* trans-stmt.c (gfc_trans_simple_do): New function.
[official-gcc.git] / gcc / cse.c
blob431ae7086787b2910a558b6dba9b77535fc14176
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 #include "config.h"
23 /* stdio.h must precede rtl.h for FFS. */
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "regs.h"
31 #include "hard-reg-set.h"
32 #include "basic-block.h"
33 #include "flags.h"
34 #include "real.h"
35 #include "insn-config.h"
36 #include "recog.h"
37 #include "function.h"
38 #include "expr.h"
39 #include "toplev.h"
40 #include "output.h"
41 #include "ggc.h"
42 #include "timevar.h"
43 #include "except.h"
44 #include "target.h"
45 #include "params.h"
46 #include "rtlhooks-def.h"
48 /* The basic idea of common subexpression elimination is to go
49 through the code, keeping a record of expressions that would
50 have the same value at the current scan point, and replacing
51 expressions encountered with the cheapest equivalent expression.
53 It is too complicated to keep track of the different possibilities
54 when control paths merge in this code; so, at each label, we forget all
55 that is known and start fresh. This can be described as processing each
56 extended basic block separately. We have a separate pass to perform
57 global CSE.
59 Note CSE can turn a conditional or computed jump into a nop or
60 an unconditional jump. When this occurs we arrange to run the jump
61 optimizer after CSE to delete the unreachable code.
63 We use two data structures to record the equivalent expressions:
64 a hash table for most expressions, and a vector of "quantity
65 numbers" to record equivalent (pseudo) registers.
67 The use of the special data structure for registers is desirable
68 because it is faster. It is possible because registers references
69 contain a fairly small number, the register number, taken from
70 a contiguously allocated series, and two register references are
71 identical if they have the same number. General expressions
72 do not have any such thing, so the only way to retrieve the
73 information recorded on an expression other than a register
74 is to keep it in a hash table.
76 Registers and "quantity numbers":
78 At the start of each basic block, all of the (hardware and pseudo)
79 registers used in the function are given distinct quantity
80 numbers to indicate their contents. During scan, when the code
81 copies one register into another, we copy the quantity number.
82 When a register is loaded in any other way, we allocate a new
83 quantity number to describe the value generated by this operation.
84 `reg_qty' records what quantity a register is currently thought
85 of as containing.
87 All real quantity numbers are greater than or equal to `max_reg'.
88 If register N has not been assigned a quantity, reg_qty[N] will equal N.
90 Quantity numbers below `max_reg' do not exist and none of the `qty_table'
91 entries should be referenced with an index below `max_reg'.
93 We also maintain a bidirectional chain of registers for each
94 quantity number. The `qty_table` members `first_reg' and `last_reg',
95 and `reg_eqv_table' members `next' and `prev' hold these chains.
97 The first register in a chain is the one whose lifespan is least local.
98 Among equals, it is the one that was seen first.
99 We replace any equivalent register with that one.
101 If two registers have the same quantity number, it must be true that
102 REG expressions with qty_table `mode' must be in the hash table for both
103 registers and must be in the same class.
105 The converse is not true. Since hard registers may be referenced in
106 any mode, two REG expressions might be equivalent in the hash table
107 but not have the same quantity number if the quantity number of one
108 of the registers is not the same mode as those expressions.
110 Constants and quantity numbers
112 When a quantity has a known constant value, that value is stored
113 in the appropriate qty_table `const_rtx'. This is in addition to
114 putting the constant in the hash table as is usual for non-regs.
116 Whether a reg or a constant is preferred is determined by the configuration
117 macro CONST_COSTS and will often depend on the constant value. In any
118 event, expressions containing constants can be simplified, by fold_rtx.
120 When a quantity has a known nearly constant value (such as an address
121 of a stack slot), that value is stored in the appropriate qty_table
122 `const_rtx'.
124 Integer constants don't have a machine mode. However, cse
125 determines the intended machine mode from the destination
126 of the instruction that moves the constant. The machine mode
127 is recorded in the hash table along with the actual RTL
128 constant expression so that different modes are kept separate.
130 Other expressions:
132 To record known equivalences among expressions in general
133 we use a hash table called `table'. It has a fixed number of buckets
134 that contain chains of `struct table_elt' elements for expressions.
135 These chains connect the elements whose expressions have the same
136 hash codes.
138 Other chains through the same elements connect the elements which
139 currently have equivalent values.
141 Register references in an expression are canonicalized before hashing
142 the expression. This is done using `reg_qty' and qty_table `first_reg'.
143 The hash code of a register reference is computed using the quantity
144 number, not the register number.
146 When the value of an expression changes, it is necessary to remove from the
147 hash table not just that expression but all expressions whose values
148 could be different as a result.
150 1. If the value changing is in memory, except in special cases
151 ANYTHING referring to memory could be changed. That is because
152 nobody knows where a pointer does not point.
153 The function `invalidate_memory' removes what is necessary.
155 The special cases are when the address is constant or is
156 a constant plus a fixed register such as the frame pointer
157 or a static chain pointer. When such addresses are stored in,
158 we can tell exactly which other such addresses must be invalidated
159 due to overlap. `invalidate' does this.
160 All expressions that refer to non-constant
161 memory addresses are also invalidated. `invalidate_memory' does this.
163 2. If the value changing is a register, all expressions
164 containing references to that register, and only those,
165 must be removed.
167 Because searching the entire hash table for expressions that contain
168 a register is very slow, we try to figure out when it isn't necessary.
169 Precisely, this is necessary only when expressions have been
170 entered in the hash table using this register, and then the value has
171 changed, and then another expression wants to be added to refer to
172 the register's new value. This sequence of circumstances is rare
173 within any one basic block.
175 The vectors `reg_tick' and `reg_in_table' are used to detect this case.
176 reg_tick[i] is incremented whenever a value is stored in register i.
177 reg_in_table[i] holds -1 if no references to register i have been
178 entered in the table; otherwise, it contains the value reg_tick[i] had
179 when the references were entered. If we want to enter a reference
180 and reg_in_table[i] != reg_tick[i], we must scan and remove old references.
181 Until we want to enter a new entry, the mere fact that the two vectors
182 don't match makes the entries be ignored if anyone tries to match them.
184 Registers themselves are entered in the hash table as well as in
185 the equivalent-register chains. However, the vectors `reg_tick'
186 and `reg_in_table' do not apply to expressions which are simple
187 register references. These expressions are removed from the table
188 immediately when they become invalid, and this can be done even if
189 we do not immediately search for all the expressions that refer to
190 the register.
192 A CLOBBER rtx in an instruction invalidates its operand for further
193 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
194 invalidates everything that resides in memory.
196 Related expressions:
198 Constant expressions that differ only by an additive integer
199 are called related. When a constant expression is put in
200 the table, the related expression with no constant term
201 is also entered. These are made to point at each other
202 so that it is possible to find out if there exists any
203 register equivalent to an expression related to a given expression. */
205 /* One plus largest register number used in this function. */
207 static int max_reg;
209 /* One plus largest instruction UID used in this function at time of
210 cse_main call. */
212 static int max_insn_uid;
214 /* Length of qty_table vector. We know in advance we will not need
215 a quantity number this big. */
217 static int max_qty;
219 /* Next quantity number to be allocated.
220 This is 1 + the largest number needed so far. */
222 static int next_qty;
224 /* Per-qty information tracking.
226 `first_reg' and `last_reg' track the head and tail of the
227 chain of registers which currently contain this quantity.
229 `mode' contains the machine mode of this quantity.
231 `const_rtx' holds the rtx of the constant value of this
232 quantity, if known. A summations of the frame/arg pointer
233 and a constant can also be entered here. When this holds
234 a known value, `const_insn' is the insn which stored the
235 constant value.
237 `comparison_{code,const,qty}' are used to track when a
238 comparison between a quantity and some constant or register has
239 been passed. In such a case, we know the results of the comparison
240 in case we see it again. These members record a comparison that
241 is known to be true. `comparison_code' holds the rtx code of such
242 a comparison, else it is set to UNKNOWN and the other two
243 comparison members are undefined. `comparison_const' holds
244 the constant being compared against, or zero if the comparison
245 is not against a constant. `comparison_qty' holds the quantity
246 being compared against when the result is known. If the comparison
247 is not with a register, `comparison_qty' is -1. */
249 struct qty_table_elem
251 rtx const_rtx;
252 rtx const_insn;
253 rtx comparison_const;
254 int comparison_qty;
255 unsigned int first_reg, last_reg;
256 /* The sizes of these fields should match the sizes of the
257 code and mode fields of struct rtx_def (see rtl.h). */
258 ENUM_BITFIELD(rtx_code) comparison_code : 16;
259 ENUM_BITFIELD(machine_mode) mode : 8;
262 /* The table of all qtys, indexed by qty number. */
263 static struct qty_table_elem *qty_table;
265 #ifdef HAVE_cc0
266 /* For machines that have a CC0, we do not record its value in the hash
267 table since its use is guaranteed to be the insn immediately following
268 its definition and any other insn is presumed to invalidate it.
270 Instead, we store below the value last assigned to CC0. If it should
271 happen to be a constant, it is stored in preference to the actual
272 assigned value. In case it is a constant, we store the mode in which
273 the constant should be interpreted. */
275 static rtx prev_insn_cc0;
276 static enum machine_mode prev_insn_cc0_mode;
278 /* Previous actual insn. 0 if at first insn of basic block. */
280 static rtx prev_insn;
281 #endif
283 /* Insn being scanned. */
285 static rtx this_insn;
287 /* Index by register number, gives the number of the next (or
288 previous) register in the chain of registers sharing the same
289 value.
291 Or -1 if this register is at the end of the chain.
293 If reg_qty[N] == N, reg_eqv_table[N].next is undefined. */
295 /* Per-register equivalence chain. */
296 struct reg_eqv_elem
298 int next, prev;
301 /* The table of all register equivalence chains. */
302 static struct reg_eqv_elem *reg_eqv_table;
304 struct cse_reg_info
306 /* Next in hash chain. */
307 struct cse_reg_info *hash_next;
309 /* The next cse_reg_info structure in the free or used list. */
310 struct cse_reg_info *next;
312 /* Search key */
313 unsigned int regno;
315 /* The quantity number of the register's current contents. */
316 int reg_qty;
318 /* The number of times the register has been altered in the current
319 basic block. */
320 int reg_tick;
322 /* The REG_TICK value at which rtx's containing this register are
323 valid in the hash table. If this does not equal the current
324 reg_tick value, such expressions existing in the hash table are
325 invalid. */
326 int reg_in_table;
328 /* The SUBREG that was set when REG_TICK was last incremented. Set
329 to -1 if the last store was to the whole register, not a subreg. */
330 unsigned int subreg_ticked;
333 /* A free list of cse_reg_info entries. */
334 static struct cse_reg_info *cse_reg_info_free_list;
336 /* A used list of cse_reg_info entries. */
337 static struct cse_reg_info *cse_reg_info_used_list;
338 static struct cse_reg_info *cse_reg_info_used_list_end;
340 /* A mapping from registers to cse_reg_info data structures. */
341 #define REGHASH_SHIFT 7
342 #define REGHASH_SIZE (1 << REGHASH_SHIFT)
343 #define REGHASH_MASK (REGHASH_SIZE - 1)
344 static struct cse_reg_info *reg_hash[REGHASH_SIZE];
346 #define REGHASH_FN(REGNO) \
347 (((REGNO) ^ ((REGNO) >> REGHASH_SHIFT)) & REGHASH_MASK)
349 /* The last lookup we did into the cse_reg_info_tree. This allows us
350 to cache repeated lookups. */
351 static unsigned int cached_regno;
352 static struct cse_reg_info *cached_cse_reg_info;
354 /* A HARD_REG_SET containing all the hard registers for which there is
355 currently a REG expression in the hash table. Note the difference
356 from the above variables, which indicate if the REG is mentioned in some
357 expression in the table. */
359 static HARD_REG_SET hard_regs_in_table;
361 /* CUID of insn that starts the basic block currently being cse-processed. */
363 static int cse_basic_block_start;
365 /* CUID of insn that ends the basic block currently being cse-processed. */
367 static int cse_basic_block_end;
369 /* Vector mapping INSN_UIDs to cuids.
370 The cuids are like uids but increase monotonically always.
371 We use them to see whether a reg is used outside a given basic block. */
373 static int *uid_cuid;
375 /* Highest UID in UID_CUID. */
376 static int max_uid;
378 /* Get the cuid of an insn. */
380 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
382 /* Nonzero if this pass has made changes, and therefore it's
383 worthwhile to run the garbage collector. */
385 static int cse_altered;
387 /* Nonzero if cse has altered conditional jump insns
388 in such a way that jump optimization should be redone. */
390 static int cse_jumps_altered;
392 /* Nonzero if we put a LABEL_REF into the hash table for an INSN without a
393 REG_LABEL, we have to rerun jump after CSE to put in the note. */
394 static int recorded_label_ref;
396 /* canon_hash stores 1 in do_not_record
397 if it notices a reference to CC0, PC, or some other volatile
398 subexpression. */
400 static int do_not_record;
402 #ifdef LOAD_EXTEND_OP
404 /* Scratch rtl used when looking for load-extended copy of a MEM. */
405 static rtx memory_extend_rtx;
406 #endif
408 /* canon_hash stores 1 in hash_arg_in_memory
409 if it notices a reference to memory within the expression being hashed. */
411 static int hash_arg_in_memory;
413 /* The hash table contains buckets which are chains of `struct table_elt's,
414 each recording one expression's information.
415 That expression is in the `exp' field.
417 The canon_exp field contains a canonical (from the point of view of
418 alias analysis) version of the `exp' field.
420 Those elements with the same hash code are chained in both directions
421 through the `next_same_hash' and `prev_same_hash' fields.
423 Each set of expressions with equivalent values
424 are on a two-way chain through the `next_same_value'
425 and `prev_same_value' fields, and all point with
426 the `first_same_value' field at the first element in
427 that chain. The chain is in order of increasing cost.
428 Each element's cost value is in its `cost' field.
430 The `in_memory' field is nonzero for elements that
431 involve any reference to memory. These elements are removed
432 whenever a write is done to an unidentified location in memory.
433 To be safe, we assume that a memory address is unidentified unless
434 the address is either a symbol constant or a constant plus
435 the frame pointer or argument pointer.
437 The `related_value' field is used to connect related expressions
438 (that differ by adding an integer).
439 The related expressions are chained in a circular fashion.
440 `related_value' is zero for expressions for which this
441 chain is not useful.
443 The `cost' field stores the cost of this element's expression.
444 The `regcost' field stores the value returned by approx_reg_cost for
445 this element's expression.
447 The `is_const' flag is set if the element is a constant (including
448 a fixed address).
450 The `flag' field is used as a temporary during some search routines.
452 The `mode' field is usually the same as GET_MODE (`exp'), but
453 if `exp' is a CONST_INT and has no machine mode then the `mode'
454 field is the mode it was being used as. Each constant is
455 recorded separately for each mode it is used with. */
457 struct table_elt
459 rtx exp;
460 rtx canon_exp;
461 struct table_elt *next_same_hash;
462 struct table_elt *prev_same_hash;
463 struct table_elt *next_same_value;
464 struct table_elt *prev_same_value;
465 struct table_elt *first_same_value;
466 struct table_elt *related_value;
467 int cost;
468 int regcost;
469 /* The size of this field should match the size
470 of the mode field of struct rtx_def (see rtl.h). */
471 ENUM_BITFIELD(machine_mode) mode : 8;
472 char in_memory;
473 char is_const;
474 char flag;
477 /* We don't want a lot of buckets, because we rarely have very many
478 things stored in the hash table, and a lot of buckets slows
479 down a lot of loops that happen frequently. */
480 #define HASH_SHIFT 5
481 #define HASH_SIZE (1 << HASH_SHIFT)
482 #define HASH_MASK (HASH_SIZE - 1)
484 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
485 register (hard registers may require `do_not_record' to be set). */
487 #define HASH(X, M) \
488 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
489 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
490 : canon_hash (X, M)) & HASH_MASK)
492 /* Like HASH, but without side-effects. */
493 #define SAFE_HASH(X, M) \
494 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
495 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
496 : safe_hash (X, M)) & HASH_MASK)
498 /* Determine whether register number N is considered a fixed register for the
499 purpose of approximating register costs.
500 It is desirable to replace other regs with fixed regs, to reduce need for
501 non-fixed hard regs.
502 A reg wins if it is either the frame pointer or designated as fixed. */
503 #define FIXED_REGNO_P(N) \
504 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
505 || fixed_regs[N] || global_regs[N])
507 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
508 hard registers and pointers into the frame are the cheapest with a cost
509 of 0. Next come pseudos with a cost of one and other hard registers with
510 a cost of 2. Aside from these special cases, call `rtx_cost'. */
512 #define CHEAP_REGNO(N) \
513 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
514 || (N) == STACK_POINTER_REGNUM || (N) == ARG_POINTER_REGNUM \
515 || ((N) >= FIRST_VIRTUAL_REGISTER && (N) <= LAST_VIRTUAL_REGISTER) \
516 || ((N) < FIRST_PSEUDO_REGISTER \
517 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
519 #define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET))
520 #define COST_IN(X,OUTER) (REG_P (X) ? 0 : notreg_cost (X, OUTER))
522 /* Get the info associated with register N. */
524 #define GET_CSE_REG_INFO(N) \
525 (((N) == cached_regno && cached_cse_reg_info) \
526 ? cached_cse_reg_info : get_cse_reg_info ((N)))
528 /* Get the number of times this register has been updated in this
529 basic block. */
531 #define REG_TICK(N) ((GET_CSE_REG_INFO (N))->reg_tick)
533 /* Get the point at which REG was recorded in the table. */
535 #define REG_IN_TABLE(N) ((GET_CSE_REG_INFO (N))->reg_in_table)
537 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
538 SUBREG). */
540 #define SUBREG_TICKED(N) ((GET_CSE_REG_INFO (N))->subreg_ticked)
542 /* Get the quantity number for REG. */
544 #define REG_QTY(N) ((GET_CSE_REG_INFO (N))->reg_qty)
546 /* Determine if the quantity number for register X represents a valid index
547 into the qty_table. */
549 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) != (int) (N))
551 static struct table_elt *table[HASH_SIZE];
553 /* Chain of `struct table_elt's made so far for this function
554 but currently removed from the table. */
556 static struct table_elt *free_element_chain;
558 /* Number of `struct table_elt' structures made so far for this function. */
560 static int n_elements_made;
562 /* Maximum value `n_elements_made' has had so far in this compilation
563 for functions previously processed. */
565 static int max_elements_made;
567 /* Set to the cost of a constant pool reference if one was found for a
568 symbolic constant. If this was found, it means we should try to
569 convert constants into constant pool entries if they don't fit in
570 the insn. */
572 static int constant_pool_entries_cost;
573 static int constant_pool_entries_regcost;
575 /* This data describes a block that will be processed by cse_basic_block. */
577 struct cse_basic_block_data
579 /* Lowest CUID value of insns in block. */
580 int low_cuid;
581 /* Highest CUID value of insns in block. */
582 int high_cuid;
583 /* Total number of SETs in block. */
584 int nsets;
585 /* Last insn in the block. */
586 rtx last;
587 /* Size of current branch path, if any. */
588 int path_size;
589 /* Current branch path, indicating which branches will be taken. */
590 struct branch_path
592 /* The branch insn. */
593 rtx branch;
594 /* Whether it should be taken or not. AROUND is the same as taken
595 except that it is used when the destination label is not preceded
596 by a BARRIER. */
597 enum taken {PATH_TAKEN, PATH_NOT_TAKEN, PATH_AROUND} status;
598 } *path;
601 static bool fixed_base_plus_p (rtx x);
602 static int notreg_cost (rtx, enum rtx_code);
603 static int approx_reg_cost_1 (rtx *, void *);
604 static int approx_reg_cost (rtx);
605 static int preferable (int, int, int, int);
606 static void new_basic_block (void);
607 static void make_new_qty (unsigned int, enum machine_mode);
608 static void make_regs_eqv (unsigned int, unsigned int);
609 static void delete_reg_equiv (unsigned int);
610 static int mention_regs (rtx);
611 static int insert_regs (rtx, struct table_elt *, int);
612 static void remove_from_table (struct table_elt *, unsigned);
613 static struct table_elt *lookup (rtx, unsigned, enum machine_mode);
614 static struct table_elt *lookup_for_remove (rtx, unsigned, enum machine_mode);
615 static rtx lookup_as_function (rtx, enum rtx_code);
616 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
617 enum machine_mode);
618 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
619 static void invalidate (rtx, enum machine_mode);
620 static int cse_rtx_varies_p (rtx, int);
621 static void remove_invalid_refs (unsigned int);
622 static void remove_invalid_subreg_refs (unsigned int, unsigned int,
623 enum machine_mode);
624 static void rehash_using_reg (rtx);
625 static void invalidate_memory (void);
626 static void invalidate_for_call (void);
627 static rtx use_related_value (rtx, struct table_elt *);
629 static inline unsigned canon_hash (rtx, enum machine_mode);
630 static inline unsigned safe_hash (rtx, enum machine_mode);
631 static unsigned hash_rtx_string (const char *);
633 static rtx canon_reg (rtx, rtx);
634 static void find_best_addr (rtx, rtx *, enum machine_mode);
635 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
636 enum machine_mode *,
637 enum machine_mode *);
638 static rtx fold_rtx (rtx, rtx);
639 static rtx equiv_constant (rtx);
640 static void record_jump_equiv (rtx, int);
641 static void record_jump_cond (enum rtx_code, enum machine_mode, rtx, rtx,
642 int);
643 static void cse_insn (rtx, rtx);
644 static void cse_end_of_basic_block (rtx, struct cse_basic_block_data *,
645 int, int);
646 static int addr_affects_sp_p (rtx);
647 static void invalidate_from_clobbers (rtx);
648 static rtx cse_process_notes (rtx, rtx);
649 static void invalidate_skipped_set (rtx, rtx, void *);
650 static void invalidate_skipped_block (rtx);
651 static rtx cse_basic_block (rtx, rtx, struct branch_path *);
652 static void count_reg_usage (rtx, int *, int);
653 static int check_for_label_ref (rtx *, void *);
654 extern void dump_class (struct table_elt*);
655 static struct cse_reg_info * get_cse_reg_info (unsigned int);
656 static int check_dependence (rtx *, void *);
658 static void flush_hash_table (void);
659 static bool insn_live_p (rtx, int *);
660 static bool set_live_p (rtx, rtx, int *);
661 static bool dead_libcall_p (rtx, int *);
662 static int cse_change_cc_mode (rtx *, void *);
663 static void cse_change_cc_mode_insns (rtx, rtx, rtx);
664 static enum machine_mode cse_cc_succs (basic_block, rtx, rtx, bool);
667 #undef RTL_HOOKS_GEN_LOWPART
668 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
670 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
672 /* Nonzero if X has the form (PLUS frame-pointer integer). We check for
673 virtual regs here because the simplify_*_operation routines are called
674 by integrate.c, which is called before virtual register instantiation. */
676 static bool
677 fixed_base_plus_p (rtx x)
679 switch (GET_CODE (x))
681 case REG:
682 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
683 return true;
684 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
685 return true;
686 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
687 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
688 return true;
689 return false;
691 case PLUS:
692 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
693 return false;
694 return fixed_base_plus_p (XEXP (x, 0));
696 default:
697 return false;
701 /* Dump the expressions in the equivalence class indicated by CLASSP.
702 This function is used only for debugging. */
703 void
704 dump_class (struct table_elt *classp)
706 struct table_elt *elt;
708 fprintf (stderr, "Equivalence chain for ");
709 print_rtl (stderr, classp->exp);
710 fprintf (stderr, ": \n");
712 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
714 print_rtl (stderr, elt->exp);
715 fprintf (stderr, "\n");
719 /* Subroutine of approx_reg_cost; called through for_each_rtx. */
721 static int
722 approx_reg_cost_1 (rtx *xp, void *data)
724 rtx x = *xp;
725 int *cost_p = data;
727 if (x && REG_P (x))
729 unsigned int regno = REGNO (x);
731 if (! CHEAP_REGNO (regno))
733 if (regno < FIRST_PSEUDO_REGISTER)
735 if (SMALL_REGISTER_CLASSES)
736 return 1;
737 *cost_p += 2;
739 else
740 *cost_p += 1;
744 return 0;
747 /* Return an estimate of the cost of the registers used in an rtx.
748 This is mostly the number of different REG expressions in the rtx;
749 however for some exceptions like fixed registers we use a cost of
750 0. If any other hard register reference occurs, return MAX_COST. */
752 static int
753 approx_reg_cost (rtx x)
755 int cost = 0;
757 if (for_each_rtx (&x, approx_reg_cost_1, (void *) &cost))
758 return MAX_COST;
760 return cost;
763 /* Return a negative value if an rtx A, whose costs are given by COST_A
764 and REGCOST_A, is more desirable than an rtx B.
765 Return a positive value if A is less desirable, or 0 if the two are
766 equally good. */
767 static int
768 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
770 /* First, get rid of cases involving expressions that are entirely
771 unwanted. */
772 if (cost_a != cost_b)
774 if (cost_a == MAX_COST)
775 return 1;
776 if (cost_b == MAX_COST)
777 return -1;
780 /* Avoid extending lifetimes of hardregs. */
781 if (regcost_a != regcost_b)
783 if (regcost_a == MAX_COST)
784 return 1;
785 if (regcost_b == MAX_COST)
786 return -1;
789 /* Normal operation costs take precedence. */
790 if (cost_a != cost_b)
791 return cost_a - cost_b;
792 /* Only if these are identical consider effects on register pressure. */
793 if (regcost_a != regcost_b)
794 return regcost_a - regcost_b;
795 return 0;
798 /* Internal function, to compute cost when X is not a register; called
799 from COST macro to keep it simple. */
801 static int
802 notreg_cost (rtx x, enum rtx_code outer)
804 return ((GET_CODE (x) == SUBREG
805 && REG_P (SUBREG_REG (x))
806 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
807 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
808 && (GET_MODE_SIZE (GET_MODE (x))
809 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
810 && subreg_lowpart_p (x)
811 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x)),
812 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))))
814 : rtx_cost (x, outer) * 2);
818 static struct cse_reg_info *
819 get_cse_reg_info (unsigned int regno)
821 struct cse_reg_info **hash_head = &reg_hash[REGHASH_FN (regno)];
822 struct cse_reg_info *p;
824 for (p = *hash_head; p != NULL; p = p->hash_next)
825 if (p->regno == regno)
826 break;
828 if (p == NULL)
830 /* Get a new cse_reg_info structure. */
831 if (cse_reg_info_free_list)
833 p = cse_reg_info_free_list;
834 cse_reg_info_free_list = p->next;
836 else
837 p = xmalloc (sizeof (struct cse_reg_info));
839 /* Insert into hash table. */
840 p->hash_next = *hash_head;
841 *hash_head = p;
843 /* Initialize it. */
844 p->reg_tick = 1;
845 p->reg_in_table = -1;
846 p->subreg_ticked = -1;
847 p->reg_qty = regno;
848 p->regno = regno;
849 p->next = cse_reg_info_used_list;
850 cse_reg_info_used_list = p;
851 if (!cse_reg_info_used_list_end)
852 cse_reg_info_used_list_end = p;
855 /* Cache this lookup; we tend to be looking up information about the
856 same register several times in a row. */
857 cached_regno = regno;
858 cached_cse_reg_info = p;
860 return p;
863 /* Clear the hash table and initialize each register with its own quantity,
864 for a new basic block. */
866 static void
867 new_basic_block (void)
869 int i;
871 next_qty = max_reg;
873 /* Clear out hash table state for this pass. */
875 memset (reg_hash, 0, sizeof reg_hash);
877 if (cse_reg_info_used_list)
879 cse_reg_info_used_list_end->next = cse_reg_info_free_list;
880 cse_reg_info_free_list = cse_reg_info_used_list;
881 cse_reg_info_used_list = cse_reg_info_used_list_end = 0;
883 cached_cse_reg_info = 0;
885 CLEAR_HARD_REG_SET (hard_regs_in_table);
887 /* The per-quantity values used to be initialized here, but it is
888 much faster to initialize each as it is made in `make_new_qty'. */
890 for (i = 0; i < HASH_SIZE; i++)
892 struct table_elt *first;
894 first = table[i];
895 if (first != NULL)
897 struct table_elt *last = first;
899 table[i] = NULL;
901 while (last->next_same_hash != NULL)
902 last = last->next_same_hash;
904 /* Now relink this hash entire chain into
905 the free element list. */
907 last->next_same_hash = free_element_chain;
908 free_element_chain = first;
912 #ifdef HAVE_cc0
913 prev_insn = 0;
914 prev_insn_cc0 = 0;
915 #endif
918 /* Say that register REG contains a quantity in mode MODE not in any
919 register before and initialize that quantity. */
921 static void
922 make_new_qty (unsigned int reg, enum machine_mode mode)
924 int q;
925 struct qty_table_elem *ent;
926 struct reg_eqv_elem *eqv;
928 gcc_assert (next_qty < max_qty);
930 q = REG_QTY (reg) = next_qty++;
931 ent = &qty_table[q];
932 ent->first_reg = reg;
933 ent->last_reg = reg;
934 ent->mode = mode;
935 ent->const_rtx = ent->const_insn = NULL_RTX;
936 ent->comparison_code = UNKNOWN;
938 eqv = &reg_eqv_table[reg];
939 eqv->next = eqv->prev = -1;
942 /* Make reg NEW equivalent to reg OLD.
