtx_MEM (mode
, addr
);
1843 MEM_COPY_ATTRIBUTES (new, memref
);
1847 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1848 way we are changing MEMREF, so we only preserve the alias set. */
1851 change_address (rtx memref
, enum machine_mode mode
, rtx addr
)
1853 rtx
new = change_address_1 (memref
, mode
, addr
, 1), size
;
1854 enum machine_mode mmode
= GET_MODE (new);
1857 size
= mmode
== BLKmode
? 0 : GEN_INT (GET_MODE_SIZE (mmode
));
1858 align
= mmode
== BLKmode
? BITS_PER_UNIT
: GET_MODE_ALIGNMENT (mmode
);
1860 /* If there are no changes, just return the original memory reference. */
1863 if (MEM_ATTRS (memref
) == 0
1864 || (MEM_EXPR (memref
) == NULL
1865 && MEM_OFFSET (memref
) == NULL
1866 && MEM_SIZE (memref
) == size
1867 && MEM_ALIGN (memref
) == align
))
1870 new = gen_rtx_MEM (mmode
, XEXP (memref
, 0));
1871 MEM_COPY_ATTRIBUTES (new, memref
);
1875 = get_mem_attrs (MEM_ALIAS_SET (memref
), 0, 0, size
, align
, mmode
);
1880 /* Return a memory reference like MEMREF, but with its mode changed
1881 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1882 nonzero, the memory address is forced to be valid.
1883 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1884 and caller is responsible for adjusting MEMREF base register. */
1887 adjust_address_1 (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
,
1888 int validate
, int adjust
)
1890 rtx addr
= XEXP (memref
, 0);
1892 rtx memoffset
= MEM_OFFSET (memref
);
1894 unsigned int memalign
= MEM_ALIGN (memref
);
1896 /* If there are no changes, just return the original memory reference. */
1897 if (mode
== GET_MODE (memref
) && !offset
1898 && (!validate
|| memory_address_p (mode
, addr
)))
1901 /* ??? Prefer to create garbage instead of creating shared rtl.
1902 This may happen even if offset is nonzero -- consider
1903 (plus (plus reg reg) const_int) -- so do this always. */
1904 addr
= copy_rtx (addr
);
1908 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1909 object, we can merge it into the LO_SUM. */
1910 if (GET_MODE (memref
) != BLKmode
&& GET_CODE (addr
) == LO_SUM
1912 && (unsigned HOST_WIDE_INT
) offset
1913 < GET_MODE_ALIGNMENT (GET_MODE (memref
)) / BITS_PER_UNIT
)
1914 addr
= gen_rtx_LO_SUM (Pmode
, XEXP (addr
, 0),
1915 plus_constant (XEXP (addr
, 1), offset
));
1917 addr
= plus_constant (addr
, offset
);
1920 new = change_address_1 (memref
, mode
, addr
, validate
);
1922 /* Compute the new values of the memory attributes due to this adjustment.
1923 We add the offsets and update the alignment. */
1925 memoffset
= GEN_INT (offset
+ INTVAL (memoffset
));
1927 /* Compute the new alignment by taking the MIN of the alignment and the
1928 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1933 (unsigned HOST_WIDE_INT
) (offset
& -offset
) * BITS_PER_UNIT
);
1935 /* We can compute the size in a number of ways. */
1936 if (GET_MODE (new) != BLKmode
)
1937 size
= GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1938 else if (MEM_SIZE (memref
))
1939 size
= plus_constant (MEM_SIZE (memref
), -offset
);
1941 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref
), MEM_EXPR (memref
),
1942 memoffset
, size
, memalign
, GET_MODE (new));
1944 /* At some point, we should validate that this offset is within the object,
1945 if all the appropriate values are known. */
1949 /* Return a memory reference like MEMREF, but with its mode changed
1950 to MODE and its address changed to ADDR, which is assumed to be
1951 MEMREF offseted by OFFSET bytes. If VALIDATE is
1952 nonzero, the memory address is forced to be valid. */
1955 adjust_automodify_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
,
1956 HOST_WIDE_INT offset
, int validate
)
1958 memref
= change_address_1 (memref
, VOIDmode
, addr
, validate
);
1959 return adjust_address_1 (memref
, mode
, offset
, validate
, 0);
1962 /* Return a memory reference like MEMREF, but whose address is changed by
1963 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1964 known to be in OFFSET (possibly 1). */
1967 offset_address (rtx memref
, rtx offset
, unsigned HOST_WIDE_INT pow2
)
1969 rtx
new, addr
= XEXP (memref
, 0);
1971 new = simplify_gen_binary (PLUS
, Pmode
, addr
, offset
);
1973 /* At this point we don't know _why_ the address is invalid. It
1974 could have secondary memory references, multiplies or anything.
1976 However, if we did go and rearrange things, we can wind up not
1977 being able to recognize the magic around pic_offset_table_rtx.
1978 This stuff is fragile, and is yet another example of why it is
1979 bad to expose PIC machinery too early. */
1980 if (! memory_address_p (GET_MODE (memref
), new)
1981 && GET_CODE (addr
) == PLUS
1982 && XEXP (addr
, 0) == pic_offset_table_rtx
)
1984 addr
= force_reg (GET_MODE (addr
), addr
);
1985 new = simplify_gen_binary (PLUS
, Pmode
, addr
, offset
);
1988 update_temp_slot_address (XEXP (memref
, 0), new);
1989 new = change_address_1 (memref
, VOIDmode
, new, 1);
1991 /* If there are no changes, just return the original memory reference. */
1995 /* Update the alignment to reflect the offset. Reset the offset, which
1998 = get_mem_attrs (MEM_ALIAS_SET (memref
), MEM_EXPR (memref
), 0, 0,
1999 MIN (MEM_ALIGN (memref
), pow2
* BITS_PER_UNIT
),
2004 /* Return a memory reference like MEMREF, but with its address changed to
2005 ADDR. The caller is asserting that the actual piece of memory pointed
2006 to is the same, just the form of the address is being changed, such as
2007 by putting something into a register. */
2010 replace_equiv_address (rtx memref
, rtx addr
)
2012 /* change_address_1 copies the memory attribute structure without change
2013 and that's exactly what we want here. */
2014 update_temp_slot_address (XEXP (memref
, 0), addr
);
2015 return change_address_1 (memref
, VOIDmode
, addr
, 1);
2018 /* Likewise, but the reference is not required to be valid. */
2021 replace_equiv_address_nv (rtx memref
, rtx addr
)
2023 return change_address_1 (memref
, VOIDmode
, addr
, 0);
2026 /* Return a memory reference like MEMREF, but with its mode widened to
2027 MODE and offset by OFFSET. This would be used by targets that e.g.
2028 cannot issue QImode memory operations and have to use SImode memory
2029 operations plus masking logic. */
2032 widen_memory_access (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
)
2034 rtx
new = adjust_address_1 (memref
, mode
, offset
, 1, 1);
2035 tree expr
= MEM_EXPR (new);
2036 rtx memoffset
= MEM_OFFSET (new);
2037 unsigned int size
= GET_MODE_SIZE (mode
);
2039 /* If there are no changes, just return the original memory reference. */
2043 /* If we don't know what offset we were at within the expression, then
2044 we can't know if we've overstepped the bounds. */
2050 if (TREE_CODE (expr
) == COMPONENT_REF
)
2052 tree field
= TREE_OPERAND (expr
, 1);
2053 tree offset
= component_ref_field_offset (expr
);
2055 if (! DECL_SIZE_UNIT (field
))
2061 /* Is the field at least as large as the access? If so, ok,
2062 otherwise strip back to the containing structure. */
2063 if (TREE_CODE (DECL_SIZE_UNIT (field
)) == INTEGER_CST
2064 && compare_tree_int (DECL_SIZE_UNIT (field
), size
) >= 0
2065 && INTVAL (memoffset
) >= 0)
2068 if (! host_integerp (offset
, 1))
2074 expr
= TREE_OPERAND (expr
, 0);
2076 = (GEN_INT (INTVAL (memoffset
)
2077 + tree_low_cst (offset
, 1)
2078 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1)
2081 /* Similarly for the decl. */
2082 else if (DECL_P (expr
)
2083 && DECL_SIZE_UNIT (expr
)
2084 && TREE_CODE (DECL_SIZE_UNIT (expr
)) == INTEGER_CST
2085 && compare_tree_int (DECL_SIZE_UNIT (expr
), size
) >= 0
2086 && (! memoffset
|| INTVAL (memoffset
) >= 0))
2090 /* The widened memory access overflows the expression, which means
2091 that it could alias another expression. Zap it. */
2098 memoffset
= NULL_RTX
;
2100 /* The widened memory may alias other stuff, so zap the alias set. */
2101 /* ??? Maybe use get_alias_set on any remaining expression. */
2103 MEM_ATTRS (new) = get_mem_attrs (0, expr
, memoffset
, GEN_INT (size
),
2104 MEM_ALIGN (new), mode
);
2109 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2112 gen_label_rtx (void)
2114 return gen_rtx_CODE_LABEL (VOIDmode
, 0, NULL_RTX
, NULL_RTX
,
2115 NULL
, label_num
++, NULL
);
2118 /* For procedure integration. */
2120 /* Install new pointers to the first and last insns in the chain.
2121 Also, set cur_insn_uid to one higher than the last in use.
2122 Used for an inline-procedure after copying the insn chain. */
2125 set_new_first_and_last_insn (rtx first
, rtx last
)
2133 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2134 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2139 /* Set the last label number found in the current function.
2140 This is used when belatedly compiling an inline function. */
2143 set_new_last_label_num (int last
)
2145 base_label_num
= label_num
;
2146 last_label_num
= last
;
2149 /* Restore all variables describing the current status from the structure *P.
2150 This is used after a nested function. */
2153 restore_emit_status (struct function
*p ATTRIBUTE_UNUSED
)
2158 /* Go through all the RTL insn bodies and copy any invalid shared
2159 structure. This routine should only be called once. */
2162 unshare_all_rtl_1 (tree fndecl
, rtx insn
)
2166 /* Make sure that virtual parameters are not shared. */
2167 for (decl
= DECL_ARGUMENTS (fndecl
); decl
; decl
= TREE_CHAIN (decl
))
2168 SET_DECL_RTL (decl
, copy_rtx_if_shared (DECL_RTL (decl
)));
2170 /* Make sure that virtual stack slots are not shared. */
2171 unshare_all_decls (DECL_INITIAL (fndecl
));
2173 /* Unshare just about everything else. */
2174 unshare_all_rtl_in_chain (insn
);
2176 /* Make sure the addresses of stack slots found outside the insn chain
2177 (such as, in DECL_RTL of a variable) are not shared
2178 with the insn chain.
