1 /* Exception handling semantics and decomposition for trees.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
29 #include "pointer-set.h"
30 #include "tree-flow.h"
31 #include "tree-dump.h"
32 #include "tree-inline.h"
33 #include "tree-iterator.h"
34 #include "tree-pass.h"
36 #include "langhooks.h"
38 #include "diagnostic-core.h"
43 /* In some instances a tree and a gimple need to be stored in a same table,
44 i.e. in hash tables. This is a structure to do this. */
45 typedef union {tree
*tp
; tree t
; gimple g
;} treemple
;
47 /* Nonzero if we are using EH to handle cleanups. */
48 static int using_eh_for_cleanups_p
= 0;
51 using_eh_for_cleanups (void)
53 using_eh_for_cleanups_p
= 1;
56 /* Misc functions used in this file. */
58 /* Remember and lookup EH landing pad data for arbitrary statements.
59 Really this means any statement that could_throw_p. We could
60 stuff this information into the stmt_ann data structure, but:
62 (1) We absolutely rely on this information being kept until
63 we get to rtl. Once we're done with lowering here, if we lose
64 the information there's no way to recover it!
66 (2) There are many more statements that *cannot* throw as
67 compared to those that can. We should be saving some amount
68 of space by only allocating memory for those that can throw. */
70 /* Add statement T in function IFUN to landing pad NUM. */
73 add_stmt_to_eh_lp_fn (struct function
*ifun
, gimple t
, int num
)
75 struct throw_stmt_node
*n
;
78 gcc_assert (num
!= 0);
80 n
= ggc_alloc_throw_stmt_node ();
84 if (!get_eh_throw_stmt_table (ifun
))
85 set_eh_throw_stmt_table (ifun
, htab_create_ggc (31, struct_ptr_hash
,
89 slot
= htab_find_slot (get_eh_throw_stmt_table (ifun
), n
, INSERT
);
94 /* Add statement T in the current function (cfun) to EH landing pad NUM. */
97 add_stmt_to_eh_lp (gimple t
, int num
)
99 add_stmt_to_eh_lp_fn (cfun
, t
, num
);
102 /* Add statement T to the single EH landing pad in REGION. */
105 record_stmt_eh_region (eh_region region
, gimple t
)
109 if (region
->type
== ERT_MUST_NOT_THROW
)
110 add_stmt_to_eh_lp_fn (cfun
, t
, -region
->index
);
113 eh_landing_pad lp
= region
->landing_pads
;
115 lp
= gen_eh_landing_pad (region
);
117 gcc_assert (lp
->next_lp
== NULL
);
118 add_stmt_to_eh_lp_fn (cfun
, t
, lp
->index
);
123 /* Remove statement T in function IFUN from its EH landing pad. */
126 remove_stmt_from_eh_lp_fn (struct function
*ifun
, gimple t
)
128 struct throw_stmt_node dummy
;
131 if (!get_eh_throw_stmt_table (ifun
))
135 slot
= htab_find_slot (get_eh_throw_stmt_table (ifun
), &dummy
,
139 htab_clear_slot (get_eh_throw_stmt_table (ifun
), slot
);
147 /* Remove statement T in the current function (cfun) from its
151 remove_stmt_from_eh_lp (gimple t
)
153 return remove_stmt_from_eh_lp_fn (cfun
, t
);
156 /* Determine if statement T is inside an EH region in function IFUN.
157 Positive numbers indicate a landing pad index; negative numbers
158 indicate a MUST_NOT_THROW region index; zero indicates that the
159 statement is not recorded in the region table. */
162 lookup_stmt_eh_lp_fn (struct function
*ifun
, gimple t
)
164 struct throw_stmt_node
*p
, n
;
166 if (ifun
->eh
->throw_stmt_table
== NULL
)
170 p
= (struct throw_stmt_node
*) htab_find (ifun
->eh
->throw_stmt_table
, &n
);
171 return p
? p
->lp_nr
: 0;
174 /* Likewise, but always use the current function. */
177 lookup_stmt_eh_lp (gimple t
)
179 /* We can get called from initialized data when -fnon-call-exceptions
180 is on; prevent crash. */
183 return lookup_stmt_eh_lp_fn (cfun
, t
);
186 /* First pass of EH node decomposition. Build up a tree of GIMPLE_TRY_FINALLY
187 nodes and LABEL_DECL nodes. We will use this during the second phase to
188 determine if a goto leaves the body of a TRY_FINALLY_EXPR node. */
190 struct finally_tree_node
192 /* When storing a GIMPLE_TRY, we have to record a gimple. However
193 when deciding whether a GOTO to a certain LABEL_DECL (which is a
194 tree) leaves the TRY block, its necessary to record a tree in
195 this field. Thus a treemple is used. */
200 /* Note that this table is *not* marked GTY. It is short-lived. */
201 static htab_t finally_tree
;
204 record_in_finally_tree (treemple child
, gimple parent
)
206 struct finally_tree_node
*n
;
209 n
= XNEW (struct finally_tree_node
);
213 slot
= htab_find_slot (finally_tree
, n
, INSERT
);
219 collect_finally_tree (gimple stmt
, gimple region
);
221 /* Go through the gimple sequence. Works with collect_finally_tree to
222 record all GIMPLE_LABEL and GIMPLE_TRY statements. */
225 collect_finally_tree_1 (gimple_seq seq
, gimple region
)
227 gimple_stmt_iterator gsi
;
229 for (gsi
= gsi_start (seq
); !gsi_end_p (gsi
); gsi_next (&gsi
))
230 collect_finally_tree (gsi_stmt (gsi
), region
);
234 collect_finally_tree (gimple stmt
, gimple region
)
238 switch (gimple_code (stmt
))
241 temp
.t
= gimple_label_label (stmt
);
242 record_in_finally_tree (temp
, region
);
246 if (gimple_try_kind (stmt
) == GIMPLE_TRY_FINALLY
)
249 record_in_finally_tree (temp
, region
);
250 collect_finally_tree_1 (gimple_try_eval (stmt
), stmt
);
251 collect_finally_tree_1 (gimple_try_cleanup (stmt
), region
);
253 else if (gimple_try_kind (stmt
) == GIMPLE_TRY_CATCH
)
255 collect_finally_tree_1 (gimple_try_eval (stmt
), region
);
256 collect_finally_tree_1 (gimple_try_cleanup (stmt
), region
);
261 collect_finally_tree_1 (gimple_catch_handler (stmt
), region
);
264 case GIMPLE_EH_FILTER
:
265 collect_finally_tree_1 (gimple_eh_filter_failure (stmt
), region
);
269 collect_finally_tree_1 (gimple_eh_else_n_body (stmt
), region
);
270 collect_finally_tree_1 (gimple_eh_else_e_body (stmt
), region
);
274 /* A type, a decl, or some kind of statement that we're not
275 interested in. Don't walk them. */
281 /* Use the finally tree to determine if a jump from START to TARGET
282 would leave the try_finally node that START lives in. */
285 outside_finally_tree (treemple start
, gimple target
)
287 struct finally_tree_node n
, *p
;
292 p
= (struct finally_tree_node
*) htab_find (finally_tree
, &n
);
297 while (start
.g
!= target
);
302 /* Second pass of EH node decomposition. Actually transform the GIMPLE_TRY
303 nodes into a set of gotos, magic labels, and eh regions.
304 The eh region creation is straight-forward, but frobbing all the gotos
305 and such into shape isn't. */
307 /* The sequence into which we record all EH stuff. This will be
308 placed at the end of the function when we're all done. */
309 static gimple_seq eh_seq
;
311 /* Record whether an EH region contains something that can throw,
312 indexed by EH region number. */
313 static bitmap eh_region_may_contain_throw_map
;
315 /* The GOTO_QUEUE is is an array of GIMPLE_GOTO and GIMPLE_RETURN
316 statements that are seen to escape this GIMPLE_TRY_FINALLY node.
317 The idea is to record a gimple statement for everything except for
318 the conditionals, which get their labels recorded. Since labels are
319 of type 'tree', we need this node to store both gimple and tree
320 objects. REPL_STMT is the sequence used to replace the goto/return
321 statement. CONT_STMT is used to store the statement that allows
322 the return/goto to jump to the original destination. */
324 struct goto_queue_node
327 gimple_seq repl_stmt
;
330 /* This is used when index >= 0 to indicate that stmt is a label (as
331 opposed to a goto stmt). */
335 /* State of the world while lowering. */
339 /* What's "current" while constructing the eh region tree. These
340 correspond to variables of the same name in cfun->eh, which we
341 don't have easy access to. */
342 eh_region cur_region
;
344 /* What's "current" for the purposes of __builtin_eh_pointer. For
345 a CATCH, this is the associated TRY. For an EH_FILTER, this is
346 the associated ALLOWED_EXCEPTIONS, etc. */
347 eh_region ehp_region
;
349 /* Processing of TRY_FINALLY requires a bit more state. This is
350 split out into a separate structure so that we don't have to
351 copy so much when processing other nodes. */
352 struct leh_tf_state
*tf
;
357 /* Pointer to the GIMPLE_TRY_FINALLY node under discussion. The
358 try_finally_expr is the original GIMPLE_TRY_FINALLY. We need to retain
359 this so that outside_finally_tree can reliably reference the tree used
360 in the collect_finally_tree data structures. */
361 gimple try_finally_expr
;
364 /* While lowering a top_p usually it is expanded into multiple statements,
365 thus we need the following field to store them. */
366 gimple_seq top_p_seq
;
368 /* The state outside this try_finally node. */
369 struct leh_state
*outer
;
371 /* The exception region created for it. */
374 /* The goto queue. */
375 struct goto_queue_node
*goto_queue
;
376 size_t goto_queue_size
;
377 size_t goto_queue_active
;
379 /* Pointer map to help in searching goto_queue when it is large. */
380 struct pointer_map_t
*goto_queue_map
;
382 /* The set of unique labels seen as entries in the goto queue. */
383 VEC(tree
,heap
) *dest_array
;
385 /* A label to be added at the end of the completed transformed
386 sequence. It will be set if may_fallthru was true *at one time*,
387 though subsequent transformations may have cleared that flag. */
390 /* True if it is possible to fall out the bottom of the try block.
391 Cleared if the fallthru is converted to a goto. */
394 /* True if any entry in goto_queue is a GIMPLE_RETURN. */
397 /* True if the finally block can receive an exception edge.
398 Cleared if the exception case is handled by code duplication. */
402 static gimple_seq
lower_eh_must_not_throw (struct leh_state
*, gimple
);
404 /* Search for STMT in the goto queue. Return the replacement,
405 or null if the statement isn't in the queue. */
407 #define LARGE_GOTO_QUEUE 20
409 static void lower_eh_constructs_1 (struct leh_state
*state
, gimple_seq seq
);
412 find_goto_replacement (struct leh_tf_state
*tf
, treemple stmt
)
417 if (tf
->goto_queue_active
< LARGE_GOTO_QUEUE
)
419 for (i
= 0; i
< tf
->goto_queue_active
; i
++)
420 if ( tf
->goto_queue
[i
].stmt
.g
== stmt
.g
)
421 return tf
->goto_queue
[i
].repl_stmt
;
425 /* If we have a large number of entries in the goto_queue, create a
426 pointer map and use that for searching. */
428 if (!tf
->goto_queue_map
)
430 tf
->goto_queue_map
= pointer_map_create ();
431 for (i
= 0; i
< tf
->goto_queue_active
; i
++)
433 slot
= pointer_map_insert (tf
->goto_queue_map
,
434 tf
->goto_queue
[i
].stmt
.g
);
435 gcc_assert (*slot
== NULL
);
436 *slot
= &tf
->goto_queue
[i
];
440 slot
= pointer_map_contains (tf
->goto_queue_map
, stmt
.g
);
442 return (((struct goto_queue_node
*) *slot
)->repl_stmt
);
447 /* A subroutine of replace_goto_queue_1. Handles the sub-clauses of a
448 lowered GIMPLE_COND. If, by chance, the replacement is a simple goto,
449 then we can just splat it in, otherwise we add the new stmts immediately
450 after the GIMPLE_COND and redirect. */
453 replace_goto_queue_cond_clause (tree
*tp
, struct leh_tf_state
*tf
,
454 gimple_stmt_iterator
*gsi
)
459 location_t loc
= gimple_location (gsi_stmt (*gsi
));
462 new_seq
= find_goto_replacement (tf
, temp
);
466 if (gimple_seq_singleton_p (new_seq
)
467 && gimple_code (gimple_seq_first_stmt (new_seq
)) == GIMPLE_GOTO
)
469 *tp
= gimple_goto_dest (gimple_seq_first_stmt (new_seq
));
473 label
= create_artificial_label (loc
);
474 /* Set the new label for the GIMPLE_COND */
477 gsi_insert_after (gsi
, gimple_build_label (label
), GSI_CONTINUE_LINKING
);
478 gsi_insert_seq_after (gsi
, gimple_seq_copy (new_seq
), GSI_CONTINUE_LINKING
);
481 /* The real work of replace_goto_queue. Returns with TSI updated to
482 point to the next statement. */
484 static void replace_goto_queue_stmt_list (gimple_seq
, struct leh_tf_state
*);
487 replace_goto_queue_1 (gimple stmt
, struct leh_tf_state
*tf
,
488 gimple_stmt_iterator
*gsi
)
494 switch (gimple_code (stmt
))
499 seq
= find_goto_replacement (tf
, temp
);
502 gsi_insert_seq_before (gsi
, gimple_seq_copy (seq
), GSI_SAME_STMT
);
503 gsi_remove (gsi
, false);
509 replace_goto_queue_cond_clause (gimple_op_ptr (stmt
, 2), tf
, gsi
);
510 replace_goto_queue_cond_clause (gimple_op_ptr (stmt
, 3), tf
, gsi
);
514 replace_goto_queue_stmt_list (gimple_try_eval (stmt
), tf
);
515 replace_goto_queue_stmt_list (gimple_try_cleanup (stmt
), tf
);
518 replace_goto_queue_stmt_list (gimple_catch_handler (stmt
), tf
);
520 case GIMPLE_EH_FILTER
:
521 replace_goto_queue_stmt_list (gimple_eh_filter_failure (stmt
), tf
);
524 replace_goto_queue_stmt_list (gimple_eh_else_n_body (stmt
), tf
);
525 replace_goto_queue_stmt_list (gimple_eh_else_e_body (stmt
), tf
);
529 /* These won't have gotos in them. */
536 /* A subroutine of replace_goto_queue. Handles GIMPLE_SEQ. */
539 replace_goto_queue_stmt_list (gimple_seq seq
, struct leh_tf_state
*tf
)
541 gimple_stmt_iterator gsi
= gsi_start (seq
);
543 while (!gsi_end_p (gsi
))
544 replace_goto_queue_1 (gsi_stmt (gsi
), tf
, &gsi
);
547 /* Replace all goto queue members. */
550 replace_goto_queue (struct leh_tf_state
*tf
)
552 if (tf
->goto_queue_active
== 0)
554 replace_goto_queue_stmt_list (tf
->top_p_seq
, tf
);
555 replace_goto_queue_stmt_list (eh_seq
, tf
);
558 /* Add a new record to the goto queue contained in TF. NEW_STMT is the
559 data to be added, IS_LABEL indicates whether NEW_STMT is a label or
563 record_in_goto_queue (struct leh_tf_state
*tf
,
569 struct goto_queue_node
*q
;
571 gcc_assert (!tf
->goto_queue_map
);
573 active
= tf
->goto_queue_active
;
574 size
= tf
->goto_queue_size
;
577 size
= (size
? size
* 2 : 32);
578 tf
->goto_queue_size
= size
;
580 = XRESIZEVEC (struct goto_queue_node
, tf
->goto_queue
, size
);
583 q
= &tf
->goto_queue
[active
];
584 tf
->goto_queue_active
= active
+ 1;
586 memset (q
, 0, sizeof (*q
));
589 q
->is_label
= is_label
;
592 /* Record the LABEL label in the goto queue contained in TF.
