2013-09-06 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / tree-ssa-uninit.c
blob6d2d768a24310a5874e49f650d52a7f4ea965726
1 /* Predicate aware uninitialized variable warning.
2 Copyright (C) 2001-2013 Free Software Foundation, Inc.
3 Contributed by Xinliang David Li <davidxl@google.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "function.h"
30 #include "gimple-pretty-print.h"
31 #include "bitmap.h"
32 #include "pointer-set.h"
33 #include "tree-flow.h"
34 #include "gimple.h"
35 #include "tree-inline.h"
36 #include "hashtab.h"
37 #include "tree-pass.h"
38 #include "diagnostic-core.h"
40 /* This implements the pass that does predicate aware warning on uses of
41 possibly uninitialized variables. The pass first collects the set of
42 possibly uninitialized SSA names. For each such name, it walks through
43 all its immediate uses. For each immediate use, it rebuilds the condition
44 expression (the predicate) that guards the use. The predicate is then
45 examined to see if the variable is always defined under that same condition.
46 This is done either by pruning the unrealizable paths that lead to the
47 default definitions or by checking if the predicate set that guards the
48 defining paths is a superset of the use predicate. */
51 /* Pointer set of potentially undefined ssa names, i.e.,
52 ssa names that are defined by phi with operands that
53 are not defined or potentially undefined. */
54 static struct pointer_set_t *possibly_undefined_names = 0;
56 /* Bit mask handling macros. */
57 #define MASK_SET_BIT(mask, pos) mask |= (1 << pos)
58 #define MASK_TEST_BIT(mask, pos) (mask & (1 << pos))
59 #define MASK_EMPTY(mask) (mask == 0)
61 /* Returns the first bit position (starting from LSB)
62 in mask that is non zero. Returns -1 if the mask is empty. */
63 static int
64 get_mask_first_set_bit (unsigned mask)
66 int pos = 0;
67 if (mask == 0)
68 return -1;
70 while ((mask & (1 << pos)) == 0)
71 pos++;
73 return pos;
75 #define MASK_FIRST_SET_BIT(mask) get_mask_first_set_bit (mask)
78 /* Return true if T, an SSA_NAME, has an undefined value. */
80 bool
81 ssa_undefined_value_p (tree t)
83 tree var = SSA_NAME_VAR (t);
85 if (!var)
87 /* Parameters get their initial value from the function entry. */
88 else if (TREE_CODE (var) == PARM_DECL)
89 return false;
90 /* When returning by reference the return address is actually a hidden
91 parameter. */
92 else if (TREE_CODE (var) == RESULT_DECL && DECL_BY_REFERENCE (var))
93 return false;
94 /* Hard register variables get their initial value from the ether. */
95 else if (TREE_CODE (var) == VAR_DECL && DECL_HARD_REGISTER (var))
96 return false;
98 /* The value is undefined iff its definition statement is empty. */
99 return (gimple_nop_p (SSA_NAME_DEF_STMT (t))
100 || (possibly_undefined_names
101 && pointer_set_contains (possibly_undefined_names, t)));
104 /* Like ssa_undefined_value_p, but don't return true if TREE_NO_WARNING
105 is set on SSA_NAME_VAR. */
107 static inline bool
108 uninit_undefined_value_p (tree t)
110 if (!ssa_undefined_value_p (t))
111 return false;
112 if (SSA_NAME_VAR (t) && TREE_NO_WARNING (SSA_NAME_VAR (t)))
113 return false;
114 return true;
117 /* Checks if the operand OPND of PHI is defined by
118 another phi with one operand defined by this PHI,
119 but the rest operands are all defined. If yes,
120 returns true to skip this this operand as being
121 redundant. Can be enhanced to be more general. */
123 static bool
124 can_skip_redundant_opnd (tree opnd, gimple phi)
126 gimple op_def;
127 tree phi_def;
128 int i, n;
130 phi_def = gimple_phi_result (phi);
131 op_def = SSA_NAME_DEF_STMT (opnd);
132 if (gimple_code (op_def) != GIMPLE_PHI)
133 return false;
134 n = gimple_phi_num_args (op_def);
135 for (i = 0; i < n; ++i)
137 tree op = gimple_phi_arg_def (op_def, i);
138 if (TREE_CODE (op) != SSA_NAME)
139 continue;
140 if (op != phi_def && uninit_undefined_value_p (op))
141 return false;
144 return true;
147 /* Returns a bit mask holding the positions of arguments in PHI
148 that have empty (or possibly empty) definitions. */
150 static unsigned
151 compute_uninit_opnds_pos (gimple phi)
153 size_t i, n;
154 unsigned uninit_opnds = 0;
156 n = gimple_phi_num_args (phi);
157 /* Bail out for phi with too many args. */
158 if (n > 32)
159 return 0;
161 for (i = 0; i < n; ++i)
163 tree op = gimple_phi_arg_def (phi, i);
164 if (TREE_CODE (op) == SSA_NAME
165 && uninit_undefined_value_p (op)
166 && !can_skip_redundant_opnd (op, phi))
168 if (cfun->has_nonlocal_label || cfun->calls_setjmp)
170 /* Ignore SSA_NAMEs that appear on abnormal edges
171 somewhere. */
172 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
173 continue;
175 MASK_SET_BIT (uninit_opnds, i);
178 return uninit_opnds;
181 /* Find the immediate postdominator PDOM of the specified
182 basic block BLOCK. */
184 static inline basic_block
185 find_pdom (basic_block block)
187 if (block == EXIT_BLOCK_PTR)
188 return EXIT_BLOCK_PTR;
189 else
191 basic_block bb
192 = get_immediate_dominator (CDI_POST_DOMINATORS, block);
193 if (! bb)
194 return EXIT_BLOCK_PTR;
195 return bb;
199 /* Find the immediate DOM of the specified
200 basic block BLOCK. */
202 static inline basic_block
203 find_dom (basic_block block)
205 if (block == ENTRY_BLOCK_PTR)
206 return ENTRY_BLOCK_PTR;
207 else
209 basic_block bb = get_immediate_dominator (CDI_DOMINATORS, block);
210 if (! bb)
211 return ENTRY_BLOCK_PTR;
212 return bb;
216 /* Returns true if BB1 is postdominating BB2 and BB1 is
217 not a loop exit bb. The loop exit bb check is simple and does
218 not cover all cases. */
220 static bool
221 is_non_loop_exit_postdominating (basic_block bb1, basic_block bb2)
223 if (!dominated_by_p (CDI_POST_DOMINATORS, bb2, bb1))
224 return false;
226 if (single_pred_p (bb1) && !single_succ_p (bb2))
227 return false;
229 return true;
232 /* Find the closest postdominator of a specified BB, which is control
233 equivalent to BB. */
235 static inline basic_block
236 find_control_equiv_block (basic_block bb)
238 basic_block pdom;
240 pdom = find_pdom (bb);
242 /* Skip the postdominating bb that is also loop exit. */
243 if (!is_non_loop_exit_postdominating (pdom, bb))
244 return NULL;
246 if (dominated_by_p (CDI_DOMINATORS, pdom, bb))
247 return pdom;
249 return NULL;
252 #define MAX_NUM_CHAINS 8
253 #define MAX_CHAIN_LEN 5
254 #define MAX_POSTDOM_CHECK 8
256 /* Computes the control dependence chains (paths of edges)
257 for DEP_BB up to the dominating basic block BB (the head node of a
258 chain should be dominated by it). CD_CHAINS is pointer to a
259 dynamic array holding the result chains. CUR_CD_CHAIN is the current
260 chain being computed. *NUM_CHAINS is total number of chains. The
261 function returns true if the information is successfully computed,
262 return false if there is no control dependence or not computed. */
264 static bool
265 compute_control_dep_chain (basic_block bb, basic_block dep_bb,
266 vec<edge> *cd_chains,
267 size_t *num_chains,
268 vec<edge> *cur_cd_chain)
270 edge_iterator ei;
271 edge e;
272 size_t i;
273 bool found_cd_chain = false;
274 size_t cur_chain_len = 0;
276 if (EDGE_COUNT (bb->succs) < 2)
277 return false;
279 /* Could use a set instead. */
280 cur_chain_len = cur_cd_chain->length ();
281 if (cur_chain_len > MAX_CHAIN_LEN)
282 return false;
284 for (i = 0; i < cur_chain_len; i++)
286 edge e = (*cur_cd_chain)[i];
287 /* cycle detected. */
288 if (e->src == bb)
289 return false;
292 FOR_EACH_EDGE (e, ei, bb->succs)
294 basic_block cd_bb;
295 int post_dom_check = 0;
296 if (e->flags & (EDGE_FAKE | EDGE_ABNORMAL))
297 continue;
299 cd_bb = e->dest;
300 cur_cd_chain->safe_push (e);
301 while (!is_non_loop_exit_postdominating (cd_bb, bb))
303 if (cd_bb == dep_bb)
305 /* Found a direct control dependence. */
306 if (*num_chains < MAX_NUM_CHAINS)
308 cd_chains[*num_chains] = cur_cd_chain->copy ();
309 (*num_chains)++;
311 found_cd_chain = true;
312 /* check path from next edge. */
313 break;
316 /* Now check if DEP_BB is indirectly control dependent on BB. */
317 if (compute_control_dep_chain (cd_bb, dep_bb, cd_chains,
318 num_chains, cur_cd_chain))
320 found_cd_chain = true;
321 break;
324 cd_bb = find_pdom (cd_bb);
325 post_dom_check++;
326 if (cd_bb == EXIT_BLOCK_PTR || post_dom_check > MAX_POSTDOM_CHECK)
327 break;
329 cur_cd_chain->pop ();
330 gcc_assert (cur_cd_chain->length () == cur_chain_len);
332 gcc_assert (cur_cd_chain->length () == cur_chain_len);
334 return found_cd_chain;
337 typedef struct use_pred_info
339 gimple cond;
340 bool invert;
341 } *use_pred_info_t;
345 /* Converts the chains of control dependence edges into a set of
346 predicates. A control dependence chain is represented by a vector
347 edges. DEP_CHAINS points to an array of dependence chains.
