1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
25 #include "coretypes.h"
34 #include "hard-reg-set.h"
35 #include "basic-block.h"
40 #include "splay-tree.h"
42 #include "langhooks.h"
48 /* The alias sets assigned to MEMs assist the back-end in determining
49 which MEMs can alias which other MEMs. In general, two MEMs in
50 different alias sets cannot alias each other, with one important
51 exception. Consider something like:
53 struct S { int i; double d; };
55 a store to an `S' can alias something of either type `int' or type
56 `double'. (However, a store to an `int' cannot alias a `double'
57 and vice versa.) We indicate this via a tree structure that looks
65 (The arrows are directed and point downwards.)
66 In this situation we say the alias set for `struct S' is the
67 `superset' and that those for `int' and `double' are `subsets'.
69 To see whether two alias sets can point to the same memory, we must
70 see if either alias set is a subset of the other. We need not trace
71 past immediate descendants, however, since we propagate all
72 grandchildren up one level.
74 Alias set zero is implicitly a superset of all other alias sets.
75 However, this is no actual entry for alias set zero. It is an
76 error to attempt to explicitly construct a subset of zero. */
78 struct alias_set_entry
GTY(())
80 /* The alias set number, as stored in MEM_ALIAS_SET. */
81 HOST_WIDE_INT alias_set
;
83 /* The children of the alias set. These are not just the immediate
84 children, but, in fact, all descendants. So, if we have:
86 struct T { struct S s; float f; }
88 continuing our example above, the children here will be all of
89 `int', `double', `float', and `struct S'. */
90 splay_tree
GTY((param1_is (int), param2_is (int))) children
;
92 /* Nonzero if would have a child of zero: this effectively makes this
93 alias set the same as alias set zero. */
96 typedef struct alias_set_entry
*alias_set_entry
;
98 static int rtx_equal_for_memref_p (rtx
, rtx
);
99 static rtx
find_symbolic_term (rtx
);
100 static int memrefs_conflict_p (int, rtx
, int, rtx
, HOST_WIDE_INT
);
101 static void record_set (rtx
, rtx
, void *);
102 static int base_alias_check (rtx
, rtx
, enum machine_mode
,
104 static rtx
find_base_value (rtx
);
105 static int mems_in_disjoint_alias_sets_p (rtx
, rtx
);
106 static int insert_subset_children (splay_tree_node
, void*);
107 static tree
find_base_decl (tree
);
108 static alias_set_entry
get_alias_set_entry (HOST_WIDE_INT
);
109 static rtx
fixed_scalar_and_varying_struct_p (rtx
, rtx
, rtx
, rtx
,
111 static int aliases_everything_p (rtx
);
112 static bool nonoverlapping_component_refs_p (tree
, tree
);
113 static tree
decl_for_component_ref (tree
);
114 static rtx
adjust_offset_for_component_ref (tree
, rtx
);
115 static int nonoverlapping_memrefs_p (rtx
, rtx
);
116 static int write_dependence_p (rtx
, rtx
, int);
118 static int nonlocal_mentioned_p_1 (rtx
*, void *);
119 static int nonlocal_mentioned_p (rtx
);
120 static int nonlocal_referenced_p_1 (rtx
*, void *);
121 static int nonlocal_referenced_p (rtx
);
122 static int nonlocal_set_p_1 (rtx
*, void *);
123 static int nonlocal_set_p (rtx
);
124 static void memory_modified_1 (rtx
, rtx
, void *);
126 /* Set up all info needed to perform alias analysis on memory references. */
128 /* Returns the size in bytes of the mode of X. */
129 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
131 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
132 different alias sets. We ignore alias sets in functions making use
133 of variable arguments because the va_arg macros on some systems are
135 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
136 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
138 /* Cap the number of passes we make over the insns propagating alias
139 information through set chains. 10 is a completely arbitrary choice. */
140 #define MAX_ALIAS_LOOP_PASSES 10
142 /* reg_base_value[N] gives an address to which register N is related.
143 If all sets after the first add or subtract to the current value
144 or otherwise modify it so it does not point to a different top level
145 object, reg_base_value[N] is equal to the address part of the source
148 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
149 expressions represent certain special values: function arguments and
150 the stack, frame, and argument pointers.
152 The contents of an ADDRESS is not normally used, the mode of the
153 ADDRESS determines whether the ADDRESS is a function argument or some
154 other special value. Pointer equality, not rtx_equal_p, determines whether
155 two ADDRESS expressions refer to the same base address.
157 The only use of the contents of an ADDRESS is for determining if the
158 current function performs nonlocal memory memory references for the
159 purposes of marking the function as a constant function. */
161 static GTY(()) varray_type reg_base_value
;
162 static rtx
*new_reg_base_value
;
164 /* We preserve the copy of old array around to avoid amount of garbage
165 produced. About 8% of garbage produced were attributed to this
167 static GTY((deletable
)) varray_type old_reg_base_value
;
169 /* Static hunks of RTL used by the aliasing code; these are initialized
170 once per function to avoid unnecessary RTL allocations. */
171 static GTY (()) rtx static_reg_base_value
[FIRST_PSEUDO_REGISTER
];
173 #define REG_BASE_VALUE(X) \
174 (reg_base_value && REGNO (X) < VARRAY_SIZE (reg_base_value) \
175 ? VARRAY_RTX (reg_base_value, REGNO (X)) : 0)
177 /* Vector of known invariant relationships between registers. Set in
178 loop unrolling. Indexed by register number, if nonzero the value
179 is an expression describing this register in terms of another.
181 The length of this array is REG_BASE_VALUE_SIZE.
183 Because this array contains only pseudo registers it has no effect
185 static GTY((length("alias_invariant_size"))) rtx
*alias_invariant
;
186 static GTY(()) unsigned int alias_invariant_size
;
188 /* Vector indexed by N giving the initial (unchanging) value known for
189 pseudo-register N. This array is initialized in init_alias_analysis,
190 and does not change until end_alias_analysis is called. */
191 static GTY((length("reg_known_value_size"))) rtx
*reg_known_value
;
193 /* Indicates number of valid entries in reg_known_value. */
194 static GTY(()) unsigned int reg_known_value_size
;
196 /* Vector recording for each reg_known_value whether it is due to a
197 REG_EQUIV note. Future passes (viz., reload) may replace the
198 pseudo with the equivalent expression and so we account for the
199 dependences that would be introduced if that happens.
201 The REG_EQUIV notes created in assign_parms may mention the arg
202 pointer, and there are explicit insns in the RTL that modify the
203 arg pointer. Thus we must ensure that such insns don't get
204 scheduled across each other because that would invalidate the
205 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
206 wrong, but solving the problem in the scheduler will likely give
207 better code, so we do it here. */
208 static bool *reg_known_equiv_p
;
210 /* True when scanning insns from the start of the rtl to the
211 NOTE_INSN_FUNCTION_BEG note. */
212 static bool copying_arguments
;
214 /* The splay-tree used to store the various alias set entries. */
215 static GTY ((param_is (struct alias_set_entry
))) varray_type alias_sets
;
217 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
218 such an entry, or NULL otherwise. */
220 static inline alias_set_entry
221 get_alias_set_entry (HOST_WIDE_INT alias_set
)
223 return (alias_set_entry
)VARRAY_GENERIC_PTR (alias_sets
, alias_set
);
226 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
227 the two MEMs cannot alias each other. */
230 mems_in_disjoint_alias_sets_p (rtx mem1
, rtx mem2
)
232 /* Perform a basic sanity check. Namely, that there are no alias sets
233 if we're not using strict aliasing. This helps to catch bugs
234 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
235 where a MEM is allocated in some way other than by the use of
236 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
237 use alias sets to indicate that spilled registers cannot alias each
238 other, we might need to remove this check. */
239 gcc_assert (flag_strict_aliasing
240 || (!MEM_ALIAS_SET (mem1
) && !MEM_ALIAS_SET (mem2
)));
242 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1
), MEM_ALIAS_SET (mem2
));
245 /* Insert the NODE into the splay tree given by DATA. Used by
246 record_alias_subset via splay_tree_foreach. */
249 insert_subset_children (splay_tree_node node
, void *data
)
251 splay_tree_insert ((splay_tree
) data
, node
->key
, node
->value
);
256 /* Return 1 if the two specified alias sets may conflict. */
259 alias_sets_conflict_p (HOST_WIDE_INT set1
, HOST_WIDE_INT set2
)
263 /* If have no alias set information for one of the operands, we have
264 to assume it can alias anything. */
265 if (set1
== 0 || set2
== 0
266 /* If the two alias sets are the same, they may alias. */
270 /* See if the first alias set is a subset of the second. */
271 ase
= get_alias_set_entry (set1
);
273 && (ase
->has_zero_child
274 || splay_tree_lookup (ase
->children
,
275 (splay_tree_key
) set2
)))
278 /* Now do the same, but with the alias sets reversed. */
279 ase
= get_alias_set_entry (set2
);
281 && (ase
->has_zero_child
282 || splay_tree_lookup (ase
->children
,
283 (splay_tree_key
) set1
)))
286 /* The two alias sets are distinct and neither one is the
287 child of the other. Therefore, they cannot alias. */
291 /* Return 1 if the two specified alias sets might conflict, or if any subtype
292 of these alias sets might conflict. */
295 alias_sets_might_conflict_p (HOST_WIDE_INT set1
, HOST_WIDE_INT set2
)
297 if (set1
== 0 || set2
== 0 || set1
== set2
)
304 /* Return 1 if any MEM object of type T1 will always conflict (using the
305 dependency routines in this file) with any MEM object of type T2.
306 This is used when allocating temporary storage. If T1 and/or T2 are
307 NULL_TREE, it means we know nothing about the storage. */
310 objects_must_conflict_p (tree t1
, tree t2
)
312 HOST_WIDE_INT set1
, set2
;
314 /* If neither has a type specified, we don't know if they'll conflict
315 because we may be using them to store objects of various types, for
316 example the argument and local variables areas of inlined functions. */
317 if (t1
== 0 && t2
== 0)
320 /* If they are the same type, they must conflict. */
322 /* Likewise if both are volatile. */
323 || (t1
!= 0 && TYPE_VOLATILE (t1
) && t2
!= 0 && TYPE_VOLATILE (t2
)))
326 set1
= t1
? get_alias_set (t1
) : 0;
327 set2
= t2
? get_alias_set (t2
) : 0;
329 /* Otherwise they conflict if they have no alias set or the same. We
330 can't simply use alias_sets_conflict_p here, because we must make
331 sure that every subtype of t1 will conflict with every subtype of
332 t2 for which a pair of subobjects of these respective subtypes
333 overlaps on the stack. */
334 return set1
== 0 || set2
== 0 || set1
== set2
;
337 /* T is an expression with pointer type. Find the DECL on which this
338 expression is based. (For example, in `a[i]' this would be `a'.)