596 record_in_goto_queue_label (struct leh_tf_state
*tf
, treemple stmt
, tree label
)
599 treemple temp
, new_stmt
;
604 /* Computed and non-local gotos do not get processed. Given
605 their nature we can neither tell whether we've escaped the
606 finally block nor redirect them if we knew. */
607 if (TREE_CODE (label
) != LABEL_DECL
)
610 /* No need to record gotos that don't leave the try block. */
612 if (!outside_finally_tree (temp
, tf
->try_finally_expr
))
615 if (! tf
->dest_array
)
617 tf
->dest_array
= VEC_alloc (tree
, heap
, 10);
618 VEC_quick_push (tree
, tf
->dest_array
, label
);
623 int n
= VEC_length (tree
, tf
->dest_array
);
624 for (index
= 0; index
< n
; ++index
)
625 if (VEC_index (tree
, tf
->dest_array
, index
) == label
)
628 VEC_safe_push (tree
, heap
, tf
->dest_array
, label
);
631 /* In the case of a GOTO we want to record the destination label,
632 since with a GIMPLE_COND we have an easy access to the then/else
635 record_in_goto_queue (tf
, new_stmt
, index
, true);
638 /* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally
639 node, and if so record that fact in the goto queue associated with that
643 maybe_record_in_goto_queue (struct leh_state
*state
, gimple stmt
)
645 struct leh_tf_state
*tf
= state
->tf
;
651 switch (gimple_code (stmt
))
654 new_stmt
.tp
= gimple_op_ptr (stmt
, 2);
655 record_in_goto_queue_label (tf
, new_stmt
, gimple_cond_true_label (stmt
));
656 new_stmt
.tp
= gimple_op_ptr (stmt
, 3);
657 record_in_goto_queue_label (tf
, new_stmt
, gimple_cond_false_label (stmt
));
661 record_in_goto_queue_label (tf
, new_stmt
, gimple_goto_dest (stmt
));
665 tf
->may_return
= true;
667 record_in_goto_queue (tf
, new_stmt
, -1, false);
676 #ifdef ENABLE_CHECKING
677 /* We do not process GIMPLE_SWITCHes for now. As long as the original source
678 was in fact structured, and we've not yet done jump threading, then none
679 of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this. */
682 verify_norecord_switch_expr (struct leh_state
*state
, gimple switch_expr
)
684 struct leh_tf_state
*tf
= state
->tf
;
690 n
= gimple_switch_num_labels (switch_expr
);
692 for (i
= 0; i
< n
; ++i
)
695 tree lab
= CASE_LABEL (gimple_switch_label (switch_expr
, i
));
697 gcc_assert (!outside_finally_tree (temp
, tf
->try_finally_expr
));
701 #define verify_norecord_switch_expr(state, switch_expr)
704 /* Redirect a RETURN_EXPR pointed to by Q to FINLAB. If MOD is
705 non-null, insert it before the new branch. */
708 do_return_redirection (struct goto_queue_node
*q
, tree finlab
, gimple_seq mod
)
712 /* In the case of a return, the queue node must be a gimple statement. */
713 gcc_assert (!q
->is_label
);
715 /* Note that the return value may have already been computed, e.g.,
728 should return 0, not 1. We don't have to do anything to make
729 this happens because the return value has been placed in the
730 RESULT_DECL already. */
732 q
->cont_stmt
= q
->stmt
.g
;
735 q
->repl_stmt
= gimple_seq_alloc ();
738 gimple_seq_add_seq (&q
->repl_stmt
, mod
);
740 x
= gimple_build_goto (finlab
);
741 gimple_seq_add_stmt (&q
->repl_stmt
, x
);
744 /* Similar, but easier, for GIMPLE_GOTO. */
747 do_goto_redirection (struct goto_queue_node
*q
, tree finlab
, gimple_seq mod
,
748 struct leh_tf_state
*tf
)
752 gcc_assert (q
->is_label
);
754 q
->repl_stmt
= gimple_seq_alloc ();
756 q
->cont_stmt
= gimple_build_goto (VEC_index (tree
, tf
->dest_array
, q
->index
));
759 gimple_seq_add_seq (&q
->repl_stmt
, mod
);
761 x
= gimple_build_goto (finlab
);
762 gimple_seq_add_stmt (&q
->repl_stmt
, x
);
765 /* Emit a standard landing pad sequence into SEQ for REGION. */
768 emit_post_landing_pad (gimple_seq
*seq
, eh_region region
)
770 eh_landing_pad lp
= region
->landing_pads
;
774 lp
= gen_eh_landing_pad (region
);
776 lp
->post_landing_pad
= create_artificial_label (UNKNOWN_LOCATION
);
777 EH_LANDING_PAD_NR (lp
->post_landing_pad
) = lp
->index
;
779 x
= gimple_build_label (lp
->post_landing_pad
);
780 gimple_seq_add_stmt (seq
, x
);
783 /* Emit a RESX statement into SEQ for REGION. */
786 emit_resx (gimple_seq
*seq
, eh_region region
)
788 gimple x
= gimple_build_resx (region
->index
);
789 gimple_seq_add_stmt (seq
, x
);
791 record_stmt_eh_region (region
->outer
, x
);
794 /* Emit an EH_DISPATCH statement into SEQ for REGION. */
797 emit_eh_dispatch (gimple_seq
*seq
, eh_region region
)
799 gimple x
= gimple_build_eh_dispatch (region
->index
);
800 gimple_seq_add_stmt (seq
, x
);
803 /* Note that the current EH region may contain a throw, or a
804 call to a function which itself may contain a throw. */
807 note_eh_region_may_contain_throw (eh_region region
)
809 while (bitmap_set_bit (eh_region_may_contain_throw_map
, region
->index
))
811 if (region
->type
== ERT_MUST_NOT_THROW
)
813 region
= region
->outer
;
819 /* Check if REGION has been marked as containing a throw. If REGION is
820 NULL, this predicate is false. */
823 eh_region_may_contain_throw (eh_region r
)
825 return r
&& bitmap_bit_p (eh_region_may_contain_throw_map
, r
->index
);
828 /* We want to transform
829 try { body; } catch { stuff; }
839 TP is a GIMPLE_TRY node. REGION is the region whose post_landing_pad
840 should be placed before the second operand, or NULL. OVER is
841 an existing label that should be put at the exit, or NULL. */
844 frob_into_branch_around (gimple tp
, eh_region region
, tree over
)
847 gimple_seq cleanup
, result
;
848 location_t loc
= gimple_location (tp
);
850 cleanup
= gimple_try_cleanup (tp
);
851 result
= gimple_try_eval (tp
);
854 emit_post_landing_pad (&eh_seq
, region
);
856 if (gimple_seq_may_fallthru (cleanup
))
859 over
= create_artificial_label (loc
);
860 x
= gimple_build_goto (over
);
861 gimple_seq_add_stmt (&cleanup
, x
);
863 gimple_seq_add_seq (&eh_seq
, cleanup
);
867 x
= gimple_build_label (over
);
868 gimple_seq_add_stmt (&result
, x
);
873 /* A subroutine of lower_try_finally. Duplicate the tree rooted at T.
874 Make sure to record all new labels found. */
877 lower_try_finally_dup_block (gimple_seq seq
, struct leh_state
*outer_state
)
879 gimple region
= NULL
;
882 new_seq
= copy_gimple_seq_and_replace_locals (seq
);
885 region
= outer_state
->tf
->try_finally_expr
;
886 collect_finally_tree_1 (new_seq
, region
);
891 /* A subroutine of lower_try_finally. Create a fallthru label for
892 the given try_finally state. The only tricky bit here is that
893 we have to make sure to record the label in our outer context. */
896 lower_try_finally_fallthru_label (struct leh_tf_state
*tf
)
898 tree label
= tf
->fallthru_label
;
903 label
= create_artificial_label (gimple_location (tf
->try_finally_expr
));
904 tf
->fallthru_label
= label
;
908 record_in_finally_tree (temp
, tf
->outer
->tf
->try_finally_expr
);
914 /* A subroutine of lower_try_finally. If FINALLY consits of a
915 GIMPLE_EH_ELSE node, return it. */
918 get_eh_else (gimple_seq finally
)
920 gimple x
= gimple_seq_first_stmt (finally
);
921 if (gimple_code (x
) == GIMPLE_EH_ELSE
)
923 gcc_assert (gimple_seq_singleton_p (finally
));
929 /* A subroutine of lower_try_finally. If the eh_protect_cleanup_actions
930 langhook returns non-null, then the language requires that the exception
931 path out of a try_finally be treated specially. To wit: the code within
932 the finally block may not itself throw an exception. We have two choices
933 here. First we can duplicate the finally block and wrap it in a
934 must_not_throw region. Second, we can generate code like
939 if (fintmp == eh_edge)
940 protect_cleanup_actions;
943 where "fintmp" is the temporary used in the switch statement generation
944 alternative considered below. For the nonce, we always choose the first
947 THIS_STATE may be null if this is a try-cleanup, not a try-finally. */
950 honor_protect_cleanup_actions (struct leh_state
*outer_state
,
951 struct leh_state
*this_state
,
952 struct leh_tf_state
*tf
)
954 tree protect_cleanup_actions
;
955 gimple_stmt_iterator gsi
;
956 bool finally_may_fallthru
;
960 /* First check for nothing to do. */
961 if (lang_hooks
.eh_protect_cleanup_actions
== NULL
)
963 protect_cleanup_actions
= lang_hooks
.eh_protect_cleanup_actions ();
964 if (protect_cleanup_actions
== NULL
)
967 finally
= gimple_try_cleanup (tf
->top_p
);
968 eh_else
= get_eh_else (finally
);
970 /* Duplicate the FINALLY block. Only need to do this for try-finally,
971 and not for cleanups. If we've got an EH_ELSE, extract it now. */
974 finally
= gimple_eh_else_e_body (eh_else
);
975 gimple_try_set_cleanup (tf
->top_p
, gimple_eh_else_n_body (eh_else
));
978 finally
= lower_try_finally_dup_block (finally
, outer_state
);
979 finally_may_fallthru
= gimple_seq_may_fallthru (finally
);
981 /* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP
982 set, the handler of the TRY_CATCH_EXPR is another cleanup which ought
983 to be in an enclosing scope, but needs to be implemented at this level
984 to avoid a nesting violation (see wrap_temporary_cleanups in
985 cp/decl.c). Since it's logically at an outer level, we should call
986 terminate before we get to it, so strip it away before adding the
987 MUST_NOT_THROW filter. */
988 gsi
= gsi_start (finally
);
990 if (gimple_code (x
) == GIMPLE_TRY
991 && gimple_try_kind (x
) == GIMPLE_TRY_CATCH
992 && gimple_try_catch_is_cleanup (x
))
994 gsi_insert_seq_before (&gsi
, gimple_try_eval (x
), GSI_SAME_STMT
);
995 gsi_remove (&gsi
, false);
998 /* Wrap the block with protect_cleanup_actions as the action. */
999 x
= gimple_build_eh_must_not_throw (protect_cleanup_actions
);
1000 x
= gimple_build_try (finally
, gimple_seq_alloc_with_stmt (x
),
1002 finally
= lower_eh_must_not_throw (outer_state
, x
);
1004 /* Drop all of this into the exception sequence. */
1005 emit_post_landing_pad (&eh_seq
, tf
->region
);
1006 gimple_seq_add_seq (&eh_seq
, finally
);
1007 if (finally_may_fallthru
)
1008 emit_resx (&eh_seq
, tf
->region
);
1010 /* Having now been handled, EH isn't to be considered with
1011 the rest of the outgoing edges. */
1012 tf
->may_throw
= false;
1015 /* A subroutine of lower_try_finally. We have determined that there is
1016 no fallthru edge out of the finally block. This means that there is
1017 no outgoing edge corresponding to any incoming edge. Restructure the
1018 try_finally node for this special case. */
1021 lower_try_finally_nofallthru (struct leh_state
*state
,
1022 struct leh_tf_state
*tf
)
1027 struct goto_queue_node
*q
, *qe
;
1029 lab
= create_artificial_label (gimple_location (tf
->try_finally_expr
));
1031 /* We expect that tf->top_p is a GIMPLE_TRY. */
1032 finally
= gimple_try_cleanup (tf
->top_p
);
1033 tf
->top_p_seq
= gimple_try_eval (tf
->top_p
);
1035 x
= gimple_build_label (lab
);
1036 gimple_seq_add_stmt (&tf
->top_p_seq
, x
);
1039 qe
= q
+ tf
->goto_queue_active
;
1042 do_return_redirection (q
, lab
, NULL
);
1044 do_goto_redirection (q
, lab
, NULL
, tf
);
1046 replace_goto_queue (tf
);
1048 /* Emit the finally block into the stream. Lower EH_ELSE at this time. */
1049 eh_else
= get_eh_else (finally
);
1052 finally
= gimple_eh_else_n_body (eh_else
);
1053 lower_eh_constructs_1 (state
, finally
);
1054 gimple_seq_add_seq (&tf
->top_p_seq
, finally
);
1058 finally
= gimple_eh_else_e_body (eh_else
);
1059 lower_eh_constructs_1 (state
, finally
);
1061 emit_post_landing_pad (&eh_seq
, tf
->region
);
1062 gimple_seq_add_seq (&eh_seq
, finally
);
1067 lower_eh_constructs_1 (state
, finally
);
1068 gimple_seq_add_seq (&tf
->top_p_seq
, finally
);
1072 emit_post_landing_pad (&eh_seq
, tf
->region
);
1074 x
= gimple_build_goto (lab
);
1075 gimple_seq_add_stmt (&eh_seq
, x
);
1080 /* A subroutine of lower_try_finally. We have determined that there is
1081 exactly one destination of the finally block. Restructure the
1082 try_finally node for this special case. */
1085 lower_try_finally_onedest (struct leh_state
*state
, struct leh_tf_state
*tf
)
1087 struct goto_queue_node
*q
, *qe
;
1091 location_t loc
= gimple_location (tf
->try_finally_expr
);
1093 finally
= gimple_try_cleanup (tf
->top_p
);
1094 tf
->top_p_seq
= gimple_try_eval (tf
->top_p
);
1096 /* Since there's only one destination, and the destination edge can only
1097 either be EH or non-EH, that implies that all of our incoming edges
1098 are of the same type. Therefore we can lower EH_ELSE immediately. */
1099 x
= get_eh_else (finally
);
1103 finally
= gimple_eh_else_e_body (x
);
1105 finally
= gimple_eh_else_n_body (x
);
1108 lower_eh_constructs_1 (state
, finally
);
1112 /* Only reachable via the exception edge. Add the given label to
1113 the head of the FINALLY block. Append a RESX at the end. */
1114 emit_post_landing_pad (&eh_seq
, tf
->region
);
1115 gimple_seq_add_seq (&eh_seq
, finally
);
1116 emit_resx (&eh_seq
, tf
->region
);
1120 if (tf
->may_fallthru
)
1122 /* Only reachable via the fallthru edge. Do nothing but let
1123 the two blocks run together; we'll fall out the bottom. */
1124 gimple_seq_add_seq (&tf
->top_p_seq
, finally
);
1128 finally_label
= create_artificial_label (loc
);
1129 x
= gimple_build_label (finally_label
);
1130 gimple_seq_add_stmt (&tf
->top_p_seq
, x
);
1132 gimple_seq_add_seq (&tf
->top_p_seq
, finally
);
1135 qe
= q
+ tf
->goto_queue_active
;
1139 /* Reachable by return expressions only. Redirect them. */
1141 do_return_redirection (q
, finally_label
, NULL
);
1142 replace_goto_queue (tf
);
1146 /* Reachable by goto expressions only. Redirect them. */
1148 do_goto_redirection (q
, finally_label
, NULL
, tf
);
1149 replace_goto_queue (tf
);
1151 if (VEC_index (tree
, tf
->dest_array
, 0) == tf
->fallthru_label
)
1153 /* Reachable by goto to fallthru label only. Redirect it
1154 to the new label (already created, sadly), and do not
1155 emit the final branch out, or the fallthru label. */
1156 tf
->fallthru_label
= NULL
;
1161 /* Place the original return/goto to the original destination
1162 immediately after the finally block. */
1163 x
= tf
->goto_queue
[0].cont_stmt
;
1164 gimple_seq_add_stmt (&tf
->top_p_seq
, x
);
1165 maybe_record_in_goto_queue (state
, x
);
1168 /* A subroutine of lower_try_finally. There are multiple edges incoming
1169 and outgoing from the finally block. Implement this by duplicating the
1170 finally block for every destination. */
1173 lower_try_finally_copy (struct leh_state
*state
, struct leh_tf_state
*tf
)
1176 gimple_seq new_stmt
;
1180 location_t tf_loc
= gimple_location (tf
->try_finally_expr
);
1182 finally
= gimple_try_cleanup (tf
->top_p
);
1184 /* Notice EH_ELSE, and simplify some of the remaining code
1185 by considering FINALLY to be the normal return path only. */
1186 eh_else
= get_eh_else (finally
);
1188 finally
= gimple_eh_else_n_body (eh_else
);
1190 tf
->top_p_seq
= gimple_try_eval (tf
->top_p
);
1193 if (tf
->may_fallthru
)
1195 seq
= lower_try_finally_dup_block (finally
, state
);
1196 lower_eh_constructs_1 (state
, seq
);
1197 gimple_seq_add_seq (&new_stmt
, seq
);
1199 tmp
= lower_try_finally_fallthru_label (tf
);
1200 x
= gimple_build_goto (tmp
);
1201 gimple_seq_add_stmt (&new_stmt
, x
);
1206 /* We don't need to copy the EH path of EH_ELSE,
1207 since it is only emitted once. */
1209 seq
= gimple_eh_else_e_body (eh_else
);
1211 seq
= lower_try_finally_dup_block (finally
, state
);
1212 lower_eh_constructs_1 (state
, seq
);
1214 emit_post_landing_pad (&eh_seq
, tf
->region
);
1215 gimple_seq_add_seq (&eh_seq
, seq
);
1216 emit_resx (&eh_seq
, tf
->region
);
1221 struct goto_queue_node
*q
, *qe
;
1222 int return_index
, index
;
1225 struct goto_queue_node
*q
;
1229 return_index
= VEC_length (tree
, tf
->dest_array
);
1230 labels
= XCNEWVEC (struct labels_s
, return_index
+ 1);
1233 qe
= q
+ tf
->goto_queue_active
;
1236 index
= q
->index
< 0 ? return_index
: q
->index
;
1238 if (!labels
[index
].q
)
1239 labels
[index
].q
= q
;
1242 for (index
= 0; index
< return_index
+ 1; index
++)
1246 q
= labels
[index
].q
;
1250 lab
= labels
[index
].label
1251 = create_artificial_label (tf_loc
);
1253 if (index
== return_index
)
1254 do_return_redirection (q
, lab
, NULL
);
1256 do_goto_redirection (q
, lab
, NULL
, tf
);
1258 x
= gimple_build_label (lab
);
1259 gimple_seq_add_stmt (&new_stmt
, x
);
1261 seq
= lower_try_finally_dup_block (finally
, state
);
1262 lower_eh_constructs_1 (state
, seq
);
1263 gimple_seq_add_seq (&new_stmt
, seq
);
1265 gimple_seq_add_stmt (&new_stmt
, q
->cont_stmt
);
1266 maybe_record_in_goto_queue (state
, q
->cont_stmt
);
1269 for (q
= tf
->goto_queue
; q
< qe
; q
++)
1273 index
= q
->index
< 0 ? return_index
: q
->index
;
1275 if (labels
[index
].q
== q
)
1278 lab
= labels
[index
].label
;
1280 if (index
== return_index
)
1281 do_return_redirection (q
, lab
, NULL
);
1283 do_goto_redirection (q
, lab
, NULL
, tf
);
1286 replace_goto_queue (tf
);
1290 /* Need to link new stmts after running replace_goto_queue due
1291 to not wanting to process the same goto stmts twice. */
1292 gimple_seq_add_seq (&tf
->top_p_seq
, new_stmt
);
1295 /* A subroutine of lower_try_finally. There are multiple edges incoming
1296 and outgoing from the finally block. Implement this by instrumenting
1297 each incoming edge and creating a switch statement at the end of the
1298 finally block that branches to the appropriate destination. */
1301 lower_try_finally_switch (struct leh_state
*state
, struct leh_tf_state
*tf
)
1303 struct goto_queue_node
*q
, *qe
;
1304 tree finally_tmp
, finally_label
;
1305 int return_index
, eh_index
, fallthru_index
;
1306 int nlabels
, ndests
, j
, last_case_index
;
1308 VEC (tree
,heap
) *case_label_vec
;
1309 gimple_seq switch_body
;
1314 struct pointer_map_t
*cont_map
= NULL
;
1315 /* The location of the TRY_FINALLY stmt. */
1316 location_t tf_loc
= gimple_location (tf
->try_finally_expr
);
1317 /* The location of the finally block. */
1318 location_t finally_loc
;
1320 switch_body
= gimple_seq_alloc ();
1321 finally
= gimple_try_cleanup (tf
->top_p
);
1322 eh_else
= get_eh_else (finally
);
1324 /* Mash the TRY block to the head of the chain. */
1325 tf
->top_p_seq
= gimple_try_eval (tf
->top_p
);
1327 /* The location of the finally is either the last stmt in the finally
1328 block or the location of the TRY_FINALLY itself. */
1329 finally_loc
= gimple_seq_last_stmt (tf
->top_p_seq
) != NULL
?
