* trans-stmt.c (gfc_trans_simple_do): New function.
[official-gcc.git] / gcc / cfg.c
blob0669bed74c5e2dbfd29e3151658c8041cff3ff17
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains low level functions to manipulate the CFG and
23 analyze it. All other modules should not transform the data structure
24 directly and use abstraction instead. The file is supposed to be
25 ordered bottom-up and should not contain any code dependent on a
26 particular intermediate language (RTL or trees).
28 Available functionality:
29 - Initialization/deallocation
30 init_flow, clear_edges
31 - Low level basic block manipulation
32 alloc_block, expunge_block
33 - Edge manipulation
34 make_edge, make_single_succ_edge, cached_make_edge, remove_edge
35 - Low level edge redirection (without updating instruction chain)
36 redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
37 - Dumping and debugging
38 dump_flow_info, debug_flow_info, dump_edge_info
39 - Allocation of AUX fields for basic blocks
40 alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
41 - clear_bb_flags
42 - Consistency checking
43 verify_flow_info
44 - Dumping and debugging
45 print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n
48 #include "config.h"
49 #include "system.h"
50 #include "coretypes.h"
51 #include "tm.h"
52 #include "tree.h"
53 #include "rtl.h"
54 #include "hard-reg-set.h"
55 #include "basic-block.h"
56 #include "regs.h"
57 #include "flags.h"
58 #include "output.h"
59 #include "function.h"
60 #include "except.h"
61 #include "toplev.h"
62 #include "tm_p.h"
63 #include "obstack.h"
64 #include "alloc-pool.h"
65 #include "timevar.h"
66 #include "ggc.h"
68 /* The obstack on which the flow graph components are allocated. */
70 struct obstack flow_obstack;
71 static char *flow_firstobj;
73 /* Number of basic blocks in the current function. */
75 int n_basic_blocks;
77 /* First free basic block number. */
79 int last_basic_block;
81 /* Number of edges in the current function. */
83 int n_edges;
85 /* The basic block array. */
87 varray_type basic_block_info;
89 /* The special entry and exit blocks. */
90 basic_block ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR;
92 /* Memory alloc pool for bb member rbi. */
93 alloc_pool rbi_pool;
95 void debug_flow_info (void);
96 static void free_edge (edge);
98 /* Indicate the presence of the profile. */
99 enum profile_status profile_status;
101 /* Called once at initialization time. */
103 void
104 init_flow (void)
106 static int initialized;
108 n_edges = 0;
110 if (!initialized)
112 gcc_obstack_init (&flow_obstack);
113 flow_firstobj = obstack_alloc (&flow_obstack, 0);
114 initialized = 1;
116 else
118 obstack_free (&flow_obstack, flow_firstobj);
119 flow_firstobj = obstack_alloc (&flow_obstack, 0);
122 ENTRY_BLOCK_PTR = ggc_alloc_cleared (sizeof (*ENTRY_BLOCK_PTR));
