* trans-stmt.c (gfc_trans_simple_do): New function.
[official-gcc.git] / gcc / cp / search.c
blob47d08f34c74c9d764145f9b13ee436b243f7f713
1 /* Breadth-first and depth-first routines for
2 searching multiple-inheritance lattice for GNU C++.
3 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2002, 2003, 2004 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
24 /* High-level class interface. */
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "cp-tree.h"
32 #include "obstack.h"
33 #include "flags.h"
34 #include "rtl.h"
35 #include "output.h"
36 #include "toplev.h"
37 #include "stack.h"
39 struct vbase_info
41 /* The class dominating the hierarchy. */
42 tree type;
43 /* A pointer to a complete object of the indicated TYPE. */
44 tree decl_ptr;
45 tree inits;
48 static int is_subobject_of_p (tree, tree);
49 static base_kind lookup_base_r (tree, tree, base_access, bool, tree *);
50 static int dynamic_cast_base_recurse (tree, tree, bool, tree *);
51 static tree dfs_debug_unmarkedp (tree, int, void *);
52 static tree dfs_debug_mark (tree, void *);
53 static int check_hidden_convs (tree, int, int, tree, tree, tree);
54 static tree split_conversions (tree, tree, tree, tree);
55 static int lookup_conversions_r (tree, int, int,
56 tree, tree, tree, tree, tree *, tree *);
57 static int look_for_overrides_r (tree, tree);
58 static tree lookup_field_queue_p (tree, int, void *);
59 static tree lookup_field_r (tree, void *);
60 static tree dfs_accessible_queue_p (tree, int, void *);
61 static tree dfs_accessible_p (tree, void *);
62 static tree dfs_access_in_type (tree, void *);
63 static access_kind access_in_type (tree, tree);
64 static int protected_accessible_p (tree, tree, tree);
65 static int friend_accessible_p (tree, tree, tree);
66 static int template_self_reference_p (tree, tree);
67 static tree dfs_get_pure_virtuals (tree, void *);
70 /* Variables for gathering statistics. */
71 #ifdef GATHER_STATISTICS
72 static int n_fields_searched;
73 static int n_calls_lookup_field, n_calls_lookup_field_1;
74 static int n_calls_lookup_fnfields, n_calls_lookup_fnfields_1;
75 static int n_calls_get_base_type;
76 static int n_outer_fields_searched;
77 static int n_contexts_saved;
78 #endif /* GATHER_STATISTICS */
81 /* Worker for lookup_base. BINFO is the binfo we are searching at,
82 BASE is the RECORD_TYPE we are searching for. ACCESS is the
83 required access checks. IS_VIRTUAL indicates if BINFO is morally
84 virtual.
86 If BINFO is of the required type, then *BINFO_PTR is examined to
87 compare with any other instance of BASE we might have already
88 discovered. *BINFO_PTR is initialized and a base_kind return value
89 indicates what kind of base was located.
91 Otherwise BINFO's bases are searched. */
93 static base_kind
94 lookup_base_r (tree binfo, tree base, base_access access,
95 bool is_virtual, /* inside a virtual part */
96 tree *binfo_ptr)
98 int i;
99 tree base_binfo;
100 base_kind found = bk_not_base;
102 if (same_type_p (BINFO_TYPE (binfo), base))
104 /* We have found a base. Check against what we have found
105 already. */
106 found = bk_same_type;
107 if (is_virtual)
108 found = bk_via_virtual;
110 if (!*binfo_ptr)
111 *binfo_ptr = binfo;
112 else if (binfo != *binfo_ptr)
114 if (access != ba_any)
115 *binfo_ptr = NULL;
116 else if (!is_virtual)
117 /* Prefer a non-virtual base. */
118 *binfo_ptr = binfo;
119 found = bk_ambig;
122 return found;
125 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
127 base_kind bk;
129 bk = lookup_base_r (base_binfo, base,
130 access,
131 is_virtual || BINFO_VIRTUAL_P (base_binfo),
132 binfo_ptr);
134 switch (bk)
136 case bk_ambig:
137 if (access != ba_any)
138 return bk;
139 found = bk;
140 break;
142 case bk_same_type:
143 bk = bk_proper_base;
144 /* Fall through. */
145 case bk_proper_base:
146 gcc_assert (found == bk_not_base);
147 found = bk;
148 break;
150 case bk_via_virtual:
151 if (found != bk_ambig)
152 found = bk;
153 break;
155 case bk_not_base:
156 break;
158 default:
159 gcc_unreachable ();
162 return found;
165 /* Returns true if type BASE is accessible in T. (BASE is known to be
166 a (possibly non-proper) base class of T.) */
168 bool
169 accessible_base_p (tree t, tree base)
171 tree decl;
173 /* [class.access.base]
175 A base class is said to be accessible if an invented public
176 member of the base class is accessible.
178 If BASE is a non-proper base, this condition is trivially
179 true. */
180 if (same_type_p (t, base))
181 return true;
182 /* Rather than inventing a public member, we use the implicit
183 public typedef created in the scope of every class. */
184 decl = TYPE_FIELDS (base);
185 while (!DECL_SELF_REFERENCE_P (decl))
186 decl = TREE_CHAIN (decl);
187 while (ANON_AGGR_TYPE_P (t))
188 t = TYPE_CONTEXT (t);
189 return accessible_p (t, decl);
192 /* Lookup BASE in the hierarchy dominated by T. Do access checking as
193 ACCESS specifies. Return the binfo we discover. If KIND_PTR is
194 non-NULL, fill with information about what kind of base we
195 discovered.
197 If the base is inaccessible, or ambiguous, and the ba_quiet bit is
198 not set in ACCESS, then an error is issued and error_mark_node is
199 returned. If the ba_quiet bit is set, then no error is issued and
200 NULL_TREE is returned. */
202 tree
203 lookup_base (tree t, tree base, base_access access, base_kind *kind_ptr)
205 tree binfo = NULL_TREE; /* The binfo we've found so far. */
206 tree t_binfo = NULL_TREE;
207 base_kind bk;
209 if (t == error_mark_node || base == error_mark_node)
211 if (kind_ptr)
212 *kind_ptr = bk_not_base;
213 return error_mark_node;
215 gcc_assert (TYPE_P (base));
217 if (!TYPE_P (t))
219 t_binfo = t;
220 t = BINFO_TYPE (t);
222 else
224 t = complete_type (TYPE_MAIN_VARIANT (t));
225 t_binfo = TYPE_BINFO (t);
228 base = complete_type (TYPE_MAIN_VARIANT (base));
230 if (t_binfo)
231 bk = lookup_base_r (t_binfo, base, access, 0, &binfo);
232 else
233 bk = bk_not_base;
235 /* Check that the base is unambiguous and accessible. */
236 if (access != ba_any)
237 switch (bk)
239 case bk_not_base:
240 break;
242 case bk_ambig:
243 binfo = NULL_TREE;
244 if (!(access & ba_quiet))
246 error ("`%T' is an ambiguous base of `%T'", base, t);
247 binfo = error_mark_node;
249 break;
251 default:
252 if ((access & ~ba_quiet) != ba_ignore
253 /* If BASE is incomplete, then BASE and TYPE are probably
254 the same, in which case BASE is accessible. If they
255 are not the same, then TYPE is invalid. In that case,
256 there's no need to issue another error here, and
257 there's no implicit typedef to use in the code that
258 follows, so we skip the check. */
259 && COMPLETE_TYPE_P (base)
260 && !accessible_base_p (t, base))
262 if (!(access & ba_quiet))
264 error ("`%T' is an inaccessible base of `%T'", base, t);
265 binfo = error_mark_node;
267 else
268 binfo = NULL_TREE;
269 bk = bk_inaccessible;
271 break;
274 if (kind_ptr)
275 *kind_ptr = bk;
277 return binfo;
280 /* Worker function for get_dynamic_cast_base_type. */
282 static int
283 dynamic_cast_base_recurse (tree subtype, tree binfo, bool is_via_virtual,
284 tree *offset_ptr)
286 VEC (tree) *accesses;
287 tree base_binfo;
288 int i;
289 int worst = -2;
291 if (BINFO_TYPE (binfo) == subtype)
293 if (is_via_virtual)
294 return -1;
295 else
297 *offset_ptr = BINFO_OFFSET (binfo);
298 return 0;
302 accesses = BINFO_BASE_ACCESSES (binfo);
303 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
305 tree base_access = VEC_index (tree, accesses, i);
306 int rval;
308 if (base_access != access_public_node)
309 continue;
310 rval = dynamic_cast_base_recurse
311 (subtype, base_binfo,
312 is_via_virtual || BINFO_VIRTUAL_P (base_binfo), offset_ptr);
313 if (worst == -2)
314 worst = rval;
315 else if (rval >= 0)
316 worst = worst >= 0 ? -3 : worst;
317 else if (rval == -1)
318 worst = -1;
319 else if (rval == -3 && worst != -1)
320 worst = -3;
322 return worst;
325 /* The dynamic cast runtime needs a hint about how the static SUBTYPE type
326 started from is related to the required TARGET type, in order to optimize
327 the inheritance graph search. This information is independent of the
328 current context, and ignores private paths, hence get_base_distance is
329 inappropriate. Return a TREE specifying the base offset, BOFF.
330 BOFF >= 0, there is only one public non-virtual SUBTYPE base at offset BOFF,
331 and there are no public virtual SUBTYPE bases.