1330 gimple_location (gimple_seq_last_stmt (tf
->top_p_seq
))
1333 /* Lower the finally block itself. */
1334 lower_eh_constructs_1 (state
, finally
);
1336 /* Prepare for switch statement generation. */
1337 nlabels
= VEC_length (tree
, tf
->dest_array
);
1338 return_index
= nlabels
;
1339 eh_index
= return_index
+ tf
->may_return
;
1340 fallthru_index
= eh_index
+ (tf
->may_throw
&& !eh_else
);
1341 ndests
= fallthru_index
+ tf
->may_fallthru
;
1343 finally_tmp
= create_tmp_var (integer_type_node
, "finally_tmp");
1344 finally_label
= create_artificial_label (finally_loc
);
1346 /* We use VEC_quick_push on case_label_vec throughout this function,
1347 since we know the size in advance and allocate precisely as muce
1349 case_label_vec
= VEC_alloc (tree
, heap
, ndests
);
1351 last_case_index
= 0;
1353 /* Begin inserting code for getting to the finally block. Things
1354 are done in this order to correspond to the sequence the code is
1357 if (tf
->may_fallthru
)
1359 x
= gimple_build_assign (finally_tmp
,
1360 build_int_cst (integer_type_node
,
1362 gimple_seq_add_stmt (&tf
->top_p_seq
, x
);
1364 tmp
= build_int_cst (integer_type_node
, fallthru_index
);
1365 last_case
= build_case_label (tmp
, NULL
,
1366 create_artificial_label (tf_loc
));
1367 VEC_quick_push (tree
, case_label_vec
, last_case
);
1370 x
= gimple_build_label (CASE_LABEL (last_case
));
1371 gimple_seq_add_stmt (&switch_body
, x
);
1373 tmp
= lower_try_finally_fallthru_label (tf
);
1374 x
= gimple_build_goto (tmp
);
1375 gimple_seq_add_stmt (&switch_body
, x
);
1378 /* For EH_ELSE, emit the exception path (plus resx) now, then
1379 subsequently we only need consider the normal path. */
1384 finally
= gimple_eh_else_e_body (eh_else
);
1385 lower_eh_constructs_1 (state
, finally
);
1387 emit_post_landing_pad (&eh_seq
, tf
->region
);
1388 gimple_seq_add_seq (&eh_seq
, finally
);
1389 emit_resx (&eh_seq
, tf
->region
);
1392 finally
= gimple_eh_else_n_body (eh_else
);
1394 else if (tf
->may_throw
)
1396 emit_post_landing_pad (&eh_seq
, tf
->region
);
1398 x
= gimple_build_assign (finally_tmp
,
1399 build_int_cst (integer_type_node
, eh_index
));
1400 gimple_seq_add_stmt (&eh_seq
, x
);
1402 x
= gimple_build_goto (finally_label
);
1403 gimple_seq_add_stmt (&eh_seq
, x
);
1405 tmp
= build_int_cst (integer_type_node
, eh_index
);
1406 last_case
= build_case_label (tmp
, NULL
,
1407 create_artificial_label (tf_loc
));
1408 VEC_quick_push (tree
, case_label_vec
, last_case
);
1411 x
= gimple_build_label (CASE_LABEL (last_case
));
1412 gimple_seq_add_stmt (&eh_seq
, x
);
1413 emit_resx (&eh_seq
, tf
->region
);
1416 x
= gimple_build_label (finally_label
);
1417 gimple_seq_add_stmt (&tf
->top_p_seq
, x
);
1419 gimple_seq_add_seq (&tf
->top_p_seq
, finally
);
1421 /* Redirect each incoming goto edge. */
1423 qe
= q
+ tf
->goto_queue_active
;
1424 j
= last_case_index
+ tf
->may_return
;
1425 /* Prepare the assignments to finally_tmp that are executed upon the
1426 entrance through a particular edge. */
1431 unsigned int case_index
;
1433 mod
= gimple_seq_alloc ();
1437 x
= gimple_build_assign (finally_tmp
,
1438 build_int_cst (integer_type_node
,
1440 gimple_seq_add_stmt (&mod
, x
);
1441 do_return_redirection (q
, finally_label
, mod
);
1442 switch_id
= return_index
;
1446 x
= gimple_build_assign (finally_tmp
,
1447 build_int_cst (integer_type_node
, q
->index
));
1448 gimple_seq_add_stmt (&mod
, x
);
1449 do_goto_redirection (q
, finally_label
, mod
, tf
);
1450 switch_id
= q
->index
;
1453 case_index
= j
+ q
->index
;
1454 if (VEC_length (tree
, case_label_vec
) <= case_index
1455 || !VEC_index (tree
, case_label_vec
, case_index
))
1459 tmp
= build_int_cst (integer_type_node
, switch_id
);
1460 case_lab
= build_case_label (tmp
, NULL
,
1461 create_artificial_label (tf_loc
));
1462 /* We store the cont_stmt in the pointer map, so that we can recover
1463 it in the loop below. */
1465 cont_map
= pointer_map_create ();
1466 slot
= pointer_map_insert (cont_map
, case_lab
);
1467 *slot
= q
->cont_stmt
;
1468 VEC_quick_push (tree
, case_label_vec
, case_lab
);
1471 for (j
= last_case_index
; j
< last_case_index
+ nlabels
; j
++)
1476 last_case
= VEC_index (tree
, case_label_vec
, j
);
1478 gcc_assert (last_case
);
1479 gcc_assert (cont_map
);
1481 slot
= pointer_map_contains (cont_map
, last_case
);
1483 cont_stmt
= *(gimple
*) slot
;
1485 x
= gimple_build_label (CASE_LABEL (last_case
));
1486 gimple_seq_add_stmt (&switch_body
, x
);
1487 gimple_seq_add_stmt (&switch_body
, cont_stmt
);
1488 maybe_record_in_goto_queue (state
, cont_stmt
);
1491 pointer_map_destroy (cont_map
);
1493 replace_goto_queue (tf
);
1495 /* Make sure that the last case is the default label, as one is required.
1496 Then sort the labels, which is also required in GIMPLE. */
1497 CASE_LOW (last_case
) = NULL
;
1498 sort_case_labels (case_label_vec
);
1500 /* Build the switch statement, setting last_case to be the default
1502 switch_stmt
= gimple_build_switch_vec (finally_tmp
, last_case
,
1504 gimple_set_location (switch_stmt
, finally_loc
);
1506 /* Need to link SWITCH_STMT after running replace_goto_queue
1507 due to not wanting to process the same goto stmts twice. */
1508 gimple_seq_add_stmt (&tf
->top_p_seq
, switch_stmt
);
1509 gimple_seq_add_seq (&tf
->top_p_seq
, switch_body
);
1512 /* Decide whether or not we are going to duplicate the finally block.
1513 There are several considerations.
1515 First, if this is Java, then the finally block contains code
1516 written by the user. It has line numbers associated with it,
1517 so duplicating the block means it's difficult to set a breakpoint.
1518 Since controlling code generation via -g is verboten, we simply
1519 never duplicate code without optimization.
1521 Second, we'd like to prevent egregious code growth. One way to
1522 do this is to estimate the size of the finally block, multiply
1523 that by the number of copies we'd need to make, and compare against
1524 the estimate of the size of the switch machinery we'd have to add. */
1527 decide_copy_try_finally (int ndests
, bool may_throw
, gimple_seq finally
)
1529 int f_estimate
, sw_estimate
;
1532 /* If there's an EH_ELSE involved, the exception path is separate
1533 and really doesn't come into play for this computation. */
1534 eh_else
= get_eh_else (finally
);
1537 ndests
-= may_throw
;
1538 finally
= gimple_eh_else_n_body (eh_else
);
1543 gimple_stmt_iterator gsi
;
1548 for (gsi
= gsi_start (finally
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1550 gimple stmt
= gsi_stmt (gsi
);
1551 if (!is_gimple_debug (stmt
) && !gimple_clobber_p (stmt
))
1557 /* Finally estimate N times, plus N gotos. */
1558 f_estimate
= count_insns_seq (finally
, &eni_size_weights
);
1559 f_estimate
= (f_estimate
+ 1) * ndests
;
1561 /* Switch statement (cost 10), N variable assignments, N gotos. */
1562 sw_estimate
= 10 + 2 * ndests
;
1564 /* Optimize for size clearly wants our best guess. */
1565 if (optimize_function_for_size_p (cfun
))
1566 return f_estimate
< sw_estimate
;
1568 /* ??? These numbers are completely made up so far. */
1570 return f_estimate
< 100 || f_estimate
< sw_estimate
* 2;
1572 return f_estimate
< 40 || f_estimate
* 2 < sw_estimate
* 3;
1575 /* REG is the enclosing region for a possible cleanup region, or the region
1576 itself. Returns TRUE if such a region would be unreachable.
1578 Cleanup regions within a must-not-throw region aren't actually reachable
1579 even if there are throwing stmts within them, because the personality
1580 routine will call terminate before unwinding. */
1583 cleanup_is_dead_in (eh_region reg
)
1585 while (reg
&& reg
->type
== ERT_CLEANUP
)
1587 return (reg
&& reg
->type
== ERT_MUST_NOT_THROW
);
1590 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_FINALLY nodes
1591 to a sequence of labels and blocks, plus the exception region trees
1592 that record all the magic. This is complicated by the need to
1593 arrange for the FINALLY block to be executed on all exits. */
1596 lower_try_finally (struct leh_state
*state
, gimple tp
)
1598 struct leh_tf_state this_tf
;
1599 struct leh_state this_state
;
1601 gimple_seq old_eh_seq
;
1603 /* Process the try block. */
1605 memset (&this_tf
, 0, sizeof (this_tf
));
1606 this_tf
.try_finally_expr
= tp
;
1608 this_tf
.outer
= state
;
1609 if (using_eh_for_cleanups_p
&& !cleanup_is_dead_in (state
->cur_region
))
1611 this_tf
.region
= gen_eh_region_cleanup (state
->cur_region
);
1612 this_state
.cur_region
= this_tf
.region
;
1616 this_tf
.region
= NULL
;
1617 this_state
.cur_region
= state
->cur_region
;
1620 this_state
.ehp_region
= state
->ehp_region
;
1621 this_state
.tf
= &this_tf
;
1623 old_eh_seq
= eh_seq
;
1626 lower_eh_constructs_1 (&this_state
, gimple_try_eval(tp
));
1628 /* Determine if the try block is escaped through the bottom. */
1629 this_tf
.may_fallthru
= gimple_seq_may_fallthru (gimple_try_eval (tp
));
1631 /* Determine if any exceptions are possible within the try block. */
1633 this_tf
.may_throw
= eh_region_may_contain_throw (this_tf
.region
);
1634 if (this_tf
.may_throw
)
1635 honor_protect_cleanup_actions (state
, &this_state
, &this_tf
);
1637 /* Determine how many edges (still) reach the finally block. Or rather,
1638 how many destinations are reached by the finally block. Use this to
1639 determine how we process the finally block itself. */
1641 ndests
= VEC_length (tree
, this_tf
.dest_array
);
1642 ndests
+= this_tf
.may_fallthru
;
1643 ndests
+= this_tf
.may_return
;
1644 ndests
+= this_tf
.may_throw
;
1646 /* If the FINALLY block is not reachable, dike it out. */
1649 gimple_seq_add_seq (&this_tf
.top_p_seq
, gimple_try_eval (tp
));
1650 gimple_try_set_cleanup (tp
, NULL
);
1652 /* If the finally block doesn't fall through, then any destination
1653 we might try to impose there isn't reached either. There may be
1654 some minor amount of cleanup and redirection still needed. */
1655 else if (!gimple_seq_may_fallthru (gimple_try_cleanup (tp
)))
1656 lower_try_finally_nofallthru (state
, &this_tf
);
1658 /* We can easily special-case redirection to a single destination. */
1659 else if (ndests
== 1)
1660 lower_try_finally_onedest (state
, &this_tf
);
1661 else if (decide_copy_try_finally (ndests
, this_tf
.may_throw
,
1662 gimple_try_cleanup (tp
)))
1663 lower_try_finally_copy (state
, &this_tf
);
1665 lower_try_finally_switch (state
, &this_tf
);
1667 /* If someone requested we add a label at the end of the transformed
1669 if (this_tf
.fallthru_label
)
1671 /* This must be reached only if ndests == 0. */
1672 gimple x
= gimple_build_label (this_tf
.fallthru_label
);
1673 gimple_seq_add_stmt (&this_tf
.top_p_seq
, x
);
1676 VEC_free (tree
, heap
, this_tf
.dest_array
);
1677 free (this_tf
.goto_queue
);
1678 if (this_tf
.goto_queue_map
)
1679 pointer_map_destroy (this_tf
.goto_queue_map
);
1681 /* If there was an old (aka outer) eh_seq, append the current eh_seq.
