1 /* Post reload partially redundant load elimination
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2010
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
25 #include "diagnostic-core.h"
31 #include "hard-reg-set.h"
33 #include "insn-config.h"
35 #include "basic-block.h"
46 #include "tree-pass.h"
49 /* The following code implements gcse after reload, the purpose of this
50 pass is to cleanup redundant loads generated by reload and other
51 optimizations that come after gcse. It searches for simple inter-block
52 redundancies and tries to eliminate them by adding moves and loads
55 Perform partially redundant load elimination, try to eliminate redundant
56 loads created by the reload pass. We try to look for full or partial
57 redundant loads fed by one or more loads/stores in predecessor BBs,
58 and try adding loads to make them fully redundant. We also check if
59 it's worth adding loads to be able to delete the redundant load.
62 1. Build available expressions hash table:
63 For each load/store instruction, if the loaded/stored memory didn't
64 change until the end of the basic block add this memory expression to
66 2. Perform Redundancy elimination:
67 For each load instruction do the following:
68 perform partial redundancy elimination, check if it's worth adding
69 loads to make the load fully redundant. If so add loads and
70 register copies and delete the load.
71 3. Delete instructions made redundant in step 2.
74 If the loaded register is used/defined between load and some store,
75 look for some other free register between load and all its stores,
76 and replace the load with a copy from this register to the loaded
81 /* Keep statistics of this pass. */
89 /* We need to keep a hash table of expressions. The table entries are of
90 type 'struct expr', and for each expression there is a single linked
91 list of occurrences. */
93 /* The table itself. */
94 static htab_t expr_table
;
96 /* Expression elements in the hash table. */
99 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
102 /* The same hash for this entry. */
105 /* List of available occurrence in basic blocks in the function. */
106 struct occr
*avail_occr
;
109 static struct obstack expr_obstack
;
111 /* Occurrence of an expression.
112 There is at most one occurrence per basic block. If a pattern appears
113 more than once, the last appearance is used. */
117 /* Next occurrence of this expression. */
119 /* The insn that computes the expression. */
121 /* Nonzero if this [anticipatable] occurrence has been deleted. */
125 static struct obstack occr_obstack
;
127 /* The following structure holds the information about the occurrences of
128 the redundant instructions. */
136 static struct obstack unoccr_obstack
;
138 /* Array where each element is the CUID if the insn that last set the hard
139 register with the number of the element, since the start of the current
142 This array is used during the building of the hash table (step 1) to
143 determine if a reg is killed before the end of a basic block.
145 It is also used when eliminating partial redundancies (step 2) to see
146 if a reg was modified since the start of a basic block. */
147 static int *reg_avail_info
;
149 /* A list of insns that may modify memory within the current basic block. */
153 struct modifies_mem
*next
;
155 static struct modifies_mem
*modifies_mem_list
;
157 /* The modifies_mem structs also go on an obstack, only this obstack is
158 freed each time after completing the analysis or transformations on
159 a basic block. So we allocate a dummy modifies_mem_obstack_bottom
160 object on the obstack to keep track of the bottom of the obstack. */
161 static struct obstack modifies_mem_obstack
;
162 static struct modifies_mem
*modifies_mem_obstack_bottom
;
164 /* Mapping of insn UIDs to CUIDs.
165 CUIDs are like UIDs except they increase monotonically in each basic
166 block, have no gaps, and only apply to real insns. */
167 static int *uid_cuid
;
168 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
171 /* Helpers for memory allocation/freeing. */
172 static void alloc_mem (void);
173 static void free_mem (void);
175 /* Support for hash table construction and transformations. */
176 static bool oprs_unchanged_p (rtx
, rtx
, bool);
177 static void record_last_reg_set_info (rtx
, rtx
);
178 static void record_last_reg_set_info_regno (rtx
, int);
179 static void record_last_mem_set_info (rtx
);
180 static void record_last_set_info (rtx
, const_rtx