332 BOFF == -1, SUBTYPE occurs as multiple public virtual or non-virtual bases.
333 BOFF == -2, SUBTYPE is not a public base.
334 BOFF == -3, SUBTYPE occurs as multiple public non-virtual bases. */
336 tree
337 get_dynamic_cast_base_type (tree subtype, tree target)
339 tree offset = NULL_TREE;
340 int boff = dynamic_cast_base_recurse (subtype, TYPE_BINFO (target),
341 false, &offset);
343 if (!boff)
344 return offset;
345 offset = ssize_int (boff);
346 return offset;
349 /* Search for a member with name NAME in a multiple inheritance
350 lattice specified by TYPE. If it does not exist, return NULL_TREE.
351 If the member is ambiguously referenced, return `error_mark_node'.
352 Otherwise, return a DECL with the indicated name. If WANT_TYPE is
353 true, type declarations are preferred. */
355 /* Do a 1-level search for NAME as a member of TYPE. The caller must
356 figure out whether it can access this field. (Since it is only one
357 level, this is reasonable.) */
359 tree
360 lookup_field_1 (tree type, tree name, bool want_type)
362 tree field;
364 if (TREE_CODE (type) == TEMPLATE_TYPE_PARM
365 || TREE_CODE (type) == BOUND_TEMPLATE_TEMPLATE_PARM
366 || TREE_CODE (type) == TYPENAME_TYPE)
367 /* The TYPE_FIELDS of a TEMPLATE_TYPE_PARM and
368 BOUND_TEMPLATE_TEMPLATE_PARM are not fields at all;
369 instead TYPE_FIELDS is the TEMPLATE_PARM_INDEX. (Miraculously,
370 the code often worked even when we treated the index as a list
371 of fields!)
372 The TYPE_FIELDS of TYPENAME_TYPE is its TYPENAME_TYPE_FULLNAME. */
373 return NULL_TREE;
375 if (TYPE_NAME (type)
376 && DECL_LANG_SPECIFIC (TYPE_NAME (type))
377 && DECL_SORTED_FIELDS (TYPE_NAME (type)))
379 tree *fields = &DECL_SORTED_FIELDS (TYPE_NAME (type))->elts[0];
380 int lo = 0, hi = DECL_SORTED_FIELDS (TYPE_NAME (type))->len;
381 int i;
383 while (lo < hi)
385 i = (lo + hi) / 2;
387 #ifdef GATHER_STATISTICS
388 n_fields_searched++;
389 #endif /* GATHER_STATISTICS */
391 if (DECL_NAME (fields[i]) > name)
392 hi = i;
393 else if (DECL_NAME (fields[i]) < name)
394 lo = i + 1;
395 else
397 field = NULL_TREE;
399 /* We might have a nested class and a field with the
400 same name; we sorted them appropriately via
401 field_decl_cmp, so just look for the first or last
402 field with this name. */
403 if (want_type)
406 field = fields[i--];
407 while (i >= lo && DECL_NAME (fields[i]) == name);
408 if (TREE_CODE (field) != TYPE_DECL
409 && !DECL_CLASS_TEMPLATE_P (field))
410 field = NULL_TREE;
412 else
415 field = fields[i++];
416 while (i < hi && DECL_NAME (fields[i]) == name);
418 return field;
421 return NULL_TREE;
424 field = TYPE_FIELDS (type);
426 #ifdef GATHER_STATISTICS
427 n_calls_lookup_field_1++;
428 #endif /* GATHER_STATISTICS */
429 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
431 #ifdef GATHER_STATISTICS
432 n_fields_searched++;
433 #endif /* GATHER_STATISTICS */
434 gcc_assert (DECL_P (field));
435 if (DECL_NAME (field) == NULL_TREE
436 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
438 tree temp = lookup_field_1 (TREE_TYPE (field), name, want_type);
439 if (temp)
440 return temp;
442 if (TREE_CODE (field) == USING_DECL)
444 /* We generally treat class-scope using-declarations as
445 ARM-style access specifications, because support for the
446 ISO semantics has not been implemented. So, in general,
447 there's no reason to return a USING_DECL, and the rest of
448 the compiler cannot handle that. Once the class is
449 defined, USING_DECLs are purged from TYPE_FIELDS; see
450 handle_using_decl. However, we make special efforts to
451 make using-declarations in template classes work
452 correctly. */
453 if (CLASSTYPE_TEMPLATE_INFO (type)
454 && !CLASSTYPE_USE_TEMPLATE (type)
455 && !TREE_TYPE (field))
457 else
458 continue;
461 if (DECL_NAME (field) == name
462 && (!want_type
463 || TREE_CODE (field) == TYPE_DECL
464 || DECL_CLASS_TEMPLATE_P (field)))
465 return field;
467 /* Not found. */
468 if (name == vptr_identifier)
470 /* Give the user what s/he thinks s/he wants. */
471 if (TYPE_POLYMORPHIC_P (type))
472 return TYPE_VFIELD (type);
474 return NULL_TREE;
477 /* There are a number of cases we need to be aware of here:
478 current_class_type current_function_decl
479 global NULL NULL
480 fn-local NULL SET
481 class-local SET NULL
482 class->fn SET SET
483 fn->class SET SET
485 Those last two make life interesting. If we're in a function which is
486 itself inside a class, we need decls to go into the fn's decls (our
487 second case below). But if we're in a class and the class itself is
488 inside a function, we need decls to go into the decls for the class. To
489 achieve this last goal, we must see if, when both current_class_ptr and
490 current_function_decl are set, the class was declared inside that
491 function. If so, we know to put the decls into the class's scope. */
493 tree
494 current_scope (void)
496 if (current_function_decl == NULL_TREE)
497 return current_class_type;
498 if (current_class_type == NULL_TREE)
499 return current_function_decl;
500 if ((DECL_FUNCTION_MEMBER_P (current_function_decl)
501 && same_type_p (DECL_CONTEXT (current_function_decl),
502 current_class_type))
503 || (DECL_FRIEND_CONTEXT (current_function_decl)
504 && same_type_p (DECL_FRIEND_CONTEXT (current_function_decl),
505 current_class_type)))
506 return current_function_decl;
508 return current_class_type;
511 /* Returns nonzero if we are currently in a function scope. Note
512 that this function returns zero if we are within a local class, but
513 not within a member function body of the local class. */
516 at_function_scope_p (void)
518 tree cs = current_scope ();
519 return cs && TREE_CODE (cs) == FUNCTION_DECL;
522 /* Returns true if the innermost active scope is a class scope. */
524 bool
525 at_class_scope_p (void)
527 tree cs = current_scope ();
528 return cs && TYPE_P (cs);
531 /* Returns true if the innermost active scope is a namespace scope. */
533 bool
534 at_namespace_scope_p (void)
536 /* We are in a namespace scope if we are not it a class scope or a
537 function scope. */
538 return !current_scope();
541 /* Return the scope of DECL, as appropriate when doing name-lookup. */
543 tree
544 context_for_name_lookup (tree decl)
546 /* [class.union]
548 For the purposes of name lookup, after the anonymous union
549 definition, the members of the anonymous union are considered to
550 have been defined in the scope in which the anonymous union is
551 declared. */
552 tree context = DECL_CONTEXT (decl);
554 while (context && TYPE_P (context) && ANON_AGGR_TYPE_P (context))
555 context = TYPE_CONTEXT (context);
556 if (!context)
557 context = global_namespace;
559 return context;
562 /* The accessibility routines use BINFO_ACCESS for scratch space
563 during the computation of the accessibility of some declaration. */
565 #define BINFO_ACCESS(NODE) \
566 ((access_kind) ((TREE_PUBLIC (NODE) << 1) | TREE_PRIVATE (NODE)))
568 /* Set the access associated with NODE to ACCESS. */
570 #define SET_BINFO_ACCESS(NODE, ACCESS) \
571 ((TREE_PUBLIC (NODE) = ((ACCESS) & 2) != 0), \
572 (TREE_PRIVATE (NODE) = ((ACCESS) & 1) != 0))
574 /* Called from access_in_type via dfs_walk. Calculate the access to
575 DATA (which is really a DECL) in BINFO. */
577 static tree
578 dfs_access_in_type (tree binfo, void *data)
580 tree decl = (tree) data;
581 tree type = BINFO_TYPE (binfo);
582 access_kind access = ak_none;
584 if (context_for_name_lookup (decl) == type)
586 /* If we have descended to the scope of DECL, just note the
587 appropriate access. */
588 if (TREE_PRIVATE (decl))
589 access = ak_private;
590 else if (TREE_PROTECTED (decl))
591 access = ak_protected;
592 else
593 access = ak_public;
595 else
597 /* First, check for an access-declaration that gives us more
598 access to the DECL. The CONST_DECL for an enumeration
599 constant will not have DECL_LANG_SPECIFIC, and thus no
600 DECL_ACCESS. */
601 if (DECL_LANG_SPECIFIC (decl) && !DECL_DISCRIMINATOR_P (decl))
603 tree decl_access = purpose_member (type, DECL_ACCESS (decl));
605 if (decl_access)
607 decl_access = TREE_VALUE (decl_access);
609 if (decl_access == access_public_node)
610 access = ak_public;
611 else if (decl_access == access_protected_node)
612 access = ak_protected;
613 else if (decl_access == access_private_node)
614 access = ak_private;
615 else
616 gcc_unreachable ();
620 if (!access)
622 int i;
623 tree base_binfo;
624 VEC (tree) *accesses;
626 /* Otherwise, scan our baseclasses, and pick the most favorable
627 access. */
628 accesses = BINFO_BASE_ACCESSES (binfo);
629 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
631 tree base_access = VEC_index (tree, accesses, i);
632 access_kind base_access_now = BINFO_ACCESS (base_binfo);
634 if (base_access_now == ak_none || base_access_now == ak_private)
635 /* If it was not accessible in the base, or only
636 accessible as a private member, we can't access it
637 all. */
638 base_access_now = ak_none;
639 else if (base_access == access_protected_node)
640 /* Public and protected members in the base become
641 protected here. */
642 base_access_now = ak_protected;
643 else if (base_access == access_private_node)
644 /* Public and protected members in the base become
645 private here. */
646 base_access_now = ak_private;
648 /* See if the new access, via this base, gives more
649 access than our previous best access. */
650 if (base_access_now != ak_none
651 && (access == ak_none || base_access_now < access))
653 access = base_access_now;
655 /* If the new access is public, we can't do better. */
656 if (access == ak_public)
657 break;
663 /* Note the access to DECL in TYPE. */
664 SET_BINFO_ACCESS (binfo, access);
666 /* Mark TYPE as visited so that if we reach it again we do not
667 duplicate our efforts here. */
668 BINFO_MARKED (binfo) = 1;
670 return NULL_TREE;
673 /* Return the access to DECL in TYPE. */
675 static access_kind
676 access_in_type (tree type, tree decl)
678 tree binfo = TYPE_BINFO (type);
680 /* We must take into account
682 [class.paths]
684 If a name can be reached by several paths through a multiple
685 inheritance graph, the access is that of the path that gives
686 most access.