943 OLD is not changing; NEW is. */
945 static void
946 make_regs_eqv (unsigned int new, unsigned int old)
948 unsigned int lastr, firstr;
949 int q = REG_QTY (old);
950 struct qty_table_elem *ent;
952 ent = &qty_table[q];
954 /* Nothing should become eqv until it has a "non-invalid" qty number. */
955 gcc_assert (REGNO_QTY_VALID_P (old));
957 REG_QTY (new) = q;
958 firstr = ent->first_reg;
959 lastr = ent->last_reg;
961 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
962 hard regs. Among pseudos, if NEW will live longer than any other reg
963 of the same qty, and that is beyond the current basic block,
964 make it the new canonical replacement for this qty. */
965 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
966 /* Certain fixed registers might be of the class NO_REGS. This means
967 that not only can they not be allocated by the compiler, but
968 they cannot be used in substitutions or canonicalizations
969 either. */
970 && (new >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new) != NO_REGS)
971 && ((new < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new))
972 || (new >= FIRST_PSEUDO_REGISTER
973 && (firstr < FIRST_PSEUDO_REGISTER
974 || ((uid_cuid[REGNO_LAST_UID (new)] > cse_basic_block_end
975 || (uid_cuid[REGNO_FIRST_UID (new)]
976 < cse_basic_block_start))
977 && (uid_cuid[REGNO_LAST_UID (new)]
978 > uid_cuid[REGNO_LAST_UID (firstr)]))))))
980 reg_eqv_table[firstr].prev = new;
981 reg_eqv_table[new].next = firstr;
982 reg_eqv_table[new].prev = -1;
983 ent->first_reg = new;
985 else
987 /* If NEW is a hard reg (known to be non-fixed), insert at end.
988 Otherwise, insert before any non-fixed hard regs that are at the
989 end. Registers of class NO_REGS cannot be used as an
990 equivalent for anything. */
991 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
992 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
993 && new >= FIRST_PSEUDO_REGISTER)
994 lastr = reg_eqv_table[lastr].prev;
995 reg_eqv_table[new].next = reg_eqv_table[lastr].next;
996 if (reg_eqv_table[lastr].next >= 0)
997 reg_eqv_table[reg_eqv_table[lastr].next].prev = new;
998 else
999 qty_table[q].last_reg = new;
1000 reg_eqv_table[lastr].next = new;
1001 reg_eqv_table[new].prev = lastr;
1005 /* Remove REG from its equivalence class. */
1007 static void
1008 delete_reg_equiv (unsigned int reg)
1010 struct qty_table_elem *ent;
1011 int q = REG_QTY (reg);
1012 int p, n;
1014 /* If invalid, do nothing. */
1015 if (q == (int) reg)
1016 return;
1018 ent = &qty_table[q];
1020 p = reg_eqv_table[reg].prev;
1021 n = reg_eqv_table[reg].next;
1023 if (n != -1)
1024 reg_eqv_table[n].prev = p;
1025 else
1026 ent->last_reg = p;
1027 if (p != -1)
1028 reg_eqv_table[p].next = n;
1029 else
1030 ent->first_reg = n;
1032 REG_QTY (reg) = reg;
1035 /* Remove any invalid expressions from the hash table
1036 that refer to any of the registers contained in expression X.
1038 Make sure that newly inserted references to those registers
1039 as subexpressions will be considered valid.
1041 mention_regs is not called when a register itself
1042 is being stored in the table.
1044 Return 1 if we have done something that may have changed the hash code
1045 of X. */
1047 static int
1048 mention_regs (rtx x)
1050 enum rtx_code code;
1051 int i, j;
1052 const char *fmt;
1053 int changed = 0;
1055 if (x == 0)
1056 return 0;
1058 code = GET_CODE (x);
1059 if (code == REG)
1061 unsigned int regno = REGNO (x);
1062 unsigned int endregno
1063 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
1064 : hard_regno_nregs[regno][GET_MODE (x)]);
1065 unsigned int i;
1067 for (i = regno; i < endregno; i++)
1069 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1070 remove_invalid_refs (i);
1072 REG_IN_TABLE (i) = REG_TICK (i);
1073 SUBREG_TICKED (i) = -1;
1076 return 0;
1079 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1080 pseudo if they don't use overlapping words. We handle only pseudos
1081 here for simplicity. */
1082 if (code == SUBREG && REG_P (SUBREG_REG (x))
1083 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1085 unsigned int i = REGNO (SUBREG_REG (x));
1087 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1089 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1090 the last store to this register really stored into this
1091 subreg, then remove the memory of this subreg.
1092 Otherwise, remove any memory of the entire register and
1093 all its subregs from the table. */
1094 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1095 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1096 remove_invalid_refs (i);
1097 else
1098 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1101 REG_IN_TABLE (i) = REG_TICK (i);
1102 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1103 return 0;
1106 /* If X is a comparison or a COMPARE and either operand is a register
1107 that does not have a quantity, give it one. This is so that a later
1108 call to record_jump_equiv won't cause X to be assigned a different
1109 hash code and not found in the table after that call.
1111 It is not necessary to do this here, since rehash_using_reg can
1112 fix up the table later, but doing this here eliminates the need to
1113 call that expensive function in the most common case where the only
1114 use of the register is in the comparison. */
1116 if (code == COMPARE || COMPARISON_P (x))
1118 if (REG_P (XEXP (x, 0))
1119 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1120 if (insert_regs (XEXP (x, 0), NULL, 0))
1122 rehash_using_reg (XEXP (x, 0));
1123 changed = 1;
1126 if (REG_P (XEXP (x, 1))
1127 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1128 if (insert_regs (XEXP (x, 1), NULL, 0))
1130 rehash_using_reg (XEXP (x, 1));
1131 changed = 1;
1135 fmt = GET_RTX_FORMAT (code);
1136 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1137 if (fmt[i] == 'e')
1138 changed |= mention_regs (XEXP (x, i));
1139 else if (fmt[i] == 'E')
1140 for (j = 0; j < XVECLEN (x, i); j++)
1141 changed |= mention_regs (XVECEXP (x, i, j));
1143 return changed;
1146 /* Update the register quantities for inserting X into the hash table
1147 with a value equivalent to CLASSP.
1148 (If the class does not contain a REG, it is irrelevant.)
1149 If MODIFIED is nonzero, X is a destination; it is being modified.
1150 Note that delete_reg_equiv should be called on a register
1151 before insert_regs is done on that register with MODIFIED != 0.
1153 Nonzero value means that elements of reg_qty have changed
1154 so X's hash code may be different. */
1156 static int
1157 insert_regs (rtx x, struct table_elt *classp, int modified)
1159 if (REG_P (x))
1161 unsigned int regno = REGNO (x);
1162 int qty_valid;
1164 /* If REGNO is in the equivalence table already but is of the
1165 wrong mode for that equivalence, don't do anything here. */
1167 qty_valid = REGNO_QTY_VALID_P (regno);
1168 if (qty_valid)
1170 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1172 if (ent->mode != GET_MODE (x))
1173 return 0;
1176 if (modified || ! qty_valid)
1178 if (classp)
1179 for (classp = classp->first_same_value;
1180 classp != 0;
1181 classp = classp->next_same_value)
1182 if (REG_P (classp->exp)
1183 && GET_MODE (classp->exp) == GET_MODE (x))
1185 make_regs_eqv (regno, REGNO (classp->exp));
1186 return 1;
1189 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1190 than REG_IN_TABLE to find out if there was only a single preceding
1191 invalidation - for the SUBREG - or another one, which would be
1192 for the full register. However, if we find here that REG_TICK
1193 indicates that the register is invalid, it means that it has
1194 been invalidated in a separate operation. The SUBREG might be used
1195 now (then this is a recursive call), or we might use the full REG
1196 now and a SUBREG of it later. So bump up REG_TICK so that
1197 mention_regs will do the right thing. */
1198 if (! modified
1199 && REG_IN_TABLE (regno) >= 0
1200 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1201 REG_TICK (regno)++;
1202 make_new_qty (regno, GET_MODE (x));
1203 return 1;
1206 return 0;
1209 /* If X is a SUBREG, we will likely be inserting the inner register in the
1210 table. If that register doesn't have an assigned quantity number at
1211 this point but does later, the insertion that we will be doing now will
1212 not be accessible because its hash code will have changed. So assign
1213 a quantity number now. */
1215 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1216 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1218 insert_regs (SUBREG_REG (x), NULL, 0);
1219 mention_regs (x);
1220 return 1;
1222 else
1223 return mention_regs (x);
1226 /* Look in or update the hash table. */
1228 /* Remove table element ELT from use in the table.
1229 HASH is its hash code, made using the HASH macro.
1230 It's an argument because often that is known in advance
1231 and we save much time not recomputing it. */
1233 static void
1234 remove_from_table (struct table_elt *elt, unsigned int hash)
1236 if (elt == 0)
1237 return;
1239 /* Mark this element as removed. See cse_insn. */
1240 elt->first_same_value = 0;
1242 /* Remove the table element from its equivalence class. */
1245 struct table_elt *prev = elt->prev_same_value;
1246 struct table_elt *next = elt->next_same_value;
1248 if (next)
1249 next->prev_same_value = prev;
1251 if (prev)
1252 prev->next_same_value = next;
1253 else
1255 struct table_elt *newfirst = next;
1256 while (next)
1258 next->first_same_value = newfirst;
1259 next = next->next_same_value;
1264 /* Remove the table element from its hash bucket. */
1267 struct table_elt *prev = elt->prev_same_hash;
1268 struct table_elt *next = elt->next_same_hash;
1270 if (next)
1271 next->prev_same_hash = prev;
1273 if (prev)
1274 prev->next_same_hash = next;
1275 else if (table[hash] == elt)
1276 table[hash] = next;
1277 else
1279 /* This entry is not in the proper hash bucket. This can happen
1280 when two classes were merged by `merge_equiv_classes'. Search
1281 for the hash bucket that it heads. This happens only very
1282 rarely, so the cost is acceptable. */
1283 for (hash = 0; hash < HASH_SIZE; hash++)
1284 if (table[hash] == elt)
1285 table[hash] = next;
1289 /* Remove the table element from its related-value circular chain. */
1291 if (elt->related_value != 0 && elt->related_value != elt)
1293 struct table_elt *p = elt->related_value;
1295 while (p->related_value != elt)
1296 p = p->related_value;
1297 p->related_value = elt->related_value;
1298 if (p->related_value == p)
1299 p->related_value = 0;
1302 /* Now add it to the free element chain. */
1303 elt->next_same_hash = free_element_chain;
1304 free_element_chain = elt;
1307 /* Look up X in the hash table and return its table element,
1308 or 0 if X is not in the table.
1310 MODE is the machine-mode of X, or if X is an integer constant
1311 with VOIDmode then MODE is the mode with which X will be used.
1313 Here we are satisfied to find an expression whose tree structure
1314 looks like X. */
1316 static struct table_elt *
1317 lookup (rtx x, unsigned int hash, enum machine_mode mode)
1319 struct table_elt *p;
1321 for (p = table[hash]; p; p = p->next_same_hash)
1322 if (mode == p->mode && ((x == p->exp && REG_P (x))
1323 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1324 return p;
1326 return 0;
1329 /* Like `lookup' but don't care whether the table element uses invalid regs.
1330 Also ignore discrepancies in the machine mode of a register. */
1332 static struct table_elt *
1333 lookup_for_remove (rtx x, unsigned int hash, enum machine_mode mode)
1335 struct table_elt *p;
1337 if (REG_P (x))
1339 unsigned int regno = REGNO (x);
1341 /* Don't check the machine mode when comparing registers;
1342 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1343 for (p = table[hash]; p; p = p->next_same_hash)
1344 if (REG_P (p->exp)
1345 && REGNO (p->exp) == regno)
1346 return p;
1348 else
1350 for (p = table[hash]; p; p = p->next_same_hash)
1351 if (mode == p->mode
1352 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1353 return p;
1356 return 0;
1359 /* Look for an expression equivalent to X and with code CODE.
1360 If one is found, return that expression. */
1362 static rtx
1363 lookup_as_function (rtx x, enum rtx_code code)
1365 struct table_elt *p
1366 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1368 /* If we are looking for a CONST_INT, the mode doesn't really matter, as
1369 long as we are narrowing. So if we looked in vain for a mode narrower
1370 than word_mode before, look for word_mode now. */
1371 if (p == 0 && code == CONST_INT
1372 && GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (word_mode))
1374 x = copy_rtx (x);
1375 PUT_MODE (x, word_mode);
1376 p = lookup (x, SAFE_HASH (x, VOIDmode), word_mode);
1379 if (p == 0)
1380 return 0;
1382 for (p = p->first_same_value; p; p = p->next_same_value)
1383 if (GET_CODE (p->exp) == code
1384 /* Make sure this is a valid entry in the table. */
1385 && exp_equiv_p (p->exp, p->exp, 1, false))
1386 return p->exp;
1388 return 0;
1391 /* Insert X in the hash table, assuming HASH is its hash code
1392 and CLASSP is an element of the class it should go in
1393 (or 0 if a new class should be made).
1394 It is inserted at the proper position to keep the class in
1395 the order cheapest first.
1397 MODE is the machine-mode of X, or if X is an integer constant
1398 with VOIDmode then MODE is the mode with which X will be used.
1400 For elements of equal cheapness, the most recent one
1401 goes in front, except that the first element in the list
1402 remains first unless a cheaper element is added. The order of
1403 pseudo-registers does not matter, as canon_reg will be called to
1404 find the cheapest when a register is retrieved from the table.
1406 The in_memory field in the hash table element is set to 0.
1407 The caller must set it nonzero if appropriate.
1409 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1410 and if insert_regs returns a nonzero value
1411 you must then recompute its hash code before calling here.
1413 If necessary, update table showing constant values of quantities. */
1415 #define CHEAPER(X, Y) \
1416 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
1418 static struct table_elt *
1419 insert (rtx x, struct table_elt *classp, unsigned int hash, enum machine_mode mode)
1421 struct table_elt *elt;
1423 /* If X is a register and we haven't made a quantity for it,
1424 something is wrong. */
1425 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1427 /* If X is a hard register, show it is being put in the table. */
1428 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1430 unsigned int regno = REGNO (x);
1431 unsigned int endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
1432 unsigned int i;
1434 for (i = regno; i < endregno; i++)
1435 SET_HARD_REG_BIT (hard_regs_in_table, i);
1438 /* Put an element for X into the right hash bucket. */
1440 elt = free_element_chain;
1441 if (elt)
1442 free_element_chain = elt->next_same_hash;
1443 else
1445 n_elements_made++;
1446 elt = xmalloc (sizeof (struct table_elt));
1449 elt->exp = x;
1450 elt->canon_exp = NULL_RTX;
1451 elt->cost = COST (x);
1452 elt->regcost = approx_reg_cost (x);
1453 elt->next_same_value = 0;
1454 elt->prev_same_value = 0;
1455 elt->next_same_hash = table[hash];
1456 elt->prev_same_hash = 0;
1457 elt->related_value = 0;
1458 elt->in_memory = 0;
1459 elt->mode = mode;
1460 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1462 if (table[hash])
1463 table[hash]->prev_same_hash = elt;
1464 table[hash] = elt;
1466 /* Put it into the proper value-class. */
1467 if (classp)
1469 classp = classp->first_same_value;
1470 if (CHEAPER (elt, classp))
1471 /* Insert at the head of the class. */
1473 struct table_elt *p;
1474 elt->next_same_value = classp;
1475 classp->prev_same_value = elt;
1476 elt->first_same_value = elt;
1478 for (p = classp; p; p = p->next_same_value)
1479 p->first_same_value = elt;
1481 else
1483 /* Insert not at head of the class. */
1484 /* Put it after the last element cheaper than X. */
1485 struct table_elt *p, *next;
1487 for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
1488 p = next);
1490 /* Put it after P and before NEXT. */
1491 elt->next_same_value = next;
1492 if (next)
1493 next->prev_same_value = elt;
1495 elt->prev_same_value = p;
1496 p->next_same_value = elt;
1497 elt->first_same_value = classp;
1500 else
1501 elt->first_same_value = elt;
1503 /* If this is a constant being set equivalent to a register or a register
1504 being set equivalent to a constant, note the constant equivalence.
1506 If this is a constant, it cannot be equivalent to a different constant,
1507 and a constant is the only thing that can be cheaper than a register. So
1508 we know the register is the head of the class (before the constant was
1509 inserted).
1511 If this is a register that is not already known equivalent to a
1512 constant, we must check the entire class.
1514 If this is a register that is already known equivalent to an insn,
1515 update the qtys `const_insn' to show that `this_insn' is the latest
1516 insn making that quantity equivalent to the constant. */
1518 if (elt->is_const && classp && REG_P (classp->exp)
1519 && !REG_P (x))
1521 int exp_q = REG_QTY (REGNO (classp->exp));
1522 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1524 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1525 exp_ent->const_insn = this_insn;
1528 else if (REG_P (x)
1529 && classp
1530 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1531 && ! elt->is_const)
1533 struct table_elt *p;
1535 for (p = classp; p != 0; p = p->next_same_value)
1537 if (p->is_const && !REG_P (p->exp))
1539 int x_q = REG_QTY (REGNO (x));
1540 struct qty_table_elem *x_ent = &qty_table[x_q];
1542 x_ent->const_rtx
1543 = gen_lowpart (GET_MODE (x), p->exp);
1544 x_ent->const_insn = this_insn;
1545 break;
1550 else if (REG_P (x)
1551 && qty_table[REG_QTY (REGNO (x))].const_rtx
1552 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1553 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1555 /* If this is a constant with symbolic value,
1556 and it has a term with an explicit integer value,
1557 link it up with related expressions. */
1558 if (GET_CODE (x) == CONST)
1560 rtx subexp = get_related_value (x);
1561 unsigned subhash;
1562 struct table_elt *subelt, *subelt_prev;
1564 if (subexp != 0)
1566 /* Get the integer-free subexpression in the hash table. */
1567 subhash = SAFE_HASH (subexp, mode);
1568 subelt = lookup (subexp, subhash, mode);
1569 if (subelt == 0)
1570 subelt = insert (subexp, NULL, subhash, mode);
1571 /* Initialize SUBELT's circular chain if it has none. */
1572 if (subelt->related_value == 0)
1573 subelt->related_value = subelt;
1574 /* Find the element in the circular chain that precedes SUBELT. */
1575 subelt_prev = subelt;
1576 while (subelt_prev->related_value != subelt)
1577 subelt_prev = subelt_prev->related_value;
1578 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1579 This way the element that follows SUBELT is the oldest one. */
1580 elt->related_value = subelt_prev->related_value;
1581 subelt_prev->related_value = elt;
1585 return elt;
1588 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1589 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1590 the two classes equivalent.
1592 CLASS1 will be the surviving class; CLASS2 should not be used after this
1593 call.
1595 Any invalid entries in CLASS2 will not be copied. */
1597 static void
1598 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1600 struct table_elt *elt, *next, *new;
1602 /* Ensure we start with the head of the classes. */
1603 class1 = class1->first_same_value;
1604 class2 = class2->first_same_value;
1606 /* If they were already equal, forget it. */
1607 if (class1 == class2)
1608 return;
1610 for (elt = class2; elt; elt = next)
1612 unsigned int hash;
1613 rtx exp = elt->exp;
1614 enum machine_mode mode = elt->mode;
1616 next = elt->next_same_value;
1618 /* Remove old entry, make a new one in CLASS1's class.
1619 Don't do this for invalid entries as we cannot find their
1620 hash code (it also isn't necessary). */
1621 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1623 bool need_rehash = false;
1625 hash_arg_in_memory = 0;
1626 hash = HASH (exp, mode);
1628 if (REG_P (exp))
1630 need_rehash = (unsigned) REG_QTY (REGNO (exp)) != REGNO (exp);
1631 delete_reg_equiv (REGNO (exp));
1634 remove_from_table (elt, hash);
1636 if (insert_regs (exp, class1, 0) || need_rehash)
1638 rehash_using_reg (exp);
1639 hash = HASH (exp, mode);
1641 new = insert (exp, class1, hash, mode);
1642 new->in_memory = hash_arg_in_memory;
1647 /* Flush the entire hash table. */
1649 static void
1650 flush_hash_table (void)
1652 int i;
1653 struct table_elt *p;
1655 for (i = 0; i < HASH_SIZE; i++)
1656 for (p = table[i]; p; p = table[i])
1658 /* Note that invalidate can remove elements
1659 after P in the current hash chain. */
1660 if (REG_P (p->exp))
1661 invalidate (p->exp, p->mode);
1662 else
1663 remove_from_table (p, i);
1667 /* Function called for each rtx to check whether true dependence exist. */
1668 struct check_dependence_data
1670 enum machine_mode mode;
1671 rtx exp;
1672 rtx addr;
1675 static int
1676 check_dependence (rtx *x, void *data)
1678 struct check_dependence_data *d = (struct check_dependence_data *) data;
1679 if (*x && MEM_P (*x))
1680 return canon_true_dependence (d->exp, d->mode, d->addr, *x,
1681 cse_rtx_varies_p);
1682 else
1683 return 0;
1686 /* Remove from the hash table, or mark as invalid, all expressions whose
1687 values could be altered by storing in X. X is a register, a subreg, or
1688 a memory reference with nonvarying address (because, when a memory
1689 reference with a varying address is stored in, all memory references are
1690 removed by invalidate_memory so specific invalidation is superfluous).
1691 FULL_MODE, if not VOIDmode, indicates that this much should be
1692 invalidated instead of just the amount indicated by the mode of X. This
1693 is only used for bitfield stores into memory.
1695 A nonvarying address may be just a register or just a symbol reference,
1696 or it may be either of those plus a numeric offset. */
1698 static void
1699 invalidate (rtx x, enum machine_mode full_mode)
1701 int i;
1702 struct table_elt *p;
1703 rtx addr;
1705 switch (GET_CODE (x))
1707 case REG:
1709 /* If X is a register, dependencies on its contents are recorded
1710 through the qty number mechanism. Just change the qty number of
1711 the register, mark it as invalid for expressions that refer to it,
1712 and remove it itself. */
1713 unsigned int regno = REGNO (x);
1714 unsigned int hash = HASH (x, GET_MODE (x));
1716 /* Remove REGNO from any quantity list it might be on and indicate
1717 that its value might have changed. If it is a pseudo, remove its
1718 entry from the hash table.
1720 For a hard register, we do the first two actions above for any
1721 additional hard registers corresponding to X. Then, if any of these
1722 registers are in the table, we must remove any REG entries that
1723 overlap these registers. */
1725 delete_reg_equiv (regno);
1726 REG_TICK (regno)++;
1727 SUBREG_TICKED (regno) = -1;
1729 if (regno >= FIRST_PSEUDO_REGISTER)
1731 /* Because a register can be referenced in more than one mode,
1732 we might have to remove more than one table entry. */
1733 struct table_elt *elt;
1735 while ((elt = lookup_for_remove (x, hash, GET_MODE (x))))
1736 remove_from_table (elt, hash);
1738 else
1740 HOST_WIDE_INT in_table
1741 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1742 unsigned int endregno
1743 = regno + hard_regno_nregs[regno][GET_MODE (x)];
1744 unsigned int tregno, tendregno, rn;
1745 struct table_elt *p, *next;
1747 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1749 for (rn = regno + 1; rn < endregno; rn++)
1751 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1752 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1753 delete_reg_equiv (rn);
1754 REG_TICK (rn)++;
1755 SUBREG_TICKED (rn) = -1;
1758 if (in_table)
1759 for (hash = 0; hash < HASH_SIZE; hash++)
1760 for (p = table[hash]; p; p = next)
1762 next = p->next_same_hash;
1764 if (!REG_P (p->exp)
1765 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1766 continue;
1768 tregno = REGNO (p->exp);
1769 tendregno
1770 = tregno + hard_regno_nregs[tregno][GET_MODE (p->exp)];
1771 if (tendregno > regno && tregno < endregno)
1772 remove_from_table (p, hash);
1776 return;
1778 case SUBREG:
1779 invalidate (SUBREG_REG (x), VOIDmode);
1780 return;
1782 case PARALLEL:
1783 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1784 invalidate (XVECEXP (x, 0, i), VOIDmode);
1785 return;
1787 case EXPR_LIST:
1788 /* This is part of a disjoint return value; extract the location in
1789 question ignoring the offset. */
1790 invalidate (XEXP (x, 0), VOIDmode);
1791 return;
1793 case MEM:
1794 addr = canon_rtx (get_addr (XEXP (x, 0)));
1795 /* Calculate the canonical version of X here so that
1796 true_dependence doesn't generate new RTL for X on each call. */
1797 x = canon_rtx (x);
1799 /* Remove all hash table elements that refer to overlapping pieces of
1800 memory. */
1801 if (full_mode == VOIDmode)
1802 full_mode = GET_MODE (x);
1804 for (i = 0; i < HASH_SIZE; i++)
1806 struct table_elt *next;
1808 for (p = table[i]; p; p = next)
1810 next = p->next_same_hash;
1811 if (p->in_memory)
1813 struct check_dependence_data d;
1815 /* Just canonicalize the expression once;
1816 otherwise each time we call invalidate
1817 true_dependence will canonicalize the
1818 expression again. */
1819 if (!p->canon_exp)
1820 p->canon_exp = canon_rtx (p->exp);
1821 d.exp = x;
1822 d.addr = addr;
1823 d.mode = full_mode;
1824 if (for_each_rtx (&p->canon_exp, check_dependence, &d))
1825 remove_from_table (p, i);
1829 return;
1831 default:
1832 gcc_unreachable ();
1836 /* Remove all expressions that refer to register REGNO,
1837 since they are already invalid, and we are about to
1838 mark that register valid again and don't want the old
1839 expressions to reappear as valid. */
1841 static void
1842 remove_invalid_refs (unsigned int regno)
1844 unsigned int i;
1845 struct table_elt *p, *next;
1847 for (i = 0; i < HASH_SIZE; i++)
1848 for (p = table[i]; p; p = next)
1850 next = p->next_same_hash;
1851 if (!REG_P (p->exp)
1852 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1853 remove_from_table (p, i);
1857 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
1858 and mode MODE. */
1859 static void
1860 remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
1861 enum machine_mode mode)
1863 unsigned int i;
1864 struct table_elt *p, *next;
1865 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
1867 for (i = 0; i < HASH_SIZE; i++)
1868 for (p = table[i]; p; p = next)
1870 rtx exp = p->exp;
1871 next = p->next_same_hash;
1873 if (!REG_P (exp)
1874 && (GET_CODE (exp) != SUBREG
1875 || !REG_P (SUBREG_REG (exp))
1876 || REGNO (SUBREG_REG (exp)) != regno
1877 || (((SUBREG_BYTE (exp)
1878 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
1879 && SUBREG_BYTE (exp) <= end))
1880 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1881 remove_from_table (p, i);
1885 /* Recompute the hash codes of any valid entries in the hash table that
1886 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
1888 This is called when we make a jump equivalence. */
1890 static void
1891 rehash_using_reg (rtx x)
1893 unsigned int i;
1894 struct table_elt *p, *next;
1895 unsigned hash;
1897 if (GET_CODE (x) == SUBREG)
1898 x = SUBREG_REG (x);
1900 /* If X is not a register or if the register is known not to be in any
1901 valid entries in the table, we have no work to do. */
1903 if (!REG_P (x)
1904 || REG_IN_TABLE (REGNO (x)) < 0
1905 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
1906 return;
1908 /* Scan all hash chains looking for valid entries that mention X.
1909 If we find one and it is in the wrong hash chain, move it. */
1911 for (i = 0; i < HASH_SIZE; i++)
1912 for (p = table[i]; p; p = next)
1914 next = p->next_same_hash;
1915 if (reg_mentioned_p (x, p->exp)
1916 && exp_equiv_p (p->exp, p->exp, 1, false)
1917 && i != (hash = SAFE_HASH (p->exp, p->mode)))
1919 if (p->next_same_hash)
1920 p->next_same_hash->prev_same_hash = p->prev_same_hash;
1922 if (p->prev_same_hash)
1923 p->prev_same_hash->next_same_hash = p->next_same_hash;
1924 else
1925 table[i] = p->next_same_hash;
1927 p->next_same_hash = table[hash];
1928 p->prev_same_hash = 0;
1929 if (table[hash])
1930 table[hash]->prev_same_hash = p;
1931 table[hash] = p;
1936 /* Remove from the hash table any expression that is a call-clobbered
1937 register. Also update their TICK values. */
1939 static void
1940 invalidate_for_call (void)
1942 unsigned int regno, endregno;
1943 unsigned int i;
1944 unsigned hash;
1945 struct table_elt *p, *next;
1946 int in_table = 0;
1948 /* Go through all the hard registers. For each that is clobbered in
1949 a CALL_INSN, remove the register from quantity chains and update
1950 reg_tick if defined. Also see if any of these registers is currently
1951 in the table. */
1953 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1954 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
1956 delete_reg_equiv (regno);
1957 if (REG_TICK (regno) >= 0)
1959 REG_TICK (regno)++;
1960 SUBREG_TICKED (regno) = -1;
1963 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
1966 /* In the case where we have no call-clobbered hard registers in the
1967 table, we are done. Otherwise, scan the table and remove any
1968 entry that overlaps a call-clobbered register. */
1970 if (in_table)
1971 for (hash = 0; hash < HASH_SIZE; hash++)
1972 for (p = table[hash]; p; p = next)
1974 next = p->next_same_hash;
1976 if (!REG_P (p->exp)
1977 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1978 continue;
1980 regno = REGNO (p->exp);
1981 endregno = regno + hard_regno_nregs[regno][GET_MODE (p->exp)];
1983 for (i = regno; i < endregno; i++)
1984 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1986 remove_from_table (p, hash);
1987 break;
1992 /* Given an expression X of type CONST,
1993 and ELT which is its table entry (or 0 if it
1994 is not in the hash table),
1995 return an alternate expression for X as a register plus integer.
1996 If none can be found, return 0. */
1998 static rtx
1999 use_related_value (rtx x, struct table_elt *elt)
2001 struct table_elt *relt = 0;
2002 struct table_elt *p, *q;
2003 HOST_WIDE_INT offset;
2005 /* First, is there anything related known?
