* vax.md (casesi): Use emit_jump_insn. Tidy expander pattern.
[official-gcc.git] / gcc / reg-stack.c
blobff896fd93b1cc75d885351617908f31ac1d5f4b9
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This pass converts stack-like registers from the "flat register
23 file" model that gcc uses, to a stack convention that the 387 uses.
25 * The form of the input:
27 On input, the function consists of insn that have had their
28 registers fully allocated to a set of "virtual" registers. Note that
29 the word "virtual" is used differently here than elsewhere in gcc: for
30 each virtual stack reg, there is a hard reg, but the mapping between
31 them is not known until this pass is run. On output, hard register
32 numbers have been substituted, and various pop and exchange insns have
33 been emitted. The hard register numbers and the virtual register
34 numbers completely overlap - before this pass, all stack register
35 numbers are virtual, and afterward they are all hard.
37 The virtual registers can be manipulated normally by gcc, and their
38 semantics are the same as for normal registers. After the hard
39 register numbers are substituted, the semantics of an insn containing
40 stack-like regs are not the same as for an insn with normal regs: for
41 instance, it is not safe to delete an insn that appears to be a no-op
42 move. In general, no insn containing hard regs should be changed
43 after this pass is done.
45 * The form of the output:
47 After this pass, hard register numbers represent the distance from
48 the current top of stack to the desired register. A reference to
49 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
50 represents the register just below that, and so forth. Also, REG_DEAD
51 notes indicate whether or not a stack register should be popped.
53 A "swap" insn looks like a parallel of two patterns, where each
54 pattern is a SET: one sets A to B, the other B to A.
56 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
57 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
58 will replace the existing stack top, not push a new value.
60 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
61 SET_SRC is REG or MEM.
63 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
64 appears ambiguous. As a special case, the presence of a REG_DEAD note
65 for FIRST_STACK_REG differentiates between a load insn and a pop.
67 If a REG_DEAD is present, the insn represents a "pop" that discards
68 the top of the register stack. If there is no REG_DEAD note, then the
69 insn represents a "dup" or a push of the current top of stack onto the
70 stack.
72 * Methodology:
74 Existing REG_DEAD and REG_UNUSED notes for stack registers are
75 deleted and recreated from scratch. REG_DEAD is never created for a
76 SET_DEST, only REG_UNUSED.
78 * asm_operands:
80 There are several rules on the usage of stack-like regs in
81 asm_operands insns. These rules apply only to the operands that are
82 stack-like regs:
84 1. Given a set of input regs that die in an asm_operands, it is
85 necessary to know which are implicitly popped by the asm, and
86 which must be explicitly popped by gcc.
88 An input reg that is implicitly popped by the asm must be
89 explicitly clobbered, unless it is constrained to match an
90 output operand.
92 2. For any input reg that is implicitly popped by an asm, it is
93 necessary to know how to adjust the stack to compensate for the pop.
94 If any non-popped input is closer to the top of the reg-stack than
95 the implicitly popped reg, it would not be possible to know what the
96 stack looked like - it's not clear how the rest of the stack "slides
97 up".
99 All implicitly popped input regs must be closer to the top of
100 the reg-stack than any input that is not implicitly popped.
102 3. It is possible that if an input dies in an insn, reload might
103 use the input reg for an output reload. Consider this example:
105 asm ("foo" : "=t" (a) : "f" (b));
107 This asm says that input B is not popped by the asm, and that
108 the asm pushes a result onto the reg-stack, ie, the stack is one
109 deeper after the asm than it was before. But, it is possible that
110 reload will think that it can use the same reg for both the input and
111 the output, if input B dies in this insn.
113 If any input operand uses the "f" constraint, all output reg
114 constraints must use the "&" earlyclobber.
116 The asm above would be written as
118 asm ("foo" : "=&t" (a) : "f" (b));
120 4. Some operands need to be in particular places on the stack. All
121 output operands fall in this category - there is no other way to
122 know which regs the outputs appear in unless the user indicates
123 this in the constraints.
125 Output operands must specifically indicate which reg an output
126 appears in after an asm. "=f" is not allowed: the operand
127 constraints must select a class with a single reg.
129 5. Output operands may not be "inserted" between existing stack regs.
130 Since no 387 opcode uses a read/write operand, all output operands
131 are dead before the asm_operands, and are pushed by the asm_operands.
132 It makes no sense to push anywhere but the top of the reg-stack.
134 Output operands must start at the top of the reg-stack: output
135 operands may not "skip" a reg.
137 6. Some asm statements may need extra stack space for internal
138 calculations. This can be guaranteed by clobbering stack registers
139 unrelated to the inputs and outputs.
141 Here are a couple of reasonable asms to want to write. This asm
142 takes one input, which is internally popped, and produces two outputs.
144 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
146 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
147 and replaces them with one output. The user must code the "st(1)"
148 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
150 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
154 #include "config.h"
155 #include "system.h"
156 #include "tree.h"
157 #include "rtl.h"
158 #include "tm_p.h"
159 #include "function.h"
160 #include "insn-config.h"
161 #include "regs.h"
162 #include "hard-reg-set.h"
163 #include "flags.h"
164 #include "toplev.h"
165 #include "recog.h"
166 #include "output.h"
167 #include "basic-block.h"
168 #include "varray.h"
169 #include "reload.h"
170 #include "ggc.h"
172 /* We use this array to cache info about insns, because otherwise we
173 spend too much time in stack_regs_mentioned_p.
175 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
176 the insn uses stack registers, two indicates the insn does not use
177 stack registers. */
178 static GTY(()) varray_type stack_regs_mentioned_data;
180 #ifdef STACK_REGS
182 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
184 /* This is the basic stack record. TOP is an index into REG[] such
185 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
187 If TOP is -2, REG[] is not yet initialized. Stack initialization
188 consists of placing each live reg in array `reg' and setting `top'
189 appropriately.
191 REG_SET indicates which registers are live. */
193 typedef struct stack_def
195 int top; /* index to top stack element */
196 HARD_REG_SET reg_set; /* set of live registers */
197 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
198 } *stack;
200 /* This is used to carry information about basic blocks. It is
201 attached to the AUX field of the standard CFG block. */
203 typedef struct block_info_def
205 struct stack_def stack_in; /* Input stack configuration. */
206 struct stack_def stack_out; /* Output stack configuration. */
207 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
208 int done; /* True if block already converted. */
209 int predecessors; /* Number of predecessors that needs
210 to be visited. */
211 } *block_info;
213 #define BLOCK_INFO(B) ((block_info) (B)->aux)
215 /* Passed to change_stack to indicate where to emit insns. */
216 enum emit_where
218 EMIT_AFTER,
219 EMIT_BEFORE
222 /* The block we're currently working on. */
223 static basic_block current_block;
225 /* This is the register file for all register after conversion */
226 static rtx
227 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
229 #define FP_MODE_REG(regno,mode) \
230 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
232 /* Used to initialize uninitialized registers. */
233 static rtx nan;
235 /* Forward declarations */
237 static int stack_regs_mentioned_p PARAMS ((rtx pat));
238 static void straighten_stack PARAMS ((rtx, stack));
239 static void pop_stack PARAMS ((stack, int));
240 static rtx *get_true_reg PARAMS ((rtx *));
242 static int check_asm_stack_operands PARAMS ((rtx));
243 static int get_asm_operand_n_inputs PARAMS ((rtx));
244 static rtx stack_result PARAMS ((tree));
245 static void replace_reg PARAMS ((rtx *, int));
246 static void remove_regno_note PARAMS ((rtx, enum reg_note,
247 unsigned int));
248 static int get_hard_regnum PARAMS ((stack, rtx));
249 static rtx emit_pop_insn PARAMS ((rtx, stack, rtx,
250 enum emit_where));
251 static void emit_swap_insn PARAMS ((rtx, stack, rtx));
252 static void move_for_stack_reg PARAMS ((rtx, stack, rtx));
253 static int swap_rtx_condition_1 PARAMS ((rtx));
254 static int swap_rtx_condition PARAMS ((rtx));
255 static void compare_for_stack_reg PARAMS ((rtx, stack, rtx));
256 static void subst_stack_regs_pat PARAMS ((rtx, stack, rtx));
257 static void subst_asm_stack_regs PARAMS ((rtx, stack));
258 static void subst_stack_regs PARAMS ((rtx, stack));
259 static void change_stack PARAMS ((rtx, stack, stack,
260 enum emit_where));
261 static int convert_regs_entry PARAMS ((void));
262 static void convert_regs_exit PARAMS ((void));
263 static int convert_regs_1 PARAMS ((FILE *, basic_block));
264 static int convert_regs_2 PARAMS ((FILE *, basic_block));
265 static int convert_regs PARAMS ((FILE *));
266 static void print_stack PARAMS ((FILE *, stack));
267 static rtx next_flags_user PARAMS ((rtx));
268 static void record_label_references PARAMS ((rtx, rtx));
269 static bool compensate_edge PARAMS ((edge, FILE *));
271 /* Return non-zero if any stack register is mentioned somewhere within PAT. */
273 static int
274 stack_regs_mentioned_p (pat)
275 rtx pat;
277 const char *fmt;
278 int i;
280 if (STACK_REG_P (pat))
281 return 1;
283 fmt = GET_RTX_FORMAT (GET_CODE (pat));
284 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
286 if (fmt[i] == 'E')
288 int j;
290 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
291 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
292 return 1;
294 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
295 return 1;
298 return 0;
301 /* Return nonzero if INSN mentions stacked registers, else return zero. */
304 stack_regs_mentioned (insn)
305 rtx insn;
307 unsigned int uid, max;
308 int test;
310 if (! INSN_P (insn) || !stack_regs_mentioned_data)
311 return 0;
313 uid = INSN_UID (insn);
314 max = VARRAY_SIZE (stack_regs_mentioned_data);
315 if (uid >= max)
317 /* Allocate some extra size to avoid too many reallocs, but
318 do not grow too quickly. */
319 max = uid + uid / 20;
320 VARRAY_GROW (stack_regs_mentioned_data, max);
323 test = VARRAY_CHAR (stack_regs_mentioned_data, uid);
324 if (test == 0)
326 /* This insn has yet to be examined. Do so now. */
327 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
328 VARRAY_CHAR (stack_regs_mentioned_data, uid) = test;
331 return test == 1;
334 static rtx ix86_flags_rtx;
336 static rtx
337 next_flags_user (insn)
338 rtx insn;
340 /* Search forward looking for the first use of this value.
