1 /* Predictive commoning.
2 Copyright (C) 2005-2020 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file implements the predictive commoning optimization. Predictive
21 commoning can be viewed as CSE around a loop, and with some improvements,
22 as generalized strength reduction-- i.e., reusing values computed in
23 earlier iterations of a loop in the later ones. So far, the pass only
24 handles the most useful case, that is, reusing values of memory references.
25 If you think this is all just a special case of PRE, you are sort of right;
26 however, concentrating on loops is simpler, and makes it possible to
27 incorporate data dependence analysis to detect the opportunities, perform
28 loop unrolling to avoid copies together with renaming immediately,
29 and if needed, we could also take register pressure into account.
31 Let us demonstrate what is done on an example:
33 for (i = 0; i < 100; i++)
35 a[i+2] = a[i] + a[i+1];
41 1) We find data references in the loop, and split them to mutually
42 independent groups (i.e., we find components of a data dependence
43 graph). We ignore read-read dependences whose distance is not constant.
44 (TODO -- we could also ignore antidependences). In this example, we
45 find the following groups:
47 a[i]{read}, a[i+1]{read}, a[i+2]{write}
48 b[10]{read}, b[10]{write}
49 c[99 - i]{read}, c[i]{write}
50 d[i + 1]{read}, d[i]{write}
52 2) Inside each of the group, we verify several conditions:
53 a) all the references must differ in indices only, and the indices
54 must all have the same step
55 b) the references must dominate loop latch (and thus, they must be
56 ordered by dominance relation).
57 c) the distance of the indices must be a small multiple of the step
58 We are then able to compute the difference of the references (# of
59 iterations before they point to the same place as the first of them).
60 Also, in case there are writes in the loop, we split the groups into
61 chains whose head is the write whose values are used by the reads in
62 the same chain. The chains are then processed independently,
63 making the further transformations simpler. Also, the shorter chains
64 need the same number of registers, but may require lower unrolling
65 factor in order to get rid of the copies on the loop latch.
67 In our example, we get the following chains (the chain for c is invalid).
69 a[i]{read,+0}, a[i+1]{read,-1}, a[i+2]{write,-2}
70 b[10]{read,+0}, b[10]{write,+0}
71 d[i + 1]{read,+0}, d[i]{write,+1}
73 3) For each read, we determine the read or write whose value it reuses,
74 together with the distance of this reuse. I.e. we take the last
75 reference before it with distance 0, or the last of the references
76 with the smallest positive distance to the read. Then, we remove
77 the references that are not used in any of these chains, discard the
78 empty groups, and propagate all the links so that they point to the
79 single root reference of the chain (adjusting their distance
80 appropriately). Some extra care needs to be taken for references with
81 step 0. In our example (the numbers indicate the distance of the
84 a[i] --> (*) 2, a[i+1] --> (*) 1, a[i+2] (*)
85 b[10] --> (*) 1, b[10] (*)
87 4) The chains are combined together if possible. If the corresponding
88 elements of two chains are always combined together with the same
89 operator, we remember just the result of this combination, instead
90 of remembering the values separately. We may need to perform
91 reassociation to enable combining, for example
93 e[i] + f[i+1] + e[i+1] + f[i]
95 can be reassociated as
97 (e[i] + f[i]) + (e[i+1] + f[i+1])
99 and we can combine the chains for e and f into one chain.
101 5) For each root reference (end of the chain) R, let N be maximum distance
102 of a reference reusing its value. Variables R0 up to RN are created,
103 together with phi nodes that transfer values from R1 .. RN to
105 Initial values are loaded to R0..R(N-1) (in case not all references
106 must necessarily be accessed and they may trap, we may fail here;
107 TODO sometimes, the loads could be guarded by a check for the number
108 of iterations). Values loaded/stored in roots are also copied to
109 RN. Other reads are replaced with the appropriate variable Ri.
110 Everything is put to SSA form.
112 As a small improvement, if R0 is dead after the root (i.e., all uses of
113 the value with the maximum distance dominate the root), we can avoid
114 creating RN and use R0 instead of it.
116 In our example, we get (only the parts concerning a and b are shown):
117 for (i = 0; i < 100; i++)
129 6) Factor F for unrolling is determined as the smallest common multiple of
130 (N + 1) for each root reference (N for references for that we avoided
131 creating RN). If F and the loop is small enough, loop is unrolled F
132 times. The stores to RN (R0) in the copies of the loop body are
133 periodically replaced with R0, R1, ... (R1, R2, ...), so that they can
134 be coalesced and the copies can be eliminated.
136 TODO -- copy propagation and other optimizations may change the live
137 ranges of the temporary registers and prevent them from being coalesced;
138 this may increase the register pressure.
140 In our case, F = 2 and the (main loop of the) result is
142 for (i = 0; i < ...; i += 2)
159 Apart from predictive commoning on Load-Load and Store-Load chains, we
160 also support Store-Store chains -- stores killed by other store can be
161 eliminated. Given below example:
163 for (i = 0; i < n; i++)
169 It can be replaced with:
173 for (i = 0; i < n; i++)
183 If the loop runs more than 1 iterations, it can be further simplified into:
185 for (i = 0; i < n; i++)
192 The interesting part is this can be viewed either as general store motion
193 or general dead store elimination in either intra/inter-iterations way.
195 With trivial effort, we also support load inside Store-Store chains if the
196 load is dominated by a store statement in the same iteration of loop. You
197 can see this as a restricted Store-Mixed-Load-Store chain.
199 TODO: For now, we don't support store-store chains in multi-exit loops. We
200 force to not unroll in case of store-store chain even if other chains might
203 Predictive commoning can be generalized for arbitrary computations (not
204 just memory loads), and also nontrivial transfer functions (e.g., replacing
205 i * i with ii_last + 2 * i + 1), to generalize strength reduction. */
209 #include "coretypes.h"
215 #include "tree-pass.h"
217 #include "gimple-pretty-print.h"
219 #include "fold-const.h"
222 #include "gimplify.h"
223 #include "gimple-iterator.h"
224 #include "gimplify-me.h"
225 #include "tree-ssa-loop-ivopts.h"
226 #include "tree-ssa-loop-manip.h"
227 #include "tree-ssa-loop-niter.h"
228 #include "tree-ssa-loop.h"
229 #include "tree-into-ssa.h"
230 #include "tree-dfa.h"
231 #include "tree-ssa.h"
232 #include "tree-data-ref.h"
233 #include "tree-scalar-evolution.h"
234 #include "tree-affine.h"
235 #include "builtins.h"
237 /* The maximum number of iterations between the considered memory
240 #define MAX_DISTANCE (target_avail_regs < 16 ? 4 : 8)
242 /* Data references (or phi nodes that carry data reference values across
248 /* The reference itself. */
249 struct data_reference
*ref
;
251 /* The statement in that the reference appears. */
254 /* In case that STMT is a phi node, this field is set to the SSA name
255 defined by it in replace_phis_by_defined_names (in order to avoid
256 pointing to phi node that got reallocated in the meantime). */
257 tree name_defined_by_phi
;
259 /* Distance of the reference from the root of the chain (in number of
260 iterations of the loop). */
263 /* Number of iterations offset from the first reference in the component. */
266 /* Number of the reference in a component, in dominance ordering. */
269 /* True if the memory reference is always accessed when the loop is
271 unsigned always_accessed
: 1;
275 /* Type of the chain of the references. */
279 /* The addresses of the references in the chain are constant. */
282 /* There are only loads in the chain. */
285 /* Root of the chain is store, the rest are loads. */
288 /* There are only stores in the chain. */
291 /* A combination of two chains. */
295 /* Chains of data references. */
299 /* Type of the chain. */
300 enum chain_type type
;
302 /* For combination chains, the operator and the two chains that are
303 combined, and the type of the result. */
306 struct chain
*ch1
, *ch2
;
308 /* The references in the chain. */
311 /* The maximum distance of the reference in the chain from the root. */
314 /* The variables used to copy the value throughout iterations. */
317 /* Initializers for the variables. */
320 /* Finalizers for the eliminated stores. */
323 /* gimple stmts intializing the initial variables of the chain. */
326 /* gimple stmts finalizing the eliminated stores of the chain. */
329 /* True if there is a use of a variable with the maximal distance
330 that comes after the root in the loop. */
331 unsigned has_max_use_after
: 1;
333 /* True if all the memory references in the chain are always accessed. */
334 unsigned all_always_accessed
: 1;
336 /* True if this chain was combined together with some other chain. */
337 unsigned combined
: 1;
339 /* True if this is store elimination chain and eliminated stores store
340 loop invariant value into memory. */
341 unsigned inv_store_elimination
: 1;
345 /* Describes the knowledge about the step of the memory references in
350 /* The step is zero. */
353 /* The step is nonzero. */
356 /* The step may or may not be nonzero. */
360 /* Components of the data dependence graph. */
364 /* The references in the component. */
367 /* What we know about the step of the references in the component. */
368 enum ref_step_type comp_step
;
370 /* True if all references in component are stores and we try to do
371 intra/inter loop iteration dead store elimination. */
372 bool eliminate_store_p
;
374 /* Next component in the list. */
375 struct component
*next
;
378 /* Bitmap of ssa names defined by looparound phi nodes covered by chains. */
380 static bitmap looparound_phis
;
382 /* Cache used by tree_to_aff_combination_expand. */
384 static hash_map
<tree
, name_expansion
*> *name_expansions
;
386 /* Dumps data reference REF to FILE. */
388 extern void dump_dref (FILE *, dref
);
390 dump_dref (FILE *file
, dref ref
)
395 print_generic_expr (file
, DR_REF (ref
->ref
), TDF_SLIM
);
396 fprintf (file
, " (id %u%s)\n", ref
->pos
,
397 DR_IS_READ (ref
->ref
) ? "" : ", write");
399 fprintf (file
, " offset ");
400 print_decs (ref
->offset
, file
);
401 fprintf (file
, "\n");
403 fprintf (file
