PR tree-optimize/22348
[official-gcc.git] / gcc / tree-ssa-loop-niter.c
blob37cd4003d472f98c59606b5b060a52693a1825b7
1 /* Functions to determine/estimate number of iterations of a loop.
2 Copyright (C) 2004, 2005 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 2, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
19 02110-1301, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "hard-reg-set.h"
29 #include "basic-block.h"
30 #include "output.h"
31 #include "diagnostic.h"
32 #include "intl.h"
33 #include "tree-flow.h"
34 #include "tree-dump.h"
35 #include "cfgloop.h"
36 #include "tree-pass.h"
37 #include "ggc.h"
38 #include "tree-chrec.h"
39 #include "tree-scalar-evolution.h"
40 #include "tree-data-ref.h"
41 #include "params.h"
42 #include "flags.h"
43 #include "toplev.h"
44 #include "tree-inline.h"
46 #define SWAP(X, Y) do { void *tmp = (X); (X) = (Y); (Y) = tmp; } while (0)
51 Analysis of number of iterations of an affine exit test.
55 /* Returns true if ARG is either NULL_TREE or constant zero. Unlike
56 integer_zerop, it does not care about overflow flags. */
58 bool
59 zero_p (tree arg)
61 if (!arg)
62 return true;
64 if (TREE_CODE (arg) != INTEGER_CST)
65 return false;
67 return (TREE_INT_CST_LOW (arg) == 0 && TREE_INT_CST_HIGH (arg) == 0);
70 /* Returns true if ARG a nonzero constant. Unlike integer_nonzerop, it does
71 not care about overflow flags. */
73 static bool
74 nonzero_p (tree arg)
76 if (!arg)
77 return false;
79 if (TREE_CODE (arg) != INTEGER_CST)
80 return false;
82 return (TREE_INT_CST_LOW (arg) != 0 || TREE_INT_CST_HIGH (arg) != 0);
85 /* Returns inverse of X modulo 2^s, where MASK = 2^s-1. */
87 static tree
88 inverse (tree x, tree mask)
90 tree type = TREE_TYPE (x);
91 tree rslt;
92 unsigned ctr = tree_floor_log2 (mask);
94 if (TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT)
96 unsigned HOST_WIDE_INT ix;
97 unsigned HOST_WIDE_INT imask;
98 unsigned HOST_WIDE_INT irslt = 1;
100 gcc_assert (cst_and_fits_in_hwi (x));
101 gcc_assert (cst_and_fits_in_hwi (mask));
103 ix = int_cst_value (x);
104 imask = int_cst_value (mask);
106 for (; ctr; ctr--)
108 irslt *= ix;
109 ix *= ix;
111 irslt &= imask;
113 rslt = build_int_cst_type (type, irslt);
115 else
117 rslt = build_int_cst_type (type, 1);
118 for (; ctr; ctr--)
120 rslt = fold_binary_to_constant (MULT_EXPR, type, rslt, x);
121 x = fold_binary_to_constant (MULT_EXPR, type, x, x);
123 rslt = fold_binary_to_constant (BIT_AND_EXPR, type, rslt, mask);
126 return rslt;
129 /* Determine the number of iterations according to condition (for staying
130 inside loop) which compares two induction variables using comparison
131 operator CODE. The induction variable on left side of the comparison
132 has base BASE0 and step STEP0. the right-hand side one has base
133 BASE1 and step STEP1. Both induction variables must have type TYPE,
134 which must be an integer or pointer type. STEP0 and STEP1 must be
135 constants (or NULL_TREE, which is interpreted as constant zero).
137 The results (number of iterations and assumptions as described in
138 comments at struct tree_niter_desc in tree-flow.h) are stored to NITER.
139 In case we are unable to determine number of iterations, contents of
140 this structure is unchanged. */
142 static void
143 number_of_iterations_cond (tree type, tree base0, tree step0,
144 enum tree_code code, tree base1, tree step1,
145 struct tree_niter_desc *niter)
147 tree step, delta, mmin, mmax;
148 tree may_xform, bound, s, d, tmp;
149 bool was_sharp = false;
150 tree assumption;
151 tree assumptions = boolean_true_node;
152 tree noloop_assumptions = boolean_false_node;
153 tree niter_type, signed_niter_type;
154 tree bits;
156 /* The meaning of these assumptions is this:
157 if !assumptions
158 then the rest of information does not have to be valid
159 if noloop_assumptions then the loop does not have to roll
160 (but it is only conservative approximation, i.e. it only says that
161 if !noloop_assumptions, then the loop does not end before the computed
162 number of iterations) */
164 /* Make < comparison from > ones. */
165 if (code == GE_EXPR
166 || code == GT_EXPR)
168 SWAP (base0, base1);
169 SWAP (step0, step1);
170 code = swap_tree_comparison (code);
173 /* We can handle the case when neither of the sides of the comparison is
174 invariant, provided that the test is NE_EXPR. This rarely occurs in
175 practice, but it is simple enough to manage. */
176 if (!zero_p (step0) && !zero_p (step1))
178 if (code != NE_EXPR)
179 return;
181 step0 = fold_binary_to_constant (MINUS_EXPR, type, step0, step1);
182 step1 = NULL_TREE;
185 /* If the result is a constant, the loop is weird. More precise handling
186 would be possible, but the situation is not common enough to waste time
187 on it. */
188 if (zero_p (step0) && zero_p (step1))
189 return;
191 /* Ignore loops of while (i-- < 10) type. */
192 if (code != NE_EXPR)
194 if (step0 && tree_int_cst_sign_bit (step0))
195 return;
197 if (!zero_p (step1) && !tree_int_cst_sign_bit (step1))
198 return;
201 if (POINTER_TYPE_P (type))
203 /* We assume pointer arithmetic never overflows. */
204 mmin = mmax = NULL_TREE;
206 else
208 mmin = TYPE_MIN_VALUE (type);
209 mmax = TYPE_MAX_VALUE (type);
212 /* Some more condition normalization. We must record some assumptions
213 due to overflows. */
215 if (code == LT_EXPR)
217 /* We want to take care only of <=; this is easy,
218 as in cases the overflow would make the transformation unsafe the loop
219 does not roll. Seemingly it would make more sense to want to take
220 care of <, as NE is more similar to it, but the problem is that here
221 the transformation would be more difficult due to possibly infinite
222 loops. */
223 if (zero_p (step0))
225 if (mmax)
226 assumption = fold_build2 (EQ_EXPR, boolean_type_node, base0, mmax);
227 else
228 assumption = boolean_false_node;
229 if (nonzero_p (assumption))
230 goto zero_iter;
231 base0 = fold_build2 (PLUS_EXPR, type, base0,
232 build_int_cst_type (type, 1));
234 else
236 if (mmin)
237 assumption = fold_build2 (EQ_EXPR, boolean_type_node, base1, mmin);
238 else
239 assumption = boolean_false_node;
240 if (nonzero_p (assumption))
241 goto zero_iter;
242 base1 = fold_build2 (MINUS_EXPR, type, base1,
243 build_int_cst_type (type, 1));
245 noloop_assumptions = assumption;
246 code = LE_EXPR;
248 /* It will be useful to be able to tell the difference once more in
249 <= -> != reduction. */
250 was_sharp = true;
253 /* Take care of trivially infinite loops. */
254 if (code != NE_EXPR)
256 if (zero_p (step0)
257 && mmin
258 && operand_equal_p (base0, mmin, 0))
259 return;
260 if (zero_p (step1)
261 && mmax
262 && operand_equal_p (base1, mmax, 0))
263 return;
