Daily bump.
[official-gcc.git] / gcc / expr.c
bloba150fa0d3b54155d2cdd04ed536742c399c225b1
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988-2020 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "predict.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "ssa.h"
32 #include "expmed.h"
33 #include "optabs.h"
34 #include "regs.h"
35 #include "emit-rtl.h"
36 #include "recog.h"
37 #include "cgraph.h"
38 #include "diagnostic.h"
39 #include "alias.h"
40 #include "fold-const.h"
41 #include "stor-layout.h"
42 #include "attribs.h"
43 #include "varasm.h"
44 #include "except.h"
45 #include "insn-attr.h"
46 #include "dojump.h"
47 #include "explow.h"
48 #include "calls.h"
49 #include "stmt.h"
50 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
51 #include "expr.h"
52 #include "optabs-tree.h"
53 #include "libfuncs.h"
54 #include "reload.h"
55 #include "langhooks.h"
56 #include "common/common-target.h"
57 #include "tree-dfa.h"
58 #include "tree-ssa-live.h"
59 #include "tree-outof-ssa.h"
60 #include "tree-ssa-address.h"
61 #include "builtins.h"
62 #include "ccmp.h"
63 #include "gimple-fold.h"
64 #include "rtx-vector-builder.h"
67 /* If this is nonzero, we do not bother generating VOLATILE
68 around volatile memory references, and we are willing to
69 output indirect addresses. If cse is to follow, we reject
70 indirect addresses so a useful potential cse is generated;
71 if it is used only once, instruction combination will produce
72 the same indirect address eventually. */
73 int cse_not_expected;
75 static bool block_move_libcall_safe_for_call_parm (void);
76 static bool emit_block_move_via_pattern (rtx, rtx, rtx, unsigned, unsigned,
77 HOST_WIDE_INT, unsigned HOST_WIDE_INT,
78 unsigned HOST_WIDE_INT,
79 unsigned HOST_WIDE_INT, bool);
80 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
81 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
82 static rtx_insn *compress_float_constant (rtx, rtx);
83 static rtx get_subtarget (rtx);
84 static void store_constructor (tree, rtx, int, poly_int64, bool);
85 static rtx store_field (rtx, poly_int64, poly_int64, poly_uint64, poly_uint64,
86 machine_mode, tree, alias_set_type, bool, bool);
88 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
90 static int is_aligning_offset (const_tree, const_tree);
91 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
92 static rtx do_store_flag (sepops, rtx, machine_mode);
93 #ifdef PUSH_ROUNDING
94 static void emit_single_push_insn (machine_mode, rtx, tree);
95 #endif
96 static void do_tablejump (rtx, machine_mode, rtx, rtx, rtx,
97 profile_probability);
98 static rtx const_vector_from_tree (tree);
99 static rtx const_scalar_mask_from_tree (scalar_int_mode, tree);
100 static tree tree_expr_size (const_tree);
101 static HOST_WIDE_INT int_expr_size (tree);
102 static void convert_mode_scalar (rtx, rtx, int);
105 /* This is run to set up which modes can be used
106 directly in memory and to initialize the block move optab. It is run
107 at the beginning of compilation and when the target is reinitialized. */
109 void
110 init_expr_target (void)
112 rtx pat;
113 int num_clobbers;
114 rtx mem, mem1;
115 rtx reg;
117 /* Try indexing by frame ptr and try by stack ptr.
118 It is known that on the Convex the stack ptr isn't a valid index.
119 With luck, one or the other is valid on any machine. */
120 mem = gen_rtx_MEM (word_mode, stack_pointer_rtx);
121 mem1 = gen_rtx_MEM (word_mode, frame_pointer_rtx);
123 /* A scratch register we can modify in-place below to avoid
124 useless RTL allocations. */
125 reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
127 rtx_insn *insn = as_a<rtx_insn *> (rtx_alloc (INSN));
128 pat = gen_rtx_SET (NULL_RTX, NULL_RTX);
129 PATTERN (insn) = pat;
131 for (machine_mode mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
132 mode = (machine_mode) ((int) mode + 1))
134 int regno;
136 direct_load[(int) mode] = direct_store[(int) mode] = 0;
137 PUT_MODE (mem, mode);
138 PUT_MODE (mem1, mode);
140 /* See if there is some register that can be used in this mode and
141 directly loaded or stored from memory. */
143 if (mode != VOIDmode && mode != BLKmode)
144 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
145 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
146 regno++)
148 if (!targetm.hard_regno_mode_ok (regno, mode))
149 continue;
151 set_mode_and_regno (reg, mode, regno);
153 SET_SRC (pat) = mem;
154 SET_DEST (pat) = reg;
155 if (recog (pat, insn, &num_clobbers) >= 0)
156 direct_load[(int) mode] = 1;
158 SET_SRC (pat) = mem1;
159 SET_DEST (pat) = reg;
160 if (recog (pat, insn, &num_clobbers) >= 0)
161 direct_load[(int) mode] = 1;
163 SET_SRC (pat) = reg;
164 SET_DEST (pat) = mem;
165 if (recog (pat, insn, &num_clobbers) >= 0)
166 direct_store[(int) mode] = 1;
168 SET_SRC (pat) = reg;
169 SET_DEST (pat) = mem1;
170 if (recog (pat, insn, &num_clobbers) >= 0)
171 direct_store[(int) mode] = 1;
175 mem = gen_rtx_MEM (VOIDmode, gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 1));
177 opt_scalar_float_mode mode_iter;
178 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_FLOAT)
180 scalar_float_mode mode = mode_iter.require ();
181 scalar_float_mode srcmode;
182 FOR_EACH_MODE_UNTIL (srcmode, mode)
184 enum insn_code ic;
186 ic = can_extend_p (mode, srcmode, 0);
187 if (ic == CODE_FOR_nothing)
188 continue;
190 PUT_MODE (mem, srcmode);
192 if (insn_operand_matches (ic, 1, mem))
193 float_extend_from_mem[mode][srcmode] = true;
198 /* This is run at the start of compiling a function. */
200 void
201 init_expr (void)
203 memset (&crtl->expr, 0, sizeof (crtl->expr));
206 /* Copy data from FROM to TO, where the machine modes are not the same.
207 Both modes may be integer, or both may be floating, or both may be
208 fixed-point.
209 UNSIGNEDP should be nonzero if FROM is an unsigned type.
210 This causes zero-extension instead of sign-extension. */
212 void
213 convert_move (rtx to, rtx from, int unsignedp)
215 machine_mode to_mode = GET_MODE (to);
216 machine_mode from_mode = GET_MODE (from);
218 gcc_assert (to_mode != BLKmode);
219 gcc_assert (from_mode != BLKmode);
221 /* If the source and destination are already the same, then there's
222 nothing to do. */
223 if (to == from)
224 return;
226 /* If FROM is a SUBREG that indicates that we have already done at least
227 the required extension, strip it. We don't handle such SUBREGs as
228 TO here. */
230 scalar_int_mode to_int_mode;
231 if (GET_CODE (from) == SUBREG
232 && SUBREG_PROMOTED_VAR_P (from)
233 && is_a <scalar_int_mode> (to_mode, &to_int_mode)
234 && (GET_MODE_PRECISION (subreg_promoted_mode (from))
235 >= GET_MODE_PRECISION (to_int_mode))
236 && SUBREG_CHECK_PROMOTED_SIGN (from, unsignedp))
238 from = gen_lowpart (to_int_mode, SUBREG_REG (from));
239 from_mode = to_int_mode;
242 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
244 if (to_mode == from_mode
245 || (from_mode == VOIDmode && CONSTANT_P (from)))
247 emit_move_insn (to, from);
248 return;
251 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
253 if (GET_MODE_UNIT_PRECISION (to_mode)
254 > GET_MODE_UNIT_PRECISION (from_mode))
256 optab op = unsignedp ? zext_optab : sext_optab;
257 insn_code icode = convert_optab_handler (op, to_mode, from_mode);
258 if (icode != CODE_FOR_nothing)
260 emit_unop_insn (icode, to, from,
261 unsignedp ? ZERO_EXTEND : SIGN_EXTEND);
262 return;
266 if (GET_MODE_UNIT_PRECISION (to_mode)
267 < GET_MODE_UNIT_PRECISION (from_mode))
269 insn_code icode = convert_optab_handler (trunc_optab,
270 to_mode, from_mode);
271 if (icode != CODE_FOR_nothing)
273 emit_unop_insn (icode, to, from, TRUNCATE);
274 return;
278 gcc_assert (known_eq (GET_MODE_BITSIZE (from_mode),
279 GET_MODE_BITSIZE (to_mode)));
281 if (VECTOR_MODE_P (to_mode))
282 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
283 else
284 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
286 emit_move_insn (to, from);
287 return;
290 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
292 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
293 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
294 return;
297 convert_mode_scalar (to, from, unsignedp);
300 /* Like convert_move, but deals only with scalar modes. */
302 static void
303 convert_mode_scalar (rtx to, rtx from, int unsignedp)
305 /* Both modes should be scalar types. */
306 scalar_mode from_mode = as_a <scalar_mode> (GET_MODE (from));
307 scalar_mode to_mode = as_a <scalar_mode> (GET_MODE (to));
308 bool to_real = SCALAR_FLOAT_MODE_P (to_mode);
309 bool from_real = SCALAR_FLOAT_MODE_P (from_mode);
310 enum insn_code code;
311 rtx libcall;
313 gcc_assert (to_real == from_real);
315 /* rtx code for making an equivalent value. */
316 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
317 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
319 if (to_real)
321 rtx value;
322 rtx_insn *insns;
323 convert_optab tab;
325 gcc_assert ((GET_MODE_PRECISION (from_mode)
326 != GET_MODE_PRECISION (to_mode))
327 || (DECIMAL_FLOAT_MODE_P (from_mode)
328 != DECIMAL_FLOAT_MODE_P (to_mode)));
330 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
331 /* Conversion between decimal float and binary float, same size. */
332 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
333 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
334 tab = sext_optab;
335 else
336 tab = trunc_optab;
338 /* Try converting directly if the insn is supported. */
340 code = convert_optab_handler (tab, to_mode, from_mode);
341 if (code != CODE_FOR_nothing)
343 emit_unop_insn (code, to, from,
344 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
345 return;
348 /* Otherwise use a libcall. */
349 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
351 /* Is this conversion implemented yet? */
352 gcc_assert (libcall);
354 start_sequence ();
355 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
356 from, from_mode);
357 insns = get_insns ();
358 end_sequence ();
359 emit_libcall_block (insns, to, value,
360 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
361 from)
362 : gen_rtx_FLOAT_EXTEND (to_mode, from));
363 return;
366 /* Handle pointer conversion. */ /* SPEE 900220. */
367 /* If the target has a converter from FROM_MODE to TO_MODE, use it. */
369 convert_optab ctab;
371 if (GET_MODE_PRECISION (from_mode) > GET_MODE_PRECISION (to_mode))
372 ctab = trunc_optab;
373 else if (unsignedp)
374 ctab = zext_optab;
375 else
376 ctab = sext_optab;
378 if (convert_optab_handler (ctab, to_mode, from_mode)
379 != CODE_FOR_nothing)
381 emit_unop_insn (convert_optab_handler (ctab, to_mode, from_mode),
382 to, from, UNKNOWN);
383 return;
387 /* Targets are expected to provide conversion insns between PxImode and
388 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
389 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
391 scalar_int_mode full_mode
392 = smallest_int_mode_for_size (GET_MODE_BITSIZE (to_mode));
394 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
395 != CODE_FOR_nothing);
397 if (full_mode != from_mode)
398 from = convert_to_mode (full_mode, from, unsignedp);
399 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
400 to, from, UNKNOWN);
401 return;
403 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
405 rtx new_from;
406 scalar_int_mode full_mode
407 = smallest_int_mode_for_size (GET_MODE_BITSIZE (from_mode));
408 convert_optab ctab = unsignedp ? zext_optab : sext_optab;
409 enum insn_code icode;
411 icode = convert_optab_handler (ctab, full_mode, from_mode);
412 gcc_assert (icode != CODE_FOR_nothing);
414 if (to_mode == full_mode)
416 emit_unop_insn (icode, to, from, UNKNOWN);
417 return;
420 new_from = gen_reg_rtx (full_mode);
421 emit_unop_insn (icode, new_from, from, UNKNOWN);
423 /* else proceed to integer conversions below. */
424 from_mode = full_mode;
425 from = new_from;
428 /* Make sure both are fixed-point modes or both are not. */
429 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
430 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
431 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
433 /* If we widen from_mode to to_mode and they are in the same class,
434 we won't saturate the result.
435 Otherwise, always saturate the result to play safe. */
436 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
437 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
438 expand_fixed_convert (to, from, 0, 0);
439 else
440 expand_fixed_convert (to, from, 0, 1);
441 return;
444 /* Now both modes are integers. */
446 /* Handle expanding beyond a word. */
447 if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode)
448 && GET_MODE_PRECISION (to_mode) > BITS_PER_WORD)
450 rtx_insn *insns;
451 rtx lowpart;
452 rtx fill_value;
453 rtx lowfrom;
454 int i;
455 scalar_mode lowpart_mode;
456 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
458 /* Try converting directly if the insn is supported. */
459 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
460 != CODE_FOR_nothing)
462 /* If FROM is a SUBREG, put it into a register. Do this
463 so that we always generate the same set of insns for
464 better cse'ing; if an intermediate assignment occurred,
465 we won't be doing the operation directly on the SUBREG. */
466 if (optimize > 0 && GET_CODE (from) == SUBREG)
467 from = force_reg (from_mode, from);
468 emit_unop_insn (code, to, from, equiv_code);
469 return;
471 /* Next, try converting via full word. */
472 else if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD
473 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
474 != CODE_FOR_nothing))
476 rtx word_to = gen_reg_rtx (word_mode);
477 if (REG_P (to))
479 if (reg_overlap_mentioned_p (to, from))
480 from = force_reg (from_mode, from);
481 emit_clobber (to);
483 convert_move (word_to, from, unsignedp);
484 emit_unop_insn (code, to, word_to, equiv_code);
485 return;
488 /* No special multiword conversion insn; do it by hand. */
489 start_sequence ();
491 /* Since we will turn this into a no conflict block, we must ensure
492 the source does not overlap the target so force it into an isolated
493 register when maybe so. Likewise for any MEM input, since the
494 conversion sequence might require several references to it and we
495 must ensure we're getting the same value every time. */
497 if (MEM_P (from) || reg_overlap_mentioned_p (to, from))
498 from = force_reg (from_mode, from);
500 /* Get a copy of FROM widened to a word, if necessary. */
501 if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD)
502 lowpart_mode = word_mode;
503 else
504 lowpart_mode = from_mode;
506 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
508 lowpart = gen_lowpart (lowpart_mode, to);
509 emit_move_insn (lowpart, lowfrom);
511 /* Compute the value to put in each remaining word. */
512 if (unsignedp)
513 fill_value = const0_rtx;
514 else
515 fill_value = emit_store_flag_force (gen_reg_rtx (word_mode),
516 LT, lowfrom, const0_rtx,
517 lowpart_mode, 0, -1);
519 /* Fill the remaining words. */
520 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
522 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
523 rtx subword = operand_subword (to, index, 1, to_mode);
525 gcc_assert (subword);
527 if (fill_value != subword)
528 emit_move_insn (subword, fill_value);
531 insns = get_insns ();
532 end_sequence ();
534 emit_insn (insns);
535 return;
538 /* Truncating multi-word to a word or less. */
539 if (GET_MODE_PRECISION (from_mode) > BITS_PER_WORD
540 && GET_MODE_PRECISION (to_mode) <= BITS_PER_WORD)
542 if (!((MEM_P (from)
543 && ! MEM_VOLATILE_P (from)
544 && direct_load[(int) to_mode]
545 && ! mode_dependent_address_p (XEXP (from, 0),
546 MEM_ADDR_SPACE (from)))
547 || REG_P (from)
548 || GET_CODE (from) == SUBREG))
549 from = force_reg (from_mode, from);
550 convert_move (to, gen_lowpart (word_mode, from), 0);
551 return;
554 /* Now follow all the conversions between integers
555 no more than a word long. */
557 /* For truncation, usually we can just refer to FROM in a narrower mode. */
558 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
559 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, from_mode))
561 if (!((MEM_P (from)
562 && ! MEM_VOLATILE_P (from)
563 && direct_load[(int) to_mode]
564 && ! mode_dependent_address_p (XEXP (from, 0),
565 MEM_ADDR_SPACE (from)))
566 || REG_P (from)
567 || GET_CODE (from) == SUBREG))
568 from = force_reg (from_mode, from);
569 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
570 && !targetm.hard_regno_mode_ok (REGNO (from), to_mode))
571 from = copy_to_reg (from);
572 emit_move_insn (to, gen_lowpart (to_mode, from));
573 return;
576 /* Handle extension. */
577 if (GET_MODE_PRECISION (to_mode) > GET_MODE_PRECISION (from_mode))
579 /* Convert directly if that works. */
580 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
581 != CODE_FOR_nothing)
583 emit_unop_insn (code, to, from, equiv_code);
584 return;
586 else
588 rtx tmp;
589 int shift_amount;
591 /* Search for a mode to convert via. */
592 opt_scalar_mode intermediate_iter;
593 FOR_EACH_MODE_FROM (intermediate_iter, from_mode)
595 scalar_mode intermediate = intermediate_iter.require ();
596 if (((can_extend_p (to_mode, intermediate, unsignedp)
597 != CODE_FOR_nothing)
598 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
599 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode,
600 intermediate)))
601 && (can_extend_p (intermediate, from_mode, unsignedp)
602 != CODE_FOR_nothing))
604 convert_move (to, convert_to_mode (intermediate, from,
605 unsignedp), unsignedp);
606 return;
610 /* No suitable intermediate mode.
611 Generate what we need with shifts. */
612 shift_amount = (GET_MODE_PRECISION (to_mode)
613 - GET_MODE_PRECISION (from_mode));
614 from = gen_lowpart (to_mode, force_reg (from_mode, from));
615 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
616 to, unsignedp);
617 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
618 to, unsignedp);
619 if (tmp != to)
620 emit_move_insn (to, tmp);
621 return;
625 /* Support special truncate insns for certain modes. */
626 if (convert_optab_handler (trunc_optab, to_mode,
627 from_mode) != CODE_FOR_nothing)
629 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
630 to, from, UNKNOWN);
631 return;
634 /* Handle truncation of volatile memrefs, and so on;
635 the things that couldn't be truncated directly,
636 and for which there was no special instruction.
638 ??? Code above formerly short-circuited this, for most integer
639 mode pairs, with a force_reg in from_mode followed by a recursive
640 call to this routine. Appears always to have been wrong. */
641 if (GET_MODE_PRECISION (to_mode) < GET_MODE_PRECISION (from_mode))
643 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
644 emit_move_insn (to, temp);
645 return;
648 /* Mode combination is not recognized. */
649 gcc_unreachable ();
652 /* Return an rtx for a value that would result
653 from converting X to mode MODE.
654 Both X and MODE may be floating, or both integer.
655 UNSIGNEDP is nonzero if X is an unsigned value.
656 This can be done by referring to a part of X in place
657 or by copying to a new temporary with conversion. */
660 convert_to_mode (machine_mode mode, rtx x, int unsignedp)
662 return convert_modes (mode, VOIDmode, x, unsignedp);
665 /* Return an rtx for a value that would result
666 from converting X from mode OLDMODE to mode MODE.
667 Both modes may be floating, or both integer.
668 UNSIGNEDP is nonzero if X is an unsigned value.
670 This can be done by referring to a part of X in place
671 or by copying to a new temporary with conversion.
673 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
676 convert_modes (machine_mode mode, machine_mode oldmode, rtx x, int unsignedp)
678 rtx temp;
679 scalar_int_mode int_mode;
681 /* If FROM is a SUBREG that indicates that we have already done at least
682 the required extension, strip it. */
684 if (GET_CODE (x) == SUBREG
685 && SUBREG_PROMOTED_VAR_P (x)
686 && is_a <scalar_int_mode> (mode, &int_mode)
687 && (GET_MODE_PRECISION (subreg_promoted_mode (x))
688 >= GET_MODE_PRECISION (int_mode))
689 && SUBREG_CHECK_PROMOTED_SIGN (x, unsignedp))
690 x = gen_lowpart (int_mode, SUBREG_REG (x));
692 if (GET_MODE (x) != VOIDmode)
693 oldmode = GET_MODE (x);
695 if (mode == oldmode)
696 return x;
698 if (CONST_SCALAR_INT_P (x)
699 && is_a <scalar_int_mode> (mode, &int_mode))
701 /* If the caller did not tell us the old mode, then there is not
702 much to do with respect to canonicalization. We have to
703 assume that all the bits are significant. */
704 if (!is_a <scalar_int_mode> (oldmode))
705 oldmode = MAX_MODE_INT;
706 wide_int w = wide_int::from (rtx_mode_t (x, oldmode),
707 GET_MODE_PRECISION (int_mode),
708 unsignedp ? UNSIGNED : SIGNED);
709 return immed_wide_int_const (w, int_mode);
712 /* We can do this with a gen_lowpart if both desired and current modes
713 are integer, and this is either a constant integer, a register, or a
714 non-volatile MEM. */
715 scalar_int_mode int_oldmode;
716 if (is_int_mode (mode, &int_mode)
717 && is_int_mode (oldmode, &int_oldmode)
718 && GET_MODE_PRECISION (int_mode) <= GET_MODE_PRECISION (int_oldmode)
719 && ((MEM_P (x) && !MEM_VOLATILE_P (x) && direct_load[(int) int_mode])
720 || CONST_POLY_INT_P (x)
721 || (REG_P (x)
722 && (!HARD_REGISTER_P (x)
723 || targetm.hard_regno_mode_ok (REGNO (x), int_mode))
724 && TRULY_NOOP_TRUNCATION_MODES_P (int_mode, GET_MODE (x)))))
725 return gen_lowpart (int_mode, x);
727 /* Converting from integer constant into mode is always equivalent to an
728 subreg operation. */
729 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
731 gcc_assert (known_eq (GET_MODE_BITSIZE (mode),
732 GET_MODE_BITSIZE (oldmode)));
733 return simplify_gen_subreg (mode, x, oldmode, 0);
736 temp = gen_reg_rtx (mode);
737 convert_move (temp, x, unsignedp);
738 return temp;
741 /* Return the largest alignment we can use for doing a move (or store)
742 of MAX_PIECES. ALIGN is the largest alignment we could use. */
744 static unsigned int
745 alignment_for_piecewise_move (unsigned int max_pieces, unsigned int align)
747 scalar_int_mode tmode
748 = int_mode_for_size (max_pieces * BITS_PER_UNIT, 1).require ();
750 if (align >= GET_MODE_ALIGNMENT (tmode))
751 align = GET_MODE_ALIGNMENT (tmode);
752 else
754 scalar_int_mode xmode = NARROWEST_INT_MODE;
755 opt_scalar_int_mode mode_iter;
756 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
758 tmode = mode_iter.require ();
759 if (GET_MODE_SIZE (tmode) > max_pieces
760 || targetm.slow_unaligned_access (tmode, align))
761 break;
762 xmode = tmode;
765 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
768 return align;
771 /* Return the widest integer mode that is narrower than SIZE bytes. */
773 static scalar_int_mode
774 widest_int_mode_for_size (unsigned int size)
776 scalar_int_mode result = NARROWEST_INT_MODE;
778 gcc_checking_assert (size > 1);
780 opt_scalar_int_mode tmode;
781 FOR_EACH_MODE_IN_CLASS (tmode, MODE_INT)
782 if (GET_MODE_SIZE (tmode.require ()) < size)
783 result = tmode.require ();
785 return result;
788 /* Determine whether an operation OP on LEN bytes with alignment ALIGN can
789 and should be performed piecewise. */
791 static bool
792 can_do_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align,
793 enum by_pieces_operation op)
795 return targetm.use_by_pieces_infrastructure_p (len, align, op,
796 optimize_insn_for_speed_p ());
799 /* Determine whether the LEN bytes can be moved by using several move
800 instructions. Return nonzero if a call to move_by_pieces should
801 succeed. */
803 bool
804 can_move_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align)
806 return can_do_by_pieces (len, align, MOVE_BY_PIECES);
809 /* Return number of insns required to perform operation OP by pieces
810 for L bytes. ALIGN (in bits) is maximum alignment we can assume. */
812 unsigned HOST_WIDE_INT
813 by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
814 unsigned int max_size, by_pieces_operation op)
816 unsigned HOST_WIDE_INT n_insns = 0;
818 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
820 while (max_size > 1 && l > 0)
822 scalar_int_mode mode = widest_int_mode_for_size (max_size);
823 enum insn_code icode;
825 unsigned int modesize = GET_MODE_SIZE (mode);
827 icode = optab_handler (mov_optab, mode);
828 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
830 unsigned HOST_WIDE_INT n_pieces = l / modesize;
831 l %= modesize;
832 switch (op)
834 default:
835 n_insns += n_pieces;
836 break;
838 case COMPARE_BY_PIECES:
839 int batch = targetm.compare_by_pieces_branch_ratio (mode);
840 int batch_ops = 4 * batch - 1;
841 unsigned HOST_WIDE_INT full = n_pieces / batch;
842 n_insns += full * batch_ops;
843 if (n_pieces % batch != 0)
844 n_insns++;
845 break;
849 max_size = modesize;
852 gcc_assert (!l);
853 return n_insns;
856 /* Used when performing piecewise block operations, holds information
857 about one of the memory objects involved. The member functions
858 can be used to generate code for loading from the object and
859 updating the address when iterating. */
861 class pieces_addr
863 /* The object being referenced, a MEM. Can be NULL_RTX to indicate
864 stack pushes. */
865 rtx m_obj;
866 /* The address of the object. Can differ from that seen in the
867 MEM rtx if we copied the address to a register. */
868 rtx m_addr;
869 /* Nonzero if the address on the object has an autoincrement already,
870 signifies whether that was an increment or decrement. */
871 signed char m_addr_inc;
872 /* Nonzero if we intend to use autoinc without the address already
873 having autoinc form. We will insert add insns around each memory
874 reference, expecting later passes to form autoinc addressing modes.
875 The only supported options are predecrement and postincrement. */
876 signed char m_explicit_inc;
877 /* True if we have either of the two possible cases of using
878 autoincrement. */
879 bool m_auto;
880 /* True if this is an address to be used for load operations rather
881 than stores. */
882 bool m_is_load;
884 /* Optionally, a function to obtain constants for any given offset into
885 the objects, and data associated with it. */
886 by_pieces_constfn m_constfn;
887 void *m_cfndata;
888 public:
889 pieces_addr (rtx, bool, by_pieces_constfn, void *);
890 rtx adjust (scalar_int_mode, HOST_WIDE_INT);
891 void increment_address (HOST_WIDE_INT);
892 void maybe_predec (HOST_WIDE_INT);
893 void maybe_postinc (HOST_WIDE_INT);
894 void decide_autoinc (machine_mode, bool, HOST_WIDE_INT);
895 int get_addr_inc ()
897 return m_addr_inc;
901 /* Initialize a pieces_addr structure from an object OBJ. IS_LOAD is
902 true if the operation to be performed on this object is a load
903 rather than a store. For stores, OBJ can be NULL, in which case we
904 assume the operation is a stack push. For loads, the optional
905 CONSTFN and its associated CFNDATA can be used in place of the
906 memory load. */
908 pieces_addr::pieces_addr (rtx obj, bool is_load, by_pieces_constfn constfn,
909 void *cfndata)
910 : m_obj (obj), m_is_load (is_load), m_constfn (constfn), m_cfndata (cfndata)
912 m_addr_inc = 0;
913 m_auto = false;
914 if (obj)
916 rtx addr = XEXP (obj, 0);
917 rtx_code code = GET_CODE (addr);
918 m_addr = addr;
919 bool dec = code == PRE_DEC || code == POST_DEC;
920 bool inc = code == PRE_INC || code == POST_INC;
921 m_auto = inc || dec;
922 if (m_auto)
923 m_addr_inc = dec ? -1 : 1;
925 /* While we have always looked for these codes here, the code
926 implementing the memory operation has never handled them.
927 Support could be added later if necessary or beneficial. */
928 gcc_assert (code != PRE_INC && code != POST_DEC);
930 else
932 m_addr = NULL_RTX;
933 if (!is_load)
935 m_auto = true;
936 if (STACK_GROWS_DOWNWARD)
937 m_addr_inc = -1;
938 else
939 m_addr_inc = 1;
941 else
942 gcc_assert (constfn != NULL);
944 m_explicit_inc = 0;
945 if (constfn)
946 gcc_assert (is_load);
949 /* Decide whether to use autoinc for an address involved in a memory op.
950 MODE is the mode of the accesses, REVERSE is true if we've decided to
951 perform the operation starting from the end, and LEN is the length of
952 the operation. Don't override an earlier decision to set m_auto. */
954 void
955 pieces_addr::decide_autoinc (machine_mode ARG_UNUSED (mode), bool reverse,
956 HOST_WIDE_INT len)
958 if (m_auto || m_obj == NULL_RTX)
959 return;
961 bool use_predec = (m_is_load
962 ? USE_LOAD_PRE_DECREMENT (mode)
963 : USE_STORE_PRE_DECREMENT (mode));
964 bool use_postinc = (m_is_load
965 ? USE_LOAD_POST_INCREMENT (mode)
966 : USE_STORE_POST_INCREMENT (mode));
967 machine_mode addr_mode = get_address_mode (m_obj);
969 if (use_predec && reverse)
971 m_addr = copy_to_mode_reg (addr_mode,
972 plus_constant (addr_mode,
973 m_addr, len));
974 m_auto = true;
975 m_explicit_inc = -1;
977 else if (use_postinc && !reverse)
979 m_addr = copy_to_mode_reg (addr_mode, m_addr);
980 m_auto = true;
981 m_explicit_inc = 1;
983 else if (CONSTANT_P (m_addr))
984 m_addr = copy_to_mode_reg (addr_mode, m_addr);
987 /* Adjust the address to refer to the data at OFFSET in MODE. If we
988 are using autoincrement for this address, we don't add the offset,
989 but we still modify the MEM's properties. */
992 pieces_addr::adjust (scalar_int_mode mode, HOST_WIDE_INT offset)
994 if (m_constfn)
995 return m_constfn (m_cfndata, offset, mode);
996 if (m_obj == NULL_RTX)
997 return NULL_RTX;
998 if (m_auto)
999 return adjust_automodify_address (m_obj, mode, m_addr, offset);
1000 else
1001 return adjust_address (m_obj, mode, offset);
1004 /* Emit an add instruction to increment the address by SIZE. */
1006 void
1007 pieces_addr::increment_address (HOST_WIDE_INT size)
1009 rtx amount = gen_int_mode (size, GET_MODE (m_addr));
1010 emit_insn (gen_add2_insn (m_addr, amount));
1013 /* If we are supposed to decrement the address after each access, emit code
1014 to do so now. Increment by SIZE (which has should have the correct sign
1015 already). */
1017 void
1018 pieces_addr::maybe_predec (HOST_WIDE_INT size)
1020 if (m_explicit_inc >= 0)
1021 return;
1022 gcc_assert (HAVE_PRE_DECREMENT);
1023 increment_address (size);
1026 /* If we are supposed to decrement the address after each access, emit code
1027 to do so now. Increment by SIZE. */
1029 void
1030 pieces_addr::maybe_postinc (HOST_WIDE_INT size)
1032 if (m_explicit_inc <= 0)
1033 return;
1034 gcc_assert (HAVE_POST_INCREMENT);
1035 increment_address (size);
1038 /* This structure is used by do_op_by_pieces to describe the operation
1039 to be performed. */
1041 class op_by_pieces_d
1043 protected:
1044 pieces_addr m_to, m_from;
1045 unsigned HOST_WIDE_INT m_len;
1046 HOST_WIDE_INT m_offset;
1047 unsigned int m_align;
1048 unsigned int m_max_size;
1049 bool m_reverse;
1051 /* Virtual functions, overriden by derived classes for the specific
1052 operation. */
1053 virtual void generate (rtx, rtx, machine_mode) = 0;
1054 virtual bool prepare_mode (machine_mode, unsigned int) = 0;
1055 virtual void finish_mode (machine_mode)
1059 public:
1060 op_by_pieces_d (rtx, bool, rtx, bool, by_pieces_constfn, void *,
1061 unsigned HOST_WIDE_INT, unsigned int);
1062 void run ();
1065 /* The constructor for an op_by_pieces_d structure. We require two
1066 objects named TO and FROM, which are identified as loads or stores
1067 by TO_LOAD and FROM_LOAD. If FROM is a load, the optional FROM_CFN
1068 and its associated FROM_CFN_DATA can be used to replace loads with
1069 constant values. LEN describes the length of the operation. */
1071 op_by_pieces_d::op_by_pieces_d (rtx to, bool to_load,
1072 rtx from, bool from_load,
1073 by_pieces_constfn from_cfn,
1074 void *from_cfn_data,
1075 unsigned HOST_WIDE_INT len,
1076 unsigned int align)
1077 : m_to (to, to_load, NULL, NULL),
1078 m_from (from, from_load, from_cfn, from_cfn_data),
1079 m_len (len), m_max_size (MOVE_MAX_PIECES + 1)
1081 int toi = m_to.get_addr_inc ();
1082 int fromi = m_from.get_addr_inc ();
1083 if (toi >= 0 && fromi >= 0)
1084 m_reverse = false;
1085 else if (toi <= 0 && fromi <= 0)
1086 m_reverse = true;
1087 else
1088 gcc_unreachable ();
1090 m_offset = m_reverse ? len : 0;
1091 align = MIN (to ? MEM_ALIGN (to) : align,
1092 from ? MEM_ALIGN (from) : align);
1094 /* If copying requires more than two move insns,
1095 copy addresses to registers (to make displacements shorter)
1096 and use post-increment if available. */
1097 if (by_pieces_ninsns (len, align, m_max_size, MOVE_BY_PIECES) > 2)
1099 /* Find the mode of the largest comparison. */
1100 scalar_int_mode mode = widest_int_mode_for_size (m_max_size);
1102 m_from.decide_autoinc (mode, m_reverse, len);
1103 m_to.decide_autoinc (mode, m_reverse, len);
1106 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
1107 m_align = align;
1110 /* This function contains the main loop used for expanding a block
1111 operation. First move what we can in the largest integer mode,
1112 then go to successively smaller modes. For every access, call
1113 GENFUN with the two operands and the EXTRA_DATA. */
1115 void
1116 op_by_pieces_d::run ()
1118 while (m_max_size > 1 && m_len > 0)
1120 scalar_int_mode mode = widest_int_mode_for_size (m_max_size);
1122 if (prepare_mode (mode, m_align))
1124 unsigned int size = GET_MODE_SIZE (mode);
1125 rtx to1 = NULL_RTX, from1;
1127 while (m_len >= size)
1129 if (m_reverse)
1130 m_offset -= size;
1132 to1 = m_to.adjust (mode, m_offset);
1133 from1 = m_from.adjust (mode, m_offset);
1135 m_to.maybe_predec (-(HOST_WIDE_INT)size);
1136 m_from.maybe_predec (-(HOST_WIDE_INT)size);
1138 generate (to1, from1, mode);
1140 m_to.maybe_postinc (size);
1141 m_from.maybe_postinc (size);
1143 if (!m_reverse)
1144 m_offset += size;
1146 m_len -= size;
1149 finish_mode (mode);
1152 m_max_size = GET_MODE_SIZE (mode);
1155 /* The code above should have handled everything. */
1156 gcc_assert (!m_len);
1159 /* Derived class from op_by_pieces_d, providing support for block move
1160 operations. */
1162 class move_by_pieces_d : public op_by_pieces_d
1164 insn_gen_fn m_gen_fun;
1165 void generate (rtx, rtx, machine_mode);
1166 bool prepare_mode (machine_mode, unsigned int);
1168 public:
1169 move_by_pieces_d (rtx to, rtx from, unsigned HOST_WIDE_INT len,
1170 unsigned int align)
1171 : op_by_pieces_d (to, false, from, true, NULL, NULL, len, align)
1174 rtx finish_retmode (memop_ret);
1177 /* Return true if MODE can be used for a set of copies, given an
1178 alignment ALIGN. Prepare whatever data is necessary for later
1179 calls to generate. */
1181 bool
1182 move_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1184 insn_code icode = optab_handler (mov_optab, mode);
1185 m_gen_fun = GEN_FCN (icode);
1186 return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
1189 /* A callback used when iterating for a compare_by_pieces_operation.
1190 OP0 and OP1 are the values that have been loaded and should be
1191 compared in MODE. If OP0 is NULL, this means we should generate a
1192 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1193 gen function that should be used to generate the mode. */
1195 void
1196 move_by_pieces_d::generate (rtx op0, rtx op1,
1197 machine_mode mode ATTRIBUTE_UNUSED)
1199 #ifdef PUSH_ROUNDING
1200 if (op0 == NULL_RTX)
1202 emit_single_push_insn (mode, op1, NULL);
1203 return;
1205 #endif
1206 emit_insn (m_gen_fun (op0, op1));
1209 /* Perform the final adjustment at the end of a string to obtain the
1210 correct return value for the block operation.
1211 Return value is based on RETMODE argument. */
1214 move_by_pieces_d::finish_retmode (memop_ret retmode)
1216 gcc_assert (!m_reverse);
1217 if (retmode == RETURN_END_MINUS_ONE)
1219 m_to.maybe_postinc (-1);
1220 --m_offset;
1222 return m_to.adjust (QImode, m_offset);
1225 /* Generate several move instructions to copy LEN bytes from block FROM to
1226 block TO. (These are MEM rtx's with BLKmode).
1228 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1229 used to push FROM to the stack.
1231 ALIGN is maximum stack alignment we can assume.
1233 Return value is based on RETMODE argument. */
1236 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
1237 unsigned int align, memop_ret retmode)
1239 #ifndef PUSH_ROUNDING
1240 if (to == NULL)
1241 gcc_unreachable ();
1242 #endif
1244 move_by_pieces_d data (to, from, len, align);
1246 data.run ();
1248 if (retmode != RETURN_BEGIN)
1249 return data.finish_retmode (retmode);
1250 else
1251 return to;
1254 /* Derived class from op_by_pieces_d, providing support for block move
1255 operations. */
1257 class store_by_pieces_d : public op_by_pieces_d
1259 insn_gen_fn m_gen_fun;
1260 void generate (rtx, rtx, machine_mode);
1261 bool prepare_mode (machine_mode, unsigned int);
1263 public:
1264 store_by_pieces_d (rtx to, by_pieces_constfn cfn, void *cfn_data,
1265 unsigned HOST_WIDE_INT len, unsigned int align)
1266 : op_by_pieces_d (to, false, NULL_RTX, true, cfn, cfn_data, len, align)
1269 rtx finish_retmode (memop_ret);
1272 /* Return true if MODE can be used for a set of stores, given an
1273 alignment ALIGN. Prepare whatever data is necessary for later
1274 calls to generate. */
1276 bool
1277 store_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1279 insn_code icode = optab_handler (mov_optab, mode);
1280 m_gen_fun = GEN_FCN (icode);
1281 return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
1284 /* A callback used when iterating for a store_by_pieces_operation.
1285 OP0 and OP1 are the values that have been loaded and should be
1286 compared in MODE. If OP0 is NULL, this means we should generate a
1287 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1288 gen function that should be used to generate the mode. */
1290 void
1291 store_by_pieces_d::generate (rtx op0, rtx op1, machine_mode)
1293 emit_insn (m_gen_fun (op0, op1));
1296 /* Perform the final adjustment at the end of a string to obtain the
1297 correct return value for the block operation.
1298 Return value is based on RETMODE argument. */
1301 store_by_pieces_d::finish_retmode (memop_ret retmode)
1303 gcc_assert (!m_reverse);
1304 if (retmode == RETURN_END_MINUS_ONE)
1306 m_to.maybe_postinc (-1);
1307 --m_offset;
1309 return m_to.adjust (QImode, m_offset);
1312 /* Determine whether the LEN bytes generated by CONSTFUN can be
1313 stored to memory using several move instructions. CONSTFUNDATA is
1314 a pointer which will be passed as argument in every CONSTFUN call.
1315 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1316 a memset operation and false if it's a copy of a constant string.
1317 Return nonzero if a call to store_by_pieces should succeed. */
1320 can_store_by_pieces (unsigned HOST_WIDE_INT len,
1321 rtx (*constfun) (void *, HOST_WIDE_INT, scalar_int_mode),
1322 void *constfundata, unsigned int align, bool memsetp)
1324 unsigned HOST_WIDE_INT l;
1325 unsigned int max_size;
1326 HOST_WIDE_INT offset = 0;
1327 enum insn_code icode;
1328 int reverse;
1329 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
1330 rtx cst ATTRIBUTE_UNUSED;
1332 if (len == 0)
1333 return 1;
1335 if (!targetm.use_by_pieces_infrastructure_p (len, align,
1336 memsetp
1337 ? SET_BY_PIECES
1338 : STORE_BY_PIECES,
1339 optimize_insn_for_speed_p ()))
1340 return 0;
1342 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
1344 /* We would first store what we can in the largest integer mode, then go to
1345 successively smaller modes. */
1347 for (reverse = 0;
1348 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
1349 reverse++)
1351 l = len;
1352 max_size = STORE_MAX_PIECES + 1;
1353 while (max_size > 1 && l > 0)
1355 scalar_int_mode mode = widest_int_mode_for_size (max_size);
1357 icode = optab_handler (mov_optab, mode);
1358 if (icode != CODE_FOR_nothing
1359 && align >= GET_MODE_ALIGNMENT (mode))
1361 unsigned int size = GET_MODE_SIZE (mode);
1363 while (l >= size)
1365 if (reverse)
1366 offset -= size;
1368 cst = (*constfun) (constfundata, offset, mode);
1369 if (!targetm.legitimate_constant_p (mode, cst))
1370 return 0;
1372 if (!reverse)
1373 offset += size;
1375 l -= size;
1379 max_size = GET_MODE_SIZE (mode);
1382 /* The code above should have handled everything. */
1383 gcc_assert (!l);
1386 return 1;
1389 /* Generate several move instructions to store LEN bytes generated by
1390 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
1391 pointer which will be passed as argument in every CONSTFUN call.
1392 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1393 a memset operation and false if it's a copy of a constant string.
1394 Return value is based on RETMODE argument. */
1397 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
1398 rtx (*constfun) (void *, HOST_WIDE_INT, scalar_int_mode),
1399 void *constfundata, unsigned int align, bool memsetp,
1400 memop_ret retmode)
1402 if (len == 0)
1404 gcc_assert (retmode != RETURN_END_MINUS_ONE);
1405 return to;
1408 gcc_assert (targetm.use_by_pieces_infrastructure_p
1409 (len, align,
1410 memsetp ? SET_BY_PIECES : STORE_BY_PIECES,
1411 optimize_insn_for_speed_p ()));
1413 store_by_pieces_d data (to, constfun, constfundata, len, align);
1414 data.run ();
1416 if (retmode != RETURN_BEGIN)
1417 return data.finish_retmode (retmode);
1418 else
1419 return to;
1422 /* Callback routine for clear_by_pieces.
1423 Return const0_rtx unconditionally. */
1425 static rtx
1426 clear_by_pieces_1 (void *, HOST_WIDE_INT, scalar_int_mode)
1428 return const0_rtx;
1431 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
1432 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
1434 static void
1435 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
1437 if (len == 0)
1438 return;
1440 store_by_pieces_d data (to, clear_by_pieces_1, NULL, len, align);
1441 data.run ();
1444 /* Context used by compare_by_pieces_genfn. It stores the fail label
1445 to jump to in case of miscomparison, and for branch ratios greater than 1,
1446 it stores an accumulator and the current and maximum counts before
1447 emitting another branch. */
1449 class compare_by_pieces_d : public op_by_pieces_d
1451 rtx_code_label *m_fail_label;
1452 rtx m_accumulator;
1453 int m_count, m_batch;
1455 void generate (rtx, rtx, machine_mode);
1456 bool prepare_mode (machine_mode, unsigned int);
1457 void finish_mode (machine_mode);
1458 public:
1459 compare_by_pieces_d (rtx op0, rtx op1, by_pieces_constfn op1_cfn,
1460 void *op1_cfn_data, HOST_WIDE_INT len, int align,
1461 rtx_code_label *fail_label)
1462 : op_by_pieces_d (op0, true, op1, true, op1_cfn, op1_cfn_data, len, align)
1464 m_fail_label = fail_label;
1468 /* A callback used when iterating for a compare_by_pieces_operation.
1469 OP0 and OP1 are the values that have been loaded and should be
1470 compared in MODE. DATA holds a pointer to the compare_by_pieces_data
1471 context structure. */
1473 void
1474 compare_by_pieces_d::generate (rtx op0, rtx op1, machine_mode mode)
1476 if (m_batch > 1)
1478 rtx temp = expand_binop (mode, sub_optab, op0, op1, NULL_RTX,
1479 true, OPTAB_LIB_WIDEN);
1480 if (m_count != 0)
1481 temp = expand_binop (mode, ior_optab, m_accumulator, temp, temp,
1482 true, OPTAB_LIB_WIDEN);
1483 m_accumulator = temp;
1485 if (++m_count < m_batch)
1486 return;
1488 m_count = 0;
1489 op0 = m_accumulator;
1490 op1 = const0_rtx;
1491 m_accumulator = NULL_RTX;
1493 do_compare_rtx_and_jump (op0, op1, NE, true, mode, NULL_RTX, NULL,
1494 m_fail_label, profile_probability::uninitialized ());
1497 /* Return true if MODE can be used for a set of moves and comparisons,
1498 given an alignment ALIGN. Prepare whatever data is necessary for
1499 later calls to generate. */
1501 bool
1502 compare_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1504 insn_code icode = optab_handler (mov_optab, mode);
1505 if (icode == CODE_FOR_nothing
1506 || align < GET_MODE_ALIGNMENT (mode)
1507 || !can_compare_p (EQ, mode, ccp_jump))
1508 return false;
1509 m_batch = targetm.compare_by_pieces_branch_ratio (mode);
1510 if (m_batch < 0)
1511 return false;
1512 m_accumulator = NULL_RTX;
1513 m_count = 0;
1514 return true;
1517 /* Called after expanding a series of comparisons in MODE. If we have
1518 accumulated results for which we haven't emitted a branch yet, do
1519 so now. */
1521 void
1522 compare_by_pieces_d::finish_mode (machine_mode mode)
1524 if (m_accumulator != NULL_RTX)
1525 do_compare_rtx_and_jump (m_accumulator, const0_rtx, NE, true, mode,
1526 NULL_RTX, NULL, m_fail_label,
1527 profile_probability::uninitialized ());
1530 /* Generate several move instructions to compare LEN bytes from blocks
1531 ARG0 and ARG1. (These are MEM rtx's with BLKmode).
1533 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1534 used to push FROM to the stack.
1536 ALIGN is maximum stack alignment we can assume.
1538 Optionally, the caller can pass a constfn and associated data in A1_CFN
1539 and A1_CFN_DATA. describing that the second operand being compared is a
1540 known constant and how to obtain its data. */
1542 static rtx
1543 compare_by_pieces (rtx arg0, rtx arg1, unsigned HOST_WIDE_INT len,
1544 rtx target, unsigned int align,
1545 by_pieces_constfn a1_cfn, void *a1_cfn_data)
1547 rtx_code_label *fail_label = gen_label_rtx ();
1548 rtx_code_label *end_label = gen_label_rtx ();
1550 if (target == NULL_RTX
1551 || !REG_P (target) || REGNO (target) < FIRST_PSEUDO_REGISTER)
1552 target = gen_reg_rtx (TYPE_MODE (integer_type_node));
1554 compare_by_pieces_d data (arg0, arg1, a1_cfn, a1_cfn_data, len, align,
1555 fail_label);
1557 data.run ();
1559 emit_move_insn (target, const0_rtx);
1560 emit_jump (end_label);
1561 emit_barrier ();
1562 emit_label (fail_label);
1563 emit_move_insn (target, const1_rtx);
1564 emit_label (end_label);
1566 return target;
1569 /* Emit code to move a block Y to a block X. This may be done with
1570 string-move instructions, with multiple scalar move instructions,
1571 or with a library call.
1573 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1574 SIZE is an rtx that says how long they are.
1575 ALIGN is the maximum alignment we can assume they have.
1576 METHOD describes what kind of copy this is, and what mechanisms may be used.
1577 MIN_SIZE is the minimal size of block to move
1578 MAX_SIZE is the maximal size of block to move, if it cannot be represented
1579 in unsigned HOST_WIDE_INT, than it is mask of all ones.