341 Stop at block boundaries. */
343 while (insn != current_block->end)
345 insn = NEXT_INSN (insn);
347 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
348 return insn;
350 if (GET_CODE (insn) == CALL_INSN)
351 return NULL_RTX;
353 return NULL_RTX;
356 /* Reorganise the stack into ascending numbers,
357 after this insn. */
359 static void
360 straighten_stack (insn, regstack)
361 rtx insn;
362 stack regstack;
364 struct stack_def temp_stack;
365 int top;
367 /* If there is only a single register on the stack, then the stack is
368 already in increasing order and no reorganization is needed.
370 Similarly if the stack is empty. */
371 if (regstack->top <= 0)
372 return;
374 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
376 for (top = temp_stack.top = regstack->top; top >= 0; top--)
377 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
379 change_stack (insn, regstack, &temp_stack, EMIT_AFTER);
382 /* Pop a register from the stack */
384 static void
385 pop_stack (regstack, regno)
386 stack regstack;
387 int regno;
389 int top = regstack->top;
391 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
392 regstack->top--;
393 /* If regno was not at the top of stack then adjust stack */
394 if (regstack->reg [top] != regno)
396 int i;
397 for (i = regstack->top; i >= 0; i--)
398 if (regstack->reg [i] == regno)
400 int j;
401 for (j = i; j < top; j++)
402 regstack->reg [j] = regstack->reg [j + 1];
403 break;
408 /* Convert register usage from "flat" register file usage to a "stack
409 register file. FIRST is the first insn in the function, FILE is the
410 dump file, if used.
412 Construct a CFG and run life analysis. Then convert each insn one
413 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
414 code duplication created when the converter inserts pop insns on
415 the edges. */
417 void
418 reg_to_stack (first, file)
419 rtx first;
420 FILE *file;
422 basic_block bb;
423 int i;
424 int max_uid;
426 /* Clean up previous run. */
427 stack_regs_mentioned_data = 0;
429 if (!optimize)
430 split_all_insns (0);
432 /* See if there is something to do. Flow analysis is quite
433 expensive so we might save some compilation time. */
434 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
435 if (regs_ever_live[i])
436 break;
437 if (i > LAST_STACK_REG)
438 return;
440 /* Ok, floating point instructions exist. If not optimizing,
441 build the CFG and run life analysis. */
442 if (!optimize)
444 count_or_remove_death_notes (NULL, 1);
445 life_analysis (first, file, PROP_DEATH_NOTES);
447 mark_dfs_back_edges ();
449 /* Set up block info for each basic block. */
450 alloc_aux_for_blocks (sizeof (struct block_info_def));
451 FOR_EACH_BB_REVERSE (bb)
453 edge e;
454 for (e = bb->pred; e; e=e->pred_next)
455 if (!(e->flags & EDGE_DFS_BACK)
456 && e->src != ENTRY_BLOCK_PTR)
457 BLOCK_INFO (bb)->predecessors++;
460 /* Create the replacement registers up front. */
461 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
463 enum machine_mode mode;
464 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
465 mode != VOIDmode;
466 mode = GET_MODE_WIDER_MODE (mode))
467 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
468 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
469 mode != VOIDmode;
470 mode = GET_MODE_WIDER_MODE (mode))
471 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
474 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
476 /* A QNaN for initializing uninitialized variables.
478 ??? We can't load from constant memory in PIC mode, because
479 we're insertting these instructions before the prologue and
480 the PIC register hasn't been set up. In that case, fall back
481 on zero, which we can get from `ldz'. */
483 if (flag_pic)
484 nan = CONST0_RTX (SFmode);
485 else
487 nan = gen_lowpart (SFmode, GEN_INT (0x7fc00000));
488 nan = force_const_mem (SFmode, nan);
491 /* Allocate a cache for stack_regs_mentioned. */
492 max_uid = get_max_uid ();
493 VARRAY_CHAR_INIT (stack_regs_mentioned_data, max_uid + 1,
494 "stack_regs_mentioned cache");
496 convert_regs (file);
498 free_aux_for_blocks ();
501 /* Check PAT, which is in INSN, for LABEL_REFs. Add INSN to the
502 label's chain of references, and note which insn contains each
503 reference. */
505 static void
506 record_label_references (insn, pat)
507 rtx insn, pat;
509 enum rtx_code code = GET_CODE (pat);
510 int i;
511 const char *fmt;
513 if (code == LABEL_REF)
515 rtx label = XEXP (pat, 0);
516 rtx ref;
518 if (GET_CODE (label) != CODE_LABEL)
519 abort ();
521 /* If this is an undefined label, LABEL_REFS (label) contains
522 garbage. */
523 if (INSN_UID (label) == 0)
524 return;
526 /* Don't make a duplicate in the code_label's chain. */
528 for (ref = LABEL_REFS (label);
529 ref && ref != label;
530 ref = LABEL_NEXTREF (ref))
531 if (CONTAINING_INSN (ref) == insn)
532 return;
534 CONTAINING_INSN (pat) = insn;
535 LABEL_NEXTREF (pat) = LABEL_REFS (label);
536 LABEL_REFS (label) = pat;
538 return;
541 fmt = GET_RTX_FORMAT (code);
542 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
544 if (fmt[i] == 'e')
545 record_label_references (insn, XEXP (pat, i));
546 if (fmt[i] == 'E')
548 int j;
549 for (j = 0; j < XVECLEN (pat, i); j++)
550 record_label_references (insn, XVECEXP (pat, i, j));
555 /* Return a pointer to the REG expression within PAT. If PAT is not a
556 REG, possible enclosed by a conversion rtx, return the inner part of
557 PAT that stopped the search. */
559 static rtx *
560 get_true_reg (pat)
561 rtx *pat;
563 for (;;)
564 switch (GET_CODE (*pat))
566 case SUBREG:
567 /* Eliminate FP subregister accesses in favour of the
568 actual FP register in use. */
570 rtx subreg;
571 if (FP_REG_P (subreg = SUBREG_REG (*pat)))
573 int regno_off = subreg_regno_offset (REGNO (subreg),
574 GET_MODE (subreg),
575 SUBREG_BYTE (*pat),
576 GET_MODE (*pat));
577 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
578 GET_MODE (subreg));
579 default:
580 return pat;
583 case FLOAT:
584 case FIX:
585 case FLOAT_EXTEND:
586 pat = & XEXP (*pat, 0);
590 /* There are many rules that an asm statement for stack-like regs must
591 follow. Those rules are explained at the top of this file: the rule
592 numbers below refer to that explanation. */
594 static int
595 check_asm_stack_operands (insn)
596 rtx insn;
598 int i;
599 int n_clobbers;
600 int malformed_asm = 0;
601 rtx body = PATTERN (insn);
603 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
604 char implicitly_dies[FIRST_PSEUDO_REGISTER];
605 int alt;
607 rtx *clobber_reg = 0;
608 int n_inputs, n_outputs;
610 /* Find out what the constraints require. If no constraint
611 alternative matches, this asm is malformed. */
612 extract_insn (insn);
613 constrain_operands (1);
614 alt = which_alternative;
616 preprocess_constraints ();
618 n_inputs = get_asm_operand_n_inputs (body);
619 n_outputs = recog_data.n_operands - n_inputs;
621 if (alt < 0)
623 malformed_asm = 1;
624 /* Avoid further trouble with this insn. */
625 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
626 return 0;
629 /* Strip SUBREGs here to make the following code simpler. */
630 for (i = 0; i < recog_data.n_operands; i++)
631 if (GET_CODE (recog_data.operand[i]) == SUBREG
632 && GET_CODE (SUBREG_REG (recog_data.operand[i])) == REG)
633 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
635 /* Set up CLOBBER_REG. */
637 n_clobbers = 0;
639 if (GET_CODE (body) == PARALLEL)
641 clobber_reg = (rtx *) alloca (XVECLEN (body, 0) * sizeof (rtx));
643 for (i = 0; i < XVECLEN (body, 0); i++)
644 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
646 rtx clobber = XVECEXP (body, 0, i);
647 rtx reg = XEXP (clobber, 0);
649 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
650 reg = SUBREG_REG (reg);
652 if (STACK_REG_P (reg))
654 clobber_reg[n_clobbers] = reg;
655 n_clobbers++;
660 /* Enforce rule #4: Output operands must specifically indicate which
661 reg an output appears in after an asm. "=f" is not allowed: the
662 operand constraints must select a class with a single reg.
