1 /* Timing variables for measuring compiler performance.
2 Copyright (C) 2000, 2003, 2004, 2005, 2007, 2010
3 Free Software Foundation, Inc.
4 Contributed by Alex Samuel <samuel@codesourcery.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
30 #ifndef HAVE_STRUCT_TMS
41 # define RUSAGE_SELF 0
44 /* Calculation of scale factor to convert ticks to microseconds.
45 We mustn't use CLOCKS_PER_SEC except with clock(). */
46 #if HAVE_SYSCONF && defined _SC_CLK_TCK
47 # define TICKS_PER_SECOND sysconf (_SC_CLK_TCK) /* POSIX 1003.1-1996 */
50 # define TICKS_PER_SECOND CLK_TCK /* POSIX 1003.1-1988; obsolescent */
53 # define TICKS_PER_SECOND HZ /* traditional UNIX */
55 # define TICKS_PER_SECOND 100 /* often the correct value */
60 /* Prefer times to getrusage to clock (each gives successively less
63 # if defined HAVE_DECL_TIMES && !HAVE_DECL_TIMES
64 extern clock_t times (struct tms
*);
67 # define HAVE_USER_TIME
68 # define HAVE_SYS_TIME
69 # define HAVE_WALL_TIME
72 # if defined HAVE_DECL_GETRUSAGE && !HAVE_DECL_GETRUSAGE
73 extern int getrusage (int, struct rusage
*);
75 # define USE_GETRUSAGE
76 # define HAVE_USER_TIME
77 # define HAVE_SYS_TIME
80 # if defined HAVE_DECL_CLOCK && !HAVE_DECL_CLOCK
81 extern clock_t clock (void);
84 # define HAVE_USER_TIME
89 /* libc is very likely to have snuck a call to sysconf() into one of
90 the underlying constants, and that can be very slow, so we have to
91 precompute them. Whose wonderful idea was it to make all those
92 _constants_ variable at run time, anyway? */
94 static double ticks_to_msec
;
95 #define TICKS_TO_MSEC (1 / (double)TICKS_PER_SECOND)
99 static double clocks_to_msec
;
100 #define CLOCKS_TO_MSEC (1 / (double)CLOCKS_PER_SEC)
103 /* True if timevars should be used. In GCC, this happens with
104 the -ftime-report flag. */
108 /* Total amount of memory allocated by garbage collector. */
110 size_t timevar_ggc_mem_total
;
112 /* The amount of memory that will cause us to report the timevar even
113 if the time spent is not significant. */
115 #define GGC_MEM_BOUND (1 << 20)
117 /* See timevar.h for an explanation of timing variables. */
119 /* A timing variable. */
123 /* Elapsed time for this variable. */
124 struct timevar_time_def elapsed
;
126 /* If this variable is timed independently of the timing stack,
127 using timevar_start, this contains the start time. */
128 struct timevar_time_def start_time
;
130 /* The name of this timing variable. */
133 /* Nonzero if this timing variable is running as a standalone
135 unsigned standalone
: 1;
137 /* Nonzero if this timing variable was ever started or pushed onto
142 /* An element on the timing stack. Elapsed time is attributed to the
143 topmost timing variable on the stack. */
145 struct timevar_stack_def
147 /* The timing variable at this stack level. */
148 struct timevar_def
*timevar
;
150 /* The next lower timing variable context in the stack. */
151 struct timevar_stack_def
*next
;
154 /* Declared timing variables. Constructed from the contents of
156 static struct timevar_def timevars
[TIMEVAR_LAST
];
158 /* The top of the timing stack. */
159 static struct timevar_stack_def
*stack
;
161 /* A list of unused (i.e. allocated and subsequently popped)
162 timevar_stack_def instances. */
163 static struct timevar_stack_def
*unused_stack_instances
;
165 /* The time at which the topmost element on the timing stack was
166 pushed. Time elapsed since then is attributed to the topmost
168 static struct timevar_time_def start_time
;
170 static void get_time (struct timevar_time_def
*);
171 static void timevar_accumulate (struct timevar_time_def
*,
172 struct timevar_time_def
*,
173 struct timevar_time_def
*);
175 /* Fill the current times into TIME. The definition of this function
176 also defines any or all of the HAVE_USER_TIME, HAVE_SYS_TIME, and
177 HAVE_WALL_TIME macros. */
180 get_time (struct timevar_time_def
*now
)
185 now
->ggc_mem
= timevar_ggc_mem_total
;
193 now
->wall
= times (&tms
) * ticks_to_msec
;
194 now
->user
= tms
.tms_utime
* ticks_to_msec
;
195 now
->sys
= tms
.tms_stime
* ticks_to_msec
;
198 struct rusage rusage
;
199 getrusage (RUSAGE_SELF
, &rusage
);
200 now
->user
= rusage
.ru_utime
.tv_sec
+ rusage