1581 Return the address of the new block, if memcpy is called and returns it,
1582 0 otherwise. */
1585 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1586 unsigned int expected_align, HOST_WIDE_INT expected_size,
1587 unsigned HOST_WIDE_INT min_size,
1588 unsigned HOST_WIDE_INT max_size,
1589 unsigned HOST_WIDE_INT probable_max_size,
1590 bool bail_out_libcall, bool *is_move_done,
1591 bool might_overlap)
1593 int may_use_call;
1594 rtx retval = 0;
1595 unsigned int align;
1597 if (is_move_done)
1598 *is_move_done = true;
1600 gcc_assert (size);
1601 if (CONST_INT_P (size) && INTVAL (size) == 0)
1602 return 0;
1604 switch (method)
1606 case BLOCK_OP_NORMAL:
1607 case BLOCK_OP_TAILCALL:
1608 may_use_call = 1;
1609 break;
1611 case BLOCK_OP_CALL_PARM:
1612 may_use_call = block_move_libcall_safe_for_call_parm ();
1614 /* Make inhibit_defer_pop nonzero around the library call
1615 to force it to pop the arguments right away. */
1616 NO_DEFER_POP;
1617 break;
1619 case BLOCK_OP_NO_LIBCALL:
1620 may_use_call = 0;
1621 break;
1623 case BLOCK_OP_NO_LIBCALL_RET:
1624 may_use_call = -1;
1625 break;
1627 default:
1628 gcc_unreachable ();
1631 gcc_assert (MEM_P (x) && MEM_P (y));
1632 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1633 gcc_assert (align >= BITS_PER_UNIT);
1635 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1636 block copy is more efficient for other large modes, e.g. DCmode. */
1637 x = adjust_address (x, BLKmode, 0);
1638 y = adjust_address (y, BLKmode, 0);
1640 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1641 can be incorrect is coming from __builtin_memcpy. */
1642 poly_int64 const_size;
1643 if (poly_int_rtx_p (size, &const_size))
1645 x = shallow_copy_rtx (x);
1646 y = shallow_copy_rtx (y);
1647 set_mem_size (x, const_size);
1648 set_mem_size (y, const_size);
1651 bool pieces_ok = CONST_INT_P (size)
1652 && can_move_by_pieces (INTVAL (size), align);
1653 bool pattern_ok = false;
1655 if (!pieces_ok || might_overlap)
1657 pattern_ok
1658 = emit_block_move_via_pattern (x, y, size, align,
1659 expected_align, expected_size,
1660 min_size, max_size, probable_max_size,
1661 might_overlap);
1662 if (!pattern_ok && might_overlap)
1664 /* Do not try any of the other methods below as they are not safe
1665 for overlapping moves. */
1666 *is_move_done = false;
1667 return retval;
1671 if (pattern_ok)
1673 else if (pieces_ok)
1674 move_by_pieces (x, y, INTVAL (size), align, RETURN_BEGIN);
1675 else if (may_use_call && !might_overlap
1676 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
1677 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
1679 if (bail_out_libcall)
1681 if (is_move_done)
1682 *is_move_done = false;
1683 return retval;
1686 if (may_use_call < 0)
1687 return pc_rtx;
1689 retval = emit_block_copy_via_libcall (x, y, size,
1690 method == BLOCK_OP_TAILCALL);
1692 else if (might_overlap)
1693 *is_move_done = false;
1694 else
1695 emit_block_move_via_loop (x, y, size, align);
1697 if (method == BLOCK_OP_CALL_PARM)
1698 OK_DEFER_POP;
1700 return retval;
1704 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1706 unsigned HOST_WIDE_INT max, min = 0;
1707 if (GET_CODE (size) == CONST_INT)
1708 min = max = UINTVAL (size);
1709 else
1710 max = GET_MODE_MASK (GET_MODE (size));
1711 return emit_block_move_hints (x, y, size, method, 0, -1,
1712 min, max, max);
1715 /* A subroutine of emit_block_move. Returns true if calling the
1716 block move libcall will not clobber any parameters which may have
1717 already been placed on the stack. */
1719 static bool
1720 block_move_libcall_safe_for_call_parm (void)
1722 tree fn;
1724 /* If arguments are pushed on the stack, then they're safe. */
1725 if (PUSH_ARGS)
1726 return true;
1728 /* If registers go on the stack anyway, any argument is sure to clobber
1729 an outgoing argument. */
1730 #if defined (REG_PARM_STACK_SPACE)
1731 fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
1732 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1733 depend on its argument. */
1734 (void) fn;
1735 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1736 && REG_PARM_STACK_SPACE (fn) != 0)
1737 return false;
1738 #endif
1740 /* If any argument goes in memory, then it might clobber an outgoing
1741 argument. */
1743 CUMULATIVE_ARGS args_so_far_v;
1744 cumulative_args_t args_so_far;
1745 tree arg;
1747 fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
1748 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
1749 args_so_far = pack_cumulative_args (&args_so_far_v);
1751 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1752 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1754 machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1755 function_arg_info arg_info (mode, /*named=*/true);
1756 rtx tmp = targetm.calls.function_arg (args_so_far, arg_info);
1757 if (!tmp || !REG_P (tmp))
1758 return false;
1759 if (targetm.calls.arg_partial_bytes (args_so_far, arg_info))
1760 return false;
1761 targetm.calls.function_arg_advance (args_so_far, arg_info);
1764 return true;
1767 /* A subroutine of emit_block_move. Expand a cpymem or movmem pattern;
1768 return true if successful.
1770 X is the destination of the copy or move.
1771 Y is the source of the copy or move.
1772 SIZE is the size of the block to be moved.
1774 MIGHT_OVERLAP indicates this originated with expansion of a
1775 builtin_memmove() and the source and destination blocks may
1776 overlap.
1779 static bool
1780 emit_block_move_via_pattern (rtx x, rtx y, rtx size, unsigned int align,
1781 unsigned int expected_align,
1782 HOST_WIDE_INT expected_size,
1783 unsigned HOST_WIDE_INT min_size,
1784 unsigned HOST_WIDE_INT max_size,
1785 unsigned HOST_WIDE_INT probable_max_size,
1786 bool might_overlap)
1788 if (expected_align < align)
1789 expected_align = align;
1790 if (expected_size != -1)
1792 if ((unsigned HOST_WIDE_INT)expected_size > probable_max_size)
1793 expected_size = probable_max_size;
1794 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
1795 expected_size = min_size;
1798 /* Since this is a move insn, we don't care about volatility. */
1799 temporary_volatile_ok v (true);
1801 /* Try the most limited insn first, because there's no point
1802 including more than one in the machine description unless
1803 the more limited one has some advantage. */
1805 opt_scalar_int_mode mode_iter;
1806 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
1808 scalar_int_mode mode = mode_iter.require ();
1809 enum insn_code code;
1810 if (might_overlap)
1811 code = direct_optab_handler (movmem_optab, mode);
1812 else
1813 code = direct_optab_handler (cpymem_optab, mode);
1815 if (code != CODE_FOR_nothing
1816 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1817 here because if SIZE is less than the mode mask, as it is
1818 returned by the macro, it will definitely be less than the
1819 actual mode mask. Since SIZE is within the Pmode address
1820 space, we limit MODE to Pmode. */
1821 && ((CONST_INT_P (size)
1822 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1823 <= (GET_MODE_MASK (mode) >> 1)))
1824 || max_size <= (GET_MODE_MASK (mode) >> 1)
1825 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
1827 class expand_operand ops[9];
1828 unsigned int nops;
1830 /* ??? When called via emit_block_move_for_call, it'd be
1831 nice if there were some way to inform the backend, so
1832 that it doesn't fail the expansion because it thinks
1833 emitting the libcall would be more efficient. */
1834 nops = insn_data[(int) code].n_generator_args;
1835 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
1837 create_fixed_operand (&ops[0], x);
1838 create_fixed_operand (&ops[1], y);
1839 /* The check above guarantees that this size conversion is valid. */
1840 create_convert_operand_to (&ops[2], size, mode, true);
1841 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
1842 if (nops >= 6)
1844 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
1845 create_integer_operand (&ops[5], expected_size);
1847 if (nops >= 8)
1849 create_integer_operand (&ops[6], min_size);
1850 /* If we cannot represent the maximal size,
1851 make parameter NULL. */
1852 if ((HOST_WIDE_INT) max_size != -1)
1853 create_integer_operand (&ops[7], max_size);
1854 else
1855 create_fixed_operand (&ops[7], NULL);
1857 if (nops == 9)
1859 /* If we cannot represent the maximal size,
1860 make parameter NULL. */
1861 if ((HOST_WIDE_INT) probable_max_size != -1)
1862 create_integer_operand (&ops[8], probable_max_size);
1863 else
1864 create_fixed_operand (&ops[8], NULL);
1866 if (maybe_expand_insn (code, nops, ops))
1867 return true;
1871 return false;
1874 /* A subroutine of emit_block_move. Copy the data via an explicit
1875 loop. This is used only when libcalls are forbidden. */
1876 /* ??? It'd be nice to copy in hunks larger than QImode. */
1878 static void
1879 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1880 unsigned int align ATTRIBUTE_UNUSED)
1882 rtx_code_label *cmp_label, *top_label;
1883 rtx iter, x_addr, y_addr, tmp;
1884 machine_mode x_addr_mode = get_address_mode (x);
1885 machine_mode y_addr_mode = get_address_mode (y);
1886 machine_mode iter_mode;
1888 iter_mode = GET_MODE (size);
1889 if (iter_mode == VOIDmode)
1890 iter_mode = word_mode;
1892 top_label = gen_label_rtx ();
1893 cmp_label = gen_label_rtx ();
1894 iter = gen_reg_rtx (iter_mode);
1896 emit_move_insn (iter, const0_rtx);
1898 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1899 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1900 do_pending_stack_adjust ();
1902 emit_jump (cmp_label);
1903 emit_label (top_label);
1905 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
1906 x_addr = simplify_gen_binary (PLUS, x_addr_mode, x_addr, tmp);
1908 if (x_addr_mode != y_addr_mode)
1909 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
1910 y_addr = simplify_gen_binary (PLUS, y_addr_mode, y_addr, tmp);
1912 x = change_address (x, QImode, x_addr);
1913 y = change_address (y, QImode, y_addr);
1915 emit_move_insn (x, y);
1917 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1918 true, OPTAB_LIB_WIDEN);
1919 if (tmp != iter)
1920 emit_move_insn (iter, tmp);
1922 emit_label (cmp_label);
1924 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1925 true, top_label,
1926 profile_probability::guessed_always ()
1927 .apply_scale (9, 10));
1930 /* Expand a call to memcpy or memmove or memcmp, and return the result.
1931 TAILCALL is true if this is a tail call. */
1934 emit_block_op_via_libcall (enum built_in_function fncode, rtx dst, rtx src,
1935 rtx size, bool tailcall)
1937 rtx dst_addr, src_addr;
1938 tree call_expr, dst_tree, src_tree, size_tree;
1939 machine_mode size_mode;
1941 /* Since dst and src are passed to a libcall, mark the corresponding
1942 tree EXPR as addressable. */
1943 tree dst_expr = MEM_EXPR (dst);
1944 tree src_expr = MEM_EXPR (src);
1945 if (dst_expr)
1946 mark_addressable (dst_expr);
1947 if (src_expr)
1948 mark_addressable (src_expr);
1950 dst_addr = copy_addr_to_reg (XEXP (dst, 0));
1951 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1952 dst_tree = make_tree (ptr_type_node, dst_addr);
1954 src_addr = copy_addr_to_reg (XEXP (src, 0));
1955 src_addr = convert_memory_address (ptr_mode, src_addr);
1956 src_tree = make_tree (ptr_type_node, src_addr);
1958 size_mode = TYPE_MODE (sizetype);
1959 size = convert_to_mode (size_mode, size, 1);
1960 size = copy_to_mode_reg (size_mode, size);
1961 size_tree = make_tree (sizetype, size);
1963 /* It is incorrect to use the libcall calling conventions for calls to
1964 memcpy/memmove/memcmp because they can be provided by the user. */
1965 tree fn = builtin_decl_implicit (fncode);
1966 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1967 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1969 return expand_call (call_expr, NULL_RTX, false);
1972 /* Try to expand cmpstrn or cmpmem operation ICODE with the given operands.
1973 ARG3_TYPE is the type of ARG3_RTX. Return the result rtx on success,
1974 otherwise return null. */
1977 expand_cmpstrn_or_cmpmem (insn_code icode, rtx target, rtx arg1_rtx,
1978 rtx arg2_rtx, tree arg3_type, rtx arg3_rtx,
1979 HOST_WIDE_INT align)
1981 machine_mode insn_mode = insn_data[icode].operand[0].mode;
1983 if (target && (!REG_P (target) || HARD_REGISTER_P (target)))
1984 target = NULL_RTX;
1986 class expand_operand ops[5];
1987 create_output_operand (&ops[0], target, insn_mode);
1988 create_fixed_operand (&ops[1], arg1_rtx);
1989 create_fixed_operand (&ops[2], arg2_rtx);
1990 create_convert_operand_from (&ops[3], arg3_rtx, TYPE_MODE (arg3_type),
1991 TYPE_UNSIGNED (arg3_type));
1992 create_integer_operand (&ops[4], align);
1993 if (maybe_expand_insn (icode, 5, ops))
1994 return ops[0].value;
1995 return NULL_RTX;
1998 /* Expand a block compare between X and Y with length LEN using the
1999 cmpmem optab, placing the result in TARGET. LEN_TYPE is the type
2000 of the expression that was used to calculate the length. ALIGN
2001 gives the known minimum common alignment. */
2003 static rtx
2004 emit_block_cmp_via_cmpmem (rtx x, rtx y, rtx len, tree len_type, rtx target,
2005 unsigned align)
2007 /* Note: The cmpstrnsi pattern, if it exists, is not suitable for
2008 implementing memcmp because it will stop if it encounters two
2009 zero bytes. */
2010 insn_code icode = direct_optab_handler (cmpmem_optab, SImode);
2012 if (icode == CODE_FOR_nothing)
2013 return NULL_RTX;
2015 return expand_cmpstrn_or_cmpmem (icode, target, x, y, len_type, len, align);
2018 /* Emit code to compare a block Y to a block X. This may be done with
2019 string-compare instructions, with multiple scalar instructions,
2020 or with a library call.
2022 Both X and Y must be MEM rtx's. LEN is an rtx that says how long
2023 they are. LEN_TYPE is the type of the expression that was used to
2024 calculate it.
2026 If EQUALITY_ONLY is true, it means we don't have to return the tri-state
2027 value of a normal memcmp call, instead we can just compare for equality.
2028 If FORCE_LIBCALL is true, we should emit a call to memcmp rather than
2029 returning NULL_RTX.
2031 Optionally, the caller can pass a constfn and associated data in Y_CFN
2032 and Y_CFN_DATA. describing that the second operand being compared is a
2033 known constant and how to obtain its data.
2034 Return the result of the comparison, or NULL_RTX if we failed to
2035 perform the operation. */
2038 emit_block_cmp_hints (rtx x, rtx y, rtx len, tree len_type, rtx target,
2039 bool equality_only, by_pieces_constfn y_cfn,
2040 void *y_cfndata)
2042 rtx result = 0;
2044 if (CONST_INT_P (len) && INTVAL (len) == 0)
2045 return const0_rtx;
2047 gcc_assert (MEM_P (x) && MEM_P (y));
2048 unsigned int align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
2049 gcc_assert (align >= BITS_PER_UNIT);
2051 x = adjust_address (x, BLKmode, 0);
2052 y = adjust_address (y, BLKmode, 0);
2054 if (equality_only
2055 && CONST_INT_P (len)
2056 && can_do_by_pieces (INTVAL (len), align, COMPARE_BY_PIECES))
2057 result = compare_by_pieces (x, y, INTVAL (len), target, align,
2058 y_cfn, y_cfndata);
2059 else
2060 result = emit_block_cmp_via_cmpmem (x, y, len, len_type, target, align);
2062 return result;
2065 /* Copy all or part of a value X into registers starting at REGNO.
2066 The number of registers to be filled is NREGS. */
2068 void
2069 move_block_to_reg (int regno, rtx x, int nregs, machine_mode mode)
2071 if (nregs == 0)
2072 return;
2074 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
2075 x = validize_mem (force_const_mem (mode, x));
2077 /* See if the machine can do this with a load multiple insn. */
2078 if (targetm.have_load_multiple ())
2080 rtx_insn *last = get_last_insn ();
2081 rtx first = gen_rtx_REG (word_mode, regno);
2082 if (rtx_insn *pat = targetm.gen_load_multiple (first, x,
2083 GEN_INT (nregs)))
2085 emit_insn (pat);
2086 return;
2088 else
2089 delete_insns_since (last);
2092 for (int i = 0; i < nregs; i++)
2093 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
2094 operand_subword_force (x, i, mode));
2097 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
2098 The number of registers to be filled is NREGS. */
2100 void
2101 move_block_from_reg (int regno, rtx x, int nregs)
2103 if (nregs == 0)
2104 return;
2106 /* See if the machine can do this with a store multiple insn. */
2107 if (targetm.have_store_multiple ())
2109 rtx_insn *last = get_last_insn ();
2110 rtx first = gen_rtx_REG (word_mode, regno);
2111 if (rtx_insn *pat = targetm.gen_store_multiple (x, first,
2112 GEN_INT (nregs)))
2114 emit_insn (pat);
2115 return;
2117 else
2118 delete_insns_since (last);
2121 for (int i = 0; i < nregs; i++)
2123 rtx tem = operand_subword (x, i, 1, BLKmode);
2125 gcc_assert (tem);
2127 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
2131 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
2132 ORIG, where ORIG is a non-consecutive group of registers represented by
2133 a PARALLEL. The clone is identical to the original except in that the
2134 original set of registers is replaced by a new set of pseudo registers.
2135 The new set has the same modes as the original set. */
2138 gen_group_rtx (rtx orig)
2140 int i, length;
2141 rtx *tmps;
2143 gcc_assert (GET_CODE (orig) == PARALLEL);
2145 length = XVECLEN (orig, 0);
2146 tmps = XALLOCAVEC (rtx, length);
2148 /* Skip a NULL entry in first slot. */
2149 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
2151 if (i)
2152 tmps[0] = 0;
2154 for (; i < length; i++)
2156 machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
2157 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
2159 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
2162 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
2165 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
2166 except that values are placed in TMPS[i], and must later be moved
2167 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
2169 static void
2170 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type,
2171 poly_int64 ssize)
2173 rtx src;
2174 int start, i;
2175 machine_mode m = GET_MODE (orig_src);
2177 gcc_assert (GET_CODE (dst) == PARALLEL);
2179 if (m != VOIDmode
2180 && !SCALAR_INT_MODE_P (m)
2181 && !MEM_P (orig_src)
2182 && GET_CODE (orig_src) != CONCAT)
2184 scalar_int_mode imode;
2185 if (int_mode_for_mode (GET_MODE (orig_src)).exists (&imode))
2187 src = gen_reg_rtx (imode);
2188 emit_move_insn (gen_lowpart (GET_MODE (orig_src), src), orig_src);
2190 else
2192 src = assign_stack_temp (GET_MODE (orig_src), ssize);
2193 emit_move_insn (src, orig_src);
2195 emit_group_load_1 (tmps, dst, src, type, ssize);
2196 return;
2199 /* Check for a NULL entry, used to indicate that the parameter goes
2200 both on the stack and in registers. */
2201 if (XEXP (XVECEXP (dst, 0, 0), 0))
2202 start = 0;
2203 else
2204 start = 1;
2206 /* Process the pieces. */
2207 for (i = start; i < XVECLEN (dst, 0); i++)
2209 machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
2210 poly_int64 bytepos = rtx_to_poly_int64 (XEXP (XVECEXP (dst, 0, i), 1));
2211 poly_int64 bytelen = GET_MODE_SIZE (mode);
2212 poly_int64 shift = 0;
2214 /* Handle trailing fragments that run over the size of the struct.
2215 It's the target's responsibility to make sure that the fragment
2216 cannot be strictly smaller in some cases and strictly larger
2217 in others. */
2218 gcc_checking_assert (ordered_p (bytepos + bytelen, ssize));
2219 if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
2221 /* Arrange to shift the fragment to where it belongs.
2222 extract_bit_field loads to the lsb of the reg. */
2223 if (
2224 #ifdef BLOCK_REG_PADDING
2225 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
2226 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)
2227 #else
2228 BYTES_BIG_ENDIAN
2229 #endif
2231 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2232 bytelen = ssize - bytepos;
2233 gcc_assert (maybe_gt (bytelen, 0));
2236 /* If we won't be loading directly from memory, protect the real source
2237 from strange tricks we might play; but make sure that the source can
2238 be loaded directly into the destination. */
2239 src = orig_src;
2240 if (!MEM_P (orig_src)
2241 && (!CONSTANT_P (orig_src)
2242 || (GET_MODE (orig_src) != mode
2243 && GET_MODE (orig_src) != VOIDmode)))
2245 if (GET_MODE (orig_src) == VOIDmode)
2246 src = gen_reg_rtx (mode);
2247 else
2248 src = gen_reg_rtx (GET_MODE (orig_src));
2250 emit_move_insn (src, orig_src);
2253 /* Optimize the access just a bit. */
2254 if (MEM_P (src)
2255 && (! targetm.slow_unaligned_access (mode, MEM_ALIGN (src))
2256 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
2257 && multiple_p (bytepos * BITS_PER_UNIT, GET_MODE_ALIGNMENT (mode))
2258 && known_eq (bytelen, GET_MODE_SIZE (mode)))
2260 tmps[i] = gen_reg_rtx (mode);
2261 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
2263 else if (COMPLEX_MODE_P (mode)
2264 && GET_MODE (src) == mode
2265 && known_eq (bytelen, GET_MODE_SIZE (mode)))
2266 /* Let emit_move_complex do the bulk of the work. */
2267 tmps[i] = src;
2268 else if (GET_CODE (src) == CONCAT)
2270 poly_int64 slen = GET_MODE_SIZE (GET_MODE (src));
2271 poly_int64 slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
2272 unsigned int elt;
2273 poly_int64 subpos;
2275 if (can_div_trunc_p (bytepos, slen0, &elt, &subpos)
2276 && known_le (subpos + bytelen, slen0))
2278 /* The following assumes that the concatenated objects all
2279 have the same size. In this case, a simple calculation
2280 can be used to determine the object and the bit field
2281 to be extracted. */
2282 tmps[i] = XEXP (src, elt);
2283 if (maybe_ne (subpos, 0)
2284 || maybe_ne (subpos + bytelen, slen0)
2285 || (!CONSTANT_P (tmps[i])
2286 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode)))
2287 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
2288 subpos * BITS_PER_UNIT,
2289 1, NULL_RTX, mode, mode, false,
2290 NULL);
2292 else
2294 rtx mem;
2296 gcc_assert (known_eq (bytepos, 0));
2297 mem = assign_stack_temp (GET_MODE (src), slen);
2298 emit_move_insn (mem, src);
2299 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
2300 0, 1, NULL_RTX, mode, mode, false,
2301 NULL);
2304 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
2305 SIMD register, which is currently broken. While we get GCC
2306 to emit proper RTL for these cases, let's dump to memory. */
2307 else if (VECTOR_MODE_P (GET_MODE (dst))
2308 && REG_P (src))
2310 poly_uint64 slen = GET_MODE_SIZE (GET_MODE (src));
2311 rtx mem;
2313 mem = assign_stack_temp (GET_MODE (src), slen);
2314 emit_move_insn (mem, src);
2315 tmps[i] = adjust_address (mem, mode, bytepos);
2317 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
2318 && XVECLEN (dst, 0) > 1)
2319 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE (dst), bytepos);
2320 else if (CONSTANT_P (src))
2322 if (known_eq (bytelen, ssize))
2323 tmps[i] = src;
2324 else
2326 rtx first, second;
2328 /* TODO: const_wide_int can have sizes other than this... */
2329 gcc_assert (known_eq (2 * bytelen, ssize));
2330 split_double (src, &first, &second);
2331 if (i)
2332 tmps[i] = second;
2333 else
2334 tmps[i] = first;
2337 else if (REG_P (src) && GET_MODE (src) == mode)
2338 tmps[i] = src;
2339 else
2340 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
2341 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
2342 mode, mode, false, NULL);
2344 if (maybe_ne (shift, 0))
2345 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
2346 shift, tmps[i], 0);
2350 /* Emit code to move a block SRC of type TYPE to a block DST,
2351 where DST is non-consecutive registers represented by a PARALLEL.
2352 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
2353 if not known. */
2355 void
2356 emit_group_load (rtx dst, rtx src, tree type, poly_int64 ssize)
2358 rtx *tmps;
2359 int i;
2361 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
2362 emit_group_load_1 (tmps, dst, src, type, ssize);
2364 /* Copy the extracted pieces into the proper (probable) hard regs. */
2365 for (i = 0; i < XVECLEN (dst, 0); i++)
2367 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
2368 if (d == NULL)
2369 continue;
2370 emit_move_insn (d, tmps[i]);
2374 /* Similar, but load SRC into new pseudos in a format that looks like
2375 PARALLEL. This can later be fed to emit_group_move to get things
2376 in the right place. */
2379 emit_group_load_into_temps (rtx parallel, rtx src, tree type, poly_int64 ssize)
2381 rtvec vec;
2382 int i;
2384 vec = rtvec_alloc (XVECLEN (parallel, 0));
2385 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
2387 /* Convert the vector to look just like the original PARALLEL, except
2388 with the computed values. */
2389 for (i = 0; i < XVECLEN (parallel, 0); i++)
2391 rtx e = XVECEXP (parallel, 0, i);
2392 rtx d = XEXP (e, 0);
2394 if (d)
2396 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
2397 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
2399 RTVEC_ELT (vec, i) = e;
2402 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
2405 /* Emit code to move a block SRC to block DST, where SRC and DST are
2406 non-consecutive groups of registers, each represented by a PARALLEL. */
2408 void
2409 emit_group_move (rtx dst, rtx src)
2411 int i;
2413 gcc_assert (GET_CODE (src) == PARALLEL
2414 && GET_CODE (dst) == PARALLEL
2415 && XVECLEN (src, 0) == XVECLEN (dst, 0));
2417 /* Skip first entry if NULL. */
2418 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
2419 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
2420 XEXP (XVECEXP (src, 0, i), 0));
2423 /* Move a group of registers represented by a PARALLEL into pseudos. */
2426 emit_group_move_into_temps (rtx src)
2428 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
2429 int i;
2431 for (i = 0; i < XVECLEN (src, 0); i++)
2433 rtx e = XVECEXP (src, 0, i);
2434 rtx d = XEXP (e, 0);
2436 if (d)
2437 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
2438 RTVEC_ELT (vec, i) = e;
2441 return gen_rtx_PARALLEL (GET_MODE (src), vec);
2444 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
2445 where SRC is non-consecutive registers represented by a PARALLEL.
2446 SSIZE represents the total size of block ORIG_DST, or -1 if not
2447 known. */
2449 void
2450 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED,
2451 poly_int64 ssize)
2453 rtx *tmps, dst;
2454 int start, finish, i;
2455 machine_mode m = GET_MODE (orig_dst);
2457 gcc_assert (GET_CODE (src) == PARALLEL);
2459 if (!SCALAR_INT_MODE_P (m)
2460 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
2462 scalar_int_mode imode;
2463 if (int_mode_for_mode (GET_MODE (orig_dst)).exists (&imode))
2465 dst = gen_reg_rtx (imode);
2466 emit_group_store (dst, src, type, ssize);
2467 dst = gen_lowpart (GET_MODE (orig_dst), dst);
2469 else
2471 dst = assign_stack_temp (GET_MODE (orig_dst), ssize);
2472 emit_group_store (dst, src, type, ssize);
2474 emit_move_insn (orig_dst, dst);
2475 return;
2478 /* Check for a NULL entry, used to indicate that the parameter goes
2479 both on the stack and in registers. */
2480 if (XEXP (XVECEXP (src, 0, 0), 0))
2481 start = 0;
2482 else
2483 start = 1;
2484 finish = XVECLEN (src, 0);
2486 tmps = XALLOCAVEC (rtx, finish);
2488 /* Copy the (probable) hard regs into pseudos. */
2489 for (i = start; i < finish; i++)
2491 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
2492 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
2494 tmps[i] = gen_reg_rtx (GET_MODE (reg));
2495 emit_move_insn (tmps[i], reg);
2497 else
2498 tmps[i] = reg;
2501 /* If we won't be storing directly into memory, protect the real destination
2502 from strange tricks we might play. */
2503 dst = orig_dst;
2504 if (GET_CODE (dst) == PARALLEL)
2506 rtx temp;
2508 /* We can get a PARALLEL dst if there is a conditional expression in
2509 a return statement. In that case, the dst and src are the same,
2510 so no action is necessary. */
2511 if (rtx_equal_p (dst, src))
2512 return;
2514 /* It is unclear if we can ever reach here, but we may as well handle
2515 it. Allocate a temporary, and split this into a store/load to/from
2516 the temporary. */
2517 temp = assign_stack_temp (GET_MODE (dst), ssize);
2518 emit_group_store (temp, src, type, ssize);
2519 emit_group_load (dst, temp, type, ssize);
2520 return;
2522 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
2524 machine_mode outer = GET_MODE (dst);
2525 machine_mode inner;
2526 poly_int64 bytepos;
2527 bool done = false;
2528 rtx temp;
2530 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
2531 dst = gen_reg_rtx (outer);
2533 /* Make life a bit easier for combine. */
2534 /* If the first element of the vector is the low part
2535 of the destination mode, use a paradoxical subreg to
2536 initialize the destination. */
2537 if (start < finish)
2539 inner = GET_MODE (tmps[start]);
2540 bytepos = subreg_lowpart_offset (inner, outer);
2541 if (known_eq (rtx_to_poly_int64 (XEXP (XVECEXP (src, 0, start), 1)),
2542 bytepos))
2544 temp = simplify_gen_subreg (outer, tmps[start],
2545 inner, 0);
2546 if (temp)
2548 emit_move_insn (dst, temp);
2549 done = true;
2550 start++;
2555 /* If the first element wasn't the low part, try the last. */
2556 if (!done
2557 && start < finish - 1)
2559 inner = GET_MODE (tmps[finish - 1]);
2560 bytepos = subreg_lowpart_offset (inner, outer);
2561 if (known_eq (rtx_to_poly_int64 (XEXP (XVECEXP (src, 0,
2562 finish - 1), 1)),
2563 bytepos))
2565 temp = simplify_gen_subreg (outer, tmps[finish - 1],
2566 inner, 0);
2567 if (temp)
2569 emit_move_insn (dst, temp);
2570 done = true;
2571 finish--;
2576 /* Otherwise, simply initialize the result to zero. */
2577 if (!done)
2578 emit_move_insn (dst, CONST0_RTX (outer));
2581 /* Process the pieces. */
2582 for (i = start; i < finish; i++)
2584 poly_int64 bytepos = rtx_to_poly_int64 (XEXP (XVECEXP (src, 0, i), 1));
2585 machine_mode mode = GET_MODE (tmps[i]);
2586 poly_int64 bytelen = GET_MODE_SIZE (mode);
2587 poly_uint64 adj_bytelen;
2588 rtx dest = dst;
2590 /* Handle trailing fragments that run over the size of the struct.
2591 It's the target's responsibility to make sure that the fragment
2592 cannot be strictly smaller in some cases and strictly larger
2593 in others. */
2594 gcc_checking_assert (ordered_p (bytepos + bytelen, ssize));
2595 if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
2596 adj_bytelen = ssize - bytepos;
2597 else
2598 adj_bytelen = bytelen;
2600 if (GET_CODE (dst) == CONCAT)
2602 if (known_le (bytepos + adj_bytelen,
2603 GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)))))
2604 dest = XEXP (dst, 0);
2605 else if (known_ge (bytepos, GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)))))
2607 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2608 dest = XEXP (dst, 1);
2610 else
2612 machine_mode dest_mode = GET_MODE (dest);
2613 machine_mode tmp_mode = GET_MODE (tmps[i]);
2615 gcc_assert (known_eq (bytepos, 0) && XVECLEN (src, 0));
2617 if (GET_MODE_ALIGNMENT (dest_mode)
2618 >= GET_MODE_ALIGNMENT (tmp_mode))
2620 dest = assign_stack_temp (dest_mode,
2621 GET_MODE_SIZE (dest_mode));
2622 emit_move_insn (adjust_address (dest,
2623 tmp_mode,
2624 bytepos),
2625 tmps[i]);
2626 dst = dest;
2628 else
2630 dest = assign_stack_temp (tmp_mode,
2631 GET_MODE_SIZE (tmp_mode));
2632 emit_move_insn (dest, tmps[i]);
2633 dst = adjust_address (dest, dest_mode, bytepos);
2635 break;
2639 /* Handle trailing fragments that run over the size of the struct. */
2640 if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
2642 /* store_bit_field always takes its value from the lsb.
2643 Move the fragment to the lsb if it's not already there. */
2644 if (
2645 #ifdef BLOCK_REG_PADDING
2646 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2647 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)
2648 #else
2649 BYTES_BIG_ENDIAN
2650 #endif
2653 poly_int64 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2654 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2655 shift, tmps[i], 0);
2658 /* Make sure not to write past the end of the struct. */
2659 store_bit_field (dest,
2660 adj_bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2661 bytepos * BITS_PER_UNIT, ssize * BITS_PER_UNIT - 1,
2662 VOIDmode, tmps[i], false);
2665 /* Optimize the access just a bit. */
2666 else if (MEM_P (dest)
2667 && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (dest))
2668 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2669 && multiple_p (bytepos * BITS_PER_UNIT,
2670 GET_MODE_ALIGNMENT (mode))
2671 && known_eq (bytelen, GET_MODE_SIZE (mode)))
2672 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2674 else
2675 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2676 0, 0, mode, tmps[i], false);
2679 /* Copy from the pseudo into the (probable) hard reg. */
2680 if (orig_dst != dst)
2681 emit_move_insn (orig_dst, dst);
2684 /* Return a form of X that does not use a PARALLEL. TYPE is the type
2685 of the value stored in X. */
2688 maybe_emit_group_store (rtx x, tree type)
2690 machine_mode mode = TYPE_MODE (type);
2691 gcc_checking_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
2692 if (GET_CODE (x) == PARALLEL)
2694 rtx result = gen_reg_rtx (mode);
2695 emit_group_store (result, x, type, int_size_in_bytes (type));
2696 return result;
2698 return x;
2701 /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
2703 This is used on targets that return BLKmode values in registers. */
2705 static void
2706 copy_blkmode_from_reg (rtx target, rtx srcreg, tree type)
2708 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2709 rtx src = NULL, dst = NULL;
2710 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2711 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2712 /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
2713 fixed_size_mode mode = as_a <fixed_size_mode> (GET_MODE (srcreg));
2714 fixed_size_mode tmode = as_a <fixed_size_mode> (GET_MODE (target));
2715 fixed_size_mode copy_mode;
2717 /* BLKmode registers created in the back-end shouldn't have survived. */
2718 gcc_assert (mode != BLKmode);
2720 /* If the structure doesn't take up a whole number of words, see whether
2721 SRCREG is padded on the left or on the right. If it's on the left,
2722 set PADDING_CORRECTION to the number of bits to skip.
2724 In most ABIs, the structure will be returned at the least end of
2725 the register, which translates to right padding on little-endian
2726 targets and left padding on big-endian targets. The opposite
2727 holds if the structure is returned at the most significant
2728 end of the register. */
2729 if (bytes % UNITS_PER_WORD != 0
2730 && (targetm.calls.return_in_msb (type)
2731 ? !BYTES_BIG_ENDIAN
2732 : BYTES_BIG_ENDIAN))
2733 padding_correction
2734 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2736 /* We can use a single move if we have an exact mode for the size. */
2737 else if (MEM_P (target)
2738 && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (target))
2739 || MEM_ALIGN (target) >= GET_MODE_ALIGNMENT (mode))
2740 && bytes == GET_MODE_SIZE (mode))
2742 emit_move_insn (adjust_address (target, mode, 0), srcreg);
2743 return;
2746 /* And if we additionally have the same mode for a register. */
2747 else if (REG_P (target)
2748 && GET_MODE (target) == mode
2749 && bytes == GET_MODE_SIZE (mode))
2751 emit_move_insn (target, srcreg);
2752 return;
2755 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2756 into a new pseudo which is a full word. */
2757 if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
2759 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2760 mode = word_mode;
2763 /* Copy the structure BITSIZE bits at a time. If the target lives in
2764 memory, take care of not reading/writing past its end by selecting
2765 a copy mode suited to BITSIZE. This should always be possible given
2766 how it is computed.
2768 If the target lives in register, make sure not to select a copy mode
2769 larger than the mode of the register.
2771 We could probably emit more efficient code for machines which do not use
2772 strict alignment, but it doesn't seem worth the effort at the current
2773 time. */
2775 copy_mode = word_mode;
2776 if (MEM_P (target))
2778 opt_scalar_int_mode mem_mode = int_mode_for_size (bitsize, 1);
2779 if (mem_mode.exists ())
2780 copy_mode = mem_mode.require ();
2782 else if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
2783 copy_mode = tmode;
2785 for (bitpos = 0, xbitpos = padding_correction;
2786 bitpos < bytes * BITS_PER_UNIT;
2787 bitpos += bitsize, xbitpos += bitsize)
2789 /* We need a new source operand each time xbitpos is on a
2790 word boundary and when xbitpos == padding_correction
2791 (the first time through). */
2792 if (xbitpos % BITS_PER_WORD == 0 || xbitpos == padding_correction)
2793 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD, mode);
2795 /* We need a new destination operand each time bitpos is on
2796 a word boundary. */
2797 if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
2798 dst = target;
2799 else if (bitpos % BITS_PER_WORD == 0)
2800 dst = operand_subword (target, bitpos / BITS_PER_WORD, 1, tmode);
2802 /* Use xbitpos for the source extraction (right justified) and
2803 bitpos for the destination store (left justified). */
2804 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, 0, 0, copy_mode,
2805 extract_bit_field (src, bitsize,
2806 xbitpos % BITS_PER_WORD, 1,
2807 NULL_RTX, copy_mode, copy_mode,
2808 false, NULL),
2809 false);
2813 /* Copy BLKmode value SRC into a register of mode MODE_IN. Return the
2814 register if it contains any data, otherwise return null.
2816 This is used on targets that return BLKmode values in registers. */
2819 copy_blkmode_to_reg (machine_mode mode_in, tree src)
2821 int i, n_regs;
2822 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0, bytes;
2823 unsigned int bitsize;
2824 rtx *dst_words, dst, x, src_word = NULL_RTX, dst_word = NULL_RTX;
2825 /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
2826 fixed_size_mode mode = as_a <fixed_size_mode> (mode_in);
2827 fixed_size_mode dst_mode;
2828 scalar_int_mode min_mode;
2830 gcc_assert (TYPE_MODE (TREE_TYPE (src)) == BLKmode);
2832 x = expand_normal (src);
2834 bytes = arg_int_size_in_bytes (TREE_TYPE (src));
2835 if (bytes == 0)
2836 return NULL_RTX;
2838 /* If the structure doesn't take up a whole number of words, see
2839 whether the register value should be padded on the left or on
2840 the right. Set PADDING_CORRECTION to the number of padding
2841 bits needed on the left side.
2843 In most ABIs, the structure will be returned at the least end of
2844 the register, which translates to right padding on little-endian
2845 targets and left padding on big-endian targets. The opposite
2846 holds if the structure is returned at the most significant
2847 end of the register. */
2848 if (bytes % UNITS_PER_WORD != 0
2849 && (targetm.calls.return_in_msb (TREE_TYPE (src))
2850 ? !BYTES_BIG_ENDIAN
2851 : BYTES_BIG_ENDIAN))
2852 padding_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
2853 * BITS_PER_UNIT));
2855 n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
2856 dst_words = XALLOCAVEC (rtx, n_regs);
2857 bitsize = MIN (TYPE_ALIGN (TREE_TYPE (src)), BITS_PER_WORD);
2858 min_mode = smallest_int_mode_for_size (bitsize);
2860 /* Copy the structure BITSIZE bits at a time. */
2861 for (bitpos = 0, xbitpos = padding_correction;
2862 bitpos < bytes * BITS_PER_UNIT;
2863 bitpos += bitsize, xbitpos += bitsize)
2865 /* We need a new destination pseudo each time xbitpos is
2866 on a word boundary and when xbitpos == padding_correction
2867 (the first time through). */
2868 if (xbitpos % BITS_PER_WORD == 0
2869 || xbitpos == padding_correction)
2871 /* Generate an appropriate register. */
2872 dst_word = gen_reg_rtx (word_mode);
2873 dst_words[xbitpos / BITS_PER_WORD] = dst_word;
2875 /* Clear the destination before we move anything into it. */
2876 emit_move_insn (dst_word, CONST0_RTX (word_mode));
2879 /* Find the largest integer mode that can be used to copy all or as
2880 many bits as possible of the structure if the target supports larger
2881 copies. There are too many corner cases here w.r.t to alignments on
2882 the read/writes. So if there is any padding just use single byte
2883 operations. */
2884 opt_scalar_int_mode mode_iter;
2885 if (padding_correction == 0 && !STRICT_ALIGNMENT)
2887 FOR_EACH_MODE_FROM (mode_iter, min_mode)
2889 unsigned int msize = GET_MODE_BITSIZE (mode_iter.require ());
2890 if (msize <= ((bytes * BITS_PER_UNIT) - bitpos)
2891 && msize <= BITS_PER_WORD)
2892 bitsize = msize;
2893 else
2894 break;
2898 /* We need a new source operand each time bitpos is on a word
2899 boundary. */
2900 if (bitpos % BITS_PER_WORD == 0)
2901 src_word = operand_subword_force (x, bitpos / BITS_PER_WORD, BLKmode);
2903 /* Use bitpos for the source extraction (left justified) and
2904 xbitpos for the destination store (right justified). */
2905 store_bit_field (dst_word, bitsize, xbitpos % BITS_PER_WORD,
2906 0, 0, word_mode,
2907 extract_bit_field (src_word, bitsize,
2908 bitpos % BITS_PER_WORD, 1,
2909 NULL_RTX, word_mode, word_mode,
2910 false, NULL),
2911 false);
2914 if (mode == BLKmode)
2916 /* Find the smallest integer mode large enough to hold the
2917 entire structure. */
2918 opt_scalar_int_mode mode_iter;
2919 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
2920 if (GET_MODE_SIZE (mode_iter.require ()) >= bytes)
2921 break;
2923 /* A suitable mode should have been found. */
2924 mode = mode_iter.require ();
2927 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode))
2928 dst_mode = word_mode;
2929 else
2930 dst_mode = mode;
2931 dst = gen_reg_rtx (dst_mode);
2933 for (i = 0; i < n_regs; i++)
2934 emit_move_insn (operand_subword (dst, i, 0, dst_mode), dst_words[i]);
2936 if (mode != dst_mode)
2937 dst = gen_lowpart (mode, dst);
2939 return dst;
2942 /* Add a USE expression for REG to the (possibly empty) list pointed
2943 to by CALL_FUSAGE. REG must denote a hard register. */
2945 void
2946 use_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
2948 gcc_assert (REG_P (reg));
2950 if (!HARD_REGISTER_P (reg))
2951 return;
2953 *call_fusage
2954 = gen_rtx_EXPR_LIST (mode, gen_rtx_USE (VOIDmode, reg), *call_fusage);
2957 /* Add a CLOBBER expression for REG to the (possibly empty) list pointed
2958 to by CALL_FUSAGE. REG must denote a hard register. */
2960 void
2961 clobber_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
2963 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2965 *call_fusage
2966 = gen_rtx_EXPR_LIST (mode, gen_rtx_CLOBBER (VOIDmode, reg), *call_fusage);
2969 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2970 starting at REGNO. All of these registers must be hard registers. */
2972 void
2973 use_regs (rtx *call_fusage, int regno, int nregs)
2975 int i;
2977 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2979 for (i = 0; i < nregs; i++)
2980 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2983 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2984 PARALLEL REGS. This is for calls that pass values in multiple
2985 non-contiguous locations. The Irix 6 ABI has examples of this. */
2987 void
2988 use_group_regs (rtx *call_fusage, rtx regs)
2990 int i;
2992 for (i = 0; i < XVECLEN (regs, 0); i++)
2994 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2996 /* A NULL entry means the parameter goes both on the stack and in
2997 registers. This can also be a MEM for targets that pass values
2998 partially on the stack and partially in registers. */
2999 if (reg != 0 && REG_P (reg))
3000 use_reg (call_fusage, reg);
3004 /* Return the defining gimple statement for SSA_NAME NAME if it is an
3005 assigment and the code of the expresion on the RHS is CODE. Return
3006 NULL otherwise. */
3008 static gimple *
3009 get_def_for_expr (tree name, enum tree_code code)
3011 gimple *def_stmt;
3013 if (TREE_CODE (name) != SSA_NAME)
3014 return NULL;
3016 def_stmt = get_gimple_for_ssa_name (name);
3017 if (!def_stmt
3018 || gimple_assign_rhs_code (def_stmt) != code)
3019 return NULL;
3021 return def_stmt;
3024 /* Return the defining gimple statement for SSA_NAME NAME if it is an
3025 assigment and the class of the expresion on the RHS is CLASS. Return
3026 NULL otherwise. */
3028 static gimple *
3029 get_def_for_expr_class (tree name, enum tree_code_class tclass)
3031 gimple *def_stmt;
3033 if (TREE_CODE (name) != SSA_NAME)
3034 return NULL;
3036 def_stmt = get_gimple_for_ssa_name (name);
3037 if (!def_stmt
3038 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) != tclass)
3039 return NULL;
3041 return def_stmt;
3044 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
3045 its length in bytes. */
3048 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
3049 unsigned int expected_align, HOST_WIDE_INT expected_size,
3050 unsigned HOST_WIDE_INT min_size,
3051 unsigned HOST_WIDE_INT max_size,
3052 unsigned HOST_WIDE_INT probable_max_size)
3054 machine_mode mode = GET_MODE (object);
3055 unsigned int align;
3057 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
3059 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
3060 just move a zero. Otherwise, do this a piece at a time. */
3061 poly_int64 size_val;
3062 if (mode != BLKmode
3063 && poly_int_rtx_p (size, &size_val)
3064 && known_eq (size_val, GET_MODE_SIZE (mode)))
3066 rtx zero = CONST0_RTX (mode);
3067 if (zero != NULL)
3069 emit_move_insn (object, zero);
3070 return NULL;
3073 if (COMPLEX_MODE_P (mode))
3075 zero = CONST0_RTX (GET_MODE_INNER (mode));
3076 if (zero != NULL)
3078 write_complex_part (object, zero, 0);
3079 write_complex_part (object, zero, 1);
3080 return NULL;
3085 if (size == const0_rtx)
3086 return NULL;
3088 align = MEM_ALIGN (object);
3090 if (CONST_INT_P (size)
3091 && targetm.use_by_pieces_infrastructure_p (INTVAL (size), align,
3092 CLEAR_BY_PIECES,
3093 optimize_insn_for_speed_p ()))
3094 clear_by_pieces (object, INTVAL (size), align);
3095 else if (set_storage_via_setmem (object, size, const0_rtx, align,
3096 expected_align, expected_size,
3097 min_size, max_size, probable_max_size))
3099 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
3100 return set_storage_via_libcall (object, size, const0_rtx,
3101 method == BLOCK_OP_TAILCALL);
3102 else
3103 gcc_unreachable ();
3105 return NULL;
3109 clear_storage (rtx object, rtx size, enum block_op_methods method)
3111 unsigned HOST_WIDE_INT max, min = 0;
3112 if (GET_CODE (size) == CONST_INT)
3113 min = max = UINTVAL (size);
3114 else
3115 max = GET_MODE_MASK (GET_MODE (size));
3116 return clear_storage_hints (object, size, method, 0, -1, min, max, max);
3120 /* A subroutine of clear_storage. Expand a call to memset.
3121 Return the return value of memset, 0 otherwise. */
3124 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
3126 tree call_expr, fn, object_tree, size_tree, val_tree;
3127 machine_mode size_mode;
3129 object = copy_addr_to_reg (XEXP (object, 0));
3130 object_tree = make_tree (ptr_type_node, object);
3132 if (!CONST_INT_P (val))
3133 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
3134 val_tree = make_tree (integer_type_node, val);
3136 size_mode = TYPE_MODE (sizetype);
3137 size = convert_to_mode (size_mode, size, 1);
3138 size = copy_to_mode_reg (size_mode, size);
3139 size_tree = make_tree (sizetype, size);
3141 /* It is incorrect to use the libcall calling conventions for calls to
3142 memset because it can be provided by the user. */
3143 fn = builtin_decl_implicit (BUILT_IN_MEMSET);
3144 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
3145 CALL_EXPR_TAILCALL (call_expr) = tailcall;
3147 return expand_call (call_expr, NULL_RTX, false);
3150 /* Expand a setmem pattern; return true if successful. */
3152 bool
3153 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
3154 unsigned int expected_align, HOST_WIDE_INT expected_size,
3155 unsigned HOST_WIDE_INT min_size,
3156 unsigned HOST_WIDE_INT max_size,
3157 unsigned HOST_WIDE_INT probable_max_size)
3159 /* Try the most limited insn first, because there's no point
3160 including more than one in the machine description unless
3161 the more limited one has some advantage. */
3163 if (expected_align < align)
3164 expected_align = align;
3165 if (expected_size != -1)
3167 if ((unsigned HOST_WIDE_INT)expected_size > max_size)
3168 expected_size = max_size;
3169 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
3170 expected_size = min_size;
3173 opt_scalar_int_mode mode_iter;
3174 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
3176 scalar_int_mode mode = mode_iter.require ();
3177 enum insn_code code = direct_optab_handler (setmem_optab, mode);
3179 if (code != CODE_FOR_nothing
3180 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
3181 here because if SIZE is less than the mode mask, as it is
3182 returned by the macro, it will definitely be less than the
3183 actual mode mask. Since SIZE is within the Pmode address
3184 space, we limit MODE to Pmode. */
3185 && ((CONST_INT_P (size)
3186 && ((unsigned HOST_WIDE_INT) INTVAL (size)
3187 <= (GET_MODE_MASK (mode) >> 1)))
3188 || max_size <= (GET_MODE_MASK (mode) >> 1)
3189 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
3191 class expand_operand ops[9];
3192 unsigned int nops;
3194 nops = insn_data[(int) code].n_generator_args;
3195 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
3197 create_fixed_operand (&ops[0], object);
3198 /* The check above guarantees that this size conversion is valid. */
3199 create_convert_operand_to (&ops[1], size, mode, true);
3200 create_convert_operand_from (&ops[2], val, byte_mode, true);
3201 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
3202 if (nops >= 6)
3204 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
3205 create_integer_operand (&ops[5], expected_size);
3207 if (nops >= 8)
3209 create_integer_operand (&ops[6], min_size);
3210 /* If we cannot represent the maximal size,
3211 make parameter NULL. */
3212 if ((HOST_WIDE_INT) max_size != -1)
3213 create_integer_operand (&ops[7], max_size);
3214 else
3215 create_fixed_operand (&ops[7], NULL);
3217 if (nops == 9)
3219 /* If we cannot represent the maximal size,
3220 make parameter NULL. */
3221 if ((HOST_WIDE_INT) probable_max_size != -1)
3222 create_integer_operand (&ops[8], probable_max_size);
3223 else
3224 create_fixed_operand (&ops[8], NULL);
3226 if (maybe_expand_insn (code, nops, ops))
3227 return true;
3231 return false;
3235 /* Write to one of the components of the complex value CPLX. Write VAL to
3236 the real part if IMAG_P is false, and the imaginary part if its true. */
3238 void
3239 write_complex_part (rtx cplx, rtx val, bool imag_p)
3241 machine_mode cmode;
3242 scalar_mode imode;
3243 unsigned ibitsize;
3245 if (GET_CODE (cplx) == CONCAT)
3247 emit_move_insn (XEXP (cplx, imag_p), val);
3248 return;
3251 cmode = GET_MODE (cplx);
3252 imode = GET_MODE_INNER (cmode);
3253 ibitsize = GET_MODE_BITSIZE (imode);
3255 /* For MEMs simplify_gen_subreg may generate an invalid new address
3256 because, e.g., the original address is considered mode-dependent
3257 by the target, which restricts simplify_subreg from invoking
3258 adjust_address_nv. Instead of preparing fallback support for an
3259 invalid address, we call adjust_address_nv directly. */
3260 if (MEM_P (cplx))
3262 emit_move_insn (adjust_address_nv (cplx, imode,
3263 imag_p ? GET_MODE_SIZE (imode) : 0),
3264 val);
3265 return;
3268 /* If the sub-object is at least word sized, then we know that subregging
3269 will work. This special case is important, since store_bit_field
3270 wants to operate on integer modes, and there's rarely an OImode to
3271 correspond to TCmode. */
3272 if (ibitsize >= BITS_PER_WORD
3273 /* For hard regs we have exact predicates. Assume we can split
3274 the original object if it spans an even number of hard regs.
