syshdr.h: New file.
[official-gcc.git] / gcc / emit-rtl.c
blob3452a68f71f366326bfb1579fb47e0a6ad1266dc
1 /* Emit RTL for the GNU C-Compiler expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 /* Middle-to-low level generation of rtx code and insns.
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
38 #include "config.h"
39 #include "system.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "obstack.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
58 /* Commonly used modes. */
60 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
61 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
62 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
63 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
66 /* This is *not* reset after each function. It gives each CODE_LABEL
67 in the entire compilation a unique label number. */
69 static int label_num = 1;
71 /* Highest label number in current function.
72 Zero means use the value of label_num instead.
73 This is nonzero only when belatedly compiling an inline function. */
75 static int last_label_num;
77 /* Value label_num had when set_new_first_and_last_label_number was called.
78 If label_num has not changed since then, last_label_num is valid. */
80 static int base_label_num;
82 /* Nonzero means do not generate NOTEs for source line numbers. */
84 static int no_line_numbers;
86 /* Commonly used rtx's, so that we only need space for one copy.
87 These are initialized once for the entire compilation.
88 All of these except perhaps the floating-point CONST_DOUBLEs
89 are unique; no other rtx-object will be equal to any of these. */
91 rtx global_rtl[GR_MAX];
93 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
94 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
95 record a copy of const[012]_rtx. */
97 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
99 rtx const_true_rtx;
101 REAL_VALUE_TYPE dconst0;
102 REAL_VALUE_TYPE dconst1;
103 REAL_VALUE_TYPE dconst2;
104 REAL_VALUE_TYPE dconstm1;
106 /* All references to the following fixed hard registers go through
107 these unique rtl objects. On machines where the frame-pointer and
108 arg-pointer are the same register, they use the same unique object.
110 After register allocation, other rtl objects which used to be pseudo-regs
111 may be clobbered to refer to the frame-pointer register.
112 But references that were originally to the frame-pointer can be
113 distinguished from the others because they contain frame_pointer_rtx.
115 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
116 tricky: until register elimination has taken place hard_frame_pointer_rtx
117 should be used if it is being set, and frame_pointer_rtx otherwise. After
118 register elimination hard_frame_pointer_rtx should always be used.
119 On machines where the two registers are same (most) then these are the
120 same.
122 In an inline procedure, the stack and frame pointer rtxs may not be
123 used for anything else. */
124 rtx struct_value_rtx; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
125 rtx struct_value_incoming_rtx; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
126 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
127 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
128 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
130 /* This is used to implement __builtin_return_address for some machines.
131 See for instance the MIPS port. */
132 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
134 /* We make one copy of (const_int C) where C is in
135 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
136 to save space during the compilation and simplify comparisons of
137 integers. */
139 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
141 /* A hash table storing CONST_INTs whose absolute value is greater
142 than MAX_SAVED_CONST_INT. */
144 static htab_t const_int_htab;
146 /* start_sequence and gen_sequence can make a lot of rtx expressions which are
147 shortly thrown away. We use two mechanisms to prevent this waste:
149 For sizes up to 5 elements, we keep a SEQUENCE and its associated
150 rtvec for use by gen_sequence. One entry for each size is
151 sufficient because most cases are calls to gen_sequence followed by
152 immediately emitting the SEQUENCE. Reuse is safe since emitting a
153 sequence is destructive on the insn in it anyway and hence can't be
154 redone.
156 We do not bother to save this cached data over nested function calls.
157 Instead, we just reinitialize them. */
159 #define SEQUENCE_RESULT_SIZE 5
161 static rtx sequence_result[SEQUENCE_RESULT_SIZE];
163 /* During RTL generation, we also keep a list of free INSN rtl codes. */
164 static rtx free_insn;
166 #define first_insn (cfun->emit->x_first_insn)
167 #define last_insn (cfun->emit->x_last_insn)
168 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
169 #define last_linenum (cfun->emit->x_last_linenum)
170 #define last_filename (cfun->emit->x_last_filename)
171 #define first_label_num (cfun->emit->x_first_label_num)
173 static rtx make_jump_insn_raw PARAMS ((rtx));
174 static rtx make_call_insn_raw PARAMS ((rtx));
175 static rtx find_line_note PARAMS ((rtx));
176 static void mark_sequence_stack PARAMS ((struct sequence_stack *));
177 static void unshare_all_rtl_1 PARAMS ((rtx));
178 static void unshare_all_decls PARAMS ((tree));
179 static void reset_used_decls PARAMS ((tree));
180 static void mark_label_nuses PARAMS ((rtx));
181 static hashval_t const_int_htab_hash PARAMS ((const void *));
182 static int const_int_htab_eq PARAMS ((const void *,
183 const void *));
184 static int rtx_htab_mark_1 PARAMS ((void **, void *));
185 static void rtx_htab_mark PARAMS ((void *));
188 /* Returns a hash code for X (which is a really a CONST_INT). */
190 static hashval_t
191 const_int_htab_hash (x)
192 const void *x;
194 return (hashval_t) INTVAL ((const struct rtx_def *) x);
197 /* Returns non-zero if the value represented by X (which is really a
198 CONST_INT) is the same as that given by Y (which is really a
199 HOST_WIDE_INT *). */
201 static int
202 const_int_htab_eq (x, y)
203 const void *x;
204 const void *y;
206 return (INTVAL ((const struct rtx_def *) x) == *((const HOST_WIDE_INT *) y));
209 /* Mark the hash-table element X (which is really a pointer to an
210 rtx). */
212 static int
213 rtx_htab_mark_1 (x, data)
214 void **x;
215 void *data ATTRIBUTE_UNUSED;
217 ggc_mark_rtx (*x);
218 return 1;
221 /* Mark all the elements of HTAB (which is really an htab_t full of
222 rtxs). */
224 static void
225 rtx_htab_mark (htab)
226 void *htab;
228 htab_traverse (*((htab_t *) htab), rtx_htab_mark_1, NULL);
231 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
232 don't attempt to share with the various global pieces of rtl (such as
233 frame_pointer_rtx). */
236 gen_raw_REG (mode, regno)
237 enum machine_mode mode;
238 int regno;
240 rtx x = gen_rtx_raw_REG (mode, regno);
241 ORIGINAL_REGNO (x) = regno;
242 return x;
245 /* There are some RTL codes that require special attention; the generation
246 functions do the raw handling. If you add to this list, modify
247 special_rtx in gengenrtl.c as well. */
250 gen_rtx_CONST_INT (mode, arg)
251 enum machine_mode mode ATTRIBUTE_UNUSED;
252 HOST_WIDE_INT arg;
254 void **slot;
256 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
257 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
259 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
260 if (const_true_rtx && arg == STORE_FLAG_VALUE)
261 return const_true_rtx;
262 #endif
264 /* Look up the CONST_INT in the hash table. */
265 slot = htab_find_slot_with_hash (const_int_htab, &arg,
266 (hashval_t) arg, INSERT);
267 if (*slot == 0)
268 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
270 return (rtx) *slot;
273 /* CONST_DOUBLEs needs special handling because their length is known
274 only at run-time. */
277 gen_rtx_CONST_DOUBLE (mode, arg0, arg1, arg2)
278 enum machine_mode mode;
279 rtx arg0;
280 HOST_WIDE_INT arg1, arg2;
282 rtx r = rtx_alloc (CONST_DOUBLE);
283 int i;
285 PUT_MODE (r, mode);
286 XEXP (r, 0) = arg0;
287 X0EXP (r, 1) = NULL_RTX;
288 XWINT (r, 2) = arg1;
289 XWINT (r, 3) = arg2;
291 for (i = GET_RTX_LENGTH (CONST_DOUBLE) - 1; i > 3; --i)
292 XWINT (r, i) = 0;
294 return r;
298 gen_rtx_REG (mode, regno)
299 enum machine_mode mode;
300 int regno;
302 /* In case the MD file explicitly references the frame pointer, have
303 all such references point to the same frame pointer. This is
304 used during frame pointer elimination to distinguish the explicit
305 references to these registers from pseudos that happened to be
306 assigned to them.
308 If we have eliminated the frame pointer or arg pointer, we will
309 be using it as a normal register, for example as a spill
310 register. In such cases, we might be accessing it in a mode that
311 is not Pmode and therefore cannot use the pre-allocated rtx.
313 Also don't do this when we are making new REGs in reload, since
314 we don't want to get confused with the real pointers. */
316 if (mode == Pmode && !reload_in_progress)
318 if (regno == FRAME_POINTER_REGNUM)
319 return frame_pointer_rtx;
320 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
321 if (regno == HARD_FRAME_POINTER_REGNUM)
322 return hard_frame_pointer_rtx;
323 #endif
324 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
325 if (regno == ARG_POINTER_REGNUM)
326 return arg_pointer_rtx;
327 #endif
328 #ifdef RETURN_ADDRESS_POINTER_REGNUM
329 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
330 return return_address_pointer_rtx;
331 #endif
332 if (regno == STACK_POINTER_REGNUM)
333 return stack_pointer_rtx;
336 return gen_raw_REG (mode, regno);
340 gen_rtx_MEM (mode, addr)
341 enum machine_mode mode;
342 rtx addr;
344 rtx rt = gen_rtx_raw_MEM (mode, addr);
346 /* This field is not cleared by the mere allocation of the rtx, so
347 we clear it here. */
348 MEM_ALIAS_SET (rt) = 0;
350 return rt;
354 gen_rtx_SUBREG (mode, reg, offset)
355 enum machine_mode mode;
356 rtx reg;
357 int offset;
359 /* This is the most common failure type.
360 Catch it early so we can see who does it. */
361 if ((offset % GET_MODE_SIZE (mode)) != 0)
362 abort ();
364 /* This check isn't usable right now because combine will
365 throw arbitrary crap like a CALL into a SUBREG in
366 gen_lowpart_for_combine so we must just eat it. */
367 #if 0
368 /* Check for this too. */
369 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
370 abort ();
371 #endif
372 return gen_rtx_fmt_ei (SUBREG, mode, reg, offset);
375 /* Generate a SUBREG representing the least-significant part
376 * of REG if MODE is smaller than mode of REG, otherwise
377 * paradoxical SUBREG. */
379 gen_lowpart_SUBREG (mode, reg)
380 enum machine_mode mode;
381 rtx reg;
383 enum machine_mode inmode;
384 int offset;
386 inmode = GET_MODE (reg);
387 if (inmode == VOIDmode)
388 inmode = mode;
389 offset = 0;
390 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (inmode)
391 && (WORDS_BIG_ENDIAN || BYTES_BIG_ENDIAN))
393 offset = GET_MODE_SIZE (inmode) - GET_MODE_SIZE (mode);
394 if (! BYTES_BIG_ENDIAN)
395 offset = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
396 else if (! WORDS_BIG_ENDIAN)
397 offset %= UNITS_PER_WORD;
399 return gen_rtx_SUBREG (mode, reg, offset);
402 /* rtx gen_rtx (code, mode, [element1, ..., elementn])
404 ** This routine generates an RTX of the size specified by
405 ** <code>, which is an RTX code. The RTX structure is initialized
406 ** from the arguments <element1> through <elementn>, which are
407 ** interpreted according to the specific RTX type's format. The
408 ** special machine mode associated with the rtx (if any) is specified
409 ** in <mode>.
411 ** gen_rtx can be invoked in a way which resembles the lisp-like
412 ** rtx it will generate. For example, the following rtx structure:
414 ** (plus:QI (mem:QI (reg:SI 1))
415 ** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
417 ** ...would be generated by the following C code:
419 ** gen_rtx (PLUS, QImode,
420 ** gen_rtx (MEM, QImode,
421 ** gen_rtx (REG, SImode, 1)),
422 ** gen_rtx (MEM, QImode,
423 ** gen_rtx (PLUS, SImode,
424 ** gen_rtx (REG, SImode, 2),
425 ** gen_rtx (REG, SImode, 3)))),
428 /*VARARGS2*/
430 gen_rtx VPARAMS ((enum rtx_code code, enum machine_mode mode, ...))
432 #ifndef ANSI_PROTOTYPES
433 enum rtx_code code;
434 enum machine_mode mode;
435 #endif
436 va_list p;
437 register int i; /* Array indices... */
438 register const char *fmt; /* Current rtx's format... */
439 register rtx rt_val; /* RTX to return to caller... */
441 VA_START (p, mode);
443 #ifndef ANSI_PROTOTYPES
444 code = va_arg (p, enum rtx_code);
445 mode = va_arg (p, enum machine_mode);
446 #endif
448 switch (code)
450 case CONST_INT:
451 rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
452 break;
454 case CONST_DOUBLE:
456 rtx arg0 = va_arg (p, rtx);
457 HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
458 HOST_WIDE_INT arg2 = va_arg (p, HOST_WIDE_INT);
459 rt_val = gen_rtx_CONST_DOUBLE (mode, arg0, arg1, arg2);
461 break;
463 case REG:
464 rt_val = gen_rtx_REG (mode, va_arg (p, int));
465 break;
467 case MEM:
468 rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
469 break;
471 default:
472 rt_val = rtx_alloc (code); /* Allocate the storage space. */
473 rt_val->mode = mode; /* Store the machine mode... */
475 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
476 for (i = 0; i < GET_RTX_LENGTH (code); i++)
478 switch (*fmt++)
480 case '0': /* Unused field. */
481 break;
483 case 'i': /* An integer? */
484 XINT (rt_val, i) = va_arg (p, int);
485 break;
487 case 'w': /* A wide integer? */
488 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
489 break;
491 case 's': /* A string? */
492 XSTR (rt_val, i) = va_arg (p, char *);
493 break;
495 case 'e': /* An expression? */
496 case 'u': /* An insn? Same except when printing. */
497 XEXP (rt_val, i) = va_arg (p, rtx);
498 break;
500 case 'E': /* An RTX vector? */
501 XVEC (rt_val, i) = va_arg (p, rtvec);
502 break;
504 case 'b': /* A bitmap? */
505 XBITMAP (rt_val, i) = va_arg (p, bitmap);
506 break;
508 case 't': /* A tree? */
509 XTREE (rt_val, i) = va_arg (p, tree);
510 break;
512 default:
513 abort ();
516 break;
519 va_end (p);
520 return rt_val;
523 /* gen_rtvec (n, [rt1, ..., rtn])
525 ** This routine creates an rtvec and stores within it the
526 ** pointers to rtx's which are its arguments.
529 /*VARARGS1*/
530 rtvec
531 gen_rtvec VPARAMS ((int n, ...))
533 #ifndef ANSI_PROTOTYPES
534 int n;
535 #endif
536 int i;
537 va_list p;
538 rtx *vector;
540 VA_START (p, n);
542 #ifndef ANSI_PROTOTYPES
543 n = va_arg (p, int);
544 #endif
546 if (n == 0)
547 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
549 vector = (rtx *) alloca (n * sizeof (rtx));
551 for (i = 0; i < n; i++)
552 vector[i] = va_arg (p, rtx);
553 va_end (p);
555 return gen_rtvec_v (n, vector);
558 rtvec
559 gen_rtvec_v (n, argp)
560 int n;
561 rtx *argp;
563 register int i;
564 register rtvec rt_val;
566 if (n == 0)
567 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
569 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
571 for (i = 0; i < n; i++)
572 rt_val->elem[i] = *argp++;
574 return rt_val;
578 /* Generate a REG rtx for a new pseudo register of mode MODE.