.ru_utime
.tv_usec
* 1e-6;
201 now
->sys
= rusage
.ru_stime
.tv_sec
+ rusage
.ru_stime
.tv_usec
* 1e-6;
204 now
->user
= clock () * clocks_to_msec
;
209 /* Add the difference between STOP_TIME and START_TIME to TIMER. */
212 timevar_accumulate (struct timevar_time_def
*timer
,
213 struct timevar_time_def
*start_time
,
214 struct timevar_time_def
*stop_time
)
216 timer
->user
+= stop_time
->user
- start_time
->user
;
217 timer
->sys
+= stop_time
->sys
- start_time
->sys
;
218 timer
->wall
+= stop_time
->wall
- start_time
->wall
;
219 timer
->ggc_mem
+= stop_time
->ggc_mem
- start_time
->ggc_mem
;
222 /* Initialize timing variables. */
227 timevar_enable
= true;
229 /* Zero all elapsed times. */
230 memset (timevars
, 0, sizeof (timevars
));
232 /* Initialize the names of timing variables. */
233 #define DEFTIMEVAR(identifier__, name__) \
234 timevars[identifier__].name = name__;
235 #include "timevar.def"
239 ticks_to_msec
= TICKS_TO_MSEC
;
242 clocks_to_msec
= CLOCKS_TO_MSEC
;
246 /* Push TIMEVAR onto the timing stack. No further elapsed time is
247 attributed to the previous topmost timing variable on the stack;
248 subsequent elapsed time is attributed to TIMEVAR, until it is
249 popped or another element is pushed on top.
251 TIMEVAR cannot be running as a standalone timer. */
254 timevar_push_1 (timevar_id_t timevar
)
256 struct timevar_def
*tv
= &timevars
[timevar
];
257 struct timevar_stack_def
*context
;
258 struct timevar_time_def now
;
260 /* Mark this timing variable as used. */
263 /* Can't push a standalone timer. */
264 gcc_assert (!tv
->standalone
);
266 /* What time is it? */
269 /* If the stack isn't empty, attribute the current elapsed time to
270 the old topmost element. */
272 timevar_accumulate (&stack
->timevar
->elapsed
, &start_time
, &now
);
274 /* Reset the start time; from now on, time is attributed to
278 /* See if we have a previously-allocated stack instance. If so,
279 take it off the list. If not, malloc a new one. */
280 if (unused_stack_instances
!= NULL
)
282 context
= unused_stack_instances
;
283 unused_stack_instances
= unused_stack_instances
->next
;
286 context
= XNEW (struct timevar_stack_def
);
288 /* Fill it in and put it on the stack. */
289 context
->timevar
= tv
;
290 context
->next
= stack
;
294 /* Pop the topmost timing variable element off the timing stack. The
295 popped variable must be TIMEVAR. Elapsed time since the that
296 element was pushed on, or since it was last exposed on top of the
297 stack when the element above it was popped off, is credited to that
301 timevar_pop_1 (timevar_id_t timevar
)
303 struct timevar_time_def now
;
304 struct timevar_stack_def
*popped
= stack
;
306 gcc_assert (&timevars
[timevar
] == stack
->timevar
);
308 /* What time is it? */
311 /* Attribute the elapsed time to the element we're popping. */
312 timevar_accumulate (&popped
->timevar
->elapsed
, &start_time
, &now
);
314 /* Reset the start time; from now on, time is attributed to the
315 element just exposed on the stack. */
318 /* Take the item off the stack. */
321 /* Don't delete the stack element; instead, add it to the list of
322 unused elements for later use. */
323 popped
->next
= unused_stack_instances
;
324 unused_stack_instances
= popped
;
327 /* Start timing TIMEVAR independently of the timing stack. Elapsed
328 time until timevar_stop is called for the same timing variable is
329 attributed to TIMEVAR. */
332 timevar_start (timevar_id_t timevar
)
334 struct timevar_def
*tv
= &timevars
[timevar
];
339 /* Mark this timing variable as used. */
342 /* Don't allow the same timing variable to be started more than
344 gcc_assert (!tv
->standalone
);
347 get_time (&tv
->start_time
);
350 /* Stop timing TIMEVAR. Time elapsed since timevar_start was called
351 is attributed to it. */
354 timevar_stop (timevar_id_t timevar
)
356 struct timevar_def
*tv
= &timevars
[timevar
];
357 struct timevar_time_def now
;
362 /* TIMEVAR must have been started via timevar_start. */
363 gcc_assert (tv
->standalone
);
364 tv
->standalone
= 0; /* Enable a restart. */
367 timevar_accumulate (&tv
->elapsed
, &tv
->start_time
, &now
);
371 /* Conditionally start timing TIMEVAR independently of the timing stack.
