1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987-2015 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
26 #include "diagnostic-core.h"
31 #include "double-int.h"
38 #include "fold-const.h"
39 #include "stor-layout.h"
42 #include "insn-config.h"
44 #include "hard-reg-set.h"
46 #include "statistics.h"
48 #include "fixed-value.h"
57 #include "insn-codes.h"
60 #include "langhooks.h"
62 #include "basic-block.h"
66 struct target_expmed default_target_expmed
;
68 struct target_expmed
*this_target_expmed
= &default_target_expmed
;
71 static void store_fixed_bit_field (rtx
, unsigned HOST_WIDE_INT
,
72 unsigned HOST_WIDE_INT
,
73 unsigned HOST_WIDE_INT
,
74 unsigned HOST_WIDE_INT
,
76 static void store_fixed_bit_field_1 (rtx
, unsigned HOST_WIDE_INT
,
77 unsigned HOST_WIDE_INT
,
79 static void store_split_bit_field (rtx
, unsigned HOST_WIDE_INT
,
80 unsigned HOST_WIDE_INT
,
81 unsigned HOST_WIDE_INT
,
82 unsigned HOST_WIDE_INT
,
84 static rtx
extract_fixed_bit_field (machine_mode
, rtx
,
85 unsigned HOST_WIDE_INT
,
86 unsigned HOST_WIDE_INT
, rtx
, int);
87 static rtx
extract_fixed_bit_field_1 (machine_mode
, rtx
,
88 unsigned HOST_WIDE_INT
,
89 unsigned HOST_WIDE_INT
, rtx
, int);
90 static rtx
lshift_value (machine_mode
, unsigned HOST_WIDE_INT
, int);
91 static rtx
extract_split_bit_field (rtx
, unsigned HOST_WIDE_INT
,
92 unsigned HOST_WIDE_INT
, int);
93 static void do_cmp_and_jump (rtx
, rtx
, enum rtx_code
, machine_mode
, rtx_code_label
*);
94 static rtx
expand_smod_pow2 (machine_mode
, rtx
, HOST_WIDE_INT
);
95 static rtx
expand_sdiv_pow2 (machine_mode
, rtx
, HOST_WIDE_INT
);
97 /* Return a constant integer mask value of mode MODE with BITSIZE ones
98 followed by BITPOS zeros, or the complement of that if COMPLEMENT.
99 The mask is truncated if necessary to the width of mode MODE. The
100 mask is zero-extended if BITSIZE+BITPOS is too small for MODE. */
103 mask_rtx (machine_mode mode
, int bitpos
, int bitsize
, bool complement
)
105 return immed_wide_int_const
106 (wi::shifted_mask (bitpos
, bitsize
, complement
,
107 GET_MODE_PRECISION (mode
)), mode
);
110 /* Test whether a value is zero of a power of two. */
111 #define EXACT_POWER_OF_2_OR_ZERO_P(x) \
112 (((x) & ((x) - (unsigned HOST_WIDE_INT) 1)) == 0)
114 struct init_expmed_rtl
135 rtx pow2
[MAX_BITS_PER_WORD
];
136 rtx cint
[MAX_BITS_PER_WORD
];
140 init_expmed_one_conv (struct init_expmed_rtl
*all
, machine_mode to_mode
,
141 machine_mode from_mode
, bool speed
)
143 int to_size
, from_size
;
146 to_size
= GET_MODE_PRECISION (to_mode
);
147 from_size
= GET_MODE_PRECISION (from_mode
);
149 /* Most partial integers have a precision less than the "full"
150 integer it requires for storage. In case one doesn't, for
151 comparison purposes here, reduce the bit size by one in that
153 if (GET_MODE_CLASS (to_mode
) == MODE_PARTIAL_INT
154 && exact_log2 (to_size
) != -1)
156 if (GET_MODE_CLASS (from_mode
) == MODE_PARTIAL_INT
157 && exact_log2 (from_size
) != -1)
160 /* Assume cost of zero-extend and sign-extend is the same. */
161 which
= (to_size
< from_size
? all
->trunc
: all
->zext
);
163 PUT_MODE (all
->reg
, from_mode
);
164 set_convert_cost (to_mode
, from_mode
, speed
, set_src_cost (which
, speed
));
168 init_expmed_one_mode (struct init_expmed_rtl
*all
,
169 machine_mode mode
, int speed
)
171 int m
, n
, mode_bitsize
;
172 machine_mode mode_from
;
174 mode_bitsize
= GET_MODE_UNIT_BITSIZE (mode
);
176 PUT_MODE (all
->reg
, mode
);
177 PUT_MODE (all
->plus
, mode
);
178 PUT_MODE (all
->neg
, mode
);
179 PUT_MODE (all
->mult
, mode
);
180 PUT_MODE (all
->sdiv
, mode
);
181 PUT_MODE (all
->udiv
, mode
);
182 PUT_MODE (all
->sdiv_32
, mode
);
183 PUT_MODE (all
->smod_32
, mode
);
184 PUT_MODE (all
->wide_trunc
, mode
);
185 PUT_MODE (all
->shift
, mode
);
186 PUT_MODE (all
->shift_mult
, mode
);
187 PUT_MODE (all
->shift_add
, mode
);
188 PUT_MODE (all
->shift_sub0
, mode
);
189 PUT_MODE (all
->shift_sub1
, mode
);
190 PUT_MODE (all
->zext
, mode
);
191 PUT_MODE (all
->trunc
, mode
);
193 set_add_cost (speed
, mode
, set_src_cost (all
->plus
, speed
));
194 set_neg_cost (speed
, mode
, set_src_cost (all
->neg
, speed
));
195 set_mul_cost (speed
, mode
, set_src_cost (all
->mult
, speed
));
196 set_sdiv_cost (speed
, mode
, set_src_cost (all
->sdiv
, speed
));
197 set_udiv_cost (speed
, mode
, set_src_cost (all
->udiv
, speed
));
199 set_sdiv_pow2_cheap (speed
, mode
, (set_src_cost (all
->sdiv_32
, speed
)
200 <= 2 * add_cost (speed
, mode
)));
201 set_smod_pow2_cheap (speed
, mode
, (set_src_cost (all
->smod_32
, speed
)
202 <= 4 * add_cost (speed
, mode
)));
204 set_shift_cost (speed
, mode
, 0, 0);
206 int cost
= add_cost (speed
, mode
);
207 set_shiftadd_cost (speed
, mode
, 0, cost
);
208 set_shiftsub0_cost (speed
, mode
, 0, cost
);
209 set_shiftsub1_cost (speed
, mode
, 0, cost
);
212 n
= MIN (MAX_BITS_PER_WORD
, mode_bitsize
);
213 for (m
= 1; m
< n
; m
++)
215 XEXP (all
->shift
, 1) = all
->cint
[m
];
216 XEXP (all
->shift_mult
, 1) = all
->pow2
[m
];
218 set_shift_cost (speed
, mode
, m
, set_src_cost (all
->shift
, speed
));
219 set_shiftadd_cost (speed
, mode
, m
, set_src_cost (all
->shift_add
, speed
));
220 set_shiftsub0_cost (speed
, mode
, m
, set_src_cost (all
->shift_sub0
, speed
));
221 set_shiftsub1_cost (speed
, mode
, m
, set_src_cost (all
->shift_sub1
, speed
));
224 if (SCALAR_INT_MODE_P (mode
))
226 for (mode_from
= MIN_MODE_INT
; mode_from
<= MAX_MODE_INT
;
227 mode_from
= (machine_mode
)(mode_from
+ 1))
228 init_expmed_one_conv (all
, mode
, mode_from
, speed
);
230 if (GET_MODE_CLASS (mode
) == MODE_INT
)
232 machine_mode wider_mode
= GET_MODE_WIDER_MODE (mode
);
233 if (wider_mode
!= VOIDmode
)
235 PUT_MODE (all
->zext
, wider_mode
);
236 PUT_MODE (all
->wide_mult
, wider_mode
);
237 PUT_MODE (all
->wide_lshr
, wider_mode
);
238 XEXP (all
->wide_lshr
, 1) = GEN_INT (mode_bitsize
);
240 set_mul_widen_cost (speed
, wider_mode
,
241 set_src_cost (all
->wide_mult
, speed
));
242 set_mul_highpart_cost (speed
, mode
,
243 set_src_cost (all
->wide_trunc
, speed
));
251 struct init_expmed_rtl all
;
252 machine_mode mode
= QImode
;
255 memset (&all
, 0, sizeof all
);
256 for (m
= 1; m
< MAX_BITS_PER_WORD
; m
++)
258 all
.pow2
[m
] = GEN_INT ((HOST_WIDE_INT
) 1 << m
);
259 all
.cint
[m
] = GEN_INT (m
);
262 /* Avoid using hard regs in ways which may be unsupported. */
263 all
.reg
= gen_raw_REG (mode
, LAST_VIRTUAL_REGISTER
+ 1);
264 all
.plus
= gen_rtx_PLUS (mode
, all
.reg
, all
.reg
);
265 all
.neg
= gen_rtx_NEG (mode
, all
.reg
);
266 all
.mult
= gen_rtx_MULT (mode
, all
.reg
, all
.reg
);
267 all
.sdiv
= gen_rtx_DIV (mode
, all
.reg
, all
.reg
);
268 all
.udiv
= gen_rtx_UDIV (mode
, all
.reg
, all
.reg
);
269 all
.sdiv_32
= gen_rtx_DIV (mode
, all
.reg
, all
.pow2
[5]);
270 all
.smod_32
= gen_rtx_MOD (mode
, all
.reg
, all
.pow2
[5]);
271 all
.zext
= gen_rtx_ZERO_EXTEND (mode
, all
.reg
);
272 all
.wide_mult
= gen_rtx_MULT (mode
, all
.zext
, all
.zext
);
273 all
.wide_lshr
= gen_rtx_LSHIFTRT (mode
, all
.wide_mult
, all
.reg
);
274 all
.wide_trunc
= gen_rtx_TRUNCATE (mode
, all
.wide_lshr
);
275 all
.shift
= gen_rtx_ASHIFT (mode
, all
.reg
, all
.reg
);
276 all
.shift_mult
= gen_rtx_MULT (mode
, all
.reg
, all
.reg
);
277 all
.shift_add
= gen_rtx_PLUS (mode
, all
.shift_mult
, all
.reg
);
278 all
.shift_sub0
= gen_rtx_MINUS (mode
, all
.shift_mult
, all
.reg
);
279 all
.shift_sub1
= gen_rtx_MINUS (mode
, all
.reg
, all
.shift_mult
);
280 all
.trunc
= gen_rtx_TRUNCATE (mode
, all
.reg
);
282 for (speed
= 0; speed
< 2; speed
++)
284 crtl
->maybe_hot_insn_p
= speed
;
285 set_zero_cost (speed
, set_src_cost (const0_rtx
, speed
));
287 for (mode
= MIN_MODE_INT
; mode
<= MAX_MODE_INT
;
288 mode
= (machine_mode
)(mode
+ 1))
289 init_expmed_one_mode (&all
, mode
, speed
);
291 if (MIN_MODE_PARTIAL_INT
!= VOIDmode
)
292 for (mode
= MIN_MODE_PARTIAL_INT
; mode
<= MAX_MODE_PARTIAL_INT
;
293 mode
= (machine_mode
)(mode
+ 1))
294 init_expmed_one_mode (&all
, mode
, speed
);
296 if (MIN_MODE_VECTOR_INT
!= VOIDmode
)
297 for (mode
= MIN_MODE_VECTOR_INT
; mode
<= MAX_MODE_VECTOR_INT
;
298 mode
= (machine_mode
)(mode
+ 1))
299 init_expmed_one_mode (&all
, mode
, speed
);
302 if (alg_hash_used_p ())
304 struct alg_hash_entry
*p
= alg_hash_entry_ptr (0);
305 memset (p
, 0, sizeof (*p
) * NUM_ALG_HASH_ENTRIES
);
308 set_alg_hash_used_p (true);
309 default_rtl_profile ();
311 ggc_free (all
.trunc
);
312 ggc_free (all
.shift_sub1
);
313 ggc_free (all
.shift_sub0
);
314 ggc_free (all
.shift_add
);
315 ggc_free (all
.shift_mult
);
316 ggc_free (all
.shift
);
317 ggc_free (all
.wide_trunc
);
318 ggc_free (all
.wide_lshr
);
319 ggc_free (all
.wide_mult
);
321 ggc_free (all
.smod_32
);
322 ggc_free (all
.sdiv_32
);
331 /* Return an rtx representing minus the value of X.
332 MODE is the intended mode of the result,
333 useful if X is a CONST_INT. */
336 negate_rtx (machine_mode mode
, rtx x
)
338 rtx result
= simplify_unary_operation (NEG
, mode
, x
, mode
);
341 result
= expand_unop (mode
, neg_optab
, x
, NULL_RTX
, 0);
346 /* Adjust bitfield memory MEM so that it points to the first unit of mode
347 MODE that contains a bitfield of size BITSIZE at bit position BITNUM.
348 If MODE is BLKmode, return a reference to every byte in the bitfield.
349 Set *NEW_BITNUM to the bit position of the field within the new memory. */
352 narrow_bit_field_mem (rtx mem
, machine_mode mode
,
353 unsigned HOST_WIDE_INT bitsize
,
354 unsigned HOST_WIDE_INT bitnum
,
355 unsigned HOST_WIDE_INT
*new_bitnum
)
359 *new_bitnum
= bitnum
% BITS_PER_UNIT
;
360 HOST_WIDE_INT offset
= bitnum
/ BITS_PER_UNIT
;
361 HOST_WIDE_INT size
= ((*new_bitnum
+ bitsize
+ BITS_PER_UNIT
- 1)
363 return adjust_bitfield_address_size (mem
, mode
, offset
, size
);
367 unsigned int unit
= GET_MODE_BITSIZE (mode
);
368 *new_bitnum
= bitnum
% unit
;
369 HOST_WIDE_INT offset
= (bitnum
- *new_bitnum
) / BITS_PER_UNIT
;
370 return adjust_bitfield_address (mem
, mode
, offset
);
374 /* The caller wants to perform insertion or extraction PATTERN on a
375 bitfield of size BITSIZE at BITNUM bits into memory operand OP0.
376 BITREGION_START and BITREGION_END are as for store_bit_field
377 and FIELDMODE is the natural mode of the field.
379 Search for a mode that is compatible with the memory access
380 restrictions and (where applicable) with a register insertion or
381 extraction. Return the new memory on success, storing the adjusted
382 bit position in *NEW_BITNUM. Return null otherwise. */
385 adjust_bit_field_mem_for_reg (enum extraction_pattern pattern
,
386 rtx op0
, HOST_WIDE_INT bitsize
,
387 HOST_WIDE_INT bitnum
,
388 unsigned HOST_WIDE_INT bitregion_start
,
389 unsigned HOST_WIDE_INT bitregion_end
,
390 machine_mode fieldmode
,
391 unsigned HOST_WIDE_INT
*new_bitnum
)
393 bit_field_mode_iterator
iter (bitsize
, bitnum
, bitregion_start
,
394 bitregion_end
, MEM_ALIGN (op0
),
395 MEM_VOLATILE_P (op0
));
396 machine_mode best_mode
;
397 if (iter
.next_mode (&best_mode
))
399 /* We can use a memory in BEST_MODE. See whether this is true for
400 any wider modes. All other things being equal, we prefer to
401 use the widest mode possible because it tends to expose more
402 CSE opportunities. */
403 if (!iter
.prefer_smaller_modes ())
405 /* Limit the search to the mode required by the corresponding
406 register insertion or extraction instruction, if any. */
407 machine_mode limit_mode
= word_mode
;
408 extraction_insn insn
;
409 if (get_best_reg_extraction_insn (&insn
, pattern
,
410 GET_MODE_BITSIZE (best_mode
),
412 limit_mode
= insn
.field_mode
;
414 machine_mode wider_mode
;
415 while (iter
.next_mode (&wider_mode
)
416 && GET_MODE_SIZE (wider_mode
) <= GET_MODE_SIZE (limit_mode
))
417 best_mode
= wider_mode
;
419 return narrow_bit_field_mem (op0
, best_mode
, bitsize
, bitnum
,
425 /* Return true if a bitfield of size BITSIZE at bit number BITNUM within
426 a structure of mode STRUCT_MODE represents a lowpart subreg. The subreg
427 offset is then BITNUM / BITS_PER_UNIT. */
430 lowpart_bit_field_p (unsigned HOST_WIDE_INT bitnum
,
431 unsigned HOST_WIDE_INT bitsize
,
432 machine_mode struct_mode
)
434 if (BYTES_BIG_ENDIAN
)
435 return (bitnum
% BITS_PER_UNIT
== 0
436 && (bitnum
+ bitsize
== GET_MODE_BITSIZE (struct_mode
)
437 || (bitnum
+ bitsize
) % BITS_PER_WORD
== 0));
439 return bitnum
% BITS_PER_WORD
== 0;
442 /* Return true if -fstrict-volatile-bitfields applies to an access of OP0
443 containing BITSIZE bits starting at BITNUM, with field mode FIELDMODE.
444 Return false if the access would touch memory outside the range
445 BITREGION_START to BITREGION_END for conformance to the C++ memory
449 strict_volatile_bitfield_p (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
450 unsigned HOST_WIDE_INT bitnum
,
451 machine_mode fieldmode
,
452 unsigned HOST_WIDE_INT bitregion_start
,
453 unsigned HOST_WIDE_INT bitregion_end
)
455 unsigned HOST_WIDE_INT modesize
= GET_MODE_BITSIZE (fieldmode
);
457 /* -fstrict-volatile-bitfields must be enabled and we must have a
460 || !MEM_VOLATILE_P (op0
)
461 || flag_strict_volatile_bitfields
<= 0)
464 /* Non-integral modes likely only happen with packed structures.
466 if (!SCALAR_INT_MODE_P (fieldmode
))
469 /* The bit size must not be larger than the field mode, and
470 the field mode must not be larger than a word. */
471 if (bitsize
> modesize
|| modesize
> BITS_PER_WORD
)
474 /* Check for cases of unaligned fields that must be split. */
475 if (bitnum
% modesize
+ bitsize
> modesize
)
478 /* The memory must be sufficiently aligned for a MODESIZE access.
479 This condition guarantees, that the memory access will not
480 touch anything after the end of the structure. */
481 if (MEM_ALIGN (op0
) < modesize
)
484 /* Check for cases where the C++ memory model applies. */
485 if (bitregion_end
!= 0
486 && (bitnum
- bitnum
% modesize
< bitregion_start
487 || bitnum
- bitnum
% modesize
+ modesize
- 1 > bitregion_end
))
493 /* Return true if OP is a memory and if a bitfield of size BITSIZE at
494 bit number BITNUM can be treated as a simple value of mode MODE. */
497 simple_mem_bitfield_p (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
498 unsigned HOST_WIDE_INT bitnum
, machine_mode mode
)
501 && bitnum
% BITS_PER_UNIT
== 0
502 && bitsize
== GET_MODE_BITSIZE (mode
)
503 && (!SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (op0
))
504 || (bitnum
% GET_MODE_ALIGNMENT (mode
) == 0
505 && MEM_ALIGN (op0
) >= GET_MODE_ALIGNMENT (mode
))));
508 /* Try to use instruction INSV to store VALUE into a field of OP0.
509 BITSIZE and BITNUM are as for store_bit_field. */
512 store_bit_field_using_insv (const extraction_insn
*insv
, rtx op0
,
513 unsigned HOST_WIDE_INT bitsize
,
514 unsigned HOST_WIDE_INT bitnum
,
517 struct expand_operand ops
[4];
520 rtx_insn
*last
= get_last_insn ();
521 bool copy_back
= false;
523 machine_mode op_mode
= insv
->field_mode
;
524 unsigned int unit
= GET_MODE_BITSIZE (op_mode
);
525 if (bitsize
== 0 || bitsize
> unit
)
529 /* Get a reference to the first byte of the field. */
530 xop0
= narrow_bit_field_mem (xop0
, insv
->struct_mode
, bitsize
, bitnum
,
534 /* Convert from counting within OP0 to counting in OP_MODE. */
535 if (BYTES_BIG_ENDIAN
)
536 bitnum
+= unit
- GET_MODE_BITSIZE (GET_MODE (op0
));
538 /* If xop0 is a register, we need it in OP_MODE
539 to make it acceptable to the format of insv. */
540 if (GET_CODE (xop0
) == SUBREG
)
541 /* We can't just change the mode, because this might clobber op0,
542 and we will need the original value of op0 if insv fails. */
543 xop0
= gen_rtx_SUBREG (op_mode
, SUBREG_REG (xop0
), SUBREG_BYTE (xop0
));
544 if (REG_P (xop0
) && GET_MODE (xop0
) != op_mode
)
545 xop0
= gen_lowpart_SUBREG (op_mode
, xop0
);
548 /* If the destination is a paradoxical subreg such that we need a
549 truncate to the inner mode, perform the insertion on a temporary and
550 truncate the result to the original destination. Note that we can't
551 just truncate the paradoxical subreg as (truncate:N (subreg:W (reg:N
552 X) 0)) is (reg:N X). */
553 if (GET_CODE (xop0
) == SUBREG
554 && REG_P (SUBREG_REG (xop0
))
555 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (SUBREG_REG (xop0
)),
558 rtx tem
= gen_reg_rtx (op_mode
);
559 emit_move_insn (tem
, xop0
);
564 /* There are similar overflow check at the start of store_bit_field_1,
565 but that only check the situation where the field lies completely
566 outside the register, while there do have situation where the field
567 lies partialy in the register, we need to adjust bitsize for this
568 partial overflow situation. Without this fix, pr48335-2.c on big-endian
569 will broken on those arch support bit insert instruction, like arm, aarch64
571 if (bitsize
+ bitnum
> unit
&& bitnum
< unit
)
573 warning (OPT_Wextra
, "write of %wu-bit data outside the bound of "
574 "destination object, data truncated into %wu-bit",
575 bitsize
, unit
- bitnum
);
576 bitsize
= unit
- bitnum
;
579 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
580 "backwards" from the size of the unit we are inserting into.
581 Otherwise, we count bits from the most significant on a
582 BYTES/BITS_BIG_ENDIAN machine. */
584 if (BITS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
585 bitnum
= unit
- bitsize
- bitnum
;
587 /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
589 if (GET_MODE (value
) != op_mode
)
591 if (GET_MODE_BITSIZE (GET_MODE (value
)) >= bitsize
)
593 /* Optimization: Don't bother really extending VALUE
594 if it has all the bits we will actually use. However,
595 if we must narrow it, be sure we do it correctly. */
597 if (GET_MODE_SIZE (GET_MODE (value
)) < GET_MODE_SIZE (op_mode
))
601 tmp
= simplify_subreg (op_mode
, value1
, GET_MODE (value
), 0);
603 tmp
= simplify_gen_subreg (op_mode
,
604 force_reg (GET_MODE (value
),
606 GET_MODE (value
), 0);
610 value1
= gen_lowpart (op_mode
, value1
);
612 else if (CONST_INT_P (value
))
613 value1
= gen_int_mode (INTVAL (value
), op_mode
);
615 /* Parse phase is supposed to make VALUE's data type
616 match that of the component reference, which is a type
617 at least as wide as the field; so VALUE should have
618 a mode that corresponds to that type. */
619 gcc_assert (CONSTANT_P (value
));
622 create_fixed_operand (&ops
[0], xop0
);
623 create_integer_operand (&ops
[1], bitsize
);
624 create_integer_operand (&ops
[2], bitnum
);
625 create_input_operand (&ops
[3], value1
, op_mode
);
626 if (maybe_expand_insn (insv
->icode
, 4, ops
))
629 convert_move (op0
, xop0
, true);
632 delete_insns_since (last
);
636 /* A subroutine of store_bit_field, with the same arguments. Return true
637 if the operation could be implemented.
639 If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
640 no other way of implementing the operation. If FALLBACK_P is false,
641 return false instead. */
644 store_bit_field_1 (rtx str_rtx
, unsigned HOST_WIDE_INT bitsize
,
645 unsigned HOST_WIDE_INT bitnum
,
646 unsigned HOST_WIDE_INT bitregion_start
,
647 unsigned HOST_WIDE_INT bitregion_end
,
648 machine_mode fieldmode
,
649 rtx value
, bool fallback_p
)
654 while (GET_CODE (op0
) == SUBREG
)
656 /* The following line once was done only if WORDS_BIG_ENDIAN,
657 but I think that is a mistake. WORDS_BIG_ENDIAN is
658 meaningful at a much higher level; when structures are copied
659 between memory and regs, the higher-numbered regs
660 always get higher addresses. */
661 int inner_mode_size
= GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0
)));
662 int outer_mode_size
= GET_MODE_SIZE (GET_MODE (op0
));
665 /* Paradoxical subregs need special handling on big endian machines. */
666 if (SUBREG_BYTE (op0
) == 0 && inner_mode_size
< outer_mode_size
)
668 int difference
= inner_mode_size
- outer_mode_size
;
670 if (WORDS_BIG_ENDIAN
)
671 byte_offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
672 if (BYTES_BIG_ENDIAN
)
673 byte_offset
+= difference
% UNITS_PER_WORD
;
676 byte_offset
= SUBREG_BYTE (op0
);
678 bitnum
+= byte_offset
* BITS_PER_UNIT
;
679 op0
= SUBREG_REG (op0
);
682 /* No action is needed if the target is a register and if the field
683 lies completely outside that register. This can occur if the source
684 code contains an out-of-bounds access to a small array. */
685 if (REG_P (op0
) && bitnum
>= GET_MODE_BITSIZE (GET_MODE (op0
)))
688 /* Use vec_set patterns for inserting parts of vectors whenever
690 if (VECTOR_MODE_P (GET_MODE (op0
))
692 && optab_handler (vec_set_optab
, GET_MODE (op0
)) != CODE_FOR_nothing
693 && fieldmode
== GET_MODE_INNER (GET_MODE (op0
))
694 && bitsize
== GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0
)))
695 && !(bitnum
% GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0
)))))
697 struct expand_operand ops
[3];
698 machine_mode outermode
= GET_MODE (op0
);
699 machine_mode innermode
= GET_MODE_INNER (outermode
);
700 enum insn_code icode
= optab_handler (vec_set_optab
, outermode
);
701 int pos
= bitnum
/ GET_MODE_BITSIZE (innermode
);
703 create_fixed_operand (&ops
[0], op0
);
704 create_input_operand (&ops
[1], value
, innermode
);
705 create_integer_operand (&ops
[2], pos
);
706 if (maybe_expand_insn (icode
, 3, ops
))
710 /* If the target is a register, overwriting the entire object, or storing
711 a full-word or multi-word field can be done with just a SUBREG. */
713 && bitsize
== GET_MODE_BITSIZE (fieldmode
)
714 && ((bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)) && bitnum
== 0)
715 || (bitsize
% BITS_PER_WORD
== 0 && bitnum
% BITS_PER_WORD
== 0)))
717 /* Use the subreg machinery either to narrow OP0 to the required
718 words or to cope with mode punning between equal-sized modes.