, void *);
181 static void record_opr_changes (rtx
);
183 static void find_mem_conflicts (rtx
, const_rtx
, void *);
184 static int load_killed_in_block_p (int, rtx
, bool);
185 static void reset_opr_set_tables (void);
187 /* Hash table support. */
188 static hashval_t
hash_expr (rtx
, int *);
189 static hashval_t
hash_expr_for_htab (const void *);
190 static int expr_equiv_p (const void *, const void *);
191 static void insert_expr_in_table (rtx
, rtx
);
192 static struct expr
*lookup_expr_in_table (rtx
);
193 static int dump_hash_table_entry (void **, void *);
194 static void dump_hash_table (FILE *);
196 /* Helpers for eliminate_partially_redundant_load. */
197 static bool reg_killed_on_edge (rtx
, edge
);
198 static bool reg_used_on_edge (rtx
, edge
);
200 static rtx
get_avail_load_store_reg (rtx
);
202 static bool bb_has_well_behaved_predecessors (basic_block
);
203 static struct occr
* get_bb_avail_insn (basic_block
, struct occr
*);
204 static void hash_scan_set (rtx
);
205 static void compute_hash_table (void);
207 /* The work horses of this pass. */
208 static void eliminate_partially_redundant_load (basic_block
,
211 static void eliminate_partially_redundant_loads (void);
214 /* Allocate memory for the CUID mapping array and register/memory
224 /* Find the largest UID and create a mapping from UIDs to CUIDs. */
225 uid_cuid
= XCNEWVEC (int, get_max_uid () + 1);
228 FOR_BB_INSNS (bb
, insn
)
231 uid_cuid
[INSN_UID (insn
)] = i
++;
233 uid_cuid
[INSN_UID (insn
)] = i
;
236 /* Allocate the available expressions hash table. We don't want to
237 make the hash table too small, but unnecessarily making it too large
238 also doesn't help. The i/4 is a gcse.c relic, and seems like a
239 reasonable choice. */
240 expr_table
= htab_create (MAX (i
/ 4, 13),
241 hash_expr_for_htab
, expr_equiv_p
, NULL
);
243 /* We allocate everything on obstacks because we often can roll back
244 the whole obstack to some point. Freeing obstacks is very fast. */
245 gcc_obstack_init (&expr_obstack
);
246 gcc_obstack_init (&occr_obstack
);
247 gcc_obstack_init (&unoccr_obstack
);
248 gcc_obstack_init (&modifies_mem_obstack
);
250 /* Working array used to track the last set for each register
251 in the current block. */
252 reg_avail_info
= (int *) xmalloc (FIRST_PSEUDO_REGISTER
* sizeof (int));
254 /* Put a dummy modifies_mem object on the modifies_mem_obstack, so we
255 can roll it back in reset_opr_set_tables. */
256 modifies_mem_obstack_bottom
=
257 (struct modifies_mem
*) obstack_alloc (&modifies_mem_obstack
,
258 sizeof (struct modifies_mem
));
261 /* Free memory allocated by alloc_mem. */
268 htab_delete (expr_table
);
270 obstack_free (&expr_obstack
, NULL
);
271 obstack_free (&occr_obstack
, NULL
);
272 obstack_free (&unoccr_obstack
, NULL
);
273 obstack_free (&modifies_mem_obstack
, NULL
);
275 free (reg_avail_info
);
279 /* Hash expression X.
280 DO_NOT_RECORD_P is a boolean indicating if a volatile operand is found
281 or if the expression contains something we don't want to insert in the
285 hash_expr (rtx x
, int *do_not_record_p
)
287 *do_not_record_p
= 0;
288 return hash_rtx (x
, GET_MODE (x
), do_not_record_p
,
289 NULL
, /*have_reg_qty=*/false);
292 /* Callback for hashtab.
293 Return the hash value for expression EXP. We don't actually hash
294 here, we just return the cached hash value. */
297 hash_expr_for_htab (const void *expp
)
299 const struct expr
*const exp
= (const struct expr
*) expp
;
303 /* Callback for hashtab.
304 Return nonzero if exp1 is equivalent to exp2. */
307 expr_equiv_p (const void *exp1p
, const void *exp2p
)
309 const struct expr
*const exp1
= (const struct expr
*) exp1p
;
310 const struct expr
*const exp2
= (const struct expr
*) exp2p
;
311 int equiv_p
= exp_equiv_p (exp1
->expr
, exp2
->expr
, 0, true);
313 gcc_assert (!equiv_p
|| exp1
->hash
== exp2
->hash
);
318 /* Insert expression X in INSN in the hash TABLE.
319 If it is already present, record it as the last occurrence in INSN's
323 insert_expr_in_table (rtx x
, rtx insn
)
327 struct expr
*cur_expr
, **slot
;
328 struct occr
*avail_occr
, *last_occr
= NULL
;
330 hash
= hash_expr (x
, &do_not_record_p
);
332 /* Do not insert expression in the table if it contains volatile operands,
333 or if hash_expr determines the expression is something we don't want
334 to or can't handle. */
338 /* We anticipate that redundant expressions are rare, so for convenience
339 allocate a new hash table element here already and set its fields.