339 If there is no such DECL, or a unique decl cannot be determined,
340 NULL_TREE is returned. */
343 find_base_decl (tree t
)
347 if (t
== 0 || t
== error_mark_node
|| ! POINTER_TYPE_P (TREE_TYPE (t
)))
350 /* If this is a declaration, return it. */
354 /* Handle general expressions. It would be nice to deal with
355 COMPONENT_REFs here. If we could tell that `a' and `b' were the
356 same, then `a->f' and `b->f' are also the same. */
357 switch (TREE_CODE_CLASS (TREE_CODE (t
)))
360 return find_base_decl (TREE_OPERAND (t
, 0));
363 /* Return 0 if found in neither or both are the same. */
364 d0
= find_base_decl (TREE_OPERAND (t
, 0));
365 d1
= find_base_decl (TREE_OPERAND (t
, 1));
380 /* Return 1 if all the nested component references handled by
381 get_inner_reference in T are such that we can address the object in T. */
384 can_address_p (tree t
)
386 /* If we're at the end, it is vacuously addressable. */
387 if (! handled_component_p (t
))
390 /* Bitfields are never addressable. */
391 else if (TREE_CODE (t
) == BIT_FIELD_REF
)
394 /* Fields are addressable unless they are marked as nonaddressable or
395 the containing type has alias set 0. */
396 else if (TREE_CODE (t
) == COMPONENT_REF
397 && ! DECL_NONADDRESSABLE_P (TREE_OPERAND (t
, 1))
398 && get_alias_set (TREE_TYPE (TREE_OPERAND (t
, 0))) != 0
399 && can_address_p (TREE_OPERAND (t
, 0)))
402 /* Likewise for arrays. */
403 else if ((TREE_CODE (t
) == ARRAY_REF
|| TREE_CODE (t
) == ARRAY_RANGE_REF
)
404 && ! TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t
, 0)))
405 && get_alias_set (TREE_TYPE (TREE_OPERAND (t
, 0))) != 0
406 && can_address_p (TREE_OPERAND (t
, 0)))
412 /* Return the alias set for T, which may be either a type or an
413 expression. Call language-specific routine for help, if needed. */
416 get_alias_set (tree t
)
420 /* If we're not doing any alias analysis, just assume everything
421 aliases everything else. Also return 0 if this or its type is
423 if (! flag_strict_aliasing
|| t
== error_mark_node
425 && (TREE_TYPE (t
) == 0 || TREE_TYPE (t
) == error_mark_node
)))
428 /* We can be passed either an expression or a type. This and the
429 language-specific routine may make mutually-recursive calls to each other
430 to figure out what to do. At each juncture, we see if this is a tree
431 that the language may need to handle specially. First handle things that
437 /* Remove any nops, then give the language a chance to do
438 something with this tree before we look at it. */
440 set
= lang_hooks
.get_alias_set (t
);
444 /* First see if the actual object referenced is an INDIRECT_REF from a
445 restrict-qualified pointer or a "void *". */
446 while (handled_component_p (inner
))
448 inner
= TREE_OPERAND (inner
, 0);
452 /* Check for accesses through restrict-qualified pointers. */
453 if (INDIRECT_REF_P (inner
))
455 tree decl
= find_base_decl (TREE_OPERAND (inner
, 0));
457 if (decl
&& DECL_POINTER_ALIAS_SET_KNOWN_P (decl
))
459 /* If we haven't computed the actual alias set, do it now. */
460 if (DECL_POINTER_ALIAS_SET (decl
) == -2)
462 tree pointed_to_type
= TREE_TYPE (TREE_TYPE (decl
));
464 /* No two restricted pointers can point at the same thing.
465 However, a restricted pointer can point at the same thing
466 as an unrestricted pointer, if that unrestricted pointer
467 is based on the restricted pointer. So, we make the
468 alias set for the restricted pointer a subset of the
469 alias set for the type pointed to by the type of the
471 HOST_WIDE_INT pointed_to_alias_set
472 = get_alias_set (pointed_to_type
);
474 if (pointed_to_alias_set
== 0)
475 /* It's not legal to make a subset of alias set zero. */
476 DECL_POINTER_ALIAS_SET (decl
) = 0;
477 else if (AGGREGATE_TYPE_P (pointed_to_type
))
478 /* For an aggregate, we must treat the restricted
479 pointer the same as an ordinary pointer. If we
480 were to make the type pointed to by the
481 restricted pointer a subset of the pointed-to
482 type, then we would believe that other subsets
483 of the pointed-to type (such as fields of that
484 type) do not conflict with the type pointed to
485 by the restricted pointer. */
486 DECL_POINTER_ALIAS_SET (decl
)
487 = pointed_to_alias_set
;
490 DECL_POINTER_ALIAS_SET (decl
) = new_alias_set ();
491 record_alias_subset (pointed_to_alias_set
,
492 DECL_POINTER_ALIAS_SET (decl
));
496 /* We use the alias set indicated in the declaration. */
497 return DECL_POINTER_ALIAS_SET (decl
);
500 /* If we have an INDIRECT_REF via a void pointer, we don't
501 know anything about what that might alias. Likewise if the
502 pointer is marked that way. */
503 else if (TREE_CODE (TREE_TYPE (inner
)) == VOID_TYPE
504 || (TYPE_REF_CAN_ALIAS_ALL
505 (TREE_TYPE (TREE_OPERAND (inner
, 0)))))
509 /* Otherwise, pick up the outermost object that we could have a pointer
510 to, processing conversions as above. */
511 while (handled_component_p (t
) && ! can_address_p (t
))
513 t
= TREE_OPERAND (t
, 0);
517 /* If we've already determined the alias set for a decl, just return
518 it. This is necessary for C++ anonymous unions, whose component
519 variables don't look like union members (boo!). */
520 if (TREE_CODE (t
) == VAR_DECL
521 && DECL_RTL_SET_P (t
) && MEM_P (DECL_RTL (t
)))
522 return MEM_ALIAS_SET (DECL_RTL (t
));
524 /* Now all we care about is the type. */
528 /* Variant qualifiers don't affect the alias set, so get the main
529 variant. If this is a type with a known alias set, return it. */
530 t
= TYPE_MAIN_VARIANT (t
);
531 if (TYPE_ALIAS_SET_KNOWN_P (t
))
532 return TYPE_ALIAS_SET (t
);
534 /* See if the language has special handling for this type. */
535 set
= lang_hooks
.get_alias_set (t
);
539 /* There are no objects of FUNCTION_TYPE, so there's no point in
540 using up an alias set for them. (There are, of course, pointers
541 and references to functions, but that's different.) */
542 else if (TREE_CODE (t
) == FUNCTION_TYPE
)
545 /* Unless the language specifies otherwise, let vector types alias
546 their components. This avoids some nasty type punning issues in
547 normal usage. And indeed lets vectors be treated more like an
549 else if (TREE_CODE (t
) == VECTOR_TYPE
)
550 set
= get_alias_set (TREE_TYPE (t
));
553 /* Otherwise make a new alias set for this type. */
554 set
= new_alias_set ();
556 TYPE_ALIAS_SET (t
) = set
;
558 /* If this is an aggregate type, we must record any component aliasing
560 if (AGGREGATE_TYPE_P (t
) || TREE_CODE (t
) == COMPLEX_TYPE
)
561 record_component_aliases (t
);
566 /* Return a brand-new alias set. */
568 static GTY(()) HOST_WIDE_INT last_alias_set
;
573 if (flag_strict_aliasing
)
576 VARRAY_GENERIC_PTR_INIT (alias_sets
, 10, "alias sets");
578 VARRAY_GROW (alias_sets
, last_alias_set
+ 2);
579 return ++last_alias_set
;
585 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
586 not everything that aliases SUPERSET also aliases SUBSET. For example,
587 in C, a store to an `int' can alias a load of a structure containing an
588 `int', and vice versa. But it can't alias a load of a 'double' member
589 of the same structure. Here, the structure would be the SUPERSET and
590 `int' the SUBSET. This relationship is also described in the comment at
591 the beginning of this file.
593 This function should be called only once per SUPERSET/SUBSET pair.
595 It is illegal for SUPERSET to be zero; everything is implicitly a
596 subset of alias set zero. */
599 record_alias_subset (HOST_WIDE_INT superset
, HOST_WIDE_INT subset
)
601 alias_set_entry superset_entry
;
602 alias_set_entry subset_entry
;
604 /* It is possible in complex type situations for both sets to be the same,
605 in which case we can ignore this operation. */
606 if (superset
== subset
)
609 gcc_assert (superset
);
611 superset_entry
= get_alias_set_entry (superset
);
612 if (superset_entry
== 0)
614 /* Create an entry for the SUPERSET, so that we have a place to
615 attach the SUBSET. */
616 superset_entry
= ggc_alloc (sizeof (struct alias_set_entry
));
617 superset_entry
->alias_set
= superset
;
618 superset_entry
->children
619 = splay_tree_new_ggc (splay_tree_compare_ints
);
620 superset_entry
->has_zero_child
= 0;
621 VARRAY_GENERIC_PTR (alias_sets
, superset
) = superset_entry
;
625 superset_entry
->has_zero_child
= 1;
628 subset_entry
= get_alias_set_entry (subset
);
629 /* If there is an entry for the subset, enter all of its children
630 (if they are not already present) as children of the SUPERSET. */
633 if (subset_entry
->has_zero_child
)
634 superset_entry
->has_zero_child
= 1;
636 splay_tree_foreach (subset_entry
->children
, insert_subset_children
,
637 superset_entry
->children
);
640 /* Enter the SUBSET itself as a child of the SUPERSET. */
641 splay_tree_insert (superset_entry
->children
,
642 (splay_tree_key
) subset
, 0);
646 /* Record that component types of TYPE, if any, are part of that type for
647 aliasing purposes. For record types, we only record component types
648 for fields that are marked addressable. For array types, we always
649 record the component types, so the front end should not call this
650 function if the individual component aren't addressable. */
653 record_component_aliases (tree type
)
655 HOST_WIDE_INT superset
= get_alias_set (type
);
661 switch (TREE_CODE (type
))
664 if (! TYPE_NONALIASED_COMPONENT (type
))
665 record_alias_subset (superset
, get_alias_set (TREE_TYPE (type
)));
670 case QUAL_UNION_TYPE
:
671 /* Recursively record aliases for the base classes, if there are any. */
672 if (TYPE_BINFO (type
))
675 tree binfo
, base_binfo
;
677 for (binfo
= TYPE_BINFO (type
), i
= 0;
678 BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
679 record_alias_subset (superset
,
680 get_alias_set (BINFO_TYPE (base_binfo
)));
682 for (field
= TYPE_FIELDS (type
); field
!= 0; field
= TREE_CHAIN (field
))
683 if (TREE_CODE (field
) == FIELD_DECL
&& ! DECL_NONADDRESSABLE_P (field
))
684 record_alias_subset (superset
, get_alias_set (TREE_TYPE (field
)));
688 record_alias_subset (superset
, get_alias_set (TREE_TYPE (type
)));
696 /* Allocate an alias set for use in storing and reading from the varargs
699 static GTY(()) HOST_WIDE_INT varargs_set
= -1;
702 get_varargs_alias_set (void)
705 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
706 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
707 consistently use the varargs alias set for loads from the varargs
708 area. So don't use it anywhere. */
711 if (varargs_set
== -1)
712 varargs_set
= new_alias_set ();
718 /* Likewise, but used for the fixed portions of the frame, e.g., register
721 static GTY(()) HOST_WIDE_INT frame_set
= -1;
724 get_frame_alias_set (void)
727 frame_set
= new_alias_set ();
732 /* Inside SRC, the source of a SET, find a base address. */
735 find_base_value (rtx src
)
739 switch (GET_CODE (src
))
747 /* At the start of a function, argument registers have known base
748 values which may be lost later. Returning an ADDRESS
749 expression here allows optimization based on argument values
750 even when the argument registers are used for other purposes. */
751 if (regno
< FIRST_PSEUDO_REGISTER
&& copying_arguments
)
752 return new_reg_base_value
[regno
];
754 /* If a pseudo has a known base value, return it. Do not do this
755 for non-fixed hard regs since it can result in a circular
756 dependency chain for registers which have values at function entry.