266 /* If we can we want to take care of NE conditions instead of size
267 comparisons, as they are much more friendly (most importantly
268 this takes care of special handling of loops with step 1). We can
269 do it if we first check that upper bound is greater or equal to
270 lower bound, their difference is constant c modulo step and that
271 there is not an overflow. */
272 if (code != NE_EXPR)
274 if (zero_p (step0))
275 step = fold_unary_to_constant (NEGATE_EXPR, type, step1);
276 else
277 step = step0;
278 delta = fold_build2 (MINUS_EXPR, type, base1, base0);
279 delta = fold_build2 (FLOOR_MOD_EXPR, type, delta, step);
280 may_xform = boolean_false_node;
282 if (TREE_CODE (delta) == INTEGER_CST)
284 tmp = fold_binary_to_constant (MINUS_EXPR, type, step,
285 build_int_cst_type (type, 1));
286 if (was_sharp
287 && operand_equal_p (delta, tmp, 0))
289 /* A special case. We have transformed condition of type
290 for (i = 0; i < 4; i += 4)
291 into
292 for (i = 0; i <= 3; i += 4)
293 obviously if the test for overflow during that transformation
294 passed, we cannot overflow here. Most importantly any
295 loop with sharp end condition and step 1 falls into this
296 category, so handling this case specially is definitely
297 worth the troubles. */
298 may_xform = boolean_true_node;
300 else if (zero_p (step0))
302 if (!mmin)
303 may_xform = boolean_true_node;
304 else
306 bound = fold_binary_to_constant (PLUS_EXPR, type,
307 mmin, step);
308 bound = fold_binary_to_constant (MINUS_EXPR, type,
309 bound, delta);
310 may_xform = fold_build2 (LE_EXPR, boolean_type_node,
311 bound, base0);
314 else
316 if (!mmax)
317 may_xform = boolean_true_node;
318 else
320 bound = fold_binary_to_constant (MINUS_EXPR, type,
321 mmax, step);
322 bound = fold_binary_to_constant (PLUS_EXPR, type,
323 bound, delta);
324 may_xform = fold_build2 (LE_EXPR, boolean_type_node,
325 base1, bound);
330 if (!zero_p (may_xform))
332 /* We perform the transformation always provided that it is not
333 completely senseless. This is OK, as we would need this assumption
334 to determine the number of iterations anyway. */
335 if (!nonzero_p (may_xform))
336 assumptions = may_xform;
338 if (zero_p (step0))
340 base0 = fold_build2 (PLUS_EXPR, type, base0, delta);
341 base0 = fold_build2 (MINUS_EXPR, type, base0, step);
343 else
345 base1 = fold_build2 (MINUS_EXPR, type, base1, delta);
346 base1 = fold_build2 (PLUS_EXPR, type, base1, step);
349 assumption = fold_build2 (GT_EXPR, boolean_type_node, base0, base1);
350 noloop_assumptions = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
351 noloop_assumptions, assumption);
352 code = NE_EXPR;
356 /* Count the number of iterations. */
357 niter_type = unsigned_type_for (type);
358 signed_niter_type = signed_type_for (type);
360 if (code == NE_EXPR)
362 /* Everything we do here is just arithmetics modulo size of mode. This
363 makes us able to do more involved computations of number of iterations
364 than in other cases. First transform the condition into shape
365 s * i <> c, with s positive. */
366 base1 = fold_build2 (MINUS_EXPR, type, base1, base0);
367 base0 = NULL_TREE;
368 if (!zero_p (step1))
369 step0 = fold_unary_to_constant (NEGATE_EXPR, type, step1);
370 step1 = NULL_TREE;
371 if (tree_int_cst_sign_bit (fold_convert (signed_niter_type, step0)))
373 step0 = fold_unary_to_constant (NEGATE_EXPR, type, step0);
374 base1 = fold_build1 (NEGATE_EXPR, type, base1);
377 base1 = fold_convert (niter_type, base1);
378 step0 = fold_convert (niter_type, step0);
380 /* Let nsd (step, size of mode) = d. If d does not divide c, the loop
381 is infinite. Otherwise, the number of iterations is
382 (inverse(s/d) * (c/d)) mod (size of mode/d). */
383 bits = num_ending_zeros (step0);
384 d = fold_binary_to_constant (LSHIFT_EXPR, niter_type,
385 build_int_cst_type (niter_type, 1), bits);
386 s = fold_binary_to_constant (RSHIFT_EXPR, niter_type, step0, bits);
388 bound = build_low_bits_mask (niter_type,
389 (TYPE_PRECISION (niter_type)
390 - tree_low_cst (bits, 1)));
392 assumption = fold_build2 (FLOOR_MOD_EXPR, niter_type, base1, d);
393 assumption = fold_build2 (EQ_EXPR, boolean_type_node,
394 assumption,
395 build_int_cst (niter_type, 0));
396 assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
397 assumptions, assumption);
399 tmp = fold_build2 (EXACT_DIV_EXPR, niter_type, base1, d);
400 tmp = fold_build2 (MULT_EXPR, niter_type, tmp, inverse (s, bound));
401 niter->niter = fold_build2 (BIT_AND_EXPR, niter_type, tmp, bound);
403 else
405 if (zero_p (step1))
406 /* Condition in shape a + s * i <= b
407 We must know that b + s does not overflow and a <= b + s and then we
408 can compute number of iterations as (b + s - a) / s. (It might
409 seem that we in fact could be more clever about testing the b + s
410 overflow condition using some information about b - a mod s,
411 but it was already taken into account during LE -> NE transform). */
413 if (mmax)
415 bound = fold_binary_to_constant (MINUS_EXPR, type, mmax, step0);
416 assumption = fold_build2 (LE_EXPR, boolean_type_node,
417 base1, bound);
418 assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
419 assumptions, assumption);
422 step = step0;
423 tmp = fold_build2 (PLUS_EXPR, type, base1, step0);
424 assumption = fold_build2 (GT_EXPR, boolean_type_node, base0, tmp);
425 delta = fold_build2 (PLUS_EXPR, type, base1, step);
426 delta = fold_build2 (MINUS_EXPR, type, delta, base0);
427 delta = fold_convert (niter_type, delta);
429 else
431 /* Condition in shape a <= b - s * i
432 We must know that a - s does not overflow and a - s <= b and then
433 we can again compute number of iterations as (b - (a - s)) / s. */
434 if (mmin)
436 bound = fold_binary_to_constant (MINUS_EXPR, type, mmin, step1);
437 assumption = fold_build2 (LE_EXPR, boolean_type_node,
438 bound, base0);
439 assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
440 assumptions, assumption);
442 step = fold_build1 (NEGATE_EXPR, type, step1);
443 tmp = fold_build2 (PLUS_EXPR, type, base0, step1);
444 assumption = fold_build2 (GT_EXPR, boolean_type_node, tmp, base1);
445 delta = fold_build2 (MINUS_EXPR, type, base0, step);
446 delta = fold_build2 (MINUS_EXPR, type, base1, delta);
447 delta = fold_convert (niter_type, delta);
449 noloop_assumptions = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
450 noloop_assumptions, assumption);
451 delta = fold_build2 (FLOOR_DIV_EXPR, niter_type, delta,
452 fold_convert (niter_type, step));
453 niter->niter = delta;
456 niter->assumptions = assumptions;
457 niter->may_be_zero = noloop_assumptions;
458 return;
460 zero_iter:
461 niter->assumptions = boolean_true_node;
462 niter->may_be_zero = boolean_true_node;
463 niter->niter = build_int_cst_type (type, 0);
464 return;