719 In the latter case, use subreg on the rhs side, not lhs. */
722 if (bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)))
724 sub
= simplify_gen_subreg (GET_MODE (op0
), value
, fieldmode
, 0);
727 emit_move_insn (op0
, sub
);
733 sub
= simplify_gen_subreg (fieldmode
, op0
, GET_MODE (op0
),
734 bitnum
/ BITS_PER_UNIT
);
737 emit_move_insn (sub
, value
);
743 /* If the target is memory, storing any naturally aligned field can be
744 done with a simple store. For targets that support fast unaligned
745 memory, any naturally sized, unit aligned field can be done directly. */
746 if (simple_mem_bitfield_p (op0
, bitsize
, bitnum
, fieldmode
))
748 op0
= adjust_bitfield_address (op0
, fieldmode
, bitnum
/ BITS_PER_UNIT
);
749 emit_move_insn (op0
, value
);
753 /* Make sure we are playing with integral modes. Pun with subregs
754 if we aren't. This must come after the entire register case above,
755 since that case is valid for any mode. The following cases are only
756 valid for integral modes. */
758 machine_mode imode
= int_mode_for_mode (GET_MODE (op0
));
759 if (imode
!= GET_MODE (op0
))
762 op0
= adjust_bitfield_address_size (op0
, imode
, 0, MEM_SIZE (op0
));
765 gcc_assert (imode
!= BLKmode
);
766 op0
= gen_lowpart (imode
, op0
);
771 /* Storing an lsb-aligned field in a register
772 can be done with a movstrict instruction. */
775 && lowpart_bit_field_p (bitnum
, bitsize
, GET_MODE (op0
))
776 && bitsize
== GET_MODE_BITSIZE (fieldmode
)
777 && optab_handler (movstrict_optab
, fieldmode
) != CODE_FOR_nothing
)
779 struct expand_operand ops
[2];
780 enum insn_code icode
= optab_handler (movstrict_optab
, fieldmode
);
782 unsigned HOST_WIDE_INT subreg_off
;
784 if (GET_CODE (arg0
) == SUBREG
)
786 /* Else we've got some float mode source being extracted into
787 a different float mode destination -- this combination of
788 subregs results in Severe Tire Damage. */
789 gcc_assert (GET_MODE (SUBREG_REG (arg0
)) == fieldmode
790 || GET_MODE_CLASS (fieldmode
) == MODE_INT
791 || GET_MODE_CLASS (fieldmode
) == MODE_PARTIAL_INT
);
792 arg0
= SUBREG_REG (arg0
);
795 subreg_off
= bitnum
/ BITS_PER_UNIT
;
796 if (validate_subreg (fieldmode
, GET_MODE (arg0
), arg0
, subreg_off
))
798 arg0
= gen_rtx_SUBREG (fieldmode
, arg0
, subreg_off
);
800 create_fixed_operand (&ops
[0], arg0
);
801 /* Shrink the source operand to FIELDMODE. */
802 create_convert_operand_to (&ops
[1], value
, fieldmode
, false);
803 if (maybe_expand_insn (icode
, 2, ops
))
808 /* Handle fields bigger than a word. */
810 if (bitsize
> BITS_PER_WORD
)
812 /* Here we transfer the words of the field
813 in the order least significant first.
814 This is because the most significant word is the one which may
816 However, only do that if the value is not BLKmode. */
818 unsigned int backwards
= WORDS_BIG_ENDIAN
&& fieldmode
!= BLKmode
;
819 unsigned int nwords
= (bitsize
+ (BITS_PER_WORD
- 1)) / BITS_PER_WORD
;
823 /* This is the mode we must force value to, so that there will be enough
824 subwords to extract. Note that fieldmode will often (always?) be
825 VOIDmode, because that is what store_field uses to indicate that this
826 is a bit field, but passing VOIDmode to operand_subword_force
828 fieldmode
= GET_MODE (value
);
829 if (fieldmode
== VOIDmode
)
830 fieldmode
= smallest_mode_for_size (nwords
* BITS_PER_WORD
, MODE_INT
);
832 last
= get_last_insn ();
833 for (i
= 0; i
< nwords
; i
++)
835 /* If I is 0, use the low-order word in both field and target;
836 if I is 1, use the next to lowest word; and so on. */
837 unsigned int wordnum
= (backwards
838 ? GET_MODE_SIZE (fieldmode
) / UNITS_PER_WORD
841 unsigned int bit_offset
= (backwards
842 ? MAX ((int) bitsize
- ((int) i
+ 1)
845 : (int) i
* BITS_PER_WORD
);
846 rtx value_word
= operand_subword_force (value
, wordnum
, fieldmode
);
847 unsigned HOST_WIDE_INT new_bitsize
=
848 MIN (BITS_PER_WORD
, bitsize
- i
* BITS_PER_WORD
);
850 /* If the remaining chunk doesn't have full wordsize we have
851 to make sure that for big endian machines the higher order
853 if (new_bitsize
< BITS_PER_WORD
&& BYTES_BIG_ENDIAN
&& !backwards
)
854 value_word
= simplify_expand_binop (word_mode
, lshr_optab
,
856 GEN_INT (BITS_PER_WORD
861 if (!store_bit_field_1 (op0
, new_bitsize
,
863 bitregion_start
, bitregion_end
,
865 value_word
, fallback_p
))
867 delete_insns_since (last
);
874 /* If VALUE has a floating-point or complex mode, access it as an
875 integer of the corresponding size. This can occur on a machine
876 with 64 bit registers that uses SFmode for float. It can also
877 occur for unaligned float or complex fields. */
879 if (GET_MODE (value
) != VOIDmode
880 && GET_MODE_CLASS (GET_MODE (value
)) != MODE_INT
881 && GET_MODE_CLASS (GET_MODE (value
)) != MODE_PARTIAL_INT
)
883 value
= gen_reg_rtx (int_mode_for_mode (GET_MODE (value
)));
884 emit_move_insn (gen_lowpart (GET_MODE (orig_value
), value
), orig_value
);
887 /* If OP0 is a multi-word register, narrow it to the affected word.
888 If the region spans two words, defer to store_split_bit_field. */
889 if (!MEM_P (op0
) && GET_MODE_SIZE (GET_MODE (op0
)) > UNITS_PER_WORD
)
891 op0
= simplify_gen_subreg (word_mode
, op0
, GET_MODE (op0
),
892 bitnum
/ BITS_PER_WORD
* UNITS_PER_WORD
);
894 bitnum
%= BITS_PER_WORD
;
895 if (bitnum
+ bitsize
> BITS_PER_WORD
)
900 store_split_bit_field (op0
, bitsize
, bitnum
, bitregion_start
,
901 bitregion_end
, value
);
906 /* From here on we can assume that the field to be stored in fits
907 within a word. If the destination is a register, it too fits
910 extraction_insn insv
;
912 && get_best_reg_extraction_insn (&insv
, EP_insv
,
913 GET_MODE_BITSIZE (GET_MODE (op0
)),
915 && store_bit_field_using_insv (&insv
, op0
, bitsize
, bitnum
, value
))
918 /* If OP0 is a memory, try copying it to a register and seeing if a
919 cheap register alternative is available. */
922 if (get_best_mem_extraction_insn (&insv
, EP_insv
, bitsize
, bitnum
,
924 && store_bit_field_using_insv (&insv
, op0
, bitsize
, bitnum
, value
))
927 rtx_insn
*last
= get_last_insn ();
929 /* Try loading part of OP0 into a register, inserting the bitfield
930 into that, and then copying the result back to OP0. */
931 unsigned HOST_WIDE_INT bitpos
;
932 rtx xop0
= adjust_bit_field_mem_for_reg (EP_insv
, op0
, bitsize
, bitnum
,
933 bitregion_start
, bitregion_end
,
937 rtx tempreg
= copy_to_reg (xop0
);
938 if (store_bit_field_1 (tempreg
, bitsize
, bitpos
,
939 bitregion_start
, bitregion_end
,
940 fieldmode
, orig_value
, false))
942 emit_move_insn (xop0
, tempreg
);
945 delete_insns_since (last
);
952 store_fixed_bit_field (op0
, bitsize
, bitnum
, bitregion_start
,
953 bitregion_end
, value
);
957 /* Generate code to store value from rtx VALUE
958 into a bit-field within structure STR_RTX
959 containing BITSIZE bits starting at bit BITNUM.
961 BITREGION_START is bitpos of the first bitfield in this region.
962 BITREGION_END is the bitpos of the ending bitfield in this region.
963 These two fields are 0, if the C++ memory model does not apply,
964 or we are not interested in keeping track of bitfield regions.
966 FIELDMODE is the machine-mode of the FIELD_DECL node for this field. */
969 store_bit_field (rtx str_rtx
, unsigned HOST_WIDE_INT bitsize
,
970 unsigned HOST_WIDE_INT bitnum
,
971 unsigned HOST_WIDE_INT bitregion_start
,
972 unsigned HOST_WIDE_INT bitregion_end
,
973 machine_mode fieldmode
,
976 /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
977 if (strict_volatile_bitfield_p (str_rtx
, bitsize
, bitnum
, fieldmode
,
978 bitregion_start
, bitregion_end
))
980 /* Storing of a full word can be done with a simple store.
981 We know here that the field can be accessed with one single
982 instruction. For targets that support unaligned memory,
983 an unaligned access may be necessary. */
984 if (bitsize
== GET_MODE_BITSIZE (fieldmode
))
986 str_rtx
= adjust_bitfield_address (str_rtx
, fieldmode
,
987 bitnum
/ BITS_PER_UNIT
);
988 gcc_assert (bitnum
% BITS_PER_UNIT
== 0);
989 emit_move_insn (str_rtx
, value
);
995 str_rtx
= narrow_bit_field_mem (str_rtx
, fieldmode
, bitsize
, bitnum
,
997 gcc_assert (bitnum
+ bitsize
<= GET_MODE_BITSIZE (fieldmode
));
998 temp
= copy_to_reg (str_rtx
);
999 if (!store_bit_field_1 (temp
, bitsize
, bitnum
, 0, 0,
1000 fieldmode
, value
, true))
1003 emit_move_insn (str_rtx
, temp
);
1009 /* Under the C++0x memory model, we must not touch bits outside the
1010 bit region. Adjust the address to start at the beginning of the
1012 if (MEM_P (str_rtx
) && bitregion_start
> 0)
1014 machine_mode bestmode
;
1015 HOST_WIDE_INT offset
, size
;
1017 gcc_assert ((bitregion_start
% BITS_PER_UNIT
) == 0);
1019 offset
= bitregion_start
/ BITS_PER_UNIT
;
1020 bitnum
-= bitregion_start
;
1021 size
= (bitnum
+ bitsize
+ BITS_PER_UNIT
- 1) / BITS_PER_UNIT
;
1022 bitregion_end
-= bitregion_start
;
1023 bitregion_start
= 0;
1024 bestmode
= get_best_mode (bitsize
, bitnum
,
1025 bitregion_start
, bitregion_end
,
1026 MEM_ALIGN (str_rtx
), VOIDmode
,
1027 MEM_VOLATILE_P (str_rtx
));
1028 str_rtx
= adjust_bitfield_address_size (str_rtx
, bestmode
, offset
, size
);
1031 if (!store_bit_field_1 (str_rtx
, bitsize
, bitnum
,
1032 bitregion_start
, bitregion_end
,
1033 fieldmode
, value
, true))
1037 /* Use shifts and boolean operations to store VALUE into a bit field of
1038 width BITSIZE in OP0, starting at bit BITNUM. */
1041 store_fixed_bit_field (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
1042 unsigned HOST_WIDE_INT bitnum
,
1043 unsigned HOST_WIDE_INT bitregion_start
,
1044 unsigned HOST_WIDE_INT bitregion_end
,
1047 /* There is a case not handled here:
1048 a structure with a known alignment of just a halfword
1049 and a field split across two aligned halfwords within the structure.
1050 Or likewise a structure with a known alignment of just a byte
1051 and a field split across two bytes.
1052 Such cases are not supposed to be able to occur. */
1056 machine_mode mode
= GET_MODE (op0
);
1057 if (GET_MODE_BITSIZE (mode
) == 0
1058 || GET_MODE_BITSIZE (mode
) > GET_MODE_BITSIZE (word_mode
))
1060 mode
= get_best_mode (bitsize
, bitnum
, bitregion_start
, bitregion_end
,
1061 MEM_ALIGN (op0
), mode
, MEM_VOLATILE_P (op0
));
1063 if (mode
== VOIDmode
)
1065 /* The only way this should occur is if the field spans word
1067 store_split_bit_field (op0
, bitsize
, bitnum
, bitregion_start
,
1068 bitregion_end
, value
);
1072 op0
= narrow_bit_field_mem (op0
, mode
, bitsize
, bitnum
, &bitnum
);
1075 store_fixed_bit_field_1 (op0
, bitsize
, bitnum
, value
);
1078 /* Helper function for store_fixed_bit_field, stores
1079 the bit field always using the MODE of OP0. */
1082 store_fixed_bit_field_1 (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
1083 unsigned HOST_WIDE_INT bitnum
,
1091 mode
= GET_MODE (op0
);
1092 gcc_assert (SCALAR_INT_MODE_P (mode
));
1094 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
1095 for invalid input, such as f5 from gcc.dg/pr48335-2.c. */
1097 if (BYTES_BIG_ENDIAN
)
1098 /* BITNUM is the distance between our msb
1099 and that of the containing datum.
1100 Convert it to the distance from the lsb. */
1101 bitnum
= GET_MODE_BITSIZE (mode
) - bitsize
- bitnum
;
1103 /* Now BITNUM is always the distance between our lsb
1106 /* Shift VALUE left by BITNUM bits. If VALUE is not constant,
1107 we must first convert its mode to MODE. */
1109 if (CONST_INT_P (value
))
1111 unsigned HOST_WIDE_INT v
= UINTVAL (value
);
1113 if (bitsize
< HOST_BITS_PER_WIDE_INT
)
1114 v
&= ((unsigned HOST_WIDE_INT
) 1 << bitsize
) - 1;
1118 else if ((bitsize
< HOST_BITS_PER_WIDE_INT
1119 && v
== ((unsigned HOST_WIDE_INT
) 1 << bitsize
) - 1)
1120 || (bitsize
== HOST_BITS_PER_WIDE_INT
1121 && v
== (unsigned HOST_WIDE_INT
) -1))
1124 value
= lshift_value (mode
, v
, bitnum
);
1128 int must_and
= (GET_MODE_BITSIZE (GET_MODE (value
)) != bitsize
1129 && bitnum
+ bitsize
!= GET_MODE_BITSIZE (mode
));
1131 if (GET_MODE (value
) != mode
)
1132 value
= convert_to_mode (mode
, value
, 1);
1135 value
= expand_binop (mode
, and_optab
, value
,
1136 mask_rtx (mode
, 0, bitsize
, 0),
1137 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1139 value
= expand_shift (LSHIFT_EXPR
, mode
, value
,
1140 bitnum
, NULL_RTX
, 1);
1143 /* Now clear the chosen bits in OP0,
1144 except that if VALUE is -1 we need not bother. */
1145 /* We keep the intermediates in registers to allow CSE to combine
1146 consecutive bitfield assignments. */
1148 temp
= force_reg (mode
, op0
);
1152 temp
= expand_binop (mode
, and_optab
, temp
,
1153 mask_rtx (mode
, bitnum
, bitsize
, 1),
1154 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1155 temp
= force_reg (mode
, temp
);
1158 /* Now logical-or VALUE into OP0, unless it is zero. */
1162 temp
= expand_binop (mode
, ior_optab
, temp
, value
,
1163 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1164 temp
= force_reg (mode
, temp
);
1169 op0
= copy_rtx (op0
);
1170 emit_move_insn (op0
, temp
);
1174 /* Store a bit field that is split across multiple accessible memory objects.
1176 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
1177 BITSIZE is the field width; BITPOS the position of its first bit
1179 VALUE is the value to store.
1181 This does not yet handle fields wider than BITS_PER_WORD. */
1184 store_split_bit_field (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
1185 unsigned HOST_WIDE_INT bitpos
,
1186 unsigned HOST_WIDE_INT bitregion_start
,
1187 unsigned HOST_WIDE_INT bitregion_end
,
1191 unsigned int bitsdone
= 0;
1193 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1195 if (REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
1196 unit
= BITS_PER_WORD
;
1198 unit
= MIN (MEM_ALIGN (op0
), BITS_PER_WORD
);
1200 /* If OP0 is a memory with a mode, then UNIT must not be larger than
1201 OP0's mode as well. Otherwise, store_fixed_bit_field will call us
1202 again, and we will mutually recurse forever. */
1203 if (MEM_P (op0
) && GET_MODE_BITSIZE (GET_MODE (op0
)) > 0)
1204 unit
= MIN (unit
, GET_MODE_BITSIZE (GET_MODE (op0
)));
1206 /* If VALUE is a constant other than a CONST_INT, get it into a register in
1207 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
1208 that VALUE might be a floating-point constant. */
1209 if (CONSTANT_P (value
) && !CONST_INT_P (value
))
1211 rtx word
= gen_lowpart_common (word_mode
, value
);
1213 if (word
&& (value
!= word
))
1216 value
= gen_lowpart_common (word_mode
,
1217 force_reg (GET_MODE (value
) != VOIDmode
1219 : word_mode
, value
));
1222 while (bitsdone
< bitsize
)
1224 unsigned HOST_WIDE_INT thissize
;
1226 unsigned HOST_WIDE_INT thispos
;
1227 unsigned HOST_WIDE_INT offset
;
1229 offset
= (bitpos
+ bitsdone
) / unit
;
1230 thispos
= (bitpos
+ bitsdone
) % unit
;
1232 /* When region of bytes we can touch is restricted, decrease
1233 UNIT close to the end of the region as needed. If op0 is a REG
1234 or SUBREG of REG, don't do this, as there can't be data races
1235 on a register and we can expand shorter code in some cases. */
1237 && unit
> BITS_PER_UNIT
1238 && bitpos
+ bitsdone
- thispos
+ unit
> bitregion_end
+ 1
1240 && (GET_CODE (op0
) != SUBREG
|| !REG_P (SUBREG_REG (op0
))))
1246 /* THISSIZE must not overrun a word boundary. Otherwise,
1247 store_fixed_bit_field will call us again, and we will mutually
1249 thissize
= MIN (bitsize
- bitsdone
, BITS_PER_WORD
);
1250 thissize
= MIN (thissize
, unit
- thispos
);
1252 if (BYTES_BIG_ENDIAN
)
1254 /* Fetch successively less significant portions. */
1255 if (CONST_INT_P (value
))
1256 part
= GEN_INT (((unsigned HOST_WIDE_INT
) (INTVAL (value
))
1257 >> (bitsize
- bitsdone
- thissize
))
1258 & (((HOST_WIDE_INT
) 1 << thissize
) - 1));
1261 int total_bits
= GET_MODE_BITSIZE (GET_MODE (value
));
1262 /* The args are chosen so that the last part includes the
1263 lsb. Give extract_bit_field the value it needs (with
1264 endianness compensation) to fetch the piece we want. */
1265 part
= extract_fixed_bit_field (word_mode
, value
, thissize
,
1266 total_bits
- bitsize
+ bitsdone
,
1272 /* Fetch successively more significant portions. */
1273 if (CONST_INT_P (value
))
1274 part
= GEN_INT (((unsigned HOST_WIDE_INT
) (INTVAL (value
))
1276 & (((HOST_WIDE_INT
) 1 << thissize
) - 1));
1278 part
= extract_fixed_bit_field (word_mode
, value
, thissize
,
1279 bitsdone
, NULL_RTX
, 1);
1282 /* If OP0 is a register, then handle OFFSET here.
1284 When handling multiword bitfields, extract_bit_field may pass
1285 down a word_mode SUBREG of a larger REG for a bitfield that actually
1286 crosses a word boundary. Thus, for a SUBREG, we must find
1287 the current word starting from the base register. */
1288 if (GET_CODE (op0
) == SUBREG
)
1290 int word_offset
= (SUBREG_BYTE (op0
) / UNITS_PER_WORD
)
1291 + (offset
* unit
/ BITS_PER_WORD
);
1292 machine_mode sub_mode
= GET_MODE (SUBREG_REG (op0
));
1293 if (sub_mode
!= BLKmode
&& GET_MODE_SIZE (sub_mode
) < UNITS_PER_WORD
)
1294 word
= word_offset
? const0_rtx
: op0
;
1296 word
= operand_subword_force (SUBREG_REG (op0
), word_offset
,
1297 GET_MODE (SUBREG_REG (op0
)));
1298 offset
&= BITS_PER_WORD
/ unit
- 1;
1300 else if (REG_P (op0
))
1302 machine_mode op0_mode
= GET_MODE (op0
);
1303 if (op0_mode
!= BLKmode
&& GET_MODE_SIZE (op0_mode
) < UNITS_PER_WORD
)
1304 word
= offset
? const0_rtx
: op0
;
1306 word
= operand_subword_force (op0
, offset
* unit
/ BITS_PER_WORD
,
1308 offset
&= BITS_PER_WORD
/ unit
- 1;
1313 /* OFFSET is in UNITs, and UNIT is in bits. If WORD is const0_rtx,
1314 it is just an out-of-bounds access. Ignore it. */
1315 if (word
!= const0_rtx
)
1316 store_fixed_bit_field (word
, thissize
, offset
* unit
+ thispos
,
1317 bitregion_start
, bitregion_end
, part
);
1318 bitsdone
+= thissize
;
1322 /* A subroutine of extract_bit_field_1 that converts return value X
1323 to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
1324 to extract_bit_field. */
1327 convert_extracted_bit_field (rtx x
, machine_mode mode
,
1328 machine_mode tmode
, bool unsignedp
)
1330 if (GET_MODE (x
) == tmode
|| GET_MODE (x
) == mode
)
1333 /* If the x mode is not a scalar integral, first convert to the
1334 integer mode of that size and then access it as a floating-point
1335 value via a SUBREG. */
1336 if (!SCALAR_INT_MODE_P (tmode
))
1340 smode
= mode_for_size (GET_MODE_BITSIZE (tmode
), MODE_INT
, 0);
1341 x
= convert_to_mode (smode
, x
, unsignedp
);
1342 x
= force_reg (smode
, x
);
1343 return gen_lowpart (tmode
, x
);
1346 return convert_to_mode (tmode
, x
, unsignedp
);
1349 /* Try to use an ext(z)v pattern to extract a field from OP0.
1350 Return the extracted value on success, otherwise return null.
1351 EXT_MODE is the mode of the extraction and the other arguments
1352 are as for extract_bit_field. */
1355 extract_bit_field_using_extv (const extraction_insn
*extv
, rtx op0
,
1356 unsigned HOST_WIDE_INT bitsize
,
1357 unsigned HOST_WIDE_INT bitnum
,
1358 int unsignedp
, rtx target
,
1359 machine_mode mode
, machine_mode tmode
)
1361 struct expand_operand ops
[4];
1362 rtx spec_target
= target
;
1363 rtx spec_target_subreg
= 0;
1364 machine_mode ext_mode
= extv
->field_mode
;
1365 unsigned unit
= GET_MODE_BITSIZE (ext_mode
);
1367 if (bitsize
== 0 || unit
< bitsize
)
1371 /* Get a reference to the first byte of the field. */
1372 op0
= narrow_bit_field_mem (op0
, extv
->struct_mode
, bitsize
, bitnum
,
1376 /* Convert from counting within OP0 to counting in EXT_MODE. */
1377 if (BYTES_BIG_ENDIAN
)
1378 bitnum
+= unit
- GET_MODE_BITSIZE (GET_MODE (op0
));
1380 /* If op0 is a register, we need it in EXT_MODE to make it
1381 acceptable to the format of ext(z)v. */
1382 if (GET_CODE (op0
) == SUBREG
&& GET_MODE (op0
) != ext_mode
)
1384 if (REG_P (op0
) && GET_MODE (op0
) != ext_mode
)
1385 op0
= gen_lowpart_SUBREG (ext_mode
, op0
);
1388 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
1389 "backwards" from the size of the unit we are extracting from.
1390 Otherwise, we count bits from the most significant on a
1391 BYTES/BITS_BIG_ENDIAN machine. */
1393 if (BITS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
1394 bitnum
= unit
- bitsize
- bitnum
;
1397 target
= spec_target
= gen_reg_rtx (tmode
);
1399 if (GET_MODE (target
) != ext_mode
)
1401 /* Don't use LHS paradoxical subreg if explicit truncation is needed
1402 between the mode of the extraction (word_mode) and the target
1403 mode. Instead, create a temporary and use convert_move to set
1406 && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (target
), ext_mode
))
1408 target
= gen_lowpart (ext_mode
, target
);
1409 if (GET_MODE_PRECISION (ext_mode
)
1410 > GET_MODE_PRECISION (GET_MODE (spec_target
)))
1411 spec_target_subreg
= target
;
1414 target
= gen_reg_rtx (ext_mode
);
1417 create_output_operand (&ops
[0], target
, ext_mode
);
1418 create_fixed_operand (&ops
[1], op0
);
1419 create_integer_operand (&ops
[2], bitsize
);
1420 create_integer_operand (&ops
[3], bitnum
);
1421 if (maybe_expand_insn (extv
->icode
, 4, ops
))
1423 target
= ops
[0].value
;
1424 if (target
== spec_target
)
1426 if (target
== spec_target_subreg
)
1428 return convert_extracted_bit_field (target
, mode
, tmode
, unsignedp
);
1433 /* A subroutine of extract_bit_field, with the same arguments.