688 The algorithm we use is to make a post-order depth-first traversal
689 of the base-class hierarchy. As we come up the tree, we annotate
690 each node with the most lenient access. */
691 dfs_walk_real (binfo, 0, dfs_access_in_type, unmarkedp, decl);
692 dfs_walk (binfo, dfs_unmark, markedp, 0);
694 return BINFO_ACCESS (binfo);
697 /* Called from accessible_p via dfs_walk. */
699 static tree
700 dfs_accessible_queue_p (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
702 tree binfo = BINFO_BASE_BINFO (derived, ix);
704 if (BINFO_MARKED (binfo))
705 return NULL_TREE;
707 /* If this class is inherited via private or protected inheritance,
708 then we can't see it, unless we are a friend of the derived class. */
709 if (BINFO_BASE_ACCESS (derived, ix) != access_public_node
710 && !is_friend (BINFO_TYPE (derived), current_scope ()))
711 return NULL_TREE;
713 return binfo;
716 /* Called from accessible_p via dfs_walk. */
718 static tree
719 dfs_accessible_p (tree binfo, void *data ATTRIBUTE_UNUSED)
721 access_kind access;
723 BINFO_MARKED (binfo) = 1;
724 access = BINFO_ACCESS (binfo);
725 if (access != ak_none
726 && is_friend (BINFO_TYPE (binfo), current_scope ()))
727 return binfo;
729 return NULL_TREE;
732 /* Returns nonzero if it is OK to access DECL through an object
733 indicated by BINFO in the context of DERIVED. */
735 static int
736 protected_accessible_p (tree decl, tree derived, tree binfo)
738 access_kind access;
740 /* We're checking this clause from [class.access.base]
742 m as a member of N is protected, and the reference occurs in a
743 member or friend of class N, or in a member or friend of a
744 class P derived from N, where m as a member of P is private or
745 protected.
747 Here DERIVED is a possible P and DECL is m. accessible_p will
748 iterate over various values of N, but the access to m in DERIVED
749 does not change.
751 Note that I believe that the passage above is wrong, and should read
752 "...is private or protected or public"; otherwise you get bizarre results
753 whereby a public using-decl can prevent you from accessing a protected
754 member of a base. (jason 2000/02/28) */
756 /* If DERIVED isn't derived from m's class, then it can't be a P. */
757 if (!DERIVED_FROM_P (context_for_name_lookup (decl), derived))
758 return 0;
760 access = access_in_type (derived, decl);
762 /* If m is inaccessible in DERIVED, then it's not a P. */
763 if (access == ak_none)
764 return 0;
766 /* [class.protected]
768 When a friend or a member function of a derived class references
769 a protected nonstatic member of a base class, an access check
770 applies in addition to those described earlier in clause
771 _class.access_) Except when forming a pointer to member
772 (_expr.unary.op_), the access must be through a pointer to,
773 reference to, or object of the derived class itself (or any class
774 derived from that class) (_expr.ref_). If the access is to form
775 a pointer to member, the nested-name-specifier shall name the
776 derived class (or any class derived from that class). */
777 if (DECL_NONSTATIC_MEMBER_P (decl))
779 /* We can tell through what the reference is occurring by
780 chasing BINFO up to the root. */
781 tree t = binfo;
782 while (BINFO_INHERITANCE_CHAIN (t))
783 t = BINFO_INHERITANCE_CHAIN (t);
785 if (!DERIVED_FROM_P (derived, BINFO_TYPE (t)))
786 return 0;
789 return 1;
792 /* Returns nonzero if SCOPE is a friend of a type which would be able
793 to access DECL through the object indicated by BINFO. */
795 static int
796 friend_accessible_p (tree scope, tree decl, tree binfo)
798 tree befriending_classes;
799 tree t;
801 if (!scope)
802 return 0;
804 if (TREE_CODE (scope) == FUNCTION_DECL
805 || DECL_FUNCTION_TEMPLATE_P (scope))
806 befriending_classes = DECL_BEFRIENDING_CLASSES (scope);
807 else if (TYPE_P (scope))
808 befriending_classes = CLASSTYPE_BEFRIENDING_CLASSES (scope);
809 else
810 return 0;
812 for (t = befriending_classes; t; t = TREE_CHAIN (t))
813 if (protected_accessible_p (decl, TREE_VALUE (t), binfo))
814 return 1;
816 /* Nested classes are implicitly friends of their enclosing types, as
817 per core issue 45 (this is a change from the standard). */
818 if (TYPE_P (scope))
819 for (t = TYPE_CONTEXT (scope); t && TYPE_P (t); t = TYPE_CONTEXT (t))
820 if (protected_accessible_p (decl, t, binfo))
821 return 1;
823 if (TREE_CODE (scope) == FUNCTION_DECL
824 || DECL_FUNCTION_TEMPLATE_P (scope))
826 /* Perhaps this SCOPE is a member of a class which is a
827 friend. */
828 if (DECL_CLASS_SCOPE_P (decl)
829 && friend_accessible_p (DECL_CONTEXT (scope), decl, binfo))
830 return 1;
832 /* Or an instantiation of something which is a friend. */
833 if (DECL_TEMPLATE_INFO (scope))
835 int ret;
836 /* Increment processing_template_decl to make sure that
837 dependent_type_p works correctly. */
838 ++processing_template_decl;
839 ret = friend_accessible_p (DECL_TI_TEMPLATE (scope), decl, binfo);
840 --processing_template_decl;
841 return ret;
844 else if (CLASSTYPE_TEMPLATE_INFO (scope))
846 int ret;
847 /* Increment processing_template_decl to make sure that
848 dependent_type_p works correctly. */
849 ++processing_template_decl;
850 ret = friend_accessible_p (CLASSTYPE_TI_TEMPLATE (scope), decl, binfo);
851 --processing_template_decl;
852 return ret;
855 return 0;
858 /* DECL is a declaration from a base class of TYPE, which was the
859 class used to name DECL. Return nonzero if, in the current
860 context, DECL is accessible. If TYPE is actually a BINFO node,
861 then we can tell in what context the access is occurring by looking
862 at the most derived class along the path indicated by BINFO. */
864 int
865 accessible_p (tree type, tree decl)
867 tree binfo;
868 tree t;
869 tree scope;
870 access_kind access;
872 /* Nonzero if it's OK to access DECL if it has protected
873 accessibility in TYPE. */
874 int protected_ok = 0;
876 /* If this declaration is in a block or namespace scope, there's no
877 access control. */
878 if (!TYPE_P (context_for_name_lookup (decl)))
879 return 1;
881 /* There is no need to perform access checks inside a thunk. */
882 scope = current_scope ();
883 if (scope && DECL_THUNK_P (scope))
884 return 1;
886 /* In a template declaration, we cannot be sure whether the
887 particular specialization that is instantiated will be a friend
888 or not. Therefore, all access checks are deferred until
889 instantiation. */
890 if (processing_template_decl)
891 return 1;
893 if (!TYPE_P (type))
895 binfo = type;
896 type = BINFO_TYPE (type);
898 else
899 binfo = TYPE_BINFO (type);
901 /* [class.access.base]
903 A member m is accessible when named in class N if
905 --m as a member of N is public, or
907 --m as a member of N is private, and the reference occurs in a
908 member or friend of class N, or
910 --m as a member of N is protected, and the reference occurs in a
911 member or friend of class N, or in a member or friend of a
912 class P derived from N, where m as a member of P is private or
913 protected, or
915 --there exists a base class B of N that is accessible at the point
916 of reference, and m is accessible when named in class B.