2006 If we have a table element, we can tell from that.
2007 Otherwise, must look it up. */
2009 if (elt != 0 && elt->related_value != 0)
2010 relt = elt;
2011 else if (elt == 0 && GET_CODE (x) == CONST)
2013 rtx subexp = get_related_value (x);
2014 if (subexp != 0)
2015 relt = lookup (subexp,
2016 SAFE_HASH (subexp, GET_MODE (subexp)),
2017 GET_MODE (subexp));
2020 if (relt == 0)
2021 return 0;
2023 /* Search all related table entries for one that has an
2024 equivalent register. */
2026 p = relt;
2027 while (1)
2029 /* This loop is strange in that it is executed in two different cases.
2030 The first is when X is already in the table. Then it is searching
2031 the RELATED_VALUE list of X's class (RELT). The second case is when
2032 X is not in the table. Then RELT points to a class for the related
2033 value.
2035 Ensure that, whatever case we are in, that we ignore classes that have
2036 the same value as X. */
2038 if (rtx_equal_p (x, p->exp))
2039 q = 0;
2040 else
2041 for (q = p->first_same_value; q; q = q->next_same_value)
2042 if (REG_P (q->exp))
2043 break;
2045 if (q)
2046 break;
2048 p = p->related_value;
2050 /* We went all the way around, so there is nothing to be found.
2051 Alternatively, perhaps RELT was in the table for some other reason
2052 and it has no related values recorded. */
2053 if (p == relt || p == 0)
2054 break;
2057 if (q == 0)
2058 return 0;
2060 offset = (get_integer_term (x) - get_integer_term (p->exp));
2061 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2062 return plus_constant (q->exp, offset);
2065 /* Hash a string. Just add its bytes up. */
2066 static inline unsigned
2067 hash_rtx_string (const char *ps)
2069 unsigned hash = 0;
2070 const unsigned char *p = (const unsigned char *) ps;
2072 if (p)
2073 while (*p)
2074 hash += *p++;
2076 return hash;
2079 /* Hash an rtx. We are careful to make sure the value is never negative.
2080 Equivalent registers hash identically.
2081 MODE is used in hashing for CONST_INTs only;
2082 otherwise the mode of X is used.
2084 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2086 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2087 a MEM rtx which does not have the RTX_UNCHANGING_P bit set.
2089 Note that cse_insn knows that the hash code of a MEM expression
2090 is just (int) MEM plus the hash code of the address. */
2092 unsigned
2093 hash_rtx (rtx x, enum machine_mode mode, int *do_not_record_p,
2094 int *hash_arg_in_memory_p, bool have_reg_qty)
2096 int i, j;
2097 unsigned hash = 0;
2098 enum rtx_code code;
2099 const char *fmt;
2101 /* Used to turn recursion into iteration. We can't rely on GCC's
2102 tail-recursion elimination since we need to keep accumulating values
2103 in HASH. */
2104 repeat:
2105 if (x == 0)
2106 return hash;
2108 code = GET_CODE (x);
2109 switch (code)
2111 case REG:
2113 unsigned int regno = REGNO (x);
2115 if (!reload_completed)
2117 /* On some machines, we can't record any non-fixed hard register,
2118 because extending its life will cause reload problems. We
2119 consider ap, fp, sp, gp to be fixed for this purpose.
2121 We also consider CCmode registers to be fixed for this purpose;
2122 failure to do so leads to failure to simplify 0<100 type of
2123 conditionals.
2125 On all machines, we can't record any global registers.
2126 Nor should we record any register that is in a small
2127 class, as defined by CLASS_LIKELY_SPILLED_P. */
2128 bool record;
2130 if (regno >= FIRST_PSEUDO_REGISTER)
2131 record = true;
2132 else if (x == frame_pointer_rtx
2133 || x == hard_frame_pointer_rtx
2134 || x == arg_pointer_rtx
2135 || x == stack_pointer_rtx
2136 || x == pic_offset_table_rtx)
2137 record = true;
2138 else if (global_regs[regno])
2139 record = false;
2140 else if (fixed_regs[regno])
2141 record = true;
2142 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2143 record = true;
2144 else if (SMALL_REGISTER_CLASSES)
2145 record = false;
2146 else if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno)))
2147 record = false;
2148 else
2149 record = true;
2151 if (!record)
2153 *do_not_record_p = 1;
2154 return 0;
2158 hash += ((unsigned int) REG << 7);
2159 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2160 return hash;
2163 /* We handle SUBREG of a REG specially because the underlying
2164 reg changes its hash value with every value change; we don't
2165 want to have to forget unrelated subregs when one subreg changes. */
2166 case SUBREG:
2168 if (REG_P (SUBREG_REG (x)))
2170 hash += (((unsigned int) SUBREG << 7)
2171 + REGNO (SUBREG_REG (x))
2172 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2173 return hash;
2175 break;
2178 case CONST_INT:
2179 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2180 + (unsigned int) INTVAL (x));
2181 return hash;
2183 case CONST_DOUBLE:
2184 /* This is like the general case, except that it only counts
2185 the integers representing the constant. */
2186 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2187 if (GET_MODE (x) != VOIDmode)
2188 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2189 else
2190 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2191 + (unsigned int) CONST_DOUBLE_HIGH (x));
2192 return hash;
2194 case CONST_VECTOR:
2196 int units;
2197 rtx elt;
2199 units = CONST_VECTOR_NUNITS (x);
2201 for (i = 0; i < units; ++i)
2203 elt = CONST_VECTOR_ELT (x, i);
2204 hash += hash_rtx (elt, GET_MODE (elt), do_not_record_p,
2205 hash_arg_in_memory_p, have_reg_qty);
2208 return hash;
2211 /* Assume there is only one rtx object for any given label. */
2212 case LABEL_REF:
2213 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2214 differences and differences between each stage's debugging dumps. */
2215 hash += (((unsigned int) LABEL_REF << 7)
2216 + CODE_LABEL_NUMBER (XEXP (x, 0)));
2217 return hash;
2219 case SYMBOL_REF:
2221 /* Don't hash on the symbol's address to avoid bootstrap differences.
2222 Different hash values may cause expressions to be recorded in
2223 different orders and thus different registers to be used in the
2224 final assembler. This also avoids differences in the dump files
2225 between various stages. */
2226 unsigned int h = 0;
2227 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2229 while (*p)
2230 h += (h << 7) + *p++; /* ??? revisit */
2232 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2233 return hash;
2236 case MEM:
2237 /* We don't record if marked volatile or if BLKmode since we don't
2238 know the size of the move. */
2239 if (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode)
2241 *do_not_record_p = 1;
2242 return 0;
2244 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2245 *hash_arg_in_memory_p = 1;
2247 /* Now that we have already found this special case,
2248 might as well speed it up as much as possible. */
2249 hash += (unsigned) MEM;
2250 x = XEXP (x, 0);
2251 goto repeat;
2253 case USE:
2254 /* A USE that mentions non-volatile memory needs special
2255 handling since the MEM may be BLKmode which normally
2256 prevents an entry from being made. Pure calls are
2257 marked by a USE which mentions BLKmode memory.
2258 See calls.c:emit_call_1. */
2259 if (MEM_P (XEXP (x, 0))
2260 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2262 hash += (unsigned) USE;
2263 x = XEXP (x, 0);
2265 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2266 *hash_arg_in_memory_p = 1;
2268 /* Now that we have already found this special case,
2269 might as well speed it up as much as possible. */
2270 hash += (unsigned) MEM;
2271 x = XEXP (x, 0);
2272 goto repeat;
2274 break;
2276 case PRE_DEC:
2277 case PRE_INC:
2278 case POST_DEC:
2279 case POST_INC:
2280 case PRE_MODIFY:
2281 case POST_MODIFY:
2282 case PC:
2283 case CC0:
2284 case CALL:
2285 case UNSPEC_VOLATILE:
2286 *do_not_record_p = 1;
2287 return 0;
2289 case ASM_OPERANDS:
2290 if (MEM_VOLATILE_P (x))
2292 *do_not_record_p = 1;
2293 return 0;
2295 else
2297 /* We don't want to take the filename and line into account. */
2298 hash += (unsigned) code + (unsigned) GET_MODE (x)
2299 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2300 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2301 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2303 if (ASM_OPERANDS_INPUT_LENGTH (x))
2305 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2307 hash += (hash_rtx (ASM_OPERANDS_INPUT (x, i),
2308 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2309 do_not_record_p, hash_arg_in_memory_p,
2310 have_reg_qty)
2311 + hash_rtx_string
2312 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2315 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2316 x = ASM_OPERANDS_INPUT (x, 0);
2317 mode = GET_MODE (x);
2318 goto repeat;
2321 return hash;
2323 break;
2325 default:
2326 break;
2329 i = GET_RTX_LENGTH (code) - 1;
2330 hash += (unsigned) code + (unsigned) GET_MODE (x);
2331 fmt = GET_RTX_FORMAT (code);
2332 for (; i >= 0; i--)
2334 switch (fmt[i])
2336 case 'e':
2337 /* If we are about to do the last recursive call
2338 needed at this level, change it into iteration.
2339 This function is called enough to be worth it. */
2340 if (i == 0)
2342 x = XEXP (x, i);
2343 goto repeat;
2346 hash += hash_rtx (XEXP (x, i), 0, do_not_record_p,
2347 hash_arg_in_memory_p, have_reg_qty);
2348 break;
2350 case 'E':
2351 for (j = 0; j < XVECLEN (x, i); j++)
2352 hash += hash_rtx (XVECEXP (x, i, j), 0, do_not_record_p,
2353 hash_arg_in_memory_p, have_reg_qty);
2354 break;
2356 case 's':
2357 hash += hash_rtx_string (XSTR (x, i));
2358 break;
2360 case 'i':
2361 hash += (unsigned int) XINT (x, i);
2362 break;
2364 case '0': case 't':
2365 /* Unused. */
2366 break;
2368 default:
2369 gcc_unreachable ();
2373 return hash;
2376 /* Hash an rtx X for cse via hash_rtx.
2377 Stores 1 in do_not_record if any subexpression is volatile.
2378 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2379 does not have the RTX_UNCHANGING_P bit set. */
2381 static inline unsigned
2382 canon_hash (rtx x, enum machine_mode mode)
2384 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2387 /* Like canon_hash but with no side effects, i.e. do_not_record
2388 and hash_arg_in_memory are not changed. */
2390 static inline unsigned
2391 safe_hash (rtx x, enum machine_mode mode)
2393 int dummy_do_not_record;
2394 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2397 /* Return 1 iff X and Y would canonicalize into the same thing,
2398 without actually constructing the canonicalization of either one.
2399 If VALIDATE is nonzero,
2400 we assume X is an expression being processed from the rtl
2401 and Y was found in the hash table. We check register refs
2402 in Y for being marked as valid.
2404 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2407 exp_equiv_p (rtx x, rtx y, int validate, bool for_gcse)
2409 int i, j;
2410 enum rtx_code code;
2411 const char *fmt;
2413 /* Note: it is incorrect to assume an expression is equivalent to itself
2414 if VALIDATE is nonzero. */
2415 if (x == y && !validate)
2416 return 1;
2418 if (x == 0 || y == 0)
2419 return x == y;
2421 code = GET_CODE (x);
2422 if (code != GET_CODE (y))
2423 return 0;
2425 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2426 if (GET_MODE (x) != GET_MODE (y))
2427 return 0;
2429 switch (code)
2431 case PC:
2432 case CC0:
2433 case CONST_INT:
2434 return x == y;
2436 case LABEL_REF:
2437 return XEXP (x, 0) == XEXP (y, 0);
2439 case SYMBOL_REF:
2440 return XSTR (x, 0) == XSTR (y, 0);
2442 case REG:
2443 if (for_gcse)
2444 return REGNO (x) == REGNO (y);
2445 else
2447 unsigned int regno = REGNO (y);
2448 unsigned int i;
2449 unsigned int endregno
2450 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
2451 : hard_regno_nregs[regno][GET_MODE (y)]);
2453 /* If the quantities are not the same, the expressions are not
2454 equivalent. If there are and we are not to validate, they
2455 are equivalent. Otherwise, ensure all regs are up-to-date. */
2457 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2458 return 0;
2460 if (! validate)
2461 return 1;
2463 for (i = regno; i < endregno; i++)
2464 if (REG_IN_TABLE (i) != REG_TICK (i))
2465 return 0;
2467 return 1;
2470 case MEM:
2471 if (for_gcse)
2473 /* Can't merge two expressions in different alias sets, since we
2474 can decide that the expression is transparent in a block when
2475 it isn't, due to it being set with the different alias set. */
2476 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
2477 return 0;
2479 /* A volatile mem should not be considered equivalent to any
2480 other. */
2481 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2482 return 0;
2484 break;
2486 /* For commutative operations, check both orders. */
2487 case PLUS:
2488 case MULT:
2489 case AND:
2490 case IOR:
2491 case XOR:
2492 case NE:
2493 case EQ:
2494 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2495 validate, for_gcse)
2496 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2497 validate, for_gcse))
2498 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2499 validate, for_gcse)
2500 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2501 validate, for_gcse)));
2503 case ASM_OPERANDS:
2504 /* We don't use the generic code below because we want to
2505 disregard filename and line numbers. */
2507 /* A volatile asm isn't equivalent to any other. */
2508 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2509 return 0;
2511 if (GET_MODE (x) != GET_MODE (y)
2512 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2513 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2514 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2515 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2516 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2517 return 0;
2519 if (ASM_OPERANDS_INPUT_LENGTH (x))
2521 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2522 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2523 ASM_OPERANDS_INPUT (y, i),
2524 validate, for_gcse)
2525 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2526 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2527 return 0;
2530 return 1;
2532 default:
2533 break;
2536 /* Compare the elements. If any pair of corresponding elements
2537 fail to match, return 0 for the whole thing. */
2539 fmt = GET_RTX_FORMAT (code);
2540 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2542 switch (fmt[i])
2544 case 'e':
2545 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2546 validate, for_gcse))
2547 return 0;
2548 break;
2550 case 'E':
2551 if (XVECLEN (x, i) != XVECLEN (y, i))
2552 return 0;
2553 for (j = 0; j < XVECLEN (x, i); j++)
2554 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2555 validate, for_gcse))
2556 return 0;
2557 break;
2559 case 's':
2560 if (strcmp (XSTR (x, i), XSTR (y, i)))
2561 return 0;
2562 break;
2564 case 'i':
2565 if (XINT (x, i) != XINT (y, i))
2566 return 0;
2567 break;
2569 case 'w':
2570 if (XWINT (x, i) != XWINT (y, i))
2571 return 0;
2572 break;
2574 case '0':
2575 case 't':
2576 break;
2578 default:
2579 gcc_unreachable ();
2583 return 1;
2586 /* Return 1 if X has a value that can vary even between two
2587 executions of the program. 0 means X can be compared reliably
2588 against certain constants or near-constants. */
2590 static int
2591 cse_rtx_varies_p (rtx x, int from_alias)
2593 /* We need not check for X and the equivalence class being of the same
2594 mode because if X is equivalent to a constant in some mode, it
2595 doesn't vary in any mode. */
2597 if (REG_P (x)
2598 && REGNO_QTY_VALID_P (REGNO (x)))
2600 int x_q = REG_QTY (REGNO (x));
2601 struct qty_table_elem *x_ent = &qty_table[x_q];
2603 if (GET_MODE (x) == x_ent->mode
2604 && x_ent->const_rtx != NULL_RTX)
2605 return 0;
2608 if (GET_CODE (x) == PLUS
2609 && GET_CODE (XEXP (x, 1)) == CONST_INT
2610 && REG_P (XEXP (x, 0))
2611 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
2613 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2614 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2616 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2617 && x0_ent->const_rtx != NULL_RTX)
2618 return 0;
2621 /* This can happen as the result of virtual register instantiation, if
2622 the initial constant is too large to be a valid address. This gives
2623 us a three instruction sequence, load large offset into a register,
2624 load fp minus a constant into a register, then a MEM which is the
2625 sum of the two `constant' registers. */
2626 if (GET_CODE (x) == PLUS
2627 && REG_P (XEXP (x, 0))
2628 && REG_P (XEXP (x, 1))
2629 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
2630 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
2632 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2633 int x1_q = REG_QTY (REGNO (XEXP (x, 1)));
2634 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2635 struct qty_table_elem *x1_ent = &qty_table[x1_q];
2637 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2638 && x0_ent->const_rtx != NULL_RTX
2639 && (GET_MODE (XEXP (x, 1)) == x1_ent->mode)
2640 && x1_ent->const_rtx != NULL_RTX)
2641 return 0;
2644 return rtx_varies_p (x, from_alias);
2647 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2648 the result if necessary. INSN is as for canon_reg. */
2650 static void
2651 validate_canon_reg (rtx *xloc, rtx insn)
2653 rtx new = canon_reg (*xloc, insn);
2654 int insn_code;
2656 /* If replacing pseudo with hard reg or vice versa, ensure the
2657 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2658 if (insn != 0 && new != 0
2659 && REG_P (new) && REG_P (*xloc)
2660 && (((REGNO (new) < FIRST_PSEUDO_REGISTER)
2661 != (REGNO (*xloc) < FIRST_PSEUDO_REGISTER))
2662 || GET_MODE (new) != GET_MODE (*xloc)
2663 || (insn_code = recog_memoized (insn)) < 0
2664 || insn_data[insn_code].n_dups > 0))
2665 validate_change (insn, xloc, new, 1);
2666 else
2667 *xloc = new;
2670 /* Canonicalize an expression:
2671 replace each register reference inside it
2672 with the "oldest" equivalent register.
2674 If INSN is nonzero and we are replacing a pseudo with a hard register
2675 or vice versa, validate_change is used to ensure that INSN remains valid
2676 after we make our substitution. The calls are made with IN_GROUP nonzero
2677 so apply_change_group must be called upon the outermost return from this
2678 function (unless INSN is zero). The result of apply_change_group can
2679 generally be discarded since the changes we are making are optional. */
2681 static rtx
2682 canon_reg (rtx x, rtx insn)
2684 int i;
2685 enum rtx_code code;
2686 const char *fmt;
2688 if (x == 0)
2689 return x;
2691 code = GET_CODE (x);
2692 switch (code)
2694 case PC:
2695 case CC0:
2696 case CONST:
2697 case CONST_INT:
2698 case CONST_DOUBLE:
2699 case CONST_VECTOR:
2700 case SYMBOL_REF:
2701 case LABEL_REF:
2702 case ADDR_VEC:
2703 case ADDR_DIFF_VEC:
2704 return x;
2706 case REG:
2708 int first;
2709 int q;
2710 struct qty_table_elem *ent;
2712 /* Never replace a hard reg, because hard regs can appear
2713 in more than one machine mode, and we must preserve the mode
2714 of each occurrence. Also, some hard regs appear in
2715 MEMs that are shared and mustn't be altered. Don't try to
2716 replace any reg that maps to a reg of class NO_REGS. */
2717 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2718 || ! REGNO_QTY_VALID_P (REGNO (x)))
2719 return x;
2721 q = REG_QTY (REGNO (x));
2722 ent = &qty_table[q];
2723 first = ent->first_reg;
2724 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2725 : REGNO_REG_CLASS (first) == NO_REGS ? x
2726 : gen_rtx_REG (ent->mode, first));
2729 default:
2730 break;
2733 fmt = GET_RTX_FORMAT (code);
2734 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2736 int j;
2738 if (fmt[i] == 'e')
2739 validate_canon_reg (&XEXP (x, i), insn);
2740 else if (fmt[i] == 'E')
2741 for (j = 0; j < XVECLEN (x, i); j++)
2742 validate_canon_reg (&XVECEXP (x, i, j), insn);
2745 return x;
2748 /* LOC is a location within INSN that is an operand address (the contents of
2749 a MEM). Find the best equivalent address to use that is valid for this
2750 insn.
2752 On most CISC machines, complicated address modes are costly, and rtx_cost
2753 is a good approximation for that cost. However, most RISC machines have
2754 only a few (usually only one) memory reference formats. If an address is
2755 valid at all, it is often just as cheap as any other address. Hence, for
2756 RISC machines, we use `address_cost' to compare the costs of various
2757 addresses. For two addresses of equal cost, choose the one with the
2758 highest `rtx_cost' value as that has the potential of eliminating the
2759 most insns. For equal costs, we choose the first in the equivalence
2760 class. Note that we ignore the fact that pseudo registers are cheaper than
2761 hard registers here because we would also prefer the pseudo registers. */
2763 static void
2764 find_best_addr (rtx insn, rtx *loc, enum machine_mode mode)
2766 struct table_elt *elt;
2767 rtx addr = *loc;
2768 struct table_elt *p;
2769 int found_better = 1;
2770 int save_do_not_record = do_not_record;
2771 int save_hash_arg_in_memory = hash_arg_in_memory;
2772 int addr_volatile;
2773 int regno;
2774 unsigned hash;
2776 /* Do not try to replace constant addresses or addresses of local and
2777 argument slots. These MEM expressions are made only once and inserted
2778 in many instructions, as well as being used to control symbol table
2779 output. It is not safe to clobber them.
2781 There are some uncommon cases where the address is already in a register
2782 for some reason, but we cannot take advantage of that because we have
2783 no easy way to unshare the MEM. In addition, looking up all stack
2784 addresses is costly. */
2785 if ((GET_CODE (addr) == PLUS
2786 && REG_P (XEXP (addr, 0))
2787 && GET_CODE (XEXP (addr, 1)) == CONST_INT
2788 && (regno = REGNO (XEXP (addr, 0)),
2789 regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM
2790 || regno == ARG_POINTER_REGNUM))
2791 || (REG_P (addr)
2792 && (regno = REGNO (addr), regno == FRAME_POINTER_REGNUM
2793 || regno == HARD_FRAME_POINTER_REGNUM
2794 || regno == ARG_POINTER_REGNUM))
2795 || CONSTANT_ADDRESS_P (addr))
2796 return;
2798 /* If this address is not simply a register, try to fold it. This will
2799 sometimes simplify the expression. Many simplifications
2800 will not be valid, but some, usually applying the associative rule, will
2801 be valid and produce better code. */
2802 if (!REG_P (addr))
2804 rtx folded = fold_rtx (copy_rtx (addr), NULL_RTX);
2805 int addr_folded_cost = address_cost (folded, mode);
2806 int addr_cost = address_cost (addr, mode);
2808 if ((addr_folded_cost < addr_cost
2809 || (addr_folded_cost == addr_cost
2810 /* ??? The rtx_cost comparison is left over from an older
2811 version of this code. It is probably no longer helpful. */
2812 && (rtx_cost (folded, MEM) > rtx_cost (addr, MEM)
2813 || approx_reg_cost (folded) < approx_reg_cost (addr))))
2814 && validate_change (insn, loc, folded, 0))
2815 addr = folded;
2818 /* If this address is not in the hash table, we can't look for equivalences
2819 of the whole address. Also, ignore if volatile. */
2821 do_not_record = 0;
2822 hash = HASH (addr, Pmode);
2823 addr_volatile = do_not_record;
2824 do_not_record = save_do_not_record;
2825 hash_arg_in_memory = save_hash_arg_in_memory;
2827 if (addr_volatile)
2828 return;
2830 elt = lookup (addr, hash, Pmode);
2832 if (elt)
2834 /* We need to find the best (under the criteria documented above) entry
2835 in the class that is valid. We use the `flag' field to indicate
2836 choices that were invalid and iterate until we can't find a better
2837 one that hasn't already been tried. */
2839 for (p = elt->first_same_value; p; p = p->next_same_value)
2840 p->flag = 0;
2842 while (found_better)
2844 int best_addr_cost = address_cost (*loc, mode);
2845 int best_rtx_cost = (elt->cost + 1) >> 1;
2846 int exp_cost;
2847 struct table_elt *best_elt = elt;
2849 found_better = 0;
2850 for (p = elt->first_same_value; p; p = p->next_same_value)
2851 if (! p->flag)
2853 if ((REG_P (p->exp)
2854 || exp_equiv_p (p->exp, p->exp, 1, false))
2855 && ((exp_cost = address_cost (p->exp, mode)) < best_addr_cost
2856 || (exp_cost == best_addr_cost
2857 && ((p->cost + 1) >> 1) > best_rtx_cost)))
2859 found_better = 1;
2860 best_addr_cost = exp_cost;
2861 best_rtx_cost = (p->cost + 1) >> 1;
2862 best_elt = p;
2866 if (found_better)
2868 if (validate_change (insn, loc,
2869 canon_reg (copy_rtx (best_elt->exp),
2870 NULL_RTX), 0))
2871 return;
2872 else
2873 best_elt->flag = 1;
2878 /* If the address is a binary operation with the first operand a register
2879 and the second a constant, do the same as above, but looking for
2880 equivalences of the register. Then try to simplify before checking for
2881 the best address to use. This catches a few cases: First is when we
2882 have REG+const and the register is another REG+const. We can often merge
2883 the constants and eliminate one insn and one register. It may also be
2884 that a machine has a cheap REG+REG+const. Finally, this improves the
2885 code on the Alpha for unaligned byte stores. */
2887 if (flag_expensive_optimizations
2888 && ARITHMETIC_P (*loc)
2889 && REG_P (XEXP (*loc, 0)))
2891 rtx op1 = XEXP (*loc, 1);
2893 do_not_record = 0;
2894 hash = HASH (XEXP (*loc, 0), Pmode);
2895 do_not_record = save_do_not_record;
2896 hash_arg_in_memory = save_hash_arg_in_memory;
2898 elt = lookup (XEXP (*loc, 0), hash, Pmode);
2899 if (elt == 0)
2900 return;
2902 /* We need to find the best (under the criteria documented above) entry
2903 in the class that is valid. We use the `flag' field to indicate
2904 choices that were invalid and iterate until we can't find a better
2905 one that hasn't already been tried. */
2907 for (p = elt->first_same_value; p; p = p->next_same_value)
2908 p->flag = 0;
2910 while (found_better)
2912 int best_addr_cost = address_cost (*loc, mode);
2913 int best_rtx_cost = (COST (*loc) + 1) >> 1;
2914 struct table_elt *best_elt = elt;
2915 rtx best_rtx = *loc;
2916 int count;
2918 /* This is at worst case an O(n^2) algorithm, so limit our search
2919 to the first 32 elements on the list. This avoids trouble
2920 compiling code with very long basic blocks that can easily
2921 call simplify_gen_binary so many times that we run out of
2922 memory. */
2924 found_better = 0;
2925 for (p = elt->first_same_value, count = 0;
2926 p && count < 32;
2927 p = p->next_same_value, count++)
2928 if (! p->flag
2929 && (REG_P (p->exp)
2930 || exp_equiv_p (p->exp, p->exp, 1, false)))
2932 rtx new = simplify_gen_binary (GET_CODE (*loc), Pmode,
2933 p->exp, op1);
2934 int new_cost;
2935 new_cost = address_cost (new, mode);
2937 if (new_cost < best_addr_cost
2938 || (new_cost == best_addr_cost
2939 && (COST (new) + 1) >> 1 > best_rtx_cost))
2941 found_better = 1;
2942 best_addr_cost = new_cost;
2943 best_rtx_cost = (COST (new) + 1) >> 1;
2944 best_elt = p;
2945 best_rtx = new;
2949 if (found_better)
2951 if (validate_change (insn, loc,
2952 canon_reg (copy_rtx (best_rtx),
2953 NULL_RTX), 0))
2954 return;
2955 else
2956 best_elt->flag = 1;
2962 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2963 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2964 what values are being compared.
2966 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2967 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2968 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2969 compared to produce cc0.
2971 The return value is the comparison operator and is either the code of
2972 A or the code corresponding to the inverse of the comparison. */
2974 static enum rtx_code
2975 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2976 enum machine_mode *pmode1, enum machine_mode *pmode2)
2978 rtx arg1, arg2;
2980 arg1 = *parg1, arg2 = *parg2;
2982 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2984 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2986 /* Set nonzero when we find something of interest. */
2987 rtx x = 0;
2988 int reverse_code = 0;
2989 struct table_elt *p = 0;
2991 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2992 On machines with CC0, this is the only case that can occur, since
2993 fold_rtx will return the COMPARE or item being compared with zero
2994 when given CC0. */
2996 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2997 x = arg1;
2999 /* If ARG1 is a comparison operator and CODE is testing for
3000 STORE_FLAG_VALUE, get the inner arguments. */
3002 else if (COMPARISON_P (arg1))
3004 #ifdef FLOAT_STORE_FLAG_VALUE
3005 REAL_VALUE_TYPE fsfv;
3006 #endif
3008 if (code == NE
3009 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
3010 && code == LT && STORE_FLAG_VALUE == -1)
3011 #ifdef FLOAT_STORE_FLAG_VALUE
3012 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
3013 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3014 REAL_VALUE_NEGATIVE (fsfv)))
3015 #endif
3017 x = arg1;
3018 else if (code == EQ
3019 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
3020 && code == GE && STORE_FLAG_VALUE == -1)
3021 #ifdef FLOAT_STORE_FLAG_VALUE
3022 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
3023 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3024 REAL_VALUE_NEGATIVE (fsfv)))
3025 #endif
3027 x = arg1, reverse_code = 1;
3030 /* ??? We could also check for
3032 (ne (and (eq (...) (const_int 1))) (const_int 0))
3034 and related forms, but let's wait until we see them occurring. */
3036 if (x == 0)
3037 /* Look up ARG1 in the hash table and see if it has an equivalence
3038 that lets us see what is being compared. */
3039 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
3040 if (p)
3042 p = p->first_same_value;
3044 /* If what we compare is already known to be constant, that is as
3045 good as it gets.