1434 If FALLBACK_P is true, fall back to extract_fixed_bit_field
1435 if we can find no other means of implementing the operation.
1436 if FALLBACK_P is false, return NULL instead. */
1439 extract_bit_field_1 (rtx str_rtx
, unsigned HOST_WIDE_INT bitsize
,
1440 unsigned HOST_WIDE_INT bitnum
, int unsignedp
, rtx target
,
1441 machine_mode mode
, machine_mode tmode
,
1445 machine_mode int_mode
;
1448 if (tmode
== VOIDmode
)
1451 while (GET_CODE (op0
) == SUBREG
)
1453 bitnum
+= SUBREG_BYTE (op0
) * BITS_PER_UNIT
;
1454 op0
= SUBREG_REG (op0
);
1457 /* If we have an out-of-bounds access to a register, just return an
1458 uninitialized register of the required mode. This can occur if the
1459 source code contains an out-of-bounds access to a small array. */
1460 if (REG_P (op0
) && bitnum
>= GET_MODE_BITSIZE (GET_MODE (op0
)))
1461 return gen_reg_rtx (tmode
);
1464 && mode
== GET_MODE (op0
)
1466 && bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)))
1468 /* We're trying to extract a full register from itself. */
1472 /* See if we can get a better vector mode before extracting. */
1473 if (VECTOR_MODE_P (GET_MODE (op0
))
1475 && GET_MODE_INNER (GET_MODE (op0
)) != tmode
)
1477 machine_mode new_mode
;
1479 if (GET_MODE_CLASS (tmode
) == MODE_FLOAT
)
1480 new_mode
= MIN_MODE_VECTOR_FLOAT
;
1481 else if (GET_MODE_CLASS (tmode
) == MODE_FRACT
)
1482 new_mode
= MIN_MODE_VECTOR_FRACT
;
1483 else if (GET_MODE_CLASS (tmode
) == MODE_UFRACT
)
1484 new_mode
= MIN_MODE_VECTOR_UFRACT
;
1485 else if (GET_MODE_CLASS (tmode
) == MODE_ACCUM
)
1486 new_mode
= MIN_MODE_VECTOR_ACCUM
;
1487 else if (GET_MODE_CLASS (tmode
) == MODE_UACCUM
)
1488 new_mode
= MIN_MODE_VECTOR_UACCUM
;
1490 new_mode
= MIN_MODE_VECTOR_INT
;
1492 for (; new_mode
!= VOIDmode
; new_mode
= GET_MODE_WIDER_MODE (new_mode
))
1493 if (GET_MODE_SIZE (new_mode
) == GET_MODE_SIZE (GET_MODE (op0
))
1494 && targetm
.vector_mode_supported_p (new_mode
))
1496 if (new_mode
!= VOIDmode
)
1497 op0
= gen_lowpart (new_mode
, op0
);
1500 /* Use vec_extract patterns for extracting parts of vectors whenever
1502 if (VECTOR_MODE_P (GET_MODE (op0
))
1504 && optab_handler (vec_extract_optab
, GET_MODE (op0
)) != CODE_FOR_nothing
1505 && ((bitnum
+ bitsize
- 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0
)))
1506 == bitnum
/ GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0
)))))
1508 struct expand_operand ops
[3];
1509 machine_mode outermode
= GET_MODE (op0
);
1510 machine_mode innermode
= GET_MODE_INNER (outermode
);
1511 enum insn_code icode
= optab_handler (vec_extract_optab
, outermode
);
1512 unsigned HOST_WIDE_INT pos
= bitnum
/ GET_MODE_BITSIZE (innermode
);
1514 create_output_operand (&ops
[0], target
, innermode
);
1515 create_input_operand (&ops
[1], op0
, outermode
);
1516 create_integer_operand (&ops
[2], pos
);
1517 if (maybe_expand_insn (icode
, 3, ops
))
1519 target
= ops
[0].value
;
1520 if (GET_MODE (target
) != mode
)
1521 return gen_lowpart (tmode
, target
);
1526 /* Make sure we are playing with integral modes. Pun with subregs
1529 machine_mode imode
= int_mode_for_mode (GET_MODE (op0
));
1530 if (imode
!= GET_MODE (op0
))
1533 op0
= adjust_bitfield_address_size (op0
, imode
, 0, MEM_SIZE (op0
));
1534 else if (imode
!= BLKmode
)
1536 op0
= gen_lowpart (imode
, op0
);
1538 /* If we got a SUBREG, force it into a register since we
1539 aren't going to be able to do another SUBREG on it. */
1540 if (GET_CODE (op0
) == SUBREG
)
1541 op0
= force_reg (imode
, op0
);
1543 else if (REG_P (op0
))
1546 imode
= smallest_mode_for_size (GET_MODE_BITSIZE (GET_MODE (op0
)),
1548 reg
= gen_reg_rtx (imode
);
1549 subreg
= gen_lowpart_SUBREG (GET_MODE (op0
), reg
);
1550 emit_move_insn (subreg
, op0
);
1552 bitnum
+= SUBREG_BYTE (subreg
) * BITS_PER_UNIT
;
1556 HOST_WIDE_INT size
= GET_MODE_SIZE (GET_MODE (op0
));
1557 rtx mem
= assign_stack_temp (GET_MODE (op0
), size
);
1558 emit_move_insn (mem
, op0
);
1559 op0
= adjust_bitfield_address_size (mem
, BLKmode
, 0, size
);
1564 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1565 If that's wrong, the solution is to test for it and set TARGET to 0
1568 /* Get the mode of the field to use for atomic access or subreg
1571 if (SCALAR_INT_MODE_P (tmode
))
1573 machine_mode try_mode
= mode_for_size (bitsize
,
1574 GET_MODE_CLASS (tmode
), 0);
1575 if (try_mode
!= BLKmode
)
1578 gcc_assert (mode1
!= BLKmode
);
1580 /* Extraction of a full MODE1 value can be done with a subreg as long
1581 as the least significant bit of the value is the least significant
1582 bit of either OP0 or a word of OP0. */
1584 && lowpart_bit_field_p (bitnum
, bitsize
, GET_MODE (op0
))
1585 && bitsize
== GET_MODE_BITSIZE (mode1
)
1586 && TRULY_NOOP_TRUNCATION_MODES_P (mode1
, GET_MODE (op0
)))
1588 rtx sub
= simplify_gen_subreg (mode1
, op0
, GET_MODE (op0
),
1589 bitnum
/ BITS_PER_UNIT
);
1591 return convert_extracted_bit_field (sub
, mode
, tmode
, unsignedp
);
1594 /* Extraction of a full MODE1 value can be done with a load as long as
1595 the field is on a byte boundary and is sufficiently aligned. */
1596 if (simple_mem_bitfield_p (op0
, bitsize
, bitnum
, mode1
))
1598 op0
= adjust_bitfield_address (op0
, mode1
, bitnum
/ BITS_PER_UNIT
);
1599 return convert_extracted_bit_field (op0
, mode
, tmode
, unsignedp
);
1602 /* Handle fields bigger than a word. */
1604 if (bitsize
> BITS_PER_WORD
)
1606 /* Here we transfer the words of the field
1607 in the order least significant first.
1608 This is because the most significant word is the one which may
1609 be less than full. */
1611 unsigned int backwards
= WORDS_BIG_ENDIAN
;
1612 unsigned int nwords
= (bitsize
+ (BITS_PER_WORD
- 1)) / BITS_PER_WORD
;
1616 if (target
== 0 || !REG_P (target
) || !valid_multiword_target_p (target
))
1617 target
= gen_reg_rtx (mode
);
1619 /* In case we're about to clobber a base register or something
1620 (see gcc.c-torture/execute/20040625-1.c). */
1621 if (reg_mentioned_p (target
, str_rtx
))
1622 target
= gen_reg_rtx (mode
);
1624 /* Indicate for flow that the entire target reg is being set. */
1625 emit_clobber (target
);
1627 last
= get_last_insn ();
1628 for (i
= 0; i
< nwords
; i
++)
1630 /* If I is 0, use the low-order word in both field and target;
1631 if I is 1, use the next to lowest word; and so on. */
1632 /* Word number in TARGET to use. */
1633 unsigned int wordnum
1635 ? GET_MODE_SIZE (GET_MODE (target
)) / UNITS_PER_WORD
- i
- 1
1637 /* Offset from start of field in OP0. */
1638 unsigned int bit_offset
= (backwards
1639 ? MAX ((int) bitsize
- ((int) i
+ 1)
1642 : (int) i
* BITS_PER_WORD
);
1643 rtx target_part
= operand_subword (target
, wordnum
, 1, VOIDmode
);
1645 = extract_bit_field_1 (op0
, MIN (BITS_PER_WORD
,
1646 bitsize
- i
* BITS_PER_WORD
),
1647 bitnum
+ bit_offset
, 1, target_part
,
1648 mode
, word_mode
, fallback_p
);
1650 gcc_assert (target_part
);
1653 delete_insns_since (last
);
1657 if (result_part
!= target_part
)
1658 emit_move_insn (target_part
, result_part
);
1663 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1664 need to be zero'd out. */
1665 if (GET_MODE_SIZE (GET_MODE (target
)) > nwords
* UNITS_PER_WORD
)
1667 unsigned int i
, total_words
;
1669 total_words
= GET_MODE_SIZE (GET_MODE (target
)) / UNITS_PER_WORD
;
1670 for (i
= nwords
; i
< total_words
; i
++)
1672 (operand_subword (target
,
1673 backwards
? total_words
- i
- 1 : i
,
1680 /* Signed bit field: sign-extend with two arithmetic shifts. */
1681 target
= expand_shift (LSHIFT_EXPR
, mode
, target
,
1682 GET_MODE_BITSIZE (mode
) - bitsize
, NULL_RTX
, 0);
1683 return expand_shift (RSHIFT_EXPR
, mode
, target
,
1684 GET_MODE_BITSIZE (mode
) - bitsize
, NULL_RTX
, 0);
1687 /* If OP0 is a multi-word register, narrow it to the affected word.
1688 If the region spans two words, defer to extract_split_bit_field. */
1689 if (!MEM_P (op0
) && GET_MODE_SIZE (GET_MODE (op0
)) > UNITS_PER_WORD
)
1691 op0
= simplify_gen_subreg (word_mode
, op0
, GET_MODE (op0
),
1692 bitnum
/ BITS_PER_WORD
* UNITS_PER_WORD
);
1693 bitnum
%= BITS_PER_WORD
;
1694 if (bitnum
+ bitsize
> BITS_PER_WORD
)
1698 target
= extract_split_bit_field (op0
, bitsize
, bitnum
, unsignedp
);
1699 return convert_extracted_bit_field (target
, mode
, tmode
, unsignedp
);
1703 /* From here on we know the desired field is smaller than a word.
1704 If OP0 is a register, it too fits within a word. */
1705 enum extraction_pattern pattern
= unsignedp
? EP_extzv
: EP_extv
;
1706 extraction_insn extv
;
1708 /* ??? We could limit the structure size to the part of OP0 that
1709 contains the field, with appropriate checks for endianness
1710 and TRULY_NOOP_TRUNCATION. */
1711 && get_best_reg_extraction_insn (&extv
, pattern
,
1712 GET_MODE_BITSIZE (GET_MODE (op0
)),
1715 rtx result
= extract_bit_field_using_extv (&extv
, op0
, bitsize
, bitnum
,
1716 unsignedp
, target
, mode
,
1722 /* If OP0 is a memory, try copying it to a register and seeing if a
1723 cheap register alternative is available. */
1726 if (get_best_mem_extraction_insn (&extv
, pattern
, bitsize
, bitnum
,
1729 rtx result
= extract_bit_field_using_extv (&extv
, op0
, bitsize
,
1737 rtx_insn
*last
= get_last_insn ();
1739 /* Try loading part of OP0 into a register and extracting the
1740 bitfield from that. */
1741 unsigned HOST_WIDE_INT bitpos
;
1742 rtx xop0
= adjust_bit_field_mem_for_reg (pattern
, op0
, bitsize
, bitnum
,
1743 0, 0, tmode
, &bitpos
);
1746 xop0
= copy_to_reg (xop0
);
1747 rtx result
= extract_bit_field_1 (xop0
, bitsize
, bitpos
,
1749 mode
, tmode
, false);
1752 delete_insns_since (last
);
1759 /* Find a correspondingly-sized integer field, so we can apply
1760 shifts and masks to it. */
1761 int_mode
= int_mode_for_mode (tmode
);
1762 if (int_mode
== BLKmode
)
1763 int_mode
= int_mode_for_mode (mode
);
1764 /* Should probably push op0 out to memory and then do a load. */
1765 gcc_assert (int_mode
!= BLKmode
);
1767 target
= extract_fixed_bit_field (int_mode
, op0
, bitsize
, bitnum
,
1769 return convert_extracted_bit_field (target
, mode
, tmode
, unsignedp
);
1772 /* Generate code to extract a byte-field from STR_RTX
1773 containing BITSIZE bits, starting at BITNUM,
1774 and put it in TARGET if possible (if TARGET is nonzero).
1775 Regardless of TARGET, we return the rtx for where the value is placed.
1777 STR_RTX is the structure containing the byte (a REG or MEM).
1778 UNSIGNEDP is nonzero if this is an unsigned bit field.
1779 MODE is the natural mode of the field value once extracted.
1780 TMODE is the mode the caller would like the value to have;
1781 but the value may be returned with type MODE instead.
1783 If a TARGET is specified and we can store in it at no extra cost,
1784 we do so, and return TARGET.
1785 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1786 if they are equally easy. */
1789 extract_bit_field (rtx str_rtx
, unsigned HOST_WIDE_INT bitsize
,
1790 unsigned HOST_WIDE_INT bitnum
, int unsignedp
, rtx target
,
1791 machine_mode mode
, machine_mode tmode
)
1795 /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
1796 if (GET_MODE_BITSIZE (GET_MODE (str_rtx
)) > 0)
1797 mode1
= GET_MODE (str_rtx
);
1798 else if (target
&& GET_MODE_BITSIZE (GET_MODE (target
)) > 0)
1799 mode1
= GET_MODE (target
);
1803 if (strict_volatile_bitfield_p (str_rtx
, bitsize
, bitnum
, mode1
, 0, 0))
1805 /* Extraction of a full MODE1 value can be done with a simple load.
1806 We know here that the field can be accessed with one single
1807 instruction. For targets that support unaligned memory,
1808 an unaligned access may be necessary. */
1809 if (bitsize
== GET_MODE_BITSIZE (mode1
))
1811 rtx result
= adjust_bitfield_address (str_rtx
, mode1
,
1812 bitnum
/ BITS_PER_UNIT
);
1813 gcc_assert (bitnum
% BITS_PER_UNIT
== 0);
1814 return convert_extracted_bit_field (result
, mode
, tmode
, unsignedp
);
1817 str_rtx
= narrow_bit_field_mem (str_rtx
, mode1
, bitsize
, bitnum
,
1819 gcc_assert (bitnum
+ bitsize
<= GET_MODE_BITSIZE (mode1
));
1820 str_rtx
= copy_to_reg (str_rtx
);
1823 return extract_bit_field_1 (str_rtx
, bitsize
, bitnum
, unsignedp
,
1824 target
, mode
, tmode
, true);
1827 /* Use shifts and boolean operations to extract a field of BITSIZE bits
1828 from bit BITNUM of OP0.
1830 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1831 If TARGET is nonzero, attempts to store the value there
1832 and return TARGET, but this is not guaranteed.
1833 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1836 extract_fixed_bit_field (machine_mode tmode
, rtx op0
,
1837 unsigned HOST_WIDE_INT bitsize
,
1838 unsigned HOST_WIDE_INT bitnum
, rtx target
,
1844 = get_best_mode (bitsize
, bitnum
, 0, 0, MEM_ALIGN (op0
), word_mode
,
1845 MEM_VOLATILE_P (op0
));
1847 if (mode
== VOIDmode
)
1848 /* The only way this should occur is if the field spans word
1850 return extract_split_bit_field (op0
, bitsize
, bitnum
, unsignedp
);
1852 op0
= narrow_bit_field_mem (op0
, mode
, bitsize
, bitnum
, &bitnum
);
1855 return extract_fixed_bit_field_1 (tmode
, op0
, bitsize
, bitnum
,
1859 /* Helper function for extract_fixed_bit_field, extracts
1860 the bit field always using the MODE of OP0. */
1863 extract_fixed_bit_field_1 (machine_mode tmode
, rtx op0
,
1864 unsigned HOST_WIDE_INT bitsize
,
1865 unsigned HOST_WIDE_INT bitnum
, rtx target
,
1868 machine_mode mode
= GET_MODE (op0
);
1869 gcc_assert (SCALAR_INT_MODE_P (mode
));
1871 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
1872 for invalid input, such as extract equivalent of f5 from
1873 gcc.dg/pr48335-2.c. */
1875 if (BYTES_BIG_ENDIAN
)
1876 /* BITNUM is the distance between our msb and that of OP0.
1877 Convert it to the distance from the lsb. */
1878 bitnum
= GET_MODE_BITSIZE (mode
) - bitsize
- bitnum
;
1880 /* Now BITNUM is always the distance between the field's lsb and that of OP0.
1881 We have reduced the big-endian case to the little-endian case. */
1887 /* If the field does not already start at the lsb,
1888 shift it so it does. */
1889 /* Maybe propagate the target for the shift. */
1890 rtx subtarget
= (target
!= 0 && REG_P (target
) ? target
: 0);
1893 op0
= expand_shift (RSHIFT_EXPR
, mode
, op0
, bitnum
, subtarget
, 1);
1895 /* Convert the value to the desired mode. */
1897 op0
= convert_to_mode (tmode
, op0
, 1);
1899 /* Unless the msb of the field used to be the msb when we shifted,
1900 mask out the upper bits. */
1902 if (GET_MODE_BITSIZE (mode
) != bitnum
+ bitsize
)
1903 return expand_binop (GET_MODE (op0
), and_optab
, op0
,
1904 mask_rtx (GET_MODE (op0
), 0, bitsize
, 0),
1905 target
, 1, OPTAB_LIB_WIDEN
);
1909 /* To extract a signed bit-field, first shift its msb to the msb of the word,
1910 then arithmetic-shift its lsb to the lsb of the word. */
1911 op0
= force_reg (mode
, op0
);
1913 /* Find the narrowest integer mode that contains the field. */
1915 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1916 mode
= GET_MODE_WIDER_MODE (mode
))
1917 if (GET_MODE_BITSIZE (mode
) >= bitsize
+ bitnum
)
1919 op0
= convert_to_mode (mode
, op0
, 0);
1926 if (GET_MODE_BITSIZE (mode
) != (bitsize
+ bitnum
))
1928 int amount
= GET_MODE_BITSIZE (mode
) - (bitsize
+ bitnum
);
1929 /* Maybe propagate the target for the shift. */
1930 rtx subtarget
= (target
!= 0 && REG_P (target
) ? target
: 0);
1931 op0
= expand_shift (LSHIFT_EXPR
, mode
, op0
, amount
, subtarget
, 1);
1934 return expand_shift (RSHIFT_EXPR
, mode
, op0
,
1935 GET_MODE_BITSIZE (mode
) - bitsize
, target
, 0);
1938 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1942 lshift_value (machine_mode mode
, unsigned HOST_WIDE_INT value
,
1945 return immed_wide_int_const (wi::lshift (value
, bitpos
), mode
);
1948 /* Extract a bit field that is split across two words
1949 and return an RTX for the result.
1951 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
1952 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
1953 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
1956 extract_split_bit_field (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
1957 unsigned HOST_WIDE_INT bitpos
, int unsignedp
)
1960 unsigned int bitsdone
= 0;
1961 rtx result
= NULL_RTX
;
1964 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1966 if (REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
1967 unit
= BITS_PER_WORD
;
1969 unit
= MIN (MEM_ALIGN (op0
), BITS_PER_WORD
);
1971 while (bitsdone
< bitsize
)
1973 unsigned HOST_WIDE_INT thissize
;
1975 unsigned HOST_WIDE_INT thispos
;
1976 unsigned HOST_WIDE_INT offset
;
1978 offset
= (bitpos
+ bitsdone
) / unit
;
1979 thispos
= (bitpos
+ bitsdone
) % unit
;
1981 /* THISSIZE must not overrun a word boundary. Otherwise,
1982 extract_fixed_bit_field will call us again, and we will mutually
1984 thissize
= MIN (bitsize
- bitsdone
, BITS_PER_WORD
);
1985 thissize
= MIN (thissize
, unit
- thispos
);
1987 /* If OP0 is a register, then handle OFFSET here.
1989 When handling multiword bitfields, extract_bit_field may pass
1990 down a word_mode SUBREG of a larger REG for a bitfield that actually
1991 crosses a word boundary. Thus, for a SUBREG, we must find
1992 the current word starting from the base register. */
1993 if (GET_CODE (op0
) == SUBREG
)
1995 int word_offset
= (SUBREG_BYTE (op0
) / UNITS_PER_WORD
) + offset
;
1996 word
= operand_subword_force (SUBREG_REG (op0
), word_offset
,
1997 GET_MODE (SUBREG_REG (op0
)));
2000 else if (REG_P (op0
))
2002 word
= operand_subword_force (op0
, offset
, GET_MODE (op0
));
2008 /* Extract the parts in bit-counting order,
2009 whose meaning is determined by BYTES_PER_UNIT.
2010 OFFSET is in UNITs, and UNIT is in bits. */
2011 part
= extract_fixed_bit_field (word_mode
, word
, thissize
,
2012 offset
* unit
+ thispos
, 0, 1);
2013 bitsdone
+= thissize
;
2015 /* Shift this part into place for the result. */
2016 if (BYTES_BIG_ENDIAN
)
2018 if (bitsize
!= bitsdone
)
2019 part
= expand_shift (LSHIFT_EXPR
, word_mode
, part
,
2020 bitsize
- bitsdone
, 0, 1);
2024 if (bitsdone
!= thissize
)
2025 part
= expand_shift (LSHIFT_EXPR
, word_mode
, part
,
2026 bitsdone
- thissize
, 0, 1);
2032 /* Combine the parts with bitwise or. This works
2033 because we extracted each part as an unsigned bit field. */
2034 result
= expand_binop (word_mode
, ior_optab
, part
, result
, NULL_RTX
, 1,
2040 /* Unsigned bit field: we are done. */
2043 /* Signed bit field: sign-extend with two arithmetic shifts. */
2044 result
= expand_shift (LSHIFT_EXPR
, word_mode
, result
,
2045 BITS_PER_WORD
- bitsize
, NULL_RTX
, 0);
2046 return expand_shift (RSHIFT_EXPR
, word_mode
, result
,
2047 BITS_PER_WORD
- bitsize
, NULL_RTX
, 0);
2050 /* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
2051 the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
2052 MODE, fill the upper bits with zeros. Fail if the layout of either
2053 mode is unknown (as for CC modes) or if the extraction would involve
2054 unprofitable mode punning. Return the value on success, otherwise
2057 This is different from gen_lowpart* in these respects:
2059 - the returned value must always be considered an rvalue
2061 - when MODE is wider than SRC_MODE, the extraction involves
2064 - when MODE is smaller than SRC_MODE, the extraction involves
2065 a truncation (and is thus subject to TRULY_NOOP_TRUNCATION).
2067 In other words, this routine performs a computation, whereas the
2068 gen_lowpart* routines are conceptually lvalue or rvalue subreg
2072 extract_low_bits (machine_mode mode
, machine_mode src_mode
, rtx src
)
2074 machine_mode int_mode
, src_int_mode
;
2076 if (mode
== src_mode
)
2079 if (CONSTANT_P (src
))
2081 /* simplify_gen_subreg can't be used here, as if simplify_subreg
2082 fails, it will happily create (subreg (symbol_ref)) or similar
2084 unsigned int byte
= subreg_lowpart_offset (mode
, src_mode
);
2085 rtx ret
= simplify_subreg (mode
, src
, src_mode
, byte
);
2089 if (GET_MODE (src
) == VOIDmode
2090 || !validate_subreg (mode
, src_mode
, src
, byte
))
2093 src
= force_reg (GET_MODE (src
), src
);
2094 return gen_rtx_SUBREG (mode
, src
, byte
);
2097 if (GET_MODE_CLASS (mode
) == MODE_CC
|| GET_MODE_CLASS (src_mode
) == MODE_CC
)
2100 if (GET_MODE_BITSIZE (mode
) == GET_MODE_BITSIZE (src_mode
)
2101 && MODES_TIEABLE_P (mode
, src_mode
))
2103 rtx x
= gen_lowpart_common (mode
, src
);
2108 src_int_mode
= int_mode_for_mode (src_mode
);
2109 int_mode
= int_mode_for_mode (mode
);
2110 if (src_int_mode
== BLKmode
|| int_mode
== BLKmode
)
2113 if (!MODES_TIEABLE_P (src_int_mode
, src_mode
))
2115 if (!MODES_TIEABLE_P (int_mode
, mode
))
2118 src
= gen_lowpart (src_int_mode
, src
);
2119 src
= convert_modes (int_mode
, src_int_mode
, src
, true);
2120 src
= gen_lowpart (mode
, src
);
2124 /* Add INC into TARGET. */
2127 expand_inc (rtx target
, rtx inc
)
2129 rtx value
= expand_binop (GET_MODE (target
), add_optab
,
2131 target
, 0, OPTAB_LIB_WIDEN
);
2132 if (value
!= target
)
2133 emit_move_insn (target
, value
);
2136 /* Subtract DEC from TARGET. */
2139 expand_dec (rtx target
, rtx dec
)
2141 rtx value
= expand_binop (GET_MODE (target
), sub_optab
,
2143 target
, 0, OPTAB_LIB_WIDEN
);
2144 if (value
!= target
)
2145 emit_move_insn (target
, value
);
2148 /* Output a shift instruction for expression code CODE,
2149 with SHIFTED being the rtx for the value to shift,
2150 and AMOUNT the rtx for the amount to shift by.