579 This pseudo is assigned the next sequential register number. */
582 gen_reg_rtx (mode)
583 enum machine_mode mode;
585 struct function *f = cfun;
586 register rtx val;
588 /* Don't let anything called after initial flow analysis create new
589 registers. */
590 if (no_new_pseudos)
591 abort ();
593 if (generating_concat_p
594 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
595 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
597 /* For complex modes, don't make a single pseudo.
598 Instead, make a CONCAT of two pseudos.
599 This allows noncontiguous allocation of the real and imaginary parts,
600 which makes much better code. Besides, allocating DCmode
601 pseudos overstrains reload on some machines like the 386. */
602 rtx realpart, imagpart;
603 int size = GET_MODE_UNIT_SIZE (mode);
604 enum machine_mode partmode
605 = mode_for_size (size * BITS_PER_UNIT,
606 (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
607 ? MODE_FLOAT : MODE_INT),
610 realpart = gen_reg_rtx (partmode);
611 imagpart = gen_reg_rtx (partmode);
612 return gen_rtx_CONCAT (mode, realpart, imagpart);
615 /* Make sure regno_pointer_align and regno_reg_rtx are large enough
616 to have an element for this pseudo reg number. */
618 if (reg_rtx_no == f->emit->regno_pointer_align_length)
620 int old_size = f->emit->regno_pointer_align_length;
621 rtx *new1;
622 char *new;
623 new = xrealloc (f->emit->regno_pointer_align, old_size * 2);
624 memset (new + old_size, 0, old_size);
625 f->emit->regno_pointer_align = (unsigned char *) new;
627 new1 = (rtx *) xrealloc (f->emit->x_regno_reg_rtx,
628 old_size * 2 * sizeof (rtx));
629 memset (new1 + old_size, 0, old_size * sizeof (rtx));
630 regno_reg_rtx = new1;
632 f->emit->regno_pointer_align_length = old_size * 2;
635 val = gen_raw_REG (mode, reg_rtx_no);
636 regno_reg_rtx[reg_rtx_no++] = val;
637 return val;
640 /* Identify REG (which may be a CONCAT) as a user register. */
642 void
643 mark_user_reg (reg)
644 rtx reg;
646 if (GET_CODE (reg) == CONCAT)
648 REG_USERVAR_P (XEXP (reg, 0)) = 1;
649 REG_USERVAR_P (XEXP (reg, 1)) = 1;
651 else if (GET_CODE (reg) == REG)
652 REG_USERVAR_P (reg) = 1;
653 else
654 abort ();
657 /* Identify REG as a probable pointer register and show its alignment
658 as ALIGN, if nonzero. */
660 void
661 mark_reg_pointer (reg, align)
662 rtx reg;
663 int align;
665 if (! REG_POINTER (reg))
667 REG_POINTER (reg) = 1;
669 if (align)
670 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
672 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
673 /* We can no-longer be sure just how aligned this pointer is */
674 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
677 /* Return 1 plus largest pseudo reg number used in the current function. */
680 max_reg_num ()
682 return reg_rtx_no;
685 /* Return 1 + the largest label number used so far in the current function. */
688 max_label_num ()
690 if (last_label_num && label_num == base_label_num)
691 return last_label_num;
692 return label_num;
695 /* Return first label number used in this function (if any were used). */
698 get_first_label_num ()
700 return first_label_num;
703 /* Return the final regno of X, which is a SUBREG of a hard
704 register. */
706 subreg_hard_regno (x, check_mode)
707 register rtx x;
708 int check_mode;
710 enum machine_mode mode = GET_MODE (x);
711 unsigned int byte_offset, base_regno, final_regno;
712 rtx reg = SUBREG_REG (x);
714 /* This is where we attempt to catch illegal subregs
715 created by the compiler. */
716 if (GET_CODE (x) != SUBREG
717 || GET_CODE (reg) != REG)
718 abort ();
719 base_regno = REGNO (reg);
720 if (base_regno >= FIRST_PSEUDO_REGISTER)
721 abort ();
722 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
723 abort ();
725 /* Catch non-congruent offsets too. */
726 byte_offset = SUBREG_BYTE (x);
727 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
728 abort ();
730 final_regno = subreg_regno (x);
732 return final_regno;
735 /* Return a value representing some low-order bits of X, where the number
736 of low-order bits is given by MODE. Note that no conversion is done
737 between floating-point and fixed-point values, rather, the bit
738 representation is returned.
740 This function handles the cases in common between gen_lowpart, below,
741 and two variants in cse.c and combine.c. These are the cases that can
742 be safely handled at all points in the compilation.
744 If this is not a case we can handle, return 0. */
747 gen_lowpart_common (mode, x)
748 enum machine_mode mode;
749 register rtx x;
751 int msize = GET_MODE_SIZE (mode);
752 int xsize = GET_MODE_SIZE (GET_MODE (x));
753 int offset = 0;
755 if (GET_MODE (x) == mode)
756 return x;
758 /* MODE must occupy no more words than the mode of X. */
759 if (GET_MODE (x) != VOIDmode
760 && ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
761 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
762 return 0;
764 if ((WORDS_BIG_ENDIAN || BYTES_BIG_ENDIAN)
765 && xsize > msize)
767 int difference = xsize - msize;
769 if (WORDS_BIG_ENDIAN)
770 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
771 if (BYTES_BIG_ENDIAN)
772 offset += difference % UNITS_PER_WORD;
775 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
776 && (GET_MODE_CLASS (mode) == MODE_INT
777 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
779 /* If we are getting the low-order part of something that has been
780 sign- or zero-extended, we can either just use the object being
781 extended or make a narrower extension. If we want an even smaller
782 piece than the size of the object being extended, call ourselves
783 recursively.
785 This case is used mostly by combine and cse. */
787 if (GET_MODE (XEXP (x, 0)) == mode)
788 return XEXP (x, 0);
789 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
790 return gen_lowpart_common (mode, XEXP (x, 0));
791 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
792 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
794 else if (GET_CODE (x) == SUBREG
795 && (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
796 || GET_MODE_SIZE (mode) == GET_MODE_UNIT_SIZE (GET_MODE (x))))
798 int final_offset;
800 if (GET_MODE (SUBREG_REG (x)) == mode && subreg_lowpart_p (x))
801 return SUBREG_REG (x);
803 /* When working with SUBREGs the rule is that the byte
804 offset must be a multiple of the SUBREG's mode. */
805 final_offset = SUBREG_BYTE (x) + offset;
806 final_offset = (final_offset / GET_MODE_SIZE (mode));
807 final_offset = (final_offset * GET_MODE_SIZE (mode));
808 return gen_rtx_SUBREG (mode, SUBREG_REG (x), final_offset);
810 else if (GET_CODE (x) == REG)
812 /* Hard registers are done specially in certain cases. */
813 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
815 int final_regno = REGNO (x) +
816 subreg_regno_offset (REGNO (x), GET_MODE (x),
817 offset, mode);
819 /* If the final regno is not valid for MODE, punt. */
820 /* ??? We do allow it if the current REG is not valid for
821 ??? it's mode. It is a kludge to work around how float/complex
822 ??? arguments are passed on 32-bit Sparc and should be fixed. */
823 if (! HARD_REGNO_MODE_OK (final_regno, mode)
824 && HARD_REGNO_MODE_OK (REGNO (x), GET_MODE (x)))
825 return 0;
827 /* integrate.c can't handle parts of a return value register. */
828 if ((! REG_FUNCTION_VALUE_P (x)
829 || ! rtx_equal_function_value_matters)
830 #ifdef CLASS_CANNOT_CHANGE_MODE
831 && ! (CLASS_CANNOT_CHANGE_MODE_P (mode, GET_MODE (x))
832 && GET_MODE_CLASS (GET_MODE (x)) != MODE_COMPLEX_INT
833 && GET_MODE_CLASS (GET_MODE (x)) != MODE_COMPLEX_FLOAT
834 && (TEST_HARD_REG_BIT
835 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
836 REGNO (x))))
837 #endif
838 /* We want to keep the stack, frame, and arg pointers
839 special. */
840 && x != frame_pointer_rtx
841 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
842 && x != arg_pointer_rtx
843 #endif
844 && x != stack_pointer_rtx)
845 return gen_rtx_REG (mode, final_regno);
847 return gen_rtx_SUBREG (mode, x, offset);
849 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
850 from the low-order part of the constant. */
851 else if ((GET_MODE_CLASS (mode) == MODE_INT
852 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
853 && GET_MODE (x) == VOIDmode
854 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
856 /* If MODE is twice the host word size, X is already the desired
857 representation. Otherwise, if MODE is wider than a word, we can't
858 do this. If MODE is exactly a word, return just one CONST_INT. */
860 if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
861 return x;
862 else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
863 return 0;
864 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
865 return (GET_CODE (x) == CONST_INT ? x
866 : GEN_INT (CONST_DOUBLE_LOW (x)));
867 else
869 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
870 HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
871 : CONST_DOUBLE_LOW (x));
873 /* Sign extend to HOST_WIDE_INT. */
874 val = trunc_int_for_mode (val, mode);
876 return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
877 : GEN_INT (val));
881 #ifndef REAL_ARITHMETIC
882 /* If X is an integral constant but we want it in floating-point, it
883 must be the case that we have a union of an integer and a floating-point
884 value. If the machine-parameters allow it, simulate that union here
885 and return the result. The two-word and single-word cases are
886 different. */
888 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
889 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
890 || flag_pretend_float)
891 && GET_MODE_CLASS (mode) == MODE_FLOAT
892 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
893 && GET_CODE (x) == CONST_INT
894 && sizeof (float) * HOST_BITS_PER_CHAR == HOST_BITS_PER_WIDE_INT)
896 union {HOST_WIDE_INT i; float d; } u;
898 u.i = INTVAL (x);
899 return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
901 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
902 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
903 || flag_pretend_float)
904 && GET_MODE_CLASS (mode) == MODE_FLOAT
905 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
906 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
907 && GET_MODE (x) == VOIDmode
908 && (sizeof (double) * HOST_BITS_PER_CHAR
909 == 2 * HOST_BITS_PER_WIDE_INT))
911 union {HOST_WIDE_INT i[2]; double d; } u;
912 HOST_WIDE_INT low, high;
914 if (GET_CODE (x) == CONST_INT)
915 low = INTVAL (x), high = low >> (HOST_BITS_PER_WIDE_INT -1);
916 else
917 low = CONST_DOUBLE_LOW (x), high = CONST_DOUBLE_HIGH (x);
919 #ifdef HOST_WORDS_BIG_ENDIAN
920 u.i[0] = high, u.i[1] = low;
921 #else
922 u.i[0] = low, u.i[1] = high;
923 #endif
925 return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
928 /* Similarly, if this is converting a floating-point value into a
929 single-word integer. Only do this is the host and target parameters are
930 compatible. */
932 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
933 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
934 || flag_pretend_float)
935 && (GET_MODE_CLASS (mode) == MODE_INT
936 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
937 && GET_CODE (x) == CONST_DOUBLE
938 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
939 && GET_MODE_BITSIZE (mode) == BITS_PER_WORD)
940 return constant_subword (x, (offset / UNITS_PER_WORD), GET_MODE (x));
942 /* Similarly, if this is converting a floating-point value into a
943 two-word integer, we can do this one word at a time and make an
944 integer. Only do this is the host and target parameters are
945 compatible. */
947 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
948 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
949 || flag_pretend_float)
950 && (GET_MODE_CLASS (mode) == MODE_INT
951 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
952 && GET_CODE (x) == CONST_DOUBLE
953 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
954 && GET_MODE_BITSIZE (mode) == 2 * BITS_PER_WORD)
956 rtx lowpart, highpart;
958 lowpart = constant_subword (x,
959 (offset / UNITS_PER_WORD) + WORDS_BIG_ENDIAN,
960 GET_MODE (x));
961 highpart = constant_subword (x,
962 (offset / UNITS_PER_WORD) + (! WORDS_BIG_ENDIAN),
963 GET_MODE (x));
964 if (lowpart && GET_CODE (lowpart) == CONST_INT
965 && highpart && GET_CODE (highpart) == CONST_INT)
966 return immed_double_const (INTVAL (lowpart), INTVAL (highpart), mode);
968 #else /* ifndef REAL_ARITHMETIC */
970 /* When we have a FP emulator, we can handle all conversions between
971 FP and integer operands. This simplifies reload because it
972 doesn't have to deal with constructs like (subreg:DI
973 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
975 else if (mode == SFmode
976 && GET_CODE (x) == CONST_INT)
978 REAL_VALUE_TYPE r;
979 HOST_WIDE_INT i;
981 i = INTVAL (x);
982 r = REAL_VALUE_FROM_TARGET_SINGLE (i);
983 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
985 else if (mode == DFmode
986 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
987 && GET_MODE (x) == VOIDmode)
989 REAL_VALUE_TYPE r;
990 HOST_WIDE_INT i[2];
991 HOST_WIDE_INT low, high;
993 if (GET_CODE (x) == CONST_INT)
995 low = INTVAL (x);
996 high = low >> (HOST_BITS_PER_WIDE_INT - 1);
998 else
1000 low = CONST_DOUBLE_LOW (x);
1001 high = CONST_DOUBLE_HIGH (x);
1004 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
1005 target machine. */
1006 if (WORDS_BIG_ENDIAN)
1007 i[0] = high, i[1] = low;
1008 else
1009 i[0] = low, i[1] = high;
1011 r = REAL_VALUE_FROM_TARGET_DOUBLE (i);
1012 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1014 else if ((GET_MODE_CLASS (mode) == MODE_INT
1015 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1016 && GET_CODE (x) == CONST_DOUBLE
1017 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1019 REAL_VALUE_TYPE r;
1020 long i[4]; /* Only the low 32 bits of each 'long' are used. */
1021 int endian = WORDS_BIG_ENDIAN ? 1 : 0;
1023 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
1024 switch (GET_MODE (x))
1026 case SFmode:
1027 REAL_VALUE_TO_TARGET_SINGLE (r, i[endian]);
1028 i[1 - endian] = 0;
1029 break;
1030 case DFmode:
1031 REAL_VALUE_TO_TARGET_DOUBLE (r, i);
1032 break;
1033 #if LONG_DOUBLE_TYPE_SIZE == 96
1034 case XFmode:
1035 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i + endian);
1036 i[3-3*endian] = 0;
1037 #else
1038 case TFmode:
1039 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i);
1040 #endif
1041 break;
1042 default:
1043 abort ();
1046 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
1047 and return it. */
1048 #if HOST_BITS_PER_WIDE_INT == 32
1049 return immed_double_const (i[endian], i[1 - endian], mode);
1050 #else
1052 int c;
1054 if (HOST_BITS_PER_WIDE_INT != 64)
1055 abort ();
1057 for (c = 0; c < 4; c++)
1058 i[c] &= ~ (0L);
1060 switch (GET_MODE (x))
1062 case SFmode:
1063 case DFmode:
1064 return immed_double_const (((unsigned long) i[endian]) |
1065 (((HOST_WIDE_INT) i[1-endian]) << 32),
1066 0, mode);
1067 default:
1068 return immed_double_const (((unsigned long) i[endian*3]) |
1069 (((HOST_WIDE_INT) i[1+endian]) << 32),
1070 ((unsigned long) i[2-endian]) |
1071 (((HOST_WIDE_INT) i[3-endian*3]) << 32),
1072 mode);
1075 #endif
1077 #endif /* ifndef REAL_ARITHMETIC */
1079 /* Otherwise, we can't do this. */
1080 return 0;
1083 /* Return the real part (which has mode MODE) of a complex value X.