2180 This special care is necessary when the stack slot MEM does not
2181 actually appear in the insn chain. If it does appear, its address
2182 is unshared from all else at that point. */
2183 stack_slot_list
= copy_rtx_if_shared (stack_slot_list
);
2186 /* Go through all the RTL insn bodies and copy any invalid shared
2187 structure, again. This is a fairly expensive thing to do so it
2188 should be done sparingly. */
2191 unshare_all_rtl_again (rtx insn
)
2196 for (p
= insn
; p
; p
= NEXT_INSN (p
))
2199 reset_used_flags (PATTERN (p
));
2200 reset_used_flags (REG_NOTES (p
));
2201 reset_used_flags (LOG_LINKS (p
));
2204 /* Make sure that virtual stack slots are not shared. */
2205 reset_used_decls (DECL_INITIAL (cfun
->decl
));
2207 /* Make sure that virtual parameters are not shared. */
2208 for (decl
= DECL_ARGUMENTS (cfun
->decl
); decl
; decl
= TREE_CHAIN (decl
))
2209 reset_used_flags (DECL_RTL (decl
));
2211 reset_used_flags (stack_slot_list
);
2213 unshare_all_rtl_1 (cfun
->decl
, insn
);
2217 unshare_all_rtl (void)
2219 unshare_all_rtl_1 (current_function_decl
, get_insns ());
2222 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2223 Recursively does the same for subexpressions. */
2226 verify_rtx_sharing (rtx orig
, rtx insn
)
2231 const char *format_ptr
;
2236 code
= GET_CODE (x
);
2238 /* These types may be freely shared. */
2253 /* SCRATCH must be shared because they represent distinct values. */
2255 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
)
2260 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2261 a LABEL_REF, it isn't sharable. */
2262 if (GET_CODE (XEXP (x
, 0)) == PLUS
2263 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == SYMBOL_REF
2264 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
)
2269 /* A MEM is allowed to be shared if its address is constant. */
2270 if (CONSTANT_ADDRESS_P (XEXP (x
, 0))
2271 || reload_completed
|| reload_in_progress
)
2280 /* This rtx may not be shared. If it has already been seen,
2281 replace it with a copy of itself. */
2282 #ifdef ENABLE_CHECKING
2283 if (RTX_FLAG (x
, used
))
2285 error ("Invalid rtl sharing found in the insn");
2287 error ("Shared rtx");
2289 internal_error ("Internal consistency failure");
2292 gcc_assert (!RTX_FLAG (x
, used
));
2294 RTX_FLAG (x
, used
) = 1;
2296 /* Now scan the subexpressions recursively. */
2298 format_ptr
= GET_RTX_FORMAT (code
);
2300 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2302 switch (*format_ptr
++)
2305 verify_rtx_sharing (XEXP (x
, i
), insn
);
2309 if (XVEC (x
, i
) != NULL
)
2312 int len
= XVECLEN (x
, i
);
2314 for (j
= 0; j
< len
; j
++)
2316 /* We allow sharing of ASM_OPERANDS inside single
2318 if (j
&& GET_CODE (XVECEXP (x
, i
, j
)) == SET
2319 && (GET_CODE (SET_SRC (XVECEXP (x
, i
, j
)))
2321 verify_rtx_sharing (SET_DEST (XVECEXP (x
, i
, j
)), insn
);
2323 verify_rtx_sharing (XVECEXP (x
, i
, j
), insn
);
2332 /* Go through all the RTL insn bodies and check that there is no unexpected
2333 sharing in between the subexpressions. */
2336 verify_rtl_sharing (void)
2340 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2343 reset_used_flags (PATTERN (p
));
2344 reset_used_flags (REG_NOTES (p
));
2345 reset_used_flags (LOG_LINKS (p
));
2348 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2351 verify_rtx_sharing (PATTERN (p
), p
);
2352 verify_rtx_sharing (REG_NOTES (p
), p
);
2353 verify_rtx_sharing (LOG_LINKS (p
), p
);
2357 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2358 Assumes the mark bits are cleared at entry. */
2361 unshare_all_rtl_in_chain (rtx insn
)
2363 for (; insn
; insn
= NEXT_INSN (insn
))
2366 PATTERN (insn
) = copy_rtx_if_shared (PATTERN (insn
));
2367 REG_NOTES (insn
) = copy_rtx_if_shared (REG_NOTES (insn
));
2368 LOG_LINKS (insn
) = copy_rtx_if_shared (LOG_LINKS (insn
));
2372 /* Go through all virtual stack slots of a function and copy any
2373 shared structure. */
2375 unshare_all_decls (tree blk
)
2379 /* Copy shared decls. */
2380 for (t
= BLOCK_VARS (blk
); t
; t
= TREE_CHAIN (t
))
2381 if (DECL_RTL_SET_P (t
))
2382 SET_DECL_RTL (t
, copy_rtx_if_shared (DECL_RTL (t
)));
2384 /* Now process sub-blocks. */
2385 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= TREE_CHAIN (t
))
2386 unshare_all_decls (t
);
2389 /* Go through all virtual stack slots of a function and mark them as
2392 reset_used_decls (tree blk
)
2397 for (t
= BLOCK_VARS (blk
); t
; t
= TREE_CHAIN (t
))
2398 if (DECL_RTL_SET_P (t
))
2399 reset_used_flags (DECL_RTL (t
));
2401 /* Now process sub-blocks. */
2402 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= TREE_CHAIN (t
))
2403 reset_used_decls (t
);
2406 /* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
2407 placed in the result directly, rather than being copied. MAY_SHARE is
2408 either a MEM of an EXPR_LIST of MEMs. */
2411 copy_most_rtx (rtx orig
, rtx may_share
)
2416 const char *format_ptr
;
2418 if (orig
== may_share
2419 || (GET_CODE (may_share
) == EXPR_LIST
2420 && in_expr_list_p (may_share
, orig
)))
2423 code
= GET_CODE (orig
);
2440 copy
= rtx_alloc (code
);
2441 PUT_MODE (copy
, GET_MODE (orig
));
2442 RTX_FLAG (copy
, in_struct
) = RTX_FLAG (orig
, in_struct
);
2443 RTX_FLAG (copy
, volatil
) = RTX_FLAG (orig
, volatil
);
2444 RTX_FLAG (copy
, unchanging
) = RTX_FLAG (orig
, unchanging
);
2445 RTX_FLAG (copy
, frame_related
) = RTX_FLAG (orig
, frame_related
);
2446 RTX_FLAG (copy
, return_val
) = RTX_FLAG (orig
, return_val
);
2448 format_ptr
= GET_RTX_FORMAT (GET_CODE (copy
));
2450 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (copy
)); i
++)
2452 switch (*format_ptr
++)
2455 XEXP (copy
, i
) = XEXP (orig
, i
);
2456 if (XEXP (orig
, i
) != NULL
&& XEXP (orig
, i
) != may_share
)
2457 XEXP (copy
, i
) = copy_most_rtx (XEXP (orig
, i
), may_share
);
2461 XEXP (copy
, i
) = XEXP (orig
, i
);
2466 XVEC (copy
, i
) = XVEC (orig
, i
);
2467 if (XVEC (orig
, i
) != NULL
)
2469 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (orig
, i
));
2470 for (j
= 0; j
< XVECLEN (copy
, i
); j
++)
2471 XVECEXP (copy
, i
, j
)
2472 = copy_most_rtx (XVECEXP (orig
, i
, j
), may_share
);
2477 XWINT (copy
, i
) = XWINT (orig
, i
);
2482 XINT (copy
, i
) = XINT (orig
, i
);
2486 XTREE (copy
, i
) = XTREE (orig
, i
);
2491 XSTR (copy
, i
) = XSTR (orig
, i
);
2495 X0ANY (copy
, i
) = X0ANY (orig
, i
);
2505 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2506 Recursively does the same for subexpressions. Uses
2507 copy_rtx_if_shared_1 to reduce stack space. */
2510 copy_rtx_if_shared (rtx orig
)
2512 copy_rtx_if_shared_1 (&orig
);
2516 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2517 use. Recursively does the same for subexpressions. */
2520 copy_rtx_if_shared_1 (rtx
*orig1
)
2526 const char *format_ptr
;
2530 /* Repeat is used to turn tail-recursion into iteration. */
2537 code
= GET_CODE (x
);
2539 /* These types may be freely shared. */
2553 /* SCRATCH must be shared because they represent distinct values. */
2556 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
)
2561 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2562 a LABEL_REF, it isn't sharable. */
2563 if (GET_CODE (XEXP (x
, 0)) == PLUS
2564 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == SYMBOL_REF
2565 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
)
2574 /* The chain of insns is not being copied. */
2581 /* This rtx may not be shared. If it has already been seen,
2582 replace it with a copy of itself. */
2584 if (RTX_FLAG (x
, used
))
2588 copy
= rtx_alloc (code
);
2589 memcpy (copy
, x
, RTX_SIZE (code
));
2593 RTX_FLAG (x
, used
) = 1;
2595 /* Now scan the subexpressions recursively.
2596 We can store any replaced subexpressions directly into X
2597 since we know X is not shared! Any vectors in X
2598 must be copied if X was copied. */
2600 format_ptr
= GET_RTX_FORMAT (code
);
2601 length
= GET_RTX_LENGTH (code
);
2604 for (i
= 0; i
< length
; i
++)
2606 switch (*format_ptr
++)
2610 copy_rtx_if_shared_1 (last_ptr
);
2611 last_ptr
= &XEXP (x
, i
);
2615 if (XVEC (x
, i
) != NULL
)
2618 int len
= XVECLEN (x
, i
);
2620 /* Copy the vector iff I copied the rtx and the length
2622 if (copied
&& len
> 0)
2623 XVEC (x
, i
) = gen_rtvec_v (len
, XVEC (x
, i
)->elem
);
2625 /* Call recursively on all inside the vector. */
2626 for (j
= 0; j
< len
; j
++)
2629 copy_rtx_if_shared_1 (last_ptr
);
2630 last_ptr
= &XVECEXP (x
, i
, j
);
2645 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2646 to look for shared sub-parts. */
2649 reset_used_flags (rtx x
)
2653 const char *format_ptr
;
2656 /* Repeat is used to turn tail-recursion into iteration. */
2661 code
= GET_CODE (x
);
2663 /* These types may be freely shared so we needn't do any resetting
2684 /* The chain of insns is not being copied. */
2691 RTX_FLAG (x
, used
) = 0;
2693 format_ptr
= GET_RTX_FORMAT (code
);
2694 length
= GET_RTX_LENGTH (code
);
2696 for (i
= 0; i
< length
; i
++)
2698 switch (*format_ptr
++)
2706 reset_used_flags (XEXP (x
, i
));
2710 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2711 reset_used_flags (XVECEXP (x
, i
, j
));
2717 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2718 to look for shared sub-parts. */
2721 set_used_flags (rtx x
)
2725 const char *format_ptr
;
2730 code
= GET_CODE (x
);
2732 /* These types may be freely shared so we needn't do any resetting
2753 /* The chain of insns is not being copied. */
2760 RTX_FLAG (x
, used
) = 1;
2762 format_ptr
= GET_RTX_FORMAT (code
);
2763 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2765 switch (*format_ptr
++)
2768 set_used_flags (XEXP (x
, i
));
2772 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2773 set_used_flags (XVECEXP (x
, i
, j
));
2779 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2780 Return X or the rtx for the pseudo reg the value of X was copied into.