3275 This special case is important for SCmode on 64-bit platforms
3276 where the natural size of floating-point regs is 32-bit. */
3277 || (REG_P (cplx)
3278 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3279 && REG_NREGS (cplx) % 2 == 0))
3281 rtx part = simplify_gen_subreg (imode, cplx, cmode,
3282 imag_p ? GET_MODE_SIZE (imode) : 0);
3283 if (part)
3285 emit_move_insn (part, val);
3286 return;
3288 else
3289 /* simplify_gen_subreg may fail for sub-word MEMs. */
3290 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3293 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, 0, 0, imode, val,
3294 false);
3297 /* Extract one of the components of the complex value CPLX. Extract the
3298 real part if IMAG_P is false, and the imaginary part if it's true. */
3301 read_complex_part (rtx cplx, bool imag_p)
3303 machine_mode cmode;
3304 scalar_mode imode;
3305 unsigned ibitsize;
3307 if (GET_CODE (cplx) == CONCAT)
3308 return XEXP (cplx, imag_p);
3310 cmode = GET_MODE (cplx);
3311 imode = GET_MODE_INNER (cmode);
3312 ibitsize = GET_MODE_BITSIZE (imode);
3314 /* Special case reads from complex constants that got spilled to memory. */
3315 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
3317 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
3318 if (decl && TREE_CODE (decl) == COMPLEX_CST)
3320 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
3321 if (CONSTANT_CLASS_P (part))
3322 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
3326 /* For MEMs simplify_gen_subreg may generate an invalid new address
3327 because, e.g., the original address is considered mode-dependent
3328 by the target, which restricts simplify_subreg from invoking
3329 adjust_address_nv. Instead of preparing fallback support for an
3330 invalid address, we call adjust_address_nv directly. */
3331 if (MEM_P (cplx))
3332 return adjust_address_nv (cplx, imode,
3333 imag_p ? GET_MODE_SIZE (imode) : 0);
3335 /* If the sub-object is at least word sized, then we know that subregging
3336 will work. This special case is important, since extract_bit_field
3337 wants to operate on integer modes, and there's rarely an OImode to
3338 correspond to TCmode. */
3339 if (ibitsize >= BITS_PER_WORD
3340 /* For hard regs we have exact predicates. Assume we can split
3341 the original object if it spans an even number of hard regs.
3342 This special case is important for SCmode on 64-bit platforms
3343 where the natural size of floating-point regs is 32-bit. */
3344 || (REG_P (cplx)
3345 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3346 && REG_NREGS (cplx) % 2 == 0))
3348 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
3349 imag_p ? GET_MODE_SIZE (imode) : 0);
3350 if (ret)
3351 return ret;
3352 else
3353 /* simplify_gen_subreg may fail for sub-word MEMs. */
3354 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3357 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
3358 true, NULL_RTX, imode, imode, false, NULL);
3361 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
3362 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
3363 represented in NEW_MODE. If FORCE is true, this will never happen, as
3364 we'll force-create a SUBREG if needed. */
3366 static rtx
3367 emit_move_change_mode (machine_mode new_mode,
3368 machine_mode old_mode, rtx x, bool force)
3370 rtx ret;
3372 if (push_operand (x, GET_MODE (x)))
3374 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
3375 MEM_COPY_ATTRIBUTES (ret, x);
3377 else if (MEM_P (x))
3379 /* We don't have to worry about changing the address since the
3380 size in bytes is supposed to be the same. */
3381 if (reload_in_progress)
3383 /* Copy the MEM to change the mode and move any
3384 substitutions from the old MEM to the new one. */
3385 ret = adjust_address_nv (x, new_mode, 0);
3386 copy_replacements (x, ret);
3388 else
3389 ret = adjust_address (x, new_mode, 0);
3391 else
3393 /* Note that we do want simplify_subreg's behavior of validating
3394 that the new mode is ok for a hard register. If we were to use
3395 simplify_gen_subreg, we would create the subreg, but would
3396 probably run into the target not being able to implement it. */
3397 /* Except, of course, when FORCE is true, when this is exactly what
3398 we want. Which is needed for CCmodes on some targets. */
3399 if (force)
3400 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
3401 else
3402 ret = simplify_subreg (new_mode, x, old_mode, 0);
3405 return ret;
3408 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3409 an integer mode of the same size as MODE. Returns the instruction
3410 emitted, or NULL if such a move could not be generated. */
3412 static rtx_insn *
3413 emit_move_via_integer (machine_mode mode, rtx x, rtx y, bool force)
3415 scalar_int_mode imode;
3416 enum insn_code code;
3418 /* There must exist a mode of the exact size we require. */
3419 if (!int_mode_for_mode (mode).exists (&imode))
3420 return NULL;
3422 /* The target must support moves in this mode. */
3423 code = optab_handler (mov_optab, imode);
3424 if (code == CODE_FOR_nothing)
3425 return NULL;
3427 x = emit_move_change_mode (imode, mode, x, force);
3428 if (x == NULL_RTX)
3429 return NULL;
3430 y = emit_move_change_mode (imode, mode, y, force);
3431 if (y == NULL_RTX)
3432 return NULL;
3433 return emit_insn (GEN_FCN (code) (x, y));
3436 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3437 Return an equivalent MEM that does not use an auto-increment. */
3440 emit_move_resolve_push (machine_mode mode, rtx x)
3442 enum rtx_code code = GET_CODE (XEXP (x, 0));
3443 rtx temp;
3445 poly_int64 adjust = GET_MODE_SIZE (mode);
3446 #ifdef PUSH_ROUNDING
3447 adjust = PUSH_ROUNDING (adjust);
3448 #endif
3449 if (code == PRE_DEC || code == POST_DEC)
3450 adjust = -adjust;
3451 else if (code == PRE_MODIFY || code == POST_MODIFY)
3453 rtx expr = XEXP (XEXP (x, 0), 1);
3455 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3456 poly_int64 val = rtx_to_poly_int64 (XEXP (expr, 1));
3457 if (GET_CODE (expr) == MINUS)
3458 val = -val;
3459 gcc_assert (known_eq (adjust, val) || known_eq (adjust, -val));
3460 adjust = val;
3463 /* Do not use anti_adjust_stack, since we don't want to update
3464 stack_pointer_delta. */
3465 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3466 gen_int_mode (adjust, Pmode), stack_pointer_rtx,
3467 0, OPTAB_LIB_WIDEN);
3468 if (temp != stack_pointer_rtx)
3469 emit_move_insn (stack_pointer_rtx, temp);
3471 switch (code)
3473 case PRE_INC:
3474 case PRE_DEC:
3475 case PRE_MODIFY:
3476 temp = stack_pointer_rtx;
3477 break;
3478 case POST_INC:
3479 case POST_DEC:
3480 case POST_MODIFY:
3481 temp = plus_constant (Pmode, stack_pointer_rtx, -adjust);
3482 break;
3483 default:
3484 gcc_unreachable ();
3487 return replace_equiv_address (x, temp);
3490 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3491 X is known to satisfy push_operand, and MODE is known to be complex.
3492 Returns the last instruction emitted. */
3494 rtx_insn *
3495 emit_move_complex_push (machine_mode mode, rtx x, rtx y)
3497 scalar_mode submode = GET_MODE_INNER (mode);
3498 bool imag_first;
3500 #ifdef PUSH_ROUNDING
3501 poly_int64 submodesize = GET_MODE_SIZE (submode);
3503 /* In case we output to the stack, but the size is smaller than the
3504 machine can push exactly, we need to use move instructions. */
3505 if (maybe_ne (PUSH_ROUNDING (submodesize), submodesize))
3507 x = emit_move_resolve_push (mode, x);
3508 return emit_move_insn (x, y);
3510 #endif
3512 /* Note that the real part always precedes the imag part in memory
3513 regardless of machine's endianness. */
3514 switch (GET_CODE (XEXP (x, 0)))
3516 case PRE_DEC:
3517 case POST_DEC:
3518 imag_first = true;
3519 break;
3520 case PRE_INC:
3521 case POST_INC:
3522 imag_first = false;
3523 break;
3524 default:
3525 gcc_unreachable ();
3528 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3529 read_complex_part (y, imag_first));
3530 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3531 read_complex_part (y, !imag_first));
3534 /* A subroutine of emit_move_complex. Perform the move from Y to X
3535 via two moves of the parts. Returns the last instruction emitted. */
3537 rtx_insn *
3538 emit_move_complex_parts (rtx x, rtx y)
3540 /* Show the output dies here. This is necessary for SUBREGs
3541 of pseudos since we cannot track their lifetimes correctly;
3542 hard regs shouldn't appear here except as return values. */
3543 if (!reload_completed && !reload_in_progress
3544 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3545 emit_clobber (x);
3547 write_complex_part (x, read_complex_part (y, false), false);
3548 write_complex_part (x, read_complex_part (y, true), true);
3550 return get_last_insn ();
3553 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3554 MODE is known to be complex. Returns the last instruction emitted. */
3556 static rtx_insn *
3557 emit_move_complex (machine_mode mode, rtx x, rtx y)
3559 bool try_int;
3561 /* Need to take special care for pushes, to maintain proper ordering
3562 of the data, and possibly extra padding. */
3563 if (push_operand (x, mode))
3564 return emit_move_complex_push (mode, x, y);
3566 /* See if we can coerce the target into moving both values at once, except
3567 for floating point where we favor moving as parts if this is easy. */
3568 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3569 && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing
3570 && !(REG_P (x)
3571 && HARD_REGISTER_P (x)
3572 && REG_NREGS (x) == 1)
3573 && !(REG_P (y)
3574 && HARD_REGISTER_P (y)
3575 && REG_NREGS (y) == 1))
3576 try_int = false;
3577 /* Not possible if the values are inherently not adjacent. */
3578 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3579 try_int = false;
3580 /* Is possible if both are registers (or subregs of registers). */
3581 else if (register_operand (x, mode) && register_operand (y, mode))
3582 try_int = true;
3583 /* If one of the operands is a memory, and alignment constraints
3584 are friendly enough, we may be able to do combined memory operations.
3585 We do not attempt this if Y is a constant because that combination is
3586 usually better with the by-parts thing below. */
3587 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3588 && (!STRICT_ALIGNMENT
3589 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3590 try_int = true;
3591 else
3592 try_int = false;
3594 if (try_int)
3596 rtx_insn *ret;
3598 /* For memory to memory moves, optimal behavior can be had with the
3599 existing block move logic. But use normal expansion if optimizing
3600 for size. */
3601 if (MEM_P (x) && MEM_P (y))
3603 emit_block_move (x, y, gen_int_mode (GET_MODE_SIZE (mode), Pmode),
3604 (optimize_insn_for_speed_p()
3605 ? BLOCK_OP_NO_LIBCALL : BLOCK_OP_NORMAL));
3606 return get_last_insn ();
3609 ret = emit_move_via_integer (mode, x, y, true);
3610 if (ret)
3611 return ret;
3614 return emit_move_complex_parts (x, y);
3617 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3618 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3620 static rtx_insn *
3621 emit_move_ccmode (machine_mode mode, rtx x, rtx y)
3623 rtx_insn *ret;
3625 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3626 if (mode != CCmode)
3628 enum insn_code code = optab_handler (mov_optab, CCmode);
3629 if (code != CODE_FOR_nothing)
3631 x = emit_move_change_mode (CCmode, mode, x, true);
3632 y = emit_move_change_mode (CCmode, mode, y, true);
3633 return emit_insn (GEN_FCN (code) (x, y));
3637 /* Otherwise, find the MODE_INT mode of the same width. */
3638 ret = emit_move_via_integer (mode, x, y, false);
3639 gcc_assert (ret != NULL);
3640 return ret;
3643 /* Return true if word I of OP lies entirely in the
3644 undefined bits of a paradoxical subreg. */
3646 static bool
3647 undefined_operand_subword_p (const_rtx op, int i)
3649 if (GET_CODE (op) != SUBREG)
3650 return false;
3651 machine_mode innermostmode = GET_MODE (SUBREG_REG (op));
3652 poly_int64 offset = i * UNITS_PER_WORD + subreg_memory_offset (op);
3653 return (known_ge (offset, GET_MODE_SIZE (innermostmode))
3654 || known_le (offset, -UNITS_PER_WORD));
3657 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3658 MODE is any multi-word or full-word mode that lacks a move_insn
3659 pattern. Note that you will get better code if you define such
3660 patterns, even if they must turn into multiple assembler instructions. */
3662 static rtx_insn *
3663 emit_move_multi_word (machine_mode mode, rtx x, rtx y)
3665 rtx_insn *last_insn = 0;
3666 rtx_insn *seq;
3667 rtx inner;
3668 bool need_clobber;
3669 int i, mode_size;
3671 /* This function can only handle cases where the number of words is
3672 known at compile time. */
3673 mode_size = GET_MODE_SIZE (mode).to_constant ();
3674 gcc_assert (mode_size >= UNITS_PER_WORD);
3676 /* If X is a push on the stack, do the push now and replace
3677 X with a reference to the stack pointer. */
3678 if (push_operand (x, mode))
3679 x = emit_move_resolve_push (mode, x);
3681 /* If we are in reload, see if either operand is a MEM whose address
3682 is scheduled for replacement. */
3683 if (reload_in_progress && MEM_P (x)
3684 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3685 x = replace_equiv_address_nv (x, inner);
3686 if (reload_in_progress && MEM_P (y)
3687 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3688 y = replace_equiv_address_nv (y, inner);
3690 start_sequence ();
3692 need_clobber = false;
3693 for (i = 0; i < CEIL (mode_size, UNITS_PER_WORD); i++)
3695 /* Do not generate code for a move if it would go entirely
3696 to the non-existing bits of a paradoxical subreg. */
3697 if (undefined_operand_subword_p (x, i))
3698 continue;
3700 rtx xpart = operand_subword (x, i, 1, mode);
3701 rtx ypart;
3703 /* Do not generate code for a move if it would come entirely
3704 from the undefined bits of a paradoxical subreg. */
3705 if (undefined_operand_subword_p (y, i))
3706 continue;
3708 ypart = operand_subword (y, i, 1, mode);
3710 /* If we can't get a part of Y, put Y into memory if it is a
3711 constant. Otherwise, force it into a register. Then we must
3712 be able to get a part of Y. */
3713 if (ypart == 0 && CONSTANT_P (y))
3715 y = use_anchored_address (force_const_mem (mode, y));
3716 ypart = operand_subword (y, i, 1, mode);
3718 else if (ypart == 0)
3719 ypart = operand_subword_force (y, i, mode);
3721 gcc_assert (xpart && ypart);
3723 need_clobber |= (GET_CODE (xpart) == SUBREG);
3725 last_insn = emit_move_insn (xpart, ypart);
3728 seq = get_insns ();
3729 end_sequence ();
3731 /* Show the output dies here. This is necessary for SUBREGs
3732 of pseudos since we cannot track their lifetimes correctly;
3733 hard regs shouldn't appear here except as return values.
3734 We never want to emit such a clobber after reload. */
3735 if (x != y
3736 && ! (reload_in_progress || reload_completed)
3737 && need_clobber != 0)
3738 emit_clobber (x);
3740 emit_insn (seq);
3742 return last_insn;
3745 /* Low level part of emit_move_insn.
3746 Called just like emit_move_insn, but assumes X and Y
3747 are basically valid. */
3749 rtx_insn *
3750 emit_move_insn_1 (rtx x, rtx y)
3752 machine_mode mode = GET_MODE (x);
3753 enum insn_code code;
3755 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3757 code = optab_handler (mov_optab, mode);
3758 if (code != CODE_FOR_nothing)
3759 return emit_insn (GEN_FCN (code) (x, y));
3761 /* Expand complex moves by moving real part and imag part. */
3762 if (COMPLEX_MODE_P (mode))
3763 return emit_move_complex (mode, x, y);
3765 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3766 || ALL_FIXED_POINT_MODE_P (mode))
3768 rtx_insn *result = emit_move_via_integer (mode, x, y, true);
3770 /* If we can't find an integer mode, use multi words. */
3771 if (result)
3772 return result;
3773 else
3774 return emit_move_multi_word (mode, x, y);
3777 if (GET_MODE_CLASS (mode) == MODE_CC)
3778 return emit_move_ccmode (mode, x, y);
3780 /* Try using a move pattern for the corresponding integer mode. This is
3781 only safe when simplify_subreg can convert MODE constants into integer
3782 constants. At present, it can only do this reliably if the value
3783 fits within a HOST_WIDE_INT. */
3784 if (!CONSTANT_P (y)
3785 || known_le (GET_MODE_BITSIZE (mode), HOST_BITS_PER_WIDE_INT))
3787 rtx_insn *ret = emit_move_via_integer (mode, x, y, lra_in_progress);
3789 if (ret)
3791 if (! lra_in_progress || recog (PATTERN (ret), ret, 0) >= 0)
3792 return ret;
3796 return emit_move_multi_word (mode, x, y);
3799 /* Generate code to copy Y into X.
3800 Both Y and X must have the same mode, except that
3801 Y can be a constant with VOIDmode.
3802 This mode cannot be BLKmode; use emit_block_move for that.
3804 Return the last instruction emitted. */
3806 rtx_insn *
3807 emit_move_insn (rtx x, rtx y)
3809 machine_mode mode = GET_MODE (x);
3810 rtx y_cst = NULL_RTX;
3811 rtx_insn *last_insn;
3812 rtx set;
3814 gcc_assert (mode != BLKmode
3815 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3817 /* If we have a copy that looks like one of the following patterns:
3818 (set (subreg:M1 (reg:M2 ...)) (subreg:M1 (reg:M2 ...)))
3819 (set (subreg:M1 (reg:M2 ...)) (mem:M1 ADDR))
3820 (set (mem:M1 ADDR) (subreg:M1 (reg:M2 ...)))
3821 (set (subreg:M1 (reg:M2 ...)) (constant C))
3822 where mode M1 is equal in size to M2, try to detect whether the
3823 mode change involves an implicit round trip through memory.
3824 If so, see if we can avoid that by removing the subregs and
3825 doing the move in mode M2 instead. */
3827 rtx x_inner = NULL_RTX;
3828 rtx y_inner = NULL_RTX;
3830 auto candidate_subreg_p = [&](rtx subreg) {
3831 return (REG_P (SUBREG_REG (subreg))
3832 && known_eq (GET_MODE_SIZE (GET_MODE (SUBREG_REG (subreg))),
3833 GET_MODE_SIZE (GET_MODE (subreg)))
3834 && optab_handler (mov_optab, GET_MODE (SUBREG_REG (subreg)))
3835 != CODE_FOR_nothing);
3838 auto candidate_mem_p = [&](machine_mode innermode, rtx mem) {
3839 return (!targetm.can_change_mode_class (innermode, GET_MODE (mem), ALL_REGS)
3840 && !push_operand (mem, GET_MODE (mem))
3841 /* Not a candiate if innermode requires too much alignment. */
3842 && (MEM_ALIGN (mem) >= GET_MODE_ALIGNMENT (innermode)
3843 || targetm.slow_unaligned_access (GET_MODE (mem),
3844 MEM_ALIGN (mem))
3845 || !targetm.slow_unaligned_access (innermode,
3846 MEM_ALIGN (mem))));
3849 if (SUBREG_P (x) && candidate_subreg_p (x))
3850 x_inner = SUBREG_REG (x);
3852 if (SUBREG_P (y) && candidate_subreg_p (y))
3853 y_inner = SUBREG_REG (y);
3855 if (x_inner != NULL_RTX
3856 && y_inner != NULL_RTX
3857 && GET_MODE (x_inner) == GET_MODE (y_inner)
3858 && !targetm.can_change_mode_class (GET_MODE (x_inner), mode, ALL_REGS))
3860 x = x_inner;
3861 y = y_inner;
3862 mode = GET_MODE (x_inner);
3864 else if (x_inner != NULL_RTX
3865 && MEM_P (y)
3866 && candidate_mem_p (GET_MODE (x_inner), y))
3868 x = x_inner;
3869 y = adjust_address (y, GET_MODE (x_inner), 0);
3870 mode = GET_MODE (x_inner);
3872 else if (y_inner != NULL_RTX
3873 && MEM_P (x)
3874 && candidate_mem_p (GET_MODE (y_inner), x))
3876 x = adjust_address (x, GET_MODE (y_inner), 0);
3877 y = y_inner;
3878 mode = GET_MODE (y_inner);
3880 else if (x_inner != NULL_RTX
3881 && CONSTANT_P (y)
3882 && !targetm.can_change_mode_class (GET_MODE (x_inner),
3883 mode, ALL_REGS)
3884 && (y_inner = simplify_subreg (GET_MODE (x_inner), y, mode, 0)))
3886 x = x_inner;
3887 y = y_inner;
3888 mode = GET_MODE (x_inner);
3891 if (CONSTANT_P (y))
3893 if (optimize
3894 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3895 && (last_insn = compress_float_constant (x, y)))
3896 return last_insn;
3898 y_cst = y;
3900 if (!targetm.legitimate_constant_p (mode, y))
3902 y = force_const_mem (mode, y);
3904 /* If the target's cannot_force_const_mem prevented the spill,
3905 assume that the target's move expanders will also take care
3906 of the non-legitimate constant. */
3907 if (!y)
3908 y = y_cst;
3909 else
3910 y = use_anchored_address (y);
3914 /* If X or Y are memory references, verify that their addresses are valid
3915 for the machine. */
3916 if (MEM_P (x)
3917 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
3918 MEM_ADDR_SPACE (x))
3919 && ! push_operand (x, GET_MODE (x))))
3920 x = validize_mem (x);
3922 if (MEM_P (y)
3923 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
3924 MEM_ADDR_SPACE (y)))
3925 y = validize_mem (y);
3927 gcc_assert (mode != BLKmode);
3929 last_insn = emit_move_insn_1 (x, y);
3931 if (y_cst && REG_P (x)
3932 && (set = single_set (last_insn)) != NULL_RTX
3933 && SET_DEST (set) == x
3934 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3935 set_unique_reg_note (last_insn, REG_EQUAL, copy_rtx (y_cst));
3937 return last_insn;
3940 /* Generate the body of an instruction to copy Y into X.
3941 It may be a list of insns, if one insn isn't enough. */
3943 rtx_insn *
3944 gen_move_insn (rtx x, rtx y)
3946 rtx_insn *seq;
3948 start_sequence ();
3949 emit_move_insn_1 (x, y);
3950 seq = get_insns ();
3951 end_sequence ();
3952 return seq;
3955 /* If Y is representable exactly in a narrower mode, and the target can
3956 perform the extension directly from constant or memory, then emit the
3957 move as an extension. */
3959 static rtx_insn *
3960 compress_float_constant (rtx x, rtx y)
3962 machine_mode dstmode = GET_MODE (x);
3963 machine_mode orig_srcmode = GET_MODE (y);
3964 machine_mode srcmode;
3965 const REAL_VALUE_TYPE *r;
3966 int oldcost, newcost;
3967 bool speed = optimize_insn_for_speed_p ();
3969 r = CONST_DOUBLE_REAL_VALUE (y);
3971 if (targetm.legitimate_constant_p (dstmode, y))
3972 oldcost = set_src_cost (y, orig_srcmode, speed);
3973 else
3974 oldcost = set_src_cost (force_const_mem (dstmode, y), dstmode, speed);
3976 FOR_EACH_MODE_UNTIL (srcmode, orig_srcmode)
3978 enum insn_code ic;
3979 rtx trunc_y;
3980 rtx_insn *last_insn;
3982 /* Skip if the target can't extend this way. */
3983 ic = can_extend_p (dstmode, srcmode, 0);
3984 if (ic == CODE_FOR_nothing)
3985 continue;
3987 /* Skip if the narrowed value isn't exact. */
3988 if (! exact_real_truncate (srcmode, r))
3989 continue;
3991 trunc_y = const_double_from_real_value (*r, srcmode);
3993 if (targetm.legitimate_constant_p (srcmode, trunc_y))
3995 /* Skip if the target needs extra instructions to perform
3996 the extension. */
3997 if (!insn_operand_matches (ic, 1, trunc_y))
3998 continue;
3999 /* This is valid, but may not be cheaper than the original. */
4000 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
4001 dstmode, speed);
4002 if (oldcost < newcost)
4003 continue;
4005 else if (float_extend_from_mem[dstmode][srcmode])
4007 trunc_y = force_const_mem (srcmode, trunc_y);
4008 /* This is valid, but may not be cheaper than the original. */
4009 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
4010 dstmode, speed);
4011 if (oldcost < newcost)
4012 continue;
4013 trunc_y = validize_mem (trunc_y);
4015 else
4016 continue;
4018 /* For CSE's benefit, force the compressed constant pool entry
4019 into a new pseudo. This constant may be used in different modes,
4020 and if not, combine will put things back together for us. */
4021 trunc_y = force_reg (srcmode, trunc_y);
4023 /* If x is a hard register, perform the extension into a pseudo,
4024 so that e.g. stack realignment code is aware of it. */
4025 rtx target = x;
4026 if (REG_P (x) && HARD_REGISTER_P (x))
4027 target = gen_reg_rtx (dstmode);
4029 emit_unop_insn (ic, target, trunc_y, UNKNOWN);
4030 last_insn = get_last_insn ();
4032 if (REG_P (target))
4033 set_unique_reg_note (last_insn, REG_EQUAL, y);
4035 if (target != x)
4036 return emit_move_insn (x, target);
4037 return last_insn;
4040 return NULL;
4043 /* Pushing data onto the stack. */
4045 /* Push a block of length SIZE (perhaps variable)
4046 and return an rtx to address the beginning of the block.
4047 The value may be virtual_outgoing_args_rtx.
4049 EXTRA is the number of bytes of padding to push in addition to SIZE.
4050 BELOW nonzero means this padding comes at low addresses;
4051 otherwise, the padding comes at high addresses. */
4054 push_block (rtx size, poly_int64 extra, int below)
4056 rtx temp;
4058 size = convert_modes (Pmode, ptr_mode, size, 1);
4059 if (CONSTANT_P (size))
4060 anti_adjust_stack (plus_constant (Pmode, size, extra));
4061 else if (REG_P (size) && known_eq (extra, 0))
4062 anti_adjust_stack (size);
4063 else
4065 temp = copy_to_mode_reg (Pmode, size);
4066 if (maybe_ne (extra, 0))
4067 temp = expand_binop (Pmode, add_optab, temp,
4068 gen_int_mode (extra, Pmode),
4069 temp, 0, OPTAB_LIB_WIDEN);
4070 anti_adjust_stack (temp);
4073 if (STACK_GROWS_DOWNWARD)
4075 temp = virtual_outgoing_args_rtx;
4076 if (maybe_ne (extra, 0) && below)
4077 temp = plus_constant (Pmode, temp, extra);
4079 else
4081 poly_int64 csize;
4082 if (poly_int_rtx_p (size, &csize))
4083 temp = plus_constant (Pmode, virtual_outgoing_args_rtx,
4084 -csize - (below ? 0 : extra));
4085 else if (maybe_ne (extra, 0) && !below)
4086 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
4087 negate_rtx (Pmode, plus_constant (Pmode, size,
4088 extra)));
4089 else
4090 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
4091 negate_rtx (Pmode, size));
4094 return memory_address (NARROWEST_INT_MODE, temp);
4097 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
4099 static rtx
4100 mem_autoinc_base (rtx mem)
4102 if (MEM_P (mem))
4104 rtx addr = XEXP (mem, 0);
4105 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
4106 return XEXP (addr, 0);
4108 return NULL;
4111 /* A utility routine used here, in reload, and in try_split. The insns
4112 after PREV up to and including LAST are known to adjust the stack,
4113 with a final value of END_ARGS_SIZE. Iterate backward from LAST
4114 placing notes as appropriate. PREV may be NULL, indicating the
4115 entire insn sequence prior to LAST should be scanned.
4117 The set of allowed stack pointer modifications is small:
4118 (1) One or more auto-inc style memory references (aka pushes),
4119 (2) One or more addition/subtraction with the SP as destination,
4120 (3) A single move insn with the SP as destination,
4121 (4) A call_pop insn,
4122 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
4124 Insns in the sequence that do not modify the SP are ignored,
4125 except for noreturn calls.
4127 The return value is the amount of adjustment that can be trivially
4128 verified, via immediate operand or auto-inc. If the adjustment
4129 cannot be trivially extracted, the return value is HOST_WIDE_INT_MIN. */
4131 poly_int64
4132 find_args_size_adjust (rtx_insn *insn)
4134 rtx dest, set, pat;
4135 int i;
4137 pat = PATTERN (insn);
4138 set = NULL;
4140 /* Look for a call_pop pattern. */
4141 if (CALL_P (insn))
4143 /* We have to allow non-call_pop patterns for the case
4144 of emit_single_push_insn of a TLS address. */
4145 if (GET_CODE (pat) != PARALLEL)
4146 return 0;
4148 /* All call_pop have a stack pointer adjust in the parallel.
4149 The call itself is always first, and the stack adjust is
4150 usually last, so search from the end. */
4151 for (i = XVECLEN (pat, 0) - 1; i > 0; --i)
4153 set = XVECEXP (pat, 0, i);
4154 if (GET_CODE (set) != SET)
4155 continue;
4156 dest = SET_DEST (set);
4157 if (dest == stack_pointer_rtx)
4158 break;
4160 /* We'd better have found the stack pointer adjust. */
4161 if (i == 0)
4162 return 0;
4163 /* Fall through to process the extracted SET and DEST
4164 as if it was a standalone insn. */
4166 else if (GET_CODE (pat) == SET)
4167 set = pat;
4168 else if ((set = single_set (insn)) != NULL)
4170 else if (GET_CODE (pat) == PARALLEL)
4172 /* ??? Some older ports use a parallel with a stack adjust
4173 and a store for a PUSH_ROUNDING pattern, rather than a
4174 PRE/POST_MODIFY rtx. Don't force them to update yet... */
4175 /* ??? See h8300 and m68k, pushqi1. */
4176 for (i = XVECLEN (pat, 0) - 1; i >= 0; --i)
4178 set = XVECEXP (pat, 0, i);
4179 if (GET_CODE (set) != SET)
4180 continue;
4181 dest = SET_DEST (set);
4182 if (dest == stack_pointer_rtx)
4183 break;
4185 /* We do not expect an auto-inc of the sp in the parallel. */
4186 gcc_checking_assert (mem_autoinc_base (dest) != stack_pointer_rtx);
4187 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
4188 != stack_pointer_rtx);
4190 if (i < 0)
4191 return 0;
4193 else
4194 return 0;
4196 dest = SET_DEST (set);
4198 /* Look for direct modifications of the stack pointer. */
4199 if (REG_P (dest) && REGNO (dest) == STACK_POINTER_REGNUM)
4201 /* Look for a trivial adjustment, otherwise assume nothing. */
4202 /* Note that the SPU restore_stack_block pattern refers to
4203 the stack pointer in V4SImode. Consider that non-trivial. */
4204 poly_int64 offset;
4205 if (SCALAR_INT_MODE_P (GET_MODE (dest))
4206 && strip_offset (SET_SRC (set), &offset) == stack_pointer_rtx)
4207 return offset;
4208 /* ??? Reload can generate no-op moves, which will be cleaned
4209 up later. Recognize it and continue searching. */
4210 else if (rtx_equal_p (dest, SET_SRC (set)))
4211 return 0;
4212 else
4213 return HOST_WIDE_INT_MIN;
4215 else
4217 rtx mem, addr;
4219 /* Otherwise only think about autoinc patterns. */
4220 if (mem_autoinc_base (dest) == stack_pointer_rtx)
4222 mem = dest;
4223 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
4224 != stack_pointer_rtx);
4226 else if (mem_autoinc_base (SET_SRC (set)) == stack_pointer_rtx)
4227 mem = SET_SRC (set);
4228 else
4229 return 0;
4231 addr = XEXP (mem, 0);
4232 switch (GET_CODE (addr))
4234 case PRE_INC:
4235 case POST_INC:
4236 return GET_MODE_SIZE (GET_MODE (mem));
4237 case PRE_DEC:
4238 case POST_DEC:
4239 return -GET_MODE_SIZE (GET_MODE (mem));
4240 case PRE_MODIFY:
4241 case POST_MODIFY:
4242 addr = XEXP (addr, 1);
4243 gcc_assert (GET_CODE (addr) == PLUS);
4244 gcc_assert (XEXP (addr, 0) == stack_pointer_rtx);
4245 return rtx_to_poly_int64 (XEXP (addr, 1));
4246 default:
4247 gcc_unreachable ();
4252 poly_int64
4253 fixup_args_size_notes (rtx_insn *prev, rtx_insn *last,
4254 poly_int64 end_args_size)
4256 poly_int64 args_size = end_args_size;
4257 bool saw_unknown = false;
4258 rtx_insn *insn;
4260 for (insn = last; insn != prev; insn = PREV_INSN (insn))
4262 if (!NONDEBUG_INSN_P (insn))
4263 continue;
4265 /* We might have existing REG_ARGS_SIZE notes, e.g. when pushing
4266 a call argument containing a TLS address that itself requires
4267 a call to __tls_get_addr. The handling of stack_pointer_delta
4268 in emit_single_push_insn is supposed to ensure that any such
4269 notes are already correct. */
4270 rtx note = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4271 gcc_assert (!note || known_eq (args_size, get_args_size (note)));
4273 poly_int64 this_delta = find_args_size_adjust (insn);
4274 if (known_eq (this_delta, 0))
4276 if (!CALL_P (insn)
4277 || ACCUMULATE_OUTGOING_ARGS
4278 || find_reg_note (insn, REG_NORETURN, NULL_RTX) == NULL_RTX)
4279 continue;
4282 gcc_assert (!saw_unknown);
4283 if (known_eq (this_delta, HOST_WIDE_INT_MIN))
4284 saw_unknown = true;
4286 if (!note)
4287 add_args_size_note (insn, args_size);
4288 if (STACK_GROWS_DOWNWARD)
4289 this_delta = -poly_uint64 (this_delta);
4291 if (saw_unknown)
4292 args_size = HOST_WIDE_INT_MIN;
4293 else
4294 args_size -= this_delta;
4297 return args_size;
4300 #ifdef PUSH_ROUNDING
4301 /* Emit single push insn. */
4303 static void
4304 emit_single_push_insn_1 (machine_mode mode, rtx x, tree type)
4306 rtx dest_addr;
4307 poly_int64 rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
4308 rtx dest;
4309 enum insn_code icode;
4311 /* If there is push pattern, use it. Otherwise try old way of throwing
4312 MEM representing push operation to move expander. */
4313 icode = optab_handler (push_optab, mode);
4314 if (icode != CODE_FOR_nothing)
4316 class expand_operand ops[1];
4318 create_input_operand (&ops[0], x, mode);
4319 if (maybe_expand_insn (icode, 1, ops))
4320 return;
4322 if (known_eq (GET_MODE_SIZE (mode), rounded_size))
4323 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
4324 /* If we are to pad downward, adjust the stack pointer first and
4325 then store X into the stack location using an offset. This is
4326 because emit_move_insn does not know how to pad; it does not have
4327 access to type. */
4328 else if (targetm.calls.function_arg_padding (mode, type) == PAD_DOWNWARD)
4330 emit_move_insn (stack_pointer_rtx,
4331 expand_binop (Pmode,
4332 STACK_GROWS_DOWNWARD ? sub_optab
4333 : add_optab,
4334 stack_pointer_rtx,
4335 gen_int_mode (rounded_size, Pmode),
4336 NULL_RTX, 0, OPTAB_LIB_WIDEN));
4338 poly_int64 offset = rounded_size - GET_MODE_SIZE (mode);
4339 if (STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_DEC)
4340 /* We have already decremented the stack pointer, so get the
4341 previous value. */
4342 offset += rounded_size;
4344 if (!STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_INC)
4345 /* We have already incremented the stack pointer, so get the
4346 previous value. */
4347 offset -= rounded_size;
4349 dest_addr = plus_constant (Pmode, stack_pointer_rtx, offset);
4351 else
4353 if (STACK_GROWS_DOWNWARD)
4354 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
4355 dest_addr = plus_constant (Pmode, stack_pointer_rtx, -rounded_size);
4356 else
4357 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
4358 dest_addr = plus_constant (Pmode, stack_pointer_rtx, rounded_size);
4360 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
4363 dest = gen_rtx_MEM (mode, dest_addr);
4365 if (type != 0)
4367 set_mem_attributes (dest, type, 1);
4369 if (cfun->tail_call_marked)
4370 /* Function incoming arguments may overlap with sibling call
4371 outgoing arguments and we cannot allow reordering of reads
4372 from function arguments with stores to outgoing arguments
4373 of sibling calls. */
4374 set_mem_alias_set (dest, 0);
4376 emit_move_insn (dest, x);
4379 /* Emit and annotate a single push insn. */
4381 static void
4382 emit_single_push_insn (machine_mode mode, rtx x, tree type)
4384 poly_int64 delta, old_delta = stack_pointer_delta;
4385 rtx_insn *prev = get_last_insn ();
4386 rtx_insn *last;
4388 emit_single_push_insn_1 (mode, x, type);
4390 /* Adjust stack_pointer_delta to describe the situation after the push
4391 we just performed. Note that we must do this after the push rather
4392 than before the push in case calculating X needs pushes and pops of
4393 its own (e.g. if calling __tls_get_addr). The REG_ARGS_SIZE notes
4394 for such pushes and pops must not include the effect of the future
4395 push of X. */
4396 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
4398 last = get_last_insn ();
4400 /* Notice the common case where we emitted exactly one insn. */
4401 if (PREV_INSN (last) == prev)
4403 add_args_size_note (last, stack_pointer_delta);
4404 return;
4407 delta = fixup_args_size_notes (prev, last, stack_pointer_delta);
4408 gcc_assert (known_eq (delta, HOST_WIDE_INT_MIN)
4409 || known_eq (delta, old_delta));
4411 #endif
4413 /* If reading SIZE bytes from X will end up reading from
4414 Y return the number of bytes that overlap. Return -1
4415 if there is no overlap or -2 if we can't determine
4416 (for example when X and Y have different base registers). */
4418 static int
4419 memory_load_overlap (rtx x, rtx y, HOST_WIDE_INT size)
4421 rtx tmp = plus_constant (Pmode, x, size);
4422 rtx sub = simplify_gen_binary (MINUS, Pmode, tmp, y);
4424 if (!CONST_INT_P (sub))
4425 return -2;
4427 HOST_WIDE_INT val = INTVAL (sub);
4429 return IN_RANGE (val, 1, size) ? val : -1;
4432 /* Generate code to push X onto the stack, assuming it has mode MODE and
4433 type TYPE.
4434 MODE is redundant except when X is a CONST_INT (since they don't
4435 carry mode info).
4436 SIZE is an rtx for the size of data to be copied (in bytes),
4437 needed only if X is BLKmode.
4438 Return true if successful. May return false if asked to push a
4439 partial argument during a sibcall optimization (as specified by
4440 SIBCALL_P) and the incoming and outgoing pointers cannot be shown
4441 to not overlap.
4443 ALIGN (in bits) is maximum alignment we can assume.
4445 If PARTIAL and REG are both nonzero, then copy that many of the first
4446 bytes of X into registers starting with REG, and push the rest of X.
4447 The amount of space pushed is decreased by PARTIAL bytes.
4448 REG must be a hard register in this case.
4449 If REG is zero but PARTIAL is not, take any all others actions for an
4450 argument partially in registers, but do not actually load any
4451 registers.
4453 EXTRA is the amount in bytes of extra space to leave next to this arg.
4454 This is ignored if an argument block has already been allocated.
4456 On a machine that lacks real push insns, ARGS_ADDR is the address of
4457 the bottom of the argument block for this call. We use indexing off there
4458 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
4459 argument block has not been preallocated.
4461 ARGS_SO_FAR is the size of args previously pushed for this call.
4463 REG_PARM_STACK_SPACE is nonzero if functions require stack space
4464 for arguments passed in registers. If nonzero, it will be the number
4465 of bytes required. */
4467 bool
4468 emit_push_insn (rtx x, machine_mode mode, tree type, rtx size,
4469 unsigned int align, int partial, rtx reg, poly_int64 extra,
4470 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
4471 rtx alignment_pad, bool sibcall_p)
4473 rtx xinner;
4474 pad_direction stack_direction
4475 = STACK_GROWS_DOWNWARD ? PAD_DOWNWARD : PAD_UPWARD;
4477 /* Decide where to pad the argument: PAD_DOWNWARD for below,
4478 PAD_UPWARD for above, or PAD_NONE for don't pad it.
4479 Default is below for small data on big-endian machines; else above. */
4480 pad_direction where_pad = targetm.calls.function_arg_padding (mode, type);
4482 /* Invert direction if stack is post-decrement.
4483 FIXME: why? */
4484 if (STACK_PUSH_CODE == POST_DEC)
4485 if (where_pad != PAD_NONE)
4486 where_pad = (where_pad == PAD_DOWNWARD ? PAD_UPWARD : PAD_DOWNWARD);
4488 xinner = x;
4490 int nregs = partial / UNITS_PER_WORD;
4491 rtx *tmp_regs = NULL;
4492 int overlapping = 0;
4494 if (mode == BLKmode
4495 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
4497 /* Copy a block into the stack, entirely or partially. */
4499 rtx temp;
4500 int used;
4501 int offset;
4502 int skip;
4504 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4505 used = partial - offset;
4507 if (mode != BLKmode)
4509 /* A value is to be stored in an insufficiently aligned
4510 stack slot; copy via a suitably aligned slot if
4511 necessary. */
4512 size = gen_int_mode (GET_MODE_SIZE (mode), Pmode);
4513 if (!MEM_P (xinner))
4515 temp = assign_temp (type, 1, 1);
4516 emit_move_insn (temp, xinner);
4517 xinner = temp;
4521 gcc_assert (size);
4523 /* USED is now the # of bytes we need not copy to the stack
4524 because registers will take care of them. */
4526 if (partial != 0)
4527 xinner = adjust_address (xinner, BLKmode, used);
4529 /* If the partial register-part of the arg counts in its stack size,
4530 skip the part of stack space corresponding to the registers.
4531 Otherwise, start copying to the beginning of the stack space,
4532 by setting SKIP to 0. */
4533 skip = (reg_parm_stack_space == 0) ? 0 : used;
4535 #ifdef PUSH_ROUNDING
4536 /* Do it with several push insns if that doesn't take lots of insns
4537 and if there is no difficulty with push insns that skip bytes
4538 on the stack for alignment purposes. */
4539 if (args_addr == 0
4540 && PUSH_ARGS
4541 && CONST_INT_P (size)
4542 && skip == 0
4543 && MEM_ALIGN (xinner) >= align
4544 && can_move_by_pieces ((unsigned) INTVAL (size) - used, align)
4545 /* Here we avoid the case of a structure whose weak alignment
4546 forces many pushes of a small amount of data,
4547 and such small pushes do rounding that causes trouble. */
4548 && ((!targetm.slow_unaligned_access (word_mode, align))
4549 || align >= BIGGEST_ALIGNMENT
4550 || known_eq (PUSH_ROUNDING (align / BITS_PER_UNIT),
4551 align / BITS_PER_UNIT))
4552 && known_eq (PUSH_ROUNDING (INTVAL (size)), INTVAL (size)))
4554 /* Push padding now if padding above and stack grows down,
4555 or if padding below and stack grows up.
4556 But if space already allocated, this has already been done. */
4557 if (maybe_ne (extra, 0)
4558 && args_addr == 0
4559 && where_pad != PAD_NONE
4560 && where_pad != stack_direction)
4561 anti_adjust_stack (gen_int_mode (extra, Pmode));
4563 move_by_pieces (NULL, xinner, INTVAL (size) - used, align,
4564 RETURN_BEGIN);
4566 else
4567 #endif /* PUSH_ROUNDING */
4569 rtx target;
4571 /* Otherwise make space on the stack and copy the data
4572 to the address of that space. */
4574 /* Deduct words put into registers from the size we must copy. */
4575 if (partial != 0)
4577 if (CONST_INT_P (size))
4578 size = GEN_INT (INTVAL (size) - used);
4579 else
4580 size = expand_binop (GET_MODE (size), sub_optab, size,
4581 gen_int_mode (used, GET_MODE (size)),
4582 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4585 /* Get the address of the stack space.
4586 In this case, we do not deal with EXTRA separately.
4587 A single stack adjust will do. */
4588 poly_int64 const_args_so_far;
4589 if (! args_addr)
4591 temp = push_block (size, extra, where_pad == PAD_DOWNWARD);
4592 extra = 0;
4594 else if (poly_int_rtx_p (args_so_far, &const_args_so_far))
4595 temp = memory_address (BLKmode,
4596 plus_constant (Pmode, args_addr,
4597 skip + const_args_so_far));
4598 else
4599 temp = memory_address (BLKmode,
4600 plus_constant (Pmode,
4601 gen_rtx_PLUS (Pmode,
4602 args_addr,
4603 args_so_far),
4604 skip));
4606 if (!ACCUMULATE_OUTGOING_ARGS)
4608 /* If the source is referenced relative to the stack pointer,
4609 copy it to another register to stabilize it. We do not need
4610 to do this if we know that we won't be changing sp. */
4612 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
4613 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
4614 temp = copy_to_reg (temp);
4617 target = gen_rtx_MEM (BLKmode, temp);
4619 /* We do *not* set_mem_attributes here, because incoming arguments
4620 may overlap with sibling call outgoing arguments and we cannot
4621 allow reordering of reads from function arguments with stores
4622 to outgoing arguments of sibling calls. We do, however, want
4623 to record the alignment of the stack slot. */
4624 /* ALIGN may well be better aligned than TYPE, e.g. due to
4625 PARM_BOUNDARY. Assume the caller isn't lying. */
4626 set_mem_align (target, align);
4628 /* If part should go in registers and pushing to that part would
4629 overwrite some of the values that need to go into regs, load the
4630 overlapping values into temporary pseudos to be moved into the hard
4631 regs at the end after the stack pushing has completed.
4632 We cannot load them directly into the hard regs here because
4633 they can be clobbered by the block move expansions.
4634 See PR 65358. */
4636 if (partial > 0 && reg != 0 && mode == BLKmode
4637 && GET_CODE (reg) != PARALLEL)
4639 overlapping = memory_load_overlap (XEXP (x, 0), temp, partial);
4640 if (overlapping > 0)
4642 gcc_assert (overlapping % UNITS_PER_WORD == 0);
4643 overlapping /= UNITS_PER_WORD;
4645 tmp_regs = XALLOCAVEC (rtx, overlapping);
4647 for (int i = 0; i < overlapping; i++)
4648 tmp_regs[i] = gen_reg_rtx (word_mode);
4650 for (int i = 0; i < overlapping; i++)
4651 emit_move_insn (tmp_regs[i],
4652 operand_subword_force (target, i, mode));
4654 else if (overlapping == -1)
4655 overlapping = 0;
4656 /* Could not determine whether there is overlap.
4657 Fail the sibcall. */
4658 else
4660 overlapping = 0;
4661 if (sibcall_p)
4662 return false;
4665 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
4668 else if (partial > 0)
4670 /* Scalar partly in registers. This case is only supported
4671 for fixed-wdth modes. */
4672 int num_words = GET_MODE_SIZE (mode).to_constant ();
4673 num_words /= UNITS_PER_WORD;
4674 int i;
4675 int not_stack;
4676 /* # bytes of start of argument
4677 that we must make space for but need not store. */
4678 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4679 int args_offset = INTVAL (args_so_far);
4680 int skip;
4682 /* Push padding now if padding above and stack grows down,
4683 or if padding below and stack grows up.
4684 But if space already allocated, this has already been done. */
4685 if (maybe_ne (extra, 0)
4686 && args_addr == 0
4687 && where_pad != PAD_NONE
4688 && where_pad != stack_direction)
4689 anti_adjust_stack (gen_int_mode (extra, Pmode));
4691 /* If we make space by pushing it, we might as well push
4692 the real data. Otherwise, we can leave OFFSET nonzero
4693 and leave the space uninitialized. */
4694 if (args_addr == 0)
4695 offset = 0;
4697 /* Now NOT_STACK gets the number of words that we don't need to
4698 allocate on the stack. Convert OFFSET to words too. */
4699 not_stack = (partial - offset) / UNITS_PER_WORD;
4700 offset /= UNITS_PER_WORD;
4702 /* If the partial register-part of the arg counts in its stack size,
4703 skip the part of stack space corresponding to the registers.