918 We walk the base class hierarchy, checking these conditions. */
920 /* Figure out where the reference is occurring. Check to see if
921 DECL is private or protected in this scope, since that will
922 determine whether protected access is allowed. */
923 if (current_class_type)
924 protected_ok = protected_accessible_p (decl, current_class_type, binfo);
926 /* Now, loop through the classes of which we are a friend. */
927 if (!protected_ok)
928 protected_ok = friend_accessible_p (scope, decl, binfo);
930 /* Standardize the binfo that access_in_type will use. We don't
931 need to know what path was chosen from this point onwards. */
932 binfo = TYPE_BINFO (type);
934 /* Compute the accessibility of DECL in the class hierarchy
935 dominated by type. */
936 access = access_in_type (type, decl);
937 if (access == ak_public
938 || (access == ak_protected && protected_ok))
939 return 1;
940 else
942 /* Walk the hierarchy again, looking for a base class that allows
943 access. */
944 t = dfs_walk (binfo, dfs_accessible_p, dfs_accessible_queue_p, 0);
945 /* Clear any mark bits. Note that we have to walk the whole tree
946 here, since we have aborted the previous walk from some point
947 deep in the tree. */
948 dfs_walk (binfo, dfs_unmark, 0, 0);
950 return t != NULL_TREE;
954 struct lookup_field_info {
955 /* The type in which we're looking. */
956 tree type;
957 /* The name of the field for which we're looking. */
958 tree name;
959 /* If non-NULL, the current result of the lookup. */
960 tree rval;
961 /* The path to RVAL. */
962 tree rval_binfo;
963 /* If non-NULL, the lookup was ambiguous, and this is a list of the
964 candidates. */
965 tree ambiguous;
966 /* If nonzero, we are looking for types, not data members. */
967 int want_type;
968 /* If something went wrong, a message indicating what. */
969 const char *errstr;
972 /* Returns nonzero if BINFO is not hidden by the value found by the
973 lookup so far. If BINFO is hidden, then there's no need to look in
974 it. DATA is really a struct lookup_field_info. Called from
975 lookup_field via breadth_first_search. */
977 static tree
978 lookup_field_queue_p (tree derived, int ix, void *data)
980 tree binfo = BINFO_BASE_BINFO (derived, ix);
981 struct lookup_field_info *lfi = (struct lookup_field_info *) data;
983 /* Don't look for constructors or destructors in base classes. */
984 if (IDENTIFIER_CTOR_OR_DTOR_P (lfi->name))
985 return NULL_TREE;
987 /* If this base class is hidden by the best-known value so far, we
988 don't need to look. */
989 if (lfi->rval_binfo && derived == lfi->rval_binfo)
990 return NULL_TREE;
992 /* If this is a dependent base, don't look in it. */
993 if (BINFO_DEPENDENT_BASE_P (binfo))
994 return NULL_TREE;
996 return binfo;
999 /* Within the scope of a template class, you can refer to the to the
1000 current specialization with the name of the template itself. For
1001 example:
1003 template <typename T> struct S { S* sp; }
1005 Returns nonzero if DECL is such a declaration in a class TYPE. */
1007 static int
1008 template_self_reference_p (tree type, tree decl)
1010 return (CLASSTYPE_USE_TEMPLATE (type)
1011 && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (type))
1012 && TREE_CODE (decl) == TYPE_DECL
1013 && DECL_ARTIFICIAL (decl)
1014 && DECL_NAME (decl) == constructor_name (type));
1017 /* Nonzero for a class member means that it is shared between all objects
1018 of that class.
1020 [class.member.lookup]:If the resulting set of declarations are not all
1021 from sub-objects of the same type, or the set has a nonstatic member
1022 and includes members from distinct sub-objects, there is an ambiguity
1023 and the program is ill-formed.
1025 This function checks that T contains no nonstatic members. */
1028 shared_member_p (tree t)
1030 if (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == TYPE_DECL \
1031 || TREE_CODE (t) == CONST_DECL)
1032 return 1;
1033 if (is_overloaded_fn (t))
1035 for (; t; t = OVL_NEXT (t))
1037 tree fn = OVL_CURRENT (t);
1038 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn))
1039 return 0;
1041 return 1;
1043 return 0;
1046 /* Routine to see if the sub-object denoted by the binfo PARENT can be
1047 found as a base class and sub-object of the object denoted by
1048 BINFO. */
1050 static int
1051 is_subobject_of_p (tree parent, tree binfo)
1053 tree probe;
1055 for (probe = parent; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
1057 if (probe == binfo)
1058 return 1;
1059 if (BINFO_VIRTUAL_P (probe))
1060 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (binfo))
1061 != NULL_TREE);
1063 return 0;
1066 /* DATA is really a struct lookup_field_info. Look for a field with
1067 the name indicated there in BINFO. If this function returns a
1068 non-NULL value it is the result of the lookup. Called from
1069 lookup_field via breadth_first_search. */
1071 static tree
1072 lookup_field_r (tree binfo, void *data)
1074 struct lookup_field_info *lfi = (struct lookup_field_info *) data;
1075 tree type = BINFO_TYPE (binfo);
1076 tree nval = NULL_TREE;
1078 /* First, look for a function. There can't be a function and a data
1079 member with the same name, and if there's a function and a type
1080 with the same name, the type is hidden by the function. */
1081 if (!lfi->want_type)
1083 int idx = lookup_fnfields_1 (type, lfi->name);
1084 if (idx >= 0)
1085 nval = VEC_index (tree, CLASSTYPE_METHOD_VEC (type), idx);
1088 if (!nval)
1089 /* Look for a data member or type. */
1090 nval = lookup_field_1 (type, lfi->name, lfi->want_type);
1092 /* If there is no declaration with the indicated name in this type,
1093 then there's nothing to do. */
1094 if (!nval)
1095 return NULL_TREE;
1097 /* If we're looking up a type (as with an elaborated type specifier)
1098 we ignore all non-types we find. */
1099 if (lfi->want_type && TREE_CODE (nval) != TYPE_DECL
1100 && !DECL_CLASS_TEMPLATE_P (nval))
1102 if (lfi->name == TYPE_IDENTIFIER (type))
1104 /* If the aggregate has no user defined constructors, we allow
1105 it to have fields with the same name as the enclosing type.
1106 If we are looking for that name, find the corresponding
1107 TYPE_DECL. */
1108 for (nval = TREE_CHAIN (nval); nval; nval = TREE_CHAIN (nval))
1109 if (DECL_NAME (nval) == lfi->name
1110 && TREE_CODE (nval) == TYPE_DECL)
1111 break;
1113 else
1114 nval = NULL_TREE;
1115 if (!nval && CLASSTYPE_NESTED_UTDS (type) != NULL)
1117 binding_entry e = binding_table_find (CLASSTYPE_NESTED_UTDS (type),
1118 lfi->name);
1119 if (e != NULL)
1120 nval = TYPE_MAIN_DECL (e->type);
1121 else
1122 return NULL_TREE;
1126 /* You must name a template base class with a template-id. */
1127 if (!same_type_p (type, lfi->type)
1128 && template_self_reference_p (type, nval))
1129 return NULL_TREE;
1131 /* If the lookup already found a match, and the new value doesn't
1132 hide the old one, we might have an ambiguity. */
1133 if (lfi->rval_binfo
1134 && !is_subobject_of_p (lfi->rval_binfo, binfo))
1137 if (nval == lfi->rval && shared_member_p (nval))
1138 /* The two things are really the same. */
1140 else if (is_subobject_of_p (binfo, lfi->rval_binfo))
1141 /* The previous value hides the new one. */
1143 else
1145 /* We have a real ambiguity. We keep a chain of all the
1146 candidates. */
1147 if (!lfi->ambiguous && lfi->rval)
1149 /* This is the first time we noticed an ambiguity. Add
1150 what we previously thought was a reasonable candidate
1151 to the list. */
1152 lfi->ambiguous = tree_cons (NULL_TREE, lfi->rval, NULL_TREE);
1153 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1156 /* Add the new value. */
1157 lfi->ambiguous = tree_cons (NULL_TREE, nval, lfi->ambiguous);
1158 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1159 lfi->errstr = "request for member `%D' is ambiguous";
1162 else
1164 lfi->rval = nval;
1165 lfi->rval_binfo = binfo;
1168 return NULL_TREE;
1171 /* Return a "baselink" with BASELINK_BINFO, BASELINK_ACCESS_BINFO,
1172 BASELINK_FUNCTIONS, and BASELINK_OPTYPE set to BINFO, ACCESS_BINFO,
1173 FUNCTIONS, and OPTYPE respectively. */
1175 tree
1176 build_baselink (tree binfo, tree access_binfo, tree functions, tree optype)
1178 tree baselink;
1180 gcc_assert (TREE_CODE (functions) == FUNCTION_DECL
1181 || TREE_CODE (functions) == TEMPLATE_DECL
1182 || TREE_CODE (functions) == TEMPLATE_ID_EXPR
1183 || TREE_CODE (functions) == OVERLOAD);
1184 gcc_assert (!optype || TYPE_P (optype));
1185 gcc_assert (TREE_TYPE (functions));
1187 baselink = make_node (BASELINK);
1188 TREE_TYPE (baselink) = TREE_TYPE (functions);
1189 BASELINK_BINFO (baselink) = binfo;
1190 BASELINK_ACCESS_BINFO (baselink) = access_binfo;
1191 BASELINK_FUNCTIONS (baselink) = functions;
1192 BASELINK_OPTYPE (baselink) = optype;
1194 return baselink;