2151 Store the result in the rtx TARGET, if that is convenient.
2152 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2153 Return the rtx for where the value is. */
2156 expand_shift_1 (enum tree_code code
, machine_mode mode
, rtx shifted
,
2157 rtx amount
, rtx target
, int unsignedp
)
2160 int left
= (code
== LSHIFT_EXPR
|| code
== LROTATE_EXPR
);
2161 int rotate
= (code
== LROTATE_EXPR
|| code
== RROTATE_EXPR
);
2162 optab lshift_optab
= ashl_optab
;
2163 optab rshift_arith_optab
= ashr_optab
;
2164 optab rshift_uns_optab
= lshr_optab
;
2165 optab lrotate_optab
= rotl_optab
;
2166 optab rrotate_optab
= rotr_optab
;
2167 machine_mode op1_mode
;
2168 machine_mode scalar_mode
= mode
;
2170 bool speed
= optimize_insn_for_speed_p ();
2172 if (VECTOR_MODE_P (mode
))
2173 scalar_mode
= GET_MODE_INNER (mode
);
2175 op1_mode
= GET_MODE (op1
);
2177 /* Determine whether the shift/rotate amount is a vector, or scalar. If the
2178 shift amount is a vector, use the vector/vector shift patterns. */
2179 if (VECTOR_MODE_P (mode
) && VECTOR_MODE_P (op1_mode
))
2181 lshift_optab
= vashl_optab
;
2182 rshift_arith_optab
= vashr_optab
;
2183 rshift_uns_optab
= vlshr_optab
;
2184 lrotate_optab
= vrotl_optab
;
2185 rrotate_optab
= vrotr_optab
;
2188 /* Previously detected shift-counts computed by NEGATE_EXPR
2189 and shifted in the other direction; but that does not work
2192 if (SHIFT_COUNT_TRUNCATED
)
2194 if (CONST_INT_P (op1
)
2195 && ((unsigned HOST_WIDE_INT
) INTVAL (op1
) >=
2196 (unsigned HOST_WIDE_INT
) GET_MODE_BITSIZE (scalar_mode
)))
2197 op1
= GEN_INT ((unsigned HOST_WIDE_INT
) INTVAL (op1
)
2198 % GET_MODE_BITSIZE (scalar_mode
));
2199 else if (GET_CODE (op1
) == SUBREG
2200 && subreg_lowpart_p (op1
)
2201 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (op1
)))
2202 && SCALAR_INT_MODE_P (GET_MODE (op1
)))
2203 op1
= SUBREG_REG (op1
);
2206 /* Canonicalize rotates by constant amount. If op1 is bitsize / 2,
2207 prefer left rotation, if op1 is from bitsize / 2 + 1 to
2208 bitsize - 1, use other direction of rotate with 1 .. bitsize / 2 - 1
2211 && CONST_INT_P (op1
)
2212 && IN_RANGE (INTVAL (op1
), GET_MODE_BITSIZE (scalar_mode
) / 2 + left
,
2213 GET_MODE_BITSIZE (scalar_mode
) - 1))
2215 op1
= GEN_INT (GET_MODE_BITSIZE (scalar_mode
) - INTVAL (op1
));
2217 code
= left
? LROTATE_EXPR
: RROTATE_EXPR
;
2220 /* Rotation of 16bit values by 8 bits is effectively equivalent to a bswaphi.
2221 Note that this is not the case for bigger values. For instance a rotation
2222 of 0x01020304 by 16 bits gives 0x03040102 which is different from
2223 0x04030201 (bswapsi). */
2225 && CONST_INT_P (op1
)
2226 && INTVAL (op1
) == BITS_PER_UNIT
2227 && GET_MODE_SIZE (scalar_mode
) == 2
2228 && optab_handler (bswap_optab
, HImode
) != CODE_FOR_nothing
)
2229 return expand_unop (HImode
, bswap_optab
, shifted
, NULL_RTX
,
2232 if (op1
== const0_rtx
)
2235 /* Check whether its cheaper to implement a left shift by a constant
2236 bit count by a sequence of additions. */
2237 if (code
== LSHIFT_EXPR
2238 && CONST_INT_P (op1
)
2240 && INTVAL (op1
) < GET_MODE_PRECISION (scalar_mode
)
2241 && INTVAL (op1
) < MAX_BITS_PER_WORD
2242 && (shift_cost (speed
, mode
, INTVAL (op1
))
2243 > INTVAL (op1
) * add_cost (speed
, mode
))
2244 && shift_cost (speed
, mode
, INTVAL (op1
)) != MAX_COST
)
2247 for (i
= 0; i
< INTVAL (op1
); i
++)
2249 temp
= force_reg (mode
, shifted
);
2250 shifted
= expand_binop (mode
, add_optab
, temp
, temp
, NULL_RTX
,
2251 unsignedp
, OPTAB_LIB_WIDEN
);
2256 for (attempt
= 0; temp
== 0 && attempt
< 3; attempt
++)
2258 enum optab_methods methods
;
2261 methods
= OPTAB_DIRECT
;
2262 else if (attempt
== 1)
2263 methods
= OPTAB_WIDEN
;
2265 methods
= OPTAB_LIB_WIDEN
;
2269 /* Widening does not work for rotation. */
2270 if (methods
== OPTAB_WIDEN
)
2272 else if (methods
== OPTAB_LIB_WIDEN
)
2274 /* If we have been unable to open-code this by a rotation,
2275 do it as the IOR of two shifts. I.e., to rotate A
2277 (A << N) | ((unsigned) A >> ((-N) & (C - 1)))
2278 where C is the bitsize of A.
2280 It is theoretically possible that the target machine might
2281 not be able to perform either shift and hence we would
2282 be making two libcalls rather than just the one for the
2283 shift (similarly if IOR could not be done). We will allow
2284 this extremely unlikely lossage to avoid complicating the
2287 rtx subtarget
= target
== shifted
? 0 : target
;
2288 rtx new_amount
, other_amount
;
2292 if (op1
== const0_rtx
)
2294 else if (CONST_INT_P (op1
))
2295 other_amount
= GEN_INT (GET_MODE_BITSIZE (scalar_mode
)
2300 = simplify_gen_unary (NEG
, GET_MODE (op1
),
2301 op1
, GET_MODE (op1
));
2302 HOST_WIDE_INT mask
= GET_MODE_PRECISION (scalar_mode
) - 1;
2304 = simplify_gen_binary (AND
, GET_MODE (op1
), other_amount
,
2305 gen_int_mode (mask
, GET_MODE (op1
)));
2308 shifted
= force_reg (mode
, shifted
);
2310 temp
= expand_shift_1 (left
? LSHIFT_EXPR
: RSHIFT_EXPR
,
2311 mode
, shifted
, new_amount
, 0, 1);
2312 temp1
= expand_shift_1 (left
? RSHIFT_EXPR
: LSHIFT_EXPR
,
2313 mode
, shifted
, other_amount
,
2315 return expand_binop (mode
, ior_optab
, temp
, temp1
, target
,
2316 unsignedp
, methods
);
2319 temp
= expand_binop (mode
,
2320 left
? lrotate_optab
: rrotate_optab
,
2321 shifted
, op1
, target
, unsignedp
, methods
);
2324 temp
= expand_binop (mode
,
2325 left
? lshift_optab
: rshift_uns_optab
,
2326 shifted
, op1
, target
, unsignedp
, methods
);
2328 /* Do arithmetic shifts.
2329 Also, if we are going to widen the operand, we can just as well
2330 use an arithmetic right-shift instead of a logical one. */
2331 if (temp
== 0 && ! rotate
2332 && (! unsignedp
|| (! left
&& methods
== OPTAB_WIDEN
)))
2334 enum optab_methods methods1
= methods
;
2336 /* If trying to widen a log shift to an arithmetic shift,
2337 don't accept an arithmetic shift of the same size. */
2339 methods1
= OPTAB_MUST_WIDEN
;
2341 /* Arithmetic shift */
2343 temp
= expand_binop (mode
,
2344 left
? lshift_optab
: rshift_arith_optab
,
2345 shifted
, op1
, target
, unsignedp
, methods1
);
2348 /* We used to try extzv here for logical right shifts, but that was
2349 only useful for one machine, the VAX, and caused poor code
2350 generation there for lshrdi3, so the code was deleted and a
2351 define_expand for lshrsi3 was added to vax.md. */
2358 /* Output a shift instruction for expression code CODE,
2359 with SHIFTED being the rtx for the value to shift,
2360 and AMOUNT the amount to shift by.
2361 Store the result in the rtx TARGET, if that is convenient.
2362 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2363 Return the rtx for where the value is. */
2366 expand_shift (enum tree_code code
, machine_mode mode
, rtx shifted
,
2367 int amount
, rtx target
, int unsignedp
)
2369 return expand_shift_1 (code
, mode
,
2370 shifted
, GEN_INT (amount
), target
, unsignedp
);
2373 /* Output a shift instruction for expression code CODE,
2374 with SHIFTED being the rtx for the value to shift,
2375 and AMOUNT the tree for the amount to shift by.
2376 Store the result in the rtx TARGET, if that is convenient.
2377 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2378 Return the rtx for where the value is. */
2381 expand_variable_shift (enum tree_code code
, machine_mode mode
, rtx shifted
,
2382 tree amount
, rtx target
, int unsignedp
)
2384 return expand_shift_1 (code
, mode
,
2385 shifted
, expand_normal (amount
), target
, unsignedp
);
2389 /* Indicates the type of fixup needed after a constant multiplication.
2390 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2391 the result should be negated, and ADD_VARIANT means that the
2392 multiplicand should be added to the result. */
2393 enum mult_variant
{basic_variant
, negate_variant
, add_variant
};
2395 static void synth_mult (struct algorithm
*, unsigned HOST_WIDE_INT
,
2396 const struct mult_cost
*, machine_mode mode
);
2397 static bool choose_mult_variant (machine_mode
, HOST_WIDE_INT
,
2398 struct algorithm
*, enum mult_variant
*, int);
2399 static rtx
expand_mult_const (machine_mode
, rtx
, HOST_WIDE_INT
, rtx
,
2400 const struct algorithm
*, enum mult_variant
);
2401 static unsigned HOST_WIDE_INT
invert_mod2n (unsigned HOST_WIDE_INT
, int);
2402 static rtx
extract_high_half (machine_mode
, rtx
);
2403 static rtx
expmed_mult_highpart (machine_mode
, rtx
, rtx
, rtx
, int, int);
2404 static rtx
expmed_mult_highpart_optab (machine_mode
, rtx
, rtx
, rtx
,
2406 /* Compute and return the best algorithm for multiplying by T.
2407 The algorithm must cost less than cost_limit
2408 If retval.cost >= COST_LIMIT, no algorithm was found and all
2409 other field of the returned struct are undefined.
2410 MODE is the machine mode of the multiplication. */
2413 synth_mult (struct algorithm
*alg_out
, unsigned HOST_WIDE_INT t
,
2414 const struct mult_cost
*cost_limit
, machine_mode mode
)
2417 struct algorithm
*alg_in
, *best_alg
;
2418 struct mult_cost best_cost
;
2419 struct mult_cost new_limit
;
2420 int op_cost
, op_latency
;
2421 unsigned HOST_WIDE_INT orig_t
= t
;
2422 unsigned HOST_WIDE_INT q
;
2423 int maxm
, hash_index
;
2424 bool cache_hit
= false;
2425 enum alg_code cache_alg
= alg_zero
;
2426 bool speed
= optimize_insn_for_speed_p ();
2428 struct alg_hash_entry
*entry_ptr
;
2430 /* Indicate that no algorithm is yet found. If no algorithm
2431 is found, this value will be returned and indicate failure. */
2432 alg_out
->cost
.cost
= cost_limit
->cost
+ 1;
2433 alg_out
->cost
.latency
= cost_limit
->latency
+ 1;
2435 if (cost_limit
->cost
< 0
2436 || (cost_limit
->cost
== 0 && cost_limit
->latency
<= 0))
2439 /* Be prepared for vector modes. */
2440 imode
= GET_MODE_INNER (mode
);
2441 if (imode
== VOIDmode
)
2444 maxm
= MIN (BITS_PER_WORD
, GET_MODE_BITSIZE (imode
));
2446 /* Restrict the bits of "t" to the multiplication's mode. */
2447 t
&= GET_MODE_MASK (imode
);
2449 /* t == 1 can be done in zero cost. */
2453 alg_out
->cost
.cost
= 0;
2454 alg_out
->cost
.latency
= 0;
2455 alg_out
->op
[0] = alg_m
;
2459 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2463 if (MULT_COST_LESS (cost_limit
, zero_cost (speed
)))
2468 alg_out
->cost
.cost
= zero_cost (speed
);
2469 alg_out
->cost
.latency
= zero_cost (speed
);
2470 alg_out
->op
[0] = alg_zero
;
2475 /* We'll be needing a couple extra algorithm structures now. */
2477 alg_in
= XALLOCA (struct algorithm
);
2478 best_alg
= XALLOCA (struct algorithm
);
2479 best_cost
= *cost_limit
;
2481 /* Compute the hash index. */
2482 hash_index
= (t
^ (unsigned int) mode
^ (speed
* 256)) % NUM_ALG_HASH_ENTRIES
;
2484 /* See if we already know what to do for T. */
2485 entry_ptr
= alg_hash_entry_ptr (hash_index
);
2486 if (entry_ptr
->t
== t
2487 && entry_ptr
->mode
== mode
2488 && entry_ptr
->mode
== mode
2489 && entry_ptr
->speed
== speed
2490 && entry_ptr
->alg
!= alg_unknown
)
2492 cache_alg
= entry_ptr
->alg
;
2494 if (cache_alg
== alg_impossible
)
2496 /* The cache tells us that it's impossible to synthesize
2497 multiplication by T within entry_ptr->cost. */
2498 if (!CHEAPER_MULT_COST (&entry_ptr
->cost
, cost_limit
))
2499 /* COST_LIMIT is at least as restrictive as the one
2500 recorded in the hash table, in which case we have no
2501 hope of synthesizing a multiplication. Just
2505 /* If we get here, COST_LIMIT is less restrictive than the
2506 one recorded in the hash table, so we may be able to
2507 synthesize a multiplication. Proceed as if we didn't
2508 have the cache entry. */
2512 if (CHEAPER_MULT_COST (cost_limit
, &entry_ptr
->cost
))
2513 /* The cached algorithm shows that this multiplication
2514 requires more cost than COST_LIMIT. Just return. This
2515 way, we don't clobber this cache entry with
2516 alg_impossible but retain useful information. */
2528 goto do_alg_addsub_t_m2
;
2530 case alg_add_factor
:
2531 case alg_sub_factor
:
2532 goto do_alg_addsub_factor
;
2535 goto do_alg_add_t2_m
;
2538 goto do_alg_sub_t2_m
;
2546 /* If we have a group of zero bits at the low-order part of T, try
2547 multiplying by the remaining bits and then doing a shift. */
2552 m
= floor_log2 (t
& -t
); /* m = number of low zero bits */
2556 /* The function expand_shift will choose between a shift and
2557 a sequence of additions, so the observed cost is given as
2558 MIN (m * add_cost(speed, mode), shift_cost(speed, mode, m)). */
2559 op_cost
= m
* add_cost (speed
, mode
);
2560 if (shift_cost (speed
, mode
, m
) < op_cost
)
2561 op_cost
= shift_cost (speed
, mode
, m
);
2562 new_limit
.cost
= best_cost
.cost
- op_cost
;
2563 new_limit
.latency
= best_cost
.latency
- op_cost
;
2564 synth_mult (alg_in
, q
, &new_limit
, mode
);
2566 alg_in
->cost
.cost
+= op_cost
;
2567 alg_in
->cost
.latency
+= op_cost
;
2568 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2570 best_cost
= alg_in
->cost
;
2571 std::swap (alg_in
, best_alg
);
2572 best_alg
->log
[best_alg
->ops
] = m
;
2573 best_alg
->op
[best_alg
->ops
] = alg_shift
;
2576 /* See if treating ORIG_T as a signed number yields a better
2577 sequence. Try this sequence only for a negative ORIG_T
2578 as it would be useless for a non-negative ORIG_T. */
2579 if ((HOST_WIDE_INT
) orig_t
< 0)
2581 /* Shift ORIG_T as follows because a right shift of a
2582 negative-valued signed type is implementation
2584 q
= ~(~orig_t
>> m
);
2585 /* The function expand_shift will choose between a shift
2586 and a sequence of additions, so the observed cost is
2587 given as MIN (m * add_cost(speed, mode),
2588 shift_cost(speed, mode, m)). */
2589 op_cost
= m
* add_cost (speed
, mode
);
2590 if (shift_cost (speed
, mode
, m
) < op_cost
)
2591 op_cost
= shift_cost (speed
, mode
, m
);
2592 new_limit
.cost
= best_cost
.cost
- op_cost
;
2593 new_limit
.latency
= best_cost
.latency
- op_cost
;
2594 synth_mult (alg_in
, q
, &new_limit
, mode
);
2596 alg_in
->cost
.cost
+= op_cost
;
2597 alg_in
->cost
.latency
+= op_cost
;
2598 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2600 best_cost
= alg_in
->cost
;
2601 std::swap (alg_in
, best_alg
);
2602 best_alg
->log
[best_alg
->ops
] = m
;
2603 best_alg
->op
[best_alg
->ops
] = alg_shift
;
2611 /* If we have an odd number, add or subtract one. */
2614 unsigned HOST_WIDE_INT w
;
2617 for (w
= 1; (w
& t
) != 0; w
<<= 1)
2619 /* If T was -1, then W will be zero after the loop. This is another
2620 case where T ends with ...111. Handling this with (T + 1) and
2621 subtract 1 produces slightly better code and results in algorithm
2622 selection much faster than treating it like the ...0111 case
2626 /* Reject the case where t is 3.
2627 Thus we prefer addition in that case. */
2630 /* T ends with ...111. Multiply by (T + 1) and subtract T. */
2632 op_cost
= add_cost (speed
, mode
);
2633 new_limit
.cost
= best_cost
.cost
- op_cost
;
2634 new_limit
.latency
= best_cost
.latency
- op_cost
;
2635 synth_mult (alg_in
, t
+ 1, &new_limit
, mode
);
2637 alg_in
->cost
.cost
+= op_cost
;
2638 alg_in
->cost
.latency
+= op_cost
;
2639 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2641 best_cost
= alg_in
->cost
;
2642 std::swap (alg_in
, best_alg
);
2643 best_alg
->log
[best_alg
->ops
] = 0;
2644 best_alg
->op
[best_alg
->ops
] = alg_sub_t_m2
;
2649 /* T ends with ...01 or ...011. Multiply by (T - 1) and add T. */
2651 op_cost
= add_cost (speed
, mode
);
2652 new_limit
.cost
= best_cost
.cost
- op_cost
;
2653 new_limit
.latency
= best_cost
.latency
- op_cost
;
2654 synth_mult (alg_in
, t
- 1, &new_limit
, mode
);
2656 alg_in
->cost
.cost
+= op_cost
;
2657 alg_in
->cost
.latency
+= op_cost
;
2658 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2660 best_cost
= alg_in
->cost
;
2661 std::swap (alg_in
, best_alg
);
2662 best_alg
->log
[best_alg
->ops
] = 0;
2663 best_alg
->op
[best_alg
->ops
] = alg_add_t_m2
;
2667 /* We may be able to calculate a * -7, a * -15, a * -31, etc
2668 quickly with a - a * n for some appropriate constant n. */
2669 m
= exact_log2 (-orig_t
+ 1);
2670 if (m
>= 0 && m
< maxm
)
2672 op_cost
= add_cost (speed
, mode
) + shift_cost (speed
, mode
, m
);
2673 /* If the target has a cheap shift-and-subtract insn use
2674 that in preference to a shift insn followed by a sub insn.
2675 Assume that the shift-and-sub is "atomic" with a latency
2676 equal to it's cost, otherwise assume that on superscalar
2677 hardware the shift may be executed concurrently with the
2678 earlier steps in the algorithm. */
2679 if (shiftsub1_cost (speed
, mode
, m
) <= op_cost
)
2681 op_cost
= shiftsub1_cost (speed
, mode
, m
);
2682 op_latency
= op_cost
;
2685 op_latency
= add_cost (speed
, mode
);
2687 new_limit
.cost
= best_cost
.cost
- op_cost
;
2688 new_limit
.latency
= best_cost
.latency
- op_latency
;
2689 synth_mult (alg_in
, (unsigned HOST_WIDE_INT
) (-orig_t
+ 1) >> m
,
2692 alg_in
->cost
.cost
+= op_cost
;
2693 alg_in
->cost
.latency
+= op_latency
;
2694 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2696 best_cost
= alg_in
->cost
;
2697 std::swap (alg_in
, best_alg
);
2698 best_alg
->log
[best_alg
->ops
] = m
;
2699 best_alg
->op
[best_alg
->ops
] = alg_sub_t_m2
;
2707 /* Look for factors of t of the form
2708 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2709 If we find such a factor, we can multiply by t using an algorithm that
2710 multiplies by q, shift the result by m and add/subtract it to itself.
2712 We search for large factors first and loop down, even if large factors
2713 are less probable than small; if we find a large factor we will find a
2714 good sequence quickly, and therefore be able to prune (by decreasing
2715 COST_LIMIT) the search. */
2717 do_alg_addsub_factor
:
2718 for (m
= floor_log2 (t
- 1); m
>= 2; m
--)
2720 unsigned HOST_WIDE_INT d
;
2722 d
= ((unsigned HOST_WIDE_INT
) 1 << m
) + 1;
2723 if (t
% d
== 0 && t
> d
&& m
< maxm
2724 && (!cache_hit
|| cache_alg
== alg_add_factor
))
2726 op_cost
= add_cost (speed
, mode
) + shift_cost (speed
, mode
, m
);
2727 if (shiftadd_cost (speed
, mode
, m
) <= op_cost
)
2728 op_cost
= shiftadd_cost (speed
, mode
, m
);
2730 op_latency
= op_cost
;
2733 new_limit
.cost
= best_cost
.cost
- op_cost
;
2734 new_limit
.latency
= best_cost
.latency
- op_latency
;
2735 synth_mult (alg_in
, t
/ d
, &new_limit
, mode
);
2737 alg_in
->cost
.cost
+= op_cost
;
2738 alg_in
->cost
.latency
+= op_latency
;
2739 if (alg_in
->cost
.latency
< op_cost
)
2740 alg_in
->cost
.latency
= op_cost
;
2741 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2743 best_cost
= alg_in
->cost
;
2744 std::swap (alg_in
, best_alg
);
2745 best_alg
->log
[best_alg
->ops
] = m
;
2746 best_alg
->op
[best_alg
->ops
] = alg_add_factor
;
2748 /* Other factors will have been taken care of in the recursion. */
2752 d
= ((unsigned HOST_WIDE_INT
) 1 << m
) - 1;
2753 if (t
% d
== 0 && t
> d
&& m
< maxm
2754 && (!cache_hit
|| cache_alg
== alg_sub_factor
))
2756 op_cost
= add_cost (speed
, mode
) + shift_cost (speed
, mode
, m
);
2757 if (shiftsub0_cost (speed
, mode
, m
) <= op_cost
)
2758 op_cost
= shiftsub0_cost (speed
, mode
, m
);
2760 op_latency
= op_cost
;
2762 new_limit
.cost
= best_cost
.cost
- op_cost
;
2763 new_limit
.latency
= best_cost
.latency
- op_latency
;
2764 synth_mult (alg_in
, t
/ d
, &new_limit
, mode
);
2766 alg_in
->cost
.cost
+= op_cost
;
2767 alg_in
->cost
.latency
+= op_latency
;
2768 if (alg_in
->cost
.latency
< op_cost
)
2769 alg_in
->cost
.latency
= op_cost
;
2770 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2772 best_cost
= alg_in
->cost
;
2773 std::swap (alg_in
, best_alg
);
2774 best_alg
->log
[best_alg
->ops
] = m
;
2775 best_alg
->op
[best_alg
->ops
] = alg_sub_factor
;
2783 /* Try shift-and-add (load effective address) instructions,
2784 i.e. do a*3, a*5, a*9. */
2791 if (m
>= 0 && m
< maxm
)
2793 op_cost
= shiftadd_cost (speed
, mode
, m
);
2794 new_limit
.cost
= best_cost
.cost
- op_cost
;
2795 new_limit
.latency
= best_cost
.latency
- op_cost
;
2796 synth_mult (alg_in
, (t
- 1) >> m
, &new_limit
, mode
);
2798 alg_in
->cost
.cost
+= op_cost
;
2799 alg_in
->cost
.latency
+= op_cost
;
2800 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2802 best_cost
= alg_in
->cost
;
2803 std::swap (alg_in
, best_alg
);
2804 best_alg
->log
[best_alg
->ops
] = m
;
2805 best_alg
->op
[best_alg
->ops
] = alg_add_t2_m
;
2815 if (m
>= 0 && m
< maxm
)
2817 op_cost
= shiftsub0_cost (speed
, mode
, m
);
2818 new_limit
.cost
= best_cost
.cost
- op_cost
;
2819 new_limit
.latency
= best_cost
.latency
- op_cost
;
2820 synth_mult (alg_in
, (t
+ 1) >> m
, &new_limit
, mode
);
2822 alg_in
->cost
.cost
+= op_cost
;
2823 alg_in
->cost
.latency
+= op_cost
;
2824 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2826 best_cost
= alg_in
->cost
;
2827 std::swap (alg_in
, best_alg
);
2828 best_alg
->log
[best_alg
->ops
] = m
;
2829 best_alg
->op
[best_alg
->ops
] = alg_sub_t2_m
;
2837 /* If best_cost has not decreased, we have not found any algorithm. */
2838 if (!CHEAPER_MULT_COST (&best_cost
, cost_limit
))
2840 /* We failed to find an algorithm. Record alg_impossible for
2841 this case (that is, <T, MODE, COST_LIMIT>) so that next time
2842 we are asked to find an algorithm for T within the same or
2843 lower COST_LIMIT, we can immediately return to the
2846 entry_ptr
->mode
= mode
;
2847 entry_ptr
->speed
= speed
;
2848 entry_ptr
->alg
= alg_impossible
;
2849 entry_ptr
->cost
= *cost_limit
;
2853 /* Cache the result. */
2857 entry_ptr
->mode
= mode
;
2858 entry_ptr
->speed
= speed
;
2859 entry_ptr
->alg
= best_alg
->op
[best_alg
->ops
];
2860 entry_ptr
->cost
.cost
= best_cost
.cost
;
2861 entry_ptr
->cost
.latency
= best_cost
.latency
;
2864 /* If we are getting a too long sequence for `struct algorithm'
2865 to record, make this search fail. */
2866 if (best_alg
->ops
== MAX_BITS_PER_WORD
)
2869 /* Copy the algorithm from temporary space to the space at alg_out.