758 The test above is not sufficient because the scheduler may move
759 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
760 if ((regno
>= FIRST_PSEUDO_REGISTER
|| fixed_regs
[regno
])
761 && regno
< VARRAY_SIZE (reg_base_value
))
763 /* If we're inside init_alias_analysis, use new_reg_base_value
764 to reduce the number of relaxation iterations. */
765 if (new_reg_base_value
&& new_reg_base_value
[regno
]
766 && REG_N_SETS (regno
) == 1)
767 return new_reg_base_value
[regno
];
769 if (VARRAY_RTX (reg_base_value
, regno
))
770 return VARRAY_RTX (reg_base_value
, regno
);
776 /* Check for an argument passed in memory. Only record in the
777 copying-arguments block; it is too hard to track changes
779 if (copying_arguments
780 && (XEXP (src
, 0) == arg_pointer_rtx
781 || (GET_CODE (XEXP (src
, 0)) == PLUS
782 && XEXP (XEXP (src
, 0), 0) == arg_pointer_rtx
)))
783 return gen_rtx_ADDRESS (VOIDmode
, src
);
788 if (GET_CODE (src
) != PLUS
&& GET_CODE (src
) != MINUS
)
791 /* ... fall through ... */
796 rtx temp
, src_0
= XEXP (src
, 0), src_1
= XEXP (src
, 1);
798 /* If either operand is a REG that is a known pointer, then it
800 if (REG_P (src_0
) && REG_POINTER (src_0
))
801 return find_base_value (src_0
);
802 if (REG_P (src_1
) && REG_POINTER (src_1
))
803 return find_base_value (src_1
);
805 /* If either operand is a REG, then see if we already have
806 a known value for it. */
809 temp
= find_base_value (src_0
);
816 temp
= find_base_value (src_1
);
821 /* If either base is named object or a special address
822 (like an argument or stack reference), then use it for the
825 && (GET_CODE (src_0
) == SYMBOL_REF
826 || GET_CODE (src_0
) == LABEL_REF
827 || (GET_CODE (src_0
) == ADDRESS
828 && GET_MODE (src_0
) != VOIDmode
)))
832 && (GET_CODE (src_1
) == SYMBOL_REF
833 || GET_CODE (src_1
) == LABEL_REF
834 || (GET_CODE (src_1
) == ADDRESS
835 && GET_MODE (src_1
) != VOIDmode
)))
838 /* Guess which operand is the base address:
839 If either operand is a symbol, then it is the base. If
840 either operand is a CONST_INT, then the other is the base. */
841 if (GET_CODE (src_1
) == CONST_INT
|| CONSTANT_P (src_0
))
842 return find_base_value (src_0
);
843 else if (GET_CODE (src_0
) == CONST_INT
|| CONSTANT_P (src_1
))
844 return find_base_value (src_1
);
850 /* The standard form is (lo_sum reg sym) so look only at the
852 return find_base_value (XEXP (src
, 1));
855 /* If the second operand is constant set the base
856 address to the first operand. */
857 if (GET_CODE (XEXP (src
, 1)) == CONST_INT
&& INTVAL (XEXP (src
, 1)) != 0)
858 return find_base_value (XEXP (src
, 0));
862 if (GET_MODE_SIZE (GET_MODE (src
)) < GET_MODE_SIZE (Pmode
))
872 return find_base_value (XEXP (src
, 0));
875 case SIGN_EXTEND
: /* used for NT/Alpha pointers */
877 rtx temp
= find_base_value (XEXP (src
, 0));
879 if (temp
!= 0 && CONSTANT_P (temp
))
880 temp
= convert_memory_address (Pmode
, temp
);
892 /* Called from init_alias_analysis indirectly through note_stores. */
894 /* While scanning insns to find base values, reg_seen[N] is nonzero if
895 register N has been set in this function. */
896 static char *reg_seen
;
898 /* Addresses which are known not to alias anything else are identified
899 by a unique integer. */
900 static int unique_id
;
903 record_set (rtx dest
, rtx set
, void *data ATTRIBUTE_UNUSED
)
912 regno
= REGNO (dest
);
914 gcc_assert (regno
< VARRAY_SIZE (reg_base_value
));
916 /* If this spans multiple hard registers, then we must indicate that every
917 register has an unusable value. */
918 if (regno
< FIRST_PSEUDO_REGISTER
)
919 n
= hard_regno_nregs
[regno
][GET_MODE (dest
)];
926 reg_seen
[regno
+ n
] = 1;
927 new_reg_base_value
[regno
+ n
] = 0;
934 /* A CLOBBER wipes out any old value but does not prevent a previously
935 unset register from acquiring a base address (i.e. reg_seen is not
937 if (GET_CODE (set
) == CLOBBER
)
939 new_reg_base_value
[regno
] = 0;
948 new_reg_base_value
[regno
] = 0;
952 new_reg_base_value
[regno
] = gen_rtx_ADDRESS (Pmode
,
953 GEN_INT (unique_id
++));
957 /* If this is not the first set of REGNO, see whether the new value
958 is related to the old one. There are two cases of interest:
960 (1) The register might be assigned an entirely new value
961 that has the same base term as the original set.
963 (2) The set might be a simple self-modification that
964 cannot change REGNO's base value.
966 If neither case holds, reject the original base value as invalid.
967 Note that the following situation is not detected:
969 extern int x, y; int *p = &x; p += (&y-&x);
971 ANSI C does not allow computing the difference of addresses
972 of distinct top level objects. */
973 if (new_reg_base_value
[regno
] != 0
974 && find_base_value (src
) != new_reg_base_value
[regno
])
975 switch (GET_CODE (src
))
979 if (XEXP (src
, 0) != dest
&& XEXP (src
, 1) != dest
)
980 new_reg_base_value
[regno
] = 0;
983 /* If the value we add in the PLUS is also a valid base value,
984 this might be the actual base value, and the original value
987 rtx other
= NULL_RTX
;
989 if (XEXP (src
, 0) == dest
)
990 other
= XEXP (src
, 1);
991 else if (XEXP (src
, 1) == dest
)
992 other
= XEXP (src
, 0);
994 if (! other
|| find_base_value (other
))
995 new_reg_base_value
[regno
] = 0;
999 if (XEXP (src
, 0) != dest
|| GET_CODE (XEXP (src
, 1)) != CONST_INT
)
1000 new_reg_base_value
[regno
] = 0;
1003 new_reg_base_value
[regno
] = 0;
1006 /* If this is the first set of a register, record the value. */
1007 else if ((regno
>= FIRST_PSEUDO_REGISTER
|| ! fixed_regs
[regno
])
1008 && ! reg_seen
[regno
] && new_reg_base_value
[regno
] == 0)
1009 new_reg_base_value
[regno
] = find_base_value (src
);
1011 reg_seen
[regno
] = 1;
1014 /* Called from loop optimization when a new pseudo-register is
1015 created. It indicates that REGNO is being set to VAL. f INVARIANT
1016 is true then this value also describes an invariant relationship
1017 which can be used to deduce that two registers with unknown values
1021 record_base_value (unsigned int regno
, rtx val
, int invariant
)
1023 if (invariant
&& alias_invariant
&& regno
< alias_invariant_size
)
1024 alias_invariant
[regno
] = val
;
1026 if (regno
>= VARRAY_SIZE (reg_base_value
))
1027 VARRAY_GROW (reg_base_value
, max_reg_num ());
1031 VARRAY_RTX (reg_base_value
, regno
)
1032 = REG_BASE_VALUE (val
);
1035 VARRAY_RTX (reg_base_value
, regno
)
1036 = find_base_value (val
);
1039 /* Clear alias info for a register. This is used if an RTL transformation
1040 changes the value of a register. This is used in flow by AUTO_INC_DEC
1041 optimizations. We don't need to clear reg_base_value, since flow only
1042 changes the offset. */
1045 clear_reg_alias_info (rtx reg
)
1047 unsigned int regno
= REGNO (reg
);
1049 if (regno
>= FIRST_PSEUDO_REGISTER
)
1051 regno
-= FIRST_PSEUDO_REGISTER
;
1052 if (regno
< reg_known_value_size
)
1054 reg_known_value
[regno
] = reg
;
1055 reg_known_equiv_p
[regno
] = false;
1060 /* If a value is known for REGNO, return it. */
1063 get_reg_known_value (unsigned int regno
)
1065 if (regno
>= FIRST_PSEUDO_REGISTER
)
1067 regno
-= FIRST_PSEUDO_REGISTER
;
1068 if (regno
< reg_known_value_size
)
1069 return reg_known_value
[regno
];
1077 set_reg_known_value (unsigned int regno
, rtx val
)
1079 if (regno
>= FIRST_PSEUDO_REGISTER
)
1081 regno
-= FIRST_PSEUDO_REGISTER
;
1082 if (regno
< reg_known_value_size
)
1083 reg_known_value
[regno
] = val
;
1087 /* Similarly for reg_known_equiv_p. */
1090 get_reg_known_equiv_p (unsigned int regno
)
1092 if (regno
>= FIRST_PSEUDO_REGISTER
)
1094 regno
-= FIRST_PSEUDO_REGISTER
;
1095 if (regno
< reg_known_value_size
)
1096 return reg_known_equiv_p
[regno
];
1102 set_reg_known_equiv_p (unsigned int regno
, bool val
)
1104 if (regno
>= FIRST_PSEUDO_REGISTER
)
1106 regno
-= FIRST_PSEUDO_REGISTER
;
1107 if (regno
< reg_known_value_size
)
1108 reg_known_equiv_p
[regno
] = val
;
1113 /* Returns a canonical version of X, from the point of view alias
1114 analysis. (For example, if X is a MEM whose address is a register,
1115 and the register has a known value (say a SYMBOL_REF), then a MEM
1116 whose address is the SYMBOL_REF is returned.) */
1121 /* Recursively look for equivalences. */
1122 if (REG_P (x
) && REGNO (x
) >= FIRST_PSEUDO_REGISTER
)
1124 rtx t
= get_reg_known_value (REGNO (x
));
1128 return canon_rtx (t
);
1131 if (GET_CODE (x
) == PLUS
)
1133 rtx x0
= canon_rtx (XEXP (x
, 0));
1134 rtx x1
= canon_rtx (XEXP (x
, 1));
1136 if (x0
!= XEXP (x
, 0) || x1
!= XEXP (x
, 1))
1138 if (GET_CODE (x0
) == CONST_INT
)
1139 return plus_constant (x1
, INTVAL (x0
));
1140 else if (GET_CODE (x1
) == CONST_INT
)
1141 return plus_constant (x0
, INTVAL (x1
));
1142 return gen_rtx_PLUS (GET_MODE (x
), x0
, x1
);
1146 /* This gives us much better alias analysis when called from
1147 the loop optimizer. Note we want to leave the original
1148 MEM alone, but need to return the canonicalized MEM with
1149 all the flags with their original values. */
1151 x
= replace_equiv_address_nv (x
, canon_rtx (XEXP (x
, 0)));
1156 /* Return 1 if X and Y are identical-looking rtx's.