1084 This always comes at the low address in memory. */
1087 gen_realpart (mode, x)
1088 enum machine_mode mode;
1089 register rtx x;
1091 if (GET_CODE (x) == CONCAT && GET_MODE (XEXP (x, 0)) == mode)
1092 return XEXP (x, 0);
1093 else if (WORDS_BIG_ENDIAN
1094 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1095 && REG_P (x)
1096 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1097 internal_error
1098 ("Can't access real part of complex value in hard register");
1099 else if (WORDS_BIG_ENDIAN)
1100 return gen_highpart (mode, x);
1101 else
1102 return gen_lowpart (mode, x);
1105 /* Return the imaginary part (which has mode MODE) of a complex value X.
1106 This always comes at the high address in memory. */
1109 gen_imagpart (mode, x)
1110 enum machine_mode mode;
1111 register rtx x;
1113 if (GET_CODE (x) == CONCAT && GET_MODE (XEXP (x, 0)) == mode)
1114 return XEXP (x, 1);
1115 else if (WORDS_BIG_ENDIAN)
1116 return gen_lowpart (mode, x);
1117 else if (! WORDS_BIG_ENDIAN
1118 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1119 && REG_P (x)
1120 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1121 internal_error
1122 ("can't access imaginary part of complex value in hard register");
1123 else
1124 return gen_highpart (mode, x);
1127 /* Return 1 iff X, assumed to be a SUBREG,
1128 refers to the real part of the complex value in its containing reg.
1129 Complex values are always stored with the real part in the first word,
1130 regardless of WORDS_BIG_ENDIAN. */
1133 subreg_realpart_p (x)
1134 rtx x;
1136 if (GET_CODE (x) != SUBREG)
1137 abort ();
1139 return ((unsigned int) SUBREG_BYTE (x)
1140 < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
1143 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1144 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1145 least-significant part of X.
1146 MODE specifies how big a part of X to return;
1147 it usually should not be larger than a word.
1148 If X is a MEM whose address is a QUEUED, the value may be so also. */
1151 gen_lowpart (mode, x)
1152 enum machine_mode mode;
1153 register rtx x;
1155 rtx result = gen_lowpart_common (mode, x);
1157 if (result)
1158 return result;
1159 else if (GET_CODE (x) == REG)
1161 /* Must be a hard reg that's not valid in MODE. */
1162 result = gen_lowpart_common (mode, copy_to_reg (x));
1163 if (result == 0)
1164 abort ();
1165 return result;
1167 else if (GET_CODE (x) == MEM)
1169 /* The only additional case we can do is MEM. */
1170 register int offset = 0;
1171 if (WORDS_BIG_ENDIAN)
1172 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1173 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1175 if (BYTES_BIG_ENDIAN)
1176 /* Adjust the address so that the address-after-the-data
1177 is unchanged. */
1178 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1179 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1181 return change_address (x, mode, plus_constant (XEXP (x, 0), offset));
1183 else if (GET_CODE (x) == ADDRESSOF)
1184 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1185 else
1186 abort ();
1189 /* Like `gen_lowpart', but refer to the most significant part.
1190 This is used to access the imaginary part of a complex number. */
1193 gen_highpart (mode, x)
1194 enum machine_mode mode;
1195 register rtx x;
1197 unsigned int msize = GET_MODE_SIZE (mode);
1198 unsigned int xsize = GET_MODE_SIZE (GET_MODE (x));
1200 /* This case loses if X is a subreg. To catch bugs early,
1201 complain if an invalid MODE is used even in other cases. */
1202 if (msize > UNITS_PER_WORD
1203 && msize != GET_MODE_UNIT_SIZE (GET_MODE (x)))
1204 abort ();
1205 if (GET_CODE (x) == CONST_DOUBLE
1206 #if !(TARGET_FLOAT_FORMAT != HOST_FLOAT_FORMAT || defined (REAL_IS_NOT_DOUBLE))
1207 && GET_MODE_CLASS (GET_MODE (x)) != MODE_FLOAT
1208 #endif
1210 return GEN_INT (CONST_DOUBLE_HIGH (x) & GET_MODE_MASK (mode));
1211 else if (GET_CODE (x) == CONST_INT)
1213 if (HOST_BITS_PER_WIDE_INT <= BITS_PER_WORD)
1214 return const0_rtx;
1215 return GEN_INT (INTVAL (x) >> (HOST_BITS_PER_WIDE_INT - BITS_PER_WORD));
1217 else if (GET_CODE (x) == MEM)
1219 register int offset = 0;
1221 if (! WORDS_BIG_ENDIAN)
1222 offset = (MAX (xsize, UNITS_PER_WORD)
1223 - MAX (msize, UNITS_PER_WORD));
1225 if (! BYTES_BIG_ENDIAN
1226 && msize < UNITS_PER_WORD)
1227 offset -= (msize - MIN (UNITS_PER_WORD, xsize));
1229 return change_address (x, mode, plus_constant (XEXP (x, 0), offset));
1231 else if (GET_CODE (x) == SUBREG)
1233 /* The only time this should occur is when we are looking at a
1234 multi-word item with a SUBREG whose mode is the same as that of the
1235 item. It isn't clear what we would do if it wasn't. */
1236 if (SUBREG_BYTE (x) != 0)
1237 abort ();
1238 return gen_highpart (mode, SUBREG_REG (x));
1240 else if (GET_CODE (x) == REG)
1242 int offset = 0;
1244 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
1245 abort ();
1247 if ((! WORDS_BIG_ENDIAN || ! BYTES_BIG_ENDIAN)
1248 && xsize > msize)
1250 int difference = xsize - msize;
1252 if (! WORDS_BIG_ENDIAN)
1253 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1254 if (! BYTES_BIG_ENDIAN)
1255 offset += difference % UNITS_PER_WORD;
1257 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
1259 int final_regno = REGNO (x) +
1260 subreg_regno_offset (REGNO (x), GET_MODE (x), offset, mode);
1262 /* integrate.c can't handle parts of a return value register.
1263 ??? Then integrate.c should be fixed!
1264 ??? What about CLASS_CANNOT_CHANGE_SIZE? */
1265 if ((! REG_FUNCTION_VALUE_P (x)
1266 || ! rtx_equal_function_value_matters)
1267 /* We want to keep the stack, frame, and arg pointers special. */
1268 && x != frame_pointer_rtx
1269 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1270 && x != arg_pointer_rtx
1271 #endif
1272 && x != stack_pointer_rtx)
1273 return gen_rtx_REG (mode, final_regno);
1275 /* Just generate a normal SUBREG. */
1276 return gen_rtx_SUBREG (mode, x, offset);
1278 else
1279 abort ();
1282 /* Return 1 iff X, assumed to be a SUBREG,
1283 refers to the least significant part of its containing reg.
1284 If X is not a SUBREG, always return 1 (it is its own low part!). */
1287 subreg_lowpart_p (x)
1288 rtx x;
1290 unsigned int offset = 0;
1291 int difference = (GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
1292 - GET_MODE_SIZE (GET_MODE (x)));
1294 if (GET_CODE (x) != SUBREG)
1295 return 1;
1296 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1297 return 0;
1299 if (difference > 0)
1301 if (WORDS_BIG_ENDIAN)
1302 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1303 if (BYTES_BIG_ENDIAN)
1304 offset += difference % UNITS_PER_WORD;
1307 return SUBREG_BYTE (x) == offset;
1311 /* Helper routine for all the constant cases of operand_subword.
1312 Some places invoke this directly. */
1315 constant_subword (op, offset, mode)
1316 rtx op;
1317 int offset;
1318 enum machine_mode mode;
1320 int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
1321 HOST_WIDE_INT val;
1323 /* If OP is already an integer word, return it. */
1324 if (GET_MODE_CLASS (mode) == MODE_INT
1325 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1326 return op;
1328 #ifdef REAL_ARITHMETIC
1329 /* The output is some bits, the width of the target machine's word.
1330 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1331 host can't. */
1332 if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1333 && GET_MODE_CLASS (mode) == MODE_FLOAT
1334 && GET_MODE_BITSIZE (mode) == 64
1335 && GET_CODE (op) == CONST_DOUBLE)
1337 long k[2];
1338 REAL_VALUE_TYPE rv;
1340 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1341 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
1343 /* We handle 32-bit and >= 64-bit words here. Note that the order in
1344 which the words are written depends on the word endianness.
1345 ??? This is a potential portability problem and should
1346 be fixed at some point.
1348 We must excercise caution with the sign bit. By definition there
1349 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1350 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1351 So we explicitly mask and sign-extend as necessary. */
1352 if (BITS_PER_WORD == 32)
1354 val = k[offset];
1355 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1356 return GEN_INT (val);
1358 #if HOST_BITS_PER_WIDE_INT >= 64
1359 else if (BITS_PER_WORD >= 64 && offset == 0)
1361 val = k[! WORDS_BIG_ENDIAN];
1362 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1363 val |= (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN] & 0xffffffff;
1364 return GEN_INT (val);
1366 #endif
1367 else if (BITS_PER_WORD == 16)
1369 val = k[offset >> 1];
1370 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1371 val >>= 16;
1372 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1373 return GEN_INT (val);
1375 else
1376 abort ();
1378 else if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1379 && GET_MODE_CLASS (mode) == MODE_FLOAT
1380 && GET_MODE_BITSIZE (mode) > 64
1381 && GET_CODE (op) == CONST_DOUBLE)
1383 long k[4];
1384 REAL_VALUE_TYPE rv;
1386 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1387 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
1389 if (BITS_PER_WORD == 32)
1391 val = k[offset];
1392 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1393 return GEN_INT (val);
1395 #if HOST_BITS_PER_WIDE_INT >= 64
1396 else if (BITS_PER_WORD >= 64 && offset <= 1)
1398 val = k[offset * 2 + ! WORDS_BIG_ENDIAN];
1399 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1400 val |= (HOST_WIDE_INT) k[offset * 2 + WORDS_BIG_ENDIAN] & 0xffffffff;
1401 return GEN_INT (val);
1403 #endif
1404 else
1405 abort ();
1407 #else /* no REAL_ARITHMETIC */
1408 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1409 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1410 || flag_pretend_float)
1411 && GET_MODE_CLASS (mode) == MODE_FLOAT
1412 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1413 && GET_CODE (op) == CONST_DOUBLE)
1415 /* The constant is stored in the host's word-ordering,
1416 but we want to access it in the target's word-ordering. Some
1417 compilers don't like a conditional inside macro args, so we have two
1418 copies of the return. */
1419 #ifdef HOST_WORDS_BIG_ENDIAN
1420 return GEN_INT (offset == WORDS_BIG_ENDIAN
1421 ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
1422 #else
1423 return GEN_INT (offset != WORDS_BIG_ENDIAN
1424 ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
1425 #endif
1427 #endif /* no REAL_ARITHMETIC */
1429 /* Single word float is a little harder, since single- and double-word
1430 values often do not have the same high-order bits. We have already
1431 verified that we want the only defined word of the single-word value. */
1432 #ifdef REAL_ARITHMETIC
1433 if (GET_MODE_CLASS (mode) == MODE_FLOAT
1434 && GET_MODE_BITSIZE (mode) == 32
1435 && GET_CODE (op) == CONST_DOUBLE)
1437 long l;
1438 REAL_VALUE_TYPE rv;
1440 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1441 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
1443 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1444 val = l;
1445 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1447 if (BITS_PER_WORD == 16)
1449 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1450 val >>= 16;
1451 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1454 return GEN_INT (val);
1456 #else
1457 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1458 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1459 || flag_pretend_float)
1460 && sizeof (float) * 8 == HOST_BITS_PER_WIDE_INT
1461 && GET_MODE_CLASS (mode) == MODE_FLOAT
1462 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
1463 && GET_CODE (op) == CONST_DOUBLE)
1465 double d;
1466 union {float f; HOST_WIDE_INT i; } u;
1468 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1470 u.f = d;
1471 return GEN_INT (u.i);
1473 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1474 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1475 || flag_pretend_float)
1476 && sizeof (double) * 8 == HOST_BITS_PER_WIDE_INT
1477 && GET_MODE_CLASS (mode) == MODE_FLOAT
1478 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
1479 && GET_CODE (op) == CONST_DOUBLE)
1481 double d;
1482 union {double d; HOST_WIDE_INT i; } u;
1484 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1486 u.d = d;
1487 return GEN_INT (u.i);
1489 #endif /* no REAL_ARITHMETIC */
1491 /* The only remaining cases that we can handle are integers.
1492 Convert to proper endianness now since these cases need it.
1493 At this point, offset == 0 means the low-order word.
1495 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1496 in general. However, if OP is (const_int 0), we can just return
1497 it for any word. */
1499 if (op == const0_rtx)
1500 return op;
1502 if (GET_MODE_CLASS (mode) != MODE_INT
1503 || (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
1504 || BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
1505 return 0;
1507 if (WORDS_BIG_ENDIAN)
1508 offset = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - offset;
1510 /* Find out which word on the host machine this value is in and get
1511 it from the constant. */
1512 val = (offset / size_ratio == 0
1513 ? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
1514 : (GET_CODE (op) == CONST_INT
1515 ? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
1517 /* Get the value we want into the low bits of val. */
1518 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
1519 val = ((val >> ((offset % size_ratio) * BITS_PER_WORD)));
1521 val = trunc_int_for_mode (val, word_mode);
1523 return GEN_INT (val);
1526 /* Return subword OFFSET of operand OP.
1527 The word number, OFFSET, is interpreted as the word number starting
1528 at the low-order address. OFFSET 0 is the low-order word if not
1529 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1531 If we cannot extract the required word, we return zero. Otherwise,
1532 an rtx corresponding to the requested word will be returned.
1534 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1535 reload has completed, a valid address will always be returned. After
1536 reload, if a valid address cannot be returned, we return zero.
1538 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1539 it is the responsibility of the caller.