123 ENTRY_BLOCK_PTR->index = ENTRY_BLOCK;
124 EXIT_BLOCK_PTR = ggc_alloc_cleared (sizeof (*EXIT_BLOCK_PTR));
125 EXIT_BLOCK_PTR->index = EXIT_BLOCK;
126 ENTRY_BLOCK_PTR->next_bb = EXIT_BLOCK_PTR;
127 EXIT_BLOCK_PTR->prev_bb = ENTRY_BLOCK_PTR;
130 /* Helper function for remove_edge and clear_edges. Frees edge structure
131 without actually unlinking it from the pred/succ lists. */
133 static void
134 free_edge (edge e ATTRIBUTE_UNUSED)
136 n_edges--;
137 ggc_free (e);
140 /* Free the memory associated with the edge structures. */
142 void
143 clear_edges (void)
145 basic_block bb;
146 edge e;
147 edge_iterator ei;
149 FOR_EACH_BB (bb)
151 FOR_EACH_EDGE (e, ei, bb->succs)
152 free_edge (e);
153 VEC_truncate (edge, bb->succs, 0);
154 VEC_truncate (edge, bb->preds, 0);
157 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
158 free_edge (e);
159 VEC_truncate (edge, EXIT_BLOCK_PTR->preds, 0);
160 VEC_truncate (edge, ENTRY_BLOCK_PTR->succs, 0);
162 gcc_assert (!n_edges);
165 /* Allocate memory for basic_block. */
167 basic_block
168 alloc_block (void)
170 basic_block bb;
171 bb = ggc_alloc_cleared (sizeof (*bb));
172 return bb;
175 /* Create memory pool for rbi_pool. */
177 void
178 alloc_rbi_pool (void)
180 rbi_pool = create_alloc_pool ("rbi pool",
181 sizeof (struct reorder_block_def),
182 n_basic_blocks + 2);
185 /* Free rbi_pool. */
187 void
188 free_rbi_pool (void)
190 free_alloc_pool (rbi_pool);
193 /* Initialize rbi (the structure containing data used by basic block
194 duplication and reordering) for the given basic block. */
196 void
197 initialize_bb_rbi (basic_block bb)
199 gcc_assert (!bb->rbi);
200 bb->rbi = pool_alloc (rbi_pool);
201 memset (bb->rbi, 0, sizeof (struct reorder_block_def));
204 /* Link block B to chain after AFTER. */
205 void
206 link_block (basic_block b, basic_block after)
208 b->next_bb = after->next_bb;
209 b->prev_bb = after;
210 after->next_bb = b;
211 b->next_bb->prev_bb = b;
214 /* Unlink block B from chain. */
215 void
216 unlink_block (basic_block b)
218 b->next_bb->prev_bb = b->prev_bb;
219 b->prev_bb->next_bb = b->next_bb;
220 b->prev_bb = NULL;
221 b->next_bb = NULL;
224 /* Sequentially order blocks and compact the arrays. */
225 void
226 compact_blocks (void)
228 int i;
229 basic_block bb;
231 i = 0;
232 FOR_EACH_BB (bb)
234 BASIC_BLOCK (i) = bb;
235 bb->index = i;
236 i++;
239 gcc_assert (i == n_basic_blocks);
241 for (; i < last_basic_block; i++)
242 BASIC_BLOCK (i) = NULL;
244 last_basic_block = n_basic_blocks;
247 /* Remove block B from the basic block array. */
249 void
250 expunge_block (basic_block b)
252 unlink_block (b);
253 BASIC_BLOCK (b->index) = NULL;
254 n_basic_blocks--;
255 /* We should be able to ggc_free here, but we are not.
256 The dead SSA_NAMES are left pointing to dead statements that are pointing
257 to dead basic blocks making garbage collector to die.