4704 Otherwise, start copying to the beginning of the stack space,
4705 by setting SKIP to 0. */
4706 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
4708 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
4709 x = validize_mem (force_const_mem (mode, x));
4711 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
4712 SUBREGs of such registers are not allowed. */
4713 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
4714 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
4715 x = copy_to_reg (x);
4717 /* Loop over all the words allocated on the stack for this arg. */
4718 /* We can do it by words, because any scalar bigger than a word
4719 has a size a multiple of a word. */
4720 for (i = num_words - 1; i >= not_stack; i--)
4721 if (i >= not_stack + offset)
4722 if (!emit_push_insn (operand_subword_force (x, i, mode),
4723 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
4724 0, args_addr,
4725 GEN_INT (args_offset + ((i - not_stack + skip)
4726 * UNITS_PER_WORD)),
4727 reg_parm_stack_space, alignment_pad, sibcall_p))
4728 return false;
4730 else
4732 rtx addr;
4733 rtx dest;
4735 /* Push padding now if padding above and stack grows down,
4736 or if padding below and stack grows up.
4737 But if space already allocated, this has already been done. */
4738 if (maybe_ne (extra, 0)
4739 && args_addr == 0
4740 && where_pad != PAD_NONE
4741 && where_pad != stack_direction)
4742 anti_adjust_stack (gen_int_mode (extra, Pmode));
4744 #ifdef PUSH_ROUNDING
4745 if (args_addr == 0 && PUSH_ARGS)
4746 emit_single_push_insn (mode, x, type);
4747 else
4748 #endif
4750 addr = simplify_gen_binary (PLUS, Pmode, args_addr, args_so_far);
4751 dest = gen_rtx_MEM (mode, memory_address (mode, addr));
4753 /* We do *not* set_mem_attributes here, because incoming arguments
4754 may overlap with sibling call outgoing arguments and we cannot
4755 allow reordering of reads from function arguments with stores
4756 to outgoing arguments of sibling calls. We do, however, want
4757 to record the alignment of the stack slot. */
4758 /* ALIGN may well be better aligned than TYPE, e.g. due to
4759 PARM_BOUNDARY. Assume the caller isn't lying. */
4760 set_mem_align (dest, align);
4762 emit_move_insn (dest, x);
4766 /* Move the partial arguments into the registers and any overlapping
4767 values that we moved into the pseudos in tmp_regs. */
4768 if (partial > 0 && reg != 0)
4770 /* Handle calls that pass values in multiple non-contiguous locations.
4771 The Irix 6 ABI has examples of this. */
4772 if (GET_CODE (reg) == PARALLEL)
4773 emit_group_load (reg, x, type, -1);
4774 else
4776 gcc_assert (partial % UNITS_PER_WORD == 0);
4777 move_block_to_reg (REGNO (reg), x, nregs - overlapping, mode);
4779 for (int i = 0; i < overlapping; i++)
4780 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg)
4781 + nregs - overlapping + i),
4782 tmp_regs[i]);
4787 if (maybe_ne (extra, 0) && args_addr == 0 && where_pad == stack_direction)
4788 anti_adjust_stack (gen_int_mode (extra, Pmode));
4790 if (alignment_pad && args_addr == 0)
4791 anti_adjust_stack (alignment_pad);
4793 return true;
4796 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4797 operations. */
4799 static rtx
4800 get_subtarget (rtx x)
4802 return (optimize
4803 || x == 0
4804 /* Only registers can be subtargets. */
4805 || !REG_P (x)
4806 /* Don't use hard regs to avoid extending their life. */
4807 || REGNO (x) < FIRST_PSEUDO_REGISTER
4808 ? 0 : x);
4811 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4812 FIELD is a bitfield. Returns true if the optimization was successful,
4813 and there's nothing else to do. */
4815 static bool
4816 optimize_bitfield_assignment_op (poly_uint64 pbitsize,
4817 poly_uint64 pbitpos,
4818 poly_uint64 pbitregion_start,
4819 poly_uint64 pbitregion_end,
4820 machine_mode mode1, rtx str_rtx,
4821 tree to, tree src, bool reverse)
4823 /* str_mode is not guaranteed to be a scalar type. */
4824 machine_mode str_mode = GET_MODE (str_rtx);
4825 unsigned int str_bitsize;
4826 tree op0, op1;
4827 rtx value, result;
4828 optab binop;
4829 gimple *srcstmt;
4830 enum tree_code code;
4832 unsigned HOST_WIDE_INT bitsize, bitpos, bitregion_start, bitregion_end;
4833 if (mode1 != VOIDmode
4834 || !pbitsize.is_constant (&bitsize)
4835 || !pbitpos.is_constant (&bitpos)
4836 || !pbitregion_start.is_constant (&bitregion_start)
4837 || !pbitregion_end.is_constant (&bitregion_end)
4838 || bitsize >= BITS_PER_WORD
4839 || !GET_MODE_BITSIZE (str_mode).is_constant (&str_bitsize)
4840 || str_bitsize > BITS_PER_WORD
4841 || TREE_SIDE_EFFECTS (to)
4842 || TREE_THIS_VOLATILE (to))
4843 return false;
4845 STRIP_NOPS (src);
4846 if (TREE_CODE (src) != SSA_NAME)
4847 return false;
4848 if (TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4849 return false;
4851 srcstmt = get_gimple_for_ssa_name (src);
4852 if (!srcstmt
4853 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt)) != tcc_binary)
4854 return false;
4856 code = gimple_assign_rhs_code (srcstmt);
4858 op0 = gimple_assign_rhs1 (srcstmt);
4860 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
4861 to find its initialization. Hopefully the initialization will
4862 be from a bitfield load. */
4863 if (TREE_CODE (op0) == SSA_NAME)
4865 gimple *op0stmt = get_gimple_for_ssa_name (op0);
4867 /* We want to eventually have OP0 be the same as TO, which
4868 should be a bitfield. */
4869 if (!op0stmt
4870 || !is_gimple_assign (op0stmt)
4871 || gimple_assign_rhs_code (op0stmt) != TREE_CODE (to))
4872 return false;
4873 op0 = gimple_assign_rhs1 (op0stmt);
4876 op1 = gimple_assign_rhs2 (srcstmt);
4878 if (!operand_equal_p (to, op0, 0))
4879 return false;
4881 if (MEM_P (str_rtx))
4883 unsigned HOST_WIDE_INT offset1;
4885 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4886 str_bitsize = BITS_PER_WORD;
4888 scalar_int_mode best_mode;
4889 if (!get_best_mode (bitsize, bitpos, bitregion_start, bitregion_end,
4890 MEM_ALIGN (str_rtx), str_bitsize, false, &best_mode))
4891 return false;
4892 str_mode = best_mode;
4893 str_bitsize = GET_MODE_BITSIZE (best_mode);
4895 offset1 = bitpos;
4896 bitpos %= str_bitsize;
4897 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4898 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4900 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4901 return false;
4903 /* If the bit field covers the whole REG/MEM, store_field
4904 will likely generate better code. */
4905 if (bitsize >= str_bitsize)
4906 return false;
4908 /* We can't handle fields split across multiple entities. */
4909 if (bitpos + bitsize > str_bitsize)
4910 return false;
4912 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
4913 bitpos = str_bitsize - bitpos - bitsize;
4915 switch (code)
4917 case PLUS_EXPR:
4918 case MINUS_EXPR:
4919 /* For now, just optimize the case of the topmost bitfield
4920 where we don't need to do any masking and also
4921 1 bit bitfields where xor can be used.
4922 We might win by one instruction for the other bitfields
4923 too if insv/extv instructions aren't used, so that
4924 can be added later. */
4925 if ((reverse || bitpos + bitsize != str_bitsize)
4926 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4927 break;
4929 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4930 value = convert_modes (str_mode,
4931 TYPE_MODE (TREE_TYPE (op1)), value,
4932 TYPE_UNSIGNED (TREE_TYPE (op1)));
4934 /* We may be accessing data outside the field, which means
4935 we can alias adjacent data. */
4936 if (MEM_P (str_rtx))
4938 str_rtx = shallow_copy_rtx (str_rtx);
4939 set_mem_alias_set (str_rtx, 0);
4940 set_mem_expr (str_rtx, 0);
4943 if (bitsize == 1 && (reverse || bitpos + bitsize != str_bitsize))
4945 value = expand_and (str_mode, value, const1_rtx, NULL);
4946 binop = xor_optab;
4948 else
4949 binop = code == PLUS_EXPR ? add_optab : sub_optab;
4951 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4952 if (reverse)
4953 value = flip_storage_order (str_mode, value);
4954 result = expand_binop (str_mode, binop, str_rtx,
4955 value, str_rtx, 1, OPTAB_WIDEN);
4956 if (result != str_rtx)
4957 emit_move_insn (str_rtx, result);
4958 return true;
4960 case BIT_IOR_EXPR:
4961 case BIT_XOR_EXPR:
4962 if (TREE_CODE (op1) != INTEGER_CST)
4963 break;
4964 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4965 value = convert_modes (str_mode,
4966 TYPE_MODE (TREE_TYPE (op1)), value,
4967 TYPE_UNSIGNED (TREE_TYPE (op1)));
4969 /* We may be accessing data outside the field, which means
4970 we can alias adjacent data. */
4971 if (MEM_P (str_rtx))
4973 str_rtx = shallow_copy_rtx (str_rtx);
4974 set_mem_alias_set (str_rtx, 0);
4975 set_mem_expr (str_rtx, 0);
4978 binop = code == BIT_IOR_EXPR ? ior_optab : xor_optab;
4979 if (bitpos + bitsize != str_bitsize)
4981 rtx mask = gen_int_mode ((HOST_WIDE_INT_1U << bitsize) - 1,
4982 str_mode);
4983 value = expand_and (str_mode, value, mask, NULL_RTX);
4985 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4986 if (reverse)
4987 value = flip_storage_order (str_mode, value);
4988 result = expand_binop (str_mode, binop, str_rtx,
4989 value, str_rtx, 1, OPTAB_WIDEN);
4990 if (result != str_rtx)
4991 emit_move_insn (str_rtx, result);
4992 return true;
4994 default:
4995 break;
4998 return false;
5001 /* In the C++ memory model, consecutive bit fields in a structure are
5002 considered one memory location.
5004 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
5005 returns the bit range of consecutive bits in which this COMPONENT_REF
5006 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
5007 and *OFFSET may be adjusted in the process.
5009 If the access does not need to be restricted, 0 is returned in both
5010 *BITSTART and *BITEND. */
5012 void
5013 get_bit_range (poly_uint64_pod *bitstart, poly_uint64_pod *bitend, tree exp,
5014 poly_int64_pod *bitpos, tree *offset)
5016 poly_int64 bitoffset;
5017 tree field, repr;
5019 gcc_assert (TREE_CODE (exp) == COMPONENT_REF);
5021 field = TREE_OPERAND (exp, 1);
5022 repr = DECL_BIT_FIELD_REPRESENTATIVE (field);
5023 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
5024 need to limit the range we can access. */
5025 if (!repr)
5027 *bitstart = *bitend = 0;
5028 return;
5031 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
5032 part of a larger bit field, then the representative does not serve any
5033 useful purpose. This can occur in Ada. */
5034 if (handled_component_p (TREE_OPERAND (exp, 0)))
5036 machine_mode rmode;
5037 poly_int64 rbitsize, rbitpos;
5038 tree roffset;
5039 int unsignedp, reversep, volatilep = 0;
5040 get_inner_reference (TREE_OPERAND (exp, 0), &rbitsize, &rbitpos,
5041 &roffset, &rmode, &unsignedp, &reversep,
5042 &volatilep);
5043 if (!multiple_p (rbitpos, BITS_PER_UNIT))
5045 *bitstart = *bitend = 0;
5046 return;
5050 /* Compute the adjustment to bitpos from the offset of the field
5051 relative to the representative. DECL_FIELD_OFFSET of field and
5052 repr are the same by construction if they are not constants,
5053 see finish_bitfield_layout. */
5054 poly_uint64 field_offset, repr_offset;
5055 if (poly_int_tree_p (DECL_FIELD_OFFSET (field), &field_offset)
5056 && poly_int_tree_p (DECL_FIELD_OFFSET (repr), &repr_offset))
5057 bitoffset = (field_offset - repr_offset) * BITS_PER_UNIT;
5058 else
5059 bitoffset = 0;
5060 bitoffset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
5061 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
5063 /* If the adjustment is larger than bitpos, we would have a negative bit
5064 position for the lower bound and this may wreak havoc later. Adjust
5065 offset and bitpos to make the lower bound non-negative in that case. */
5066 if (maybe_gt (bitoffset, *bitpos))
5068 poly_int64 adjust_bits = upper_bound (bitoffset, *bitpos) - *bitpos;
5069 poly_int64 adjust_bytes = exact_div (adjust_bits, BITS_PER_UNIT);
5071 *bitpos += adjust_bits;
5072 if (*offset == NULL_TREE)
5073 *offset = size_int (-adjust_bytes);
5074 else
5075 *offset = size_binop (MINUS_EXPR, *offset, size_int (adjust_bytes));
5076 *bitstart = 0;
5078 else
5079 *bitstart = *bitpos - bitoffset;
5081 *bitend = *bitstart + tree_to_poly_uint64 (DECL_SIZE (repr)) - 1;
5084 /* Returns true if BASE is a DECL that does not reside in memory and
5085 has non-BLKmode. DECL_RTL must not be a MEM; if
5086 DECL_RTL was not set yet, return false. */
5088 static inline bool
5089 non_mem_decl_p (tree base)
5091 if (!DECL_P (base)
5092 || TREE_ADDRESSABLE (base)
5093 || DECL_MODE (base) == BLKmode)
5094 return false;
5096 if (!DECL_RTL_SET_P (base))
5097 return false;
5099 return (!MEM_P (DECL_RTL (base)));
5102 /* Returns true if REF refers to an object that does not
5103 reside in memory and has non-BLKmode. */
5105 static inline bool
5106 mem_ref_refers_to_non_mem_p (tree ref)
5108 tree base;
5110 if (TREE_CODE (ref) == MEM_REF
5111 || TREE_CODE (ref) == TARGET_MEM_REF)
5113 tree addr = TREE_OPERAND (ref, 0);
5115 if (TREE_CODE (addr) != ADDR_EXPR)
5116 return false;
5118 base = TREE_OPERAND (addr, 0);
5120 else
5121 base = ref;
5123 return non_mem_decl_p (base);
5126 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
5127 is true, try generating a nontemporal store. */
5129 void
5130 expand_assignment (tree to, tree from, bool nontemporal)
5132 rtx to_rtx = 0;
5133 rtx result;
5134 machine_mode mode;
5135 unsigned int align;
5136 enum insn_code icode;
5138 /* Don't crash if the lhs of the assignment was erroneous. */
5139 if (TREE_CODE (to) == ERROR_MARK)
5141 expand_normal (from);
5142 return;
5145 /* Optimize away no-op moves without side-effects. */
5146 if (operand_equal_p (to, from, 0))
5147 return;
5149 /* Handle misaligned stores. */
5150 mode = TYPE_MODE (TREE_TYPE (to));
5151 if ((TREE_CODE (to) == MEM_REF
5152 || TREE_CODE (to) == TARGET_MEM_REF
5153 || DECL_P (to))
5154 && mode != BLKmode
5155 && !mem_ref_refers_to_non_mem_p (to)
5156 && ((align = get_object_alignment (to))
5157 < GET_MODE_ALIGNMENT (mode))
5158 && (((icode = optab_handler (movmisalign_optab, mode))
5159 != CODE_FOR_nothing)
5160 || targetm.slow_unaligned_access (mode, align)))
5162 rtx reg, mem;
5164 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
5165 reg = force_not_mem (reg);
5166 mem = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5167 if (TREE_CODE (to) == MEM_REF && REF_REVERSE_STORAGE_ORDER (to))
5168 reg = flip_storage_order (mode, reg);
5170 if (icode != CODE_FOR_nothing)
5172 class expand_operand ops[2];
5174 create_fixed_operand (&ops[0], mem);
5175 create_input_operand (&ops[1], reg, mode);
5176 /* The movmisalign<mode> pattern cannot fail, else the assignment
5177 would silently be omitted. */
5178 expand_insn (icode, 2, ops);
5180 else
5181 store_bit_field (mem, GET_MODE_BITSIZE (mode), 0, 0, 0, mode, reg,
5182 false);
5183 return;
5186 /* Assignment of a structure component needs special treatment
5187 if the structure component's rtx is not simply a MEM.
5188 Assignment of an array element at a constant index, and assignment of
5189 an array element in an unaligned packed structure field, has the same
5190 problem. Same for (partially) storing into a non-memory object. */
5191 if (handled_component_p (to)
5192 || (TREE_CODE (to) == MEM_REF
5193 && (REF_REVERSE_STORAGE_ORDER (to)
5194 || mem_ref_refers_to_non_mem_p (to)))
5195 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
5197 machine_mode mode1;
5198 poly_int64 bitsize, bitpos;
5199 poly_uint64 bitregion_start = 0;
5200 poly_uint64 bitregion_end = 0;
5201 tree offset;
5202 int unsignedp, reversep, volatilep = 0;
5203 tree tem;
5205 push_temp_slots ();
5206 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
5207 &unsignedp, &reversep, &volatilep);
5209 /* Make sure bitpos is not negative, it can wreak havoc later. */
5210 if (maybe_lt (bitpos, 0))
5212 gcc_assert (offset == NULL_TREE);
5213 offset = size_int (bits_to_bytes_round_down (bitpos));
5214 bitpos = num_trailing_bits (bitpos);
5217 if (TREE_CODE (to) == COMPONENT_REF
5218 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to, 1)))
5219 get_bit_range (&bitregion_start, &bitregion_end, to, &bitpos, &offset);
5220 /* The C++ memory model naturally applies to byte-aligned fields.
5221 However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or
5222 BITSIZE are not byte-aligned, there is no need to limit the range
5223 we can access. This can occur with packed structures in Ada. */
5224 else if (maybe_gt (bitsize, 0)
5225 && multiple_p (bitsize, BITS_PER_UNIT)
5226 && multiple_p (bitpos, BITS_PER_UNIT))
5228 bitregion_start = bitpos;
5229 bitregion_end = bitpos + bitsize - 1;
5232 to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, EXPAND_WRITE);
5234 /* If the field has a mode, we want to access it in the
5235 field's mode, not the computed mode.
5236 If a MEM has VOIDmode (external with incomplete type),
5237 use BLKmode for it instead. */
5238 if (MEM_P (to_rtx))
5240 if (mode1 != VOIDmode)
5241 to_rtx = adjust_address (to_rtx, mode1, 0);
5242 else if (GET_MODE (to_rtx) == VOIDmode)
5243 to_rtx = adjust_address (to_rtx, BLKmode, 0);
5246 if (offset != 0)
5248 machine_mode address_mode;
5249 rtx offset_rtx;
5251 if (!MEM_P (to_rtx))
5253 /* We can get constant negative offsets into arrays with broken
5254 user code. Translate this to a trap instead of ICEing. */
5255 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
5256 expand_builtin_trap ();
5257 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
5260 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
5261 address_mode = get_address_mode (to_rtx);
5262 if (GET_MODE (offset_rtx) != address_mode)
5264 /* We cannot be sure that the RTL in offset_rtx is valid outside
5265 of a memory address context, so force it into a register
5266 before attempting to convert it to the desired mode. */
5267 offset_rtx = force_operand (offset_rtx, NULL_RTX);
5268 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
5271 /* If we have an expression in OFFSET_RTX and a non-zero
5272 byte offset in BITPOS, adding the byte offset before the
5273 OFFSET_RTX results in better intermediate code, which makes
5274 later rtl optimization passes perform better.
5276 We prefer intermediate code like this:
5278 r124:DI=r123:DI+0x18
5279 [r124:DI]=r121:DI
5281 ... instead of ...
5283 r124:DI=r123:DI+0x10
5284 [r124:DI+0x8]=r121:DI
5286 This is only done for aligned data values, as these can
5287 be expected to result in single move instructions. */
5288 poly_int64 bytepos;
5289 if (mode1 != VOIDmode
5290 && maybe_ne (bitpos, 0)
5291 && maybe_gt (bitsize, 0)
5292 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
5293 && multiple_p (bitpos, bitsize)
5294 && multiple_p (bitsize, GET_MODE_ALIGNMENT (mode1))
5295 && MEM_ALIGN (to_rtx) >= GET_MODE_ALIGNMENT (mode1))
5297 to_rtx = adjust_address (to_rtx, mode1, bytepos);
5298 bitregion_start = 0;
5299 if (known_ge (bitregion_end, poly_uint64 (bitpos)))
5300 bitregion_end -= bitpos;
5301 bitpos = 0;
5304 to_rtx = offset_address (to_rtx, offset_rtx,
5305 highest_pow2_factor_for_target (to,
5306 offset));
5309 /* No action is needed if the target is not a memory and the field
5310 lies completely outside that target. This can occur if the source
5311 code contains an out-of-bounds access to a small array. */
5312 if (!MEM_P (to_rtx)
5313 && GET_MODE (to_rtx) != BLKmode
5314 && known_ge (bitpos, GET_MODE_PRECISION (GET_MODE (to_rtx))))
5316 expand_normal (from);
5317 result = NULL;
5319 /* Handle expand_expr of a complex value returning a CONCAT. */
5320 else if (GET_CODE (to_rtx) == CONCAT)
5322 machine_mode to_mode = GET_MODE (to_rtx);
5323 gcc_checking_assert (COMPLEX_MODE_P (to_mode));
5324 poly_int64 mode_bitsize = GET_MODE_BITSIZE (to_mode);
5325 unsigned short inner_bitsize = GET_MODE_UNIT_BITSIZE (to_mode);
5326 if (TYPE_MODE (TREE_TYPE (from)) == to_mode
5327 && known_eq (bitpos, 0)
5328 && known_eq (bitsize, mode_bitsize))
5329 result = store_expr (from, to_rtx, false, nontemporal, reversep);
5330 else if (TYPE_MODE (TREE_TYPE (from)) == GET_MODE_INNER (to_mode)
5331 && known_eq (bitsize, inner_bitsize)
5332 && (known_eq (bitpos, 0)
5333 || known_eq (bitpos, inner_bitsize)))
5334 result = store_expr (from, XEXP (to_rtx, maybe_ne (bitpos, 0)),
5335 false, nontemporal, reversep);
5336 else if (known_le (bitpos + bitsize, inner_bitsize))
5337 result = store_field (XEXP (to_rtx, 0), bitsize, bitpos,
5338 bitregion_start, bitregion_end,
5339 mode1, from, get_alias_set (to),
5340 nontemporal, reversep);
5341 else if (known_ge (bitpos, inner_bitsize))
5342 result = store_field (XEXP (to_rtx, 1), bitsize,
5343 bitpos - inner_bitsize,
5344 bitregion_start, bitregion_end,
5345 mode1, from, get_alias_set (to),
5346 nontemporal, reversep);
5347 else if (known_eq (bitpos, 0) && known_eq (bitsize, mode_bitsize))
5349 result = expand_normal (from);
5350 if (GET_CODE (result) == CONCAT)
5352 to_mode = GET_MODE_INNER (to_mode);
5353 machine_mode from_mode = GET_MODE_INNER (GET_MODE (result));
5354 rtx from_real
5355 = simplify_gen_subreg (to_mode, XEXP (result, 0),
5356 from_mode, 0);
5357 rtx from_imag
5358 = simplify_gen_subreg (to_mode, XEXP (result, 1),
5359 from_mode, 0);
5360 if (!from_real || !from_imag)
5361 goto concat_store_slow;
5362 emit_move_insn (XEXP (to_rtx, 0), from_real);
5363 emit_move_insn (XEXP (to_rtx, 1), from_imag);
5365 else
5367 machine_mode from_mode
5368 = GET_MODE (result) == VOIDmode
5369 ? TYPE_MODE (TREE_TYPE (from))
5370 : GET_MODE (result);
5371 rtx from_rtx;
5372 if (MEM_P (result))
5373 from_rtx = change_address (result, to_mode, NULL_RTX);
5374 else
5375 from_rtx
5376 = simplify_gen_subreg (to_mode, result, from_mode, 0);
5377 if (from_rtx)
5379 emit_move_insn (XEXP (to_rtx, 0),
5380 read_complex_part (from_rtx, false));
5381 emit_move_insn (XEXP (to_rtx, 1),
5382 read_complex_part (from_rtx, true));
5384 else
5386 to_mode = GET_MODE_INNER (to_mode);
5387 rtx from_real
5388 = simplify_gen_subreg (to_mode, result, from_mode, 0);
5389 rtx from_imag
5390 = simplify_gen_subreg (to_mode, result, from_mode,
5391 GET_MODE_SIZE (to_mode));
5392 if (!from_real || !from_imag)
5393 goto concat_store_slow;
5394 emit_move_insn (XEXP (to_rtx, 0), from_real);
5395 emit_move_insn (XEXP (to_rtx, 1), from_imag);
5399 else
5401 concat_store_slow:;
5402 rtx temp = assign_stack_temp (GET_MODE (to_rtx),
5403 GET_MODE_SIZE (GET_MODE (to_rtx)));
5404 write_complex_part (temp, XEXP (to_rtx, 0), false);
5405 write_complex_part (temp, XEXP (to_rtx, 1), true);
5406 result = store_field (temp, bitsize, bitpos,
5407 bitregion_start, bitregion_end,
5408 mode1, from, get_alias_set (to),
5409 nontemporal, reversep);
5410 emit_move_insn (XEXP (to_rtx, 0), read_complex_part (temp, false));
5411 emit_move_insn (XEXP (to_rtx, 1), read_complex_part (temp, true));
5414 /* For calls to functions returning variable length structures, if TO_RTX
5415 is not a MEM, go through a MEM because we must not create temporaries
5416 of the VLA type. */
5417 else if (!MEM_P (to_rtx)
5418 && TREE_CODE (from) == CALL_EXPR
5419 && COMPLETE_TYPE_P (TREE_TYPE (from))
5420 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) != INTEGER_CST)
5422 rtx temp = assign_stack_temp (GET_MODE (to_rtx),
5423 GET_MODE_SIZE (GET_MODE (to_rtx)));
5424 result = store_field (temp, bitsize, bitpos, bitregion_start,
5425 bitregion_end, mode1, from, get_alias_set (to),
5426 nontemporal, reversep);
5427 emit_move_insn (to_rtx, temp);
5429 else
5431 if (MEM_P (to_rtx))
5433 /* If the field is at offset zero, we could have been given the
5434 DECL_RTX of the parent struct. Don't munge it. */
5435 to_rtx = shallow_copy_rtx (to_rtx);
5436 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
5437 if (volatilep)
5438 MEM_VOLATILE_P (to_rtx) = 1;
5441 gcc_checking_assert (known_ge (bitpos, 0));
5442 if (optimize_bitfield_assignment_op (bitsize, bitpos,
5443 bitregion_start, bitregion_end,
5444 mode1, to_rtx, to, from,
5445 reversep))
5446 result = NULL;
5447 else
5448 result = store_field (to_rtx, bitsize, bitpos,
5449 bitregion_start, bitregion_end,
5450 mode1, from, get_alias_set (to),
5451 nontemporal, reversep);
5454 if (result)
5455 preserve_temp_slots (result);
5456 pop_temp_slots ();
5457 return;
5460 /* If the rhs is a function call and its value is not an aggregate,
5461 call the function before we start to compute the lhs.
5462 This is needed for correct code for cases such as
5463 val = setjmp (buf) on machines where reference to val
5464 requires loading up part of an address in a separate insn.
5466 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
5467 since it might be a promoted variable where the zero- or sign- extension
5468 needs to be done. Handling this in the normal way is safe because no
5469 computation is done before the call. The same is true for SSA names. */
5470 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
5471 && COMPLETE_TYPE_P (TREE_TYPE (from))
5472 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
5473 && ! (((VAR_P (to)
5474 || TREE_CODE (to) == PARM_DECL
5475 || TREE_CODE (to) == RESULT_DECL)
5476 && REG_P (DECL_RTL (to)))
5477 || TREE_CODE (to) == SSA_NAME))
5479 rtx value;
5481 push_temp_slots ();
5482 value = expand_normal (from);
5484 if (to_rtx == 0)
5485 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5487 /* Handle calls that return values in multiple non-contiguous locations.
5488 The Irix 6 ABI has examples of this. */
5489 if (GET_CODE (to_rtx) == PARALLEL)
5491 if (GET_CODE (value) == PARALLEL)
5492 emit_group_move (to_rtx, value);
5493 else
5494 emit_group_load (to_rtx, value, TREE_TYPE (from),
5495 int_size_in_bytes (TREE_TYPE (from)));
5497 else if (GET_CODE (value) == PARALLEL)
5498 emit_group_store (to_rtx, value, TREE_TYPE (from),
5499 int_size_in_bytes (TREE_TYPE (from)));
5500 else if (GET_MODE (to_rtx) == BLKmode)
5502 /* Handle calls that return BLKmode values in registers. */
5503 if (REG_P (value))
5504 copy_blkmode_from_reg (to_rtx, value, TREE_TYPE (from));
5505 else
5506 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
5508 else
5510 if (POINTER_TYPE_P (TREE_TYPE (to)))
5511 value = convert_memory_address_addr_space
5512 (as_a <scalar_int_mode> (GET_MODE (to_rtx)), value,
5513 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
5515 emit_move_insn (to_rtx, value);
5518 preserve_temp_slots (to_rtx);
5519 pop_temp_slots ();
5520 return;
5523 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
5524 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5526 /* Don't move directly into a return register. */
5527 if (TREE_CODE (to) == RESULT_DECL
5528 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
5530 rtx temp;
5532 push_temp_slots ();
5534 /* If the source is itself a return value, it still is in a pseudo at
5535 this point so we can move it back to the return register directly. */
5536 if (REG_P (to_rtx)
5537 && TYPE_MODE (TREE_TYPE (from)) == BLKmode
5538 && TREE_CODE (from) != CALL_EXPR)
5539 temp = copy_blkmode_to_reg (GET_MODE (to_rtx), from);
5540 else
5541 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
5543 /* Handle calls that return values in multiple non-contiguous locations.
5544 The Irix 6 ABI has examples of this. */
5545 if (GET_CODE (to_rtx) == PARALLEL)
5547 if (GET_CODE (temp) == PARALLEL)
5548 emit_group_move (to_rtx, temp);
5549 else
5550 emit_group_load (to_rtx, temp, TREE_TYPE (from),
5551 int_size_in_bytes (TREE_TYPE (from)));
5553 else if (temp)
5554 emit_move_insn (to_rtx, temp);
5556 preserve_temp_slots (to_rtx);
5557 pop_temp_slots ();
5558 return;
5561 /* In case we are returning the contents of an object which overlaps
5562 the place the value is being stored, use a safe function when copying
5563 a value through a pointer into a structure value return block. */
5564 if (TREE_CODE (to) == RESULT_DECL
5565 && TREE_CODE (from) == INDIRECT_REF
5566 && ADDR_SPACE_GENERIC_P
5567 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
5568 && refs_may_alias_p (to, from)
5569 && cfun->returns_struct
5570 && !cfun->returns_pcc_struct)
5572 rtx from_rtx, size;
5574 push_temp_slots ();
5575 size = expr_size (from);
5576 from_rtx = expand_normal (from);
5578 emit_block_move_via_libcall (XEXP (to_rtx, 0), XEXP (from_rtx, 0), size);
5580 preserve_temp_slots (to_rtx);
5581 pop_temp_slots ();
5582 return;
5585 /* Compute FROM and store the value in the rtx we got. */
5587 push_temp_slots ();
5588 result = store_expr (from, to_rtx, 0, nontemporal, false);
5589 preserve_temp_slots (result);
5590 pop_temp_slots ();
5591 return;
5594 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
5595 succeeded, false otherwise. */
5597 bool
5598 emit_storent_insn (rtx to, rtx from)
5600 class expand_operand ops[2];
5601 machine_mode mode = GET_MODE (to);
5602 enum insn_code code = optab_handler (storent_optab, mode);
5604 if (code == CODE_FOR_nothing)
5605 return false;
5607 create_fixed_operand (&ops[0], to);
5608 create_input_operand (&ops[1], from, mode);
5609 return maybe_expand_insn (code, 2, ops);
5612 /* Helper function for store_expr storing of STRING_CST. */
5614 static rtx
5615 string_cst_read_str (void *data, HOST_WIDE_INT offset, scalar_int_mode mode)
5617 tree str = (tree) data;
5619 gcc_assert (offset >= 0);
5620 if (offset >= TREE_STRING_LENGTH (str))
5621 return const0_rtx;
5623 if ((unsigned HOST_WIDE_INT) offset + GET_MODE_SIZE (mode)
5624 > (unsigned HOST_WIDE_INT) TREE_STRING_LENGTH (str))
5626 char *p = XALLOCAVEC (char, GET_MODE_SIZE (mode));
5627 size_t l = TREE_STRING_LENGTH (str) - offset;
5628 memcpy (p, TREE_STRING_POINTER (str) + offset, l);
5629 memset (p + l, '\0', GET_MODE_SIZE (mode) - l);
5630 return c_readstr (p, mode, false);
5633 return c_readstr (TREE_STRING_POINTER (str) + offset, mode, false);
5636 /* Generate code for computing expression EXP,
5637 and storing the value into TARGET.
5639 If the mode is BLKmode then we may return TARGET itself.
5640 It turns out that in BLKmode it doesn't cause a problem.
5641 because C has no operators that could combine two different
5642 assignments into the same BLKmode object with different values
5643 with no sequence point. Will other languages need this to
5644 be more thorough?
5646 If CALL_PARAM_P is nonzero, this is a store into a call param on the
5647 stack, and block moves may need to be treated specially.
5649 If NONTEMPORAL is true, try using a nontemporal store instruction.
5651 If REVERSE is true, the store is to be done in reverse order. */
5654 store_expr (tree exp, rtx target, int call_param_p,
5655 bool nontemporal, bool reverse)
5657 rtx temp;
5658 rtx alt_rtl = NULL_RTX;
5659 location_t loc = curr_insn_location ();
5660 bool shortened_string_cst = false;
5662 if (VOID_TYPE_P (TREE_TYPE (exp)))
5664 /* C++ can generate ?: expressions with a throw expression in one
5665 branch and an rvalue in the other. Here, we resolve attempts to
5666 store the throw expression's nonexistent result. */
5667 gcc_assert (!call_param_p);
5668 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5669 return NULL_RTX;
5671 if (TREE_CODE (exp) == COMPOUND_EXPR)
5673 /* Perform first part of compound expression, then assign from second
5674 part. */
5675 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
5676 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5677 return store_expr (TREE_OPERAND (exp, 1), target,
5678 call_param_p, nontemporal, reverse);
5680 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
5682 /* For conditional expression, get safe form of the target. Then
5683 test the condition, doing the appropriate assignment on either
5684 side. This avoids the creation of unnecessary temporaries.
5685 For non-BLKmode, it is more efficient not to do this. */
5687 rtx_code_label *lab1 = gen_label_rtx (), *lab2 = gen_label_rtx ();
5689 do_pending_stack_adjust ();
5690 NO_DEFER_POP;
5691 jumpifnot (TREE_OPERAND (exp, 0), lab1,
5692 profile_probability::uninitialized ());
5693 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
5694 nontemporal, reverse);
5695 emit_jump_insn (targetm.gen_jump (lab2));
5696 emit_barrier ();
5697 emit_label (lab1);
5698 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
5699 nontemporal, reverse);
5700 emit_label (lab2);
5701 OK_DEFER_POP;
5703 return NULL_RTX;
5705 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
5706 /* If this is a scalar in a register that is stored in a wider mode
5707 than the declared mode, compute the result into its declared mode
5708 and then convert to the wider mode. Our value is the computed
5709 expression. */
5711 rtx inner_target = 0;
5712 scalar_int_mode outer_mode = subreg_unpromoted_mode (target);
5713 scalar_int_mode inner_mode = subreg_promoted_mode (target);
5715 /* We can do the conversion inside EXP, which will often result
5716 in some optimizations. Do the conversion in two steps: first
5717 change the signedness, if needed, then the extend. But don't
5718 do this if the type of EXP is a subtype of something else
5719 since then the conversion might involve more than just
5720 converting modes. */
5721 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
5722 && TREE_TYPE (TREE_TYPE (exp)) == 0
5723 && GET_MODE_PRECISION (outer_mode)
5724 == TYPE_PRECISION (TREE_TYPE (exp)))
5726 if (!SUBREG_CHECK_PROMOTED_SIGN (target,
5727 TYPE_UNSIGNED (TREE_TYPE (exp))))
5729 /* Some types, e.g. Fortran's logical*4, won't have a signed
5730 version, so use the mode instead. */
5731 tree ntype
5732 = (signed_or_unsigned_type_for
5733 (SUBREG_PROMOTED_SIGN (target), TREE_TYPE (exp)));
5734 if (ntype == NULL)
5735 ntype = lang_hooks.types.type_for_mode
5736 (TYPE_MODE (TREE_TYPE (exp)),
5737 SUBREG_PROMOTED_SIGN (target));
5739 exp = fold_convert_loc (loc, ntype, exp);
5742 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
5743 (inner_mode, SUBREG_PROMOTED_SIGN (target)),
5744 exp);
5746 inner_target = SUBREG_REG (target);
5749 temp = expand_expr (exp, inner_target, VOIDmode,
5750 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5753 /* If TEMP is a VOIDmode constant, use convert_modes to make
5754 sure that we properly convert it. */
5755 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
5757 temp = convert_modes (outer_mode, TYPE_MODE (TREE_TYPE (exp)),
5758 temp, SUBREG_PROMOTED_SIGN (target));
5759 temp = convert_modes (inner_mode, outer_mode, temp,
5760 SUBREG_PROMOTED_SIGN (target));
5763 convert_move (SUBREG_REG (target), temp,
5764 SUBREG_PROMOTED_SIGN (target));
5766 return NULL_RTX;
5768 else if ((TREE_CODE (exp) == STRING_CST
5769 || (TREE_CODE (exp) == MEM_REF
5770 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
5771 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
5772 == STRING_CST
5773 && integer_zerop (TREE_OPERAND (exp, 1))))
5774 && !nontemporal && !call_param_p
5775 && MEM_P (target))
5777 /* Optimize initialization of an array with a STRING_CST. */
5778 HOST_WIDE_INT exp_len, str_copy_len;
5779 rtx dest_mem;
5780 tree str = TREE_CODE (exp) == STRING_CST
5781 ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
5783 exp_len = int_expr_size (exp);
5784 if (exp_len <= 0)
5785 goto normal_expr;
5787 if (TREE_STRING_LENGTH (str) <= 0)
5788 goto normal_expr;
5790 if (can_store_by_pieces (exp_len, string_cst_read_str, (void *) str,
5791 MEM_ALIGN (target), false))
5793 store_by_pieces (target, exp_len, string_cst_read_str, (void *) str,
5794 MEM_ALIGN (target), false, RETURN_BEGIN);
5795 return NULL_RTX;
5798 str_copy_len = TREE_STRING_LENGTH (str);
5799 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0)
5801 str_copy_len += STORE_MAX_PIECES - 1;
5802 str_copy_len &= ~(STORE_MAX_PIECES - 1);
5804 if (str_copy_len >= exp_len)
5805 goto normal_expr;
5807 if (!can_store_by_pieces (str_copy_len, string_cst_read_str,
5808 (void *) str, MEM_ALIGN (target), false))
5809 goto normal_expr;
5811 dest_mem = store_by_pieces (target, str_copy_len, string_cst_read_str,
5812 (void *) str, MEM_ALIGN (target), false,
5813 RETURN_END);
5814 clear_storage (adjust_address_1 (dest_mem, BLKmode, 0, 1, 1, 0,
5815 exp_len - str_copy_len),
5816 GEN_INT (exp_len - str_copy_len), BLOCK_OP_NORMAL);
5817 return NULL_RTX;
5819 else
5821 rtx tmp_target;
5823 normal_expr:
5824 /* If we want to use a nontemporal or a reverse order store, force the
5825 value into a register first. */
5826 tmp_target = nontemporal || reverse ? NULL_RTX : target;
5827 tree rexp = exp;
5828 if (TREE_CODE (exp) == STRING_CST
5829 && tmp_target == target
5830 && GET_MODE (target) == BLKmode
5831 && TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
5833 rtx size = expr_size (exp);
5834 if (CONST_INT_P (size)
5835 && size != const0_rtx
5836 && (UINTVAL (size)
5837 > ((unsigned HOST_WIDE_INT) TREE_STRING_LENGTH (exp) + 32)))
5839 /* If the STRING_CST has much larger array type than
5840 TREE_STRING_LENGTH, only emit the TREE_STRING_LENGTH part of
5841 it into the rodata section as the code later on will use
5842 memset zero for the remainder anyway. See PR95052. */
5843 tmp_target = NULL_RTX;
5844 rexp = copy_node (exp);
5845 tree index
5846 = build_index_type (size_int (TREE_STRING_LENGTH (exp) - 1));
5847 TREE_TYPE (rexp) = build_array_type (TREE_TYPE (TREE_TYPE (exp)),
5848 index);
5849 shortened_string_cst = true;
5852 temp = expand_expr_real (rexp, tmp_target, GET_MODE (target),
5853 (call_param_p
5854 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
5855 &alt_rtl, false);
5856 if (shortened_string_cst)
5858 gcc_assert (MEM_P (temp));
5859 temp = change_address (temp, BLKmode, NULL_RTX);
5863 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
5864 the same as that of TARGET, adjust the constant. This is needed, for
5865 example, in case it is a CONST_DOUBLE or CONST_WIDE_INT and we want
5866 only a word-sized value. */
5867 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
5868 && TREE_CODE (exp) != ERROR_MARK
5869 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
5871 gcc_assert (!shortened_string_cst);
5872 if (GET_MODE_CLASS (GET_MODE (target))
5873 != GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp)))
5874 && known_eq (GET_MODE_BITSIZE (GET_MODE (target)),
5875 GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)))))
5877 rtx t = simplify_gen_subreg (GET_MODE (target), temp,
5878 TYPE_MODE (TREE_TYPE (exp)), 0);
5879 if (t)
5880 temp = t;
5882 if (GET_MODE (temp) == VOIDmode)
5883 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
5884 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5887 /* If value was not generated in the target, store it there.
5888 Convert the value to TARGET's type first if necessary and emit the
5889 pending incrementations that have been queued when expanding EXP.
5890 Note that we cannot emit the whole queue blindly because this will
5891 effectively disable the POST_INC optimization later.
5893 If TEMP and TARGET compare equal according to rtx_equal_p, but
5894 one or both of them are volatile memory refs, we have to distinguish
5895 two cases:
5896 - expand_expr has used TARGET. In this case, we must not generate
5897 another copy. This can be detected by TARGET being equal according
5898 to == .
5899 - expand_expr has not used TARGET - that means that the source just
5900 happens to have the same RTX form. Since temp will have been created
5901 by expand_expr, it will compare unequal according to == .
5902 We must generate a copy in this case, to reach the correct number
5903 of volatile memory references. */
5905 if ((! rtx_equal_p (temp, target)
5906 || (temp != target && (side_effects_p (temp)
5907 || side_effects_p (target))))
5908 && TREE_CODE (exp) != ERROR_MARK
5909 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
5910 but TARGET is not valid memory reference, TEMP will differ
5911 from TARGET although it is really the same location. */
5912 && !(alt_rtl
5913 && rtx_equal_p (alt_rtl, target)
5914 && !side_effects_p (alt_rtl)
5915 && !side_effects_p (target))
5916 /* If there's nothing to copy, don't bother. Don't call
5917 expr_size unless necessary, because some front-ends (C++)
5918 expr_size-hook must not be given objects that are not
5919 supposed to be bit-copied or bit-initialized. */
5920 && expr_size (exp) != const0_rtx)
5922 if (GET_MODE (temp) != GET_MODE (target) && GET_MODE (temp) != VOIDmode)
5924 gcc_assert (!shortened_string_cst);
5925 if (GET_MODE (target) == BLKmode)
5927 /* Handle calls that return BLKmode values in registers. */
5928 if (REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
5929 copy_blkmode_from_reg (target, temp, TREE_TYPE (exp));
5930 else
5931 store_bit_field (target,
5932 rtx_to_poly_int64 (expr_size (exp))
5933 * BITS_PER_UNIT,
5934 0, 0, 0, GET_MODE (temp), temp, reverse);
5936 else
5937 convert_move (target, temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5940 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
5942 /* Handle copying a string constant into an array. The string
5943 constant may be shorter than the array. So copy just the string's
5944 actual length, and clear the rest. First get the size of the data
5945 type of the string, which is actually the size of the target. */
5946 rtx size = expr_size (exp);
5948 if (CONST_INT_P (size)
5949 && INTVAL (size) < TREE_STRING_LENGTH (exp))
5950 emit_block_move (target, temp, size,
5951 (call_param_p
5952 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5953 else
5955 machine_mode pointer_mode
5956 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
5957 machine_mode address_mode = get_address_mode (target);
5959 /* Compute the size of the data to copy from the string. */
5960 tree copy_size
5961 = size_binop_loc (loc, MIN_EXPR,
5962 make_tree (sizetype, size),
5963 size_int (TREE_STRING_LENGTH (exp)));
5964 rtx copy_size_rtx
5965 = expand_expr (copy_size, NULL_RTX, VOIDmode,
5966 (call_param_p
5967 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
5968 rtx_code_label *label = 0;
5970 /* Copy that much. */
5971 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
5972 TYPE_UNSIGNED (sizetype));
5973 emit_block_move (target, temp, copy_size_rtx,
5974 (call_param_p
5975 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5977 /* Figure out how much is left in TARGET that we have to clear.
5978 Do all calculations in pointer_mode. */
5979 poly_int64 const_copy_size;
5980 if (poly_int_rtx_p (copy_size_rtx, &const_copy_size))
5982 size = plus_constant (address_mode, size, -const_copy_size);
5983 target = adjust_address (target, BLKmode, const_copy_size);
5985 else
5987 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
5988 copy_size_rtx, NULL_RTX, 0,
5989 OPTAB_LIB_WIDEN);
5991 if (GET_MODE (copy_size_rtx) != address_mode)
5992 copy_size_rtx = convert_to_mode (address_mode,
5993 copy_size_rtx,
5994 TYPE_UNSIGNED (sizetype));
5996 target = offset_address (target, copy_size_rtx,
5997 highest_pow2_factor (copy_size));
5998 label = gen_label_rtx ();
5999 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
6000 GET_MODE (size), 0, label);
6003 if (size != const0_rtx)
6004 clear_storage (target, size, BLOCK_OP_NORMAL);
6006 if (label)
6007 emit_label (label);
6010 else if (shortened_string_cst)
6011 gcc_unreachable ();
6012 /* Handle calls that return values in multiple non-contiguous locations.
6013 The Irix 6 ABI has examples of this. */
6014 else if (GET_CODE (target) == PARALLEL)
6016 if (GET_CODE (temp) == PARALLEL)
6017 emit_group_move (target, temp);
6018 else
6019 emit_group_load (target, temp, TREE_TYPE (exp),
6020 int_size_in_bytes (TREE_TYPE (exp)));
6022 else if (GET_CODE (temp) == PARALLEL)
6023 emit_group_store (target, temp, TREE_TYPE (exp),
6024 int_size_in_bytes (TREE_TYPE (exp)));
6025 else if (GET_MODE (temp) == BLKmode)
6026 emit_block_move (target, temp, expr_size (exp),
6027 (call_param_p
6028 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
6029 /* If we emit a nontemporal store, there is nothing else to do. */
6030 else if (nontemporal && emit_storent_insn (target, temp))
6032 else
6034 if (reverse)
6035 temp = flip_storage_order (GET_MODE (target), temp);
6036 temp = force_operand (temp, target);
6037 if (temp != target)
6038 emit_move_insn (target, temp);
6041 else
6042 gcc_assert (!shortened_string_cst);
6044 return NULL_RTX;
6047 /* Return true if field F of structure TYPE is a flexible array. */
6049 static bool
6050 flexible_array_member_p (const_tree f, const_tree type)
6052 const_tree tf;
6054 tf = TREE_TYPE (f);
6055 return (DECL_CHAIN (f) == NULL
6056 && TREE_CODE (tf) == ARRAY_TYPE
6057 && TYPE_DOMAIN (tf)
6058 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
6059 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
6060 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
6061 && int_size_in_bytes (type) >= 0);
6064 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
6065 must have in order for it to completely initialize a value of type TYPE.