1682 If there was no old eh_seq, then the append is trivially already done. */
1686 eh_seq
= old_eh_seq
;
1689 gimple_seq new_eh_seq
= eh_seq
;
1690 eh_seq
= old_eh_seq
;
1691 gimple_seq_add_seq(&eh_seq
, new_eh_seq
);
1695 return this_tf
.top_p_seq
;
1698 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_CATCH with a
1699 list of GIMPLE_CATCH to a sequence of labels and blocks, plus the
1700 exception region trees that records all the magic. */
1703 lower_catch (struct leh_state
*state
, gimple tp
)
1705 eh_region try_region
= NULL
;
1706 struct leh_state this_state
= *state
;
1707 gimple_stmt_iterator gsi
;
1711 location_t try_catch_loc
= gimple_location (tp
);
1713 if (flag_exceptions
)
1715 try_region
= gen_eh_region_try (state
->cur_region
);
1716 this_state
.cur_region
= try_region
;
1719 lower_eh_constructs_1 (&this_state
, gimple_try_eval (tp
));
1721 if (!eh_region_may_contain_throw (try_region
))
1722 return gimple_try_eval (tp
);
1725 emit_eh_dispatch (&new_seq
, try_region
);
1726 emit_resx (&new_seq
, try_region
);
1728 this_state
.cur_region
= state
->cur_region
;
1729 this_state
.ehp_region
= try_region
;
1732 for (gsi
= gsi_start (gimple_try_cleanup (tp
));
1740 gcatch
= gsi_stmt (gsi
);
1741 c
= gen_eh_region_catch (try_region
, gimple_catch_types (gcatch
));
1743 handler
= gimple_catch_handler (gcatch
);
1744 lower_eh_constructs_1 (&this_state
, handler
);
1746 c
->label
= create_artificial_label (UNKNOWN_LOCATION
);
1747 x
= gimple_build_label (c
->label
);
1748 gimple_seq_add_stmt (&new_seq
, x
);
1750 gimple_seq_add_seq (&new_seq
, handler
);
1752 if (gimple_seq_may_fallthru (new_seq
))
1755 out_label
= create_artificial_label (try_catch_loc
);
1757 x
= gimple_build_goto (out_label
);
1758 gimple_seq_add_stmt (&new_seq
, x
);
1764 gimple_try_set_cleanup (tp
, new_seq
);
1766 return frob_into_branch_around (tp
, try_region
, out_label
);
1769 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with a
1770 GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception
1771 region trees that record all the magic. */
1774 lower_eh_filter (struct leh_state
*state
, gimple tp
)
1776 struct leh_state this_state
= *state
;
1777 eh_region this_region
= NULL
;
1781 inner
= gimple_seq_first_stmt (gimple_try_cleanup (tp
));
1783 if (flag_exceptions
)
1785 this_region
= gen_eh_region_allowed (state
->cur_region
,
1786 gimple_eh_filter_types (inner
));
1787 this_state
.cur_region
= this_region
;
1790 lower_eh_constructs_1 (&this_state
, gimple_try_eval (tp
));
1792 if (!eh_region_may_contain_throw (this_region
))
1793 return gimple_try_eval (tp
);
1796 this_state
.cur_region
= state
->cur_region
;
1797 this_state
.ehp_region
= this_region
;
1799 emit_eh_dispatch (&new_seq
, this_region
);
1800 emit_resx (&new_seq
, this_region
);
1802 this_region
->u
.allowed
.label
= create_artificial_label (UNKNOWN_LOCATION
);
1803 x
= gimple_build_label (this_region
->u
.allowed
.label
);
1804 gimple_seq_add_stmt (&new_seq
, x
);
1806 lower_eh_constructs_1 (&this_state
, gimple_eh_filter_failure (inner
));
1807 gimple_seq_add_seq (&new_seq
, gimple_eh_filter_failure (inner
));
1809 gimple_try_set_cleanup (tp
, new_seq
);
1811 return frob_into_branch_around (tp
, this_region
, NULL
);
1814 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with
1815 an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks,
1816 plus the exception region trees that record all the magic. */
1819 lower_eh_must_not_throw (struct leh_state
*state
, gimple tp
)
1821 struct leh_state this_state
= *state
;
1823 if (flag_exceptions
)
1825 gimple inner
= gimple_seq_first_stmt (gimple_try_cleanup (tp
));
1826 eh_region this_region
;
1828 this_region
= gen_eh_region_must_not_throw (state
->cur_region
);
1829 this_region
->u
.must_not_throw
.failure_decl
1830 = gimple_eh_must_not_throw_fndecl (inner
);
1831 this_region
->u
.must_not_throw
.failure_loc
= gimple_location (tp
);
1833 /* In order to get mangling applied to this decl, we must mark it
1834 used now. Otherwise, pass_ipa_free_lang_data won't think it
1836 TREE_USED (this_region
->u
.must_not_throw
.failure_decl
) = 1;
1838 this_state
.cur_region
= this_region
;
1841 lower_eh_constructs_1 (&this_state
, gimple_try_eval (tp
));
1843 return gimple_try_eval (tp
);
1846 /* Implement a cleanup expression. This is similar to try-finally,
1847 except that we only execute the cleanup block for exception edges. */
1850 lower_cleanup (struct leh_state
*state
, gimple tp
)
1852 struct leh_state this_state
= *state
;
1853 eh_region this_region
= NULL
;
1854 struct leh_tf_state fake_tf
;
1856 bool cleanup_dead
= cleanup_is_dead_in (state
->cur_region
);
1858 if (flag_exceptions
&& !cleanup_dead
)
1860 this_region
= gen_eh_region_cleanup (state
->cur_region
);
1861 this_state
.cur_region
= this_region
;
1864 lower_eh_constructs_1 (&this_state
, gimple_try_eval (tp
));
1866 if (cleanup_dead
|| !eh_region_may_contain_throw (this_region
))
1867 return gimple_try_eval (tp
);
1869 /* Build enough of a try-finally state so that we can reuse
1870 honor_protect_cleanup_actions. */
1871 memset (&fake_tf
, 0, sizeof (fake_tf
));
1872 fake_tf
.top_p
= fake_tf
.try_finally_expr
= tp
;
1873 fake_tf
.outer
= state
;
1874 fake_tf
.region
= this_region
;
1875 fake_tf
.may_fallthru
= gimple_seq_may_fallthru (gimple_try_eval (tp
));
1876 fake_tf
.may_throw
= true;
1878 honor_protect_cleanup_actions (state
, NULL
, &fake_tf
);
1880 if (fake_tf
.may_throw
)
1882 /* In this case honor_protect_cleanup_actions had nothing to do,
1883 and we should process this normally. */
1884 lower_eh_constructs_1 (state
, gimple_try_cleanup (tp
));
1885 result
= frob_into_branch_around (tp
, this_region
,
1886 fake_tf
.fallthru_label
);
1890 /* In this case honor_protect_cleanup_actions did nearly all of
1891 the work. All we have left is to append the fallthru_label. */
1893 result
= gimple_try_eval (tp
);
1894 if (fake_tf
.fallthru_label
)
1896 gimple x
= gimple_build_label (fake_tf
.fallthru_label
);
1897 gimple_seq_add_stmt (&result
, x
);
1903 /* Main loop for lowering eh constructs. Also moves gsi to the next
1907 lower_eh_constructs_2 (struct leh_state
*state
, gimple_stmt_iterator
*gsi
)
1911 gimple stmt
= gsi_stmt (*gsi
);
1913 switch (gimple_code (stmt
))
1917 tree fndecl
= gimple_call_fndecl (stmt
);
1920 if (fndecl
&& DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
1921 switch (DECL_FUNCTION_CODE (fndecl
))
1923 case BUILT_IN_EH_POINTER
:
1924 /* The front end may have generated a call to
1925 __builtin_eh_pointer (0) within a catch region. Replace
1926 this zero argument with the current catch region number. */
1927 if (state
->ehp_region
)
1929 tree nr
= build_int_cst (integer_type_node
,
1930 state
->ehp_region
->index
);
1931 gimple_call_set_arg (stmt
, 0, nr
);
1935 /* The user has dome something silly. Remove it. */
1936 rhs
= null_pointer_node
;
1941 case BUILT_IN_EH_FILTER
:
1942 /* ??? This should never appear, but since it's a builtin it
1943 is accessible to abuse by users. Just remove it and
1944 replace the use with the arbitrary value zero. */
1945 rhs
= build_int_cst (TREE_TYPE (TREE_TYPE (fndecl
)), 0);
1947 lhs
= gimple_call_lhs (stmt
);
1948 x
= gimple_build_assign (lhs
, rhs
);
1949 gsi_insert_before (gsi
, x
, GSI_SAME_STMT
);
1952 case BUILT_IN_EH_COPY_VALUES
:
1953 /* Likewise this should not appear. Remove it. */
1954 gsi_remove (gsi
, true);
1964 /* If the stmt can throw use a new temporary for the assignment
1965 to a LHS. This makes sure the old value of the LHS is
1966 available on the EH edge. Only do so for statements that
1967 potentially fall thru (no noreturn calls e.g.), otherwise
1968 this new assignment might create fake fallthru regions. */
1969 if (stmt_could_throw_p (stmt
)
1970 && gimple_has_lhs (stmt
)
1971 && gimple_stmt_may_fallthru (stmt
)
1972 && !tree_could_throw_p (gimple_get_lhs (stmt
))
1973 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt
))))
1975 tree lhs
= gimple_get_lhs (stmt
);
1976 tree tmp
= create_tmp_var (TREE_TYPE (lhs
), NULL
);
1977 gimple s
= gimple_build_assign (lhs
, tmp
);
1978 gimple_set_location (s
, gimple_location (stmt
));
1979 gimple_set_block (s
, gimple_block (stmt
));
1980 gimple_set_lhs (stmt
, tmp
);
1981 if (TREE_CODE (TREE_TYPE (tmp
)) == COMPLEX_TYPE
1982 || TREE_CODE (TREE_TYPE (tmp
)) == VECTOR_TYPE
)
1983 DECL_GIMPLE_REG_P (tmp
) = 1;
1984 gsi_insert_after (gsi
, s
, GSI_SAME_STMT
);
1986 /* Look for things that can throw exceptions, and record them. */
1987 if (state
->cur_region
&& stmt_could_throw_p (stmt
))
1989 record_stmt_eh_region (state
->cur_region
, stmt
);
1990 note_eh_region_may_contain_throw (state
->cur_region
);
1997 maybe_record_in_goto_queue (state
, stmt
);
2001 verify_norecord_switch_expr (state
, stmt
);
2005 if (gimple_try_kind (stmt
) == GIMPLE_TRY_FINALLY
)
2006 replace
= lower_try_finally (state
, stmt
);
2009 x
= gimple_seq_first_stmt (gimple_try_cleanup (stmt
));
2012 replace
= gimple_try_eval (stmt
);
2013 lower_eh_constructs_1 (state
, replace
);
2016 switch (gimple_code (x
))
2019 replace
= lower_catch (state
, stmt
);
2021 case GIMPLE_EH_FILTER
:
2022 replace
= lower_eh_filter (state
, stmt
);
2024 case GIMPLE_EH_MUST_NOT_THROW
:
2025 replace
= lower_eh_must_not_throw (state
, stmt
);
2027 case GIMPLE_EH_ELSE
:
2028 /* This code is only valid with GIMPLE_TRY_FINALLY. */
2031 replace
= lower_cleanup (state
, stmt
);
2036 /* Remove the old stmt and insert the transformed sequence
2038 gsi_insert_seq_before (gsi
, replace
, GSI_SAME_STMT
);
2039 gsi_remove (gsi
, true);
2041 /* Return since we don't want gsi_next () */
2044 case GIMPLE_EH_ELSE
:
2045 /* We should be eliminating this in lower_try_finally et al. */
2049 /* A type, a decl, or some kind of statement that we're not
2050 interested in. Don't walk them. */
2057 /* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */
2060 lower_eh_constructs_1 (struct leh_state
*state
, gimple_seq seq
)
2062 gimple_stmt_iterator gsi
;
2063 for (gsi
= gsi_start (seq
); !gsi_end_p (gsi
);)
2064 lower_eh_constructs_2 (state
, &gsi
);
2068 lower_eh_constructs (void)
2070 struct leh_state null_state
;
2073 bodyp
= gimple_body (current_function_decl
);
2077 finally_tree
= htab_create (31, struct_ptr_hash
, struct_ptr_eq
, free
);
2078 eh_region_may_contain_throw_map
= BITMAP_ALLOC (NULL
);
2079 memset (&null_state
, 0, sizeof (null_state
));
2081 collect_finally_tree_1 (bodyp
, NULL
);
2082 lower_eh_constructs_1 (&null_state
, bodyp
);
2084 /* We assume there's a return statement, or something, at the end of
2085 the function, and thus ploping the EH sequence afterward won't
2087 gcc_assert (!gimple_seq_may_fallthru (bodyp
));
2088 gimple_seq_add_seq (&bodyp
, eh_seq
);
2090 /* We assume that since BODYP already existed, adding EH_SEQ to it
2091 didn't change its value, and we don't have to re-set the function. */
2092 gcc_assert (bodyp
== gimple_body (current_function_decl
));
2094 htab_delete (finally_tree
);
2095 BITMAP_FREE (eh_region_may_contain_throw_map
);
2098 /* If this function needs a language specific EH personality routine
2099 and the frontend didn't already set one do so now. */
2100 if (function_needs_eh_personality (cfun
) == eh_personality_lang
2101 && !DECL_FUNCTION_PERSONALITY (current_function_decl
))
2102 DECL_FUNCTION_PERSONALITY (current_function_decl
)
2103 = lang_hooks
.eh_personality ();
2108 struct gimple_opt_pass pass_lower_eh
=
2114 lower_eh_constructs
, /* execute */
2117 0, /* static_pass_number */
2118 TV_TREE_EH
, /* tv_id */
2119 PROP_gimple_lcf
, /* properties_required */
2120 PROP_gimple_leh
, /* properties_provided */
2121 0, /* properties_destroyed */
2122 0, /* todo_flags_start */
2123 0 /* todo_flags_finish */
2127 /* Create the multiple edges from an EH_DISPATCH statement to all of
2128 the possible handlers for its EH region. Return true if there's
2129 no fallthru edge; false if there is. */
2132 make_eh_dispatch_edges (gimple stmt
)
2136 basic_block src
, dst
;
2138 r
= get_eh_region_from_number (gimple_eh_dispatch_region (stmt
));
2139 src
= gimple_bb (stmt
);
2144 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
2146 dst
= label_to_block (c
->label
);
2147 make_edge (src
, dst
, 0);
2149 /* A catch-all handler doesn't have a fallthru. */
2150 if (c
->type_list
== NULL
)
2155 case ERT_ALLOWED_EXCEPTIONS
:
2156 dst
= label_to_block (r
->u
.allowed
.label
);
2157 make_edge (src
, dst
, 0);
2167 /* Create the single EH edge from STMT to its nearest landing pad,
2168 if there is such a landing pad within the current function. */
2171 make_eh_edges (gimple stmt
)
2173 basic_block src
, dst
;
2177 lp_nr
= lookup_stmt_eh_lp (stmt
);
2181 lp
= get_eh_landing_pad_from_number (lp_nr
);
2182 gcc_assert (lp
!= NULL
);
2184 src
= gimple_bb (stmt
);
2185 dst
= label_to_block (lp
->post_landing_pad
);
2186 make_edge (src
, dst
, EDGE_EH
);
2189 /* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree;
2190 do not actually perform the final edge redirection.