664 Also enforce rule #5: Output operands must start at the top of
665 the reg-stack: output operands may not "skip" a reg. */
667 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
668 for (i = 0; i < n_outputs; i++)
669 if (STACK_REG_P (recog_data.operand[i]))
671 if (reg_class_size[(int) recog_op_alt[i][alt].class] != 1)
673 error_for_asm (insn, "output constraint %d must specify a single register", i);
674 malformed_asm = 1;
676 else
678 int j;
680 for (j = 0; j < n_clobbers; j++)
681 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
683 error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
684 i, reg_names [REGNO (clobber_reg[j])]);
685 malformed_asm = 1;
686 break;
688 if (j == n_clobbers)
689 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
694 /* Search for first non-popped reg. */
695 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
696 if (! reg_used_as_output[i])
697 break;
699 /* If there are any other popped regs, that's an error. */
700 for (; i < LAST_STACK_REG + 1; i++)
701 if (reg_used_as_output[i])
702 break;
704 if (i != LAST_STACK_REG + 1)
706 error_for_asm (insn, "output regs must be grouped at top of stack");
707 malformed_asm = 1;
710 /* Enforce rule #2: All implicitly popped input regs must be closer
711 to the top of the reg-stack than any input that is not implicitly
712 popped. */
714 memset (implicitly_dies, 0, sizeof (implicitly_dies));
715 for (i = n_outputs; i < n_outputs + n_inputs; i++)
716 if (STACK_REG_P (recog_data.operand[i]))
718 /* An input reg is implicitly popped if it is tied to an
719 output, or if there is a CLOBBER for it. */
720 int j;
722 for (j = 0; j < n_clobbers; j++)
723 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
724 break;
726 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
727 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
730 /* Search for first non-popped reg. */
731 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
732 if (! implicitly_dies[i])
733 break;
735 /* If there are any other popped regs, that's an error. */
736 for (; i < LAST_STACK_REG + 1; i++)
737 if (implicitly_dies[i])
738 break;
740 if (i != LAST_STACK_REG + 1)
742 error_for_asm (insn,
743 "implicitly popped regs must be grouped at top of stack");
744 malformed_asm = 1;
747 /* Enfore rule #3: If any input operand uses the "f" constraint, all
748 output constraints must use the "&" earlyclobber.
750 ??? Detect this more deterministically by having constrain_asm_operands
751 record any earlyclobber. */
753 for (i = n_outputs; i < n_outputs + n_inputs; i++)
754 if (recog_op_alt[i][alt].matches == -1)
756 int j;
758 for (j = 0; j < n_outputs; j++)
759 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
761 error_for_asm (insn,
762 "output operand %d must use `&' constraint", j);
763 malformed_asm = 1;
767 if (malformed_asm)
769 /* Avoid further trouble with this insn. */
770 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
771 return 0;
774 return 1;
777 /* Calculate the number of inputs and outputs in BODY, an
778 asm_operands. N_OPERANDS is the total number of operands, and
779 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
780 placed. */
782 static int
783 get_asm_operand_n_inputs (body)
784 rtx body;
786 if (GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
787 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body));
789 else if (GET_CODE (body) == ASM_OPERANDS)
790 return ASM_OPERANDS_INPUT_LENGTH (body);
792 else if (GET_CODE (body) == PARALLEL
793 && GET_CODE (XVECEXP (body, 0, 0)) == SET)
794 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body, 0, 0)));
796 else if (GET_CODE (body) == PARALLEL
797 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
798 return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body, 0, 0));
800 abort ();
803 /* If current function returns its result in an fp stack register,
804 return the REG. Otherwise, return 0. */
806 static rtx
807 stack_result (decl)
808 tree decl;
810 rtx result;
812 /* If the value is supposed to be returned in memory, then clearly
813 it is not returned in a stack register. */
814 if (aggregate_value_p (DECL_RESULT (decl)))
815 return 0;
817 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
818 if (result != 0)
820 #ifdef FUNCTION_OUTGOING_VALUE
821 result
822 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
823 #else
824 result = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
825 #endif
828 return result != 0 && STACK_REG_P (result) ? result : 0;
833 * This section deals with stack register substitution, and forms the second
834 * pass over the RTL.
837 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
838 the desired hard REGNO. */
840 static void
841 replace_reg (reg, regno)
842 rtx *reg;
843 int regno;
845 if (regno < FIRST_STACK_REG || regno > LAST_STACK_REG
846 || ! STACK_REG_P (*reg))
847 abort ();
849 switch (GET_MODE_CLASS (GET_MODE (*reg)))
851 default: abort ();
852 case MODE_FLOAT:
853 case MODE_COMPLEX_FLOAT:;
856 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
859 /* Remove a note of type NOTE, which must be found, for register
860 number REGNO from INSN. Remove only one such note. */
862 static void
863 remove_regno_note (insn, note, regno)
864 rtx insn;
865 enum reg_note note;
866 unsigned int regno;
868 rtx *note_link, this;
870 note_link = &REG_NOTES (insn);
871 for (this = *note_link; this; this = XEXP (this, 1))
872 if (REG_NOTE_KIND (this) == note
873 && REG_P (XEXP (this, 0)) && REGNO (XEXP (this, 0)) == regno)
875 *note_link = XEXP (this, 1);
876 return;
878 else
879 note_link = &XEXP (this, 1);
881 abort ();
884 /* Find the hard register number of virtual register REG in REGSTACK.
885 The hard register number is relative to the top of the stack. -1 is
886 returned if the register is not found. */
888 static int
889 get_hard_regnum (regstack, reg)
890 stack regstack;
891 rtx reg;
893 int i;
895 if (! STACK_REG_P (reg))
896 abort ();
898 for (i = regstack->top; i >= 0; i--)
899 if (regstack->reg[i] == REGNO (reg))
900 break;
902 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
905 /* Emit an insn to pop virtual register REG before or after INSN.
906 REGSTACK is the stack state after INSN and is updated to reflect this
907 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
908 is represented as a SET whose destination is the register to be popped
909 and source is the top of stack. A death note for the top of stack
910 cases the movdf pattern to pop. */
912 static rtx
913 emit_pop_insn (insn, regstack, reg, where)
914 rtx insn;
915 stack regstack;
916 rtx reg;
917 enum emit_where where;
919 rtx pop_insn, pop_rtx;
920 int hard_regno;
922 /* For complex types take care to pop both halves. These may survive in
923 CLOBBER and USE expressions. */
924 if (COMPLEX_MODE_P (GET_MODE (reg)))
926 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
927 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
929 pop_insn = NULL_RTX;
930 if (get_hard_regnum (regstack, reg1) >= 0)
931 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
932 if (get_hard_regnum (regstack, reg2) >= 0)
933 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
934 if (!pop_insn)
935 abort ();
936 return pop_insn;
939 hard_regno = get_hard_regnum (regstack, reg);
941 if (hard_regno < FIRST_STACK_REG)
942 abort ();
944 pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
945 FP_MODE_REG (FIRST_STACK_REG, DFmode));
947 if (where == EMIT_AFTER)
948 pop_insn = emit_insn_after (pop_rtx, insn);
949 else
950 pop_insn = emit_insn_before (pop_rtx, insn);
952 REG_NOTES (pop_insn)
953 = gen_rtx_EXPR_LIST (REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode),
954 REG_NOTES (pop_insn));
956 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
957 = regstack->reg[regstack->top];
958 regstack->top -= 1;
959 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
961 return pop_insn;
964 /* Emit an insn before or after INSN to swap virtual register REG with
965 the top of stack. REGSTACK is the stack state before the swap, and
966 is updated to reflect the swap. A swap insn is represented as a
967 PARALLEL of two patterns: each pattern moves one reg to the other.
969 If REG is already at the top of the stack, no insn is emitted. */
971 static void
972 emit_swap_insn (insn, regstack, reg)
973 rtx insn;
974 stack regstack;
975 rtx reg;
977 int hard_regno;
978 rtx swap_rtx;
979 int tmp, other_reg; /* swap regno temps */
980 rtx i1; /* the stack-reg insn prior to INSN */
981 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
983 hard_regno = get_hard_regnum (regstack, reg);
985 if (hard_regno < FIRST_STACK_REG)
986 abort ();
987 if (hard_regno == FIRST_STACK_REG)
988 return;
990 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
992 tmp = regstack->reg[other_reg];
993 regstack->reg[other_reg] = regstack->reg[regstack->top];
994 regstack->reg[regstack->top] = tmp;
996 /* Find the previous insn involving stack regs, but don't pass a
997 block boundary. */
998 i1 = NULL;
999 if (current_block && insn != current_block->head)
1001 rtx tmp = PREV_INSN (insn);
1002 rtx limit = PREV_INSN (current_block->head);
1003 while (tmp != limit)
1005 if (GET_CODE (tmp) == CODE_LABEL
1006 || GET_CODE (tmp) == CALL_INSN
1007 || NOTE_INSN_BASIC_BLOCK_P (tmp)
1008 || (GET_CODE (tmp) == INSN
1009 && stack_regs_mentioned (tmp)))
1011 i1 = tmp;
1012 break;
1014 tmp = PREV_INSN (tmp);
1018 if (i1 != NULL_RTX
1019 && (i1set = single_set (i1)) != NULL_RTX)
1021 rtx i1src = *get_true_reg (&SET_SRC (i1set));
1022 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
1024 /* If the previous register stack push was from the reg we are to
1025 swap with, omit the swap. */
1027 if (GET_CODE (i1dest) == REG && REGNO (i1dest) == FIRST_STACK_REG
1028 && GET_CODE (i1src) == REG
1029 && REGNO (i1src) == (unsigned) hard_regno - 1
1030 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
1031 return;
1033 /* If the previous insn wrote to the reg we are to swap with,
1034 omit the swap. */
1036 if (GET_CODE (i1dest) == REG && REGNO (i1dest) == (unsigned) hard_regno
1037 && GET_CODE (i1src) == REG && REGNO (i1src) == FIRST_STACK_REG
1038 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
1039 return;
1042 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
1043 FP_MODE_REG (FIRST_STACK_REG, XFmode));
1045 if (i1)
1046 emit_insn_after (swap_rtx, i1);
1047 else if (current_block)
1048 emit_insn_before (swap_rtx, current_block->head);
1049 else
1050 emit_insn_before (swap_rtx, insn);
1053 /* Handle a move to or from a stack register in PAT, which is in INSN.