348 NUM_CHAINS is the size of the chain array. One edge in a dependence
349 chain is mapped to predicate expression represented by use_pred_info_t
350 type. One dependence chain is converted to a composite predicate that
351 is the result of AND operation of use_pred_info_t mapped to each edge.
352 A composite predicate is presented by a vector of use_pred_info_t. On
353 return, *PREDS points to the resulting array of composite predicates.
354 *NUM_PREDS is the number of composite predictes. */
356 static bool
357 convert_control_dep_chain_into_preds (vec<edge> *dep_chains,
358 size_t num_chains,
359 vec<use_pred_info_t> **preds,
360 size_t *num_preds)
362 bool has_valid_pred = false;
363 size_t i, j;
364 if (num_chains == 0 || num_chains >= MAX_NUM_CHAINS)
365 return false;
367 /* Now convert the control dep chain into a set
368 of predicates. */
369 typedef vec<use_pred_info_t> vec_use_pred_info_t_heap;
370 *preds = XCNEWVEC (vec_use_pred_info_t_heap, num_chains);
371 *num_preds = num_chains;
373 for (i = 0; i < num_chains; i++)
375 vec<edge> one_cd_chain = dep_chains[i];
377 has_valid_pred = false;
378 for (j = 0; j < one_cd_chain.length (); j++)
380 gimple cond_stmt;
381 gimple_stmt_iterator gsi;
382 basic_block guard_bb;
383 use_pred_info_t one_pred;
384 edge e;
386 e = one_cd_chain[j];
387 guard_bb = e->src;
388 gsi = gsi_last_bb (guard_bb);
389 if (gsi_end_p (gsi))
391 has_valid_pred = false;
392 break;
394 cond_stmt = gsi_stmt (gsi);
395 if (gimple_code (cond_stmt) == GIMPLE_CALL
396 && EDGE_COUNT (e->src->succs) >= 2)
398 /* Ignore EH edge. Can add assertion
399 on the other edge's flag. */
400 continue;
402 /* Skip if there is essentially one succesor. */
403 if (EDGE_COUNT (e->src->succs) == 2)
405 edge e1;
406 edge_iterator ei1;
407 bool skip = false;
409 FOR_EACH_EDGE (e1, ei1, e->src->succs)
411 if (EDGE_COUNT (e1->dest->succs) == 0)
413 skip = true;
414 break;
417 if (skip)
418 continue;
420 if (gimple_code (cond_stmt) != GIMPLE_COND)
422 has_valid_pred = false;
423 break;
425 one_pred = XNEW (struct use_pred_info);
426 one_pred->cond = cond_stmt;
427 one_pred->invert = !!(e->flags & EDGE_FALSE_VALUE);
428 (*preds)[i].safe_push (one_pred);
429 has_valid_pred = true;
432 if (!has_valid_pred)
433 break;
435 return has_valid_pred;
438 /* Computes all control dependence chains for USE_BB. The control
439 dependence chains are then converted to an array of composite
440 predicates pointed to by PREDS. PHI_BB is the basic block of
441 the phi whose result is used in USE_BB. */
443 static bool
444 find_predicates (vec<use_pred_info_t> **preds,
445 size_t *num_preds,
446 basic_block phi_bb,
447 basic_block use_bb)
449 size_t num_chains = 0, i;
450 vec<edge> *dep_chains = 0;
451 vec<edge> cur_chain = vNULL;
452 bool has_valid_pred = false;
453 basic_block cd_root = 0;
455 typedef vec<edge> vec_edge_heap;
456 dep_chains = XCNEWVEC (vec_edge_heap, MAX_NUM_CHAINS);
458 /* First find the closest bb that is control equivalent to PHI_BB
459 that also dominates USE_BB. */
460 cd_root = phi_bb;
461 while (dominated_by_p (CDI_DOMINATORS, use_bb, cd_root))
463 basic_block ctrl_eq_bb = find_control_equiv_block (cd_root);
464 if (ctrl_eq_bb && dominated_by_p (CDI_DOMINATORS, use_bb, ctrl_eq_bb))
465 cd_root = ctrl_eq_bb;
466 else
467 break;
470 compute_control_dep_chain (cd_root, use_bb,
471 dep_chains, &num_chains,
472 &cur_chain);
474 has_valid_pred
475 = convert_control_dep_chain_into_preds (dep_chains,
476 num_chains,
477 preds,
478 num_preds);
479 /* Free individual chain */
480 cur_chain.release ();
481 for (i = 0; i < num_chains; i++)
482 dep_chains[i].release ();
483 free (dep_chains);
484 return has_valid_pred;
487 /* Computes the set of incoming edges of PHI that have non empty
488 definitions of a phi chain. The collection will be done
489 recursively on operands that are defined by phis. CD_ROOT
490 is the control dependence root. *EDGES holds the result, and
491 VISITED_PHIS is a pointer set for detecting cycles. */
493 static void
494 collect_phi_def_edges (gimple phi, basic_block cd_root,
495 vec<edge> *edges,
496 struct pointer_set_t *visited_phis)
498 size_t i, n;
499 edge opnd_edge;
500 tree opnd;
502 if (pointer_set_insert (visited_phis, phi))
503 return;
505 n = gimple_phi_num_args (phi);
506 for (i = 0; i < n; i++)
508 opnd_edge = gimple_phi_arg_edge (phi, i);
509 opnd = gimple_phi_arg_def (phi, i);
511 if (TREE_CODE (opnd) != SSA_NAME)
513 if (dump_file && (dump_flags & TDF_DETAILS))
515 fprintf (dump_file, "\n[CHECK] Found def edge %d in ", (int)i);
516 print_gimple_stmt (dump_file, phi, 0, 0);
518 edges->safe_push (opnd_edge);
520 else
522 gimple def = SSA_NAME_DEF_STMT (opnd);
524 if (gimple_code (def) == GIMPLE_PHI
525 && dominated_by_p (CDI_DOMINATORS,
526 gimple_bb (def), cd_root))
527 collect_phi_def_edges (def, cd_root, edges,
528 visited_phis);
529 else if (!uninit_undefined_value_p (opnd))
531 if (dump_file && (dump_flags & TDF_DETAILS))
533 fprintf (dump_file, "\n[CHECK] Found def edge %d in ", (int)i);
534 print_gimple_stmt (dump_file, phi, 0, 0);
536 edges->safe_push (opnd_edge);
542 /* For each use edge of PHI, computes all control dependence chains.