1197 /* Look for a member named NAME in an inheritance lattice dominated by
1198 XBASETYPE. If PROTECT is 0 or two, we do not check access. If it
1199 is 1, we enforce accessibility. If PROTECT is zero, then, for an
1200 ambiguous lookup, we return NULL. If PROTECT is 1, we issue error
1201 messages about inaccessible or ambiguous lookup. If PROTECT is 2,
1202 we return a TREE_LIST whose TREE_TYPE is error_mark_node and whose
1203 TREE_VALUEs are the list of ambiguous candidates.
1205 WANT_TYPE is 1 when we should only return TYPE_DECLs.
1207 If nothing can be found return NULL_TREE and do not issue an error. */
1209 tree
1210 lookup_member (tree xbasetype, tree name, int protect, bool want_type)
1212 tree rval, rval_binfo = NULL_TREE;
1213 tree type = NULL_TREE, basetype_path = NULL_TREE;
1214 struct lookup_field_info lfi;
1216 /* rval_binfo is the binfo associated with the found member, note,
1217 this can be set with useful information, even when rval is not
1218 set, because it must deal with ALL members, not just non-function
1219 members. It is used for ambiguity checking and the hidden
1220 checks. Whereas rval is only set if a proper (not hidden)
1221 non-function member is found. */
1223 const char *errstr = 0;
1225 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
1227 if (TREE_CODE (xbasetype) == TREE_BINFO)
1229 type = BINFO_TYPE (xbasetype);
1230 basetype_path = xbasetype;
1232 else
1234 gcc_assert (IS_AGGR_TYPE_CODE (TREE_CODE (xbasetype)));
1235 type = xbasetype;
1236 xbasetype = NULL_TREE;
1239 type = complete_type (type);
1240 if (!basetype_path)
1241 basetype_path = TYPE_BINFO (type);
1243 if (!basetype_path)
1244 return NULL_TREE;
1246 #ifdef GATHER_STATISTICS
1247 n_calls_lookup_field++;
1248 #endif /* GATHER_STATISTICS */
1250 memset (&lfi, 0, sizeof (lfi));
1251 lfi.type = type;
1252 lfi.name = name;
1253 lfi.want_type = want_type;
1254 dfs_walk_real (basetype_path, &lookup_field_r, 0,
1255 &lookup_field_queue_p, &lfi);
1256 rval = lfi.rval;
1257 rval_binfo = lfi.rval_binfo;
1258 if (rval_binfo)
1259 type = BINFO_TYPE (rval_binfo);
1260 errstr = lfi.errstr;
1262 /* If we are not interested in ambiguities, don't report them;
1263 just return NULL_TREE. */
1264 if (!protect && lfi.ambiguous)
1265 return NULL_TREE;
1267 if (protect == 2)
1269 if (lfi.ambiguous)
1270 return lfi.ambiguous;
1271 else
1272 protect = 0;
1275 /* [class.access]
1277 In the case of overloaded function names, access control is
1278 applied to the function selected by overloaded resolution. */
1279 if (rval && protect && !is_overloaded_fn (rval))
1280 perform_or_defer_access_check (basetype_path, rval);
1282 if (errstr && protect)
1284 error (errstr, name, type);
1285 if (lfi.ambiguous)
1286 print_candidates (lfi.ambiguous);
1287 rval = error_mark_node;
1290 if (rval && is_overloaded_fn (rval))
1291 rval = build_baselink (rval_binfo, basetype_path, rval,
1292 (IDENTIFIER_TYPENAME_P (name)
1293 ? TREE_TYPE (name): NULL_TREE));
1294 return rval;
1297 /* Like lookup_member, except that if we find a function member we
1298 return NULL_TREE. */
1300 tree
1301 lookup_field (tree xbasetype, tree name, int protect, bool want_type)
1303 tree rval = lookup_member (xbasetype, name, protect, want_type);
1305 /* Ignore functions, but propagate the ambiguity list. */
1306 if (!error_operand_p (rval)
1307 && (rval && BASELINK_P (rval)))
1308 return NULL_TREE;
1310 return rval;
1313 /* Like lookup_member, except that if we find a non-function member we
1314 return NULL_TREE. */
1316 tree
1317 lookup_fnfields (tree xbasetype, tree name, int protect)
1319 tree rval = lookup_member (xbasetype, name, protect, /*want_type=*/false);
1321 /* Ignore non-functions, but propagate the ambiguity list. */
1322 if (!error_operand_p (rval)
1323 && (rval && !BASELINK_P (rval)))
1324 return NULL_TREE;
1326 return rval;
1329 /* Return the index in the CLASSTYPE_METHOD_VEC for CLASS_TYPE
1330 corresponding to "operator TYPE ()", or -1 if there is no such
1331 operator. Only CLASS_TYPE itself is searched; this routine does
1332 not scan the base classes of CLASS_TYPE. */
1334 static int
1335 lookup_conversion_operator (tree class_type, tree type)
1337 int tpl_slot = -1;
1339 if (TYPE_HAS_CONVERSION (class_type))
1341 int i;
1342 tree fn;
1343 VEC(tree) *methods = CLASSTYPE_METHOD_VEC (class_type);
1345 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1346 VEC_iterate (tree, methods, i, fn); ++i)
1348 /* All the conversion operators come near the beginning of
1349 the class. Therefore, if FN is not a conversion
1350 operator, there is no matching conversion operator in
1351 CLASS_TYPE. */
1352 fn = OVL_CURRENT (fn);
1353 if (!DECL_CONV_FN_P (fn))
1354 break;
1356 if (TREE_CODE (fn) == TEMPLATE_DECL)
1357 /* All the templated conversion functions are on the same
1358 slot, so remember it. */
1359 tpl_slot = i;
1360 else if (same_type_p (DECL_CONV_FN_TYPE (fn), type))
1361 return i;
1365 return tpl_slot;
1368 /* TYPE is a class type. Return the index of the fields within
1369 the method vector with name NAME, or -1 is no such field exists. */
1372 lookup_fnfields_1 (tree type, tree name)
1374 VEC(tree) *method_vec;
1375 tree fn;
1376 tree tmp;
1377 size_t i;
1379 if (!CLASS_TYPE_P (type))
1380 return -1;
1382 if (COMPLETE_TYPE_P (type))
1384 if ((name == ctor_identifier
1385 || name == base_ctor_identifier
1386 || name == complete_ctor_identifier))
1388 if (CLASSTYPE_LAZY_DEFAULT_CTOR (type))
1389 lazily_declare_fn (sfk_constructor, type);
1390 if (CLASSTYPE_LAZY_COPY_CTOR (type))
1391 lazily_declare_fn (sfk_copy_constructor, type);
1393 else if (name == ansi_assopname(NOP_EXPR)
1394 && CLASSTYPE_LAZY_ASSIGNMENT_OP (type))
1395 lazily_declare_fn (sfk_assignment_operator, type);
1398 method_vec = CLASSTYPE_METHOD_VEC (type);
1399 if (!method_vec)
1400 return -1;
1402 #ifdef GATHER_STATISTICS
1403 n_calls_lookup_fnfields_1++;
1404 #endif /* GATHER_STATISTICS */
1406 /* Constructors are first... */
1407 if (name == ctor_identifier)
1409 fn = CLASSTYPE_CONSTRUCTORS (type);
1410 return fn ? CLASSTYPE_CONSTRUCTOR_SLOT : -1;
1412 /* and destructors are second. */
1413 if (name == dtor_identifier)
1415 fn = CLASSTYPE_DESTRUCTORS (type);
1416 return fn ? CLASSTYPE_DESTRUCTOR_SLOT : -1;
1418 if (IDENTIFIER_TYPENAME_P (name))
1419 return lookup_conversion_operator (type, TREE_TYPE (name));
1421 /* Skip the conversion operators. */
1422 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1423 VEC_iterate (tree, method_vec, i, fn);
1424 ++i)
1425 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
1426 break;
1428 /* If the type is complete, use binary search. */
1429 if (COMPLETE_TYPE_P (type))
1431 int lo;
1432 int hi;
1434 lo = i;
1435 hi = VEC_length (tree, method_vec);
1436 while (lo < hi)
1438 i = (lo + hi) / 2;
1440 #ifdef GATHER_STATISTICS
1441 n_outer_fields_searched++;
1442 #endif /* GATHER_STATISTICS */
1444 tmp = VEC_index (tree, method_vec, i);
1445 tmp = DECL_NAME (OVL_CURRENT (tmp));
1446 if (tmp > name)
1447 hi = i;
1448 else if (tmp < name)
1449 lo = i + 1;
1450 else
1451 return i;
1454 else
1455 for (; VEC_iterate (tree, method_vec, i, fn); ++i)
1457 #ifdef GATHER_STATISTICS
1458 n_outer_fields_searched++;
1459 #endif /* GATHER_STATISTICS */
1460 if (DECL_NAME (OVL_CURRENT (fn)) == name)
1461 return i;
1464 return -1;
1467 /* DECL is the result of a qualified name lookup. QUALIFYING_SCOPE is
1468 the class or namespace used to qualify the name. CONTEXT_CLASS is
1469 the class corresponding to the object in which DECL will be used.
1470 Return a possibly modified version of DECL that takes into account
1471 the CONTEXT_CLASS.
1473 In particular, consider an expression like `B::m' in the context of
1474 a derived class `D'. If `B::m' has been resolved to a BASELINK,
1475 then the most derived class indicated by the BASELINK_BINFO will be
1476 `B', not `D'. This function makes that adjustment. */
1478 tree
1479 adjust_result_of_qualified_name_lookup (tree decl,
1480 tree qualifying_scope,
1481 tree context_class)
1483 if (context_class && CLASS_TYPE_P (qualifying_scope)
1484 && DERIVED_FROM_P (qualifying_scope, context_class)
1485 && BASELINK_P (decl))
1487 tree base;
1489 gcc_assert (CLASS_TYPE_P (context_class));
1491 /* Look for the QUALIFYING_SCOPE as a base of the CONTEXT_CLASS.
1492 Because we do not yet know which function will be chosen by
1493 overload resolution, we cannot yet check either accessibility
1494 or ambiguity -- in either case, the choice of a static member
1495 function might make the usage valid. */
1496 base = lookup_base (context_class, qualifying_scope,
1497 ba_ignore | ba_quiet, NULL);
1498 if (base)
1500 BASELINK_ACCESS_BINFO (decl) = base;
1501 BASELINK_BINFO (decl)
1502 = lookup_base (base, BINFO_TYPE (BASELINK_BINFO (decl)),
1503 ba_ignore | ba_quiet,
1504 NULL);
1508 return decl;
1512 /* Walk the class hierarchy within BINFO, in a depth-first traversal.
1513 PREFN is called in preorder, while POSTFN is called in postorder.
1514 If they ever returns a non-NULL value, that value is immediately
1515 returned and the walk is terminated. Both PREFN and POSTFN can be
1516 NULL. At each node, PREFN and POSTFN are passed the binfo to
1517 examine. Before each base-binfo of BINFO is walked, QFN is called.