1054 REGSTACK is the current stack. */
1056 static void
1057 move_for_stack_reg (insn, regstack, pat)
1058 rtx insn;
1059 stack regstack;
1060 rtx pat;
1062 rtx *psrc = get_true_reg (&SET_SRC (pat));
1063 rtx *pdest = get_true_reg (&SET_DEST (pat));
1064 rtx src, dest;
1065 rtx note;
1067 src = *psrc; dest = *pdest;
1069 if (STACK_REG_P (src) && STACK_REG_P (dest))
1071 /* Write from one stack reg to another. If SRC dies here, then
1072 just change the register mapping and delete the insn. */
1074 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1075 if (note)
1077 int i;
1079 /* If this is a no-op move, there must not be a REG_DEAD note. */
1080 if (REGNO (src) == REGNO (dest))
1081 abort ();
1083 for (i = regstack->top; i >= 0; i--)
1084 if (regstack->reg[i] == REGNO (src))
1085 break;
1087 /* The source must be live, and the dest must be dead. */
1088 if (i < 0 || get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1089 abort ();
1091 /* It is possible that the dest is unused after this insn.
1092 If so, just pop the src. */
1094 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1096 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
1098 delete_insn (insn);
1099 return;
1102 regstack->reg[i] = REGNO (dest);
1104 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1105 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1107 delete_insn (insn);
1109 return;
1112 /* The source reg does not die. */
1114 /* If this appears to be a no-op move, delete it, or else it
1115 will confuse the machine description output patterns. But if
1116 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1117 for REG_UNUSED will not work for deleted insns. */
1119 if (REGNO (src) == REGNO (dest))
1121 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1122 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1124 delete_insn (insn);
1125 return;
1128 /* The destination ought to be dead */
1129 if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1130 abort ();
1132 replace_reg (psrc, get_hard_regnum (regstack, src));
1134 regstack->reg[++regstack->top] = REGNO (dest);
1135 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1136 replace_reg (pdest, FIRST_STACK_REG);
1138 else if (STACK_REG_P (src))
1140 /* Save from a stack reg to MEM, or possibly integer reg. Since
1141 only top of stack may be saved, emit an exchange first if
1142 needs be. */
1144 emit_swap_insn (insn, regstack, src);
1146 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1147 if (note)
1149 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1150 regstack->top--;
1151 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1153 else if ((GET_MODE (src) == XFmode || GET_MODE (src) == TFmode)
1154 && regstack->top < REG_STACK_SIZE - 1)
1156 /* A 387 cannot write an XFmode value to a MEM without
1157 clobbering the source reg. The output code can handle
1158 this by reading back the value from the MEM.
1159 But it is more efficient to use a temp register if one is
1160 available. Push the source value here if the register
1161 stack is not full, and then write the value to memory via
1162 a pop. */
1163 rtx push_rtx, push_insn;
1164 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1166 if (GET_MODE (src) == TFmode)
1167 push_rtx = gen_movtf (top_stack_reg, top_stack_reg);
1168 else
1169 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1170 push_insn = emit_insn_before (push_rtx, insn);
1171 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, top_stack_reg,
1172 REG_NOTES (insn));
1175 replace_reg (psrc, FIRST_STACK_REG);
1177 else if (STACK_REG_P (dest))
1179 /* Load from MEM, or possibly integer REG or constant, into the
1180 stack regs. The actual target is always the top of the
1181 stack. The stack mapping is changed to reflect that DEST is
1182 now at top of stack. */
1184 /* The destination ought to be dead */
1185 if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1186 abort ();
1188 if (regstack->top >= REG_STACK_SIZE)
1189 abort ();
1191 regstack->reg[++regstack->top] = REGNO (dest);
1192 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1193 replace_reg (pdest, FIRST_STACK_REG);
1195 else
1196 abort ();
1199 /* Swap the condition on a branch, if there is one. Return true if we
1200 found a condition to swap. False if the condition was not used as
1201 such. */
1203 static int
1204 swap_rtx_condition_1 (pat)
1205 rtx pat;
1207 const char *fmt;
1208 int i, r = 0;
1210 if (GET_RTX_CLASS (GET_CODE (pat)) == '<')
1212 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1213 r = 1;
1215 else
1217 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1218 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1220 if (fmt[i] == 'E')
1222 int j;
1224 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1225 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1227 else if (fmt[i] == 'e')
1228 r |= swap_rtx_condition_1 (XEXP (pat, i));
1232 return r;
1235 static int
1236 swap_rtx_condition (insn)
1237 rtx insn;
1239 rtx pat = PATTERN (insn);
1241 /* We're looking for a single set to cc0 or an HImode temporary. */
1243 if (GET_CODE (pat) == SET
1244 && GET_CODE (SET_DEST (pat)) == REG
1245 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1247 insn = next_flags_user (insn);
1248 if (insn == NULL_RTX)
1249 return 0;
1250 pat = PATTERN (insn);
1253 /* See if this is, or ends in, a fnstsw, aka unspec 9. If so, we're
1254 not doing anything with the cc value right now. We may be able to
1255 search for one though. */
1257 if (GET_CODE (pat) == SET
1258 && GET_CODE (SET_SRC (pat)) == UNSPEC
1259 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1261 rtx dest = SET_DEST (pat);
1263 /* Search forward looking for the first use of this value.
1264 Stop at block boundaries. */
1265 while (insn != current_block->end)
1267 insn = NEXT_INSN (insn);
1268 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1269 break;
1270 if (GET_CODE (insn) == CALL_INSN)
1271 return 0;
1274 /* So we've found the insn using this value. If it is anything
1275 other than sahf, aka unspec 10, or the value does not die
1276 (meaning we'd have to search further), then we must give up. */
1277 pat = PATTERN (insn);
1278 if (GET_CODE (pat) != SET
1279 || GET_CODE (SET_SRC (pat)) != UNSPEC
1280 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1281 || ! dead_or_set_p (insn, dest))
1282 return 0;
1284 /* Now we are prepared to handle this as a normal cc0 setter. */
1285 insn = next_flags_user (insn);
1286 if (insn == NULL_RTX)
1287 return 0;
1288 pat = PATTERN (insn);
1291 if (swap_rtx_condition_1 (pat))
1293 int fail = 0;
1294 INSN_CODE (insn) = -1;
1295 if (recog_memoized (insn) == -1)
1296 fail = 1;
1297 /* In case the flags don't die here, recurse to try fix
1298 following user too. */
1299 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1301 insn = next_flags_user (insn);
1302 if (!insn || !swap_rtx_condition (insn))
1303 fail = 1;
1305 if (fail)
1307 swap_rtx_condition_1 (pat);
1308 return 0;
1310 return 1;
1312 return 0;
1315 /* Handle a comparison. Special care needs to be taken to avoid
1316 causing comparisons that a 387 cannot do correctly, such as EQ.
1318 Also, a pop insn may need to be emitted. The 387 does have an
1319 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1320 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1321 set up. */
1323 static void
1324 compare_for_stack_reg (insn, regstack, pat_src)
1325 rtx insn;
1326 stack regstack;
1327 rtx pat_src;
1329 rtx *src1, *src2;
1330 rtx src1_note, src2_note;
1331 rtx flags_user;
1333 src1 = get_true_reg (&XEXP (pat_src, 0));
1334 src2 = get_true_reg (&XEXP (pat_src, 1));
1335 flags_user = next_flags_user (insn);
1337 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1338 registers that die in this insn - move those to stack top first. */
1339 if ((! STACK_REG_P (*src1)
1340 || (STACK_REG_P (*src2)
1341 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1342 && swap_rtx_condition (insn))
1344 rtx temp;
1345 temp = XEXP (pat_src, 0);
1346 XEXP (pat_src, 0) = XEXP (pat_src, 1);
1347 XEXP (pat_src, 1) = temp;
1349 src1 = get_true_reg (&XEXP (pat_src, 0));
1350 src2 = get_true_reg (&XEXP (pat_src, 1));
1352 INSN_CODE (insn) = -1;
1355 /* We will fix any death note later. */
1357 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1359 if (STACK_REG_P (*src2))
1360 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1361 else
1362 src2_note = NULL_RTX;
1364 emit_swap_insn (insn, regstack, *src1);
1366 replace_reg (src1, FIRST_STACK_REG);
1368 if (STACK_REG_P (*src2))
1369 replace_reg (src2, get_hard_regnum (regstack, *src2));
1371 if (src1_note)
1373 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1374 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1377 /* If the second operand dies, handle that. But if the operands are
1378 the same stack register, don't bother, because only one death is
1379 needed, and it was just handled. */
1381 if (src2_note
1382 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1383 && REGNO (*src1) == REGNO (*src2)))
1385 /* As a special case, two regs may die in this insn if src2 is
1386 next to top of stack and the top of stack also dies. Since
1387 we have already popped src1, "next to top of stack" is really
1388 at top (FIRST_STACK_REG) now. */
1390 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1391 && src1_note)
1393 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1394 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1396 else
1398 /* The 386 can only represent death of the first operand in
1399 the case handled above. In all other cases, emit a separate
1400 pop and remove the death note from here. */
1402 /* link_cc0_insns (insn); */
1404 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1406 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1407 EMIT_AFTER);
1412 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1413 is the current register layout. */
1415 static void
1416 subst_stack_regs_pat (insn, regstack, pat)
1417 rtx insn;
1418 stack regstack;
1419 rtx pat;
1421 rtx *dest, *src;
1423 switch (GET_CODE (pat))
1425 case USE:
1426 /* Deaths in USE insns can happen in non optimizing compilation.
1427 Handle them by popping the dying register. */
1428 src = get_true_reg (&XEXP (pat, 0));
1429 if (STACK_REG_P (*src)
1430 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1432 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1433 return;
1435 /* ??? Uninitialized USE should not happen. */
1436 else if (get_hard_regnum (regstack, *src) == -1)
1437 abort ();
1438 break;
1440 case CLOBBER:
1442 rtx note;
1444 dest = get_true_reg (&XEXP (pat, 0));
1445 if (STACK_REG_P (*dest))
1447 note = find_reg_note (insn, REG_DEAD, *dest);
1449 if (pat != PATTERN (insn))
1451 /* The fix_truncdi_1 pattern wants to be able to allocate
1452 it's own scratch register. It does this by clobbering
1453 an fp reg so that it is assured of an empty reg-stack
1454 register. If the register is live, kill it now.