468 /* Similar to number_of_iterations_cond, but only handles the special
469 case of loops with step 1 or -1. The meaning of the arguments
470 is the same as in number_of_iterations_cond. The function
471 returns true if the special case was recognized, false otherwise. */
473 static bool
474 number_of_iterations_special (tree type, tree base0, tree step0,
475 enum tree_code code, tree base1, tree step1,
476 struct tree_niter_desc *niter)
478 tree niter_type = unsigned_type_for (type), mmax, mmin;
480 /* Make < comparison from > ones. */
481 if (code == GE_EXPR
482 || code == GT_EXPR)
484 SWAP (base0, base1);
485 SWAP (step0, step1);
486 code = swap_tree_comparison (code);
489 switch (code)
491 case NE_EXPR:
492 if (zero_p (step0))
494 if (zero_p (step1))
495 return false;
496 SWAP (base0, base1);
497 SWAP (step0, step1);
499 else if (!zero_p (step1))
500 return false;
502 if (integer_onep (step0))
504 /* for (i = base0; i != base1; i++) */
505 niter->assumptions = boolean_true_node;
506 niter->may_be_zero = boolean_false_node;
507 niter->niter = fold_build2 (MINUS_EXPR, type, base1, base0);
508 niter->additional_info = boolean_true_node;
510 else if (integer_all_onesp (step0))
512 /* for (i = base0; i != base1; i--) */
513 niter->assumptions = boolean_true_node;
514 niter->may_be_zero = boolean_false_node;
515 niter->niter = fold_build2 (MINUS_EXPR, type, base0, base1);
517 else
518 return false;
520 break;
522 case LT_EXPR:
523 if ((step0 && integer_onep (step0) && zero_p (step1))
524 || (step1 && integer_all_onesp (step1) && zero_p (step0)))
526 /* for (i = base0; i < base1; i++)
530 for (i = base1; i > base0; i--).
532 In both cases # of iterations is base1 - base0. */
534 niter->assumptions = boolean_true_node;
535 niter->may_be_zero = fold_build2 (GT_EXPR, boolean_type_node,
536 base0, base1);
537 niter->niter = fold_build2 (MINUS_EXPR, type, base1, base0);
539 else
540 return false;
541 break;
543 case LE_EXPR:
544 if (POINTER_TYPE_P (type))
546 /* We assume pointer arithmetic never overflows. */
547 mmin = mmax = NULL_TREE;
549 else
551 mmin = TYPE_MIN_VALUE (type);
552 mmax = TYPE_MAX_VALUE (type);
555 if (step0 && integer_onep (step0) && zero_p (step1))
557 /* for (i = base0; i <= base1; i++) */
558 if (mmax)
559 niter->assumptions = fold_build2 (NE_EXPR, boolean_type_node,
560 base1, mmax);
561 else
562 niter->assumptions = boolean_true_node;
563 base1 = fold_build2 (PLUS_EXPR, type, base1,
564 build_int_cst_type (type, 1));
566 else if (step1 && integer_all_onesp (step1) && zero_p (step0))
568 /* for (i = base1; i >= base0; i--) */
569 if (mmin)
570 niter->assumptions = fold_build2 (NE_EXPR, boolean_type_node,
571 base0, mmin);
572 else
573 niter->assumptions = boolean_true_node;
574 base0 = fold_build2 (MINUS_EXPR, type, base0,
575 build_int_cst_type (type, 1));
577 else
578 return false;
580 niter->may_be_zero = fold_build2 (GT_EXPR, boolean_type_node,
581 base0, base1);
582 niter->niter = fold_build2 (MINUS_EXPR, type, base1, base0);
583 break;
585 default:
586 gcc_unreachable ();
589 niter->niter = fold_convert (niter_type, niter->niter);
590 niter->additional_info = boolean_true_node;
591 return true;
594 /* Substitute NEW for OLD in EXPR and fold the result. */
596 static tree
597 simplify_replace_tree (tree expr, tree old, tree new)
599 unsigned i, n;
600 tree ret = NULL_TREE, e, se;
602 if (!expr)
603 return NULL_TREE;
605 if (expr == old
606 || operand_equal_p (expr, old, 0))
607 return unshare_expr (new);
609 if (!EXPR_P (expr))
610 return expr;
612 n = TREE_CODE_LENGTH (TREE_CODE (expr));
613 for (i = 0; i < n; i++)
615 e = TREE_OPERAND (expr, i);
616 se = simplify_replace_tree (e, old, new);
617 if (e == se)
618 continue;
620 if (!ret)
621 ret = copy_node (expr);
623 TREE_OPERAND (ret, i) = se;
626 return (ret ? fold (ret) : expr);
629 /* Expand definitions of ssa names in EXPR as long as they are simple
630 enough, and return the new expression. */
632 tree
633 expand_simple_operations (tree expr)
635 unsigned i, n;
636 tree ret = NULL_TREE, e, ee, stmt;
637 enum tree_code code = TREE_CODE (expr);
639 if (is_gimple_min_invariant (expr))
640 return expr;
642 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
644 n = TREE_CODE_LENGTH (code);
645 for (i = 0; i < n; i++)
647 e = TREE_OPERAND (expr, i);
648 ee = expand_simple_operations (e);
649 if (e == ee)
650 continue;
652 if (!ret)
653 ret = copy_node (expr);
655 TREE_OPERAND (ret, i) = ee;
658 return (ret ? fold (ret) : expr);
661 if (TREE_CODE (expr) != SSA_NAME)
662 return expr;
664 stmt = SSA_NAME_DEF_STMT (expr);
665 if (TREE_CODE (stmt) != MODIFY_EXPR)
666 return expr;
668 e = TREE_OPERAND (stmt, 1);
669 if (/* Casts are simple. */
670 TREE_CODE (e) != NOP_EXPR
671 && TREE_CODE (e) != CONVERT_EXPR
672 /* Copies are simple. */
673 && TREE_CODE (e) != SSA_NAME
674 /* Assignments of invariants are simple. */
675 && !is_gimple_min_invariant (e)
676 /* And increments and decrements by a constant are simple. */
677 && !((TREE_CODE (e) == PLUS_EXPR
678 || TREE_CODE (e) == MINUS_EXPR)
679 && is_gimple_min_invariant (TREE_OPERAND (e, 1))))
680 return expr;
682 return expand_simple_operations (e);
685 /* Tries to simplify EXPR using the condition COND. Returns the simplified
686 expression (or EXPR unchanged, if no simplification was possible). */
688 static tree
689 tree_simplify_using_condition_1 (tree cond, tree expr)
691 bool changed;
692 tree e, te, e0, e1, e2, notcond;
693 enum tree_code code = TREE_CODE (expr);
695 if (code == INTEGER_CST)
696 return expr;
698 if (code == TRUTH_OR_EXPR
699 || code == TRUTH_AND_EXPR
700 || code == COND_EXPR)
702 changed = false;
704 e0 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 0));
705 if (TREE_OPERAND (expr, 0) != e0)
706 changed = true;
708 e1 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 1));
709 if (TREE_OPERAND (expr, 1) != e1)
710 changed = true;
712 if (code == COND_EXPR)
714 e2 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 2));
715 if (TREE_OPERAND (expr, 2) != e2)
716 changed = true;
718 else
719 e2 = NULL_TREE;
721 if (changed)
723 if (code == COND_EXPR)
724 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
725 else
726 expr = fold_build2 (code, boolean_type_node, e0, e1);
729 return expr;
732 /* In case COND is equality, we may be able to simplify EXPR by copy/constant
733 propagation, and vice versa. Fold does not handle this, since it is
734 considered too expensive. */
735 if (TREE_CODE (cond) == EQ_EXPR)
737 e0 = TREE_OPERAND (cond, 0);
738 e1 = TREE_OPERAND (cond, 1);
740 /* We know that e0 == e1. Check whether we cannot simplify expr
741 using this fact. */
742 e = simplify_replace_tree (expr, e0, e1);
743 if (zero_p (e) || nonzero_p (e))
744 return e;