1541 MODE is the mode of OP in case it is a CONST_INT.
1543 ??? This is still rather broken for some cases. The problem for the
1544 moment is that all callers of this thing provide no 'goal mode' to
1545 tell us to work with. This exists because all callers were written
1546 in a word based SUBREG world. */
1549 operand_subword (op, offset, validate_address, mode)
1550 rtx op;
1551 unsigned int offset;
1552 int validate_address;
1553 enum machine_mode mode;
1555 if (mode == VOIDmode)
1556 mode = GET_MODE (op);
1558 if (mode == VOIDmode)
1559 abort ();
1561 /* If OP is narrower than a word, fail. */
1562 if (mode != BLKmode
1563 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1564 return 0;
1566 /* If we want a word outside OP, return zero. */
1567 if (mode != BLKmode
1568 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1569 return const0_rtx;
1571 switch (GET_CODE (op))
1573 case REG:
1574 case SUBREG:
1575 case CONCAT:
1576 case MEM:
1577 break;
1579 default:
1580 /* The only remaining cases are when OP is a constant. If the host and
1581 target floating formats are the same, handling two-word floating
1582 constants are easy. Note that REAL_VALUE_TO_TARGET_{SINGLE,DOUBLE}
1583 are defined as returning one or two 32 bit values, respectively,
1584 and not values of BITS_PER_WORD bits. */
1585 return constant_subword (op, offset, mode);
1588 /* If OP is already an integer word, return it. */
1589 if (GET_MODE_CLASS (mode) == MODE_INT
1590 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1591 return op;
1593 /* If OP is a REG or SUBREG, we can handle it very simply. */
1594 if (GET_CODE (op) == REG)
1596 if (REGNO (op) < FIRST_PSEUDO_REGISTER)
1598 int final_regno = REGNO (op) +
1599 subreg_regno_offset (REGNO (op), GET_MODE (op),
1600 offset * UNITS_PER_WORD,
1601 word_mode);
1603 /* If the register is not valid for MODE, return 0. If we don't
1604 do this, there is no way to fix up the resulting REG later. */
1605 if (! HARD_REGNO_MODE_OK (final_regno, word_mode))
1606 return 0;
1608 /* integrate.c can't handle parts of a return value register.
1609 ??? Then integrate.c should be fixed!
1610 ??? What about CLASS_CANNOT_CHANGE_SIZE? */
1611 if ((! REG_FUNCTION_VALUE_P (op)
1612 || ! rtx_equal_function_value_matters)
1613 /* ??? What about CLASS_CANNOT_CHANGE_SIZE? */
1614 /* We want to keep the stack, frame, and arg pointers
1615 special. */
1616 && op != frame_pointer_rtx
1617 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1618 && op != arg_pointer_rtx
1619 #endif
1620 && op != stack_pointer_rtx)
1621 return gen_rtx_REG (word_mode, final_regno);
1624 /* Just return a normal SUBREG. */
1625 return gen_rtx_SUBREG (word_mode, op,
1626 (offset * UNITS_PER_WORD));
1628 else if (GET_CODE (op) == SUBREG)
1630 int final_offset = ((offset * UNITS_PER_WORD) + SUBREG_BYTE (op));
1632 /* When working with SUBREGs the rule is that the byte
1633 offset must be a multiple of the SUBREG's mode. */
1634 final_offset = (final_offset / GET_MODE_SIZE (word_mode));
1635 final_offset = (final_offset * GET_MODE_SIZE (word_mode));
1636 return gen_rtx_SUBREG (word_mode, SUBREG_REG (op), final_offset);
1638 else if (GET_CODE (op) == CONCAT)
1640 unsigned int partwords = GET_MODE_UNIT_SIZE (GET_MODE (op)) / UNITS_PER_WORD;
1641 if (offset < partwords)
1642 return operand_subword (XEXP (op, 0), offset, validate_address, mode);
1643 return operand_subword (XEXP (op, 1), offset - partwords,
1644 validate_address, mode);
1647 /* Form a new MEM at the requested address. */
1648 if (GET_CODE (op) == MEM)
1650 rtx addr = plus_constant (XEXP (op, 0), (offset * UNITS_PER_WORD));
1651 rtx new;
1653 if (validate_address)
1655 if (reload_completed)
1657 if (! strict_memory_address_p (word_mode, addr))
1658 return 0;
1660 else
1661 addr = memory_address (word_mode, addr);
1664 new = gen_rtx_MEM (word_mode, addr);
1665 MEM_COPY_ATTRIBUTES (new, op);
1666 return new;
1669 /* Unreachable... (famous last words) */
1670 abort ();
1673 /* Similar to `operand_subword', but never return 0. If we can't extract
1674 the required subword, put OP into a register and try again. If that fails,
1675 abort. We always validate the address in this case.
1677 MODE is the mode of OP, in case it is CONST_INT. */
1680 operand_subword_force (op, offset, mode)
1681 rtx op;
1682 unsigned int offset;
1683 enum machine_mode mode;
1685 rtx result = operand_subword (op, offset, 1, mode);
1687 if (result)
1688 return result;
1690 if (mode != BLKmode && mode != VOIDmode)
1692 /* If this is a register which can not be accessed by words, copy it
1693 to a pseudo register. */
1694 if (GET_CODE (op) == REG)
1695 op = copy_to_reg (op);
1696 else
1697 op = force_reg (mode, op);
1700 result = operand_subword (op, offset, 1, mode);
1701 if (result == 0)
1702 abort ();
1704 return result;
1707 /* Given a compare instruction, swap the operands.
1708 A test instruction is changed into a compare of 0 against the operand. */
1710 void
1711 reverse_comparison (insn)
1712 rtx insn;
1714 rtx body = PATTERN (insn);
1715 rtx comp;
1717 if (GET_CODE (body) == SET)
1718 comp = SET_SRC (body);
1719 else
1720 comp = SET_SRC (XVECEXP (body, 0, 0));
1722 if (GET_CODE (comp) == COMPARE)
1724 rtx op0 = XEXP (comp, 0);
1725 rtx op1 = XEXP (comp, 1);
1726 XEXP (comp, 0) = op1;
1727 XEXP (comp, 1) = op0;
1729 else
1731 rtx new = gen_rtx_COMPARE (VOIDmode,
1732 CONST0_RTX (GET_MODE (comp)), comp);
1733 if (GET_CODE (body) == SET)
1734 SET_SRC (body) = new;
1735 else
1736 SET_SRC (XVECEXP (body, 0, 0)) = new;
1740 /* Return a memory reference like MEMREF, but with its mode changed
1741 to MODE and its address changed to ADDR.
1742 (VOIDmode means don't change the mode.
1743 NULL for ADDR means don't change the address.) */
1746 change_address (memref, mode, addr)
1747 rtx memref;
1748 enum machine_mode mode;
1749 rtx addr;
1751 rtx new;
1753 if (GET_CODE (memref) != MEM)
1754 abort ();
1755 if (mode == VOIDmode)
1756 mode = GET_MODE (memref);
1757 if (addr == 0)
1758 addr = XEXP (memref, 0);
1760 /* If reload is in progress or has completed, ADDR must be valid.
1761 Otherwise, we can call memory_address to make it valid. */
1762 if (reload_completed || reload_in_progress)
1764 if (! memory_address_p (mode, addr))
1765 abort ();
1767 else
1768 addr = memory_address (mode, addr);
1770 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1771 return memref;
1773 new = gen_rtx_MEM (mode, addr);
1774 MEM_COPY_ATTRIBUTES (new, memref);
1775 return new;
1778 /* Return a newly created CODE_LABEL rtx with a unique label number. */
1781 gen_label_rtx ()
1783 register rtx label;
1785 label = gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX,
1786 NULL_RTX, label_num++, NULL, NULL);
1788 LABEL_NUSES (label) = 0;
1789 LABEL_ALTERNATE_NAME (label) = NULL;
1790 return label;
1793 /* For procedure integration. */
1795 /* Install new pointers to the first and last insns in the chain.
1796 Also, set cur_insn_uid to one higher than the last in use.
1797 Used for an inline-procedure after copying the insn chain. */
1799 void
1800 set_new_first_and_last_insn (first, last)
1801 rtx first, last;
1803 rtx insn;
1805 first_insn = first;
1806 last_insn = last;
1807 cur_insn_uid = 0;
1809 for (insn = first; insn; insn = NEXT_INSN (insn))
1810 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
1812 cur_insn_uid++;
1815 /* Set the range of label numbers found in the current function.
1816 This is used when belatedly compiling an inline function. */
1818 void
1819 set_new_first_and_last_label_num (first, last)
1820 int first, last;
1822 base_label_num = label_num;
1823 first_label_num = first;
1824 last_label_num = last;
1827 /* Set the last label number found in the current function.
1828 This is used when belatedly compiling an inline function. */
1830 void
1831 set_new_last_label_num (last)
1832 int last;
1834 base_label_num = label_num;
1835 last_label_num = last;
1838 /* Restore all variables describing the current status from the structure *P.
1839 This is used after a nested function. */
1841 void
1842 restore_emit_status (p)
1843 struct function *p ATTRIBUTE_UNUSED;
1845 last_label_num = 0;
1846 clear_emit_caches ();
1849 /* Clear out all parts of the state in F that can safely be discarded
1850 after the function has been compiled, to let garbage collection
1851 reclaim the memory. */
1853 void
1854 free_emit_status (f)
1855 struct function *f;
1857 free (f->emit->x_regno_reg_rtx);
1858 free (f->emit->regno_pointer_align);
1859 free (f->emit);
1860 f->emit = NULL;
1863 /* Go through all the RTL insn bodies and copy any invalid shared
1864 structure. This routine should only be called once. */
1866 void
1867 unshare_all_rtl (fndecl, insn)
1868 tree fndecl;
1869 rtx insn;
1871 tree decl;
1873 /* Make sure that virtual parameters are not shared. */
1874 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1875 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
1877 /* Make sure that virtual stack slots are not shared. */
1878 unshare_all_decls (DECL_INITIAL (fndecl));
1880 /* Unshare just about everything else. */
1881 unshare_all_rtl_1 (insn);
1883 /* Make sure the addresses of stack slots found outside the insn chain
1884 (such as, in DECL_RTL of a variable) are not shared
1885 with the insn chain.
1887 This special care is necessary when the stack slot MEM does not
1888 actually appear in the insn chain. If it does appear, its address
1889 is unshared from all else at that point. */
1890 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
1893 /* Go through all the RTL insn bodies and copy any invalid shared
1894 structure, again. This is a fairly expensive thing to do so it
1895 should be done sparingly. */
1897 void
1898 unshare_all_rtl_again (insn)
1899 rtx insn;
1901 rtx p;
1902 tree decl;
1904 for (p = insn; p; p = NEXT_INSN (p))
1905 if (INSN_P (p))
1907 reset_used_flags (PATTERN (p));
1908 reset_used_flags (REG_NOTES (p));
1909 reset_used_flags (LOG_LINKS (p));
1912 /* Make sure that virtual stack slots are not shared. */
1913 reset_used_decls (DECL_INITIAL (cfun->decl));
1915 /* Make sure that virtual parameters are not shared. */
1916 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
1917 reset_used_flags (DECL_RTL (decl));
1919 reset_used_flags (stack_slot_list);
1921 unshare_all_rtl (cfun->decl, insn);
1924 /* Go through all the RTL insn bodies and copy any invalid shared structure.
1925 Assumes the mark bits are cleared at entry. */
1927 static void
1928 unshare_all_rtl_1 (insn)
1929 rtx insn;
1931 for (; insn; insn = NEXT_INSN (insn))
1932 if (INSN_P (insn))
1934 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
1935 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
1936 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
1940 /* Go through all virtual stack slots of a function and copy any
1941 shared structure. */
1942 static void
1943 unshare_all_decls (blk)
1944 tree blk;
1946 tree t;
1948 /* Copy shared decls. */
1949 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
1950 if (DECL_RTL_SET_P (t))
1951 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
1953 /* Now process sub-blocks. */
1954 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
1955 unshare_all_decls (t);
1958 /* Go through all virtual stack slots of a function and mark them as
1959 not shared. */
1960 static void
1961 reset_used_decls (blk)
1962 tree blk;
1964 tree t;
1966 /* Mark decls. */
1967 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
1968 if (DECL_RTL_SET_P (t))
1969 reset_used_flags (DECL_RTL (t));
1971 /* Now process sub-blocks. */
1972 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
1973 reset_used_decls (t);
1976 /* Mark ORIG as in use, and return a copy of it if it was already in use.
1977 Recursively does the same for subexpressions. */
1980 copy_rtx_if_shared (orig)
1981 rtx orig;
1983 register rtx x = orig;
1984 register int i;
1985 register enum rtx_code code;
1986 register const char *format_ptr;
1987 int copied = 0;
1989 if (x == 0)
1990 return 0;
1992 code = GET_CODE (x);
1994 /* These types may be freely shared. */
1996 switch (code)
1998 case REG:
1999 case QUEUED:
2000 case CONST_INT:
2001 case CONST_DOUBLE:
2002 case SYMBOL_REF:
2003 case CODE_LABEL:
2004 case PC:
2005 case CC0:
2006 case SCRATCH:
2007 /* SCRATCH must be shared because they represent distinct values. */
2008 return x;
2010 case CONST:
2011 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2012 a LABEL_REF, it isn't sharable. */
2013 if (GET_CODE (XEXP (x, 0)) == PLUS
2014 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2015 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2016 return x;
2017 break;
2019 case INSN:
2020 case JUMP_INSN:
2021 case CALL_INSN:
2022 case NOTE:
2023 case BARRIER:
2024 /* The chain of insns is not being copied. */
2025 return x;
2027 case MEM:
2028 /* A MEM is allowed to be shared if its address is constant.
2030 We used to allow sharing of MEMs which referenced
2031 virtual_stack_vars_rtx or virtual_incoming_args_rtx, but
2032 that can lose. instantiate_virtual_regs will not unshare
2033 the MEMs, and combine may change the structure of the address
2034 because it looks safe and profitable in one context, but
2035 in some other context it creates unrecognizable RTL. */
2036 if (CONSTANT_ADDRESS_P (XEXP (x, 0)))
2037 return x;
2039 break;
2041 default:
2042 break;
2045 /* This rtx may not be shared. If it has already been seen,
2046 replace it with a copy of itself. */
2048 if (x->used)
2050 register rtx copy;
2052 copy = rtx_alloc (code);
2053 memcpy (copy, x,
2054 (sizeof (*copy) - sizeof (copy->fld)
2055 + sizeof (copy->fld[0]) * GET_RTX_LENGTH (code)));
2056 x = copy;
2057 copied = 1;
2059 x->used = 1;
2061 /* Now scan the subexpressions recursively.