372 If the timer is already running, leave it running and return true.
373 Otherwise, start the timer and return false.
374 Elapsed time until the corresponding timevar_cond_stop
375 is called for the same timing variable is attributed to TIMEVAR. */
378 timevar_cond_start (timevar_id_t timevar
)
380 struct timevar_def
*tv
= &timevars
[timevar
];
385 /* Mark this timing variable as used. */
389 return true; /* The timevar is already running. */
391 /* Don't allow the same timing variable
392 to be unconditionally started more than once. */
395 get_time (&tv
->start_time
);
396 return false; /* The timevar was not already running. */
399 /* Conditionally stop timing TIMEVAR. The RUNNING parameter must come
400 from the return value of a dynamically matching timevar_cond_start.
401 If the timer had already been RUNNING, do nothing. Otherwise, time
402 elapsed since timevar_cond_start was called is attributed to it. */
405 timevar_cond_stop (timevar_id_t timevar
, bool running
)
407 struct timevar_def
*tv
;
408 struct timevar_time_def now
;
410 if (!timevar_enable
|| running
)
413 tv
= &timevars
[timevar
];
415 /* TIMEVAR must have been started via timevar_cond_start. */
416 gcc_assert (tv
->standalone
);
417 tv
->standalone
= 0; /* Enable a restart. */
420 timevar_accumulate (&tv
->elapsed
, &tv
->start_time
, &now
);
424 /* Validate that phase times are consistent. */
427 validate_phases (FILE *fp
)
429 unsigned int /* timevar_id_t */ id
;
430 struct timevar_time_def
*total
= &timevars
[TV_TOTAL
].elapsed
;
431 double phase_user
= 0.0;
432 double phase_sys
= 0.0;
433 double phase_wall
= 0.0;
434 unsigned phase_ggc_mem
= 0;
435 static char phase_prefix
[] = "phase ";
436 const double tolerance
= 1.000001; /* One part in a million. */
438 for (id
= 0; id
< (unsigned int) TIMEVAR_LAST
; ++id
)
440 struct timevar_def
*tv
= &timevars
[(timevar_id_t
) id
];
442 /* Don't evaluate timing variables that were never used. */
446 if (strncmp (tv
->name
, phase_prefix
, sizeof phase_prefix
- 1) == 0)
448 phase_user
+= tv
->elapsed
.user
;
449 phase_sys
+= tv
->elapsed
.sys
;
450 phase_wall
+= tv
->elapsed
.wall
;
451 phase_ggc_mem
+= tv
->elapsed
.ggc_mem
;
455 if (phase_user
> total
->user
* tolerance
456 || phase_sys
> total
->sys
* tolerance
457 || phase_wall
> total
->wall
* tolerance
458 || phase_ggc_mem
> total
->ggc_mem
* tolerance
)
461 fprintf (fp
, "Timing error: total of phase timers exceeds total time.\n");
462 if (phase_user
> total
->user
)
463 fprintf (fp
, "user %24.18e > %24.18e\n", phase_user
, total
->user
);
464 if (phase_sys
> total
->sys
)
465 fprintf (fp
, "sys %24.18e > %24.18e\n", phase_sys
, total
->sys
);
466 if (phase_wall
> total
->wall
)
467 fprintf (fp
, "wall %24.18e > %24.18e\n", phase_wall
, total
->wall
);
468 if (phase_ggc_mem
> total
->ggc_mem
)
469 fprintf (fp
, "ggc_mem %24u > %24u\n", phase_ggc_mem
, total
->ggc_mem
);
475 /* Summarize timing variables to FP. The timing variable TV_TOTAL has
476 a special meaning -- it's considered to be the total elapsed time,
477 for normalizing the others, and is displayed last. */
480 timevar_print (FILE *fp
)
482 /* Only print stuff if we have some sort of time information. */