1157 Expect that X and Y has been already canonicalized.
1159 We use the data in reg_known_value above to see if two registers with
1160 different numbers are, in fact, equivalent. */
1163 rtx_equal_for_memref_p (rtx x
, rtx y
)
1170 if (x
== 0 && y
== 0)
1172 if (x
== 0 || y
== 0)
1178 code
= GET_CODE (x
);
1179 /* Rtx's of different codes cannot be equal. */
1180 if (code
!= GET_CODE (y
))
1183 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1184 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1186 if (GET_MODE (x
) != GET_MODE (y
))
1189 /* Some RTL can be compared without a recursive examination. */
1193 return REGNO (x
) == REGNO (y
);
1196 return XEXP (x
, 0) == XEXP (y
, 0);
1199 return XSTR (x
, 0) == XSTR (y
, 0);
1204 /* There's no need to compare the contents of CONST_DOUBLEs or
1205 CONST_INTs because pointer equality is a good enough
1206 comparison for these nodes. */
1213 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1215 return ((rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 0))
1216 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 1)))
1217 || (rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 1))
1218 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 0))));
1219 /* For commutative operations, the RTX match if the operand match in any
1220 order. Also handle the simple binary and unary cases without a loop. */
1221 if (COMMUTATIVE_P (x
))
1223 rtx xop0
= canon_rtx (XEXP (x
, 0));
1224 rtx yop0
= canon_rtx (XEXP (y
, 0));
1225 rtx yop1
= canon_rtx (XEXP (y
, 1));
1227 return ((rtx_equal_for_memref_p (xop0
, yop0
)
1228 && rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 1)), yop1
))
1229 || (rtx_equal_for_memref_p (xop0
, yop1
)
1230 && rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 1)), yop0
)));
1232 else if (NON_COMMUTATIVE_P (x
))
1234 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 0)),
1235 canon_rtx (XEXP (y
, 0)))
1236 && rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 1)),
1237 canon_rtx (XEXP (y
, 1))));
1239 else if (UNARY_P (x
))
1240 return rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 0)),
1241 canon_rtx (XEXP (y
, 0)));
1243 /* Compare the elements. If any pair of corresponding elements
1244 fail to match, return 0 for the whole things.
1246 Limit cases to types which actually appear in addresses. */
1248 fmt
= GET_RTX_FORMAT (code
);
1249 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1254 if (XINT (x
, i
) != XINT (y
, i
))
1259 /* Two vectors must have the same length. */
1260 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
1263 /* And the corresponding elements must match. */
1264 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1265 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x
, i
, j
)),
1266 canon_rtx (XVECEXP (y
, i
, j
))) == 0)
1271 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x
, i
)),
1272 canon_rtx (XEXP (y
, i
))) == 0)
1276 /* This can happen for asm operands. */
1278 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
1282 /* This can happen for an asm which clobbers memory. */
1286 /* It is believed that rtx's at this level will never
1287 contain anything but integers and other rtx's,
1288 except for within LABEL_REFs and SYMBOL_REFs. */
1296 /* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
1297 X and return it, or return 0 if none found. */
1300 find_symbolic_term (rtx x
)
1306 code
= GET_CODE (x
);
1307 if (code
== SYMBOL_REF
|| code
== LABEL_REF
)
1312 fmt
= GET_RTX_FORMAT (code
);
1313 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1319 t
= find_symbolic_term (XEXP (x
, i
));
1323 else if (fmt
[i
] == 'E')
1330 find_base_term (rtx x
)
1333 struct elt_loc_list
*l
;
1335 #if defined (FIND_BASE_TERM)
1336 /* Try machine-dependent ways to find the base term. */
1337 x
= FIND_BASE_TERM (x
);
1340 switch (GET_CODE (x
))
1343 return REG_BASE_VALUE (x
);
1346 if (GET_MODE_SIZE (GET_MODE (x
)) < GET_MODE_SIZE (Pmode
))
1356 return find_base_term (XEXP (x
, 0));
1359 case SIGN_EXTEND
: /* Used for Alpha/NT pointers */
1361 rtx temp
= find_base_term (XEXP (x
, 0));
1363 if (temp
!= 0 && CONSTANT_P (temp
))
1364 temp
= convert_memory_address (Pmode
, temp
);
1370 val
= CSELIB_VAL_PTR (x
);
1373 for (l
= val
->locs
; l
; l
= l
->next
)
1374 if ((x
= find_base_term (l
->loc
)) != 0)
1380 if (GET_CODE (x
) != PLUS
&& GET_CODE (x
) != MINUS
)
1387 rtx tmp1
= XEXP (x
, 0);
1388 rtx tmp2
= XEXP (x
, 1);
1390 /* This is a little bit tricky since we have to determine which of
1391 the two operands represents the real base address. Otherwise this
1392 routine may return the index register instead of the base register.
1394 That may cause us to believe no aliasing was possible, when in
1395 fact aliasing is possible.
1397 We use a few simple tests to guess the base register. Additional
1398 tests can certainly be added. For example, if one of the operands
1399 is a shift or multiply, then it must be the index register and the
1400 other operand is the base register. */
1402 if (tmp1
== pic_offset_table_rtx
&& CONSTANT_P (tmp2
))
1403 return find_base_term (tmp2
);
1405 /* If either operand is known to be a pointer, then use it
1406 to determine the base term. */
1407 if (REG_P (tmp1
) && REG_POINTER (tmp1
))
1408 return find_base_term (tmp1
);
1410 if (REG_P (tmp2
) && REG_POINTER (tmp2
))
1411 return find_base_term (tmp2
);
1413 /* Neither operand was known to be a pointer. Go ahead and find the
1414 base term for both operands. */
1415 tmp1
= find_base_term (tmp1
);
1416 tmp2
= find_base_term (tmp2
);
1418 /* If either base term is named object or a special address
1419 (like an argument or stack reference), then use it for the
1422 && (GET_CODE (tmp1
) == SYMBOL_REF
1423 || GET_CODE (tmp1
) == LABEL_REF
1424 || (GET_CODE (tmp1
) == ADDRESS
1425 && GET_MODE (tmp1
) != VOIDmode
)))
1429 && (GET_CODE (tmp2
) == SYMBOL_REF
1430 || GET_CODE (tmp2
) == LABEL_REF
1431 || (GET_CODE (tmp2
) == ADDRESS
1432 && GET_MODE (tmp2
) != VOIDmode
)))
1435 /* We could not determine which of the two operands was the
1436 base register and which was the index. So we can determine
1437 nothing from the base alias check. */
1442 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
&& INTVAL (XEXP (x
, 1)) != 0)
1443 return find_base_term (XEXP (x
, 0));
1455 /* Return 0 if the addresses X and Y are known to point to different
1456 objects, 1 if they might be pointers to the same object. */
1459 base_alias_check (rtx x
, rtx y
, enum machine_mode x_mode
,
1460 enum machine_mode y_mode
)
1462 rtx x_base
= find_base_term (x
);
1463 rtx y_base
= find_base_term (y
);
1465 /* If the address itself has no known base see if a known equivalent
1466 value has one. If either address still has no known base, nothing
1467 is known about aliasing. */
1472 if (! flag_expensive_optimizations
|| (x_c
= canon_rtx (x
)) == x
)
1475 x_base
= find_base_term (x_c
);
1483 if (! flag_expensive_optimizations
|| (y_c
= canon_rtx (y
)) == y
)
1486 y_base
= find_base_term (y_c
);
1491 /* If the base addresses are equal nothing is known about aliasing. */
1492 if (rtx_equal_p (x_base
, y_base
))
1495 /* The base addresses of the read and write are different expressions.