6066 Return -1 if the number isn't known.
6068 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
6070 static HOST_WIDE_INT
6071 count_type_elements (const_tree type, bool for_ctor_p)
6073 switch (TREE_CODE (type))
6075 case ARRAY_TYPE:
6077 tree nelts;
6079 nelts = array_type_nelts (type);
6080 if (nelts && tree_fits_uhwi_p (nelts))
6082 unsigned HOST_WIDE_INT n;
6084 n = tree_to_uhwi (nelts) + 1;
6085 if (n == 0 || for_ctor_p)
6086 return n;
6087 else
6088 return n * count_type_elements (TREE_TYPE (type), false);
6090 return for_ctor_p ? -1 : 1;
6093 case RECORD_TYPE:
6095 unsigned HOST_WIDE_INT n;
6096 tree f;
6098 n = 0;
6099 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
6100 if (TREE_CODE (f) == FIELD_DECL)
6102 if (!for_ctor_p)
6103 n += count_type_elements (TREE_TYPE (f), false);
6104 else if (!flexible_array_member_p (f, type))
6105 /* Don't count flexible arrays, which are not supposed
6106 to be initialized. */
6107 n += 1;
6110 return n;
6113 case UNION_TYPE:
6114 case QUAL_UNION_TYPE:
6116 tree f;
6117 HOST_WIDE_INT n, m;
6119 gcc_assert (!for_ctor_p);
6120 /* Estimate the number of scalars in each field and pick the
6121 maximum. Other estimates would do instead; the idea is simply
6122 to make sure that the estimate is not sensitive to the ordering
6123 of the fields. */
6124 n = 1;
6125 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
6126 if (TREE_CODE (f) == FIELD_DECL)
6128 m = count_type_elements (TREE_TYPE (f), false);
6129 /* If the field doesn't span the whole union, add an extra
6130 scalar for the rest. */
6131 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f)),
6132 TYPE_SIZE (type)) != 1)
6133 m++;
6134 if (n < m)
6135 n = m;
6137 return n;
6140 case COMPLEX_TYPE:
6141 return 2;
6143 case VECTOR_TYPE:
6145 unsigned HOST_WIDE_INT nelts;
6146 if (TYPE_VECTOR_SUBPARTS (type).is_constant (&nelts))
6147 return nelts;
6148 else
6149 return -1;
6152 case INTEGER_TYPE:
6153 case REAL_TYPE:
6154 case FIXED_POINT_TYPE:
6155 case ENUMERAL_TYPE:
6156 case BOOLEAN_TYPE:
6157 case POINTER_TYPE:
6158 case OFFSET_TYPE:
6159 case REFERENCE_TYPE:
6160 case NULLPTR_TYPE:
6161 return 1;
6163 case ERROR_MARK:
6164 return 0;
6166 case VOID_TYPE:
6167 case METHOD_TYPE:
6168 case FUNCTION_TYPE:
6169 case LANG_TYPE:
6170 default:
6171 gcc_unreachable ();
6175 /* Helper for categorize_ctor_elements. Identical interface. */
6177 static bool
6178 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
6179 HOST_WIDE_INT *p_unique_nz_elts,
6180 HOST_WIDE_INT *p_init_elts, bool *p_complete)
6182 unsigned HOST_WIDE_INT idx;
6183 HOST_WIDE_INT nz_elts, unique_nz_elts, init_elts, num_fields;
6184 tree value, purpose, elt_type;
6186 /* Whether CTOR is a valid constant initializer, in accordance with what
6187 initializer_constant_valid_p does. If inferred from the constructor
6188 elements, true until proven otherwise. */
6189 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
6190 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
6192 nz_elts = 0;
6193 unique_nz_elts = 0;
6194 init_elts = 0;
6195 num_fields = 0;
6196 elt_type = NULL_TREE;
6198 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
6200 HOST_WIDE_INT mult = 1;
6202 if (purpose && TREE_CODE (purpose) == RANGE_EXPR)
6204 tree lo_index = TREE_OPERAND (purpose, 0);
6205 tree hi_index = TREE_OPERAND (purpose, 1);
6207 if (tree_fits_uhwi_p (lo_index) && tree_fits_uhwi_p (hi_index))
6208 mult = (tree_to_uhwi (hi_index)
6209 - tree_to_uhwi (lo_index) + 1);
6211 num_fields += mult;
6212 elt_type = TREE_TYPE (value);
6214 switch (TREE_CODE (value))
6216 case CONSTRUCTOR:
6218 HOST_WIDE_INT nz = 0, unz = 0, ic = 0;
6220 bool const_elt_p = categorize_ctor_elements_1 (value, &nz, &unz,
6221 &ic, p_complete);
6223 nz_elts += mult * nz;
6224 unique_nz_elts += unz;
6225 init_elts += mult * ic;
6227 if (const_from_elts_p && const_p)
6228 const_p = const_elt_p;
6230 break;
6232 case INTEGER_CST:
6233 case REAL_CST:
6234 case FIXED_CST:
6235 if (!initializer_zerop (value))
6237 nz_elts += mult;
6238 unique_nz_elts++;
6240 init_elts += mult;
6241 break;
6243 case STRING_CST:
6244 nz_elts += mult * TREE_STRING_LENGTH (value);
6245 unique_nz_elts += TREE_STRING_LENGTH (value);
6246 init_elts += mult * TREE_STRING_LENGTH (value);
6247 break;
6249 case COMPLEX_CST:
6250 if (!initializer_zerop (TREE_REALPART (value)))
6252 nz_elts += mult;
6253 unique_nz_elts++;
6255 if (!initializer_zerop (TREE_IMAGPART (value)))
6257 nz_elts += mult;
6258 unique_nz_elts++;
6260 init_elts += 2 * mult;
6261 break;
6263 case VECTOR_CST:
6265 /* We can only construct constant-length vectors using
6266 CONSTRUCTOR. */
6267 unsigned int nunits = VECTOR_CST_NELTS (value).to_constant ();
6268 for (unsigned int i = 0; i < nunits; ++i)
6270 tree v = VECTOR_CST_ELT (value, i);
6271 if (!initializer_zerop (v))
6273 nz_elts += mult;
6274 unique_nz_elts++;
6276 init_elts += mult;
6279 break;
6281 default:
6283 HOST_WIDE_INT tc = count_type_elements (elt_type, false);
6284 nz_elts += mult * tc;
6285 unique_nz_elts += tc;
6286 init_elts += mult * tc;
6288 if (const_from_elts_p && const_p)
6289 const_p
6290 = initializer_constant_valid_p (value,
6291 elt_type,
6292 TYPE_REVERSE_STORAGE_ORDER
6293 (TREE_TYPE (ctor)))
6294 != NULL_TREE;
6296 break;
6300 if (*p_complete && !complete_ctor_at_level_p (TREE_TYPE (ctor),
6301 num_fields, elt_type))
6302 *p_complete = false;
6304 *p_nz_elts += nz_elts;
6305 *p_unique_nz_elts += unique_nz_elts;
6306 *p_init_elts += init_elts;
6308 return const_p;
6311 /* Examine CTOR to discover:
6312 * how many scalar fields are set to nonzero values,
6313 and place it in *P_NZ_ELTS;
6314 * the same, but counting RANGE_EXPRs as multiplier of 1 instead of
6315 high - low + 1 (this can be useful for callers to determine ctors
6316 that could be cheaply initialized with - perhaps nested - loops
6317 compared to copied from huge read-only data),
6318 and place it in *P_UNIQUE_NZ_ELTS;
6319 * how many scalar fields in total are in CTOR,
6320 and place it in *P_ELT_COUNT.
6321 * whether the constructor is complete -- in the sense that every
6322 meaningful byte is explicitly given a value --
6323 and place it in *P_COMPLETE.
6325 Return whether or not CTOR is a valid static constant initializer, the same
6326 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
6328 bool
6329 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
6330 HOST_WIDE_INT *p_unique_nz_elts,
6331 HOST_WIDE_INT *p_init_elts, bool *p_complete)
6333 *p_nz_elts = 0;
6334 *p_unique_nz_elts = 0;
6335 *p_init_elts = 0;
6336 *p_complete = true;
6338 return categorize_ctor_elements_1 (ctor, p_nz_elts, p_unique_nz_elts,
6339 p_init_elts, p_complete);
6342 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
6343 of which had type LAST_TYPE. Each element was itself a complete
6344 initializer, in the sense that every meaningful byte was explicitly
6345 given a value. Return true if the same is true for the constructor
6346 as a whole. */
6348 bool
6349 complete_ctor_at_level_p (const_tree type, HOST_WIDE_INT num_elts,
6350 const_tree last_type)
6352 if (TREE_CODE (type) == UNION_TYPE
6353 || TREE_CODE (type) == QUAL_UNION_TYPE)
6355 if (num_elts == 0)
6356 return false;
6358 gcc_assert (num_elts == 1 && last_type);
6360 /* ??? We could look at each element of the union, and find the
6361 largest element. Which would avoid comparing the size of the
6362 initialized element against any tail padding in the union.
6363 Doesn't seem worth the effort... */
6364 return simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (last_type)) == 1;
6367 return count_type_elements (type, true) == num_elts;
6370 /* Return 1 if EXP contains mostly (3/4) zeros. */
6372 static int
6373 mostly_zeros_p (const_tree exp)
6375 if (TREE_CODE (exp) == CONSTRUCTOR)
6377 HOST_WIDE_INT nz_elts, unz_elts, init_elts;
6378 bool complete_p;
6380 categorize_ctor_elements (exp, &nz_elts, &unz_elts, &init_elts,
6381 &complete_p);
6382 return !complete_p || nz_elts < init_elts / 4;
6385 return initializer_zerop (exp);
6388 /* Return 1 if EXP contains all zeros. */
6390 static int
6391 all_zeros_p (const_tree exp)
6393 if (TREE_CODE (exp) == CONSTRUCTOR)
6395 HOST_WIDE_INT nz_elts, unz_elts, init_elts;
6396 bool complete_p;
6398 categorize_ctor_elements (exp, &nz_elts, &unz_elts, &init_elts,
6399 &complete_p);
6400 return nz_elts == 0;
6403 return initializer_zerop (exp);
6406 /* Helper function for store_constructor.
6407 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
6408 CLEARED is as for store_constructor.
6409 ALIAS_SET is the alias set to use for any stores.
6410 If REVERSE is true, the store is to be done in reverse order.
6412 This provides a recursive shortcut back to store_constructor when it isn't
6413 necessary to go through store_field. This is so that we can pass through
6414 the cleared field to let store_constructor know that we may not have to
6415 clear a substructure if the outer structure has already been cleared. */
6417 static void
6418 store_constructor_field (rtx target, poly_uint64 bitsize, poly_int64 bitpos,
6419 poly_uint64 bitregion_start,
6420 poly_uint64 bitregion_end,
6421 machine_mode mode,
6422 tree exp, int cleared,
6423 alias_set_type alias_set, bool reverse)
6425 poly_int64 bytepos;
6426 poly_uint64 bytesize;
6427 if (TREE_CODE (exp) == CONSTRUCTOR
6428 /* We can only call store_constructor recursively if the size and
6429 bit position are on a byte boundary. */
6430 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
6431 && maybe_ne (bitsize, 0U)
6432 && multiple_p (bitsize, BITS_PER_UNIT, &bytesize)
6433 /* If we have a nonzero bitpos for a register target, then we just
6434 let store_field do the bitfield handling. This is unlikely to
6435 generate unnecessary clear instructions anyways. */
6436 && (known_eq (bitpos, 0) || MEM_P (target)))
6438 if (MEM_P (target))
6440 machine_mode target_mode = GET_MODE (target);
6441 if (target_mode != BLKmode
6442 && !multiple_p (bitpos, GET_MODE_ALIGNMENT (target_mode)))
6443 target_mode = BLKmode;
6444 target = adjust_address (target, target_mode, bytepos);
6448 /* Update the alias set, if required. */
6449 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
6450 && MEM_ALIAS_SET (target) != 0)
6452 target = copy_rtx (target);
6453 set_mem_alias_set (target, alias_set);
6456 store_constructor (exp, target, cleared, bytesize, reverse);
6458 else
6459 store_field (target, bitsize, bitpos, bitregion_start, bitregion_end, mode,
6460 exp, alias_set, false, reverse);
6464 /* Returns the number of FIELD_DECLs in TYPE. */
6466 static int
6467 fields_length (const_tree type)
6469 tree t = TYPE_FIELDS (type);
6470 int count = 0;
6472 for (; t; t = DECL_CHAIN (t))
6473 if (TREE_CODE (t) == FIELD_DECL)
6474 ++count;
6476 return count;
6480 /* Store the value of constructor EXP into the rtx TARGET.
6481 TARGET is either a REG or a MEM; we know it cannot conflict, since
6482 safe_from_p has been called.
6483 CLEARED is true if TARGET is known to have been zero'd.
6484 SIZE is the number of bytes of TARGET we are allowed to modify: this
6485 may not be the same as the size of EXP if we are assigning to a field
6486 which has been packed to exclude padding bits.
6487 If REVERSE is true, the store is to be done in reverse order. */
6489 static void
6490 store_constructor (tree exp, rtx target, int cleared, poly_int64 size,
6491 bool reverse)
6493 tree type = TREE_TYPE (exp);
6494 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
6495 poly_int64 bitregion_end = known_gt (size, 0) ? size * BITS_PER_UNIT - 1 : 0;
6497 switch (TREE_CODE (type))
6499 case RECORD_TYPE:
6500 case UNION_TYPE:
6501 case QUAL_UNION_TYPE:
6503 unsigned HOST_WIDE_INT idx;
6504 tree field, value;
6506 /* The storage order is specified for every aggregate type. */
6507 reverse = TYPE_REVERSE_STORAGE_ORDER (type);
6509 /* If size is zero or the target is already cleared, do nothing. */
6510 if (known_eq (size, 0) || cleared)
6511 cleared = 1;
6512 /* We either clear the aggregate or indicate the value is dead. */
6513 else if ((TREE_CODE (type) == UNION_TYPE
6514 || TREE_CODE (type) == QUAL_UNION_TYPE)
6515 && ! CONSTRUCTOR_ELTS (exp))
6516 /* If the constructor is empty, clear the union. */
6518 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
6519 cleared = 1;
6522 /* If we are building a static constructor into a register,
6523 set the initial value as zero so we can fold the value into
6524 a constant. But if more than one register is involved,
6525 this probably loses. */
6526 else if (REG_P (target) && TREE_STATIC (exp)
6527 && known_le (GET_MODE_SIZE (GET_MODE (target)),
6528 REGMODE_NATURAL_SIZE (GET_MODE (target))))
6530 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6531 cleared = 1;
6534 /* If the constructor has fewer fields than the structure or
6535 if we are initializing the structure to mostly zeros, clear
6536 the whole structure first. Don't do this if TARGET is a
6537 register whose mode size isn't equal to SIZE since
6538 clear_storage can't handle this case. */
6539 else if (known_size_p (size)
6540 && (((int) CONSTRUCTOR_NELTS (exp) != fields_length (type))
6541 || mostly_zeros_p (exp))
6542 && (!REG_P (target)
6543 || known_eq (GET_MODE_SIZE (GET_MODE (target)), size)))
6545 clear_storage (target, gen_int_mode (size, Pmode),
6546 BLOCK_OP_NORMAL);
6547 cleared = 1;
6550 if (REG_P (target) && !cleared)
6551 emit_clobber (target);
6553 /* Store each element of the constructor into the
6554 corresponding field of TARGET. */
6555 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
6557 machine_mode mode;
6558 HOST_WIDE_INT bitsize;
6559 HOST_WIDE_INT bitpos = 0;
6560 tree offset;
6561 rtx to_rtx = target;
6563 /* Just ignore missing fields. We cleared the whole
6564 structure, above, if any fields are missing. */
6565 if (field == 0)
6566 continue;
6568 if (cleared && initializer_zerop (value))
6569 continue;
6571 if (tree_fits_uhwi_p (DECL_SIZE (field)))
6572 bitsize = tree_to_uhwi (DECL_SIZE (field));
6573 else
6574 gcc_unreachable ();
6576 mode = DECL_MODE (field);
6577 if (DECL_BIT_FIELD (field))
6578 mode = VOIDmode;
6580 offset = DECL_FIELD_OFFSET (field);
6581 if (tree_fits_shwi_p (offset)
6582 && tree_fits_shwi_p (bit_position (field)))
6584 bitpos = int_bit_position (field);
6585 offset = NULL_TREE;
6587 else
6588 gcc_unreachable ();
6590 /* If this initializes a field that is smaller than a
6591 word, at the start of a word, try to widen it to a full
6592 word. This special case allows us to output C++ member
6593 function initializations in a form that the optimizers
6594 can understand. */
6595 if (WORD_REGISTER_OPERATIONS
6596 && REG_P (target)
6597 && bitsize < BITS_PER_WORD
6598 && bitpos % BITS_PER_WORD == 0
6599 && GET_MODE_CLASS (mode) == MODE_INT
6600 && TREE_CODE (value) == INTEGER_CST
6601 && exp_size >= 0
6602 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
6604 type = TREE_TYPE (value);
6606 if (TYPE_PRECISION (type) < BITS_PER_WORD)
6608 type = lang_hooks.types.type_for_mode
6609 (word_mode, TYPE_UNSIGNED (type));
6610 value = fold_convert (type, value);
6611 /* Make sure the bits beyond the original bitsize are zero
6612 so that we can correctly avoid extra zeroing stores in
6613 later constructor elements. */
6614 tree bitsize_mask
6615 = wide_int_to_tree (type, wi::mask (bitsize, false,
6616 BITS_PER_WORD));
6617 value = fold_build2 (BIT_AND_EXPR, type, value, bitsize_mask);
6620 if (BYTES_BIG_ENDIAN)
6621 value
6622 = fold_build2 (LSHIFT_EXPR, type, value,
6623 build_int_cst (type,
6624 BITS_PER_WORD - bitsize));
6625 bitsize = BITS_PER_WORD;
6626 mode = word_mode;
6629 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
6630 && DECL_NONADDRESSABLE_P (field))
6632 to_rtx = copy_rtx (to_rtx);
6633 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
6636 store_constructor_field (to_rtx, bitsize, bitpos,
6637 0, bitregion_end, mode,
6638 value, cleared,
6639 get_alias_set (TREE_TYPE (field)),
6640 reverse);
6642 break;
6644 case ARRAY_TYPE:
6646 tree value, index;
6647 unsigned HOST_WIDE_INT i;
6648 int need_to_clear;
6649 tree domain;
6650 tree elttype = TREE_TYPE (type);
6651 int const_bounds_p;
6652 HOST_WIDE_INT minelt = 0;
6653 HOST_WIDE_INT maxelt = 0;
6655 /* The storage order is specified for every aggregate type. */
6656 reverse = TYPE_REVERSE_STORAGE_ORDER (type);
6658 domain = TYPE_DOMAIN (type);
6659 const_bounds_p = (TYPE_MIN_VALUE (domain)
6660 && TYPE_MAX_VALUE (domain)
6661 && tree_fits_shwi_p (TYPE_MIN_VALUE (domain))
6662 && tree_fits_shwi_p (TYPE_MAX_VALUE (domain)));
6664 /* If we have constant bounds for the range of the type, get them. */
6665 if (const_bounds_p)
6667 minelt = tree_to_shwi (TYPE_MIN_VALUE (domain));
6668 maxelt = tree_to_shwi (TYPE_MAX_VALUE (domain));
6671 /* If the constructor has fewer elements than the array, clear
6672 the whole array first. Similarly if this is static
6673 constructor of a non-BLKmode object. */
6674 if (cleared)
6675 need_to_clear = 0;
6676 else if (REG_P (target) && TREE_STATIC (exp))
6677 need_to_clear = 1;
6678 else
6680 unsigned HOST_WIDE_INT idx;
6681 HOST_WIDE_INT count = 0, zero_count = 0;
6682 need_to_clear = ! const_bounds_p;
6684 /* This loop is a more accurate version of the loop in
6685 mostly_zeros_p (it handles RANGE_EXPR in an index). It
6686 is also needed to check for missing elements. */
6687 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
6689 HOST_WIDE_INT this_node_count;
6691 if (need_to_clear)
6692 break;
6694 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6696 tree lo_index = TREE_OPERAND (index, 0);
6697 tree hi_index = TREE_OPERAND (index, 1);
6699 if (! tree_fits_uhwi_p (lo_index)
6700 || ! tree_fits_uhwi_p (hi_index))
6702 need_to_clear = 1;
6703 break;
6706 this_node_count = (tree_to_uhwi (hi_index)
6707 - tree_to_uhwi (lo_index) + 1);
6709 else
6710 this_node_count = 1;
6712 count += this_node_count;
6713 if (mostly_zeros_p (value))
6714 zero_count += this_node_count;
6717 /* Clear the entire array first if there are any missing
6718 elements, or if the incidence of zero elements is >=
6719 75%. */
6720 if (! need_to_clear
6721 && (count < maxelt - minelt + 1
6722 || 4 * zero_count >= 3 * count))
6723 need_to_clear = 1;
6726 if (need_to_clear && maybe_gt (size, 0))
6728 if (REG_P (target))
6729 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6730 else
6731 clear_storage (target, gen_int_mode (size, Pmode),
6732 BLOCK_OP_NORMAL);
6733 cleared = 1;
6736 if (!cleared && REG_P (target))
6737 /* Inform later passes that the old value is dead. */
6738 emit_clobber (target);
6740 /* Store each element of the constructor into the
6741 corresponding element of TARGET, determined by counting the
6742 elements. */
6743 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
6745 machine_mode mode;
6746 poly_int64 bitsize;
6747 HOST_WIDE_INT bitpos;
6748 rtx xtarget = target;
6750 if (cleared && initializer_zerop (value))
6751 continue;
6753 mode = TYPE_MODE (elttype);
6754 if (mode != BLKmode)
6755 bitsize = GET_MODE_BITSIZE (mode);
6756 else if (!poly_int_tree_p (TYPE_SIZE (elttype), &bitsize))
6757 bitsize = -1;
6759 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6761 tree lo_index = TREE_OPERAND (index, 0);
6762 tree hi_index = TREE_OPERAND (index, 1);
6763 rtx index_r, pos_rtx;
6764 HOST_WIDE_INT lo, hi, count;
6765 tree position;
6767 /* If the range is constant and "small", unroll the loop. */
6768 if (const_bounds_p
6769 && tree_fits_shwi_p (lo_index)
6770 && tree_fits_shwi_p (hi_index)
6771 && (lo = tree_to_shwi (lo_index),
6772 hi = tree_to_shwi (hi_index),
6773 count = hi - lo + 1,
6774 (!MEM_P (target)
6775 || count <= 2
6776 || (tree_fits_uhwi_p (TYPE_SIZE (elttype))
6777 && (tree_to_uhwi (TYPE_SIZE (elttype)) * count
6778 <= 40 * 8)))))
6780 lo -= minelt; hi -= minelt;
6781 for (; lo <= hi; lo++)
6783 bitpos = lo * tree_to_shwi (TYPE_SIZE (elttype));
6785 if (MEM_P (target)
6786 && !MEM_KEEP_ALIAS_SET_P (target)
6787 && TREE_CODE (type) == ARRAY_TYPE
6788 && TYPE_NONALIASED_COMPONENT (type))
6790 target = copy_rtx (target);
6791 MEM_KEEP_ALIAS_SET_P (target) = 1;
6794 store_constructor_field
6795 (target, bitsize, bitpos, 0, bitregion_end,
6796 mode, value, cleared,
6797 get_alias_set (elttype), reverse);
6800 else
6802 rtx_code_label *loop_start = gen_label_rtx ();
6803 rtx_code_label *loop_end = gen_label_rtx ();
6804 tree exit_cond;
6806 expand_normal (hi_index);
6808 index = build_decl (EXPR_LOCATION (exp),
6809 VAR_DECL, NULL_TREE, domain);
6810 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
6811 SET_DECL_RTL (index, index_r);
6812 store_expr (lo_index, index_r, 0, false, reverse);
6814 /* Build the head of the loop. */
6815 do_pending_stack_adjust ();
6816 emit_label (loop_start);
6818 /* Assign value to element index. */
6819 position =
6820 fold_convert (ssizetype,
6821 fold_build2 (MINUS_EXPR,
6822 TREE_TYPE (index),
6823 index,
6824 TYPE_MIN_VALUE (domain)));
6826 position =
6827 size_binop (MULT_EXPR, position,
6828 fold_convert (ssizetype,
6829 TYPE_SIZE_UNIT (elttype)));
6831 pos_rtx = expand_normal (position);
6832 xtarget = offset_address (target, pos_rtx,
6833 highest_pow2_factor (position));
6834 xtarget = adjust_address (xtarget, mode, 0);
6835 if (TREE_CODE (value) == CONSTRUCTOR)
6836 store_constructor (value, xtarget, cleared,
6837 exact_div (bitsize, BITS_PER_UNIT),
6838 reverse);
6839 else
6840 store_expr (value, xtarget, 0, false, reverse);
6842 /* Generate a conditional jump to exit the loop. */
6843 exit_cond = build2 (LT_EXPR, integer_type_node,
6844 index, hi_index);
6845 jumpif (exit_cond, loop_end,
6846 profile_probability::uninitialized ());
6848 /* Update the loop counter, and jump to the head of
6849 the loop. */
6850 expand_assignment (index,
6851 build2 (PLUS_EXPR, TREE_TYPE (index),
6852 index, integer_one_node),
6853 false);
6855 emit_jump (loop_start);
6857 /* Build the end of the loop. */
6858 emit_label (loop_end);
6861 else if ((index != 0 && ! tree_fits_shwi_p (index))
6862 || ! tree_fits_uhwi_p (TYPE_SIZE (elttype)))
6864 tree position;
6866 if (index == 0)
6867 index = ssize_int (1);
6869 if (minelt)
6870 index = fold_convert (ssizetype,
6871 fold_build2 (MINUS_EXPR,
6872 TREE_TYPE (index),
6873 index,
6874 TYPE_MIN_VALUE (domain)));
6876 position =
6877 size_binop (MULT_EXPR, index,
6878 fold_convert (ssizetype,
6879 TYPE_SIZE_UNIT (elttype)));
6880 xtarget = offset_address (target,
6881 expand_normal (position),
6882 highest_pow2_factor (position));
6883 xtarget = adjust_address (xtarget, mode, 0);
6884 store_expr (value, xtarget, 0, false, reverse);
6886 else
6888 if (index != 0)
6889 bitpos = ((tree_to_shwi (index) - minelt)
6890 * tree_to_uhwi (TYPE_SIZE (elttype)));
6891 else
6892 bitpos = (i * tree_to_uhwi (TYPE_SIZE (elttype)));
6894 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
6895 && TREE_CODE (type) == ARRAY_TYPE
6896 && TYPE_NONALIASED_COMPONENT (type))
6898 target = copy_rtx (target);
6899 MEM_KEEP_ALIAS_SET_P (target) = 1;
6901 store_constructor_field (target, bitsize, bitpos, 0,
6902 bitregion_end, mode, value,
6903 cleared, get_alias_set (elttype),
6904 reverse);
6907 break;
6910 case VECTOR_TYPE:
6912 unsigned HOST_WIDE_INT idx;
6913 constructor_elt *ce;
6914 int i;
6915 int need_to_clear;
6916 insn_code icode = CODE_FOR_nothing;
6917 tree elt;
6918 tree elttype = TREE_TYPE (type);
6919 int elt_size = tree_to_uhwi (TYPE_SIZE (elttype));
6920 machine_mode eltmode = TYPE_MODE (elttype);
6921 HOST_WIDE_INT bitsize;
6922 HOST_WIDE_INT bitpos;
6923 rtvec vector = NULL;
6924 poly_uint64 n_elts;
6925 unsigned HOST_WIDE_INT const_n_elts;
6926 alias_set_type alias;
6927 bool vec_vec_init_p = false;
6928 machine_mode mode = GET_MODE (target);
6930 gcc_assert (eltmode != BLKmode);
6932 /* Try using vec_duplicate_optab for uniform vectors. */
6933 if (!TREE_SIDE_EFFECTS (exp)
6934 && VECTOR_MODE_P (mode)
6935 && eltmode == GET_MODE_INNER (mode)
6936 && ((icode = optab_handler (vec_duplicate_optab, mode))
6937 != CODE_FOR_nothing)
6938 && (elt = uniform_vector_p (exp)))
6940 class expand_operand ops[2];
6941 create_output_operand (&ops[0], target, mode);
6942 create_input_operand (&ops[1], expand_normal (elt), eltmode);
6943 expand_insn (icode, 2, ops);
6944 if (!rtx_equal_p (target, ops[0].value))
6945 emit_move_insn (target, ops[0].value);
6946 break;
6949 n_elts = TYPE_VECTOR_SUBPARTS (type);
6950 if (REG_P (target)
6951 && VECTOR_MODE_P (mode)
6952 && n_elts.is_constant (&const_n_elts))
6954 machine_mode emode = eltmode;
6955 bool vector_typed_elts_p = false;
6957 if (CONSTRUCTOR_NELTS (exp)
6958 && (TREE_CODE (TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value))
6959 == VECTOR_TYPE))
6961 tree etype = TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value);
6962 gcc_assert (known_eq (CONSTRUCTOR_NELTS (exp)
6963 * TYPE_VECTOR_SUBPARTS (etype),
6964 n_elts));
6965 emode = TYPE_MODE (etype);
6966 vector_typed_elts_p = true;
6968 icode = convert_optab_handler (vec_init_optab, mode, emode);
6969 if (icode != CODE_FOR_nothing)
6971 unsigned int n = const_n_elts;
6973 if (vector_typed_elts_p)
6975 n = CONSTRUCTOR_NELTS (exp);
6976 vec_vec_init_p = true;
6978 vector = rtvec_alloc (n);
6979 for (unsigned int k = 0; k < n; k++)
6980 RTVEC_ELT (vector, k) = CONST0_RTX (emode);
6984 /* If the constructor has fewer elements than the vector,
6985 clear the whole array first. Similarly if this is static
6986 constructor of a non-BLKmode object. */
6987 if (cleared)
6988 need_to_clear = 0;
6989 else if (REG_P (target) && TREE_STATIC (exp))
6990 need_to_clear = 1;
6991 else
6993 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
6994 tree value;
6996 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
6998 tree sz = TYPE_SIZE (TREE_TYPE (value));
6999 int n_elts_here
7000 = tree_to_uhwi (int_const_binop (TRUNC_DIV_EXPR, sz,
7001 TYPE_SIZE (elttype)));
7003 count += n_elts_here;
7004 if (mostly_zeros_p (value))
7005 zero_count += n_elts_here;
7008 /* Clear the entire vector first if there are any missing elements,
7009 or if the incidence of zero elements is >= 75%. */
7010 need_to_clear = (maybe_lt (count, n_elts)
7011 || 4 * zero_count >= 3 * count);
7014 if (need_to_clear && maybe_gt (size, 0) && !vector)
7016 if (REG_P (target))
7017 emit_move_insn (target, CONST0_RTX (mode));
7018 else
7019 clear_storage (target, gen_int_mode (size, Pmode),
7020 BLOCK_OP_NORMAL);
7021 cleared = 1;
7024 /* Inform later passes that the old value is dead. */
7025 if (!cleared && !vector && REG_P (target))
7026 emit_move_insn (target, CONST0_RTX (mode));
7028 if (MEM_P (target))
7029 alias = MEM_ALIAS_SET (target);
7030 else
7031 alias = get_alias_set (elttype);
7033 /* Store each element of the constructor into the corresponding
7034 element of TARGET, determined by counting the elements. */
7035 for (idx = 0, i = 0;
7036 vec_safe_iterate (CONSTRUCTOR_ELTS (exp), idx, &ce);
7037 idx++, i += bitsize / elt_size)
7039 HOST_WIDE_INT eltpos;
7040 tree value = ce->value;
7042 bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (value)));
7043 if (cleared && initializer_zerop (value))
7044 continue;
7046 if (ce->index)
7047 eltpos = tree_to_uhwi (ce->index);
7048 else
7049 eltpos = i;
7051 if (vector)
7053 if (vec_vec_init_p)
7055 gcc_assert (ce->index == NULL_TREE);
7056 gcc_assert (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE);
7057 eltpos = idx;
7059 else
7060 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
7061 RTVEC_ELT (vector, eltpos) = expand_normal (value);
7063 else
7065 machine_mode value_mode
7066 = (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
7067 ? TYPE_MODE (TREE_TYPE (value)) : eltmode);
7068 bitpos = eltpos * elt_size;
7069 store_constructor_field (target, bitsize, bitpos, 0,
7070 bitregion_end, value_mode,
7071 value, cleared, alias, reverse);
7075 if (vector)
7076 emit_insn (GEN_FCN (icode) (target,
7077 gen_rtx_PARALLEL (mode, vector)));
7078 break;
7081 default:
7082 gcc_unreachable ();
7086 /* Store the value of EXP (an expression tree)
7087 into a subfield of TARGET which has mode MODE and occupies
7088 BITSIZE bits, starting BITPOS bits from the start of TARGET.
7089 If MODE is VOIDmode, it means that we are storing into a bit-field.
7091 BITREGION_START is bitpos of the first bitfield in this region.
7092 BITREGION_END is the bitpos of the ending bitfield in this region.
7093 These two fields are 0, if the C++ memory model does not apply,
7094 or we are not interested in keeping track of bitfield regions.
7096 Always return const0_rtx unless we have something particular to
7097 return.
7099 ALIAS_SET is the alias set for the destination. This value will
7100 (in general) be different from that for TARGET, since TARGET is a
7101 reference to the containing structure.
7103 If NONTEMPORAL is true, try generating a nontemporal store.
7105 If REVERSE is true, the store is to be done in reverse order. */
7107 static rtx
7108 store_field (rtx target, poly_int64 bitsize, poly_int64 bitpos,
7109 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
7110 machine_mode mode, tree exp,
7111 alias_set_type alias_set, bool nontemporal, bool reverse)
7113 if (TREE_CODE (exp) == ERROR_MARK)
7114 return const0_rtx;
7116 /* If we have nothing to store, do nothing unless the expression has
7117 side-effects. Don't do that for zero sized addressable lhs of
7118 calls. */
7119 if (known_eq (bitsize, 0)
7120 && (!TREE_ADDRESSABLE (TREE_TYPE (exp))
7121 || TREE_CODE (exp) != CALL_EXPR))
7122 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
7124 if (GET_CODE (target) == CONCAT)
7126 /* We're storing into a struct containing a single __complex. */
7128 gcc_assert (known_eq (bitpos, 0));
7129 return store_expr (exp, target, 0, nontemporal, reverse);
7132 /* If the structure is in a register or if the component
7133 is a bit field, we cannot use addressing to access it.
7134 Use bit-field techniques or SUBREG to store in it. */
7136 poly_int64 decl_bitsize;
7137 if (mode == VOIDmode
7138 || (mode != BLKmode && ! direct_store[(int) mode]
7139 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
7140 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
7141 || REG_P (target)
7142 || GET_CODE (target) == SUBREG
7143 /* If the field isn't aligned enough to store as an ordinary memref,
7144 store it as a bit field. */
7145 || (mode != BLKmode
7146 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
7147 || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode)))
7148 && targetm.slow_unaligned_access (mode, MEM_ALIGN (target)))
7149 || !multiple_p (bitpos, BITS_PER_UNIT)))
7150 || (known_size_p (bitsize)
7151 && mode != BLKmode
7152 && maybe_gt (GET_MODE_BITSIZE (mode), bitsize))
7153 /* If the RHS and field are a constant size and the size of the
7154 RHS isn't the same size as the bitfield, we must use bitfield
7155 operations. */
7156 || (known_size_p (bitsize)
7157 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp)))
7158 && maybe_ne (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp))),
7159 bitsize)
7160 /* Except for initialization of full bytes from a CONSTRUCTOR, which
7161 we will handle specially below. */
7162 && !(TREE_CODE (exp) == CONSTRUCTOR
7163 && multiple_p (bitsize, BITS_PER_UNIT))
7164 /* And except for bitwise copying of TREE_ADDRESSABLE types,
7165 where the FIELD_DECL has the right bitsize, but TREE_TYPE (exp)
7166 includes some extra padding. store_expr / expand_expr will in
7167 that case call get_inner_reference that will have the bitsize
7168 we check here and thus the block move will not clobber the
7169 padding that shouldn't be clobbered. In the future we could
7170 replace the TREE_ADDRESSABLE check with a check that
7171 get_base_address needs to live in memory. */
7172 && (!TREE_ADDRESSABLE (TREE_TYPE (exp))
7173 || TREE_CODE (exp) != COMPONENT_REF
7174 || !multiple_p (bitsize, BITS_PER_UNIT)
7175 || !multiple_p (bitpos, BITS_PER_UNIT)
7176 || !poly_int_tree_p (DECL_SIZE (TREE_OPERAND (exp, 1)),
7177 &decl_bitsize)
7178 || maybe_ne (decl_bitsize, bitsize)))
7179 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
7180 decl we must use bitfield operations. */
7181 || (known_size_p (bitsize)
7182 && TREE_CODE (exp) == MEM_REF
7183 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
7184 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
7185 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
7186 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
7188 rtx temp;
7189 gimple *nop_def;
7191 /* If EXP is a NOP_EXPR of precision less than its mode, then that
7192 implies a mask operation. If the precision is the same size as
7193 the field we're storing into, that mask is redundant. This is
7194 particularly common with bit field assignments generated by the
7195 C front end. */
7196 nop_def = get_def_for_expr (exp, NOP_EXPR);
7197 if (nop_def)
7199 tree type = TREE_TYPE (exp);
7200 if (INTEGRAL_TYPE_P (type)
7201 && maybe_ne (TYPE_PRECISION (type),
7202 GET_MODE_BITSIZE (TYPE_MODE (type)))
7203 && known_eq (bitsize, TYPE_PRECISION (type)))
7205 tree op = gimple_assign_rhs1 (nop_def);
7206 type = TREE_TYPE (op);
7207 if (INTEGRAL_TYPE_P (type)
7208 && known_ge (TYPE_PRECISION (type), bitsize))
7209 exp = op;
7213 temp = expand_normal (exp);
7215 /* We don't support variable-sized BLKmode bitfields, since our
7216 handling of BLKmode is bound up with the ability to break
7217 things into words. */
7218 gcc_assert (mode != BLKmode || bitsize.is_constant ());
7220 /* Handle calls that return values in multiple non-contiguous locations.
7221 The Irix 6 ABI has examples of this. */
7222 if (GET_CODE (temp) == PARALLEL)
7224 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
7225 machine_mode temp_mode = GET_MODE (temp);
7226 if (temp_mode == BLKmode || temp_mode == VOIDmode)
7227 temp_mode = smallest_int_mode_for_size (size * BITS_PER_UNIT);
7228 rtx temp_target = gen_reg_rtx (temp_mode);
7229 emit_group_store (temp_target, temp, TREE_TYPE (exp), size);
7230 temp = temp_target;
7233 /* Handle calls that return BLKmode values in registers. */
7234 else if (mode == BLKmode && REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
7236 rtx temp_target = gen_reg_rtx (GET_MODE (temp));
7237 copy_blkmode_from_reg (temp_target, temp, TREE_TYPE (exp));
7238 temp = temp_target;
7241 /* If the value has aggregate type and an integral mode then, if BITSIZE
7242 is narrower than this mode and this is for big-endian data, we first
7243 need to put the value into the low-order bits for store_bit_field,
7244 except when MODE is BLKmode and BITSIZE larger than the word size
7245 (see the handling of fields larger than a word in store_bit_field).
7246 Moreover, the field may be not aligned on a byte boundary; in this
7247 case, if it has reverse storage order, it needs to be accessed as a
7248 scalar field with reverse storage order and we must first put the
7249 value into target order. */
7250 scalar_int_mode temp_mode;
7251 if (AGGREGATE_TYPE_P (TREE_TYPE (exp))
7252 && is_int_mode (GET_MODE (temp), &temp_mode))
7254 HOST_WIDE_INT size = GET_MODE_BITSIZE (temp_mode);
7256 reverse = TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (exp));
7258 if (reverse)
7259 temp = flip_storage_order (temp_mode, temp);
7261 gcc_checking_assert (known_le (bitsize, size));
7262 if (maybe_lt (bitsize, size)
7263 && reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN
7264 /* Use of to_constant for BLKmode was checked above. */
7265 && !(mode == BLKmode && bitsize.to_constant () > BITS_PER_WORD))
7266 temp = expand_shift (RSHIFT_EXPR, temp_mode, temp,
7267 size - bitsize, NULL_RTX, 1);
7270 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
7271 if (mode != VOIDmode && mode != BLKmode
7272 && mode != TYPE_MODE (TREE_TYPE (exp)))
7273 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
7275 /* If the mode of TEMP and TARGET is BLKmode, both must be in memory
7276 and BITPOS must be aligned on a byte boundary. If so, we simply do
7277 a block copy. Likewise for a BLKmode-like TARGET. */
7278 if (GET_MODE (temp) == BLKmode
7279 && (GET_MODE (target) == BLKmode
7280 || (MEM_P (target)
7281 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
7282 && multiple_p (bitpos, BITS_PER_UNIT)
7283 && multiple_p (bitsize, BITS_PER_UNIT))))
7285 gcc_assert (MEM_P (target) && MEM_P (temp));
7286 poly_int64 bytepos = exact_div (bitpos, BITS_PER_UNIT);
7287 poly_int64 bytesize = bits_to_bytes_round_up (bitsize);
7289 target = adjust_address (target, VOIDmode, bytepos);
7290 emit_block_move (target, temp,
7291 gen_int_mode (bytesize, Pmode),
7292 BLOCK_OP_NORMAL);
7294 return const0_rtx;
7297 /* If the mode of TEMP is still BLKmode and BITSIZE not larger than the
7298 word size, we need to load the value (see again store_bit_field). */
7299 if (GET_MODE (temp) == BLKmode && known_le (bitsize, BITS_PER_WORD))
7301 temp_mode = smallest_int_mode_for_size (bitsize);
7302 temp = extract_bit_field (temp, bitsize, 0, 1, NULL_RTX, temp_mode,
7303 temp_mode, false, NULL);
7306 /* Store the value in the bitfield. */
7307 gcc_checking_assert (known_ge (bitpos, 0));
7308 store_bit_field (target, bitsize, bitpos,
7309 bitregion_start, bitregion_end,
7310 mode, temp, reverse);
7312 return const0_rtx;
7314 else
7316 /* Now build a reference to just the desired component. */
7317 rtx to_rtx = adjust_address (target, mode,
7318 exact_div (bitpos, BITS_PER_UNIT));
7320 if (to_rtx == target)
7321 to_rtx = copy_rtx (to_rtx);
7323 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
7324 set_mem_alias_set (to_rtx, alias_set);
7326 /* Above we avoided using bitfield operations for storing a CONSTRUCTOR
7327 into a target smaller than its type; handle that case now. */
7328 if (TREE_CODE (exp) == CONSTRUCTOR && known_size_p (bitsize))
7330 poly_int64 bytesize = exact_div (bitsize, BITS_PER_UNIT);
7331 store_constructor (exp, to_rtx, 0, bytesize, reverse);
7332 return to_rtx;
7335 return store_expr (exp, to_rtx, 0, nontemporal, reverse);
7339 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
7340 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
7341 codes and find the ultimate containing object, which we return.
7343 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
7344 bit position, *PUNSIGNEDP to the signedness and *PREVERSEP to the
7345 storage order of the field.
7346 If the position of the field is variable, we store a tree
7347 giving the variable offset (in units) in *POFFSET.
7348 This offset is in addition to the bit position.
7349 If the position is not variable, we store 0 in *POFFSET.
7351 If any of the extraction expressions is volatile,
7352 we store 1 in *PVOLATILEP. Otherwise we don't change that.
7354 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
7355 Otherwise, it is a mode that can be used to access the field.
7357 If the field describes a variable-sized object, *PMODE is set to
7358 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
7359 this case, but the address of the object can be found. */
7361 tree
7362 get_inner_reference (tree exp, poly_int64_pod *pbitsize,
7363 poly_int64_pod *pbitpos, tree *poffset,
7364 machine_mode *pmode, int *punsignedp,
7365 int *preversep, int *pvolatilep)
7367 tree size_tree = 0;
7368 machine_mode mode = VOIDmode;
7369 bool blkmode_bitfield = false;
7370 tree offset = size_zero_node;
7371 poly_offset_int bit_offset = 0;
7373 /* First get the mode, signedness, storage order and size. We do this from
7374 just the outermost expression. */
7375 *pbitsize = -1;
7376 if (TREE_CODE (exp) == COMPONENT_REF)
7378 tree field = TREE_OPERAND (exp, 1);
7379 size_tree = DECL_SIZE (field);
7380 if (flag_strict_volatile_bitfields > 0
7381 && TREE_THIS_VOLATILE (exp)
7382 && DECL_BIT_FIELD_TYPE (field)
7383 && DECL_MODE (field) != BLKmode)
7384 /* Volatile bitfields should be accessed in the mode of the
7385 field's type, not the mode computed based on the bit
7386 size. */
7387 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
7388 else if (!DECL_BIT_FIELD (field))
7390 mode = DECL_MODE (field);
7391 /* For vector fields re-check the target flags, as DECL_MODE
7392 could have been set with different target flags than
7393 the current function has. */
7394 if (mode == BLKmode
7395 && VECTOR_TYPE_P (TREE_TYPE (field))
7396 && VECTOR_MODE_P (TYPE_MODE_RAW (TREE_TYPE (field))))
7397 mode = TYPE_MODE (TREE_TYPE (field));
7399 else if (DECL_MODE (field) == BLKmode)
7400 blkmode_bitfield = true;
7402 *punsignedp = DECL_UNSIGNED (field);
7404 else if (TREE_CODE (exp) == BIT_FIELD_REF)
7406 size_tree = TREE_OPERAND (exp, 1);
7407 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
7408 || TYPE_UNSIGNED (TREE_TYPE (exp)));
7410 /* For vector element types with the correct size of access or for
7411 vector typed accesses use the mode of the access type. */
7412 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
7413 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
7414 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
7415 || VECTOR_TYPE_P (TREE_TYPE (exp)))
7416 mode = TYPE_MODE (TREE_TYPE (exp));
7418 else
7420 mode = TYPE_MODE (TREE_TYPE (exp));
7421 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
7423 if (mode == BLKmode)
7424 size_tree = TYPE_SIZE (TREE_TYPE (exp));
7425 else
7426 *pbitsize = GET_MODE_BITSIZE (mode);
7429 if (size_tree != 0)
7431 if (! tree_fits_uhwi_p (size_tree))
7432 mode = BLKmode, *pbitsize = -1;
7433 else
7434 *pbitsize = tree_to_uhwi (size_tree);
7437 *preversep = reverse_storage_order_for_component_p (exp);
7439 /* Compute cumulative bit-offset for nested component-refs and array-refs,
7440 and find the ultimate containing object. */
7441 while (1)
7443 switch (TREE_CODE (exp))
7445 case BIT_FIELD_REF:
7446 bit_offset += wi::to_poly_offset (TREE_OPERAND (exp, 2));
7447 break;
7449 case COMPONENT_REF:
7451 tree field = TREE_OPERAND (exp, 1);
7452 tree this_offset = component_ref_field_offset (exp);
7454 /* If this field hasn't been filled in yet, don't go past it.
7455 This should only happen when folding expressions made during
7456 type construction. */
7457 if (this_offset == 0)
7458 break;
7460 offset = size_binop (PLUS_EXPR, offset, this_offset);
7461 bit_offset += wi::to_poly_offset (DECL_FIELD_BIT_OFFSET (field));
7463 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
7465 break;
7467 case ARRAY_REF:
7468 case ARRAY_RANGE_REF:
7470 tree index = TREE_OPERAND (exp, 1);
7471 tree low_bound = array_ref_low_bound (exp);
7472 tree unit_size = array_ref_element_size (exp);
7474 /* We assume all arrays have sizes that are a multiple of a byte.
7475 First subtract the lower bound, if any, in the type of the
7476 index, then convert to sizetype and multiply by the size of
7477 the array element. */
7478 if (! integer_zerop (low_bound))
7479 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
7480 index, low_bound);
7482 offset = size_binop (PLUS_EXPR, offset,
7483 size_binop (MULT_EXPR,
7484 fold_convert (sizetype, index),
7485 unit_size));
7487 break;
7489 case REALPART_EXPR:
7490 break;
7492 case IMAGPART_EXPR:
7493 bit_offset += *pbitsize;
7494 break;
7496 case VIEW_CONVERT_EXPR:
7497 break;
7499 case MEM_REF:
7500 /* Hand back the decl for MEM[&decl, off]. */
7501 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
7503 tree off = TREE_OPERAND (exp, 1);
7504 if (!integer_zerop (off))
7506 poly_offset_int boff = mem_ref_offset (exp);
7507 boff <<= LOG2_BITS_PER_UNIT;
7508 bit_offset += boff;
7510 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
7512 goto done;
7514 default:
7515 goto done;
7518 /* If any reference in the chain is volatile, the effect is volatile. */
7519 if (TREE_THIS_VOLATILE (exp))
7520 *pvolatilep = 1;
7522 exp = TREE_OPERAND (exp, 0);
7524 done:
7526 /* If OFFSET is constant, see if we can return the whole thing as a
7527 constant bit position. Make sure to handle overflow during
7528 this conversion. */
7529 if (poly_int_tree_p (offset))
7531 poly_offset_int tem = wi::sext (wi::to_poly_offset (offset),
7532 TYPE_PRECISION (sizetype));
7533 tem <<= LOG2_BITS_PER_UNIT;
7534 tem += bit_offset;
7535 if (tem.to_shwi (pbitpos))
7536 *poffset = offset = NULL_TREE;
7539 /* Otherwise, split it up. */
7540 if (offset)
7542 /* Avoid returning a negative bitpos as this may wreak havoc later. */
7543 if (!bit_offset.to_shwi (pbitpos) || maybe_lt (*pbitpos, 0))
7545 *pbitpos = num_trailing_bits (bit_offset.force_shwi ());
7546 poly_offset_int bytes = bits_to_bytes_round_down (bit_offset);
7547 offset = size_binop (PLUS_EXPR, offset,
7548 build_int_cst (sizetype, bytes.force_shwi ()));
7551 *poffset = offset;
7554 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
7555 if (mode == VOIDmode
7556 && blkmode_bitfield
7557 && multiple_p (*pbitpos, BITS_PER_UNIT)
7558 && multiple_p (*pbitsize, BITS_PER_UNIT))
7559 *pmode = BLKmode;
7560 else
7561 *pmode = mode;
7563 return exp;
7566 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
7568 static unsigned HOST_WIDE_INT
7569 target_align (const_tree target)
7571 /* We might have a chain of nested references with intermediate misaligning
7572 bitfields components, so need to recurse to find out. */
7574 unsigned HOST_WIDE_INT this_align, outer_align;
7576 switch (TREE_CODE (target))
7578 case BIT_FIELD_REF:
7579 return 1;
7581 case COMPONENT_REF:
7582 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
7583 outer_align = target_align (TREE_OPERAND (target, 0));
7584 return MIN (this_align, outer_align);
7586 case ARRAY_REF:
7587 case ARRAY_RANGE_REF:
7588 this_align = TYPE_ALIGN (TREE_TYPE (target));
7589 outer_align = target_align (TREE_OPERAND (target, 0));
7590 return MIN (this_align, outer_align);
7592 CASE_CONVERT:
7593 case NON_LVALUE_EXPR:
7594 case VIEW_CONVERT_EXPR:
7595 this_align = TYPE_ALIGN (TREE_TYPE (target));
7596 outer_align = target_align (TREE_OPERAND (target, 0));
7597 return MAX (this_align, outer_align);
7599 default:
7600 return TYPE_ALIGN (TREE_TYPE (target));
7605 /* Given an rtx VALUE that may contain additions and multiplications, return
7606 an equivalent value that just refers to a register, memory, or constant.