746 e = simplify_replace_tree (expr, e1, e0);
747 if (zero_p (e) || nonzero_p (e))
748 return e;
750 if (TREE_CODE (expr) == EQ_EXPR)
752 e0 = TREE_OPERAND (expr, 0);
753 e1 = TREE_OPERAND (expr, 1);
755 /* If e0 == e1 (EXPR) implies !COND, then EXPR cannot be true. */
756 e = simplify_replace_tree (cond, e0, e1);
757 if (zero_p (e))
758 return e;
759 e = simplify_replace_tree (cond, e1, e0);
760 if (zero_p (e))
761 return e;
763 if (TREE_CODE (expr) == NE_EXPR)
765 e0 = TREE_OPERAND (expr, 0);
766 e1 = TREE_OPERAND (expr, 1);
768 /* If e0 == e1 (!EXPR) implies !COND, then EXPR must be true. */
769 e = simplify_replace_tree (cond, e0, e1);
770 if (zero_p (e))
771 return boolean_true_node;
772 e = simplify_replace_tree (cond, e1, e0);
773 if (zero_p (e))
774 return boolean_true_node;
777 te = expand_simple_operations (expr);
779 /* Check whether COND ==> EXPR. */
780 notcond = invert_truthvalue (cond);
781 e = fold_build2 (TRUTH_OR_EXPR, boolean_type_node, notcond, te);
782 if (nonzero_p (e))
783 return e;
785 /* Check whether COND ==> not EXPR. */
786 e = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, cond, te);
787 if (zero_p (e))
788 return e;
790 return expr;
793 /* Tries to simplify EXPR using the condition COND. Returns the simplified
794 expression (or EXPR unchanged, if no simplification was possible).
795 Wrapper around tree_simplify_using_condition_1 that ensures that chains
796 of simple operations in definitions of ssa names in COND are expanded,
797 so that things like casts or incrementing the value of the bound before
798 the loop do not cause us to fail. */
800 static tree
801 tree_simplify_using_condition (tree cond, tree expr)
803 cond = expand_simple_operations (cond);
805 return tree_simplify_using_condition_1 (cond, expr);
808 /* Tries to simplify EXPR using the conditions on entry to LOOP.
809 Record the conditions used for simplification to CONDS_USED.
810 Returns the simplified expression (or EXPR unchanged, if no
811 simplification was possible).*/
813 static tree
814 simplify_using_initial_conditions (struct loop *loop, tree expr,
815 tree *conds_used)
817 edge e;
818 basic_block bb;
819 tree exp, cond;
821 if (TREE_CODE (expr) == INTEGER_CST)
822 return expr;
824 for (bb = loop->header;
825 bb != ENTRY_BLOCK_PTR;
826 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
828 if (!single_pred_p (bb))
829 continue;
830 e = single_pred_edge (bb);
832 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
833 continue;
835 cond = COND_EXPR_COND (last_stmt (e->src));
836 if (e->flags & EDGE_FALSE_VALUE)
837 cond = invert_truthvalue (cond);
838 exp = tree_simplify_using_condition (cond, expr);
840 if (exp != expr)
841 *conds_used = fold_build2 (TRUTH_AND_EXPR,
842 boolean_type_node,
843 *conds_used,
844 cond);
846 expr = exp;
849 return expr;
852 /* Tries to simplify EXPR using the evolutions of the loop invariants
853 in the superloops of LOOP. Returns the simplified expression
854 (or EXPR unchanged, if no simplification was possible). */
856 static tree
857 simplify_using_outer_evolutions (struct loop *loop, tree expr)
859 enum tree_code code = TREE_CODE (expr);
860 bool changed;
861 tree e, e0, e1, e2;
863 if (is_gimple_min_invariant (expr))
864 return expr;
866 if (code == TRUTH_OR_EXPR
867 || code == TRUTH_AND_EXPR
868 || code == COND_EXPR)
870 changed = false;
872 e0 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 0));
873 if (TREE_OPERAND (expr, 0) != e0)
874 changed = true;
876 e1 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 1));
877 if (TREE_OPERAND (expr, 1) != e1)
878 changed = true;
880 if (code == COND_EXPR)
882 e2 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 2));
883 if (TREE_OPERAND (expr, 2) != e2)
884 changed = true;
886 else
887 e2 = NULL_TREE;
889 if (changed)
891 if (code == COND_EXPR)
892 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
893 else
894 expr = fold_build2 (code, boolean_type_node, e0, e1);
897 return expr;
900 e = instantiate_parameters (loop, expr);
901 if (is_gimple_min_invariant (e))
902 return e;
904 return expr;
907 /* Stores description of number of iterations of LOOP derived from
908 EXIT (an exit edge of the LOOP) in NITER. Returns true if some
909 useful information could be derived (and fields of NITER has
910 meaning described in comments at struct tree_niter_desc
911 declaration), false otherwise. If WARN is true and
912 -Wunsafe-loop-optimizations was given, warn if the optimizer is going to use
913 potentially unsafe assumptions. */
915 bool
916 number_of_iterations_exit (struct loop *loop, edge exit,
917 struct tree_niter_desc *niter,
918 bool warn)
920 tree stmt, cond, type;
921 tree op0, base0, step0;
922 tree op1, base1, step1;
923 enum tree_code code;
925 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
926 return false;
928 niter->assumptions = boolean_false_node;
929 stmt = last_stmt (exit->src);
930 if (!stmt || TREE_CODE (stmt) != COND_EXPR)
931 return false;
933 /* We want the condition for staying inside loop. */
934 cond = COND_EXPR_COND (stmt);
935 if (exit->flags & EDGE_TRUE_VALUE)
936 cond = invert_truthvalue (cond);
938 code = TREE_CODE (cond);
939 switch (code)
941 case GT_EXPR:
942 case GE_EXPR:
943 case NE_EXPR:
944 case LT_EXPR:
945 case LE_EXPR:
946 break;
948 default:
949 return false;
952 op0 = TREE_OPERAND (cond, 0);
953 op1 = TREE_OPERAND (cond, 1);
954 type = TREE_TYPE (op0);
956 if (TREE_CODE (type) != INTEGER_TYPE
957 && !POINTER_TYPE_P (type))
958 return false;
960 if (!simple_iv (loop, stmt, op0, &base0, &step0, false))
961 return false;
962 if (!simple_iv (loop, stmt, op1, &base1, &step1, false))
963 return false;
965 niter->niter = NULL_TREE;
967 /* Handle common special cases first, so that we do not need to use
968 generic (and slow) analysis very often. */
969 if (!number_of_iterations_special (type, base0, step0, code, base1, step1,
970 niter))
973 number_of_iterations_cond (type, base0, step0, code, base1, step1,
974 niter);
976 if (!niter->niter)
977 return false;
980 if (optimize >= 3)
982 niter->assumptions = simplify_using_outer_evolutions (loop,
983 niter->assumptions);
984 niter->may_be_zero = simplify_using_outer_evolutions (loop,
985 niter->may_be_zero);
986 niter->niter = simplify_using_outer_evolutions (loop, niter->niter);
989 niter->additional_info = boolean_true_node;
990 niter->assumptions
991 = simplify_using_initial_conditions (loop,
992 niter->assumptions,
993 &niter->additional_info);
994 niter->may_be_zero
995 = simplify_using_initial_conditions (loop,
996 niter->may_be_zero,
997 &niter->additional_info);
999 if (integer_onep (niter->assumptions))
1000 return true;
1002 /* With -funsafe-loop-optimizations we assume that nothing bad can happen.