258 We should be able to release all dead SSA_NAMES and at the same time we should
259 clear out BB pointer of dead statements consistently. */
262 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
263 created edge. Use this only if you are sure that this edge can't
264 possibly already exist. */
266 edge
267 unchecked_make_edge (basic_block src, basic_block dst, int flags)
269 edge e;
270 e = ggc_alloc_cleared (sizeof (*e));
271 n_edges++;
273 VEC_safe_insert (edge, src->succs, 0, e);
274 VEC_safe_insert (edge, dst->preds, 0, e);
276 e->src = src;
277 e->dest = dst;
278 e->flags = flags;
280 return e;
283 /* Create an edge connecting SRC and DST with FLAGS optionally using
284 edge cache CACHE. Return the new edge, NULL if already exist. */
286 edge
287 cached_make_edge (sbitmap *edge_cache, basic_block src, basic_block dst, int flags)
289 int use_edge_cache;
290 edge e;
291 edge_iterator ei;
293 /* Don't bother with edge cache for ENTRY or EXIT, if there aren't that
294 many edges to them, or we didn't allocate memory for it. */
295 use_edge_cache = (edge_cache
296 && src != ENTRY_BLOCK_PTR && dst != EXIT_BLOCK_PTR);
298 /* Make sure we don't add duplicate edges. */
299 switch (use_edge_cache)
301 default:
302 /* Quick test for non-existence of the edge. */
303 if (! TEST_BIT (edge_cache[src->index], dst->index))
304 break;
306 /* The edge exists; early exit if no work to do. */
307 if (flags == 0)
308 return NULL;
310 /* Fall through. */
311 case 0:
312 FOR_EACH_EDGE (e, ei, src->succs)
313 if (e->dest == dst)
315 e->flags |= flags;
316 return NULL;
318 break;
321 e = unchecked_make_edge (src, dst, flags);
323 if (use_edge_cache)
324 SET_BIT (edge_cache[src->index], dst->index);
326 return e;
329 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
330 created edge or NULL if already exist. */
332 edge
333 make_edge (basic_block src, basic_block dest, int flags)
335 return cached_make_edge (NULL, src, dest, flags);
338 /* Create an edge connecting SRC to DEST and set probability by knowing
339 that it is the single edge leaving SRC. */
341 edge
342 make_single_succ_edge (basic_block src, basic_block dest, int flags)
344 edge e = make_edge (src, dest, flags);
346 e->probability = REG_BR_PROB_BASE;
347 e->count = src->count;
348 return e;
351 /* This function will remove an edge from the flow graph. */
353 void
354 remove_edge (edge e)
356 edge tmp;
357 basic_block src, dest;
358 bool found = false;
359 edge_iterator ei;
361 src = e->src;
362 dest = e->dest;
364 for (ei = ei_start (src->succs); (tmp = ei_safe_edge (ei)); )
366 if (tmp == e)
368 VEC_ordered_remove (edge, src->succs, ei.index);
369 found = true;
370 break;
372 else
373 ei_next (&ei);
376 gcc_assert (found);
378 found = false;
379 for (ei = ei_start (dest->preds); (tmp = ei_safe_edge (ei)); )
381 if (tmp == e)
383 VEC_ordered_remove (edge, dest->preds, ei.index);
384 found = true;
385 break;
387 else
388 ei_next (&ei);
391 gcc_assert (found);
393 free_edge (e);
396 /* Redirect an edge's successor from one block to another. */
398 void
399 redirect_edge_succ (edge e, basic_block new_succ)
401 edge tmp;
402 edge_iterator ei;
403 bool found = false;
405 /* Disconnect the edge from the old successor block. */
406 for (ei = ei_start (e->dest->preds); (tmp = ei_safe_edge (ei)); )
408 if (tmp == e)
410 VEC_ordered_remove (edge, e->dest->preds, ei.index);
411 found = true;
412 break;
414 else
415 ei_next (&ei);
418 gcc_assert (found);
420 /* Reconnect the edge to the new successor block. */
421 VEC_safe_insert (edge, new_succ->preds, 0, e);
422 e->dest = new_succ;
425 /* Like previous but avoid possible duplicate edge. */
427 edge
428 redirect_edge_succ_nodup (edge e, basic_block new_succ)
430 edge s;
431 edge_iterator ei;
433 /* Check whether the edge is already present. */
434 FOR_EACH_EDGE (s, ei, e->src->succs)
435 if (s->dest == new_succ && s != e)
436 break;
438 if (s)
440 s->flags |= e->flags;
441 s->probability += e->probability;
442 if (s->probability > REG_BR_PROB_BASE)
443 s->probability = REG_BR_PROB_BASE;
444 s->count += e->count;
445 remove_edge (e);
446 e = s;
448 else
449 redirect_edge_succ (e, new_succ);
451 return e;
454 /* Redirect an edge's predecessor from one block to another. */
456 void
457 redirect_edge_pred (edge e, basic_block new_pred)
459 edge tmp;
460 edge_iterator ei;
461 bool found = false;
463 /* Disconnect the edge from the old predecessor block. */
464 for (ei = ei_start (e->src->succs); (tmp = ei_safe_edge (ei)); )
466 if (tmp == e)
468 VEC_ordered_remove (edge, e->src->succs, ei.index);
469 found = true;
470 break;
472 else
473 ei_next (&ei);
476 gcc_assert (found);
478 /* Reconnect the edge to the new predecessor block. */
479 VEC_safe_insert (edge, new_pred->succs, 0, e);
480 e->src = new_pred;
483 /* Clear all basic block flags, with the exception of partitioning. */
484 void
485 clear_bb_flags (void)
487 basic_block bb;
489 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
490 bb->flags = BB_PARTITION (bb);
493 /* Check the consistency of profile information. We can't do that
494 in verify_flow_info, as the counts may get invalid for incompletely
495 solved graphs, later eliminating of conditionals or roundoff errors.