3046 We need to break the loop in this case, because otherwise we
3047 can have an infinite loop when looking at a reg that is known
3048 to be a constant which is the same as a comparison of a reg
3049 against zero which appears later in the insn stream, which in
3050 turn is constant and the same as the comparison of the first reg
3051 against zero... */
3052 if (p->is_const)
3053 break;
3056 for (; p; p = p->next_same_value)
3058 enum machine_mode inner_mode = GET_MODE (p->exp);
3059 #ifdef FLOAT_STORE_FLAG_VALUE
3060 REAL_VALUE_TYPE fsfv;
3061 #endif
3063 /* If the entry isn't valid, skip it. */
3064 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3065 continue;
3067 if (GET_CODE (p->exp) == COMPARE
3068 /* Another possibility is that this machine has a compare insn
3069 that includes the comparison code. In that case, ARG1 would
3070 be equivalent to a comparison operation that would set ARG1 to
3071 either STORE_FLAG_VALUE or zero. If this is an NE operation,
3072 ORIG_CODE is the actual comparison being done; if it is an EQ,
3073 we must reverse ORIG_CODE. On machine with a negative value
3074 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3075 || ((code == NE
3076 || (code == LT
3077 && GET_MODE_CLASS (inner_mode) == MODE_INT
3078 && (GET_MODE_BITSIZE (inner_mode)
3079 <= HOST_BITS_PER_WIDE_INT)
3080 && (STORE_FLAG_VALUE
3081 & ((HOST_WIDE_INT) 1
3082 << (GET_MODE_BITSIZE (inner_mode) - 1))))
3083 #ifdef FLOAT_STORE_FLAG_VALUE
3084 || (code == LT
3085 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
3086 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3087 REAL_VALUE_NEGATIVE (fsfv)))
3088 #endif
3090 && COMPARISON_P (p->exp)))
3092 x = p->exp;
3093 break;
3095 else if ((code == EQ
3096 || (code == GE
3097 && GET_MODE_CLASS (inner_mode) == MODE_INT
3098 && (GET_MODE_BITSIZE (inner_mode)
3099 <= HOST_BITS_PER_WIDE_INT)
3100 && (STORE_FLAG_VALUE
3101 & ((HOST_WIDE_INT) 1
3102 << (GET_MODE_BITSIZE (inner_mode) - 1))))
3103 #ifdef FLOAT_STORE_FLAG_VALUE
3104 || (code == GE
3105 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
3106 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3107 REAL_VALUE_NEGATIVE (fsfv)))
3108 #endif
3110 && COMPARISON_P (p->exp))
3112 reverse_code = 1;
3113 x = p->exp;
3114 break;
3117 /* If this non-trapping address, e.g. fp + constant, the
3118 equivalent is a better operand since it may let us predict
3119 the value of the comparison. */
3120 else if (!rtx_addr_can_trap_p (p->exp))
3122 arg1 = p->exp;
3123 continue;
3127 /* If we didn't find a useful equivalence for ARG1, we are done.
3128 Otherwise, set up for the next iteration. */
3129 if (x == 0)
3130 break;
3132 /* If we need to reverse the comparison, make sure that that is
3133 possible -- we can't necessarily infer the value of GE from LT
3134 with floating-point operands. */
3135 if (reverse_code)
3137 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
3138 if (reversed == UNKNOWN)
3139 break;
3140 else
3141 code = reversed;
3143 else if (COMPARISON_P (x))
3144 code = GET_CODE (x);
3145 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3148 /* Return our results. Return the modes from before fold_rtx
3149 because fold_rtx might produce const_int, and then it's too late. */
3150 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3151 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3153 return code;
3156 /* If X is a nontrivial arithmetic operation on an argument
3157 for which a constant value can be determined, return
3158 the result of operating on that value, as a constant.
3159 Otherwise, return X, possibly with one or more operands
3160 modified by recursive calls to this function.
3162 If X is a register whose contents are known, we do NOT
3163 return those contents here. equiv_constant is called to
3164 perform that task.
3166 INSN is the insn that we may be modifying. If it is 0, make a copy
3167 of X before modifying it. */
3169 static rtx
3170 fold_rtx (rtx x, rtx insn)
3172 enum rtx_code code;
3173 enum machine_mode mode;
3174 const char *fmt;
3175 int i;
3176 rtx new = 0;
3177 int copied = 0;
3178 int must_swap = 0;
3180 /* Folded equivalents of first two operands of X. */
3181 rtx folded_arg0;
3182 rtx folded_arg1;
3184 /* Constant equivalents of first three operands of X;
3185 0 when no such equivalent is known. */
3186 rtx const_arg0;
3187 rtx const_arg1;
3188 rtx const_arg2;
3190 /* The mode of the first operand of X. We need this for sign and zero
3191 extends. */
3192 enum machine_mode mode_arg0;
3194 if (x == 0)
3195 return x;
3197 mode = GET_MODE (x);
3198 code = GET_CODE (x);
3199 switch (code)
3201 case CONST:
3202 case CONST_INT:
3203 case CONST_DOUBLE:
3204 case CONST_VECTOR:
3205 case SYMBOL_REF:
3206 case LABEL_REF:
3207 case REG:
3208 /* No use simplifying an EXPR_LIST
3209 since they are used only for lists of args
3210 in a function call's REG_EQUAL note. */
3211 case EXPR_LIST:
3212 return x;
3214 #ifdef HAVE_cc0
3215 case CC0:
3216 return prev_insn_cc0;
3217 #endif
3219 case PC:
3220 /* If the next insn is a CODE_LABEL followed by a jump table,
3221 PC's value is a LABEL_REF pointing to that label. That
3222 lets us fold switch statements on the VAX. */
3224 rtx next;
3225 if (insn && tablejump_p (insn, &next, NULL))
3226 return gen_rtx_LABEL_REF (Pmode, next);
3228 break;
3230 case SUBREG:
3231 /* See if we previously assigned a constant value to this SUBREG. */
3232 if ((new = lookup_as_function (x, CONST_INT)) != 0
3233 || (new = lookup_as_function (x, CONST_DOUBLE)) != 0)
3234 return new;
3236 /* If this is a paradoxical SUBREG, we have no idea what value the
3237 extra bits would have. However, if the operand is equivalent
3238 to a SUBREG whose operand is the same as our mode, and all the
3239 modes are within a word, we can just use the inner operand
3240 because these SUBREGs just say how to treat the register.
3242 Similarly if we find an integer constant. */
3244 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3246 enum machine_mode imode = GET_MODE (SUBREG_REG (x));
3247 struct table_elt *elt;
3249 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
3250 && GET_MODE_SIZE (imode) <= UNITS_PER_WORD
3251 && (elt = lookup (SUBREG_REG (x), HASH (SUBREG_REG (x), imode),
3252 imode)) != 0)
3253 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3255 if (CONSTANT_P (elt->exp)
3256 && GET_MODE (elt->exp) == VOIDmode)
3257 return elt->exp;
3259 if (GET_CODE (elt->exp) == SUBREG
3260 && GET_MODE (SUBREG_REG (elt->exp)) == mode
3261 && exp_equiv_p (elt->exp, elt->exp, 1, false))
3262 return copy_rtx (SUBREG_REG (elt->exp));
3265 return x;
3268 /* Fold SUBREG_REG. If it changed, see if we can simplify the SUBREG.
3269 We might be able to if the SUBREG is extracting a single word in an
3270 integral mode or extracting the low part. */
3272 folded_arg0 = fold_rtx (SUBREG_REG (x), insn);
3273 const_arg0 = equiv_constant (folded_arg0);
3274 if (const_arg0)
3275 folded_arg0 = const_arg0;
3277 if (folded_arg0 != SUBREG_REG (x))
3279 new = simplify_subreg (mode, folded_arg0,
3280 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
3281 if (new)
3282 return new;
3285 if (REG_P (folded_arg0)
3286 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (folded_arg0)))
3288 struct table_elt *elt;
3290 elt = lookup (folded_arg0,
3291 HASH (folded_arg0, GET_MODE (folded_arg0)),
3292 GET_MODE (folded_arg0));
3294 if (elt)
3295 elt = elt->first_same_value;
3297 if (subreg_lowpart_p (x))
3298 /* If this is a narrowing SUBREG and our operand is a REG, see
3299 if we can find an equivalence for REG that is an arithmetic
3300 operation in a wider mode where both operands are paradoxical
3301 SUBREGs from objects of our result mode. In that case, we
3302 couldn-t report an equivalent value for that operation, since we
3303 don't know what the extra bits will be. But we can find an
3304 equivalence for this SUBREG by folding that operation in the
3305 narrow mode. This allows us to fold arithmetic in narrow modes
3306 when the machine only supports word-sized arithmetic.
3308 Also look for a case where we have a SUBREG whose operand
3309 is the same as our result. If both modes are smaller
3310 than a word, we are simply interpreting a register in
3311 different modes and we can use the inner value. */
3313 for (; elt; elt = elt->next_same_value)
3315 enum rtx_code eltcode = GET_CODE (elt->exp);
3317 /* Just check for unary and binary operations. */
3318 if (UNARY_P (elt->exp)
3319 && eltcode != SIGN_EXTEND
3320 && eltcode != ZERO_EXTEND
3321 && GET_CODE (XEXP (elt->exp, 0)) == SUBREG
3322 && GET_MODE (SUBREG_REG (XEXP (elt->exp, 0))) == mode
3323 && (GET_MODE_CLASS (mode)
3324 == GET_MODE_CLASS (GET_MODE (XEXP (elt->exp, 0)))))
3326 rtx op0 = SUBREG_REG (XEXP (elt->exp, 0));
3328 if (!REG_P (op0) && ! CONSTANT_P (op0))
3329 op0 = fold_rtx (op0, NULL_RTX);
3331 op0 = equiv_constant (op0);
3332 if (op0)
3333 new = simplify_unary_operation (GET_CODE (elt->exp), mode,
3334 op0, mode);
3336 else if (ARITHMETIC_P (elt->exp)
3337 && eltcode != DIV && eltcode != MOD
3338 && eltcode != UDIV && eltcode != UMOD
3339 && eltcode != ASHIFTRT && eltcode != LSHIFTRT
3340 && eltcode != ROTATE && eltcode != ROTATERT
3341 && ((GET_CODE (XEXP (elt->exp, 0)) == SUBREG
3342 && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 0)))
3343 == mode))
3344 || CONSTANT_P (XEXP (elt->exp, 0)))
3345 && ((GET_CODE (XEXP (elt->exp, 1)) == SUBREG
3346 && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 1)))
3347 == mode))
3348 || CONSTANT_P (XEXP (elt->exp, 1))))
3350 rtx op0 = gen_lowpart_common (mode, XEXP (elt->exp, 0));
3351 rtx op1 = gen_lowpart_common (mode, XEXP (elt->exp, 1));
3353 if (op0 && !REG_P (op0) && ! CONSTANT_P (op0))
3354 op0 = fold_rtx (op0, NULL_RTX);
3356 if (op0)
3357 op0 = equiv_constant (op0);
3359 if (op1 && !REG_P (op1) && ! CONSTANT_P (op1))
3360 op1 = fold_rtx (op1, NULL_RTX);
3362 if (op1)
3363 op1 = equiv_constant (op1);
3365 /* If we are looking for the low SImode part of
3366 (ashift:DI c (const_int 32)), it doesn't work
3367 to compute that in SImode, because a 32-bit shift
3368 in SImode is unpredictable. We know the value is 0. */
3369 if (op0 && op1
3370 && GET_CODE (elt->exp) == ASHIFT
3371 && GET_CODE (op1) == CONST_INT
3372 && INTVAL (op1) >= GET_MODE_BITSIZE (mode))
3374 if (INTVAL (op1)
3375 < GET_MODE_BITSIZE (GET_MODE (elt->exp)))
3376 /* If the count fits in the inner mode's width,
3377 but exceeds the outer mode's width,
3378 the value will get truncated to 0
3379 by the subreg. */
3380 new = CONST0_RTX (mode);
3381 else
3382 /* If the count exceeds even the inner mode's width,
3383 don't fold this expression. */
3384 new = 0;
3386 else if (op0 && op1)
3387 new = simplify_binary_operation (GET_CODE (elt->exp), mode, op0, op1);
3390 else if (GET_CODE (elt->exp) == SUBREG
3391 && GET_MODE (SUBREG_REG (elt->exp)) == mode
3392 && (GET_MODE_SIZE (GET_MODE (folded_arg0))
3393 <= UNITS_PER_WORD)
3394 && exp_equiv_p (elt->exp, elt->exp, 1, false))
3395 new = copy_rtx (SUBREG_REG (elt->exp));
3397 if (new)
3398 return new;
3400 else
3401 /* A SUBREG resulting from a zero extension may fold to zero if
3402 it extracts higher bits than the ZERO_EXTEND's source bits.
3403 FIXME: if combine tried to, er, combine these instructions,
3404 this transformation may be moved to simplify_subreg. */
3405 for (; elt; elt = elt->next_same_value)
3407 if (GET_CODE (elt->exp) == ZERO_EXTEND
3408 && subreg_lsb (x)
3409 >= GET_MODE_BITSIZE (GET_MODE (XEXP (elt->exp, 0))))
3410 return CONST0_RTX (mode);
3414 return x;
3416 case NOT:
3417 case NEG:
3418 /* If we have (NOT Y), see if Y is known to be (NOT Z).
3419 If so, (NOT Y) simplifies to Z. Similarly for NEG. */
3420 new = lookup_as_function (XEXP (x, 0), code);
3421 if (new)
3422 return fold_rtx (copy_rtx (XEXP (new, 0)), insn);
3423 break;
3425 case MEM:
3426 /* If we are not actually processing an insn, don't try to find the
3427 best address. Not only don't we care, but we could modify the
3428 MEM in an invalid way since we have no insn to validate against. */
3429 if (insn != 0)
3430 find_best_addr (insn, &XEXP (x, 0), GET_MODE (x));
3433 /* Even if we don't fold in the insn itself,
3434 we can safely do so here, in hopes of getting a constant. */
3435 rtx addr = fold_rtx (XEXP (x, 0), NULL_RTX);
3436 rtx base = 0;
3437 HOST_WIDE_INT offset = 0;
3439 if (REG_P (addr)
3440 && REGNO_QTY_VALID_P (REGNO (addr)))
3442 int addr_q = REG_QTY (REGNO (addr));
3443 struct qty_table_elem *addr_ent = &qty_table[addr_q];
3445 if (GET_MODE (addr) == addr_ent->mode
3446 && addr_ent->const_rtx != NULL_RTX)
3447 addr = addr_ent->const_rtx;
3450 /* If address is constant, split it into a base and integer offset. */
3451 if (GET_CODE (addr) == SYMBOL_REF || GET_CODE (addr) == LABEL_REF)
3452 base = addr;
3453 else if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == PLUS
3454 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT)
3456 base = XEXP (XEXP (addr, 0), 0);
3457 offset = INTVAL (XEXP (XEXP (addr, 0), 1));
3459 else if (GET_CODE (addr) == LO_SUM
3460 && GET_CODE (XEXP (addr, 1)) == SYMBOL_REF)
3461 base = XEXP (addr, 1);
3463 /* If this is a constant pool reference, we can fold it into its
3464 constant to allow better value tracking. */
3465 if (base && GET_CODE (base) == SYMBOL_REF
3466 && CONSTANT_POOL_ADDRESS_P (base))
3468 rtx constant = get_pool_constant (base);
3469 enum machine_mode const_mode = get_pool_mode (base);
3470 rtx new;
3472 if (CONSTANT_P (constant) && GET_CODE (constant) != CONST_INT)
3474 constant_pool_entries_cost = COST (constant);
3475 constant_pool_entries_regcost = approx_reg_cost (constant);
3478 /* If we are loading the full constant, we have an equivalence. */
3479 if (offset == 0 && mode == const_mode)
3480 return constant;
3482 /* If this actually isn't a constant (weird!), we can't do
3483 anything. Otherwise, handle the two most common cases:
3484 extracting a word from a multi-word constant, and extracting
3485 the low-order bits. Other cases don't seem common enough to
3486 worry about. */
3487 if (! CONSTANT_P (constant))
3488 return x;
3490 if (GET_MODE_CLASS (mode) == MODE_INT
3491 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
3492 && offset % UNITS_PER_WORD == 0
3493 && (new = operand_subword (constant,
3494 offset / UNITS_PER_WORD,
3495 0, const_mode)) != 0)
3496 return new;
3498 if (((BYTES_BIG_ENDIAN
3499 && offset == GET_MODE_SIZE (GET_MODE (constant)) - 1)
3500 || (! BYTES_BIG_ENDIAN && offset == 0))
3501 && (new = gen_lowpart (mode, constant)) != 0)
3502 return new;
3505 /* If this is a reference to a label at a known position in a jump
3506 table, we also know its value. */
3507 if (base && GET_CODE (base) == LABEL_REF)
3509 rtx label = XEXP (base, 0);
3510 rtx table_insn = NEXT_INSN (label);
3512 if (table_insn && JUMP_P (table_insn)
3513 && GET_CODE (PATTERN (table_insn)) == ADDR_VEC)
3515 rtx table = PATTERN (table_insn);
3517 if (offset >= 0
3518 && (offset / GET_MODE_SIZE (GET_MODE (table))
3519 < XVECLEN (table, 0)))
3520 return XVECEXP (table, 0,
3521 offset / GET_MODE_SIZE (GET_MODE (table)));
3523 if (table_insn && JUMP_P (table_insn)
3524 && GET_CODE (PATTERN (table_insn)) == ADDR_DIFF_VEC)
3526 rtx table = PATTERN (table_insn);
3528 if (offset >= 0
3529 && (offset / GET_MODE_SIZE (GET_MODE (table))
3530 < XVECLEN (table, 1)))
3532 offset /= GET_MODE_SIZE (GET_MODE (table));
3533 new = gen_rtx_MINUS (Pmode, XVECEXP (table, 1, offset),
3534 XEXP (table, 0));
3536 if (GET_MODE (table) != Pmode)
3537 new = gen_rtx_TRUNCATE (GET_MODE (table), new);
3539 /* Indicate this is a constant. This isn't a
3540 valid form of CONST, but it will only be used
3541 to fold the next insns and then discarded, so
3542 it should be safe.
3544 Note this expression must be explicitly discarded,
3545 by cse_insn, else it may end up in a REG_EQUAL note
3546 and "escape" to cause problems elsewhere. */
3547 return gen_rtx_CONST (GET_MODE (new), new);
3552 return x;
3555 #ifdef NO_FUNCTION_CSE
3556 case CALL:
3557 if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3558 return x;
3559 break;
3560 #endif
3562 case ASM_OPERANDS:
3563 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3564 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3565 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3566 break;
3568 default:
3569 break;
3572 const_arg0 = 0;
3573 const_arg1 = 0;
3574 const_arg2 = 0;
3575 mode_arg0 = VOIDmode;
3577 /* Try folding our operands.
3578 Then see which ones have constant values known. */
3580 fmt = GET_RTX_FORMAT (code);
3581 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3582 if (fmt[i] == 'e')
3584 rtx arg = XEXP (x, i);
3585 rtx folded_arg = arg, const_arg = 0;
3586 enum machine_mode mode_arg = GET_MODE (arg);
3587 rtx cheap_arg, expensive_arg;
3588 rtx replacements[2];
3589 int j;
3590 int old_cost = COST_IN (XEXP (x, i), code);
3592 /* Most arguments are cheap, so handle them specially. */
3593 switch (GET_CODE (arg))
3595 case REG:
3596 /* This is the same as calling equiv_constant; it is duplicated
3597 here for speed. */
3598 if (REGNO_QTY_VALID_P (REGNO (arg)))
3600 int arg_q = REG_QTY (REGNO (arg));
3601 struct qty_table_elem *arg_ent = &qty_table[arg_q];
3603 if (arg_ent->const_rtx != NULL_RTX
3604 && !REG_P (arg_ent->const_rtx)
3605 && GET_CODE (arg_ent->const_rtx) != PLUS)
3606 const_arg
3607 = gen_lowpart (GET_MODE (arg),
3608 arg_ent->const_rtx);
3610 break;
3612 case CONST:
3613 case CONST_INT:
3614 case SYMBOL_REF:
3615 case LABEL_REF:
3616 case CONST_DOUBLE:
3617 case CONST_VECTOR:
3618 const_arg = arg;
3619 break;
3621 #ifdef HAVE_cc0
3622 case CC0:
3623 folded_arg = prev_insn_cc0;
3624 mode_arg = prev_insn_cc0_mode;
3625 const_arg = equiv_constant (folded_arg);
3626 break;
3627 #endif
3629 default:
3630 folded_arg = fold_rtx (arg, insn);
3631 const_arg = equiv_constant (folded_arg);
3634 /* For the first three operands, see if the operand
3635 is constant or equivalent to a constant. */
3636 switch (i)
3638 case 0:
3639 folded_arg0 = folded_arg;
3640 const_arg0 = const_arg;
3641 mode_arg0 = mode_arg;
3642 break;
3643 case 1:
3644 folded_arg1 = folded_arg;
3645 const_arg1 = const_arg;
3646 break;
3647 case 2:
3648 const_arg2 = const_arg;
3649 break;
3652 /* Pick the least expensive of the folded argument and an
3653 equivalent constant argument. */
3654 if (const_arg == 0 || const_arg == folded_arg
3655 || COST_IN (const_arg, code) > COST_IN (folded_arg, code))
3656 cheap_arg = folded_arg, expensive_arg = const_arg;
3657 else
3658 cheap_arg = const_arg, expensive_arg = folded_arg;
3660 /* Try to replace the operand with the cheapest of the two
3661 possibilities. If it doesn't work and this is either of the first
3662 two operands of a commutative operation, try swapping them.
3663 If THAT fails, try the more expensive, provided it is cheaper
3664 than what is already there. */
3666 if (cheap_arg == XEXP (x, i))
3667 continue;
3669 if (insn == 0 && ! copied)
3671 x = copy_rtx (x);
3672 copied = 1;
3675 /* Order the replacements from cheapest to most expensive. */
3676 replacements[0] = cheap_arg;
3677 replacements[1] = expensive_arg;
3679 for (j = 0; j < 2 && replacements[j]; j++)
3681 int new_cost = COST_IN (replacements[j], code);
3683 /* Stop if what existed before was cheaper. Prefer constants
3684 in the case of a tie. */
3685 if (new_cost > old_cost
3686 || (new_cost == old_cost && CONSTANT_P (XEXP (x, i))))
3687 break;
3689 /* It's not safe to substitute the operand of a conversion
3690 operator with a constant, as the conversion's identity
3691 depends upon the mode of it's operand. This optimization
3692 is handled by the call to simplify_unary_operation. */
3693 if (GET_RTX_CLASS (code) == RTX_UNARY
3694 && GET_MODE (replacements[j]) != mode_arg0
3695 && (code == ZERO_EXTEND
3696 || code == SIGN_EXTEND
3697 || code == TRUNCATE
3698 || code == FLOAT_TRUNCATE
3699 || code == FLOAT_EXTEND
3700 || code == FLOAT
3701 || code == FIX
3702 || code == UNSIGNED_FLOAT
3703 || code == UNSIGNED_FIX))
3704 continue;
3706 if (validate_change (insn, &XEXP (x, i), replacements[j], 0))
3707 break;
3709 if (GET_RTX_CLASS (code) == RTX_COMM_COMPARE
3710 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
3712 validate_change (insn, &XEXP (x, i), XEXP (x, 1 - i), 1);
3713 validate_change (insn, &XEXP (x, 1 - i), replacements[j], 1);
3715 if (apply_change_group ())
3717 /* Swap them back to be invalid so that this loop can
3718 continue and flag them to be swapped back later. */
3719 rtx tem;
3721 tem = XEXP (x, 0); XEXP (x, 0) = XEXP (x, 1);
3722 XEXP (x, 1) = tem;
3723 must_swap = 1;
3724 break;
3730 else
3732 if (fmt[i] == 'E')
3733 /* Don't try to fold inside of a vector of expressions.
3734 Doing nothing is harmless. */
3738 /* If a commutative operation, place a constant integer as the second
3739 operand unless the first operand is also a constant integer. Otherwise,
3740 place any constant second unless the first operand is also a constant. */
3742 if (COMMUTATIVE_P (x))
3744 if (must_swap
3745 || swap_commutative_operands_p (const_arg0 ? const_arg0
3746 : XEXP (x, 0),
3747 const_arg1 ? const_arg1
3748 : XEXP (x, 1)))
3750 rtx tem = XEXP (x, 0);
3752 if (insn == 0 && ! copied)
3754 x = copy_rtx (x);
3755 copied = 1;
3758 validate_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
3759 validate_change (insn, &XEXP (x, 1), tem, 1);
3760 if (apply_change_group ())
3762 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3763 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3768 /* If X is an arithmetic operation, see if we can simplify it. */
3770 switch (GET_RTX_CLASS (code))
3772 case RTX_UNARY:
3774 int is_const = 0;
3776 /* We can't simplify extension ops unless we know the
3777 original mode. */
3778 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3779 && mode_arg0 == VOIDmode)
3780 break;
3782 /* If we had a CONST, strip it off and put it back later if we
3783 fold. */
3784 if (const_arg0 != 0 && GET_CODE (const_arg0) == CONST)
3785 is_const = 1, const_arg0 = XEXP (const_arg0, 0);
3787 new = simplify_unary_operation (code, mode,
3788 const_arg0 ? const_arg0 : folded_arg0,
3789 mode_arg0);
3790 /* NEG of PLUS could be converted into MINUS, but that causes
3791 expressions of the form
3792 (CONST (MINUS (CONST_INT) (SYMBOL_REF)))
3793 which many ports mistakenly treat as LEGITIMATE_CONSTANT_P.
3794 FIXME: those ports should be fixed. */
3795 if (new != 0 && is_const
3796 && GET_CODE (new) == PLUS
3797 && (GET_CODE (XEXP (new, 0)) == SYMBOL_REF
3798 || GET_CODE (XEXP (new, 0)) == LABEL_REF)
3799 && GET_CODE (XEXP (new, 1)) == CONST_INT)
3800 new = gen_rtx_CONST (mode, new);
3802 break;
3804 case RTX_COMPARE:
3805 case RTX_COMM_COMPARE:
3806 /* See what items are actually being compared and set FOLDED_ARG[01]
3807 to those values and CODE to the actual comparison code. If any are
3808 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3809 do anything if both operands are already known to be constant. */
3811 if (const_arg0 == 0 || const_arg1 == 0)
3813 struct table_elt *p0, *p1;
3814 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
3815 enum machine_mode mode_arg1;
3817 #ifdef FLOAT_STORE_FLAG_VALUE
3818 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
3820 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3821 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3822 false_rtx = CONST0_RTX (mode);
3824 #endif
3826 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3827 &mode_arg0, &mode_arg1);
3828 const_arg0 = equiv_constant (folded_arg0);
3829 const_arg1 = equiv_constant (folded_arg1);
3831 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3832 what kinds of things are being compared, so we can't do
3833 anything with this comparison. */
3835 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3836 break;
3838 /* If we do not now have two constants being compared, see
3839 if we can nevertheless deduce some things about the
3840 comparison. */
3841 if (const_arg0 == 0 || const_arg1 == 0)
3843 /* Some addresses are known to be nonzero. We don't know
3844 their sign, but equality comparisons are known. */
3845 if (const_arg1 == const0_rtx
3846 && nonzero_address_p (folded_arg0))
3848 if (code == EQ)
3849 return false_rtx;
3850 else if (code == NE)
3851 return true_rtx;
3854 /* See if the two operands are the same. */
3856 if (folded_arg0 == folded_arg1
3857 || (REG_P (folded_arg0)
3858 && REG_P (folded_arg1)
3859 && (REG_QTY (REGNO (folded_arg0))
3860 == REG_QTY (REGNO (folded_arg1))))
3861 || ((p0 = lookup (folded_arg0,
3862 SAFE_HASH (folded_arg0, mode_arg0),
3863 mode_arg0))
3864 && (p1 = lookup (folded_arg1,
3865 SAFE_HASH (folded_arg1, mode_arg0),
3866 mode_arg0))
3867 && p0->first_same_value == p1->first_same_value))
3869 /* Sadly two equal NaNs are not equivalent. */
3870 if (!HONOR_NANS (mode_arg0))
3871 return ((code == EQ || code == LE || code == GE
3872 || code == LEU || code == GEU || code == UNEQ
3873 || code == UNLE || code == UNGE
3874 || code == ORDERED)
3875 ? true_rtx : false_rtx);
3876 /* Take care for the FP compares we can resolve. */
3877 if (code == UNEQ || code == UNLE || code == UNGE)
3878 return true_rtx;
3879 if (code == LTGT || code == LT || code == GT)
3880 return false_rtx;
3883 /* If FOLDED_ARG0 is a register, see if the comparison we are
3884 doing now is either the same as we did before or the reverse
3885 (we only check the reverse if not floating-point). */
3886 else if (REG_P (folded_arg0))
3888 int qty = REG_QTY (REGNO (folded_arg0));
3890 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3892 struct qty_table_elem *ent = &qty_table[qty];
3894 if ((comparison_dominates_p (ent->comparison_code, code)
3895 || (! FLOAT_MODE_P (mode_arg0)
3896 && comparison_dominates_p (ent->comparison_code,
3897 reverse_condition (code))))
3898 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3899 || (const_arg1
3900 && rtx_equal_p (ent->comparison_const,
3901 const_arg1))
3902 || (REG_P (folded_arg1)
3903 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3904 return (comparison_dominates_p (ent->comparison_code, code)
3905 ? true_rtx : false_rtx);
3911 /* If we are comparing against zero, see if the first operand is
3912 equivalent to an IOR with a constant. If so, we may be able to
3913 determine the result of this comparison. */
3915 if (const_arg1 == const0_rtx)
3917 rtx y = lookup_as_function (folded_arg0, IOR);
3918 rtx inner_const;
3920 if (y != 0
3921 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3922 && GET_CODE (inner_const) == CONST_INT
3923 && INTVAL (inner_const) != 0)
3925 int sign_bitnum = GET_MODE_BITSIZE (mode_arg0) - 1;
3926 int has_sign = (HOST_BITS_PER_WIDE_INT >= sign_bitnum
3927 && (INTVAL (inner_const)
3928 & ((HOST_WIDE_INT) 1 << sign_bitnum)));
3929 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
3931 #ifdef FLOAT_STORE_FLAG_VALUE
3932 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
3934 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3935 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3936 false_rtx = CONST0_RTX (mode);
3938 #endif
3940 switch (code)
3942 case EQ:
3943 return false_rtx;
3944 case NE:
3945 return true_rtx;
3946 case LT: case LE:
3947 if (has_sign)
3948 return true_rtx;
3949 break;
3950 case GT: case GE:
3951 if (has_sign)
3952 return false_rtx;
3953 break;
3954 default:
3955 break;
3961 rtx op0 = const_arg0 ? const_arg0 : folded_arg0;
3962 rtx op1 = const_arg1 ? const_arg1 : folded_arg1;
3963 new = simplify_relational_operation (code, mode, mode_arg0, op0, op1);
3965 break;
3967 case RTX_BIN_ARITH:
3968 case RTX_COMM_ARITH:
3969 switch (code)
3971 case PLUS:
3972 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3973 with that LABEL_REF as its second operand. If so, the result is
3974 the first operand of that MINUS. This handles switches with an
3975 ADDR_DIFF_VEC table. */
3976 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3978 rtx y
3979 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
3980 : lookup_as_function (folded_arg0, MINUS);
3982 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3983 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
3984 return XEXP (y, 0);
3986 /* Now try for a CONST of a MINUS like the above. */
3987 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3988 : lookup_as_function (folded_arg0, CONST))) != 0
3989 && GET_CODE (XEXP (y, 0)) == MINUS
3990 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3991 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
3992 return XEXP (XEXP (y, 0), 0);
3995 /* Likewise if the operands are in the other order. */
3996 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3998 rtx y
3999 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
4000 : lookup_as_function (folded_arg1, MINUS);
4002 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
4003 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
4004 return XEXP (y, 0);
4006 /* Now try for a CONST of a MINUS like the above. */
4007 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
4008 : lookup_as_function (folded_arg1, CONST))) != 0
4009 && GET_CODE (XEXP (y, 0)) == MINUS
4010 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
4011 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
4012 return XEXP (XEXP (y, 0), 0);
4015 /* If second operand is a register equivalent to a negative
4016 CONST_INT, see if we can find a register equivalent to the
4017 positive constant. Make a MINUS if so. Don't do this for
4018 a non-negative constant since we might then alternate between
4019 choosing positive and negative constants. Having the positive
4020 constant previously-used is the more common case. Be sure
4021 the resulting constant is non-negative; if const_arg1 were
4022 the smallest negative number this would overflow: depending
4023 on the mode, this would either just be the same value (and
4024 hence not save anything) or be incorrect. */
4025 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT
4026 && INTVAL (const_arg1) < 0
4027 /* This used to test
4029 -INTVAL (const_arg1) >= 0
4031 But The Sun V5.0 compilers mis-compiled that test. So
4032 instead we test for the problematic value in a more direct
4033 manner and hope the Sun compilers get it correct. */
4034 && INTVAL (const_arg1) !=
4035 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
4036 && REG_P (folded_arg1))
4038 rtx new_const = GEN_INT (-INTVAL (const_arg1));
4039 struct table_elt *p
4040 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
4042 if (p)
4043 for (p = p->first_same_value; p; p = p->next_same_value)
4044 if (REG_P (p->exp))
4045 return simplify_gen_binary (MINUS, mode, folded_arg0,
4046 canon_reg (p->exp, NULL_RTX));
4048 goto from_plus;
4050 case MINUS:
4051 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
4052 If so, produce (PLUS Z C2-C). */
4053 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT)
4055 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
4056 if (y && GET_CODE (XEXP (y, 1)) == CONST_INT)
4057 return fold_rtx (plus_constant (copy_rtx (y),
4058 -INTVAL (const_arg1)),
4059 NULL_RTX);
4062 /* Fall through. */
4064 from_plus:
4065 case SMIN: case SMAX: case UMIN: case UMAX:
4066 case IOR: case AND: case XOR:
4067 case MULT:
4068 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
4069 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
4070 is known to be of similar form, we may be able to replace the
4071 operation with a combined operation. This may eliminate the
4072 intermediate operation if every use is simplified in this way.