1003 But if we can prove that there is overflow or some other source of weird
1004 behavior, ignore the loop even with -funsafe-loop-optimizations. */
1005 if (integer_zerop (niter->assumptions))
1006 return false;
1008 if (flag_unsafe_loop_optimizations)
1009 niter->assumptions = boolean_true_node;
1011 if (warn)
1013 const char *wording;
1014 location_t loc = EXPR_LOCATION (stmt);
1016 /* We can provide a more specific warning if one of the operator is
1017 constant and the other advances by +1 or -1. */
1018 if (step1 ? !step0 && (integer_onep (step1) || integer_all_onesp (step1))
1019 : step0 && (integer_onep (step0) || integer_all_onesp (step0)))
1020 wording =
1021 flag_unsafe_loop_optimizations
1022 ? N_("assuming that the loop is not infinite")
1023 : N_("cannot optimize possibly infinite loops");
1024 else
1025 wording =
1026 flag_unsafe_loop_optimizations
1027 ? N_("assuming that the loop counter does not overflow")
1028 : N_("cannot optimize loop, the loop counter may overflow");
1030 if (LOCATION_LINE (loc) > 0)
1031 warning (OPT_Wunsafe_loop_optimizations, "%H%s", &loc, gettext (wording));
1032 else
1033 warning (OPT_Wunsafe_loop_optimizations, "%s", gettext (wording));
1036 return flag_unsafe_loop_optimizations;
1039 /* Try to determine the number of iterations of LOOP. If we succeed,
1040 expression giving number of iterations is returned and *EXIT is
1041 set to the edge from that the information is obtained. Otherwise
1042 chrec_dont_know is returned. */
1044 tree
1045 find_loop_niter (struct loop *loop, edge *exit)
1047 unsigned n_exits, i;
1048 edge *exits = get_loop_exit_edges (loop, &n_exits);
1049 edge ex;
1050 tree niter = NULL_TREE, aniter;
1051 struct tree_niter_desc desc;
1053 *exit = NULL;
1054 for (i = 0; i < n_exits; i++)
1056 ex = exits[i];
1057 if (!just_once_each_iteration_p (loop, ex->src))
1058 continue;
1060 if (!number_of_iterations_exit (loop, ex, &desc, false))
1061 continue;
1063 if (nonzero_p (desc.may_be_zero))
1065 /* We exit in the first iteration through this exit.
1066 We won't find anything better. */
1067 niter = build_int_cst_type (unsigned_type_node, 0);
1068 *exit = ex;
1069 break;
1072 if (!zero_p (desc.may_be_zero))
1073 continue;
1075 aniter = desc.niter;
1077 if (!niter)
1079 /* Nothing recorded yet. */
1080 niter = aniter;
1081 *exit = ex;
1082 continue;
1085 /* Prefer constants, the lower the better. */
1086 if (TREE_CODE (aniter) != INTEGER_CST)
1087 continue;
1089 if (TREE_CODE (niter) != INTEGER_CST)
1091 niter = aniter;
1092 *exit = ex;
1093 continue;
1096 if (tree_int_cst_lt (aniter, niter))
1098 niter = aniter;
1099 *exit = ex;
1100 continue;
1103 free (exits);
1105 return niter ? niter : chrec_dont_know;
1110 Analysis of a number of iterations of a loop by a brute-force evaluation.
1114 /* Bound on the number of iterations we try to evaluate. */
1116 #define MAX_ITERATIONS_TO_TRACK \
1117 ((unsigned) PARAM_VALUE (PARAM_MAX_ITERATIONS_TO_TRACK))
1119 /* Returns the loop phi node of LOOP such that ssa name X is derived from its
1120 result by a chain of operations such that all but exactly one of their
1121 operands are constants. */
1123 static tree
1124 chain_of_csts_start (struct loop *loop, tree x)
1126 tree stmt = SSA_NAME_DEF_STMT (x);
1127 tree use;
1128 basic_block bb = bb_for_stmt (stmt);
1130 if (!bb
1131 || !flow_bb_inside_loop_p (loop, bb))
1132 return NULL_TREE;
1134 if (TREE_CODE (stmt) == PHI_NODE)
1136 if (bb == loop->header)
1137 return stmt;
1139 return NULL_TREE;
1142 if (TREE_CODE (stmt) != MODIFY_EXPR)
1143 return NULL_TREE;
1145 if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
1146 return NULL_TREE;
1147 if (SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_DEF) == NULL_DEF_OPERAND_P)
1148 return NULL_TREE;
1150 use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1151 if (use == NULL_USE_OPERAND_P)
1152 return NULL_TREE;
1154 return chain_of_csts_start (loop, use);
1157 /* Determines whether the expression X is derived from a result of a phi node
1158 in header of LOOP such that
1160 * the derivation of X consists only from operations with constants
1161 * the initial value of the phi node is constant
1162 * the value of the phi node in the next iteration can be derived from the
1163 value in the current iteration by a chain of operations with constants.
1165 If such phi node exists, it is returned. If X is a constant, X is returned
1166 unchanged. Otherwise NULL_TREE is returned. */
1168 static tree
1169 get_base_for (struct loop *loop, tree x)
1171 tree phi, init, next;
1173 if (is_gimple_min_invariant (x))
1174 return x;
1176 phi = chain_of_csts_start (loop, x);
1177 if (!phi)
1178 return NULL_TREE;
1180 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1181 next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
1183 if (TREE_CODE (next) != SSA_NAME)
1184 return NULL_TREE;
1186 if (!is_gimple_min_invariant (init))
1187 return NULL_TREE;
1189 if (chain_of_csts_start (loop, next) != phi)
1190 return NULL_TREE;
1192 return phi;
1195 /* Given an expression X, then
1197 * if BASE is NULL_TREE, X must be a constant and we return X.