7607 This is done by generating instructions to perform the arithmetic and
7608 returning a pseudo-register containing the value.
7610 The returned value may be a REG, SUBREG, MEM or constant. */
7613 force_operand (rtx value, rtx target)
7615 rtx op1, op2;
7616 /* Use subtarget as the target for operand 0 of a binary operation. */
7617 rtx subtarget = get_subtarget (target);
7618 enum rtx_code code = GET_CODE (value);
7620 /* Check for subreg applied to an expression produced by loop optimizer. */
7621 if (code == SUBREG
7622 && !REG_P (SUBREG_REG (value))
7623 && !MEM_P (SUBREG_REG (value)))
7625 value
7626 = simplify_gen_subreg (GET_MODE (value),
7627 force_reg (GET_MODE (SUBREG_REG (value)),
7628 force_operand (SUBREG_REG (value),
7629 NULL_RTX)),
7630 GET_MODE (SUBREG_REG (value)),
7631 SUBREG_BYTE (value));
7632 code = GET_CODE (value);
7635 /* Check for a PIC address load. */
7636 if ((code == PLUS || code == MINUS)
7637 && XEXP (value, 0) == pic_offset_table_rtx
7638 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
7639 || GET_CODE (XEXP (value, 1)) == LABEL_REF
7640 || GET_CODE (XEXP (value, 1)) == CONST))
7642 if (!subtarget)
7643 subtarget = gen_reg_rtx (GET_MODE (value));
7644 emit_move_insn (subtarget, value);
7645 return subtarget;
7648 if (ARITHMETIC_P (value))
7650 op2 = XEXP (value, 1);
7651 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
7652 subtarget = 0;
7653 if (code == MINUS && CONST_INT_P (op2))
7655 code = PLUS;
7656 op2 = negate_rtx (GET_MODE (value), op2);
7659 /* Check for an addition with OP2 a constant integer and our first
7660 operand a PLUS of a virtual register and something else. In that
7661 case, we want to emit the sum of the virtual register and the
7662 constant first and then add the other value. This allows virtual
7663 register instantiation to simply modify the constant rather than
7664 creating another one around this addition. */
7665 if (code == PLUS && CONST_INT_P (op2)
7666 && GET_CODE (XEXP (value, 0)) == PLUS
7667 && REG_P (XEXP (XEXP (value, 0), 0))
7668 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
7669 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
7671 rtx temp = expand_simple_binop (GET_MODE (value), code,
7672 XEXP (XEXP (value, 0), 0), op2,
7673 subtarget, 0, OPTAB_LIB_WIDEN);
7674 return expand_simple_binop (GET_MODE (value), code, temp,
7675 force_operand (XEXP (XEXP (value,
7676 0), 1), 0),
7677 target, 0, OPTAB_LIB_WIDEN);
7680 op1 = force_operand (XEXP (value, 0), subtarget);
7681 op2 = force_operand (op2, NULL_RTX);
7682 switch (code)
7684 case MULT:
7685 return expand_mult (GET_MODE (value), op1, op2, target, 1);
7686 case DIV:
7687 if (!INTEGRAL_MODE_P (GET_MODE (value)))
7688 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7689 target, 1, OPTAB_LIB_WIDEN);
7690 else
7691 return expand_divmod (0,
7692 FLOAT_MODE_P (GET_MODE (value))
7693 ? RDIV_EXPR : TRUNC_DIV_EXPR,
7694 GET_MODE (value), op1, op2, target, 0);
7695 case MOD:
7696 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7697 target, 0);
7698 case UDIV:
7699 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
7700 target, 1);
7701 case UMOD:
7702 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7703 target, 1);
7704 case ASHIFTRT:
7705 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7706 target, 0, OPTAB_LIB_WIDEN);
7707 default:
7708 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7709 target, 1, OPTAB_LIB_WIDEN);
7712 if (UNARY_P (value))
7714 if (!target)
7715 target = gen_reg_rtx (GET_MODE (value));
7716 op1 = force_operand (XEXP (value, 0), NULL_RTX);
7717 switch (code)
7719 case ZERO_EXTEND:
7720 case SIGN_EXTEND:
7721 case TRUNCATE:
7722 case FLOAT_EXTEND:
7723 case FLOAT_TRUNCATE:
7724 convert_move (target, op1, code == ZERO_EXTEND);
7725 return target;
7727 case FIX:
7728 case UNSIGNED_FIX:
7729 expand_fix (target, op1, code == UNSIGNED_FIX);
7730 return target;
7732 case FLOAT:
7733 case UNSIGNED_FLOAT:
7734 expand_float (target, op1, code == UNSIGNED_FLOAT);
7735 return target;
7737 default:
7738 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
7742 #ifdef INSN_SCHEDULING
7743 /* On machines that have insn scheduling, we want all memory reference to be
7744 explicit, so we need to deal with such paradoxical SUBREGs. */
7745 if (paradoxical_subreg_p (value) && MEM_P (SUBREG_REG (value)))
7746 value
7747 = simplify_gen_subreg (GET_MODE (value),
7748 force_reg (GET_MODE (SUBREG_REG (value)),
7749 force_operand (SUBREG_REG (value),
7750 NULL_RTX)),
7751 GET_MODE (SUBREG_REG (value)),
7752 SUBREG_BYTE (value));
7753 #endif
7755 return value;
7758 /* Subroutine of expand_expr: return nonzero iff there is no way that
7759 EXP can reference X, which is being modified. TOP_P is nonzero if this
7760 call is going to be used to determine whether we need a temporary
7761 for EXP, as opposed to a recursive call to this function.
7763 It is always safe for this routine to return zero since it merely
7764 searches for optimization opportunities. */
7767 safe_from_p (const_rtx x, tree exp, int top_p)
7769 rtx exp_rtl = 0;
7770 int i, nops;
7772 if (x == 0
7773 /* If EXP has varying size, we MUST use a target since we currently
7774 have no way of allocating temporaries of variable size
7775 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
7776 So we assume here that something at a higher level has prevented a
7777 clash. This is somewhat bogus, but the best we can do. Only
7778 do this when X is BLKmode and when we are at the top level. */
7779 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
7780 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
7781 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
7782 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
7783 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
7784 != INTEGER_CST)
7785 && GET_MODE (x) == BLKmode)
7786 /* If X is in the outgoing argument area, it is always safe. */
7787 || (MEM_P (x)
7788 && (XEXP (x, 0) == virtual_outgoing_args_rtx
7789 || (GET_CODE (XEXP (x, 0)) == PLUS
7790 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
7791 return 1;
7793 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
7794 find the underlying pseudo. */
7795 if (GET_CODE (x) == SUBREG)
7797 x = SUBREG_REG (x);
7798 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7799 return 0;
7802 /* Now look at our tree code and possibly recurse. */
7803 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
7805 case tcc_declaration:
7806 exp_rtl = DECL_RTL_IF_SET (exp);
7807 break;
7809 case tcc_constant:
7810 return 1;
7812 case tcc_exceptional:
7813 if (TREE_CODE (exp) == TREE_LIST)
7815 while (1)
7817 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
7818 return 0;
7819 exp = TREE_CHAIN (exp);
7820 if (!exp)
7821 return 1;
7822 if (TREE_CODE (exp) != TREE_LIST)
7823 return safe_from_p (x, exp, 0);
7826 else if (TREE_CODE (exp) == CONSTRUCTOR)
7828 constructor_elt *ce;
7829 unsigned HOST_WIDE_INT idx;
7831 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp), idx, ce)
7832 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
7833 || !safe_from_p (x, ce->value, 0))
7834 return 0;
7835 return 1;
7837 else if (TREE_CODE (exp) == ERROR_MARK)
7838 return 1; /* An already-visited SAVE_EXPR? */
7839 else
7840 return 0;
7842 case tcc_statement:
7843 /* The only case we look at here is the DECL_INITIAL inside a
7844 DECL_EXPR. */
7845 return (TREE_CODE (exp) != DECL_EXPR
7846 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
7847 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
7848 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
7850 case tcc_binary:
7851 case tcc_comparison:
7852 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
7853 return 0;
7854 /* Fall through. */
7856 case tcc_unary:
7857 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7859 case tcc_expression:
7860 case tcc_reference:
7861 case tcc_vl_exp:
7862 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
7863 the expression. If it is set, we conflict iff we are that rtx or
7864 both are in memory. Otherwise, we check all operands of the
7865 expression recursively. */
7867 switch (TREE_CODE (exp))
7869 case ADDR_EXPR:
7870 /* If the operand is static or we are static, we can't conflict.
7871 Likewise if we don't conflict with the operand at all. */
7872 if (staticp (TREE_OPERAND (exp, 0))
7873 || TREE_STATIC (exp)
7874 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
7875 return 1;
7877 /* Otherwise, the only way this can conflict is if we are taking
7878 the address of a DECL a that address if part of X, which is
7879 very rare. */
7880 exp = TREE_OPERAND (exp, 0);
7881 if (DECL_P (exp))
7883 if (!DECL_RTL_SET_P (exp)
7884 || !MEM_P (DECL_RTL (exp)))
7885 return 0;
7886 else
7887 exp_rtl = XEXP (DECL_RTL (exp), 0);
7889 break;
7891 case MEM_REF:
7892 if (MEM_P (x)
7893 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
7894 get_alias_set (exp)))
7895 return 0;
7896 break;
7898 case CALL_EXPR:
7899 /* Assume that the call will clobber all hard registers and
7900 all of memory. */
7901 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7902 || MEM_P (x))
7903 return 0;
7904 break;
7906 case WITH_CLEANUP_EXPR:
7907 case CLEANUP_POINT_EXPR:
7908 /* Lowered by gimplify.c. */
7909 gcc_unreachable ();
7911 case SAVE_EXPR:
7912 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7914 default:
7915 break;
7918 /* If we have an rtx, we do not need to scan our operands. */
7919 if (exp_rtl)
7920 break;
7922 nops = TREE_OPERAND_LENGTH (exp);
7923 for (i = 0; i < nops; i++)
7924 if (TREE_OPERAND (exp, i) != 0
7925 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
7926 return 0;
7928 break;
7930 case tcc_type:
7931 /* Should never get a type here. */
7932 gcc_unreachable ();
7935 /* If we have an rtl, find any enclosed object. Then see if we conflict
7936 with it. */
7937 if (exp_rtl)
7939 if (GET_CODE (exp_rtl) == SUBREG)
7941 exp_rtl = SUBREG_REG (exp_rtl);
7942 if (REG_P (exp_rtl)
7943 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
7944 return 0;
7947 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
7948 are memory and they conflict. */
7949 return ! (rtx_equal_p (x, exp_rtl)
7950 || (MEM_P (x) && MEM_P (exp_rtl)
7951 && true_dependence (exp_rtl, VOIDmode, x)));
7954 /* If we reach here, it is safe. */
7955 return 1;
7959 /* Return the highest power of two that EXP is known to be a multiple of.
7960 This is used in updating alignment of MEMs in array references. */
7962 unsigned HOST_WIDE_INT
7963 highest_pow2_factor (const_tree exp)
7965 unsigned HOST_WIDE_INT ret;
7966 int trailing_zeros = tree_ctz (exp);
7967 if (trailing_zeros >= HOST_BITS_PER_WIDE_INT)
7968 return BIGGEST_ALIGNMENT;
7969 ret = HOST_WIDE_INT_1U << trailing_zeros;
7970 if (ret > BIGGEST_ALIGNMENT)
7971 return BIGGEST_ALIGNMENT;
7972 return ret;
7975 /* Similar, except that the alignment requirements of TARGET are
7976 taken into account. Assume it is at least as aligned as its
7977 type, unless it is a COMPONENT_REF in which case the layout of
7978 the structure gives the alignment. */
7980 static unsigned HOST_WIDE_INT
7981 highest_pow2_factor_for_target (const_tree target, const_tree exp)
7983 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
7984 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
7986 return MAX (factor, talign);
7989 /* Convert the tree comparison code TCODE to the rtl one where the
7990 signedness is UNSIGNEDP. */
7992 static enum rtx_code
7993 convert_tree_comp_to_rtx (enum tree_code tcode, int unsignedp)
7995 enum rtx_code code;
7996 switch (tcode)
7998 case EQ_EXPR:
7999 code = EQ;
8000 break;
8001 case NE_EXPR:
8002 code = NE;
8003 break;
8004 case LT_EXPR:
8005 code = unsignedp ? LTU : LT;
8006 break;
8007 case LE_EXPR:
8008 code = unsignedp ? LEU : LE;
8009 break;
8010 case GT_EXPR:
8011 code = unsignedp ? GTU : GT;
8012 break;
8013 case GE_EXPR:
8014 code = unsignedp ? GEU : GE;
8015 break;
8016 case UNORDERED_EXPR:
8017 code = UNORDERED;
8018 break;
8019 case ORDERED_EXPR:
8020 code = ORDERED;
8021 break;
8022 case UNLT_EXPR:
8023 code = UNLT;
8024 break;
8025 case UNLE_EXPR:
8026 code = UNLE;
8027 break;
8028 case UNGT_EXPR:
8029 code = UNGT;
8030 break;
8031 case UNGE_EXPR:
8032 code = UNGE;
8033 break;
8034 case UNEQ_EXPR:
8035 code = UNEQ;
8036 break;
8037 case LTGT_EXPR:
8038 code = LTGT;
8039 break;
8041 default:
8042 gcc_unreachable ();
8044 return code;
8047 /* Subroutine of expand_expr. Expand the two operands of a binary
8048 expression EXP0 and EXP1 placing the results in OP0 and OP1.
8049 The value may be stored in TARGET if TARGET is nonzero. The
8050 MODIFIER argument is as documented by expand_expr. */
8052 void
8053 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
8054 enum expand_modifier modifier)
8056 if (! safe_from_p (target, exp1, 1))
8057 target = 0;
8058 if (operand_equal_p (exp0, exp1, 0))
8060 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
8061 *op1 = copy_rtx (*op0);
8063 else
8065 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
8066 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
8071 /* Return a MEM that contains constant EXP. DEFER is as for
8072 output_constant_def and MODIFIER is as for expand_expr. */
8074 static rtx
8075 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
8077 rtx mem;
8079 mem = output_constant_def (exp, defer);
8080 if (modifier != EXPAND_INITIALIZER)
8081 mem = use_anchored_address (mem);
8082 return mem;
8085 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
8086 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
8088 static rtx
8089 expand_expr_addr_expr_1 (tree exp, rtx target, scalar_int_mode tmode,
8090 enum expand_modifier modifier, addr_space_t as)
8092 rtx result, subtarget;
8093 tree inner, offset;
8094 poly_int64 bitsize, bitpos;
8095 int unsignedp, reversep, volatilep = 0;
8096 machine_mode mode1;
8098 /* If we are taking the address of a constant and are at the top level,
8099 we have to use output_constant_def since we can't call force_const_mem
8100 at top level. */
8101 /* ??? This should be considered a front-end bug. We should not be
8102 generating ADDR_EXPR of something that isn't an LVALUE. The only
8103 exception here is STRING_CST. */
8104 if (CONSTANT_CLASS_P (exp))
8106 result = XEXP (expand_expr_constant (exp, 0, modifier), 0);
8107 if (modifier < EXPAND_SUM)
8108 result = force_operand (result, target);
8109 return result;
8112 /* Everything must be something allowed by is_gimple_addressable. */
8113 switch (TREE_CODE (exp))
8115 case INDIRECT_REF:
8116 /* This case will happen via recursion for &a->b. */
8117 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
8119 case MEM_REF:
8121 tree tem = TREE_OPERAND (exp, 0);
8122 if (!integer_zerop (TREE_OPERAND (exp, 1)))
8123 tem = fold_build_pointer_plus (tem, TREE_OPERAND (exp, 1));
8124 return expand_expr (tem, target, tmode, modifier);
8127 case TARGET_MEM_REF:
8128 return addr_for_mem_ref (exp, as, true);
8130 case CONST_DECL:
8131 /* Expand the initializer like constants above. */
8132 result = XEXP (expand_expr_constant (DECL_INITIAL (exp),
8133 0, modifier), 0);
8134 if (modifier < EXPAND_SUM)
8135 result = force_operand (result, target);
8136 return result;
8138 case REALPART_EXPR:
8139 /* The real part of the complex number is always first, therefore
8140 the address is the same as the address of the parent object. */
8141 offset = 0;
8142 bitpos = 0;
8143 inner = TREE_OPERAND (exp, 0);
8144 break;
8146 case IMAGPART_EXPR:
8147 /* The imaginary part of the complex number is always second.
8148 The expression is therefore always offset by the size of the
8149 scalar type. */
8150 offset = 0;
8151 bitpos = GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (exp)));
8152 inner = TREE_OPERAND (exp, 0);
8153 break;
8155 case COMPOUND_LITERAL_EXPR:
8156 /* Allow COMPOUND_LITERAL_EXPR in initializers or coming from
8157 initializers, if e.g. rtl_for_decl_init is called on DECL_INITIAL
8158 with COMPOUND_LITERAL_EXPRs in it, or ARRAY_REF on a const static
8159 array with address of COMPOUND_LITERAL_EXPR in DECL_INITIAL;
8160 the initializers aren't gimplified. */
8161 if (COMPOUND_LITERAL_EXPR_DECL (exp)
8162 && TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (exp)))
8163 return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp),
8164 target, tmode, modifier, as);
8165 /* FALLTHRU */
8166 default:
8167 /* If the object is a DECL, then expand it for its rtl. Don't bypass
8168 expand_expr, as that can have various side effects; LABEL_DECLs for
8169 example, may not have their DECL_RTL set yet. Expand the rtl of
8170 CONSTRUCTORs too, which should yield a memory reference for the
8171 constructor's contents. Assume language specific tree nodes can
8172 be expanded in some interesting way. */
8173 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
8174 if (DECL_P (exp)
8175 || TREE_CODE (exp) == CONSTRUCTOR
8176 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
8178 result = expand_expr (exp, target, tmode,
8179 modifier == EXPAND_INITIALIZER
8180 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
8182 /* If the DECL isn't in memory, then the DECL wasn't properly
8183 marked TREE_ADDRESSABLE, which will be either a front-end
8184 or a tree optimizer bug. */
8186 gcc_assert (MEM_P (result));
8187 result = XEXP (result, 0);
8189 /* ??? Is this needed anymore? */
8190 if (DECL_P (exp))
8191 TREE_USED (exp) = 1;
8193 if (modifier != EXPAND_INITIALIZER
8194 && modifier != EXPAND_CONST_ADDRESS
8195 && modifier != EXPAND_SUM)
8196 result = force_operand (result, target);
8197 return result;
8200 /* Pass FALSE as the last argument to get_inner_reference although
8201 we are expanding to RTL. The rationale is that we know how to
8202 handle "aligning nodes" here: we can just bypass them because
8203 they won't change the final object whose address will be returned
8204 (they actually exist only for that purpose). */
8205 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
8206 &unsignedp, &reversep, &volatilep);
8207 break;
8210 /* We must have made progress. */
8211 gcc_assert (inner != exp);
8213 subtarget = offset || maybe_ne (bitpos, 0) ? NULL_RTX : target;
8214 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
8215 inner alignment, force the inner to be sufficiently aligned. */
8216 if (CONSTANT_CLASS_P (inner)
8217 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
8219 inner = copy_node (inner);
8220 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
8221 SET_TYPE_ALIGN (TREE_TYPE (inner), TYPE_ALIGN (TREE_TYPE (exp)));
8222 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
8224 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
8226 if (offset)
8228 rtx tmp;
8230 if (modifier != EXPAND_NORMAL)
8231 result = force_operand (result, NULL);
8232 tmp = expand_expr (offset, NULL_RTX, tmode,
8233 modifier == EXPAND_INITIALIZER
8234 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
8236 /* expand_expr is allowed to return an object in a mode other
8237 than TMODE. If it did, we need to convert. */
8238 if (GET_MODE (tmp) != VOIDmode && tmode != GET_MODE (tmp))
8239 tmp = convert_modes (tmode, GET_MODE (tmp),
8240 tmp, TYPE_UNSIGNED (TREE_TYPE (offset)));
8241 result = convert_memory_address_addr_space (tmode, result, as);
8242 tmp = convert_memory_address_addr_space (tmode, tmp, as);
8244 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8245 result = simplify_gen_binary (PLUS, tmode, result, tmp);
8246 else
8248 subtarget = maybe_ne (bitpos, 0) ? NULL_RTX : target;
8249 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
8250 1, OPTAB_LIB_WIDEN);
8254 if (maybe_ne (bitpos, 0))
8256 /* Someone beforehand should have rejected taking the address
8257 of an object that isn't byte-aligned. */
8258 poly_int64 bytepos = exact_div (bitpos, BITS_PER_UNIT);
8259 result = convert_memory_address_addr_space (tmode, result, as);
8260 result = plus_constant (tmode, result, bytepos);
8261 if (modifier < EXPAND_SUM)
8262 result = force_operand (result, target);
8265 return result;
8268 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
8269 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
8271 static rtx
8272 expand_expr_addr_expr (tree exp, rtx target, machine_mode tmode,
8273 enum expand_modifier modifier)
8275 addr_space_t as = ADDR_SPACE_GENERIC;
8276 scalar_int_mode address_mode = Pmode;
8277 scalar_int_mode pointer_mode = ptr_mode;
8278 machine_mode rmode;
8279 rtx result;
8281 /* Target mode of VOIDmode says "whatever's natural". */
8282 if (tmode == VOIDmode)
8283 tmode = TYPE_MODE (TREE_TYPE (exp));
8285 if (POINTER_TYPE_P (TREE_TYPE (exp)))
8287 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
8288 address_mode = targetm.addr_space.address_mode (as);
8289 pointer_mode = targetm.addr_space.pointer_mode (as);
8292 /* We can get called with some Weird Things if the user does silliness
8293 like "(short) &a". In that case, convert_memory_address won't do
8294 the right thing, so ignore the given target mode. */
8295 scalar_int_mode new_tmode = (tmode == pointer_mode
8296 ? pointer_mode
8297 : address_mode);
8299 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
8300 new_tmode, modifier, as);
8302 /* Despite expand_expr claims concerning ignoring TMODE when not
8303 strictly convenient, stuff breaks if we don't honor it. Note
8304 that combined with the above, we only do this for pointer modes. */
8305 rmode = GET_MODE (result);
8306 if (rmode == VOIDmode)
8307 rmode = new_tmode;
8308 if (rmode != new_tmode)
8309 result = convert_memory_address_addr_space (new_tmode, result, as);
8311 return result;
8314 /* Generate code for computing CONSTRUCTOR EXP.
8315 An rtx for the computed value is returned. If AVOID_TEMP_MEM
8316 is TRUE, instead of creating a temporary variable in memory
8317 NULL is returned and the caller needs to handle it differently. */
8319 static rtx
8320 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
8321 bool avoid_temp_mem)
8323 tree type = TREE_TYPE (exp);
8324 machine_mode mode = TYPE_MODE (type);
8326 /* Try to avoid creating a temporary at all. This is possible
8327 if all of the initializer is zero.
8328 FIXME: try to handle all [0..255] initializers we can handle
8329 with memset. */
8330 if (TREE_STATIC (exp)
8331 && !TREE_ADDRESSABLE (exp)
8332 && target != 0 && mode == BLKmode
8333 && all_zeros_p (exp))
8335 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
8336 return target;
8339 /* All elts simple constants => refer to a constant in memory. But
8340 if this is a non-BLKmode mode, let it store a field at a time
8341 since that should make a CONST_INT, CONST_WIDE_INT or
8342 CONST_DOUBLE when we fold. Likewise, if we have a target we can
8343 use, it is best to store directly into the target unless the type
8344 is large enough that memcpy will be used. If we are making an
8345 initializer and all operands are constant, put it in memory as
8346 well.
8348 FIXME: Avoid trying to fill vector constructors piece-meal.
8349 Output them with output_constant_def below unless we're sure
8350 they're zeros. This should go away when vector initializers
8351 are treated like VECTOR_CST instead of arrays. */
8352 if ((TREE_STATIC (exp)
8353 && ((mode == BLKmode
8354 && ! (target != 0 && safe_from_p (target, exp, 1)))
8355 || TREE_ADDRESSABLE (exp)
8356 || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
8357 && (! can_move_by_pieces
8358 (tree_to_uhwi (TYPE_SIZE_UNIT (type)),
8359 TYPE_ALIGN (type)))
8360 && ! mostly_zeros_p (exp))))
8361 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
8362 && TREE_CONSTANT (exp)))
8364 rtx constructor;
8366 if (avoid_temp_mem)
8367 return NULL_RTX;
8369 constructor = expand_expr_constant (exp, 1, modifier);
8371 if (modifier != EXPAND_CONST_ADDRESS
8372 && modifier != EXPAND_INITIALIZER
8373 && modifier != EXPAND_SUM)
8374 constructor = validize_mem (constructor);
8376 return constructor;
8379 /* Handle calls that pass values in multiple non-contiguous
8380 locations. The Irix 6 ABI has examples of this. */
8381 if (target == 0 || ! safe_from_p (target, exp, 1)
8382 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM
8383 /* Also make a temporary if the store is to volatile memory, to
8384 avoid individual accesses to aggregate members. */
8385 || (GET_CODE (target) == MEM
8386 && MEM_VOLATILE_P (target)
8387 && !TREE_ADDRESSABLE (TREE_TYPE (exp))))
8389 if (avoid_temp_mem)
8390 return NULL_RTX;
8392 target = assign_temp (type, TREE_ADDRESSABLE (exp), 1);
8395 store_constructor (exp, target, 0, int_expr_size (exp), false);
8396 return target;
8400 /* expand_expr: generate code for computing expression EXP.
8401 An rtx for the computed value is returned. The value is never null.
8402 In the case of a void EXP, const0_rtx is returned.
8404 The value may be stored in TARGET if TARGET is nonzero.
8405 TARGET is just a suggestion; callers must assume that
8406 the rtx returned may not be the same as TARGET.
8408 If TARGET is CONST0_RTX, it means that the value will be ignored.
8410 If TMODE is not VOIDmode, it suggests generating the
8411 result in mode TMODE. But this is done only when convenient.
8412 Otherwise, TMODE is ignored and the value generated in its natural mode.
8413 TMODE is just a suggestion; callers must assume that
8414 the rtx returned may not have mode TMODE.
8416 Note that TARGET may have neither TMODE nor MODE. In that case, it
8417 probably will not be used.
8419 If MODIFIER is EXPAND_SUM then when EXP is an addition
8420 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
8421 or a nest of (PLUS ...) and (MINUS ...) where the terms are
8422 products as above, or REG or MEM, or constant.
8423 Ordinarily in such cases we would output mul or add instructions
8424 and then return a pseudo reg containing the sum.
8426 EXPAND_INITIALIZER is much like EXPAND_SUM except that
8427 it also marks a label as absolutely required (it can't be dead).
8428 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
8429 This is used for outputting expressions used in initializers.
8431 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
8432 with a constant address even if that address is not normally legitimate.
8433 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
8435 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
8436 a call parameter. Such targets require special care as we haven't yet
8437 marked TARGET so that it's safe from being trashed by libcalls. We
8438 don't want to use TARGET for anything but the final result;
8439 Intermediate values must go elsewhere. Additionally, calls to
8440 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
8442 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
8443 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
8444 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
8445 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
8446 recursively.
8447 If the result can be stored at TARGET, and ALT_RTL is non-NULL,
8448 then *ALT_RTL is set to TARGET (before legitimziation).
8450 If INNER_REFERENCE_P is true, we are expanding an inner reference.
8451 In this case, we don't adjust a returned MEM rtx that wouldn't be
8452 sufficiently aligned for its mode; instead, it's up to the caller
8453 to deal with it afterwards. This is used to make sure that unaligned
8454 base objects for which out-of-bounds accesses are supported, for
8455 example record types with trailing arrays, aren't realigned behind
8456 the back of the caller.
8457 The normal operating mode is to pass FALSE for this parameter. */
8460 expand_expr_real (tree exp, rtx target, machine_mode tmode,
8461 enum expand_modifier modifier, rtx *alt_rtl,
8462 bool inner_reference_p)
8464 rtx ret;
8466 /* Handle ERROR_MARK before anybody tries to access its type. */
8467 if (TREE_CODE (exp) == ERROR_MARK
8468 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
8470 ret = CONST0_RTX (tmode);
8471 return ret ? ret : const0_rtx;
8474 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl,
8475 inner_reference_p);
8476 return ret;
8479 /* Try to expand the conditional expression which is represented by
8480 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If it succeeds
8481 return the rtl reg which represents the result. Otherwise return
8482 NULL_RTX. */
8484 static rtx
8485 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED,
8486 tree treeop1 ATTRIBUTE_UNUSED,
8487 tree treeop2 ATTRIBUTE_UNUSED)
8489 rtx insn;
8490 rtx op00, op01, op1, op2;
8491 enum rtx_code comparison_code;
8492 machine_mode comparison_mode;
8493 gimple *srcstmt;
8494 rtx temp;
8495 tree type = TREE_TYPE (treeop1);
8496 int unsignedp = TYPE_UNSIGNED (type);
8497 machine_mode mode = TYPE_MODE (type);
8498 machine_mode orig_mode = mode;
8499 static bool expanding_cond_expr_using_cmove = false;
8501 /* Conditional move expansion can end up TERing two operands which,
8502 when recursively hitting conditional expressions can result in
8503 exponential behavior if the cmove expansion ultimatively fails.
8504 It's hardly profitable to TER a cmove into a cmove so avoid doing
8505 that by failing early if we end up recursing. */
8506 if (expanding_cond_expr_using_cmove)
8507 return NULL_RTX;
8509 /* If we cannot do a conditional move on the mode, try doing it
8510 with the promoted mode. */
8511 if (!can_conditionally_move_p (mode))
8513 mode = promote_mode (type, mode, &unsignedp);
8514 if (!can_conditionally_move_p (mode))
8515 return NULL_RTX;
8516 temp = assign_temp (type, 0, 0); /* Use promoted mode for temp. */
8518 else
8519 temp = assign_temp (type, 0, 1);
8521 expanding_cond_expr_using_cmove = true;
8522 start_sequence ();
8523 expand_operands (treeop1, treeop2,
8524 temp, &op1, &op2, EXPAND_NORMAL);
8526 if (TREE_CODE (treeop0) == SSA_NAME
8527 && (srcstmt = get_def_for_expr_class (treeop0, tcc_comparison)))
8529 type = TREE_TYPE (gimple_assign_rhs1 (srcstmt));
8530 enum tree_code cmpcode = gimple_assign_rhs_code (srcstmt);
8531 op00 = expand_normal (gimple_assign_rhs1 (srcstmt));
8532 op01 = expand_normal (gimple_assign_rhs2 (srcstmt));
8533 comparison_mode = TYPE_MODE (type);
8534 unsignedp = TYPE_UNSIGNED (type);
8535 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
8537 else if (COMPARISON_CLASS_P (treeop0))
8539 type = TREE_TYPE (TREE_OPERAND (treeop0, 0));
8540 enum tree_code cmpcode = TREE_CODE (treeop0);
8541 op00 = expand_normal (TREE_OPERAND (treeop0, 0));
8542 op01 = expand_normal (TREE_OPERAND (treeop0, 1));
8543 unsignedp = TYPE_UNSIGNED (type);
8544 comparison_mode = TYPE_MODE (type);
8545 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
8547 else
8549 op00 = expand_normal (treeop0);
8550 op01 = const0_rtx;
8551 comparison_code = NE;
8552 comparison_mode = GET_MODE (op00);
8553 if (comparison_mode == VOIDmode)
8554 comparison_mode = TYPE_MODE (TREE_TYPE (treeop0));
8556 expanding_cond_expr_using_cmove = false;
8558 if (GET_MODE (op1) != mode)
8559 op1 = gen_lowpart (mode, op1);
8561 if (GET_MODE (op2) != mode)
8562 op2 = gen_lowpart (mode, op2);
8564 /* Try to emit the conditional move. */
8565 insn = emit_conditional_move (temp, comparison_code,
8566 op00, op01, comparison_mode,
8567 op1, op2, mode,
8568 unsignedp);
8570 /* If we could do the conditional move, emit the sequence,
8571 and return. */
8572 if (insn)
8574 rtx_insn *seq = get_insns ();
8575 end_sequence ();
8576 emit_insn (seq);
8577 return convert_modes (orig_mode, mode, temp, 0);
8580 /* Otherwise discard the sequence and fall back to code with
8581 branches. */
8582 end_sequence ();
8583 return NULL_RTX;
8586 /* A helper function for expand_expr_real_2 to be used with a
8587 misaligned mem_ref TEMP. Assume an unsigned type if UNSIGNEDP
8588 is nonzero, with alignment ALIGN in bits.
8589 Store the value at TARGET if possible (if TARGET is nonzero).
8590 Regardless of TARGET, we return the rtx for where the value is placed.
8591 If the result can be stored at TARGET, and ALT_RTL is non-NULL,
8592 then *ALT_RTL is set to TARGET (before legitimziation). */
8594 static rtx
8595 expand_misaligned_mem_ref (rtx temp, machine_mode mode, int unsignedp,
8596 unsigned int align, rtx target, rtx *alt_rtl)
8598 enum insn_code icode;
8600 if ((icode = optab_handler (movmisalign_optab, mode))
8601 != CODE_FOR_nothing)
8603 class expand_operand ops[2];
8605 /* We've already validated the memory, and we're creating a
8606 new pseudo destination. The predicates really can't fail,
8607 nor can the generator. */
8608 create_output_operand (&ops[0], NULL_RTX, mode);
8609 create_fixed_operand (&ops[1], temp);
8610 expand_insn (icode, 2, ops);
8611 temp = ops[0].value;
8613 else if (targetm.slow_unaligned_access (mode, align))
8614 temp = extract_bit_field (temp, GET_MODE_BITSIZE (mode),
8615 0, unsignedp, target,
8616 mode, mode, false, alt_rtl);
8617 return temp;
8621 expand_expr_real_2 (sepops ops, rtx target, machine_mode tmode,
8622 enum expand_modifier modifier)
8624 rtx op0, op1, op2, temp;
8625 rtx_code_label *lab;
8626 tree type;
8627 int unsignedp;
8628 machine_mode mode;
8629 scalar_int_mode int_mode;
8630 enum tree_code code = ops->code;
8631 optab this_optab;
8632 rtx subtarget, original_target;
8633 int ignore;
8634 bool reduce_bit_field;
8635 location_t loc = ops->location;
8636 tree treeop0, treeop1, treeop2;
8637 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
8638 ? reduce_to_bit_field_precision ((expr), \
8639 target, \
8640 type) \
8641 : (expr))
8643 type = ops->type;
8644 mode = TYPE_MODE (type);
8645 unsignedp = TYPE_UNSIGNED (type);
8647 treeop0 = ops->op0;
8648 treeop1 = ops->op1;
8649 treeop2 = ops->op2;
8651 /* We should be called only on simple (binary or unary) expressions,
8652 exactly those that are valid in gimple expressions that aren't
8653 GIMPLE_SINGLE_RHS (or invalid). */
8654 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
8655 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
8656 || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
8658 ignore = (target == const0_rtx
8659 || ((CONVERT_EXPR_CODE_P (code)
8660 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
8661 && TREE_CODE (type) == VOID_TYPE));
8663 /* We should be called only if we need the result. */
8664 gcc_assert (!ignore);
8666 /* An operation in what may be a bit-field type needs the
8667 result to be reduced to the precision of the bit-field type,
8668 which is narrower than that of the type's mode. */
8669 reduce_bit_field = (INTEGRAL_TYPE_P (type)
8670 && !type_has_mode_precision_p (type));
8672 if (reduce_bit_field
8673 && (modifier == EXPAND_STACK_PARM
8674 || (target && GET_MODE (target) != mode)))
8675 target = 0;
8677 /* Use subtarget as the target for operand 0 of a binary operation. */
8678 subtarget = get_subtarget (target);
8679 original_target = target;
8681 switch (code)
8683 case NON_LVALUE_EXPR:
8684 case PAREN_EXPR:
8685 CASE_CONVERT:
8686 if (treeop0 == error_mark_node)
8687 return const0_rtx;
8689 if (TREE_CODE (type) == UNION_TYPE)
8691 tree valtype = TREE_TYPE (treeop0);
8693 /* If both input and output are BLKmode, this conversion isn't doing
8694 anything except possibly changing memory attribute. */
8695 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
8697 rtx result = expand_expr (treeop0, target, tmode,
8698 modifier);
8700 result = copy_rtx (result);
8701 set_mem_attributes (result, type, 0);
8702 return result;
8705 if (target == 0)
8707 if (TYPE_MODE (type) != BLKmode)
8708 target = gen_reg_rtx (TYPE_MODE (type));
8709 else
8710 target = assign_temp (type, 1, 1);
8713 if (MEM_P (target))
8714 /* Store data into beginning of memory target. */
8715 store_expr (treeop0,
8716 adjust_address (target, TYPE_MODE (valtype), 0),
8717 modifier == EXPAND_STACK_PARM,
8718 false, TYPE_REVERSE_STORAGE_ORDER (type));
8720 else
8722 gcc_assert (REG_P (target)
8723 && !TYPE_REVERSE_STORAGE_ORDER (type));
8725 /* Store this field into a union of the proper type. */
8726 poly_uint64 op0_size
8727 = tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (treeop0)));
8728 poly_uint64 union_size = GET_MODE_BITSIZE (mode);
8729 store_field (target,
8730 /* The conversion must be constructed so that
8731 we know at compile time how many bits
8732 to preserve. */
8733 ordered_min (op0_size, union_size),
8734 0, 0, 0, TYPE_MODE (valtype), treeop0, 0,
8735 false, false);
8738 /* Return the entire union. */
8739 return target;
8742 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
8744 op0 = expand_expr (treeop0, target, VOIDmode,
8745 modifier);
8747 /* If the signedness of the conversion differs and OP0 is
8748 a promoted SUBREG, clear that indication since we now
8749 have to do the proper extension. */
8750 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
8751 && GET_CODE (op0) == SUBREG)
8752 SUBREG_PROMOTED_VAR_P (op0) = 0;
8754 return REDUCE_BIT_FIELD (op0);
8757 op0 = expand_expr (treeop0, NULL_RTX, mode,
8758 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
8759 if (GET_MODE (op0) == mode)
8762 /* If OP0 is a constant, just convert it into the proper mode. */
8763 else if (CONSTANT_P (op0))
8765 tree inner_type = TREE_TYPE (treeop0);
8766 machine_mode inner_mode = GET_MODE (op0);
8768 if (inner_mode == VOIDmode)
8769 inner_mode = TYPE_MODE (inner_type);
8771 if (modifier == EXPAND_INITIALIZER)
8772 op0 = lowpart_subreg (mode, op0, inner_mode);
8773 else
8774 op0= convert_modes (mode, inner_mode, op0,
8775 TYPE_UNSIGNED (inner_type));
8778 else if (modifier == EXPAND_INITIALIZER)
8779 op0 = gen_rtx_fmt_e (TYPE_UNSIGNED (TREE_TYPE (treeop0))
8780 ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
8782 else if (target == 0)
8783 op0 = convert_to_mode (mode, op0,
8784 TYPE_UNSIGNED (TREE_TYPE
8785 (treeop0)));
8786 else
8788 convert_move (target, op0,
8789 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8790 op0 = target;
8793 return REDUCE_BIT_FIELD (op0);
8795 case ADDR_SPACE_CONVERT_EXPR:
8797 tree treeop0_type = TREE_TYPE (treeop0);
8799 gcc_assert (POINTER_TYPE_P (type));
8800 gcc_assert (POINTER_TYPE_P (treeop0_type));
8802 addr_space_t as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
8803 addr_space_t as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
8805 /* Conversions between pointers to the same address space should
8806 have been implemented via CONVERT_EXPR / NOP_EXPR. */
8807 gcc_assert (as_to != as_from);
8809 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
8811 /* Ask target code to handle conversion between pointers
8812 to overlapping address spaces. */
8813 if (targetm.addr_space.subset_p (as_to, as_from)
8814 || targetm.addr_space.subset_p (as_from, as_to))
8816 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
8818 else
8820 /* For disjoint address spaces, converting anything but a null
8821 pointer invokes undefined behavior. We truncate or extend the
8822 value as if we'd converted via integers, which handles 0 as
8823 required, and all others as the programmer likely expects. */
8824 #ifndef POINTERS_EXTEND_UNSIGNED
8825 const int POINTERS_EXTEND_UNSIGNED = 1;
8826 #endif
8827 op0 = convert_modes (mode, TYPE_MODE (treeop0_type),
8828 op0, POINTERS_EXTEND_UNSIGNED);
8830 gcc_assert (op0);
8831 return op0;
8834 case POINTER_PLUS_EXPR:
8835 /* Even though the sizetype mode and the pointer's mode can be different
8836 expand is able to handle this correctly and get the correct result out
8837 of the PLUS_EXPR code. */
8838 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
8839 if sizetype precision is smaller than pointer precision. */
8840 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
8841 treeop1 = fold_convert_loc (loc, type,
8842 fold_convert_loc (loc, ssizetype,
8843 treeop1));
8844 /* If sizetype precision is larger than pointer precision, truncate the
8845 offset to have matching modes. */
8846 else if (TYPE_PRECISION (sizetype) > TYPE_PRECISION (type))
8847 treeop1 = fold_convert_loc (loc, type, treeop1);
8848 /* FALLTHRU */
8850 case PLUS_EXPR:
8851 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8852 something else, make sure we add the register to the constant and
8853 then to the other thing. This case can occur during strength
8854 reduction and doing it this way will produce better code if the
8855 frame pointer or argument pointer is eliminated.
8857 fold-const.c will ensure that the constant is always in the inner
8858 PLUS_EXPR, so the only case we need to do anything about is if
8859 sp, ap, or fp is our second argument, in which case we must swap
8860 the innermost first argument and our second argument. */
8862 if (TREE_CODE (treeop0) == PLUS_EXPR
8863 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
8864 && VAR_P (treeop1)
8865 && (DECL_RTL (treeop1) == frame_pointer_rtx
8866 || DECL_RTL (treeop1) == stack_pointer_rtx
8867 || DECL_RTL (treeop1) == arg_pointer_rtx))
8869 gcc_unreachable ();
8872 /* If the result is to be ptr_mode and we are adding an integer to
8873 something, we might be forming a constant. So try to use
8874 plus_constant. If it produces a sum and we can't accept it,
8875 use force_operand. This allows P = &ARR[const] to generate
8876 efficient code on machines where a SYMBOL_REF is not a valid
8877 address.
8879 If this is an EXPAND_SUM call, always return the sum. */
8880 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
8881 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
8883 if (modifier == EXPAND_STACK_PARM)
8884 target = 0;
8885 if (TREE_CODE (treeop0) == INTEGER_CST
8886 && HWI_COMPUTABLE_MODE_P (mode)
8887 && TREE_CONSTANT (treeop1))
8889 rtx constant_part;
8890 HOST_WIDE_INT wc;
8891 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop1));
8893 op1 = expand_expr (treeop1, subtarget, VOIDmode,
8894 EXPAND_SUM);
8895 /* Use wi::shwi to ensure that the constant is
8896 truncated according to the mode of OP1, then sign extended
8897 to a HOST_WIDE_INT. Using the constant directly can result
8898 in non-canonical RTL in a 64x32 cross compile. */
8899 wc = TREE_INT_CST_LOW (treeop0);
8900 constant_part =
8901 immed_wide_int_const (wi::shwi (wc, wmode), wmode);
8902 op1 = plus_constant (mode, op1, INTVAL (constant_part));
8903 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8904 op1 = force_operand (op1, target);
8905 return REDUCE_BIT_FIELD (op1);
8908 else if (TREE_CODE (treeop1) == INTEGER_CST
8909 && HWI_COMPUTABLE_MODE_P (mode)
8910 && TREE_CONSTANT (treeop0))
8912 rtx constant_part;
8913 HOST_WIDE_INT wc;
8914 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop0));
8916 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8917 (modifier == EXPAND_INITIALIZER
8918 ? EXPAND_INITIALIZER : EXPAND_SUM));
8919 if (! CONSTANT_P (op0))
8921 op1 = expand_expr (treeop1, NULL_RTX,
8922 VOIDmode, modifier);
8923 /* Return a PLUS if modifier says it's OK. */
8924 if (modifier == EXPAND_SUM
8925 || modifier == EXPAND_INITIALIZER)
8926 return simplify_gen_binary (PLUS, mode, op0, op1);
8927 goto binop2;
8929 /* Use wi::shwi to ensure that the constant is
8930 truncated according to the mode of OP1, then sign extended
8931 to a HOST_WIDE_INT. Using the constant directly can result
8932 in non-canonical RTL in a 64x32 cross compile. */
8933 wc = TREE_INT_CST_LOW (treeop1);
8934 constant_part
8935 = immed_wide_int_const (wi::shwi (wc, wmode), wmode);
8936 op0 = plus_constant (mode, op0, INTVAL (constant_part));
8937 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8938 op0 = force_operand (op0, target);
8939 return REDUCE_BIT_FIELD (op0);
8943 /* Use TER to expand pointer addition of a negated value
8944 as pointer subtraction. */
8945 if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
8946 || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
8947 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
8948 && TREE_CODE (treeop1) == SSA_NAME
8949 && TYPE_MODE (TREE_TYPE (treeop0))
8950 == TYPE_MODE (TREE_TYPE (treeop1)))
8952 gimple *def = get_def_for_expr (treeop1, NEGATE_EXPR);
8953 if (def)
8955 treeop1 = gimple_assign_rhs1 (def);
8956 code = MINUS_EXPR;
8957 goto do_minus;
8961 /* No sense saving up arithmetic to be done
8962 if it's all in the wrong mode to form part of an address.
8963 And force_operand won't know whether to sign-extend or
8964 zero-extend. */
8965 if (modifier != EXPAND_INITIALIZER
8966 && (modifier != EXPAND_SUM || mode != ptr_mode))
8968 expand_operands (treeop0, treeop1,
8969 subtarget, &op0, &op1, modifier);
8970 if (op0 == const0_rtx)
8971 return op1;
8972 if (op1 == const0_rtx)
8973 return op0;
8974 goto binop2;
8977 expand_operands (treeop0, treeop1,
8978 subtarget, &op0, &op1, modifier);
8979 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8981 case MINUS_EXPR:
8982 case POINTER_DIFF_EXPR:
8983 do_minus:
8984 /* For initializers, we are allowed to return a MINUS of two
8985 symbolic constants. Here we handle all cases when both operands
8986 are constant. */
8987 /* Handle difference of two symbolic constants,
8988 for the sake of an initializer. */
8989 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8990 && really_constant_p (treeop0)
8991 && really_constant_p (treeop1))
8993 expand_operands (treeop0, treeop1,
8994 NULL_RTX, &op0, &op1, modifier);
8995 return simplify_gen_binary (MINUS, mode, op0, op1);
8998 /* No sense saving up arithmetic to be done
8999 if it's all in the wrong mode to form part of an address.
9000 And force_operand won't know whether to sign-extend or
9001 zero-extend. */
9002 if (modifier != EXPAND_INITIALIZER
9003 && (modifier != EXPAND_SUM || mode != ptr_mode))
9004 goto binop;
9006 expand_operands (treeop0, treeop1,
9007 subtarget, &op0, &op1, modifier);
9009 /* Convert A - const to A + (-const). */
9010 if (CONST_INT_P (op1))
9012 op1 = negate_rtx (mode, op1);
9013 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
9016 goto binop2;
9018 case WIDEN_MULT_PLUS_EXPR:
9019 case WIDEN_MULT_MINUS_EXPR:
9020 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9021 op2 = expand_normal (treeop2);
9022 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9023 target, unsignedp);
9024 return target;
9026 case WIDEN_MULT_EXPR:
9027 /* If first operand is constant, swap them.