1518 If the value returned is nonzero, the base-binfo is walked;
1519 otherwise it is not. If QFN is NULL, it is treated as a function
1520 which always returns 1. All callbacks are passed DATA whenever
1521 they are called. */
1523 tree
1524 dfs_walk_real (tree binfo,
1525 tree (*prefn) (tree, void *),
1526 tree (*postfn) (tree, void *),
1527 tree (*qfn) (tree, int, void *),
1528 void *data)
1530 int i;
1531 tree base_binfo;
1532 tree rval = NULL_TREE;
1534 /* Call the pre-order walking function. */
1535 if (prefn)
1537 rval = (*prefn) (binfo, data);
1538 if (rval)
1539 return rval;
1542 /* Process the basetypes. */
1543 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
1545 if (qfn)
1547 base_binfo = (*qfn) (binfo, i, data);
1548 if (!base_binfo)
1549 continue;
1551 rval = dfs_walk_real (base_binfo, prefn, postfn, qfn, data);
1552 if (rval)
1553 return rval;
1556 /* Call the post-order walking function. */
1557 if (postfn)
1558 rval = (*postfn) (binfo, data);
1560 return rval;
1563 /* Exactly like dfs_walk_real, except that there is no pre-order
1564 function call and FN is called in post-order. */
1566 tree
1567 dfs_walk (tree binfo,
1568 tree (*fn) (tree, void *),
1569 tree (*qfn) (tree, int, void *),
1570 void *data)
1572 return dfs_walk_real (binfo, 0, fn, qfn, data);
1575 /* Check that virtual overrider OVERRIDER is acceptable for base function
1576 BASEFN. Issue diagnostic, and return zero, if unacceptable. */
1579 check_final_overrider (tree overrider, tree basefn)
1581 tree over_type = TREE_TYPE (overrider);
1582 tree base_type = TREE_TYPE (basefn);
1583 tree over_return = TREE_TYPE (over_type);
1584 tree base_return = TREE_TYPE (base_type);
1585 tree over_throw = TYPE_RAISES_EXCEPTIONS (over_type);
1586 tree base_throw = TYPE_RAISES_EXCEPTIONS (base_type);
1587 int fail = 0;
1589 if (DECL_INVALID_OVERRIDER_P (overrider))
1590 return 0;
1592 if (same_type_p (base_return, over_return))
1593 /* OK */;
1594 else if ((CLASS_TYPE_P (over_return) && CLASS_TYPE_P (base_return))
1595 || (TREE_CODE (base_return) == TREE_CODE (over_return)
1596 && POINTER_TYPE_P (base_return)))
1598 /* Potentially covariant. */
1599 unsigned base_quals, over_quals;
1601 fail = !POINTER_TYPE_P (base_return);
1602 if (!fail)
1604 fail = cp_type_quals (base_return) != cp_type_quals (over_return);
1606 base_return = TREE_TYPE (base_return);
1607 over_return = TREE_TYPE (over_return);
1609 base_quals = cp_type_quals (base_return);
1610 over_quals = cp_type_quals (over_return);
1612 if ((base_quals & over_quals) != over_quals)
1613 fail = 1;
1615 if (CLASS_TYPE_P (base_return) && CLASS_TYPE_P (over_return))
1617 tree binfo = lookup_base (over_return, base_return,
1618 ba_check | ba_quiet, NULL);
1620 if (!binfo)
1621 fail = 1;
1623 else if (!pedantic
1624 && can_convert (TREE_TYPE (base_type), TREE_TYPE (over_type)))
1625 /* GNU extension, allow trivial pointer conversions such as
1626 converting to void *, or qualification conversion. */
1628 /* can_convert will permit user defined conversion from a
1629 (reference to) class type. We must reject them. */
1630 over_return = non_reference (TREE_TYPE (over_type));
1631 if (CLASS_TYPE_P (over_return))
1632 fail = 2;
1634 else
1635 fail = 2;
1637 else
1638 fail = 2;
1639 if (!fail)
1640 /* OK */;
1641 else
1643 if (fail == 1)
1645 cp_error_at ("invalid covariant return type for `%#D'", overrider);
1646 cp_error_at (" overriding `%#D'", basefn);
1648 else
1650 cp_error_at ("conflicting return type specified for `%#D'",
1651 overrider);
1652 cp_error_at (" overriding `%#D'", basefn);
1654 DECL_INVALID_OVERRIDER_P (overrider) = 1;
1655 return 0;
1658 /* Check throw specifier is at least as strict. */
1659 if (!comp_except_specs (base_throw, over_throw, 0))
1661 cp_error_at ("looser throw specifier for `%#F'", overrider);
1662 cp_error_at (" overriding `%#F'", basefn);
1663 DECL_INVALID_OVERRIDER_P (overrider) = 1;
1664 return 0;
1667 return 1;
1670 /* Given a class TYPE, and a function decl FNDECL, look for
1671 virtual functions in TYPE's hierarchy which FNDECL overrides.
1672 We do not look in TYPE itself, only its bases.
1674 Returns nonzero, if we find any. Set FNDECL's DECL_VIRTUAL_P, if we
1675 find that it overrides anything.
1677 We check that every function which is overridden, is correctly
1678 overridden. */
1681 look_for_overrides (tree type, tree fndecl)
1683 tree binfo = TYPE_BINFO (type);
1684 tree base_binfo;
1685 int ix;
1686 int found = 0;
1688 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1690 tree basetype = BINFO_TYPE (base_binfo);
1692 if (TYPE_POLYMORPHIC_P (basetype))
1693 found += look_for_overrides_r (basetype, fndecl);
1695 return found;
1698 /* Look in TYPE for virtual functions with the same signature as
1699 FNDECL. */
1701 tree
1702 look_for_overrides_here (tree type, tree fndecl)
1704 int ix;
1706 /* If there are no methods in TYPE (meaning that only implicitly
1707 declared methods will ever be provided for TYPE), then there are
1708 no virtual functions. */
1709 if (!CLASSTYPE_METHOD_VEC (type))
1710 return NULL_TREE;
1712 if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fndecl))
1713 ix = CLASSTYPE_DESTRUCTOR_SLOT;
1714 else
1715 ix = lookup_fnfields_1 (type, DECL_NAME (fndecl));
1716 if (ix >= 0)
1718 tree fns = VEC_index (tree, CLASSTYPE_METHOD_VEC (type), ix);
1720 for (; fns; fns = OVL_NEXT (fns))
1722 tree fn = OVL_CURRENT (fns);
1724 if (!DECL_VIRTUAL_P (fn))
1725 /* Not a virtual. */;
1726 else if (DECL_CONTEXT (fn) != type)
1727 /* Introduced with a using declaration. */;
1728 else if (DECL_STATIC_FUNCTION_P (fndecl))
1730 tree btypes = TYPE_ARG_TYPES (TREE_TYPE (fn));
1731 tree dtypes = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
1732 if (compparms (TREE_CHAIN (btypes), dtypes))
1733 return fn;
1735 else if (same_signature_p (fndecl, fn))
1736 return fn;
1739 return NULL_TREE;
1742 /* Look in TYPE for virtual functions overridden by FNDECL. Check both
1743 TYPE itself and its bases. */
1745 static int
1746 look_for_overrides_r (tree type, tree fndecl)
1748 tree fn = look_for_overrides_here (type, fndecl);
1749 if (fn)
1751 if (DECL_STATIC_FUNCTION_P (fndecl))
1753 /* A static member function cannot match an inherited
1754 virtual member function. */
1755 cp_error_at ("`%#D' cannot be declared", fndecl);
1756 cp_error_at (" since `%#D' declared in base class", fn);
1758 else
1760 /* It's definitely virtual, even if not explicitly set. */
1761 DECL_VIRTUAL_P (fndecl) = 1;
1762 check_final_overrider (fndecl, fn);
1764 return 1;
1767 /* We failed to find one declared in this class. Look in its bases. */
1768 return look_for_overrides (type, fndecl);
1771 /* Called via dfs_walk from dfs_get_pure_virtuals. */
1773 static tree
1774 dfs_get_pure_virtuals (tree binfo, void *data)
1776 tree type = (tree) data;
1778 /* We're not interested in primary base classes; the derived class
1779 of which they are a primary base will contain the information we
1780 need. */
1781 if (!BINFO_PRIMARY_P (binfo))
1783 tree virtuals;
1785 for (virtuals = BINFO_VIRTUALS (binfo);
1786 virtuals;
1787 virtuals = TREE_CHAIN (virtuals))
1788 if (DECL_PURE_VIRTUAL_P (BV_FN (virtuals)))
1789 VEC_safe_push (tree, CLASSTYPE_PURE_VIRTUALS (type),
1790 BV_FN (virtuals));
1793 BINFO_MARKED (binfo) = 1;
1795 return NULL_TREE;
1798 /* Set CLASSTYPE_PURE_VIRTUALS for TYPE. */
1800 void
1801 get_pure_virtuals (tree type)
1803 /* Clear the CLASSTYPE_PURE_VIRTUALS list; whatever is already there
1804 is going to be overridden. */
1805 CLASSTYPE_PURE_VIRTUALS (type) = NULL;
1806 /* Now, run through all the bases which are not primary bases, and
1807 collect the pure virtual functions. We look at the vtable in
1808 each class to determine what pure virtual functions are present.