2192 CHANGE_REGION is true when we're being called from cleanup_empty_eh and
2193 we intend to change the destination EH region as well; this means
2194 EH_LANDING_PAD_NR must already be set on the destination block label.
2195 If false, we're being called from generic cfg manipulation code and we
2196 should preserve our place within the region tree. */
2199 redirect_eh_edge_1 (edge edge_in
, basic_block new_bb
, bool change_region
)
2201 eh_landing_pad old_lp
, new_lp
;
2204 int old_lp_nr
, new_lp_nr
;
2205 tree old_label
, new_label
;
2209 old_bb
= edge_in
->dest
;
2210 old_label
= gimple_block_label (old_bb
);
2211 old_lp_nr
= EH_LANDING_PAD_NR (old_label
);
2212 gcc_assert (old_lp_nr
> 0);
2213 old_lp
= get_eh_landing_pad_from_number (old_lp_nr
);
2215 throw_stmt
= last_stmt (edge_in
->src
);
2216 gcc_assert (lookup_stmt_eh_lp (throw_stmt
) == old_lp_nr
);
2218 new_label
= gimple_block_label (new_bb
);
2220 /* Look for an existing region that might be using NEW_BB already. */
2221 new_lp_nr
= EH_LANDING_PAD_NR (new_label
);
2224 new_lp
= get_eh_landing_pad_from_number (new_lp_nr
);
2225 gcc_assert (new_lp
);
2227 /* Unless CHANGE_REGION is true, the new and old landing pad
2228 had better be associated with the same EH region. */
2229 gcc_assert (change_region
|| new_lp
->region
== old_lp
->region
);
2234 gcc_assert (!change_region
);
2237 /* Notice when we redirect the last EH edge away from OLD_BB. */
2238 FOR_EACH_EDGE (e
, ei
, old_bb
->preds
)
2239 if (e
!= edge_in
&& (e
->flags
& EDGE_EH
))
2244 /* NEW_LP already exists. If there are still edges into OLD_LP,
2245 there's nothing to do with the EH tree. If there are no more
2246 edges into OLD_LP, then we want to remove OLD_LP as it is unused.
2247 If CHANGE_REGION is true, then our caller is expecting to remove
2249 if (e
== NULL
&& !change_region
)
2250 remove_eh_landing_pad (old_lp
);
2254 /* No correct landing pad exists. If there are no more edges
2255 into OLD_LP, then we can simply re-use the existing landing pad.
2256 Otherwise, we have to create a new landing pad. */
2259 EH_LANDING_PAD_NR (old_lp
->post_landing_pad
) = 0;
2263 new_lp
= gen_eh_landing_pad (old_lp
->region
);
2264 new_lp
->post_landing_pad
= new_label
;
2265 EH_LANDING_PAD_NR (new_label
) = new_lp
->index
;
2268 /* Maybe move the throwing statement to the new region. */
2269 if (old_lp
!= new_lp
)
2271 remove_stmt_from_eh_lp (throw_stmt
);
2272 add_stmt_to_eh_lp (throw_stmt
, new_lp
->index
);
2276 /* Redirect EH edge E to NEW_BB. */
2279 redirect_eh_edge (edge edge_in
, basic_block new_bb
)
2281 redirect_eh_edge_1 (edge_in
, new_bb
, false);
2282 return ssa_redirect_edge (edge_in
, new_bb
);
2285 /* This is a subroutine of gimple_redirect_edge_and_branch. Update the
2286 labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB.
2287 The actual edge update will happen in the caller. */
2290 redirect_eh_dispatch_edge (gimple stmt
, edge e
, basic_block new_bb
)
2292 tree new_lab
= gimple_block_label (new_bb
);
2293 bool any_changed
= false;
2298 r
= get_eh_region_from_number (gimple_eh_dispatch_region (stmt
));
2302 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
2304 old_bb
= label_to_block (c
->label
);
2305 if (old_bb
== e
->dest
)
2313 case ERT_ALLOWED_EXCEPTIONS
:
2314 old_bb
= label_to_block (r
->u
.allowed
.label
);
2315 gcc_assert (old_bb
== e
->dest
);
2316 r
->u
.allowed
.label
= new_lab
;
2324 gcc_assert (any_changed
);
2327 /* Helper function for operation_could_trap_p and stmt_could_throw_p. */
2330 operation_could_trap_helper_p (enum tree_code op
,
2341 case TRUNC_DIV_EXPR
:
2343 case FLOOR_DIV_EXPR
:
2344 case ROUND_DIV_EXPR
:
2345 case EXACT_DIV_EXPR
:
2347 case FLOOR_MOD_EXPR
:
2348 case ROUND_MOD_EXPR
:
2349 case TRUNC_MOD_EXPR
:
2351 if (honor_snans
|| honor_trapv
)
2354 return flag_trapping_math
;
2355 if (!TREE_CONSTANT (divisor
) || integer_zerop (divisor
))
2364 /* Some floating point comparisons may trap. */
2369 case UNORDERED_EXPR
:
2379 case FIX_TRUNC_EXPR
:
2380 /* Conversion of floating point might trap. */
2386 /* These operations don't trap with floating point. */
2394 /* Any floating arithmetic may trap. */
2395 if (fp_operation
&& flag_trapping_math
)
2403 /* Constructing an object cannot trap. */
2407 /* Any floating arithmetic may trap. */
2408 if (fp_operation
&& flag_trapping_math
)
2416 /* Return true if operation OP may trap. FP_OPERATION is true if OP is applied
2417 on floating-point values. HONOR_TRAPV is true if OP is applied on integer
2418 type operands that may trap. If OP is a division operator, DIVISOR contains
2419 the value of the divisor. */
2422 operation_could_trap_p (enum tree_code op
, bool fp_operation
, bool honor_trapv
,
2425 bool honor_nans
= (fp_operation
&& flag_trapping_math
2426 && !flag_finite_math_only
);
2427 bool honor_snans
= fp_operation
&& flag_signaling_nans
!= 0;
2430 if (TREE_CODE_CLASS (op
) != tcc_comparison
2431 && TREE_CODE_CLASS (op
) != tcc_unary
2432 && TREE_CODE_CLASS (op
) != tcc_binary
)
2435 return operation_could_trap_helper_p (op
, fp_operation
, honor_trapv
,
2436 honor_nans
, honor_snans
, divisor
,
2440 /* Return true if EXPR can trap, as in dereferencing an invalid pointer
2441 location or floating point arithmetic. C.f. the rtl version, may_trap_p.
2442 This routine expects only GIMPLE lhs or rhs input. */
2445 tree_could_trap_p (tree expr
)
2447 enum tree_code code
;
2448 bool fp_operation
= false;
2449 bool honor_trapv
= false;
2450 tree t
, base
, div
= NULL_TREE
;
2455 code
= TREE_CODE (expr
);
2456 t
= TREE_TYPE (expr
);
2460 if (COMPARISON_CLASS_P (expr
))
2461 fp_operation
= FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr
, 0)));
2463 fp_operation
= FLOAT_TYPE_P (t
);
2464 honor_trapv
= INTEGRAL_TYPE_P (t
) && TYPE_OVERFLOW_TRAPS (t
);
2467 if (TREE_CODE_CLASS (code
) == tcc_binary
)
2468 div
= TREE_OPERAND (expr
, 1);
2469 if (operation_could_trap_p (code
, fp_operation
, honor_trapv
, div
))
2475 case TARGET_MEM_REF
:
2476 if (TREE_CODE (TMR_BASE (expr
)) == ADDR_EXPR
2477 && !TMR_INDEX (expr
) && !TMR_INDEX2 (expr
))
2479 return !TREE_THIS_NOTRAP (expr
);
2485 case VIEW_CONVERT_EXPR
:
2486 case WITH_SIZE_EXPR
:
2487 expr
= TREE_OPERAND (expr
, 0);
2488 code
= TREE_CODE (expr
);
2491 case ARRAY_RANGE_REF
:
2492 base
= TREE_OPERAND (expr
, 0);
2493 if (tree_could_trap_p (base
))
2495 if (TREE_THIS_NOTRAP (expr
))
2497 return !range_in_array_bounds_p (expr
);
2500 base
= TREE_OPERAND (expr
, 0);
2501 if (tree_could_trap_p (base
))
2503 if (TREE_THIS_NOTRAP (expr
))
2505 return !in_array_bounds_p (expr
);
2508 if (TREE_CODE (TREE_OPERAND (expr
, 0)) == ADDR_EXPR
)
2512 return !TREE_THIS_NOTRAP (expr
);
2515 return TREE_THIS_VOLATILE (expr
);
2518 t
= get_callee_fndecl (expr
);
2519 /* Assume that calls to weak functions may trap. */
2520 if (!t
|| !DECL_P (t
))
2523 return tree_could_trap_p (t
);
2527 /* Assume that accesses to weak functions may trap, unless we know
2528 they are certainly defined in current TU or in some other
2530 if (DECL_WEAK (expr
))
2532 struct cgraph_node
*node
;
2533 if (!DECL_EXTERNAL (expr
))
2535 node
= cgraph_function_node (cgraph_get_node (expr
), NULL
);
2536 if (node
&& node
->symbol
.in_other_partition
)
2543 /* Assume that accesses to weak vars may trap, unless we know
2544 they are certainly defined in current TU or in some other
2546 if (DECL_WEAK (expr
))
2548 struct varpool_node
*node
;
2549 if (!DECL_EXTERNAL (expr
))
2551 node
= varpool_variable_node (varpool_get_node (expr
), NULL
);
2552 if (node
&& node
->symbol
.in_other_partition
)
2564 /* Helper for stmt_could_throw_p. Return true if STMT (assumed to be a
2565 an assignment or a conditional) may throw. */
2568 stmt_could_throw_1_p (gimple stmt
)
2570 enum tree_code code
= gimple_expr_code (stmt
);
2571 bool honor_nans
= false;
2572 bool honor_snans
= false;
2573 bool fp_operation
= false;
2574 bool honor_trapv
= false;
2579 if (TREE_CODE_CLASS (code
) == tcc_comparison
2580 || TREE_CODE_CLASS (code
) == tcc_unary
2581 || TREE_CODE_CLASS (code
) == tcc_binary
)
2583 if (is_gimple_assign (stmt
)
2584 && TREE_CODE_CLASS (code
) == tcc_comparison
)
2585 t
= TREE_TYPE (gimple_assign_rhs1 (stmt
));
2586 else if (gimple_code (stmt
) == GIMPLE_COND
)
2587 t
= TREE_TYPE (gimple_cond_lhs (stmt
));
2589 t
= gimple_expr_type (stmt
);
2590 fp_operation
= FLOAT_TYPE_P (t
);
2593 honor_nans
= flag_trapping_math
&& !flag_finite_math_only
;
2594 honor_snans
= flag_signaling_nans
!= 0;
2596 else if (INTEGRAL_TYPE_P (t
) && TYPE_OVERFLOW_TRAPS (t
))
2600 /* Check if the main expression may trap. */
2601 t
= is_gimple_assign (stmt
) ? gimple_assign_rhs2 (stmt
) : NULL
;
2602 ret
= operation_could_trap_helper_p (code
, fp_operation
, honor_trapv
,
2603 honor_nans
, honor_snans
, t
,
2608 /* If the expression does not trap, see if any of the individual operands may
2610 for (i
= 0; i
< gimple_num_ops (stmt
); i
++)
2611 if (tree_could_trap_p (gimple_op (stmt
, i
)))
2618 /* Return true if statement STMT could throw an exception. */
2621 stmt_could_throw_p (gimple stmt
)
2623 if (!flag_exceptions
)
2626 /* The only statements that can throw an exception are assignments,
2627 conditionals, calls, resx, and asms. */
2628 switch (gimple_code (stmt
))
2634 return !gimple_call_nothrow_p (stmt
);
2638 if (!cfun
->can_throw_non_call_exceptions
)
2640 return stmt_could_throw_1_p (stmt
);
2643 if (!cfun
->can_throw_non_call_exceptions
)
2645 return gimple_asm_volatile_p (stmt
);
2653 /* Return true if expression T could throw an exception. */
2656 tree_could_throw_p (tree t
)
2658 if (!flag_exceptions
)
2660 if (TREE_CODE (t
) == MODIFY_EXPR
)
2662 if (cfun
->can_throw_non_call_exceptions
2663 && tree_could_trap_p (TREE_OPERAND (t
, 0)))
2665 t
= TREE_OPERAND (t
, 1);
2668 if (TREE_CODE (t
) == WITH_SIZE_EXPR
)
2669 t
= TREE_OPERAND (t
, 0);
2670 if (TREE_CODE (t
) == CALL_EXPR
)
2671 return (call_expr_flags (t
) & ECF_NOTHROW
) == 0;
2672 if (cfun
->can_throw_non_call_exceptions
)
2673 return tree_could_trap_p (t
);
2677 /* Return true if STMT can throw an exception that is not caught within
2678 the current function (CFUN). */
2681 stmt_can_throw_external (gimple stmt
)
2685 if (!stmt_could_throw_p (stmt
))
2688 lp_nr
= lookup_stmt_eh_lp (stmt
);
2692 /* Return true if STMT can throw an exception that is caught within
2693 the current function (CFUN). */
2696 stmt_can_throw_internal (gimple stmt
)
2700 if (!stmt_could_throw_p (stmt
))
2703 lp_nr
= lookup_stmt_eh_lp (stmt
);
2707 /* Given a statement STMT in IFUN, if STMT can no longer throw, then
2708 remove any entry it might have from the EH table. Return true if
2709 any change was made. */
2712 maybe_clean_eh_stmt_fn (struct function
*ifun
, gimple stmt
)
2714 if (stmt_could_throw_p (stmt
))
2716 return remove_stmt_from_eh_lp_fn (ifun
, stmt
);
2719 /* Likewise, but always use the current function. */
2722 maybe_clean_eh_stmt (gimple stmt
)
2724 return maybe_clean_eh_stmt_fn (cfun
, stmt
);
2727 /* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced
2728 OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT
2729 in the table if it should be in there. Return TRUE if a replacement was
2730 done that my require an EH edge purge. */
2733 maybe_clean_or_replace_eh_stmt (gimple old_stmt
, gimple new_stmt
)
2735 int lp_nr
= lookup_stmt_eh_lp (old_stmt
);
2739 bool new_stmt_could_throw
= stmt_could_throw_p (new_stmt
);
2741 if (new_stmt
== old_stmt
&& new_stmt_could_throw
)
2744 remove_stmt_from_eh_lp (old_stmt
);
2745 if (new_stmt_could_throw
)
2747 add_stmt_to_eh_lp (new_stmt
, lp_nr
);
2757 /* Given a statement OLD_STMT in OLD_FUN and a duplicate statment NEW_STMT
2758 in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT. The MAP
2759 operand is the return value of duplicate_eh_regions. */
2762 maybe_duplicate_eh_stmt_fn (struct function
*new_fun
, gimple new_stmt
,
2763 struct function
*old_fun
, gimple old_stmt
,
2764 struct pointer_map_t
*map
, int default_lp_nr
)
2766 int old_lp_nr
, new_lp_nr
;
2769 if (!stmt_could_throw_p (new_stmt
))
2772 old_lp_nr
= lookup_stmt_eh_lp_fn (old_fun
, old_stmt
);
2775 if (default_lp_nr
== 0)
2777 new_lp_nr
= default_lp_nr
;
2779 else if (old_lp_nr
> 0)
2781 eh_landing_pad old_lp
, new_lp
;
2783 old_lp
= VEC_index (eh_landing_pad
, old_fun
->eh
->lp_array
, old_lp_nr
);
2784 slot
= pointer_map_contains (map
, old_lp
);
2785 new_lp
= (eh_landing_pad
) *slot
;
2786 new_lp_nr
= new_lp
->index
;
2790 eh_region old_r
, new_r
;
2792 old_r
= VEC_index (eh_region
, old_fun
->eh
->region_array
, -old_lp_nr
);
2793 slot
= pointer_map_contains (map
, old_r
);
2794 new_r
= (eh_region
) *slot
;
2795 new_lp_nr
= -new_r
->index
;
2798 add_stmt_to_eh_lp_fn (new_fun
, new_stmt
, new_lp_nr
);
2802 /* Similar, but both OLD_STMT and NEW_STMT are within the current function,