1198 * otherwise X is a SSA name, whose value in the considered loop is derived
1199 by a chain of operations with constant from a result of a phi node in
1200 the header of the loop. Then we return value of X when the value of the
1201 result of this phi node is given by the constant BASE. */
1203 static tree
1204 get_val_for (tree x, tree base)
1206 tree stmt, nx, val;
1207 use_operand_p op;
1208 ssa_op_iter iter;
1210 if (!x)
1211 return base;
1213 stmt = SSA_NAME_DEF_STMT (x);
1214 if (TREE_CODE (stmt) == PHI_NODE)
1215 return base;
1217 FOR_EACH_SSA_USE_OPERAND (op, stmt, iter, SSA_OP_USE)
1219 nx = USE_FROM_PTR (op);
1220 val = get_val_for (nx, base);
1221 SET_USE (op, val);
1222 val = fold (TREE_OPERAND (stmt, 1));
1223 SET_USE (op, nx);
1224 /* only iterate loop once. */
1225 return val;
1228 /* Should never reach here. */
1229 gcc_unreachable();
1232 /* Tries to count the number of iterations of LOOP till it exits by EXIT
1233 by brute force -- i.e. by determining the value of the operands of the
1234 condition at EXIT in first few iterations of the loop (assuming that
1235 these values are constant) and determining the first one in that the
1236 condition is not satisfied. Returns the constant giving the number
1237 of the iterations of LOOP if successful, chrec_dont_know otherwise. */
1239 tree
1240 loop_niter_by_eval (struct loop *loop, edge exit)
1242 tree cond, cnd, acnd;
1243 tree op[2], val[2], next[2], aval[2], phi[2];
1244 unsigned i, j;
1245 enum tree_code cmp;
1247 cond = last_stmt (exit->src);
1248 if (!cond || TREE_CODE (cond) != COND_EXPR)
1249 return chrec_dont_know;
1251 cnd = COND_EXPR_COND (cond);
1252 if (exit->flags & EDGE_TRUE_VALUE)
1253 cnd = invert_truthvalue (cnd);
1255 cmp = TREE_CODE (cnd);
1256 switch (cmp)
1258 case EQ_EXPR:
1259 case NE_EXPR:
1260 case GT_EXPR:
1261 case GE_EXPR:
1262 case LT_EXPR:
1263 case LE_EXPR:
1264 for (j = 0; j < 2; j++)
1265 op[j] = TREE_OPERAND (cnd, j);
1266 break;
1268 default:
1269 return chrec_dont_know;
1272 for (j = 0; j < 2; j++)
1274 phi[j] = get_base_for (loop, op[j]);
1275 if (!phi[j])
1276 return chrec_dont_know;
1279 for (j = 0; j < 2; j++)
1281 if (TREE_CODE (phi[j]) == PHI_NODE)
1283 val[j] = PHI_ARG_DEF_FROM_EDGE (phi[j], loop_preheader_edge (loop));
1284 next[j] = PHI_ARG_DEF_FROM_EDGE (phi[j], loop_latch_edge (loop));
1286 else
1288 val[j] = phi[j];
1289 next[j] = NULL_TREE;
1290 op[j] = NULL_TREE;
1294 for (i = 0; i < MAX_ITERATIONS_TO_TRACK; i++)
1296 for (j = 0; j < 2; j++)
1297 aval[j] = get_val_for (op[j], val[j]);
1299 acnd = fold_build2 (cmp, boolean_type_node, aval[0], aval[1]);
1300 if (zero_p (acnd))
1302 if (dump_file && (dump_flags & TDF_DETAILS))
1303 fprintf (dump_file,
1304 "Proved that loop %d iterates %d times using brute force.\n",
1305 loop->num, i);
1306 return build_int_cst (unsigned_type_node, i);
1309 for (j = 0; j < 2; j++)
1310 val[j] = get_val_for (next[j], val[j]);
1313 return chrec_dont_know;
1316 /* Finds the exit of the LOOP by that the loop exits after a constant
1317 number of iterations and stores the exit edge to *EXIT. The constant
1318 giving the number of iterations of LOOP is returned. The number of
1319 iterations is determined using loop_niter_by_eval (i.e. by brute force
1320 evaluation). If we are unable to find the exit for that loop_niter_by_eval
1321 determines the number of iterations, chrec_dont_know is returned. */
1323 tree
1324 find_loop_niter_by_eval (struct loop *loop, edge *exit)
1326 unsigned n_exits, i;
1327 edge *exits = get_loop_exit_edges (loop, &n_exits);
1328 edge ex;
1329 tree niter = NULL_TREE, aniter;
1331 *exit = NULL;
1332 for (i = 0; i < n_exits; i++)
1334 ex = exits[i];
1335 if (!just_once_each_iteration_p (loop, ex->src))
1336 continue;
1338 aniter = loop_niter_by_eval (loop, ex);
1339 if (chrec_contains_undetermined (aniter))
1340 continue;
1342 if (niter
1343 && !tree_int_cst_lt (aniter, niter))
1344 continue;
1346 niter = aniter;
1347 *exit = ex;
1349 free (exits);
1351 return niter ? niter : chrec_dont_know;
1356 Analysis of upper bounds on number of iterations of a loop.
1360 /* Records that AT_STMT is executed at most BOUND times in LOOP. The
1361 additional condition ADDITIONAL is recorded with the bound. */
1363 void
1364 record_estimate (struct loop *loop, tree bound, tree additional, tree at_stmt)
1366 struct nb_iter_bound *elt = xmalloc (sizeof (struct nb_iter_bound));
1368 if (dump_file && (dump_flags & TDF_DETAILS))
1370 fprintf (dump_file, "Statements after ");
1371 print_generic_expr (dump_file, at_stmt, TDF_SLIM);
1372 fprintf (dump_file, " are executed at most ");
1373 print_generic_expr (dump_file, bound, TDF_SLIM);
1374 fprintf (dump_file, " times in loop %d.\n", loop->num);
1377 elt->bound = bound;
1378 elt->at_stmt = at_stmt;
1379 elt->additional = additional;
1380 elt->next = loop->bounds;
1381 loop->bounds = elt;
1384 /* Records estimates on numbers of iterations of LOOP. */
1386 static void
1387 estimate_numbers_of_iterations_loop (struct loop *loop)
1389 edge *exits;
1390 tree niter, type;
1391 unsigned i, n_exits;
1392 struct tree_niter_desc niter_desc;
1394 /* Give up if we already have tried to compute an estimation. */
1395 if (loop->estimated_nb_iterations == chrec_dont_know
1396 /* Or when we already have an estimation. */
1397 || (loop->estimated_nb_iterations != NULL_TREE
1398 && TREE_CODE (loop->estimated_nb_iterations) == INTEGER_CST))
1399 return;
1400 else
1401 loop->estimated_nb_iterations = chrec_dont_know;
1403 exits = get_loop_exit_edges (loop, &n_exits);
1404 for (i = 0; i < n_exits; i++)
1406 if (!number_of_iterations_exit (loop, exits[i], &niter_desc, false))
1407 continue;
1409 niter = niter_desc.niter;
1410 type = TREE_TYPE (niter);
1411 if (!zero_p (niter_desc.may_be_zero)
1412 && !nonzero_p (niter_desc.may_be_zero))
1413 niter = build3 (COND_EXPR, type, niter_desc.may_be_zero,
1414 build_int_cst_type (type, 0),
1415 niter);
1416 record_estimate (loop, niter,
1417 niter_desc.additional_info,
1418 last_stmt (exits[i]->src));
1420 free (exits);
1422 /* Analyzes the bounds of arrays accessed in the loop. */
1423 if (chrec_contains_undetermined (loop->estimated_nb_iterations))
1425 varray_type datarefs;
1426 VARRAY_GENERIC_PTR_INIT (datarefs, 3, "datarefs");
1427 find_data_references_in_loop (loop, &datarefs);
1428 free_data_refs (datarefs);
1432 /* Records estimates on numbers of iterations of LOOPS. */
1434 void
1435 estimate_numbers_of_iterations (struct loops *loops)
1437 unsigned i;
1438 struct loop *loop;
1440 for (i = 1; i < loops->num; i++)
1442 loop = loops->parray[i];
1443 if (loop)
1444 estimate_numbers_of_iterations_loop (loop);
1448 /* If A > B, returns -1. If A == B, returns 0. If A < B, returns 1.