2870 We avoid using structure assignment because the majority of
2871 best_alg is normally undefined, and this is a critical function. */
2872 alg_out
->ops
= best_alg
->ops
+ 1;
2873 alg_out
->cost
= best_cost
;
2874 memcpy (alg_out
->op
, best_alg
->op
,
2875 alg_out
->ops
* sizeof *alg_out
->op
);
2876 memcpy (alg_out
->log
, best_alg
->log
,
2877 alg_out
->ops
* sizeof *alg_out
->log
);
2880 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
2881 Try three variations:
2883 - a shift/add sequence based on VAL itself
2884 - a shift/add sequence based on -VAL, followed by a negation
2885 - a shift/add sequence based on VAL - 1, followed by an addition.
2887 Return true if the cheapest of these cost less than MULT_COST,
2888 describing the algorithm in *ALG and final fixup in *VARIANT. */
2891 choose_mult_variant (machine_mode mode
, HOST_WIDE_INT val
,
2892 struct algorithm
*alg
, enum mult_variant
*variant
,
2895 struct algorithm alg2
;
2896 struct mult_cost limit
;
2898 bool speed
= optimize_insn_for_speed_p ();
2900 /* Fail quickly for impossible bounds. */
2904 /* Ensure that mult_cost provides a reasonable upper bound.
2905 Any constant multiplication can be performed with less
2906 than 2 * bits additions. */
2907 op_cost
= 2 * GET_MODE_UNIT_BITSIZE (mode
) * add_cost (speed
, mode
);
2908 if (mult_cost
> op_cost
)
2909 mult_cost
= op_cost
;
2911 *variant
= basic_variant
;
2912 limit
.cost
= mult_cost
;
2913 limit
.latency
= mult_cost
;
2914 synth_mult (alg
, val
, &limit
, mode
);
2916 /* This works only if the inverted value actually fits in an
2918 if (HOST_BITS_PER_INT
>= GET_MODE_UNIT_BITSIZE (mode
))
2920 op_cost
= neg_cost (speed
, mode
);
2921 if (MULT_COST_LESS (&alg
->cost
, mult_cost
))
2923 limit
.cost
= alg
->cost
.cost
- op_cost
;
2924 limit
.latency
= alg
->cost
.latency
- op_cost
;
2928 limit
.cost
= mult_cost
- op_cost
;
2929 limit
.latency
= mult_cost
- op_cost
;
2932 synth_mult (&alg2
, -val
, &limit
, mode
);
2933 alg2
.cost
.cost
+= op_cost
;
2934 alg2
.cost
.latency
+= op_cost
;
2935 if (CHEAPER_MULT_COST (&alg2
.cost
, &alg
->cost
))
2936 *alg
= alg2
, *variant
= negate_variant
;
2939 /* This proves very useful for division-by-constant. */
2940 op_cost
= add_cost (speed
, mode
);
2941 if (MULT_COST_LESS (&alg
->cost
, mult_cost
))
2943 limit
.cost
= alg
->cost
.cost
- op_cost
;
2944 limit
.latency
= alg
->cost
.latency
- op_cost
;
2948 limit
.cost
= mult_cost
- op_cost
;
2949 limit
.latency
= mult_cost
- op_cost
;
2952 synth_mult (&alg2
, val
- 1, &limit
, mode
);
2953 alg2
.cost
.cost
+= op_cost
;
2954 alg2
.cost
.latency
+= op_cost
;
2955 if (CHEAPER_MULT_COST (&alg2
.cost
, &alg
->cost
))
2956 *alg
= alg2
, *variant
= add_variant
;
2958 return MULT_COST_LESS (&alg
->cost
, mult_cost
);
2961 /* A subroutine of expand_mult, used for constant multiplications.
2962 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2963 convenient. Use the shift/add sequence described by ALG and apply
2964 the final fixup specified by VARIANT. */
2967 expand_mult_const (machine_mode mode
, rtx op0
, HOST_WIDE_INT val
,
2968 rtx target
, const struct algorithm
*alg
,
2969 enum mult_variant variant
)
2971 HOST_WIDE_INT val_so_far
;
2977 /* Avoid referencing memory over and over and invalid sharing
2979 op0
= force_reg (mode
, op0
);
2981 /* ACCUM starts out either as OP0 or as a zero, depending on
2982 the first operation. */
2984 if (alg
->op
[0] == alg_zero
)
2986 accum
= copy_to_mode_reg (mode
, CONST0_RTX (mode
));
2989 else if (alg
->op
[0] == alg_m
)
2991 accum
= copy_to_mode_reg (mode
, op0
);
2997 for (opno
= 1; opno
< alg
->ops
; opno
++)
2999 int log
= alg
->log
[opno
];
3000 rtx shift_subtarget
= optimize
? 0 : accum
;
3002 = (opno
== alg
->ops
- 1 && target
!= 0 && variant
!= add_variant
3005 rtx accum_target
= optimize
? 0 : accum
;
3008 switch (alg
->op
[opno
])
3011 tem
= expand_shift (LSHIFT_EXPR
, mode
, accum
, log
, NULL_RTX
, 0);
3012 /* REG_EQUAL note will be attached to the following insn. */
3013 emit_move_insn (accum
, tem
);
3018 tem
= expand_shift (LSHIFT_EXPR
, mode
, op0
, log
, NULL_RTX
, 0);
3019 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, tem
),
3020 add_target
? add_target
: accum_target
);
3021 val_so_far
+= (HOST_WIDE_INT
) 1 << log
;
3025 tem
= expand_shift (LSHIFT_EXPR
, mode
, op0
, log
, NULL_RTX
, 0);
3026 accum
= force_operand (gen_rtx_MINUS (mode
, accum
, tem
),
3027 add_target
? add_target
: accum_target
);
3028 val_so_far
-= (HOST_WIDE_INT
) 1 << log
;
3032 accum
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
3033 log
, shift_subtarget
, 0);
3034 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, op0
),
3035 add_target
? add_target
: accum_target
);
3036 val_so_far
= (val_so_far
<< log
) + 1;
3040 accum
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
3041 log
, shift_subtarget
, 0);
3042 accum
= force_operand (gen_rtx_MINUS (mode
, accum
, op0
),
3043 add_target
? add_target
: accum_target
);
3044 val_so_far
= (val_so_far
<< log
) - 1;
3047 case alg_add_factor
:
3048 tem
= expand_shift (LSHIFT_EXPR
, mode
, accum
, log
, NULL_RTX
, 0);
3049 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, tem
),
3050 add_target
? add_target
: accum_target
);
3051 val_so_far
+= val_so_far
<< log
;
3054 case alg_sub_factor
:
3055 tem
= expand_shift (LSHIFT_EXPR
, mode
, accum
, log
, NULL_RTX
, 0);
3056 accum
= force_operand (gen_rtx_MINUS (mode
, tem
, accum
),
3058 ? add_target
: (optimize
? 0 : tem
)));
3059 val_so_far
= (val_so_far
<< log
) - val_so_far
;
3066 if (SCALAR_INT_MODE_P (mode
))
3068 /* Write a REG_EQUAL note on the last insn so that we can cse
3069 multiplication sequences. Note that if ACCUM is a SUBREG,
3070 we've set the inner register and must properly indicate that. */
3071 tem
= op0
, nmode
= mode
;
3072 accum_inner
= accum
;
3073 if (GET_CODE (accum
) == SUBREG
)
3075 accum_inner
= SUBREG_REG (accum
);
3076 nmode
= GET_MODE (accum_inner
);
3077 tem
= gen_lowpart (nmode
, op0
);
3080 insn
= get_last_insn ();
3081 set_dst_reg_note (insn
, REG_EQUAL
,
3082 gen_rtx_MULT (nmode
, tem
,
3083 gen_int_mode (val_so_far
, nmode
)),
3088 if (variant
== negate_variant
)
3090 val_so_far
= -val_so_far
;
3091 accum
= expand_unop (mode
, neg_optab
, accum
, target
, 0);
3093 else if (variant
== add_variant
)
3095 val_so_far
= val_so_far
+ 1;
3096 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, op0
), target
);
3099 /* Compare only the bits of val and val_so_far that are significant
3100 in the result mode, to avoid sign-/zero-extension confusion. */
3101 nmode
= GET_MODE_INNER (mode
);
3102 if (nmode
== VOIDmode
)
3104 val
&= GET_MODE_MASK (nmode
);
3105 val_so_far
&= GET_MODE_MASK (nmode
);
3106 gcc_assert (val
== val_so_far
);
3111 /* Perform a multiplication and return an rtx for the result.
3112 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3113 TARGET is a suggestion for where to store the result (an rtx).
3115 We check specially for a constant integer as OP1.
3116 If you want this check for OP0 as well, then before calling
3117 you should swap the two operands if OP0 would be constant. */
3120 expand_mult (machine_mode mode
, rtx op0
, rtx op1
, rtx target
,
3123 enum mult_variant variant
;
3124 struct algorithm algorithm
;
3127 bool speed
= optimize_insn_for_speed_p ();
3128 bool do_trapv
= flag_trapv
&& SCALAR_INT_MODE_P (mode
) && !unsignedp
;
3130 if (CONSTANT_P (op0
))
3131 std::swap (op0
, op1
);
3133 /* For vectors, there are several simplifications that can be made if
3134 all elements of the vector constant are identical. */
3136 if (GET_CODE (op1
) == CONST_VECTOR
)
3138 int i
, n
= CONST_VECTOR_NUNITS (op1
);
3139 scalar_op1
= CONST_VECTOR_ELT (op1
, 0);
3140 for (i
= 1; i
< n
; ++i
)
3141 if (!rtx_equal_p (scalar_op1
, CONST_VECTOR_ELT (op1
, i
)))
3145 if (INTEGRAL_MODE_P (mode
))
3148 HOST_WIDE_INT coeff
;
3152 if (op1
== CONST0_RTX (mode
))
3154 if (op1
== CONST1_RTX (mode
))
3156 if (op1
== CONSTM1_RTX (mode
))
3157 return expand_unop (mode
, do_trapv
? negv_optab
: neg_optab
,
3163 /* If mode is integer vector mode, check if the backend supports
3164 vector lshift (by scalar or vector) at all. If not, we can't use
3165 synthetized multiply. */
3166 if (GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
3167 && optab_handler (vashl_optab
, mode
) == CODE_FOR_nothing
3168 && optab_handler (ashl_optab
, mode
) == CODE_FOR_nothing
)
3171 /* These are the operations that are potentially turned into
3172 a sequence of shifts and additions. */
3173 mode_bitsize
= GET_MODE_UNIT_BITSIZE (mode
);
3175 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3176 less than or equal in size to `unsigned int' this doesn't matter.
3177 If the mode is larger than `unsigned int', then synth_mult works
3178 only if the constant value exactly fits in an `unsigned int' without
3179 any truncation. This means that multiplying by negative values does
3180 not work; results are off by 2^32 on a 32 bit machine. */
3181 if (CONST_INT_P (scalar_op1
))
3183 coeff
= INTVAL (scalar_op1
);
3186 #if TARGET_SUPPORTS_WIDE_INT
3187 else if (CONST_WIDE_INT_P (scalar_op1
))
3189 else if (CONST_DOUBLE_AS_INT_P (scalar_op1
))
3192 int shift
= wi::exact_log2 (std::make_pair (scalar_op1
, mode
));
3193 /* Perfect power of 2 (other than 1, which is handled above). */
3195 return expand_shift (LSHIFT_EXPR
, mode
, op0
,
3196 shift
, target
, unsignedp
);
3203 /* We used to test optimize here, on the grounds that it's better to
3204 produce a smaller program when -O is not used. But this causes
3205 such a terrible slowdown sometimes that it seems better to always
3208 /* Special case powers of two. */
3209 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff
)
3210 && !(is_neg
&& mode_bitsize
> HOST_BITS_PER_WIDE_INT
))
3211 return expand_shift (LSHIFT_EXPR
, mode
, op0
,
3212 floor_log2 (coeff
), target
, unsignedp
);
3214 fake_reg
= gen_raw_REG (mode
, LAST_VIRTUAL_REGISTER
+ 1);
3216 /* Attempt to handle multiplication of DImode values by negative
3217 coefficients, by performing the multiplication by a positive
3218 multiplier and then inverting the result. */
3219 if (is_neg
&& mode_bitsize
> HOST_BITS_PER_WIDE_INT
)
3221 /* Its safe to use -coeff even for INT_MIN, as the
3222 result is interpreted as an unsigned coefficient.
3223 Exclude cost of op0 from max_cost to match the cost
3224 calculation of the synth_mult. */
3225 coeff
= -(unsigned HOST_WIDE_INT
) coeff
;
3226 max_cost
= (set_src_cost (gen_rtx_MULT (mode
, fake_reg
, op1
), speed
)
3227 - neg_cost (speed
, mode
));
3231 /* Special case powers of two. */
3232 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff
))
3234 rtx temp
= expand_shift (LSHIFT_EXPR
, mode
, op0
,
3235 floor_log2 (coeff
), target
, unsignedp
);
3236 return expand_unop (mode
, neg_optab
, temp
, target
, 0);
3239 if (choose_mult_variant (mode
, coeff
, &algorithm
, &variant
,
3242 rtx temp
= expand_mult_const (mode
, op0
, coeff
, NULL_RTX
,
3243 &algorithm
, variant
);
3244 return expand_unop (mode
, neg_optab
, temp
, target
, 0);
3249 /* Exclude cost of op0 from max_cost to match the cost
3250 calculation of the synth_mult. */
3251 max_cost
= set_src_cost (gen_rtx_MULT (mode
, fake_reg
, op1
), speed
);
3252 if (choose_mult_variant (mode
, coeff
, &algorithm
, &variant
, max_cost
))
3253 return expand_mult_const (mode
, op0
, coeff
, target
,
3254 &algorithm
, variant
);
3258 /* Expand x*2.0 as x+x. */
3259 if (CONST_DOUBLE_AS_FLOAT_P (scalar_op1
))
3262 REAL_VALUE_FROM_CONST_DOUBLE (d
, scalar_op1
);
3264 if (REAL_VALUES_EQUAL (d
, dconst2
))
3266 op0
= force_reg (GET_MODE (op0
), op0
);
3267 return expand_binop (mode
, add_optab
, op0
, op0
,
3268 target
, unsignedp
, OPTAB_LIB_WIDEN
);
3273 /* This used to use umul_optab if unsigned, but for non-widening multiply
3274 there is no difference between signed and unsigned. */
3275 op0
= expand_binop (mode
, do_trapv
? smulv_optab
: smul_optab
,
3276 op0
, op1
, target
, unsignedp
, OPTAB_LIB_WIDEN
);
3281 /* Return a cost estimate for multiplying a register by the given
3282 COEFFicient in the given MODE and SPEED. */
3285 mult_by_coeff_cost (HOST_WIDE_INT coeff
, machine_mode mode
, bool speed
)
3288 struct algorithm algorithm
;
3289 enum mult_variant variant
;
3291 rtx fake_reg
= gen_raw_REG (mode
, LAST_VIRTUAL_REGISTER
+ 1);
3292 max_cost
= set_src_cost (gen_rtx_MULT (mode
, fake_reg
, fake_reg
), speed
);
3293 if (choose_mult_variant (mode
, coeff
, &algorithm
, &variant
, max_cost
))
3294 return algorithm
.cost
.cost
;
3299 /* Perform a widening multiplication and return an rtx for the result.
3300 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3301 TARGET is a suggestion for where to store the result (an rtx).
3302 THIS_OPTAB is the optab we should use, it must be either umul_widen_optab
3303 or smul_widen_optab.
3305 We check specially for a constant integer as OP1, comparing the
3306 cost of a widening multiply against the cost of a sequence of shifts
3310 expand_widening_mult (machine_mode mode
, rtx op0
, rtx op1
, rtx target
,
3311 int unsignedp
, optab this_optab
)
3313 bool speed
= optimize_insn_for_speed_p ();
3316 if (CONST_INT_P (op1
)
3317 && GET_MODE (op0
) != VOIDmode
3318 && (cop1
= convert_modes (mode
, GET_MODE (op0
), op1
,
3319 this_optab
== umul_widen_optab
))
3320 && CONST_INT_P (cop1
)
3321 && (INTVAL (cop1
) >= 0
3322 || HWI_COMPUTABLE_MODE_P (mode
)))
3324 HOST_WIDE_INT coeff
= INTVAL (cop1
);
3326 enum mult_variant variant
;
3327 struct algorithm algorithm
;
3330 return CONST0_RTX (mode
);
3332 /* Special case powers of two. */
3333 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff
))
3335 op0
= convert_to_mode (mode
, op0
, this_optab
== umul_widen_optab
);
3336 return expand_shift (LSHIFT_EXPR
, mode
, op0
,
3337 floor_log2 (coeff
), target
, unsignedp
);
3340 /* Exclude cost of op0 from max_cost to match the cost
3341 calculation of the synth_mult. */
3342 max_cost
= mul_widen_cost (speed
, mode
);
3343 if (choose_mult_variant (mode
, coeff
, &algorithm
, &variant
,
3346 op0
= convert_to_mode (mode
, op0
, this_optab
== umul_widen_optab
);
3347 return expand_mult_const (mode
, op0
, coeff
, target
,
3348 &algorithm
, variant
);
3351 return expand_binop (mode
, this_optab
, op0
, op1
, target
,
3352 unsignedp
, OPTAB_LIB_WIDEN
);
3355 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3356 replace division by D, and put the least significant N bits of the result
3357 in *MULTIPLIER_PTR and return the most significant bit.
3359 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3360 needed precision is in PRECISION (should be <= N).
3362 PRECISION should be as small as possible so this function can choose
3363 multiplier more freely.
3365 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3366 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3368 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3369 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3371 unsigned HOST_WIDE_INT
3372 choose_multiplier (unsigned HOST_WIDE_INT d
, int n
, int precision
,
3373 unsigned HOST_WIDE_INT
*multiplier_ptr
,
3374 int *post_shift_ptr
, int *lgup_ptr
)
3376 int lgup
, post_shift
;
3379 /* lgup = ceil(log2(divisor)); */
3380 lgup
= ceil_log2 (d
);
3382 gcc_assert (lgup
<= n
);
3385 pow2
= n
+ lgup
- precision
;
3387 /* mlow = 2^(N + lgup)/d */
3388 wide_int val
= wi::set_bit_in_zero (pow
, HOST_BITS_PER_DOUBLE_INT
);
3389 wide_int mlow
= wi::udiv_trunc (val
, d
);
3391 /* mhigh = (2^(N + lgup) + 2^(N + lgup - precision))/d */
3392 val
|= wi::set_bit_in_zero (pow2
, HOST_BITS_PER_DOUBLE_INT
);
3393 wide_int mhigh
= wi::udiv_trunc (val
, d
);
3395 /* If precision == N, then mlow, mhigh exceed 2^N
3396 (but they do not exceed 2^(N+1)). */
3398 /* Reduce to lowest terms. */
3399 for (post_shift
= lgup
; post_shift
> 0; post_shift
--)
3401 unsigned HOST_WIDE_INT ml_lo
= wi::extract_uhwi (mlow
, 1,
3402 HOST_BITS_PER_WIDE_INT
);
3403 unsigned HOST_WIDE_INT mh_lo
= wi::extract_uhwi (mhigh
, 1,
3404 HOST_BITS_PER_WIDE_INT
);
3408 mlow
= wi::uhwi (ml_lo
, HOST_BITS_PER_DOUBLE_INT
);
3409 mhigh
= wi::uhwi (mh_lo
, HOST_BITS_PER_DOUBLE_INT
);
3412 *post_shift_ptr
= post_shift
;
3414 if (n
< HOST_BITS_PER_WIDE_INT
)
3416 unsigned HOST_WIDE_INT mask
= ((unsigned HOST_WIDE_INT
) 1 << n
) - 1;
3417 *multiplier_ptr
= mhigh
.to_uhwi () & mask
;
3418 return mhigh
.to_uhwi () >= mask
;
3422 *multiplier_ptr
= mhigh
.to_uhwi ();
3423 return wi::extract_uhwi (mhigh
, HOST_BITS_PER_WIDE_INT
, 1);
3427 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3428 congruent to 1 (mod 2**N). */
3430 static unsigned HOST_WIDE_INT
3431 invert_mod2n (unsigned HOST_WIDE_INT x
, int n
)
3433 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3435 /* The algorithm notes that the choice y = x satisfies
3436 x*y == 1 mod 2^3, since x is assumed odd.
3437 Each iteration doubles the number of bits of significance in y. */
3439 unsigned HOST_WIDE_INT mask
;
3440 unsigned HOST_WIDE_INT y
= x
;
3443 mask
= (n
== HOST_BITS_PER_WIDE_INT
3444 ? ~(unsigned HOST_WIDE_INT
) 0
3445 : ((unsigned HOST_WIDE_INT
) 1 << n
) - 1);
3449 y
= y
* (2 - x
*y
) & mask
; /* Modulo 2^N */
3455 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3456 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3457 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3458 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3461 The result is put in TARGET if that is convenient.
3463 MODE is the mode of operation. */
3466 expand_mult_highpart_adjust (machine_mode mode
, rtx adj_operand
, rtx op0
,
3467 rtx op1
, rtx target
, int unsignedp
)
3470 enum rtx_code adj_code
= unsignedp
? PLUS
: MINUS
;
3472 tem
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
3473 GET_MODE_BITSIZE (mode
) - 1, NULL_RTX
, 0);
3474 tem
= expand_and (mode
, tem
, op1
, NULL_RTX
);
3476 = force_operand (gen_rtx_fmt_ee (adj_code
, mode
, adj_operand
, tem
),
3479 tem
= expand_shift (RSHIFT_EXPR
, mode
, op1
,
3480 GET_MODE_BITSIZE (mode
) - 1, NULL_RTX
, 0);
3481 tem
= expand_and (mode
, tem
, op0
, NULL_RTX
);
3482 target
= force_operand (gen_rtx_fmt_ee (adj_code
, mode
, adj_operand
, tem
),
3488 /* Subroutine of expmed_mult_highpart. Return the MODE high part of OP. */
3491 extract_high_half (machine_mode mode
, rtx op
)
3493 machine_mode wider_mode
;
3495 if (mode
== word_mode
)
3496 return gen_highpart (mode
, op
);
3498 gcc_assert (!SCALAR_FLOAT_MODE_P (mode
));
3500 wider_mode
= GET_MODE_WIDER_MODE (mode
);
3501 op
= expand_shift (RSHIFT_EXPR
, wider_mode
, op
,
3502 GET_MODE_BITSIZE (mode
), 0, 1);
3503 return convert_modes (mode
, wider_mode
, op
, 0);
3506 /* Like expmed_mult_highpart, but only consider using a multiplication
3507 optab. OP1 is an rtx for the constant operand. */
3510 expmed_mult_highpart_optab (machine_mode mode
, rtx op0
, rtx op1
,
3511 rtx target
, int unsignedp
, int max_cost
)
3513 rtx narrow_op1
= gen_int_mode (INTVAL (op1
), mode
);
3514 machine_mode wider_mode
;
3518 bool speed
= optimize_insn_for_speed_p ();
3520 gcc_assert (!SCALAR_FLOAT_MODE_P (mode
));
3522 wider_mode
= GET_MODE_WIDER_MODE (mode
);
3523 size
= GET_MODE_BITSIZE (mode
);
3525 /* Firstly, try using a multiplication insn that only generates the needed
3526 high part of the product, and in the sign flavor of unsignedp. */
3527 if (mul_highpart_cost (speed
, mode
) < max_cost
)
3529 moptab
= unsignedp
? umul_highpart_optab
: smul_highpart_optab
;
3530 tem
= expand_binop (mode
, moptab
, op0
, narrow_op1
, target
,
3531 unsignedp
, OPTAB_DIRECT
);
3536 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3537 Need to adjust the result after the multiplication. */
3538 if (size
- 1 < BITS_PER_WORD
3539 && (mul_highpart_cost (speed
, mode
)
3540 + 2 * shift_cost (speed
, mode
, size
-1)
3541 + 4 * add_cost (speed
, mode
) < max_cost
))
3543 moptab
= unsignedp
? smul_highpart_optab
: umul_highpart_optab
;
3544 tem
= expand_binop (mode
, moptab
, op0
, narrow_op1
, target
,
3545 unsignedp
, OPTAB_DIRECT
);
3547 /* We used the wrong signedness. Adjust the result. */
3548 return expand_mult_highpart_adjust (mode
, tem
, op0
, narrow_op1
,
3552 /* Try widening multiplication. */
3553 moptab
= unsignedp
? umul_widen_optab
: smul_widen_optab
;
3554 if (widening_optab_handler (moptab
, wider_mode
, mode
) != CODE_FOR_nothing
3555 && mul_widen_cost (speed
, wider_mode
) < max_cost
)
3557 tem
= expand_binop (wider_mode
, moptab
, op0
, narrow_op1
, 0,
3558 unsignedp
, OPTAB_WIDEN
);
3560 return extract_high_half (mode
, tem
);
3563 /* Try widening the mode and perform a non-widening multiplication. */
3564 if (optab_handler (smul_optab
, wider_mode
) != CODE_FOR_nothing
3565 && size
- 1 < BITS_PER_WORD
3566 && (mul_cost (speed
, wider_mode
) + shift_cost (speed
, mode
, size
-1)
3572 /* We need to widen the operands, for example to ensure the
3573 constant multiplier is correctly sign or zero extended.