496 It is still practical to have them reported for debugging of simple
497 testcases. */
498 void
499 check_bb_profile (basic_block bb, FILE * file)
501 edge e;
502 int sum = 0;
503 gcov_type lsum;
504 edge_iterator ei;
506 if (profile_status == PROFILE_ABSENT)
507 return;
509 if (bb != EXIT_BLOCK_PTR)
511 FOR_EACH_EDGE (e, ei, bb->succs)
512 sum += e->probability;
513 if (EDGE_COUNT (bb->succs) && abs (sum - REG_BR_PROB_BASE) > 100)
514 fprintf (file, "Invalid sum of outgoing probabilities %.1f%%\n",
515 sum * 100.0 / REG_BR_PROB_BASE);
516 lsum = 0;
517 FOR_EACH_EDGE (e, ei, bb->succs)
518 lsum += e->count;
519 if (EDGE_COUNT (bb->succs)
520 && (lsum - bb->count > 100 || lsum - bb->count < -100))
521 fprintf (file, "Invalid sum of outgoing counts %i, should be %i\n",
522 (int) lsum, (int) bb->count);
524 if (bb != ENTRY_BLOCK_PTR)
526 sum = 0;
527 FOR_EACH_EDGE (e, ei, bb->preds)
528 sum += EDGE_FREQUENCY (e);
529 if (abs (sum - bb->frequency) > 100)
530 fprintf (file,
531 "Invalid sum of incoming frequencies %i, should be %i\n",
532 sum, bb->frequency);
533 lsum = 0;
534 FOR_EACH_EDGE (e, ei, bb->preds)
535 lsum += e->count;
536 if (lsum - bb->count > 100 || lsum - bb->count < -100)
537 fprintf (file, "Invalid sum of incoming counts %i, should be %i\n",
538 (int) lsum, (int) bb->count);
542 void
543 dump_flow_info (FILE *file)
545 int i;
546 basic_block bb;
547 static const char * const reg_class_names[] = REG_CLASS_NAMES;
549 if (reg_n_info)
551 int max_regno = max_reg_num ();
552 fprintf (file, "%d registers.\n", max_regno);
553 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
554 if (REG_N_REFS (i))
556 enum reg_class class, altclass;
558 fprintf (file, "\nRegister %d used %d times across %d insns",
559 i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
560 if (REG_BASIC_BLOCK (i) >= 0)
561 fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
562 if (REG_N_SETS (i))
563 fprintf (file, "; set %d time%s", REG_N_SETS (i),
564 (REG_N_SETS (i) == 1) ? "" : "s");
565 if (regno_reg_rtx[i] != NULL && REG_USERVAR_P (regno_reg_rtx[i]))
566 fprintf (file, "; user var");
567 if (REG_N_DEATHS (i) != 1)
568 fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
569 if (REG_N_CALLS_CROSSED (i) == 1)
570 fprintf (file, "; crosses 1 call");
571 else if (REG_N_CALLS_CROSSED (i))
572 fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
573 if (regno_reg_rtx[i] != NULL
574 && PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
575 fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
577 class = reg_preferred_class (i);
578 altclass = reg_alternate_class (i);
579 if (class != GENERAL_REGS || altclass != ALL_REGS)
581 if (altclass == ALL_REGS || class == ALL_REGS)
582 fprintf (file, "; pref %s", reg_class_names[(int) class]);
583 else if (altclass == NO_REGS)
584 fprintf (file, "; %s or none", reg_class_names[(int) class]);
585 else
586 fprintf (file, "; pref %s, else %s",
587 reg_class_names[(int) class],
588 reg_class_names[(int) altclass]);