483 #if defined (HAVE_USER_TIME) || defined (HAVE_SYS_TIME) || defined (HAVE_WALL_TIME)
484 unsigned int /* timevar_id_t */ id
;
485 struct timevar_time_def
*total
= &timevars
[TV_TOTAL
].elapsed
;
486 struct timevar_time_def now
;
491 /* Update timing information in case we're calling this from GDB. */
496 /* What time is it? */
499 /* If the stack isn't empty, attribute the current elapsed time to
500 the old topmost element. */
502 timevar_accumulate (&stack
->timevar
->elapsed
, &start_time
, &now
);
504 /* Reset the start time; from now on, time is attributed to
508 fputs ("\nExecution times (seconds)\n", fp
);
509 for (id
= 0; id
< (unsigned int) TIMEVAR_LAST
; ++id
)
511 struct timevar_def
*tv
= &timevars
[(timevar_id_t
) id
];
512 const double tiny
= 5e-3;
514 /* Don't print the total execution time here; that goes at the
516 if ((timevar_id_t
) id
== TV_TOTAL
)
519 /* Don't print timing variables that were never used. */
523 /* Don't print timing variables if we're going to get a row of
525 if (tv
->elapsed
.user
< tiny
526 && tv
->elapsed
.sys
< tiny
527 && tv
->elapsed
.wall
< tiny
528 && tv
->elapsed
.ggc_mem
< GGC_MEM_BOUND
)
531 /* The timing variable name. */
532 fprintf (fp
, " %-24s:", tv
->name
);
534 #ifdef HAVE_USER_TIME
535 /* Print user-mode time for this process. */
536 fprintf (fp
, "%7.2f (%2.0f%%) usr",
538 (total
->user
== 0 ? 0 : tv
->elapsed
.user
/ total
->user
) * 100);
539 #endif /* HAVE_USER_TIME */
542 /* Print system-mode time for this process. */
543 fprintf (fp
, "%7.2f (%2.0f%%) sys",
545 (total
->sys
== 0 ? 0 : tv
->elapsed
.sys
/ total
->sys
) * 100);
546 #endif /* HAVE_SYS_TIME */
548 #ifdef HAVE_WALL_TIME
549 /* Print wall clock time elapsed. */
550 fprintf (fp
, "%7.2f (%2.0f%%) wall",
552 (total
->wall
== 0 ? 0 : tv
->elapsed
.wall
/ total
->wall
) * 100);
553 #endif /* HAVE_WALL_TIME */
555 /* Print the amount of ggc memory allocated. */
556 fprintf (fp
, "%8u kB (%2.0f%%) ggc",
557 (unsigned) (tv
->elapsed
.ggc_mem
>> 10),
560 : (float) tv
->elapsed
.ggc_mem
/ total
->ggc_mem
) * 100);
565 /* Print total time. */
566 fputs (" TOTAL :", fp
);
567 #ifdef HAVE_USER_TIME
568 fprintf (fp
, "%7.2f ", total
->user
);
571 fprintf (fp
, "%7.2f ", total
->sys
);
573 #ifdef HAVE_WALL_TIME
574 fprintf (fp
, "%7.2f ", total
->wall
);
576 fprintf (fp
, "%8u kB\n", (unsigned) (total
->ggc_mem
>> 10));
578 #ifdef ENABLE_CHECKING
579 fprintf (fp
, "Extra diagnostic checks enabled; compiler may run slowly.\n");
580 fprintf (fp
, "Configure with --enable-checking=release to disable checks.\n");
582 #ifndef ENABLE_ASSERT_CHECKING
583 fprintf (fp
, "Internal checks disabled; compiler is not suited for release.\n");
584 fprintf (fp
, "Configure with --enable-checking=release to enable checks.\n");
587 #endif /* defined (HAVE_USER_TIME) || defined (HAVE_SYS_TIME)
588 || defined (HAVE_WALL_TIME) */
590 validate_phases (fp
);
593 /* Prints a message to stderr stating that time elapsed in STR is
594 TOTAL (given in microseconds). */
597 print_time (const char *str
, long total
)
599 long all_time
= get_run_time ();
601 "time in %s: %ld.%06ld (%ld%%)\n",
602 str
, total
/ 1000000, total
% 1000000,
604 : (long) (((100.0 * (double) total
) / (double) all_time
) + .5));