543 The control dependence chains are then converted to an array of
544 composite predicates pointed to by PREDS. */
546 static bool
547 find_def_preds (vec<use_pred_info_t> **preds,
548 size_t *num_preds, gimple phi)
550 size_t num_chains = 0, i, n;
551 vec<edge> *dep_chains = 0;
552 vec<edge> cur_chain = vNULL;
553 vec<edge> def_edges = vNULL;
554 bool has_valid_pred = false;
555 basic_block phi_bb, cd_root = 0;
556 struct pointer_set_t *visited_phis;
558 typedef vec<edge> vec_edge_heap;
559 dep_chains = XCNEWVEC (vec_edge_heap, MAX_NUM_CHAINS);
561 phi_bb = gimple_bb (phi);
562 /* First find the closest dominating bb to be
563 the control dependence root */
564 cd_root = find_dom (phi_bb);
565 if (!cd_root)
566 return false;
568 visited_phis = pointer_set_create ();
569 collect_phi_def_edges (phi, cd_root, &def_edges, visited_phis);
570 pointer_set_destroy (visited_phis);
572 n = def_edges.length ();
573 if (n == 0)
574 return false;
576 for (i = 0; i < n; i++)
578 size_t prev_nc, j;
579 edge opnd_edge;
581 opnd_edge = def_edges[i];
582 prev_nc = num_chains;
583 compute_control_dep_chain (cd_root, opnd_edge->src,
584 dep_chains, &num_chains,
585 &cur_chain);
586 /* Free individual chain */
587 cur_chain.release ();
589 /* Now update the newly added chains with
590 the phi operand edge: */
591 if (EDGE_COUNT (opnd_edge->src->succs) > 1)
593 if (prev_nc == num_chains
594 && num_chains < MAX_NUM_CHAINS)
595 num_chains++;
596 for (j = prev_nc; j < num_chains; j++)
598 dep_chains[j].safe_push (opnd_edge);
603 has_valid_pred
604 = convert_control_dep_chain_into_preds (dep_chains,
605 num_chains,
606 preds,
607 num_preds);
608 for (i = 0; i < num_chains; i++)
609 dep_chains[i].release ();
610 free (dep_chains);
611 return has_valid_pred;
614 /* Dumps the predicates (PREDS) for USESTMT. */
616 static void
617 dump_predicates (gimple usestmt, size_t num_preds,
618 vec<use_pred_info_t> *preds,
619 const char* msg)
621 size_t i, j;
622 vec<use_pred_info_t> one_pred_chain;
623 fprintf (dump_file, msg);
624 print_gimple_stmt (dump_file, usestmt, 0, 0);
625 fprintf (dump_file, "is guarded by :\n");
626 /* do some dumping here: */
627 for (i = 0; i < num_preds; i++)
629 size_t np;
631 one_pred_chain = preds[i];
632 np = one_pred_chain.length ();
634 for (j = 0; j < np; j++)
636 use_pred_info_t one_pred
637 = one_pred_chain[j];
638 if (one_pred->invert)
639 fprintf (dump_file, " (.NOT.) ");
640 print_gimple_stmt (dump_file, one_pred->cond, 0, 0);
641 if (j < np - 1)
642 fprintf (dump_file, "(.AND.)\n");
644 if (i < num_preds - 1)
645 fprintf (dump_file, "(.OR.)\n");
649 /* Destroys the predicate set *PREDS. */
651 static void
652 destroy_predicate_vecs (size_t n,
653 vec<use_pred_info_t> * preds)
655 size_t i, j;
656 for (i = 0; i < n; i++)
658 for (j = 0; j < preds[i].length (); j++)
659 free (preds[i][j]);
660 preds[i].release ();
662 free (preds);
666 /* Computes the 'normalized' conditional code with operand
667 swapping and condition inversion. */
669 static enum tree_code
670 get_cmp_code (enum tree_code orig_cmp_code,
671 bool swap_cond, bool invert)
673 enum tree_code tc = orig_cmp_code;
675 if (swap_cond)
676 tc = swap_tree_comparison (orig_cmp_code);
677 if (invert)
678 tc = invert_tree_comparison (tc, false);
680 switch (tc)
682 case LT_EXPR:
683 case LE_EXPR:
684 case GT_EXPR:
685 case GE_EXPR:
686 case EQ_EXPR:
687 case NE_EXPR:
688 break;
689 default:
690 return ERROR_MARK;
692 return tc;
695 /* Returns true if VAL falls in the range defined by BOUNDARY and CMPC, i.e.
696 all values in the range satisfies (x CMPC BOUNDARY) == true. */
698 static bool
699 is_value_included_in (tree val, tree boundary, enum tree_code cmpc)
701 bool inverted = false;
702 bool is_unsigned;
703 bool result;
705 /* Only handle integer constant here. */
706 if (TREE_CODE (val) != INTEGER_CST
707 || TREE_CODE (boundary) != INTEGER_CST)
708 return true;
710 is_unsigned = TYPE_UNSIGNED (TREE_TYPE (val));
712 if (cmpc == GE_EXPR || cmpc == GT_EXPR
713 || cmpc == NE_EXPR)
715 cmpc = invert_tree_comparison (cmpc, false);
716 inverted = true;
719 if (is_unsigned)
721 if (cmpc == EQ_EXPR)
722 result = tree_int_cst_equal (val, boundary);
723 else if (cmpc == LT_EXPR)
724 result = INT_CST_LT_UNSIGNED (val, boundary);
725 else
727 gcc_assert (cmpc == LE_EXPR);
728 result = (tree_int_cst_equal (val, boundary)
729 || INT_CST_LT_UNSIGNED (val, boundary));
732 else
734 if (cmpc == EQ_EXPR)
735 result = tree_int_cst_equal (val, boundary);
736 else if (cmpc == LT_EXPR)
737 result = INT_CST_LT (val, boundary);
738 else
740 gcc_assert (cmpc == LE_EXPR);
741 result = (tree_int_cst_equal (val, boundary)
742 || INT_CST_LT (val, boundary));
746 if (inverted)
747 result ^= 1;
749 return result;
752 /* Returns true if PRED is common among all the predicate
753 chains (PREDS) (and therefore can be factored out).
754 NUM_PRED_CHAIN is the size of array PREDS. */
756 static bool
757 find_matching_predicate_in_rest_chains (use_pred_info_t pred,
758 vec<use_pred_info_t> *preds,
759 size_t num_pred_chains)
761 size_t i, j, n;
763 /* trival case */
764 if (num_pred_chains == 1)
765 return true;
767 for (i = 1; i < num_pred_chains; i++)
769 bool found = false;
770 vec<use_pred_info_t> one_chain = preds[i];
771 n = one_chain.length ();
772 for (j = 0; j < n; j++)
774 use_pred_info_t pred2
775 = one_chain[j];
776 /* can relax the condition comparison to not
777 use address comparison. However, the most common
778 case is that multiple control dependent paths share
779 a common path prefix, so address comparison should
780 be ok. */
782 if (pred2->cond == pred->cond
783 && pred2->invert == pred->invert)
785 found = true;
786 break;
789 if (!found)
790 return false;
792 return true;
795 /* Forward declaration. */
796 static bool
797 is_use_properly_guarded (gimple use_stmt,
798 basic_block use_bb,
799 gimple phi,
800 unsigned uninit_opnds,
801 struct pointer_set_t *visited_phis);
803 /* Returns true if all uninitialized opnds are pruned. Returns false
804 otherwise. PHI is the phi node with uninitialized operands,
805 UNINIT_OPNDS is the bitmap of the uninitialize operand positions,
806 FLAG_DEF is the statement defining the flag guarding the use of the
807 PHI output, BOUNDARY_CST is the const value used in the predicate
808 associated with the flag, CMP_CODE is the comparison code used in
809 the predicate, VISITED_PHIS is the pointer set of phis visited, and
810 VISITED_FLAG_PHIS is the pointer to the pointer set of flag definitions
811 that are also phis.
813 Example scenario:
815 BB1:
816 flag_1 = phi <0, 1> // (1)
817 var_1 = phi <undef, some_val>
820 BB2:
821 flag_2 = phi <0, flag_1, flag_1> // (2)
822 var_2 = phi <undef, var_1, var_1>
823 if (flag_2 == 1)
824 goto BB3;
826 BB3:
827 use of var_2 // (3)
829 Because some flag arg in (1) is not constant, if we do not look into the
830 flag phis recursively, it is conservatively treated as unknown and var_1
831 is thought to be flowed into use at (3). Since var_1 is potentially uninitialized
832 a false warning will be emitted. Checking recursively into (1), the compiler can
833 find out that only some_val (which is defined) can flow into (3) which is OK.
