* trans-stmt.c (gfc_trans_simple_do): New function.
[official-gcc.git] / gcc / cfgloopanal.c
blob87c85e329d8314bd61485d47dfe587dd0d60bc90
1 /* Natural loop analysis code for GNU compiler.
2 Copyright (C) 2002, 2003, 2004 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "basic-block.h"
28 #include "cfgloop.h"
29 #include "expr.h"
30 #include "output.h"
32 /* Checks whether BB is executed exactly once in each LOOP iteration. */
34 bool
35 just_once_each_iteration_p (struct loop *loop, basic_block bb)
37 /* It must be executed at least once each iteration. */
38 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
39 return false;
41 /* And just once. */
42 if (bb->loop_father != loop)
43 return false;
45 /* But this was not enough. We might have some irreducible loop here. */
46 if (bb->flags & BB_IRREDUCIBLE_LOOP)
47 return false;
49 return true;
52 /* Structure representing edge of a graph. */
54 struct edge
56 int src, dest; /* Source and destination. */
57 struct edge *pred_next, *succ_next;
58 /* Next edge in predecessor and successor lists. */
59 void *data; /* Data attached to the edge. */
62 /* Structure representing vertex of a graph. */
64 struct vertex
66 struct edge *pred, *succ;
67 /* Lists of predecessors and successors. */
68 int component; /* Number of dfs restarts before reaching the
69 vertex. */
70 int post; /* Postorder number. */
73 /* Structure representing a graph. */
75 struct graph
77 int n_vertices; /* Number of vertices. */
78 struct vertex *vertices;
79 /* The vertices. */
82 /* Dumps graph G into F. */
84 extern void dump_graph (FILE *, struct graph *);
85 void dump_graph (FILE *f, struct graph *g)
87 int i;
88 struct edge *e;
90 for (i = 0; i < g->n_vertices; i++)
92 if (!g->vertices[i].pred
93 && !g->vertices[i].succ)
94 continue;
96 fprintf (f, "%d (%d)\t<-", i, g->vertices[i].component);
97 for (e = g->vertices[i].pred; e; e = e->pred_next)
98 fprintf (f, " %d", e->src);
99 fprintf (f, "\n");
101 fprintf (f, "\t->");
102 for (e = g->vertices[i].succ; e; e = e->succ_next)
103 fprintf (f, " %d", e->dest);
104 fprintf (f, "\n");
108 /* Creates a new graph with N_VERTICES vertices. */
110 static struct graph *
111 new_graph (int n_vertices)
113 struct graph *g = xmalloc (sizeof (struct graph));
115 g->n_vertices = n_vertices;
116 g->vertices = xcalloc (n_vertices, sizeof (struct vertex));
118 return g;
121 /* Adds an edge from F to T to graph G, with DATA attached. */
123 static void
124 add_edge (struct graph *g, int f, int t, void *data)
126 struct edge *e = xmalloc (sizeof (struct edge));
128 e->src = f;
129 e->dest = t;
130 e->data = data;
132 e->pred_next = g->vertices[t].pred;
133 g->vertices[t].pred = e;
135 e->succ_next = g->vertices[f].succ;
136 g->vertices[f].succ = e;
139 /* Runs dfs search over vertices of G, from NQ vertices in queue QS.
140 The vertices in postorder are stored into QT. If FORWARD is false,
141 backward dfs is run. */
143 static void
144 dfs (struct graph *g, int *qs, int nq, int *qt, bool forward)
146 int i, tick = 0, v, comp = 0, top;
147 struct edge *e;
148 struct edge **stack = xmalloc (sizeof (struct edge *) * g->n_vertices);
150 for (i = 0; i < g->n_vertices; i++)
152 g->vertices[i].component = -1;
153 g->vertices[i].post = -1;
156 #define FST_EDGE(V) (forward ? g->vertices[(V)].succ : g->vertices[(V)].pred)
157 #define NEXT_EDGE(E) (forward ? (E)->succ_next : (E)->pred_next)
158 #define EDGE_SRC(E) (forward ? (E)->src : (E)->dest)
159 #define EDGE_DEST(E) (forward ? (E)->dest : (E)->src)
161 for (i = 0; i < nq; i++)
163 v = qs[i];
164 if (g->vertices[v].post != -1)
165 continue;
167 g->vertices[v].component = comp++;
168 e = FST_EDGE (v);
169 top = 0;
171 while (1)
173 while (e && g->vertices[EDGE_DEST (e)].component != -1)
174 e = NEXT_EDGE (e);
176 if (!e)
178 if (qt)
179 qt[tick] = v;
180 g->vertices[v].post = tick++;
182 if (!top)
183 break;
185 e = stack[--top];
186 v = EDGE_SRC (e);
187 e = NEXT_EDGE (e);
188 continue;
191 stack[top++] = e;
192 v = EDGE_DEST (e);
193 e = FST_EDGE (v);
194 g->vertices[v].component = comp - 1;
198 free (stack);
201 /* Marks the edge E in graph G irreducible if it connects two vertices in the
202 same scc. */
204 static void
205 check_irred (struct graph *g, struct edge *e)
207 edge real = e->data;
209 /* All edges should lead from a component with higher number to the
210 one with lower one. */
211 gcc_assert (g->vertices[e->src].component >= g->vertices[e->dest].component);
213 if (g->vertices[e->src].component != g->vertices[e->dest].component)
214 return;
216 real->flags |= EDGE_IRREDUCIBLE_LOOP;
217 if (flow_bb_inside_loop_p (real->src->loop_father, real->dest))
218 real->src->flags |= BB_IRREDUCIBLE_LOOP;
221 /* Runs CALLBACK for all edges in G. */
223 static void
224 for_each_edge (struct graph *g,
225 void (callback) (struct graph *, struct edge *))
227 struct edge *e;
228 int i;
230 for (i = 0; i < g->n_vertices; i++)
231 for (e = g->vertices[i].succ; e; e = e->succ_next)
232 callback (g, e);
235 /* Releases the memory occupied by G. */
237 static void
238 free_graph (struct graph *g)
240 struct edge *e, *n;
241 int i;
243 for (i = 0; i < g->n_vertices; i++)
244 for (e = g->vertices[i].succ; e; e = n)
246 n = e->succ_next;
247 free (e);
249 free (g->vertices);
250 free (g);
253 /* Marks blocks and edges that are part of non-recognized loops; i.e. we
254 throw away all latch edges and mark blocks inside any remaining cycle.