2803 and thus no remapping is required. */
2806 maybe_duplicate_eh_stmt (gimple new_stmt
, gimple old_stmt
)
2810 if (!stmt_could_throw_p (new_stmt
))
2813 lp_nr
= lookup_stmt_eh_lp (old_stmt
);
2817 add_stmt_to_eh_lp (new_stmt
, lp_nr
);
2821 /* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of
2822 GIMPLE_TRY) that are similar enough to be considered the same. Currently
2823 this only handles handlers consisting of a single call, as that's the
2824 important case for C++: a destructor call for a particular object showing
2825 up in multiple handlers. */
2828 same_handler_p (gimple_seq oneh
, gimple_seq twoh
)
2830 gimple_stmt_iterator gsi
;
2834 gsi
= gsi_start (oneh
);
2835 if (!gsi_one_before_end_p (gsi
))
2837 ones
= gsi_stmt (gsi
);
2839 gsi
= gsi_start (twoh
);
2840 if (!gsi_one_before_end_p (gsi
))
2842 twos
= gsi_stmt (gsi
);
2844 if (!is_gimple_call (ones
)
2845 || !is_gimple_call (twos
)
2846 || gimple_call_lhs (ones
)
2847 || gimple_call_lhs (twos
)
2848 || gimple_call_chain (ones
)
2849 || gimple_call_chain (twos
)
2850 || !gimple_call_same_target_p (ones
, twos
)
2851 || gimple_call_num_args (ones
) != gimple_call_num_args (twos
))
2854 for (ai
= 0; ai
< gimple_call_num_args (ones
); ++ai
)
2855 if (!operand_equal_p (gimple_call_arg (ones
, ai
),
2856 gimple_call_arg (twos
, ai
), 0))
2863 try { A() } finally { try { ~B() } catch { ~A() } }
2864 try { ... } finally { ~A() }
2866 try { A() } catch { ~B() }
2867 try { ~B() ... } finally { ~A() }
2869 This occurs frequently in C++, where A is a local variable and B is a
2870 temporary used in the initializer for A. */
2873 optimize_double_finally (gimple one
, gimple two
)
2876 gimple_stmt_iterator gsi
;
2878 gsi
= gsi_start (gimple_try_cleanup (one
));
2879 if (!gsi_one_before_end_p (gsi
))
2882 oneh
= gsi_stmt (gsi
);
2883 if (gimple_code (oneh
) != GIMPLE_TRY
2884 || gimple_try_kind (oneh
) != GIMPLE_TRY_CATCH
)
2887 if (same_handler_p (gimple_try_cleanup (oneh
), gimple_try_cleanup (two
)))
2889 gimple_seq seq
= gimple_try_eval (oneh
);
2891 gimple_try_set_cleanup (one
, seq
);
2892 gimple_try_set_kind (one
, GIMPLE_TRY_CATCH
);
2893 seq
= copy_gimple_seq_and_replace_locals (seq
);
2894 gimple_seq_add_seq (&seq
, gimple_try_eval (two
));
2895 gimple_try_set_eval (two
, seq
);
2899 /* Perform EH refactoring optimizations that are simpler to do when code
2900 flow has been lowered but EH structures haven't. */
2903 refactor_eh_r (gimple_seq seq
)
2905 gimple_stmt_iterator gsi
;
2910 gsi
= gsi_start (seq
);
2914 if (gsi_end_p (gsi
))
2917 two
= gsi_stmt (gsi
);
2920 && gimple_code (one
) == GIMPLE_TRY
2921 && gimple_code (two
) == GIMPLE_TRY
2922 && gimple_try_kind (one
) == GIMPLE_TRY_FINALLY
2923 && gimple_try_kind (two
) == GIMPLE_TRY_FINALLY
)
2924 optimize_double_finally (one
, two
);
2926 switch (gimple_code (one
))
2929 refactor_eh_r (gimple_try_eval (one
));
2930 refactor_eh_r (gimple_try_cleanup (one
));
2933 refactor_eh_r (gimple_catch_handler (one
));
2935 case GIMPLE_EH_FILTER
:
2936 refactor_eh_r (gimple_eh_filter_failure (one
));
2938 case GIMPLE_EH_ELSE
:
2939 refactor_eh_r (gimple_eh_else_n_body (one
));
2940 refactor_eh_r (gimple_eh_else_e_body (one
));
2955 refactor_eh_r (gimple_body (current_function_decl
));
2960 gate_refactor_eh (void)
2962 return flag_exceptions
!= 0;
2965 struct gimple_opt_pass pass_refactor_eh
=
2970 gate_refactor_eh
, /* gate */
2971 refactor_eh
, /* execute */
2974 0, /* static_pass_number */
2975 TV_TREE_EH
, /* tv_id */
2976 PROP_gimple_lcf
, /* properties_required */
2977 0, /* properties_provided */
2978 0, /* properties_destroyed */
2979 0, /* todo_flags_start */
2980 0 /* todo_flags_finish */
2984 /* At the end of gimple optimization, we can lower RESX. */
2987 lower_resx (basic_block bb
, gimple stmt
, struct pointer_map_t
*mnt_map
)
2990 eh_region src_r
, dst_r
;
2991 gimple_stmt_iterator gsi
;
2996 lp_nr
= lookup_stmt_eh_lp (stmt
);
2998 dst_r
= get_eh_region_from_lp_number (lp_nr
);
3002 src_r
= get_eh_region_from_number (gimple_resx_region (stmt
));
3003 gsi
= gsi_last_bb (bb
);
3007 /* We can wind up with no source region when pass_cleanup_eh shows
3008 that there are no entries into an eh region and deletes it, but
3009 then the block that contains the resx isn't removed. This can
3010 happen without optimization when the switch statement created by
3011 lower_try_finally_switch isn't simplified to remove the eh case.
3013 Resolve this by expanding the resx node to an abort. */
3015 fn
= builtin_decl_implicit (BUILT_IN_TRAP
);
3016 x
= gimple_build_call (fn
, 0);
3017 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3019 while (EDGE_COUNT (bb
->succs
) > 0)
3020 remove_edge (EDGE_SUCC (bb
, 0));
3024 /* When we have a destination region, we resolve this by copying
3025 the excptr and filter values into place, and changing the edge
3026 to immediately after the landing pad. */
3035 /* We are resuming into a MUST_NOT_CALL region. Expand a call to
3036 the failure decl into a new block, if needed. */
3037 gcc_assert (dst_r
->type
== ERT_MUST_NOT_THROW
);
3039 slot
= pointer_map_contains (mnt_map
, dst_r
);
3042 gimple_stmt_iterator gsi2
;
3044 new_bb
= create_empty_bb (bb
);
3046 add_bb_to_loop (new_bb
, bb
->loop_father
);
3047 lab
= gimple_block_label (new_bb
);
3048 gsi2
= gsi_start_bb (new_bb
);
3050 fn
= dst_r
->u
.must_not_throw
.failure_decl
;
3051 x
= gimple_build_call (fn
, 0);
3052 gimple_set_location (x
, dst_r
->u
.must_not_throw
.failure_loc
);
3053 gsi_insert_after (&gsi2
, x
, GSI_CONTINUE_LINKING
);
3055 slot
= pointer_map_insert (mnt_map
, dst_r
);
3061 new_bb
= label_to_block (lab
);
3064 gcc_assert (EDGE_COUNT (bb
->succs
) == 0);
3065 e
= make_edge (bb
, new_bb
, EDGE_FALLTHRU
);
3066 e
->count
= bb
->count
;
3067 e
->probability
= REG_BR_PROB_BASE
;
3072 tree dst_nr
= build_int_cst (integer_type_node
, dst_r
->index
);
3074 fn
= builtin_decl_implicit (BUILT_IN_EH_COPY_VALUES
);
3075 src_nr
= build_int_cst (integer_type_node
, src_r
->index
);
3076 x
= gimple_build_call (fn
, 2, dst_nr
, src_nr
);
3077 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3079 /* Update the flags for the outgoing edge. */
3080 e
= single_succ_edge (bb
);
3081 gcc_assert (e
->flags
& EDGE_EH
);
3082 e
->flags
= (e
->flags
& ~EDGE_EH
) | EDGE_FALLTHRU
;
3084 /* If there are no more EH users of the landing pad, delete it. */
3085 FOR_EACH_EDGE (e
, ei
, e
->dest
->preds
)
3086 if (e
->flags
& EDGE_EH
)
3090 eh_landing_pad lp
= get_eh_landing_pad_from_number (lp_nr
);
3091 remove_eh_landing_pad (lp
);
3101 /* When we don't have a destination region, this exception escapes
3102 up the call chain. We resolve this by generating a call to the
3103 _Unwind_Resume library function. */
3105 /* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup
3106 with no arguments for C++ and Java. Check for that. */
3107 if (src_r
->use_cxa_end_cleanup
)
3109 fn
= builtin_decl_implicit (BUILT_IN_CXA_END_CLEANUP
);
3110 x
= gimple_build_call (fn
, 0);
3111 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3115 fn
= builtin_decl_implicit (BUILT_IN_EH_POINTER
);
3116 src_nr
= build_int_cst (integer_type_node
, src_r
->index
);
3117 x
= gimple_build_call (fn
, 1, src_nr
);
3118 var
= create_tmp_var (ptr_type_node
, NULL
);
3119 var
= make_ssa_name (var
, x
);
3120 gimple_call_set_lhs (x
, var
);
3121 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3123 fn
= builtin_decl_implicit (BUILT_IN_UNWIND_RESUME
);
3124 x
= gimple_build_call (fn
, 1, var
);
3125 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3128 gcc_assert (EDGE_COUNT (bb
->succs
) == 0);
3131 gsi_remove (&gsi
, true);
3137 execute_lower_resx (void)
3140 struct pointer_map_t
*mnt_map
;
3141 bool dominance_invalidated
= false;
3142 bool any_rewritten
= false;
3144 mnt_map
= pointer_map_create ();
3148 gimple last
= last_stmt (bb
);
3149 if (last
&& is_gimple_resx (last
))
3151 dominance_invalidated
|= lower_resx (bb
, last
, mnt_map
);
3152 any_rewritten
= true;
3156 pointer_map_destroy (mnt_map
);
3158 if (dominance_invalidated
)
3160 free_dominance_info (CDI_DOMINATORS
);
3161 free_dominance_info (CDI_POST_DOMINATORS
);
3164 return any_rewritten
? TODO_update_ssa_only_virtuals
: 0;
3168 gate_lower_resx (void)
3170 return flag_exceptions
!= 0;
3173 struct gimple_opt_pass pass_lower_resx
=
3178 gate_lower_resx
, /* gate */
3179 execute_lower_resx
, /* execute */
3182 0, /* static_pass_number */
3183 TV_TREE_EH
, /* tv_id */
3184 PROP_gimple_lcf
, /* properties_required */
3185 0, /* properties_provided */
3186 0, /* properties_destroyed */
3187 0, /* todo_flags_start */
3188 TODO_verify_flow
/* todo_flags_finish */
3192 /* Try to optimize var = {v} {CLOBBER} stmts followed just by
3196 optimize_clobbers (basic_block bb
)
3198 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
3199 for (gsi_prev (&gsi
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
3201 gimple stmt
= gsi_stmt (gsi
);
3202 if (is_gimple_debug (stmt
))
3204 if (!gimple_clobber_p (stmt
)
3205 || TREE_CODE (gimple_assign_lhs (stmt
)) == SSA_NAME
)
3207 unlink_stmt_vdef (stmt
);
3208 gsi_remove (&gsi
, true);
3209 release_defs (stmt
);
3213 /* Try to sink var = {v} {CLOBBER} stmts followed just by
3214 internal throw to successor BB. */
3217 sink_clobbers (basic_block bb
)
3221 gimple_stmt_iterator gsi
, dgsi
;
3223 bool any_clobbers
= false;
3225 /* Only optimize if BB has a single EH successor and
3226 all predecessor edges are EH too. */
3227 if (!single_succ_p (bb
)
3228 || (single_succ_edge (bb
)->flags
& EDGE_EH
) == 0)
3231 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3233 if ((e
->flags
& EDGE_EH
) == 0)
3237 /* And BB contains only CLOBBER stmts before the final
3239 gsi
= gsi_last_bb (bb
);
3240 for (gsi_prev (&gsi
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
3242 gimple stmt
= gsi_stmt (gsi
);
3243 if (is_gimple_debug (stmt
))
3245 if (gimple_code (stmt
) == GIMPLE_LABEL
)
3247 if (!gimple_clobber_p (stmt
)
3248 || TREE_CODE (gimple_assign_lhs (stmt
)) == SSA_NAME
)
3250 any_clobbers
= true;
3255 succbb
= single_succ (bb
);
3256 dgsi
= gsi_after_labels (succbb
);
3257 gsi
= gsi_last_bb (bb
);
3258 for (gsi_prev (&gsi
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
3260 gimple stmt
= gsi_stmt (gsi
);
3262 if (is_gimple_debug (stmt
))
3264 if (gimple_code (stmt
) == GIMPLE_LABEL
)
3266 unlink_stmt_vdef (stmt
);
3267 gsi_remove (&gsi
, false);
3268 vdef
= gimple_vdef (stmt
);
3269 if (vdef
&& TREE_CODE (vdef
) == SSA_NAME
)
3271 release_ssa_name (vdef
);
3272 vdef
= SSA_NAME_VAR (vdef
);
3273 mark_sym_for_renaming (vdef
);
3274 gimple_set_vdef (stmt
, vdef
);
3275 gimple_set_vuse (stmt
, vdef
);
3277 gsi_insert_before (&dgsi
, stmt
, GSI_SAME_STMT
);
3280 return TODO_update_ssa_only_virtuals
;
3283 /* At the end of inlining, we can lower EH_DISPATCH. Return true when
3284 we have found some duplicate labels and removed some edges. */
3287 lower_eh_dispatch (basic_block src
, gimple stmt
)
3289 gimple_stmt_iterator gsi
;
3294 bool redirected
= false;
3296 region_nr
= gimple_eh_dispatch_region (stmt
);
3297 r
= get_eh_region_from_number (region_nr
);
3299 gsi
= gsi_last_bb (src
);
3305 VEC (tree
, heap
) *labels
= NULL
;
3306 tree default_label
= NULL
;
3310 struct pointer_set_t
*seen_values
= pointer_set_create ();
3312 /* Collect the labels for a switch. Zero the post_landing_pad
3313 field becase we'll no longer have anything keeping these labels
3314 in existance and the optimizer will be free to merge these
3316 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
3318 tree tp_node
, flt_node
, lab
= c
->label
;
3319 bool have_label
= false;
3322 tp_node
= c
->type_list
;
3323 flt_node
= c
->filter_list
;
3325 if (tp_node
== NULL
)
3327 default_label
= lab
;
3332 /* Filter out duplicate labels that arise when this handler
3333 is shadowed by an earlier one. When no labels are
3334 attached to the handler anymore, we remove
3335 the corresponding edge and then we delete unreachable
3336 blocks at the end of this pass. */
3337 if (! pointer_set_contains (seen_values
, TREE_VALUE (flt_node
)))
3339 tree t
= build_case_label (TREE_VALUE (flt_node
),
3341 VEC_safe_push (tree
, heap
, labels
, t
);
3342 pointer_set_insert (seen_values
, TREE_VALUE (flt_node
));
3346 tp_node
= TREE_CHAIN (tp_node
);
3347 flt_node
= TREE_CHAIN (flt_node
);
3352 remove_edge (find_edge (src
, label_to_block (lab
)));
3357 /* Clean up the edge flags. */
3358 FOR_EACH_EDGE (e
, ei
, src
->succs
)
3360 if (e
->flags
& EDGE_FALLTHRU
)
3362 /* If there was no catch-all, use the fallthru edge. */
3363 if (default_label
== NULL
)
3364 default_label
= gimple_block_label (e
->dest
);
3365 e
->flags
&= ~EDGE_FALLTHRU
;
3368 gcc_assert (default_label
!= NULL
);
3370 /* Don't generate a switch if there's only a default case.