340 If we don't do this, we need a hack with a static struct expr. Anyway,
341 obstack_free is really fast and one more obstack_alloc doesn't hurt if
342 we're going to see more expressions later on. */
343 cur_expr
= (struct expr
*) obstack_alloc (&expr_obstack
,
344 sizeof (struct expr
));
346 cur_expr
->hash
= hash
;
347 cur_expr
->avail_occr
= NULL
;
349 slot
= (struct expr
**) htab_find_slot_with_hash (expr_table
, cur_expr
,
353 /* The expression isn't found, so insert it. */
357 /* The expression is already in the table, so roll back the
358 obstack and use the existing table entry. */
359 obstack_free (&expr_obstack
, cur_expr
);
363 /* Search for another occurrence in the same basic block. */
364 avail_occr
= cur_expr
->avail_occr
;
366 && BLOCK_FOR_INSN (avail_occr
->insn
) != BLOCK_FOR_INSN (insn
))
368 /* If an occurrence isn't found, save a pointer to the end of
370 last_occr
= avail_occr
;
371 avail_occr
= avail_occr
->next
;
375 /* Found another instance of the expression in the same basic block.
376 Prefer this occurrence to the currently recorded one. We want
377 the last one in the block and the block is scanned from start
379 avail_occr
->insn
= insn
;
382 /* First occurrence of this expression in this basic block. */
383 avail_occr
= (struct occr
*) obstack_alloc (&occr_obstack
,
384 sizeof (struct occr
));
386 /* First occurrence of this expression in any block? */
387 if (cur_expr
->avail_occr
== NULL
)
388 cur_expr
->avail_occr
= avail_occr
;
390 last_occr
->next
= avail_occr
;
392 avail_occr
->insn
= insn
;
393 avail_occr
->next
= NULL
;
394 avail_occr
->deleted_p
= 0;
399 /* Lookup pattern PAT in the expression hash table.
400 The result is a pointer to the table entry, or NULL if not found. */
403 lookup_expr_in_table (rtx pat
)
406 struct expr
**slot
, *tmp_expr
;
407 hashval_t hash
= hash_expr (pat
, &do_not_record_p
);
412 tmp_expr
= (struct expr
*) obstack_alloc (&expr_obstack
,
413 sizeof (struct expr
));
414 tmp_expr
->expr
= pat
;
415 tmp_expr
->hash
= hash
;
416 tmp_expr
->avail_occr
= NULL
;
418 slot
= (struct expr
**) htab_find_slot_with_hash (expr_table
, tmp_expr
,
420 obstack_free (&expr_obstack
, tmp_expr
);
429 /* Dump all expressions and occurrences that are currently in the
430 expression hash table to FILE. */
432 /* This helper is called via htab_traverse. */
434 dump_hash_table_entry (void **slot
, void *filep
)
436 struct expr
*expr
= (struct expr
*) *slot
;
437 FILE *file
= (FILE *) filep
;
440 fprintf (file
, "expr: ");
441 print_rtl (file
, expr
->expr
);
442 fprintf (file
,"\nhashcode: %u\n", expr
->hash
);
443 fprintf (file
,"list of occurrences:\n");
444 occr
= expr
->avail_occr
;
447 rtx insn
= occr
->insn
;
448 print_rtl_single (file
, insn
);
449 fprintf (file
, "\n");
452 fprintf (file
, "\n");
457 dump_hash_table (FILE *file
)
459 fprintf (file
, "\n\nexpression hash table\n");
460 fprintf (file
, "size %ld, %ld elements, %f collision/search ratio\n",
461 (long) htab_size (expr_table
),
462 (long) htab_elements (expr_table
),
463 htab_collisions (expr_table
));
464 if (htab_elements (expr_table
) > 0)
466 fprintf (file
, "\n\ntable entries:\n");
467 htab_traverse (expr_table
, dump_hash_table_entry
, file
);
469 fprintf (file
, "\n");
472 /* Return true if register X is recorded as being set by an instruction
473 whose CUID is greater than the one given. */
476 reg_changed_after_insn_p (rtx x
, int cuid
)
478 unsigned int regno
, end_regno
;
481 end_regno
= END_HARD_REGNO (x
);
483 if (reg_avail_info
[regno
] > cuid
)
485 while (++regno
< end_regno
);
489 /* Return nonzero if the operands of expression X are unchanged
490 1) from the start of INSN's basic block up to but not including INSN
491 if AFTER_INSN is false, or
492 2) from INSN to the end of INSN's basic block if AFTER_INSN is true. */
495 oprs_unchanged_p (rtx x
, rtx insn
, bool after_insn
)
508 /* We are called after register allocation. */
509 gcc_assert (REGNO (x
) < FIRST_PSEUDO_REGISTER
);
511 return !reg_changed_after_insn_p (x
, INSN_CUID (insn
) - 1);
513 return !reg_changed_after_insn_p (x
, 0);
516 if (load_killed_in_block_p (INSN_CUID (insn
), x
, after_insn
))
519 return oprs_unchanged_p (XEXP (x
, 0), insn
, after_insn
);
548 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
552 if (! oprs_unchanged_p (XEXP (x
, i
), insn
, after_insn
))
555 else if (fmt
[i
] == 'E')
556 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
557 if (! oprs_unchanged_p (XVECEXP (x
, i
, j
), insn
, after_insn
))
565 /* Used for communication between find_mem_conflicts and
566 load_killed_in_block_p. Nonzero if find_mem_conflicts finds a
567 conflict between two memory references.