1449 If neither of these relations can be proved, returns 2. */
1451 static int
1452 compare_trees (tree a, tree b)
1454 tree typea = TREE_TYPE (a), typeb = TREE_TYPE (b);
1455 tree type;
1457 if (TYPE_PRECISION (typea) > TYPE_PRECISION (typeb))
1458 type = typea;
1459 else
1460 type = typeb;
1462 a = fold_convert (type, a);
1463 b = fold_convert (type, b);
1465 if (nonzero_p (fold_build2 (EQ_EXPR, boolean_type_node, a, b)))
1466 return 0;
1467 if (nonzero_p (fold_build2 (LT_EXPR, boolean_type_node, a, b)))
1468 return 1;
1469 if (nonzero_p (fold_build2 (GT_EXPR, boolean_type_node, a, b)))
1470 return -1;
1472 return 2;
1475 /* Returns true if statement S1 dominates statement S2. */
1477 static bool
1478 stmt_dominates_stmt_p (tree s1, tree s2)
1480 basic_block bb1 = bb_for_stmt (s1), bb2 = bb_for_stmt (s2);
1482 if (!bb1
1483 || s1 == s2)
1484 return true;
1486 if (bb1 == bb2)
1488 block_stmt_iterator bsi;
1490 for (bsi = bsi_start (bb1); bsi_stmt (bsi) != s2; bsi_next (&bsi))
1491 if (bsi_stmt (bsi) == s1)
1492 return true;
1494 return false;
1497 return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
1500 /* Return true when it is possible to prove that the induction
1501 variable does not wrap: vary outside the type specified bounds.
1502 Checks whether BOUND < VALID_NITER that means in the context of iv
1503 conversion that all the iterations in the loop are safe: not
1504 producing wraps.
1506 The statement NITER_BOUND->AT_STMT is executed at most
1507 NITER_BOUND->BOUND times in the loop.
1509 NITER_BOUND->ADDITIONAL is the additional condition recorded for
1510 operands of the bound. This is useful in the following case,
1511 created by loop header copying:
1513 i = 0;
1514 if (n > 0)
1517 something;
1518 } while (++i < n)
1520 If the n > 0 condition is taken into account, the number of iterations of the
1521 loop can be expressed as n - 1. If the type of n is signed, the ADDITIONAL
1522 assumption "n > 0" says us that the value of the number of iterations is at
1523 most MAX_TYPE - 1 (without this assumption, it might overflow). */
1525 static bool
1526 proved_non_wrapping_p (tree at_stmt,
1527 struct nb_iter_bound *niter_bound,
1528 tree new_type,
1529 tree valid_niter)
1531 tree cond;
1532 tree bound = niter_bound->bound;
1534 if (TYPE_PRECISION (new_type) > TYPE_PRECISION (TREE_TYPE (bound)))
1535 bound = fold_convert (unsigned_type_for (new_type), bound);
1536 else
1537 valid_niter = fold_convert (TREE_TYPE (bound), valid_niter);
1539 /* After the statement niter_bound->at_stmt we know that anything is
1540 executed at most BOUND times. */
1541 if (at_stmt && stmt_dominates_stmt_p (niter_bound->at_stmt, at_stmt))
1542 cond = fold_build2 (GE_EXPR, boolean_type_node, valid_niter, bound);
1544 /* Before the statement niter_bound->at_stmt we know that anything
1545 is executed at most BOUND + 1 times. */
1546 else
1547 cond = fold_build2 (GT_EXPR, boolean_type_node, valid_niter, bound);
1549 if (nonzero_p (cond))
1550 return true;
1552 /* Try taking additional conditions into account. */
1553 cond = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1554 invert_truthvalue (niter_bound->additional),
1555 cond);
1557 if (nonzero_p (cond))
1558 return true;
1560 return false;
1563 /* Checks whether it is correct to count the induction variable BASE +
1564 STEP * I at AT_STMT in a wider type NEW_TYPE, using the bounds on
1565 numbers of iterations of a LOOP. If it is possible, return the
1566 value of step of the induction variable in the NEW_TYPE, otherwise
1567 return NULL_TREE. */
1569 static tree
1570 convert_step_widening (struct loop *loop, tree new_type, tree base, tree step,
1571 tree at_stmt)
1573 struct nb_iter_bound *bound;
1574 tree base_in_new_type, base_plus_step_in_new_type, step_in_new_type;
1575 tree delta, step_abs;
1576 tree unsigned_type, valid_niter;
1578 /* Compute the new step. For example, {(uchar) 100, +, (uchar) 240}
1579 is converted to {(uint) 100, +, (uint) 0xfffffff0} in order to
1580 keep the values of the induction variable unchanged: 100, 84, 68,
1583 Another example is: (uint) {(uchar)100, +, (uchar)3} is converted
1584 to {(uint)100, +, (uint)3}.