3371 This is common in the form of try { A; } catch (...) { B; }. */
3374 e
= single_succ_edge (src
);
3375 e
->flags
|= EDGE_FALLTHRU
;
3379 fn
= builtin_decl_implicit (BUILT_IN_EH_FILTER
);
3380 x
= gimple_build_call (fn
, 1, build_int_cst (integer_type_node
,
3382 filter
= create_tmp_var (TREE_TYPE (TREE_TYPE (fn
)), NULL
);
3383 filter
= make_ssa_name (filter
, x
);
3384 gimple_call_set_lhs (x
, filter
);
3385 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3387 /* Turn the default label into a default case. */
3388 default_label
= build_case_label (NULL
, NULL
, default_label
);
3389 sort_case_labels (labels
);
3391 x
= gimple_build_switch_vec (filter
, default_label
, labels
);
3392 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3394 VEC_free (tree
, heap
, labels
);
3396 pointer_set_destroy (seen_values
);
3400 case ERT_ALLOWED_EXCEPTIONS
:
3402 edge b_e
= BRANCH_EDGE (src
);
3403 edge f_e
= FALLTHRU_EDGE (src
);
3405 fn
= builtin_decl_implicit (BUILT_IN_EH_FILTER
);
3406 x
= gimple_build_call (fn
, 1, build_int_cst (integer_type_node
,
3408 filter
= create_tmp_var (TREE_TYPE (TREE_TYPE (fn
)), NULL
);
3409 filter
= make_ssa_name (filter
, x
);
3410 gimple_call_set_lhs (x
, filter
);
3411 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3413 r
->u
.allowed
.label
= NULL
;
3414 x
= gimple_build_cond (EQ_EXPR
, filter
,
3415 build_int_cst (TREE_TYPE (filter
),
3416 r
->u
.allowed
.filter
),
3417 NULL_TREE
, NULL_TREE
);
3418 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3420 b_e
->flags
= b_e
->flags
| EDGE_TRUE_VALUE
;
3421 f_e
->flags
= (f_e
->flags
& ~EDGE_FALLTHRU
) | EDGE_FALSE_VALUE
;
3429 /* Replace the EH_DISPATCH with the SWITCH or COND generated above. */
3430 gsi_remove (&gsi
, true);
3435 execute_lower_eh_dispatch (void)
3439 bool redirected
= false;
3441 assign_filter_values ();
3445 gimple last
= last_stmt (bb
);
3448 if (gimple_code (last
) == GIMPLE_EH_DISPATCH
)
3450 redirected
|= lower_eh_dispatch (bb
, last
);
3451 flags
|= TODO_update_ssa_only_virtuals
;
3453 else if (gimple_code (last
) == GIMPLE_RESX
)
3455 if (stmt_can_throw_external (last
))
3456 optimize_clobbers (bb
);
3458 flags
|= sink_clobbers (bb
);
3463 delete_unreachable_blocks ();
3468 gate_lower_eh_dispatch (void)
3470 return cfun
->eh
->region_tree
!= NULL
;
3473 struct gimple_opt_pass pass_lower_eh_dispatch
=
3477 "ehdisp", /* name */
3478 gate_lower_eh_dispatch
, /* gate */
3479 execute_lower_eh_dispatch
, /* execute */
3482 0, /* static_pass_number */
3483 TV_TREE_EH
, /* tv_id */
3484 PROP_gimple_lcf
, /* properties_required */
3485 0, /* properties_provided */
3486 0, /* properties_destroyed */
3487 0, /* todo_flags_start */
3488 TODO_verify_flow
/* todo_flags_finish */
3492 /* Walk statements, see what regions are really referenced and remove
3493 those that are unused. */
3496 remove_unreachable_handlers (void)
3498 sbitmap r_reachable
, lp_reachable
;
3504 r_reachable
= sbitmap_alloc (VEC_length (eh_region
, cfun
->eh
->region_array
));
3506 = sbitmap_alloc (VEC_length (eh_landing_pad
, cfun
->eh
->lp_array
));
3507 sbitmap_zero (r_reachable
);
3508 sbitmap_zero (lp_reachable
);
3512 gimple_stmt_iterator gsi
;
3514 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
3516 gimple stmt
= gsi_stmt (gsi
);
3517 lp_nr
= lookup_stmt_eh_lp (stmt
);
3519 /* Negative LP numbers are MUST_NOT_THROW regions which
3520 are not considered BB enders. */
3522 SET_BIT (r_reachable
, -lp_nr
);
3524 /* Positive LP numbers are real landing pads, are are BB enders. */
3527 gcc_assert (gsi_one_before_end_p (gsi
));
3528 region
= get_eh_region_from_lp_number (lp_nr
);
3529 SET_BIT (r_reachable
, region
->index
);
3530 SET_BIT (lp_reachable
, lp_nr
);
3533 /* Avoid removing regions referenced from RESX/EH_DISPATCH. */
3534 switch (gimple_code (stmt
))
3537 SET_BIT (r_reachable
, gimple_resx_region (stmt
));
3539 case GIMPLE_EH_DISPATCH
:
3540 SET_BIT (r_reachable
, gimple_eh_dispatch_region (stmt
));
3550 fprintf (dump_file
, "Before removal of unreachable regions:\n");
3551 dump_eh_tree (dump_file
, cfun
);
3552 fprintf (dump_file
, "Reachable regions: ");
3553 dump_sbitmap_file (dump_file
, r_reachable
);
3554 fprintf (dump_file
, "Reachable landing pads: ");
3555 dump_sbitmap_file (dump_file
, lp_reachable
);
3559 VEC_iterate (eh_region
, cfun
->eh
->region_array
, r_nr
, region
); ++r_nr
)
3560 if (region
&& !TEST_BIT (r_reachable
, r_nr
))
3563 fprintf (dump_file
, "Removing unreachable region %d\n", r_nr
);
3564 remove_eh_handler (region
);
3568 VEC_iterate (eh_landing_pad
, cfun
->eh
->lp_array
, lp_nr
, lp
); ++lp_nr
)
3569 if (lp
&& !TEST_BIT (lp_reachable
, lp_nr
))
3572 fprintf (dump_file
, "Removing unreachable landing pad %d\n", lp_nr
);
3573 remove_eh_landing_pad (lp
);
3578 fprintf (dump_file
, "\n\nAfter removal of unreachable regions:\n");
3579 dump_eh_tree (dump_file
, cfun
);
3580 fprintf (dump_file
, "\n\n");
3583 sbitmap_free (r_reachable
);
3584 sbitmap_free (lp_reachable
);
3586 #ifdef ENABLE_CHECKING
3587 verify_eh_tree (cfun
);
3591 /* Remove unreachable handlers if any landing pads have been removed after
3592 last ehcleanup pass (due to gimple_purge_dead_eh_edges). */
3595 maybe_remove_unreachable_handlers (void)
3600 if (cfun
->eh
== NULL
)
3603 for (i
= 1; VEC_iterate (eh_landing_pad
, cfun
->eh
->lp_array
, i
, lp
); ++i
)
3604 if (lp
&& lp
->post_landing_pad
)
3606 if (label_to_block (lp
->post_landing_pad
) == NULL
)
3608 remove_unreachable_handlers ();
3614 /* Remove regions that do not have landing pads. This assumes
3615 that remove_unreachable_handlers has already been run, and
3616 that we've just manipulated the landing pads since then. */
3619 remove_unreachable_handlers_no_lp (void)
3623 sbitmap r_reachable
;
3626 r_reachable
= sbitmap_alloc (VEC_length (eh_region
, cfun
->eh
->region_array
));
3627 sbitmap_zero (r_reachable
);
3631 gimple stmt
= last_stmt (bb
);
3633 /* Avoid removing regions referenced from RESX/EH_DISPATCH. */
3634 switch (gimple_code (stmt
))
3637 SET_BIT (r_reachable
, gimple_resx_region (stmt
));
3639 case GIMPLE_EH_DISPATCH
:
3640 SET_BIT (r_reachable
, gimple_eh_dispatch_region (stmt
));
3647 for (i
= 1; VEC_iterate (eh_region
, cfun
->eh
->region_array
, i
, r
); ++i
)
3648 if (r
&& r
->landing_pads
== NULL
&& r
->type
!= ERT_MUST_NOT_THROW
3649 && !TEST_BIT (r_reachable
, i
))
3652 fprintf (dump_file
, "Removing unreachable region %d\n", i
);
3653 remove_eh_handler (r
);
3656 sbitmap_free (r_reachable
);
3659 /* Undo critical edge splitting on an EH landing pad. Earlier, we
3660 optimisticaly split all sorts of edges, including EH edges. The
3661 optimization passes in between may not have needed them; if not,
3662 we should undo the split.
3664 Recognize this case by having one EH edge incoming to the BB and
3665 one normal edge outgoing; BB should be empty apart from the
3666 post_landing_pad label.
3668 Note that this is slightly different from the empty handler case
3669 handled by cleanup_empty_eh, in that the actual handler may yet
3670 have actual code but the landing pad has been separated from the
3671 handler. As such, cleanup_empty_eh relies on this transformation
3672 having been done first. */
3675 unsplit_eh (eh_landing_pad lp
)
3677 basic_block bb
= label_to_block (lp
->post_landing_pad
);
3678 gimple_stmt_iterator gsi
;
3681 /* Quickly check the edge counts on BB for singularity. */
3682 if (EDGE_COUNT (bb
->preds
) != 1 || EDGE_COUNT (bb
->succs
) != 1)
3684 e_in
= EDGE_PRED (bb
, 0);
3685 e_out
= EDGE_SUCC (bb
, 0);
3687 /* Input edge must be EH and output edge must be normal. */
3688 if ((e_in
->flags
& EDGE_EH
) == 0 || (e_out
->flags
& EDGE_EH
) != 0)
3691 /* The block must be empty except for the labels and debug insns. */
3692 gsi
= gsi_after_labels (bb
);
3693 if (!gsi_end_p (gsi
) && is_gimple_debug (gsi_stmt (gsi
)))
3694 gsi_next_nondebug (&gsi
);
3695 if (!gsi_end_p (gsi
))
3698 /* The destination block must not already have a landing pad
3699 for a different region. */
3700 for (gsi
= gsi_start_bb (e_out
->dest
); !gsi_end_p (gsi
); gsi_next (&gsi
))
3702 gimple stmt
= gsi_stmt (gsi
);
3706 if (gimple_code (stmt
) != GIMPLE_LABEL
)
3708 lab
= gimple_label_label (stmt
);
3709 lp_nr
= EH_LANDING_PAD_NR (lab
);
3710 if (lp_nr
&& get_eh_region_from_lp_number (lp_nr
) != lp
->region
)
3714 /* The new destination block must not already be a destination of
3715 the source block, lest we merge fallthru and eh edges and get
3716 all sorts of confused. */
3717 if (find_edge (e_in
->src
, e_out
->dest
))
3720 /* ??? We can get degenerate phis due to cfg cleanups. I would have
3721 thought this should have been cleaned up by a phicprop pass, but
3722 that doesn't appear to handle virtuals. Propagate by hand. */
3723 if (!gimple_seq_empty_p (phi_nodes (bb
)))
3725 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); )
3727 gimple use_stmt
, phi
= gsi_stmt (gsi
);
3728 tree lhs
= gimple_phi_result (phi
);
3729 tree rhs
= gimple_phi_arg_def (phi
, 0);
3730 use_operand_p use_p
;
3731 imm_use_iterator iter
;
3733 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
, lhs
)
3735 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
3736 SET_USE (use_p
, rhs
);
3739 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs
))
3740 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs
) = 1;
3742 remove_phi_node (&gsi
, true);
3746 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3747 fprintf (dump_file
, "Unsplit EH landing pad %d to block %i.\n",
3748 lp
->index
, e_out
->dest
->index
);
3750 /* Redirect the edge. Since redirect_eh_edge_1 expects to be moving
3751 a successor edge, humor it. But do the real CFG change with the
3752 predecessor of E_OUT in order to preserve the ordering of arguments
3753 to the PHI nodes in E_OUT->DEST. */
3754 redirect_eh_edge_1 (e_in
, e_out
->dest
, false);
3755 redirect_edge_pred (e_out
, e_in
->src
);
3756 e_out
->flags
= e_in
->flags
;
3757 e_out
->probability
= e_in
->probability
;
3758 e_out
->count
= e_in
->count
;
3764 /* Examine each landing pad block and see if it matches unsplit_eh. */
3767 unsplit_all_eh (void)
3769 bool changed
= false;
3773 for (i
= 1; VEC_iterate (eh_landing_pad
, cfun
->eh
->lp_array
, i
, lp
); ++i
)
3775 changed
|= unsplit_eh (lp
);
3780 /* A subroutine of cleanup_empty_eh. Redirect all EH edges incoming
3781 to OLD_BB to NEW_BB; return true on success, false on failure.
3783 OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any
3784 PHI variables from OLD_BB we can pick them up from OLD_BB_OUT.
3785 Virtual PHIs may be deleted and marked for renaming. */
3788 cleanup_empty_eh_merge_phis (basic_block new_bb
, basic_block old_bb
,
3789 edge old_bb_out
, bool change_region
)
3791 gimple_stmt_iterator ngsi
, ogsi
;
3794 bitmap rename_virts
;
3795 bitmap ophi_handled
;
3797 /* The destination block must not be a regular successor for any
3798 of the preds of the landing pad. Thus, avoid turning
3808 which CFG verification would choke on. See PR45172 and PR51089. */
3809 FOR_EACH_EDGE (e
, ei
, old_bb
->preds
)
3810 if (find_edge (e
->src
, new_bb
))
3813 FOR_EACH_EDGE (e
, ei
, old_bb
->preds
)
3814 redirect_edge_var_map_clear (e
);
3816 ophi_handled
= BITMAP_ALLOC (NULL
);
3817 rename_virts
= BITMAP_ALLOC (NULL
);
3819 /* First, iterate through the PHIs on NEW_BB and set up the edge_var_map
3820 for the edges we're going to move. */
3821 for (ngsi
= gsi_start_phis (new_bb
); !gsi_end_p (ngsi
); gsi_next (&ngsi
))
3823 gimple ophi
, nphi
= gsi_stmt (ngsi
);
3826 nresult
= gimple_phi_result (nphi
);
3827 nop
= gimple_phi_arg_def (nphi
, old_bb_out
->dest_idx
);
3829 /* Find the corresponding PHI in OLD_BB so we can forward-propagate
3830 the source ssa_name. */
3832 for (ogsi
= gsi_start_phis (old_bb
); !gsi_end_p (ogsi
); gsi_next (&ogsi
))
3834 ophi
= gsi_stmt (ogsi
);
3835 if (gimple_phi_result (ophi
) == nop
)
3840 /* If we did find the corresponding PHI, copy those inputs. */
3843 /* If NOP is used somewhere else beyond phis in new_bb, give up. */
3844 if (!has_single_use (nop
))
3846 imm_use_iterator imm_iter
;
3847 use_operand_p use_p
;
3849 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, nop
)
3851 if (!gimple_debug_bind_p (USE_STMT (use_p
))
3852 && (gimple_code (USE_STMT (use_p
)) != GIMPLE_PHI
3853 || gimple_bb (USE_STMT (use_p
)) != new_bb
))
3857 bitmap_set_bit (ophi_handled
, SSA_NAME_VERSION (nop
));
3858 FOR_EACH_EDGE (e
, ei
, old_bb
->preds
)
3863 if ((e
->flags
& EDGE_EH
) == 0)
3865 oop
= gimple_phi_arg_def (ophi
, e
->dest_idx
);
3866 oloc
= gimple_phi_arg_location (ophi
, e
->dest_idx
);
3867 redirect_edge_var_map_add (e
, nresult
, oop
, oloc
);
3870 /* If we didn't find the PHI, but it's a VOP, remember to rename
3871 it later, assuming all other tests succeed. */
3872 else if (!is_gimple_reg (nresult
))
3873 bitmap_set_bit (rename_virts
, SSA_NAME_VERSION (nresult
));
3874 /* If we didn't find the PHI, and it's a real variable, we know
3875 from the fact that OLD_BB is tree_empty_eh_handler_p that the
3876 variable is unchanged from input to the block and we can simply
3877 re-use the input to NEW_BB from the OLD_BB_OUT edge. */
3881 = gimple_phi_arg_location (nphi
, old_bb_out
->dest_idx
);
3882 FOR_EACH_EDGE (e
, ei
, old_bb
->preds
)
3883 redirect_edge_var_map_add (e
, nresult
, nop
, nloc
);
3887 /* Second, verify that all PHIs from OLD_BB have been handled. If not,
3888 we don't know what values from the other edges into NEW_BB to use. */
3889 for (ogsi
= gsi_start_phis (old_bb
); !gsi_end_p (ogsi
); gsi_next (&ogsi
))
3891 gimple ophi
= gsi_stmt (ogsi
);
3892 tree oresult
= gimple_phi_result (ophi
);
3893 if (!bitmap_bit_p (ophi_handled
, SSA_NAME_VERSION (oresult
)))
3897 /* At this point we know that the merge will succeed. Remove the PHI
3898 nodes for the virtuals that we want to rename. */
3899 if (!bitmap_empty_p (rename_virts
))
3901 for (ngsi
= gsi_start_phis (new_bb
); !gsi_end_p (ngsi
); )
3903 gimple nphi
= gsi_stmt (ngsi
);
3904 tree nresult
= gimple_phi_result (nphi
);
3905 if (bitmap_bit_p (rename_virts
, SSA_NAME_VERSION (nresult
)))
3907 mark_virtual_phi_result_for_renaming (nphi
);
3908 remove_phi_node (&ngsi
, true);
3915 /* Finally, move the edges and update the PHIs. */
3916 for (ei
= ei_start (old_bb
->preds
); (e
= ei_safe_edge (ei
)); )
3917 if (e
->flags
& EDGE_EH
)
3919 /* ??? CFG manipluation routines do not try to update loop
3920 form on edge redirection. Do so manually here for now. */
3921 /* If we redirect a loop entry or latch edge that will either create
3922 a multiple entry loop or rotate the loop. If the loops merge
3923 we may have created a loop with multiple latches.