2062 We can store any replaced subexpressions directly into X
2063 since we know X is not shared! Any vectors in X
2064 must be copied if X was copied. */
2066 format_ptr = GET_RTX_FORMAT (code);
2068 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2070 switch (*format_ptr++)
2072 case 'e':
2073 XEXP (x, i) = copy_rtx_if_shared (XEXP (x, i));
2074 break;
2076 case 'E':
2077 if (XVEC (x, i) != NULL)
2079 register int j;
2080 int len = XVECLEN (x, i);
2082 if (copied && len > 0)
2083 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2084 for (j = 0; j < len; j++)
2085 XVECEXP (x, i, j) = copy_rtx_if_shared (XVECEXP (x, i, j));
2087 break;
2090 return x;
2093 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2094 to look for shared sub-parts. */
2096 void
2097 reset_used_flags (x)
2098 rtx x;
2100 register int i, j;
2101 register enum rtx_code code;
2102 register const char *format_ptr;
2104 if (x == 0)
2105 return;
2107 code = GET_CODE (x);
2109 /* These types may be freely shared so we needn't do any resetting
2110 for them. */
2112 switch (code)
2114 case REG:
2115 case QUEUED:
2116 case CONST_INT:
2117 case CONST_DOUBLE:
2118 case SYMBOL_REF:
2119 case CODE_LABEL:
2120 case PC:
2121 case CC0:
2122 return;
2124 case INSN:
2125 case JUMP_INSN:
2126 case CALL_INSN:
2127 case NOTE:
2128 case LABEL_REF:
2129 case BARRIER:
2130 /* The chain of insns is not being copied. */
2131 return;
2133 default:
2134 break;
2137 x->used = 0;
2139 format_ptr = GET_RTX_FORMAT (code);
2140 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2142 switch (*format_ptr++)
2144 case 'e':
2145 reset_used_flags (XEXP (x, i));
2146 break;
2148 case 'E':
2149 for (j = 0; j < XVECLEN (x, i); j++)
2150 reset_used_flags (XVECEXP (x, i, j));
2151 break;
2156 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2157 Return X or the rtx for the pseudo reg the value of X was copied into.
2158 OTHER must be valid as a SET_DEST. */
2161 make_safe_from (x, other)
2162 rtx x, other;
2164 while (1)
2165 switch (GET_CODE (other))
2167 case SUBREG:
2168 other = SUBREG_REG (other);
2169 break;
2170 case STRICT_LOW_PART:
2171 case SIGN_EXTEND:
2172 case ZERO_EXTEND:
2173 other = XEXP (other, 0);
2174 break;
2175 default:
2176 goto done;
2178 done:
2179 if ((GET_CODE (other) == MEM
2180 && ! CONSTANT_P (x)
2181 && GET_CODE (x) != REG
2182 && GET_CODE (x) != SUBREG)
2183 || (GET_CODE (other) == REG
2184 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2185 || reg_mentioned_p (other, x))))
2187 rtx temp = gen_reg_rtx (GET_MODE (x));
2188 emit_move_insn (temp, x);
2189 return temp;
2191 return x;
2194 /* Emission of insns (adding them to the doubly-linked list). */
2196 /* Return the first insn of the current sequence or current function. */
2199 get_insns ()
2201 return first_insn;
2204 /* Return the last insn emitted in current sequence or current function. */
2207 get_last_insn ()
2209 return last_insn;
2212 /* Specify a new insn as the last in the chain. */
2214 void
2215 set_last_insn (insn)
2216 rtx insn;
2218 if (NEXT_INSN (insn) != 0)
2219 abort ();
2220 last_insn = insn;
2223 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2226 get_last_insn_anywhere ()
2228 struct sequence_stack *stack;
2229 if (last_insn)
2230 return last_insn;
2231 for (stack = seq_stack; stack; stack = stack->next)
2232 if (stack->last != 0)
2233 return stack->last;
2234 return 0;
2237 /* Return a number larger than any instruction's uid in this function. */
2240 get_max_uid ()
2242 return cur_insn_uid;
2245 /* Renumber instructions so that no instruction UIDs are wasted. */
2247 void
2248 renumber_insns (stream)
2249 FILE *stream;
2251 rtx insn;
2253 /* If we're not supposed to renumber instructions, don't. */
2254 if (!flag_renumber_insns)
2255 return;
2257 /* If there aren't that many instructions, then it's not really
2258 worth renumbering them. */
2259 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2260 return;
2262 cur_insn_uid = 1;
2264 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2266 if (stream)
2267 fprintf (stream, "Renumbering insn %d to %d\n",
2268 INSN_UID (insn), cur_insn_uid);
2269 INSN_UID (insn) = cur_insn_uid++;
2273 /* Return the next insn. If it is a SEQUENCE, return the first insn
2274 of the sequence. */
2277 next_insn (insn)
2278 rtx insn;
2280 if (insn)
2282 insn = NEXT_INSN (insn);
2283 if (insn && GET_CODE (insn) == INSN
2284 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2285 insn = XVECEXP (PATTERN (insn), 0, 0);
2288 return insn;
2291 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2292 of the sequence. */
2295 previous_insn (insn)
2296 rtx insn;
2298 if (insn)
2300 insn = PREV_INSN (insn);
2301 if (insn && GET_CODE (insn) == INSN
2302 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2303 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2306 return insn;
2309 /* Return the next insn after INSN that is not a NOTE. This routine does not
2310 look inside SEQUENCEs. */
2313 next_nonnote_insn (insn)
2314 rtx insn;
2316 while (insn)
2318 insn = NEXT_INSN (insn);
2319 if (insn == 0 || GET_CODE (insn) != NOTE)
2320 break;
2323 return insn;
2326 /* Return the previous insn before INSN that is not a NOTE. This routine does
2327 not look inside SEQUENCEs. */
2330 prev_nonnote_insn (insn)
2331 rtx insn;
2333 while (insn)
2335 insn = PREV_INSN (insn);
2336 if (insn == 0 || GET_CODE (insn) != NOTE)
2337 break;
2340 return insn;
2343 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2344 or 0, if there is none. This routine does not look inside
2345 SEQUENCEs. */
2348 next_real_insn (insn)
2349 rtx insn;
2351 while (insn)
2353 insn = NEXT_INSN (insn);
2354 if (insn == 0 || GET_CODE (insn) == INSN
2355 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
2356 break;
2359 return insn;
2362 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2363 or 0, if there is none. This routine does not look inside
2364 SEQUENCEs. */
2367 prev_real_insn (insn)
2368 rtx insn;
2370 while (insn)
2372 insn = PREV_INSN (insn);
2373 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
2374 || GET_CODE (insn) == JUMP_INSN)
2375 break;
2378 return insn;
2381 /* Find the next insn after INSN that really does something. This routine
2382 does not look inside SEQUENCEs. Until reload has completed, this is the
2383 same as next_real_insn. */
2386 active_insn_p (insn)
2387 rtx insn;
2389 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
2390 || (GET_CODE (insn) == INSN
2391 && (! reload_completed
2392 || (GET_CODE (PATTERN (insn)) != USE
2393 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2397 next_active_insn (insn)
2398 rtx insn;
2400 while (insn)
2402 insn = NEXT_INSN (insn);
2403 if (insn == 0 || active_insn_p (insn))
2404 break;
2407 return insn;
2410 /* Find the last insn before INSN that really does something. This routine
2411 does not look inside SEQUENCEs. Until reload has completed, this is the
2412 same as prev_real_insn. */
2415 prev_active_insn (insn)
2416 rtx insn;
2418 while (insn)
2420 insn = PREV_INSN (insn);
2421 if (insn == 0 || active_insn_p (insn))
2422 break;
2425 return insn;
2428 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2431 next_label (insn)
2432 rtx insn;
2434 while (insn)
2436 insn = NEXT_INSN (insn);
2437 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2438 break;
2441 return insn;
2444 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2447 prev_label (insn)
2448 rtx insn;
2450 while (insn)
2452 insn = PREV_INSN (insn);
2453 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2454 break;
2457 return insn;
2460 #ifdef HAVE_cc0
2461 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
2462 and REG_CC_USER notes so we can find it. */
2464 void
2465 link_cc0_insns (insn)
2466 rtx insn;
2468 rtx user = next_nonnote_insn (insn);
2470 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
2471 user = XVECEXP (PATTERN (user), 0, 0);
2473 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
2474 REG_NOTES (user));
2475 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
2478 /* Return the next insn that uses CC0 after INSN, which is assumed to
2479 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
2480 applied to the result of this function should yield INSN).
2482 Normally, this is simply the next insn. However, if a REG_CC_USER note
2483 is present, it contains the insn that uses CC0.
2485 Return 0 if we can't find the insn. */
2488 next_cc0_user (insn)
2489 rtx insn;
2491 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
2493 if (note)
2494 return XEXP (note, 0);
2496 insn = next_nonnote_insn (insn);
2497 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
2498 insn = XVECEXP (PATTERN (insn), 0, 0);
2500 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
2501 return insn;
2503 return 0;
2506 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
2507 note, it is the previous insn. */
2510 prev_cc0_setter (insn)
2511 rtx insn;
2513 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2515 if (note)
2516 return XEXP (note, 0);
2518 insn = prev_nonnote_insn (insn);
2519 if (! sets_cc0_p (PATTERN (insn)))
2520 abort ();
2522 return insn;
2524 #endif
2526 /* Increment the label uses for all labels present in rtx. */
2528 static void
2529 mark_label_nuses(x)
2530 rtx x;
2532 register enum rtx_code code;
2533 register int i, j;
2534 register const char *fmt;
2536 code = GET_CODE (x);
2537 if (code == LABEL_REF)
2538 LABEL_NUSES (XEXP (x, 0))++;
2540 fmt = GET_RTX_FORMAT (code);
2541 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2543 if (fmt[i] == 'e')
2544 mark_label_nuses (XEXP (x, i));
2545 else if (fmt[i] == 'E')
2546 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2547 mark_label_nuses (XVECEXP (x, i, j));
2552 /* Try splitting insns that can be split for better scheduling.
2553 PAT is the pattern which might split.
2554 TRIAL is the insn providing PAT.
2555 LAST is non-zero if we should return the last insn of the sequence produced.
2557 If this routine succeeds in splitting, it returns the first or last
2558 replacement insn depending on the value of LAST. Otherwise, it
2559 returns TRIAL. If the insn to be returned can be split, it will be. */
2562 try_split (pat, trial, last)
2563 rtx pat, trial;
2564 int last;
2566 rtx before = PREV_INSN (trial);
2567 rtx after = NEXT_INSN (trial);
2568 rtx seq = split_insns (pat, trial);
2569 int has_barrier = 0;
2570 rtx tem;
2572 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
2573 We may need to handle this specially. */
2574 if (after && GET_CODE (after) == BARRIER)
2576 has_barrier = 1;
2577 after = NEXT_INSN (after);
2580 if (seq)
2582 /* SEQ can either be a SEQUENCE or the pattern of a single insn.
2583 The latter case will normally arise only when being done so that
2584 it, in turn, will be split (SFmode on the 29k is an example). */
2585 if (GET_CODE (seq) == SEQUENCE)
2587 int i;
2588 rtx eh_note;
2590 /* Avoid infinite loop if any insn of the result matches
2591 the original pattern. */
2592 for (i = 0; i < XVECLEN (seq, 0); i++)
2593 if (GET_CODE (XVECEXP (seq, 0, i)) == INSN
2594 && rtx_equal_p (PATTERN (XVECEXP (seq, 0, i)), pat))
2595 return trial;
2597 /* Mark labels. */
2598 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2599 if (GET_CODE (XVECEXP (seq, 0, i)) == JUMP_INSN)
2600 mark_jump_label (PATTERN (XVECEXP (seq, 0, i)),
2601 XVECEXP (seq, 0, i), 0, 0);
2603 /* If we are splitting a CALL_INSN, look for the CALL_INSN
2604 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
2605 if (GET_CODE (trial) == CALL_INSN)
2606 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2607 if (GET_CODE (XVECEXP (seq, 0, i)) == CALL_INSN)
2608 CALL_INSN_FUNCTION_USAGE (XVECEXP (seq, 0, i))
2609 = CALL_INSN_FUNCTION_USAGE (trial);
2611 /* Copy EH notes. */
2612 if ((eh_note = find_reg_note (trial, REG_EH_REGION, NULL_RTX)))
2613 for (i = 0; i < XVECLEN (seq, 0); i++)
2615 rtx insn = XVECEXP (seq, 0, i);
2616 if (GET_CODE (insn) == CALL_INSN
2617 || (flag_non_call_exceptions
2618 && may_trap_p (PATTERN (insn))))
2619 REG_NOTES (insn)
2620 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (eh_note, 0),
2621 REG_NOTES (insn));
2624 /* If there are LABELS inside the split insns increment the
2625 usage count so we don't delete the label. */
2626 if (GET_CODE (trial) == INSN)
2627 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2628 if (GET_CODE (XVECEXP (seq, 0, i)) == INSN)
2629 mark_label_nuses (PATTERN (XVECEXP (seq, 0, i)));
2631 tem = emit_insn_after (seq, before);
2633 delete_insn (trial);
2634 if (has_barrier)
2635 emit_barrier_after (tem);
2637 /* Recursively call try_split for each new insn created; by the
2638 time control returns here that insn will be fully split, so
2639 set LAST and continue from the insn after the one returned.
2640 We can't use next_active_insn here since AFTER may be a note.
2641 Ignore deleted insns, which can be occur if not optimizing. */
2642 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
2643 if (! INSN_DELETED_P (tem) && INSN_P (tem))
2644 tem = try_split (PATTERN (tem), tem, 1);
2646 /* Avoid infinite loop if the result matches the original pattern. */
2647 else if (rtx_equal_p (seq, pat))
2648 return trial;
2649 else
2651 PATTERN (trial) = seq;
2652 INSN_CODE (trial) = -1;
2653 try_split (seq, trial, last);
2656 /* Return either the first or the last insn, depending on which was
2657 requested. */
2658 return last
2659 ? (after ? prev_active_insn (after) : last_insn)
2660 : next_active_insn (before);
2663 return trial;
2666 /* Make and return an INSN rtx, initializing all its slots.
2667 Store PATTERN in the pattern slots. */
2670 make_insn_raw (pattern)
2671 rtx pattern;
2673 register rtx insn;
2675 insn = rtx_alloc (INSN);
2677 INSN_UID (insn) = cur_insn_uid++;
2678 PATTERN (insn) = pattern;
2679 INSN_CODE (insn) = -1;
2680 LOG_LINKS (insn) = NULL;
2681 REG_NOTES (insn) = NULL;
2683 #ifdef ENABLE_RTL_CHECKING
2684 if (insn
2685 && INSN_P (insn)
2686 && (returnjump_p (insn)
2687 || (GET_CODE (insn) == SET
2688 && SET_DEST (insn) == pc_rtx)))
2690 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
2691 debug_rtx (insn);
2693 #endif
2695 return insn;
2698 /* Like `make_insn' but make a JUMP_INSN instead of an insn. */
2700 static rtx
2701 make_jump_insn_raw (pattern)
2702 rtx pattern;
2704 register rtx insn;
2706 insn = rtx_alloc (JUMP_INSN);
2707 INSN_UID (insn) = cur_insn_uid++;
2709 PATTERN (insn) = pattern;
2710 INSN_CODE (insn) = -1;
2711 LOG_LINKS (insn) = NULL;
2712 REG_NOTES (insn) = NULL;
2713 JUMP_LABEL (insn) = NULL;
2715 return insn;
2718 /* Like `make_insn' but make a CALL_INSN instead of an insn. */
2720 static rtx
2721 make_call_insn_raw (pattern)
2722 rtx pattern;
2724 register rtx insn;
2726 insn = rtx_alloc (CALL_INSN);
2727 INSN_UID (insn) = cur_insn_uid++;
2729 PATTERN (insn) = pattern;
2730 INSN_CODE (insn) = -1;
2731 LOG_LINKS (insn) = NULL;
2732 REG_NOTES (insn) = NULL;
2733 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
2735 return insn;
2738 /* Add INSN to the end of the doubly-linked list.