4073 Note that the similar optimization done by combine.c only works
4074 if the intermediate operation's result has only one reference. */
4076 if (REG_P (folded_arg0)
4077 && const_arg1 && GET_CODE (const_arg1) == CONST_INT)
4079 int is_shift
4080 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
4081 rtx y = lookup_as_function (folded_arg0, code);
4082 rtx inner_const;
4083 enum rtx_code associate_code;
4084 rtx new_const;
4086 if (y == 0
4087 || 0 == (inner_const
4088 = equiv_constant (fold_rtx (XEXP (y, 1), 0)))
4089 || GET_CODE (inner_const) != CONST_INT
4090 /* If we have compiled a statement like
4091 "if (x == (x & mask1))", and now are looking at
4092 "x & mask2", we will have a case where the first operand
4093 of Y is the same as our first operand. Unless we detect
4094 this case, an infinite loop will result. */
4095 || XEXP (y, 0) == folded_arg0)
4096 break;
4098 /* Don't associate these operations if they are a PLUS with the
4099 same constant and it is a power of two. These might be doable
4100 with a pre- or post-increment. Similarly for two subtracts of
4101 identical powers of two with post decrement. */
4103 if (code == PLUS && const_arg1 == inner_const
4104 && ((HAVE_PRE_INCREMENT
4105 && exact_log2 (INTVAL (const_arg1)) >= 0)
4106 || (HAVE_POST_INCREMENT
4107 && exact_log2 (INTVAL (const_arg1)) >= 0)
4108 || (HAVE_PRE_DECREMENT
4109 && exact_log2 (- INTVAL (const_arg1)) >= 0)
4110 || (HAVE_POST_DECREMENT
4111 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
4112 break;
4114 /* Compute the code used to compose the constants. For example,
4115 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
4117 associate_code = (is_shift || code == MINUS ? PLUS : code);
4119 new_const = simplify_binary_operation (associate_code, mode,
4120 const_arg1, inner_const);
4122 if (new_const == 0)
4123 break;
4125 /* If we are associating shift operations, don't let this
4126 produce a shift of the size of the object or larger.
4127 This could occur when we follow a sign-extend by a right
4128 shift on a machine that does a sign-extend as a pair
4129 of shifts. */
4131 if (is_shift && GET_CODE (new_const) == CONST_INT
4132 && INTVAL (new_const) >= GET_MODE_BITSIZE (mode))
4134 /* As an exception, we can turn an ASHIFTRT of this
4135 form into a shift of the number of bits - 1. */
4136 if (code == ASHIFTRT)
4137 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
4138 else
4139 break;
4142 y = copy_rtx (XEXP (y, 0));
4144 /* If Y contains our first operand (the most common way this
4145 can happen is if Y is a MEM), we would do into an infinite
4146 loop if we tried to fold it. So don't in that case. */
4148 if (! reg_mentioned_p (folded_arg0, y))
4149 y = fold_rtx (y, insn);
4151 return simplify_gen_binary (code, mode, y, new_const);
4153 break;
4155 case DIV: case UDIV:
4156 /* ??? The associative optimization performed immediately above is
4157 also possible for DIV and UDIV using associate_code of MULT.
4158 However, we would need extra code to verify that the
4159 multiplication does not overflow, that is, there is no overflow
4160 in the calculation of new_const. */
4161 break;
4163 default:
4164 break;
4167 new = simplify_binary_operation (code, mode,
4168 const_arg0 ? const_arg0 : folded_arg0,
4169 const_arg1 ? const_arg1 : folded_arg1);
4170 break;
4172 case RTX_OBJ:
4173 /* (lo_sum (high X) X) is simply X. */
4174 if (code == LO_SUM && const_arg0 != 0
4175 && GET_CODE (const_arg0) == HIGH
4176 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
4177 return const_arg1;
4178 break;
4180 case RTX_TERNARY:
4181 case RTX_BITFIELD_OPS:
4182 new = simplify_ternary_operation (code, mode, mode_arg0,
4183 const_arg0 ? const_arg0 : folded_arg0,
4184 const_arg1 ? const_arg1 : folded_arg1,
4185 const_arg2 ? const_arg2 : XEXP (x, 2));
4186 break;
4188 default:
4189 break;
4192 return new ? new : x;
4195 /* Return a constant value currently equivalent to X.
4196 Return 0 if we don't know one. */
4198 static rtx
4199 equiv_constant (rtx x)
4201 if (REG_P (x)
4202 && REGNO_QTY_VALID_P (REGNO (x)))
4204 int x_q = REG_QTY (REGNO (x));
4205 struct qty_table_elem *x_ent = &qty_table[x_q];
4207 if (x_ent->const_rtx)
4208 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
4211 if (x == 0 || CONSTANT_P (x))
4212 return x;
4214 /* If X is a MEM, try to fold it outside the context of any insn to see if
4215 it might be equivalent to a constant. That handles the case where it
4216 is a constant-pool reference. Then try to look it up in the hash table
4217 in case it is something whose value we have seen before. */
4219 if (MEM_P (x))
4221 struct table_elt *elt;
4223 x = fold_rtx (x, NULL_RTX);
4224 if (CONSTANT_P (x))
4225 return x;
4227 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
4228 if (elt == 0)
4229 return 0;
4231 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
4232 if (elt->is_const && CONSTANT_P (elt->exp))
4233 return elt->exp;
4236 return 0;
4239 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a fixed-point
4240 number, return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
4241 least-significant part of X.
4242 MODE specifies how big a part of X to return.
4244 If the requested operation cannot be done, 0 is returned.
4246 This is similar to gen_lowpart_general in emit-rtl.c. */
4249 gen_lowpart_if_possible (enum machine_mode mode, rtx x)
4251 rtx result = gen_lowpart_common (mode, x);
4253 if (result)
4254 return result;
4255 else if (MEM_P (x))
4257 /* This is the only other case we handle. */
4258 int offset = 0;
4259 rtx new;
4261 if (WORDS_BIG_ENDIAN)
4262 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
4263 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
4264 if (BYTES_BIG_ENDIAN)
4265 /* Adjust the address so that the address-after-the-data is
4266 unchanged. */
4267 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
4268 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
4270 new = adjust_address_nv (x, mode, offset);
4271 if (! memory_address_p (mode, XEXP (new, 0)))
4272 return 0;
4274 return new;
4276 else
4277 return 0;
4280 /* Given INSN, a jump insn, PATH_TAKEN indicates if we are following the "taken"
4281 branch. It will be zero if not.
4283 In certain cases, this can cause us to add an equivalence. For example,
4284 if we are following the taken case of
4285 if (i == 2)
4286 we can add the fact that `i' and '2' are now equivalent.
4288 In any case, we can record that this comparison was passed. If the same
4289 comparison is seen later, we will know its value. */
4291 static void
4292 record_jump_equiv (rtx insn, int taken)
4294 int cond_known_true;
4295 rtx op0, op1;
4296 rtx set;
4297 enum machine_mode mode, mode0, mode1;
4298 int reversed_nonequality = 0;
4299 enum rtx_code code;
4301 /* Ensure this is the right kind of insn. */
4302 if (! any_condjump_p (insn))
4303 return;
4304 set = pc_set (insn);
4306 /* See if this jump condition is known true or false. */
4307 if (taken)
4308 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
4309 else
4310 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
4312 /* Get the type of comparison being done and the operands being compared.
4313 If we had to reverse a non-equality condition, record that fact so we
4314 know that it isn't valid for floating-point. */
4315 code = GET_CODE (XEXP (SET_SRC (set), 0));
4316 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
4317 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
4319 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
4320 if (! cond_known_true)
4322 code = reversed_comparison_code_parts (code, op0, op1, insn);
4324 /* Don't remember if we can't find the inverse. */
4325 if (code == UNKNOWN)
4326 return;
4329 /* The mode is the mode of the non-constant. */
4330 mode = mode0;
4331 if (mode1 != VOIDmode)
4332 mode = mode1;
4334 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
4337 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
4338 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
4339 Make any useful entries we can with that information. Called from
4340 above function and called recursively. */
4342 static void
4343 record_jump_cond (enum rtx_code code, enum machine_mode mode, rtx op0,
4344 rtx op1, int reversed_nonequality)
4346 unsigned op0_hash, op1_hash;
4347 int op0_in_memory, op1_in_memory;
4348 struct table_elt *op0_elt, *op1_elt;
4350 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
4351 we know that they are also equal in the smaller mode (this is also
4352 true for all smaller modes whether or not there is a SUBREG, but
4353 is not worth testing for with no SUBREG). */
4355 /* Note that GET_MODE (op0) may not equal MODE. */
4356 if (code == EQ && GET_CODE (op0) == SUBREG
4357 && (GET_MODE_SIZE (GET_MODE (op0))
4358 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
4360 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
4361 rtx tem = gen_lowpart (inner_mode, op1);
4363 record_jump_cond (code, mode, SUBREG_REG (op0),
4364 tem ? tem : gen_rtx_SUBREG (inner_mode, op1, 0),
4365 reversed_nonequality);
4368 if (code == EQ && GET_CODE (op1) == SUBREG
4369 && (GET_MODE_SIZE (GET_MODE (op1))
4370 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
4372 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
4373 rtx tem = gen_lowpart (inner_mode, op0);
4375 record_jump_cond (code, mode, SUBREG_REG (op1),
4376 tem ? tem : gen_rtx_SUBREG (inner_mode, op0, 0),
4377 reversed_nonequality);
4380 /* Similarly, if this is an NE comparison, and either is a SUBREG
4381 making a smaller mode, we know the whole thing is also NE. */
4383 /* Note that GET_MODE (op0) may not equal MODE;
4384 if we test MODE instead, we can get an infinite recursion
4385 alternating between two modes each wider than MODE. */
4387 if (code == NE && GET_CODE (op0) == SUBREG
4388 && subreg_lowpart_p (op0)
4389 && (GET_MODE_SIZE (GET_MODE (op0))
4390 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
4392 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
4393 rtx tem = gen_lowpart (inner_mode, op1);
4395 record_jump_cond (code, mode, SUBREG_REG (op0),
4396 tem ? tem : gen_rtx_SUBREG (inner_mode, op1, 0),
4397 reversed_nonequality);
4400 if (code == NE && GET_CODE (op1) == SUBREG
4401 && subreg_lowpart_p (op1)
4402 && (GET_MODE_SIZE (GET_MODE (op1))
4403 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
4405 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
4406 rtx tem = gen_lowpart (inner_mode, op0);
4408 record_jump_cond (code, mode, SUBREG_REG (op1),
4409 tem ? tem : gen_rtx_SUBREG (inner_mode, op0, 0),
4410 reversed_nonequality);
4413 /* Hash both operands. */
4415 do_not_record = 0;
4416 hash_arg_in_memory = 0;
4417 op0_hash = HASH (op0, mode);
4418 op0_in_memory = hash_arg_in_memory;
4420 if (do_not_record)
4421 return;
4423 do_not_record = 0;
4424 hash_arg_in_memory = 0;
4425 op1_hash = HASH (op1, mode);
4426 op1_in_memory = hash_arg_in_memory;
4428 if (do_not_record)
4429 return;
4431 /* Look up both operands. */
4432 op0_elt = lookup (op0, op0_hash, mode);
4433 op1_elt = lookup (op1, op1_hash, mode);
4435 /* If both operands are already equivalent or if they are not in the
4436 table but are identical, do nothing. */
4437 if ((op0_elt != 0 && op1_elt != 0
4438 && op0_elt->first_same_value == op1_elt->first_same_value)
4439 || op0 == op1 || rtx_equal_p (op0, op1))
4440 return;
4442 /* If we aren't setting two things equal all we can do is save this
4443 comparison. Similarly if this is floating-point. In the latter
4444 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
4445 If we record the equality, we might inadvertently delete code
4446 whose intent was to change -0 to +0. */
4448 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
4450 struct qty_table_elem *ent;
4451 int qty;
4453 /* If we reversed a floating-point comparison, if OP0 is not a
4454 register, or if OP1 is neither a register or constant, we can't
4455 do anything. */
4457 if (!REG_P (op1))
4458 op1 = equiv_constant (op1);
4460 if ((reversed_nonequality && FLOAT_MODE_P (mode))
4461 || !REG_P (op0) || op1 == 0)
4462 return;
4464 /* Put OP0 in the hash table if it isn't already. This gives it a
4465 new quantity number. */
4466 if (op0_elt == 0)
4468 if (insert_regs (op0, NULL, 0))
4470 rehash_using_reg (op0);
4471 op0_hash = HASH (op0, mode);
4473 /* If OP0 is contained in OP1, this changes its hash code
4474 as well. Faster to rehash than to check, except
4475 for the simple case of a constant. */
4476 if (! CONSTANT_P (op1))
4477 op1_hash = HASH (op1,mode);
4480 op0_elt = insert (op0, NULL, op0_hash, mode);
4481 op0_elt->in_memory = op0_in_memory;
4484 qty = REG_QTY (REGNO (op0));
4485 ent = &qty_table[qty];
4487 ent->comparison_code = code;
4488 if (REG_P (op1))
4490 /* Look it up again--in case op0 and op1 are the same. */
4491 op1_elt = lookup (op1, op1_hash, mode);
4493 /* Put OP1 in the hash table so it gets a new quantity number. */
4494 if (op1_elt == 0)
4496 if (insert_regs (op1, NULL, 0))
4498 rehash_using_reg (op1);
4499 op1_hash = HASH (op1, mode);
4502 op1_elt = insert (op1, NULL, op1_hash, mode);
4503 op1_elt->in_memory = op1_in_memory;
4506 ent->comparison_const = NULL_RTX;
4507 ent->comparison_qty = REG_QTY (REGNO (op1));
4509 else
4511 ent->comparison_const = op1;
4512 ent->comparison_qty = -1;
4515 return;
4518 /* If either side is still missing an equivalence, make it now,
4519 then merge the equivalences. */
4521 if (op0_elt == 0)
4523 if (insert_regs (op0, NULL, 0))
4525 rehash_using_reg (op0);
4526 op0_hash = HASH (op0, mode);
4529 op0_elt = insert (op0, NULL, op0_hash, mode);
4530 op0_elt->in_memory = op0_in_memory;
4533 if (op1_elt == 0)
4535 if (insert_regs (op1, NULL, 0))
4537 rehash_using_reg (op1);
4538 op1_hash = HASH (op1, mode);
4541 op1_elt = insert (op1, NULL, op1_hash, mode);
4542 op1_elt->in_memory = op1_in_memory;
4545 merge_equiv_classes (op0_elt, op1_elt);
4548 /* CSE processing for one instruction.
4549 First simplify sources and addresses of all assignments
4550 in the instruction, using previously-computed equivalents values.
4551 Then install the new sources and destinations in the table
4552 of available values.
4554 If LIBCALL_INSN is nonzero, don't record any equivalence made in
4555 the insn. It means that INSN is inside libcall block. In this
4556 case LIBCALL_INSN is the corresponding insn with REG_LIBCALL. */
4558 /* Data on one SET contained in the instruction. */
4560 struct set
4562 /* The SET rtx itself. */
4563 rtx rtl;
4564 /* The SET_SRC of the rtx (the original value, if it is changing). */
4565 rtx src;
4566 /* The hash-table element for the SET_SRC of the SET. */
4567 struct table_elt *src_elt;
4568 /* Hash value for the SET_SRC. */
4569 unsigned src_hash;
4570 /* Hash value for the SET_DEST. */
4571 unsigned dest_hash;
4572 /* The SET_DEST, with SUBREG, etc., stripped. */
4573 rtx inner_dest;
4574 /* Nonzero if the SET_SRC is in memory. */
4575 char src_in_memory;
4576 /* Nonzero if the SET_SRC contains something
4577 whose value cannot be predicted and understood. */
4578 char src_volatile;
4579 /* Original machine mode, in case it becomes a CONST_INT.
4580 The size of this field should match the size of the mode
4581 field of struct rtx_def (see rtl.h). */
4582 ENUM_BITFIELD(machine_mode) mode : 8;
4583 /* A constant equivalent for SET_SRC, if any. */
4584 rtx src_const;
4585 /* Original SET_SRC value used for libcall notes. */
4586 rtx orig_src;
4587 /* Hash value of constant equivalent for SET_SRC. */
4588 unsigned src_const_hash;
4589 /* Table entry for constant equivalent for SET_SRC, if any. */
4590 struct table_elt *src_const_elt;
4593 static void
4594 cse_insn (rtx insn, rtx libcall_insn)
4596 rtx x = PATTERN (insn);
4597 int i;
4598 rtx tem;
4599 int n_sets = 0;
4601 #ifdef HAVE_cc0
4602 /* Records what this insn does to set CC0. */
4603 rtx this_insn_cc0 = 0;
4604 enum machine_mode this_insn_cc0_mode = VOIDmode;
4605 #endif
4607 rtx src_eqv = 0;
4608 struct table_elt *src_eqv_elt = 0;
4609 int src_eqv_volatile = 0;
4610 int src_eqv_in_memory = 0;
4611 unsigned src_eqv_hash = 0;
4613 struct set *sets = (struct set *) 0;
4615 this_insn = insn;
4617 /* Find all the SETs and CLOBBERs in this instruction.
4618 Record all the SETs in the array `set' and count them.
4619 Also determine whether there is a CLOBBER that invalidates
4620 all memory references, or all references at varying addresses. */
4622 if (CALL_P (insn))
4624 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4626 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
4627 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
4628 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4632 if (GET_CODE (x) == SET)
4634 sets = alloca (sizeof (struct set));
4635 sets[0].rtl = x;
4637 /* Ignore SETs that are unconditional jumps.
4638 They never need cse processing, so this does not hurt.
4639 The reason is not efficiency but rather
4640 so that we can test at the end for instructions
4641 that have been simplified to unconditional jumps
4642 and not be misled by unchanged instructions
4643 that were unconditional jumps to begin with. */
4644 if (SET_DEST (x) == pc_rtx
4645 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4648 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4649 The hard function value register is used only once, to copy to
4650 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
4651 Ensure we invalidate the destination register. On the 80386 no
4652 other code would invalidate it since it is a fixed_reg.
4653 We need not check the return of apply_change_group; see canon_reg. */
4655 else if (GET_CODE (SET_SRC (x)) == CALL)
4657 canon_reg (SET_SRC (x), insn);
4658 apply_change_group ();
4659 fold_rtx (SET_SRC (x), insn);
4660 invalidate (SET_DEST (x), VOIDmode);
4662 else
4663 n_sets = 1;
4665 else if (GET_CODE (x) == PARALLEL)
4667 int lim = XVECLEN (x, 0);
4669 sets = alloca (lim * sizeof (struct set));
4671 /* Find all regs explicitly clobbered in this insn,
4672 and ensure they are not replaced with any other regs
4673 elsewhere in this insn.
4674 When a reg that is clobbered is also used for input,
4675 we should presume that that is for a reason,
4676 and we should not substitute some other register
4677 which is not supposed to be clobbered.
4678 Therefore, this loop cannot be merged into the one below
4679 because a CALL may precede a CLOBBER and refer to the
4680 value clobbered. We must not let a canonicalization do
4681 anything in that case. */
4682 for (i = 0; i < lim; i++)
4684 rtx y = XVECEXP (x, 0, i);
4685 if (GET_CODE (y) == CLOBBER)
4687 rtx clobbered = XEXP (y, 0);
4689 if (REG_P (clobbered)
4690 || GET_CODE (clobbered) == SUBREG)
4691 invalidate (clobbered, VOIDmode);
4692 else if (GET_CODE (clobbered) == STRICT_LOW_PART
4693 || GET_CODE (clobbered) == ZERO_EXTRACT)
4694 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
4698 for (i = 0; i < lim; i++)
4700 rtx y = XVECEXP (x, 0, i);
4701 if (GET_CODE (y) == SET)
4703 /* As above, we ignore unconditional jumps and call-insns and
4704 ignore the result of apply_change_group. */
4705 if (GET_CODE (SET_SRC (y)) == CALL)
4707 canon_reg (SET_SRC (y), insn);
4708 apply_change_group ();
4709 fold_rtx (SET_SRC (y), insn);
4710 invalidate (SET_DEST (y), VOIDmode);
4712 else if (SET_DEST (y) == pc_rtx
4713 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4715 else
4716 sets[n_sets++].rtl = y;
4718 else if (GET_CODE (y) == CLOBBER)
4720 /* If we clobber memory, canon the address.
4721 This does nothing when a register is clobbered
4722 because we have already invalidated the reg. */
4723 if (MEM_P (XEXP (y, 0)))
4724 canon_reg (XEXP (y, 0), NULL_RTX);
4726 else if (GET_CODE (y) == USE
4727 && ! (REG_P (XEXP (y, 0))
4728 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4729 canon_reg (y, NULL_RTX);
4730 else if (GET_CODE (y) == CALL)
4732 /* The result of apply_change_group can be ignored; see
4733 canon_reg. */
4734 canon_reg (y, insn);
4735 apply_change_group ();
4736 fold_rtx (y, insn);
4740 else if (GET_CODE (x) == CLOBBER)
4742 if (MEM_P (XEXP (x, 0)))
4743 canon_reg (XEXP (x, 0), NULL_RTX);
4746 /* Canonicalize a USE of a pseudo register or memory location. */
4747 else if (GET_CODE (x) == USE
4748 && ! (REG_P (XEXP (x, 0))
4749 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4750 canon_reg (XEXP (x, 0), NULL_RTX);
4751 else if (GET_CODE (x) == CALL)
4753 /* The result of apply_change_group can be ignored; see canon_reg. */
4754 canon_reg (x, insn);
4755 apply_change_group ();
4756 fold_rtx (x, insn);
4759 /* Store the equivalent value in SRC_EQV, if different, or if the DEST
4760 is a STRICT_LOW_PART. The latter condition is necessary because SRC_EQV
4761 is handled specially for this case, and if it isn't set, then there will
4762 be no equivalence for the destination. */
4763 if (n_sets == 1 && REG_NOTES (insn) != 0
4764 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4765 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4766 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4768 src_eqv = fold_rtx (canon_reg (XEXP (tem, 0), NULL_RTX), insn);
4769 XEXP (tem, 0) = src_eqv;
4772 /* Canonicalize sources and addresses of destinations.
4773 We do this in a separate pass to avoid problems when a MATCH_DUP is
4774 present in the insn pattern. In that case, we want to ensure that
4775 we don't break the duplicate nature of the pattern. So we will replace
4776 both operands at the same time. Otherwise, we would fail to find an
4777 equivalent substitution in the loop calling validate_change below.
4779 We used to suppress canonicalization of DEST if it appears in SRC,
4780 but we don't do this any more. */
4782 for (i = 0; i < n_sets; i++)
4784 rtx dest = SET_DEST (sets[i].rtl);
4785 rtx src = SET_SRC (sets[i].rtl);
4786 rtx new = canon_reg (src, insn);
4787 int insn_code;
4789 sets[i].orig_src = src;
4790 if ((REG_P (new) && REG_P (src)
4791 && ((REGNO (new) < FIRST_PSEUDO_REGISTER)
4792 != (REGNO (src) < FIRST_PSEUDO_REGISTER)))
4793 || (insn_code = recog_memoized (insn)) < 0
4794 || insn_data[insn_code].n_dups > 0)
4795 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
4796 else
4797 SET_SRC (sets[i].rtl) = new;
4799 if (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
4801 validate_change (insn, &XEXP (dest, 1),
4802 canon_reg (XEXP (dest, 1), insn), 1);
4803 validate_change (insn, &XEXP (dest, 2),
4804 canon_reg (XEXP (dest, 2), insn), 1);
4807 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
4808 || GET_CODE (dest) == ZERO_EXTRACT
4809 || GET_CODE (dest) == SIGN_EXTRACT)
4810 dest = XEXP (dest, 0);
4812 if (MEM_P (dest))
4813 canon_reg (dest, insn);
4816 /* Now that we have done all the replacements, we can apply the change
4817 group and see if they all work. Note that this will cause some
4818 canonicalizations that would have worked individually not to be applied
4819 because some other canonicalization didn't work, but this should not
4820 occur often.
4822 The result of apply_change_group can be ignored; see canon_reg. */
4824 apply_change_group ();
4826 /* Set sets[i].src_elt to the class each source belongs to.
4827 Detect assignments from or to volatile things
4828 and set set[i] to zero so they will be ignored
4829 in the rest of this function.
4831 Nothing in this loop changes the hash table or the register chains. */
4833 for (i = 0; i < n_sets; i++)
4835 rtx src, dest;
4836 rtx src_folded;
4837 struct table_elt *elt = 0, *p;
4838 enum machine_mode mode;
4839 rtx src_eqv_here;
4840 rtx src_const = 0;
4841 rtx src_related = 0;
4842 struct table_elt *src_const_elt = 0;
4843 int src_cost = MAX_COST;
4844 int src_eqv_cost = MAX_COST;
4845 int src_folded_cost = MAX_COST;
4846 int src_related_cost = MAX_COST;
4847 int src_elt_cost = MAX_COST;
4848 int src_regcost = MAX_COST;
4849 int src_eqv_regcost = MAX_COST;
4850 int src_folded_regcost = MAX_COST;
4851 int src_related_regcost = MAX_COST;
4852 int src_elt_regcost = MAX_COST;
4853 /* Set nonzero if we need to call force_const_mem on with the
4854 contents of src_folded before using it. */
4855 int src_folded_force_flag = 0;
4857 dest = SET_DEST (sets[i].rtl);
4858 src = SET_SRC (sets[i].rtl);
4860 /* If SRC is a constant that has no machine mode,
4861 hash it with the destination's machine mode.