1809 (A primary base is not interesting because the derived class of
1810 which it is a primary base will contain vtable entries for the
1811 pure virtuals in the base class. */
1812 dfs_walk (TYPE_BINFO (type), dfs_get_pure_virtuals, unmarkedp, type);
1813 dfs_walk (TYPE_BINFO (type), dfs_unmark, markedp, type);
1816 /* DEPTH-FIRST SEARCH ROUTINES. */
1818 tree
1819 markedp (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
1821 tree binfo = BINFO_BASE_BINFO (derived, ix);
1823 return BINFO_MARKED (binfo) ? binfo : NULL_TREE;
1826 tree
1827 unmarkedp (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
1829 tree binfo = BINFO_BASE_BINFO (derived, ix);
1831 return !BINFO_MARKED (binfo) ? binfo : NULL_TREE;
1834 /* The worker functions for `dfs_walk'. These do not need to
1835 test anything (vis a vis marking) if they are paired with
1836 a predicate function (above). */
1838 tree
1839 dfs_unmark (tree binfo, void *data ATTRIBUTE_UNUSED)
1841 BINFO_MARKED (binfo) = 0;
1842 return NULL_TREE;
1846 /* Debug info for C++ classes can get very large; try to avoid
1847 emitting it everywhere.
1849 Note that this optimization wins even when the target supports
1850 BINCL (if only slightly), and reduces the amount of work for the
1851 linker. */
1853 void
1854 maybe_suppress_debug_info (tree t)
1856 if (write_symbols == NO_DEBUG)
1857 return;
1859 /* We might have set this earlier in cp_finish_decl. */
1860 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 0;
1862 /* If we already know how we're handling this class, handle debug info
1863 the same way. */
1864 if (CLASSTYPE_INTERFACE_KNOWN (t))
1866 if (CLASSTYPE_INTERFACE_ONLY (t))
1867 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
1868 /* else don't set it. */
1870 /* If the class has a vtable, write out the debug info along with
1871 the vtable. */
1872 else if (TYPE_CONTAINS_VPTR_P (t))
1873 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
1875 /* Otherwise, just emit the debug info normally. */
1878 /* Note that we want debugging information for a base class of a class
1879 whose vtable is being emitted. Normally, this would happen because
1880 calling the constructor for a derived class implies calling the
1881 constructors for all bases, which involve initializing the
1882 appropriate vptr with the vtable for the base class; but in the
1883 presence of optimization, this initialization may be optimized
1884 away, so we tell finish_vtable_vardecl that we want the debugging
1885 information anyway. */
1887 static tree
1888 dfs_debug_mark (tree binfo, void *data ATTRIBUTE_UNUSED)
1890 tree t = BINFO_TYPE (binfo);
1892 CLASSTYPE_DEBUG_REQUESTED (t) = 1;
1894 return NULL_TREE;
1897 /* Returns BINFO if we haven't already noted that we want debugging
1898 info for this base class. */
1900 static tree
1901 dfs_debug_unmarkedp (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
1903 tree binfo = BINFO_BASE_BINFO (derived, ix);
1905 return (!CLASSTYPE_DEBUG_REQUESTED (BINFO_TYPE (binfo))
1906 ? binfo : NULL_TREE);
1909 /* Write out the debugging information for TYPE, whose vtable is being
1910 emitted. Also walk through our bases and note that we want to
1911 write out information for them. This avoids the problem of not
1912 writing any debug info for intermediate basetypes whose
1913 constructors, and thus the references to their vtables, and thus
1914 the vtables themselves, were optimized away. */
1916 void
1917 note_debug_info_needed (tree type)
1919 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)))
1921 TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)) = 0;
1922 rest_of_type_compilation (type, toplevel_bindings_p ());
1925 dfs_walk (TYPE_BINFO (type), dfs_debug_mark, dfs_debug_unmarkedp, 0);
1928 void
1929 print_search_statistics (void)
1931 #ifdef GATHER_STATISTICS
1932 fprintf (stderr, "%d fields searched in %d[%d] calls to lookup_field[_1]\n",
1933 n_fields_searched, n_calls_lookup_field, n_calls_lookup_field_1);
1934 fprintf (stderr, "%d fnfields searched in %d calls to lookup_fnfields\n",
1935 n_outer_fields_searched, n_calls_lookup_fnfields);
1936 fprintf (stderr, "%d calls to get_base_type\n", n_calls_get_base_type);
1937 #else /* GATHER_STATISTICS */
1938 fprintf (stderr, "no search statistics\n");
1939 #endif /* GATHER_STATISTICS */
1942 void
1943 reinit_search_statistics (void)
1945 #ifdef GATHER_STATISTICS
1946 n_fields_searched = 0;
1947 n_calls_lookup_field = 0, n_calls_lookup_field_1 = 0;
1948 n_calls_lookup_fnfields = 0, n_calls_lookup_fnfields_1 = 0;
1949 n_calls_get_base_type = 0;
1950 n_outer_fields_searched = 0;
1951 n_contexts_saved = 0;
1952 #endif /* GATHER_STATISTICS */
1955 /* Helper for lookup_conversions_r. TO_TYPE is the type converted to
1956 by a conversion op in base BINFO. VIRTUAL_DEPTH is nonzero if
1957 BINFO is morally virtual, and VIRTUALNESS is nonzero if virtual
1958 bases have been encountered already in the tree walk. PARENT_CONVS
1959 is the list of lists of conversion functions that could hide CONV
1960 and OTHER_CONVS is the list of lists of conversion functions that
1961 could hide or be hidden by CONV, should virtualness be involved in
1962 the hierarchy. Merely checking the conversion op's name is not
1963 enough because two conversion operators to the same type can have
1964 different names. Return nonzero if we are visible. */
1966 static int
1967 check_hidden_convs (tree binfo, int virtual_depth, int virtualness,
1968 tree to_type, tree parent_convs, tree other_convs)
1970 tree level, probe;
1972 /* See if we are hidden by a parent conversion. */
1973 for (level = parent_convs; level; level = TREE_CHAIN (level))
1974 for (probe = TREE_VALUE (level); probe; probe = TREE_CHAIN (probe))
1975 if (same_type_p (to_type, TREE_TYPE (probe)))
1976 return 0;
1978 if (virtual_depth || virtualness)
1980 /* In a virtual hierarchy, we could be hidden, or could hide a
1981 conversion function on the other_convs list. */
1982 for (level = other_convs; level; level = TREE_CHAIN (level))
1984 int we_hide_them;
1985 int they_hide_us;
1986 tree *prev, other;
1988 if (!(virtual_depth || TREE_STATIC (level)))
1989 /* Neither is morally virtual, so cannot hide each other. */
1990 continue;
1992 if (!TREE_VALUE (level))
1993 /* They evaporated away already. */
1994 continue;
1996 they_hide_us = (virtual_depth
1997 && original_binfo (binfo, TREE_PURPOSE (level)));
1998 we_hide_them = (!they_hide_us && TREE_STATIC (level)
1999 && original_binfo (TREE_PURPOSE (level), binfo));
2001 if (!(we_hide_them || they_hide_us))
2002 /* Neither is within the other, so no hiding can occur. */
2003 continue;
2005 for (prev = &TREE_VALUE (level), other = *prev; other;)
2007 if (same_type_p (to_type, TREE_TYPE (other)))
2009 if (they_hide_us)
2010 /* We are hidden. */
2011 return 0;
2013 if (we_hide_them)
2015 /* We hide the other one. */
2016 other = TREE_CHAIN (other);
2017 *prev = other;
2018 continue;
2021 prev = &TREE_CHAIN (other);
2022 other = *prev;
2026 return 1;
2029 /* Helper for lookup_conversions_r. PARENT_CONVS is a list of lists
2030 of conversion functions, the first slot will be for the current
2031 binfo, if MY_CONVS is non-NULL. CHILD_CONVS is the list of lists
2032 of conversion functions from children of the current binfo,
2033 concatenated with conversions from elsewhere in the hierarchy --
2034 that list begins with OTHER_CONVS. Return a single list of lists
2035 containing only conversions from the current binfo and its
2036 children. */
2038 static tree
2039 split_conversions (tree my_convs, tree parent_convs,
2040 tree child_convs, tree other_convs)
2042 tree t;
2043 tree prev;
2045 /* Remove the original other_convs portion from child_convs. */
2046 for (prev = NULL, t = child_convs;
2047 t != other_convs; prev = t, t = TREE_CHAIN (t))
2048 continue;
2050 if (prev)
2051 TREE_CHAIN (prev) = NULL_TREE;
2052 else
2053 child_convs = NULL_TREE;
2055 /* Attach the child convs to any we had at this level. */
2056 if (my_convs)
2058 my_convs = parent_convs;
2059 TREE_CHAIN (my_convs) = child_convs;
2061 else
2062 my_convs = child_convs;
2064 return my_convs;
2067 /* Worker for lookup_conversions. Lookup conversion functions in
2068 BINFO and its children. VIRTUAL_DEPTH is nonzero, if BINFO is in
2069 a morally virtual base, and VIRTUALNESS is nonzero, if we've
2070 encountered virtual bases already in the tree walk. PARENT_CONVS &
2071 PARENT_TPL_CONVS are lists of list of conversions within parent
2072 binfos. OTHER_CONVS and OTHER_TPL_CONVS are conversions found
2073 elsewhere in the tree. Return the conversions found within this
2074 portion of the graph in CONVS and TPL_CONVS. Return nonzero is we
2075 encountered virtualness. We keep template and non-template
2076 conversions separate, to avoid unnecessary type comparisons.