, " distance %u\n", ref
->distance
);
407 if (gimple_code (ref
->stmt
) == GIMPLE_PHI
)
408 fprintf (file
, " looparound ref\n");
410 fprintf (file
, " combination ref\n");
411 fprintf (file
, " in statement ");
412 print_gimple_stmt (file
, ref
->stmt
, 0, TDF_SLIM
);
413 fprintf (file
, "\n");
414 fprintf (file
, " distance %u\n", ref
->distance
);
419 /* Dumps CHAIN to FILE. */
421 extern void dump_chain (FILE *, chain_p
);
423 dump_chain (FILE *file
, chain_p chain
)
426 const char *chain_type
;
433 chain_type
= "Load motion";
437 chain_type
= "Loads-only";
441 chain_type
= "Store-loads";
445 chain_type
= "Store-stores";
449 chain_type
= "Combination";
456 fprintf (file
, "%s chain %p%s\n", chain_type
, (void *) chain
,
457 chain
->combined
? " (combined)" : "");
458 if (chain
->type
!= CT_INVARIANT
)
459 fprintf (file
, " max distance %u%s\n", chain
->length
,
460 chain
->has_max_use_after
? "" : ", may reuse first");
462 if (chain
->type
== CT_COMBINATION
)
464 fprintf (file
, " equal to %p %s %p in type ",
465 (void *) chain
->ch1
, op_symbol_code (chain
->op
),
466 (void *) chain
->ch2
);
467 print_generic_expr (file
, chain
->rslt_type
, TDF_SLIM
);
468 fprintf (file
, "\n");
471 if (chain
->vars
.exists ())
473 fprintf (file
, " vars");
474 FOR_EACH_VEC_ELT (chain
->vars
, i
, var
)
477 print_generic_expr (file
, var
, TDF_SLIM
);
479 fprintf (file
, "\n");
482 if (chain
->inits
.exists ())
484 fprintf (file
, " inits");
485 FOR_EACH_VEC_ELT (chain
->inits
, i
, var
)
488 print_generic_expr (file
, var
, TDF_SLIM
);
490 fprintf (file
, "\n");
493 fprintf (file
, " references:\n");
494 FOR_EACH_VEC_ELT (chain
->refs
, i
, a
)
497 fprintf (file
, "\n");
500 /* Dumps CHAINS to FILE. */
502 extern void dump_chains (FILE *, vec
<chain_p
> );
504 dump_chains (FILE *file
, vec
<chain_p
> chains
)
509 FOR_EACH_VEC_ELT (chains
, i
, chain
)
510 dump_chain (file
, chain
);
513 /* Dumps COMP to FILE. */
515 extern void dump_component (FILE *, struct component
*);
517 dump_component (FILE *file
, struct component
*comp
)
522 fprintf (file
, "Component%s:\n",
523 comp
->comp_step
== RS_INVARIANT
? " (invariant)" : "");
524 FOR_EACH_VEC_ELT (comp
->refs
, i
, a
)
526 fprintf (file
, "\n");
529 /* Dumps COMPS to FILE. */
531 extern void dump_components (FILE *, struct component
*);
533 dump_components (FILE *file
, struct component
*comps
)
535 struct component
*comp
;
537 for (comp
= comps
; comp
; comp
= comp
->next
)
538 dump_component (file
, comp
);
541 /* Frees a chain CHAIN. */
544 release_chain (chain_p chain
)
552 FOR_EACH_VEC_ELT (chain
->refs
, i
, ref
)
555 chain
->refs
.release ();
556 chain
->vars
.release ();
557 chain
->inits
.release ();
559 gimple_seq_discard (chain
->init_seq
);
561 chain
->finis
.release ();
563 gimple_seq_discard (chain
->fini_seq
);
571 release_chains (vec
<chain_p
> chains
)
576 FOR_EACH_VEC_ELT (chains
, i
, chain
)
577 release_chain (chain
);
581 /* Frees a component COMP. */
584 release_component (struct component
*comp
)
586 comp
->refs
.release ();
590 /* Frees list of components COMPS. */
593 release_components (struct component
*comps
)
595 struct component
*act
, *next
;
597 for (act
= comps
; act
; act
= next
)
600 release_component (act
);
604 /* Finds a root of tree given by FATHERS containing A, and performs path
608 component_of (unsigned fathers
[], unsigned a
)
612 for (root
= a
; root
!= fathers
[root
]; root
= fathers
[root
])
615 for (; a
!= root
; a
= n
)
624 /* Join operation for DFU. FATHERS gives the tree, SIZES are sizes of the
625 components, A and B are components to merge. */
628 merge_comps (unsigned fathers
[], unsigned sizes
[], unsigned a
, unsigned b
)
630 unsigned ca
= component_of (fathers
, a
);
631 unsigned cb
= component_of (fathers
, b
);
636 if (sizes
[ca
] < sizes
[cb
])
638 sizes
[cb
] += sizes
[ca
];
643 sizes
[ca
] += sizes
[cb
];
648 /* Returns true if A is a reference that is suitable for predictive commoning
649 in the innermost loop that contains it. REF_STEP is set according to the
650 step of the reference A. */
653 suitable_reference_p (struct data_reference
*a
, enum ref_step_type
*ref_step
)
655 tree ref
= DR_REF (a
), step
= DR_STEP (a
);
658 || TREE_THIS_VOLATILE (ref
)
659 || !is_gimple_reg_type (TREE_TYPE (ref
))
660 || tree_could_throw_p (ref
))
663 if (integer_zerop (step
))
664 *ref_step
= RS_INVARIANT
;
665 else if (integer_nonzerop (step
))
666 *ref_step
= RS_NONZERO
;
673 /* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET. */
676 aff_combination_dr_offset (struct data_reference
*dr
, aff_tree
*offset
)
678 tree type
= TREE_TYPE (DR_OFFSET (dr
));
681 tree_to_aff_combination_expand (DR_OFFSET (dr
), type
, offset
,
683 aff_combination_const (&delta
, type
, wi::to_poly_widest (DR_INIT (dr
)));
684 aff_combination_add (offset
, &delta
);
687 /* Determines number of iterations of the innermost enclosing loop before B
688 refers to exactly the same location as A and stores it to OFF. If A and
689 B do not have the same step, they never meet, or anything else fails,
690 returns false, otherwise returns true. Both A and B are assumed to
691 satisfy suitable_reference_p. */
694 determine_offset (struct data_reference
*a
, struct data_reference
*b
,
695 poly_widest_int
*off
)
697 aff_tree diff
, baseb
, step
;
700 /* Check that both the references access the location in the same type. */
701 typea
= TREE_TYPE (DR_REF (a
));
702 typeb
= TREE_TYPE (DR_REF (b
));
703 if (!useless_type_conversion_p (typeb
, typea
))
706 /* Check whether the base address and the step of both references is the
708 if (!operand_equal_p (DR_STEP (a
), DR_STEP (b
), 0)
709 || !operand_equal_p (DR_BASE_ADDRESS (a
), DR_BASE_ADDRESS (b
), 0))
712 if (integer_zerop (DR_STEP (a
)))
714 /* If the references have loop invariant address, check that they access
715 exactly the same location. */
717 return (operand_equal_p (DR_OFFSET (a
), DR_OFFSET (b
), 0)
718 && operand_equal_p (DR_INIT (a
), DR_INIT (b
), 0));
721 /* Compare the offsets of the addresses, and check whether the difference
722 is a multiple of step. */
723 aff_combination_dr_offset (a
, &diff
);
724 aff_combination_dr_offset (b
, &baseb
);
725 aff_combination_scale (&baseb
, -1);
726 aff_combination_add (&diff
, &baseb
);
728 tree_to_aff_combination_expand (DR_STEP (a
), TREE_TYPE (DR_STEP (a
)),
729 &step
, &name_expansions
);
730 return aff_combination_constant_multiple_p (&diff
, &step
, off
);
733 /* Returns the last basic block in LOOP for that we are sure that
734 it is executed whenever the loop is entered. */
737 last_always_executed_block (class loop
*loop
)
740 vec
<edge
> exits
= get_loop_exit_edges (loop
);
742 basic_block last
= loop
->latch
;
744 FOR_EACH_VEC_ELT (exits
, i
, ex
)
745 last
= nearest_common_dominator (CDI_DOMINATORS
, last
, ex
->src
);
751 /* Splits dependence graph on DATAREFS described by DEPENDS to components. */
753 static struct component
*
754 split_data_refs_to_components (class loop
*loop
,
755 vec
<data_reference_p
> datarefs
,
758 unsigned i
, n
= datarefs
.length ();
759 unsigned ca
, ia
, ib
, bad
;
760 unsigned *comp_father
= XNEWVEC (unsigned, n
+ 1);
761 unsigned *comp_size
= XNEWVEC (unsigned, n
+ 1);
762 struct component
**comps
;
763 struct data_reference
*dr
, *dra
, *drb
;
764 struct data_dependence_relation
*ddr
;
765 struct component
*comp_list
= NULL
, *comp
;
767 /* Don't do store elimination if loop has multiple exit edges. */
768 bool eliminate_store_p
= single_exit (loop
) != NULL
;
769 basic_block last_always_executed
= last_always_executed_block (loop
);
770 auto_bitmap no_store_store_comps
;
772 FOR_EACH_VEC_ELT (datarefs
, i
, dr
)
776 /* A fake reference for call or asm_expr that may clobber memory;
780 /* predcom pass isn't prepared to handle calls with data references. */
781 if (is_gimple_call (DR_STMT (dr
)))
783 dr
->aux
= (void *) (size_t) i
;
788 /* A component reserved for the "bad" data references. */
792 FOR_EACH_VEC_ELT (datarefs
, i
, dr
)
794 enum ref_step_type dummy
;
796 if (!suitable_reference_p (dr
, &dummy
))
798 ia
= (unsigned) (size_t) dr
->aux
;
799 merge_comps (comp_father
, comp_size
, n
, ia
);
803 FOR_EACH_VEC_ELT (depends
, i
, ddr
)
805 poly_widest_int dummy_off
;
807 if (DDR_ARE_DEPENDENT (ddr
) == chrec_known
)
813 /* Don't do store elimination if there is any unknown dependence for
814 any store data reference. */
815 if ((DR_IS_WRITE (dra
) || DR_IS_WRITE (drb
))
816 && (DDR_ARE_DEPENDENT (ddr
) == chrec_dont_know
817 || DDR_NUM_DIST_VECTS (ddr
) == 0))
818 eliminate_store_p
= false;
820 ia
= component_of (comp_father
, (unsigned) (size_t) dra
->aux
);
821 ib
= component_of (comp_father
, (unsigned) (size_t) drb
->aux
);
825 bad
= component_of (comp_father
, n
);
827 /* If both A and B are reads, we may ignore unsuitable dependences. */
828 if (DR_IS_READ (dra
) && DR_IS_READ (drb
))
830 if (ia
== bad
|| ib
== bad
831 || !determine_offset (dra
, drb
, &dummy_off
))
834 /* If A is read and B write or vice versa and there is unsuitable
835 dependence, instead of merging both components into a component
836 that will certainly not pass suitable_component_p, just put the
837 read into bad component, perhaps at least the write together with
838 all the other data refs in it's component will be optimizable. */
839 else if (DR_IS_READ (dra
) && ib
!= bad
)
843 bitmap_set_bit (no_store_store_comps
, ib
);
846 else if (!determine_offset (dra
, drb
, &dummy_off
))
848 bitmap_set_bit (no_store_store_comps
, ib
);
849 merge_comps (comp_father
, comp_size
, bad
, ia
);
853 else if (DR_IS_READ (drb
) && ia
!= bad
)
857 bitmap_set_bit (no_store_store_comps
, ia
);
860 else if (!determine_offset (dra
, drb
, &dummy_off
))
862 bitmap_set_bit (no_store_store_comps
, ia
);
863 merge_comps (comp_father
, comp_size
, bad
, ib
);
867 else if (DR_IS_WRITE (dra
) && DR_IS_WRITE (drb
)
868 && ia
!= bad
&& ib
!= bad
869 && !determine_offset (dra
, drb
, &dummy_off
))
871 merge_comps (comp_father
, comp_size
, bad
, ia
);
872 merge_comps (comp_father
, comp_size
, bad
, ib
);
876 merge_comps (comp_father
, comp_size
, ia
, ib
);
879 if (eliminate_store_p
)
881 tree niters
= number_of_latch_executions (loop
);
883 /* Don't do store elimination if niters info is unknown because stores
884 in the last iteration can't be eliminated and we need to recover it
886 eliminate_store_p
= (niters
!= NULL_TREE
&& niters
!= chrec_dont_know
);
889 comps
= XCNEWVEC (struct component
*, n
);
890 bad
= component_of (comp_father
, n
);
891 FOR_EACH_VEC_ELT (datarefs
, i
, dr
)
893 ia
= (unsigned) (size_t) dr
->aux
;
894 ca
= component_of (comp_father
, ia
);
901 comp