1455 Remove the DEAD/UNUSED note so we don't try to kill it
1456 later too. */
1458 if (note)
1459 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1460 else
1462 note = find_reg_note (insn, REG_UNUSED, *dest);
1463 if (!note)
1464 abort ();
1466 remove_note (insn, note);
1467 replace_reg (dest, LAST_STACK_REG);
1469 else
1471 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1472 indicates an uninitialized value. Because reload removed
1473 all other clobbers, this must be due to a function
1474 returning without a value. Load up a NaN. */
1476 if (! note
1477 && get_hard_regnum (regstack, *dest) == -1)
1479 pat = gen_rtx_SET (VOIDmode,
1480 FP_MODE_REG (REGNO (*dest), SFmode),
1481 nan);
1482 PATTERN (insn) = pat;
1483 move_for_stack_reg (insn, regstack, pat);
1485 if (! note && COMPLEX_MODE_P (GET_MODE (*dest))
1486 && get_hard_regnum (regstack, FP_MODE_REG (REGNO (*dest), DFmode)) == -1)
1488 pat = gen_rtx_SET (VOIDmode,
1489 FP_MODE_REG (REGNO (*dest) + 1, SFmode),
1490 nan);
1491 PATTERN (insn) = pat;
1492 move_for_stack_reg (insn, regstack, pat);
1496 break;
1499 case SET:
1501 rtx *src1 = (rtx *) 0, *src2;
1502 rtx src1_note, src2_note;
1503 rtx pat_src;
1505 dest = get_true_reg (&SET_DEST (pat));
1506 src = get_true_reg (&SET_SRC (pat));
1507 pat_src = SET_SRC (pat);
1509 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1510 if (STACK_REG_P (*src)
1511 || (STACK_REG_P (*dest)
1512 && (GET_CODE (*src) == REG || GET_CODE (*src) == MEM
1513 || GET_CODE (*src) == CONST_DOUBLE)))
1515 move_for_stack_reg (insn, regstack, pat);
1516 break;
1519 switch (GET_CODE (pat_src))
1521 case COMPARE:
1522 compare_for_stack_reg (insn, regstack, pat_src);
1523 break;
1525 case CALL:
1527 int count;
1528 for (count = HARD_REGNO_NREGS (REGNO (*dest), GET_MODE (*dest));
1529 --count >= 0;)
1531 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1532 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1535 replace_reg (dest, FIRST_STACK_REG);
1536 break;
1538 case REG:
1539 /* This is a `tstM2' case. */
1540 if (*dest != cc0_rtx)
1541 abort ();
1542 src1 = src;
1544 /* Fall through. */
1546 case FLOAT_TRUNCATE:
1547 case SQRT:
1548 case ABS:
1549 case NEG:
1550 /* These insns only operate on the top of the stack. DEST might
1551 be cc0_rtx if we're processing a tstM pattern. Also, it's
1552 possible that the tstM case results in a REG_DEAD note on the
1553 source. */
1555 if (src1 == 0)
1556 src1 = get_true_reg (&XEXP (pat_src, 0));
1558 emit_swap_insn (insn, regstack, *src1);
1560 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1562 if (STACK_REG_P (*dest))
1563 replace_reg (dest, FIRST_STACK_REG);
1565 if (src1_note)
1567 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1568 regstack->top--;
1569 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1572 replace_reg (src1, FIRST_STACK_REG);
1573 break;
1575 case MINUS:
1576 case DIV:
1577 /* On i386, reversed forms of subM3 and divM3 exist for
1578 MODE_FLOAT, so the same code that works for addM3 and mulM3
1579 can be used. */
1580 case MULT:
1581 case PLUS:
1582 /* These insns can accept the top of stack as a destination
1583 from a stack reg or mem, or can use the top of stack as a
1584 source and some other stack register (possibly top of stack)
1585 as a destination. */
1587 src1 = get_true_reg (&XEXP (pat_src, 0));
1588 src2 = get_true_reg (&XEXP (pat_src, 1));
1590 /* We will fix any death note later. */
1592 if (STACK_REG_P (*src1))
1593 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1594 else
1595 src1_note = NULL_RTX;
1596 if (STACK_REG_P (*src2))
1597 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1598 else
1599 src2_note = NULL_RTX;
1601 /* If either operand is not a stack register, then the dest
1602 must be top of stack. */
1604 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1605 emit_swap_insn (insn, regstack, *dest);
1606 else
1608 /* Both operands are REG. If neither operand is already
1609 at the top of stack, choose to make the one that is the dest
1610 the new top of stack. */
1612 int src1_hard_regnum, src2_hard_regnum;
1614 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1615 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1616 if (src1_hard_regnum == -1 || src2_hard_regnum == -1)
1617 abort ();
1619 if (src1_hard_regnum != FIRST_STACK_REG
1620 && src2_hard_regnum != FIRST_STACK_REG)
1621 emit_swap_insn (insn, regstack, *dest);
1624 if (STACK_REG_P (*src1))
1625 replace_reg (src1, get_hard_regnum (regstack, *src1));
1626 if (STACK_REG_P (*src2))
1627 replace_reg (src2, get_hard_regnum (regstack, *src2));
1629 if (src1_note)
1631 rtx src1_reg = XEXP (src1_note, 0);
1633 /* If the register that dies is at the top of stack, then
1634 the destination is somewhere else - merely substitute it.
1635 But if the reg that dies is not at top of stack, then
1636 move the top of stack to the dead reg, as though we had
1637 done the insn and then a store-with-pop. */
1639 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1641 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1642 replace_reg (dest, get_hard_regnum (regstack, *dest));
1644 else
1646 int regno = get_hard_regnum (regstack, src1_reg);
1648 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1649 replace_reg (dest, regno);
1651 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1652 = regstack->reg[regstack->top];
1655 CLEAR_HARD_REG_BIT (regstack->reg_set,
1656 REGNO (XEXP (src1_note, 0)));
1657 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1658 regstack->top--;
1660 else if (src2_note)
1662 rtx src2_reg = XEXP (src2_note, 0);
1663 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1665 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1666 replace_reg (dest, get_hard_regnum (regstack, *dest));
1668 else
1670 int regno = get_hard_regnum (regstack, src2_reg);
1672 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1673 replace_reg (dest, regno);
1675 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1676 = regstack->reg[regstack->top];
1679 CLEAR_HARD_REG_BIT (regstack->reg_set,
1680 REGNO (XEXP (src2_note, 0)));
1681 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1682 regstack->top--;
1684 else
1686 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1687 replace_reg (dest, get_hard_regnum (regstack, *dest));
1690 /* Keep operand 1 maching with destination. */
1691 if (GET_RTX_CLASS (GET_CODE (pat_src)) == 'c'
1692 && REG_P (*src1) && REG_P (*src2)
1693 && REGNO (*src1) != REGNO (*dest))
1695 int tmp = REGNO (*src1);
1696 replace_reg (src1, REGNO (*src2));
1697 replace_reg (src2, tmp);
1699 break;
1701 case UNSPEC:
1702 switch (XINT (pat_src, 1))
1704 case UNSPEC_SIN:
1705 case UNSPEC_COS:
1706 /* These insns only operate on the top of the stack. */
1708 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1710 emit_swap_insn (insn, regstack, *src1);
1712 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1714 if (STACK_REG_P (*dest))
1715 replace_reg (dest, FIRST_STACK_REG);
1717 if (src1_note)
1719 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1720 regstack->top--;
1721 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1724 replace_reg (src1, FIRST_STACK_REG);
1725 break;
1727 case UNSPEC_SAHF:
1728 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1729 The combination matches the PPRO fcomi instruction. */
1731 pat_src = XVECEXP (pat_src, 0, 0);
1732 if (GET_CODE (pat_src) != UNSPEC
1733 || XINT (pat_src, 1) != UNSPEC_FNSTSW)
1734 abort ();
1735 /* FALLTHRU */
1737 case UNSPEC_FNSTSW:
1738 /* Combined fcomp+fnstsw generated for doing well with
1739 CSE. When optimizing this would have been broken
1740 up before now. */
1742 pat_src = XVECEXP (pat_src, 0, 0);
1743 if (GET_CODE (pat_src) != COMPARE)
1744 abort ();
1746 compare_for_stack_reg (insn, regstack, pat_src);
1747 break;
1749 default:
1750 abort ();
1752 break;
1754 case IF_THEN_ELSE:
1755 /* This insn requires the top of stack to be the destination. */
1757 src1 = get_true_reg (&XEXP (pat_src, 1));
1758 src2 = get_true_reg (&XEXP (pat_src, 2));
1760 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1761 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1763 /* If the comparison operator is an FP comparison operator,
1764 it is handled correctly by compare_for_stack_reg () who
1765 will move the destination to the top of stack. But if the
1766 comparison operator is not an FP comparison operator, we
1767 have to handle it here. */
1768 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1769 && REGNO (*dest) != regstack->reg[regstack->top])
1771 /* In case one of operands is the top of stack and the operands
1772 dies, it is safe to make it the destination operand by
1773 reversing the direction of cmove and avoid fxch. */
1774 if ((REGNO (*src1) == regstack->reg[regstack->top]
1775 && src1_note)
1776 || (REGNO (*src2) == regstack->reg[regstack->top]
1777 && src2_note))
1779 int idx1 = (get_hard_regnum (regstack, *src1)
1780 - FIRST_STACK_REG);
1781 int idx2 = (get_hard_regnum (regstack, *src2)
1782 - FIRST_STACK_REG);
1784 /* Make reg-stack believe that the operands are already
1785 swapped on the stack */
1786 regstack->reg[regstack->top - idx1] = REGNO (*src2);
1787 regstack->reg[regstack->top - idx2] = REGNO (*src1);
1789 /* Reverse condition to compensate the operand swap.