2781 OTHER must be valid as a SET_DEST. */
2784 make_safe_from (rtx x
, rtx other
)
2787 switch (GET_CODE (other
))
2790 other
= SUBREG_REG (other
);
2792 case STRICT_LOW_PART
:
2795 other
= XEXP (other
, 0);
2804 && GET_CODE (x
) != SUBREG
)
2806 && (REGNO (other
) < FIRST_PSEUDO_REGISTER
2807 || reg_mentioned_p (other
, x
))))
2809 rtx temp
= gen_reg_rtx (GET_MODE (x
));
2810 emit_move_insn (temp
, x
);
2816 /* Emission of insns (adding them to the doubly-linked list). */
2818 /* Return the first insn of the current sequence or current function. */
2826 /* Specify a new insn as the first in the chain. */
2829 set_first_insn (rtx insn
)
2831 gcc_assert (!PREV_INSN (insn
));
2835 /* Return the last insn emitted in current sequence or current function. */
2838 get_last_insn (void)
2843 /* Specify a new insn as the last in the chain. */
2846 set_last_insn (rtx insn
)
2848 gcc_assert (!NEXT_INSN (insn
));
2852 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2855 get_last_insn_anywhere (void)
2857 struct sequence_stack
*stack
;
2860 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
2861 if (stack
->last
!= 0)
2866 /* Return the first nonnote insn emitted in current sequence or current
2867 function. This routine looks inside SEQUENCEs. */
2870 get_first_nonnote_insn (void)
2872 rtx insn
= first_insn
;
2876 insn
= next_insn (insn
);
2877 if (insn
== 0 || !NOTE_P (insn
))
2884 /* Return the last nonnote insn emitted in current sequence or current
2885 function. This routine looks inside SEQUENCEs. */
2888 get_last_nonnote_insn (void)
2890 rtx insn
= last_insn
;
2894 insn
= previous_insn (insn
);
2895 if (insn
== 0 || !NOTE_P (insn
))
2902 /* Return a number larger than any instruction's uid in this function. */
2907 return cur_insn_uid
;
2910 /* Renumber instructions so that no instruction UIDs are wasted. */
2913 renumber_insns (FILE *stream
)
2917 /* If we're not supposed to renumber instructions, don't. */
2918 if (!flag_renumber_insns
)
2921 /* If there aren't that many instructions, then it's not really
2922 worth renumbering them. */
2923 if (flag_renumber_insns
== 1 && get_max_uid () < 25000)
2928 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2931 fprintf (stream
, "Renumbering insn %d to %d\n",
2932 INSN_UID (insn
), cur_insn_uid
);
2933 INSN_UID (insn
) = cur_insn_uid
++;
2937 /* Return the next insn. If it is a SEQUENCE, return the first insn
2941 next_insn (rtx insn
)
2945 insn
= NEXT_INSN (insn
);
2946 if (insn
&& NONJUMP_INSN_P (insn
)
2947 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2948 insn
= XVECEXP (PATTERN (insn
), 0, 0);
2954 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2958 previous_insn (rtx insn
)
2962 insn
= PREV_INSN (insn
);
2963 if (insn
&& NONJUMP_INSN_P (insn
)
2964 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2965 insn
= XVECEXP (PATTERN (insn
), 0, XVECLEN (PATTERN (insn
), 0) - 1);
2971 /* Return the next insn after INSN that is not a NOTE. This routine does not
2972 look inside SEQUENCEs. */
2975 next_nonnote_insn (rtx insn
)
2979 insn
= NEXT_INSN (insn
);
2980 if (insn
== 0 || !NOTE_P (insn
))
2987 /* Return the previous insn before INSN that is not a NOTE. This routine does
2988 not look inside SEQUENCEs. */
2991 prev_nonnote_insn (rtx insn
)
2995 insn
= PREV_INSN (insn
);
2996 if (insn
== 0 || !NOTE_P (insn
))
3003 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3004 or 0, if there is none. This routine does not look inside
3008 next_real_insn (rtx insn
)
3012 insn
= NEXT_INSN (insn
);
3013 if (insn
== 0 || INSN_P (insn
))
3020 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3021 or 0, if there is none. This routine does not look inside
3025 prev_real_insn (rtx insn
)
3029 insn
= PREV_INSN (insn
);
3030 if (insn
== 0 || INSN_P (insn
))
3037 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3038 This routine does not look inside SEQUENCEs. */
3041 last_call_insn (void)
3045 for (insn
= get_last_insn ();
3046 insn
&& !CALL_P (insn
);
3047 insn
= PREV_INSN (insn
))
3053 /* Find the next insn after INSN that really does something. This routine
3054 does not look inside SEQUENCEs. Until reload has completed, this is the
3055 same as next_real_insn. */
3058 active_insn_p (rtx insn
)
3060 return (CALL_P (insn
) || JUMP_P (insn
)
3061 || (NONJUMP_INSN_P (insn
)
3062 && (! reload_completed
3063 || (GET_CODE (PATTERN (insn
)) != USE
3064 && GET_CODE (PATTERN (insn
)) != CLOBBER
))));
3068 next_active_insn (rtx insn
)
3072 insn
= NEXT_INSN (insn
);
3073 if (insn
== 0 || active_insn_p (insn
))
3080 /* Find the last insn before INSN that really does something. This routine
3081 does not look inside SEQUENCEs. Until reload has completed, this is the
3082 same as prev_real_insn. */
3085 prev_active_insn (rtx insn
)
3089 insn
= PREV_INSN (insn
);
3090 if (insn
== 0 || active_insn_p (insn
))
3097 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3100 next_label (rtx insn
)
3104 insn
= NEXT_INSN (insn
);
3105 if (insn
== 0 || LABEL_P (insn
))
3112 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3115 prev_label (rtx insn
)
3119 insn
= PREV_INSN (insn
);
3120 if (insn
== 0 || LABEL_P (insn
))
3127 /* Return the last label to mark the same position as LABEL. Return null
3128 if LABEL itself is null. */
3131 skip_consecutive_labels (rtx label
)
3135 for (insn
= label
; insn
!= 0 && !INSN_P (insn
); insn
= NEXT_INSN (insn
))
3143 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3144 and REG_CC_USER notes so we can find it. */
3147 link_cc0_insns (rtx insn
)
3149 rtx user
= next_nonnote_insn (insn
);
3151 if (NONJUMP_INSN_P (user
) && GET_CODE (PATTERN (user
)) == SEQUENCE
)
3152 user
= XVECEXP (PATTERN (user
), 0, 0);
3154 REG_NOTES (user
) = gen_rtx_INSN_LIST (REG_CC_SETTER
, insn
,
3156 REG_NOTES (insn
) = gen_rtx_INSN_LIST (REG_CC_USER
, user
, REG_NOTES (insn
));
3159 /* Return the next insn that uses CC0 after INSN, which is assumed to
3160 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3161 applied to the result of this function should yield INSN).
3163 Normally, this is simply the next insn. However, if a REG_CC_USER note
3164 is present, it contains the insn that uses CC0.
3166 Return 0 if we can't find the insn. */
3169 next_cc0_user (rtx insn
)
3171 rtx note
= find_reg_note (insn
, REG_CC_USER
, NULL_RTX
);
3174 return XEXP (note
, 0);
3176 insn
= next_nonnote_insn (insn
);
3177 if (insn
&& NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3178 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3180 if (insn
&& INSN_P (insn
) && reg_mentioned_p (cc0_rtx
, PATTERN (insn
)))
3186 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3187 note, it is the previous insn. */
3190 prev_cc0_setter (rtx insn
)
3192 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
3195 return XEXP (note
, 0);
3197 insn
= prev_nonnote_insn (insn
);
3198 gcc_assert (sets_cc0_p (PATTERN (insn
)));
3204 /* Increment the label uses for all labels present in rtx. */
3207 mark_label_nuses (rtx x
)
3213 code
= GET_CODE (x
);
3214 if (code
== LABEL_REF
&& LABEL_P (XEXP (x
, 0)))
3215 LABEL_NUSES (XEXP (x
, 0))++;
3217 fmt
= GET_RTX_FORMAT (code
);
3218 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3221 mark_label_nuses (XEXP (x
, i
));
3222 else if (fmt
[i
] == 'E')
3223 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3224 mark_label_nuses (XVECEXP (x
, i
, j
));
3229 /* Try splitting insns that can be split for better scheduling.
3230 PAT is the pattern which might split.
3231 TRIAL is the insn providing PAT.
3232 LAST is nonzero if we should return the last insn of the sequence produced.
3234 If this routine succeeds in splitting, it returns the first or last
3235 replacement insn depending on the value of LAST. Otherwise, it
3236 returns TRIAL. If the insn to be returned can be split, it will be. */
3239 try_split (rtx pat
, rtx trial
, int last
)
3241 rtx before
= PREV_INSN (trial
);
3242 rtx after
= NEXT_INSN (trial
);
3243 int has_barrier
= 0;
3247 rtx insn_last
, insn
;
3250 if (any_condjump_p (trial
)
3251 && (note
= find_reg_note (trial
, REG_BR_PROB
, 0)))
3252 split_branch_probability
= INTVAL (XEXP (note
, 0));
3253 probability
= split_branch_probability
;
3255 seq
= split_insns (pat
, trial
);
3257 split_branch_probability
= -1;
3259 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3260 We may need to handle this specially. */
3261 if (after
&& BARRIER_P (after
))
3264 after
= NEXT_INSN (after
);
3270 /* Avoid infinite loop if any insn of the result matches
3271 the original pattern. */
3275 if (INSN_P (insn_last
)
3276 && rtx_equal_p (PATTERN (insn_last
), pat
))
3278 if (!NEXT_INSN (insn_last
))
3280 insn_last
= NEXT_INSN (insn_last
);
3284 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3288 mark_jump_label (PATTERN (insn
), insn
, 0);
3290 if (probability
!= -1
3291 && any_condjump_p (insn
)
3292 && !find_reg_note (insn
, REG_BR_PROB
, 0))
3294 /* We can preserve the REG_BR_PROB notes only if exactly
3295 one jump is created, otherwise the machine description
3296 is responsible for this step using
3297 split_branch_probability variable. */
3298 gcc_assert (njumps
== 1);
3300 = gen_rtx_EXPR_LIST (REG_BR_PROB
,
3301 GEN_INT (probability
),
3307 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3308 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3311 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3314 rtx
*p
= &CALL_INSN_FUNCTION_USAGE (insn
);
3317 *p
= CALL_INSN_FUNCTION_USAGE (trial
);
3318 SIBLING_CALL_P (insn
) = SIBLING_CALL_P (trial
);
3322 /* Copy notes, particularly those related to the CFG. */
3323 for (note
= REG_NOTES (trial
); note
; note
= XEXP (note
, 1))
3325 switch (REG_NOTE_KIND (note
))
3329 while (insn
!= NULL_RTX
)
3332 || (flag_non_call_exceptions
&& INSN_P (insn
)
3333 && may_trap_p (PATTERN (insn
))))
3335 = gen_rtx_EXPR_LIST (REG_EH_REGION
,
3338 insn
= PREV_INSN (insn
);
3344 case REG_ALWAYS_RETURN
:
3346 while (insn
!= NULL_RTX
)
3350 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note
),
3353 insn
= PREV_INSN (insn
);
3357 case REG_NON_LOCAL_GOTO
:
3359 while (insn
!= NULL_RTX
)
3363 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note
),
3366 insn
= PREV_INSN (insn
);
3375 /* If there are LABELS inside the split insns increment the
3376 usage count so we don't delete the label. */
3377 if (NONJUMP_INSN_P (trial
))
3380 while (insn
!= NULL_RTX
)
3382 if (NONJUMP_INSN_P (insn
))
3383 mark_label_nuses (PATTERN (insn
));
3385 insn
= PREV_INSN (insn
);
3389 tem
= emit_insn_after_setloc (seq
, trial
, INSN_LOCATOR (trial
));
3391 delete_insn (trial
);
3393 emit_barrier_after (tem
);
3395 /* Recursively call try_split for each new insn created; by the
3396 time control returns here that insn will be fully split, so
3397 set LAST and continue from the insn after the one returned.