= XCNEW (struct component
);
902 comp
->refs
.create (comp_size
[ca
]);
903 comp
->eliminate_store_p
= eliminate_store_p
;
907 dataref
= XCNEW (class dref_d
);
909 dataref
->stmt
= DR_STMT (dr
);
911 dataref
->distance
= 0;
913 dataref
->always_accessed
914 = dominated_by_p (CDI_DOMINATORS
, last_always_executed
,
915 gimple_bb (dataref
->stmt
));
916 dataref
->pos
= comp
->refs
.length ();
917 comp
->refs
.quick_push (dataref
);
920 if (eliminate_store_p
)
923 EXECUTE_IF_SET_IN_BITMAP (no_store_store_comps
, 0, ia
, bi
)
925 ca
= component_of (comp_father
, ia
);
927 comps
[ca
]->eliminate_store_p
= false;
931 for (i
= 0; i
< n
; i
++)
936 comp
->next
= comp_list
;
948 /* Returns true if the component COMP satisfies the conditions
949 described in 2) at the beginning of this file. LOOP is the current
953 suitable_component_p (class loop
*loop
, struct component
*comp
)
957 basic_block ba
, bp
= loop
->header
;
958 bool ok
, has_write
= false;
960 FOR_EACH_VEC_ELT (comp
->refs
, i
, a
)
962 ba
= gimple_bb (a
->stmt
);
964 if (!just_once_each_iteration_p (loop
, ba
))
967 gcc_assert (dominated_by_p (CDI_DOMINATORS
, ba
, bp
));
970 if (DR_IS_WRITE (a
->ref
))
974 first
= comp
->refs
[0];
975 ok
= suitable_reference_p (first
->ref
, &comp
->comp_step
);
979 for (i
= 1; comp
->refs
.iterate (i
, &a
); i
++)
981 /* Polynomial offsets are no use, since we need to know the
982 gap between iteration numbers at compile time. */
983 poly_widest_int offset
;
984 if (!determine_offset (first
->ref
, a
->ref
, &offset
)
985 || !offset
.is_constant (&a
->offset
))
988 enum ref_step_type a_step
;
989 gcc_checking_assert (suitable_reference_p (a
->ref
, &a_step
)
990 && a_step
== comp
->comp_step
);
993 /* If there is a write inside the component, we must know whether the
994 step is nonzero or not -- we would not otherwise be able to recognize
995 whether the value accessed by reads comes from the OFFSET-th iteration
996 or the previous one. */
997 if (has_write
&& comp
->comp_step
== RS_ANY
)
1003 /* Check the conditions on references inside each of components COMPS,
1004 and remove the unsuitable components from the list. The new list
1005 of components is returned. The conditions are described in 2) at
1006 the beginning of this file. LOOP is the current loop. */
1008 static struct component
*
1009 filter_suitable_components (class loop
*loop
, struct component
*comps
)
1011 struct component
**comp
, *act
;
1013 for (comp
= &comps
; *comp
; )
1016 if (suitable_component_p (loop
, act
))
1024 FOR_EACH_VEC_ELT (act
->refs
, i
, ref
)
1026 release_component (act
);
1033 /* Compares two drefs A and B by their offset and position. Callback for
1037 order_drefs (const void *a
, const void *b
)
1039 const dref
*const da
= (const dref
*) a
;
1040 const dref
*const db
= (const dref
*) b
;
1041 int offcmp
= wi::cmps ((*da
)->offset
, (*db
)->offset
);
1046 return (*da
)->pos
- (*db
)->pos
;
1049 /* Compares two drefs A and B by their position. Callback for qsort. */
1052 order_drefs_by_pos (const void *a
, const void *b
)
1054 const dref
*const da
= (const dref
*) a
;
1055 const dref
*const db
= (const dref
*) b
;
1057 return (*da
)->pos
- (*db
)->pos
;
1060 /* Returns root of the CHAIN. */
1063 get_chain_root (chain_p chain
)
1065 return chain
->refs
[0];
1068 /* Given CHAIN, returns the last write ref at DISTANCE, or NULL if it doesn't
1072 get_chain_last_write_at (chain_p chain
, unsigned distance
)
1074 for (unsigned i
= chain
->refs
.length (); i
> 0; i
--)
1075 if (DR_IS_WRITE (chain
->refs
[i
- 1]->ref
)
1076 && distance
== chain
->refs
[i
- 1]->distance
)
1077 return chain
->refs
[i
- 1];
1082 /* Given CHAIN, returns the last write ref with the same distance before load
1083 at index LOAD_IDX, or NULL if it doesn't exist. */
1086 get_chain_last_write_before_load (chain_p chain
, unsigned load_idx
)
1088 gcc_assert (load_idx
< chain
->refs
.length ());
1090 unsigned distance
= chain
->refs
[load_idx
]->distance
;
1092 for (unsigned i
= load_idx
; i
> 0; i
--)
1093 if (DR_IS_WRITE (chain
->refs
[i
- 1]->ref
)
1094 && distance
== chain
->refs
[i
- 1]->distance
)
1095 return chain
->refs
[i
- 1];
1100 /* Adds REF to the chain CHAIN. */
1103 add_ref_to_chain (chain_p chain
, dref ref
)
1105 dref root
= get_chain_root (chain
);
1107 gcc_assert (wi::les_p (root
->offset
, ref
->offset
));
1108 widest_int dist
= ref
->offset
- root
->offset
;
1109 gcc_assert (wi::fits_uhwi_p (dist
));
1111 chain
->refs
.safe_push (ref
);
1113 ref
->distance
= dist
.to_uhwi ();
1115 if (ref
->distance
>= chain
->length
)
1117 chain
->length
= ref
->distance
;
1118 chain
->has_max_use_after
= false;
1121 /* Promote this chain to CT_STORE_STORE if it has multiple stores. */
1122 if (DR_IS_WRITE (ref
->ref
))
1123 chain
->type
= CT_STORE_STORE
;
1125 /* Don't set the flag for store-store chain since there is no use. */
1126 if (chain
->type
!= CT_STORE_STORE
1127 && ref
->distance
== chain
->length
1128 && ref
->pos
> root
->pos
)
1129 chain
->has_max_use_after
= true;
1131 chain
->all_always_accessed
&= ref
->always_accessed
;
1134 /* Returns the chain for invariant component COMP. */
1137 make_invariant_chain (struct component
*comp
)
1139 chain_p chain
= XCNEW (struct chain
);
1143 chain
->type
= CT_INVARIANT
;
1145 chain
->all_always_accessed
= true;
1147 FOR_EACH_VEC_ELT (comp
->refs
, i
, ref
)
1149 chain
->refs
.safe_push (ref
);
1150 chain
->all_always_accessed
&= ref
->always_accessed
;
1153 chain
->inits
= vNULL
;
1154 chain
->finis
= vNULL
;
1159 /* Make a new chain of type TYPE rooted at REF. */
1162 make_rooted_chain (dref ref
, enum chain_type type
)
1164 chain_p chain
= XCNEW (struct chain
);
1167 chain
->refs
.safe_push (ref
);
1168 chain
->all_always_accessed
= ref
->always_accessed
;
1171 chain
->inits
= vNULL
;
1172 chain
->finis
= vNULL
;
1177 /* Returns true if CHAIN is not trivial. */
1180 nontrivial_chain_p (chain_p chain
)
1182 return chain
!= NULL
&& chain
->refs
.length () > 1;
1185 /* Returns the ssa name that contains the value of REF, or NULL_TREE if there
1189 name_for_ref (dref ref
)
1193 if (is_gimple_assign (ref
->stmt
))
1195 if (!ref
->ref
|| DR_IS_READ (ref
->ref
))
1196 name
= gimple_assign_lhs (ref
->stmt
);
1198 name
= gimple_assign_rhs1 (ref
->stmt
);
1201 name
= PHI_RESULT (ref
->stmt
);
1203 return (TREE_CODE (name
) == SSA_NAME
? name
: NULL_TREE
);
1206 /* Returns true if REF is a valid initializer for ROOT with given DISTANCE (in
1207 iterations of the innermost enclosing loop). */
1210 valid_initializer_p (struct data_reference
*ref
,
1211 unsigned distance
, struct data_reference
*root
)
1213 aff_tree diff
, base
, step
;
1214 poly_widest_int off
;
1216 /* Both REF and ROOT must be accessing the same object. */
1217 if (!operand_equal_p (DR_BASE_ADDRESS (ref
), DR_BASE_ADDRESS (root
), 0))
1220 /* The initializer is defined outside of loop, hence its address must be
1221 invariant inside the loop. */
1222 gcc_assert (integer_zerop (DR_STEP (ref
)));
1224 /* If the address of the reference is invariant, initializer must access
1225 exactly the same location. */
1226 if (integer_zerop (DR_STEP (root
)))
1227 return (operand_equal_p (DR_OFFSET (ref
), DR_OFFSET (root
), 0)
1228 && operand_equal_p (DR_INIT (ref
), DR_INIT (root
), 0));
1230 /* Verify that this index of REF is equal to the root's index at
1231 -DISTANCE-th iteration. */
1232 aff_combination_dr_offset (root
, &diff
);
1233 aff_combination_dr_offset (ref
, &base
);
1234 aff_combination_scale (&base
, -1);
1235 aff_combination_add (&diff
, &base
);
1237 tree_to_aff_combination_expand (DR_STEP (root
), TREE_TYPE (DR_STEP (root
)),
1238 &step
, &name_expansions
);
1239 if (!aff_combination_constant_multiple_p (&diff
, &step
, &off
))
1242 if (maybe_ne (off
, distance
))
1248 /* Finds looparound phi node of LOOP that copies the value of REF, and if its
1249 initial value is correct (equal to initial value of REF shifted by one
1250 iteration), returns the phi node. Otherwise, NULL_TREE is returned. ROOT
1251 is the root of the current chain. */
1254 find_looparound_phi (class loop
*loop
, dref ref
, dref root
)
1256 tree name
, init
, init_ref
;
1259 edge latch
= loop_latch_edge (loop
);
1260 struct data_reference init_dr
;
1263 if (is_gimple_assign (ref
->stmt
))
1265 if (DR_IS_READ (ref
->ref
))
1266 name
= gimple_assign_lhs (ref
->stmt
);
1268 name
= gimple_assign_rhs1 (ref
->stmt
);
1271 name
= PHI_RESULT (ref
->stmt
);
1275 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
1278 if (PHI_ARG_DEF_FROM_EDGE (phi
, latch
) == name
)
1282 if (gsi_end_p (psi
))
1285 init
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_preheader_edge (loop
));
1286 if (TREE_CODE (init
) != SSA_NAME
)
1288 init_stmt
= SSA_NAME_DEF_STMT (init
);
1289 if (gimple_code (init_stmt
) != GIMPLE_ASSIGN
)
1291 gcc_assert (gimple_assign_lhs (init_stmt
) == init
);
1293 init_ref
= gimple_assign_rhs1 (init_stmt
);
1294 if (!REFERENCE_CLASS_P (init_ref
)
1295 && !DECL_P (init_ref
))
1298 /* Analyze the behavior of INIT_REF with respect to LOOP (innermost
1299 loop enclosing PHI). */
1300 memset (&init_dr
, 0, sizeof (struct data_reference
));
1301 DR_REF (&init_dr
) = init_ref
;
1302 DR_STMT (&init_dr
) = phi
;
1303 if (!dr_analyze_innermost (&DR_INNERMOST (&init_dr
), init_ref
, loop
,
1307 if (!valid_initializer_p (&init_dr
, ref
->distance
+ 1, root
->ref
))
1313 /* Adds a reference for the looparound copy of REF in PHI to CHAIN. */
1316 insert_looparound_copy (chain_p chain
, dref ref
, gphi
*phi
)
1318 dref nw
= XCNEW (class dref_d
), aref
;
1322 nw
->distance
= ref
->distance
+ 1;
1323 nw
->always_accessed
= 1;
1325 FOR_EACH_VEC_ELT (chain
->refs
, i
, aref
)
1326 if (aref
->distance
>= nw
->distance
)
1328 chain
->refs
.safe_insert (i
, nw
);
1330 if (nw
->distance
> chain
->length
)
1332 chain
->length
= nw
->distance
;
1333 chain
->has_max_use_after
= false;
1337 /* For references in CHAIN that are copied around the LOOP (created previously
1338 by PRE, or by user), add the results of such copies to the chain. This
1339 enables us to remove the copies by unrolling, and may need less registers
1340 (also, it may allow us to combine chains together). */
1343 add_looparound_copies (class loop
*loop
, chain_p chain
)
1346 dref ref
, root
= get_chain_root (chain
);
1349 if (chain
->type
== CT_STORE_STORE
)
1352 FOR_EACH_VEC_ELT (chain
->refs
, i
, ref
)
1354 phi
= find_looparound_phi (loop
, ref
, root
);
1358 bitmap_set_bit (looparound_phis
, SSA_NAME_VERSION (PHI_RESULT (phi
)));
1359 insert_looparound_copy (chain
, ref
, phi
);
1363 /* Find roots of the values and determine distances in the component COMP.