1586 Before returning the new step, verify that the number of
1587 iterations is less than DELTA / STEP_ABS (i.e. in the previous
1588 example (256 - 100) / 3) such that the iv does not wrap (in which
1589 case the operations are too difficult to be represented and
1590 handled: the values of the iv should be taken modulo 256 in the
1591 wider type; this is not implemented). */
1592 base_in_new_type = fold_convert (new_type, base);
1593 base_plus_step_in_new_type =
1594 fold_convert (new_type,
1595 fold_build2 (PLUS_EXPR, TREE_TYPE (base), base, step));
1596 step_in_new_type = fold_build2 (MINUS_EXPR, new_type,
1597 base_plus_step_in_new_type,
1598 base_in_new_type);
1600 if (TREE_CODE (step_in_new_type) != INTEGER_CST)
1601 return NULL_TREE;
1603 switch (compare_trees (base_plus_step_in_new_type, base_in_new_type))
1605 case -1:
1607 tree extreme = upper_bound_in_type (new_type, TREE_TYPE (base));
1608 delta = fold_build2 (MINUS_EXPR, new_type, extreme,
1609 base_in_new_type);
1610 step_abs = step_in_new_type;
1611 break;
1614 case 1:
1616 tree extreme = lower_bound_in_type (new_type, TREE_TYPE (base));
1617 delta = fold_build2 (MINUS_EXPR, new_type, base_in_new_type,
1618 extreme);
1619 step_abs = fold_build1 (NEGATE_EXPR, new_type, step_in_new_type);
1620 break;
1623 case 0:
1624 return step_in_new_type;
1626 default:
1627 return NULL_TREE;
1630 unsigned_type = unsigned_type_for (new_type);
1631 delta = fold_convert (unsigned_type, delta);
1632 step_abs = fold_convert (unsigned_type, step_abs);
1633 valid_niter = fold_build2 (FLOOR_DIV_EXPR, unsigned_type,
1634 delta, step_abs);
1636 estimate_numbers_of_iterations_loop (loop);
1637 for (bound = loop->bounds; bound; bound = bound->next)
1638 if (proved_non_wrapping_p (at_stmt, bound, new_type, valid_niter))
1639 return step_in_new_type;
1641 /* Fail when the loop has no bound estimations, or when no bound can
1642 be used for verifying the conversion. */
1643 return NULL_TREE;
1646 /* Return false only when the induction variable BASE + STEP * I is
1647 known to not overflow: i.e. when the number of iterations is small
1648 enough with respect to the step and initial condition in order to
1649 keep the evolution confined in TYPEs bounds. Return true when the
1650 iv is known to overflow or when the property is not computable.
1652 Initialize INIT_IS_MAX to true when the evolution goes from
1653 INIT_IS_MAX to LOWER_BOUND_IN_TYPE, false in the contrary case, not
1654 defined when the function returns true. */
1656 bool
1657 scev_probably_wraps_p (tree type, tree base, tree step,
1658 tree at_stmt, struct loop *loop,
1659 bool *init_is_max)
1661 struct nb_iter_bound *bound;
1662 tree delta, step_abs;
1663 tree unsigned_type, valid_niter;
1664 tree base_plus_step = fold_build2 (PLUS_EXPR, type, base, step);
1666 switch (compare_trees (base_plus_step, base))
1668 case -1:
1670 tree extreme = upper_bound_in_type (type, TREE_TYPE (base));
1671 delta = fold_build2 (MINUS_EXPR, type, extreme, base);
1672 step_abs = step;
1673 *init_is_max = false;
1674 break;
1677 case 1:
1679 tree extreme = lower_bound_in_type (type, TREE_TYPE (base));
1680 delta = fold_build2 (MINUS_EXPR, type, base, extreme);
1681 step_abs = fold_build1 (NEGATE_EXPR, type, step);
1682 *init_is_max = true;
1683 break;
1686 case 0:
1687 /* This means step is equal to 0. This should not happen. It
1688 could happen in convert step, but not here. Safely answer
1689 don't know as in the default case. */
1691 default:
1692 return true;
1695 /* If AT_STMT represents a cast operation, we may not be able to
1696 take advantage of the undefinedness of signed type evolutions.
1697 See PR 21959 for a test case. Essentially, given a cast
1698 operation
1699 unsigned char i;
1700 signed char i.0;
1702 i.0_6 = (signed char) i_2;
1703 if (i.0_6 < 0)
1706 where i_2 and i.0_6 have the scev {0, +, 1}, we would consider
1707 i_2 to wrap around, but not i.0_6, because it is of a signed
1708 type. This causes VRP to erroneously fold the predicate above
1709 because it thinks that i.0_6 cannot be negative. */
1710 if (TREE_CODE (at_stmt) == MODIFY_EXPR)
1712 tree rhs = TREE_OPERAND (at_stmt, 1);
1713 tree outer_t = TREE_TYPE (rhs);
1715 if (!TYPE_UNSIGNED (outer_t)
1716 && (TREE_CODE (rhs) == NOP_EXPR || TREE_CODE (rhs) == CONVERT_EXPR))
1718 tree inner_t = TREE_TYPE (TREE_OPERAND (rhs, 0));
1720 /* If the inner type is unsigned and its size and/or
1721 precision are smaller to that of the outer type, then the
1722 expression may wrap around. */
1723 if (TYPE_UNSIGNED (inner_t)
1724 && (TYPE_SIZE (inner_t) <= TYPE_SIZE (outer_t)
1725 || TYPE_PRECISION (inner_t) <= TYPE_PRECISION (outer_t)))
1726 return true;
1730 /* After having set INIT_IS_MAX, we can return false: when not using
1731 wrapping arithmetic, signed types don't wrap. */
1732 if (!flag_wrapv && !TYPE_UNSIGNED (type))
1733 return false;
1735 unsigned_type = unsigned_type_for (type);
1736 delta = fold_convert (unsigned_type, delta);
1737 step_abs = fold_convert (unsigned_type, step_abs);
1738 valid_niter = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step_abs);
1740 estimate_numbers_of_iterations_loop (loop);
1741 for (bound = loop->bounds; bound; bound = bound->next)
1742 if (proved_non_wrapping_p (at_stmt, bound, type, valid_niter))
1743 return false;
1745 /* At this point we still don't have a proof that the iv does not
1746 overflow: give up. */
1747 return true;
1750 /* Return the conversion to NEW_TYPE of the STEP of an induction
1751 variable BASE + STEP * I at AT_STMT. */
1753 tree
1754 convert_step (struct loop *loop, tree new_type, tree base, tree step,
1755 tree at_stmt)
1757 tree base_type = TREE_TYPE (base);
1759 /* When not using wrapping arithmetic, signed types don't wrap. */
1760 if (!flag_wrapv && !TYPE_UNSIGNED (base_type))
1761 return fold_convert (new_type, step);
1763 if (TYPE_PRECISION (new_type) > TYPE_PRECISION (base_type))
1764 return convert_step_widening (loop, new_type, base, step, at_stmt);
1766 return fold_convert (new_type, step);
1769 /* Frees the information on upper bounds on numbers of iterations of LOOP. */
1771 static void
1772 free_numbers_of_iterations_estimates_loop (struct loop *loop)
1774 struct nb_iter_bound *bound, *next;
1776 for (bound = loop->bounds; bound; bound = next)
1778 next = bound->next;
1779 free (bound);
1782 loop->bounds = NULL;
1785 /* Frees the information on upper bounds on numbers of iterations of LOOPS. */
1787 void
1788 free_numbers_of_iterations_estimates (struct loops *loops)
1790 unsigned i;
1791 struct loop *loop;
1793 for (i = 1; i < loops->num; i++)
1795 loop = loops->parray[i];
1796 if (loop)
1797 free_numbers_of_iterations_estimates_loop (loop);
1801 /* Substitute value VAL for ssa name NAME inside expressions held
1802 at LOOP. */
1804 void
1805 substitute_in_loop_info (struct loop *loop, tree name, tree val)
1807 struct nb_iter_bound *bound;
1809 loop->nb_iterations = simplify_replace_tree (loop->nb_iterations, name, val);
1810 loop->estimated_nb_iterations
1811 = simplify_replace_tree (loop->estimated_nb_iterations, name, val);
1812 for (bound = loop->bounds; bound; bound = bound->next)
1814 bound->bound = simplify_replace_tree (bound->bound, name, val);
1815 bound->additional = simplify_replace_tree (bound->additional, name, val);