3398 We can't use next_active_insn here since AFTER may be a note.
3399 Ignore deleted insns, which can be occur if not optimizing. */
3400 for (tem
= NEXT_INSN (before
); tem
!= after
; tem
= NEXT_INSN (tem
))
3401 if (! INSN_DELETED_P (tem
) && INSN_P (tem
))
3402 tem
= try_split (PATTERN (tem
), tem
, 1);
3404 /* Return either the first or the last insn, depending on which was
3407 ? (after
? PREV_INSN (after
) : last_insn
)
3408 : NEXT_INSN (before
);
3411 /* Make and return an INSN rtx, initializing all its slots.
3412 Store PATTERN in the pattern slots. */
3415 make_insn_raw (rtx pattern
)
3419 insn
= rtx_alloc (INSN
);
3421 INSN_UID (insn
) = cur_insn_uid
++;
3422 PATTERN (insn
) = pattern
;
3423 INSN_CODE (insn
) = -1;
3424 LOG_LINKS (insn
) = NULL
;
3425 REG_NOTES (insn
) = NULL
;
3426 INSN_LOCATOR (insn
) = 0;
3427 BLOCK_FOR_INSN (insn
) = NULL
;
3429 #ifdef ENABLE_RTL_CHECKING
3432 && (returnjump_p (insn
)
3433 || (GET_CODE (insn
) == SET
3434 && SET_DEST (insn
) == pc_rtx
)))
3436 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3444 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3447 make_jump_insn_raw (rtx pattern
)
3451 insn
= rtx_alloc (JUMP_INSN
);
3452 INSN_UID (insn
) = cur_insn_uid
++;
3454 PATTERN (insn
) = pattern
;
3455 INSN_CODE (insn
) = -1;
3456 LOG_LINKS (insn
) = NULL
;
3457 REG_NOTES (insn
) = NULL
;
3458 JUMP_LABEL (insn
) = NULL
;
3459 INSN_LOCATOR (insn
) = 0;
3460 BLOCK_FOR_INSN (insn
) = NULL
;
3465 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3468 make_call_insn_raw (rtx pattern
)
3472 insn
= rtx_alloc (CALL_INSN
);
3473 INSN_UID (insn
) = cur_insn_uid
++;
3475 PATTERN (insn
) = pattern
;
3476 INSN_CODE (insn
) = -1;
3477 LOG_LINKS (insn
) = NULL
;
3478 REG_NOTES (insn
) = NULL
;
3479 CALL_INSN_FUNCTION_USAGE (insn
) = NULL
;
3480 INSN_LOCATOR (insn
) = 0;
3481 BLOCK_FOR_INSN (insn
) = NULL
;
3486 /* Add INSN to the end of the doubly-linked list.
3487 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3492 PREV_INSN (insn
) = last_insn
;
3493 NEXT_INSN (insn
) = 0;
3495 if (NULL
!= last_insn
)
3496 NEXT_INSN (last_insn
) = insn
;
3498 if (NULL
== first_insn
)
3504 /* Add INSN into the doubly-linked list after insn AFTER. This and
3505 the next should be the only functions called to insert an insn once
3506 delay slots have been filled since only they know how to update a
3510 add_insn_after (rtx insn
, rtx after
)
3512 rtx next
= NEXT_INSN (after
);
3515 gcc_assert (!optimize
|| !INSN_DELETED_P (after
));
3517 NEXT_INSN (insn
) = next
;
3518 PREV_INSN (insn
) = after
;
3522 PREV_INSN (next
) = insn
;
3523 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3524 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = insn
;
3526 else if (last_insn
== after
)
3530 struct sequence_stack
*stack
= seq_stack
;
3531 /* Scan all pending sequences too. */
3532 for (; stack
; stack
= stack
->next
)
3533 if (after
== stack
->last
)
3542 if (!BARRIER_P (after
)
3543 && !BARRIER_P (insn
)
3544 && (bb
= BLOCK_FOR_INSN (after
)))
3546 set_block_for_insn (insn
, bb
);
3548 bb
->flags
|= BB_DIRTY
;
3549 /* Should not happen as first in the BB is always
3550 either NOTE or LABEL. */
3551 if (BB_END (bb
) == after
3552 /* Avoid clobbering of structure when creating new BB. */
3553 && !BARRIER_P (insn
)
3555 || NOTE_LINE_NUMBER (insn
) != NOTE_INSN_BASIC_BLOCK
))
3559 NEXT_INSN (after
) = insn
;
3560 if (NONJUMP_INSN_P (after
) && GET_CODE (PATTERN (after
)) == SEQUENCE
)
3562 rtx sequence
= PATTERN (after
);
3563 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3567 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3568 the previous should be the only functions called to insert an insn once
3569 delay slots have been filled since only they know how to update a
3573 add_insn_before (rtx insn
, rtx before
)
3575 rtx prev
= PREV_INSN (before
);
3578 gcc_assert (!optimize
|| !INSN_DELETED_P (before
));
3580 PREV_INSN (insn
) = prev
;
3581 NEXT_INSN (insn
) = before
;
3585 NEXT_INSN (prev
) = insn
;
3586 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3588 rtx sequence
= PATTERN (prev
);
3589 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3592 else if (first_insn
== before
)
3596 struct sequence_stack
*stack
= seq_stack
;
3597 /* Scan all pending sequences too. */
3598 for (; stack
; stack
= stack
->next
)
3599 if (before
== stack
->first
)
3601 stack
->first
= insn
;
3608 if (!BARRIER_P (before
)
3609 && !BARRIER_P (insn
)
3610 && (bb
= BLOCK_FOR_INSN (before
)))
3612 set_block_for_insn (insn
, bb
);
3614 bb
->flags
|= BB_DIRTY
;
3615 /* Should not happen as first in the BB is always either NOTE or
3617 gcc_assert (BB_HEAD (bb
) != insn
3618 /* Avoid clobbering of structure when creating new BB. */
3621 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_BASIC_BLOCK
));
3624 PREV_INSN (before
) = insn
;
3625 if (NONJUMP_INSN_P (before
) && GET_CODE (PATTERN (before
)) == SEQUENCE
)
3626 PREV_INSN (XVECEXP (PATTERN (before
), 0, 0)) = insn
;
3629 /* Remove an insn from its doubly-linked list. This function knows how
3630 to handle sequences. */
3632 remove_insn (rtx insn
)
3634 rtx next
= NEXT_INSN (insn
);
3635 rtx prev
= PREV_INSN (insn
);
3640 NEXT_INSN (prev
) = next
;
3641 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3643 rtx sequence
= PATTERN (prev
);
3644 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = next
;
3647 else if (first_insn
== insn
)
3651 struct sequence_stack
*stack
= seq_stack
;
3652 /* Scan all pending sequences too. */
3653 for (; stack
; stack
= stack
->next
)
3654 if (insn
== stack
->first
)
3656 stack
->first
= next
;
3665 PREV_INSN (next
) = prev
;
3666 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3667 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = prev
;
3669 else if (last_insn
== insn
)
3673 struct sequence_stack
*stack
= seq_stack
;
3674 /* Scan all pending sequences too. */
3675 for (; stack
; stack
= stack
->next
)
3676 if (insn
== stack
->last
)
3684 if (!BARRIER_P (insn
)
3685 && (bb
= BLOCK_FOR_INSN (insn
)))
3688 bb
->flags
|= BB_DIRTY
;
3689 if (BB_HEAD (bb
) == insn
)
3691 /* Never ever delete the basic block note without deleting whole
3693 gcc_assert (!NOTE_P (insn
));
3694 BB_HEAD (bb
) = next
;
3696 if (BB_END (bb
) == insn
)
3701 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3704 add_function_usage_to (rtx call_insn
, rtx call_fusage
)
3706 gcc_assert (call_insn
&& CALL_P (call_insn
));
3708 /* Put the register usage information on the CALL. If there is already
3709 some usage information, put ours at the end. */
3710 if (CALL_INSN_FUNCTION_USAGE (call_insn
))
3714 for (link
= CALL_INSN_FUNCTION_USAGE (call_insn
); XEXP (link
, 1) != 0;
3715 link
= XEXP (link
, 1))
3718 XEXP (link
, 1) = call_fusage
;
3721 CALL_INSN_FUNCTION_USAGE (call_insn
) = call_fusage
;
3724 /* Delete all insns made since FROM.
3725 FROM becomes the new last instruction. */
3728 delete_insns_since (rtx from
)
3733 NEXT_INSN (from
) = 0;
3737 /* This function is deprecated, please use sequences instead.