837 static bool
838 prune_uninit_phi_opnds_in_unrealizable_paths (
839 gimple phi, unsigned uninit_opnds,
840 gimple flag_def, tree boundary_cst,
841 enum tree_code cmp_code,
842 struct pointer_set_t *visited_phis,
843 bitmap *visited_flag_phis)
845 unsigned i;
847 for (i = 0; i < MIN (32, gimple_phi_num_args (flag_def)); i++)
849 tree flag_arg;
851 if (!MASK_TEST_BIT (uninit_opnds, i))
852 continue;
854 flag_arg = gimple_phi_arg_def (flag_def, i);
855 if (!is_gimple_constant (flag_arg))
857 gimple flag_arg_def, phi_arg_def;
858 tree phi_arg;
859 unsigned uninit_opnds_arg_phi;
861 if (TREE_CODE (flag_arg) != SSA_NAME)
862 return false;
863 flag_arg_def = SSA_NAME_DEF_STMT (flag_arg);
864 if (gimple_code (flag_arg_def) != GIMPLE_PHI)
865 return false;
867 phi_arg = gimple_phi_arg_def (phi, i);
868 if (TREE_CODE (phi_arg) != SSA_NAME)
869 return false;
871 phi_arg_def = SSA_NAME_DEF_STMT (phi_arg);
872 if (gimple_code (phi_arg_def) != GIMPLE_PHI)
873 return false;
875 if (gimple_bb (phi_arg_def) != gimple_bb (flag_arg_def))
876 return false;
878 if (!*visited_flag_phis)
879 *visited_flag_phis = BITMAP_ALLOC (NULL);
881 if (bitmap_bit_p (*visited_flag_phis,
882 SSA_NAME_VERSION (gimple_phi_result (flag_arg_def))))
883 return false;
885 bitmap_set_bit (*visited_flag_phis,
886 SSA_NAME_VERSION (gimple_phi_result (flag_arg_def)));
888 /* Now recursively prune the uninitialized phi args. */
889 uninit_opnds_arg_phi = compute_uninit_opnds_pos (phi_arg_def);
890 if (!prune_uninit_phi_opnds_in_unrealizable_paths (
891 phi_arg_def, uninit_opnds_arg_phi,
892 flag_arg_def, boundary_cst, cmp_code,
893 visited_phis, visited_flag_phis))
894 return false;
896 bitmap_clear_bit (*visited_flag_phis,
897 SSA_NAME_VERSION (gimple_phi_result (flag_arg_def)));
898 continue;
901 /* Now check if the constant is in the guarded range. */
902 if (is_value_included_in (flag_arg, boundary_cst, cmp_code))
904 tree opnd;
905 gimple opnd_def;
907 /* Now that we know that this undefined edge is not
908 pruned. If the operand is defined by another phi,
909 we can further prune the incoming edges of that
910 phi by checking the predicates of this operands. */
912 opnd = gimple_phi_arg_def (phi, i);
913 opnd_def = SSA_NAME_DEF_STMT (opnd);
914 if (gimple_code (opnd_def) == GIMPLE_PHI)
916 edge opnd_edge;
917 unsigned uninit_opnds2
918 = compute_uninit_opnds_pos (opnd_def);
919 gcc_assert (!MASK_EMPTY (uninit_opnds2));
920 opnd_edge = gimple_phi_arg_edge (phi, i);
921 if (!is_use_properly_guarded (phi,
922 opnd_edge->src,
923 opnd_def,
924 uninit_opnds2,
925 visited_phis))
926 return false;
928 else
929 return false;
933 return true;
936 /* A helper function that determines if the predicate set
937 of the use is not overlapping with that of the uninit paths.
938 The most common senario of guarded use is in Example 1:
939 Example 1:
940 if (some_cond)
942 x = ...;
943 flag = true;
946 ... some code ...
948 if (flag)
949 use (x);
951 The real world examples are usually more complicated, but similar
952 and usually result from inlining:
954 bool init_func (int * x)
956 if (some_cond)
957 return false;
958 *x = ..
959 return true;
962 void foo(..)
964 int x;
966 if (!init_func(&x))
967 return;
969 .. some_code ...
970 use (x);
973 Another possible use scenario is in the following trivial example:
975 Example 2:
976 if (n > 0)
977 x = 1;
979 if (n > 0)
981 if (m < 2)
982 .. = x;
985 Predicate analysis needs to compute the composite predicate:
987 1) 'x' use predicate: (n > 0) .AND. (m < 2)
988 2) 'x' default value (non-def) predicate: .NOT. (n > 0)
989 (the predicate chain for phi operand defs can be computed
990 starting from a bb that is control equivalent to the phi's
991 bb and is dominating the operand def.)
993 and check overlapping:
994 (n > 0) .AND. (m < 2) .AND. (.NOT. (n > 0))
995 <==> false
997 This implementation provides framework that can handle
998 scenarios. (Note that many simple cases are handled properly
999 without the predicate analysis -- this is due to jump threading
1000 transformation which eliminates the merge point thus makes
1001 path sensitive analysis unnecessary.)
1003 NUM_PREDS is the number is the number predicate chains, PREDS is
1004 the array of chains, PHI is the phi node whose incoming (undefined)
1005 paths need to be pruned, and UNINIT_OPNDS is the bitmap holding
1006 uninit operand positions. VISITED_PHIS is the pointer set of phi
1007 stmts being checked. */
1010 static bool
1011 use_pred_not_overlap_with_undef_path_pred (
1012 size_t num_preds,
1013 vec<use_pred_info_t> *preds,
1014 gimple phi, unsigned uninit_opnds,
1015 struct pointer_set_t *visited_phis)
1017 unsigned int i, n;
1018 gimple flag_def = 0;
1019 tree boundary_cst = 0;
1020 enum tree_code cmp_code;
1021 bool swap_cond = false;
1022 bool invert = false;
1023 vec<use_pred_info_t> the_pred_chain;
1024 bitmap visited_flag_phis = NULL;
1025 bool all_pruned = false;
1027 gcc_assert (num_preds > 0);
1028 /* Find within the common prefix of multiple predicate chains
1029 a predicate that is a comparison of a flag variable against
1030 a constant. */
1031 the_pred_chain = preds[0];
1032 n = the_pred_chain.length ();
1033 for (i = 0; i < n; i++)
1035 gimple cond;
1036 tree cond_lhs, cond_rhs, flag = 0;
1038 use_pred_info_t the_pred
1039 = the_pred_chain[i];
1041 cond = the_pred->cond;
1042 invert = the_pred->invert;
1043 cond_lhs = gimple_cond_lhs (cond);
1044 cond_rhs = gimple_cond_rhs (cond);
1045 cmp_code = gimple_cond_code (cond);
1047 if (cond_lhs != NULL_TREE && TREE_CODE (cond_lhs) == SSA_NAME
1048 && cond_rhs != NULL_TREE && is_gimple_constant (cond_rhs))
1050 boundary_cst = cond_rhs;
1051 flag = cond_lhs;
1053 else if (cond_rhs != NULL_TREE && TREE_CODE (cond_rhs) == SSA_NAME
1054 && cond_lhs != NULL_TREE && is_gimple_constant (cond_lhs))
1056 boundary_cst = cond_lhs;
1057 flag = cond_rhs;
1058 swap_cond = true;
1061 if (!flag)
1062 continue;
1064 flag_def = SSA_NAME_DEF_STMT (flag);
1066 if (!flag_def)
1067 continue;
1069 if ((gimple_code (flag_def) == GIMPLE_PHI)
1070 && (gimple_bb (flag_def) == gimple_bb (phi))
1071 && find_matching_predicate_in_rest_chains (
1072 the_pred, preds, num_preds))
1073 break;
1075 flag_def = 0;
1078 if (!flag_def)
1079 return false;
1081 /* Now check all the uninit incoming edge has a constant flag value
1082 that is in conflict with the use guard/predicate. */
1083 cmp_code = get_cmp_code (cmp_code, swap_cond, invert);
1085 if (cmp_code == ERROR_MARK)
1086 return false;
1088 all_pruned = prune_uninit_phi_opnds_in_unrealizable_paths (phi,
1089 uninit_opnds,
1090 flag_def,
1091 boundary_cst,
1092 cmp_code,
1093 visited_phis,
1094 &visited_flag_phis);
1096 if (visited_flag_phis)
1097 BITMAP_FREE (visited_flag_phis);
1099 return all_pruned;
1102 /* Returns true if TC is AND or OR */
1104 static inline bool
1105 is_and_or_or (enum tree_code tc, tree typ)
1107 return (tc == BIT_IOR_EXPR
1108 || (tc == BIT_AND_EXPR