1790 i386 do have comparison always reversible. */
1791 PUT_CODE (XEXP (pat_src, 0),
1792 reversed_comparison_code (XEXP (pat_src, 0), insn));
1794 else
1795 emit_swap_insn (insn, regstack, *dest);
1799 rtx src_note [3];
1800 int i;
1802 src_note[0] = 0;
1803 src_note[1] = src1_note;
1804 src_note[2] = src2_note;
1806 if (STACK_REG_P (*src1))
1807 replace_reg (src1, get_hard_regnum (regstack, *src1));
1808 if (STACK_REG_P (*src2))
1809 replace_reg (src2, get_hard_regnum (regstack, *src2));
1811 for (i = 1; i <= 2; i++)
1812 if (src_note [i])
1814 int regno = REGNO (XEXP (src_note[i], 0));
1816 /* If the register that dies is not at the top of
1817 stack, then move the top of stack to the dead reg */
1818 if (regno != regstack->reg[regstack->top])
1820 remove_regno_note (insn, REG_DEAD, regno);
1821 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1822 EMIT_AFTER);
1824 else
1825 /* Top of stack never dies, as it is the
1826 destination. */
1827 abort ();
1831 /* Make dest the top of stack. Add dest to regstack if
1832 not present. */
1833 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1834 regstack->reg[++regstack->top] = REGNO (*dest);
1835 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1836 replace_reg (dest, FIRST_STACK_REG);
1837 break;
1839 default:
1840 abort ();
1842 break;
1845 default:
1846 break;
1850 /* Substitute hard regnums for any stack regs in INSN, which has
1851 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
1852 before the insn, and is updated with changes made here.
1854 There are several requirements and assumptions about the use of
1855 stack-like regs in asm statements. These rules are enforced by
1856 record_asm_stack_regs; see comments there for details. Any
1857 asm_operands left in the RTL at this point may be assume to meet the
1858 requirements, since record_asm_stack_regs removes any problem asm. */
1860 static void
1861 subst_asm_stack_regs (insn, regstack)
1862 rtx insn;
1863 stack regstack;
1865 rtx body = PATTERN (insn);
1866 int alt;
1868 rtx *note_reg; /* Array of note contents */
1869 rtx **note_loc; /* Address of REG field of each note */
1870 enum reg_note *note_kind; /* The type of each note */
1872 rtx *clobber_reg = 0;
1873 rtx **clobber_loc = 0;
1875 struct stack_def temp_stack;
1876 int n_notes;
1877 int n_clobbers;
1878 rtx note;
1879 int i;
1880 int n_inputs, n_outputs;
1882 if (! check_asm_stack_operands (insn))
1883 return;
1885 /* Find out what the constraints required. If no constraint
1886 alternative matches, that is a compiler bug: we should have caught
1887 such an insn in check_asm_stack_operands. */
1888 extract_insn (insn);
1889 constrain_operands (1);
1890 alt = which_alternative;
1892 preprocess_constraints ();
1894 n_inputs = get_asm_operand_n_inputs (body);
1895 n_outputs = recog_data.n_operands - n_inputs;
1897 if (alt < 0)
1898 abort ();
1900 /* Strip SUBREGs here to make the following code simpler. */
1901 for (i = 0; i < recog_data.n_operands; i++)
1902 if (GET_CODE (recog_data.operand[i]) == SUBREG
1903 && GET_CODE (SUBREG_REG (recog_data.operand[i])) == REG)
1905 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
1906 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1909 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
1911 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
1912 i++;
1914 note_reg = (rtx *) alloca (i * sizeof (rtx));
1915 note_loc = (rtx **) alloca (i * sizeof (rtx *));
1916 note_kind = (enum reg_note *) alloca (i * sizeof (enum reg_note));
1918 n_notes = 0;
1919 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1921 rtx reg = XEXP (note, 0);
1922 rtx *loc = & XEXP (note, 0);
1924 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
1926 loc = & SUBREG_REG (reg);
1927 reg = SUBREG_REG (reg);
1930 if (STACK_REG_P (reg)
1931 && (REG_NOTE_KIND (note) == REG_DEAD
1932 || REG_NOTE_KIND (note) == REG_UNUSED))
1934 note_reg[n_notes] = reg;
1935 note_loc[n_notes] = loc;
1936 note_kind[n_notes] = REG_NOTE_KIND (note);
1937 n_notes++;
1941 /* Set up CLOBBER_REG and CLOBBER_LOC. */
1943 n_clobbers = 0;
1945 if (GET_CODE (body) == PARALLEL)
1947 clobber_reg = (rtx *) alloca (XVECLEN (body, 0) * sizeof (rtx));
1948 clobber_loc = (rtx **) alloca (XVECLEN (body, 0) * sizeof (rtx *));
1950 for (i = 0; i < XVECLEN (body, 0); i++)
1951 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1953 rtx clobber = XVECEXP (body, 0, i);
1954 rtx reg = XEXP (clobber, 0);
1955 rtx *loc = & XEXP (clobber, 0);
1957 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
1959 loc = & SUBREG_REG (reg);
1960 reg = SUBREG_REG (reg);
1963 if (STACK_REG_P (reg))
1965 clobber_reg[n_clobbers] = reg;
1966 clobber_loc[n_clobbers] = loc;
1967 n_clobbers++;
1972 temp_stack = *regstack;
1974 /* Put the input regs into the desired place in TEMP_STACK. */
1976 for (i = n_outputs; i < n_outputs + n_inputs; i++)
1977 if (STACK_REG_P (recog_data.operand[i])
1978 && reg_class_subset_p (recog_op_alt[i][alt].class,
1979 FLOAT_REGS)
1980 && recog_op_alt[i][alt].class != FLOAT_REGS)
1982 /* If an operand needs to be in a particular reg in
1983 FLOAT_REGS, the constraint was either 't' or 'u'. Since
1984 these constraints are for single register classes, and
1985 reload guaranteed that operand[i] is already in that class,
1986 we can just use REGNO (recog_data.operand[i]) to know which
1987 actual reg this operand needs to be in. */
1989 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
1991 if (regno < 0)
1992 abort ();
1994 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
1996 /* recog_data.operand[i] is not in the right place. Find
1997 it and swap it with whatever is already in I's place.
1998 K is where recog_data.operand[i] is now. J is where it
1999 should be. */
2000 int j, k, temp;
2002 k = temp_stack.top - (regno - FIRST_STACK_REG);
2003 j = (temp_stack.top
2004 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2006 temp = temp_stack.reg[k];
2007 temp_stack.reg[k] = temp_stack.reg[j];
2008 temp_stack.reg[j] = temp;
2012 /* Emit insns before INSN to make sure the reg-stack is in the right
2013 order. */
2015 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2017 /* Make the needed input register substitutions. Do death notes and
2018 clobbers too, because these are for inputs, not outputs. */
2020 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2021 if (STACK_REG_P (recog_data.operand[i]))
2023 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2025 if (regnum < 0)
2026 abort ();
2028 replace_reg (recog_data.operand_loc[i], regnum);
2031 for (i = 0; i < n_notes; i++)
2032 if (note_kind[i] == REG_DEAD)
2034 int regnum = get_hard_regnum (regstack, note_reg[i]);
2036 if (regnum < 0)
2037 abort ();
2039 replace_reg (note_loc[i], regnum);
2042 for (i = 0; i < n_clobbers; i++)
2044 /* It's OK for a CLOBBER to reference a reg that is not live.
2045 Don't try to replace it in that case. */
2046 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2048 if (regnum >= 0)
2050 /* Sigh - clobbers always have QImode. But replace_reg knows
2051 that these regs can't be MODE_INT and will abort. Just put
2052 the right reg there without calling replace_reg. */
2054 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2058 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2060 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2061 if (STACK_REG_P (recog_data.operand[i]))
2063 /* An input reg is implicitly popped if it is tied to an
2064 output, or if there is a CLOBBER for it. */
2065 int j;
2067 for (j = 0; j < n_clobbers; j++)
2068 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2069 break;
2071 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
2073 /* recog_data.operand[i] might not be at the top of stack.
2074 But that's OK, because all we need to do is pop the
2075 right number of regs off of the top of the reg-stack.
2076 record_asm_stack_regs guaranteed that all implicitly
2077 popped regs were grouped at the top of the reg-stack. */
2079 CLEAR_HARD_REG_BIT (regstack->reg_set,
2080 regstack->reg[regstack->top]);
2081 regstack->top--;
2085 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2086 Note that there isn't any need to substitute register numbers.
2087 ??? Explain why this is true. */
2089 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2091 /* See if there is an output for this hard reg. */
2092 int j;
2094 for (j = 0; j < n_outputs; j++)
2095 if (STACK_REG_P (recog_data.operand[j])
2096 && REGNO (recog_data.operand[j]) == (unsigned) i)
2098 regstack->reg[++regstack->top] = i;
2099 SET_HARD_REG_BIT (regstack->reg_set, i);
2100 break;
2104 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2105 input that the asm didn't implicitly pop. If the asm didn't
2106 implicitly pop an input reg, that reg will still be live.
2108 Note that we can't use find_regno_note here: the register numbers
2109 in the death notes have already been substituted. */
2111 for (i = 0; i < n_outputs; i++)
2112 if (STACK_REG_P (recog_data.operand[i]))
2114 int j;
2116 for (j = 0; j < n_notes; j++)
2117 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2118 && note_kind[j] == REG_UNUSED)
2120 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2121 EMIT_AFTER);
2122 break;
2126 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2127 if (STACK_REG_P (recog_data.operand[i]))
2129 int j;
2131 for (j = 0; j < n_notes; j++)
2132 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2133 && note_kind[j] == REG_DEAD
2134 && TEST_HARD_REG_BIT (regstack->reg_set,
2135 REGNO (recog_data.operand[i])))
2137 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2138 EMIT_AFTER);
2139 break;
2144 /* Substitute stack hard reg numbers for stack virtual registers in
2145 INSN. Non-stack register numbers are not changed. REGSTACK is the
2146 current stack content. Insns may be emitted as needed to arrange the
2147 stack for the 387 based on the contents of the insn. */
2149 static void
2150 subst_stack_regs (insn, regstack)
2151 rtx insn;
2152 stack regstack;
2154 rtx *note_link, note;
2155 int i;
2157 if (GET_CODE (insn) == CALL_INSN)
2159 int top = regstack->top;
2161 /* If there are any floating point parameters to be passed in
2162 registers for this call, make sure they are in the right
2163 order. */
2165 if (top >= 0)
2167 straighten_stack (PREV_INSN (insn), regstack);
2169 /* Now mark the arguments as dead after the call. */
2171 while (regstack->top >= 0)
2173 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2174 regstack->top--;
2179 /* Do the actual substitution if any stack regs are mentioned.