3739 Move a consecutive bunch of insns to a different place in the chain.
3740 The insns to be moved are those between FROM and TO.
3741 They are moved to a new position after the insn AFTER.
3742 AFTER must not be FROM or TO or any insn in between.
3744 This function does not know about SEQUENCEs and hence should not be
3745 called after delay-slot filling has been done. */
3748 reorder_insns_nobb (rtx from
, rtx to
, rtx after
)
3750 /* Splice this bunch out of where it is now. */
3751 if (PREV_INSN (from
))
3752 NEXT_INSN (PREV_INSN (from
)) = NEXT_INSN (to
);
3754 PREV_INSN (NEXT_INSN (to
)) = PREV_INSN (from
);
3755 if (last_insn
== to
)
3756 last_insn
= PREV_INSN (from
);
3757 if (first_insn
== from
)
3758 first_insn
= NEXT_INSN (to
);
3760 /* Make the new neighbors point to it and it to them. */
3761 if (NEXT_INSN (after
))
3762 PREV_INSN (NEXT_INSN (after
)) = to
;
3764 NEXT_INSN (to
) = NEXT_INSN (after
);
3765 PREV_INSN (from
) = after
;
3766 NEXT_INSN (after
) = from
;
3767 if (after
== last_insn
)
3771 /* Same as function above, but take care to update BB boundaries. */
3773 reorder_insns (rtx from
, rtx to
, rtx after
)
3775 rtx prev
= PREV_INSN (from
);
3776 basic_block bb
, bb2
;
3778 reorder_insns_nobb (from
, to
, after
);
3780 if (!BARRIER_P (after
)
3781 && (bb
= BLOCK_FOR_INSN (after
)))
3784 bb
->flags
|= BB_DIRTY
;
3786 if (!BARRIER_P (from
)
3787 && (bb2
= BLOCK_FOR_INSN (from
)))
3789 if (BB_END (bb2
) == to
)
3790 BB_END (bb2
) = prev
;
3791 bb2
->flags
|= BB_DIRTY
;
3794 if (BB_END (bb
) == after
)
3797 for (x
= from
; x
!= NEXT_INSN (to
); x
= NEXT_INSN (x
))
3799 set_block_for_insn (x
, bb
);
3803 /* Return the line note insn preceding INSN. */
3806 find_line_note (rtx insn
)
3808 if (no_line_numbers
)
3811 for (; insn
; insn
= PREV_INSN (insn
))
3813 && NOTE_LINE_NUMBER (insn
) >= 0)
3819 /* Remove unnecessary notes from the instruction stream. */
3822 remove_unnecessary_notes (void)
3824 rtx block_stack
= NULL_RTX
;
3825 rtx eh_stack
= NULL_RTX
;
3830 /* We must not remove the first instruction in the function because
3831 the compiler depends on the first instruction being a note. */
3832 for (insn
= NEXT_INSN (get_insns ()); insn
; insn
= next
)
3834 /* Remember what's next. */
3835 next
= NEXT_INSN (insn
);
3837 /* We're only interested in notes. */
3841 switch (NOTE_LINE_NUMBER (insn
))
3843 case NOTE_INSN_DELETED
:
3847 case NOTE_INSN_EH_REGION_BEG
:
3848 eh_stack
= alloc_INSN_LIST (insn
, eh_stack
);
3851 case NOTE_INSN_EH_REGION_END
:
3852 /* Too many end notes. */
3853 gcc_assert (eh_stack
);
3854 /* Mismatched nesting. */
3855 gcc_assert (NOTE_EH_HANDLER (XEXP (eh_stack
, 0))
3856 == NOTE_EH_HANDLER (insn
));
3858 eh_stack
= XEXP (eh_stack
, 1);
3859 free_INSN_LIST_node (tmp
);
3862 case NOTE_INSN_BLOCK_BEG
:
3863 /* By now, all notes indicating lexical blocks should have
3864 NOTE_BLOCK filled in. */
3865 gcc_assert (NOTE_BLOCK (insn
));
3866 block_stack
= alloc_INSN_LIST (insn
, block_stack
);
3869 case NOTE_INSN_BLOCK_END
:
3870 /* Too many end notes. */
3871 gcc_assert (block_stack
);
3872 /* Mismatched nesting. */
3873 gcc_assert (NOTE_BLOCK (XEXP (block_stack
, 0)) == NOTE_BLOCK (insn
));
3875 block_stack
= XEXP (block_stack
, 1);
3876 free_INSN_LIST_node (tmp
);
3878 /* Scan back to see if there are any non-note instructions
3879 between INSN and the beginning of this block. If not,
3880 then there is no PC range in the generated code that will
3881 actually be in this block, so there's no point in
3882 remembering the existence of the block. */
3883 for (tmp
= PREV_INSN (insn
); tmp
; tmp
= PREV_INSN (tmp
))
3885 /* This block contains a real instruction. Note that we
3886 don't include labels; if the only thing in the block
3887 is a label, then there are still no PC values that
3888 lie within the block. */
3892 /* We're only interested in NOTEs. */
3896 if (NOTE_LINE_NUMBER (tmp
) == NOTE_INSN_BLOCK_BEG
)
3898 /* We just verified that this BLOCK matches us with
3899 the block_stack check above. Never delete the
3900 BLOCK for the outermost scope of the function; we
3901 can refer to names from that scope even if the
3902 block notes are messed up. */
3903 if (! is_body_block (NOTE_BLOCK (insn
))
3904 && (*debug_hooks
->ignore_block
) (NOTE_BLOCK (insn
)))
3911 else if (NOTE_LINE_NUMBER (tmp
) == NOTE_INSN_BLOCK_END
)
3912 /* There's a nested block. We need to leave the
3913 current block in place since otherwise the debugger
3914 wouldn't be able to show symbols from our block in
3915 the nested block. */
3921 /* Too many begin notes. */
3922 gcc_assert (!block_stack
&& !eh_stack
);
3926 /* Emit insn(s) of given code and pattern
3927 at a specified place within the doubly-linked list.
3929 All of the emit_foo global entry points accept an object
3930 X which is either an insn list or a PATTERN of a single
3933 There are thus a few canonical ways to generate code and
3934 emit it at a specific place in the instruction stream. For
3935 example, consider the instruction named SPOT and the fact that
3936 we would like to emit some instructions before SPOT. We might
3940 ... emit the new instructions ...
3941 insns_head = get_insns ();
3944 emit_insn_before (insns_head, SPOT);
3946 It used to be common to generate SEQUENCE rtl instead, but that
3947 is a relic of the past which no longer occurs. The reason is that
3948 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3949 generated would almost certainly die right after it was created. */
3951 /* Make X be output before the instruction BEFORE. */
3954 emit_insn_before_noloc (rtx x
, rtx before
)
3959 gcc_assert (before
);
3964 switch (GET_CODE (x
))
3975 rtx next
= NEXT_INSN (insn
);
3976 add_insn_before (insn
, before
);
3982 #ifdef ENABLE_RTL_CHECKING
3989 last
= make_insn_raw (x
);
3990 add_insn_before (last
, before
);
3997 /* Make an instruction with body X and code JUMP_INSN
3998 and output it before the instruction BEFORE. */
4001 emit_jump_insn_before_noloc (rtx x
, rtx before
)
4003 rtx insn
, last
= NULL_RTX
;
4005 gcc_assert (before
);
4007 switch (GET_CODE (x
))
4018 rtx next
= NEXT_INSN (insn
);
4019 add_insn_before (insn
, before
);
4025 #ifdef ENABLE_RTL_CHECKING
4032 last
= make_jump_insn_raw (x
);
4033 add_insn_before (last
, before
);
4040 /* Make an instruction with body X and code CALL_INSN
4041 and output it before the instruction BEFORE. */
4044 emit_call_insn_before_noloc (rtx x
, rtx before
)
4046 rtx last
= NULL_RTX
, insn
;
4048 gcc_assert (before
);
4050 switch (GET_CODE (x
))
4061 rtx next
= NEXT_INSN (insn
);
4062 add_insn_before (insn
, before
);
4068 #ifdef ENABLE_RTL_CHECKING
4075 last
= make_call_insn_raw (x
);
4076 add_insn_before (last
, before
);
4083 /* Make an insn of code BARRIER
4084 and output it before the insn BEFORE. */
4087 emit_barrier_before (rtx before
)
4089 rtx insn
= rtx_alloc (BARRIER
);
4091 INSN_UID (insn
) = cur_insn_uid
++;
4093 add_insn_before (insn
, before
);
4097 /* Emit the label LABEL before the insn BEFORE. */
4100 emit_label_before (rtx label
, rtx before
)
4102 /* This can be called twice for the same label as a result of the
4103 confusion that follows a syntax error! So make it harmless. */
4104 if (INSN_UID (label
) == 0)
4106 INSN_UID (label
) = cur_insn_uid
++;
4107 add_insn_before (label
, before
);
4113 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4116 emit_note_before (int subtype
, rtx before
)
4118 rtx note
= rtx_alloc (NOTE
);
4119 INSN_UID (note
) = cur_insn_uid
++;
4120 #ifndef USE_MAPPED_LOCATION
4121 NOTE_SOURCE_FILE (note
) = 0;
4123 NOTE_LINE_NUMBER (note
) = subtype
;
4124 BLOCK_FOR_INSN (note
) = NULL
;
4126 add_insn_before (note
, before
);
4130 /* Helper for emit_insn_after, handles lists of instructions
4133 static rtx
emit_insn_after_1 (rtx
, rtx
);
4136 emit_insn_after_1 (rtx first
, rtx after
)
4142 if (!BARRIER_P (after
)
4143 && (bb
= BLOCK_FOR_INSN (after
)))
4145 bb
->flags
|= BB_DIRTY
;
4146 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4147 if (!BARRIER_P (last
))
4148 set_block_for_insn (last
, bb
);
4149 if (!BARRIER_P (last
))
4150 set_block_for_insn (last
, bb
);
4151 if (BB_END (bb
) == after
)
4155 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4158 after_after
= NEXT_INSN (after
);
4160 NEXT_INSN (after
) = first
;
4161 PREV_INSN (first
) = after
;
4162 NEXT_INSN (last
) = after_after
;
4164 PREV_INSN (after_after
) = last
;
4166 if (after
== last_insn
)
4171 /* Make X be output after the insn AFTER. */
4174 emit_insn_after_noloc (rtx x
, rtx after
)
4183 switch (GET_CODE (x
))
4191 last
= emit_insn_after_1 (x
, after
);
4194 #ifdef ENABLE_RTL_CHECKING
4201 last
= make_insn_raw (x
);
4202 add_insn_after (last
, after
);
4209 /* Similar to emit_insn_after, except that line notes are to be inserted so
4210 as to act as if this insn were at FROM. */
4213 emit_insn_after_with_line_notes (rtx x
, rtx after
, rtx from
)
4215 rtx from_line
= find_line_note (from
);
4216 rtx after_line
= find_line_note (after
);
4217 rtx insn
= emit_insn_after (x
, after
);
4220 emit_note_copy_after (from_line
, after
);
4223 emit_note_copy_after (after_line
, insn
);
4226 /* Make an insn of code JUMP_INSN with body X
4227 and output it after the insn AFTER. */
4230 emit_jump_insn_after_noloc (rtx x
, rtx after
)
4236 switch (GET_CODE (x
))
4244 last
= emit_insn_after_1 (x
, after
);
4247 #ifdef ENABLE_RTL_CHECKING
4254 last
= make_jump_insn_raw (x
);
4255 add_insn_after (last
, after
);
4262 /* Make an instruction with body X and code CALL_INSN
4263 and output it after the instruction AFTER. */
4266 emit_call_insn_after_noloc (rtx x
, rtx after
)
4272 switch (GET_CODE (x
))
4280 last
= emit_insn_after_1 (x
, after
);
4283 #ifdef ENABLE_RTL_CHECKING
4290 last
= make_call_insn_raw (x
);
4291 add_insn_after (last
, after
);
4298 /* Make an insn of code BARRIER
4299 and output it after the insn AFTER. */
4302 emit_barrier_after (rtx after
)
4304 rtx insn
= rtx_alloc (BARRIER
);
4306 INSN_UID (insn
) = cur_insn_uid
++;
4308 add_insn_after (insn
, after
);
4312 /* Emit the label LABEL after the insn AFTER. */
4315 emit_label_after (rtx label
, rtx after
)
4317 /* This can be called twice for the same label
4318 as a result of the confusion that follows a syntax error!