1109 && (typ == 0 || TREE_CODE (typ) == BOOLEAN_TYPE)));
1112 typedef struct norm_cond
1114 vec<gimple> conds;
1115 enum tree_code cond_code;
1116 bool invert;
1117 } *norm_cond_t;
1120 /* Normalizes gimple condition COND. The normalization follows
1121 UD chains to form larger condition expression trees. NORM_COND
1122 holds the normalized result. COND_CODE is the logical opcode
1123 (AND or OR) of the normalized tree. */
1125 static void
1126 normalize_cond_1 (gimple cond,
1127 norm_cond_t norm_cond,
1128 enum tree_code cond_code)
1130 enum gimple_code gc;
1131 enum tree_code cur_cond_code;
1132 tree rhs1, rhs2;
1134 gc = gimple_code (cond);
1135 if (gc != GIMPLE_ASSIGN)
1137 norm_cond->conds.safe_push (cond);
1138 return;
1141 cur_cond_code = gimple_assign_rhs_code (cond);
1142 rhs1 = gimple_assign_rhs1 (cond);
1143 rhs2 = gimple_assign_rhs2 (cond);
1144 if (cur_cond_code == NE_EXPR)
1146 if (integer_zerop (rhs2)
1147 && (TREE_CODE (rhs1) == SSA_NAME))
1148 normalize_cond_1 (
1149 SSA_NAME_DEF_STMT (rhs1),
1150 norm_cond, cond_code);
1151 else if (integer_zerop (rhs1)
1152 && (TREE_CODE (rhs2) == SSA_NAME))
1153 normalize_cond_1 (
1154 SSA_NAME_DEF_STMT (rhs2),
1155 norm_cond, cond_code);
1156 else
1157 norm_cond->conds.safe_push (cond);
1159 return;
1162 if (is_and_or_or (cur_cond_code, TREE_TYPE (rhs1))
1163 && (cond_code == cur_cond_code || cond_code == ERROR_MARK)
1164 && (TREE_CODE (rhs1) == SSA_NAME && TREE_CODE (rhs2) == SSA_NAME))
1166 normalize_cond_1 (SSA_NAME_DEF_STMT (rhs1),
1167 norm_cond, cur_cond_code);
1168 normalize_cond_1 (SSA_NAME_DEF_STMT (rhs2),
1169 norm_cond, cur_cond_code);
1170 norm_cond->cond_code = cur_cond_code;
1172 else
1173 norm_cond->conds.safe_push (cond);
1176 /* See normalize_cond_1 for details. INVERT is a flag to indicate
1177 if COND needs to be inverted or not. */
1179 static void
1180 normalize_cond (gimple cond, norm_cond_t norm_cond, bool invert)
1182 enum tree_code cond_code;
1184 norm_cond->cond_code = ERROR_MARK;
1185 norm_cond->invert = false;
1186 norm_cond->conds.create (0);
1187 gcc_assert (gimple_code (cond) == GIMPLE_COND);
1188 cond_code = gimple_cond_code (cond);
1189 if (invert)
1190 cond_code = invert_tree_comparison (cond_code, false);
1192 if (cond_code == NE_EXPR)
1194 if (integer_zerop (gimple_cond_rhs (cond))
1195 && (TREE_CODE (gimple_cond_lhs (cond)) == SSA_NAME))
1196 normalize_cond_1 (
1197 SSA_NAME_DEF_STMT (gimple_cond_lhs (cond)),
1198 norm_cond, ERROR_MARK);
1199 else if (integer_zerop (gimple_cond_lhs (cond))
1200 && (TREE_CODE (gimple_cond_rhs (cond)) == SSA_NAME))
1201 normalize_cond_1 (
1202 SSA_NAME_DEF_STMT (gimple_cond_rhs (cond)),
1203 norm_cond, ERROR_MARK);
1204 else
1206 norm_cond->conds.safe_push (cond);
1207 norm_cond->invert = invert;
1210 else
1212 norm_cond->conds.safe_push (cond);
1213 norm_cond->invert = invert;
1216 gcc_assert (norm_cond->conds.length () == 1
1217 || is_and_or_or (norm_cond->cond_code, NULL));
1220 /* Returns true if the domain for condition COND1 is a subset of
1221 COND2. REVERSE is a flag. when it is true the function checks
1222 if COND1 is a superset of COND2. INVERT1 and INVERT2 are flags
1223 to indicate if COND1 and COND2 need to be inverted or not. */
1225 static bool
1226 is_gcond_subset_of (gimple cond1, bool invert1,
1227 gimple cond2, bool invert2,
1228 bool reverse)
1230 enum gimple_code gc1, gc2;
1231 enum tree_code cond1_code, cond2_code;
1232 gimple tmp;
1233 tree cond1_lhs, cond1_rhs, cond2_lhs, cond2_rhs;
1235 /* Take the short cut. */
1236 if (cond1 == cond2)
1237 return true;
1239 if (reverse)
1241 tmp = cond1;
1242 cond1 = cond2;
1243 cond2 = tmp;
1246 gc1 = gimple_code (cond1);
1247 gc2 = gimple_code (cond2);
1249 if ((gc1 != GIMPLE_ASSIGN && gc1 != GIMPLE_COND)
1250 || (gc2 != GIMPLE_ASSIGN && gc2 != GIMPLE_COND))
1251 return cond1 == cond2;
1253 cond1_code = ((gc1 == GIMPLE_ASSIGN)
1254 ? gimple_assign_rhs_code (cond1)
1255 : gimple_cond_code (cond1));
1257 cond2_code = ((gc2 == GIMPLE_ASSIGN)
1258 ? gimple_assign_rhs_code (cond2)
1259 : gimple_cond_code (cond2));
1261 if (TREE_CODE_CLASS (cond1_code) != tcc_comparison
1262 || TREE_CODE_CLASS (cond2_code) != tcc_comparison)
1263 return false;
1265 if (invert1)
1266 cond1_code = invert_tree_comparison (cond1_code, false);
1267 if (invert2)
1268 cond2_code = invert_tree_comparison (cond2_code, false);
1270 cond1_lhs = ((gc1 == GIMPLE_ASSIGN)
1271 ? gimple_assign_rhs1 (cond1)
1272 : gimple_cond_lhs (cond1));
1273 cond1_rhs = ((gc1 == GIMPLE_ASSIGN)
1274 ? gimple_assign_rhs2 (cond1)
1275 : gimple_cond_rhs (cond1));
1276 cond2_lhs = ((gc2 == GIMPLE_ASSIGN)
1277 ? gimple_assign_rhs1 (cond2)
1278 : gimple_cond_lhs (cond2));
1279 cond2_rhs = ((gc2 == GIMPLE_ASSIGN)
1280 ? gimple_assign_rhs2 (cond2)
1281 : gimple_cond_rhs (cond2));
1283 /* Assuming const operands have been swapped to the
1284 rhs at this point of the analysis. */
1286 if (cond1_lhs != cond2_lhs)
1287 return false;
1289 if (!is_gimple_constant (cond1_rhs)
1290 || TREE_CODE (cond1_rhs) != INTEGER_CST)
1291 return (cond1_rhs == cond2_rhs);
1293 if (!is_gimple_constant (cond2_rhs)
1294 || TREE_CODE (cond2_rhs) != INTEGER_CST)
1295 return (cond1_rhs == cond2_rhs);
1297 if (cond1_code == EQ_EXPR)
1298 return is_value_included_in (cond1_rhs,
1299 cond2_rhs, cond2_code);
1300 if (cond1_code == NE_EXPR || cond2_code == EQ_EXPR)
1301 return ((cond2_code == cond1_code)
1302 && tree_int_cst_equal (cond1_rhs, cond2_rhs));
1304 if (((cond1_code == GE_EXPR || cond1_code == GT_EXPR)
1305 && (cond2_code == LE_EXPR || cond2_code == LT_EXPR))
1306 || ((cond1_code == LE_EXPR || cond1_code == LT_EXPR)
1307 && (cond2_code == GE_EXPR || cond2_code == GT_EXPR)))
1308 return false;
1310 if (cond1_code != GE_EXPR && cond1_code != GT_EXPR
1311 && cond1_code != LE_EXPR && cond1_code != LT_EXPR)
1312 return false;
1314 if (cond1_code == GT_EXPR)
1316 cond1_code = GE_EXPR;
1317 cond1_rhs = fold_binary (PLUS_EXPR, TREE_TYPE (cond1_rhs),
1318 cond1_rhs,
1319 fold_convert (TREE_TYPE (cond1_rhs),
1320 integer_one_node));
1322 else if (cond1_code == LT_EXPR)
1324 cond1_code = LE_EXPR;
1325 cond1_rhs = fold_binary (MINUS_EXPR, TREE_TYPE (cond1_rhs),
1326 cond1_rhs,
1327 fold_convert (TREE_TYPE (cond1_rhs),
1328 integer_one_node));
1331 if (!cond1_rhs)
1332 return false;
1334 gcc_assert (cond1_code == GE_EXPR || cond1_code == LE_EXPR);
1336 if (cond2_code == GE_EXPR || cond2_code == GT_EXPR ||
1337 cond2_code == LE_EXPR || cond2_code == LT_EXPR)
1338 return is_value_included_in (cond1_rhs,
1339 cond2_rhs, cond2_code);
1340 else if (cond2_code == NE_EXPR)
1341 return
1342 (is_value_included_in (cond1_rhs,
1343 cond2_rhs, cond2_code)
1344 && !is_value_included_in (cond2_rhs,
1345 cond1_rhs, cond1_code));
1346 return false;
1349 /* Returns true if the domain of the condition expression
1350 in COND is a subset of any of the sub-conditions
1351 of the normalized condtion NORM_COND. INVERT is a flag
1352 to indicate of the COND needs to be inverted.