1364 The references are redistributed into CHAINS. LOOP is the current
1368 determine_roots_comp (class loop
*loop
,
1369 struct component
*comp
,
1370 vec
<chain_p
> *chains
)
1374 chain_p chain
= NULL
;
1375 widest_int last_ofs
= 0;
1376 enum chain_type type
;
1378 /* Invariants are handled specially. */
1379 if (comp
->comp_step
== RS_INVARIANT
)
1381 chain
= make_invariant_chain (comp
);
1382 chains
->safe_push (chain
);
1386 /* Trivial component. */
1387 if (comp
->refs
.length () <= 1)
1389 if (comp
->refs
.length () == 1)
1391 free (comp
->refs
[0]);
1392 comp
->refs
.truncate (0);
1397 comp
->refs
.qsort (order_drefs
);
1399 /* For Store-Store chain, we only support load if it is dominated by a
1400 store statement in the same iteration of loop. */
1401 if (comp
->eliminate_store_p
)
1402 for (a
= NULL
, i
= 0; i
< comp
->refs
.length (); i
++)
1404 if (DR_IS_WRITE (comp
->refs
[i
]->ref
))
1406 else if (a
== NULL
|| a
->offset
!= comp
->refs
[i
]->offset
)
1408 /* If there is load that is not dominated by a store in the
1409 same iteration of loop, clear the flag so no Store-Store
1410 chain is generated for this component. */
1411 comp
->eliminate_store_p
= false;
1416 /* Determine roots and create chains for components. */
1417 FOR_EACH_VEC_ELT (comp
->refs
, i
, a
)
1420 || (chain
->type
== CT_LOAD
&& DR_IS_WRITE (a
->ref
))
1421 || (!comp
->eliminate_store_p
&& DR_IS_WRITE (a
->ref
))
1422 || wi::leu_p (MAX_DISTANCE
, a
->offset
- last_ofs
))
1424 if (nontrivial_chain_p (chain
))
1426 add_looparound_copies (loop
, chain
);
1427 chains
->safe_push (chain
);
1430 release_chain (chain
);
1432 /* Determine type of the chain. If the root reference is a load,
1433 this can only be a CT_LOAD chain; other chains are intialized
1434 to CT_STORE_LOAD and might be promoted to CT_STORE_STORE when
1435 new reference is added. */
1436 type
= DR_IS_READ (a
->ref
) ? CT_LOAD
: CT_STORE_LOAD
;
1437 chain
= make_rooted_chain (a
, type
);
1438 last_ofs
= a
->offset
;
1442 add_ref_to_chain (chain
, a
);
1445 if (nontrivial_chain_p (chain
))
1447 add_looparound_copies (loop
, chain
);
1448 chains
->safe_push (chain
);
1451 release_chain (chain
);
1454 /* Find roots of the values and determine distances in components COMPS, and
1455 separates the references to CHAINS. LOOP is the current loop. */
1458 determine_roots (class loop
*loop
,
1459 struct component
*comps
, vec
<chain_p
> *chains
)
1461 struct component
*comp
;
1463 for (comp
= comps
; comp
; comp
= comp
->next
)
1464 determine_roots_comp (loop
, comp
, chains
);
1467 /* Replace the reference in statement STMT with temporary variable
1468 NEW_TREE. If SET is true, NEW_TREE is instead initialized to the value of
1469 the reference in the statement. IN_LHS is true if the reference
1470 is in the lhs of STMT, false if it is in rhs. */
1473 replace_ref_with (gimple
*stmt
, tree new_tree
, bool set
, bool in_lhs
)
1477 gimple_stmt_iterator bsi
, psi
;
1479 if (gimple_code (stmt
) == GIMPLE_PHI
)
1481 gcc_assert (!in_lhs
&& !set
);
1483 val
= PHI_RESULT (stmt
);
1484 bsi
= gsi_after_labels (gimple_bb (stmt
));
1485 psi
= gsi_for_stmt (stmt
);
1486 remove_phi_node (&psi
, false);
1488 /* Turn the phi node into GIMPLE_ASSIGN. */
1489 new_stmt
= gimple_build_assign (val
, new_tree
);
1490 gsi_insert_before (&bsi
, new_stmt
, GSI_NEW_STMT
);
1494 /* Since the reference is of gimple_reg type, it should only
1495 appear as lhs or rhs of modify statement. */
1496 gcc_assert (is_gimple_assign (stmt
));
1498 bsi
= gsi_for_stmt (stmt
);
1500 /* If we do not need to initialize NEW_TREE, just replace the use of OLD. */
1503 gcc_assert (!in_lhs
);
1504 gimple_assign_set_rhs_from_tree (&bsi
, new_tree
);
1505 stmt
= gsi_stmt (bsi
);
1512 /* We have statement
1516 If OLD is a memory reference, then VAL is gimple_val, and we transform
1522 Otherwise, we are replacing a combination chain,
1523 VAL is the expression that performs the combination, and OLD is an
1524 SSA name. In this case, we transform the assignment to
1531 val
= gimple_assign_lhs (stmt
);
1532 if (TREE_CODE (val
) != SSA_NAME
)
1534 val
= gimple_assign_rhs1 (stmt
);
1535 gcc_assert (gimple_assign_single_p (stmt
));
1536 if (TREE_CLOBBER_P (val
))
1537 val
= get_or_create_ssa_default_def (cfun
, SSA_NAME_VAR (new_tree
));
1539 gcc_assert (gimple_assign_copy_p (stmt
));
1551 val
= gimple_assign_lhs (stmt
);
1554 new_stmt
= gimple_build_assign (new_tree
, unshare_expr (val
));
1555 gsi_insert_after (&bsi
, new_stmt
, GSI_NEW_STMT
);
1558 /* Returns a memory reference to DR in the (NITERS + ITER)-th iteration
1559 of the loop it was analyzed in. Append init stmts to STMTS. */
1562 ref_at_iteration (data_reference_p dr
, int iter
,
1563 gimple_seq
*stmts
, tree niters
= NULL_TREE
)
1565 tree off
= DR_OFFSET (dr
);
1566 tree coff
= DR_INIT (dr
);
1567 tree ref
= DR_REF (dr
);
1568 enum tree_code ref_code
= ERROR_MARK
;
1569 tree ref_type
= NULL_TREE
;
1570 tree ref_op1
= NULL_TREE
;
1571 tree ref_op2
= NULL_TREE
;
1576 new_offset
= size_binop (MULT_EXPR
, DR_STEP (dr
), ssize_int (iter
));
1577 if (TREE_CODE (new_offset
) == INTEGER_CST
)
1578 coff
= size_binop (PLUS_EXPR
, coff
, new_offset
);
1580 off
= size_binop (PLUS_EXPR
, off
, new_offset
);
1583 if (niters
!= NULL_TREE
)
1585 niters
= fold_convert (ssizetype
, niters
);
1586 new_offset
= size_binop (MULT_EXPR
, DR_STEP (dr
), niters
);
1587 if (TREE_CODE (niters
) == INTEGER_CST
)
1588 coff
= size_binop (PLUS_EXPR
, coff
, new_offset
);
1590 off
= size_binop (PLUS_EXPR
, off
, new_offset
);
1593 /* While data-ref analysis punts on bit offsets it still handles
1594 bitfield accesses at byte boundaries. Cope with that. Note that
1595 if the bitfield object also starts at a byte-boundary we can simply
1596 replicate the COMPONENT_REF, but we have to subtract the component's
1597 byte-offset from the MEM_REF address first.
1598 Otherwise we simply build a BIT_FIELD_REF knowing that the bits
1599 start at offset zero. */
1600 if (TREE_CODE (ref
) == COMPONENT_REF
1601 && DECL_BIT_FIELD (TREE_OPERAND (ref
, 1)))
1603 unsigned HOST_WIDE_INT boff
;
1604 tree field
= TREE_OPERAND (ref
, 1);
1605 tree offset
= component_ref_field_offset (ref
);
1606 ref_type
= TREE_TYPE (ref
);
1607 boff
= tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
));
1608 /* This can occur in Ada. See the comment in get_bit_range. */
1609 if (boff
% BITS_PER_UNIT
!= 0
1610 || !tree_fits_uhwi_p (offset
))
1612 ref_code
= BIT_FIELD_REF
;
1613 ref_op1
= DECL_SIZE (field
);
1614 ref_op2
= bitsize_zero_node
;
1618 boff
>>= LOG2_BITS_PER_UNIT
;
1619 boff
+= tree_to_uhwi (offset
);
1620 coff
= size_binop (MINUS_EXPR
, coff
, ssize_int (boff
));
1621 ref_code
= COMPONENT_REF
;
1623 ref_op2
= TREE_OPERAND (ref
, 2);
1624 ref
= TREE_OPERAND (ref
, 0);
1627 tree addr
= fold_build_pointer_plus (DR_BASE_ADDRESS (dr
), off
);
1628 addr
= force_gimple_operand_1 (unshare_expr (addr
), stmts
,
1629 is_gimple_mem_ref_addr
, NULL_TREE
);
1630 tree alias_ptr
= fold_convert (reference_alias_ptr_type (ref
), coff
);
1631 tree type
= build_aligned_type (TREE_TYPE (ref
),
1632 get_object_alignment (ref
));
1633 ref
= build2 (MEM_REF
, type
, addr
, alias_ptr
);
1635 ref
= build3 (ref_code
, ref_type
, ref
, ref_op1
, ref_op2
);
1639 /* Get the initialization expression for the INDEX-th temporary variable
1643 get_init_expr (chain_p chain
, unsigned index
)
1645 if (chain
->type
== CT_COMBINATION
)
1647 tree e1
= get_init_expr (chain
->ch1
, index
);
1648 tree e2
= get_init_expr (chain
->ch2
, index
);
1650 return fold_build2 (chain
->op
, chain
->rslt_type
, e1
, e2
);
1653 return chain
->inits
[index
];
1656 /* Returns a new temporary variable used for the I-th variable carrying
1657 value of REF. The variable's uid is marked in TMP_VARS. */
1660 predcom_tmp_var (tree ref
, unsigned i
, bitmap tmp_vars
)
1662 tree type
= TREE_TYPE (ref
);
1663 /* We never access the components of the temporary variable in predictive
1665 tree var
= create_tmp_reg (type
, get_lsm_tmp_name (ref
, i
));
1666 bitmap_set_bit (tmp_vars
, DECL_UID (var
));
1670 /* Creates the variables for CHAIN, as well as phi nodes for them and
1671 initialization on entry to LOOP. Uids of the newly created
1672 temporary variables are marked in TMP_VARS. */
1675 initialize_root_vars (class loop
*loop
, chain_p chain
, bitmap tmp_vars
)
1678 unsigned n
= chain
->length
;
1679 dref root
= get_chain_root (chain
);
1680 bool reuse_first
= !chain
->has_max_use_after
;
1681 tree ref
, init
, var
, next
;
1684 edge entry
= loop_preheader_edge (loop
), latch
= loop_latch_edge (loop
);
1686 /* If N == 0, then all the references are within the single iteration. And
1687 since this is an nonempty chain, reuse_first cannot be true. */
1688 gcc_assert (n
> 0 || !reuse_first
);
1690 chain
->vars
.create (n
+ 1);
1692 if (chain
->type
== CT_COMBINATION
)
1693 ref
= gimple_assign_lhs (root
->stmt
);
1695 ref
= DR_REF (root
->ref
);
1697 for (i
= 0; i
< n
+ (reuse_first
? 0 : 1); i
++)
1699 var
= predcom_tmp_var (ref
, i
, tmp_vars
);
1700 chain
->vars
.quick_push (var
);
1703 chain
->vars
.quick_push (chain
->vars
[0]);
1705 FOR_EACH_VEC_ELT (chain
->vars
, i
, var
)
1706 chain
->vars
[i
] = make_ssa_name (var
);
1708 for (i
= 0; i
< n
; i
++)
1710 var
= chain
->vars
[i
];
1711 next
= chain
->vars
[i
+ 1];
1712 init
= get_init_expr (chain
, i
);
1714 init
= force_gimple_operand (init
, &stmts
, true, NULL_TREE
);
1716 gsi_insert_seq_on_edge_immediate (entry
, stmts
);
1718 phi
= create_phi_node (var
, loop
->header
);
1719 add_phi_arg (phi
, init
, entry
, UNKNOWN_LOCATION
);
1720 add_phi_arg (phi
, next
, latch
, UNKNOWN_LOCATION
);
1724 /* For inter-iteration store elimination CHAIN in LOOP, returns true if
1725 all stores to be eliminated store loop invariant values into memory.