1496 If they are both symbols and they are not accessed via AND, there is
1497 no conflict. We can bring knowledge of object alignment into play
1498 here. For example, on alpha, "char a, b;" can alias one another,
1499 though "char a; long b;" cannot. */
1500 if (GET_CODE (x_base
) != ADDRESS
&& GET_CODE (y_base
) != ADDRESS
)
1502 if (GET_CODE (x
) == AND
&& GET_CODE (y
) == AND
)
1504 if (GET_CODE (x
) == AND
1505 && (GET_CODE (XEXP (x
, 1)) != CONST_INT
1506 || (int) GET_MODE_UNIT_SIZE (y_mode
) < -INTVAL (XEXP (x
, 1))))
1508 if (GET_CODE (y
) == AND
1509 && (GET_CODE (XEXP (y
, 1)) != CONST_INT
1510 || (int) GET_MODE_UNIT_SIZE (x_mode
) < -INTVAL (XEXP (y
, 1))))
1512 /* Differing symbols never alias. */
1516 /* If one address is a stack reference there can be no alias:
1517 stack references using different base registers do not alias,
1518 a stack reference can not alias a parameter, and a stack reference
1519 can not alias a global. */
1520 if ((GET_CODE (x_base
) == ADDRESS
&& GET_MODE (x_base
) == Pmode
)
1521 || (GET_CODE (y_base
) == ADDRESS
&& GET_MODE (y_base
) == Pmode
))
1524 if (! flag_argument_noalias
)
1527 if (flag_argument_noalias
> 1)
1530 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1531 return ! (GET_MODE (x_base
) == VOIDmode
&& GET_MODE (y_base
) == VOIDmode
);
1534 /* Convert the address X into something we can use. This is done by returning
1535 it unchanged unless it is a value; in the latter case we call cselib to get
1536 a more useful rtx. */
1542 struct elt_loc_list
*l
;
1544 if (GET_CODE (x
) != VALUE
)
1546 v
= CSELIB_VAL_PTR (x
);
1549 for (l
= v
->locs
; l
; l
= l
->next
)
1550 if (CONSTANT_P (l
->loc
))
1552 for (l
= v
->locs
; l
; l
= l
->next
)
1553 if (!REG_P (l
->loc
) && !MEM_P (l
->loc
))
1556 return v
->locs
->loc
;
1561 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1562 where SIZE is the size in bytes of the memory reference. If ADDR
1563 is not modified by the memory reference then ADDR is returned. */
1566 addr_side_effect_eval (rtx addr
, int size
, int n_refs
)
1570 switch (GET_CODE (addr
))
1573 offset
= (n_refs
+ 1) * size
;
1576 offset
= -(n_refs
+ 1) * size
;
1579 offset
= n_refs
* size
;
1582 offset
= -n_refs
* size
;
1590 addr
= gen_rtx_PLUS (GET_MODE (addr
), XEXP (addr
, 0),
1593 addr
= XEXP (addr
, 0);
1594 addr
= canon_rtx (addr
);
1599 /* Return nonzero if X and Y (memory addresses) could reference the
1600 same location in memory. C is an offset accumulator. When
1601 C is nonzero, we are testing aliases between X and Y + C.
1602 XSIZE is the size in bytes of the X reference,
1603 similarly YSIZE is the size in bytes for Y.
1604 Expect that canon_rtx has been already called for X and Y.
1606 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1607 referenced (the reference was BLKmode), so make the most pessimistic
1610 If XSIZE or YSIZE is negative, we may access memory outside the object
1611 being referenced as a side effect. This can happen when using AND to
1612 align memory references, as is done on the Alpha.
1614 Nice to notice that varying addresses cannot conflict with fp if no
1615 local variables had their addresses taken, but that's too hard now. */
1618 memrefs_conflict_p (int xsize
, rtx x
, int ysize
, rtx y
, HOST_WIDE_INT c
)
1620 if (GET_CODE (x
) == VALUE
)
1622 if (GET_CODE (y
) == VALUE
)
1624 if (GET_CODE (x
) == HIGH
)
1626 else if (GET_CODE (x
) == LO_SUM
)
1629 x
= addr_side_effect_eval (x
, xsize
, 0);
1630 if (GET_CODE (y
) == HIGH
)
1632 else if (GET_CODE (y
) == LO_SUM
)
1635 y
= addr_side_effect_eval (y
, ysize
, 0);
1637 if (rtx_equal_for_memref_p (x
, y
))
1639 if (xsize
<= 0 || ysize
<= 0)
1641 if (c
>= 0 && xsize
> c
)
1643 if (c
< 0 && ysize
+c
> 0)
1648 /* This code used to check for conflicts involving stack references and
1649 globals but the base address alias code now handles these cases. */
1651 if (GET_CODE (x
) == PLUS
)
1653 /* The fact that X is canonicalized means that this
1654 PLUS rtx is canonicalized. */
1655 rtx x0
= XEXP (x
, 0);
1656 rtx x1
= XEXP (x
, 1);
1658 if (GET_CODE (y
) == PLUS
)
1660 /* The fact that Y is canonicalized means that this
1661 PLUS rtx is canonicalized. */
1662 rtx y0
= XEXP (y
, 0);
1663 rtx y1
= XEXP (y
, 1);
1665 if (rtx_equal_for_memref_p (x1
, y1
))
1666 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
, c
);
1667 if (rtx_equal_for_memref_p (x0
, y0
))
1668 return memrefs_conflict_p (xsize
, x1
, ysize
, y1
, c
);
1669 if (GET_CODE (x1
) == CONST_INT
)
1671 if (GET_CODE (y1
) == CONST_INT
)
1672 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
,
1673 c
- INTVAL (x1
) + INTVAL (y1
));
1675 return memrefs_conflict_p (xsize
, x0
, ysize
, y
,
1678 else if (GET_CODE (y1
) == CONST_INT
)
1679 return memrefs_conflict_p (xsize
, x
, ysize
, y0
, c
+ INTVAL (y1
));
1683 else if (GET_CODE (x1
) == CONST_INT
)
1684 return memrefs_conflict_p (xsize
, x0
, ysize
, y
, c
- INTVAL (x1
));
1686 else if (GET_CODE (y
) == PLUS
)
1688 /* The fact that Y is canonicalized means that this
1689 PLUS rtx is canonicalized. */
1690 rtx y0
= XEXP (y
, 0);
1691 rtx y1
= XEXP (y
, 1);
1693 if (GET_CODE (y1
) == CONST_INT
)
1694 return memrefs_conflict_p (xsize
, x
, ysize
, y0
, c
+ INTVAL (y1
));
1699 if (GET_CODE (x
) == GET_CODE (y
))
1700 switch (GET_CODE (x
))
1704 /* Handle cases where we expect the second operands to be the
1705 same, and check only whether the first operand would conflict
1708 rtx x1
= canon_rtx (XEXP (x
, 1));
1709 rtx y1
= canon_rtx (XEXP (y
, 1));
1710 if (! rtx_equal_for_memref_p (x1
, y1
))
1712 x0
= canon_rtx (XEXP (x
, 0));
1713 y0
= canon_rtx (XEXP (y
, 0));
1714 if (rtx_equal_for_memref_p (x0
, y0
))
1715 return (xsize
== 0 || ysize
== 0
1716 || (c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0));
1718 /* Can't properly adjust our sizes. */
1719 if (GET_CODE (x1
) != CONST_INT
)
1721 xsize
/= INTVAL (x1
);
1722 ysize
/= INTVAL (x1
);
1724 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
, c
);
1728 /* Are these registers known not to be equal? */
1729 if (alias_invariant
)
1731 unsigned int r_x
= REGNO (x
), r_y
= REGNO (y
);
1732 rtx i_x
, i_y
; /* invariant relationships of X and Y */
1734 i_x
= r_x
>= alias_invariant_size
? 0 : alias_invariant
[r_x
];
1735 i_y
= r_y
>= alias_invariant_size
? 0 : alias_invariant
[r_y
];
1737 if (i_x
== 0 && i_y
== 0)
1740 if (! memrefs_conflict_p (xsize
, i_x
? i_x
: x
,
1741 ysize
, i_y
? i_y
: y
, c
))
1750 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1751 as an access with indeterminate size. Assume that references
1752 besides AND are aligned, so if the size of the other reference is
1753 at least as large as the alignment, assume no other overlap. */
1754 if (GET_CODE (x
) == AND
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
)
1756 if (GET_CODE (y
) == AND
|| ysize
< -INTVAL (XEXP (x
, 1)))
1758 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)), ysize
, y
, c
);
1760 if (GET_CODE (y
) == AND
&& GET_CODE (XEXP (y
, 1)) == CONST_INT
)
1762 /* ??? If we are indexing far enough into the array/structure, we
1763 may yet be able to determine that we can not overlap. But we
1764 also need to that we are far enough from the end not to overlap
1765 a following reference, so we do nothing with that for now. */
1766 if (GET_CODE (x
) == AND
|| xsize
< -INTVAL (XEXP (y
, 1)))
1768 return memrefs_conflict_p (xsize
, x
, ysize
, canon_rtx (XEXP (y
, 0)), c
);
1773 if (GET_CODE (x
) == CONST_INT
&& GET_CODE (y
) == CONST_INT
)
1775 c
+= (INTVAL (y
) - INTVAL (x
));
1776 return (xsize
<= 0 || ysize
<= 0
1777 || (c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0));
1780 if (GET_CODE (x
) == CONST
)
1782 if (GET_CODE (y
) == CONST
)
1783 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)),
1784 ysize
, canon_rtx (XEXP (y
, 0)), c
);
1786 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)),
1789 if (GET_CODE (y
) == CONST
)
1790 return memrefs_conflict_p (xsize
, x
, ysize
,
1791 canon_rtx (XEXP (y
, 0)), c
);
1794 return (xsize
<= 0 || ysize
<= 0
1795 || (rtx_equal_for_memref_p (x
, y
)
1796 && ((c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0))));
1803 /* Functions to compute memory dependencies.
1805 Since we process the insns in execution order, we can build tables
1806 to keep track of what registers are fixed (and not aliased), what registers
1807 are varying in known ways, and what registers are varying in unknown
1810 If both memory references are volatile, then there must always be a
1811 dependence between the two references, since their order can not be
1812 changed. A volatile and non-volatile reference can be interchanged
1815 A MEM_IN_STRUCT reference at a non-AND varying address can never
1816 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1817 also must allow AND addresses, because they may generate accesses
1818 outside the object being referenced. This is used to generate
1819 aligned addresses from unaligned addresses, for instance, the alpha
1820 storeqi_unaligned pattern. */
1822 /* Read dependence: X is read after read in MEM takes place. There can
1823 only be a dependence here if both reads are volatile. */
1826 read_dependence (rtx mem
, rtx x
)
1828 return MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
);
1831 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1832 MEM2 is a reference to a structure at a varying address, or returns
1833 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1834 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1835 to decide whether or not an address may vary; it should return
1836 nonzero whenever variation is possible.