568 This is a bit of a hack to work around the limitations of note_stores. */
569 static int mems_conflict_p
;
571 /* DEST is the output of an instruction. If it is a memory reference, and
572 possibly conflicts with the load found in DATA, then set mems_conflict_p
573 to a nonzero value. */
576 find_mem_conflicts (rtx dest
, const_rtx setter ATTRIBUTE_UNUSED
,
579 rtx mem_op
= (rtx
) data
;
581 while (GET_CODE (dest
) == SUBREG
582 || GET_CODE (dest
) == ZERO_EXTRACT
583 || GET_CODE (dest
) == STRICT_LOW_PART
)
584 dest
= XEXP (dest
, 0);
586 /* If DEST is not a MEM, then it will not conflict with the load. Note
587 that function calls are assumed to clobber memory, but are handled
592 if (true_dependence (dest
, GET_MODE (dest
), mem_op
,
598 /* Return nonzero if the expression in X (a memory reference) is killed
599 in the current basic block before (if AFTER_INSN is false) or after
600 (if AFTER_INSN is true) the insn with the CUID in UID_LIMIT.
602 This function assumes that the modifies_mem table is flushed when
603 the hash table construction or redundancy elimination phases start
604 processing a new basic block. */
607 load_killed_in_block_p (int uid_limit
, rtx x
, bool after_insn
)
609 struct modifies_mem
*list_entry
= modifies_mem_list
;
613 rtx setter
= list_entry
->insn
;
615 /* Ignore entries in the list that do not apply. */
617 && INSN_CUID (setter
) < uid_limit
)
619 && INSN_CUID (setter
) > uid_limit
))
621 list_entry
= list_entry
->next
;
625 /* If SETTER is a call everything is clobbered. Note that calls
626 to pure functions are never put on the list, so we need not
631 /* SETTER must be an insn of some kind that sets memory. Call
632 note_stores to examine each hunk of memory that is modified.
633 It will set mems_conflict_p to nonzero if there may be a
634 conflict between X and SETTER. */
636 note_stores (PATTERN (setter
), find_mem_conflicts
, x
);
640 list_entry
= list_entry
->next
;
646 /* Record register first/last/block set information for REGNO in INSN. */
649 record_last_reg_set_info (rtx insn
, rtx reg
)
651 unsigned int regno
, end_regno
;
654 end_regno
= END_HARD_REGNO (reg
);
656 reg_avail_info
[regno
] = INSN_CUID (insn
);
657 while (++regno
< end_regno
);
661 record_last_reg_set_info_regno (rtx insn
, int regno
)
663 reg_avail_info
[regno
] = INSN_CUID (insn
);
667 /* Record memory modification information for INSN. We do not actually care
668 about the memory location(s) that are set, or even how they are set (consider
669 a CALL_INSN). We merely need to record which insns modify memory. */
672 record_last_mem_set_info (rtx insn
)
674 struct modifies_mem
*list_entry
;
676 list_entry
= (struct modifies_mem
*) obstack_alloc (&modifies_mem_obstack
,
677 sizeof (struct modifies_mem
));
678 list_entry
->insn
= insn
;
679 list_entry
->next
= modifies_mem_list
;
680 modifies_mem_list
= list_entry
;
683 /* Called from compute_hash_table via note_stores to handle one
684 SET or CLOBBER in an insn. DATA is really the instruction in which
685 the SET is taking place. */
688 record_last_set_info (rtx dest
, const_rtx setter ATTRIBUTE_UNUSED
, void *data
)
690 rtx last_set_insn
= (rtx
) data
;
692 if (GET_CODE (dest
) == SUBREG
)
693 dest
= SUBREG_REG (dest
);
696 record_last_reg_set_info (last_set_insn
, dest
);
697 else if (MEM_P (dest
))
699 /* Ignore pushes, they don't clobber memory. They may still
700 clobber the stack pointer though. Some targets do argument
701 pushes without adding REG_INC notes. See e.g. PR25196,
702 where a pushsi2 on i386 doesn't have REG_INC notes. Note
703 such changes here too. */
704 if (! push_operand (dest
, GET_MODE (dest
)))
705 record_last_mem_set_info (last_set_insn
);
707 record_last_reg_set_info_regno (last_set_insn
, STACK_POINTER_REGNUM
);
712 /* Reset tables used to keep track of what's still available since the
713 start of the block. */
716 reset_opr_set_tables (void)
718 memset (reg_avail_info
, 0, FIRST_PSEUDO_REGISTER
* sizeof (int));
719 obstack_free (&modifies_mem_obstack
, modifies_mem_obstack_bottom
);
720 modifies_mem_list
= NULL
;
724 /* Record things set by INSN.