1726 In this case, we can use these invariant values directly after LOOP. */
1729 is_inv_store_elimination_chain (class loop
*loop
, chain_p chain
)
1731 if (chain
->length
== 0 || chain
->type
!= CT_STORE_STORE
)
1734 gcc_assert (!chain
->has_max_use_after
);
1736 /* If loop iterates for unknown times or fewer times than chain->length,
1737 we still need to setup root variable and propagate it with PHI node. */
1738 tree niters
= number_of_latch_executions (loop
);
1739 if (TREE_CODE (niters
) != INTEGER_CST
1740 || wi::leu_p (wi::to_wide (niters
), chain
->length
))
1743 /* Check stores in chain for elimination if they only store loop invariant
1745 for (unsigned i
= 0; i
< chain
->length
; i
++)
1747 dref a
= get_chain_last_write_at (chain
, i
);
1751 gimple
*def_stmt
, *stmt
= a
->stmt
;
1752 if (!gimple_assign_single_p (stmt
))
1755 tree val
= gimple_assign_rhs1 (stmt
);
1756 if (TREE_CLOBBER_P (val
))
1759 if (CONSTANT_CLASS_P (val
))
1762 if (TREE_CODE (val
) != SSA_NAME
)
1765 def_stmt
= SSA_NAME_DEF_STMT (val
);
1766 if (gimple_nop_p (def_stmt
))
1769 if (flow_bb_inside_loop_p (loop
, gimple_bb (def_stmt
)))
1775 /* Creates root variables for store elimination CHAIN in which stores for
1776 elimination only store loop invariant values. In this case, we neither
1777 need to load root variables before loop nor propagate it with PHI nodes. */
1780 initialize_root_vars_store_elim_1 (chain_p chain
)
1783 unsigned i
, n
= chain
->length
;
1785 chain
->vars
.create (n
);
1786 chain
->vars
.safe_grow_cleared (n
);
1788 /* Initialize root value for eliminated stores at each distance. */
1789 for (i
= 0; i
< n
; i
++)
1791 dref a
= get_chain_last_write_at (chain
, i
);
1795 var
= gimple_assign_rhs1 (a
->stmt
);
1796 chain
->vars
[a
->distance
] = var
;
1799 /* We don't propagate values with PHI nodes, so manually propagate value
1800 to bubble positions. */
1801 var
= chain
->vars
[0];
1802 for (i
= 1; i
< n
; i
++)
1804 if (chain
->vars
[i
] != NULL_TREE
)
1806 var
= chain
->vars
[i
];
1809 chain
->vars
[i
] = var
;
1812 /* Revert the vector. */
1813 for (i
= 0; i
< n
/ 2; i
++)
1814 std::swap (chain
->vars
[i
], chain
->vars
[n
- i
- 1]);
1817 /* Creates root variables for store elimination CHAIN in which stores for
1818 elimination store loop variant values. In this case, we may need to
1819 load root variables before LOOP and propagate it with PHI nodes. Uids
1820 of the newly created root variables are marked in TMP_VARS. */
1823 initialize_root_vars_store_elim_2 (class loop
*loop
,
1824 chain_p chain
, bitmap tmp_vars
)
1826 unsigned i
, n
= chain
->length
;
1827 tree ref
, init
, var
, next
, val
, phi_result
;
1831 chain
->vars
.create (n
);
1833 ref
= DR_REF (get_chain_root (chain
)->ref
);
1834 for (i
= 0; i
< n
; i
++)
1836 var
= predcom_tmp_var (ref
, i
, tmp_vars
);
1837 chain
->vars
.quick_push (var
);
1840 FOR_EACH_VEC_ELT (chain
->vars
, i
, var
)
1841 chain
->vars
[i
] = make_ssa_name (var
);
1843 /* Root values are either rhs operand of stores to be eliminated, or
1844 loaded from memory before loop. */
1845 auto_vec
<tree
> vtemps
;
1846 vtemps
.safe_grow_cleared (n
);
1847 for (i
= 0; i
< n
; i
++)
1849 init
= get_init_expr (chain
, i
);
1850 if (init
== NULL_TREE
)
1852 /* Root value is rhs operand of the store to be eliminated if
1853 it isn't loaded from memory before loop. */
1854 dref a
= get_chain_last_write_at (chain
, i
);
1855 val
= gimple_assign_rhs1 (a
->stmt
);
1856 if (TREE_CLOBBER_P (val
))
1858 val
= get_or_create_ssa_default_def (cfun
, SSA_NAME_VAR (var
));
1859 gimple_assign_set_rhs1 (a
->stmt
, val
);
1862 vtemps
[n
- i
- 1] = val
;
1866 edge latch
= loop_latch_edge (loop
);
1867 edge entry
= loop_preheader_edge (loop
);
1869 /* Root value is loaded from memory before loop, we also need
1870 to add PHI nodes to propagate the value across iterations. */
1871 init
= force_gimple_operand (init
, &stmts
, true, NULL_TREE
);
1873 gsi_insert_seq_on_edge_immediate (entry
, stmts
);
1875 next
= chain
->vars
[n
- i
];
1876 phi_result
= copy_ssa_name (next
);
1877 gphi
*phi
= create_phi_node (phi_result
, loop
->header
);
1878 add_phi_arg (phi
, init
, entry
, UNKNOWN_LOCATION
);
1879 add_phi_arg (phi
, next
, latch
, UNKNOWN_LOCATION
);
1880 vtemps
[n
- i
- 1] = phi_result
;
1884 /* Find the insertion position. */
1885 dref last
= get_chain_root (chain
);
1886 for (i
= 0; i
< chain
->refs
.length (); i
++)
1888 if (chain
->refs
[i
]->pos
> last
->pos
)
1889 last
= chain
->refs
[i
];
1892 gimple_stmt_iterator gsi
= gsi_for_stmt (last
->stmt
);
1894 /* Insert statements copying root value to root variable. */
1895 for (i
= 0; i
< n
; i
++)
1897 var
= chain
->vars
[i
];
1899 stmt
= gimple_build_assign (var
, val
);
1900 gsi_insert_after (&gsi
, stmt
, GSI_NEW_STMT
);
1904 /* Generates stores for CHAIN's eliminated stores in LOOP's last
1905 (CHAIN->length - 1) iterations. */
1908 finalize_eliminated_stores (class loop
*loop
, chain_p chain
)
1910 unsigned i
, n
= chain
->length
;
1912 for (i
= 0; i
< n
; i
++)
1914 tree var
= chain
->vars
[i
];
1915 tree fini
= chain
->finis
[n
- i
- 1];
1916 gimple
*stmt
= gimple_build_assign (fini
, var
);
1918 gimple_seq_add_stmt_without_update (&chain
->fini_seq
, stmt
);
1921 if (chain
->fini_seq
)
1923 gsi_insert_seq_on_edge_immediate (single_exit (loop
), chain
->fini_seq
);
1924 chain
->fini_seq
= NULL
;
1928 /* Initializes a variable for load motion for ROOT and prepares phi nodes and
1929 initialization on entry to LOOP if necessary. The ssa name for the variable
1930 is stored in VARS. If WRITTEN is true, also a phi node to copy its value
1931 around the loop is created. Uid of the newly created temporary variable
1932 is marked in TMP_VARS. INITS is the list containing the (single)
1936 initialize_root_vars_lm (class loop
*loop
, dref root
, bool written
,
1937 vec
<tree
> *vars
, vec
<tree
> inits
,
1941 tree ref
= DR_REF (root
->ref
), init
, var
, next
;
1944 edge entry
= loop_preheader_edge (loop
), latch
= loop_latch_edge (loop
);
1946 /* Find the initializer for the variable, and check that it cannot
1950 vars
->create (written
? 2 : 1);
1951 var
= predcom_tmp_var (ref
, 0, tmp_vars
);
1952 vars
->quick_push (var
);
1954 vars
->quick_push ((*vars
)[0]);
1956 FOR_EACH_VEC_ELT (*vars
, i
, var
)
1957 (*vars
)[i
] = make_ssa_name (var
);
1961 init
= force_gimple_operand (init
, &stmts
, written
, NULL_TREE
);
1963 gsi_insert_seq_on_edge_immediate (entry
, stmts
);
1968 phi
= create_phi_node (var
, loop
->header
);
1969 add_phi_arg (phi
, init
, entry
, UNKNOWN_LOCATION
);
1970 add_phi_arg (phi
, next
, latch
, UNKNOWN_LOCATION
);
1974 gassign
*init_stmt
= gimple_build_assign (var
, init
);
1975 gsi_insert_on_edge_immediate (entry
, init_stmt
);
1980 /* Execute load motion for references in chain CHAIN. Uids of the newly
1981 created temporary variables are marked in TMP_VARS. */
1984 execute_load_motion (class loop
*loop
, chain_p chain
, bitmap tmp_vars
)
1986 auto_vec
<tree
> vars
;
1988 unsigned n_writes
= 0, ridx
, i
;
1991 gcc_assert (chain
->type
== CT_INVARIANT
);
1992 gcc_assert (!chain
->combined
);
1993 FOR_EACH_VEC_ELT (chain
->refs
, i
, a
)
1994 if (DR_IS_WRITE (a
->ref
))
1997 /* If there are no reads in the loop, there is nothing to do. */
1998 if (n_writes
== chain
->refs
.length ())
2001 initialize_root_vars_lm (loop
, get_chain_root (chain
), n_writes
> 0,
2002 &vars
, chain
->inits
, tmp_vars
);
2005 FOR_EACH_VEC_ELT (chain
->refs
, i
, a
)
2007 bool is_read
= DR_IS_READ (a
->ref
);
2009 if (DR_IS_WRITE (a
->ref
))
2015 var
= make_ssa_name (SSA_NAME_VAR (var
));
2022 replace_ref_with (a
->stmt
, vars
[ridx
],
2023 !is_read
, !is_read
);
2027 /* Returns the single statement in that NAME is used, excepting
2028 the looparound phi nodes contained in one of the chains. If there is no
2029 such statement, or more statements, NULL is returned. */
2032 single_nonlooparound_use (tree name
)
2035 imm_use_iterator it
;
2036 gimple
*stmt
, *ret
= NULL
;
2038 FOR_EACH_IMM_USE_FAST (use
, it
, name
)
2040 stmt
= USE_STMT (use
);
2042 if (gimple_code (stmt
) == GIMPLE_PHI
)
2044 /* Ignore uses in looparound phi nodes. Uses in other phi nodes
2045 could not be processed anyway, so just fail for them. */
2046 if (bitmap_bit_p (looparound_phis
,
2047 SSA_NAME_VERSION (PHI_RESULT (stmt
))))
2052 else if (is_gimple_debug (stmt
))
2054 else if (ret
!= NULL
)
2063 /* Remove statement STMT, as well as the chain of assignments in that it is
2067 remove_stmt (gimple
*stmt
)
2071 gimple_stmt_iterator psi
;
2073 if (gimple_code (stmt
) == GIMPLE_PHI
)
2075 name
= PHI_RESULT (stmt
);
2076 next
= single_nonlooparound_use (name
);
2077 reset_debug_uses (stmt
);
2078 psi
= gsi_for_stmt (stmt
);
2079 remove_phi_node (&psi
, true);
2082 || !gimple_assign_ssa_name_copy_p (next
)
2083 || gimple_assign_rhs1 (next
) != name
)
2091 gimple_stmt_iterator bsi
;
2093 bsi
= gsi_for_stmt (stmt
);
2095 name
= gimple_assign_lhs (stmt
);
2096 if (TREE_CODE (name
) == SSA_NAME
)
2098 next
= single_nonlooparound_use (name
);
2099 reset_debug_uses (stmt
);
2103 /* This is a store to be eliminated. */
2104 gcc_assert (gimple_vdef (stmt
) != NULL
);
2108 unlink_stmt_vdef (stmt
);
2109 gsi_remove (&bsi
, true);
2110 release_defs (stmt
);
2113 || !gimple_assign_ssa_name_copy_p (next
)
2114 || gimple_assign_rhs1 (next
) != name
)
2121 /* Perform the predictive commoning optimization for a chain CHAIN.
2122 Uids of the newly created temporary variables are marked in TMP_VARS.*/
2125 execute_pred_commoning_chain (class loop
*loop
, chain_p chain
,
2133 if (chain
->combined
)
2135 /* For combined chains, just remove the statements that are used to
2136 compute the values of the expression (except for the root one).