591 if (regno_reg_rtx[i] != NULL && REG_POINTER (regno_reg_rtx[i]))
592 fprintf (file, "; pointer");
593 fprintf (file, ".\n");
597 fprintf (file, "\n%d basic blocks, %d edges.\n", n_basic_blocks, n_edges);
598 FOR_EACH_BB (bb)
600 edge e;
601 edge_iterator ei;
603 fprintf (file, "\nBasic block %d ", bb->index);
604 fprintf (file, "prev %d, next %d, ",
605 bb->prev_bb->index, bb->next_bb->index);
606 fprintf (file, "loop_depth %d, count ", bb->loop_depth);
607 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
608 fprintf (file, ", freq %i", bb->frequency);
609 if (maybe_hot_bb_p (bb))
610 fprintf (file, ", maybe hot");
611 if (probably_never_executed_bb_p (bb))
612 fprintf (file, ", probably never executed");
613 fprintf (file, ".\n");
615 fprintf (file, "Predecessors: ");
616 FOR_EACH_EDGE (e, ei, bb->preds)
617 dump_edge_info (file, e, 0);
619 fprintf (file, "\nSuccessors: ");
620 FOR_EACH_EDGE (e, ei, bb->succs)
621 dump_edge_info (file, e, 1);
623 fprintf (file, "\nRegisters live at start:");
624 dump_regset (bb->global_live_at_start, file);
626 fprintf (file, "\nRegisters live at end:");
627 dump_regset (bb->global_live_at_end, file);
629 putc ('\n', file);
631 if (bb->global_live_at_start)
633 fprintf (file, "\nRegisters live at start:");
634 dump_regset (bb->global_live_at_start, file);
637 if (bb->global_live_at_end)
639 fprintf (file, "\nRegisters live at end:");
640 dump_regset (bb->global_live_at_end, file);
643 putc ('\n', file);
644 check_bb_profile (bb, file);
647 putc ('\n', file);
650 void
651 debug_flow_info (void)
653 dump_flow_info (stderr);
656 void
657 dump_edge_info (FILE *file, edge e, int do_succ)
659 basic_block side = (do_succ ? e->dest : e->src);
661 if (side == ENTRY_BLOCK_PTR)
662 fputs (" ENTRY", file);
663 else if (side == EXIT_BLOCK_PTR)
664 fputs (" EXIT", file);
665 else
666 fprintf (file, " %d", side->index);
668 if (e->probability)
669 fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE);
671 if (e->count)
673 fprintf (file, " count:");
674 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
677 if (e->flags)
679 static const char * const bitnames[] = {
680 "fallthru", "ab", "abcall", "eh", "fake", "dfs_back",
681 "can_fallthru", "irreducible", "sibcall", "loop_exit",
682 "true", "false", "exec"
684 int comma = 0;
685 int i, flags = e->flags;
687 fputs (" (", file);
688 for (i = 0; flags; i++)
689 if (flags & (1 << i))
691 flags &= ~(1 << i);
693 if (comma)
694 fputc (',', file);
695 if (i < (int) ARRAY_SIZE (bitnames))
696 fputs (bitnames[i], file);
697 else
698 fprintf (file, "%d", i);
699 comma = 1;
702 fputc (')', file);
706 /* Simple routines to easily allocate AUX fields of basic blocks. */
708 static struct obstack block_aux_obstack;
709 static void *first_block_aux_obj = 0;
710 static struct obstack edge_aux_obstack;
711 static void *first_edge_aux_obj = 0;
713 /* Allocate a memory block of SIZE as BB->aux. The obstack must
714 be first initialized by alloc_aux_for_blocks. */
716 inline void
717 alloc_aux_for_block (basic_block bb, int size)