2180 Since we only record whether entire insn mentions stack regs, and
2181 subst_stack_regs_pat only works for patterns that contain stack regs,
2182 we must check each pattern in a parallel here. A call_value_pop could
2183 fail otherwise. */
2185 if (stack_regs_mentioned (insn))
2187 int n_operands = asm_noperands (PATTERN (insn));
2188 if (n_operands >= 0)
2190 /* This insn is an `asm' with operands. Decode the operands,
2191 decide how many are inputs, and do register substitution.
2192 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2194 subst_asm_stack_regs (insn, regstack);
2195 return;
2198 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2199 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2201 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2202 subst_stack_regs_pat (insn, regstack,
2203 XVECEXP (PATTERN (insn), 0, i));
2205 else
2206 subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2209 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2210 REG_UNUSED will already have been dealt with, so just return. */
2212 if (GET_CODE (insn) == NOTE || INSN_DELETED_P (insn))
2213 return;
2215 /* If there is a REG_UNUSED note on a stack register on this insn,
2216 the indicated reg must be popped. The REG_UNUSED note is removed,
2217 since the form of the newly emitted pop insn references the reg,
2218 making it no longer `unset'. */
2220 note_link = &REG_NOTES (insn);
2221 for (note = *note_link; note; note = XEXP (note, 1))
2222 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2224 *note_link = XEXP (note, 1);
2225 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2227 else
2228 note_link = &XEXP (note, 1);
2231 /* Change the organization of the stack so that it fits a new basic
2232 block. Some registers might have to be popped, but there can never be
2233 a register live in the new block that is not now live.
2235 Insert any needed insns before or after INSN, as indicated by
2236 WHERE. OLD is the original stack layout, and NEW is the desired
2237 form. OLD is updated to reflect the code emitted, ie, it will be
2238 the same as NEW upon return.
2240 This function will not preserve block_end[]. But that information
2241 is no longer needed once this has executed. */
2243 static void
2244 change_stack (insn, old, new, where)
2245 rtx insn;
2246 stack old;
2247 stack new;
2248 enum emit_where where;
2250 int reg;
2251 int update_end = 0;
2253 /* We will be inserting new insns "backwards". If we are to insert
2254 after INSN, find the next insn, and insert before it. */
2256 if (where == EMIT_AFTER)
2258 if (current_block && current_block->end == insn)
2259 update_end = 1;
2260 insn = NEXT_INSN (insn);
2263 /* Pop any registers that are not needed in the new block. */
2265 for (reg = old->top; reg >= 0; reg--)
2266 if (! TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
2267 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[reg], DFmode),
2268 EMIT_BEFORE);
2270 if (new->top == -2)
2272 /* If the new block has never been processed, then it can inherit
2273 the old stack order. */
2275 new->top = old->top;
2276 memcpy (new->reg, old->reg, sizeof (new->reg));
2278 else
2280 /* This block has been entered before, and we must match the
2281 previously selected stack order. */
2283 /* By now, the only difference should be the order of the stack,
2284 not their depth or liveliness. */
2286 GO_IF_HARD_REG_EQUAL (old->reg_set, new->reg_set, win);
2287 abort ();
2288 win:
2289 if (old->top != new->top)
2290 abort ();
2292 /* If the stack is not empty (new->top != -1), loop here emitting
2293 swaps until the stack is correct.
2295 The worst case number of swaps emitted is N + 2, where N is the
2296 depth of the stack. In some cases, the reg at the top of
2297 stack may be correct, but swapped anyway in order to fix
2298 other regs. But since we never swap any other reg away from
2299 its correct slot, this algorithm will converge. */
2301 if (new->top != -1)
2304 /* Swap the reg at top of stack into the position it is
2305 supposed to be in, until the correct top of stack appears. */
2307 while (old->reg[old->top] != new->reg[new->top])
2309 for (reg = new->top; reg >= 0; reg--)
2310 if (new->reg[reg] == old->reg[old->top])
2311 break;
2313 if (reg == -1)
2314 abort ();
2316 emit_swap_insn (insn, old,
2317 FP_MODE_REG (old->reg[reg], DFmode));
2320 /* See if any regs remain incorrect. If so, bring an
2321 incorrect reg to the top of stack, and let the while loop
2322 above fix it. */
2324 for (reg = new->top; reg >= 0; reg--)
2325 if (new->reg[reg] != old->reg[reg])
2327 emit_swap_insn (insn, old,
2328 FP_MODE_REG (old->reg[reg], DFmode));
2329 break;
2331 } while (reg >= 0);
2333 /* At this point there must be no differences. */
2335 for (reg = old->top; reg >= 0; reg--)
2336 if (old->reg[reg] != new->reg[reg])
2337 abort ();
2340 if (update_end)
2341 current_block->end = PREV_INSN (insn);
2344 /* Print stack configuration. */
2346 static void
2347 print_stack (file, s)
2348 FILE *file;
2349 stack s;
2351 if (! file)
2352 return;
2354 if (s->top == -2)
2355 fprintf (file, "uninitialized\n");
2356 else if (s->top == -1)
2357 fprintf (file, "empty\n");
2358 else
2360 int i;
2361 fputs ("[ ", file);
2362 for (i = 0; i <= s->top; ++i)
2363 fprintf (file, "%d ", s->reg[i]);
2364 fputs ("]\n", file);
2368 /* This function was doing life analysis. We now let the regular live
2369 code do it's job, so we only need to check some extra invariants
2370 that reg-stack expects. Primary among these being that all registers
2371 are initialized before use.
2373 The function returns true when code was emitted to CFG edges and
2374 commit_edge_insertions needs to be called. */
2376 static int
2377 convert_regs_entry ()
2379 int inserted = 0;
2380 edge e;
2381 basic_block block;
2383 FOR_EACH_BB_REVERSE (block)
2385 block_info bi = BLOCK_INFO (block);
2386 int reg;
2388 /* Set current register status at last instruction `uninitialized'. */
2389 bi->stack_in.top = -2;
2391 /* Copy live_at_end and live_at_start into temporaries. */
2392 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
2394 if (REGNO_REG_SET_P (block->global_live_at_end, reg))
2395 SET_HARD_REG_BIT (bi->out_reg_set, reg);
2396 if (REGNO_REG_SET_P (block->global_live_at_start, reg))
2397 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
2401 /* Load something into each stack register live at function entry.
2402 Such live registers can be caused by uninitialized variables or
2403 functions not returning values on all paths. In order to keep
2404 the push/pop code happy, and to not scrog the register stack, we
2405 must put something in these registers. Use a QNaN.
2407 Note that we are insertting converted code here. This code is
2408 never seen by the convert_regs pass. */
2410 for (e = ENTRY_BLOCK_PTR->succ; e ; e = e->succ_next)
2412 basic_block block = e->dest;
2413 block_info bi = BLOCK_INFO (block);
2414 int reg, top = -1;
2416 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2417 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2419 rtx init;
2421 bi->stack_in.reg[++top] = reg;
2423 init = gen_rtx_SET (VOIDmode,
2424 FP_MODE_REG (FIRST_STACK_REG, SFmode),
2425 nan);
2426 insert_insn_on_edge (init, e);
2427 inserted = 1;
2430 bi->stack_in.top = top;
2433 return inserted;
2436 /* Construct the desired stack for function exit. This will either
2437 be `empty', or the function return value at top-of-stack. */
2439 static void
2440 convert_regs_exit ()
2442 int value_reg_low, value_reg_high;
2443 stack output_stack;
2444 rtx retvalue;
2446 retvalue = stack_result (current_function_decl);
2447 value_reg_low = value_reg_high = -1;
2448 if (retvalue)
2450 value_reg_low = REGNO (retvalue);
2451 value_reg_high = value_reg_low
2452 + HARD_REGNO_NREGS (value_reg_low, GET_MODE (retvalue)) - 1;
2455 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
2456 if (value_reg_low == -1)
2457 output_stack->top = -1;
2458 else
2460 int reg;
2462 output_stack->top = value_reg_high - value_reg_low;
2463 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2465 output_stack->reg[reg - value_reg_low] = reg;
2466 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2471 /* Adjust the stack of this block on exit to match the stack of the
2472 target block, or copy stack info into the stack of the successor
2473 of the successor hasn't been processed yet. */
2474 static bool
2475 compensate_edge (e, file)
2476 edge e;
2477 FILE *file;
2479 basic_block block = e->src, target = e->dest;
2480 block_info bi = BLOCK_INFO (block);
2481 struct stack_def regstack, tmpstack;
2482 stack target_stack = &BLOCK_INFO (target)->stack_in;
2483 int reg;
2485 current_block = block;
2486 regstack = bi->stack_out;
2487 if (file)
2488 fprintf (file, "Edge %d->%d: ", block->index, target->index);
2490 if (target_stack->top == -2)
2492 /* The target block hasn't had a stack order selected.