2137 We delay this until after all chains are processed. */
2139 else if (chain
->type
== CT_STORE_STORE
)
2141 if (chain
->length
> 0)
2143 if (chain
->inv_store_elimination
)
2145 /* If dead stores in this chain only store loop invariant
2146 values, we can simply record the invariant value and use
2147 it directly after loop. */
2148 initialize_root_vars_store_elim_1 (chain
);
2152 /* If dead stores in this chain store loop variant values,
2153 we need to set up the variables by loading from memory
2154 before loop and propagating it with PHI nodes. */
2155 initialize_root_vars_store_elim_2 (loop
, chain
, tmp_vars
);
2158 /* For inter-iteration store elimination chain, stores at each
2159 distance in loop's last (chain->length - 1) iterations can't
2160 be eliminated, because there is no following killing store.
2161 We need to generate these stores after loop. */
2162 finalize_eliminated_stores (loop
, chain
);
2165 bool last_store_p
= true;
2166 for (i
= chain
->refs
.length (); i
> 0; i
--)
2168 a
= chain
->refs
[i
- 1];
2169 /* Preserve the last store of the chain. Eliminate other stores
2170 which are killed by the last one. */
2171 if (DR_IS_WRITE (a
->ref
))
2174 last_store_p
= false;
2176 remove_stmt (a
->stmt
);
2181 /* Any load in Store-Store chain must be dominated by a previous
2182 store, we replace the load reference with rhs of the store. */
2183 dref b
= get_chain_last_write_before_load (chain
, i
- 1);
2184 gcc_assert (b
!= NULL
);
2185 var
= gimple_assign_rhs1 (b
->stmt
);
2186 replace_ref_with (a
->stmt
, var
, false, false);
2191 /* For non-combined chains, set up the variables that hold its value. */
2192 initialize_root_vars (loop
, chain
, tmp_vars
);
2193 a
= get_chain_root (chain
);
2194 in_lhs
= (chain
->type
== CT_STORE_LOAD
2195 || chain
->type
== CT_COMBINATION
);
2196 replace_ref_with (a
->stmt
, chain
->vars
[chain
->length
], true, in_lhs
);
2198 /* Replace the uses of the original references by these variables. */
2199 for (i
= 1; chain
->refs
.iterate (i
, &a
); i
++)
2201 var
= chain
->vars
[chain
->length
- a
->distance
];
2202 replace_ref_with (a
->stmt
, var
, false, false);
2207 /* Determines the unroll factor necessary to remove as many temporary variable
2208 copies as possible. CHAINS is the list of chains that will be
2212 determine_unroll_factor (vec
<chain_p
> chains
)
2215 unsigned factor
= 1, af
, nfactor
, i
;
2216 unsigned max
= param_max_unroll_times
;
2218 FOR_EACH_VEC_ELT (chains
, i
, chain
)
2220 if (chain
->type
== CT_INVARIANT
)
2222 /* For now we can't handle unrolling when eliminating stores. */
2223 else if (chain
->type
== CT_STORE_STORE
)
2226 if (chain
->combined
)
2228 /* For combined chains, we can't handle unrolling if we replace
2232 for (j
= 1; chain
->refs
.iterate (j
, &a
); j
++)
2233 if (gimple_code (a
->stmt
) == GIMPLE_PHI
)
2238 /* The best unroll factor for this chain is equal to the number of
2239 temporary variables that we create for it. */
2241 if (chain
->has_max_use_after
)
2244 nfactor
= factor
* af
/ gcd (factor
, af
);
2252 /* Perform the predictive commoning optimization for CHAINS.
2253 Uids of the newly created temporary variables are marked in TMP_VARS. */
2256 execute_pred_commoning (class loop
*loop
, vec
<chain_p
> chains
,
2262 FOR_EACH_VEC_ELT (chains
, i
, chain
)
2264 if (chain
->type
== CT_INVARIANT
)
2265 execute_load_motion (loop
, chain
, tmp_vars
);
2267 execute_pred_commoning_chain (loop
, chain
, tmp_vars
);
2270 FOR_EACH_VEC_ELT (chains
, i
, chain
)
2272 if (chain
->type
== CT_INVARIANT
)
2274 else if (chain
->combined
)
2276 /* For combined chains, just remove the statements that are used to
2277 compute the values of the expression (except for the root one). */
2280 for (j
= 1; chain
->refs
.iterate (j
, &a
); j
++)
2281 remove_stmt (a
->stmt
);
2285 update_ssa (TODO_update_ssa_only_virtuals
);
2288 /* For each reference in CHAINS, if its defining statement is
2289 phi node, record the ssa name that is defined by it. */
2292 replace_phis_by_defined_names (vec
<chain_p
> chains
)
2298 FOR_EACH_VEC_ELT (chains
, i
, chain
)
2299 FOR_EACH_VEC_ELT (chain
->refs
, j
, a
)
2301 if (gimple_code (a
->stmt
) == GIMPLE_PHI
)
2303 a
->name_defined_by_phi
= PHI_RESULT (a
->stmt
);
2309 /* For each reference in CHAINS, if name_defined_by_phi is not
2310 NULL, use it to set the stmt field. */
2313 replace_names_by_phis (vec
<chain_p
> chains
)
2319 FOR_EACH_VEC_ELT (chains
, i
, chain
)
2320 FOR_EACH_VEC_ELT (chain
->refs
, j
, a
)
2321 if (a
->stmt
== NULL
)
2323 a
->stmt
= SSA_NAME_DEF_STMT (a
->name_defined_by_phi
);
2324 gcc_assert (gimple_code (a
->stmt
) == GIMPLE_PHI
);
2325 a
->name_defined_by_phi
= NULL_TREE
;
2329 /* Wrapper over execute_pred_commoning, to pass it as a callback
2330 to tree_transform_and_unroll_loop. */
2334 vec
<chain_p
> chains
;
2339 execute_pred_commoning_cbck (class loop
*loop
, void *data
)
2341 struct epcc_data
*const dta
= (struct epcc_data
*) data
;
2343 /* Restore phi nodes that were replaced by ssa names before
2344 tree_transform_and_unroll_loop (see detailed description in
2345 tree_predictive_commoning_loop). */
2346 replace_names_by_phis (dta
->chains
);
2347 execute_pred_commoning (loop
, dta
->chains
, dta
->tmp_vars
);
2350 /* Base NAME and all the names in the chain of phi nodes that use it
2351 on variable VAR. The phi nodes are recognized by being in the copies of
2352 the header of the LOOP. */
2355 base_names_in_chain_on (class loop
*loop
, tree name
, tree var
)
2358 imm_use_iterator iter
;
2360 replace_ssa_name_symbol (name
, var
);
2365 FOR_EACH_IMM_USE_STMT (stmt
, iter
, name
)
2367 if (gimple_code (stmt
) == GIMPLE_PHI
2368 && flow_bb_inside_loop_p (loop
, gimple_bb (stmt
)))
2371 BREAK_FROM_IMM_USE_STMT (iter
);
2377 name
= PHI_RESULT (phi
);
2378 replace_ssa_name_symbol (name
, var
);
2382 /* Given an unrolled LOOP after predictive commoning, remove the
2383 register copies arising from phi nodes by changing the base
2384 variables of SSA names. TMP_VARS is the set of the temporary variables
2385 for those we want to perform this. */
2388 eliminate_temp_copies (class loop
*loop
, bitmap tmp_vars
)
2393 tree name
, use
, var
;
2396 e
= loop_latch_edge (loop
);
2397 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
2400 name
= PHI_RESULT (phi
);
2401 var
= SSA_NAME_VAR (name
);
2402 if (!var
|| !bitmap_bit_p (tmp_vars
, DECL_UID (var
)))
2404 use
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
2405 gcc_assert (TREE_CODE (use
) == SSA_NAME
);
2407 /* Base all the ssa names in the ud and du chain of NAME on VAR. */
2408 stmt
= SSA_NAME_DEF_STMT (use
);
2409 while (gimple_code (stmt
) == GIMPLE_PHI
2410 /* In case we could not unroll the loop enough to eliminate
2411 all copies, we may reach the loop header before the defining
2412 statement (in that case, some register copies will be present
2413 in loop latch in the final code, corresponding to the newly
2414 created looparound phi nodes). */
2415 && gimple_bb (stmt
) != loop
->header
)
2417 gcc_assert (single_pred_p (gimple_bb (stmt
)));
2418 use
= PHI_ARG_DEF (stmt
, 0);
2419 stmt
= SSA_NAME_DEF_STMT (use
);
2422 base_names_in_chain_on (loop
, use
, var
);
2426 /* Returns true if CHAIN is suitable to be combined. */
2429 chain_can_be_combined_p (chain_p chain
)
2431 return (!chain
->combined
2432 && (chain
->type
== CT_LOAD
|| chain
->type
== CT_COMBINATION
));
2435 /* Returns the modify statement that uses NAME. Skips over assignment
2436 statements, NAME is replaced with the actual name used in the returned
2440 find_use_stmt (tree
*name
)
2445 /* Skip over assignments. */
2448 stmt
= single_nonlooparound_use (*name
);
2452 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
2455 lhs
= gimple_assign_lhs (stmt
);
2456 if (TREE_CODE (lhs
) != SSA_NAME
)
2459 if (gimple_assign_copy_p (stmt
))
2461 rhs
= gimple_assign_rhs1 (stmt
);
2467 else if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt
))
2468 == GIMPLE_BINARY_RHS
)
2475 /* Returns true if we may perform reassociation for operation CODE in TYPE. */
2478 may_reassociate_p (tree type
, enum tree_code code
)
2480 if (FLOAT_TYPE_P (type
)
2481 && !flag_unsafe_math_optimizations
)
2484 return (commutative_tree_code (code
)
2485 && associative_tree_code (code
));
2488 /* If the operation used in STMT is associative and commutative, go through the
2489 tree of the same operations and returns its root. Distance to the root
2490 is stored in DISTANCE. */
2493 find_associative_operation_root (gimple
*stmt
, unsigned *distance
)
2497 enum tree_code code
= gimple_assign_rhs_code (stmt
);
2498 tree type
= TREE_TYPE (gimple_assign_lhs (stmt
));
2501 if (!may_reassociate_p (type
, code