719 /* Verify that aux field is clear. */
720 gcc_assert (!bb->aux && first_block_aux_obj);
721 bb->aux = obstack_alloc (&block_aux_obstack, size);
722 memset (bb->aux, 0, size);
725 /* Initialize the block_aux_obstack and if SIZE is nonzero, call
726 alloc_aux_for_block for each basic block. */
728 void
729 alloc_aux_for_blocks (int size)
731 static int initialized;
733 if (!initialized)
735 gcc_obstack_init (&block_aux_obstack);
736 initialized = 1;
738 else
739 /* Check whether AUX data are still allocated. */
740 gcc_assert (!first_block_aux_obj);
742 first_block_aux_obj = obstack_alloc (&block_aux_obstack, 0);
743 if (size)
745 basic_block bb;
747 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
748 alloc_aux_for_block (bb, size);
752 /* Clear AUX pointers of all blocks. */
754 void
755 clear_aux_for_blocks (void)
757 basic_block bb;
759 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
760 bb->aux = NULL;
763 /* Free data allocated in block_aux_obstack and clear AUX pointers
764 of all blocks. */
766 void
767 free_aux_for_blocks (void)
769 gcc_assert (first_block_aux_obj);
770 obstack_free (&block_aux_obstack, first_block_aux_obj);
771 first_block_aux_obj = NULL;
773 clear_aux_for_blocks ();
776 /* Allocate a memory edge of SIZE as BB->aux. The obstack must
777 be first initialized by alloc_aux_for_edges. */
779 inline void
780 alloc_aux_for_edge (edge e, int size)
782 /* Verify that aux field is clear. */
783 gcc_assert (!e->aux && first_edge_aux_obj);
784 e->aux = obstack_alloc (&edge_aux_obstack, size);
785 memset (e->aux, 0, size);
788 /* Initialize the edge_aux_obstack and if SIZE is nonzero, call
789 alloc_aux_for_edge for each basic edge. */
791 void
792 alloc_aux_for_edges (int size)
794 static int initialized;
796 if (!initialized)
798 gcc_obstack_init (&edge_aux_obstack);
799 initialized = 1;
801 else
802 /* Check whether AUX data are still allocated. */
803 gcc_assert (!first_edge_aux_obj);
805 first_edge_aux_obj = obstack_alloc (&edge_aux_obstack, 0);
806 if (size)
808 basic_block bb;
810 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
812 edge e;
813 edge_iterator ei;
815 FOR_EACH_EDGE (e, ei, bb->succs)
816 alloc_aux_for_edge (e, size);
821 /* Clear AUX pointers of all edges. */
823 void
824 clear_aux_for_edges (void)
826 basic_block bb;
827 edge e;
829 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
831 edge_iterator ei;
832 FOR_EACH_EDGE (e, ei, bb->succs)
833 e->aux = NULL;
837 /* Free data allocated in edge_aux_obstack and clear AUX pointers
838 of all edges. */
840 void
841 free_aux_for_edges (void)
843 gcc_assert (first_edge_aux_obj);
844 obstack_free (&edge_aux_obstack, first_edge_aux_obj);
845 first_edge_aux_obj = NULL;
847 clear_aux_for_edges ();
850 void
851 debug_bb (basic_block bb)
853 dump_bb (bb, stderr, 0);
856 basic_block
857 debug_bb_n (int n)
859 basic_block bb = BASIC_BLOCK (n);
860 dump_bb (bb, stderr, 0);
861 return bb;
864 /* Dumps cfg related information about basic block BB to FILE. */