9028 Thus the following special case checks need only
9029 check the second operand. */
9030 if (TREE_CODE (treeop0) == INTEGER_CST)
9031 std::swap (treeop0, treeop1);
9033 /* First, check if we have a multiplication of one signed and one
9034 unsigned operand. */
9035 if (TREE_CODE (treeop1) != INTEGER_CST
9036 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
9037 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
9039 machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
9040 this_optab = usmul_widen_optab;
9041 if (find_widening_optab_handler (this_optab, mode, innermode)
9042 != CODE_FOR_nothing)
9044 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
9045 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
9046 EXPAND_NORMAL);
9047 else
9048 expand_operands (treeop0, treeop1, NULL_RTX, &op1, &op0,
9049 EXPAND_NORMAL);
9050 /* op0 and op1 might still be constant, despite the above
9051 != INTEGER_CST check. Handle it. */
9052 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
9054 op0 = convert_modes (mode, innermode, op0, true);
9055 op1 = convert_modes (mode, innermode, op1, false);
9056 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
9057 target, unsignedp));
9059 goto binop3;
9062 /* Check for a multiplication with matching signedness. */
9063 else if ((TREE_CODE (treeop1) == INTEGER_CST
9064 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
9065 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
9066 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
9068 tree op0type = TREE_TYPE (treeop0);
9069 machine_mode innermode = TYPE_MODE (op0type);
9070 bool zextend_p = TYPE_UNSIGNED (op0type);
9071 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
9072 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
9074 if (TREE_CODE (treeop0) != INTEGER_CST)
9076 if (find_widening_optab_handler (this_optab, mode, innermode)
9077 != CODE_FOR_nothing)
9079 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
9080 EXPAND_NORMAL);
9081 /* op0 and op1 might still be constant, despite the above
9082 != INTEGER_CST check. Handle it. */
9083 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
9085 widen_mult_const:
9086 op0 = convert_modes (mode, innermode, op0, zextend_p);
9088 = convert_modes (mode, innermode, op1,
9089 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
9090 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
9091 target,
9092 unsignedp));
9094 temp = expand_widening_mult (mode, op0, op1, target,
9095 unsignedp, this_optab);
9096 return REDUCE_BIT_FIELD (temp);
9098 if (find_widening_optab_handler (other_optab, mode, innermode)
9099 != CODE_FOR_nothing
9100 && innermode == word_mode)
9102 rtx htem, hipart;
9103 op0 = expand_normal (treeop0);
9104 op1 = expand_normal (treeop1);
9105 /* op0 and op1 might be constants, despite the above
9106 != INTEGER_CST check. Handle it. */
9107 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
9108 goto widen_mult_const;
9109 temp = expand_binop (mode, other_optab, op0, op1, target,
9110 unsignedp, OPTAB_LIB_WIDEN);
9111 hipart = gen_highpart (word_mode, temp);
9112 htem = expand_mult_highpart_adjust (word_mode, hipart,
9113 op0, op1, hipart,
9114 zextend_p);
9115 if (htem != hipart)
9116 emit_move_insn (hipart, htem);
9117 return REDUCE_BIT_FIELD (temp);
9121 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
9122 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
9123 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
9124 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
9126 case MULT_EXPR:
9127 /* If this is a fixed-point operation, then we cannot use the code
9128 below because "expand_mult" doesn't support sat/no-sat fixed-point
9129 multiplications. */
9130 if (ALL_FIXED_POINT_MODE_P (mode))
9131 goto binop;
9133 /* If first operand is constant, swap them.
9134 Thus the following special case checks need only
9135 check the second operand. */
9136 if (TREE_CODE (treeop0) == INTEGER_CST)
9137 std::swap (treeop0, treeop1);
9139 /* Attempt to return something suitable for generating an
9140 indexed address, for machines that support that. */
9142 if (modifier == EXPAND_SUM && mode == ptr_mode
9143 && tree_fits_shwi_p (treeop1))
9145 tree exp1 = treeop1;
9147 op0 = expand_expr (treeop0, subtarget, VOIDmode,
9148 EXPAND_SUM);
9150 if (!REG_P (op0))
9151 op0 = force_operand (op0, NULL_RTX);
9152 if (!REG_P (op0))
9153 op0 = copy_to_mode_reg (mode, op0);
9155 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
9156 gen_int_mode (tree_to_shwi (exp1),
9157 TYPE_MODE (TREE_TYPE (exp1)))));
9160 if (modifier == EXPAND_STACK_PARM)
9161 target = 0;
9163 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
9164 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
9166 case TRUNC_MOD_EXPR:
9167 case FLOOR_MOD_EXPR:
9168 case CEIL_MOD_EXPR:
9169 case ROUND_MOD_EXPR:
9171 case TRUNC_DIV_EXPR:
9172 case FLOOR_DIV_EXPR:
9173 case CEIL_DIV_EXPR:
9174 case ROUND_DIV_EXPR:
9175 case EXACT_DIV_EXPR:
9177 /* If this is a fixed-point operation, then we cannot use the code
9178 below because "expand_divmod" doesn't support sat/no-sat fixed-point
9179 divisions. */
9180 if (ALL_FIXED_POINT_MODE_P (mode))
9181 goto binop;
9183 if (modifier == EXPAND_STACK_PARM)
9184 target = 0;
9185 /* Possible optimization: compute the dividend with EXPAND_SUM
9186 then if the divisor is constant can optimize the case
9187 where some terms of the dividend have coeffs divisible by it. */
9188 expand_operands (treeop0, treeop1,
9189 subtarget, &op0, &op1, EXPAND_NORMAL);
9190 bool mod_p = code == TRUNC_MOD_EXPR || code == FLOOR_MOD_EXPR
9191 || code == CEIL_MOD_EXPR || code == ROUND_MOD_EXPR;
9192 if (SCALAR_INT_MODE_P (mode)
9193 && optimize >= 2
9194 && get_range_pos_neg (treeop0) == 1
9195 && get_range_pos_neg (treeop1) == 1)
9197 /* If both arguments are known to be positive when interpreted
9198 as signed, we can expand it as both signed and unsigned
9199 division or modulo. Choose the cheaper sequence in that case. */
9200 bool speed_p = optimize_insn_for_speed_p ();
9201 do_pending_stack_adjust ();
9202 start_sequence ();
9203 rtx uns_ret = expand_divmod (mod_p, code, mode, op0, op1, target, 1);
9204 rtx_insn *uns_insns = get_insns ();
9205 end_sequence ();
9206 start_sequence ();
9207 rtx sgn_ret = expand_divmod (mod_p, code, mode, op0, op1, target, 0);
9208 rtx_insn *sgn_insns = get_insns ();
9209 end_sequence ();
9210 unsigned uns_cost = seq_cost (uns_insns, speed_p);
9211 unsigned sgn_cost = seq_cost (sgn_insns, speed_p);
9213 /* If costs are the same then use as tie breaker the other
9214 other factor. */
9215 if (uns_cost == sgn_cost)
9217 uns_cost = seq_cost (uns_insns, !speed_p);
9218 sgn_cost = seq_cost (sgn_insns, !speed_p);
9221 if (uns_cost < sgn_cost || (uns_cost == sgn_cost && unsignedp))
9223 emit_insn (uns_insns);
9224 return uns_ret;
9226 emit_insn (sgn_insns);
9227 return sgn_ret;
9229 return expand_divmod (mod_p, code, mode, op0, op1, target, unsignedp);
9231 case RDIV_EXPR:
9232 goto binop;
9234 case MULT_HIGHPART_EXPR:
9235 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
9236 temp = expand_mult_highpart (mode, op0, op1, target, unsignedp);
9237 gcc_assert (temp);
9238 return temp;
9240 case FIXED_CONVERT_EXPR:
9241 op0 = expand_normal (treeop0);
9242 if (target == 0 || modifier == EXPAND_STACK_PARM)
9243 target = gen_reg_rtx (mode);
9245 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
9246 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
9247 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
9248 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
9249 else
9250 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
9251 return target;
9253 case FIX_TRUNC_EXPR:
9254 op0 = expand_normal (treeop0);
9255 if (target == 0 || modifier == EXPAND_STACK_PARM)
9256 target = gen_reg_rtx (mode);
9257 expand_fix (target, op0, unsignedp);
9258 return target;
9260 case FLOAT_EXPR:
9261 op0 = expand_normal (treeop0);
9262 if (target == 0 || modifier == EXPAND_STACK_PARM)
9263 target = gen_reg_rtx (mode);
9264 /* expand_float can't figure out what to do if FROM has VOIDmode.
9265 So give it the correct mode. With -O, cse will optimize this. */
9266 if (GET_MODE (op0) == VOIDmode)
9267 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
9268 op0);
9269 expand_float (target, op0,
9270 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9271 return target;
9273 case NEGATE_EXPR:
9274 op0 = expand_expr (treeop0, subtarget,
9275 VOIDmode, EXPAND_NORMAL);
9276 if (modifier == EXPAND_STACK_PARM)
9277 target = 0;
9278 temp = expand_unop (mode,
9279 optab_for_tree_code (NEGATE_EXPR, type,
9280 optab_default),
9281 op0, target, 0);
9282 gcc_assert (temp);
9283 return REDUCE_BIT_FIELD (temp);
9285 case ABS_EXPR:
9286 case ABSU_EXPR:
9287 op0 = expand_expr (treeop0, subtarget,
9288 VOIDmode, EXPAND_NORMAL);
9289 if (modifier == EXPAND_STACK_PARM)
9290 target = 0;
9292 /* ABS_EXPR is not valid for complex arguments. */
9293 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
9294 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
9296 /* Unsigned abs is simply the operand. Testing here means we don't
9297 risk generating incorrect code below. */
9298 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
9299 return op0;
9301 return expand_abs (mode, op0, target, unsignedp,
9302 safe_from_p (target, treeop0, 1));
9304 case MAX_EXPR:
9305 case MIN_EXPR:
9306 target = original_target;
9307 if (target == 0
9308 || modifier == EXPAND_STACK_PARM
9309 || (MEM_P (target) && MEM_VOLATILE_P (target))
9310 || GET_MODE (target) != mode
9311 || (REG_P (target)
9312 && REGNO (target) < FIRST_PSEUDO_REGISTER))
9313 target = gen_reg_rtx (mode);
9314 expand_operands (treeop0, treeop1,
9315 target, &op0, &op1, EXPAND_NORMAL);
9317 /* First try to do it with a special MIN or MAX instruction.
9318 If that does not win, use a conditional jump to select the proper
9319 value. */
9320 this_optab = optab_for_tree_code (code, type, optab_default);
9321 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
9322 OPTAB_WIDEN);
9323 if (temp != 0)
9324 return temp;
9326 if (VECTOR_TYPE_P (type))
9327 gcc_unreachable ();
9329 /* At this point, a MEM target is no longer useful; we will get better
9330 code without it. */
9332 if (! REG_P (target))
9333 target = gen_reg_rtx (mode);
9335 /* If op1 was placed in target, swap op0 and op1. */
9336 if (target != op0 && target == op1)
9337 std::swap (op0, op1);
9339 /* We generate better code and avoid problems with op1 mentioning
9340 target by forcing op1 into a pseudo if it isn't a constant. */
9341 if (! CONSTANT_P (op1))
9342 op1 = force_reg (mode, op1);
9345 enum rtx_code comparison_code;
9346 rtx cmpop1 = op1;
9348 if (code == MAX_EXPR)
9349 comparison_code = unsignedp ? GEU : GE;
9350 else
9351 comparison_code = unsignedp ? LEU : LE;
9353 /* Canonicalize to comparisons against 0. */
9354 if (op1 == const1_rtx)
9356 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
9357 or (a != 0 ? a : 1) for unsigned.
9358 For MIN we are safe converting (a <= 1 ? a : 1)
9359 into (a <= 0 ? a : 1) */
9360 cmpop1 = const0_rtx;
9361 if (code == MAX_EXPR)
9362 comparison_code = unsignedp ? NE : GT;
9364 if (op1 == constm1_rtx && !unsignedp)
9366 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
9367 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
9368 cmpop1 = const0_rtx;
9369 if (code == MIN_EXPR)
9370 comparison_code = LT;
9373 /* Use a conditional move if possible. */
9374 if (can_conditionally_move_p (mode))
9376 rtx insn;
9378 start_sequence ();
9380 /* Try to emit the conditional move. */
9381 insn = emit_conditional_move (target, comparison_code,
9382 op0, cmpop1, mode,
9383 op0, op1, mode,
9384 unsignedp);
9386 /* If we could do the conditional move, emit the sequence,
9387 and return. */
9388 if (insn)
9390 rtx_insn *seq = get_insns ();
9391 end_sequence ();
9392 emit_insn (seq);
9393 return target;
9396 /* Otherwise discard the sequence and fall back to code with
9397 branches. */
9398 end_sequence ();
9401 if (target != op0)
9402 emit_move_insn (target, op0);
9404 lab = gen_label_rtx ();
9405 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
9406 unsignedp, mode, NULL_RTX, NULL, lab,
9407 profile_probability::uninitialized ());
9409 emit_move_insn (target, op1);
9410 emit_label (lab);
9411 return target;
9413 case BIT_NOT_EXPR:
9414 op0 = expand_expr (treeop0, subtarget,
9415 VOIDmode, EXPAND_NORMAL);
9416 if (modifier == EXPAND_STACK_PARM)
9417 target = 0;
9418 /* In case we have to reduce the result to bitfield precision
9419 for unsigned bitfield expand this as XOR with a proper constant
9420 instead. */
9421 if (reduce_bit_field && TYPE_UNSIGNED (type))
9423 int_mode = SCALAR_INT_TYPE_MODE (type);
9424 wide_int mask = wi::mask (TYPE_PRECISION (type),
9425 false, GET_MODE_PRECISION (int_mode));
9427 temp = expand_binop (int_mode, xor_optab, op0,
9428 immed_wide_int_const (mask, int_mode),
9429 target, 1, OPTAB_LIB_WIDEN);
9431 else
9432 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
9433 gcc_assert (temp);
9434 return temp;
9436 /* ??? Can optimize bitwise operations with one arg constant.
9437 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
9438 and (a bitwise1 b) bitwise2 b (etc)
9439 but that is probably not worth while. */
9441 case BIT_AND_EXPR:
9442 case BIT_IOR_EXPR:
9443 case BIT_XOR_EXPR:
9444 goto binop;
9446 case LROTATE_EXPR:
9447 case RROTATE_EXPR:
9448 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
9449 || type_has_mode_precision_p (type));
9450 /* fall through */
9452 case LSHIFT_EXPR:
9453 case RSHIFT_EXPR:
9455 /* If this is a fixed-point operation, then we cannot use the code
9456 below because "expand_shift" doesn't support sat/no-sat fixed-point
9457 shifts. */
9458 if (ALL_FIXED_POINT_MODE_P (mode))
9459 goto binop;
9461 if (! safe_from_p (subtarget, treeop1, 1))
9462 subtarget = 0;
9463 if (modifier == EXPAND_STACK_PARM)
9464 target = 0;
9465 op0 = expand_expr (treeop0, subtarget,
9466 VOIDmode, EXPAND_NORMAL);
9468 /* Left shift optimization when shifting across word_size boundary.
9470 If mode == GET_MODE_WIDER_MODE (word_mode), then normally
9471 there isn't native instruction to support this wide mode
9472 left shift. Given below scenario:
9474 Type A = (Type) B << C
9476 |< T >|
9477 | dest_high | dest_low |
9479 | word_size |
9481 If the shift amount C caused we shift B to across the word
9482 size boundary, i.e part of B shifted into high half of
9483 destination register, and part of B remains in the low
9484 half, then GCC will use the following left shift expand
9485 logic:
9487 1. Initialize dest_low to B.
9488 2. Initialize every bit of dest_high to the sign bit of B.
9489 3. Logic left shift dest_low by C bit to finalize dest_low.
9490 The value of dest_low before this shift is kept in a temp D.
9491 4. Logic left shift dest_high by C.
9492 5. Logic right shift D by (word_size - C).
9493 6. Or the result of 4 and 5 to finalize dest_high.
9495 While, by checking gimple statements, if operand B is
9496 coming from signed extension, then we can simplify above
9497 expand logic into:
9499 1. dest_high = src_low >> (word_size - C).
9500 2. dest_low = src_low << C.
9502 We can use one arithmetic right shift to finish all the
9503 purpose of steps 2, 4, 5, 6, thus we reduce the steps
9504 needed from 6 into 2.
9506 The case is similar for zero extension, except that we
9507 initialize dest_high to zero rather than copies of the sign
9508 bit from B. Furthermore, we need to use a logical right shift
9509 in this case.
9511 The choice of sign-extension versus zero-extension is
9512 determined entirely by whether or not B is signed and is
9513 independent of the current setting of unsignedp. */
9515 temp = NULL_RTX;
9516 if (code == LSHIFT_EXPR
9517 && target
9518 && REG_P (target)
9519 && GET_MODE_2XWIDER_MODE (word_mode).exists (&int_mode)
9520 && mode == int_mode
9521 && TREE_CONSTANT (treeop1)
9522 && TREE_CODE (treeop0) == SSA_NAME)
9524 gimple *def = SSA_NAME_DEF_STMT (treeop0);
9525 if (is_gimple_assign (def)
9526 && gimple_assign_rhs_code (def) == NOP_EXPR)
9528 scalar_int_mode rmode = SCALAR_INT_TYPE_MODE
9529 (TREE_TYPE (gimple_assign_rhs1 (def)));
9531 if (GET_MODE_SIZE (rmode) < GET_MODE_SIZE (int_mode)
9532 && TREE_INT_CST_LOW (treeop1) < GET_MODE_BITSIZE (word_mode)
9533 && ((TREE_INT_CST_LOW (treeop1) + GET_MODE_BITSIZE (rmode))
9534 >= GET_MODE_BITSIZE (word_mode)))
9536 rtx_insn *seq, *seq_old;
9537 poly_uint64 high_off = subreg_highpart_offset (word_mode,
9538 int_mode);
9539 bool extend_unsigned
9540 = TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def)));
9541 rtx low = lowpart_subreg (word_mode, op0, int_mode);
9542 rtx dest_low = lowpart_subreg (word_mode, target, int_mode);
9543 rtx dest_high = simplify_gen_subreg (word_mode, target,
9544 int_mode, high_off);
9545 HOST_WIDE_INT ramount = (BITS_PER_WORD
9546 - TREE_INT_CST_LOW (treeop1));
9547 tree rshift = build_int_cst (TREE_TYPE (treeop1), ramount);
9549 start_sequence ();
9550 /* dest_high = src_low >> (word_size - C). */
9551 temp = expand_variable_shift (RSHIFT_EXPR, word_mode, low,
9552 rshift, dest_high,
9553 extend_unsigned);
9554 if (temp != dest_high)
9555 emit_move_insn (dest_high, temp);
9557 /* dest_low = src_low << C. */
9558 temp = expand_variable_shift (LSHIFT_EXPR, word_mode, low,
9559 treeop1, dest_low, unsignedp);
9560 if (temp != dest_low)
9561 emit_move_insn (dest_low, temp);
9563 seq = get_insns ();
9564 end_sequence ();
9565 temp = target ;
9567 if (have_insn_for (ASHIFT, int_mode))
9569 bool speed_p = optimize_insn_for_speed_p ();
9570 start_sequence ();
9571 rtx ret_old = expand_variable_shift (code, int_mode,
9572 op0, treeop1,
9573 target,
9574 unsignedp);
9576 seq_old = get_insns ();
9577 end_sequence ();
9578 if (seq_cost (seq, speed_p)
9579 >= seq_cost (seq_old, speed_p))
9581 seq = seq_old;
9582 temp = ret_old;
9585 emit_insn (seq);
9590 if (temp == NULL_RTX)
9591 temp = expand_variable_shift (code, mode, op0, treeop1, target,
9592 unsignedp);
9593 if (code == LSHIFT_EXPR)
9594 temp = REDUCE_BIT_FIELD (temp);
9595 return temp;
9598 /* Could determine the answer when only additive constants differ. Also,
9599 the addition of one can be handled by changing the condition. */
9600 case LT_EXPR:
9601 case LE_EXPR:
9602 case GT_EXPR:
9603 case GE_EXPR:
9604 case EQ_EXPR:
9605 case NE_EXPR:
9606 case UNORDERED_EXPR:
9607 case ORDERED_EXPR:
9608 case UNLT_EXPR:
9609 case UNLE_EXPR:
9610 case UNGT_EXPR:
9611 case UNGE_EXPR:
9612 case UNEQ_EXPR:
9613 case LTGT_EXPR:
9615 temp = do_store_flag (ops,
9616 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
9617 tmode != VOIDmode ? tmode : mode);
9618 if (temp)
9619 return temp;
9621 /* Use a compare and a jump for BLKmode comparisons, or for function
9622 type comparisons is have_canonicalize_funcptr_for_compare. */
9624 if ((target == 0
9625 || modifier == EXPAND_STACK_PARM
9626 || ! safe_from_p (target, treeop0, 1)
9627 || ! safe_from_p (target, treeop1, 1)
9628 /* Make sure we don't have a hard reg (such as function's return
9629 value) live across basic blocks, if not optimizing. */
9630 || (!optimize && REG_P (target)
9631 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
9632 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9634 emit_move_insn (target, const0_rtx);
9636 rtx_code_label *lab1 = gen_label_rtx ();
9637 jumpifnot_1 (code, treeop0, treeop1, lab1,
9638 profile_probability::uninitialized ());
9640 if (TYPE_PRECISION (type) == 1 && !TYPE_UNSIGNED (type))
9641 emit_move_insn (target, constm1_rtx);
9642 else
9643 emit_move_insn (target, const1_rtx);
9645 emit_label (lab1);
9646 return target;
9648 case COMPLEX_EXPR:
9649 /* Get the rtx code of the operands. */
9650 op0 = expand_normal (treeop0);
9651 op1 = expand_normal (treeop1);
9653 if (!target)
9654 target = gen_reg_rtx (TYPE_MODE (type));
9655 else
9656 /* If target overlaps with op1, then either we need to force
9657 op1 into a pseudo (if target also overlaps with op0),
9658 or write the complex parts in reverse order. */
9659 switch (GET_CODE (target))
9661 case CONCAT:
9662 if (reg_overlap_mentioned_p (XEXP (target, 0), op1))
9664 if (reg_overlap_mentioned_p (XEXP (target, 1), op0))
9666 complex_expr_force_op1:
9667 temp = gen_reg_rtx (GET_MODE_INNER (GET_MODE (target)));
9668 emit_move_insn (temp, op1);
9669 op1 = temp;
9670 break;
9672 complex_expr_swap_order:
9673 /* Move the imaginary (op1) and real (op0) parts to their
9674 location. */
9675 write_complex_part (target, op1, true);
9676 write_complex_part (target, op0, false);
9678 return target;
9680 break;
9681 case MEM:
9682 temp = adjust_address_nv (target,
9683 GET_MODE_INNER (GET_MODE (target)), 0);
9684 if (reg_overlap_mentioned_p (temp, op1))
9686 scalar_mode imode = GET_MODE_INNER (GET_MODE (target));
9687 temp = adjust_address_nv (target, imode,
9688 GET_MODE_SIZE (imode));
9689 if (reg_overlap_mentioned_p (temp, op0))
9690 goto complex_expr_force_op1;
9691 goto complex_expr_swap_order;
9693 break;
9694 default:
9695 if (reg_overlap_mentioned_p (target, op1))
9697 if (reg_overlap_mentioned_p (target, op0))
9698 goto complex_expr_force_op1;
9699 goto complex_expr_swap_order;
9701 break;
9704 /* Move the real (op0) and imaginary (op1) parts to their location. */
9705 write_complex_part (target, op0, false);
9706 write_complex_part (target, op1, true);
9708 return target;
9710 case WIDEN_SUM_EXPR:
9712 tree oprnd0 = treeop0;
9713 tree oprnd1 = treeop1;
9715 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9716 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
9717 target, unsignedp);
9718 return target;
9721 case VEC_UNPACK_HI_EXPR:
9722 case VEC_UNPACK_LO_EXPR:
9723 case VEC_UNPACK_FIX_TRUNC_HI_EXPR:
9724 case VEC_UNPACK_FIX_TRUNC_LO_EXPR:
9726 op0 = expand_normal (treeop0);
9727 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
9728 target, unsignedp);
9729 gcc_assert (temp);
9730 return temp;
9733 case VEC_UNPACK_FLOAT_HI_EXPR:
9734 case VEC_UNPACK_FLOAT_LO_EXPR:
9736 op0 = expand_normal (treeop0);
9737 /* The signedness is determined from input operand. */
9738 temp = expand_widen_pattern_expr
9739 (ops, op0, NULL_RTX, NULL_RTX,
9740 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9742 gcc_assert (temp);
9743 return temp;
9746 case VEC_WIDEN_MULT_HI_EXPR:
9747 case VEC_WIDEN_MULT_LO_EXPR:
9748 case VEC_WIDEN_MULT_EVEN_EXPR:
9749 case VEC_WIDEN_MULT_ODD_EXPR:
9750 case VEC_WIDEN_LSHIFT_HI_EXPR:
9751 case VEC_WIDEN_LSHIFT_LO_EXPR:
9752 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9753 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
9754 target, unsignedp);
9755 gcc_assert (target);
9756 return target;
9758 case VEC_PACK_SAT_EXPR:
9759 case VEC_PACK_FIX_TRUNC_EXPR:
9760 mode = TYPE_MODE (TREE_TYPE (treeop0));
9761 goto binop;
9763 case VEC_PACK_TRUNC_EXPR:
9764 if (VECTOR_BOOLEAN_TYPE_P (type)
9765 && VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (treeop0))
9766 && mode == TYPE_MODE (TREE_TYPE (treeop0))
9767 && SCALAR_INT_MODE_P (mode))
9769 class expand_operand eops[4];
9770 machine_mode imode = TYPE_MODE (TREE_TYPE (treeop0));
9771 expand_operands (treeop0, treeop1,
9772 subtarget, &op0, &op1, EXPAND_NORMAL);
9773 this_optab = vec_pack_sbool_trunc_optab;
9774 enum insn_code icode = optab_handler (this_optab, imode);
9775 create_output_operand (&eops[0], target, mode);
9776 create_convert_operand_from (&eops[1], op0, imode, false);
9777 create_convert_operand_from (&eops[2], op1, imode, false);
9778 temp = GEN_INT (TYPE_VECTOR_SUBPARTS (type).to_constant ());
9779 create_input_operand (&eops[3], temp, imode);
9780 expand_insn (icode, 4, eops);
9781 return eops[0].value;
9783 mode = TYPE_MODE (TREE_TYPE (treeop0));
9784 goto binop;
9786 case VEC_PACK_FLOAT_EXPR:
9787 mode = TYPE_MODE (TREE_TYPE (treeop0));
9788 expand_operands (treeop0, treeop1,
9789 subtarget, &op0, &op1, EXPAND_NORMAL);
9790 this_optab = optab_for_tree_code (code, TREE_TYPE (treeop0),
9791 optab_default);
9792 target = expand_binop (mode, this_optab, op0, op1, target,
9793 TYPE_UNSIGNED (TREE_TYPE (treeop0)),
9794 OPTAB_LIB_WIDEN);
9795 gcc_assert (target);
9796 return target;
9798 case VEC_PERM_EXPR:
9800 expand_operands (treeop0, treeop1, target, &op0, &op1, EXPAND_NORMAL);
9801 vec_perm_builder sel;
9802 if (TREE_CODE (treeop2) == VECTOR_CST
9803 && tree_to_vec_perm_builder (&sel, treeop2))
9805 machine_mode sel_mode = TYPE_MODE (TREE_TYPE (treeop2));
9806 temp = expand_vec_perm_const (mode, op0, op1, sel,
9807 sel_mode, target);
9809 else
9811 op2 = expand_normal (treeop2);
9812 temp = expand_vec_perm_var (mode, op0, op1, op2, target);
9814 gcc_assert (temp);
9815 return temp;
9818 case DOT_PROD_EXPR:
9820 tree oprnd0 = treeop0;
9821 tree oprnd1 = treeop1;
9822 tree oprnd2 = treeop2;
9824 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9825 op2 = expand_normal (oprnd2);
9826 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9827 target, unsignedp);
9828 return target;
9831 case SAD_EXPR:
9833 tree oprnd0 = treeop0;
9834 tree oprnd1 = treeop1;
9835 tree oprnd2 = treeop2;
9837 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9838 op2 = expand_normal (oprnd2);
9839 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9840 target, unsignedp);
9841 return target;
9844 case REALIGN_LOAD_EXPR:
9846 tree oprnd0 = treeop0;
9847 tree oprnd1 = treeop1;
9848 tree oprnd2 = treeop2;
9850 this_optab = optab_for_tree_code (code, type, optab_default);
9851 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9852 op2 = expand_normal (oprnd2);
9853 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
9854 target, unsignedp);
9855 gcc_assert (temp);
9856 return temp;
9859 case COND_EXPR:
9861 /* A COND_EXPR with its type being VOID_TYPE represents a
9862 conditional jump and is handled in
9863 expand_gimple_cond_expr. */
9864 gcc_assert (!VOID_TYPE_P (type));
9866 /* Note that COND_EXPRs whose type is a structure or union
9867 are required to be constructed to contain assignments of
9868 a temporary variable, so that we can evaluate them here
9869 for side effect only. If type is void, we must do likewise. */
9871 gcc_assert (!TREE_ADDRESSABLE (type)
9872 && !ignore
9873 && TREE_TYPE (treeop1) != void_type_node
9874 && TREE_TYPE (treeop2) != void_type_node);
9876 temp = expand_cond_expr_using_cmove (treeop0, treeop1, treeop2);
9877 if (temp)
9878 return temp;
9880 /* If we are not to produce a result, we have no target. Otherwise,
9881 if a target was specified use it; it will not be used as an
9882 intermediate target unless it is safe. If no target, use a
9883 temporary. */
9885 if (modifier != EXPAND_STACK_PARM
9886 && original_target
9887 && safe_from_p (original_target, treeop0, 1)
9888 && GET_MODE (original_target) == mode
9889 && !MEM_P (original_target))
9890 temp = original_target;
9891 else
9892 temp = assign_temp (type, 0, 1);
9894 do_pending_stack_adjust ();
9895 NO_DEFER_POP;
9896 rtx_code_label *lab0 = gen_label_rtx ();
9897 rtx_code_label *lab1 = gen_label_rtx ();
9898 jumpifnot (treeop0, lab0,
9899 profile_probability::uninitialized ());
9900 store_expr (treeop1, temp,
9901 modifier == EXPAND_STACK_PARM,
9902 false, false);
9904 emit_jump_insn (targetm.gen_jump (lab1));
9905 emit_barrier ();
9906 emit_label (lab0);
9907 store_expr (treeop2, temp,
9908 modifier == EXPAND_STACK_PARM,
9909 false, false);
9911 emit_label (lab1);
9912 OK_DEFER_POP;
9913 return temp;
9916 case VEC_DUPLICATE_EXPR:
9917 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
9918 target = expand_vector_broadcast (mode, op0);
9919 gcc_assert (target);
9920 return target;
9922 case VEC_SERIES_EXPR:
9923 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, modifier);
9924 return expand_vec_series_expr (mode, op0, op1, target);
9926 case BIT_INSERT_EXPR:
9928 unsigned bitpos = tree_to_uhwi (treeop2);
9929 unsigned bitsize;
9930 if (INTEGRAL_TYPE_P (TREE_TYPE (treeop1)))
9931 bitsize = TYPE_PRECISION (TREE_TYPE (treeop1));
9932 else
9933 bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (treeop1)));
9934 op0 = expand_normal (treeop0);
9935 op1 = expand_normal (treeop1);
9936 rtx dst = gen_reg_rtx (mode);
9937 emit_move_insn (dst, op0);
9938 store_bit_field (dst, bitsize, bitpos, 0, 0,
9939 TYPE_MODE (TREE_TYPE (treeop1)), op1, false);
9940 return dst;
9943 default:
9944 gcc_unreachable ();
9947 /* Here to do an ordinary binary operator. */
9948 binop:
9949 expand_operands (treeop0, treeop1,
9950 subtarget, &op0, &op1, EXPAND_NORMAL);
9951 binop2:
9952 this_optab = optab_for_tree_code (code, type, optab_default);
9953 binop3:
9954 if (modifier == EXPAND_STACK_PARM)
9955 target = 0;
9956 temp = expand_binop (mode, this_optab, op0, op1, target,
9957 unsignedp, OPTAB_LIB_WIDEN);
9958 gcc_assert (temp);
9959 /* Bitwise operations do not need bitfield reduction as we expect their
9960 operands being properly truncated. */
9961 if (code == BIT_XOR_EXPR
9962 || code == BIT_AND_EXPR
9963 || code == BIT_IOR_EXPR)
9964 return temp;
9965 return REDUCE_BIT_FIELD (temp);
9967 #undef REDUCE_BIT_FIELD
9970 /* Return TRUE if expression STMT is suitable for replacement.
9971 Never consider memory loads as replaceable, because those don't ever lead
9972 into constant expressions. */
9974 static bool
9975 stmt_is_replaceable_p (gimple *stmt)
9977 if (ssa_is_replaceable_p (stmt))
9979 /* Don't move around loads. */
9980 if (!gimple_assign_single_p (stmt)
9981 || is_gimple_val (gimple_assign_rhs1 (stmt)))
9982 return true;
9984 return false;
9988 expand_expr_real_1 (tree exp, rtx target, machine_mode tmode,
9989 enum expand_modifier modifier, rtx *alt_rtl,
9990 bool inner_reference_p)
9992 rtx op0, op1, temp, decl_rtl;
9993 tree type;
9994 int unsignedp;
9995 machine_mode mode, dmode;
9996 enum tree_code code = TREE_CODE (exp);
9997 rtx subtarget, original_target;
9998 int ignore;
9999 tree context;
10000 bool reduce_bit_field;
10001 location_t loc = EXPR_LOCATION (exp);
10002 struct separate_ops ops;
10003 tree treeop0, treeop1, treeop2;
10004 tree ssa_name = NULL_TREE;
10005 gimple *g;
10007 type = TREE_TYPE (exp);
10008 mode = TYPE_MODE (type);
10009 unsignedp = TYPE_UNSIGNED (type);
10011 treeop0 = treeop1 = treeop2 = NULL_TREE;
10012 if (!VL_EXP_CLASS_P (exp))
10013 switch (TREE_CODE_LENGTH (code))
10015 default:
10016 case 3: treeop2 = TREE_OPERAND (exp, 2); /* FALLTHRU */
10017 case 2: treeop1 = TREE_OPERAND (exp, 1); /* FALLTHRU */
10018 case 1: treeop0 = TREE_OPERAND (exp, 0); /* FALLTHRU */
10019 case 0: break;
10021 ops.code = code;
10022 ops.type = type;
10023 ops.op0 = treeop0;
10024 ops.op1 = treeop1;
10025 ops.op2 = treeop2;
10026 ops.location = loc;
10028 ignore = (target == const0_rtx
10029 || ((CONVERT_EXPR_CODE_P (code)
10030 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
10031 && TREE_CODE (type) == VOID_TYPE));
10033 /* An operation in what may be a bit-field type needs the
10034 result to be reduced to the precision of the bit-field type,
10035 which is narrower than that of the type's mode. */
10036 reduce_bit_field = (!ignore
10037 && INTEGRAL_TYPE_P (type)
10038 && !type_has_mode_precision_p (type));
10040 /* If we are going to ignore this result, we need only do something
10041 if there is a side-effect somewhere in the expression. If there
10042 is, short-circuit the most common cases here. Note that we must
10043 not call expand_expr with anything but const0_rtx in case this
10044 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
10046 if (ignore)
10048 if (! TREE_SIDE_EFFECTS (exp))
10049 return const0_rtx;
10051 /* Ensure we reference a volatile object even if value is ignored, but
10052 don't do this if all we are doing is taking its address. */
10053 if (TREE_THIS_VOLATILE (exp)
10054 && TREE_CODE (exp) != FUNCTION_DECL
10055 && mode != VOIDmode && mode != BLKmode
10056 && modifier != EXPAND_CONST_ADDRESS)
10058 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
10059 if (MEM_P (temp))
10060 copy_to_reg (temp);
10061 return const0_rtx;
10064 if (TREE_CODE_CLASS (code) == tcc_unary
10065 || code == BIT_FIELD_REF
10066 || code == COMPONENT_REF
10067 || code == INDIRECT_REF)
10068 return expand_expr (treeop0, const0_rtx, VOIDmode,
10069 modifier);
10071 else if (TREE_CODE_CLASS (code) == tcc_binary
10072 || TREE_CODE_CLASS (code) == tcc_comparison
10073 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
10075 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
10076 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
10077 return const0_rtx;
10080 target = 0;
10083 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
10084 target = 0;
10086 /* Use subtarget as the target for operand 0 of a binary operation. */
10087 subtarget = get_subtarget (target);
10088 original_target = target;
10090 switch (code)
10092 case LABEL_DECL:
10094 tree function = decl_function_context (exp);
10096 temp = label_rtx (exp);
10097 temp = gen_rtx_LABEL_REF (Pmode, temp);
10099 if (function != current_function_decl
10100 && function != 0)
10101 LABEL_REF_NONLOCAL_P (temp) = 1;
10103 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
10104 return temp;
10107 case SSA_NAME:
10108 /* ??? ivopts calls expander, without any preparation from
10109 out-of-ssa. So fake instructions as if this was an access to the
10110 base variable. This unnecessarily allocates a pseudo, see how we can
10111 reuse it, if partition base vars have it set already. */
10112 if (!currently_expanding_to_rtl)
10114 tree var = SSA_NAME_VAR (exp);
10115 if (var && DECL_RTL_SET_P (var))
10116 return DECL_RTL (var);
10117 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp)),
10118 LAST_VIRTUAL_REGISTER + 1);
10121 g = get_gimple_for_ssa_name (exp);
10122 /* For EXPAND_INITIALIZER try harder to get something simpler. */
10123 if (g == NULL
10124 && modifier == EXPAND_INITIALIZER
10125 && !SSA_NAME_IS_DEFAULT_DEF (exp)
10126 && (optimize || !SSA_NAME_VAR (exp)
10127 || DECL_IGNORED_P (SSA_NAME_VAR (exp)))
10128 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp)))
10129 g = SSA_NAME_DEF_STMT (exp);
10130 if (g)
10132 rtx r;
10133 location_t saved_loc = curr_insn_location ();
10134 loc = gimple_location (g);
10135 if (loc != UNKNOWN_LOCATION)
10136 set_curr_insn_location (loc);
10137 ops.code = gimple_assign_rhs_code (g);
10138 switch (get_gimple_rhs_class (ops.code))
10140 case GIMPLE_TERNARY_RHS:
10141 ops.op2 = gimple_assign_rhs3 (g);
10142 /* Fallthru */
10143 case GIMPLE_BINARY_RHS:
10144 ops.op1 = gimple_assign_rhs2 (g);
10146 /* Try to expand conditonal compare. */
10147 if (targetm.gen_ccmp_first)
10149 gcc_checking_assert (targetm.gen_ccmp_next != NULL);
10150 r = expand_ccmp_expr (g, mode);
10151 if (r)
10152 break;
10154 /* Fallthru */
10155 case GIMPLE_UNARY_RHS:
10156 ops.op0 = gimple_assign_rhs1 (g);
10157 ops.type = TREE_TYPE (gimple_assign_lhs (g));
10158 ops.location = loc;
10159 r = expand_expr_real_2 (&ops, target, tmode, modifier);
10160 break;
10161 case GIMPLE_SINGLE_RHS:
10163 r = expand_expr_real (gimple_assign_rhs1 (g), target,
10164 tmode, modifier, alt_rtl,
10165 inner_reference_p);
10166 break;
10168 default:
10169 gcc_unreachable ();
10171 set_curr_insn_location (saved_loc);
10172 if (REG_P (r) && !REG_EXPR (r))
10173 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp), r);
10174 return r;
10177 ssa_name = exp;
10178 decl_rtl = get_rtx_for_ssa_name (ssa_name);
10179 exp = SSA_NAME_VAR (ssa_name);
10180 goto expand_decl_rtl;
10182 case PARM_DECL:
10183 case VAR_DECL:
10184 /* If a static var's type was incomplete when the decl was written,
10185 but the type is complete now, lay out the decl now. */
10186 if (DECL_SIZE (exp) == 0
10187 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
10188 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
10189 layout_decl (exp, 0);
10191 /* fall through */
10193 case FUNCTION_DECL:
10194 case RESULT_DECL:
10195 decl_rtl = DECL_RTL (exp);
10196 expand_decl_rtl:
10197 gcc_assert (decl_rtl);
10199 /* DECL_MODE might change when TYPE_MODE depends on attribute target
10200 settings for VECTOR_TYPE_P that might switch for the function. */
10201 if (currently_expanding_to_rtl
10202 && code == VAR_DECL && MEM_P (decl_rtl)
10203 && VECTOR_TYPE_P (type) && exp && DECL_MODE (exp) != mode)
10204 decl_rtl = change_address (decl_rtl, TYPE_MODE (type), 0);
10205 else
10206 decl_rtl = copy_rtx (decl_rtl);
10208 /* Record writes to register variables. */
10209 if (modifier == EXPAND_WRITE
10210 && REG_P (decl_rtl)
10211 && HARD_REGISTER_P (decl_rtl))
10212 add_to_hard_reg_set (&crtl->asm_clobbers,
10213 GET_MODE (decl_rtl), REGNO (decl_rtl));
10215 /* Ensure variable marked as used even if it doesn't go through
10216 a parser. If it hasn't be used yet, write out an external
10217 definition. */
10218 if (exp)
10219 TREE_USED (exp) = 1;
10221 /* Show we haven't gotten RTL for this yet. */
10222 temp = 0;
10224 /* Variables inherited from containing functions should have
10225 been lowered by this point. */
10226 if (exp)
10227 context = decl_function_context (exp);
10228 gcc_assert (!exp
10229 || SCOPE_FILE_SCOPE_P (context)
10230 || context == current_function_decl
10231 || TREE_STATIC (exp)
10232 || DECL_EXTERNAL (exp)
10233 /* ??? C++ creates functions that are not TREE_STATIC. */
10234 || TREE_CODE (exp) == FUNCTION_DECL);
10236 /* This is the case of an array whose size is to be determined
10237 from its initializer, while the initializer is still being parsed.
10238 ??? We aren't parsing while expanding anymore. */
10240 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
10241 temp = validize_mem (decl_rtl);
10243 /* If DECL_RTL is memory, we are in the normal case and the
10244 address is not valid, get the address into a register. */
10246 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
10248 if (alt_rtl)
10249 *alt_rtl = decl_rtl;
10250 decl_rtl = use_anchored_address (decl_rtl);
10251 if (modifier != EXPAND_CONST_ADDRESS
10252 && modifier != EXPAND_SUM
10253 && !memory_address_addr_space_p (exp ? DECL_MODE (exp)
10254 : GET_MODE (decl_rtl),
10255 XEXP (decl_rtl, 0),
10256 MEM_ADDR_SPACE (decl_rtl)))
10257 temp = replace_equiv_address (decl_rtl,
10258 copy_rtx (XEXP (decl_rtl, 0)));
10261 /* If we got something, return it. But first, set the alignment
10262 if the address is a register. */
10263 if (temp != 0)
10265 if (exp && MEM_P (temp) && REG_P (XEXP (temp, 0)))
10266 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
10268 else if (MEM_P (decl_rtl))
10269 temp = decl_rtl;
10271 if (temp != 0)
10273 if (MEM_P (temp)
10274 && modifier != EXPAND_WRITE
10275 && modifier != EXPAND_MEMORY
10276 && modifier != EXPAND_INITIALIZER
10277 && modifier != EXPAND_CONST_ADDRESS
10278 && modifier != EXPAND_SUM
10279 && !inner_reference_p
10280 && mode != BLKmode
10281 && MEM_ALIGN (temp) < GET_MODE_ALIGNMENT (mode))
10282 temp = expand_misaligned_mem_ref (temp, mode, unsignedp,
10283 MEM_ALIGN (temp), NULL_RTX, NULL);
10285 return temp;
10288 if (exp)
10289 dmode = DECL_MODE (exp);
10290 else
10291 dmode = TYPE_MODE (TREE_TYPE (ssa_name));
10293 /* If the mode of DECL_RTL does not match that of the decl,
10294 there are two cases: we are dealing with a BLKmode value
10295 that is returned in a register, or we are dealing with
10296 a promoted value. In the latter case, return a SUBREG
10297 of the wanted mode, but mark it so that we know that it
10298 was already extended. */
10299 if (REG_P (decl_rtl)
10300 && dmode != BLKmode
10301 && GET_MODE (decl_rtl) != dmode)
10303 machine_mode pmode;
10305 /* Get the signedness to be used for this variable. Ensure we get
10306 the same mode we got when the variable was declared. */
10307 if (code != SSA_NAME)
10308 pmode = promote_decl_mode (exp, &unsignedp);
10309 else if ((g = SSA_NAME_DEF_STMT (ssa_name))
10310 && gimple_code (g) == GIMPLE_CALL
10311 && !gimple_call_internal_p (g))
10312 pmode = promote_function_mode (type, mode, &unsignedp,
10313 gimple_call_fntype (g),
10315 else
10316 pmode = promote_ssa_mode (ssa_name, &unsignedp);
10317 gcc_assert (GET_MODE (decl_rtl) == pmode);
10319 temp = gen_lowpart_SUBREG (mode, decl_rtl);
10320 SUBREG_PROMOTED_VAR_P (temp) = 1;
10321 SUBREG_PROMOTED_SET (temp, unsignedp);
10322 return temp;
10325 return decl_rtl;
10327 case INTEGER_CST:
10329 /* Given that TYPE_PRECISION (type) is not always equal to
10330 GET_MODE_PRECISION (TYPE_MODE (type)), we need to extend from
10331 the former to the latter according to the signedness of the
10332 type. */
10333 scalar_int_mode int_mode = SCALAR_INT_TYPE_MODE (type);
10334 temp = immed_wide_int_const
10335 (wi::to_wide (exp, GET_MODE_PRECISION (int_mode)), int_mode);
10336 return temp;
10339 case VECTOR_CST:
10341 tree tmp = NULL_TREE;
10342 if (VECTOR_MODE_P (mode))
10343 return const_vector_from_tree (exp);
10344 scalar_int_mode int_mode;
10345 if (is_int_mode (mode, &int_mode))
10347 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp)))
10348 return const_scalar_mask_from_tree (int_mode, exp);
10349 else
10351 tree type_for_mode
10352 = lang_hooks.types.type_for_mode (int_mode, 1);
10353 if (type_for_mode)
10354 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR,
10355 type_for_mode, exp);
10358 if (!tmp)
10360 vec<constructor_elt, va_gc> *v;
10361 /* Constructors need to be fixed-length. FIXME. */
10362 unsigned int nunits = VECTOR_CST_NELTS (exp).to_constant ();
10363 vec_alloc (v, nunits);
10364 for (unsigned int i = 0; i < nunits; ++i)
10365 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, VECTOR_CST_ELT (exp, i));
10366 tmp = build_constructor (type, v);
10368 return expand_expr (tmp, ignore ? const0_rtx : target,
10369 tmode, modifier);
10372 case CONST_DECL:
10373 if (modifier == EXPAND_WRITE)
10375 /* Writing into CONST_DECL is always invalid, but handle it
10376 gracefully. */
10377 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
10378 scalar_int_mode address_mode = targetm.addr_space.address_mode (as);
10379 op0 = expand_expr_addr_expr_1 (exp, NULL_RTX, address_mode,
10380 EXPAND_NORMAL, as);
10381 op0 = memory_address_addr_space (mode, op0, as);
10382 temp = gen_rtx_MEM (mode, op0);
10383 set_mem_addr_space (temp, as);
10384 return temp;
10386 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
10388 case REAL_CST:
10389 /* If optimized, generate immediate CONST_DOUBLE
10390 which will be turned into memory by reload if necessary.
10392 We used to force a register so that loop.c could see it. But
10393 this does not allow gen_* patterns to perform optimizations with
10394 the constants. It also produces two insns in cases like "x = 1.0;".
10395 On most machines, floating-point constants are not permitted in
10396 many insns, so we'd end up copying it to a register in any case.
10398 Now, we do the copying in expand_binop, if appropriate. */
10399 return const_double_from_real_value (TREE_REAL_CST (exp),
10400 TYPE_MODE (TREE_TYPE (exp)));
10402 case FIXED_CST:
10403 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
10404 TYPE_MODE (TREE_TYPE (exp)));
10406 case COMPLEX_CST:
10407 /* Handle evaluating a complex constant in a CONCAT target. */
10408 if (original_target && GET_CODE (original_target) == CONCAT)
10410 rtx rtarg, itarg;
10412 mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
10413 rtarg = XEXP (original_target, 0);
10414 itarg = XEXP (original_target, 1);
10416 /* Move the real and imaginary parts separately. */
10417 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
10418 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
10420 if (op0 != rtarg)
10421 emit_move_insn (rtarg, op0);
10422 if (op1 != itarg)
10423 emit_move_insn (itarg, op1);
10425 return original_target;
10428 /* fall through */
10430 case STRING_CST:
10431 temp = expand_expr_constant (exp, 1, modifier);
10433 /* temp contains a constant address.