3924 All of this isn't easily fixed thus cancel the affected loop
3925 and mark the other loop as possibly having multiple latches. */
3927 && e
->dest
== e
->dest
->loop_father
->header
)
3929 e
->dest
->loop_father
->header
= NULL
;
3930 e
->dest
->loop_father
->latch
= NULL
;
3931 new_bb
->loop_father
->latch
= NULL
;
3932 loops_state_set (LOOPS_NEED_FIXUP
|LOOPS_MAY_HAVE_MULTIPLE_LATCHES
);
3934 redirect_eh_edge_1 (e
, new_bb
, change_region
);
3935 redirect_edge_succ (e
, new_bb
);
3936 flush_pending_stmts (e
);
3941 BITMAP_FREE (ophi_handled
);
3942 BITMAP_FREE (rename_virts
);
3946 FOR_EACH_EDGE (e
, ei
, old_bb
->preds
)
3947 redirect_edge_var_map_clear (e
);
3948 BITMAP_FREE (ophi_handled
);
3949 BITMAP_FREE (rename_virts
);
3953 /* A subroutine of cleanup_empty_eh. Move a landing pad LP from its
3954 old region to NEW_REGION at BB. */
3957 cleanup_empty_eh_move_lp (basic_block bb
, edge e_out
,
3958 eh_landing_pad lp
, eh_region new_region
)
3960 gimple_stmt_iterator gsi
;
3963 for (pp
= &lp
->region
->landing_pads
; *pp
!= lp
; pp
= &(*pp
)->next_lp
)
3967 lp
->region
= new_region
;
3968 lp
->next_lp
= new_region
->landing_pads
;
3969 new_region
->landing_pads
= lp
;
3971 /* Delete the RESX that was matched within the empty handler block. */
3972 gsi
= gsi_last_bb (bb
);
3973 unlink_stmt_vdef (gsi_stmt (gsi
));
3974 gsi_remove (&gsi
, true);
3976 /* Clean up E_OUT for the fallthru. */
3977 e_out
->flags
= (e_out
->flags
& ~EDGE_EH
) | EDGE_FALLTHRU
;
3978 e_out
->probability
= REG_BR_PROB_BASE
;
3981 /* A subroutine of cleanup_empty_eh. Handle more complex cases of
3982 unsplitting than unsplit_eh was prepared to handle, e.g. when
3983 multiple incoming edges and phis are involved. */
3986 cleanup_empty_eh_unsplit (basic_block bb
, edge e_out
, eh_landing_pad lp
)
3988 gimple_stmt_iterator gsi
;
3991 /* We really ought not have totally lost everything following
3992 a landing pad label. Given that BB is empty, there had better
3994 gcc_assert (e_out
!= NULL
);
3996 /* The destination block must not already have a landing pad
3997 for a different region. */
3999 for (gsi
= gsi_start_bb (e_out
->dest
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4001 gimple stmt
= gsi_stmt (gsi
);
4004 if (gimple_code (stmt
) != GIMPLE_LABEL
)
4006 lab
= gimple_label_label (stmt
);
4007 lp_nr
= EH_LANDING_PAD_NR (lab
);
4008 if (lp_nr
&& get_eh_region_from_lp_number (lp_nr
) != lp
->region
)
4012 /* Attempt to move the PHIs into the successor block. */
4013 if (cleanup_empty_eh_merge_phis (e_out
->dest
, bb
, e_out
, false))
4015 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4017 "Unsplit EH landing pad %d to block %i "
4018 "(via cleanup_empty_eh).\n",
4019 lp
->index
, e_out
->dest
->index
);
4026 /* Return true if edge E_FIRST is part of an empty infinite loop
4027 or leads to such a loop through a series of single successor
4031 infinite_empty_loop_p (edge e_first
)
4033 bool inf_loop
= false;
4036 if (e_first
->dest
== e_first
->src
)
4039 e_first
->src
->aux
= (void *) 1;
4040 for (e
= e_first
; single_succ_p (e
->dest
); e
= single_succ_edge (e
->dest
))
4042 gimple_stmt_iterator gsi
;
4048 e
->dest
->aux
= (void *) 1;
4049 gsi
= gsi_after_labels (e
->dest
);
4050 if (!gsi_end_p (gsi
) && is_gimple_debug (gsi_stmt (gsi
)))
4051 gsi_next_nondebug (&gsi
);
4052 if (!gsi_end_p (gsi
))
4055 e_first
->src
->aux
= NULL
;
4056 for (e
= e_first
; e
->dest
->aux
; e
= single_succ_edge (e
->dest
))
4057 e
->dest
->aux
= NULL
;
4062 /* Examine the block associated with LP to determine if it's an empty
4063 handler for its EH region. If so, attempt to redirect EH edges to
4064 an outer region. Return true the CFG was updated in any way. This
4065 is similar to jump forwarding, just across EH edges. */
4068 cleanup_empty_eh (eh_landing_pad lp
)
4070 basic_block bb
= label_to_block (lp
->post_landing_pad
);
4071 gimple_stmt_iterator gsi
;
4073 eh_region new_region
;
4076 bool has_non_eh_pred
;
4080 /* There can be zero or one edges out of BB. This is the quickest test. */
4081 switch (EDGE_COUNT (bb
->succs
))
4087 e_out
= EDGE_SUCC (bb
, 0);
4093 resx
= last_stmt (bb
);
4094 if (resx
&& is_gimple_resx (resx
))
4096 if (stmt_can_throw_external (resx
))
4097 optimize_clobbers (bb
);
4098 else if (sink_clobbers (bb
))
4102 gsi
= gsi_after_labels (bb
);
4104 /* Make sure to skip debug statements. */
4105 if (!gsi_end_p (gsi
) && is_gimple_debug (gsi_stmt (gsi
)))
4106 gsi_next_nondebug (&gsi
);
4108 /* If the block is totally empty, look for more unsplitting cases. */
4109 if (gsi_end_p (gsi
))
4111 /* For the degenerate case of an infinite loop bail out. */
4112 if (infinite_empty_loop_p (e_out
))
4115 return ret
| cleanup_empty_eh_unsplit (bb
, e_out
, lp
);
4118 /* The block should consist only of a single RESX statement, modulo a
4119 preceding call to __builtin_stack_restore if there is no outgoing
4120 edge, since the call can be eliminated in this case. */
4121 resx
= gsi_stmt (gsi
);
4122 if (!e_out
&& gimple_call_builtin_p (resx
, BUILT_IN_STACK_RESTORE
))
4125 resx
= gsi_stmt (gsi
);
4127 if (!is_gimple_resx (resx
))
4129 gcc_assert (gsi_one_before_end_p (gsi
));
4131 /* Determine if there are non-EH edges, or resx edges into the handler. */
4132 has_non_eh_pred
= false;
4133 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
4134 if (!(e
->flags
& EDGE_EH
))
4135 has_non_eh_pred
= true;
4137 /* Find the handler that's outer of the empty handler by looking at
4138 where the RESX instruction was vectored. */
4139 new_lp_nr
= lookup_stmt_eh_lp (resx
);
4140 new_region
= get_eh_region_from_lp_number (new_lp_nr
);
4142 /* If there's no destination region within the current function,
4143 redirection is trivial via removing the throwing statements from
4144 the EH region, removing the EH edges, and allowing the block
4145 to go unreachable. */
4146 if (new_region
== NULL
)
4148 gcc_assert (e_out
== NULL
);
4149 for (ei
= ei_start (bb
->preds
); (e
= ei_safe_edge (ei
)); )
4150 if (e
->flags
& EDGE_EH
)
4152 gimple stmt
= last_stmt (e
->src
);
4153 remove_stmt_from_eh_lp (stmt
);
4161 /* If the destination region is a MUST_NOT_THROW, allow the runtime
4162 to handle the abort and allow the blocks to go unreachable. */
4163 if (new_region
->type
== ERT_MUST_NOT_THROW
)
4165 for (ei
= ei_start (bb
->preds
); (e
= ei_safe_edge (ei
)); )
4166 if (e
->flags
& EDGE_EH
)
4168 gimple stmt
= last_stmt (e
->src
);
4169 remove_stmt_from_eh_lp (stmt
);
4170 add_stmt_to_eh_lp (stmt
, new_lp_nr
);
4178 /* Try to redirect the EH edges and merge the PHIs into the destination
4179 landing pad block. If the merge succeeds, we'll already have redirected
4180 all the EH edges. The handler itself will go unreachable if there were
4182 if (cleanup_empty_eh_merge_phis (e_out
->dest
, bb
, e_out
, true))
4185 /* Finally, if all input edges are EH edges, then we can (potentially)
4186 reduce the number of transfers from the runtime by moving the landing
4187 pad from the original region to the new region. This is a win when
4188 we remove the last CLEANUP region along a particular exception
4189 propagation path. Since nothing changes except for the region with
4190 which the landing pad is associated, the PHI nodes do not need to be
4192 if (!has_non_eh_pred
)
4194 cleanup_empty_eh_move_lp (bb
, e_out
, lp
, new_region
);
4195 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4196 fprintf (dump_file
, "Empty EH handler %i moved to EH region %i.\n",
4197 lp
->index
, new_region
->index
);
4199 /* ??? The CFG didn't change, but we may have rendered the
4200 old EH region unreachable. Trigger a cleanup there. */
4207 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4208 fprintf (dump_file
, "Empty EH handler %i removed.\n", lp
->index
);
4209 remove_eh_landing_pad (lp
);
4213 /* Do a post-order traversal of the EH region tree. Examine each
4214 post_landing_pad block and see if we can eliminate it as empty. */
4217 cleanup_all_empty_eh (void)
4219 bool changed
= false;
4223 for (i
= 1; VEC_iterate (eh_landing_pad
, cfun
->eh
->lp_array
, i
, lp
); ++i
)
4225 changed
|= cleanup_empty_eh (lp
);
4230 /* Perform cleanups and lowering of exception handling
4231 1) cleanups regions with handlers doing nothing are optimized out
4232 2) MUST_NOT_THROW regions that became dead because of 1) are optimized out
4233 3) Info about regions that are containing instructions, and regions
4234 reachable via local EH edges is collected
4235 4) Eh tree is pruned for regions no longer neccesary.
4237 TODO: Push MUST_NOT_THROW regions to the root of the EH tree.
4238 Unify those that have the same failure decl and locus.
4242 execute_cleanup_eh_1 (void)
4244 /* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die
4245 looking up unreachable landing pads. */
4246 remove_unreachable_handlers ();
4248 /* Watch out for the region tree vanishing due to all unreachable. */
4249 if (cfun
->eh
->region_tree
&& optimize
)
4251 bool changed
= false;
4253 changed
|= unsplit_all_eh ();
4254 changed
|= cleanup_all_empty_eh ();
4258 free_dominance_info (CDI_DOMINATORS
);
4259 free_dominance_info (CDI_POST_DOMINATORS
);
4261 /* We delayed all basic block deletion, as we may have performed
4262 cleanups on EH edges while non-EH edges were still present. */
4263 delete_unreachable_blocks ();
4265 /* We manipulated the landing pads. Remove any region that no
4266 longer has a landing pad. */
4267 remove_unreachable_handlers_no_lp ();
4269 return TODO_cleanup_cfg
| TODO_update_ssa_only_virtuals
;
4277 execute_cleanup_eh (void)
4279 int ret
= execute_cleanup_eh_1 ();
4281 /* If the function no longer needs an EH personality routine
4282 clear it. This exposes cross-language inlining opportunities
4283 and avoids references to a never defined personality routine. */
4284 if (DECL_FUNCTION_PERSONALITY (current_function_decl
)
4285 && function_needs_eh_personality (cfun
) != eh_personality_lang
)
4286 DECL_FUNCTION_PERSONALITY (current_function_decl
) = NULL_TREE
;
4292 gate_cleanup_eh (void)
4294 return cfun
->eh
!= NULL
&& cfun
->eh
->region_tree
!= NULL
;
4297 struct gimple_opt_pass pass_cleanup_eh
= {
4300 "ehcleanup", /* name */
4301 gate_cleanup_eh
, /* gate */
4302 execute_cleanup_eh
, /* execute */
4305 0, /* static_pass_number */
4306 TV_TREE_EH
, /* tv_id */
4307 PROP_gimple_lcf
, /* properties_required */
4308 0, /* properties_provided */
4309 0, /* properties_destroyed */
4310 0, /* todo_flags_start */
4311 0 /* todo_flags_finish */
4315 /* Verify that BB containing STMT as the last statement, has precisely the
4316 edge that make_eh_edges would create. */
4319 verify_eh_edges (gimple stmt
)
4321 basic_block bb
= gimple_bb (stmt
);
4322 eh_landing_pad lp
= NULL
;
4327 lp_nr
= lookup_stmt_eh_lp (stmt
);
4329 lp
= get_eh_landing_pad_from_number (lp_nr
);
4332 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4334 if (e
->flags
& EDGE_EH
)
4338 error ("BB %i has multiple EH edges", bb
->index
);
4350 error ("BB %i can not throw but has an EH edge", bb
->index
);
4356 if (!stmt_could_throw_p (stmt
))
4358 error ("BB %i last statement has incorrectly set lp", bb
->index
);
4362 if (eh_edge
== NULL
)
4364 error ("BB %i is missing an EH edge", bb
->index
);
4368 if (eh_edge
->dest
!= label_to_block (lp
->post_landing_pad
))
4370 error ("Incorrect EH edge %i->%i", bb
->index
, eh_edge
->dest
->index
);
4377 /* Similarly, but handle GIMPLE_EH_DISPATCH specifically. */
4380 verify_eh_dispatch_edge (gimple stmt
)
4384 basic_block src
, dst
;
4385 bool want_fallthru
= true;
4389 r
= get_eh_region_from_number (gimple_eh_dispatch_region (stmt
));
4390 src
= gimple_bb (stmt
);
4392 FOR_EACH_EDGE (e
, ei
, src
->succs
)
4393 gcc_assert (e
->aux
== NULL
);
4398 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
4400 dst
= label_to_block (c
->label
);
4401 e
= find_edge (src
, dst
);
4404 error ("BB %i is missing an edge", src
->index
);
4409 /* A catch-all handler doesn't have a fallthru. */
4410 if (c
->type_list
== NULL
)
4412 want_fallthru
= false;
4418 case ERT_ALLOWED_EXCEPTIONS
:
4419 dst
= label_to_block (r
->u
.allowed
.label
);
4420 e
= find_edge (src
, dst
);
4423 error ("BB %i is missing an edge", src
->index
);
4434 FOR_EACH_EDGE (e
, ei
, src
->succs
)
4436 if (e
->flags
& EDGE_FALLTHRU
)
4438 if (fall_edge
!= NULL
)
4440 error ("BB %i too many fallthru edges", src
->index
);
4449 error ("BB %i has incorrect edge", src
->index
);
4453 if ((fall_edge
!= NULL
) ^ want_fallthru
)
4455 error ("BB %i has incorrect fallthru edge", src
->index
);