866 static void
867 dump_cfg_bb_info (FILE *file, basic_block bb)
869 unsigned i;
870 edge_iterator ei;
871 bool first = true;
872 static const char * const bb_bitnames[] =
874 "dirty", "new", "reachable", "visited", "irreducible_loop", "superblock"
876 const unsigned n_bitnames = sizeof (bb_bitnames) / sizeof (char *);
877 edge e;
879 fprintf (file, "Basic block %d", bb->index);
880 for (i = 0; i < n_bitnames; i++)
881 if (bb->flags & (1 << i))
883 if (first)
884 fprintf (file, " (");
885 else
886 fprintf (file, ", ");
887 first = false;
888 fprintf (file, bb_bitnames[i]);
890 if (!first)
891 fprintf (file, ")");
892 fprintf (file, "\n");
894 fprintf (file, "Predecessors: ");
895 FOR_EACH_EDGE (e, ei, bb->preds)
896 dump_edge_info (file, e, 0);
898 fprintf (file, "\nSuccessors: ");
899 FOR_EACH_EDGE (e, ei, bb->succs)
900 dump_edge_info (file, e, 1);
901 fprintf (file, "\n\n");
904 /* Dumps a brief description of cfg to FILE. */
906 void
907 brief_dump_cfg (FILE *file)
909 basic_block bb;
911 FOR_EACH_BB (bb)
913 dump_cfg_bb_info (file, bb);
917 /* An edge originally destinating BB of FREQUENCY and COUNT has been proved to
918 leave the block by TAKEN_EDGE. Update profile of BB such that edge E can be
919 redirected to destination of TAKEN_EDGE.
921 This function may leave the profile inconsistent in the case TAKEN_EDGE
922 frequency or count is believed to be lower than FREQUENCY or COUNT
923 respectively. */
924 void
925 update_bb_profile_for_threading (basic_block bb, int edge_frequency,
926 gcov_type count, edge taken_edge)
928 edge c;
929 int prob;
930 edge_iterator ei;
932 bb->count -= count;
933 if (bb->count < 0)
934 bb->count = 0;
936 /* Compute the probability of TAKEN_EDGE being reached via threaded edge.
937 Watch for overflows. */
938 if (bb->frequency)
939 prob = edge_frequency * REG_BR_PROB_BASE / bb->frequency;
940 else
941 prob = 0;
942 if (prob > taken_edge->probability)
944 if (dump_file)
945 fprintf (dump_file, "Jump threading proved probability of edge "
946 "%i->%i too small (it is %i, should be %i).\n",
947 taken_edge->src->index, taken_edge->dest->index,
948 taken_edge->probability, prob);
949 prob = taken_edge->probability;
952 /* Now rescale the probabilities. */
953 taken_edge->probability -= prob;
954 prob = REG_BR_PROB_BASE - prob;
955 bb->frequency -= edge_frequency;
956 if (bb->frequency < 0)
957 bb->frequency = 0;
958 if (prob <= 0)
960 if (dump_file)
961 fprintf (dump_file, "Edge frequencies of bb %i has been reset, "
962 "frequency of block should end up being 0, it is %i\n",
963 bb->index, bb->frequency);
964 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
965 ei = ei_start (bb->succs);
966 ei_next (&ei);
967 for (; (c = ei_safe_edge (ei)); ei_next (&ei))
968 c->probability = 0;
970 else
971 FOR_EACH_EDGE (c, ei, bb->succs)
972 c->probability = ((c->probability * REG_BR_PROB_BASE) / (double) prob);
974 if (bb != taken_edge->src)
975 abort ();
976 taken_edge->count -= count;
977 if (taken_edge->count < 0)
978 taken_edge->count = 0;