4319 So make it harmless. */
4320 if (INSN_UID (label
) == 0)
4322 INSN_UID (label
) = cur_insn_uid
++;
4323 add_insn_after (label
, after
);
4329 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4332 emit_note_after (int subtype
, rtx after
)
4334 rtx note
= rtx_alloc (NOTE
);
4335 INSN_UID (note
) = cur_insn_uid
++;
4336 #ifndef USE_MAPPED_LOCATION
4337 NOTE_SOURCE_FILE (note
) = 0;
4339 NOTE_LINE_NUMBER (note
) = subtype
;
4340 BLOCK_FOR_INSN (note
) = NULL
;
4341 add_insn_after (note
, after
);
4345 /* Emit a copy of note ORIG after the insn AFTER. */
4348 emit_note_copy_after (rtx orig
, rtx after
)
4352 if (NOTE_LINE_NUMBER (orig
) >= 0 && no_line_numbers
)
4358 note
= rtx_alloc (NOTE
);
4359 INSN_UID (note
) = cur_insn_uid
++;
4360 NOTE_LINE_NUMBER (note
) = NOTE_LINE_NUMBER (orig
);
4361 NOTE_DATA (note
) = NOTE_DATA (orig
);
4362 BLOCK_FOR_INSN (note
) = NULL
;
4363 add_insn_after (note
, after
);
4367 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4369 emit_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4371 rtx last
= emit_insn_after_noloc (pattern
, after
);
4373 if (pattern
== NULL_RTX
|| !loc
)
4376 after
= NEXT_INSN (after
);
4379 if (active_insn_p (after
) && !INSN_LOCATOR (after
))
4380 INSN_LOCATOR (after
) = loc
;
4383 after
= NEXT_INSN (after
);
4388 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4390 emit_insn_after (rtx pattern
, rtx after
)
4393 return emit_insn_after_setloc (pattern
, after
, INSN_LOCATOR (after
));
4395 return emit_insn_after_noloc (pattern
, after
);
4398 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4400 emit_jump_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4402 rtx last
= emit_jump_insn_after_noloc (pattern
, after
);
4404 if (pattern
== NULL_RTX
|| !loc
)
4407 after
= NEXT_INSN (after
);
4410 if (active_insn_p (after
) && !INSN_LOCATOR (after
))
4411 INSN_LOCATOR (after
) = loc
;
4414 after
= NEXT_INSN (after
);
4419 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4421 emit_jump_insn_after (rtx pattern
, rtx after
)
4424 return emit_jump_insn_after_setloc (pattern
, after
, INSN_LOCATOR (after
));
4426 return emit_jump_insn_after_noloc (pattern
, after
);
4429 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4431 emit_call_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4433 rtx last
= emit_call_insn_after_noloc (pattern
, after
);
4435 if (pattern
== NULL_RTX
|| !loc
)
4438 after
= NEXT_INSN (after
);
4441 if (active_insn_p (after
) && !INSN_LOCATOR (after
))
4442 INSN_LOCATOR (after
) = loc
;
4445 after
= NEXT_INSN (after
);
4450 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4452 emit_call_insn_after (rtx pattern
, rtx after
)
4455 return emit_call_insn_after_setloc (pattern
, after
, INSN_LOCATOR (after
));
4457 return emit_call_insn_after_noloc (pattern
, after
);
4460 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4462 emit_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4464 rtx first
= PREV_INSN (before
);
4465 rtx last
= emit_insn_before_noloc (pattern
, before
);
4467 if (pattern
== NULL_RTX
|| !loc
)
4470 first
= NEXT_INSN (first
);
4473 if (active_insn_p (first
) && !INSN_LOCATOR (first
))
4474 INSN_LOCATOR (first
) = loc
;
4477 first
= NEXT_INSN (first
);
4482 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4484 emit_insn_before (rtx pattern
, rtx before
)
4486 if (INSN_P (before
))
4487 return emit_insn_before_setloc (pattern
, before
, INSN_LOCATOR (before
));
4489 return emit_insn_before_noloc (pattern
, before
);
4492 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4494 emit_jump_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4496 rtx first
= PREV_INSN (before
);
4497 rtx last
= emit_jump_insn_before_noloc (pattern
, before
);
4499 if (pattern
== NULL_RTX
)
4502 first
= NEXT_INSN (first
);
4505 if (active_insn_p (first
) && !INSN_LOCATOR (first
))
4506 INSN_LOCATOR (first
) = loc
;
4509 first
= NEXT_INSN (first
);
4514 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4516 emit_jump_insn_before (rtx pattern
, rtx before
)
4518 if (INSN_P (before
))
4519 return emit_jump_insn_before_setloc (pattern
, before
, INSN_LOCATOR (before
));
4521 return emit_jump_insn_before_noloc (pattern
, before
);
4524 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4526 emit_call_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4528 rtx first
= PREV_INSN (before
);
4529 rtx last
= emit_call_insn_before_noloc (pattern
, before
);
4531 if (pattern
== NULL_RTX
)
4534 first
= NEXT_INSN (first
);
4537 if (active_insn_p (first
) && !INSN_LOCATOR (first
))
4538 INSN_LOCATOR (first
) = loc
;
4541 first
= NEXT_INSN (first
);
4546 /* like emit_call_insn_before_noloc,
4547 but set insn_locator according to before. */
4549 emit_call_insn_before (rtx pattern
, rtx before
)
4551 if (INSN_P (before
))
4552 return emit_call_insn_before_setloc (pattern
, before
, INSN_LOCATOR (before
));
4554 return emit_call_insn_before_noloc (pattern
, before
);
4557 /* Take X and emit it at the end of the doubly-linked
4560 Returns the last insn emitted. */
4565 rtx last
= last_insn
;
4571 switch (GET_CODE (x
))
4582 rtx next
= NEXT_INSN (insn
);
4589 #ifdef ENABLE_RTL_CHECKING
4596 last
= make_insn_raw (x
);
4604 /* Make an insn of code JUMP_INSN with pattern X
4605 and add it to the end of the doubly-linked list. */
4608 emit_jump_insn (rtx x
)
4610 rtx last
= NULL_RTX
, insn
;
4612 switch (GET_CODE (x
))
4623 rtx next
= NEXT_INSN (insn
);
4630 #ifdef ENABLE_RTL_CHECKING
4637 last
= make_jump_insn_raw (x
);
4645 /* Make an insn of code CALL_INSN with pattern X
4646 and add it to the end of the doubly-linked list. */
4649 emit_call_insn (rtx x
)
4653 switch (GET_CODE (x
))
4661 insn
= emit_insn (x
);
4664 #ifdef ENABLE_RTL_CHECKING
4671 insn
= make_call_insn_raw (x
);
4679 /* Add the label LABEL to the end of the doubly-linked list. */
4682 emit_label (rtx label
)
4684 /* This can be called twice for the same label
4685 as a result of the confusion that follows a syntax error!
4686 So make it harmless. */
4687 if (INSN_UID (label
) == 0)
4689 INSN_UID (label
) = cur_insn_uid
++;
4695 /* Make an insn of code BARRIER
4696 and add it to the end of the doubly-linked list. */
4701 rtx barrier
= rtx_alloc (BARRIER
);
4702 INSN_UID (barrier
) = cur_insn_uid
++;
4707 /* Make line numbering NOTE insn for LOCATION add it to the end
4708 of the doubly-linked list, but only if line-numbers are desired for
4709 debugging info and it doesn't match the previous one. */
4712 emit_line_note (location_t location
)
4716 #ifdef USE_MAPPED_LOCATION
4717 if (location
== last_location
)
4720 if (location
.file
&& last_location
.file
4721 && !strcmp (location
.file
, last_location
.file
)
4722 && location
.line
== last_location
.line
)
4725 last_location
= location
;
4727 if (no_line_numbers
)
4733 #ifdef USE_MAPPED_LOCATION
4734 note
= emit_note ((int) location
);
4736 note
= emit_note (location
.line
);
4737 NOTE_SOURCE_FILE (note
) = location
.file
;
4743 /* Emit a copy of note ORIG. */
4746 emit_note_copy (rtx orig
)
4750 if (NOTE_LINE_NUMBER (orig
) >= 0 && no_line_numbers
)
4756 note
= rtx_alloc (NOTE
);
4758 INSN_UID (note
) = cur_insn_uid
++;
4759 NOTE_DATA (note
) = NOTE_DATA (orig
);
4760 NOTE_LINE_NUMBER (note
) = NOTE_LINE_NUMBER (orig
);
4761 BLOCK_FOR_INSN (note
) = NULL
;
4767 /* Make an insn of code NOTE or type NOTE_NO
4768 and add it to the end of the doubly-linked list. */
4771 emit_note (int note_no
)
4775 note
= rtx_alloc (NOTE
);
4776 INSN_UID (note
) = cur_insn_uid
++;
4777 NOTE_LINE_NUMBER (note
) = note_no
;
4778 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
4779 BLOCK_FOR_INSN (note
) = NULL
;
4784 /* Cause next statement to emit a line note even if the line number
4788 force_next_line_note (void)
4790 #ifdef USE_MAPPED_LOCATION
4793 last_location
.line
= -1;
4797 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4798 note of this type already exists, remove it first. */
4801 set_unique_reg_note (rtx insn
, enum reg_note kind
, rtx datum
)
4803 rtx note
= find_reg_note (insn
, kind
, NULL_RTX
);
4809 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4810 has multiple sets (some callers assume single_set
4811 means the insn only has one set, when in fact it
4812 means the insn only has one * useful * set). */
4813 if (GET_CODE (PATTERN (insn
)) == PARALLEL
&& multiple_sets (insn
))
4819 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4820 It serves no useful purpose and breaks eliminate_regs. */
4821 if (GET_CODE (datum
) == ASM_OPERANDS
)
4831 XEXP (note
, 0) = datum
;
4835 REG_NOTES (insn
) = gen_rtx_EXPR_LIST (kind
, datum
, REG_NOTES (insn
));
4836 return REG_NOTES (insn
);
4839 /* Return an indication of which type of insn should have X as a body.
4840 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4843 classify_insn (rtx x
)
4847 if (GET_CODE (x
) == CALL
)
4849 if (GET_CODE (x
) == RETURN
)
4851 if (GET_CODE (x
) == SET
)
4853 if (SET_DEST (x
) == pc_rtx
)
4855 else if (GET_CODE (SET_SRC (x
)) == CALL
)
4860 if (GET_CODE (x
) == PARALLEL
)
4863 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
4864 if (GET_CODE (XVECEXP (x
, 0, j
)) == CALL
)
4866 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
4867 && SET_DEST (XVECEXP (x
, 0, j
)) == pc_rtx
)
4869 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
4870 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == CALL
)
4876 /* Emit the rtl pattern X as an appropriate kind of insn.
4877 If X is a label, it is simply added into the insn chain. */
4882 enum rtx_code code
= classify_insn (x
);
4887 return emit_label (x
);
4889 return emit_insn (x
);
4892 rtx insn
= emit_jump_insn (x
);
4893 if (any_uncondjump_p (insn
) || GET_CODE (x
) == RETURN
)
4894 return emit_barrier ();
4898 return emit_call_insn (x
);
4904 /* Space for free sequence stack entries. */
4905 static GTY ((deletable
)) struct sequence_stack
*free_sequence_stack
;
4907 /* Begin emitting insns to a sequence. If this sequence will contain
4908 something that might cause the compiler to pop arguments to function
4909 calls (because those pops have previously been deferred; see
4910 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4911 before calling this function. That will ensure that the deferred
4912 pops are not accidentally emitted in the middle of this sequence. */
4915 start_sequence (void)
4917 struct sequence_stack
*tem
;
4919 if (free_sequence_stack
!= NULL
)
4921 tem
= free_sequence_stack
;
4922 free_sequence_stack
= tem
->next
;
4925 tem
= ggc_alloc (sizeof (struct sequence_stack
));
4927 tem
->next
= seq_stack
;
4928 tem
->first
= first_insn
;
4929 tem
->last
= last_insn
;
4937 /* Set up the insn chain starting with FIRST as the current sequence,
4938 saving the previously current one. See the documentation for
4939 start_sequence for more information about how to use this function. */
4942 push_to_sequence (rtx first
)
4948 for (last
= first
; last
&& NEXT_INSN (last
); last
= NEXT_INSN (last
));
4954 /* Set up the insn chain from a chain stort in FIRST to LAST. */
4957 push_to_full_sequence (rtx first
, rtx last
)
4962 /* We really should have the end of the insn chain here. */
4963 gcc_assert (!last
|| !NEXT_INSN (last
));
4966 /* Set up the outer-level insn chain
4967 as the current sequence, saving the previously current one. */
4970 push_topmost_sequence (void)
4972 struct sequence_stack
*stack
, *top
= NULL
;
4976 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
4979 first_insn
= top
->first
;
4980 last_insn
= top
->last
;
4983 /* After emitting to the outer-level insn chain, update the outer-level
4984 insn chain, and restore the previous saved state. */
4987 pop_topmost_sequence (void)
4989 struct sequence_stack
*stack
, *top
= NULL
;
4991 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
4994 top
->first
= first_insn
;
4995 top
->last
= last_insn
;
5000 /* After emitting to a sequence, restore previous saved state.