1837 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1840 fixed_scalar_and_varying_struct_p (rtx mem1
, rtx mem2
, rtx mem1_addr
,
1842 int (*varies_p
) (rtx
, int))
1844 if (! flag_strict_aliasing
)
1847 if (MEM_SCALAR_P (mem1
) && MEM_IN_STRUCT_P (mem2
)
1848 && !varies_p (mem1_addr
, 1) && varies_p (mem2_addr
, 1))
1849 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1853 if (MEM_IN_STRUCT_P (mem1
) && MEM_SCALAR_P (mem2
)
1854 && varies_p (mem1_addr
, 1) && !varies_p (mem2_addr
, 1))
1855 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1862 /* Returns nonzero if something about the mode or address format MEM1
1863 indicates that it might well alias *anything*. */
1866 aliases_everything_p (rtx mem
)
1868 if (GET_CODE (XEXP (mem
, 0)) == AND
)
1869 /* If the address is an AND, its very hard to know at what it is
1870 actually pointing. */
1876 /* Return true if we can determine that the fields referenced cannot
1877 overlap for any pair of objects. */
1880 nonoverlapping_component_refs_p (tree x
, tree y
)
1882 tree fieldx
, fieldy
, typex
, typey
, orig_y
;
1886 /* The comparison has to be done at a common type, since we don't
1887 know how the inheritance hierarchy works. */
1891 fieldx
= TREE_OPERAND (x
, 1);
1892 typex
= DECL_FIELD_CONTEXT (fieldx
);
1897 fieldy
= TREE_OPERAND (y
, 1);
1898 typey
= DECL_FIELD_CONTEXT (fieldy
);
1903 y
= TREE_OPERAND (y
, 0);
1905 while (y
&& TREE_CODE (y
) == COMPONENT_REF
);
1907 x
= TREE_OPERAND (x
, 0);
1909 while (x
&& TREE_CODE (x
) == COMPONENT_REF
);
1911 /* Never found a common type. */
1915 /* If we're left with accessing different fields of a structure,
1917 if (TREE_CODE (typex
) == RECORD_TYPE
1918 && fieldx
!= fieldy
)
1921 /* The comparison on the current field failed. If we're accessing
1922 a very nested structure, look at the next outer level. */
1923 x
= TREE_OPERAND (x
, 0);
1924 y
= TREE_OPERAND (y
, 0);
1927 && TREE_CODE (x
) == COMPONENT_REF
1928 && TREE_CODE (y
) == COMPONENT_REF
);
1933 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1936 decl_for_component_ref (tree x
)
1940 x
= TREE_OPERAND (x
, 0);
1942 while (x
&& TREE_CODE (x
) == COMPONENT_REF
);
1944 return x
&& DECL_P (x
) ? x
: NULL_TREE
;
1947 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
1948 offset of the field reference. */
1951 adjust_offset_for_component_ref (tree x
, rtx offset
)
1953 HOST_WIDE_INT ioffset
;
1958 ioffset
= INTVAL (offset
);
1961 tree offset
= component_ref_field_offset (x
);
1962 tree field
= TREE_OPERAND (x
, 1);
1964 if (! host_integerp (offset
, 1))
1966 ioffset
+= (tree_low_cst (offset
, 1)
1967 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1)
1970 x
= TREE_OPERAND (x
, 0);
1972 while (x
&& TREE_CODE (x
) == COMPONENT_REF
);
1974 return GEN_INT (ioffset
);
1977 /* Return nonzero if we can determine the exprs corresponding to memrefs
1978 X and Y and they do not overlap. */
1981 nonoverlapping_memrefs_p (rtx x
, rtx y
)
1983 tree exprx
= MEM_EXPR (x
), expry
= MEM_EXPR (y
);
1986 rtx moffsetx
, moffsety
;
1987 HOST_WIDE_INT offsetx
= 0, offsety
= 0, sizex
, sizey
, tem
;
1989 /* Unless both have exprs, we can't tell anything. */
1990 if (exprx
== 0 || expry
== 0)
1993 /* If both are field references, we may be able to determine something. */
1994 if (TREE_CODE (exprx
) == COMPONENT_REF
1995 && TREE_CODE (expry
) == COMPONENT_REF
1996 && nonoverlapping_component_refs_p (exprx
, expry
))
1999 /* If the field reference test failed, look at the DECLs involved. */
2000 moffsetx
= MEM_OFFSET (x
);
2001 if (TREE_CODE (exprx
) == COMPONENT_REF
)
2003 tree t
= decl_for_component_ref (exprx
);
2006 moffsetx
= adjust_offset_for_component_ref (exprx
, moffsetx
);
2009 else if (INDIRECT_REF_P (exprx
))
2011 exprx
= TREE_OPERAND (exprx
, 0);
2012 if (flag_argument_noalias
< 2
2013 || TREE_CODE (exprx
) != PARM_DECL
)
2017 moffsety
= MEM_OFFSET (y
);
2018 if (TREE_CODE (expry
) == COMPONENT_REF
)
2020 tree t
= decl_for_component_ref (expry
);
2023 moffsety
= adjust_offset_for_component_ref (expry
, moffsety
);
2026 else if (INDIRECT_REF_P (expry
))
2028 expry
= TREE_OPERAND (expry
, 0);
2029 if (flag_argument_noalias
< 2
2030 || TREE_CODE (expry
) != PARM_DECL
)
2034 if (! DECL_P (exprx
) || ! DECL_P (expry
))
2037 rtlx
= DECL_RTL (exprx
);
2038 rtly
= DECL_RTL (expry
);
2040 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2041 can't overlap unless they are the same because we never reuse that part
2042 of the stack frame used for locals for spilled pseudos. */
2043 if ((!MEM_P (rtlx
) || !MEM_P (rtly
))
2044 && ! rtx_equal_p (rtlx
, rtly
))
2047 /* Get the base and offsets of both decls. If either is a register, we
2048 know both are and are the same, so use that as the base. The only
2049 we can avoid overlap is if we can deduce that they are nonoverlapping
2050 pieces of that decl, which is very rare. */
2051 basex
= MEM_P (rtlx
) ? XEXP (rtlx
, 0) : rtlx
;
2052 if (GET_CODE (basex
) == PLUS
&& GET_CODE (XEXP (basex
, 1)) == CONST_INT
)
2053 offsetx
= INTVAL (XEXP (basex
, 1)), basex
= XEXP (basex
, 0);
2055 basey
= MEM_P (rtly
) ? XEXP (rtly
, 0) : rtly
;
2056 if (GET_CODE (basey
) == PLUS
&& GET_CODE (XEXP (basey
, 1)) == CONST_INT
)
2057 offsety
= INTVAL (XEXP (basey
, 1)), basey
= XEXP (basey
, 0);
2059 /* If the bases are different, we know they do not overlap if both
2060 are constants or if one is a constant and the other a pointer into the
2061 stack frame. Otherwise a different base means we can't tell if they
2063 if (! rtx_equal_p (basex
, basey
))
2064 return ((CONSTANT_P (basex
) && CONSTANT_P (basey
))
2065 || (CONSTANT_P (basex
) && REG_P (basey
)
2066 && REGNO_PTR_FRAME_P (REGNO (basey
)))
2067 || (CONSTANT_P (basey
) && REG_P (basex
)
2068 && REGNO_PTR_FRAME_P (REGNO (basex
))));
2070 sizex
= (!MEM_P (rtlx
) ? (int) GET_MODE_SIZE (GET_MODE (rtlx
))
2071 : MEM_SIZE (rtlx
) ? INTVAL (MEM_SIZE (rtlx
))
2073 sizey
= (!MEM_P (rtly
) ? (int) GET_MODE_SIZE (GET_MODE (rtly
))
2074 : MEM_SIZE (rtly
) ? INTVAL (MEM_SIZE (rtly
)) :
2077 /* If we have an offset for either memref, it can update the values computed
2080 offsetx
+= INTVAL (moffsetx
), sizex
-= INTVAL (moffsetx
);
2082 offsety
+= INTVAL (moffsety
), sizey
-= INTVAL (moffsety
);
2084 /* If a memref has both a size and an offset, we can use the smaller size.
2085 We can't do this if the offset isn't known because we must view this
2086 memref as being anywhere inside the DECL's MEM. */
2087 if (MEM_SIZE (x
) && moffsetx
)
2088 sizex
= INTVAL (MEM_SIZE (x
));
2089 if (MEM_SIZE (y
) && moffsety
)
2090 sizey
= INTVAL (MEM_SIZE (y
));
2092 /* Put the values of the memref with the lower offset in X's values. */
2093 if (offsetx
> offsety
)
2095 tem
= offsetx
, offsetx
= offsety
, offsety
= tem
;
2096 tem
= sizex
, sizex
= sizey
, sizey
= tem
;
2099 /* If we don't know the size of the lower-offset value, we can't tell
2100 if they conflict. Otherwise, we do the test. */
2101 return sizex
>= 0 && offsety
>= offsetx
+ sizex
;
2104 /* True dependence: X is read after store in MEM takes place. */
2107 true_dependence (rtx mem
, enum machine_mode mem_mode
, rtx x
,
2108 int (*varies
) (rtx
, int))
2110 rtx x_addr
, mem_addr
;
2113 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2116 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2117 This is used in epilogue deallocation functions. */
2118 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
2120 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
2123 if (DIFFERENT_ALIAS_SETS_P (x
, mem
))
2126 /* Read-only memory is by definition never modified, and therefore can't
2127 conflict with anything. We don't expect to find read-only set on MEM,
2128 but stupid user tricks can produce them, so don't abort. */
2129 if (MEM_READONLY_P (x
))
2132 if (nonoverlapping_memrefs_p (mem
, x
))
2135 if (mem_mode
== VOIDmode
)
2136 mem_mode
= GET_MODE (mem
);
2138 x_addr
= get_addr (XEXP (x
, 0));
2139 mem_addr
= get_addr (XEXP (mem
, 0));
2141 base
= find_base_term (x_addr
);
2142 if (base
&& (GET_CODE (base
) == LABEL_REF
2143 || (GET_CODE (base
) == SYMBOL_REF
2144 && CONSTANT_POOL_ADDRESS_P (base
))))
2147 if (! base_alias_check (x_addr
, mem_addr
, GET_MODE (x
), mem_mode
))
2150 x_addr
= canon_rtx (x_addr
);
2151 mem_addr
= canon_rtx (mem_addr
);
2153 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode
), mem_addr
,
2154 SIZE_FOR_MODE (x
), x_addr
, 0))
2157 if (aliases_everything_p (x
))
2160 /* We cannot use aliases_everything_p to test MEM, since we must look
2161 at MEM_MODE, rather than GET_MODE (MEM). */
2162 if (mem_mode
== QImode
|| GET_CODE (mem_addr
) == AND
)
2165 /* In true_dependence we also allow BLKmode to alias anything. Why
2166 don't we do this in anti_dependence and output_dependence? */
2167 if (mem_mode
== BLKmode
|| GET_MODE (x
) == BLKmode
)
2170 return ! fixed_scalar_and_varying_struct_p (mem
, x
, mem_addr
, x_addr
,
2174 /* Canonical true dependence: X is read after store in MEM takes place.