2739 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
2741 void
2742 add_insn (insn)
2743 register rtx insn;
2745 PREV_INSN (insn) = last_insn;
2746 NEXT_INSN (insn) = 0;
2748 if (NULL != last_insn)
2749 NEXT_INSN (last_insn) = insn;
2751 if (NULL == first_insn)
2752 first_insn = insn;
2754 last_insn = insn;
2757 /* Add INSN into the doubly-linked list after insn AFTER. This and
2758 the next should be the only functions called to insert an insn once
2759 delay slots have been filled since only they know how to update a
2760 SEQUENCE. */
2762 void
2763 add_insn_after (insn, after)
2764 rtx insn, after;
2766 rtx next = NEXT_INSN (after);
2768 if (optimize && INSN_DELETED_P (after))
2769 abort ();
2771 NEXT_INSN (insn) = next;
2772 PREV_INSN (insn) = after;
2774 if (next)
2776 PREV_INSN (next) = insn;
2777 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
2778 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
2780 else if (last_insn == after)
2781 last_insn = insn;
2782 else
2784 struct sequence_stack *stack = seq_stack;
2785 /* Scan all pending sequences too. */
2786 for (; stack; stack = stack->next)
2787 if (after == stack->last)
2789 stack->last = insn;
2790 break;
2793 if (stack == 0)
2794 abort ();
2797 NEXT_INSN (after) = insn;
2798 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
2800 rtx sequence = PATTERN (after);
2801 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
2805 /* Add INSN into the doubly-linked list before insn BEFORE. This and
2806 the previous should be the only functions called to insert an insn once
2807 delay slots have been filled since only they know how to update a
2808 SEQUENCE. */
2810 void
2811 add_insn_before (insn, before)
2812 rtx insn, before;
2814 rtx prev = PREV_INSN (before);
2816 if (optimize && INSN_DELETED_P (before))
2817 abort ();
2819 PREV_INSN (insn) = prev;
2820 NEXT_INSN (insn) = before;
2822 if (prev)
2824 NEXT_INSN (prev) = insn;
2825 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
2827 rtx sequence = PATTERN (prev);
2828 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
2831 else if (first_insn == before)
2832 first_insn = insn;
2833 else
2835 struct sequence_stack *stack = seq_stack;
2836 /* Scan all pending sequences too. */
2837 for (; stack; stack = stack->next)
2838 if (before == stack->first)
2840 stack->first = insn;
2841 break;
2844 if (stack == 0)
2845 abort ();
2848 PREV_INSN (before) = insn;
2849 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
2850 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
2853 /* Remove an insn from its doubly-linked list. This function knows how
2854 to handle sequences. */
2855 void
2856 remove_insn (insn)
2857 rtx insn;
2859 rtx next = NEXT_INSN (insn);
2860 rtx prev = PREV_INSN (insn);
2861 if (prev)
2863 NEXT_INSN (prev) = next;
2864 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
2866 rtx sequence = PATTERN (prev);
2867 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
2870 else if (first_insn == insn)
2871 first_insn = next;
2872 else
2874 struct sequence_stack *stack = seq_stack;
2875 /* Scan all pending sequences too. */
2876 for (; stack; stack = stack->next)
2877 if (insn == stack->first)
2879 stack->first = next;
2880 break;
2883 if (stack == 0)
2884 abort ();
2887 if (next)
2889 PREV_INSN (next) = prev;
2890 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
2891 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
2893 else if (last_insn == insn)
2894 last_insn = prev;
2895 else
2897 struct sequence_stack *stack = seq_stack;
2898 /* Scan all pending sequences too. */
2899 for (; stack; stack = stack->next)
2900 if (insn == stack->last)
2902 stack->last = prev;
2903 break;
2906 if (stack == 0)
2907 abort ();
2911 /* Delete all insns made since FROM.
2912 FROM becomes the new last instruction. */
2914 void
2915 delete_insns_since (from)
2916 rtx from;
2918 if (from == 0)
2919 first_insn = 0;
2920 else
2921 NEXT_INSN (from) = 0;
2922 last_insn = from;
2925 /* This function is deprecated, please use sequences instead.
2927 Move a consecutive bunch of insns to a different place in the chain.
2928 The insns to be moved are those between FROM and TO.
2929 They are moved to a new position after the insn AFTER.
2930 AFTER must not be FROM or TO or any insn in between.
2932 This function does not know about SEQUENCEs and hence should not be
2933 called after delay-slot filling has been done. */
2935 void
2936 reorder_insns (from, to, after)
2937 rtx from, to, after;
2939 /* Splice this bunch out of where it is now. */
2940 if (PREV_INSN (from))
2941 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
2942 if (NEXT_INSN (to))
2943 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
2944 if (last_insn == to)
2945 last_insn = PREV_INSN (from);
2946 if (first_insn == from)
2947 first_insn = NEXT_INSN (to);
2949 /* Make the new neighbors point to it and it to them. */
2950 if (NEXT_INSN (after))
2951 PREV_INSN (NEXT_INSN (after)) = to;
2953 NEXT_INSN (to) = NEXT_INSN (after);
2954 PREV_INSN (from) = after;
2955 NEXT_INSN (after) = from;
2956 if (after == last_insn)
2957 last_insn = to;
2960 /* Return the line note insn preceding INSN. */
2962 static rtx
2963 find_line_note (insn)
2964 rtx insn;
2966 if (no_line_numbers)
2967 return 0;
2969 for (; insn; insn = PREV_INSN (insn))
2970 if (GET_CODE (insn) == NOTE
2971 && NOTE_LINE_NUMBER (insn) >= 0)
2972 break;
2974 return insn;
2977 /* Like reorder_insns, but inserts line notes to preserve the line numbers
2978 of the moved insns when debugging. This may insert a note between AFTER
2979 and FROM, and another one after TO. */
2981 void
2982 reorder_insns_with_line_notes (from, to, after)
2983 rtx from, to, after;
2985 rtx from_line = find_line_note (from);
2986 rtx after_line = find_line_note (after);
2988 reorder_insns (from, to, after);
2990 if (from_line == after_line)
2991 return;
2993 if (from_line)
2994 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
2995 NOTE_LINE_NUMBER (from_line),
2996 after);
2997 if (after_line)
2998 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
2999 NOTE_LINE_NUMBER (after_line),
3000 to);
3003 /* Remove unnecessary notes from the instruction stream. */
3005 void
3006 remove_unnecessary_notes ()
3008 rtx block_stack = NULL_RTX;
3009 rtx eh_stack = NULL_RTX;
3010 rtx insn;
3011 rtx next;
3012 rtx tmp;
3014 /* We must not remove the first instruction in the function because
3015 the compiler depends on the first instruction being a note. */
3016 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3018 /* Remember what's next. */
3019 next = NEXT_INSN (insn);
3021 /* We're only interested in notes. */
3022 if (GET_CODE (insn) != NOTE)
3023 continue;
3025 switch (NOTE_LINE_NUMBER (insn))
3027 case NOTE_INSN_DELETED:
3028 remove_insn (insn);
3029 break;
3031 case NOTE_INSN_EH_REGION_BEG:
3032 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3033 break;
3035 case NOTE_INSN_EH_REGION_END:
3036 /* Too many end notes. */
3037 if (eh_stack == NULL_RTX)
3038 abort ();
3039 /* Mismatched nesting. */
3040 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
3041 abort ();
3042 tmp = eh_stack;
3043 eh_stack = XEXP (eh_stack, 1);
3044 free_INSN_LIST_node (tmp);
3045 break;
3047 case NOTE_INSN_BLOCK_BEG:
3048 /* By now, all notes indicating lexical blocks should have
3049 NOTE_BLOCK filled in. */
3050 if (NOTE_BLOCK (insn) == NULL_TREE)
3051 abort ();
3052 block_stack = alloc_INSN_LIST (insn, block_stack);
3053 break;
3055 case NOTE_INSN_BLOCK_END:
3056 /* Too many end notes. */
3057 if (block_stack == NULL_RTX)
3058 abort ();
3059 /* Mismatched nesting. */
3060 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
3061 abort ();
3062 tmp = block_stack;
3063 block_stack = XEXP (block_stack, 1);
3064 free_INSN_LIST_node (tmp);
3066 /* Scan back to see if there are any non-note instructions
3067 between INSN and the beginning of this block. If not,
3068 then there is no PC range in the generated code that will
3069 actually be in this block, so there's no point in
3070 remembering the existence of the block. */
3071 for (tmp = PREV_INSN (insn); tmp ; tmp = PREV_INSN (tmp))
3073 /* This block contains a real instruction. Note that we
3074 don't include labels; if the only thing in the block
3075 is a label, then there are still no PC values that
3076 lie within the block. */
3077 if (INSN_P (tmp))
3078 break;
3080 /* We're only interested in NOTEs. */
3081 if (GET_CODE (tmp) != NOTE)
3082 continue;
3084 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
3086 /* We just verified that this BLOCK matches us
3087 with the block_stack check above. */
3088 if (debug_ignore_block (NOTE_BLOCK (insn)))
3090 remove_insn (tmp);
3091 remove_insn (insn);
3093 break;
3095 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
3096 /* There's a nested block. We need to leave the
3097 current block in place since otherwise the debugger
3098 wouldn't be able to show symbols from our block in
3099 the nested block. */
3100 break;
3105 /* Too many begin notes. */
3106 if (block_stack || eh_stack)
3107 abort ();
3111 /* Emit an insn of given code and pattern
3112 at a specified place within the doubly-linked list. */
3114 /* Make an instruction with body PATTERN
3115 and output it before the instruction BEFORE. */
3118 emit_insn_before (pattern, before)
3119 register rtx pattern, before;
3121 register rtx insn = before;
3123 if (GET_CODE (pattern) == SEQUENCE)
3125 register int i;
3127 for (i = 0; i < XVECLEN (pattern, 0); i++)
3129 insn = XVECEXP (pattern, 0, i);
3130 add_insn_before (insn, before);
3133 else
3135 insn = make_insn_raw (pattern);
3136 add_insn_before (insn, before);
3139 return insn;
3142 /* Similar to emit_insn_before, but update basic block boundaries as well. */
3145 emit_block_insn_before (pattern, before, block)
3146 rtx pattern, before;
3147 basic_block block;
3149 rtx prev = PREV_INSN (before);
3150 rtx r = emit_insn_before (pattern, before);
3151 if (block && block->head == before)
3152 block->head = NEXT_INSN (prev);
3153 return r;
3156 /* Make an instruction with body PATTERN and code JUMP_INSN
3157 and output it before the instruction BEFORE. */
3160 emit_jump_insn_before (pattern, before)
3161 register rtx pattern, before;
3163 register rtx insn;
3165 if (GET_CODE (pattern) == SEQUENCE)
3166 insn = emit_insn_before (pattern, before);
3167 else
3169 insn = make_jump_insn_raw (pattern);
3170 add_insn_before (insn, before);
3173 return insn;
3176 /* Make an instruction with body PATTERN and code CALL_INSN
3177 and output it before the instruction BEFORE. */
3180 emit_call_insn_before (pattern, before)
3181 register rtx pattern, before;
3183 register rtx insn;
3185 if (GET_CODE (pattern) == SEQUENCE)
3186 insn = emit_insn_before (pattern, before);
3187 else
3189 insn = make_call_insn_raw (pattern);
3190 add_insn_before (insn, before);
3191 PUT_CODE (insn, CALL_INSN);
3194 return insn;
3197 /* Make an insn of code BARRIER
3198 and output it before the insn BEFORE. */
3201 emit_barrier_before (before)
3202 register rtx before;
3204 register rtx insn = rtx_alloc (BARRIER);
3206 INSN_UID (insn) = cur_insn_uid++;
3208 add_insn_before (insn, before);
3209 return insn;
3212 /* Emit the label LABEL before the insn BEFORE. */
3215 emit_label_before (label, before)
3216 rtx label, before;
3218 /* This can be called twice for the same label as a result of the
3219 confusion that follows a syntax error! So make it harmless. */
3220 if (INSN_UID (label) == 0)
3222 INSN_UID (label) = cur_insn_uid++;
3223 add_insn_before (label, before);
3226 return label;
3229 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3232 emit_note_before (subtype, before)
3233 int subtype;
3234 rtx before;
3236 register rtx note = rtx_alloc (NOTE);
3237 INSN_UID (note) = cur_insn_uid++;
3238 NOTE_SOURCE_FILE (note) = 0;
3239 NOTE_LINE_NUMBER (note) = subtype;
3241 add_insn_before (note, before);
3242 return note;
3245 /* Make an insn of code INSN with body PATTERN
3246 and output it after the insn AFTER. */
3249 emit_insn_after (pattern, after)
3250 register rtx pattern, after;
3252 register rtx insn = after;
3254 if (GET_CODE (pattern) == SEQUENCE)
3256 register int i;
3258 for (i = 0; i < XVECLEN (pattern, 0); i++)
3260 insn = XVECEXP (pattern, 0, i);
3261 add_insn_after (insn, after);
3262 after = insn;
3265 else
3267 insn = make_insn_raw (pattern);
3268 add_insn_after (insn, after);
3271 return insn;
3274 /* Similar to emit_insn_after, except that line notes are to be inserted so
3275 as to act as if this insn were at FROM. */
3277 void
3278 emit_insn_after_with_line_notes (pattern, after, from)
3279 rtx pattern, after, from;
3281 rtx from_line = find_line_note (from);
3282 rtx after_line = find_line_note (after);
3283 rtx insn = emit_insn_after (pattern, after);
3285 if (from_line)
3286 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
3287 NOTE_LINE_NUMBER (from_line),
3288 after);
3290 if (after_line)
3291 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
3292 NOTE_LINE_NUMBER (after_line),
3293 insn);
3296 /* Similar to emit_insn_after, but update basic block boundaries as well. */
3299 emit_block_insn_after (pattern, after, block)
3300 rtx pattern, after;
3301 basic_block block;
3303 rtx r = emit_insn_after (pattern, after);
3304 if (block && block->end == after)
3305 block->end = r;
3306 return r;
3309 /* Make an insn of code JUMP_INSN with body PATTERN
3310 and output it after the insn AFTER. */
3313 emit_jump_insn_after (pattern, after)
3314 register rtx pattern, after;
3316 register rtx insn;
3318 if (GET_CODE (pattern) == SEQUENCE)
3319 insn = emit_insn_after (pattern, after);
3320 else
3322 insn = make_jump_insn_raw (pattern);
3323 add_insn_after (insn, after);
3326 return insn;
3329 /* Make an insn of code BARRIER
3330 and output it after the insn AFTER. */
3333 emit_barrier_after (after)
3334 register rtx after;
3336 register rtx insn = rtx_alloc (BARRIER);
3338 INSN_UID (insn) = cur_insn_uid++;
3340 add_insn_after (insn, after);
3341 return insn;
3344 /* Emit the label LABEL after the insn AFTER. */
3347 emit_label_after (label, after)
3348 rtx label, after;
3350 /* This can be called twice for the same label
3351 as a result of the confusion that follows a syntax error!