5002 To get the contents of the sequence just made, you must call
5003 `get_insns' *before* calling here.
5005 If the compiler might have deferred popping arguments while
5006 generating this sequence, and this sequence will not be immediately
5007 inserted into the instruction stream, use do_pending_stack_adjust
5008 before calling get_insns. That will ensure that the deferred
5009 pops are inserted into this sequence, and not into some random
5010 location in the instruction stream. See INHIBIT_DEFER_POP for more
5011 information about deferred popping of arguments. */
5016 struct sequence_stack
*tem
= seq_stack
;
5018 first_insn
= tem
->first
;
5019 last_insn
= tem
->last
;
5020 seq_stack
= tem
->next
;
5022 memset (tem
, 0, sizeof (*tem
));
5023 tem
->next
= free_sequence_stack
;
5024 free_sequence_stack
= tem
;
5027 /* Return 1 if currently emitting into a sequence. */
5030 in_sequence_p (void)
5032 return seq_stack
!= 0;
5035 /* Put the various virtual registers into REGNO_REG_RTX. */
5038 init_virtual_regs (struct emit_status
*es
)
5040 rtx
*ptr
= es
->x_regno_reg_rtx
;
5041 ptr
[VIRTUAL_INCOMING_ARGS_REGNUM
] = virtual_incoming_args_rtx
;
5042 ptr
[VIRTUAL_STACK_VARS_REGNUM
] = virtual_stack_vars_rtx
;
5043 ptr
[VIRTUAL_STACK_DYNAMIC_REGNUM
] = virtual_stack_dynamic_rtx
;
5044 ptr
[VIRTUAL_OUTGOING_ARGS_REGNUM
] = virtual_outgoing_args_rtx
;
5045 ptr
[VIRTUAL_CFA_REGNUM
] = virtual_cfa_rtx
;
5049 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5050 static rtx copy_insn_scratch_in
[MAX_RECOG_OPERANDS
];
5051 static rtx copy_insn_scratch_out
[MAX_RECOG_OPERANDS
];
5052 static int copy_insn_n_scratches
;
5054 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5055 copied an ASM_OPERANDS.
5056 In that case, it is the original input-operand vector. */
5057 static rtvec orig_asm_operands_vector
;
5059 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5060 copied an ASM_OPERANDS.
5061 In that case, it is the copied input-operand vector. */
5062 static rtvec copy_asm_operands_vector
;
5064 /* Likewise for the constraints vector. */
5065 static rtvec orig_asm_constraints_vector
;
5066 static rtvec copy_asm_constraints_vector
;
5068 /* Recursively create a new copy of an rtx for copy_insn.
5069 This function differs from copy_rtx in that it handles SCRATCHes and
5070 ASM_OPERANDs properly.
5071 Normally, this function is not used directly; use copy_insn as front end.
5072 However, you could first copy an insn pattern with copy_insn and then use
5073 this function afterwards to properly copy any REG_NOTEs containing
5077 copy_insn_1 (rtx orig
)
5082 const char *format_ptr
;
5084 code
= GET_CODE (orig
);
5098 if (REG_P (XEXP (orig
, 0)) && REGNO (XEXP (orig
, 0)) < FIRST_PSEUDO_REGISTER
)
5103 for (i
= 0; i
< copy_insn_n_scratches
; i
++)
5104 if (copy_insn_scratch_in
[i
] == orig
)
5105 return copy_insn_scratch_out
[i
];
5109 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
5110 a LABEL_REF, it isn't sharable. */
5111 if (GET_CODE (XEXP (orig
, 0)) == PLUS
5112 && GET_CODE (XEXP (XEXP (orig
, 0), 0)) == SYMBOL_REF
5113 && GET_CODE (XEXP (XEXP (orig
, 0), 1)) == CONST_INT
)
5117 /* A MEM with a constant address is not sharable. The problem is that
5118 the constant address may need to be reloaded. If the mem is shared,
5119 then reloading one copy of this mem will cause all copies to appear
5120 to have been reloaded. */
5126 copy
= rtx_alloc (code
);
5128 /* Copy the various flags, and other information. We assume that
5129 all fields need copying, and then clear the fields that should
5130 not be copied. That is the sensible default behavior, and forces
5131 us to explicitly document why we are *not* copying a flag. */
5132 memcpy (copy
, orig
, RTX_HDR_SIZE
);
5134 /* We do not copy the USED flag, which is used as a mark bit during
5135 walks over the RTL. */
5136 RTX_FLAG (copy
, used
) = 0;
5138 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5141 RTX_FLAG (copy
, jump
) = 0;
5142 RTX_FLAG (copy
, call
) = 0;
5143 RTX_FLAG (copy
, frame_related
) = 0;
5146 format_ptr
= GET_RTX_FORMAT (GET_CODE (copy
));
5148 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (copy
)); i
++)
5150 copy
->u
.fld
[i
] = orig
->u
.fld
[i
];
5151 switch (*format_ptr
++)
5154 if (XEXP (orig
, i
) != NULL
)
5155 XEXP (copy
, i
) = copy_insn_1 (XEXP (orig
, i
));
5160 if (XVEC (orig
, i
) == orig_asm_constraints_vector
)
5161 XVEC (copy
, i
) = copy_asm_constraints_vector
;
5162 else if (XVEC (orig
, i
) == orig_asm_operands_vector
)
5163 XVEC (copy
, i
) = copy_asm_operands_vector
;
5164 else if (XVEC (orig
, i
) != NULL
)
5166 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (orig
, i
));
5167 for (j
= 0; j
< XVECLEN (copy
, i
); j
++)
5168 XVECEXP (copy
, i
, j
) = copy_insn_1 (XVECEXP (orig
, i
, j
));
5179 /* These are left unchanged. */
5187 if (code
== SCRATCH
)
5189 i
= copy_insn_n_scratches
++;
5190 gcc_assert (i
< MAX_RECOG_OPERANDS
);
5191 copy_insn_scratch_in
[i
] = orig
;
5192 copy_insn_scratch_out
[i
] = copy
;
5194 else if (code
== ASM_OPERANDS
)
5196 orig_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (orig
);
5197 copy_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (copy
);
5198 orig_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig
);
5199 copy_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy
);
5205 /* Create a new copy of an rtx.
5206 This function differs from copy_rtx in that it handles SCRATCHes and
5207 ASM_OPERANDs properly.
5208 INSN doesn't really have to be a full INSN; it could be just the
5211 copy_insn (rtx insn
)
5213 copy_insn_n_scratches
= 0;
5214 orig_asm_operands_vector
= 0;
5215 orig_asm_constraints_vector
= 0;
5216 copy_asm_operands_vector
= 0;
5217 copy_asm_constraints_vector
= 0;
5218 return copy_insn_1 (insn
);
5221 /* Initialize data structures and variables in this file
5222 before generating rtl for each function. */
5227 struct function
*f
= cfun
;
5229 f
->emit
= ggc_alloc (sizeof (struct emit_status
));
5233 reg_rtx_no
= LAST_VIRTUAL_REGISTER
+ 1;
5234 last_location
= UNKNOWN_LOCATION
;
5235 first_label_num
= label_num
;
5239 /* Init the tables that describe all the pseudo regs. */
5241 f
->emit
->regno_pointer_align_length
= LAST_VIRTUAL_REGISTER
+ 101;
5243 f
->emit
->regno_pointer_align
5244 = ggc_alloc_cleared (f
->emit
->regno_pointer_align_length
5245 * sizeof (unsigned char));
5248 = ggc_alloc (f
->emit
->regno_pointer_align_length
* sizeof (rtx
));
5250 /* Put copies of all the hard registers into regno_reg_rtx. */
5251 memcpy (regno_reg_rtx
,
5252 static_regno_reg_rtx
,
5253 FIRST_PSEUDO_REGISTER
* sizeof (rtx
));
5255 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5256 init_virtual_regs (f
->emit
);
5258 /* Indicate that the virtual registers and stack locations are
5260 REG_POINTER (stack_pointer_rtx
) = 1;
5261 REG_POINTER (frame_pointer_rtx
) = 1;
5262 REG_POINTER (hard_frame_pointer_rtx
) = 1;
5263 REG_POINTER (arg_pointer_rtx
) = 1;
5265 REG_POINTER (virtual_incoming_args_rtx
) = 1;
5266 REG_POINTER (virtual_stack_vars_rtx
) = 1;
5267 REG_POINTER (virtual_stack_dynamic_rtx
) = 1;
5268 REG_POINTER (virtual_outgoing_args_rtx
) = 1;
5269 REG_POINTER (virtual_cfa_rtx
) = 1;
5271 #ifdef STACK_BOUNDARY
5272 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM
) = STACK_BOUNDARY
;
5273 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5274 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5275 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM
) = STACK_BOUNDARY
;
5277 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5278 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM
) = STACK_BOUNDARY
;
5279 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM
) = STACK_BOUNDARY
;
5280 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5281 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM
) = BITS_PER_WORD
;
5284 #ifdef INIT_EXPANDERS
5289 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5292 gen_const_vector (enum machine_mode mode
, int constant
)
5297 enum machine_mode inner
;
5299 units
= GET_MODE_NUNITS (mode
);
5300 inner
= GET_MODE_INNER (mode
);
5302 v
= rtvec_alloc (units
);
5304 /* We need to call this function after we set the scalar const_tiny_rtx
5306 gcc_assert (const_tiny_rtx
[constant
][(int) inner
]);
5308 for (i
= 0; i
< units
; ++i
)
5309 RTVEC_ELT (v
, i
) = const_tiny_rtx
[constant
][(int) inner
];
5311 tem
= gen_rtx_raw_CONST_VECTOR (mode
, v
);
5315 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5316 all elements are zero, and the one vector when all elements are one. */
5318 gen_rtx_CONST_VECTOR (enum machine_mode mode
, rtvec v
)
5320 enum machine_mode inner
= GET_MODE_INNER (mode
);
5321 int nunits
= GET_MODE_NUNITS (mode
);
5325 /* Check to see if all of the elements have the same value. */
5326 x
= RTVEC_ELT (v
, nunits
- 1);
5327 for (i
= nunits
- 2; i
>= 0; i
--)
5328 if (RTVEC_ELT (v
, i
) != x
)
5331 /* If the values are all the same, check to see if we can use one of the
5332 standard constant vectors. */
5335 if (x
== CONST0_RTX (inner
))
5336 return CONST0_RTX (mode
);
5337 else if (x
== CONST1_RTX (inner
))
5338 return CONST1_RTX (mode
);
5341 return gen_rtx_raw_CONST_VECTOR (mode
, v
);
5344 /* Create some permanent unique rtl objects shared between all functions.