))
2506 lhs
= gimple_assign_lhs (stmt
);
2507 gcc_assert (TREE_CODE (lhs
) == SSA_NAME
);
2509 next
= find_use_stmt (&lhs
);
2511 || gimple_assign_rhs_code (next
) != code
)
2523 /* Returns the common statement in that NAME1 and NAME2 have a use. If there
2524 is no such statement, returns NULL_TREE. In case the operation used on
2525 NAME1 and NAME2 is associative and commutative, returns the root of the
2526 tree formed by this operation instead of the statement that uses NAME1 or
2530 find_common_use_stmt (tree
*name1
, tree
*name2
)
2532 gimple
*stmt1
, *stmt2
;
2534 stmt1
= find_use_stmt (name1
);
2538 stmt2
= find_use_stmt (name2
);
2545 stmt1
= find_associative_operation_root (stmt1
, NULL
);
2548 stmt2
= find_associative_operation_root (stmt2
, NULL
);
2552 return (stmt1
== stmt2
? stmt1
: NULL
);
2555 /* Checks whether R1 and R2 are combined together using CODE, with the result
2556 in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order R2 CODE R1
2557 if it is true. If CODE is ERROR_MARK, set these values instead. */
2560 combinable_refs_p (dref r1
, dref r2
,
2561 enum tree_code
*code
, bool *swap
, tree
*rslt_type
)
2563 enum tree_code acode
;
2569 name1
= name_for_ref (r1
);
2570 name2
= name_for_ref (r2
);
2571 gcc_assert (name1
!= NULL_TREE
&& name2
!= NULL_TREE
);
2573 stmt
= find_common_use_stmt (&name1
, &name2
);
2576 /* A simple post-dominance check - make sure the combination
2577 is executed under the same condition as the references. */
2578 || (gimple_bb (stmt
) != gimple_bb (r1
->stmt
)
2579 && gimple_bb (stmt
) != gimple_bb (r2
->stmt
)))
2582 acode
= gimple_assign_rhs_code (stmt
);
2583 aswap
= (!commutative_tree_code (acode
)
2584 && gimple_assign_rhs1 (stmt
) != name1
);
2585 atype
= TREE_TYPE (gimple_assign_lhs (stmt
));
2587 if (*code
== ERROR_MARK
)
2595 return (*code
== acode
2597 && *rslt_type
== atype
);
2600 /* Remove OP from the operation on rhs of STMT, and replace STMT with
2601 an assignment of the remaining operand. */
2604 remove_name_from_operation (gimple
*stmt
, tree op
)
2607 gimple_stmt_iterator si
;
2609 gcc_assert (is_gimple_assign (stmt
));
2611 if (gimple_assign_rhs1 (stmt
) == op
)
2612 other_op
= gimple_assign_rhs2 (stmt
);
2614 other_op
= gimple_assign_rhs1 (stmt
);
2616 si
= gsi_for_stmt (stmt
);
2617 gimple_assign_set_rhs_from_tree (&si
, other_op
);
2619 /* We should not have reallocated STMT. */
2620 gcc_assert (gsi_stmt (si
) == stmt
);
2625 /* Reassociates the expression in that NAME1 and NAME2 are used so that they
2626 are combined in a single statement, and returns this statement. */
2629 reassociate_to_the_same_stmt (tree name1
, tree name2
)
2631 gimple
*stmt1
, *stmt2
, *root1
, *root2
, *s1
, *s2
;
2632 gassign
*new_stmt
, *tmp_stmt
;
2633 tree new_name
, tmp_name
, var
, r1
, r2
;
2634 unsigned dist1
, dist2
;
2635 enum tree_code code
;
2636 tree type
= TREE_TYPE (name1
);
2637 gimple_stmt_iterator bsi
;
2639 stmt1
= find_use_stmt (&name1
);
2640 stmt2
= find_use_stmt (&name2
);
2641 root1
= find_associative_operation_root (stmt1
, &dist1
);
2642 root2
= find_associative_operation_root (stmt2
, &dist2
);
2643 code
= gimple_assign_rhs_code (stmt1
);
2645 gcc_assert (root1
&& root2
&& root1
== root2
2646 && code
== gimple_assign_rhs_code (stmt2
));
2648 /* Find the root of the nearest expression in that both NAME1 and NAME2
2655 while (dist1
> dist2
)
2657 s1
= find_use_stmt (&r1
);
2658 r1
= gimple_assign_lhs (s1
);
2661 while (dist2
> dist1
)
2663 s2
= find_use_stmt (&r2
);
2664 r2
= gimple_assign_lhs (s2
);
2670 s1
= find_use_stmt (&r1
);
2671 r1
= gimple_assign_lhs (s1
);
2672 s2
= find_use_stmt (&r2
);
2673 r2
= gimple_assign_lhs (s2
);
2676 /* Remove NAME1 and NAME2 from the statements in that they are used
2678 remove_name_from_operation (stmt1
, name1
);
2679 remove_name_from_operation (stmt2
, name2
);
2681 /* Insert the new statement combining NAME1 and NAME2 before S1, and
2682 combine it with the rhs of S1. */
2683 var
= create_tmp_reg (type
, "predreastmp");
2684 new_name
= make_ssa_name (var
);
2685 new_stmt
= gimple_build_assign (new_name
, code
, name1
, name2
);
2687 var
= create_tmp_reg (type
, "predreastmp");
2688 tmp_name
= make_ssa_name (var
);
2690 /* Rhs of S1 may now be either a binary expression with operation
2691 CODE, or gimple_val (in case that stmt1 == s1 or stmt2 == s1,
2692 so that name1 or name2 was removed from it). */
2693 tmp_stmt
= gimple_build_assign (tmp_name
, gimple_assign_rhs_code (s1
),
2694 gimple_assign_rhs1 (s1
),
2695 gimple_assign_rhs2 (s1
));
2697 bsi
= gsi_for_stmt (s1
);
2698 gimple_assign_set_rhs_with_ops (&bsi
, code
, new_name
, tmp_name
);
2699 s1
= gsi_stmt (bsi
);
2702 gsi_insert_before (&bsi
, new_stmt
, GSI_SAME_STMT
);
2703 gsi_insert_before (&bsi
, tmp_stmt
, GSI_SAME_STMT
);
2708 /* Returns the statement that combines references R1 and R2. In case R1
2709 and R2 are not used in the same statement, but they are used with an
2710 associative and commutative operation in the same expression, reassociate
2711 the expression so that they are used in the same statement. */
2714 stmt_combining_refs (dref r1
, dref r2
)
2716 gimple
*stmt1
, *stmt2
;
2717 tree name1
= name_for_ref (r1
);
2718 tree name2
= name_for_ref (r2
);
2720 stmt1
= find_use_stmt (&name1
);
2721 stmt2
= find_use_stmt (&name2
);
2725 return reassociate_to_the_same_stmt (name1
, name2
);
2728 /* Tries to combine chains CH1 and CH2 together. If this succeeds, the
2729 description of the new chain is returned, otherwise we return NULL. */
2732 combine_chains (chain_p ch1
, chain_p ch2
)
2735 enum tree_code op
= ERROR_MARK
;
2739 tree rslt_type
= NULL_TREE
;
2743 if (ch1
->length
!= ch2
->length
)
2746 if (ch1
->refs
.length () != ch2
->refs
.length ())
2749 for (i
= 0; (ch1
->refs
.iterate (i
, &r1
)
2750 && ch2
->refs
.iterate (i
, &r2
)); i
++)
2752 if (r1
->distance
!= r2
->distance
)
2755 if (!combinable_refs_p (r1
, r2
, &op
, &swap
, &rslt_type
))
2760 std::swap (ch1
, ch2
);
2762 new_chain
= XCNEW (struct chain
);
2763 new_chain
->type
= CT_COMBINATION
;
2765 new_chain
->ch1
= ch1
;
2766 new_chain
->ch2
= ch2
;
2767 new_chain
->rslt_type
= rslt_type
;
2768 new_chain
->length
= ch1
->length
;
2770 for (i
= 0; (ch1
->refs
.iterate (i
, &r1
)
2771 && ch2
->refs
.iterate (i
, &r2
)); i
++)
2773 nw
= XCNEW (class dref_d
);
2774 nw
->stmt
= stmt_combining_refs (r1
, r2
);
2775 nw
->distance
= r1
->distance
;
2777 new_chain
->refs
.safe_push (nw
);
2780 ch1
->combined
= true;
2781 ch2
->combined
= true;
2785 /* Recursively update position information of all offspring chains to ROOT
2786 chain's position information. */
2789 update_pos_for_combined_chains (chain_p root
)
2791 chain_p ch1
= root
->ch1
, ch2
= root
->ch2
;
2792 dref ref
, ref1
, ref2
;
2793 for (unsigned j
= 0; (root
->refs
.iterate (j
, &ref
)
2794 && ch1
->refs
.iterate (j
, &ref1
)
2795 && ch2
->refs
.iterate (j
, &ref2
)); ++j
)
2796 ref1
->pos
= ref2
->pos
= ref
->pos
;
2798 if (ch1
->type
== CT_COMBINATION
)
2799 update_pos_for_combined_chains (ch1
);
2800 if (ch2
->type
== CT_COMBINATION
)
2801 update_pos_for_combined_chains (ch2
);
2804 /* Returns true if statement S1 dominates statement S2. */
2807 pcom_stmt_dominates_stmt_p (gimple
*s1
, gimple
*s2
)
2809 basic_block bb1
= gimple_bb (s1
), bb2
= gimple_bb (s2
);
2811 if (!bb1
|| s1
== s2
)
2815 return gimple_uid (s1
) < gimple_uid (s2
);
2817 return dominated_by_p (CDI_DOMINATORS
, bb2
, bb1
);
2820 /* Try to combine the CHAINS in LOOP. */
2823 try_combine_chains (class loop
*loop
, vec
<chain_p
> *chains
)
2826 chain_p ch1
, ch2
, cch
;
2827 auto_vec
<chain_p
> worklist
;
2828 bool combined_p
= false;
2830 FOR_EACH_VEC_ELT (*chains
, i
, ch1
)
2831 if (chain_can_be_combined_p (ch1
))
2832 worklist
.safe_push (ch1
);
2834 while (!worklist
.is_empty ())
2836 ch1
= worklist
.pop ();
2837 if (!chain_can_be_combined_p (ch1
))
2840 FOR_EACH_VEC_ELT (*chains
, j
, ch2
)
2842 if (!chain_can_be_combined_p (ch2
))
2845 cch
= combine_chains (ch1
, ch2
);
2848 worklist
.safe_push (cch
);
2849 chains
->safe_push (cch
);
2858 /* Setup UID for all statements in dominance order. */
2859 basic_block
*bbs
= get_loop_body_in_dom_order (loop
);
2860 renumber_gimple_stmt_uids_in_blocks (bbs
, loop
->num_nodes
);
2863 /* Re-association in combined chains may generate statements different to
2864 order of references of the original chain. We need to keep references
2865 of combined chain in dominance order so that all uses will be inserted
2866 after definitions. Note:
2867 A) This is necessary for all combined chains.
2868 B) This is only necessary for ZERO distance references because other
2869 references inherit value from loop carried PHIs.