3574 Use a sequence to clean-up any instructions emitted by
3575 the conversions if things don't work out. */
3577 wop0
= convert_modes (wider_mode
, mode
, op0
, unsignedp
);
3578 wop1
= convert_modes (wider_mode
, mode
, op1
, unsignedp
);
3579 tem
= expand_binop (wider_mode
, smul_optab
, wop0
, wop1
, 0,
3580 unsignedp
, OPTAB_WIDEN
);
3581 insns
= get_insns ();
3587 return extract_high_half (mode
, tem
);
3591 /* Try widening multiplication of opposite signedness, and adjust. */
3592 moptab
= unsignedp
? smul_widen_optab
: umul_widen_optab
;
3593 if (widening_optab_handler (moptab
, wider_mode
, mode
) != CODE_FOR_nothing
3594 && size
- 1 < BITS_PER_WORD
3595 && (mul_widen_cost (speed
, wider_mode
)
3596 + 2 * shift_cost (speed
, mode
, size
-1)
3597 + 4 * add_cost (speed
, mode
) < max_cost
))
3599 tem
= expand_binop (wider_mode
, moptab
, op0
, narrow_op1
,
3600 NULL_RTX
, ! unsignedp
, OPTAB_WIDEN
);
3603 tem
= extract_high_half (mode
, tem
);
3604 /* We used the wrong signedness. Adjust the result. */
3605 return expand_mult_highpart_adjust (mode
, tem
, op0
, narrow_op1
,
3613 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3614 putting the high half of the result in TARGET if that is convenient,
3615 and return where the result is. If the operation can not be performed,
3618 MODE is the mode of operation and result.
3620 UNSIGNEDP nonzero means unsigned multiply.
3622 MAX_COST is the total allowed cost for the expanded RTL. */
3625 expmed_mult_highpart (machine_mode mode
, rtx op0
, rtx op1
,
3626 rtx target
, int unsignedp
, int max_cost
)
3628 machine_mode wider_mode
= GET_MODE_WIDER_MODE (mode
);
3629 unsigned HOST_WIDE_INT cnst1
;
3631 bool sign_adjust
= false;
3632 enum mult_variant variant
;
3633 struct algorithm alg
;
3635 bool speed
= optimize_insn_for_speed_p ();
3637 gcc_assert (!SCALAR_FLOAT_MODE_P (mode
));
3638 /* We can't support modes wider than HOST_BITS_PER_INT. */
3639 gcc_assert (HWI_COMPUTABLE_MODE_P (mode
));
3641 cnst1
= INTVAL (op1
) & GET_MODE_MASK (mode
);
3643 /* We can't optimize modes wider than BITS_PER_WORD.
3644 ??? We might be able to perform double-word arithmetic if
3645 mode == word_mode, however all the cost calculations in
3646 synth_mult etc. assume single-word operations. */
3647 if (GET_MODE_BITSIZE (wider_mode
) > BITS_PER_WORD
)
3648 return expmed_mult_highpart_optab (mode
, op0
, op1
, target
,
3649 unsignedp
, max_cost
);
3651 extra_cost
= shift_cost (speed
, mode
, GET_MODE_BITSIZE (mode
) - 1);
3653 /* Check whether we try to multiply by a negative constant. */
3654 if (!unsignedp
&& ((cnst1
>> (GET_MODE_BITSIZE (mode
) - 1)) & 1))
3657 extra_cost
+= add_cost (speed
, mode
);
3660 /* See whether shift/add multiplication is cheap enough. */
3661 if (choose_mult_variant (wider_mode
, cnst1
, &alg
, &variant
,
3662 max_cost
- extra_cost
))
3664 /* See whether the specialized multiplication optabs are
3665 cheaper than the shift/add version. */
3666 tem
= expmed_mult_highpart_optab (mode
, op0
, op1
, target
, unsignedp
,
3667 alg
.cost
.cost
+ extra_cost
);
3671 tem
= convert_to_mode (wider_mode
, op0
, unsignedp
);
3672 tem
= expand_mult_const (wider_mode
, tem
, cnst1
, 0, &alg
, variant
);
3673 tem
= extract_high_half (mode
, tem
);
3675 /* Adjust result for signedness. */
3677 tem
= force_operand (gen_rtx_MINUS (mode
, tem
, op0
), tem
);
3681 return expmed_mult_highpart_optab (mode
, op0
, op1
, target
,
3682 unsignedp
, max_cost
);
3686 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3689 expand_smod_pow2 (machine_mode mode
, rtx op0
, HOST_WIDE_INT d
)
3691 rtx result
, temp
, shift
;
3692 rtx_code_label
*label
;
3694 int prec
= GET_MODE_PRECISION (mode
);
3696 logd
= floor_log2 (d
);
3697 result
= gen_reg_rtx (mode
);
3699 /* Avoid conditional branches when they're expensive. */
3700 if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2
3701 && optimize_insn_for_speed_p ())
3703 rtx signmask
= emit_store_flag (result
, LT
, op0
, const0_rtx
,
3707 HOST_WIDE_INT masklow
= ((HOST_WIDE_INT
) 1 << logd
) - 1;
3708 signmask
= force_reg (mode
, signmask
);
3709 shift
= GEN_INT (GET_MODE_BITSIZE (mode
) - logd
);
3711 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3712 which instruction sequence to use. If logical right shifts
3713 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3714 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3716 temp
= gen_rtx_LSHIFTRT (mode
, result
, shift
);
3717 if (optab_handler (lshr_optab
, mode
) == CODE_FOR_nothing
3718 || (set_src_cost (temp
, optimize_insn_for_speed_p ())
3719 > COSTS_N_INSNS (2)))
3721 temp
= expand_binop (mode
, xor_optab
, op0
, signmask
,
3722 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3723 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
3724 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3725 temp
= expand_binop (mode
, and_optab
, temp
,
3726 gen_int_mode (masklow
, mode
),
3727 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3728 temp
= expand_binop (mode
, xor_optab
, temp
, signmask
,
3729 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3730 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
3731 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3735 signmask
= expand_binop (mode
, lshr_optab
, signmask
, shift
,
3736 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3737 signmask
= force_reg (mode
, signmask
);
3739 temp
= expand_binop (mode
, add_optab
, op0
, signmask
,
3740 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3741 temp
= expand_binop (mode
, and_optab
, temp
,
3742 gen_int_mode (masklow
, mode
),
3743 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3744 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
3745 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3751 /* Mask contains the mode's signbit and the significant bits of the
3752 modulus. By including the signbit in the operation, many targets
3753 can avoid an explicit compare operation in the following comparison
3755 wide_int mask
= wi::mask (logd
, false, prec
);
3756 mask
= wi::set_bit (mask
, prec
- 1);
3758 temp
= expand_binop (mode
, and_optab
, op0
,
3759 immed_wide_int_const (mask
, mode
),
3760 result
, 1, OPTAB_LIB_WIDEN
);
3762 emit_move_insn (result
, temp
);
3764 label
= gen_label_rtx ();
3765 do_cmp_and_jump (result
, const0_rtx
, GE
, mode
, label
);
3767 temp
= expand_binop (mode
, sub_optab
, result
, const1_rtx
, result
,
3768 0, OPTAB_LIB_WIDEN
);
3770 mask
= wi::mask (logd
, true, prec
);
3771 temp
= expand_binop (mode
, ior_optab
, temp
,
3772 immed_wide_int_const (mask
, mode
),
3773 result
, 1, OPTAB_LIB_WIDEN
);
3774 temp
= expand_binop (mode
, add_optab
, temp
, const1_rtx
, result
,
3775 0, OPTAB_LIB_WIDEN
);
3777 emit_move_insn (result
, temp
);
3782 /* Expand signed division of OP0 by a power of two D in mode MODE.
3783 This routine is only called for positive values of D. */
3786 expand_sdiv_pow2 (machine_mode mode
, rtx op0
, HOST_WIDE_INT d
)
3789 rtx_code_label
*label
;
3792 logd
= floor_log2 (d
);
3795 && BRANCH_COST (optimize_insn_for_speed_p (),
3798 temp
= gen_reg_rtx (mode
);
3799 temp
= emit_store_flag (temp
, LT
, op0
, const0_rtx
, mode
, 0, 1);
3800 temp
= expand_binop (mode
, add_optab
, temp
, op0
, NULL_RTX
,
3801 0, OPTAB_LIB_WIDEN
);
3802 return expand_shift (RSHIFT_EXPR
, mode
, temp
, logd
, NULL_RTX
, 0);
3805 if (HAVE_conditional_move
3806 && BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2)
3811 temp2
= copy_to_mode_reg (mode
, op0
);
3812 temp
= expand_binop (mode
, add_optab
, temp2
, gen_int_mode (d
- 1, mode
),
3813 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
3814 temp
= force_reg (mode
, temp
);
3816 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3817 temp2
= emit_conditional_move (temp2
, LT
, temp2
, const0_rtx
,
3818 mode
, temp
, temp2
, mode
, 0);
3821 rtx_insn
*seq
= get_insns ();
3824 return expand_shift (RSHIFT_EXPR
, mode
, temp2
, logd
, NULL_RTX
, 0);
3829 if (BRANCH_COST (optimize_insn_for_speed_p (),
3832 int ushift
= GET_MODE_BITSIZE (mode
) - logd
;
3834 temp
= gen_reg_rtx (mode
);
3835 temp
= emit_store_flag (temp
, LT
, op0
, const0_rtx
, mode
, 0, -1);
3836 if (GET_MODE_BITSIZE (mode
) >= BITS_PER_WORD
3837 || shift_cost (optimize_insn_for_speed_p (), mode
, ushift
)
3838 > COSTS_N_INSNS (1))
3839 temp
= expand_binop (mode
, and_optab
, temp
, gen_int_mode (d
- 1, mode
),
3840 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
3842 temp
= expand_shift (RSHIFT_EXPR
, mode
, temp
,
3843 ushift
, NULL_RTX
, 1);
3844 temp
= expand_binop (mode
, add_optab
, temp
, op0
, NULL_RTX
,
3845 0, OPTAB_LIB_WIDEN
);
3846 return expand_shift (RSHIFT_EXPR
, mode
, temp
, logd
, NULL_RTX
, 0);
3849 label
= gen_label_rtx ();
3850 temp
= copy_to_mode_reg (mode
, op0
);
3851 do_cmp_and_jump (temp
, const0_rtx
, GE
, mode
, label
);
3852 expand_inc (temp
, gen_int_mode (d
- 1, mode
));
3854 return expand_shift (RSHIFT_EXPR
, mode
, temp
, logd
, NULL_RTX
, 0);
3857 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
3858 if that is convenient, and returning where the result is.
3859 You may request either the quotient or the remainder as the result;
3860 specify REM_FLAG nonzero to get the remainder.
3862 CODE is the expression code for which kind of division this is;
3863 it controls how rounding is done. MODE is the machine mode to use.
3864 UNSIGNEDP nonzero means do unsigned division. */
3866 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3867 and then correct it by or'ing in missing high bits
3868 if result of ANDI is nonzero.
3869 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3870 This could optimize to a bfexts instruction.
3871 But C doesn't use these operations, so their optimizations are
3873 /* ??? For modulo, we don't actually need the highpart of the first product,
3874 the low part will do nicely. And for small divisors, the second multiply
3875 can also be a low-part only multiply or even be completely left out.
3876 E.g. to calculate the remainder of a division by 3 with a 32 bit
3877 multiply, multiply with 0x55555556 and extract the upper two bits;
3878 the result is exact for inputs up to 0x1fffffff.
3879 The input range can be reduced by using cross-sum rules.
3880 For odd divisors >= 3, the following table gives right shift counts
3881 so that if a number is shifted by an integer multiple of the given
3882 amount, the remainder stays the same:
3883 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3884 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3885 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3886 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3887 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3889 Cross-sum rules for even numbers can be derived by leaving as many bits
3890 to the right alone as the divisor has zeros to the right.
3891 E.g. if x is an unsigned 32 bit number:
3892 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3896 expand_divmod (int rem_flag
, enum tree_code code
, machine_mode mode
,
3897 rtx op0
, rtx op1
, rtx target
, int unsignedp
)
3899 machine_mode compute_mode
;
3901 rtx quotient
= 0, remainder
= 0;
3905 optab optab1
, optab2
;
3906 int op1_is_constant
, op1_is_pow2
= 0;
3907 int max_cost
, extra_cost
;
3908 static HOST_WIDE_INT last_div_const
= 0;
3909 bool speed
= optimize_insn_for_speed_p ();
3911 op1_is_constant
= CONST_INT_P (op1
);
3912 if (op1_is_constant
)
3914 unsigned HOST_WIDE_INT ext_op1
= UINTVAL (op1
);
3916 ext_op1
&= GET_MODE_MASK (mode
);
3917 op1_is_pow2
= ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1
)
3918 || (! unsignedp
&& EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1
))));
3922 This is the structure of expand_divmod:
3924 First comes code to fix up the operands so we can perform the operations
3925 correctly and efficiently.
3927 Second comes a switch statement with code specific for each rounding mode.
3928 For some special operands this code emits all RTL for the desired
3929 operation, for other cases, it generates only a quotient and stores it in
3930 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
3931 to indicate that it has not done anything.
3933 Last comes code that finishes the operation. If QUOTIENT is set and
3934 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
3935 QUOTIENT is not set, it is computed using trunc rounding.
3937 We try to generate special code for division and remainder when OP1 is a
3938 constant. If |OP1| = 2**n we can use shifts and some other fast
3939 operations. For other values of OP1, we compute a carefully selected
3940 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
3943 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
3944 half of the product. Different strategies for generating the product are
3945 implemented in expmed_mult_highpart.
3947 If what we actually want is the remainder, we generate that by another
3948 by-constant multiplication and a subtraction. */
3950 /* We shouldn't be called with OP1 == const1_rtx, but some of the
3951 code below will malfunction if we are, so check here and handle
3952 the special case if so. */
3953 if (op1
== const1_rtx
)
3954 return rem_flag
? const0_rtx
: op0
;
3956 /* When dividing by -1, we could get an overflow.
3957 negv_optab can handle overflows. */
3958 if (! unsignedp
&& op1
== constm1_rtx
)
3962 return expand_unop (mode
, flag_trapv
&& GET_MODE_CLASS (mode
) == MODE_INT
3963 ? negv_optab
: neg_optab
, op0
, target
, 0);
3967 /* Don't use the function value register as a target
3968 since we have to read it as well as write it,
3969 and function-inlining gets confused by this. */
3970 && ((REG_P (target
) && REG_FUNCTION_VALUE_P (target
))
3971 /* Don't clobber an operand while doing a multi-step calculation. */
3972 || ((rem_flag
|| op1_is_constant
)
3973 && (reg_mentioned_p (target
, op0
)
3974 || (MEM_P (op0
) && MEM_P (target
))))
3975 || reg_mentioned_p (target
, op1
)
3976 || (MEM_P (op1
) && MEM_P (target
))))
3979 /* Get the mode in which to perform this computation. Normally it will
3980 be MODE, but sometimes we can't do the desired operation in MODE.
3981 If so, pick a wider mode in which we can do the operation. Convert
3982 to that mode at the start to avoid repeated conversions.
3984 First see what operations we need. These depend on the expression
3985 we are evaluating. (We assume that divxx3 insns exist under the
3986 same conditions that modxx3 insns and that these insns don't normally
3987 fail. If these assumptions are not correct, we may generate less
3988 efficient code in some cases.)
3990 Then see if we find a mode in which we can open-code that operation
3991 (either a division, modulus, or shift). Finally, check for the smallest
3992 mode for which we can do the operation with a library call. */
3994 /* We might want to refine this now that we have division-by-constant
3995 optimization. Since expmed_mult_highpart tries so many variants, it is
3996 not straightforward to generalize this. Maybe we should make an array
3997 of possible modes in init_expmed? Save this for GCC 2.7. */
3999 optab1
= ((op1_is_pow2
&& op1
!= const0_rtx
)
4000 ? (unsignedp
? lshr_optab
: ashr_optab
)
4001 : (unsignedp
? udiv_optab
: sdiv_optab
));
4002 optab2
= ((op1_is_pow2
&& op1
!= const0_rtx
)
4004 : (unsignedp
? udivmod_optab
: sdivmod_optab
));
4006 for (compute_mode
= mode
; compute_mode
!= VOIDmode
;
4007 compute_mode
= GET_MODE_WIDER_MODE (compute_mode
))
4008 if (optab_handler (optab1
, compute_mode
) != CODE_FOR_nothing
4009 || optab_handler (optab2
, compute_mode
) != CODE_FOR_nothing
)
4012 if (compute_mode
== VOIDmode
)
4013 for (compute_mode
= mode
; compute_mode
!= VOIDmode
;
4014 compute_mode
= GET_MODE_WIDER_MODE (compute_mode
))
4015 if (optab_libfunc (optab1
, compute_mode
)
4016 || optab_libfunc (optab2
, compute_mode
))
4019 /* If we still couldn't find a mode, use MODE, but expand_binop will
4021 if (compute_mode
== VOIDmode
)
4022 compute_mode
= mode
;
4024 if (target
&& GET_MODE (target
) == compute_mode
)
4027 tquotient
= gen_reg_rtx (compute_mode
);
4029 size
= GET_MODE_BITSIZE (compute_mode
);
4031 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
4032 (mode), and thereby get better code when OP1 is a constant. Do that
4033 later. It will require going over all usages of SIZE below. */
4034 size
= GET_MODE_BITSIZE (mode
);
4037 /* Only deduct something for a REM if the last divide done was
4038 for a different constant. Then set the constant of the last
4040 max_cost
= (unsignedp
4041 ? udiv_cost (speed
, compute_mode
)
4042 : sdiv_cost (speed
, compute_mode
));
4043 if (rem_flag
&& ! (last_div_const
!= 0 && op1_is_constant
4044 && INTVAL (op1
) == last_div_const
))
4045 max_cost
-= (mul_cost (speed
, compute_mode
)
4046 + add_cost (speed
, compute_mode
));
4048 last_div_const
= ! rem_flag
&& op1_is_constant
? INTVAL (op1
) : 0;
4050 /* Now convert to the best mode to use. */
4051 if (compute_mode
!= mode
)
4053 op0
= convert_modes (compute_mode
, mode
, op0
, unsignedp
);
4054 op1
= convert_modes (compute_mode
, mode
, op1
, unsignedp
);
4056 /* convert_modes may have placed op1 into a register, so we
4057 must recompute the following. */
4058 op1_is_constant
= CONST_INT_P (op1
);
4059 op1_is_pow2
= (op1_is_constant
4060 && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1
))
4062 && EXACT_POWER_OF_2_OR_ZERO_P (-UINTVAL (op1
))))));
4065 /* If one of the operands is a volatile MEM, copy it into a register. */
4067 if (MEM_P (op0
) && MEM_VOLATILE_P (op0
))
4068 op0
= force_reg (compute_mode
, op0
);
4069 if (MEM_P (op1
) && MEM_VOLATILE_P (op1
))
4070 op1
= force_reg (compute_mode
, op1
);
4072 /* If we need the remainder or if OP1 is constant, we need to
4073 put OP0 in a register in case it has any queued subexpressions. */
4074 if (rem_flag
|| op1_is_constant
)
4075 op0
= force_reg (compute_mode
, op0
);
4077 last
= get_last_insn ();
4079 /* Promote floor rounding to trunc rounding for unsigned operations. */
4082 if (code
== FLOOR_DIV_EXPR
)
4083 code
= TRUNC_DIV_EXPR
;
4084 if (code
== FLOOR_MOD_EXPR
)
4085 code
= TRUNC_MOD_EXPR
;
4086 if (code
== EXACT_DIV_EXPR
&& op1_is_pow2
)
4087 code
= TRUNC_DIV_EXPR
;
4090 if (op1
!= const0_rtx
)
4093 case TRUNC_MOD_EXPR
:
4094 case TRUNC_DIV_EXPR
:
4095 if (op1_is_constant
)
4099 unsigned HOST_WIDE_INT mh
, ml
;
4100 int pre_shift
, post_shift
;
4102 unsigned HOST_WIDE_INT d
= (INTVAL (op1
)
4103 & GET_MODE_MASK (compute_mode
));
4105 if (EXACT_POWER_OF_2_OR_ZERO_P (d
))
4107 pre_shift
= floor_log2 (d
);
4110 unsigned HOST_WIDE_INT mask
4111 = ((unsigned HOST_WIDE_INT
) 1 << pre_shift
) - 1;
4113 = expand_binop (compute_mode
, and_optab
, op0
,
4114 gen_int_mode (mask
, compute_mode
),
4118 return gen_lowpart (mode
, remainder
);
4120 quotient
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
4121 pre_shift
, tquotient
, 1);
4123 else if (size
<= HOST_BITS_PER_WIDE_INT
)
4125 if (d
>= ((unsigned HOST_WIDE_INT
) 1 << (size
- 1)))
4127 /* Most significant bit of divisor is set; emit an scc
4129 quotient
= emit_store_flag_force (tquotient
, GEU
, op0
, op1
,
4130 compute_mode
, 1, 1);
4134 /* Find a suitable multiplier and right shift count
4135 instead of multiplying with D. */
4137 mh
= choose_multiplier (d
, size
, size
,
4138 &ml
, &post_shift
, &dummy
);
4140 /* If the suggested multiplier is more than SIZE bits,
4141 we can do better for even divisors, using an
4142 initial right shift. */
4143 if (mh
!= 0 && (d
& 1) == 0)
4145 pre_shift
= floor_log2 (d
& -d
);
4146 mh
= choose_multiplier (d
>> pre_shift
, size
,
4148 &ml
, &post_shift
, &dummy
);
4158 if (post_shift
- 1 >= BITS_PER_WORD
)
4162 = (shift_cost (speed
, compute_mode
, post_shift
- 1)
4163 + shift_cost (speed
, compute_mode
, 1)
4164 + 2 * add_cost (speed
, compute_mode
));
4165 t1
= expmed_mult_highpart
4167 gen_int_mode (ml
, compute_mode
),
4168 NULL_RTX
, 1, max_cost
- extra_cost
);
4171 t2
= force_operand (gen_rtx_MINUS (compute_mode
,
4174 t3
= expand_shift (RSHIFT_EXPR
, compute_mode
,
4175 t2
, 1, NULL_RTX
, 1);
4176 t4
= force_operand (gen_rtx_PLUS (compute_mode
,
4179 quotient
= expand_shift
4180 (RSHIFT_EXPR
, compute_mode
, t4
,
4181 post_shift
- 1, tquotient
, 1);
4187 if (pre_shift
>= BITS_PER_WORD
4188 || post_shift
>= BITS_PER_WORD
)
4192 (RSHIFT_EXPR
, compute_mode
, op0
,
4193 pre_shift
, NULL_RTX
, 1);
4195 = (shift_cost (speed
, compute_mode
, pre_shift
)
4196 + shift_cost (speed
, compute_mode
, post_shift
));
4197 t2
= expmed_mult_highpart
4199 gen_int_mode (ml
, compute_mode
),
4200 NULL_RTX
, 1, max_cost
- extra_cost
);
4203 quotient
= expand_shift
4204 (RSHIFT_EXPR
, compute_mode
, t2
,
4205 post_shift
, tquotient
, 1);
4209 else /* Too wide mode to use tricky code */
4212 insn
= get_last_insn ();
4214 set_dst_reg_note (insn
, REG_EQUAL
,
4215 gen_rtx_UDIV (compute_mode
, op0
, op1
),
4218 else /* TRUNC_DIV, signed */
4220 unsigned HOST_WIDE_INT ml
;
4221 int lgup
, post_shift
;
4223 HOST_WIDE_INT d
= INTVAL (op1
);
4224 unsigned HOST_WIDE_INT abs_d
;
4226 /* Since d might be INT_MIN, we have to cast to
4227 unsigned HOST_WIDE_INT before negating to avoid
4228 undefined signed overflow. */
4230 ? (unsigned HOST_WIDE_INT
) d
4231 : - (unsigned HOST_WIDE_INT
) d
);
4233 /* n rem d = n rem -d */
4234 if (rem_flag
&& d
< 0)
4237 op1
= gen_int_mode (abs_d
, compute_mode
);
4243 quotient
= expand_unop (compute_mode
, neg_optab
, op0
,
4245 else if (HOST_BITS_PER_WIDE_INT
>= size
4246 && abs_d
== (unsigned HOST_WIDE_INT
) 1 << (size
- 1))
4248 /* This case is not handled correctly below. */
4249 quotient
= emit_store_flag (tquotient
, EQ
, op0
, op1
,
4250 compute_mode
, 1, 1);
4254 else if (EXACT_POWER_OF_2_OR_ZERO_P (d
)
4256 ? smod_pow2_cheap (speed
, compute_mode
)
4257 : sdiv_pow2_cheap (speed
, compute_mode
))
4258 /* We assume that cheap metric is true if the
4259 optab has an expander for this mode. */
4260 && ((optab_handler ((rem_flag
? smod_optab
4263 != CODE_FOR_nothing
)
4264 || (optab_handler (sdivmod_optab
,
4266 != CODE_FOR_nothing
)))
4268 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d
))
4272 remainder
= expand_smod_pow2 (compute_mode
, op0
, d
);
4274 return gen_lowpart (mode
, remainder
);
4277 if (sdiv_pow2_cheap (speed
, compute_mode
)
4278 && ((optab_handler (sdiv_optab
, compute_mode
)
4279 != CODE_FOR_nothing
)
4280 || (optab_handler (sdivmod_optab
, compute_mode
)
4281 != CODE_FOR_nothing
)))
4282 quotient
= expand_divmod (0, TRUNC_DIV_EXPR
,
4284 gen_int_mode (abs_d
,
4288 quotient
= expand_sdiv_pow2 (compute_mode
, op0
, abs_d
);
4290 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4291 negate the quotient. */
4294 insn
= get_last_insn ();
4296 && abs_d
< ((unsigned HOST_WIDE_INT
) 1
4297 << (HOST_BITS_PER_WIDE_INT
- 1)))
4298 set_dst_reg_note (insn
, REG_EQUAL
,
4299 gen_rtx_DIV (compute_mode
, op0
,
4305 quotient
= expand_unop (compute_mode
, neg_optab
,
4306 quotient
, quotient
, 0);
4309 else if (size
<= HOST_BITS_PER_WIDE_INT
)
4311 choose_multiplier (abs_d
, size
, size
- 1,
4312 &ml
, &post_shift
, &lgup
);
4313 if (ml
< (unsigned HOST_WIDE_INT
) 1 << (size
- 1))
4317 if (post_shift
>= BITS_PER_WORD
4318 || size
- 1 >= BITS_PER_WORD
)
4321 extra_cost
= (shift_cost (speed
, compute_mode
, post_shift
)
4322 + shift_cost (speed
, compute_mode
, size
- 1)
4323 + add_cost (speed
, compute_mode
));
4324 t1
= expmed_mult_highpart
4325 (compute_mode
, op0
, gen_int_mode (ml
, compute_mode
),
4326 NULL_RTX
, 0, max_cost
- extra_cost
);
4330 (RSHIFT_EXPR
, compute_mode
, t1
,
4331 post_shift
, NULL_RTX
, 0);
4333 (RSHIFT_EXPR
, compute_mode
, op0
,
4334 size
- 1, NULL_RTX
, 0);
4337 = force_operand (gen_rtx_MINUS (compute_mode
,
4342 = force_operand (gen_rtx_MINUS (compute_mode
,
4350 if (post_shift
>= BITS_PER_WORD
4351 || size
- 1 >= BITS_PER_WORD
)
4354 ml
|= (~(unsigned HOST_WIDE_INT
) 0) << (size
- 1);
4355 mlr
= gen_int_mode (ml
, compute_mode
);
4356 extra_cost
= (shift_cost (speed
, compute_mode
, post_shift
)
4357 + shift_cost (speed
, compute_mode
, size
- 1)
4358 + 2 * add_cost (speed
, compute_mode
));
4359 t1
= expmed_mult_highpart (compute_mode
, op0
, mlr
,
4361 max_cost
- extra_cost
);
4364 t2
= force_operand (gen_rtx_PLUS (compute_mode
,
4368 (RSHIFT_EXPR
, compute_mode
, t2
,
4369 post_shift
, NULL_RTX
, 0);
4371 (RSHIFT_EXPR
, compute_mode
, op0
,
4372 size
- 1, NULL_RTX
, 0);
4375 = force_operand (gen_rtx_MINUS (compute_mode
,
4380 = force_operand (gen_rtx_MINUS (compute_mode
,
4385 else /* Too wide mode to use tricky code */
4388 insn
= get_last_insn ();
4390 set_dst_reg_note (insn
, REG_EQUAL
,
4391 gen_rtx_DIV (compute_mode
, op0
, op1
),
4397 delete_insns_since (last
);
4400 case FLOOR_DIV_EXPR
:
4401 case FLOOR_MOD_EXPR
:
4402 /* We will come here only for signed operations. */
4403 if (op1_is_constant
&& HOST_BITS_PER_WIDE_INT
>= size
)
4405 unsigned HOST_WIDE_INT mh
, ml
;
4406 int pre_shift
, lgup
, post_shift
;
4407 HOST_WIDE_INT d
= INTVAL (op1
);
4411 /* We could just as easily deal with negative constants here,
4412 but it does not seem worth the trouble for GCC 2.6. */
4413 if (EXACT_POWER_OF_2_OR_ZERO_P (d
))
4415 pre_shift
= floor_log2 (d
);
4418 unsigned HOST_WIDE_INT mask
4419 = ((unsigned HOST_WIDE_INT
) 1 << pre_shift
) - 1;
4420 remainder
= expand_binop
4421 (compute_mode
, and_optab
, op0
,
4422 gen_int_mode (mask
, compute_mode
),
4423 remainder
, 0, OPTAB_LIB_WIDEN
);
4425 return gen_lowpart (mode
, remainder
);
4427 quotient
= expand_shift
4428 (RSHIFT_EXPR
, compute_mode
, op0
,
4429 pre_shift
, tquotient
, 0);
4435 mh
= choose_multiplier (d
, size
, size
- 1,
4436 &ml
, &post_shift
, &lgup
);
4439 if (post_shift
< BITS_PER_WORD
4440 && size
- 1 < BITS_PER_WORD
)
4443 (RSHIFT_EXPR
, compute_mode
, op0
,
4444 size
- 1, NULL_RTX
, 0);
4445 t2
= expand_binop (compute_mode
, xor_optab
, op0
, t1
,
4446 NULL_RTX
, 0, OPTAB_WIDEN
);
4447 extra_cost
= (shift_cost (speed
, compute_mode
, post_shift
)
4448 + shift_cost (speed
, compute_mode
, size
- 1)
4449 + 2 * add_cost (speed
, compute_mode
));
4450 t3
= expmed_mult_highpart
4451 (compute_mode
, t2
, gen_int_mode (ml
, compute_mode
),
4452 NULL_RTX
, 1, max_cost
- extra_cost
);
4456 (RSHIFT_EXPR
, compute_mode
, t3
,
4457 post_shift
, NULL_RTX
, 1);
4458 quotient
= expand_binop (compute_mode
, xor_optab
,
4459 t4
, t1
, tquotient
, 0,
4467 rtx nsign
, t1
, t2
, t3
, t4
;
4468 t1
= force_operand (gen_rtx_PLUS (compute_mode
,
4469 op0
, constm1_rtx
), NULL_RTX
);
4470 t2
= expand_binop (compute_mode
, ior_optab
, op0
, t1
, NULL_RTX
,
4472 nsign
= expand_shift
4473 (RSHIFT_EXPR
, compute_mode
, t2
,
4474 size
- 1, NULL_RTX
, 0);
4475 t3
= force_operand (gen_rtx_MINUS (compute_mode
, t1
, nsign
),
4477 t4
= expand_divmod (0, TRUNC_DIV_EXPR
, compute_mode
, t3
, op1
,
4482 t5
= expand_unop (compute_mode
, one_cmpl_optab
, nsign
,
4484 quotient
= force_operand (gen_rtx_PLUS (compute_mode
,
4493 delete_insns_since (last
);
4495 /* Try using an instruction that produces both the quotient and
4496 remainder, using truncation. We can easily compensate the quotient
4497 or remainder to get floor rounding, once we have the remainder.