4862 This way we can keep different modes separate. */
4864 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4865 sets[i].mode = mode;
4867 if (src_eqv)
4869 enum machine_mode eqvmode = mode;
4870 if (GET_CODE (dest) == STRICT_LOW_PART)
4871 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4872 do_not_record = 0;
4873 hash_arg_in_memory = 0;
4874 src_eqv_hash = HASH (src_eqv, eqvmode);
4876 /* Find the equivalence class for the equivalent expression. */
4878 if (!do_not_record)
4879 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4881 src_eqv_volatile = do_not_record;
4882 src_eqv_in_memory = hash_arg_in_memory;
4885 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4886 value of the INNER register, not the destination. So it is not
4887 a valid substitution for the source. But save it for later. */
4888 if (GET_CODE (dest) == STRICT_LOW_PART)
4889 src_eqv_here = 0;
4890 else
4891 src_eqv_here = src_eqv;
4893 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4894 simplified result, which may not necessarily be valid. */
4895 src_folded = fold_rtx (src, insn);
4897 #if 0
4898 /* ??? This caused bad code to be generated for the m68k port with -O2.
4899 Suppose src is (CONST_INT -1), and that after truncation src_folded
4900 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4901 At the end we will add src and src_const to the same equivalence
4902 class. We now have 3 and -1 on the same equivalence class. This
4903 causes later instructions to be mis-optimized. */
4904 /* If storing a constant in a bitfield, pre-truncate the constant
4905 so we will be able to record it later. */
4906 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
4907 || GET_CODE (SET_DEST (sets[i].rtl)) == SIGN_EXTRACT)
4909 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4911 if (GET_CODE (src) == CONST_INT
4912 && GET_CODE (width) == CONST_INT
4913 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4914 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4915 src_folded
4916 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
4917 << INTVAL (width)) - 1));
4919 #endif
4921 /* Compute SRC's hash code, and also notice if it
4922 should not be recorded at all. In that case,
4923 prevent any further processing of this assignment. */
4924 do_not_record = 0;
4925 hash_arg_in_memory = 0;
4927 sets[i].src = src;
4928 sets[i].src_hash = HASH (src, mode);
4929 sets[i].src_volatile = do_not_record;
4930 sets[i].src_in_memory = hash_arg_in_memory;
4932 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4933 a pseudo, do not record SRC. Using SRC as a replacement for
4934 anything else will be incorrect in that situation. Note that
4935 this usually occurs only for stack slots, in which case all the
4936 RTL would be referring to SRC, so we don't lose any optimization
4937 opportunities by not having SRC in the hash table. */
4939 if (MEM_P (src)
4940 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
4941 && REG_P (dest)
4942 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4943 sets[i].src_volatile = 1;
4945 #if 0
4946 /* It is no longer clear why we used to do this, but it doesn't
4947 appear to still be needed. So let's try without it since this
4948 code hurts cse'ing widened ops. */
4949 /* If source is a paradoxical subreg (such as QI treated as an SI),
4950 treat it as volatile. It may do the work of an SI in one context
4951 where the extra bits are not being used, but cannot replace an SI
4952 in general. */
4953 if (GET_CODE (src) == SUBREG
4954 && (GET_MODE_SIZE (GET_MODE (src))
4955 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
4956 sets[i].src_volatile = 1;
4957 #endif
4959 /* Locate all possible equivalent forms for SRC. Try to replace
4960 SRC in the insn with each cheaper equivalent.
4962 We have the following types of equivalents: SRC itself, a folded
4963 version, a value given in a REG_EQUAL note, or a value related
4964 to a constant.
4966 Each of these equivalents may be part of an additional class
4967 of equivalents (if more than one is in the table, they must be in
4968 the same class; we check for this).
4970 If the source is volatile, we don't do any table lookups.
4972 We note any constant equivalent for possible later use in a
4973 REG_NOTE. */
4975 if (!sets[i].src_volatile)
4976 elt = lookup (src, sets[i].src_hash, mode);
4978 sets[i].src_elt = elt;
4980 if (elt && src_eqv_here && src_eqv_elt)
4982 if (elt->first_same_value != src_eqv_elt->first_same_value)
4984 /* The REG_EQUAL is indicating that two formerly distinct
4985 classes are now equivalent. So merge them. */
4986 merge_equiv_classes (elt, src_eqv_elt);
4987 src_eqv_hash = HASH (src_eqv, elt->mode);
4988 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
4991 src_eqv_here = 0;
4994 else if (src_eqv_elt)
4995 elt = src_eqv_elt;
4997 /* Try to find a constant somewhere and record it in `src_const'.
4998 Record its table element, if any, in `src_const_elt'. Look in
4999 any known equivalences first. (If the constant is not in the
5000 table, also set `sets[i].src_const_hash'). */
5001 if (elt)
5002 for (p = elt->first_same_value; p; p = p->next_same_value)
5003 if (p->is_const)
5005 src_const = p->exp;
5006 src_const_elt = elt;
5007 break;
5010 if (src_const == 0
5011 && (CONSTANT_P (src_folded)
5012 /* Consider (minus (label_ref L1) (label_ref L2)) as
5013 "constant" here so we will record it. This allows us
5014 to fold switch statements when an ADDR_DIFF_VEC is used. */
5015 || (GET_CODE (src_folded) == MINUS
5016 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
5017 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
5018 src_const = src_folded, src_const_elt = elt;
5019 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
5020 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
5022 /* If we don't know if the constant is in the table, get its
5023 hash code and look it up. */
5024 if (src_const && src_const_elt == 0)
5026 sets[i].src_const_hash = HASH (src_const, mode);
5027 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
5030 sets[i].src_const = src_const;
5031 sets[i].src_const_elt = src_const_elt;
5033 /* If the constant and our source are both in the table, mark them as
5034 equivalent. Otherwise, if a constant is in the table but the source
5035 isn't, set ELT to it. */
5036 if (src_const_elt && elt
5037 && src_const_elt->first_same_value != elt->first_same_value)
5038 merge_equiv_classes (elt, src_const_elt);
5039 else if (src_const_elt && elt == 0)
5040 elt = src_const_elt;
5042 /* See if there is a register linearly related to a constant
5043 equivalent of SRC. */
5044 if (src_const
5045 && (GET_CODE (src_const) == CONST
5046 || (src_const_elt && src_const_elt->related_value != 0)))
5048 src_related = use_related_value (src_const, src_const_elt);
5049 if (src_related)
5051 struct table_elt *src_related_elt
5052 = lookup (src_related, HASH (src_related, mode), mode);
5053 if (src_related_elt && elt)
5055 if (elt->first_same_value
5056 != src_related_elt->first_same_value)
5057 /* This can occur when we previously saw a CONST
5058 involving a SYMBOL_REF and then see the SYMBOL_REF
5059 twice. Merge the involved classes. */
5060 merge_equiv_classes (elt, src_related_elt);
5062 src_related = 0;
5063 src_related_elt = 0;
5065 else if (src_related_elt && elt == 0)
5066 elt = src_related_elt;
5070 /* See if we have a CONST_INT that is already in a register in a
5071 wider mode. */
5073 if (src_const && src_related == 0 && GET_CODE (src_const) == CONST_INT
5074 && GET_MODE_CLASS (mode) == MODE_INT
5075 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
5077 enum machine_mode wider_mode;
5079 for (wider_mode = GET_MODE_WIDER_MODE (mode);
5080 GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
5081 && src_related == 0;
5082 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
5084 struct table_elt *const_elt
5085 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
5087 if (const_elt == 0)
5088 continue;
5090 for (const_elt = const_elt->first_same_value;
5091 const_elt; const_elt = const_elt->next_same_value)
5092 if (REG_P (const_elt->exp))
5094 src_related = gen_lowpart (mode,
5095 const_elt->exp);
5096 break;
5101 /* Another possibility is that we have an AND with a constant in
5102 a mode narrower than a word. If so, it might have been generated
5103 as part of an "if" which would narrow the AND. If we already
5104 have done the AND in a wider mode, we can use a SUBREG of that
5105 value. */
5107 if (flag_expensive_optimizations && ! src_related
5108 && GET_CODE (src) == AND && GET_CODE (XEXP (src, 1)) == CONST_INT
5109 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5111 enum machine_mode tmode;
5112 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
5114 for (tmode = GET_MODE_WIDER_MODE (mode);
5115 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
5116 tmode = GET_MODE_WIDER_MODE (tmode))
5118 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
5119 struct table_elt *larger_elt;
5121 if (inner)
5123 PUT_MODE (new_and, tmode);
5124 XEXP (new_and, 0) = inner;
5125 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
5126 if (larger_elt == 0)
5127 continue;
5129 for (larger_elt = larger_elt->first_same_value;
5130 larger_elt; larger_elt = larger_elt->next_same_value)
5131 if (REG_P (larger_elt->exp))
5133 src_related
5134 = gen_lowpart (mode, larger_elt->exp);
5135 break;
5138 if (src_related)
5139 break;
5144 #ifdef LOAD_EXTEND_OP
5145 /* See if a MEM has already been loaded with a widening operation;
5146 if it has, we can use a subreg of that. Many CISC machines
5147 also have such operations, but this is only likely to be
5148 beneficial on these machines. */
5150 if (flag_expensive_optimizations && src_related == 0
5151 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5152 && GET_MODE_CLASS (mode) == MODE_INT
5153 && MEM_P (src) && ! do_not_record
5154 && LOAD_EXTEND_OP (mode) != UNKNOWN)
5156 enum machine_mode tmode;
5158 /* Set what we are trying to extend and the operation it might
5159 have been extended with. */
5160 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
5161 XEXP (memory_extend_rtx, 0) = src;
5163 for (tmode = GET_MODE_WIDER_MODE (mode);
5164 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
5165 tmode = GET_MODE_WIDER_MODE (tmode))
5167 struct table_elt *larger_elt;
5169 PUT_MODE (memory_extend_rtx, tmode);
5170 larger_elt = lookup (memory_extend_rtx,
5171 HASH (memory_extend_rtx, tmode), tmode);
5172 if (larger_elt == 0)
5173 continue;
5175 for (larger_elt = larger_elt->first_same_value;
5176 larger_elt; larger_elt = larger_elt->next_same_value)
5177 if (REG_P (larger_elt->exp))
5179 src_related = gen_lowpart (mode,
5180 larger_elt->exp);
5181 break;
5184 if (src_related)
5185 break;
5188 #endif /* LOAD_EXTEND_OP */
5190 if (src == src_folded)
5191 src_folded = 0;
5193 /* At this point, ELT, if nonzero, points to a class of expressions
5194 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
5195 and SRC_RELATED, if nonzero, each contain additional equivalent
5196 expressions. Prune these latter expressions by deleting expressions
5197 already in the equivalence class.
5199 Check for an equivalent identical to the destination. If found,
5200 this is the preferred equivalent since it will likely lead to
5201 elimination of the insn. Indicate this by placing it in
5202 `src_related'. */
5204 if (elt)
5205 elt = elt->first_same_value;
5206 for (p = elt; p; p = p->next_same_value)
5208 enum rtx_code code = GET_CODE (p->exp);
5210 /* If the expression is not valid, ignore it. Then we do not
5211 have to check for validity below. In most cases, we can use
5212 `rtx_equal_p', since canonicalization has already been done. */
5213 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
5214 continue;
5216 /* Also skip paradoxical subregs, unless that's what we're
5217 looking for. */
5218 if (code == SUBREG
5219 && (GET_MODE_SIZE (GET_MODE (p->exp))
5220 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))
5221 && ! (src != 0
5222 && GET_CODE (src) == SUBREG
5223 && GET_MODE (src) == GET_MODE (p->exp)
5224 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5225 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
5226 continue;
5228 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
5229 src = 0;
5230 else if (src_folded && GET_CODE (src_folded) == code
5231 && rtx_equal_p (src_folded, p->exp))
5232 src_folded = 0;
5233 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
5234 && rtx_equal_p (src_eqv_here, p->exp))
5235 src_eqv_here = 0;
5236 else if (src_related && GET_CODE (src_related) == code
5237 && rtx_equal_p (src_related, p->exp))
5238 src_related = 0;
5240 /* This is the same as the destination of the insns, we want
5241 to prefer it. Copy it to src_related. The code below will
5242 then give it a negative cost. */
5243 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
5244 src_related = dest;
5247 /* Find the cheapest valid equivalent, trying all the available
5248 possibilities. Prefer items not in the hash table to ones
5249 that are when they are equal cost. Note that we can never
5250 worsen an insn as the current contents will also succeed.
5251 If we find an equivalent identical to the destination, use it as best,
5252 since this insn will probably be eliminated in that case. */
5253 if (src)
5255 if (rtx_equal_p (src, dest))
5256 src_cost = src_regcost = -1;
5257 else
5259 src_cost = COST (src);
5260 src_regcost = approx_reg_cost (src);
5264 if (src_eqv_here)
5266 if (rtx_equal_p (src_eqv_here, dest))
5267 src_eqv_cost = src_eqv_regcost = -1;
5268 else
5270 src_eqv_cost = COST (src_eqv_here);
5271 src_eqv_regcost = approx_reg_cost (src_eqv_here);
5275 if (src_folded)
5277 if (rtx_equal_p (src_folded, dest))
5278 src_folded_cost = src_folded_regcost = -1;
5279 else
5281 src_folded_cost = COST (src_folded);
5282 src_folded_regcost = approx_reg_cost (src_folded);
5286 if (src_related)
5288 if (rtx_equal_p (src_related, dest))
5289 src_related_cost = src_related_regcost = -1;
5290 else
5292 src_related_cost = COST (src_related);
5293 src_related_regcost = approx_reg_cost (src_related);
5297 /* If this was an indirect jump insn, a known label will really be
5298 cheaper even though it looks more expensive. */
5299 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
5300 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
5302 /* Terminate loop when replacement made. This must terminate since
5303 the current contents will be tested and will always be valid. */
5304 while (1)
5306 rtx trial;
5308 /* Skip invalid entries. */
5309 while (elt && !REG_P (elt->exp)
5310 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5311 elt = elt->next_same_value;
5313 /* A paradoxical subreg would be bad here: it'll be the right
5314 size, but later may be adjusted so that the upper bits aren't
5315 what we want. So reject it. */
5316 if (elt != 0
5317 && GET_CODE (elt->exp) == SUBREG
5318 && (GET_MODE_SIZE (GET_MODE (elt->exp))
5319 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))
5320 /* It is okay, though, if the rtx we're trying to match
5321 will ignore any of the bits we can't predict. */
5322 && ! (src != 0
5323 && GET_CODE (src) == SUBREG
5324 && GET_MODE (src) == GET_MODE (elt->exp)
5325 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5326 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
5328 elt = elt->next_same_value;
5329 continue;
5332 if (elt)
5334 src_elt_cost = elt->cost;
5335 src_elt_regcost = elt->regcost;
5338 /* Find cheapest and skip it for the next time. For items
5339 of equal cost, use this order:
5340 src_folded, src, src_eqv, src_related and hash table entry. */
5341 if (src_folded
5342 && preferable (src_folded_cost, src_folded_regcost,
5343 src_cost, src_regcost) <= 0
5344 && preferable (src_folded_cost, src_folded_regcost,
5345 src_eqv_cost, src_eqv_regcost) <= 0
5346 && preferable (src_folded_cost, src_folded_regcost,
5347 src_related_cost, src_related_regcost) <= 0
5348 && preferable (src_folded_cost, src_folded_regcost,
5349 src_elt_cost, src_elt_regcost) <= 0)
5351 trial = src_folded, src_folded_cost = MAX_COST;
5352 if (src_folded_force_flag)
5354 rtx forced = force_const_mem (mode, trial);
5355 if (forced)
5356 trial = forced;
5359 else if (src
5360 && preferable (src_cost, src_regcost,
5361 src_eqv_cost, src_eqv_regcost) <= 0
5362 && preferable (src_cost, src_regcost,
5363 src_related_cost, src_related_regcost) <= 0
5364 && preferable (src_cost, src_regcost,
5365 src_elt_cost, src_elt_regcost) <= 0)
5366 trial = src, src_cost = MAX_COST;
5367 else if (src_eqv_here
5368 && preferable (src_eqv_cost, src_eqv_regcost,
5369 src_related_cost, src_related_regcost) <= 0
5370 && preferable (src_eqv_cost, src_eqv_regcost,
5371 src_elt_cost, src_elt_regcost) <= 0)
5372 trial = copy_rtx (src_eqv_here), src_eqv_cost = MAX_COST;
5373 else if (src_related
5374 && preferable (src_related_cost, src_related_regcost,
5375 src_elt_cost, src_elt_regcost) <= 0)
5376 trial = copy_rtx (src_related), src_related_cost = MAX_COST;
5377 else
5379 trial = copy_rtx (elt->exp);
5380 elt = elt->next_same_value;
5381 src_elt_cost = MAX_COST;
5384 /* We don't normally have an insn matching (set (pc) (pc)), so
5385 check for this separately here. We will delete such an
5386 insn below.
5388 For other cases such as a table jump or conditional jump
5389 where we know the ultimate target, go ahead and replace the
5390 operand. While that may not make a valid insn, we will
5391 reemit the jump below (and also insert any necessary
5392 barriers). */
5393 if (n_sets == 1 && dest == pc_rtx
5394 && (trial == pc_rtx
5395 || (GET_CODE (trial) == LABEL_REF
5396 && ! condjump_p (insn))))
5398 /* Don't substitute non-local labels, this confuses CFG. */
5399 if (GET_CODE (trial) == LABEL_REF
5400 && LABEL_REF_NONLOCAL_P (trial))
5401 continue;
5403 SET_SRC (sets[i].rtl) = trial;
5404 cse_jumps_altered = 1;
5405 break;
5408 /* Look for a substitution that makes a valid insn. */
5409 else if (validate_change (insn, &SET_SRC (sets[i].rtl), trial, 0))
5411 rtx new = canon_reg (SET_SRC (sets[i].rtl), insn);
5413 /* If we just made a substitution inside a libcall, then we
5414 need to make the same substitution in any notes attached
5415 to the RETVAL insn. */
5416 if (libcall_insn
5417 && (REG_P (sets[i].orig_src)
5418 || GET_CODE (sets[i].orig_src) == SUBREG
5419 || MEM_P (sets[i].orig_src)))
5421 rtx note = find_reg_equal_equiv_note (libcall_insn);
5422 if (note != 0)
5423 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0),
5424 sets[i].orig_src,
5425 copy_rtx (new));
5428 /* The result of apply_change_group can be ignored; see
5429 canon_reg. */
5431 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
5432 apply_change_group ();
5433 break;
5436 /* If we previously found constant pool entries for
5437 constants and this is a constant, try making a
5438 pool entry. Put it in src_folded unless we already have done
5439 this since that is where it likely came from. */
5441 else if (constant_pool_entries_cost
5442 && CONSTANT_P (trial)
5443 /* Reject cases that will abort in decode_rtx_const.
5444 On the alpha when simplifying a switch, we get
5445 (const (truncate (minus (label_ref) (label_ref)))). */
5446 && ! (GET_CODE (trial) == CONST
5447 && GET_CODE (XEXP (trial, 0)) == TRUNCATE)
5448 /* Likewise on IA-64, except without the truncate. */
5449 && ! (GET_CODE (trial) == CONST
5450 && GET_CODE (XEXP (trial, 0)) == MINUS
5451 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5452 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)
5453 && (src_folded == 0
5454 || (!MEM_P (src_folded)
5455 && ! src_folded_force_flag))
5456 && GET_MODE_CLASS (mode) != MODE_CC
5457 && mode != VOIDmode)
5459 src_folded_force_flag = 1;
5460 src_folded = trial;
5461 src_folded_cost = constant_pool_entries_cost;
5462 src_folded_regcost = constant_pool_entries_regcost;
5466 src = SET_SRC (sets[i].rtl);
5468 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5469 However, there is an important exception: If both are registers
5470 that are not the head of their equivalence class, replace SET_SRC
5471 with the head of the class. If we do not do this, we will have
5472 both registers live over a portion of the basic block. This way,
5473 their lifetimes will likely abut instead of overlapping. */
5474 if (REG_P (dest)
5475 && REGNO_QTY_VALID_P (REGNO (dest)))
5477 int dest_q = REG_QTY (REGNO (dest));
5478 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5480 if (dest_ent->mode == GET_MODE (dest)
5481 && dest_ent->first_reg != REGNO (dest)
5482 && REG_P (src) && REGNO (src) == REGNO (dest)
5483 /* Don't do this if the original insn had a hard reg as
5484 SET_SRC or SET_DEST. */
5485 && (!REG_P (sets[i].src)
5486 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
5487 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
5488 /* We can't call canon_reg here because it won't do anything if
5489 SRC is a hard register. */
5491 int src_q = REG_QTY (REGNO (src));
5492 struct qty_table_elem *src_ent = &qty_table[src_q];
5493 int first = src_ent->first_reg;
5494 rtx new_src
5495 = (first >= FIRST_PSEUDO_REGISTER
5496 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5498 /* We must use validate-change even for this, because this
5499 might be a special no-op instruction, suitable only to
5500 tag notes onto. */
5501 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5503 src = new_src;
5504 /* If we had a constant that is cheaper than what we are now
5505 setting SRC to, use that constant. We ignored it when we
5506 thought we could make this into a no-op. */
5507 if (src_const && COST (src_const) < COST (src)
5508 && validate_change (insn, &SET_SRC (sets[i].rtl),
5509 src_const, 0))
5510 src = src_const;
5515 /* If we made a change, recompute SRC values. */
5516 if (src != sets[i].src)
5518 cse_altered = 1;
5519 do_not_record = 0;
5520 hash_arg_in_memory = 0;
5521 sets[i].src = src;
5522 sets[i].src_hash = HASH (src, mode);
5523 sets[i].src_volatile = do_not_record;
5524 sets[i].src_in_memory = hash_arg_in_memory;
5525 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5528 /* If this is a single SET, we are setting a register, and we have an
5529 equivalent constant, we want to add a REG_NOTE. We don't want
5530 to write a REG_EQUAL note for a constant pseudo since verifying that
5531 that pseudo hasn't been eliminated is a pain. Such a note also
5532 won't help anything.
5534 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5535 which can be created for a reference to a compile time computable
5536 entry in a jump table. */
5538 if (n_sets == 1 && src_const && REG_P (dest)
5539 && !REG_P (src_const)
5540 && ! (GET_CODE (src_const) == CONST
5541 && GET_CODE (XEXP (src_const, 0)) == MINUS
5542 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5543 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
5545 /* We only want a REG_EQUAL note if src_const != src. */
5546 if (! rtx_equal_p (src, src_const))
5548 /* Make sure that the rtx is not shared. */
5549 src_const = copy_rtx (src_const);
5551 /* Record the actual constant value in a REG_EQUAL note,
5552 making a new one if one does not already exist. */
5553 set_unique_reg_note (insn, REG_EQUAL, src_const);
5557 /* Now deal with the destination. */
5558 do_not_record = 0;
5560 /* Look within any SIGN_EXTRACT or ZERO_EXTRACT
5561 to the MEM or REG within it. */
5562 while (GET_CODE (dest) == SIGN_EXTRACT
5563 || GET_CODE (dest) == ZERO_EXTRACT
5564 || GET_CODE (dest) == SUBREG
5565 || GET_CODE (dest) == STRICT_LOW_PART)
5566 dest = XEXP (dest, 0);
5568 sets[i].inner_dest = dest;
5570 if (MEM_P (dest))
5572 #ifdef PUSH_ROUNDING
5573 /* Stack pushes invalidate the stack pointer. */
5574 rtx addr = XEXP (dest, 0);
5575 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
5576 && XEXP (addr, 0) == stack_pointer_rtx)
5577 invalidate (stack_pointer_rtx, Pmode);
5578 #endif
5579 dest = fold_rtx (dest, insn);
5582 /* Compute the hash code of the destination now,
5583 before the effects of this instruction are recorded,
5584 since the register values used in the address computation
5585 are those before this instruction. */
5586 sets[i].dest_hash = HASH (dest, mode);
5588 /* Don't enter a bit-field in the hash table
5589 because the value in it after the store
5590 may not equal what was stored, due to truncation. */
5592 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5593 || GET_CODE (SET_DEST (sets[i].rtl)) == SIGN_EXTRACT)
5595 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5597 if (src_const != 0 && GET_CODE (src_const) == CONST_INT
5598 && GET_CODE (width) == CONST_INT
5599 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5600 && ! (INTVAL (src_const)
5601 & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5602 /* Exception: if the value is constant,
5603 and it won't be truncated, record it. */
5605 else
5607 /* This is chosen so that the destination will be invalidated
5608 but no new value will be recorded.
5609 We must invalidate because sometimes constant
5610 values can be recorded for bitfields. */
5611 sets[i].src_elt = 0;
5612 sets[i].src_volatile = 1;
5613 src_eqv = 0;
5614 src_eqv_elt = 0;
5618 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5619 the insn. */
5620 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5622 /* One less use of the label this insn used to jump to. */
5623 delete_insn (insn);
5624 cse_jumps_altered = 1;
5625 /* No more processing for this set. */
5626 sets[i].rtl = 0;
5629 /* If this SET is now setting PC to a label, we know it used to
5630 be a conditional or computed branch. */
5631 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5632 && !LABEL_REF_NONLOCAL_P (src))
5634 /* Now emit a BARRIER after the unconditional jump. */
5635 if (NEXT_INSN (insn) == 0
5636 || !BARRIER_P (NEXT_INSN (insn)))
5637 emit_barrier_after (insn);
5639 /* We reemit the jump in as many cases as possible just in
5640 case the form of an unconditional jump is significantly
5641 different than a computed jump or conditional jump.
5643 If this insn has multiple sets, then reemitting the
5644 jump is nontrivial. So instead we just force rerecognition
5645 and hope for the best. */
5646 if (n_sets == 1)
5648 rtx new, note;
5650 new = emit_jump_insn_after (gen_jump (XEXP (src, 0)), insn);
5651 JUMP_LABEL (new) = XEXP (src, 0);
5652 LABEL_NUSES (XEXP (src, 0))++;
5654 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5655 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5656 if (note)
5658 XEXP (note, 1) = NULL_RTX;
5659 REG_NOTES (new) = note;
5662 delete_insn (insn);
5663 insn = new;
5665 /* Now emit a BARRIER after the unconditional jump. */
5666 if (NEXT_INSN (insn) == 0
5667 || !BARRIER_P (NEXT_INSN (insn)))
5668 emit_barrier_after (insn);
5670 else
5671 INSN_CODE (insn) = -1;
5673 /* Do not bother deleting any unreachable code,
5674 let jump/flow do that. */
5676 cse_jumps_altered = 1;
5677 sets[i].rtl = 0;
5680 /* If destination is volatile, invalidate it and then do no further
5681 processing for this assignment. */
5683 else if (do_not_record)
5685 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5686 invalidate (dest, VOIDmode);
5687 else if (MEM_P (dest))
5689 /* Outgoing arguments for a libcall don't
5690 affect any recorded expressions. */
5691 if (! libcall_insn || insn == libcall_insn)
5692 invalidate (dest, VOIDmode);
5694 else if (GET_CODE (dest) == STRICT_LOW_PART
5695 || GET_CODE (dest) == ZERO_EXTRACT)
5696 invalidate (XEXP (dest, 0), GET_MODE (dest));
5697 sets[i].rtl = 0;
5700 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5701 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5703 #ifdef HAVE_cc0
5704 /* If setting CC0, record what it was set to, or a constant, if it
5705 is equivalent to a constant. If it is being set to a floating-point
5706 value, make a COMPARE with the appropriate constant of 0. If we
5707 don't do this, later code can interpret this as a test against
5708 const0_rtx, which can cause problems if we try to put it into an
5709 insn as a floating-point operand. */
5710 if (dest == cc0_rtx)
5712 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5713 this_insn_cc0_mode = mode;
5714 if (FLOAT_MODE_P (mode))
5715 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5716 CONST0_RTX (mode));
5718 #endif
5721 /* Now enter all non-volatile source expressions in the hash table
5722 if they are not already present.
5723 Record their equivalence classes in src_elt.
5724 This way we can insert the corresponding destinations into
5725 the same classes even if the actual sources are no longer in them
5726 (having been invalidated). */
5728 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5729 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5731 struct table_elt *elt;
5732 struct table_elt *classp = sets[0].src_elt;
5733 rtx dest = SET_DEST (sets[0].rtl);
5734 enum machine_mode eqvmode = GET_MODE (dest);
5736 if (GET_CODE (dest) == STRICT_LOW_PART)
5738 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5739 classp = 0;
5741 if (insert_regs (src_eqv, classp, 0))
5743 rehash_using_reg (src_eqv);
5744 src_eqv_hash = HASH (src_eqv, eqvmode);
5746 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5747 elt->in_memory = src_eqv_in_memory;
5748 src_eqv_elt = elt;
5750 /* Check to see if src_eqv_elt is the same as a set source which
5751 does not yet have an elt, and if so set the elt of the set source
5752 to src_eqv_elt. */
5753 for (i = 0; i < n_sets; i++)
5754 if (sets[i].rtl && sets[i].src_elt == 0
5755 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5756 sets[i].src_elt = src_eqv_elt;
5759 for (i = 0; i < n_sets; i++)
5760 if (sets[i].rtl && ! sets[i].src_volatile
5761 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5763 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5765 /* REG_EQUAL in setting a STRICT_LOW_PART
5766 gives an equivalent for the entire destination register,
5767 not just for the subreg being stored in now.
5768 This is a more interesting equivalence, so we arrange later
5769 to treat the entire reg as the destination. */
5770 sets[i].src_elt = src_eqv_elt;
5771 sets[i].src_hash = src_eqv_hash;
5773 else
5775 /* Insert source and constant equivalent into hash table, if not
5776 already present. */
5777 struct table_elt *classp = src_eqv_elt;
5778 rtx src = sets[i].src;
5779 rtx dest = SET_DEST (sets[i].rtl);
5780 enum machine_mode mode
5781 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5783 /* It's possible that we have a source value known to be
5784 constant but don't have a REG_EQUAL note on the insn.