725 This data is used by oprs_unchanged_p. */
728 record_opr_changes (rtx insn
)
732 /* Find all stores and record them. */
733 note_stores (PATTERN (insn
), record_last_set_info
, insn
);
735 /* Also record autoincremented REGs for this insn as changed. */
736 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
737 if (REG_NOTE_KIND (note
) == REG_INC
)
738 record_last_reg_set_info (insn
, XEXP (note
, 0));
740 /* Finally, if this is a call, record all call clobbers. */
746 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
747 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
))
748 record_last_reg_set_info_regno (insn
, regno
);
750 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
; link
= XEXP (link
, 1))
751 if (GET_CODE (XEXP (link
, 0)) == CLOBBER
)
753 x
= XEXP (XEXP (link
, 0), 0);
756 gcc_assert (HARD_REGISTER_P (x
));
757 record_last_reg_set_info (insn
, x
);
761 if (! RTL_CONST_OR_PURE_CALL_P (insn
))
762 record_last_mem_set_info (insn
);
767 /* Scan the pattern of INSN and add an entry to the hash TABLE.
768 After reload we are interested in loads/stores only. */
771 hash_scan_set (rtx insn
)
773 rtx pat
= PATTERN (insn
);
774 rtx src
= SET_SRC (pat
);
775 rtx dest
= SET_DEST (pat
);
777 /* We are only interested in loads and stores. */
778 if (! MEM_P (src
) && ! MEM_P (dest
))
781 /* Don't mess with jumps and nops. */
782 if (JUMP_P (insn
) || set_noop_p (pat
))
787 if (/* Don't CSE something if we can't do a reg/reg copy. */
788 can_copy_p (GET_MODE (dest
))
789 /* Is SET_SRC something we want to gcse? */
790 && general_operand (src
, GET_MODE (src
))
792 /* Never consider insns touching the register stack. It may
793 create situations that reg-stack cannot handle (e.g. a stack
794 register live across an abnormal edge). */
795 && (REGNO (dest
) < FIRST_STACK_REG
|| REGNO (dest
) > LAST_STACK_REG
)
797 /* An expression is not available if its operands are
798 subsequently modified, including this insn. */
799 && oprs_unchanged_p (src
, insn
, true))
801 insert_expr_in_table (src
, insn
);
804 else if (REG_P (src
))
806 /* Only record sets of pseudo-regs in the hash table. */
807 if (/* Don't CSE something if we can't do a reg/reg copy. */
808 can_copy_p (GET_MODE (src
))
809 /* Is SET_DEST something we want to gcse? */
810 && general_operand (dest
, GET_MODE (dest
))
812 /* As above for STACK_REGS. */
813 && (REGNO (src
) < FIRST_STACK_REG
|| REGNO (src
) > LAST_STACK_REG
)
815 && ! (flag_float_store
&& FLOAT_MODE_P (GET_MODE (dest
)))
816 /* Check if the memory expression is killed after insn. */
817 && ! load_killed_in_block_p (INSN_CUID (insn
) + 1, dest
, true)
818 && oprs_unchanged_p (XEXP (dest
, 0), insn
, true))
820 insert_expr_in_table (dest
, insn
);
826 /* Create hash table of memory expressions available at end of basic
827 blocks. Basically you should think of this hash table as the
828 representation of AVAIL_OUT. This is the set of expressions that
829 is generated in a basic block and not killed before the end of the
830 same basic block. Notice that this is really a local computation. */
833 compute_hash_table (void)
841 /* First pass over the instructions records information used to
842 determine when registers and memory are last set.
843 Since we compute a "local" AVAIL_OUT, reset the tables that
844 help us keep track of what has been modified since the start
846 reset_opr_set_tables ();
847 FOR_BB_INSNS (bb
, insn
)
850 record_opr_changes (insn
);
853 /* The next pass actually builds the hash table. */
854 FOR_BB_INSNS (bb
, insn
)
855 if (INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SET
)
856 hash_scan_set (insn
);
861 /* Check if register REG is killed in any insn waiting to be inserted on
862 edge E. This function is required to check that our data flow analysis
863 is still valid prior to commit_edge_insertions. */
866 reg_killed_on_edge (rtx reg
, edge e
)
870 for (insn
= e
->insns
.r
; insn
; insn
= NEXT_INSN (insn
))
871 if (INSN_P (insn
) && reg_set_p (reg
, insn
))
877 /* Similar to above - check if register REG is used in any insn waiting
878 to be inserted on edge E.