1353 REVERSE is a flag. When it is true, the check is reversed --
1354 it returns true if COND is a superset of any of the subconditions
1355 of NORM_COND. */
1357 static bool
1358 is_subset_of_any (gimple cond, bool invert,
1359 norm_cond_t norm_cond, bool reverse)
1361 size_t i;
1362 size_t len = norm_cond->conds.length ();
1364 for (i = 0; i < len; i++)
1366 if (is_gcond_subset_of (cond, invert,
1367 norm_cond->conds[i],
1368 false, reverse))
1369 return true;
1371 return false;
1374 /* NORM_COND1 and NORM_COND2 are normalized logical/BIT OR
1375 expressions (formed by following UD chains not control
1376 dependence chains). The function returns true of domain
1377 of and expression NORM_COND1 is a subset of NORM_COND2's.
1378 The implementation is conservative, and it returns false if
1379 it the inclusion relationship may not hold. */
1381 static bool
1382 is_or_set_subset_of (norm_cond_t norm_cond1,
1383 norm_cond_t norm_cond2)
1385 size_t i;
1386 size_t len = norm_cond1->conds.length ();
1388 for (i = 0; i < len; i++)
1390 if (!is_subset_of_any (norm_cond1->conds[i],
1391 false, norm_cond2, false))
1392 return false;
1394 return true;
1397 /* NORM_COND1 and NORM_COND2 are normalized logical AND
1398 expressions (formed by following UD chains not control
1399 dependence chains). The function returns true of domain
1400 of and expression NORM_COND1 is a subset of NORM_COND2's. */
1402 static bool
1403 is_and_set_subset_of (norm_cond_t norm_cond1,
1404 norm_cond_t norm_cond2)
1406 size_t i;
1407 size_t len = norm_cond2->conds.length ();
1409 for (i = 0; i < len; i++)
1411 if (!is_subset_of_any (norm_cond2->conds[i],
1412 false, norm_cond1, true))
1413 return false;
1415 return true;
1418 /* Returns true of the domain if NORM_COND1 is a subset
1419 of that of NORM_COND2. Returns false if it can not be
1420 proved to be so. */
1422 static bool
1423 is_norm_cond_subset_of (norm_cond_t norm_cond1,
1424 norm_cond_t norm_cond2)
1426 size_t i;
1427 enum tree_code code1, code2;
1429 code1 = norm_cond1->cond_code;
1430 code2 = norm_cond2->cond_code;
1432 if (code1 == BIT_AND_EXPR)
1434 /* Both conditions are AND expressions. */
1435 if (code2 == BIT_AND_EXPR)
1436 return is_and_set_subset_of (norm_cond1, norm_cond2);
1437 /* NORM_COND1 is an AND expression, and NORM_COND2 is an OR
1438 expression. In this case, returns true if any subexpression
1439 of NORM_COND1 is a subset of any subexpression of NORM_COND2. */
1440 else if (code2 == BIT_IOR_EXPR)
1442 size_t len1;
1443 len1 = norm_cond1->conds.length ();
1444 for (i = 0; i < len1; i++)
1446 gimple cond1 = norm_cond1->conds[i];
1447 if (is_subset_of_any (cond1, false, norm_cond2, false))
1448 return true;
1450 return false;
1452 else
1454 gcc_assert (code2 == ERROR_MARK);
1455 gcc_assert (norm_cond2->conds.length () == 1);
1456 return is_subset_of_any (norm_cond2->conds[0],
1457 norm_cond2->invert, norm_cond1, true);
1460 /* NORM_COND1 is an OR expression */
1461 else if (code1 == BIT_IOR_EXPR)
1463 if (code2 != code1)
1464 return false;
1466 return is_or_set_subset_of (norm_cond1, norm_cond2);
1468 else
1470 gcc_assert (code1 == ERROR_MARK);
1471 gcc_assert (norm_cond1->conds.length () == 1);
1472 /* Conservatively returns false if NORM_COND1 is non-decomposible
1473 and NORM_COND2 is an AND expression. */
1474 if (code2 == BIT_AND_EXPR)
1475 return false;
1477 if (code2 == BIT_IOR_EXPR)
1478 return is_subset_of_any (norm_cond1->conds[0],
1479 norm_cond1->invert, norm_cond2, false);
1481 gcc_assert (code2 == ERROR_MARK);
1482 gcc_assert (norm_cond2->conds.length () == 1);
1483 return is_gcond_subset_of (norm_cond1->conds[0],
1484 norm_cond1->invert,
1485 norm_cond2->conds[0],
1486 norm_cond2->invert, false);
1490 /* Returns true of the domain of single predicate expression
1491 EXPR1 is a subset of that of EXPR2. Returns false if it
1492 can not be proved. */
1494 static bool
1495 is_pred_expr_subset_of (use_pred_info_t expr1,
1496 use_pred_info_t expr2)
1498 gimple cond1, cond2;
1499 enum tree_code code1, code2;
1500 struct norm_cond norm_cond1, norm_cond2;
1501 bool is_subset = false;
1503 cond1 = expr1->cond;
1504 cond2 = expr2->cond;
1505 code1 = gimple_cond_code (cond1);
1506 code2 = gimple_cond_code (cond2);
1508 if (expr1->invert)
1509 code1 = invert_tree_comparison (code1, false);
1510 if (expr2->invert)
1511 code2 = invert_tree_comparison (code2, false);
1513 /* Fast path -- match exactly */
1514 if ((gimple_cond_lhs (cond1) == gimple_cond_lhs (cond2))
1515 && (gimple_cond_rhs (cond1) == gimple_cond_rhs (cond2))
1516 && (code1 == code2))
1517 return true;
1519 /* Normalize conditions. To keep NE_EXPR, do not invert
1520 with both need inversion. */
1521 normalize_cond (cond1, &norm_cond1, (expr1->invert));
1522 normalize_cond (cond2, &norm_cond2, (expr2->invert));
1524 is_subset = is_norm_cond_subset_of (&norm_cond1, &norm_cond2);
1526 /* Free memory */
1527 norm_cond1.conds.release ();
1528 norm_cond2.conds.release ();
1529 return is_subset ;
1532 /* Returns true if the domain of PRED1 is a subset
1533 of that of PRED2. Returns false if it can not be proved so. */
1535 static bool
1536 is_pred_chain_subset_of (vec<use_pred_info_t> pred1,
1537 vec<use_pred_info_t> pred2)
1539 size_t np1, np2, i1, i2;
1541 np1 = pred1.length ();
1542 np2 = pred2.length ();
1544 for (i2 = 0; i2 < np2; i2++)
1546 bool found = false;
1547 use_pred_info_t info2
1548 = pred2[i2];
1549 for (i1 = 0; i1 < np1; i1++)
1551 use_pred_info_t info1
1552 = pred1[i1];
1553 if (is_pred_expr_subset_of (info1, info2))
1555 found = true;
1556 break;
1559 if (!found)
1560 return false;
1562 return true;
1565 /* Returns true if the domain defined by
1566 one pred chain ONE_PRED is a subset of the domain
1567 of *PREDS. It returns false if ONE_PRED's domain is
1568 not a subset of any of the sub-domains of PREDS (
1569 corresponding to each individual chains in it), even
1570 though it may be still be a subset of whole domain
1571 of PREDS which is the union (ORed) of all its subdomains.