4498 Notice that we compute also the final remainder value here,
4499 and return the result right away. */
4500 if (target
== 0 || GET_MODE (target
) != compute_mode
)
4501 target
= gen_reg_rtx (compute_mode
);
4506 = REG_P (target
) ? target
: gen_reg_rtx (compute_mode
);
4507 quotient
= gen_reg_rtx (compute_mode
);
4512 = REG_P (target
) ? target
: gen_reg_rtx (compute_mode
);
4513 remainder
= gen_reg_rtx (compute_mode
);
4516 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
,
4517 quotient
, remainder
, 0))
4519 /* This could be computed with a branch-less sequence.
4520 Save that for later. */
4522 rtx_code_label
*label
= gen_label_rtx ();
4523 do_cmp_and_jump (remainder
, const0_rtx
, EQ
, compute_mode
, label
);
4524 tem
= expand_binop (compute_mode
, xor_optab
, op0
, op1
,
4525 NULL_RTX
, 0, OPTAB_WIDEN
);
4526 do_cmp_and_jump (tem
, const0_rtx
, GE
, compute_mode
, label
);
4527 expand_dec (quotient
, const1_rtx
);
4528 expand_inc (remainder
, op1
);
4530 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4533 /* No luck with division elimination or divmod. Have to do it
4534 by conditionally adjusting op0 *and* the result. */
4536 rtx_code_label
*label1
, *label2
, *label3
, *label4
, *label5
;
4540 quotient
= gen_reg_rtx (compute_mode
);
4541 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
4542 label1
= gen_label_rtx ();
4543 label2
= gen_label_rtx ();
4544 label3
= gen_label_rtx ();
4545 label4
= gen_label_rtx ();
4546 label5
= gen_label_rtx ();
4547 do_cmp_and_jump (op1
, const0_rtx
, LT
, compute_mode
, label2
);
4548 do_cmp_and_jump (adjusted_op0
, const0_rtx
, LT
, compute_mode
, label1
);
4549 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4550 quotient
, 0, OPTAB_LIB_WIDEN
);
4551 if (tem
!= quotient
)
4552 emit_move_insn (quotient
, tem
);
4553 emit_jump_insn (gen_jump (label5
));
4555 emit_label (label1
);
4556 expand_inc (adjusted_op0
, const1_rtx
);
4557 emit_jump_insn (gen_jump (label4
));
4559 emit_label (label2
);
4560 do_cmp_and_jump (adjusted_op0
, const0_rtx
, GT
, compute_mode
, label3
);
4561 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4562 quotient
, 0, OPTAB_LIB_WIDEN
);
4563 if (tem
!= quotient
)
4564 emit_move_insn (quotient
, tem
);
4565 emit_jump_insn (gen_jump (label5
));
4567 emit_label (label3
);
4568 expand_dec (adjusted_op0
, const1_rtx
);
4569 emit_label (label4
);
4570 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4571 quotient
, 0, OPTAB_LIB_WIDEN
);
4572 if (tem
!= quotient
)
4573 emit_move_insn (quotient
, tem
);
4574 expand_dec (quotient
, const1_rtx
);
4575 emit_label (label5
);
4583 if (op1_is_constant
&& EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1
)))
4586 unsigned HOST_WIDE_INT d
= INTVAL (op1
);
4587 t1
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
4588 floor_log2 (d
), tquotient
, 1);
4589 t2
= expand_binop (compute_mode
, and_optab
, op0
,
4590 gen_int_mode (d
- 1, compute_mode
),
4591 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4592 t3
= gen_reg_rtx (compute_mode
);
4593 t3
= emit_store_flag (t3
, NE
, t2
, const0_rtx
,
4594 compute_mode
, 1, 1);
4597 rtx_code_label
*lab
;
4598 lab
= gen_label_rtx ();
4599 do_cmp_and_jump (t2
, const0_rtx
, EQ
, compute_mode
, lab
);
4600 expand_inc (t1
, const1_rtx
);
4605 quotient
= force_operand (gen_rtx_PLUS (compute_mode
,
4611 /* Try using an instruction that produces both the quotient and
4612 remainder, using truncation. We can easily compensate the
4613 quotient or remainder to get ceiling rounding, once we have the
4614 remainder. Notice that we compute also the final remainder
4615 value here, and return the result right away. */
4616 if (target
== 0 || GET_MODE (target
) != compute_mode
)
4617 target
= gen_reg_rtx (compute_mode
);
4621 remainder
= (REG_P (target
)
4622 ? target
: gen_reg_rtx (compute_mode
));
4623 quotient
= gen_reg_rtx (compute_mode
);
4627 quotient
= (REG_P (target
)
4628 ? target
: gen_reg_rtx (compute_mode
));
4629 remainder
= gen_reg_rtx (compute_mode
);
4632 if (expand_twoval_binop (udivmod_optab
, op0
, op1
, quotient
,
4635 /* This could be computed with a branch-less sequence.
4636 Save that for later. */
4637 rtx_code_label
*label
= gen_label_rtx ();
4638 do_cmp_and_jump (remainder
, const0_rtx
, EQ
,
4639 compute_mode
, label
);
4640 expand_inc (quotient
, const1_rtx
);
4641 expand_dec (remainder
, op1
);
4643 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4646 /* No luck with division elimination or divmod. Have to do it
4647 by conditionally adjusting op0 *and* the result. */
4649 rtx_code_label
*label1
, *label2
;
4650 rtx adjusted_op0
, tem
;
4652 quotient
= gen_reg_rtx (compute_mode
);
4653 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
4654 label1
= gen_label_rtx ();
4655 label2
= gen_label_rtx ();
4656 do_cmp_and_jump (adjusted_op0
, const0_rtx
, NE
,
4657 compute_mode
, label1
);
4658 emit_move_insn (quotient
, const0_rtx
);
4659 emit_jump_insn (gen_jump (label2
));
4661 emit_label (label1
);
4662 expand_dec (adjusted_op0
, const1_rtx
);
4663 tem
= expand_binop (compute_mode
, udiv_optab
, adjusted_op0
, op1
,
4664 quotient
, 1, OPTAB_LIB_WIDEN
);
4665 if (tem
!= quotient
)
4666 emit_move_insn (quotient
, tem
);
4667 expand_inc (quotient
, const1_rtx
);
4668 emit_label (label2
);
4673 if (op1_is_constant
&& EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1
))
4674 && INTVAL (op1
) >= 0)
4676 /* This is extremely similar to the code for the unsigned case
4677 above. For 2.7 we should merge these variants, but for
4678 2.6.1 I don't want to touch the code for unsigned since that
4679 get used in C. The signed case will only be used by other
4683 unsigned HOST_WIDE_INT d
= INTVAL (op1
);
4684 t1
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
4685 floor_log2 (d
), tquotient
, 0);
4686 t2
= expand_binop (compute_mode
, and_optab
, op0
,
4687 gen_int_mode (d
- 1, compute_mode
),
4688 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4689 t3
= gen_reg_rtx (compute_mode
);
4690 t3
= emit_store_flag (t3
, NE
, t2
, const0_rtx
,
4691 compute_mode
, 1, 1);
4694 rtx_code_label
*lab
;
4695 lab
= gen_label_rtx ();
4696 do_cmp_and_jump (t2
, const0_rtx
, EQ
, compute_mode
, lab
);
4697 expand_inc (t1
, const1_rtx
);
4702 quotient
= force_operand (gen_rtx_PLUS (compute_mode
,
4708 /* Try using an instruction that produces both the quotient and
4709 remainder, using truncation. We can easily compensate the
4710 quotient or remainder to get ceiling rounding, once we have the
4711 remainder. Notice that we compute also the final remainder
4712 value here, and return the result right away. */
4713 if (target
== 0 || GET_MODE (target
) != compute_mode
)
4714 target
= gen_reg_rtx (compute_mode
);
4717 remainder
= (REG_P (target
)
4718 ? target
: gen_reg_rtx (compute_mode
));
4719 quotient
= gen_reg_rtx (compute_mode
);
4723 quotient
= (REG_P (target
)
4724 ? target
: gen_reg_rtx (compute_mode
));
4725 remainder
= gen_reg_rtx (compute_mode
);
4728 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
, quotient
,
4731 /* This could be computed with a branch-less sequence.
4732 Save that for later. */
4734 rtx_code_label
*label
= gen_label_rtx ();
4735 do_cmp_and_jump (remainder
, const0_rtx
, EQ
,
4736 compute_mode
, label
);
4737 tem
= expand_binop (compute_mode
, xor_optab
, op0
, op1
,
4738 NULL_RTX
, 0, OPTAB_WIDEN
);
4739 do_cmp_and_jump (tem
, const0_rtx
, LT
, compute_mode
, label
);
4740 expand_inc (quotient
, const1_rtx
);
4741 expand_dec (remainder
, op1
);
4743 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4746 /* No luck with division elimination or divmod. Have to do it
4747 by conditionally adjusting op0 *and* the result. */
4749 rtx_code_label
*label1
, *label2
, *label3
, *label4
, *label5
;
4753 quotient
= gen_reg_rtx (compute_mode
);
4754 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
4755 label1
= gen_label_rtx ();
4756 label2
= gen_label_rtx ();
4757 label3
= gen_label_rtx ();
4758 label4
= gen_label_rtx ();
4759 label5
= gen_label_rtx ();
4760 do_cmp_and_jump (op1
, const0_rtx
, LT
, compute_mode
, label2
);
4761 do_cmp_and_jump (adjusted_op0
, const0_rtx
, GT
,
4762 compute_mode
, label1
);
4763 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4764 quotient
, 0, OPTAB_LIB_WIDEN
);
4765 if (tem
!= quotient
)
4766 emit_move_insn (quotient
, tem
);
4767 emit_jump_insn (gen_jump (label5
));
4769 emit_label (label1
);
4770 expand_dec (adjusted_op0
, const1_rtx
);
4771 emit_jump_insn (gen_jump (label4
));
4773 emit_label (label2
);
4774 do_cmp_and_jump (adjusted_op0
, const0_rtx
, LT
,
4775 compute_mode
, label3
);
4776 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4777 quotient
, 0, OPTAB_LIB_WIDEN
);
4778 if (tem
!= quotient
)
4779 emit_move_insn (quotient
, tem
);
4780 emit_jump_insn (gen_jump (label5
));
4782 emit_label (label3
);
4783 expand_inc (adjusted_op0
, const1_rtx
);
4784 emit_label (label4
);
4785 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4786 quotient
, 0, OPTAB_LIB_WIDEN
);
4787 if (tem
!= quotient
)
4788 emit_move_insn (quotient
, tem
);
4789 expand_inc (quotient
, const1_rtx
);
4790 emit_label (label5
);
4795 case EXACT_DIV_EXPR
:
4796 if (op1_is_constant
&& HOST_BITS_PER_WIDE_INT
>= size
)
4798 HOST_WIDE_INT d
= INTVAL (op1
);
4799 unsigned HOST_WIDE_INT ml
;
4803 pre_shift
= floor_log2 (d
& -d
);
4804 ml
= invert_mod2n (d
>> pre_shift
, size
);
4805 t1
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
4806 pre_shift
, NULL_RTX
, unsignedp
);
4807 quotient
= expand_mult (compute_mode
, t1
,
4808 gen_int_mode (ml
, compute_mode
),
4811 insn
= get_last_insn ();
4812 set_dst_reg_note (insn
, REG_EQUAL
,
4813 gen_rtx_fmt_ee (unsignedp
? UDIV
: DIV
,
4814 compute_mode
, op0
, op1
),
4819 case ROUND_DIV_EXPR
:
4820 case ROUND_MOD_EXPR
:
4824 rtx_code_label
*label
;
4825 label
= gen_label_rtx ();
4826 quotient
= gen_reg_rtx (compute_mode
);
4827 remainder
= gen_reg_rtx (compute_mode
);
4828 if (expand_twoval_binop (udivmod_optab
, op0
, op1
, quotient
, remainder
, 1) == 0)
4831 quotient
= expand_binop (compute_mode
, udiv_optab
, op0
, op1
,
4832 quotient
, 1, OPTAB_LIB_WIDEN
);
4833 tem
= expand_mult (compute_mode
, quotient
, op1
, NULL_RTX
, 1);
4834 remainder
= expand_binop (compute_mode
, sub_optab
, op0
, tem
,
4835 remainder
, 1, OPTAB_LIB_WIDEN
);
4837 tem
= plus_constant (compute_mode
, op1
, -1);
4838 tem
= expand_shift (RSHIFT_EXPR
, compute_mode
, tem
, 1, NULL_RTX
, 1);
4839 do_cmp_and_jump (remainder
, tem
, LEU
, compute_mode
, label
);
4840 expand_inc (quotient
, const1_rtx
);
4841 expand_dec (remainder
, op1
);
4846 rtx abs_rem
, abs_op1
, tem
, mask
;
4847 rtx_code_label
*label
;
4848 label
= gen_label_rtx ();
4849 quotient
= gen_reg_rtx (compute_mode
);
4850 remainder
= gen_reg_rtx (compute_mode
);
4851 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
, quotient
, remainder
, 0) == 0)
4854 quotient
= expand_binop (compute_mode
, sdiv_optab
, op0
, op1
,
4855 quotient
, 0, OPTAB_LIB_WIDEN
);
4856 tem
= expand_mult (compute_mode
, quotient
, op1
, NULL_RTX
, 0);
4857 remainder
= expand_binop (compute_mode
, sub_optab
, op0
, tem
,
4858 remainder
, 0, OPTAB_LIB_WIDEN
);
4860 abs_rem
= expand_abs (compute_mode
, remainder
, NULL_RTX
, 1, 0);
4861 abs_op1
= expand_abs (compute_mode
, op1
, NULL_RTX
, 1, 0);
4862 tem
= expand_shift (LSHIFT_EXPR
, compute_mode
, abs_rem
,
4864 do_cmp_and_jump (tem
, abs_op1
, LTU
, compute_mode
, label
);
4865 tem
= expand_binop (compute_mode
, xor_optab
, op0
, op1
,
4866 NULL_RTX
, 0, OPTAB_WIDEN
);
4867 mask
= expand_shift (RSHIFT_EXPR
, compute_mode
, tem
,
4868 size
- 1, NULL_RTX
, 0);
4869 tem
= expand_binop (compute_mode
, xor_optab
, mask
, const1_rtx
,
4870 NULL_RTX
, 0, OPTAB_WIDEN
);
4871 tem
= expand_binop (compute_mode
, sub_optab
, tem
, mask
,
4872 NULL_RTX
, 0, OPTAB_WIDEN
);
4873 expand_inc (quotient
, tem
);
4874 tem
= expand_binop (compute_mode
, xor_optab
, mask
, op1
,
4875 NULL_RTX
, 0, OPTAB_WIDEN
);
4876 tem
= expand_binop (compute_mode
, sub_optab
, tem
, mask
,
4877 NULL_RTX
, 0, OPTAB_WIDEN
);
4878 expand_dec (remainder
, tem
);
4881 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4889 if (target
&& GET_MODE (target
) != compute_mode
)
4894 /* Try to produce the remainder without producing the quotient.
4895 If we seem to have a divmod pattern that does not require widening,
4896 don't try widening here. We should really have a WIDEN argument
4897 to expand_twoval_binop, since what we'd really like to do here is
4898 1) try a mod insn in compute_mode
4899 2) try a divmod insn in compute_mode
4900 3) try a div insn in compute_mode and multiply-subtract to get
4902 4) try the same things with widening allowed. */
4904 = sign_expand_binop (compute_mode
, umod_optab
, smod_optab
,
4907 ((optab_handler (optab2
, compute_mode
)
4908 != CODE_FOR_nothing
)
4909 ? OPTAB_DIRECT
: OPTAB_WIDEN
));
4912 /* No luck there. Can we do remainder and divide at once
4913 without a library call? */
4914 remainder
= gen_reg_rtx (compute_mode
);
4915 if (! expand_twoval_binop ((unsignedp
4919 NULL_RTX
, remainder
, unsignedp
))
4924 return gen_lowpart (mode
, remainder
);
4927 /* Produce the quotient. Try a quotient insn, but not a library call.
4928 If we have a divmod in this mode, use it in preference to widening
4929 the div (for this test we assume it will not fail). Note that optab2
4930 is set to the one of the two optabs that the call below will use. */
4932 = sign_expand_binop (compute_mode
, udiv_optab
, sdiv_optab
,
4933 op0
, op1
, rem_flag
? NULL_RTX
: target
,
4935 ((optab_handler (optab2
, compute_mode
)
4936 != CODE_FOR_nothing
)
4937 ? OPTAB_DIRECT
: OPTAB_WIDEN
));
4941 /* No luck there. Try a quotient-and-remainder insn,
4942 keeping the quotient alone. */
4943 quotient
= gen_reg_rtx (compute_mode
);
4944 if (! expand_twoval_binop (unsignedp
? udivmod_optab
: sdivmod_optab
,
4946 quotient
, NULL_RTX
, unsignedp
))
4950 /* Still no luck. If we are not computing the remainder,
4951 use a library call for the quotient. */
4952 quotient
= sign_expand_binop (compute_mode
,
4953 udiv_optab
, sdiv_optab
,
4955 unsignedp
, OPTAB_LIB_WIDEN
);
4962 if (target
&& GET_MODE (target
) != compute_mode
)
4967 /* No divide instruction either. Use library for remainder. */
4968 remainder
= sign_expand_binop (compute_mode
, umod_optab
, smod_optab
,
4970 unsignedp
, OPTAB_LIB_WIDEN
);
4971 /* No remainder function. Try a quotient-and-remainder
4972 function, keeping the remainder. */
4975 remainder
= gen_reg_rtx (compute_mode
);
4976 if (!expand_twoval_binop_libfunc
4977 (unsignedp
? udivmod_optab
: sdivmod_optab
,
4979 NULL_RTX
, remainder
,
4980 unsignedp
? UMOD
: MOD
))
4981 remainder
= NULL_RTX
;
4986 /* We divided. Now finish doing X - Y * (X / Y). */
4987 remainder
= expand_mult (compute_mode
, quotient
, op1
,
4988 NULL_RTX
, unsignedp
);
4989 remainder
= expand_binop (compute_mode
, sub_optab
, op0
,
4990 remainder
, target
, unsignedp
,
4995 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4998 /* Return a tree node with data type TYPE, describing the value of X.