879 Assumes no such insn can be a CALL_INSN; if so call reg_used_between_p
880 with PREV(insn),NEXT(insn) instead of calling reg_overlap_mentioned_p. */
883 reg_used_on_edge (rtx reg
, edge e
)
887 for (insn
= e
->insns
.r
; insn
; insn
= NEXT_INSN (insn
))
888 if (INSN_P (insn
) && reg_overlap_mentioned_p (reg
, PATTERN (insn
)))
894 /* Return the loaded/stored register of a load/store instruction. */
897 get_avail_load_store_reg (rtx insn
)
899 if (REG_P (SET_DEST (PATTERN (insn
))))
901 return SET_DEST(PATTERN(insn
));
905 gcc_assert (REG_P (SET_SRC (PATTERN (insn
))));
906 return SET_SRC (PATTERN (insn
));
910 /* Return nonzero if the predecessors of BB are "well behaved". */
913 bb_has_well_behaved_predecessors (basic_block bb
)
918 if (EDGE_COUNT (bb
->preds
) == 0)
921 FOR_EACH_EDGE (pred
, ei
, bb
->preds
)
923 if ((pred
->flags
& EDGE_ABNORMAL
) && EDGE_CRITICAL_P (pred
))
926 if (JUMP_TABLE_DATA_P (BB_END (pred
->src
)))
933 /* Search for the occurrences of expression in BB. */
936 get_bb_avail_insn (basic_block bb
, struct occr
*occr
)
938 for (; occr
!= NULL
; occr
= occr
->next
)
939 if (BLOCK_FOR_INSN (occr
->insn
) == bb
)
945 /* This handles the case where several stores feed a partially redundant
946 load. It checks if the redundancy elimination is possible and if it's
949 Redundancy elimination is possible if,
950 1) None of the operands of an insn have been modified since the start
951 of the current basic block.
952 2) In any predecessor of the current basic block, the same expression
955 See the function body for the heuristics that determine if eliminating
956 a redundancy is also worth doing, assuming it is possible. */
959 eliminate_partially_redundant_load (basic_block bb
, rtx insn
,
963 rtx avail_insn
= NULL_RTX
;
967 struct unoccr
*occr
, *avail_occrs
= NULL
;
968 struct unoccr
*unoccr
, *unavail_occrs
= NULL
, *rollback_unoccr
= NULL
;
970 gcov_type ok_count
= 0; /* Redundant load execution count. */
971 gcov_type critical_count
= 0; /* Execution count of critical edges. */
973 bool critical_edge_split
= false;
975 /* The execution count of the loads to be added to make the
976 load fully redundant. */
977 gcov_type not_ok_count
= 0;
980 pat
= PATTERN (insn
);
981 dest
= SET_DEST (pat
);
983 /* Check that the loaded register is not used, set, or killed from the
984 beginning of the block. */
985 if (reg_changed_after_insn_p (dest
, 0)
986 || reg_used_between_p (dest
, PREV_INSN (BB_HEAD (bb
)), insn
))
989 /* Check potential for replacing load with copy for predecessors. */
990 FOR_EACH_EDGE (pred
, ei
, bb
->preds
)
992 rtx next_pred_bb_end
;
994 avail_insn
= NULL_RTX
;
995 avail_reg
= NULL_RTX
;
997 next_pred_bb_end
= NEXT_INSN (BB_END (pred_bb
));
998 for (a_occr
= get_bb_avail_insn (pred_bb
, expr
->avail_occr
); a_occr
;
999 a_occr
= get_bb_avail_insn (pred_bb
, a_occr
->next
))
1001 /* Check if the loaded register is not used. */
1002 avail_insn
= a_occr
->insn
;
1003 avail_reg
= get_avail_load_store_reg (avail_insn
);
1004 gcc_assert (avail_reg
);
1006 /* Make sure we can generate a move from register avail_reg to
1008 extract_insn (gen_move_insn (copy_rtx (dest
),
1009 copy_rtx (avail_reg
)));
1010 if (! constrain_operands (1)
1011 || reg_killed_on_edge (avail_reg
, pred
)
1012 || reg_used_on_edge (dest
, pred
))
1017 if (!reg_set_between_p (avail_reg
, avail_insn
, next_pred_bb_end
))
1018 /* AVAIL_INSN remains non-null. */
1024 if (EDGE_CRITICAL_P (pred
))
1025 critical_count
+= pred
->count
;
1027 if (avail_insn
!= NULL_RTX
)
1030 ok_count
+= pred
->count
;
1031 if (! set_noop_p (PATTERN (gen_move_insn (copy_rtx (dest
),
1032 copy_rtx (avail_reg
)))))