1572 In other words, the result is conservative. */
1574 static bool
1575 is_included_in (vec<use_pred_info_t> one_pred,
1576 vec<use_pred_info_t> *preds,
1577 size_t n)
1579 size_t i;
1581 for (i = 0; i < n; i++)
1583 if (is_pred_chain_subset_of (one_pred, preds[i]))
1584 return true;
1587 return false;
1590 /* compares two predicate sets PREDS1 and PREDS2 and returns
1591 true if the domain defined by PREDS1 is a superset
1592 of PREDS2's domain. N1 and N2 are array sizes of PREDS1 and
1593 PREDS2 respectively. The implementation chooses not to build
1594 generic trees (and relying on the folding capability of the
1595 compiler), but instead performs brute force comparison of
1596 individual predicate chains (won't be a compile time problem
1597 as the chains are pretty short). When the function returns
1598 false, it does not necessarily mean *PREDS1 is not a superset
1599 of *PREDS2, but mean it may not be so since the analysis can
1600 not prove it. In such cases, false warnings may still be
1601 emitted. */
1603 static bool
1604 is_superset_of (vec<use_pred_info_t> *preds1,
1605 size_t n1,
1606 vec<use_pred_info_t> *preds2,
1607 size_t n2)
1609 size_t i;
1610 vec<use_pred_info_t> one_pred_chain;
1612 for (i = 0; i < n2; i++)
1614 one_pred_chain = preds2[i];
1615 if (!is_included_in (one_pred_chain, preds1, n1))
1616 return false;
1619 return true;
1622 /* Comparison function used by qsort. It is used to
1623 sort predicate chains to allow predicate
1624 simplification. */
1626 static int
1627 pred_chain_length_cmp (const void *p1, const void *p2)
1629 use_pred_info_t i1, i2;
1630 vec<use_pred_info_t> const *chain1
1631 = (vec<use_pred_info_t> const *)p1;
1632 vec<use_pred_info_t> const *chain2
1633 = (vec<use_pred_info_t> const *)p2;
1635 if (chain1->length () != chain2->length ())
1636 return (chain1->length () - chain2->length ());
1638 i1 = (*chain1)[0];
1639 i2 = (*chain2)[0];
1641 /* Allow predicates with similar prefix come together. */
1642 if (!i1->invert && i2->invert)
1643 return -1;
1644 else if (i1->invert && !i2->invert)
1645 return 1;
1647 return gimple_uid (i1->cond) - gimple_uid (i2->cond);
1650 /* x OR (!x AND y) is equivalent to x OR y.
1651 This function normalizes x1 OR (!x1 AND x2) OR (!x1 AND !x2 AND x3)
1652 into x1 OR x2 OR x3. PREDS is the predicate chains, and N is
1653 the number of chains. Returns true if normalization happens. */
1655 static bool
1656 normalize_preds (vec<use_pred_info_t> *preds, size_t *n)
1658 size_t i, j, ll;
1659 vec<use_pred_info_t> pred_chain;
1660 vec<use_pred_info_t> x = vNULL;
1661 use_pred_info_t xj = 0, nxj = 0;
1663 if (*n < 2)
1664 return false;
1666 /* First sort the chains in ascending order of lengths. */
1667 qsort (preds, *n, sizeof (void *), pred_chain_length_cmp);
1668 pred_chain = preds[0];
1669 ll = pred_chain.length ();
1670 if (ll != 1)
1672 if (ll == 2)
1674 use_pred_info_t xx, yy, xx2, nyy;
1675 vec<use_pred_info_t> pred_chain2 = preds[1];
1676 if (pred_chain2.length () != 2)
1677 return false;
1679 /* See if simplification x AND y OR x AND !y is possible. */
1680 xx = pred_chain[0];
1681 yy = pred_chain[1];
1682 xx2 = pred_chain2[0];
1683 nyy = pred_chain2[1];
1684 if (gimple_cond_lhs (xx->cond) != gimple_cond_lhs (xx2->cond)
1685 || gimple_cond_rhs (xx->cond) != gimple_cond_rhs (xx2->cond)
1686 || gimple_cond_code (xx->cond) != gimple_cond_code (xx2->cond)
1687 || (xx->invert != xx2->invert))
1688 return false;
1689 if (gimple_cond_lhs (yy->cond) != gimple_cond_lhs (nyy->cond)
1690 || gimple_cond_rhs (yy->cond) != gimple_cond_rhs (nyy->cond)
1691 || gimple_cond_code (yy->cond) != gimple_cond_code (nyy->cond)
1692 || (yy->invert == nyy->invert))
1693 return false;
1695 /* Now merge the first two chains. */
1696 free (yy);
1697 free (nyy);
1698 free (xx2);
1699 pred_chain.release ();
1700 pred_chain2.release ();
1701 pred_chain.safe_push (xx);
1702 preds[0] = pred_chain;
1703 for (i = 1; i < *n - 1; i++)
1704 preds[i] = preds[i + 1];
1706 preds[*n - 1].create (0);
1707 *n = *n - 1;
1709 else
1710 return false;
1713 x.safe_push (pred_chain[0]);
1715 /* The loop extracts x1, x2, x3, etc from chains
1716 x1 OR (!x1 AND x2) OR (!x1 AND !x2 AND x3) OR ... */
1717 for (i = 1; i < *n; i++)
1719 pred_chain = preds[i];
1720 if (pred_chain.length () != i + 1)
1721 return false;
1723 for (j = 0; j < i; j++)
1725 xj = x[j];
1726 nxj = pred_chain[j];
1728 /* Check if nxj is !xj */
1729 if (gimple_cond_lhs (xj->cond) != gimple_cond_lhs (nxj->cond)
1730 || gimple_cond_rhs (xj->cond) != gimple_cond_rhs (nxj->cond)
1731 || gimple_cond_code (xj->cond) != gimple_cond_code (nxj->cond)
1732 || (xj->invert == nxj->invert))
1733 return false;
1736 x.safe_push (pred_chain[i]);
1739 /* Now normalize the pred chains using the extraced x1, x2, x3 etc. */
1740 for (j = 0; j < *n; j++)
1742 use_pred_info_t t;
1743 xj = x[j];
1745 t = XNEW (struct use_pred_info);
1746 *t = *xj;
1748 x[j] = t;
1751 for (i = 0; i < *n; i++)
1753 pred_chain = preds[i];
1754 for (j = 0; j < pred_chain.length (); j++)
1755 free (pred_chain[j]);
1756 pred_chain.release ();
1757 /* A new chain. */
1758 pred_chain.safe_push (x[i]);
1759 preds[i] = pred_chain;
1761 return true;
1766 /* Computes the predicates that guard the use and checks
1767 if the incoming paths that have empty (or possibly
1768 empty) definition can be pruned/filtered. The function returns
1769 true if it can be determined that the use of PHI's def in
1770 USE_STMT is guarded with a predicate set not overlapping with
1771 predicate sets of all runtime paths that do not have a definition.