2493 We need merely ensure that no pops are needed. */
2494 for (reg = regstack.top; reg >= 0; --reg)
2495 if (!TEST_HARD_REG_BIT (target_stack->reg_set, regstack.reg[reg]))
2496 break;
2498 if (reg == -1)
2500 if (file)
2501 fprintf (file, "new block; copying stack position\n");
2503 /* change_stack kills values in regstack. */
2504 tmpstack = regstack;
2506 change_stack (block->end, &tmpstack, target_stack, EMIT_AFTER);
2507 return false;
2510 if (file)
2511 fprintf (file, "new block; pops needed\n");
2513 else
2515 if (target_stack->top == regstack.top)
2517 for (reg = target_stack->top; reg >= 0; --reg)
2518 if (target_stack->reg[reg] != regstack.reg[reg])
2519 break;
2521 if (reg == -1)
2523 if (file)
2524 fprintf (file, "no changes needed\n");
2525 return false;
2529 if (file)
2531 fprintf (file, "correcting stack to ");
2532 print_stack (file, target_stack);
2536 /* Care for non-call EH edges specially. The normal return path have
2537 values in registers. These will be popped en masse by the unwind
2538 library. */
2539 if ((e->flags & (EDGE_EH | EDGE_ABNORMAL_CALL)) == EDGE_EH)
2540 target_stack->top = -1;
2542 /* Other calls may appear to have values live in st(0), but the
2543 abnormal return path will not have actually loaded the values. */
2544 else if (e->flags & EDGE_ABNORMAL_CALL)
2546 /* Assert that the lifetimes are as we expect -- one value
2547 live at st(0) on the end of the source block, and no
2548 values live at the beginning of the destination block. */
2549 HARD_REG_SET tmp;
2551 CLEAR_HARD_REG_SET (tmp);
2552 GO_IF_HARD_REG_EQUAL (target_stack->reg_set, tmp, eh1);
2553 abort ();
2554 eh1:
2556 SET_HARD_REG_BIT (tmp, FIRST_STACK_REG);
2557 GO_IF_HARD_REG_EQUAL (regstack.reg_set, tmp, eh2);
2558 abort ();
2559 eh2:
2561 target_stack->top = -1;
2564 /* It is better to output directly to the end of the block
2565 instead of to the edge, because emit_swap can do minimal
2566 insn scheduling. We can do this when there is only one
2567 edge out, and it is not abnormal. */
2568 else if (block->succ->succ_next == NULL && !(e->flags & EDGE_ABNORMAL))
2570 /* change_stack kills values in regstack. */
2571 tmpstack = regstack;
2573 change_stack (block->end, &tmpstack, target_stack,
2574 (GET_CODE (block->end) == JUMP_INSN
2575 ? EMIT_BEFORE : EMIT_AFTER));
2577 else
2579 rtx seq, after;
2581 /* We don't support abnormal edges. Global takes care to
2582 avoid any live register across them, so we should never
2583 have to insert instructions on such edges. */
2584 if (e->flags & EDGE_ABNORMAL)
2585 abort ();
2587 current_block = NULL;
2588 start_sequence ();
2590 /* ??? change_stack needs some point to emit insns after. */
2591 after = emit_note (NULL, NOTE_INSN_DELETED);
2593 tmpstack = regstack;
2594 change_stack (after, &tmpstack, target_stack, EMIT_BEFORE);
2596 seq = get_insns ();
2597 end_sequence ();
2599 insert_insn_on_edge (seq, e);
2600 return true;
2602 return false;
2605 /* Convert stack register references in one block. */
2607 static int
2608 convert_regs_1 (file, block)
2609 FILE *file;
2610 basic_block block;
2612 struct stack_def regstack;
2613 block_info bi = BLOCK_INFO (block);
2614 int inserted, reg;
2615 rtx insn, next;
2616 edge e, beste = NULL;
2618 inserted = 0;
2620 /* Find the edge we will copy stack from. It should be the most frequent
2621 one as it will get cheapest after compensation code is generated,
2622 if multiple such exists, take one with largest count, prefer critical
2623 one (as splitting critical edges is more expensive), or one with lowest
2624 index, to avoid random changes with different orders of the edges. */
2625 for (e = block->pred; e ; e = e->pred_next)
2627 if (e->flags & EDGE_DFS_BACK)
2629 else if (! beste)
2630 beste = e;
2631 else if (EDGE_FREQUENCY (beste) < EDGE_FREQUENCY (e))
2632 beste = e;
2633 else if (EDGE_FREQUENCY (beste) > EDGE_FREQUENCY (e))
2635 else if (beste->count < e->count)
2636 beste = e;
2637 else if (beste->count > e->count)
2639 else if ((EDGE_CRITICAL_P (e) != 0)
2640 != (EDGE_CRITICAL_P (beste) != 0))
2642 if (EDGE_CRITICAL_P (e))
2643 beste = e;
2645 else if (e->src->index < beste->src->index)
2646 beste = e;
2649 /* Entry block does have stack already initialized. */
2650 if (bi->stack_in.top == -2)
2651 inserted |= compensate_edge (beste, file);
2652 else
2653 beste = NULL;
2655 current_block = block;
2657 if (file)
2659 fprintf (file, "\nBasic block %d\nInput stack: ", block->index);
2660 print_stack (file, &bi->stack_in);
2663 /* Process all insns in this block. Keep track of NEXT so that we
2664 don't process insns emitted while substituting in INSN. */
2665 next = block->head;
2666 regstack = bi->stack_in;
2669 insn = next;
2670 next = NEXT_INSN (insn);
2672 /* Ensure we have not missed a block boundary. */
2673 if (next == NULL)
2674 abort ();
2675 if (insn == block->end)
2676 next = NULL;
2678 /* Don't bother processing unless there is a stack reg
2679 mentioned or if it's a CALL_INSN. */
2680 if (stack_regs_mentioned (insn)
2681 || GET_CODE (insn) == CALL_INSN)
2683 if (file)
2685 fprintf (file, " insn %d input stack: ",
2686 INSN_UID (insn));
2687 print_stack (file, &regstack);
2689 subst_stack_regs (insn, &regstack);
2692 while (next);
2694 if (file)
2696 fprintf (file, "Expected live registers [");
2697 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2698 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
2699 fprintf (file, " %d", reg);
2700 fprintf (file, " ]\nOutput stack: ");
2701 print_stack (file, &regstack);
2704 insn = block->end;
2705 if (GET_CODE (insn) == JUMP_INSN)
2706 insn = PREV_INSN (insn);
2708 /* If the function is declared to return a value, but it returns one
2709 in only some cases, some registers might come live here. Emit
2710 necessary moves for them. */
2712 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2714 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
2715 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
2717 rtx set;
2719 if (file)
2721 fprintf (file, "Emitting insn initializing reg %d\n",
2722 reg);
2725 set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode),
2726 nan);
2727 insn = emit_insn_after (set, insn);
2728 subst_stack_regs (insn, &regstack);
2732 /* Something failed if the stack lives don't match. */
2733 GO_IF_HARD_REG_EQUAL (regstack.reg_set, bi->out_reg_set, win);
2734 abort ();
2735 win:
2736 bi->stack_out = regstack;
2738 /* Compensate the back edges, as those wasn't visited yet. */
2739 for (e = block->succ; e ; e = e->succ_next)
2741 if (e->flags & EDGE_DFS_BACK
2742 || (e->dest == EXIT_BLOCK_PTR))
2744 if (!BLOCK_INFO (e->dest)->done
2745 && e->dest != block)
2746 abort ();
2747 inserted |= compensate_edge (e, file);
2750 for (e = block->pred; e ; e = e->pred_next)
2752 if (e != beste && !(e->flags & EDGE_DFS_BACK)
2753 && e->src != ENTRY_BLOCK_PTR)
2755 if (!BLOCK_INFO (e->src)->done)
2756 abort ();
2757 inserted |= compensate_edge (e, file);
2761 return inserted;
2764 /* Convert registers in all blocks reachable from BLOCK. */
2766 static int
2767 convert_regs_2 (file, block)
2768 FILE *file;
2769 basic_block block;
2771 basic_block *stack, *sp;
2772 int inserted;
2774 stack = (basic_block *) xmalloc (sizeof (*stack) * n_basic_blocks);
2775 sp = stack;
2777 *sp++ = block;
2779 inserted = 0;
2782 edge e;
2784 block = *--sp;
2785 inserted |= convert_regs_1 (file, block);
2786 BLOCK_INFO (block)->done = 1;
2788 for (e = block->succ; e ; e = e->succ_next)
2789 if (! (e->flags & EDGE_DFS_BACK))
2791 BLOCK_INFO (e->dest)->predecessors--;
2792 if (!BLOCK_INFO (e->dest)->predecessors)
2793 *sp++ = e->dest;
2796 while (sp != stack);
2798 return inserted;
2801 /* Traverse all basic blocks in a function, converting the register
2802 references in each insn from the "flat" register file that gcc uses,
2803 to the stack-like registers the 387 uses. */
2805 static int
2806 convert_regs (file)
2807 FILE *file;
2809 int inserted;
2810 basic_block b;
2811 edge e;
2813 /* Initialize uninitialized registers on function entry. */
2814 inserted = convert_regs_entry ();
2816 /* Construct the desired stack for function exit. */
2817 convert_regs_exit ();
2818 BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
2820 /* ??? Future: process inner loops first, and give them arbitrary
2821 initial stacks which emit_swap_insn can modify. This ought to
2822 prevent double fxch that aften appears at the head of a loop. */
2824 /* Process all blocks reachable from all entry points. */
2825 for (e = ENTRY_BLOCK_PTR->succ; e ; e = e->succ_next)
2826 inserted |= convert_regs_2 (file, e->dest);
2828 /* ??? Process all unreachable blocks. Though there's no excuse
2829 for keeping these even when not optimizing. */
2830 FOR_EACH_BB (b)
2832 block_info bi = BLOCK_INFO (b);
2834 if (! bi->done)
2836 int reg;
2838 /* Create an arbitrary input stack. */
2839 bi->stack_in.top = -1;
2840 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2841 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2842 bi->stack_in.reg[++bi->stack_in.top] = reg;
2844 inserted |= convert_regs_2 (file, b);
2848 fixup_abnormal_edges ();
2849 if (inserted)
2850 commit_edge_insertions ();
2852 if (file)
2853 fputc ('\n', file);
2855 return inserted;
2857 #endif /* STACK_REGS */
2859 #include "gt-reg-stack.h"