3352 So make it harmless. */
3353 if (INSN_UID (label) == 0)
3355 INSN_UID (label) = cur_insn_uid++;
3356 add_insn_after (label, after);
3359 return label;
3362 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
3365 emit_note_after (subtype, after)
3366 int subtype;
3367 rtx after;
3369 register rtx note = rtx_alloc (NOTE);
3370 INSN_UID (note) = cur_insn_uid++;
3371 NOTE_SOURCE_FILE (note) = 0;
3372 NOTE_LINE_NUMBER (note) = subtype;
3373 add_insn_after (note, after);
3374 return note;
3377 /* Emit a line note for FILE and LINE after the insn AFTER. */
3380 emit_line_note_after (file, line, after)
3381 const char *file;
3382 int line;
3383 rtx after;
3385 register rtx note;
3387 if (no_line_numbers && line > 0)
3389 cur_insn_uid++;
3390 return 0;
3393 note = rtx_alloc (NOTE);
3394 INSN_UID (note) = cur_insn_uid++;
3395 NOTE_SOURCE_FILE (note) = file;
3396 NOTE_LINE_NUMBER (note) = line;
3397 add_insn_after (note, after);
3398 return note;
3401 /* Make an insn of code INSN with pattern PATTERN
3402 and add it to the end of the doubly-linked list.
3403 If PATTERN is a SEQUENCE, take the elements of it
3404 and emit an insn for each element.
3406 Returns the last insn emitted. */
3409 emit_insn (pattern)
3410 rtx pattern;
3412 rtx insn = last_insn;
3414 if (GET_CODE (pattern) == SEQUENCE)
3416 register int i;
3418 for (i = 0; i < XVECLEN (pattern, 0); i++)
3420 insn = XVECEXP (pattern, 0, i);
3421 add_insn (insn);
3424 else
3426 insn = make_insn_raw (pattern);
3427 add_insn (insn);
3430 return insn;
3433 /* Emit the insns in a chain starting with INSN.
3434 Return the last insn emitted. */
3437 emit_insns (insn)
3438 rtx insn;
3440 rtx last = 0;
3442 while (insn)
3444 rtx next = NEXT_INSN (insn);
3445 add_insn (insn);
3446 last = insn;
3447 insn = next;
3450 return last;
3453 /* Emit the insns in a chain starting with INSN and place them in front of
3454 the insn BEFORE. Return the last insn emitted. */
3457 emit_insns_before (insn, before)
3458 rtx insn;
3459 rtx before;
3461 rtx last = 0;
3463 while (insn)
3465 rtx next = NEXT_INSN (insn);
3466 add_insn_before (insn, before);
3467 last = insn;
3468 insn = next;
3471 return last;
3474 /* Emit the insns in a chain starting with FIRST and place them in back of
3475 the insn AFTER. Return the last insn emitted. */
3478 emit_insns_after (first, after)
3479 register rtx first;
3480 register rtx after;
3482 register rtx last;
3483 register rtx after_after;
3485 if (!after)
3486 abort ();
3488 if (!first)
3489 return first;
3491 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3492 continue;
3494 after_after = NEXT_INSN (after);
3496 NEXT_INSN (after) = first;
3497 PREV_INSN (first) = after;
3498 NEXT_INSN (last) = after_after;
3499 if (after_after)
3500 PREV_INSN (after_after) = last;
3502 if (after == last_insn)
3503 last_insn = last;
3504 return last;
3507 /* Make an insn of code JUMP_INSN with pattern PATTERN
3508 and add it to the end of the doubly-linked list. */
3511 emit_jump_insn (pattern)
3512 rtx pattern;
3514 if (GET_CODE (pattern) == SEQUENCE)
3515 return emit_insn (pattern);
3516 else
3518 register rtx insn = make_jump_insn_raw (pattern);
3519 add_insn (insn);
3520 return insn;
3524 /* Make an insn of code CALL_INSN with pattern PATTERN
3525 and add it to the end of the doubly-linked list. */
3528 emit_call_insn (pattern)
3529 rtx pattern;
3531 if (GET_CODE (pattern) == SEQUENCE)
3532 return emit_insn (pattern);
3533 else
3535 register rtx insn = make_call_insn_raw (pattern);
3536 add_insn (insn);
3537 PUT_CODE (insn, CALL_INSN);
3538 return insn;
3542 /* Add the label LABEL to the end of the doubly-linked list. */
3545 emit_label (label)
3546 rtx label;
3548 /* This can be called twice for the same label
3549 as a result of the confusion that follows a syntax error!
3550 So make it harmless. */
3551 if (INSN_UID (label) == 0)
3553 INSN_UID (label) = cur_insn_uid++;
3554 add_insn (label);
3556 return label;
3559 /* Make an insn of code BARRIER
3560 and add it to the end of the doubly-linked list. */
3563 emit_barrier ()
3565 register rtx barrier = rtx_alloc (BARRIER);
3566 INSN_UID (barrier) = cur_insn_uid++;
3567 add_insn (barrier);
3568 return barrier;
3571 /* Make an insn of code NOTE
3572 with data-fields specified by FILE and LINE
3573 and add it to the end of the doubly-linked list,
3574 but only if line-numbers are desired for debugging info. */
3577 emit_line_note (file, line)
3578 const char *file;
3579 int line;
3581 set_file_and_line_for_stmt (file, line);
3583 #if 0
3584 if (no_line_numbers)
3585 return 0;
3586 #endif
3588 return emit_note (file, line);
3591 /* Make an insn of code NOTE
3592 with data-fields specified by FILE and LINE
3593 and add it to the end of the doubly-linked list.
3594 If it is a line-number NOTE, omit it if it matches the previous one. */
3597 emit_note (file, line)
3598 const char *file;
3599 int line;
3601 register rtx note;
3603 if (line > 0)
3605 if (file && last_filename && !strcmp (file, last_filename)
3606 && line == last_linenum)
3607 return 0;
3608 last_filename = file;
3609 last_linenum = line;
3612 if (no_line_numbers && line > 0)
3614 cur_insn_uid++;
3615 return 0;
3618 note = rtx_alloc (NOTE);
3619 INSN_UID (note) = cur_insn_uid++;
3620 NOTE_SOURCE_FILE (note) = file;
3621 NOTE_LINE_NUMBER (note) = line;
3622 add_insn (note);
3623 return note;
3626 /* Emit a NOTE, and don't omit it even if LINE is the previous note. */
3629 emit_line_note_force (file, line)
3630 const char *file;
3631 int line;
3633 last_linenum = -1;
3634 return emit_line_note (file, line);
3637 /* Cause next statement to emit a line note even if the line number
3638 has not changed. This is used at the beginning of a function. */
3640 void
3641 force_next_line_note ()
3643 last_linenum = -1;
3646 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
3647 note of this type already exists, remove it first. */
3649 void
3650 set_unique_reg_note (insn, kind, datum)
3651 rtx insn;
3652 enum reg_note kind;
3653 rtx datum;
3655 rtx note = find_reg_note (insn, kind, NULL_RTX);
3657 /* First remove the note if there already is one. */
3658 if (note)
3659 remove_note (insn, note);
3661 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
3664 /* Return an indication of which type of insn should have X as a body.
3665 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
3667 enum rtx_code
3668 classify_insn (x)
3669 rtx x;
3671 if (GET_CODE (x) == CODE_LABEL)
3672 return CODE_LABEL;
3673 if (GET_CODE (x) == CALL)
3674 return CALL_INSN;
3675 if (GET_CODE (x) == RETURN)
3676 return JUMP_INSN;
3677 if (GET_CODE (x) == SET)
3679 if (SET_DEST (x) == pc_rtx)
3680 return JUMP_INSN;
3681 else if (GET_CODE (SET_SRC (x)) == CALL)
3682 return CALL_INSN;
3683 else
3684 return INSN;
3686 if (GET_CODE (x) == PARALLEL)
3688 register int j;
3689 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
3690 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
3691 return CALL_INSN;
3692 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
3693 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
3694 return JUMP_INSN;
3695 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
3696 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
3697 return CALL_INSN;
3699 return INSN;
3702 /* Emit the rtl pattern X as an appropriate kind of insn.
3703 If X is a label, it is simply added into the insn chain. */
3706 emit (x)
3707 rtx x;
3709 enum rtx_code code = classify_insn (x);
3711 if (code == CODE_LABEL)
3712 return emit_label (x);
3713 else if (code == INSN)
3714 return emit_insn (x);
3715 else if (code == JUMP_INSN)
3717 register rtx insn = emit_jump_insn (x);
3718 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
3719 return emit_barrier ();
3720 return insn;
3722 else if (code == CALL_INSN)
3723 return emit_call_insn (x);
3724 else
3725 abort ();
3728 /* Begin emitting insns to a sequence which can be packaged in an
3729 RTL_EXPR. If this sequence will contain something that might cause
3730 the compiler to pop arguments to function calls (because those
3731 pops have previously been deferred; see INHIBIT_DEFER_POP for more
3732 details), use do_pending_stack_adjust before calling this function.
3733 That will ensure that the deferred pops are not accidentally
3734 emitted in the middle of this sequence. */
3736 void
3737 start_sequence ()
3739 struct sequence_stack *tem;
3741 tem = (struct sequence_stack *) xmalloc (sizeof (struct sequence_stack));
3743 tem->next = seq_stack;
3744 tem->first = first_insn;
3745 tem->last = last_insn;
3746 tem->sequence_rtl_expr = seq_rtl_expr;
3748 seq_stack = tem;
3750 first_insn = 0;
3751 last_insn = 0;
3754 /* Similarly, but indicate that this sequence will be placed in T, an
3755 RTL_EXPR. See the documentation for start_sequence for more
3756 information about how to use this function. */
3758 void
3759 start_sequence_for_rtl_expr (t)
3760 tree t;
3762 start_sequence ();
3764 seq_rtl_expr = t;
3767 /* Set up the insn chain starting with FIRST as the current sequence,
3768 saving the previously current one. See the documentation for
3769 start_sequence for more information about how to use this function. */
3771 void
3772 push_to_sequence (first)
3773 rtx first;
3775 rtx last;
3777 start_sequence ();
3779 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
3781 first_insn = first;
3782 last_insn = last;
3785 /* Set up the insn chain from a chain stort in FIRST to LAST. */
3787 void
3788 push_to_full_sequence (first, last)
3789 rtx first, last;
3791 start_sequence ();
3792 first_insn = first;
3793 last_insn = last;
3794 /* We really should have the end of the insn chain here. */
3795 if (last && NEXT_INSN (last))
3796 abort ();
3799 /* Set up the outer-level insn chain
3800 as the current sequence, saving the previously current one. */
3802 void
3803 push_topmost_sequence ()
3805 struct sequence_stack *stack, *top = NULL;
3807 start_sequence ();
3809 for (stack = seq_stack; stack; stack = stack->next)
3810 top = stack;
3812 first_insn = top->first;
3813 last_insn = top->last;
3814 seq_rtl_expr = top->sequence_rtl_expr;
3817 /* After emitting to the outer-level insn chain, update the outer-level
3818 insn chain, and restore the previous saved state. */
3820 void
3821 pop_topmost_sequence ()
3823 struct sequence_stack *stack, *top = NULL;
3825 for (stack = seq_stack; stack; stack = stack->next)
3826 top = stack;
3828 top->first = first_insn;
3829 top->last = last_insn;
3830 /* ??? Why don't we save seq_rtl_expr here? */
3832 end_sequence ();
3835 /* After emitting to a sequence, restore previous saved state.
3837 To get the contents of the sequence just made, you must call
3838 `gen_sequence' *before* calling here.
3840 If the compiler might have deferred popping arguments while
3841 generating this sequence, and this sequence will not be immediately
3842 inserted into the instruction stream, use do_pending_stack_adjust
3843 before calling gen_sequence. That will ensure that the deferred
3844 pops are inserted into this sequence, and not into some random
3845 location in the instruction stream. See INHIBIT_DEFER_POP for more
3846 information about deferred popping of arguments. */
3848 void
3849 end_sequence ()
3851 struct sequence_stack *tem = seq_stack;
3853 first_insn = tem->first;
3854 last_insn = tem->last;
3855 seq_rtl_expr = tem->sequence_rtl_expr;
3856 seq_stack = tem->next;
3858 free (tem);
3861 /* This works like end_sequence, but records the old sequence in FIRST
3862 and LAST. */
3864 void
3865 end_full_sequence (first, last)
3866 rtx *first, *last;
3868 *first = first_insn;
3869 *last = last_insn;
3870 end_sequence();
3873 /* Return 1 if currently emitting into a sequence. */
3876 in_sequence_p ()
3878 return seq_stack != 0;
3881 /* Generate a SEQUENCE rtx containing the insns already emitted
3882 to the current sequence.
3884 This is how the gen_... function from a DEFINE_EXPAND
3885 constructs the SEQUENCE that it returns. */
3888 gen_sequence ()
3890 rtx result;
3891 rtx tem;
3892 int i;
3893 int len;
3895 /* Count the insns in the chain. */
3896 len = 0;
3897 for (tem = first_insn; tem; tem = NEXT_INSN (tem))
3898 len++;
3900 /* If only one insn, return it rather than a SEQUENCE.
3901 (Now that we cache SEQUENCE expressions, it isn't worth special-casing
3902 the case of an empty list.)
3903 We only return the pattern of an insn if its code is INSN and it
3904 has no notes. This ensures that no information gets lost. */
3905 if (len == 1
3906 && ! RTX_FRAME_RELATED_P (first_insn)
3907 && GET_CODE (first_insn) == INSN
3908 /* Don't throw away any reg notes. */
3909 && REG_NOTES (first_insn) == 0)
3910 return PATTERN (first_insn);
3912 result = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (len));
3914 for (i = 0, tem = first_insn; tem; tem = NEXT_INSN (tem), i++)
3915 XVECEXP (result, 0, i) = tem;
3917 return result;
3920 /* Put the various virtual registers into REGNO_REG_RTX. */
3922 void
3923 init_virtual_regs (es)
3924 struct emit_status *es;
3926 rtx *ptr = es->x_regno_reg_rtx;
3927 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
3928 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
3929 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
3930 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
3931 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
3934 void
3935 clear_emit_caches ()
3937 int i;
3939 /* Clear the start_sequence/gen_sequence cache. */
3940 for (i = 0; i < SEQUENCE_RESULT_SIZE; i++)
3941 sequence_result[i] = 0;
3942 free_insn = 0;
3945 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
3946 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
3947 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
3948 static int copy_insn_n_scratches;
3950 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
3951 copied an ASM_OPERANDS.