5345 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5348 init_emit_once (int line_numbers
)
5351 enum machine_mode mode
;
5352 enum machine_mode double_mode
;
5354 /* We need reg_raw_mode, so initialize the modes now. */
5355 init_reg_modes_once ();
5357 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5359 const_int_htab
= htab_create_ggc (37, const_int_htab_hash
,
5360 const_int_htab_eq
, NULL
);
5362 const_double_htab
= htab_create_ggc (37, const_double_htab_hash
,
5363 const_double_htab_eq
, NULL
);
5365 mem_attrs_htab
= htab_create_ggc (37, mem_attrs_htab_hash
,
5366 mem_attrs_htab_eq
, NULL
);
5367 reg_attrs_htab
= htab_create_ggc (37, reg_attrs_htab_hash
,
5368 reg_attrs_htab_eq
, NULL
);
5370 no_line_numbers
= ! line_numbers
;
5372 /* Compute the word and byte modes. */
5374 byte_mode
= VOIDmode
;
5375 word_mode
= VOIDmode
;
5376 double_mode
= VOIDmode
;
5378 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
5379 mode
= GET_MODE_WIDER_MODE (mode
))
5381 if (GET_MODE_BITSIZE (mode
) == BITS_PER_UNIT
5382 && byte_mode
== VOIDmode
)
5385 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
5386 && word_mode
== VOIDmode
)
5390 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
5391 mode
= GET_MODE_WIDER_MODE (mode
))
5393 if (GET_MODE_BITSIZE (mode
) == DOUBLE_TYPE_SIZE
5394 && double_mode
== VOIDmode
)
5398 ptr_mode
= mode_for_size (POINTER_SIZE
, GET_MODE_CLASS (Pmode
), 0);
5400 /* Assign register numbers to the globally defined register rtx.
5401 This must be done at runtime because the register number field
5402 is in a union and some compilers can't initialize unions. */
5404 pc_rtx
= gen_rtx_PC (VOIDmode
);
5405 cc0_rtx
= gen_rtx_CC0 (VOIDmode
);
5406 stack_pointer_rtx
= gen_raw_REG (Pmode
, STACK_POINTER_REGNUM
);
5407 frame_pointer_rtx
= gen_raw_REG (Pmode
, FRAME_POINTER_REGNUM
);
5408 if (hard_frame_pointer_rtx
== 0)
5409 hard_frame_pointer_rtx
= gen_raw_REG (Pmode
,
5410 HARD_FRAME_POINTER_REGNUM
);
5411 if (arg_pointer_rtx
== 0)
5412 arg_pointer_rtx
= gen_raw_REG (Pmode
, ARG_POINTER_REGNUM
);
5413 virtual_incoming_args_rtx
=
5414 gen_raw_REG (Pmode
, VIRTUAL_INCOMING_ARGS_REGNUM
);
5415 virtual_stack_vars_rtx
=
5416 gen_raw_REG (Pmode
, VIRTUAL_STACK_VARS_REGNUM
);
5417 virtual_stack_dynamic_rtx
=
5418 gen_raw_REG (Pmode
, VIRTUAL_STACK_DYNAMIC_REGNUM
);
5419 virtual_outgoing_args_rtx
=
5420 gen_raw_REG (Pmode
, VIRTUAL_OUTGOING_ARGS_REGNUM
);
5421 virtual_cfa_rtx
= gen_raw_REG (Pmode
, VIRTUAL_CFA_REGNUM
);
5423 /* Initialize RTL for commonly used hard registers. These are
5424 copied into regno_reg_rtx as we begin to compile each function. */
5425 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
5426 static_regno_reg_rtx
[i
] = gen_raw_REG (reg_raw_mode
[i
], i
);
5428 #ifdef INIT_EXPANDERS
5429 /* This is to initialize {init|mark|free}_machine_status before the first
5430 call to push_function_context_to. This is needed by the Chill front
5431 end which calls push_function_context_to before the first call to
5432 init_function_start. */
5436 /* Create the unique rtx's for certain rtx codes and operand values. */
5438 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5439 tries to use these variables. */
5440 for (i
= - MAX_SAVED_CONST_INT
; i
<= MAX_SAVED_CONST_INT
; i
++)
5441 const_int_rtx
[i
+ MAX_SAVED_CONST_INT
] =
5442 gen_rtx_raw_CONST_INT (VOIDmode
, (HOST_WIDE_INT
) i
);
5444 if (STORE_FLAG_VALUE
>= - MAX_SAVED_CONST_INT
5445 && STORE_FLAG_VALUE
<= MAX_SAVED_CONST_INT
)
5446 const_true_rtx
= const_int_rtx
[STORE_FLAG_VALUE
+ MAX_SAVED_CONST_INT
];
5448 const_true_rtx
= gen_rtx_CONST_INT (VOIDmode
, STORE_FLAG_VALUE
);
5450 REAL_VALUE_FROM_INT (dconst0
, 0, 0, double_mode
);
5451 REAL_VALUE_FROM_INT (dconst1
, 1, 0, double_mode
);
5452 REAL_VALUE_FROM_INT (dconst2
, 2, 0, double_mode
);
5453 REAL_VALUE_FROM_INT (dconst3
, 3, 0, double_mode
);
5454 REAL_VALUE_FROM_INT (dconst10
, 10, 0, double_mode
);
5455 REAL_VALUE_FROM_INT (dconstm1
, -1, -1, double_mode
);
5456 REAL_VALUE_FROM_INT (dconstm2
, -2, -1, double_mode
);
5458 dconsthalf
= dconst1
;
5459 SET_REAL_EXP (&dconsthalf
, REAL_EXP (&dconsthalf
) - 1);
5461 real_arithmetic (&dconstthird
, RDIV_EXPR
, &dconst1
, &dconst3
);
5463 /* Initialize mathematical constants for constant folding builtins.
5464 These constants need to be given to at least 160 bits precision. */
5465 real_from_string (&dconstpi
,
5466 "3.1415926535897932384626433832795028841971693993751058209749445923078");
5467 real_from_string (&dconste
,
5468 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5470 for (i
= 0; i
< (int) ARRAY_SIZE (const_tiny_rtx
); i
++)
5472 REAL_VALUE_TYPE
*r
=
5473 (i
== 0 ? &dconst0
: i
== 1 ? &dconst1
: &dconst2
);
5475 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
5476 mode
= GET_MODE_WIDER_MODE (mode
))
5477 const_tiny_rtx
[i
][(int) mode
] =
5478 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5480 const_tiny_rtx
[i
][(int) VOIDmode
] = GEN_INT (i
);
5482 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
5483 mode
= GET_MODE_WIDER_MODE (mode
))
5484 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5486 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT
);
5488 mode
= GET_MODE_WIDER_MODE (mode
))
5489 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5492 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT
);
5494 mode
= GET_MODE_WIDER_MODE (mode
))
5496 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5497 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5500 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT
);
5502 mode
= GET_MODE_WIDER_MODE (mode
))
5504 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5505 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5508 for (i
= (int) CCmode
; i
< (int) MAX_MACHINE_MODE
; ++i
)
5509 if (GET_MODE_CLASS ((enum machine_mode
) i
) == MODE_CC
)
5510 const_tiny_rtx
[0][i
] = const0_rtx
;
5512 const_tiny_rtx
[0][(int) BImode
] = const0_rtx
;
5513 if (STORE_FLAG_VALUE
== 1)
5514 const_tiny_rtx
[1][(int) BImode
] = const1_rtx
;
5516 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5517 return_address_pointer_rtx
5518 = gen_raw_REG (Pmode
, RETURN_ADDRESS_POINTER_REGNUM
);
5521 #ifdef STATIC_CHAIN_REGNUM
5522 static_chain_rtx
= gen_rtx_REG (Pmode
, STATIC_CHAIN_REGNUM
);
5524 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5525 if (STATIC_CHAIN_INCOMING_REGNUM
!= STATIC_CHAIN_REGNUM
)
5526 static_chain_incoming_rtx
5527 = gen_rtx_REG (Pmode
, STATIC_CHAIN_INCOMING_REGNUM
);
5530 static_chain_incoming_rtx
= static_chain_rtx
;
5534 static_chain_rtx
= STATIC_CHAIN
;
5536 #ifdef STATIC_CHAIN_INCOMING
5537 static_chain_incoming_rtx
= STATIC_CHAIN_INCOMING
;
5539 static_chain_incoming_rtx
= static_chain_rtx
;
5543 if ((unsigned) PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
)
5544 pic_offset_table_rtx
= gen_raw_REG (Pmode
, PIC_OFFSET_TABLE_REGNUM
);
5547 /* Produce exact duplicate of insn INSN after AFTER.
5548 Care updating of libcall regions if present. */
5551 emit_copy_of_insn_after (rtx insn
, rtx after
)
5554 rtx note1
, note2
, link
;
5556 switch (GET_CODE (insn
))
5559 new = emit_insn_after (copy_insn (PATTERN (insn
)), after
);
5563 new = emit_jump_insn_after (copy_insn (PATTERN (insn
)), after
);
5567 new = emit_call_insn_after (copy_insn (PATTERN (insn
)), after
);
5568 if (CALL_INSN_FUNCTION_USAGE (insn
))
5569 CALL_INSN_FUNCTION_USAGE (new)
5570 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn
));
5571 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn
);
5572 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn
);
5579 /* Update LABEL_NUSES. */
5580 mark_jump_label (PATTERN (new), new, 0);
5582 INSN_LOCATOR (new) = INSN_LOCATOR (insn
);
5584 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5586 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
5587 if (REG_NOTE_KIND (link
) != REG_LABEL
)
5589 if (GET_CODE (link
) == EXPR_LIST
)
5591 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link
),
5596 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link
),
5601 /* Fix the libcall sequences. */
5602 if ((note1
= find_reg_note (new, REG_RETVAL
, NULL_RTX
)) != NULL
)
5605 while ((note2
= find_reg_note (p
, REG_LIBCALL
, NULL_RTX
)) == NULL
)
5607 XEXP (note1
, 0) = p
;
5608 XEXP (note2
, 0) = new;
5610 INSN_CODE (new) = INSN_CODE (insn
);
5614 static GTY((deletable
)) rtx hard_reg_clobbers
[NUM_MACHINE_MODES
][FIRST_PSEUDO_REGISTER
];
5616 gen_hard_reg_clobber (enum machine_mode mode
, unsigned int regno
)
5618 if (hard_reg_clobbers
[mode
][regno
])
5619 return hard_reg_clobbers
[mode
][regno
];
5621 return (hard_reg_clobbers
[mode
][regno
] =
5622 gen_rtx_CLOBBER (VOIDmode
, gen_rtx_REG (mode
, regno
)));
5625 #include "gt-emit-rtl.h"