4999 Usually this is an VAR_DECL, if there is no obvious better choice.
5000 X may be an expression, however we only support those expressions
5001 generated by loop.c. */
5004 make_tree (tree type
, rtx x
)
5008 switch (GET_CODE (x
))
5011 case CONST_WIDE_INT
:
5012 t
= wide_int_to_tree (type
, std::make_pair (x
, TYPE_MODE (type
)));
5016 STATIC_ASSERT (HOST_BITS_PER_WIDE_INT
* 2 <= MAX_BITSIZE_MODE_ANY_INT
);
5017 if (TARGET_SUPPORTS_WIDE_INT
== 0 && GET_MODE (x
) == VOIDmode
)
5018 t
= wide_int_to_tree (type
,
5019 wide_int::from_array (&CONST_DOUBLE_LOW (x
), 2,
5020 HOST_BITS_PER_WIDE_INT
* 2));
5025 REAL_VALUE_FROM_CONST_DOUBLE (d
, x
);
5026 t
= build_real (type
, d
);
5033 int units
= CONST_VECTOR_NUNITS (x
);
5034 tree itype
= TREE_TYPE (type
);
5038 /* Build a tree with vector elements. */
5039 elts
= XALLOCAVEC (tree
, units
);
5040 for (i
= units
- 1; i
>= 0; --i
)
5042 rtx elt
= CONST_VECTOR_ELT (x
, i
);
5043 elts
[i
] = make_tree (itype
, elt
);
5046 return build_vector (type
, elts
);
5050 return fold_build2 (PLUS_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
5051 make_tree (type
, XEXP (x
, 1)));
5054 return fold_build2 (MINUS_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
5055 make_tree (type
, XEXP (x
, 1)));
5058 return fold_build1 (NEGATE_EXPR
, type
, make_tree (type
, XEXP (x
, 0)));
5061 return fold_build2 (MULT_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
5062 make_tree (type
, XEXP (x
, 1)));
5065 return fold_build2 (LSHIFT_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
5066 make_tree (type
, XEXP (x
, 1)));
5069 t
= unsigned_type_for (type
);
5070 return fold_convert (type
, build2 (RSHIFT_EXPR
, t
,
5071 make_tree (t
, XEXP (x
, 0)),
5072 make_tree (type
, XEXP (x
, 1))));
5075 t
= signed_type_for (type
);
5076 return fold_convert (type
, build2 (RSHIFT_EXPR
, t
,
5077 make_tree (t
, XEXP (x
, 0)),
5078 make_tree (type
, XEXP (x
, 1))));
5081 if (TREE_CODE (type
) != REAL_TYPE
)
5082 t
= signed_type_for (type
);
5086 return fold_convert (type
, build2 (TRUNC_DIV_EXPR
, t
,
5087 make_tree (t
, XEXP (x
, 0)),
5088 make_tree (t
, XEXP (x
, 1))));
5090 t
= unsigned_type_for (type
);
5091 return fold_convert (type
, build2 (TRUNC_DIV_EXPR
, t
,
5092 make_tree (t
, XEXP (x
, 0)),
5093 make_tree (t
, XEXP (x
, 1))));
5097 t
= lang_hooks
.types
.type_for_mode (GET_MODE (XEXP (x
, 0)),
5098 GET_CODE (x
) == ZERO_EXTEND
);
5099 return fold_convert (type
, make_tree (t
, XEXP (x
, 0)));
5102 return make_tree (type
, XEXP (x
, 0));
5105 t
= SYMBOL_REF_DECL (x
);
5107 return fold_convert (type
, build_fold_addr_expr (t
));
5108 /* else fall through. */
5111 t
= build_decl (RTL_LOCATION (x
), VAR_DECL
, NULL_TREE
, type
);
5113 /* If TYPE is a POINTER_TYPE, we might need to convert X from
5114 address mode to pointer mode. */
5115 if (POINTER_TYPE_P (type
))
5116 x
= convert_memory_address_addr_space
5117 (TYPE_MODE (type
), x
, TYPE_ADDR_SPACE (TREE_TYPE (type
)));
5119 /* Note that we do *not* use SET_DECL_RTL here, because we do not
5120 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
5121 t
->decl_with_rtl
.rtl
= x
;
5127 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
5128 and returning TARGET.
5130 If TARGET is 0, a pseudo-register or constant is returned. */
5133 expand_and (machine_mode mode
, rtx op0
, rtx op1
, rtx target
)
5137 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
5138 tem
= simplify_binary_operation (AND
, mode
, op0
, op1
);
5140 tem
= expand_binop (mode
, and_optab
, op0
, op1
, target
, 0, OPTAB_LIB_WIDEN
);
5144 else if (tem
!= target
)
5145 emit_move_insn (target
, tem
);
5149 /* Helper function for emit_store_flag. */
5151 emit_cstore (rtx target
, enum insn_code icode
, enum rtx_code code
,
5152 machine_mode mode
, machine_mode compare_mode
,
5153 int unsignedp
, rtx x
, rtx y
, int normalizep
,
5154 machine_mode target_mode
)
5156 struct expand_operand ops
[4];
5157 rtx op0
, comparison
, subtarget
;
5159 machine_mode result_mode
= targetm
.cstore_mode (icode
);
5161 last
= get_last_insn ();
5162 x
= prepare_operand (icode
, x
, 2, mode
, compare_mode
, unsignedp
);
5163 y
= prepare_operand (icode
, y
, 3, mode
, compare_mode
, unsignedp
);
5166 delete_insns_since (last
);
5170 if (target_mode
== VOIDmode
)
5171 target_mode
= result_mode
;
5173 target
= gen_reg_rtx (target_mode
);
5175 comparison
= gen_rtx_fmt_ee (code
, result_mode
, x
, y
);
5177 create_output_operand (&ops
[0], optimize
? NULL_RTX
: target
, result_mode
);
5178 create_fixed_operand (&ops
[1], comparison
);
5179 create_fixed_operand (&ops
[2], x
);
5180 create_fixed_operand (&ops
[3], y
);
5181 if (!maybe_expand_insn (icode
, 4, ops
))
5183 delete_insns_since (last
);
5186 subtarget
= ops
[0].value
;
5188 /* If we are converting to a wider mode, first convert to
5189 TARGET_MODE, then normalize. This produces better combining
5190 opportunities on machines that have a SIGN_EXTRACT when we are
5191 testing a single bit. This mostly benefits the 68k.
5193 If STORE_FLAG_VALUE does not have the sign bit set when
5194 interpreted in MODE, we can do this conversion as unsigned, which
5195 is usually more efficient. */
5196 if (GET_MODE_SIZE (target_mode
) > GET_MODE_SIZE (result_mode
))
5198 convert_move (target
, subtarget
,
5199 val_signbit_known_clear_p (result_mode
,
5202 result_mode
= target_mode
;
5207 /* If we want to keep subexpressions around, don't reuse our last
5212 /* Now normalize to the proper value in MODE. Sometimes we don't
5213 have to do anything. */
5214 if (normalizep
== 0 || normalizep
== STORE_FLAG_VALUE
)
5216 /* STORE_FLAG_VALUE might be the most negative number, so write
5217 the comparison this way to avoid a compiler-time warning. */
5218 else if (- normalizep
== STORE_FLAG_VALUE
)
5219 op0
= expand_unop (result_mode
, neg_optab
, op0
, subtarget
, 0);
5221 /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
5222 it hard to use a value of just the sign bit due to ANSI integer
5223 constant typing rules. */
5224 else if (val_signbit_known_set_p (result_mode
, STORE_FLAG_VALUE
))
5225 op0
= expand_shift (RSHIFT_EXPR
, result_mode
, op0
,
5226 GET_MODE_BITSIZE (result_mode
) - 1, subtarget
,
5230 gcc_assert (STORE_FLAG_VALUE
& 1);
5232 op0
= expand_and (result_mode
, op0
, const1_rtx
, subtarget
);
5233 if (normalizep
== -1)
5234 op0
= expand_unop (result_mode
, neg_optab
, op0
, op0
, 0);
5237 /* If we were converting to a smaller mode, do the conversion now. */
5238 if (target_mode
!= result_mode
)
5240 convert_move (target
, op0
, 0);
5248 /* A subroutine of emit_store_flag only including "tricks" that do not
5249 need a recursive call. These are kept separate to avoid infinite
5253 emit_store_flag_1 (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
5254 machine_mode mode
, int unsignedp
, int normalizep
,
5255 machine_mode target_mode
)
5258 enum insn_code icode
;
5259 machine_mode compare_mode
;
5260 enum mode_class mclass
;
5261 enum rtx_code scode
;
5264 code
= unsigned_condition (code
);
5265 scode
= swap_condition (code
);
5267 /* If one operand is constant, make it the second one. Only do this
5268 if the other operand is not constant as well. */
5270 if (swap_commutative_operands_p (op0
, op1
))
5272 std::swap (op0
, op1
);
5273 code
= swap_condition (code
);
5276 if (mode
== VOIDmode
)
5277 mode
= GET_MODE (op0
);
5279 /* For some comparisons with 1 and -1, we can convert this to
5280 comparisons with zero. This will often produce more opportunities for
5281 store-flag insns. */
5286 if (op1
== const1_rtx
)
5287 op1
= const0_rtx
, code
= LE
;
5290 if (op1
== constm1_rtx
)
5291 op1
= const0_rtx
, code
= LT
;
5294 if (op1
== const1_rtx
)
5295 op1
= const0_rtx
, code
= GT
;
5298 if (op1
== constm1_rtx
)
5299 op1
= const0_rtx
, code
= GE
;
5302 if (op1
== const1_rtx
)
5303 op1
= const0_rtx
, code
= NE
;
5306 if (op1
== const1_rtx
)
5307 op1
= const0_rtx
, code
= EQ
;
5313 /* If we are comparing a double-word integer with zero or -1, we can
5314 convert the comparison into one involving a single word. */
5315 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
* 2
5316 && GET_MODE_CLASS (mode
) == MODE_INT
5317 && (!MEM_P (op0
) || ! MEM_VOLATILE_P (op0
)))
5320 if ((code
== EQ
|| code
== NE
)
5321 && (op1
== const0_rtx
|| op1
== constm1_rtx
))
5325 /* Do a logical OR or AND of the two words and compare the
5327 op00
= simplify_gen_subreg (word_mode
, op0
, mode
, 0);
5328 op01
= simplify_gen_subreg (word_mode
, op0
, mode
, UNITS_PER_WORD
);
5329 tem
= expand_binop (word_mode
,
5330 op1
== const0_rtx
? ior_optab
: and_optab
,
5331 op00
, op01
, NULL_RTX
, unsignedp
,
5335 tem
= emit_store_flag (NULL_RTX
, code
, tem
, op1
, word_mode
,
5336 unsignedp
, normalizep
);
5338 else if ((code
== LT
|| code
== GE
) && op1
== const0_rtx
)
5342 /* If testing the sign bit, can just test on high word. */
5343 op0h
= simplify_gen_subreg (word_mode
, op0
, mode
,
5344 subreg_highpart_offset (word_mode
,
5346 tem
= emit_store_flag (NULL_RTX
, code
, op0h
, op1
, word_mode
,
5347 unsignedp
, normalizep
);
5354 if (target_mode
== VOIDmode
|| GET_MODE (tem
) == target_mode
)
5357 target
= gen_reg_rtx (target_mode
);
5359 convert_move (target
, tem
,
5360 !val_signbit_known_set_p (word_mode
,
5361 (normalizep
? normalizep
5362 : STORE_FLAG_VALUE
)));
5367 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5368 complement of A (for GE) and shifting the sign bit to the low bit. */
5369 if (op1
== const0_rtx
&& (code
== LT
|| code
== GE
)
5370 && GET_MODE_CLASS (mode
) == MODE_INT
5371 && (normalizep
|| STORE_FLAG_VALUE
== 1
5372 || val_signbit_p (mode
, STORE_FLAG_VALUE
)))
5379 /* If the result is to be wider than OP0, it is best to convert it
5380 first. If it is to be narrower, it is *incorrect* to convert it
5382 else if (GET_MODE_SIZE (target_mode
) > GET_MODE_SIZE (mode
))
5384 op0
= convert_modes (target_mode
, mode
, op0
, 0);
5388 if (target_mode
!= mode
)
5392 op0
= expand_unop (mode
, one_cmpl_optab
, op0
,
5393 ((STORE_FLAG_VALUE
== 1 || normalizep
)
5394 ? 0 : subtarget
), 0);
5396 if (STORE_FLAG_VALUE
== 1 || normalizep
)
5397 /* If we are supposed to produce a 0/1 value, we want to do
5398 a logical shift from the sign bit to the low-order bit; for
5399 a -1/0 value, we do an arithmetic shift. */
5400 op0
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
5401 GET_MODE_BITSIZE (mode
) - 1,
5402 subtarget
, normalizep
!= -1);
5404 if (mode
!= target_mode
)
5405 op0
= convert_modes (target_mode
, mode
, op0
, 0);
5410 mclass
= GET_MODE_CLASS (mode
);
5411 for (compare_mode
= mode
; compare_mode
!= VOIDmode
;
5412 compare_mode
= GET_MODE_WIDER_MODE (compare_mode
))
5414 machine_mode optab_mode
= mclass
== MODE_CC
? CCmode
: compare_mode
;
5415 icode
= optab_handler (cstore_optab
, optab_mode
);
5416 if (icode
!= CODE_FOR_nothing
)
5418 do_pending_stack_adjust ();
5419 rtx tem
= emit_cstore (target
, icode
, code
, mode
, compare_mode
,
5420 unsignedp
, op0
, op1
, normalizep
, target_mode
);
5424 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
5426 tem
= emit_cstore (target
, icode
, scode
, mode
, compare_mode
,
5427 unsignedp
, op1
, op0
, normalizep
, target_mode
);
5438 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5439 and storing in TARGET. Normally return TARGET.
5440 Return 0 if that cannot be done.
5442 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5443 it is VOIDmode, they cannot both be CONST_INT.
5445 UNSIGNEDP is for the case where we have to widen the operands
5446 to perform the operation. It says to use zero-extension.
5448 NORMALIZEP is 1 if we should convert the result to be either zero
5449 or one. Normalize is -1 if we should convert the result to be
5450 either zero or -1. If NORMALIZEP is zero, the result will be left
5451 "raw" out of the scc insn. */
5454 emit_store_flag (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
5455 machine_mode mode
, int unsignedp
, int normalizep
)
5457 machine_mode target_mode
= target
? GET_MODE (target
) : VOIDmode
;
5458 enum rtx_code rcode
;
5463 /* If we compare constants, we shouldn't use a store-flag operation,
5464 but a constant load. We can get there via the vanilla route that
5465 usually generates a compare-branch sequence, but will in this case
5466 fold the comparison to a constant, and thus elide the branch. */
5467 if (CONSTANT_P (op0
) && CONSTANT_P (op1
))
5470 tem
= emit_store_flag_1 (target
, code
, op0
, op1
, mode
, unsignedp
, normalizep
,
5475 /* If we reached here, we can't do this with a scc insn, however there
5476 are some comparisons that can be done in other ways. Don't do any
5477 of these cases if branches are very cheap. */
5478 if (BRANCH_COST (optimize_insn_for_speed_p (), false) == 0)
5481 /* See what we need to return. We can only return a 1, -1, or the
5484 if (normalizep
== 0)
5486 if (STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
5487 normalizep
= STORE_FLAG_VALUE
;
5489 else if (val_signbit_p (mode
, STORE_FLAG_VALUE
))
5495 last
= get_last_insn ();
5497 /* If optimizing, use different pseudo registers for each insn, instead
5498 of reusing the same pseudo. This leads to better CSE, but slows
5499 down the compiler, since there are more pseudos */
5500 subtarget
= (!optimize
5501 && (target_mode
== mode
)) ? target
: NULL_RTX
;
5502 trueval
= GEN_INT (normalizep
? normalizep
: STORE_FLAG_VALUE
);
5504 /* For floating-point comparisons, try the reverse comparison or try
5505 changing the "orderedness" of the comparison. */
5506 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
5508 enum rtx_code first_code
;
5511 rcode
= reverse_condition_maybe_unordered (code
);
5512 if (can_compare_p (rcode
, mode
, ccp_store_flag
)
5513 && (code
== ORDERED
|| code
== UNORDERED
5514 || (! HONOR_NANS (mode
) && (code
== LTGT
|| code
== UNEQ
))
5515 || (! HONOR_SNANS (mode
) && (code
== EQ
|| code
== NE
))))
5517 int want_add
= ((STORE_FLAG_VALUE
== 1 && normalizep
== -1)
5518 || (STORE_FLAG_VALUE
== -1 && normalizep
== 1));
5520 /* For the reverse comparison, use either an addition or a XOR. */
5522 && rtx_cost (GEN_INT (normalizep
), PLUS
, 1,
5523 optimize_insn_for_speed_p ()) == 0)
5525 tem
= emit_store_flag_1 (subtarget
, rcode
, op0
, op1
, mode
, 0,
5526 STORE_FLAG_VALUE
, target_mode
);
5528 return expand_binop (target_mode
, add_optab
, tem
,
5529 gen_int_mode (normalizep
, target_mode
),
5530 target
, 0, OPTAB_WIDEN
);
5533 && rtx_cost (trueval
, XOR
, 1,
5534 optimize_insn_for_speed_p ()) == 0)
5536 tem
= emit_store_flag_1 (subtarget
, rcode
, op0
, op1
, mode
, 0,
5537 normalizep
, target_mode
);
5539 return expand_binop (target_mode
, xor_optab
, tem
, trueval
,
5540 target
, INTVAL (trueval
) >= 0, OPTAB_WIDEN
);
5544 delete_insns_since (last
);
5546 /* Cannot split ORDERED and UNORDERED, only try the above trick. */
5547 if (code
== ORDERED
|| code
== UNORDERED
)
5550 and_them
= split_comparison (code
, mode
, &first_code
, &code
);
5552 /* If there are no NaNs, the first comparison should always fall through.
5553 Effectively change the comparison to the other one. */
5554 if (!HONOR_NANS (mode
))
5556 gcc_assert (first_code
== (and_them
? ORDERED
: UNORDERED
));
5557 return emit_store_flag_1 (target
, code
, op0
, op1
, mode
, 0, normalizep
,
5561 if (!HAVE_conditional_move
)
5564 /* Try using a setcc instruction for ORDERED/UNORDERED, followed by a
5565 conditional move. */
5566 tem
= emit_store_flag_1 (subtarget
, first_code
, op0
, op1
, mode
, 0,
5567 normalizep
, target_mode
);
5572 tem
= emit_conditional_move (target
, code
, op0
, op1
, mode
,
5573 tem
, const0_rtx
, GET_MODE (tem
), 0);
5575 tem
= emit_conditional_move (target
, code
, op0
, op1
, mode
,
5576 trueval
, tem
, GET_MODE (tem
), 0);
5579 delete_insns_since (last
);
5583 /* The remaining tricks only apply to integer comparisons. */
5585 if (GET_MODE_CLASS (mode
) != MODE_INT
)
5588 /* If this is an equality comparison of integers, we can try to exclusive-or
5589 (or subtract) the two operands and use a recursive call to try the
5590 comparison with zero. Don't do any of these cases if branches are
5593 if ((code
== EQ
|| code
== NE
) && op1
!= const0_rtx
)
5595 tem
= expand_binop (mode
, xor_optab
, op0
, op1
, subtarget
, 1,
5599 tem
= expand_binop (mode
, sub_optab
, op0
, op1
, subtarget
, 1,
5602 tem
= emit_store_flag (target
, code
, tem
, const0_rtx
,
5603 mode
, unsignedp
, normalizep
);
5607 delete_insns_since (last
);
5610 /* For integer comparisons, try the reverse comparison. However, for
5611 small X and if we'd have anyway to extend, implementing "X != 0"
5612 as "-(int)X >> 31" is still cheaper than inverting "(int)X == 0". */
5613 rcode
= reverse_condition (code
);
5614 if (can_compare_p (rcode
, mode
, ccp_store_flag
)
5615 && ! (optab_handler (cstore_optab
, mode
) == CODE_FOR_nothing
5617 && GET_MODE_SIZE (mode
) < UNITS_PER_WORD
5618 && op1
== const0_rtx
))
5620 int want_add
= ((STORE_FLAG_VALUE
== 1 && normalizep
== -1)
5621 || (STORE_FLAG_VALUE
== -1 && normalizep
== 1));
5623 /* Again, for the reverse comparison, use either an addition or a XOR. */
5625 && rtx_cost (GEN_INT (normalizep
), PLUS
, 1,
5626 optimize_insn_for_speed_p ()) == 0)
5628 tem
= emit_store_flag_1 (subtarget
, rcode
, op0
, op1
, mode
, 0,
5629 STORE_FLAG_VALUE
, target_mode
);
5631 tem
= expand_binop (target_mode
, add_optab
, tem
,
5632 gen_int_mode (normalizep
, target_mode
),
5633 target
, 0, OPTAB_WIDEN
);
5636 && rtx_cost (trueval
, XOR
, 1,
5637 optimize_insn_for_speed_p ()) == 0)
5639 tem
= emit_store_flag_1 (subtarget
, rcode
, op0
, op1
, mode
, 0,
5640 normalizep
, target_mode
);
5642 tem
= expand_binop (target_mode
, xor_optab
, tem
, trueval
, target
,
5643 INTVAL (trueval
) >= 0, OPTAB_WIDEN
);
5648 delete_insns_since (last
);
5651 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5652 the constant zero. Reject all other comparisons at this point. Only
5653 do LE and GT if branches are expensive since they are expensive on
5654 2-operand machines. */
5656 if (op1
!= const0_rtx
5657 || (code
!= EQ
&& code
!= NE
5658 && (BRANCH_COST (optimize_insn_for_speed_p (),
5659 false) <= 1 || (code
!= LE
&& code
!= GT
))))
5662 /* Try to put the result of the comparison in the sign bit. Assume we can't
5663 do the necessary operation below. */
5667 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5668 the sign bit set. */
5672 /* This is destructive, so SUBTARGET can't be OP0. */
5673 if (rtx_equal_p (subtarget
, op0
))
5676 tem
= expand_binop (mode
, sub_optab
, op0
, const1_rtx
, subtarget
, 0,
5679 tem
= expand_binop (mode
, ior_optab
, op0
, tem
, subtarget
, 0,
5683 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5684 number of bits in the mode of OP0, minus one. */
5688 if (rtx_equal_p (subtarget
, op0
))
5691 tem
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
5692 GET_MODE_BITSIZE (mode
) - 1,
5694 tem
= expand_binop (mode
, sub_optab
, tem
, op0
, subtarget
, 0,
5698 if (code
== EQ
|| code
== NE
)
5700 /* For EQ or NE, one way to do the comparison is to apply an operation
5701 that converts the operand into a positive number if it is nonzero
5702 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5703 for NE we negate. This puts the result in the sign bit. Then we
5704 normalize with a shift, if needed.
5706 Two operations that can do the above actions are ABS and FFS, so try
5707 them. If that doesn't work, and MODE is smaller than a full word,
5708 we can use zero-extension to the wider mode (an unsigned conversion)
5709 as the operation. */
5711 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5712 that is compensated by the subsequent overflow when subtracting
5715 if (optab_handler (abs_optab
, mode
) != CODE_FOR_nothing
)
5716 tem
= expand_unop (mode
, abs_optab
, op0
, subtarget
, 1);
5717 else if (optab_handler (ffs_optab
, mode
) != CODE_FOR_nothing
)
5718 tem
= expand_unop (mode
, ffs_optab
, op0
, subtarget
, 1);
5719 else if (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
5721 tem
= convert_modes (word_mode
, mode
, op0
, 1);
5728 tem
= expand_binop (mode
, sub_optab
, tem
, const1_rtx
, subtarget
,
5731 tem
= expand_unop (mode
, neg_optab
, tem
, subtarget
, 0);
5734 /* If we couldn't do it that way, for NE we can "or" the two's complement
5735 of the value with itself. For EQ, we take the one's complement of
5736 that "or", which is an extra insn, so we only handle EQ if branches
5741 || BRANCH_COST (optimize_insn_for_speed_p (),
5744 if (rtx_equal_p (subtarget
, op0
))
5747 tem
= expand_unop (mode
, neg_optab
, op0
, subtarget
, 0);
5748 tem
= expand_binop (mode
, ior_optab
, tem
, op0
, subtarget
, 0,
5751 if (tem
&& code
== EQ
)
5752 tem
= expand_unop (mode
, one_cmpl_optab
, tem
, subtarget
, 0);
5756 if (tem
&& normalizep
)
5757 tem
= expand_shift (RSHIFT_EXPR
, mode
, tem
,
5758 GET_MODE_BITSIZE (mode
) - 1,
5759 subtarget
, normalizep
== 1);
5765 else if (GET_MODE (tem
) != target_mode
)
5767 convert_move (target
, tem
, 0);
5770 else if (!subtarget
)
5772 emit_move_insn (target
, tem
);
5777 delete_insns_since (last
);
5782 /* Like emit_store_flag, but always succeeds. */
5785 emit_store_flag_force (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
5786 machine_mode mode
, int unsignedp
, int normalizep
)
5789 rtx_code_label
*label
;
5790 rtx trueval
, falseval
;
5792 /* First see if emit_store_flag can do the job. */
5793 tem
= emit_store_flag (target
, code
, op0
, op1
, mode
, unsignedp
, normalizep
);
5798 target
= gen_reg_rtx (word_mode
);
5800 /* If this failed, we have to do this with set/compare/jump/set code.
5801 For foo != 0, if foo is in OP0, just replace it with 1 if nonzero. */
5802 trueval
= normalizep
? GEN_INT (normalizep
) : const1_rtx
;
5804 && GET_MODE_CLASS (mode
) == MODE_INT
5807 && op1
== const0_rtx
)
5809 label
= gen_label_rtx ();
5810 do_compare_rtx_and_jump (target
, const0_rtx
, EQ
, unsignedp
, mode
,
5811 NULL_RTX
, NULL
, label
, -1);
5812 emit_move_insn (target
, trueval
);
5818 || reg_mentioned_p (target
, op0
) || reg_mentioned_p (target
, op1
))
5819 target
= gen_reg_rtx (GET_MODE (target
));
5821 /* Jump in the right direction if the target cannot implement CODE
5822 but can jump on its reverse condition. */
5823 falseval
= const0_rtx
;
5824 if (! can_compare_p (code
, mode
, ccp_jump
)
5825 && (! FLOAT_MODE_P (mode
)
5826 || code
== ORDERED
|| code
== UNORDERED
5827 || (! HONOR_NANS (mode
) && (code
== LTGT
|| code
== UNEQ
))
5828 || (! HONOR_SNANS (mode
) && (code
== EQ
|| code
== NE
))))
5830 enum rtx_code rcode
;
5831 if (FLOAT_MODE_P (mode
))
5832 rcode
= reverse_condition_maybe_unordered (code
);
5834 rcode
= reverse_condition (code
);
5836 /* Canonicalize to UNORDERED for the libcall. */
5837 if (can_compare_p (rcode
, mode
, ccp_jump
)
5838 || (code
== ORDERED
&& ! can_compare_p (ORDERED
, mode
, ccp_jump
)))
5841 trueval
= const0_rtx
;
5846 emit_move_insn (target
, trueval
);
5847 label
= gen_label_rtx ();
5848 do_compare_rtx_and_jump (op0
, op1
, code
, unsignedp
, mode
, NULL_RTX
, NULL
,
5851 emit_move_insn (target
, falseval
);
5857 /* Perform possibly multi-word comparison and conditional jump to LABEL
5858 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
5859 now a thin wrapper around do_compare_rtx_and_jump. */
5862 do_cmp_and_jump (rtx arg1
, rtx arg2
, enum rtx_code op
, machine_mode mode
,
5863 rtx_code_label
*label
)
5865 int unsignedp
= (op
== LTU
|| op
== LEU
|| op
== GTU
|| op
== GEU
);
5866 do_compare_rtx_and_jump (arg1
, arg2
, op
, unsignedp
, mode
, NULL_RTX
,