3952 In that case, it is the original input-operand vector. */
3953 static rtvec orig_asm_operands_vector;
3955 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
3956 copied an ASM_OPERANDS.
3957 In that case, it is the copied input-operand vector. */
3958 static rtvec copy_asm_operands_vector;
3960 /* Likewise for the constraints vector. */
3961 static rtvec orig_asm_constraints_vector;
3962 static rtvec copy_asm_constraints_vector;
3964 /* Recursively create a new copy of an rtx for copy_insn.
3965 This function differs from copy_rtx in that it handles SCRATCHes and
3966 ASM_OPERANDs properly.
3967 Normally, this function is not used directly; use copy_insn as front end.
3968 However, you could first copy an insn pattern with copy_insn and then use
3969 this function afterwards to properly copy any REG_NOTEs containing
3970 SCRATCHes. */
3973 copy_insn_1 (orig)
3974 register rtx orig;
3976 register rtx copy;
3977 register int i, j;
3978 register RTX_CODE code;
3979 register const char *format_ptr;
3981 code = GET_CODE (orig);
3983 switch (code)
3985 case REG:
3986 case QUEUED:
3987 case CONST_INT:
3988 case CONST_DOUBLE:
3989 case SYMBOL_REF:
3990 case CODE_LABEL:
3991 case PC:
3992 case CC0:
3993 case ADDRESSOF:
3994 return orig;
3996 case SCRATCH:
3997 for (i = 0; i < copy_insn_n_scratches; i++)
3998 if (copy_insn_scratch_in[i] == orig)
3999 return copy_insn_scratch_out[i];
4000 break;
4002 case CONST:
4003 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4004 a LABEL_REF, it isn't sharable. */
4005 if (GET_CODE (XEXP (orig, 0)) == PLUS
4006 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
4007 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
4008 return orig;
4009 break;
4011 /* A MEM with a constant address is not sharable. The problem is that
4012 the constant address may need to be reloaded. If the mem is shared,
4013 then reloading one copy of this mem will cause all copies to appear
4014 to have been reloaded. */
4016 default:
4017 break;
4020 copy = rtx_alloc (code);
4022 /* Copy the various flags, and other information. We assume that
4023 all fields need copying, and then clear the fields that should
4024 not be copied. That is the sensible default behavior, and forces
4025 us to explicitly document why we are *not* copying a flag. */
4026 memcpy (copy, orig, sizeof (struct rtx_def) - sizeof (rtunion));
4028 /* We do not copy the USED flag, which is used as a mark bit during
4029 walks over the RTL. */
4030 copy->used = 0;
4032 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4033 if (GET_RTX_CLASS (code) == 'i')
4035 copy->jump = 0;
4036 copy->call = 0;
4037 copy->frame_related = 0;
4040 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
4042 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
4044 copy->fld[i] = orig->fld[i];
4045 switch (*format_ptr++)
4047 case 'e':
4048 if (XEXP (orig, i) != NULL)
4049 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
4050 break;
4052 case 'E':
4053 case 'V':
4054 if (XVEC (orig, i) == orig_asm_constraints_vector)
4055 XVEC (copy, i) = copy_asm_constraints_vector;
4056 else if (XVEC (orig, i) == orig_asm_operands_vector)
4057 XVEC (copy, i) = copy_asm_operands_vector;
4058 else if (XVEC (orig, i) != NULL)
4060 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
4061 for (j = 0; j < XVECLEN (copy, i); j++)
4062 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
4064 break;
4066 case 't':
4067 case 'w':
4068 case 'i':
4069 case 's':
4070 case 'S':
4071 case 'u':
4072 case '0':
4073 /* These are left unchanged. */
4074 break;
4076 default:
4077 abort ();
4081 if (code == SCRATCH)
4083 i = copy_insn_n_scratches++;
4084 if (i >= MAX_RECOG_OPERANDS)
4085 abort ();
4086 copy_insn_scratch_in[i] = orig;
4087 copy_insn_scratch_out[i] = copy;
4089 else if (code == ASM_OPERANDS)
4091 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
4092 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
4093 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
4094 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
4097 return copy;
4100 /* Create a new copy of an rtx.
4101 This function differs from copy_rtx in that it handles SCRATCHes and
4102 ASM_OPERANDs properly.
4103 INSN doesn't really have to be a full INSN; it could be just the
4104 pattern. */
4106 copy_insn (insn)
4107 rtx insn;
4109 copy_insn_n_scratches = 0;
4110 orig_asm_operands_vector = 0;
4111 orig_asm_constraints_vector = 0;
4112 copy_asm_operands_vector = 0;
4113 copy_asm_constraints_vector = 0;
4114 return copy_insn_1 (insn);
4117 /* Initialize data structures and variables in this file
4118 before generating rtl for each function. */
4120 void
4121 init_emit ()
4123 struct function *f = cfun;
4125 f->emit = (struct emit_status *) xmalloc (sizeof (struct emit_status));
4126 first_insn = NULL;
4127 last_insn = NULL;
4128 seq_rtl_expr = NULL;
4129 cur_insn_uid = 1;
4130 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
4131 last_linenum = 0;
4132 last_filename = 0;
4133 first_label_num = label_num;
4134 last_label_num = 0;
4135 seq_stack = NULL;
4137 clear_emit_caches ();
4139 /* Init the tables that describe all the pseudo regs. */
4141 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
4143 f->emit->regno_pointer_align
4144 = (unsigned char *) xcalloc (f->emit->regno_pointer_align_length,
4145 sizeof (unsigned char));
4147 regno_reg_rtx
4148 = (rtx *) xcalloc (f->emit->regno_pointer_align_length * sizeof (rtx),
4149 sizeof (rtx));
4151 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
4152 init_virtual_regs (f->emit);
4154 /* Indicate that the virtual registers and stack locations are
4155 all pointers. */
4156 REG_POINTER (stack_pointer_rtx) = 1;
4157 REG_POINTER (frame_pointer_rtx) = 1;
4158 REG_POINTER (hard_frame_pointer_rtx) = 1;
4159 REG_POINTER (arg_pointer_rtx) = 1;
4161 REG_POINTER (virtual_incoming_args_rtx) = 1;
4162 REG_POINTER (virtual_stack_vars_rtx) = 1;
4163 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
4164 REG_POINTER (virtual_outgoing_args_rtx) = 1;
4165 REG_POINTER (virtual_cfa_rtx) = 1;
4167 #ifdef STACK_BOUNDARY
4168 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
4169 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
4170 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
4171 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
4173 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
4174 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
4175 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
4176 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
4177 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
4178 #endif
4180 #ifdef INIT_EXPANDERS
4181 INIT_EXPANDERS;
4182 #endif
4185 /* Mark SS for GC. */
4187 static void
4188 mark_sequence_stack (ss)
4189 struct sequence_stack *ss;
4191 while (ss)
4193 ggc_mark_rtx (ss->first);
4194 ggc_mark_tree (ss->sequence_rtl_expr);
4195 ss = ss->next;
4199 /* Mark ES for GC. */
4201 void
4202 mark_emit_status (es)
4203 struct emit_status *es;
4205 rtx *r;
4206 int i;
4208 if (es == 0)
4209 return;
4211 for (i = es->regno_pointer_align_length, r = es->x_regno_reg_rtx;
4212 i > 0; --i, ++r)
4213 ggc_mark_rtx (*r);
4215 mark_sequence_stack (es->sequence_stack);
4216 ggc_mark_tree (es->sequence_rtl_expr);
4217 ggc_mark_rtx (es->x_first_insn);
4220 /* Create some permanent unique rtl objects shared between all functions.
4221 LINE_NUMBERS is nonzero if line numbers are to be generated. */
4223 void
4224 init_emit_once (line_numbers)
4225 int line_numbers;
4227 int i;
4228 enum machine_mode mode;
4229 enum machine_mode double_mode;
4231 /* Initialize the CONST_INT hash table. */
4232 const_int_htab = htab_create (37, const_int_htab_hash,
4233 const_int_htab_eq, NULL);
4234 ggc_add_root (&const_int_htab, 1, sizeof (const_int_htab),
4235 rtx_htab_mark);
4237 no_line_numbers = ! line_numbers;
4239 /* Compute the word and byte modes. */
4241 byte_mode = VOIDmode;
4242 word_mode = VOIDmode;
4243 double_mode = VOIDmode;
4245 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
4246 mode = GET_MODE_WIDER_MODE (mode))
4248 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
4249 && byte_mode == VOIDmode)
4250 byte_mode = mode;
4252 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
4253 && word_mode == VOIDmode)
4254 word_mode = mode;
4257 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
4258 mode = GET_MODE_WIDER_MODE (mode))
4260 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
4261 && double_mode == VOIDmode)
4262 double_mode = mode;
4265 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
4267 /* Assign register numbers to the globally defined register rtx.
4268 This must be done at runtime because the register number field
4269 is in a union and some compilers can't initialize unions. */
4271 pc_rtx = gen_rtx (PC, VOIDmode);
4272 cc0_rtx = gen_rtx (CC0, VOIDmode);
4273 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
4274 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
4275 if (hard_frame_pointer_rtx == 0)
4276 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
4277 HARD_FRAME_POINTER_REGNUM);
4278 if (arg_pointer_rtx == 0)
4279 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
4280 virtual_incoming_args_rtx =
4281 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
4282 virtual_stack_vars_rtx =
4283 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
4284 virtual_stack_dynamic_rtx =
4285 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
4286 virtual_outgoing_args_rtx =
4287 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
4288 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
4290 /* These rtx must be roots if GC is enabled. */
4291 ggc_add_rtx_root (global_rtl, GR_MAX);
4293 #ifdef INIT_EXPANDERS
4294 /* This is to initialize {init|mark|free}_machine_status before the first
4295 call to push_function_context_to. This is needed by the Chill front
4296 end which calls push_function_context_to before the first cal to
4297 init_function_start. */
4298 INIT_EXPANDERS;
4299 #endif
4301 /* Create the unique rtx's for certain rtx codes and operand values. */
4303 /* Don't use gen_rtx here since gen_rtx in this case
4304 tries to use these variables. */
4305 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
4306 const_int_rtx[i + MAX_SAVED_CONST_INT] =
4307 gen_rtx_raw_CONST_INT (VOIDmode, i);
4308 ggc_add_rtx_root (const_int_rtx, 2 * MAX_SAVED_CONST_INT + 1);
4310 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
4311 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
4312 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
4313 else
4314 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
4316 dconst0 = REAL_VALUE_ATOF ("0", double_mode);
4317 dconst1 = REAL_VALUE_ATOF ("1", double_mode);
4318 dconst2 = REAL_VALUE_ATOF ("2", double_mode);
4319 dconstm1 = REAL_VALUE_ATOF ("-1", double_mode);
4321 for (i = 0; i <= 2; i++)
4323 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
4324 mode = GET_MODE_WIDER_MODE (mode))
4326 rtx tem = rtx_alloc (CONST_DOUBLE);
4327 union real_extract u;
4329 memset ((char *) &u, 0, sizeof u); /* Zero any holes in a structure. */
4330 u.d = i == 0 ? dconst0 : i == 1 ? dconst1 : dconst2;
4332 memcpy (&CONST_DOUBLE_LOW (tem), &u, sizeof u);
4333 CONST_DOUBLE_MEM (tem) = cc0_rtx;
4334 CONST_DOUBLE_CHAIN (tem) = NULL_RTX;
4335 PUT_MODE (tem, mode);
4337 const_tiny_rtx[i][(int) mode] = tem;
4340 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
4342 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
4343 mode = GET_MODE_WIDER_MODE (mode))
4344 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
4346 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
4347 mode != VOIDmode;
4348 mode = GET_MODE_WIDER_MODE (mode))
4349 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
4352 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
4353 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
4354 const_tiny_rtx[0][i] = const0_rtx;
4356 const_tiny_rtx[0][(int) BImode] = const0_rtx;
4357 if (STORE_FLAG_VALUE == 1)
4358 const_tiny_rtx[1][(int) BImode] = const1_rtx;
4360 /* For bounded pointers, `&const_tiny_rtx[0][0]' is not the same as
4361 `(rtx *) const_tiny_rtx'. The former has bounds that only cover
4362 `const_tiny_rtx[0]', whereas the latter has bounds that cover all. */
4363 ggc_add_rtx_root ((rtx *) const_tiny_rtx, sizeof const_tiny_rtx / sizeof (rtx));
4364 ggc_add_rtx_root (&const_true_rtx, 1);
4366 #ifdef RETURN_ADDRESS_POINTER_REGNUM
4367 return_address_pointer_rtx
4368 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
4369 #endif
4371 #ifdef STRUCT_VALUE
4372 struct_value_rtx = STRUCT_VALUE;
4373 #else
4374 struct_value_rtx = gen_rtx_REG (Pmode, STRUCT_VALUE_REGNUM);
4375 #endif
4377 #ifdef STRUCT_VALUE_INCOMING
4378 struct_value_incoming_rtx = STRUCT_VALUE_INCOMING;
4379 #else
4380 #ifdef STRUCT_VALUE_INCOMING_REGNUM
4381 struct_value_incoming_rtx
4382 = gen_rtx_REG (Pmode, STRUCT_VALUE_INCOMING_REGNUM);
4383 #else
4384 struct_value_incoming_rtx = struct_value_rtx;
4385 #endif
4386 #endif
4388 #ifdef STATIC_CHAIN_REGNUM
4389 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
4391 #ifdef STATIC_CHAIN_INCOMING_REGNUM
4392 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
4393 static_chain_incoming_rtx
4394 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
4395 else
4396 #endif
4397 static_chain_incoming_rtx = static_chain_rtx;
4398 #endif
4400 #ifdef STATIC_CHAIN
4401 static_chain_rtx = STATIC_CHAIN;
4403 #ifdef STATIC_CHAIN_INCOMING
4404 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
4405 #else
4406 static_chain_incoming_rtx = static_chain_rtx;
4407 #endif
4408 #endif
4410 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
4411 pic_offset_table_rtx = gen_rtx_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
4413 ggc_add_rtx_root (&pic_offset_table_rtx, 1);
4414 ggc_add_rtx_root (&struct_value_rtx, 1);
4415 ggc_add_rtx_root (&struct_value_incoming_rtx, 1);
4416 ggc_add_rtx_root (&static_chain_rtx, 1);
4417 ggc_add_rtx_root (&static_chain_incoming_rtx, 1);
4418 ggc_add_rtx_root (&return_address_pointer_rtx, 1);
4421 /* Query and clear/ restore no_line_numbers. This is used by the
4422 switch / case handling in stmt.c to give proper line numbers in
4423 warnings about unreachable code. */
4426 force_line_numbers ()
4428 int old = no_line_numbers;
4430 no_line_numbers = 0;
4431 if (old)
4432 force_next_line_note ();
4433 return old;
4436 void
4437 restore_line_number_status (old_value)
4438 int old_value;
4440 no_line_numbers = old_value;