255 Everything is a bit complicated due to fact we do not want to do this
256 for parts of cycles that only "pass" through some loop -- i.e. for
257 each cycle, we want to mark blocks that belong directly to innermost
258 loop containing the whole cycle.
260 LOOPS is the loop tree. */
262 #define LOOP_REPR(LOOP) ((LOOP)->num + last_basic_block)
263 #define BB_REPR(BB) ((BB)->index + 1)
265 void
266 mark_irreducible_loops (struct loops *loops)
268 basic_block act;
269 edge e;
270 edge_iterator ei;
271 int i, src, dest;
272 struct graph *g;
273 int *queue1 = xmalloc ((last_basic_block + loops->num) * sizeof (int));
274 int *queue2 = xmalloc ((last_basic_block + loops->num) * sizeof (int));
275 int nq, depth;
276 struct loop *cloop;
278 /* Reset the flags. */
279 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
281 act->flags &= ~BB_IRREDUCIBLE_LOOP;
282 FOR_EACH_EDGE (e, ei, act->succs)
283 e->flags &= ~EDGE_IRREDUCIBLE_LOOP;
286 /* Create the edge lists. */
287 g = new_graph (last_basic_block + loops->num);
289 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
290 FOR_EACH_EDGE (e, ei, act->succs)
292 /* Ignore edges to exit. */
293 if (e->dest == EXIT_BLOCK_PTR)
294 continue;
296 /* And latch edges. */
297 if (e->dest->loop_father->header == e->dest
298 && e->dest->loop_father->latch == act)
299 continue;
301 /* Edges inside a single loop should be left where they are. Edges
302 to subloop headers should lead to representative of the subloop,
303 but from the same place.
305 Edges exiting loops should lead from representative
306 of the son of nearest common ancestor of the loops in that
307 act lays. */
309 src = BB_REPR (act);
310 dest = BB_REPR (e->dest);
312 if (e->dest->loop_father->header == e->dest)
313 dest = LOOP_REPR (e->dest->loop_father);
315 if (!flow_bb_inside_loop_p (act->loop_father, e->dest))
317 depth = find_common_loop (act->loop_father,
318 e->dest->loop_father)->depth + 1;
319 if (depth == act->loop_father->depth)
320 cloop = act->loop_father;
321 else
322 cloop = act->loop_father->pred[depth];
324 src = LOOP_REPR (cloop);
327 add_edge (g, src, dest, e);
330 /* Find the strongly connected components. Use the algorithm of Tarjan --
331 first determine the postorder dfs numbering in reversed graph, then
332 run the dfs on the original graph in the order given by decreasing
333 numbers assigned by the previous pass. */
334 nq = 0;
335 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
337 queue1[nq++] = BB_REPR (act);
339 for (i = 1; i < (int) loops->num; i++)
340 if (loops->parray[i])
341 queue1[nq++] = LOOP_REPR (loops->parray[i]);
342 dfs (g, queue1, nq, queue2, false);
343 for (i = 0; i < nq; i++)
344 queue1[i] = queue2[nq - i - 1];
345 dfs (g, queue1, nq, NULL, true);
347 /* Mark the irreducible loops. */
348 for_each_edge (g, check_irred);
350 free_graph (g);
351 free (queue1);
352 free (queue2);
354 loops->state |= LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS;
357 /* Counts number of insns inside LOOP. */
359 num_loop_insns (struct loop *loop)
361 basic_block *bbs, bb;
362 unsigned i, ninsns = 0;
363 rtx insn;
365 bbs = get_loop_body (loop);
366 for (i = 0; i < loop->num_nodes; i++)
368 bb = bbs[i];
369 ninsns++;
370 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
371 if (INSN_P (insn))
372 ninsns++;
374 free(bbs);
376 return ninsns;
379 /* Counts number of insns executed on average per iteration LOOP. */
381 average_num_loop_insns (struct loop *loop)
383 basic_block *bbs, bb;
384 unsigned i, binsns, ninsns, ratio;
385 rtx insn;
387 ninsns = 0;
388 bbs = get_loop_body (loop);
389 for (i = 0; i < loop->num_nodes; i++)
391 bb = bbs[i];
393 binsns = 1;
394 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
395 if (INSN_P (insn))
396 binsns++;
398 ratio = loop->header->frequency == 0
399 ? BB_FREQ_MAX
400 : (bb->frequency * BB_FREQ_MAX) / loop->header->frequency;
401 ninsns += binsns * ratio;
403 free(bbs);
405 ninsns /= BB_FREQ_MAX;
406 if (!ninsns)
407 ninsns = 1; /* To avoid division by zero. */
409 return ninsns;
412 /* Returns expected number of LOOP iterations.