5785 Lack of a note will mean src_eqv_elt will be NULL. This
5786 can happen where we've generated a SUBREG to access a
5787 CONST_INT that is already in a register in a wider mode.
5788 Ensure that the source expression is put in the proper
5789 constant class. */
5790 if (!classp)
5791 classp = sets[i].src_const_elt;
5793 if (sets[i].src_elt == 0)
5795 /* Don't put a hard register source into the table if this is
5796 the last insn of a libcall. In this case, we only need
5797 to put src_eqv_elt in src_elt. */
5798 if (! find_reg_note (insn, REG_RETVAL, NULL_RTX))
5800 struct table_elt *elt;
5802 /* Note that these insert_regs calls cannot remove
5803 any of the src_elt's, because they would have failed to
5804 match if not still valid. */
5805 if (insert_regs (src, classp, 0))
5807 rehash_using_reg (src);
5808 sets[i].src_hash = HASH (src, mode);
5810 elt = insert (src, classp, sets[i].src_hash, mode);
5811 elt->in_memory = sets[i].src_in_memory;
5812 sets[i].src_elt = classp = elt;
5814 else
5815 sets[i].src_elt = classp;
5817 if (sets[i].src_const && sets[i].src_const_elt == 0
5818 && src != sets[i].src_const
5819 && ! rtx_equal_p (sets[i].src_const, src))
5820 sets[i].src_elt = insert (sets[i].src_const, classp,
5821 sets[i].src_const_hash, mode);
5824 else if (sets[i].src_elt == 0)
5825 /* If we did not insert the source into the hash table (e.g., it was
5826 volatile), note the equivalence class for the REG_EQUAL value, if any,
5827 so that the destination goes into that class. */
5828 sets[i].src_elt = src_eqv_elt;
5830 invalidate_from_clobbers (x);
5832 /* Some registers are invalidated by subroutine calls. Memory is
5833 invalidated by non-constant calls. */
5835 if (CALL_P (insn))
5837 if (! CONST_OR_PURE_CALL_P (insn))
5838 invalidate_memory ();
5839 invalidate_for_call ();
5842 /* Now invalidate everything set by this instruction.
5843 If a SUBREG or other funny destination is being set,
5844 sets[i].rtl is still nonzero, so here we invalidate the reg
5845 a part of which is being set. */
5847 for (i = 0; i < n_sets; i++)
5848 if (sets[i].rtl)
5850 /* We can't use the inner dest, because the mode associated with
5851 a ZERO_EXTRACT is significant. */
5852 rtx dest = SET_DEST (sets[i].rtl);
5854 /* Needed for registers to remove the register from its
5855 previous quantity's chain.
5856 Needed for memory if this is a nonvarying address, unless
5857 we have just done an invalidate_memory that covers even those. */
5858 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5859 invalidate (dest, VOIDmode);
5860 else if (MEM_P (dest))
5862 /* Outgoing arguments for a libcall don't
5863 affect any recorded expressions. */
5864 if (! libcall_insn || insn == libcall_insn)
5865 invalidate (dest, VOIDmode);
5867 else if (GET_CODE (dest) == STRICT_LOW_PART
5868 || GET_CODE (dest) == ZERO_EXTRACT)
5869 invalidate (XEXP (dest, 0), GET_MODE (dest));
5872 /* A volatile ASM invalidates everything. */
5873 if (NONJUMP_INSN_P (insn)
5874 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
5875 && MEM_VOLATILE_P (PATTERN (insn)))
5876 flush_hash_table ();
5878 /* Make sure registers mentioned in destinations
5879 are safe for use in an expression to be inserted.
5880 This removes from the hash table
5881 any invalid entry that refers to one of these registers.
5883 We don't care about the return value from mention_regs because
5884 we are going to hash the SET_DEST values unconditionally. */
5886 for (i = 0; i < n_sets; i++)
5888 if (sets[i].rtl)
5890 rtx x = SET_DEST (sets[i].rtl);
5892 if (!REG_P (x))
5893 mention_regs (x);
5894 else
5896 /* We used to rely on all references to a register becoming
5897 inaccessible when a register changes to a new quantity,
5898 since that changes the hash code. However, that is not
5899 safe, since after HASH_SIZE new quantities we get a
5900 hash 'collision' of a register with its own invalid
5901 entries. And since SUBREGs have been changed not to
5902 change their hash code with the hash code of the register,
5903 it wouldn't work any longer at all. So we have to check
5904 for any invalid references lying around now.
5905 This code is similar to the REG case in mention_regs,
5906 but it knows that reg_tick has been incremented, and
5907 it leaves reg_in_table as -1 . */
5908 unsigned int regno = REGNO (x);
5909 unsigned int endregno
5910 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
5911 : hard_regno_nregs[regno][GET_MODE (x)]);
5912 unsigned int i;
5914 for (i = regno; i < endregno; i++)
5916 if (REG_IN_TABLE (i) >= 0)
5918 remove_invalid_refs (i);
5919 REG_IN_TABLE (i) = -1;
5926 /* We may have just removed some of the src_elt's from the hash table.
5927 So replace each one with the current head of the same class. */
5929 for (i = 0; i < n_sets; i++)
5930 if (sets[i].rtl)
5932 if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5933 /* If elt was removed, find current head of same class,
5934 or 0 if nothing remains of that class. */
5936 struct table_elt *elt = sets[i].src_elt;
5938 while (elt && elt->prev_same_value)
5939 elt = elt->prev_same_value;
5941 while (elt && elt->first_same_value == 0)
5942 elt = elt->next_same_value;
5943 sets[i].src_elt = elt ? elt->first_same_value : 0;
5947 /* Now insert the destinations into their equivalence classes. */
5949 for (i = 0; i < n_sets; i++)
5950 if (sets[i].rtl)
5952 rtx dest = SET_DEST (sets[i].rtl);
5953 struct table_elt *elt;
5955 /* Don't record value if we are not supposed to risk allocating
5956 floating-point values in registers that might be wider than
5957 memory. */
5958 if ((flag_float_store
5959 && MEM_P (dest)
5960 && FLOAT_MODE_P (GET_MODE (dest)))
5961 /* Don't record BLKmode values, because we don't know the
5962 size of it, and can't be sure that other BLKmode values
5963 have the same or smaller size. */
5964 || GET_MODE (dest) == BLKmode
5965 /* Don't record values of destinations set inside a libcall block
5966 since we might delete the libcall. Things should have been set
5967 up so we won't want to reuse such a value, but we play it safe
5968 here. */
5969 || libcall_insn
5970 /* If we didn't put a REG_EQUAL value or a source into the hash
5971 table, there is no point is recording DEST. */
5972 || sets[i].src_elt == 0
5973 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
5974 or SIGN_EXTEND, don't record DEST since it can cause
5975 some tracking to be wrong.
5977 ??? Think about this more later. */
5978 || (GET_CODE (dest) == SUBREG
5979 && (GET_MODE_SIZE (GET_MODE (dest))
5980 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5981 && (GET_CODE (sets[i].src) == SIGN_EXTEND
5982 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
5983 continue;
5985 /* STRICT_LOW_PART isn't part of the value BEING set,
5986 and neither is the SUBREG inside it.
5987 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5988 if (GET_CODE (dest) == STRICT_LOW_PART)
5989 dest = SUBREG_REG (XEXP (dest, 0));
5991 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5992 /* Registers must also be inserted into chains for quantities. */
5993 if (insert_regs (dest, sets[i].src_elt, 1))
5995 /* If `insert_regs' changes something, the hash code must be
5996 recalculated. */
5997 rehash_using_reg (dest);
5998 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
6001 elt = insert (dest, sets[i].src_elt,
6002 sets[i].dest_hash, GET_MODE (dest));
6004 elt->in_memory = (MEM_P (sets[i].inner_dest)
6005 && !MEM_READONLY_P (sets[i].inner_dest));
6007 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
6008 narrower than M2, and both M1 and M2 are the same number of words,
6009 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
6010 make that equivalence as well.
6012 However, BAR may have equivalences for which gen_lowpart
6013 will produce a simpler value than gen_lowpart applied to
6014 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
6015 BAR's equivalences. If we don't get a simplified form, make
6016 the SUBREG. It will not be used in an equivalence, but will
6017 cause two similar assignments to be detected.
6019 Note the loop below will find SUBREG_REG (DEST) since we have
6020 already entered SRC and DEST of the SET in the table. */
6022 if (GET_CODE (dest) == SUBREG
6023 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
6024 / UNITS_PER_WORD)
6025 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
6026 && (GET_MODE_SIZE (GET_MODE (dest))
6027 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
6028 && sets[i].src_elt != 0)
6030 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
6031 struct table_elt *elt, *classp = 0;
6033 for (elt = sets[i].src_elt->first_same_value; elt;
6034 elt = elt->next_same_value)
6036 rtx new_src = 0;
6037 unsigned src_hash;
6038 struct table_elt *src_elt;
6039 int byte = 0;
6041 /* Ignore invalid entries. */
6042 if (!REG_P (elt->exp)
6043 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
6044 continue;
6046 /* We may have already been playing subreg games. If the
6047 mode is already correct for the destination, use it. */
6048 if (GET_MODE (elt->exp) == new_mode)
6049 new_src = elt->exp;
6050 else
6052 /* Calculate big endian correction for the SUBREG_BYTE.
6053 We have already checked that M1 (GET_MODE (dest))
6054 is not narrower than M2 (new_mode). */
6055 if (BYTES_BIG_ENDIAN)
6056 byte = (GET_MODE_SIZE (GET_MODE (dest))
6057 - GET_MODE_SIZE (new_mode));
6059 new_src = simplify_gen_subreg (new_mode, elt->exp,
6060 GET_MODE (dest), byte);
6063 /* The call to simplify_gen_subreg fails if the value
6064 is VOIDmode, yet we can't do any simplification, e.g.
6065 for EXPR_LISTs denoting function call results.
6066 It is invalid to construct a SUBREG with a VOIDmode
6067 SUBREG_REG, hence a zero new_src means we can't do
6068 this substitution. */
6069 if (! new_src)
6070 continue;
6072 src_hash = HASH (new_src, new_mode);
6073 src_elt = lookup (new_src, src_hash, new_mode);
6075 /* Put the new source in the hash table is if isn't
6076 already. */
6077 if (src_elt == 0)
6079 if (insert_regs (new_src, classp, 0))
6081 rehash_using_reg (new_src);
6082 src_hash = HASH (new_src, new_mode);
6084 src_elt = insert (new_src, classp, src_hash, new_mode);
6085 src_elt->in_memory = elt->in_memory;
6087 else if (classp && classp != src_elt->first_same_value)
6088 /* Show that two things that we've seen before are
6089 actually the same. */
6090 merge_equiv_classes (src_elt, classp);
6092 classp = src_elt->first_same_value;
6093 /* Ignore invalid entries. */
6094 while (classp
6095 && !REG_P (classp->exp)
6096 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
6097 classp = classp->next_same_value;
6102 /* Special handling for (set REG0 REG1) where REG0 is the
6103 "cheapest", cheaper than REG1. After cse, REG1 will probably not
6104 be used in the sequel, so (if easily done) change this insn to
6105 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
6106 that computed their value. Then REG1 will become a dead store
6107 and won't cloud the situation for later optimizations.
6109 Do not make this change if REG1 is a hard register, because it will
6110 then be used in the sequel and we may be changing a two-operand insn
6111 into a three-operand insn.
6113 Also do not do this if we are operating on a copy of INSN.
6115 Also don't do this if INSN ends a libcall; this would cause an unrelated
6116 register to be set in the middle of a libcall, and we then get bad code
6117 if the libcall is deleted. */
6119 if (n_sets == 1 && sets[0].rtl && REG_P (SET_DEST (sets[0].rtl))
6120 && NEXT_INSN (PREV_INSN (insn)) == insn
6121 && REG_P (SET_SRC (sets[0].rtl))
6122 && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
6123 && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl))))
6125 int src_q = REG_QTY (REGNO (SET_SRC (sets[0].rtl)));
6126 struct qty_table_elem *src_ent = &qty_table[src_q];
6128 if ((src_ent->first_reg == REGNO (SET_DEST (sets[0].rtl)))
6129 && ! find_reg_note (insn, REG_RETVAL, NULL_RTX))
6131 rtx prev = insn;
6132 /* Scan for the previous nonnote insn, but stop at a basic
6133 block boundary. */
6136 prev = PREV_INSN (prev);
6138 while (prev && NOTE_P (prev)
6139 && NOTE_LINE_NUMBER (prev) != NOTE_INSN_BASIC_BLOCK);
6141 /* Do not swap the registers around if the previous instruction
6142 attaches a REG_EQUIV note to REG1.
6144 ??? It's not entirely clear whether we can transfer a REG_EQUIV
6145 from the pseudo that originally shadowed an incoming argument
6146 to another register. Some uses of REG_EQUIV might rely on it
6147 being attached to REG1 rather than REG2.
6149 This section previously turned the REG_EQUIV into a REG_EQUAL
6150 note. We cannot do that because REG_EQUIV may provide an
6151 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
6153 if (prev != 0 && NONJUMP_INSN_P (prev)
6154 && GET_CODE (PATTERN (prev)) == SET
6155 && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl)
6156 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
6158 rtx dest = SET_DEST (sets[0].rtl);
6159 rtx src = SET_SRC (sets[0].rtl);
6160 rtx note;
6162 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
6163 validate_change (insn, &SET_DEST (sets[0].rtl), src, 1);
6164 validate_change (insn, &SET_SRC (sets[0].rtl), dest, 1);
6165 apply_change_group ();
6167 /* If INSN has a REG_EQUAL note, and this note mentions
6168 REG0, then we must delete it, because the value in
6169 REG0 has changed. If the note's value is REG1, we must
6170 also delete it because that is now this insn's dest. */
6171 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
6172 if (note != 0
6173 && (reg_mentioned_p (dest, XEXP (note, 0))
6174 || rtx_equal_p (src, XEXP (note, 0))))
6175 remove_note (insn, note);
6180 /* If this is a conditional jump insn, record any known equivalences due to
6181 the condition being tested. */
6183 if (JUMP_P (insn)
6184 && n_sets == 1 && GET_CODE (x) == SET
6185 && GET_CODE (SET_SRC (x)) == IF_THEN_ELSE)
6186 record_jump_equiv (insn, 0);
6188 #ifdef HAVE_cc0
6189 /* If the previous insn set CC0 and this insn no longer references CC0,
6190 delete the previous insn. Here we use the fact that nothing expects CC0
6191 to be valid over an insn, which is true until the final pass. */
6192 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6193 && (tem = single_set (prev_insn)) != 0
6194 && SET_DEST (tem) == cc0_rtx
6195 && ! reg_mentioned_p (cc0_rtx, x))
6196 delete_insn (prev_insn);
6198 prev_insn_cc0 = this_insn_cc0;
6199 prev_insn_cc0_mode = this_insn_cc0_mode;
6200 prev_insn = insn;
6201 #endif
6204 /* Remove from the hash table all expressions that reference memory. */
6206 static void
6207 invalidate_memory (void)
6209 int i;
6210 struct table_elt *p, *next;
6212 for (i = 0; i < HASH_SIZE; i++)
6213 for (p = table[i]; p; p = next)
6215 next = p->next_same_hash;
6216 if (p->in_memory)
6217 remove_from_table (p, i);
6221 /* If ADDR is an address that implicitly affects the stack pointer, return
6222 1 and update the register tables to show the effect. Else, return 0. */
6224 static int
6225 addr_affects_sp_p (rtx addr)
6227 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
6228 && REG_P (XEXP (addr, 0))
6229 && REGNO (XEXP (addr, 0)) == STACK_POINTER_REGNUM)
6231 if (REG_TICK (STACK_POINTER_REGNUM) >= 0)
6233 REG_TICK (STACK_POINTER_REGNUM)++;
6234 /* Is it possible to use a subreg of SP? */
6235 SUBREG_TICKED (STACK_POINTER_REGNUM) = -1;
6238 /* This should be *very* rare. */
6239 if (TEST_HARD_REG_BIT (hard_regs_in_table, STACK_POINTER_REGNUM))
6240 invalidate (stack_pointer_rtx, VOIDmode);
6242 return 1;
6245 return 0;
6248 /* Perform invalidation on the basis of everything about an insn
6249 except for invalidating the actual places that are SET in it.
6250 This includes the places CLOBBERed, and anything that might
6251 alias with something that is SET or CLOBBERed.
6253 X is the pattern of the insn. */
6255 static void
6256 invalidate_from_clobbers (rtx x)
6258 if (GET_CODE (x) == CLOBBER)
6260 rtx ref = XEXP (x, 0);
6261 if (ref)
6263 if (REG_P (ref) || GET_CODE (ref) == SUBREG
6264 || MEM_P (ref))
6265 invalidate (ref, VOIDmode);
6266 else if (GET_CODE (ref) == STRICT_LOW_PART
6267 || GET_CODE (ref) == ZERO_EXTRACT)
6268 invalidate (XEXP (ref, 0), GET_MODE (ref));
6271 else if (GET_CODE (x) == PARALLEL)
6273 int i;
6274 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6276 rtx y = XVECEXP (x, 0, i);
6277 if (GET_CODE (y) == CLOBBER)
6279 rtx ref = XEXP (y, 0);
6280 if (REG_P (ref) || GET_CODE (ref) == SUBREG
6281 || MEM_P (ref))
6282 invalidate (ref, VOIDmode);
6283 else if (GET_CODE (ref) == STRICT_LOW_PART
6284 || GET_CODE (ref) == ZERO_EXTRACT)
6285 invalidate (XEXP (ref, 0), GET_MODE (ref));
6291 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
6292 and replace any registers in them with either an equivalent constant
6293 or the canonical form of the register. If we are inside an address,
6294 only do this if the address remains valid.
6296 OBJECT is 0 except when within a MEM in which case it is the MEM.
6298 Return the replacement for X. */
6300 static rtx
6301 cse_process_notes (rtx x, rtx object)
6303 enum rtx_code code = GET_CODE (x);
6304 const char *fmt = GET_RTX_FORMAT (code);
6305 int i;
6307 switch (code)
6309 case CONST_INT:
6310 case CONST:
6311 case SYMBOL_REF:
6312 case LABEL_REF:
6313 case CONST_DOUBLE:
6314 case CONST_VECTOR:
6315 case PC:
6316 case CC0:
6317 case LO_SUM:
6318 return x;
6320 case MEM:
6321 validate_change (x, &XEXP (x, 0),
6322 cse_process_notes (XEXP (x, 0), x), 0);
6323 return x;
6325 case EXPR_LIST:
6326 case INSN_LIST:
6327 if (REG_NOTE_KIND (x) == REG_EQUAL)
6328 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX);
6329 if (XEXP (x, 1))
6330 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX);
6331 return x;
6333 case SIGN_EXTEND:
6334 case ZERO_EXTEND:
6335 case SUBREG:
6337 rtx new = cse_process_notes (XEXP (x, 0), object);
6338 /* We don't substitute VOIDmode constants into these rtx,
6339 since they would impede folding. */
6340 if (GET_MODE (new) != VOIDmode)
6341 validate_change (object, &XEXP (x, 0), new, 0);
6342 return x;
6345 case REG:
6346 i = REG_QTY (REGNO (x));
6348 /* Return a constant or a constant register. */
6349 if (REGNO_QTY_VALID_P (REGNO (x)))
6351 struct qty_table_elem *ent = &qty_table[i];
6353 if (ent->const_rtx != NULL_RTX
6354 && (CONSTANT_P (ent->const_rtx)
6355 || REG_P (ent->const_rtx)))
6357 rtx new = gen_lowpart (GET_MODE (x), ent->const_rtx);
6358 if (new)
6359 return new;
6363 /* Otherwise, canonicalize this register. */
6364 return canon_reg (x, NULL_RTX);
6366 default:
6367 break;
6370 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6371 if (fmt[i] == 'e')
6372 validate_change (object, &XEXP (x, i),
6373 cse_process_notes (XEXP (x, i), object), 0);
6375 return x;
6378 /* Process one SET of an insn that was skipped. We ignore CLOBBERs
6379 since they are done elsewhere. This function is called via note_stores. */
6381 static void
6382 invalidate_skipped_set (rtx dest, rtx set, void *data ATTRIBUTE_UNUSED)
6384 enum rtx_code code = GET_CODE (dest);
6386 if (code == MEM
6387 && ! addr_affects_sp_p (dest) /* If this is not a stack push ... */
6388 /* There are times when an address can appear varying and be a PLUS
6389 during this scan when it would be a fixed address were we to know
6390 the proper equivalences. So invalidate all memory if there is
6391 a BLKmode or nonscalar memory reference or a reference to a
6392 variable address. */
6393 && (MEM_IN_STRUCT_P (dest) || GET_MODE (dest) == BLKmode
6394 || cse_rtx_varies_p (XEXP (dest, 0), 0)))
6396 invalidate_memory ();
6397 return;
6400 if (GET_CODE (set) == CLOBBER
6401 || CC0_P (dest)
6402 || dest == pc_rtx)
6403 return;
6405 if (code == STRICT_LOW_PART || code == ZERO_EXTRACT)
6406 invalidate (XEXP (dest, 0), GET_MODE (dest));
6407 else if (code == REG || code == SUBREG || code == MEM)
6408 invalidate (dest, VOIDmode);
6411 /* Invalidate all insns from START up to the end of the function or the
6412 next label. This called when we wish to CSE around a block that is
6413 conditionally executed. */
6415 static void
6416 invalidate_skipped_block (rtx start)
6418 rtx insn;
6420 for (insn = start; insn && !LABEL_P (insn);
6421 insn = NEXT_INSN (insn))
6423 if (! INSN_P (insn))
6424 continue;
6426 if (CALL_P (insn))
6428 if (! CONST_OR_PURE_CALL_P (insn))
6429 invalidate_memory ();
6430 invalidate_for_call ();
6433 invalidate_from_clobbers (PATTERN (insn));
6434 note_stores (PATTERN (insn), invalidate_skipped_set, NULL);
6438 /* Find the end of INSN's basic block and return its range,
6439 the total number of SETs in all the insns of the block, the last insn of the
6440 block, and the branch path.
6442 The branch path indicates which branches should be followed. If a nonzero
6443 path size is specified, the block should be rescanned and a different set
6444 of branches will be taken. The branch path is only used if
6445 FLAG_CSE_FOLLOW_JUMPS or FLAG_CSE_SKIP_BLOCKS is nonzero.
6447 DATA is a pointer to a struct cse_basic_block_data, defined below, that is
6448 used to describe the block. It is filled in with the information about
6449 the current block. The incoming structure's branch path, if any, is used
6450 to construct the output branch path. */
6452 static void
6453 cse_end_of_basic_block (rtx insn, struct cse_basic_block_data *data,
6454 int follow_jumps, int skip_blocks)
6456 rtx p = insn, q;
6457 int nsets = 0;
6458 int low_cuid = INSN_CUID (insn), high_cuid = INSN_CUID (insn);
6459 rtx next = INSN_P (insn) ? insn : next_real_insn (insn);
6460 int path_size = data->path_size;
6461 int path_entry = 0;
6462 int i;
6464 /* Update the previous branch path, if any. If the last branch was
6465 previously PATH_TAKEN, mark it PATH_NOT_TAKEN.
6466 If it was previously PATH_NOT_TAKEN,
6467 shorten the path by one and look at the previous branch. We know that
6468 at least one branch must have been taken if PATH_SIZE is nonzero. */
6469 while (path_size > 0)
6471 if (data->path[path_size - 1].status != PATH_NOT_TAKEN)
6473 data->path[path_size - 1].status = PATH_NOT_TAKEN;
6474 break;
6476 else
6477 path_size--;
6480 /* If the first instruction is marked with QImode, that means we've
6481 already processed this block. Our caller will look at DATA->LAST
6482 to figure out where to go next. We want to return the next block
6483 in the instruction stream, not some branched-to block somewhere
6484 else. We accomplish this by pretending our called forbid us to
6485 follow jumps, or skip blocks. */
6486 if (GET_MODE (insn) == QImode)
6487 follow_jumps = skip_blocks = 0;
6489 /* Scan to end of this basic block. */
6490 while (p && !LABEL_P (p))
6492 /* Don't cse over a call to setjmp; on some machines (eg VAX)
6493 the regs restored by the longjmp come from
6494 a later time than the setjmp. */
6495 if (PREV_INSN (p) && CALL_P (PREV_INSN (p))
6496 && find_reg_note (PREV_INSN (p), REG_SETJMP, NULL))
6497 break;
6499 /* A PARALLEL can have lots of SETs in it,
6500 especially if it is really an ASM_OPERANDS. */
6501 if (INSN_P (p) && GET_CODE (PATTERN (p)) == PARALLEL)
6502 nsets += XVECLEN (PATTERN (p), 0);
6503 else if (!NOTE_P (p))
6504 nsets += 1;
6506 /* Ignore insns made by CSE; they cannot affect the boundaries of
6507 the basic block. */
6509 if (INSN_UID (p) <= max_uid && INSN_CUID (p) > high_cuid)
6510 high_cuid = INSN_CUID (p);
6511 if (INSN_UID (p) <= max_uid && INSN_CUID (p) < low_cuid)
6512 low_cuid = INSN_CUID (p);
6514 /* See if this insn is in our branch path. If it is and we are to
6515 take it, do so. */
6516 if (path_entry < path_size && data->path[path_entry].branch == p)
6518 if (data->path[path_entry].status != PATH_NOT_TAKEN)
6519 p = JUMP_LABEL (p);
6521 /* Point to next entry in path, if any. */
6522 path_entry++;
6525 /* If this is a conditional jump, we can follow it if -fcse-follow-jumps
6526 was specified, we haven't reached our maximum path length, there are
6527 insns following the target of the jump, this is the only use of the
6528 jump label, and the target label is preceded by a BARRIER.
6530 Alternatively, we can follow the jump if it branches around a
6531 block of code and there are no other branches into the block.
6532 In this case invalidate_skipped_block will be called to invalidate any
6533 registers set in the block when following the jump. */
6535 else if ((follow_jumps || skip_blocks) && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH) - 1
6536 && JUMP_P (p)
6537 && GET_CODE (PATTERN (p)) == SET
6538 && GET_CODE (SET_SRC (PATTERN (p))) == IF_THEN_ELSE
6539 && JUMP_LABEL (p) != 0
6540 && LABEL_NUSES (JUMP_LABEL (p)) == 1
6541 && NEXT_INSN (JUMP_LABEL (p)) != 0)
6543 for (q = PREV_INSN (JUMP_LABEL (p)); q; q = PREV_INSN (q))
6544 if ((!NOTE_P (q)
6545 || NOTE_LINE_NUMBER (q) == NOTE_INSN_LOOP_END
6546 || (PREV_INSN (q) && CALL_P (PREV_INSN (q))
6547 && find_reg_note (PREV_INSN (q), REG_SETJMP, NULL)))
6548 && (!LABEL_P (q) || LABEL_NUSES (q) != 0))
6549 break;
6551 /* If we ran into a BARRIER, this code is an extension of the
6552 basic block when the branch is taken. */
6553 if (follow_jumps && q != 0 && BARRIER_P (q))
6555 /* Don't allow ourself to keep walking around an
6556 always-executed loop. */
6557 if (next_real_insn (q) == next)
6559 p = NEXT_INSN (p);
6560 continue;
6563 /* Similarly, don't put a branch in our path more than once. */
6564 for (i = 0; i < path_entry; i++)
6565 if (data->path[i].branch == p)
6566 break;
6568 if (i != path_entry)
6569 break;
6571 data->path[path_entry].branch = p;
6572 data->path[path_entry++].status = PATH_TAKEN;
6574 /* This branch now ends our path. It was possible that we
6575 didn't see this branch the last time around (when the
6576 insn in front of the target was a JUMP_INSN that was
6577 turned into a no-op). */
6578 path_size = path_entry;
6580 p = JUMP_LABEL (p);
6581 /* Mark block so we won't scan it again later. */
6582 PUT_MODE (NEXT_INSN (p), QImode);
6584 /* Detect a branch around a block of code. */
6585 else if (skip_blocks && q != 0 && !LABEL_P (q))
6587 rtx tmp;
6589 if (next_real_insn (q) == next)
6591 p = NEXT_INSN (p);
6592 continue;
6595 for (i = 0; i < path_entry; i++)
6596 if (data->path[i].branch == p)
6597 break;
6599 if (i != path_entry)
6600 break;
6602 /* This is no_labels_between_p (p, q) with an added check for
6603 reaching the end of a function (in case Q precedes P). */
6604 for (tmp = NEXT_INSN (p); tmp && tmp != q; tmp = NEXT_INSN (tmp))
6605 if (LABEL_P (tmp))
6606 break;
6608 if (tmp == q)
6610 data->path[path_entry].branch = p;
6611 data->path[path_entry++].status = PATH_AROUND;
6613 path_size = path_entry;
6615 p = JUMP_LABEL (p);
6616 /* Mark block so we won't scan it again later. */
6617 PUT_MODE (NEXT_INSN (p), QImode);
6621 p = NEXT_INSN (p);
6624 data->low_cuid = low_cuid;
6625 data->high_cuid = high_cuid;
6626 data->nsets = nsets;
6627 data->last = p;
6629 /* If all jumps in the path are not taken, set our path length to zero
6630 so a rescan won't be done. */
6631 for (i = path_size - 1; i >= 0; i--)
6632 if (data->path[i].status != PATH_NOT_TAKEN)
6633 break;
6635 if (i == -1)
6636 data->path_size = 0;
6637 else
6638 data->path_size = path_size;
6640 /* End the current branch path. */
6641 data->path[path_size].branch = 0;
6644 /* Perform cse on the instructions of a function.