2175 Variant of true_dependence which assumes MEM has already been
2176 canonicalized (hence we no longer do that here).
2177 The mem_addr argument has been added, since true_dependence computed
2178 this value prior to canonicalizing. */
2181 canon_true_dependence (rtx mem
, enum machine_mode mem_mode
, rtx mem_addr
,
2182 rtx x
, int (*varies
) (rtx
, int))
2186 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2189 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2190 This is used in epilogue deallocation functions. */
2191 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
2193 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
2196 if (DIFFERENT_ALIAS_SETS_P (x
, mem
))
2199 /* Read-only memory is by definition never modified, and therefore can't
2200 conflict with anything. We don't expect to find read-only set on MEM,
2201 but stupid user tricks can produce them, so don't abort. */
2202 if (MEM_READONLY_P (x
))
2205 if (nonoverlapping_memrefs_p (x
, mem
))
2208 x_addr
= get_addr (XEXP (x
, 0));
2210 if (! base_alias_check (x_addr
, mem_addr
, GET_MODE (x
), mem_mode
))
2213 x_addr
= canon_rtx (x_addr
);
2214 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode
), mem_addr
,
2215 SIZE_FOR_MODE (x
), x_addr
, 0))
2218 if (aliases_everything_p (x
))
2221 /* We cannot use aliases_everything_p to test MEM, since we must look
2222 at MEM_MODE, rather than GET_MODE (MEM). */
2223 if (mem_mode
== QImode
|| GET_CODE (mem_addr
) == AND
)
2226 /* In true_dependence we also allow BLKmode to alias anything. Why
2227 don't we do this in anti_dependence and output_dependence? */
2228 if (mem_mode
== BLKmode
|| GET_MODE (x
) == BLKmode
)
2231 return ! fixed_scalar_and_varying_struct_p (mem
, x
, mem_addr
, x_addr
,
2235 /* Returns nonzero if a write to X might alias a previous read from
2236 (or, if WRITEP is nonzero, a write to) MEM. */
2239 write_dependence_p (rtx mem
, rtx x
, int writep
)
2241 rtx x_addr
, mem_addr
;
2245 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2248 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2249 This is used in epilogue deallocation functions. */
2250 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
2252 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
2255 if (DIFFERENT_ALIAS_SETS_P (x
, mem
))
2258 /* A read from read-only memory can't conflict with read-write memory. */
2259 if (!writep
&& MEM_READONLY_P (mem
))
2262 if (nonoverlapping_memrefs_p (x
, mem
))
2265 x_addr
= get_addr (XEXP (x
, 0));
2266 mem_addr
= get_addr (XEXP (mem
, 0));
2270 base
= find_base_term (mem_addr
);
2271 if (base
&& (GET_CODE (base
) == LABEL_REF
2272 || (GET_CODE (base
) == SYMBOL_REF
2273 && CONSTANT_POOL_ADDRESS_P (base
))))
2277 if (! base_alias_check (x_addr
, mem_addr
, GET_MODE (x
),
2281 x_addr
= canon_rtx (x_addr
);
2282 mem_addr
= canon_rtx (mem_addr
);
2284 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem
), mem_addr
,
2285 SIZE_FOR_MODE (x
), x_addr
, 0))
2289 = fixed_scalar_and_varying_struct_p (mem
, x
, mem_addr
, x_addr
,
2292 return (!(fixed_scalar
== mem
&& !aliases_everything_p (x
))
2293 && !(fixed_scalar
== x
&& !aliases_everything_p (mem
)));
2296 /* Anti dependence: X is written after read in MEM takes place. */
2299 anti_dependence (rtx mem
, rtx x
)
2301 return write_dependence_p (mem
, x
, /*writep=*/0);
2304 /* Output dependence: X is written after store in MEM takes place. */
2307 output_dependence (rtx mem
, rtx x
)
2309 return write_dependence_p (mem
, x
, /*writep=*/1);
2312 /* A subroutine of nonlocal_mentioned_p, returns 1 if *LOC mentions
2313 something which is not local to the function and is not constant. */
2316 nonlocal_mentioned_p_1 (rtx
*loc
, void *data ATTRIBUTE_UNUSED
)
2325 switch (GET_CODE (x
))
2328 if (REG_P (SUBREG_REG (x
)))
2330 /* Global registers are not local. */
2331 if (REGNO (SUBREG_REG (x
)) < FIRST_PSEUDO_REGISTER
2332 && global_regs
[subreg_regno (x
)])
2340 /* Global registers are not local. */
2341 if (regno
< FIRST_PSEUDO_REGISTER
&& global_regs
[regno
])
2356 /* Constants in the function's constants pool are constant. */
2357 if (CONSTANT_POOL_ADDRESS_P (x
))
2362 /* Non-constant calls and recursion are not local. */
2366 /* Be overly conservative and consider any volatile memory
2367 reference as not local. */
2368 if (MEM_VOLATILE_P (x
))
2370 base
= find_base_term (XEXP (x
, 0));
2373 /* A Pmode ADDRESS could be a reference via the structure value
2374 address or static chain. Such memory references are nonlocal.
2376 Thus, we have to examine the contents of the ADDRESS to find
2377 out if this is a local reference or not. */
2378 if (GET_CODE (base
) == ADDRESS
2379 && GET_MODE (base
) == Pmode
2380 && (XEXP (base
, 0) == stack_pointer_rtx
2381 || XEXP (base
, 0) == arg_pointer_rtx
2382 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2383 || XEXP (base
, 0) == hard_frame_pointer_rtx
2385 || XEXP (base
, 0) == frame_pointer_rtx
))
2387 /* Constants in the function's constant pool are constant. */
2388 if (GET_CODE (base
) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (base
))
2393 case UNSPEC_VOLATILE
:
2398 if (MEM_VOLATILE_P (x
))
2410 /* Returns nonzero if X might mention something which is not
2411 local to the function and is not constant. */
2414 nonlocal_mentioned_p (rtx x
)
2420 if (! CONST_OR_PURE_CALL_P (x
))
2422 x
= CALL_INSN_FUNCTION_USAGE (x
);
2430 return for_each_rtx (&x
, nonlocal_mentioned_p_1
, NULL
);
2433 /* A subroutine of nonlocal_referenced_p, returns 1 if *LOC references
2434 something which is not local to the function and is not constant. */
2437 nonlocal_referenced_p_1 (rtx
*loc
, void *data ATTRIBUTE_UNUSED
)
2444 switch (GET_CODE (x
))
2450 return nonlocal_mentioned_p (x
);
2453 /* Non-constant calls and recursion are not local. */
2457 if (nonlocal_mentioned_p (SET_SRC (x
)))
2460 if (MEM_P (SET_DEST (x
)))
2461 return nonlocal_mentioned_p (XEXP (SET_DEST (x
), 0));
2463 /* If the destination is anything other than a CC0, PC,
2464 MEM, REG, or a SUBREG of a REG that occupies all of
2465 the REG, then X references nonlocal memory if it is
2466 mentioned in the destination. */
2467 if (GET_CODE (SET_DEST (x
)) != CC0
2468 && GET_CODE (SET_DEST (x
)) != PC
2469 && !REG_P (SET_DEST (x
))
2470 && ! (GET_CODE (SET_DEST (x
)) == SUBREG
2471 && REG_P (SUBREG_REG (SET_DEST (x
)))
2472 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x
))))
2473 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
2474 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x
)))
2475 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))))
2476 return nonlocal_mentioned_p (SET_DEST (x
));
2480 if (MEM_P (XEXP (x
, 0)))
2481 return nonlocal_mentioned_p (XEXP (XEXP (x
, 0), 0));
2485 return nonlocal_mentioned_p (XEXP (x
, 0));
2488 case UNSPEC_VOLATILE
:
2492 if (MEM_VOLATILE_P (x
))
2504 /* Returns nonzero if X might reference something which is not
2505 local to the function and is not constant. */
2508 nonlocal_referenced_p (rtx x
)
2514 if (! CONST_OR_PURE_CALL_P (x
))
2516 x
= CALL_INSN_FUNCTION_USAGE (x
);
2524 return for_each_rtx (&x
, nonlocal_referenced_p_1
, NULL
);
2527 /* A subroutine of nonlocal_set_p, returns 1 if *LOC sets
2528 something which is not local to the function and is not constant. */
2531 nonlocal_set_p_1 (rtx
*loc
, void *data ATTRIBUTE_UNUSED
)
2538 switch (GET_CODE (x
))
2541 /* Non-constant calls and recursion are not local. */
2550 return nonlocal_mentioned_p (XEXP (x
, 0));
2553 if (nonlocal_mentioned_p (SET_DEST (x
)))
2555 return nonlocal_set_p (SET_SRC (x
));
2558 return nonlocal_mentioned_p (XEXP (x
, 0));
2564 case UNSPEC_VOLATILE
:
2568 if (MEM_VOLATILE_P (x
))
2580 /* Returns nonzero if X might set something which is not
2581 local to the function and is not constant. */
2584 nonlocal_set_p (rtx x
)
2590 if (! CONST_OR_PURE_CALL_P (x
))
2592 x
= CALL_INSN_FUNCTION_USAGE (x
);
2600 return for_each_rtx (&x
, nonlocal_set_p_1
, NULL
);
2603 /* Mark the function if it is pure or constant. */
2606 mark_constant_function (void)
2609 int nonlocal_memory_referenced
;
2611 if (TREE_READONLY (current_function_decl
)
2612 || DECL_IS_PURE (current_function_decl
)
2613 || TREE_THIS_VOLATILE (current_function_decl
)
2614 || current_function_has_nonlocal_goto
2615 || !targetm
.binds_local_p (current_function_decl
))
2618 /* A loop might not return which counts as a side effect. */
2619 if (mark_dfs_back_edges ())
2622 nonlocal_memory_referenced
= 0;
2624 init_alias_analysis ();
2626 /* Determine if this is a constant or pure function. */
2628 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2630 if (! INSN_P (insn
))
2633 if (nonlocal_set_p (insn
) || global_reg_mentioned_p (insn
)
2634 || volatile_refs_p (PATTERN (insn
)))
2637 if (! nonlocal_memory_referenced
)
2638 nonlocal_memory_referenced
= nonlocal_referenced_p (insn
);
2641 end_alias_analysis ();
2643 /* Mark the function. */
2647 else if (nonlocal_memory_referenced
)
2649 cgraph_rtl_info (current_function_decl