1772 Returns false if it is not or it can not be determined. USE_BB is
1773 the bb of the use (for phi operand use, the bb is not the bb of
1774 the phi stmt, but the src bb of the operand edge). UNINIT_OPNDS
1775 is a bit vector. If an operand of PHI is uninitialized, the
1776 corresponding bit in the vector is 1. VISIED_PHIS is a pointer
1777 set of phis being visted. */
1779 static bool
1780 is_use_properly_guarded (gimple use_stmt,
1781 basic_block use_bb,
1782 gimple phi,
1783 unsigned uninit_opnds,
1784 struct pointer_set_t *visited_phis)
1786 basic_block phi_bb;
1787 vec<use_pred_info_t> *preds = 0;
1788 vec<use_pred_info_t> *def_preds = 0;
1789 size_t num_preds = 0, num_def_preds = 0;
1790 bool has_valid_preds = false;
1791 bool is_properly_guarded = false;
1793 if (pointer_set_insert (visited_phis, phi))
1794 return false;
1796 phi_bb = gimple_bb (phi);
1798 if (is_non_loop_exit_postdominating (use_bb, phi_bb))
1799 return false;
1801 has_valid_preds = find_predicates (&preds, &num_preds,
1802 phi_bb, use_bb);
1804 if (!has_valid_preds)
1806 destroy_predicate_vecs (num_preds, preds);
1807 return false;
1810 if (dump_file)
1811 dump_predicates (use_stmt, num_preds, preds,
1812 "\nUse in stmt ");
1814 has_valid_preds = find_def_preds (&def_preds,
1815 &num_def_preds, phi);
1817 if (has_valid_preds)
1819 bool normed;
1820 if (dump_file)
1821 dump_predicates (phi, num_def_preds, def_preds,
1822 "Operand defs of phi ");
1824 normed = normalize_preds (def_preds, &num_def_preds);
1825 if (normed && dump_file)
1827 fprintf (dump_file, "\nNormalized to\n");
1828 dump_predicates (phi, num_def_preds, def_preds,
1829 "Operand defs of phi ");
1831 is_properly_guarded =
1832 is_superset_of (def_preds, num_def_preds,
1833 preds, num_preds);
1836 /* further prune the dead incoming phi edges. */
1837 if (!is_properly_guarded)
1838 is_properly_guarded
1839 = use_pred_not_overlap_with_undef_path_pred (
1840 num_preds, preds, phi, uninit_opnds, visited_phis);
1842 destroy_predicate_vecs (num_preds, preds);
1843 destroy_predicate_vecs (num_def_preds, def_preds);
1844 return is_properly_guarded;
1847 /* Searches through all uses of a potentially
1848 uninitialized variable defined by PHI and returns a use
1849 statement if the use is not properly guarded. It returns
1850 NULL if all uses are guarded. UNINIT_OPNDS is a bitvector
1851 holding the position(s) of uninit PHI operands. WORKLIST
1852 is the vector of candidate phis that may be updated by this
1853 function. ADDED_TO_WORKLIST is the pointer set tracking
1854 if the new phi is already in the worklist. */
1856 static gimple
1857 find_uninit_use (gimple phi, unsigned uninit_opnds,
1858 vec<gimple> *worklist,
1859 struct pointer_set_t *added_to_worklist)
1861 tree phi_result;
1862 use_operand_p use_p;
1863 gimple use_stmt;
1864 imm_use_iterator iter;
1866 phi_result = gimple_phi_result (phi);
1868 FOR_EACH_IMM_USE_FAST (use_p, iter, phi_result)
1870 struct pointer_set_t *visited_phis;
1871 basic_block use_bb;
1873 use_stmt = USE_STMT (use_p);
1874 if (is_gimple_debug (use_stmt))
1875 continue;
1877 visited_phis = pointer_set_create ();
1879 if (gimple_code (use_stmt) == GIMPLE_PHI)
1880 use_bb = gimple_phi_arg_edge (use_stmt,
1881 PHI_ARG_INDEX_FROM_USE (use_p))->src;
1882 else
1883 use_bb = gimple_bb (use_stmt);
1885 if (is_use_properly_guarded (use_stmt,
1886 use_bb,
1887 phi,
1888 uninit_opnds,
1889 visited_phis))
1891 pointer_set_destroy (visited_phis);
1892 continue;
1894 pointer_set_destroy (visited_phis);
1896 if (dump_file && (dump_flags & TDF_DETAILS))
1898 fprintf (dump_file, "[CHECK]: Found unguarded use: ");
1899 print_gimple_stmt (dump_file, use_stmt, 0, 0);
1901 /* Found one real use, return. */
1902 if (gimple_code (use_stmt) != GIMPLE_PHI)
1903 return use_stmt;
1905 /* Found a phi use that is not guarded,
1906 add the phi to the worklist. */
1907 if (!pointer_set_insert (added_to_worklist,
1908 use_stmt))
1910 if (dump_file && (dump_flags & TDF_DETAILS))
1912 fprintf (dump_file, "[WORKLIST]: Update worklist with phi: ");
1913 print_gimple_stmt (dump_file, use_stmt, 0, 0);
1916 worklist->safe_push (use_stmt);
1917 pointer_set_insert (possibly_undefined_names, phi_result);
1921 return NULL;
1924 /* Look for inputs to PHI that are SSA_NAMEs that have empty definitions
1925 and gives warning if there exists a runtime path from the entry to a
1926 use of the PHI def that does not contain a definition. In other words,
1927 the warning is on the real use. The more dead paths that can be pruned
1928 by the compiler, the fewer false positives the warning is. WORKLIST
1929 is a vector of candidate phis to be examined. ADDED_TO_WORKLIST is
1930 a pointer set tracking if the new phi is added to the worklist or not. */
1932 static void
1933 warn_uninitialized_phi (gimple phi, vec<gimple> *worklist,
1934 struct pointer_set_t *added_to_worklist)
1936 unsigned uninit_opnds;
1937 gimple uninit_use_stmt = 0;
1938 tree uninit_op;
1940 /* Don't look at virtual operands. */
1941 if (virtual_operand_p (gimple_phi_result (phi)))
1942 return;
1944 uninit_opnds = compute_uninit_opnds_pos (phi);
1946 if (MASK_EMPTY (uninit_opnds))
1947 return;
1949 if (dump_file && (dump_flags & TDF_DETAILS))
1951 fprintf (dump_file, "[CHECK]: examining phi: ");
1952 print_gimple_stmt (dump_file, phi, 0, 0);
1955 /* Now check if we have any use of the value without proper guard. */
1956 uninit_use_stmt = find_uninit_use (phi, uninit_opnds,
1957 worklist, added_to_worklist);
1959 /* All uses are properly guarded. */
1960 if (!uninit_use_stmt)
1961 return;
1963 uninit_op = gimple_phi_arg_def (phi, MASK_FIRST_SET_BIT (uninit_opnds));
1964 if (SSA_NAME_VAR (uninit_op) == NULL_TREE)
1965 return;
1966 warn_uninit (OPT_Wmaybe_uninitialized, uninit_op, SSA_NAME_VAR (uninit_op),
1967 SSA_NAME_VAR (uninit_op),
1968 "%qD may be used uninitialized in this function",
1969 uninit_use_stmt);
1974 /* Entry point to the late uninitialized warning pass. */
1976 static unsigned int
1977 execute_late_warn_uninitialized (void)
1979 basic_block bb;
1980 gimple_stmt_iterator gsi;
1981 vec<gimple> worklist = vNULL;
1982 struct pointer_set_t *added_to_worklist;
1984 calculate_dominance_info (CDI_DOMINATORS);
1985 calculate_dominance_info (CDI_POST_DOMINATORS);
1986 /* Re-do the plain uninitialized variable check, as optimization may have
1987 straightened control flow. Do this first so that we don't accidentally
1988 get a "may be" warning when we'd have seen an "is" warning later. */
1989 warn_uninitialized_vars (/*warn_possibly_uninitialized=*/1);
1991 timevar_push (TV_TREE_UNINIT);
1993 possibly_undefined_names = pointer_set_create ();
1994 added_to_worklist = pointer_set_create ();
1996 /* Initialize worklist */
1997 FOR_EACH_BB (bb)
1998 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2000 gimple phi = gsi_stmt (gsi);
2001 size_t n, i;
2003 n = gimple_phi_num_args (phi);
2005 /* Don't look at virtual operands. */
2006 if (virtual_operand_p (gimple_phi_result (phi)))
2007 continue;
2009 for (i = 0; i < n; ++i)
2011 tree op = gimple_phi_arg_def (phi, i);
2012 if (TREE_CODE (op) == SSA_NAME
2013 && uninit_undefined_value_p (op))
2015 worklist.safe_push (phi);
2016 pointer_set_insert (added_to_worklist, phi);
2017 if (dump_file && (dump_flags & TDF_DETAILS))
2019 fprintf (dump_file, "[WORKLIST]: add to initial list: ");
2020 print_gimple_stmt (dump_file, phi, 0, 0);
2022 break;
2027 while (worklist.length () != 0)
2029 gimple cur_phi = 0;
2030 cur_phi = worklist.pop ();
2031 warn_uninitialized_phi (cur_phi, &worklist, added_to_worklist);
2034 worklist.release ();
2035 pointer_set_destroy (added_to_worklist);
2036 pointer_set_destroy (possibly_undefined_names);
2037 possibly_undefined_names = NULL;
2038 free_dominance_info (CDI_POST_DOMINATORS);
2039 timevar_pop (TV_TREE_UNINIT);
2040 return 0;
2043 static bool
2044 gate_warn_uninitialized (void)
2046 return warn_uninitialized != 0;
2049 namespace {
2051 const pass_data pass_data_late_warn_uninitialized =
2053 GIMPLE_PASS, /* type */
2054 "uninit", /* name */
2055 OPTGROUP_NONE, /* optinfo_flags */
2056 true, /* has_gate */
2057 true, /* has_execute */
2058 TV_NONE, /* tv_id */
2059 PROP_ssa, /* properties_required */
2060 0, /* properties_provided */
2061 0, /* properties_destroyed */
2062 0, /* todo_flags_start */
2063 0, /* todo_flags_finish */
2066 class pass_late_warn_uninitialized : public gimple_opt_pass
2068 public:
2069 pass_late_warn_uninitialized(gcc::context *ctxt)
2070 : gimple_opt_pass(pass_data_late_warn_uninitialized, ctxt)
2073 /* opt_pass methods: */
2074 opt_pass * clone () { return new pass_late_warn_uninitialized (ctxt_); }
2075 bool gate () { return gate_warn_uninitialized (); }
2076 unsigned int execute () { return execute_late_warn_uninitialized (); }
2078 }; // class pass_late_warn_uninitialized
2080 } // anon namespace
2082 gimple_opt_pass *
2083 make_pass_late_warn_uninitialized (gcc::context *ctxt)
2085 return new pass_late_warn_uninitialized (ctxt);