2078 The located conversion functions are held in lists of lists. The
2079 TREE_VALUE of the outer list is the list of conversion functions
2080 found in a particular binfo. The TREE_PURPOSE of both the outer
2081 and inner lists is the binfo at which those conversions were
2082 found. TREE_STATIC is set for those lists within of morally
2083 virtual binfos. The TREE_VALUE of the inner list is the conversion
2084 function or overload itself. The TREE_TYPE of each inner list node
2085 is the converted-to type. */
2087 static int
2088 lookup_conversions_r (tree binfo,
2089 int virtual_depth, int virtualness,
2090 tree parent_convs, tree parent_tpl_convs,
2091 tree other_convs, tree other_tpl_convs,
2092 tree *convs, tree *tpl_convs)
2094 int my_virtualness = 0;
2095 tree my_convs = NULL_TREE;
2096 tree my_tpl_convs = NULL_TREE;
2097 tree child_convs = NULL_TREE;
2098 tree child_tpl_convs = NULL_TREE;
2099 unsigned i;
2100 tree base_binfo;
2101 VEC(tree) *method_vec = CLASSTYPE_METHOD_VEC (BINFO_TYPE (binfo));
2102 tree conv;
2104 /* If we have no conversion operators, then don't look. */
2105 if (!TYPE_HAS_CONVERSION (BINFO_TYPE (binfo)))
2107 *convs = *tpl_convs = NULL_TREE;
2109 return 0;
2112 if (BINFO_VIRTUAL_P (binfo))
2113 virtual_depth++;
2115 /* First, locate the unhidden ones at this level. */
2116 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2117 VEC_iterate (tree, method_vec, i, conv);
2118 ++i)
2120 tree cur = OVL_CURRENT (conv);
2122 if (!DECL_CONV_FN_P (cur))
2123 break;
2125 if (TREE_CODE (cur) == TEMPLATE_DECL)
2127 /* Only template conversions can be overloaded, and we must
2128 flatten them out and check each one individually. */
2129 tree tpls;
2131 for (tpls = conv; tpls; tpls = OVL_NEXT (tpls))
2133 tree tpl = OVL_CURRENT (tpls);
2134 tree type = DECL_CONV_FN_TYPE (tpl);
2136 if (check_hidden_convs (binfo, virtual_depth, virtualness,
2137 type, parent_tpl_convs, other_tpl_convs))
2139 my_tpl_convs = tree_cons (binfo, tpl, my_tpl_convs);
2140 TREE_TYPE (my_tpl_convs) = type;
2141 if (virtual_depth)
2143 TREE_STATIC (my_tpl_convs) = 1;
2144 my_virtualness = 1;
2149 else
2151 tree name = DECL_NAME (cur);
2153 if (!IDENTIFIER_MARKED (name))
2155 tree type = DECL_CONV_FN_TYPE (cur);
2157 if (check_hidden_convs (binfo, virtual_depth, virtualness,
2158 type, parent_convs, other_convs))
2160 my_convs = tree_cons (binfo, conv, my_convs);
2161 TREE_TYPE (my_convs) = type;
2162 if (virtual_depth)
2164 TREE_STATIC (my_convs) = 1;
2165 my_virtualness = 1;
2167 IDENTIFIER_MARKED (name) = 1;
2173 if (my_convs)
2175 parent_convs = tree_cons (binfo, my_convs, parent_convs);
2176 if (virtual_depth)
2177 TREE_STATIC (parent_convs) = 1;
2180 if (my_tpl_convs)
2182 parent_tpl_convs = tree_cons (binfo, my_tpl_convs, parent_tpl_convs);
2183 if (virtual_depth)
2184 TREE_STATIC (parent_convs) = 1;
2187 child_convs = other_convs;
2188 child_tpl_convs = other_tpl_convs;
2190 /* Now iterate over each base, looking for more conversions. */
2191 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
2193 tree base_convs, base_tpl_convs;
2194 unsigned base_virtualness;
2196 base_virtualness = lookup_conversions_r (base_binfo,
2197 virtual_depth, virtualness,
2198 parent_convs, parent_tpl_convs,
2199 child_convs, child_tpl_convs,
2200 &base_convs, &base_tpl_convs);
2201 if (base_virtualness)
2202 my_virtualness = virtualness = 1;
2203 child_convs = chainon (base_convs, child_convs);
2204 child_tpl_convs = chainon (base_tpl_convs, child_tpl_convs);
2207 /* Unmark the conversions found at this level */
2208 for (conv = my_convs; conv; conv = TREE_CHAIN (conv))
2209 IDENTIFIER_MARKED (DECL_NAME (OVL_CURRENT (TREE_VALUE (conv)))) = 0;
2211 *convs = split_conversions (my_convs, parent_convs,
2212 child_convs, other_convs);
2213 *tpl_convs = split_conversions (my_tpl_convs, parent_tpl_convs,
2214 child_tpl_convs, other_tpl_convs);
2216 return my_virtualness;
2219 /* Return a TREE_LIST containing all the non-hidden user-defined
2220 conversion functions for TYPE (and its base-classes). The
2221 TREE_VALUE of each node is the FUNCTION_DECL of the conversion
2222 function. The TREE_PURPOSE is the BINFO from which the conversion
2223 functions in this node were selected. This function is effectively
2224 performing a set of member lookups as lookup_fnfield does, but
2225 using the type being converted to as the unique key, rather than the
2226 field name. */
2228 tree
2229 lookup_conversions (tree type)
2231 tree convs, tpl_convs;
2232 tree list = NULL_TREE;
2234 complete_type (type);
2235 if (!TYPE_BINFO (type))
2236 return NULL_TREE;
2238 lookup_conversions_r (TYPE_BINFO (type), 0, 0,
2239 NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE,
2240 &convs, &tpl_convs);
2242 /* Flatten the list-of-lists */
2243 for (; convs; convs = TREE_CHAIN (convs))
2245 tree probe, next;
2247 for (probe = TREE_VALUE (convs); probe; probe = next)
2249 next = TREE_CHAIN (probe);
2251 TREE_CHAIN (probe) = list;
2252 list = probe;
2256 for (; tpl_convs; tpl_convs = TREE_CHAIN (tpl_convs))
2258 tree probe, next;
2260 for (probe = TREE_VALUE (tpl_convs); probe; probe = next)
2262 next = TREE_CHAIN (probe);
2264 TREE_CHAIN (probe) = list;
2265 list = probe;
2269 return list;
2272 /* Returns the binfo of the first direct or indirect virtual base derived
2273 from BINFO, or NULL if binfo is not via virtual. */
2275 tree
2276 binfo_from_vbase (tree binfo)
2278 for (; binfo; binfo = BINFO_INHERITANCE_CHAIN (binfo))
2280 if (BINFO_VIRTUAL_P (binfo))
2281 return binfo;
2283 return NULL_TREE;
2286 /* Returns the binfo of the first direct or indirect virtual base derived
2287 from BINFO up to the TREE_TYPE, LIMIT, or NULL if binfo is not
2288 via virtual. */
2290 tree
2291 binfo_via_virtual (tree binfo, tree limit)
2293 for (; binfo && (!limit || !same_type_p (BINFO_TYPE (binfo), limit));
2294 binfo = BINFO_INHERITANCE_CHAIN (binfo))
2296 if (BINFO_VIRTUAL_P (binfo))
2297 return binfo;
2299 return NULL_TREE;
2302 /* BINFO is a base binfo in the complete type BINFO_TYPE (HERE).
2303 Find the equivalent binfo within whatever graph HERE is located.
2304 This is the inverse of original_binfo. */
2306 tree
2307 copied_binfo (tree binfo, tree here)
2309 tree result = NULL_TREE;
2311 if (BINFO_VIRTUAL_P (binfo))
2313 tree t;
2315 for (t = here; BINFO_INHERITANCE_CHAIN (t);
2316 t = BINFO_INHERITANCE_CHAIN (t))
2317 continue;
2319 result = binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (t));
2321 else if (BINFO_INHERITANCE_CHAIN (binfo))
2323 tree cbinfo;
2324 tree base_binfo;
2325 int ix;
2327 cbinfo = copied_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2328 for (ix = 0; BINFO_BASE_ITERATE (cbinfo, ix, base_binfo); ix++)
2329 if (BINFO_TYPE (base_binfo) == BINFO_TYPE (binfo))
2331 result = base_binfo;
2332 break;
2335 else
2337 gcc_assert (BINFO_TYPE (here) == BINFO_TYPE (binfo));
2338 result = here;
2341 gcc_assert (result);
2342 return result;
2345 tree
2346 binfo_for_vbase (tree base, tree t)
2348 unsigned ix;
2349 tree binfo;
2350 VEC (tree) *vbases;
2352 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
2353 VEC_iterate (tree, vbases, ix, binfo); ix++)
2354 if (BINFO_TYPE (binfo) == base)
2355 return binfo;
2356 return NULL;
2359 /* BINFO is some base binfo of HERE, within some other
2360 hierarchy. Return the equivalent binfo, but in the hierarchy
2361 dominated by HERE. This is the inverse of copied_binfo. If BINFO
2362 is not a base binfo of HERE, returns NULL_TREE. */
2364 tree
2365 original_binfo (tree binfo, tree here)
2367 tree result = NULL;
2369 if (BINFO_TYPE (binfo) == BINFO_TYPE (here))
2370 result = here;
2371 else if (BINFO_VIRTUAL_P (binfo))
2372 result = (CLASSTYPE_VBASECLASSES (BINFO_TYPE (here))
2373 ? binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (here))
2374 : NULL_TREE);
2375 else if (BINFO_INHERITANCE_CHAIN (binfo))
2377 tree base_binfos;
2379 base_binfos = original_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2380 if (base_binfos)
2382 int ix;
2383 tree base_binfo;
2385 for (ix = 0; (base_binfo = BINFO_BASE_BINFO (base_binfos, ix)); ix++)
2386 if (BINFO_TYPE (base_binfo) == BINFO_TYPE (binfo))
2388 result = base_binfo;
2389 break;
2394 return result;