)->pure_function
= 1;
2650 DECL_IS_PURE (current_function_decl
) = 1;
2654 cgraph_rtl_info (current_function_decl
)->const_function
= 1;
2655 TREE_READONLY (current_function_decl
) = 1;
2661 init_alias_once (void)
2665 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2666 /* Check whether this register can hold an incoming pointer
2667 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2668 numbers, so translate if necessary due to register windows. */
2669 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i
))
2670 && HARD_REGNO_MODE_OK (i
, Pmode
))
2671 static_reg_base_value
[i
]
2672 = gen_rtx_ADDRESS (VOIDmode
, gen_rtx_REG (Pmode
, i
));
2674 static_reg_base_value
[STACK_POINTER_REGNUM
]
2675 = gen_rtx_ADDRESS (Pmode
, stack_pointer_rtx
);
2676 static_reg_base_value
[ARG_POINTER_REGNUM
]
2677 = gen_rtx_ADDRESS (Pmode
, arg_pointer_rtx
);
2678 static_reg_base_value
[FRAME_POINTER_REGNUM
]
2679 = gen_rtx_ADDRESS (Pmode
, frame_pointer_rtx
);
2680 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2681 static_reg_base_value
[HARD_FRAME_POINTER_REGNUM
]
2682 = gen_rtx_ADDRESS (Pmode
, hard_frame_pointer_rtx
);
2686 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2687 to be memory reference. */
2688 static bool memory_modified
;
2690 memory_modified_1 (rtx x
, rtx pat ATTRIBUTE_UNUSED
, void *data
)
2694 if (anti_dependence (x
, (rtx
)data
) || output_dependence (x
, (rtx
)data
))
2695 memory_modified
= true;
2700 /* Return true when INSN possibly modify memory contents of MEM
2701 (i.e. address can be modified). */
2703 memory_modified_in_insn_p (rtx mem
, rtx insn
)
2707 memory_modified
= false;
2708 note_stores (PATTERN (insn
), memory_modified_1
, mem
);
2709 return memory_modified
;
2712 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2716 init_alias_analysis (void)
2718 unsigned int maxreg
= max_reg_num ();
2724 timevar_push (TV_ALIAS_ANALYSIS
);
2726 reg_known_value_size
= maxreg
- FIRST_PSEUDO_REGISTER
;
2727 reg_known_value
= ggc_calloc (reg_known_value_size
, sizeof (rtx
));
2728 reg_known_equiv_p
= xcalloc (reg_known_value_size
, sizeof (bool));
2730 /* Overallocate reg_base_value to allow some growth during loop
2731 optimization. Loop unrolling can create a large number of
2733 if (old_reg_base_value
)
2735 reg_base_value
= old_reg_base_value
;
2736 /* If varray gets large zeroing cost may get important. */
2737 if (VARRAY_SIZE (reg_base_value
) > 256
2738 && VARRAY_SIZE (reg_base_value
) > 4 * maxreg
)
2739 VARRAY_GROW (reg_base_value
, maxreg
);
2740 VARRAY_CLEAR (reg_base_value
);
2741 if (VARRAY_SIZE (reg_base_value
) < maxreg
)
2742 VARRAY_GROW (reg_base_value
, maxreg
);
2746 VARRAY_RTX_INIT (reg_base_value
, maxreg
, "reg_base_value");
2749 new_reg_base_value
= xmalloc (maxreg
* sizeof (rtx
));
2750 reg_seen
= xmalloc (maxreg
);
2752 /* The basic idea is that each pass through this loop will use the
2753 "constant" information from the previous pass to propagate alias
2754 information through another level of assignments.
2756 This could get expensive if the assignment chains are long. Maybe
2757 we should throttle the number of iterations, possibly based on
2758 the optimization level or flag_expensive_optimizations.
2760 We could propagate more information in the first pass by making use
2761 of REG_N_SETS to determine immediately that the alias information
2762 for a pseudo is "constant".
2764 A program with an uninitialized variable can cause an infinite loop
2765 here. Instead of doing a full dataflow analysis to detect such problems
2766 we just cap the number of iterations for the loop.
2768 The state of the arrays for the set chain in question does not matter
2769 since the program has undefined behavior. */
2774 /* Assume nothing will change this iteration of the loop. */
2777 /* We want to assign the same IDs each iteration of this loop, so
2778 start counting from zero each iteration of the loop. */
2781 /* We're at the start of the function each iteration through the
2782 loop, so we're copying arguments. */
2783 copying_arguments
= true;
2785 /* Wipe the potential alias information clean for this pass. */
2786 memset (new_reg_base_value
, 0, maxreg
* sizeof (rtx
));
2788 /* Wipe the reg_seen array clean. */
2789 memset (reg_seen
, 0, maxreg
);
2791 /* Mark all hard registers which may contain an address.
2792 The stack, frame and argument pointers may contain an address.
2793 An argument register which can hold a Pmode value may contain
2794 an address even if it is not in BASE_REGS.
2796 The address expression is VOIDmode for an argument and
2797 Pmode for other registers. */
2799 memcpy (new_reg_base_value
, static_reg_base_value
,
2800 FIRST_PSEUDO_REGISTER
* sizeof (rtx
));
2802 /* Walk the insns adding values to the new_reg_base_value array. */
2803 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2809 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2810 /* The prologue/epilogue insns are not threaded onto the
2811 insn chain until after reload has completed. Thus,
2812 there is no sense wasting time checking if INSN is in
2813 the prologue/epilogue until after reload has completed. */
2814 if (reload_completed
2815 && prologue_epilogue_contains (insn
))
2819 /* If this insn has a noalias note, process it, Otherwise,
2820 scan for sets. A simple set will have no side effects
2821 which could change the base value of any other register. */
2823 if (GET_CODE (PATTERN (insn
)) == SET
2824 && REG_NOTES (insn
) != 0
2825 && find_reg_note (insn
, REG_NOALIAS
, NULL_RTX
))
2826 record_set (SET_DEST (PATTERN (insn
)), NULL_RTX
, NULL
);
2828 note_stores (PATTERN (insn
), record_set
, NULL
);
2830 set
= single_set (insn
);
2833 && REG_P (SET_DEST (set
))
2834 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
)
2836 unsigned int regno
= REGNO (SET_DEST (set
));
2837 rtx src
= SET_SRC (set
);
2840 if (REG_NOTES (insn
) != 0
2841 && (((note
= find_reg_note (insn
, REG_EQUAL
, 0)) != 0
2842 && REG_N_SETS (regno
) == 1)
2843 || (note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
)) != 0)
2844 && GET_CODE (XEXP (note
, 0)) != EXPR_LIST
2845 && ! rtx_varies_p (XEXP (note
, 0), 1)
2846 && ! reg_overlap_mentioned_p (SET_DEST (set
),
2849 set_reg_known_value (regno
, XEXP (note
, 0));
2850 set_reg_known_equiv_p (regno
,
2851 REG_NOTE_KIND (note
) == REG_EQUIV
);
2853 else if (REG_N_SETS (regno
) == 1
2854 && GET_CODE (src
) == PLUS
2855 && REG_P (XEXP (src
, 0))
2856 && (t
= get_reg_known_value (REGNO (XEXP (src
, 0))))
2857 && GET_CODE (XEXP (src
, 1)) == CONST_INT
)
2859 t
= plus_constant (t
, INTVAL (XEXP (src
, 1)));
2860 set_reg_known_value (regno
, t
);
2861 set_reg_known_equiv_p (regno
, 0);
2863 else if (REG_N_SETS (regno
) == 1
2864 && ! rtx_varies_p (src
, 1))
2866 set_reg_known_value (regno
, src
);
2867 set_reg_known_equiv_p (regno
, 0);
2871 else if (NOTE_P (insn
)
2872 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_FUNCTION_BEG
)
2873 copying_arguments
= false;
2876 /* Now propagate values from new_reg_base_value to reg_base_value. */
2877 gcc_assert (maxreg
== (unsigned int) max_reg_num());
2879 for (ui
= 0; ui
< maxreg
; ui
++)
2881 if (new_reg_base_value
[ui
]
2882 && new_reg_base_value
[ui
] != VARRAY_RTX (reg_base_value
, ui
)
2883 && ! rtx_equal_p (new_reg_base_value
[ui
],
2884 VARRAY_RTX (reg_base_value
, ui
)))
2886 VARRAY_RTX (reg_base_value
, ui
) = new_reg_base_value
[ui
];
2891 while (changed
&& ++pass
< MAX_ALIAS_LOOP_PASSES
);
2893 /* Fill in the remaining entries. */
2894 for (i
= 0; i
< (int)reg_known_value_size
; i
++)
2895 if (reg_known_value
[i
] == 0)
2896 reg_known_value
[i
] = regno_reg_rtx
[i
+ FIRST_PSEUDO_REGISTER
];
2898 /* Simplify the reg_base_value array so that no register refers to
2899 another register, except to special registers indirectly through
2900 ADDRESS expressions.
2902 In theory this loop can take as long as O(registers^2), but unless
2903 there are very long dependency chains it will run in close to linear
2906 This loop may not be needed any longer now that the main loop does
2907 a better job at propagating alias information. */
2913 for (ui
= 0; ui
< maxreg
; ui
++)
2915 rtx base
= VARRAY_RTX (reg_base_value
, ui
);
2916 if (base
&& REG_P (base
))
2918 unsigned int base_regno
= REGNO (base
);
2919 if (base_regno
== ui
) /* register set from itself */
2920 VARRAY_RTX (reg_base_value
, ui
) = 0;
2922 VARRAY_RTX (reg_base_value
, ui
)
2923 = VARRAY_RTX (reg_base_value
, base_regno
);
2928 while (changed
&& pass
< MAX_ALIAS_LOOP_PASSES
);
2931 free (new_reg_base_value
);
2932 new_reg_base_value
= 0;
2935 timevar_pop (TV_ALIAS_ANALYSIS
);
2939 end_alias_analysis (void)
2941 old_reg_base_value
= reg_base_value
;
2942 ggc_free (reg_known_value
);
2943 reg_known_value
= 0;
2944 reg_known_value_size
= 0;
2945 free (reg_known_equiv_p
);
2946 reg_known_equiv_p
= 0;
2947 if (alias_invariant
)
2949 ggc_free (alias_invariant
);
2950 alias_invariant
= 0;
2951 alias_invariant_size
= 0;
2955 #include "gt-alias.h"