413 Compute upper bound on number of iterations in case they do not fit integer
414 to help loop peeling heuristics. Use exact counts if at all possible. */
415 unsigned
416 expected_loop_iterations (const struct loop *loop)
418 edge e;
419 edge_iterator ei;
421 if (loop->header->count)
423 gcov_type count_in, count_latch, expected;
425 count_in = 0;
426 count_latch = 0;
428 FOR_EACH_EDGE (e, ei, loop->header->preds)
429 if (e->src == loop->latch)
430 count_latch = e->count;
431 else
432 count_in += e->count;
434 if (count_in == 0)
435 expected = count_latch * 2;
436 else
437 expected = (count_latch + count_in - 1) / count_in;
439 /* Avoid overflows. */
440 return (expected > REG_BR_PROB_BASE ? REG_BR_PROB_BASE : expected);
442 else
444 int freq_in, freq_latch;
446 freq_in = 0;
447 freq_latch = 0;
449 FOR_EACH_EDGE (e, ei, loop->header->preds)
450 if (e->src == loop->latch)
451 freq_latch = EDGE_FREQUENCY (e);
452 else
453 freq_in += EDGE_FREQUENCY (e);
455 if (freq_in == 0)
456 return freq_latch * 2;
458 return (freq_latch + freq_in - 1) / freq_in;
462 /* Returns the maximum level of nesting of subloops of LOOP. */
464 unsigned
465 get_loop_level (const struct loop *loop)
467 const struct loop *ploop;
468 unsigned mx = 0, l;
470 for (ploop = loop->inner; ploop; ploop = ploop->next)
472 l = get_loop_level (ploop);
473 if (l >= mx)
474 mx = l + 1;
476 return mx;
479 /* Returns estimate on cost of computing SEQ. */
481 static unsigned
482 seq_cost (rtx seq)
484 unsigned cost = 0;
485 rtx set;
487 for (; seq; seq = NEXT_INSN (seq))
489 set = single_set (seq);
490 if (set)
491 cost += rtx_cost (set, SET);
492 else
493 cost++;
496 return cost;
499 /* The properties of the target. */
501 unsigned target_avail_regs; /* Number of available registers. */
502 unsigned target_res_regs; /* Number of reserved registers. */
503 unsigned target_small_cost; /* The cost for register when there is a free one. */
504 unsigned target_pres_cost; /* The cost for register when there are not too many
505 free ones. */
506 unsigned target_spill_cost; /* The cost for register when we need to spill. */
508 /* Initialize the constants for computing set costs. */
510 void
511 init_set_costs (void)
513 rtx seq;
514 rtx reg1 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER);
515 rtx reg2 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER + 1);
516 rtx addr = gen_raw_REG (Pmode, FIRST_PSEUDO_REGISTER + 2);
517 rtx mem = validize_mem (gen_rtx_MEM (SImode, addr));
518 unsigned i;
520 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
521 if (TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], i)
522 && !fixed_regs[i])
523 target_avail_regs++;
525 target_res_regs = 3;
527 /* These are really just heuristic values. */
529 start_sequence ();
530 emit_move_insn (reg1, reg2);
531 seq = get_insns ();
532 end_sequence ();
533 target_small_cost = seq_cost (seq);
534 target_pres_cost = 2 * target_small_cost;
536 start_sequence ();
537 emit_move_insn (mem, reg1);
538 emit_move_insn (reg2, mem);
539 seq = get_insns ();
540 end_sequence ();
541 target_spill_cost = seq_cost (seq);
544 /* Calculates cost for having SIZE new loop global variables. REGS_USED is the
545 number of global registers used in loop. N_USES is the number of relevant
546 variable uses. */
548 unsigned
549 global_cost_for_size (unsigned size, unsigned regs_used, unsigned n_uses)
551 unsigned regs_needed = regs_used + size;
552 unsigned cost = 0;
554 if (regs_needed + target_res_regs <= target_avail_regs)
555 cost += target_small_cost * size;
556 else if (regs_needed <= target_avail_regs)
557 cost += target_pres_cost * size;
558 else
560 cost += target_pres_cost * size;
561 cost += target_spill_cost * n_uses * (regs_needed - target_avail_regs) / regs_needed;
564 return cost;