1034 /* Check if there is going to be a split. */
1035 if (EDGE_CRITICAL_P (pred
))
1036 critical_edge_split
= true;
1038 else /* Its a dead move no need to generate. */
1040 occr
= (struct unoccr
*) obstack_alloc (&unoccr_obstack
,
1041 sizeof (struct unoccr
));
1042 occr
->insn
= avail_insn
;
1044 occr
->next
= avail_occrs
;
1046 if (! rollback_unoccr
)
1047 rollback_unoccr
= occr
;
1051 /* Adding a load on a critical edge will cause a split. */
1052 if (EDGE_CRITICAL_P (pred
))
1053 critical_edge_split
= true;
1054 not_ok_count
+= pred
->count
;
1055 unoccr
= (struct unoccr
*) obstack_alloc (&unoccr_obstack
,
1056 sizeof (struct unoccr
));
1057 unoccr
->insn
= NULL_RTX
;
1058 unoccr
->pred
= pred
;
1059 unoccr
->next
= unavail_occrs
;
1060 unavail_occrs
= unoccr
;
1061 if (! rollback_unoccr
)
1062 rollback_unoccr
= unoccr
;
1066 if (/* No load can be replaced by copy. */
1068 /* Prevent exploding the code. */
1069 || (optimize_bb_for_size_p (bb
) && npred_ok
> 1)
1070 /* If we don't have profile information we cannot tell if splitting
1071 a critical edge is profitable or not so don't do it. */
1072 || ((! profile_info
|| ! flag_branch_probabilities
1073 || targetm
.cannot_modify_jumps_p ())
1074 && critical_edge_split
))
1077 /* Check if it's worth applying the partial redundancy elimination. */
1078 if (ok_count
< GCSE_AFTER_RELOAD_PARTIAL_FRACTION
* not_ok_count
)
1080 if (ok_count
< GCSE_AFTER_RELOAD_CRITICAL_FRACTION
* critical_count
)
1083 /* Generate moves to the loaded register from where
1084 the memory is available. */
1085 for (occr
= avail_occrs
; occr
; occr
= occr
->next
)
1087 avail_insn
= occr
->insn
;
1089 /* Set avail_reg to be the register having the value of the
1091 avail_reg
= get_avail_load_store_reg (avail_insn
);
1092 gcc_assert (avail_reg
);
1094 insert_insn_on_edge (gen_move_insn (copy_rtx (dest
),
1095 copy_rtx (avail_reg
)),
1097 stats
.moves_inserted
++;
1101 "generating move from %d to %d on edge from %d to %d\n",
1108 /* Regenerate loads where the memory is unavailable. */
1109 for (unoccr
= unavail_occrs
; unoccr
; unoccr
= unoccr
->next
)
1111 pred
= unoccr
->pred
;
1112 insert_insn_on_edge (copy_insn (PATTERN (insn
)), pred
);
1113 stats
.copies_inserted
++;
1118 "generating on edge from %d to %d a copy of load: ",
1121 print_rtl (dump_file
, PATTERN (insn
));
1122 fprintf (dump_file
, "\n");
1126 /* Delete the insn if it is not available in this block and mark it
1127 for deletion if it is available. If insn is available it may help
1128 discover additional redundancies, so mark it for later deletion. */
1129 for (a_occr
= get_bb_avail_insn (bb
, expr
->avail_occr
);
1130 a_occr
&& (a_occr
->insn
!= insn
);
1131 a_occr
= get_bb_avail_insn (bb
, a_occr
->next
));
1135 stats
.insns_deleted
++;
1139 fprintf (dump_file
, "deleting insn:\n");
1140 print_rtl_single (dump_file
, insn
);
1141 fprintf (dump_file
, "\n");
1146 a_occr
->deleted_p
= 1;
1149 if (rollback_unoccr
)
1150 obstack_free (&unoccr_obstack
, rollback_unoccr
);
1153 /* Performing the redundancy elimination as described before. */
1156 eliminate_partially_redundant_loads (void)
1161 /* Note we start at block 1. */
1163 if (ENTRY_BLOCK_PTR
->next_bb
== EXIT_BLOCK_PTR
)
1167 ENTRY_BLOCK_PTR
->next_bb
->next_bb
,
1171 /* Don't try anything on basic blocks with strange predecessors. */
1172 if (! bb_has_well_behaved_predecessors (bb
))
1175 /* Do not try anything on cold basic blocks. */
1176 if (optimize_bb_for_size_p (bb
))
1179 /* Reset the table of things changed since the start of the current
1181 reset_opr_set_tables ();
1183 /* Look at all insns in the current basic block and see if there are
1184 any loads in it that we can record. */