6645 F is the first instruction.
6646 NREGS is one plus the highest pseudo-reg number used in the instruction.
6648 Returns 1 if jump_optimize should be redone due to simplifications
6649 in conditional jump instructions. */
6652 cse_main (rtx f, int nregs, FILE *file)
6654 struct cse_basic_block_data val;
6655 rtx insn = f;
6656 int i;
6658 val.path = xmalloc (sizeof (struct branch_path)
6659 * PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6661 cse_jumps_altered = 0;
6662 recorded_label_ref = 0;
6663 constant_pool_entries_cost = 0;
6664 constant_pool_entries_regcost = 0;
6665 val.path_size = 0;
6666 rtl_hooks = cse_rtl_hooks;
6668 init_recog ();
6669 init_alias_analysis ();
6671 max_reg = nregs;
6673 max_insn_uid = get_max_uid ();
6675 reg_eqv_table = xmalloc (nregs * sizeof (struct reg_eqv_elem));
6677 #ifdef LOAD_EXTEND_OP
6679 /* Allocate scratch rtl here. cse_insn will fill in the memory reference
6680 and change the code and mode as appropriate. */
6681 memory_extend_rtx = gen_rtx_ZERO_EXTEND (VOIDmode, NULL_RTX);
6682 #endif
6684 /* Reset the counter indicating how many elements have been made
6685 thus far. */
6686 n_elements_made = 0;
6688 /* Find the largest uid. */
6690 max_uid = get_max_uid ();
6691 uid_cuid = xcalloc (max_uid + 1, sizeof (int));
6693 /* Compute the mapping from uids to cuids.
6694 CUIDs are numbers assigned to insns, like uids,
6695 except that cuids increase monotonically through the code.
6696 Don't assign cuids to line-number NOTEs, so that the distance in cuids
6697 between two insns is not affected by -g. */
6699 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
6701 if (!NOTE_P (insn)
6702 || NOTE_LINE_NUMBER (insn) < 0)
6703 INSN_CUID (insn) = ++i;
6704 else
6705 /* Give a line number note the same cuid as preceding insn. */
6706 INSN_CUID (insn) = i;
6709 /* Loop over basic blocks.
6710 Compute the maximum number of qty's needed for each basic block
6711 (which is 2 for each SET). */
6712 insn = f;
6713 while (insn)
6715 cse_altered = 0;
6716 cse_end_of_basic_block (insn, &val, flag_cse_follow_jumps,
6717 flag_cse_skip_blocks);
6719 /* If this basic block was already processed or has no sets, skip it. */
6720 if (val.nsets == 0 || GET_MODE (insn) == QImode)
6722 PUT_MODE (insn, VOIDmode);
6723 insn = (val.last ? NEXT_INSN (val.last) : 0);
6724 val.path_size = 0;
6725 continue;
6728 cse_basic_block_start = val.low_cuid;
6729 cse_basic_block_end = val.high_cuid;
6730 max_qty = val.nsets * 2;
6732 if (file)
6733 fnotice (file, ";; Processing block from %d to %d, %d sets.\n",
6734 INSN_UID (insn), val.last ? INSN_UID (val.last) : 0,
6735 val.nsets);
6737 /* Make MAX_QTY bigger to give us room to optimize
6738 past the end of this basic block, if that should prove useful. */
6739 if (max_qty < 500)
6740 max_qty = 500;
6742 max_qty += max_reg;
6744 /* If this basic block is being extended by following certain jumps,
6745 (see `cse_end_of_basic_block'), we reprocess the code from the start.
6746 Otherwise, we start after this basic block. */
6747 if (val.path_size > 0)
6748 cse_basic_block (insn, val.last, val.path);
6749 else
6751 int old_cse_jumps_altered = cse_jumps_altered;
6752 rtx temp;
6754 /* When cse changes a conditional jump to an unconditional
6755 jump, we want to reprocess the block, since it will give
6756 us a new branch path to investigate. */
6757 cse_jumps_altered = 0;
6758 temp = cse_basic_block (insn, val.last, val.path);
6759 if (cse_jumps_altered == 0
6760 || (flag_cse_follow_jumps == 0 && flag_cse_skip_blocks == 0))
6761 insn = temp;
6763 cse_jumps_altered |= old_cse_jumps_altered;
6766 if (cse_altered)
6767 ggc_collect ();
6769 #ifdef USE_C_ALLOCA
6770 alloca (0);
6771 #endif
6774 if (max_elements_made < n_elements_made)
6775 max_elements_made = n_elements_made;
6777 /* Clean up. */
6778 end_alias_analysis ();
6779 free (uid_cuid);
6780 free (reg_eqv_table);
6781 free (val.path);
6782 rtl_hooks = general_rtl_hooks;
6784 return cse_jumps_altered || recorded_label_ref;
6787 /* Process a single basic block. FROM and TO and the limits of the basic
6788 block. NEXT_BRANCH points to the branch path when following jumps or
6789 a null path when not following jumps.
6791 AROUND_LOOP is nonzero if we are to try to cse around to the start of a
6792 loop. This is true when we are being called for the last time on a
6793 block and this CSE pass is before loop.c. */
6795 static rtx
6796 cse_basic_block (rtx from, rtx to, struct branch_path *next_branch)
6798 rtx insn;
6799 int to_usage = 0;
6800 rtx libcall_insn = NULL_RTX;
6801 int num_insns = 0;
6802 int no_conflict = 0;
6804 /* This array is undefined before max_reg, so only allocate
6805 the space actually needed and adjust the start. */
6807 qty_table = xmalloc ((max_qty - max_reg) * sizeof (struct qty_table_elem));
6808 qty_table -= max_reg;
6810 new_basic_block ();
6812 /* TO might be a label. If so, protect it from being deleted. */
6813 if (to != 0 && LABEL_P (to))
6814 ++LABEL_NUSES (to);
6816 for (insn = from; insn != to; insn = NEXT_INSN (insn))
6818 enum rtx_code code = GET_CODE (insn);
6820 /* If we have processed 1,000 insns, flush the hash table to
6821 avoid extreme quadratic behavior. We must not include NOTEs
6822 in the count since there may be more of them when generating
6823 debugging information. If we clear the table at different
6824 times, code generated with -g -O might be different than code
6825 generated with -O but not -g.
6827 ??? This is a real kludge and needs to be done some other way.
6828 Perhaps for 2.9. */
6829 if (code != NOTE && num_insns++ > 1000)
6831 flush_hash_table ();
6832 num_insns = 0;
6835 /* See if this is a branch that is part of the path. If so, and it is
6836 to be taken, do so. */
6837 if (next_branch->branch == insn)
6839 enum taken status = next_branch++->status;
6840 if (status != PATH_NOT_TAKEN)
6842 if (status == PATH_TAKEN)
6843 record_jump_equiv (insn, 1);
6844 else
6845 invalidate_skipped_block (NEXT_INSN (insn));
6847 /* Set the last insn as the jump insn; it doesn't affect cc0.
6848 Then follow this branch. */
6849 #ifdef HAVE_cc0
6850 prev_insn_cc0 = 0;
6851 prev_insn = insn;
6852 #endif
6853 insn = JUMP_LABEL (insn);
6854 continue;
6858 if (GET_MODE (insn) == QImode)
6859 PUT_MODE (insn, VOIDmode);
6861 if (GET_RTX_CLASS (code) == RTX_INSN)
6863 rtx p;
6865 /* Process notes first so we have all notes in canonical forms when
6866 looking for duplicate operations. */
6868 if (REG_NOTES (insn))
6869 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn), NULL_RTX);
6871 /* Track when we are inside in LIBCALL block. Inside such a block,
6872 we do not want to record destinations. The last insn of a
6873 LIBCALL block is not considered to be part of the block, since
6874 its destination is the result of the block and hence should be
6875 recorded. */
6877 if (REG_NOTES (insn) != 0)
6879 if ((p = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
6880 libcall_insn = XEXP (p, 0);
6881 else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
6883 /* Keep libcall_insn for the last SET insn of a no-conflict
6884 block to prevent changing the destination. */
6885 if (! no_conflict)
6886 libcall_insn = 0;
6887 else
6888 no_conflict = -1;
6890 else if (find_reg_note (insn, REG_NO_CONFLICT, NULL_RTX))
6891 no_conflict = 1;
6894 cse_insn (insn, libcall_insn);
6896 if (no_conflict == -1)
6898 libcall_insn = 0;
6899 no_conflict = 0;
6902 /* If we haven't already found an insn where we added a LABEL_REF,
6903 check this one. */
6904 if (NONJUMP_INSN_P (insn) && ! recorded_label_ref
6905 && for_each_rtx (&PATTERN (insn), check_for_label_ref,
6906 (void *) insn))
6907 recorded_label_ref = 1;
6910 /* If INSN is now an unconditional jump, skip to the end of our
6911 basic block by pretending that we just did the last insn in the
6912 basic block. If we are jumping to the end of our block, show
6913 that we can have one usage of TO. */
6915 if (any_uncondjump_p (insn))
6917 if (to == 0)
6919 free (qty_table + max_reg);
6920 return 0;
6923 if (JUMP_LABEL (insn) == to)
6924 to_usage = 1;
6926 /* Maybe TO was deleted because the jump is unconditional.
6927 If so, there is nothing left in this basic block. */
6928 /* ??? Perhaps it would be smarter to set TO
6929 to whatever follows this insn,
6930 and pretend the basic block had always ended here. */
6931 if (INSN_DELETED_P (to))
6932 break;
6934 insn = PREV_INSN (to);
6937 /* See if it is ok to keep on going past the label
6938 which used to end our basic block. Remember that we incremented
6939 the count of that label, so we decrement it here. If we made
6940 a jump unconditional, TO_USAGE will be one; in that case, we don't
6941 want to count the use in that jump. */
6943 if (to != 0 && NEXT_INSN (insn) == to
6944 && LABEL_P (to) && --LABEL_NUSES (to) == to_usage)
6946 struct cse_basic_block_data val;
6947 rtx prev;
6949 insn = NEXT_INSN (to);
6951 /* If TO was the last insn in the function, we are done. */
6952 if (insn == 0)
6954 free (qty_table + max_reg);
6955 return 0;
6958 /* If TO was preceded by a BARRIER we are done with this block
6959 because it has no continuation. */
6960 prev = prev_nonnote_insn (to);
6961 if (prev && BARRIER_P (prev))
6963 free (qty_table + max_reg);
6964 return insn;
6967 /* Find the end of the following block. Note that we won't be
6968 following branches in this case. */
6969 to_usage = 0;
6970 val.path_size = 0;
6971 val.path = xmalloc (sizeof (struct branch_path)
6972 * PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6973 cse_end_of_basic_block (insn, &val, 0, 0);
6974 free (val.path);
6976 /* If the tables we allocated have enough space left
6977 to handle all the SETs in the next basic block,
6978 continue through it. Otherwise, return,
6979 and that block will be scanned individually. */
6980 if (val.nsets * 2 + next_qty > max_qty)
6981 break;
6983 cse_basic_block_start = val.low_cuid;
6984 cse_basic_block_end = val.high_cuid;
6985 to = val.last;
6987 /* Prevent TO from being deleted if it is a label. */
6988 if (to != 0 && LABEL_P (to))
6989 ++LABEL_NUSES (to);
6991 /* Back up so we process the first insn in the extension. */
6992 insn = PREV_INSN (insn);
6996 gcc_assert (next_qty <= max_qty);
6998 free (qty_table + max_reg);
7000 return to ? NEXT_INSN (to) : 0;
7003 /* Called via for_each_rtx to see if an insn is using a LABEL_REF for which
7004 there isn't a REG_LABEL note. Return one if so. DATA is the insn. */
7006 static int
7007 check_for_label_ref (rtx *rtl, void *data)
7009 rtx insn = (rtx) data;
7011 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL note for it,
7012 we must rerun jump since it needs to place the note. If this is a
7013 LABEL_REF for a CODE_LABEL that isn't in the insn chain, don't do this
7014 since no REG_LABEL will be added. */
7015 return (GET_CODE (*rtl) == LABEL_REF
7016 && ! LABEL_REF_NONLOCAL_P (*rtl)
7017 && LABEL_P (XEXP (*rtl, 0))
7018 && INSN_UID (XEXP (*rtl, 0)) != 0
7019 && ! find_reg_note (insn, REG_LABEL, XEXP (*rtl, 0)));
7022 /* Count the number of times registers are used (not set) in X.
7023 COUNTS is an array in which we accumulate the count, INCR is how much
7024 we count each register usage. */
7026 static void
7027 count_reg_usage (rtx x, int *counts, int incr)
7029 enum rtx_code code;
7030 rtx note;
7031 const char *fmt;
7032 int i, j;
7034 if (x == 0)
7035 return;
7037 switch (code = GET_CODE (x))
7039 case REG:
7040 counts[REGNO (x)] += incr;
7041 return;
7043 case PC:
7044 case CC0:
7045 case CONST:
7046 case CONST_INT:
7047 case CONST_DOUBLE:
7048 case CONST_VECTOR:
7049 case SYMBOL_REF:
7050 case LABEL_REF:
7051 return;
7053 case CLOBBER:
7054 /* If we are clobbering a MEM, mark any registers inside the address
7055 as being used. */
7056 if (MEM_P (XEXP (x, 0)))
7057 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, incr);
7058 return;
7060 case SET:
7061 /* Unless we are setting a REG, count everything in SET_DEST. */
7062 if (!REG_P (SET_DEST (x)))
7063 count_reg_usage (SET_DEST (x), counts, incr);
7064 count_reg_usage (SET_SRC (x), counts, incr);
7065 return;
7067 case CALL_INSN:
7068 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, incr);
7069 /* Fall through. */
7071 case INSN:
7072 case JUMP_INSN:
7073 count_reg_usage (PATTERN (x), counts, incr);
7075 /* Things used in a REG_EQUAL note aren't dead since loop may try to
7076 use them. */
7078 note = find_reg_equal_equiv_note (x);
7079 if (note)
7081 rtx eqv = XEXP (note, 0);
7083 if (GET_CODE (eqv) == EXPR_LIST)
7084 /* This REG_EQUAL note describes the result of a function call.
7085 Process all the arguments. */
7088 count_reg_usage (XEXP (eqv, 0), counts, incr);
7089 eqv = XEXP (eqv, 1);
7091 while (eqv && GET_CODE (eqv) == EXPR_LIST);
7092 else
7093 count_reg_usage (eqv, counts, incr);
7095 return;
7097 case EXPR_LIST:
7098 if (REG_NOTE_KIND (x) == REG_EQUAL
7099 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
7100 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
7101 involving registers in the address. */
7102 || GET_CODE (XEXP (x, 0)) == CLOBBER)
7103 count_reg_usage (XEXP (x, 0), counts, incr);
7105 count_reg_usage (XEXP (x, 1), counts, incr);
7106 return;
7108 case ASM_OPERANDS:
7109 /* Iterate over just the inputs, not the constraints as well. */
7110 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
7111 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, incr);
7112 return;
7114 case INSN_LIST:
7115 gcc_unreachable ();
7117 default:
7118 break;
7121 fmt = GET_RTX_FORMAT (code);
7122 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7124 if (fmt[i] == 'e')
7125 count_reg_usage (XEXP (x, i), counts, incr);
7126 else if (fmt[i] == 'E')
7127 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7128 count_reg_usage (XVECEXP (x, i, j), counts, incr);
7132 /* Return true if set is live. */
7133 static bool
7134 set_live_p (rtx set, rtx insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
7135 int *counts)
7137 #ifdef HAVE_cc0
7138 rtx tem;
7139 #endif
7141 if (set_noop_p (set))
7144 #ifdef HAVE_cc0
7145 else if (GET_CODE (SET_DEST (set)) == CC0
7146 && !side_effects_p (SET_SRC (set))
7147 && ((tem = next_nonnote_insn (insn)) == 0
7148 || !INSN_P (tem)
7149 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
7150 return false;
7151 #endif
7152 else if (!REG_P (SET_DEST (set))
7153 || REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
7154 || counts[REGNO (SET_DEST (set))] != 0
7155 || side_effects_p (SET_SRC (set)))
7156 return true;
7157 return false;
7160 /* Return true if insn is live. */
7162 static bool
7163 insn_live_p (rtx insn, int *counts)
7165 int i;
7166 if (flag_non_call_exceptions && may_trap_p (PATTERN (insn)))
7167 return true;
7168 else if (GET_CODE (PATTERN (insn)) == SET)
7169 return set_live_p (PATTERN (insn), insn, counts);
7170 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
7172 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7174 rtx elt = XVECEXP (PATTERN (insn), 0, i);
7176 if (GET_CODE (elt) == SET)
7178 if (set_live_p (elt, insn, counts))
7179 return true;
7181 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
7182 return true;
7184 return false;
7186 else
7187 return true;
7190 /* Return true if libcall is dead as a whole. */
7192 static bool
7193 dead_libcall_p (rtx insn, int *counts)
7195 rtx note, set, new;
7197 /* See if there's a REG_EQUAL note on this insn and try to
7198 replace the source with the REG_EQUAL expression.
7200 We assume that insns with REG_RETVALs can only be reg->reg
7201 copies at this point. */
7202 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
7203 if (!note)
7204 return false;
7206 set = single_set (insn);
7207 if (!set)
7208 return false;
7210 new = simplify_rtx (XEXP (note, 0));
7211 if (!new)
7212 new = XEXP (note, 0);
7214 /* While changing insn, we must update the counts accordingly. */
7215 count_reg_usage (insn, counts, -1);
7217 if (validate_change (insn, &SET_SRC (set), new, 0))
7219 count_reg_usage (insn, counts, 1);
7220 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
7221 remove_note (insn, note);
7222 return true;
7225 if (CONSTANT_P (new))
7227 new = force_const_mem (GET_MODE (SET_DEST (set)), new);
7228 if (new && validate_change (insn, &SET_SRC (set), new, 0))
7230 count_reg_usage (insn, counts, 1);
7231 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
7232 remove_note (insn, note);
7233 return true;
7237 count_reg_usage (insn, counts, 1);
7238 return false;
7241 /* Scan all the insns and delete any that are dead; i.e., they store a register
7242 that is never used or they copy a register to itself.
7244 This is used to remove insns made obviously dead by cse, loop or other
7245 optimizations. It improves the heuristics in loop since it won't try to
7246 move dead invariants out of loops or make givs for dead quantities. The
7247 remaining passes of the compilation are also sped up. */
7250 delete_trivially_dead_insns (rtx insns, int nreg)
7252 int *counts;
7253 rtx insn, prev;
7254 int in_libcall = 0, dead_libcall = 0;
7255 int ndead = 0, nlastdead, niterations = 0;
7257 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
7258 /* First count the number of times each register is used. */
7259 counts = xcalloc (nreg, sizeof (int));
7260 for (insn = next_real_insn (insns); insn; insn = next_real_insn (insn))
7261 count_reg_usage (insn, counts, 1);
7265 nlastdead = ndead;
7266 niterations++;
7267 /* Go from the last insn to the first and delete insns that only set unused
7268 registers or copy a register to itself. As we delete an insn, remove
7269 usage counts for registers it uses.
7271 The first jump optimization pass may leave a real insn as the last
7272 insn in the function. We must not skip that insn or we may end
7273 up deleting code that is not really dead. */
7274 insn = get_last_insn ();
7275 if (! INSN_P (insn))
7276 insn = prev_real_insn (insn);
7278 for (; insn; insn = prev)
7280 int live_insn = 0;
7282 prev = prev_real_insn (insn);
7284 /* Don't delete any insns that are part of a libcall block unless
7285 we can delete the whole libcall block.
7287 Flow or loop might get confused if we did that. Remember
7288 that we are scanning backwards. */
7289 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
7291 in_libcall = 1;
7292 live_insn = 1;
7293 dead_libcall = dead_libcall_p (insn, counts);
7295 else if (in_libcall)
7296 live_insn = ! dead_libcall;
7297 else
7298 live_insn = insn_live_p (insn, counts);
7300 /* If this is a dead insn, delete it and show registers in it aren't
7301 being used. */
7303 if (! live_insn)
7305 count_reg_usage (insn, counts, -1);
7306 delete_insn_and_edges (insn);
7307 ndead++;
7310 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
7312 in_libcall = 0;
7313 dead_libcall = 0;
7317 while (ndead != nlastdead);
7319 if (dump_file && ndead)
7320 fprintf (dump_file, "Deleted %i trivially dead insns; %i iterations\n",
7321 ndead, niterations);
7322 /* Clean up. */
7323 free (counts);
7324 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
7325 return ndead;
7328 /* This function is called via for_each_rtx. The argument, NEWREG, is
7329 a condition code register with the desired mode. If we are looking
7330 at the same register in a different mode, replace it with
7331 NEWREG. */
7333 static int
7334 cse_change_cc_mode (rtx *loc, void *data)
7336 rtx newreg = (rtx) data;
7338 if (*loc
7339 && REG_P (*loc)
7340 && REGNO (*loc) == REGNO (newreg)
7341 && GET_MODE (*loc) != GET_MODE (newreg))
7343 *loc = newreg;
7344 return -1;
7346 return 0;
7349 /* Change the mode of any reference to the register REGNO (NEWREG) to
7350 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
7351 any instruction which modifies NEWREG. */
7353 static void
7354 cse_change_cc_mode_insns (rtx start, rtx end, rtx newreg)
7356 rtx insn;
7358 for (insn = start; insn != end; insn = NEXT_INSN (insn))
7360 if (! INSN_P (insn))
7361 continue;
7363 if (reg_set_p (newreg, insn))
7364 return;
7366 for_each_rtx (&PATTERN (insn), cse_change_cc_mode, newreg);
7367 for_each_rtx (&REG_NOTES (insn), cse_change_cc_mode, newreg);
7371 /* BB is a basic block which finishes with CC_REG as a condition code
7372 register which is set to CC_SRC. Look through the successors of BB
7373 to find blocks which have a single predecessor (i.e., this one),
7374 and look through those blocks for an assignment to CC_REG which is
7375 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
7376 permitted to change the mode of CC_SRC to a compatible mode. This
7377 returns VOIDmode if no equivalent assignments were found.
7378 Otherwise it returns the mode which CC_SRC should wind up with.
7380 The main complexity in this function is handling the mode issues.
7381 We may have more than one duplicate which we can eliminate, and we
7382 try to find a mode which will work for multiple duplicates. */
7384 static enum machine_mode
7385 cse_cc_succs (basic_block bb, rtx cc_reg, rtx cc_src, bool can_change_mode)
7387 bool found_equiv;
7388 enum machine_mode mode;
7389 unsigned int insn_count;
7390 edge e;
7391 rtx insns[2];
7392 enum machine_mode modes[2];
7393 rtx last_insns[2];
7394 unsigned int i;
7395 rtx newreg;
7396 edge_iterator ei;
7398 /* We expect to have two successors. Look at both before picking
7399 the final mode for the comparison. If we have more successors
7400 (i.e., some sort of table jump, although that seems unlikely),
7401 then we require all beyond the first two to use the same
7402 mode. */
7404 found_equiv = false;
7405 mode = GET_MODE (cc_src);
7406 insn_count = 0;
7407 FOR_EACH_EDGE (e, ei, bb->succs)
7409 rtx insn;
7410 rtx end;
7412 if (e->flags & EDGE_COMPLEX)
7413 continue;
7415 if (EDGE_COUNT (e->dest->preds) != 1
7416 || e->dest == EXIT_BLOCK_PTR)
7417 continue;
7419 end = NEXT_INSN (BB_END (e->dest));
7420 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
7422 rtx set;
7424 if (! INSN_P (insn))
7425 continue;
7427 /* If CC_SRC is modified, we have to stop looking for
7428 something which uses it. */
7429 if (modified_in_p (cc_src, insn))
7430 break;
7432 /* Check whether INSN sets CC_REG to CC_SRC. */
7433 set = single_set (insn);
7434 if (set
7435 && REG_P (SET_DEST (set))
7436 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7438 bool found;
7439 enum machine_mode set_mode;
7440 enum machine_mode comp_mode;
7442 found = false;
7443 set_mode = GET_MODE (SET_SRC (set));
7444 comp_mode = set_mode;
7445 if (rtx_equal_p (cc_src, SET_SRC (set)))
7446 found = true;
7447 else if (GET_CODE (cc_src) == COMPARE
7448 && GET_CODE (SET_SRC (set)) == COMPARE
7449 && mode != set_mode
7450 && rtx_equal_p (XEXP (cc_src, 0),
7451 XEXP (SET_SRC (set), 0))
7452 && rtx_equal_p (XEXP (cc_src, 1),
7453 XEXP (SET_SRC (set), 1)))
7456 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
7457 if (comp_mode != VOIDmode
7458 && (can_change_mode || comp_mode == mode))
7459 found = true;
7462 if (found)
7464 found_equiv = true;
7465 if (insn_count < ARRAY_SIZE (insns))
7467 insns[insn_count] = insn;
7468 modes[insn_count] = set_mode;
7469 last_insns[insn_count] = end;
7470 ++insn_count;
7472 if (mode != comp_mode)
7474 gcc_assert (can_change_mode);
7475 mode = comp_mode;
7476 PUT_MODE (cc_src, mode);
7479 else
7481 if (set_mode != mode)
7483 /* We found a matching expression in the
7484 wrong mode, but we don't have room to
7485 store it in the array. Punt. This case
7486 should be rare. */
7487 break;
7489 /* INSN sets CC_REG to a value equal to CC_SRC
7490 with the right mode. We can simply delete
7491 it. */
7492 delete_insn (insn);
7495 /* We found an instruction to delete. Keep looking,
7496 in the hopes of finding a three-way jump. */
7497 continue;
7500 /* We found an instruction which sets the condition
7501 code, so don't look any farther. */
7502 break;
7505 /* If INSN sets CC_REG in some other way, don't look any
7506 farther. */
7507 if (reg_set_p (cc_reg, insn))
7508 break;
7511 /* If we fell off the bottom of the block, we can keep looking
7512 through successors. We pass CAN_CHANGE_MODE as false because
7513 we aren't prepared to handle compatibility between the
7514 further blocks and this block. */
7515 if (insn == end)
7517 enum machine_mode submode;
7519 submode = cse_cc_succs (e->dest, cc_reg, cc_src, false);
7520 if (submode != VOIDmode)
7522 gcc_assert (submode == mode);
7523 found_equiv = true;
7524 can_change_mode = false;
7529 if (! found_equiv)
7530 return VOIDmode;
7532 /* Now INSN_COUNT is the number of instructions we found which set
7533 CC_REG to a value equivalent to CC_SRC. The instructions are in
7534 INSNS. The modes used by those instructions are in MODES. */
7536 newreg = NULL_RTX;
7537 for (i = 0; i < insn_count; ++i)
7539 if (modes[i] != mode)
7541 /* We need to change the mode of CC_REG in INSNS[i] and
7542 subsequent instructions. */
7543 if (! newreg)
7545 if (GET_MODE (cc_reg) == mode)
7546 newreg = cc_reg;
7547 else
7548 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7550 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7551 newreg);
7554 delete_insn (insns[i]);
7557 return mode;
7560 /* If we have a fixed condition code register (or two), walk through
7561 the instructions and try to eliminate duplicate assignments. */
7563 void
7564 cse_condition_code_reg (void)
7566 unsigned int cc_regno_1;
7567 unsigned int cc_regno_2;
7568 rtx cc_reg_1;
7569 rtx cc_reg_2;
7570 basic_block bb;
7572 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
7573 return;
7575 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7576 if (cc_regno_2 != INVALID_REGNUM)
7577 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7578 else
7579 cc_reg_2 = NULL_RTX;
7581 FOR_EACH_BB (bb)
7583 rtx last_insn;
7584 rtx cc_reg;
7585 rtx insn;
7586 rtx cc_src_insn;
7587 rtx cc_src;
7588 enum machine_mode mode;
7589 enum machine_mode orig_mode;
7591 /* Look for blocks which end with a conditional jump based on a
7592 condition code register. Then look for the instruction which
7593 sets the condition code register. Then look through the
7594 successor blocks for instructions which set the condition
7595 code register to the same value. There are other possible
7596 uses of the condition code register, but these are by far the
7597 most common and the ones which we are most likely to be able
7598 to optimize. */
7600 last_insn = BB_END (bb);
7601 if (!JUMP_P (last_insn))
7602 continue;
7604 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7605 cc_reg = cc_reg_1;
7606 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7607 cc_reg = cc_reg_2;
7608 else
7609 continue;
7611 cc_src_insn = NULL_RTX;
7612 cc_src = NULL_RTX;
7613 for (insn = PREV_INSN (last_insn);
7614 insn && insn != PREV_INSN (BB_HEAD (bb));
7615 insn = PREV_INSN (insn))
7617 rtx set;
7619 if (! INSN_P (insn))
7620 continue;
7621 set = single_set (insn);
7622 if (set
7623 && REG_P (SET_DEST (set))
7624 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7626 cc_src_insn = insn;
7627 cc_src = SET_SRC (set);
7628 break;
7630 else if (reg_set_p (cc_reg, insn))
7631 break;
7634 if (! cc_src_insn)
7635 continue;
7637 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7638 continue;
7640 /* Now CC_REG is a condition code register used for a
7641 conditional jump at the end of the block, and CC_SRC, in
7642 CC_SRC_INSN, is the value to which that condition code
7643 register is set, and CC_SRC is still meaningful at the end of
7644 the basic block. */
7646 orig_mode = GET_MODE (cc_src);
7647 mode = cse_cc_succs (bb, cc_reg, cc_src, true);
7648 if (mode != VOIDmode)
7650 gcc_assert (mode == GET_MODE (cc_src));
7651 if (mode != orig_mode)
7653 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7655 /* Change the mode of CC_REG in CC_SRC_INSN to
7656 GET_MODE (NEWREG). */
7657 for_each_rtx (&PATTERN (cc_src_insn), cse_change_cc_mode,
7658 newreg);
7659 for_each_rtx (&REG_NOTES (cc_src_insn), cse_change_cc_mode,
7660 newreg);
7662 /* Do the same in the following insns that use the
7663 current value of CC_REG within BB. */
7664 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7665 NEXT_INSN (last_insn),
7666 newreg);