2871 We first update position information for all combined chains. */
2873 for (i
= 0; chains
->iterate (i
, &ch1
); ++i
)
2875 if (ch1
->type
!= CT_COMBINATION
|| ch1
->combined
)
2878 for (j
= 0; ch1
->refs
.iterate (j
, &ref
); ++j
)
2879 ref
->pos
= gimple_uid (ref
->stmt
);
2881 update_pos_for_combined_chains (ch1
);
2883 /* Then sort references according to newly updated position information. */
2884 for (i
= 0; chains
->iterate (i
, &ch1
); ++i
)
2886 if (ch1
->type
!= CT_COMBINATION
&& !ch1
->combined
)
2889 /* Find the first reference with non-ZERO distance. */
2890 if (ch1
->length
== 0)
2891 j
= ch1
->refs
.length();
2894 for (j
= 0; ch1
->refs
.iterate (j
, &ref
); ++j
)
2895 if (ref
->distance
!= 0)
2899 /* Sort all ZERO distance references by position. */
2900 qsort (&ch1
->refs
[0], j
, sizeof (ch1
->refs
[0]), order_drefs_by_pos
);
2905 /* For ZERO length chain, has_max_use_after must be true since root
2906 combined stmt must dominates others. */
2907 if (ch1
->length
== 0)
2909 ch1
->has_max_use_after
= true;
2912 /* Check if there is use at max distance after root for combined chains
2913 and set flag accordingly. */
2914 ch1
->has_max_use_after
= false;
2915 gimple
*root_stmt
= get_chain_root (ch1
)->stmt
;
2916 for (j
= 1; ch1
->refs
.iterate (j
, &ref
); ++j
)
2918 if (ref
->distance
== ch1
->length
2919 && !pcom_stmt_dominates_stmt_p (ref
->stmt
, root_stmt
))
2921 ch1
->has_max_use_after
= true;
2928 /* Prepare initializers for store elimination CHAIN in LOOP. Returns false
2929 if this is impossible because one of these initializers may trap, true
2933 prepare_initializers_chain_store_elim (class loop
*loop
, chain_p chain
)
2935 unsigned i
, n
= chain
->length
;
2937 /* For now we can't eliminate stores if some of them are conditional
2939 if (!chain
->all_always_accessed
)
2942 /* Nothing to intialize for intra-iteration store elimination. */
2943 if (n
== 0 && chain
->type
== CT_STORE_STORE
)
2946 /* For store elimination chain, there is nothing to initialize if stores
2947 to be eliminated only store loop invariant values into memory. */
2948 if (chain
->type
== CT_STORE_STORE
2949 && is_inv_store_elimination_chain (loop
, chain
))
2951 chain
->inv_store_elimination
= true;
2955 chain
->inits
.create (n
);
2956 chain
->inits
.safe_grow_cleared (n
);
2958 /* For store eliminatin chain like below:
2960 for (i = 0; i < len; i++)
2967 store to a[i + 1] is missed in loop body, it acts like bubbles. The
2968 content of a[i + 1] remain the same if the loop iterates fewer times
2969 than chain->length. We need to set up root variables for such stores
2970 by loading from memory before loop. Note we only need to load bubble
2971 elements because loop body is guaranteed to be executed at least once
2972 after loop's preheader edge. */
2973 auto_vec
<bool> bubbles
;
2974 bubbles
.safe_grow_cleared (n
+ 1);
2975 for (i
= 0; i
< chain
->refs
.length (); i
++)
2976 bubbles
[chain
->refs
[i
]->distance
] = true;
2978 struct data_reference
*dr
= get_chain_root (chain
)->ref
;
2979 for (i
= 0; i
< n
; i
++)
2984 gimple_seq stmts
= NULL
;
2986 tree init
= ref_at_iteration (dr
, (int) 0 - i
, &stmts
);
2988 gimple_seq_add_seq_without_update (&chain
->init_seq
, stmts
);
2990 chain
->inits
[i
] = init
;
2996 /* Prepare initializers for CHAIN in LOOP. Returns false if this is
2997 impossible because one of these initializers may trap, true otherwise. */
3000 prepare_initializers_chain (class loop
*loop
, chain_p chain
)
3002 unsigned i
, n
= (chain
->type
== CT_INVARIANT
) ? 1 : chain
->length
;
3003 struct data_reference
*dr
= get_chain_root (chain
)->ref
;
3006 edge entry
= loop_preheader_edge (loop
);
3008 if (chain
->type
== CT_STORE_STORE
)
3009 return prepare_initializers_chain_store_elim (loop
, chain
);
3011 /* Find the initializers for the variables, and check that they cannot
3013 chain
->inits
.create (n
);
3014 for (i
= 0; i
< n
; i
++)
3015 chain
->inits
.quick_push (NULL_TREE
);
3017 /* If we have replaced some looparound phi nodes, use their initializers
3018 instead of creating our own. */
3019 FOR_EACH_VEC_ELT (chain
->refs
, i
, laref
)
3021 if (gimple_code (laref
->stmt
) != GIMPLE_PHI
)
3024 gcc_assert (laref
->distance
> 0);
3025 chain
->inits
[n
- laref
->distance
]
3026 = PHI_ARG_DEF_FROM_EDGE (laref
->stmt
, entry
);
3029 for (i
= 0; i
< n
; i
++)
3031 gimple_seq stmts
= NULL
;
3033 if (chain
->inits
[i
] != NULL_TREE
)
3036 init
= ref_at_iteration (dr
, (int) i
- n
, &stmts
);
3037 if (!chain
->all_always_accessed
&& tree_could_trap_p (init
))
3039 gimple_seq_discard (stmts
);
3044 gimple_seq_add_seq_without_update (&chain
->init_seq
, stmts
);
3046 chain
->inits
[i
] = init
;
3052 /* Prepare initializers for CHAINS in LOOP, and free chains that cannot
3053 be used because the initializers might trap. */
3056 prepare_initializers (class loop
*loop
, vec
<chain_p
> chains
)
3061 for (i
= 0; i
< chains
.length (); )
3064 if (prepare_initializers_chain (loop
, chain
))
3068 release_chain (chain
);
3069 chains
.unordered_remove (i
);
3074 /* Generates finalizer memory references for CHAIN in LOOP. Returns true
3075 if finalizer code for CHAIN can be generated, otherwise false. */
3078 prepare_finalizers_chain (class loop
*loop
, chain_p chain
)
3080 unsigned i
, n
= chain
->length
;
3081 struct data_reference
*dr
= get_chain_root (chain
)->ref
;
3082 tree fini
, niters
= number_of_latch_executions (loop
);
3084 /* For now we can't eliminate stores if some of them are conditional
3086 if (!chain
->all_always_accessed
)
3089 chain
->finis
.create (n
);
3090 for (i
= 0; i
< n
; i
++)
3091 chain
->finis
.quick_push (NULL_TREE
);
3093 /* We never use looparound phi node for store elimination chains. */
3095 /* Find the finalizers for the variables, and check that they cannot
3097 for (i
= 0; i
< n
; i
++)
3099 gimple_seq stmts
= NULL
;
3100 gcc_assert (chain
->finis
[i
] == NULL_TREE
);
3102 if (TREE_CODE (niters
) != INTEGER_CST
&& TREE_CODE (niters
) != SSA_NAME
)
3104 niters
= unshare_expr (niters
);
3105 niters
= force_gimple_operand (niters
, &stmts
, true, NULL
);
3108 gimple_seq_add_seq_without_update (&chain
->fini_seq
, stmts
);
3112 fini
= ref_at_iteration (dr
, (int) 0 - i
, &stmts
, niters
);
3114 gimple_seq_add_seq_without_update (&chain
->fini_seq
, stmts
);
3116 chain
->finis
[i
] = fini
;
3122 /* Generates finalizer memory reference for CHAINS in LOOP. Returns true
3123 if finalizer code generation for CHAINS breaks loop closed ssa form. */
3126 prepare_finalizers (class loop
*loop
, vec
<chain_p
> chains
)
3130 bool loop_closed_ssa
= false;
3132 for (i
= 0; i
< chains
.length ();)
3136 /* Finalizer is only necessary for inter-iteration store elimination
3138 if (chain
->length
== 0 || chain
->type
!= CT_STORE_STORE
)
3144 if (prepare_finalizers_chain (loop
, chain
))
3147 /* Be conservative, assume loop closed ssa form is corrupted
3148 by store-store chain. Though it's not always the case if
3149 eliminated stores only store loop invariant values into
3151 loop_closed_ssa
= true;
3155 release_chain (chain
);
3156 chains
.unordered_remove (i
);
3159 return loop_closed_ssa
;
3162 /* Insert all initializing gimple stmts into loop's entry edge. */
3165 insert_init_seqs (class loop
*loop
, vec
<chain_p
> chains
)
3168 edge entry
= loop_preheader_edge (loop
);
3170 for (i
= 0; i
< chains
.length (); ++i
)
3171 if (chains
[i
]->init_seq
)
3173 gsi_insert_seq_on_edge_immediate (entry
, chains
[i
]->init_seq
);
3174 chains
[i
]->init_seq
= NULL
;
3178 /* Performs predictive commoning for LOOP. Sets bit 1<<0 of return value
3179 if LOOP was unrolled; Sets bit 1<<1 of return value if loop closed ssa
3180 form was corrupted. */
3183 tree_predictive_commoning_loop (class loop
*loop
)
3185 vec
<data_reference_p
> datarefs
;
3186 vec
<ddr_p
> dependences
;
3187 struct component
*components
;
3188 vec
<chain_p
> chains
= vNULL
;
3189 unsigned unroll_factor
;
3190 class tree_niter_desc desc
;
3191 bool unroll
= false, loop_closed_ssa
= false;
3194 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3195 fprintf (dump_file
, "Processing loop %d\n", loop
->num
);
3197 /* Nothing for predicitive commoning if loop only iterates 1 time. */
3198 if (get_max_loop_iterations_int (loop
) == 0)
3200 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3201 fprintf (dump_file
, "Loop iterates only 1 time, nothing to do.\n");
3206 /* Find the data references and split them into components according to their
3207 dependence relations. */
3208 auto_vec
<loop_p
, 3> loop_nest
;
3209 dependences
.create (10);
3210 datarefs
.create (10);
3211 if (! compute_data_dependences_for_loop (loop
, true, &loop_nest
, &datarefs
,
3214 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3215 fprintf (dump_file
, "Cannot analyze data dependencies\n");
3216 free_data_refs (datarefs
);
3217 free_dependence_relations (dependences
);
3221 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3222 dump_data_dependence_relations (dump_file
, dependences
);
3224 components
= split_data_refs_to_components (loop
, datarefs
, dependences
);
3225 loop_nest
.release ();
3226 free_dependence_relations (dependences
);
3229 free_data_refs (datarefs
);
3230 free_affine_expand_cache (&name_expansions
);
3234 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3236 fprintf (dump_file
, "Initial state:\n\n");
3237 dump_components (dump_file
, components
);
3240 /* Find the suitable components and split them into chains. */
3241 components
= filter_suitable_components (loop
, components
);
3243 auto_bitmap tmp_vars
;
3244 looparound_phis
= BITMAP_ALLOC (NULL
);
3245 determine_roots (loop
, components
, &chains
);
3246 release_components (components
);
3248 if (!chains
.exists ())
3250 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3252 "Predictive commoning failed: no suitable chains\n");
3255 prepare_initializers (loop
, chains
);
3256 loop_closed_ssa
= prepare_finalizers (loop
, chains
);
3258 /* Try to combine the chains that are always worked with together. */
3259 try_combine_chains (loop
, &chains
);
3261 insert_init_seqs (loop
, chains
);
3263 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3265 fprintf (dump_file
, "Before commoning:\n\n");
3266 dump_chains (dump_file
, chains
);
3269 /* Determine the unroll factor, and if the loop should be unrolled, ensure
3270 that its number of iterations is divisible by the factor. */
3271 unroll_factor
= determine_unroll_factor (chains
);
3273 unroll
= (unroll_factor
> 1
3274 && can_unroll_loop_p (loop
, unroll_factor
, &desc
));
3275 exit
= single_dom_exit (loop
);
3277 /* Execute the predictive commoning transformations, and possibly unroll the
3281 struct epcc_data dta
;
3283 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3284 fprintf (dump_file
, "Unrolling %u times.\n", unroll_factor
);
3286 dta
.chains
= chains
;
3287 dta
.tmp_vars
= tmp_vars
;
3289 update_ssa (TODO_update_ssa_only_virtuals
);
3291 /* Cfg manipulations performed in tree_transform_and_unroll_loop before
3292 execute_pred_commoning_cbck is called may cause phi nodes to be
3293 reallocated, which is a problem since CHAINS may point to these
3294 statements. To fix this, we store the ssa names defined by the
3295 phi nodes here instead of the phi nodes themselves, and restore
3296 the phi nodes in execute_pred_commoning_cbck. A bit hacky. */
3297 replace_phis_by_defined_names (chains
);
3299 tree_transform_and_unroll_loop (loop
, unroll_factor
, exit
, &desc
,
3300 execute_pred_commoning_cbck
, &dta
);
3301 eliminate_temp_copies (loop
, tmp_vars
);
3305 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3307 "Executing predictive commoning without unrolling.\n");
3308 execute_pred_commoning (loop
, chains
, tmp_vars
);
3312 release_chains (chains
);
3313 free_data_refs (datarefs
);
3314 BITMAP_FREE (looparound_phis
);
3316 free_affine_expand_cache (&name_expansions
);
3318 return (unroll
? 1 : 0) | (loop_closed_ssa
? 2 : 0);
3321 /* Runs predictive commoning. */
3324 tree_predictive_commoning (void)
3327 unsigned ret
= 0, changed
= 0;
3329 initialize_original_copy_tables ();
3330 FOR_EACH_LOOP (loop
, LI_ONLY_INNERMOST
)
3331 if (optimize_loop_for_speed_p (loop
))
3333 changed
|= tree_predictive_commoning_loop (loop
);
3335 free_original_copy_tables ();
3342 rewrite_into_loop_closed_ssa (NULL
, TODO_update_ssa
);
3344 ret
= TODO_cleanup_cfg
;
3350 /* Predictive commoning Pass. */
3353 run_tree_predictive_commoning (struct function
*fun
)
3355 if (number_of_loops (fun
) <= 1)
3358 return tree_predictive_commoning ();
3363 const pass_data pass_data_predcom
=
3365 GIMPLE_PASS
, /* type */
3367 OPTGROUP_LOOP
, /* optinfo_flags */
3368 TV_PREDCOM
, /* tv_id */
3369 PROP_cfg
, /* properties_required */
3370 0, /* properties_provided */
3371 0, /* properties_destroyed */
3372 0, /* todo_flags_start */
3373 TODO_update_ssa_only_virtuals
, /* todo_flags_finish */
3376 class pass_predcom
: public gimple_opt_pass
3379 pass_predcom (gcc::context
*ctxt
)
3380 : gimple_opt_pass (pass_data_predcom
, ctxt
)
3383 /* opt_pass methods: */
3384 virtual bool gate (function
*) { return flag_predictive_commoning
!= 0; }
3385 virtual unsigned int execute (function
*fun
)
3387 return run_tree_predictive_commoning (fun
);
3390 }; // class pass_predcom
3395 make_pass_predcom (gcc::context
*ctxt
)
3397 return new pass_predcom (ctxt
);