1185 FOR_BB_INSNS (bb
, insn
)
1187 /* Is it a load - of the form (set (reg) (mem))? */
1188 if (NONJUMP_INSN_P (insn
)
1189 && GET_CODE (PATTERN (insn
)) == SET
1190 && REG_P (SET_DEST (PATTERN (insn
)))
1191 && MEM_P (SET_SRC (PATTERN (insn
))))
1193 rtx pat
= PATTERN (insn
);
1194 rtx src
= SET_SRC (pat
);
1197 if (!MEM_VOLATILE_P (src
)
1198 && GET_MODE (src
) != BLKmode
1199 && general_operand (src
, GET_MODE (src
))
1200 /* Are the operands unchanged since the start of the
1202 && oprs_unchanged_p (src
, insn
, false)
1203 && !(cfun
->can_throw_non_call_exceptions
&& may_trap_p (src
))
1204 && !side_effects_p (src
)
1205 /* Is the expression recorded? */
1206 && (expr
= lookup_expr_in_table (src
)) != NULL
)
1208 /* We now have a load (insn) and an available memory at
1209 its BB start (expr). Try to remove the loads if it is
1211 eliminate_partially_redundant_load (bb
, insn
, expr
);
1215 /* Keep track of everything modified by this insn, so that we
1216 know what has been modified since the start of the current
1219 record_opr_changes (insn
);
1223 commit_edge_insertions ();
1226 /* Go over the expression hash table and delete insns that were
1227 marked for later deletion. */
1229 /* This helper is called via htab_traverse. */
1231 delete_redundant_insns_1 (void **slot
, void *data ATTRIBUTE_UNUSED
)
1233 struct expr
*expr
= (struct expr
*) *slot
;
1236 for (occr
= expr
->avail_occr
; occr
!= NULL
; occr
= occr
->next
)
1238 if (occr
->deleted_p
&& dbg_cnt (gcse2_delete
))
1240 delete_insn (occr
->insn
);
1241 stats
.insns_deleted
++;
1245 fprintf (dump_file
, "deleting insn:\n");
1246 print_rtl_single (dump_file
, occr
->insn
);
1247 fprintf (dump_file
, "\n");
1256 delete_redundant_insns (void)
1258 htab_traverse (expr_table
, delete_redundant_insns_1
, NULL
);
1260 fprintf (dump_file
, "\n");
1263 /* Main entry point of the GCSE after reload - clean some redundant loads
1267 gcse_after_reload_main (rtx f ATTRIBUTE_UNUSED
)
1270 memset (&stats
, 0, sizeof (stats
));
1272 /* Allocate memory for this pass.
1273 Also computes and initializes the insns' CUIDs. */
1276 /* We need alias analysis. */
1277 init_alias_analysis ();
1279 compute_hash_table ();
1282 dump_hash_table (dump_file
);
1284 if (htab_elements (expr_table
) > 0)
1286 eliminate_partially_redundant_loads ();
1287 delete_redundant_insns ();
1291 fprintf (dump_file
, "GCSE AFTER RELOAD stats:\n");
1292 fprintf (dump_file
, "copies inserted: %d\n", stats
.copies_inserted
);
1293 fprintf (dump_file
, "moves inserted: %d\n", stats
.moves_inserted
);
1294 fprintf (dump_file
, "insns deleted: %d\n", stats
.insns_deleted
);
1295 fprintf (dump_file
, "\n\n");
1298 statistics_counter_event (cfun
, "copies inserted",
1299 stats
.copies_inserted
);
1300 statistics_counter_event (cfun
, "moves inserted",
1301 stats
.moves_inserted
);
1302 statistics_counter_event (cfun
, "insns deleted",
1303 stats
.insns_deleted
);
1306 /* We are finished with alias. */
1307 end_alias_analysis ();
1314 gate_handle_gcse2 (void)
1316 return (optimize
> 0 && flag_gcse_after_reload
1317 && optimize_function_for_speed_p (cfun
));
1322 rest_of_handle_gcse2 (void)
1324 gcse_after_reload_main (get_insns ());
1325 rebuild_jump_labels (get_insns ());
1329 struct rtl_opt_pass pass_gcse2
=
1334 gate_handle_gcse2
, /* gate */
1335 rest_of_handle_gcse2
, /* execute */
1338 0, /* static_pass_number */
1339 TV_GCSE_AFTER_RELOAD
, /* tv_id */
1340 0, /* properties_required */
1341 0, /* properties_provided */
1342 0, /* properties_destroyed */
1343 0, /* todo_flags_start */
1344 TODO_dump_func
| TODO_verify_rtl_sharing
1345 | TODO_verify_flow
| TODO_ggc_collect
/* todo_flags_finish */