10434 On RISC machines where a constant address isn't valid,
10435 make some insns to get that address into a register. */
10436 if (modifier != EXPAND_CONST_ADDRESS
10437 && modifier != EXPAND_INITIALIZER
10438 && modifier != EXPAND_SUM
10439 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
10440 MEM_ADDR_SPACE (temp)))
10441 return replace_equiv_address (temp,
10442 copy_rtx (XEXP (temp, 0)));
10443 return temp;
10445 case POLY_INT_CST:
10446 return immed_wide_int_const (poly_int_cst_value (exp), mode);
10448 case SAVE_EXPR:
10450 tree val = treeop0;
10451 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl,
10452 inner_reference_p);
10454 if (!SAVE_EXPR_RESOLVED_P (exp))
10456 /* We can indeed still hit this case, typically via builtin
10457 expanders calling save_expr immediately before expanding
10458 something. Assume this means that we only have to deal
10459 with non-BLKmode values. */
10460 gcc_assert (GET_MODE (ret) != BLKmode);
10462 val = build_decl (curr_insn_location (),
10463 VAR_DECL, NULL, TREE_TYPE (exp));
10464 DECL_ARTIFICIAL (val) = 1;
10465 DECL_IGNORED_P (val) = 1;
10466 treeop0 = val;
10467 TREE_OPERAND (exp, 0) = treeop0;
10468 SAVE_EXPR_RESOLVED_P (exp) = 1;
10470 if (!CONSTANT_P (ret))
10471 ret = copy_to_reg (ret);
10472 SET_DECL_RTL (val, ret);
10475 return ret;
10479 case CONSTRUCTOR:
10480 /* If we don't need the result, just ensure we evaluate any
10481 subexpressions. */
10482 if (ignore)
10484 unsigned HOST_WIDE_INT idx;
10485 tree value;
10487 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
10488 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
10490 return const0_rtx;
10493 return expand_constructor (exp, target, modifier, false);
10495 case TARGET_MEM_REF:
10497 addr_space_t as
10498 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
10499 unsigned int align;
10501 op0 = addr_for_mem_ref (exp, as, true);
10502 op0 = memory_address_addr_space (mode, op0, as);
10503 temp = gen_rtx_MEM (mode, op0);
10504 set_mem_attributes (temp, exp, 0);
10505 set_mem_addr_space (temp, as);
10506 align = get_object_alignment (exp);
10507 if (modifier != EXPAND_WRITE
10508 && modifier != EXPAND_MEMORY
10509 && mode != BLKmode
10510 && align < GET_MODE_ALIGNMENT (mode))
10511 temp = expand_misaligned_mem_ref (temp, mode, unsignedp,
10512 align, NULL_RTX, NULL);
10513 return temp;
10516 case MEM_REF:
10518 const bool reverse = REF_REVERSE_STORAGE_ORDER (exp);
10519 addr_space_t as
10520 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
10521 machine_mode address_mode;
10522 tree base = TREE_OPERAND (exp, 0);
10523 gimple *def_stmt;
10524 unsigned align;
10525 /* Handle expansion of non-aliased memory with non-BLKmode. That
10526 might end up in a register. */
10527 if (mem_ref_refers_to_non_mem_p (exp))
10529 poly_int64 offset = mem_ref_offset (exp).force_shwi ();
10530 base = TREE_OPERAND (base, 0);
10531 poly_uint64 type_size;
10532 if (known_eq (offset, 0)
10533 && !reverse
10534 && poly_int_tree_p (TYPE_SIZE (type), &type_size)
10535 && known_eq (GET_MODE_BITSIZE (DECL_MODE (base)), type_size))
10536 return expand_expr (build1 (VIEW_CONVERT_EXPR, type, base),
10537 target, tmode, modifier);
10538 if (TYPE_MODE (type) == BLKmode)
10540 temp = assign_stack_temp (DECL_MODE (base),
10541 GET_MODE_SIZE (DECL_MODE (base)));
10542 store_expr (base, temp, 0, false, false);
10543 temp = adjust_address (temp, BLKmode, offset);
10544 set_mem_size (temp, int_size_in_bytes (type));
10545 return temp;
10547 exp = build3 (BIT_FIELD_REF, type, base, TYPE_SIZE (type),
10548 bitsize_int (offset * BITS_PER_UNIT));
10549 REF_REVERSE_STORAGE_ORDER (exp) = reverse;
10550 return expand_expr (exp, target, tmode, modifier);
10552 address_mode = targetm.addr_space.address_mode (as);
10553 if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
10555 tree mask = gimple_assign_rhs2 (def_stmt);
10556 base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
10557 gimple_assign_rhs1 (def_stmt), mask);
10558 TREE_OPERAND (exp, 0) = base;
10560 align = get_object_alignment (exp);
10561 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM);
10562 op0 = memory_address_addr_space (mode, op0, as);
10563 if (!integer_zerop (TREE_OPERAND (exp, 1)))
10565 rtx off = immed_wide_int_const (mem_ref_offset (exp), address_mode);
10566 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
10567 op0 = memory_address_addr_space (mode, op0, as);
10569 temp = gen_rtx_MEM (mode, op0);
10570 set_mem_attributes (temp, exp, 0);
10571 set_mem_addr_space (temp, as);
10572 if (TREE_THIS_VOLATILE (exp))
10573 MEM_VOLATILE_P (temp) = 1;
10574 if (modifier != EXPAND_WRITE
10575 && modifier != EXPAND_MEMORY
10576 && !inner_reference_p
10577 && mode != BLKmode
10578 && align < GET_MODE_ALIGNMENT (mode))
10579 temp = expand_misaligned_mem_ref (temp, mode, unsignedp, align,
10580 modifier == EXPAND_STACK_PARM
10581 ? NULL_RTX : target, alt_rtl);
10582 if (reverse
10583 && modifier != EXPAND_MEMORY
10584 && modifier != EXPAND_WRITE)
10585 temp = flip_storage_order (mode, temp);
10586 return temp;
10589 case ARRAY_REF:
10592 tree array = treeop0;
10593 tree index = treeop1;
10594 tree init;
10596 /* Fold an expression like: "foo"[2].
10597 This is not done in fold so it won't happen inside &.
10598 Don't fold if this is for wide characters since it's too
10599 difficult to do correctly and this is a very rare case. */
10601 if (modifier != EXPAND_CONST_ADDRESS
10602 && modifier != EXPAND_INITIALIZER
10603 && modifier != EXPAND_MEMORY)
10605 tree t = fold_read_from_constant_string (exp);
10607 if (t)
10608 return expand_expr (t, target, tmode, modifier);
10611 /* If this is a constant index into a constant array,
10612 just get the value from the array. Handle both the cases when
10613 we have an explicit constructor and when our operand is a variable
10614 that was declared const. */
10616 if (modifier != EXPAND_CONST_ADDRESS
10617 && modifier != EXPAND_INITIALIZER
10618 && modifier != EXPAND_MEMORY
10619 && TREE_CODE (array) == CONSTRUCTOR
10620 && ! TREE_SIDE_EFFECTS (array)
10621 && TREE_CODE (index) == INTEGER_CST)
10623 unsigned HOST_WIDE_INT ix;
10624 tree field, value;
10626 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
10627 field, value)
10628 if (tree_int_cst_equal (field, index))
10630 if (!TREE_SIDE_EFFECTS (value))
10631 return expand_expr (fold (value), target, tmode, modifier);
10632 break;
10636 else if (optimize >= 1
10637 && modifier != EXPAND_CONST_ADDRESS
10638 && modifier != EXPAND_INITIALIZER
10639 && modifier != EXPAND_MEMORY
10640 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
10641 && TREE_CODE (index) == INTEGER_CST
10642 && (VAR_P (array) || TREE_CODE (array) == CONST_DECL)
10643 && (init = ctor_for_folding (array)) != error_mark_node)
10645 if (init == NULL_TREE)
10647 tree value = build_zero_cst (type);
10648 if (TREE_CODE (value) == CONSTRUCTOR)
10650 /* If VALUE is a CONSTRUCTOR, this optimization is only
10651 useful if this doesn't store the CONSTRUCTOR into
10652 memory. If it does, it is more efficient to just
10653 load the data from the array directly. */
10654 rtx ret = expand_constructor (value, target,
10655 modifier, true);
10656 if (ret == NULL_RTX)
10657 value = NULL_TREE;
10660 if (value)
10661 return expand_expr (value, target, tmode, modifier);
10663 else if (TREE_CODE (init) == CONSTRUCTOR)
10665 unsigned HOST_WIDE_INT ix;
10666 tree field, value;
10668 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
10669 field, value)
10670 if (tree_int_cst_equal (field, index))
10672 if (TREE_SIDE_EFFECTS (value))
10673 break;
10675 if (TREE_CODE (value) == CONSTRUCTOR)
10677 /* If VALUE is a CONSTRUCTOR, this
10678 optimization is only useful if
10679 this doesn't store the CONSTRUCTOR
10680 into memory. If it does, it is more
10681 efficient to just load the data from
10682 the array directly. */
10683 rtx ret = expand_constructor (value, target,
10684 modifier, true);
10685 if (ret == NULL_RTX)
10686 break;
10689 return
10690 expand_expr (fold (value), target, tmode, modifier);
10693 else if (TREE_CODE (init) == STRING_CST)
10695 tree low_bound = array_ref_low_bound (exp);
10696 tree index1 = fold_convert_loc (loc, sizetype, treeop1);
10698 /* Optimize the special case of a zero lower bound.
10700 We convert the lower bound to sizetype to avoid problems
10701 with constant folding. E.g. suppose the lower bound is
10702 1 and its mode is QI. Without the conversion
10703 (ARRAY + (INDEX - (unsigned char)1))
10704 becomes
10705 (ARRAY + (-(unsigned char)1) + INDEX)
10706 which becomes
10707 (ARRAY + 255 + INDEX). Oops! */
10708 if (!integer_zerop (low_bound))
10709 index1 = size_diffop_loc (loc, index1,
10710 fold_convert_loc (loc, sizetype,
10711 low_bound));
10713 if (tree_fits_uhwi_p (index1)
10714 && compare_tree_int (index1, TREE_STRING_LENGTH (init)) < 0)
10716 tree char_type = TREE_TYPE (TREE_TYPE (init));
10717 scalar_int_mode char_mode;
10719 if (is_int_mode (TYPE_MODE (char_type), &char_mode)
10720 && GET_MODE_SIZE (char_mode) == 1)
10721 return gen_int_mode (TREE_STRING_POINTER (init)
10722 [TREE_INT_CST_LOW (index1)],
10723 char_mode);
10728 goto normal_inner_ref;
10730 case COMPONENT_REF:
10731 /* If the operand is a CONSTRUCTOR, we can just extract the
10732 appropriate field if it is present. */
10733 if (TREE_CODE (treeop0) == CONSTRUCTOR)
10735 unsigned HOST_WIDE_INT idx;
10736 tree field, value;
10737 scalar_int_mode field_mode;
10739 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
10740 idx, field, value)
10741 if (field == treeop1
10742 /* We can normally use the value of the field in the
10743 CONSTRUCTOR. However, if this is a bitfield in
10744 an integral mode that we can fit in a HOST_WIDE_INT,
10745 we must mask only the number of bits in the bitfield,
10746 since this is done implicitly by the constructor. If
10747 the bitfield does not meet either of those conditions,
10748 we can't do this optimization. */
10749 && (! DECL_BIT_FIELD (field)
10750 || (is_int_mode (DECL_MODE (field), &field_mode)
10751 && (GET_MODE_PRECISION (field_mode)
10752 <= HOST_BITS_PER_WIDE_INT))))
10754 if (DECL_BIT_FIELD (field)
10755 && modifier == EXPAND_STACK_PARM)
10756 target = 0;
10757 op0 = expand_expr (value, target, tmode, modifier);
10758 if (DECL_BIT_FIELD (field))
10760 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
10761 scalar_int_mode imode
10762 = SCALAR_INT_TYPE_MODE (TREE_TYPE (field));
10764 if (TYPE_UNSIGNED (TREE_TYPE (field)))
10766 op1 = gen_int_mode ((HOST_WIDE_INT_1 << bitsize) - 1,
10767 imode);
10768 op0 = expand_and (imode, op0, op1, target);
10770 else
10772 int count = GET_MODE_PRECISION (imode) - bitsize;
10774 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
10775 target, 0);
10776 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
10777 target, 0);
10781 return op0;
10784 goto normal_inner_ref;
10786 case BIT_FIELD_REF:
10787 case ARRAY_RANGE_REF:
10788 normal_inner_ref:
10790 machine_mode mode1, mode2;
10791 poly_int64 bitsize, bitpos, bytepos;
10792 tree offset;
10793 int reversep, volatilep = 0, must_force_mem;
10794 tree tem
10795 = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
10796 &unsignedp, &reversep, &volatilep);
10797 rtx orig_op0, memloc;
10798 bool clear_mem_expr = false;
10800 /* If we got back the original object, something is wrong. Perhaps
10801 we are evaluating an expression too early. In any event, don't
10802 infinitely recurse. */
10803 gcc_assert (tem != exp);
10805 /* If TEM's type is a union of variable size, pass TARGET to the inner
10806 computation, since it will need a temporary and TARGET is known
10807 to have to do. This occurs in unchecked conversion in Ada. */
10808 orig_op0 = op0
10809 = expand_expr_real (tem,
10810 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
10811 && COMPLETE_TYPE_P (TREE_TYPE (tem))
10812 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
10813 != INTEGER_CST)
10814 && modifier != EXPAND_STACK_PARM
10815 ? target : NULL_RTX),
10816 VOIDmode,
10817 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
10818 NULL, true);
10820 /* If the field has a mode, we want to access it in the
10821 field's mode, not the computed mode.
10822 If a MEM has VOIDmode (external with incomplete type),
10823 use BLKmode for it instead. */
10824 if (MEM_P (op0))
10826 if (mode1 != VOIDmode)
10827 op0 = adjust_address (op0, mode1, 0);
10828 else if (GET_MODE (op0) == VOIDmode)
10829 op0 = adjust_address (op0, BLKmode, 0);
10832 mode2
10833 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
10835 /* Make sure bitpos is not negative, it can wreak havoc later. */
10836 if (maybe_lt (bitpos, 0))
10838 gcc_checking_assert (offset == NULL_TREE);
10839 offset = size_int (bits_to_bytes_round_down (bitpos));
10840 bitpos = num_trailing_bits (bitpos);
10843 /* If we have either an offset, a BLKmode result, or a reference
10844 outside the underlying object, we must force it to memory.
10845 Such a case can occur in Ada if we have unchecked conversion
10846 of an expression from a scalar type to an aggregate type or
10847 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
10848 passed a partially uninitialized object or a view-conversion
10849 to a larger size. */
10850 must_force_mem = (offset
10851 || mode1 == BLKmode
10852 || (mode == BLKmode
10853 && !int_mode_for_size (bitsize, 1).exists ())
10854 || maybe_gt (bitpos + bitsize,
10855 GET_MODE_BITSIZE (mode2)));
10857 /* Handle CONCAT first. */
10858 if (GET_CODE (op0) == CONCAT && !must_force_mem)
10860 if (known_eq (bitpos, 0)
10861 && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (op0)))
10862 && COMPLEX_MODE_P (mode1)
10863 && COMPLEX_MODE_P (GET_MODE (op0))
10864 && (GET_MODE_PRECISION (GET_MODE_INNER (mode1))
10865 == GET_MODE_PRECISION (GET_MODE_INNER (GET_MODE (op0)))))
10867 if (reversep)
10868 op0 = flip_storage_order (GET_MODE (op0), op0);
10869 if (mode1 != GET_MODE (op0))
10871 rtx parts[2];
10872 for (int i = 0; i < 2; i++)
10874 rtx op = read_complex_part (op0, i != 0);
10875 if (GET_CODE (op) == SUBREG)
10876 op = force_reg (GET_MODE (op), op);
10877 temp = gen_lowpart_common (GET_MODE_INNER (mode1), op);
10878 if (temp)
10879 op = temp;
10880 else
10882 if (!REG_P (op) && !MEM_P (op))
10883 op = force_reg (GET_MODE (op), op);
10884 op = gen_lowpart (GET_MODE_INNER (mode1), op);
10886 parts[i] = op;
10888 op0 = gen_rtx_CONCAT (mode1, parts[0], parts[1]);
10890 return op0;
10892 if (known_eq (bitpos, 0)
10893 && known_eq (bitsize,
10894 GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))))
10895 && maybe_ne (bitsize, 0))
10897 op0 = XEXP (op0, 0);
10898 mode2 = GET_MODE (op0);
10900 else if (known_eq (bitpos,
10901 GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))))
10902 && known_eq (bitsize,
10903 GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1))))
10904 && maybe_ne (bitpos, 0)
10905 && maybe_ne (bitsize, 0))
10907 op0 = XEXP (op0, 1);
10908 bitpos = 0;
10909 mode2 = GET_MODE (op0);
10911 else
10912 /* Otherwise force into memory. */
10913 must_force_mem = 1;
10916 /* If this is a constant, put it in a register if it is a legitimate
10917 constant and we don't need a memory reference. */
10918 if (CONSTANT_P (op0)
10919 && mode2 != BLKmode
10920 && targetm.legitimate_constant_p (mode2, op0)
10921 && !must_force_mem)
10922 op0 = force_reg (mode2, op0);
10924 /* Otherwise, if this is a constant, try to force it to the constant
10925 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
10926 is a legitimate constant. */
10927 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
10928 op0 = validize_mem (memloc);
10930 /* Otherwise, if this is a constant or the object is not in memory
10931 and need be, put it there. */
10932 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
10934 memloc = assign_temp (TREE_TYPE (tem), 1, 1);
10935 emit_move_insn (memloc, op0);
10936 op0 = memloc;
10937 clear_mem_expr = true;
10940 if (offset)
10942 machine_mode address_mode;
10943 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
10944 EXPAND_SUM);
10946 gcc_assert (MEM_P (op0));
10948 address_mode = get_address_mode (op0);
10949 if (GET_MODE (offset_rtx) != address_mode)
10951 /* We cannot be sure that the RTL in offset_rtx is valid outside
10952 of a memory address context, so force it into a register
10953 before attempting to convert it to the desired mode. */
10954 offset_rtx = force_operand (offset_rtx, NULL_RTX);
10955 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
10958 /* See the comment in expand_assignment for the rationale. */
10959 if (mode1 != VOIDmode
10960 && maybe_ne (bitpos, 0)
10961 && maybe_gt (bitsize, 0)
10962 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
10963 && multiple_p (bitpos, bitsize)
10964 && multiple_p (bitsize, GET_MODE_ALIGNMENT (mode1))
10965 && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode1))
10967 op0 = adjust_address (op0, mode1, bytepos);
10968 bitpos = 0;
10971 op0 = offset_address (op0, offset_rtx,
10972 highest_pow2_factor (offset));
10975 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
10976 record its alignment as BIGGEST_ALIGNMENT. */
10977 if (MEM_P (op0)
10978 && known_eq (bitpos, 0)
10979 && offset != 0
10980 && is_aligning_offset (offset, tem))
10981 set_mem_align (op0, BIGGEST_ALIGNMENT);
10983 /* Don't forget about volatility even if this is a bitfield. */
10984 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
10986 if (op0 == orig_op0)
10987 op0 = copy_rtx (op0);
10989 MEM_VOLATILE_P (op0) = 1;
10992 if (MEM_P (op0) && TREE_CODE (tem) == FUNCTION_DECL)
10994 if (op0 == orig_op0)
10995 op0 = copy_rtx (op0);
10997 set_mem_align (op0, BITS_PER_UNIT);
11000 /* In cases where an aligned union has an unaligned object
11001 as a field, we might be extracting a BLKmode value from
11002 an integer-mode (e.g., SImode) object. Handle this case
11003 by doing the extract into an object as wide as the field
11004 (which we know to be the width of a basic mode), then
11005 storing into memory, and changing the mode to BLKmode. */
11006 if (mode1 == VOIDmode
11007 || REG_P (op0) || GET_CODE (op0) == SUBREG
11008 || (mode1 != BLKmode && ! direct_load[(int) mode1]
11009 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
11010 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
11011 && modifier != EXPAND_CONST_ADDRESS
11012 && modifier != EXPAND_INITIALIZER
11013 && modifier != EXPAND_MEMORY)
11014 /* If the bitfield is volatile and the bitsize
11015 is narrower than the access size of the bitfield,
11016 we need to extract bitfields from the access. */
11017 || (volatilep && TREE_CODE (exp) == COMPONENT_REF
11018 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (exp, 1))
11019 && mode1 != BLKmode
11020 && maybe_lt (bitsize, GET_MODE_SIZE (mode1) * BITS_PER_UNIT))
11021 /* If the field isn't aligned enough to fetch as a memref,
11022 fetch it as a bit field. */
11023 || (mode1 != BLKmode
11024 && (((MEM_P (op0)
11025 ? MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
11026 || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode1))
11027 : TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
11028 || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode)))
11029 && modifier != EXPAND_MEMORY
11030 && ((modifier == EXPAND_CONST_ADDRESS
11031 || modifier == EXPAND_INITIALIZER)
11032 ? STRICT_ALIGNMENT
11033 : targetm.slow_unaligned_access (mode1,
11034 MEM_ALIGN (op0))))
11035 || !multiple_p (bitpos, BITS_PER_UNIT)))
11036 /* If the type and the field are a constant size and the
11037 size of the type isn't the same size as the bitfield,
11038 we must use bitfield operations. */
11039 || (known_size_p (bitsize)
11040 && TYPE_SIZE (TREE_TYPE (exp))
11041 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp)))
11042 && maybe_ne (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp))),
11043 bitsize)))
11045 machine_mode ext_mode = mode;
11047 if (ext_mode == BLKmode
11048 && ! (target != 0 && MEM_P (op0)
11049 && MEM_P (target)
11050 && multiple_p (bitpos, BITS_PER_UNIT)))
11051 ext_mode = int_mode_for_size (bitsize, 1).else_blk ();
11053 if (ext_mode == BLKmode)
11055 if (target == 0)
11056 target = assign_temp (type, 1, 1);
11058 /* ??? Unlike the similar test a few lines below, this one is
11059 very likely obsolete. */
11060 if (known_eq (bitsize, 0))
11061 return target;
11063 /* In this case, BITPOS must start at a byte boundary and
11064 TARGET, if specified, must be a MEM. */
11065 gcc_assert (MEM_P (op0)
11066 && (!target || MEM_P (target)));
11068 bytepos = exact_div (bitpos, BITS_PER_UNIT);
11069 poly_int64 bytesize = bits_to_bytes_round_up (bitsize);
11070 emit_block_move (target,
11071 adjust_address (op0, VOIDmode, bytepos),
11072 gen_int_mode (bytesize, Pmode),
11073 (modifier == EXPAND_STACK_PARM
11074 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
11076 return target;
11079 /* If we have nothing to extract, the result will be 0 for targets
11080 with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise. Always
11081 return 0 for the sake of consistency, as reading a zero-sized
11082 bitfield is valid in Ada and the value is fully specified. */
11083 if (known_eq (bitsize, 0))
11084 return const0_rtx;
11086 op0 = validize_mem (op0);
11088 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
11089 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
11091 /* If the result has aggregate type and the extraction is done in
11092 an integral mode, then the field may be not aligned on a byte
11093 boundary; in this case, if it has reverse storage order, it
11094 needs to be extracted as a scalar field with reverse storage
11095 order and put back into memory order afterwards. */
11096 if (AGGREGATE_TYPE_P (type)
11097 && GET_MODE_CLASS (ext_mode) == MODE_INT)
11098 reversep = TYPE_REVERSE_STORAGE_ORDER (type);
11100 gcc_checking_assert (known_ge (bitpos, 0));
11101 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
11102 (modifier == EXPAND_STACK_PARM
11103 ? NULL_RTX : target),
11104 ext_mode, ext_mode, reversep, alt_rtl);
11106 /* If the result has aggregate type and the mode of OP0 is an
11107 integral mode then, if BITSIZE is narrower than this mode
11108 and this is for big-endian data, we must put the field
11109 into the high-order bits. And we must also put it back
11110 into memory order if it has been previously reversed. */
11111 scalar_int_mode op0_mode;
11112 if (AGGREGATE_TYPE_P (type)
11113 && is_int_mode (GET_MODE (op0), &op0_mode))
11115 HOST_WIDE_INT size = GET_MODE_BITSIZE (op0_mode);
11117 gcc_checking_assert (known_le (bitsize, size));
11118 if (maybe_lt (bitsize, size)
11119 && reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
11120 op0 = expand_shift (LSHIFT_EXPR, op0_mode, op0,
11121 size - bitsize, op0, 1);
11123 if (reversep)
11124 op0 = flip_storage_order (op0_mode, op0);
11127 /* If the result type is BLKmode, store the data into a temporary
11128 of the appropriate type, but with the mode corresponding to the
11129 mode for the data we have (op0's mode). */
11130 if (mode == BLKmode)
11132 rtx new_rtx
11133 = assign_stack_temp_for_type (ext_mode,
11134 GET_MODE_BITSIZE (ext_mode),
11135 type);
11136 emit_move_insn (new_rtx, op0);
11137 op0 = copy_rtx (new_rtx);
11138 PUT_MODE (op0, BLKmode);
11141 return op0;
11144 /* If the result is BLKmode, use that to access the object
11145 now as well. */
11146 if (mode == BLKmode)
11147 mode1 = BLKmode;
11149 /* Get a reference to just this component. */
11150 bytepos = bits_to_bytes_round_down (bitpos);
11151 if (modifier == EXPAND_CONST_ADDRESS
11152 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
11153 op0 = adjust_address_nv (op0, mode1, bytepos);
11154 else
11155 op0 = adjust_address (op0, mode1, bytepos);
11157 if (op0 == orig_op0)
11158 op0 = copy_rtx (op0);
11160 /* Don't set memory attributes if the base expression is
11161 SSA_NAME that got expanded as a MEM or a CONSTANT. In that case,
11162 we should just honor its original memory attributes. */
11163 if (!(TREE_CODE (tem) == SSA_NAME
11164 && (MEM_P (orig_op0) || CONSTANT_P (orig_op0))))
11165 set_mem_attributes (op0, exp, 0);
11167 if (REG_P (XEXP (op0, 0)))
11168 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
11170 /* If op0 is a temporary because the original expressions was forced
11171 to memory, clear MEM_EXPR so that the original expression cannot
11172 be marked as addressable through MEM_EXPR of the temporary. */
11173 if (clear_mem_expr)
11174 set_mem_expr (op0, NULL_TREE);
11176 MEM_VOLATILE_P (op0) |= volatilep;
11178 if (reversep
11179 && modifier != EXPAND_MEMORY
11180 && modifier != EXPAND_WRITE)
11181 op0 = flip_storage_order (mode1, op0);
11183 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
11184 || modifier == EXPAND_CONST_ADDRESS
11185 || modifier == EXPAND_INITIALIZER)
11186 return op0;
11188 if (target == 0)
11189 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
11191 convert_move (target, op0, unsignedp);
11192 return target;
11195 case OBJ_TYPE_REF:
11196 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
11198 case CALL_EXPR:
11199 /* All valid uses of __builtin_va_arg_pack () are removed during
11200 inlining. */
11201 if (CALL_EXPR_VA_ARG_PACK (exp))
11202 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
11204 tree fndecl = get_callee_fndecl (exp), attr;
11206 if (fndecl
11207 /* Don't diagnose the error attribute in thunks, those are
11208 artificially created. */
11209 && !CALL_FROM_THUNK_P (exp)
11210 && (attr = lookup_attribute ("error",
11211 DECL_ATTRIBUTES (fndecl))) != NULL)
11213 const char *ident = lang_hooks.decl_printable_name (fndecl, 1);
11214 error ("%Kcall to %qs declared with attribute error: %s", exp,
11215 identifier_to_locale (ident),
11216 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
11218 if (fndecl
11219 /* Don't diagnose the warning attribute in thunks, those are
11220 artificially created. */
11221 && !CALL_FROM_THUNK_P (exp)
11222 && (attr = lookup_attribute ("warning",
11223 DECL_ATTRIBUTES (fndecl))) != NULL)
11225 const char *ident = lang_hooks.decl_printable_name (fndecl, 1);
11226 warning_at (tree_nonartificial_location (exp),
11227 OPT_Wattribute_warning,
11228 "%Kcall to %qs declared with attribute warning: %s",
11229 exp, identifier_to_locale (ident),
11230 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
11233 /* Check for a built-in function. */
11234 if (fndecl && fndecl_built_in_p (fndecl))
11236 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
11237 return expand_builtin (exp, target, subtarget, tmode, ignore);
11240 return expand_call (exp, target, ignore);
11242 case VIEW_CONVERT_EXPR:
11243 op0 = NULL_RTX;
11245 /* If we are converting to BLKmode, try to avoid an intermediate
11246 temporary by fetching an inner memory reference. */
11247 if (mode == BLKmode
11248 && poly_int_tree_p (TYPE_SIZE (type))
11249 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
11250 && handled_component_p (treeop0))
11252 machine_mode mode1;
11253 poly_int64 bitsize, bitpos, bytepos;
11254 tree offset;
11255 int reversep, volatilep = 0;
11256 tree tem
11257 = get_inner_reference (treeop0, &bitsize, &bitpos, &offset, &mode1,
11258 &unsignedp, &reversep, &volatilep);
11260 /* ??? We should work harder and deal with non-zero offsets. */
11261 if (!offset
11262 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
11263 && !reversep
11264 && known_size_p (bitsize)
11265 && known_eq (wi::to_poly_offset (TYPE_SIZE (type)), bitsize))
11267 /* See the normal_inner_ref case for the rationale. */
11268 rtx orig_op0
11269 = expand_expr_real (tem,
11270 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
11271 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
11272 != INTEGER_CST)
11273 && modifier != EXPAND_STACK_PARM
11274 ? target : NULL_RTX),
11275 VOIDmode,
11276 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
11277 NULL, true);
11279 if (MEM_P (orig_op0))
11281 op0 = orig_op0;
11283 /* Get a reference to just this component. */
11284 if (modifier == EXPAND_CONST_ADDRESS
11285 || modifier == EXPAND_SUM
11286 || modifier == EXPAND_INITIALIZER)
11287 op0 = adjust_address_nv (op0, mode, bytepos);
11288 else
11289 op0 = adjust_address (op0, mode, bytepos);
11291 if (op0 == orig_op0)
11292 op0 = copy_rtx (op0);
11294 set_mem_attributes (op0, treeop0, 0);
11295 if (REG_P (XEXP (op0, 0)))
11296 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
11298 MEM_VOLATILE_P (op0) |= volatilep;
11303 if (!op0)
11304 op0 = expand_expr_real (treeop0, NULL_RTX, VOIDmode, modifier,
11305 NULL, inner_reference_p);
11307 /* If the input and output modes are both the same, we are done. */
11308 if (mode == GET_MODE (op0))
11310 /* If neither mode is BLKmode, and both modes are the same size
11311 then we can use gen_lowpart. */
11312 else if (mode != BLKmode
11313 && GET_MODE (op0) != BLKmode
11314 && known_eq (GET_MODE_PRECISION (mode),
11315 GET_MODE_PRECISION (GET_MODE (op0)))
11316 && !COMPLEX_MODE_P (GET_MODE (op0)))
11318 if (GET_CODE (op0) == SUBREG)
11319 op0 = force_reg (GET_MODE (op0), op0);
11320 temp = gen_lowpart_common (mode, op0);
11321 if (temp)
11322 op0 = temp;
11323 else
11325 if (!REG_P (op0) && !MEM_P (op0))
11326 op0 = force_reg (GET_MODE (op0), op0);
11327 op0 = gen_lowpart (mode, op0);
11330 /* If both types are integral, convert from one mode to the other. */
11331 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
11332 op0 = convert_modes (mode, GET_MODE (op0), op0,
11333 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
11334 /* If the output type is a bit-field type, do an extraction. */
11335 else if (reduce_bit_field)
11336 return extract_bit_field (op0, TYPE_PRECISION (type), 0,
11337 TYPE_UNSIGNED (type), NULL_RTX,
11338 mode, mode, false, NULL);
11339 /* As a last resort, spill op0 to memory, and reload it in a
11340 different mode. */
11341 else if (!MEM_P (op0))
11343 /* If the operand is not a MEM, force it into memory. Since we
11344 are going to be changing the mode of the MEM, don't call
11345 force_const_mem for constants because we don't allow pool
11346 constants to change mode. */
11347 tree inner_type = TREE_TYPE (treeop0);
11349 gcc_assert (!TREE_ADDRESSABLE (exp));
11351 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
11352 target
11353 = assign_stack_temp_for_type
11354 (TYPE_MODE (inner_type),
11355 GET_MODE_SIZE (TYPE_MODE (inner_type)), inner_type);
11357 emit_move_insn (target, op0);
11358 op0 = target;
11361 /* If OP0 is (now) a MEM, we need to deal with alignment issues. If the
11362 output type is such that the operand is known to be aligned, indicate
11363 that it is. Otherwise, we need only be concerned about alignment for
11364 non-BLKmode results. */
11365 if (MEM_P (op0))
11367 enum insn_code icode;
11369 if (modifier != EXPAND_WRITE
11370 && modifier != EXPAND_MEMORY
11371 && !inner_reference_p
11372 && mode != BLKmode
11373 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
11375 /* If the target does have special handling for unaligned
11376 loads of mode then use them. */
11377 if ((icode = optab_handler (movmisalign_optab, mode))
11378 != CODE_FOR_nothing)
11380 rtx reg;
11382 op0 = adjust_address (op0, mode, 0);
11383 /* We've already validated the memory, and we're creating a
11384 new pseudo destination. The predicates really can't
11385 fail. */
11386 reg = gen_reg_rtx (mode);
11388 /* Nor can the insn generator. */
11389 rtx_insn *insn = GEN_FCN (icode) (reg, op0);
11390 emit_insn (insn);
11391 return reg;
11393 else if (STRICT_ALIGNMENT)
11395 poly_uint64 mode_size = GET_MODE_SIZE (mode);
11396 poly_uint64 temp_size = mode_size;
11397 if (GET_MODE (op0) != BLKmode)
11398 temp_size = upper_bound (temp_size,
11399 GET_MODE_SIZE (GET_MODE (op0)));
11400 rtx new_rtx
11401 = assign_stack_temp_for_type (mode, temp_size, type);
11402 rtx new_with_op0_mode
11403 = adjust_address (new_rtx, GET_MODE (op0), 0);
11405 gcc_assert (!TREE_ADDRESSABLE (exp));
11407 if (GET_MODE (op0) == BLKmode)
11409 rtx size_rtx = gen_int_mode (mode_size, Pmode);
11410 emit_block_move (new_with_op0_mode, op0, size_rtx,
11411 (modifier == EXPAND_STACK_PARM
11412 ? BLOCK_OP_CALL_PARM
11413 : BLOCK_OP_NORMAL));
11415 else
11416 emit_move_insn (new_with_op0_mode, op0);
11418 op0 = new_rtx;
11422 op0 = adjust_address (op0, mode, 0);
11425 return op0;
11427 case MODIFY_EXPR:
11429 tree lhs = treeop0;
11430 tree rhs = treeop1;
11431 gcc_assert (ignore);
11433 /* Check for |= or &= of a bitfield of size one into another bitfield
11434 of size 1. In this case, (unless we need the result of the
11435 assignment) we can do this more efficiently with a
11436 test followed by an assignment, if necessary.
11438 ??? At this point, we can't get a BIT_FIELD_REF here. But if
11439 things change so we do, this code should be enhanced to
11440 support it. */
11441 if (TREE_CODE (lhs) == COMPONENT_REF
11442 && (TREE_CODE (rhs) == BIT_IOR_EXPR
11443 || TREE_CODE (rhs) == BIT_AND_EXPR)
11444 && TREE_OPERAND (rhs, 0) == lhs
11445 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
11446 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
11447 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
11449 rtx_code_label *label = gen_label_rtx ();
11450 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
11451 profile_probability prob = profile_probability::uninitialized ();
11452 if (value)
11453 jumpifnot (TREE_OPERAND (rhs, 1), label, prob);
11454 else
11455 jumpif (TREE_OPERAND (rhs, 1), label, prob);
11456 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
11457 false);
11458 do_pending_stack_adjust ();
11459 emit_label (label);
11460 return const0_rtx;
11463 expand_assignment (lhs, rhs, false);
11464 return const0_rtx;
11467 case ADDR_EXPR:
11468 return expand_expr_addr_expr (exp, target, tmode, modifier);
11470 case REALPART_EXPR:
11471 op0 = expand_normal (treeop0);
11472 return read_complex_part (op0, false);
11474 case IMAGPART_EXPR:
11475 op0 = expand_normal (treeop0);
11476 return read_complex_part (op0, true);
11478 case RETURN_EXPR:
11479 case LABEL_EXPR:
11480 case GOTO_EXPR:
11481 case SWITCH_EXPR:
11482 case ASM_EXPR:
11483 /* Expanded in cfgexpand.c. */
11484 gcc_unreachable ();
11486 case TRY_CATCH_EXPR:
11487 case CATCH_EXPR:
11488 case EH_FILTER_EXPR:
11489 case TRY_FINALLY_EXPR:
11490 case EH_ELSE_EXPR:
11491 /* Lowered by tree-eh.c. */
11492 gcc_unreachable ();
11494 case WITH_CLEANUP_EXPR:
11495 case CLEANUP_POINT_EXPR:
11496 case TARGET_EXPR:
11497 case CASE_LABEL_EXPR:
11498 case VA_ARG_EXPR:
11499 case BIND_EXPR:
11500 case INIT_EXPR:
11501 case CONJ_EXPR:
11502 case COMPOUND_EXPR:
11503 case PREINCREMENT_EXPR:
11504 case PREDECREMENT_EXPR:
11505 case POSTINCREMENT_EXPR:
11506 case POSTDECREMENT_EXPR:
11507 case LOOP_EXPR:
11508 case EXIT_EXPR:
11509 case COMPOUND_LITERAL_EXPR:
11510 /* Lowered by gimplify.c. */
11511 gcc_unreachable ();
11513 case FDESC_EXPR:
11514 /* Function descriptors are not valid except for as
11515 initialization constants, and should not be expanded. */
11516 gcc_unreachable ();
11518 case WITH_SIZE_EXPR:
11519 /* WITH_SIZE_EXPR expands to its first argument. The caller should
11520 have pulled out the size to use in whatever context it needed. */
11521 return expand_expr_real (treeop0, original_target, tmode,
11522 modifier, alt_rtl, inner_reference_p);
11524 default:
11525 return expand_expr_real_2 (&ops, target, tmode, modifier);
11529 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
11530 signedness of TYPE), possibly returning the result in TARGET.
11531 TYPE is known to be a partial integer type. */
11532 static rtx
11533 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
11535 scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
11536 HOST_WIDE_INT prec = TYPE_PRECISION (type);
11537 gcc_assert ((GET_MODE (exp) == VOIDmode || GET_MODE (exp) == mode)
11538 && (!target || GET_MODE (target) == mode));
11540 /* For constant values, reduce using wide_int_to_tree. */
11541 if (poly_int_rtx_p (exp))
11543 auto value = wi::to_poly_wide (exp, mode);
11544 tree t = wide_int_to_tree (type, value);
11545 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
11547 else if (TYPE_UNSIGNED (type))
11549 rtx mask = immed_wide_int_const
11550 (wi::mask (prec, false, GET_MODE_PRECISION (mode)), mode);
11551 return expand_and (mode, exp, mask, target);
11553 else
11555 int count = GET_MODE_PRECISION (mode) - prec;
11556 exp = expand_shift (LSHIFT_EXPR, mode, exp, count, target, 0);
11557 return expand_shift (RSHIFT_EXPR, mode, exp, count, target, 0);
11561 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
11562 when applied to the address of EXP produces an address known to be
11563 aligned more than BIGGEST_ALIGNMENT. */
11565 static int
11566 is_aligning_offset (const_tree offset, const_tree exp)
11568 /* Strip off any conversions. */
11569 while (CONVERT_EXPR_P (offset))
11570 offset = TREE_OPERAND (offset, 0);
11572 /* We must now have a BIT_AND_EXPR with a constant that is one less than
11573 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
11574 if (TREE_CODE (offset) != BIT_AND_EXPR
11575 || !tree_fits_uhwi_p (TREE_OPERAND (offset, 1))
11576 || compare_tree_int (TREE_OPERAND (offset, 1),
11577 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
11578 || !pow2p_hwi (tree_to_uhwi (TREE_OPERAND (offset, 1)) + 1))
11579 return 0;
11581 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
11582 It must be NEGATE_EXPR. Then strip any more conversions. */
11583 offset = TREE_OPERAND (offset, 0);
11584 while (CONVERT_EXPR_P (offset))
11585 offset = TREE_OPERAND (offset, 0);
11587 if (TREE_CODE (offset) != NEGATE_EXPR)
11588 return 0;
11590 offset = TREE_OPERAND (offset, 0);
11591 while (CONVERT_EXPR_P (offset))
11592 offset = TREE_OPERAND (offset, 0);
11594 /* This must now be the address of EXP. */
11595 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
11598 /* Return the tree node if an ARG corresponds to a string constant or zero
11599 if it doesn't. If we return nonzero, set *PTR_OFFSET to the (possibly
11600 non-constant) offset in bytes within the string that ARG is accessing.
11601 If MEM_SIZE is non-zero the storage size of the memory is returned.
11602 If DECL is non-zero the constant declaration is returned if available. */
11604 tree
11605 string_constant (tree arg, tree *ptr_offset, tree *mem_size, tree *decl)
11607 tree dummy = NULL_TREE;;
11608 if (!mem_size)
11609 mem_size = &dummy;
11611 /* Store the type of the original expression before conversions
11612 via NOP_EXPR or POINTER_PLUS_EXPR to other types have been
11613 removed. */
11614 tree argtype = TREE_TYPE (arg);
11616 tree array;
11617 STRIP_NOPS (arg);
11619 /* Non-constant index into the character array in an ARRAY_REF
11620 expression or null. */
11621 tree varidx = NULL_TREE;
11623 poly_int64 base_off = 0;
11625 if (TREE_CODE (arg) == ADDR_EXPR)
11627 arg = TREE_OPERAND (arg, 0);
11628 tree ref = arg;
11629 if (TREE_CODE (arg) == ARRAY_REF)
11631 tree idx = TREE_OPERAND (arg, 1);
11632 if (TREE_CODE (idx) != INTEGER_CST)
11634 /* From a pointer (but not array) argument extract the variable
11635 index to prevent get_addr_base_and_unit_offset() from failing
11636 due to it. Use it later to compute the non-constant offset
11637 into the string and return it to the caller. */
11638 varidx = idx;
11639 ref = TREE_OPERAND (arg, 0);
11641 if (TREE_CODE (TREE_TYPE (arg)) == ARRAY_TYPE)
11642 return NULL_TREE;
11644 if (!integer_zerop (array_ref_low_bound (arg)))
11645 return NULL_TREE;
11647 if (!integer_onep (array_ref_element_size (arg)))
11648 return NULL_TREE;
11651 array = get_addr_base_and_unit_offset (ref, &base_off);
11652 if (!array
11653 || (TREE_CODE (array) != VAR_DECL
11654 && TREE_CODE (array) != CONST_DECL
11655 && TREE_CODE (array) != STRING_CST))
11656 return NULL_TREE;
11658 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
11660 tree arg0 = TREE_OPERAND (arg, 0);
11661 tree arg1 = TREE_OPERAND (arg, 1);
11663 tree offset;
11664 tree str = string_constant (arg0, &offset, mem_size, decl);
11665 if (!str)
11667 str = string_constant (arg1, &offset, mem_size, decl);
11668 arg1 = arg0;
11671 if (str)
11673 /* Avoid pointers to arrays (see bug 86622). */
11674 if (POINTER_TYPE_P (TREE_TYPE (arg))
11675 && TREE_CODE (TREE_TYPE (TREE_TYPE (arg))) == ARRAY_TYPE
11676 && !(decl && !*decl)
11677 && !(decl && tree_fits_uhwi_p (DECL_SIZE_UNIT (*decl))
11678 && tree_fits_uhwi_p (*mem_size)
11679 && tree_int_cst_equal (*mem_size, DECL_SIZE_UNIT (*decl))))
11680 return NULL_TREE;
11682 tree type = TREE_TYPE (offset);
11683 arg1 = fold_convert (type, arg1);
11684 *ptr_offset = fold_build2 (PLUS_EXPR, type, offset, arg1);
11685 return str;
11687 return NULL_TREE;
11689 else if (TREE_CODE (arg) == SSA_NAME)
11691 gimple *stmt = SSA_NAME_DEF_STMT (arg);
11692 if (!is_gimple_assign (stmt))
11693 return NULL_TREE;
11695 tree rhs1 = gimple_assign_rhs1 (stmt);
11696 tree_code code = gimple_assign_rhs_code (stmt);
11697 if (code == ADDR_EXPR)
11698 return string_constant (rhs1, ptr_offset, mem_size, decl);
11699 else if (code != POINTER_PLUS_EXPR)
11700 return NULL_TREE;
11702 tree offset;
11703 if (tree str = string_constant (rhs1, &offset, mem_size, decl))
11705 /* Avoid pointers to arrays (see bug 86622). */
11706 if (POINTER_TYPE_P (TREE_TYPE (rhs1))
11707 && TREE_CODE (TREE_TYPE (TREE_TYPE (rhs1))) == ARRAY_TYPE
11708 && !(decl && !*decl)
11709 && !(decl && tree_fits_uhwi_p (DECL_SIZE_UNIT (*decl))
11710 && tree_fits_uhwi_p (*mem_size)
11711 && tree_int_cst_equal (*mem_size, DECL_SIZE_UNIT (*decl))))
11712 return NULL_TREE;
11714 tree rhs2 = gimple_assign_rhs2 (stmt);
11715 tree type = TREE_TYPE (offset);
11716 rhs2 = fold_convert (type, rhs2);
11717 *ptr_offset = fold_build2 (PLUS_EXPR, type, offset, rhs2);
11718 return str;
11720 return NULL_TREE;
11722 else if (DECL_P (arg))
11723 array = arg;
11724 else
11725 return NULL_TREE;
11727 tree offset = wide_int_to_tree (sizetype, base_off);
11728 if (varidx)
11730 if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE)
11731 return NULL_TREE;
11733 gcc_assert (TREE_CODE (arg) == ARRAY_REF);
11734 tree chartype = TREE_TYPE (TREE_TYPE (TREE_OPERAND (arg, 0)));
11735 if (TREE_CODE (chartype) != INTEGER_TYPE)
11736 return NULL;
11738 offset = fold_convert (sizetype, varidx);
11741 if (TREE_CODE (array) == STRING_CST)
11743 *ptr_offset = fold_convert (sizetype, offset);
11744 *mem_size = TYPE_SIZE_UNIT (TREE_TYPE (array));
11745 if (decl)
11746 *decl = NULL_TREE;
11747 gcc_checking_assert (tree_to_shwi (TYPE_SIZE_UNIT (TREE_TYPE (array)))
11748 >= TREE_STRING_LENGTH (array));
11749 return array;
11752 if (!VAR_P (array) && TREE_CODE (array) != CONST_DECL)
11753 return NULL_TREE;
11755 tree init = ctor_for_folding (array);
11757 /* Handle variables initialized with string literals. */
11758 if (!init || init == error_mark_node)
11759 return NULL_TREE;
11760 if (TREE_CODE (init) == CONSTRUCTOR)
11762 /* Convert the 64-bit constant offset to a wider type to avoid
11763 overflow. */
11764 offset_int wioff;
11765 if (!base_off.is_constant (&wioff))
11766 return NULL_TREE;
11768 wioff *= BITS_PER_UNIT;
11769 if (!wi::fits_uhwi_p (wioff))
11770 return NULL_TREE;
11772 base_off = wioff.to_uhwi ();
11773 unsigned HOST_WIDE_INT fieldoff = 0;
11774 init = fold_ctor_reference (TREE_TYPE (arg), init, base_off, 0, array,
11775 &fieldoff);
11776 HOST_WIDE_INT cstoff;
11777 if (!base_off.is_constant (&cstoff))
11778 return NULL_TREE;
11780 cstoff = (cstoff - fieldoff) / BITS_PER_UNIT;
11781 tree off = build_int_cst (sizetype, cstoff);
11782 if (varidx)
11783 offset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset), offset, off);
11784 else
11785 offset = off;
11788 if (!init)
11789 return NULL_TREE;
11791 *ptr_offset = offset;
11793 tree inittype = TREE_TYPE (init);
11795 if (TREE_CODE (init) == INTEGER_CST
11796 && (TREE_CODE (TREE_TYPE (array)) == INTEGER_TYPE
11797 || TYPE_MAIN_VARIANT (inittype) == char_type_node))
11799 /* For a reference to (address of) a single constant character,
11800 store the native representation of the character in CHARBUF.
11801 If the reference is to an element of an array or a member
11802 of a struct, only consider narrow characters until ctors
11803 for wide character arrays are transformed to STRING_CSTs
11804 like those for narrow arrays. */
11805 unsigned char charbuf[MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT];
11806 int len = native_encode_expr (init, charbuf, sizeof charbuf, 0);
11807 if (len > 0)
11809 /* Construct a string literal with elements of INITTYPE and
11810 the representation above. Then strip
11811 the ADDR_EXPR (ARRAY_REF (...)) around the STRING_CST. */
11812 init = build_string_literal (len, (char *)charbuf, inittype);
11813 init = TREE_OPERAND (TREE_OPERAND (init, 0), 0);
11817 tree initsize = TYPE_SIZE_UNIT (inittype);
11819 if (TREE_CODE (init) == CONSTRUCTOR && initializer_zerop (init))
11821 /* Fold an empty/zero constructor for an implicitly initialized
11822 object or subobject into the empty string. */
11824 /* Determine the character type from that of the original
11825 expression. */
11826 tree chartype = argtype;
11827 if (POINTER_TYPE_P (chartype))
11828 chartype = TREE_TYPE (chartype);
11829 while (TREE_CODE (chartype) == ARRAY_TYPE)
11830 chartype = TREE_TYPE (chartype);
11832 if (INTEGRAL_TYPE_P (chartype)
11833 && TYPE_PRECISION (chartype) == TYPE_PRECISION (char_type_node))
11835 /* Convert a char array to an empty STRING_CST having an array
11836 of the expected type and size. */
11837 if (!initsize)
11838 initsize = integer_zero_node;
11840 unsigned HOST_WIDE_INT size = tree_to_uhwi (initsize);
11841 init = build_string_literal (size, NULL, chartype, size);
11842 init = TREE_OPERAND (init, 0);
11843 init = TREE_OPERAND (init, 0);
11845 *ptr_offset = integer_zero_node;
11849 if (decl)
11850 *decl = array;
11852 if (TREE_CODE (init) != STRING_CST)
11853 return NULL_TREE;
11855 *mem_size = initsize;
11857 gcc_checking_assert (tree_to_shwi (initsize) >= TREE_STRING_LENGTH (init));
11859 return init;
11862 /* Compute the modular multiplicative inverse of A modulo M
11863 using extended Euclid's algorithm. Assumes A and M are coprime. */
11864 static wide_int
11865 mod_inv (const wide_int &a, const wide_int &b)
11867 /* Verify the assumption. */
11868 gcc_checking_assert (wi::eq_p (wi::gcd (a, b), 1));
11870 unsigned int p = a.get_precision () + 1;
11871 gcc_checking_assert (b.get_precision () + 1 == p);
11872 wide_int c = wide_int::from (a, p, UNSIGNED);
11873 wide_int d = wide_int::from (b, p, UNSIGNED);
11874 wide_int x0 = wide_int::from (0, p, UNSIGNED);
11875 wide_int x1 = wide_int::from (1, p, UNSIGNED);
11877 if (wi::eq_p (b, 1))
11878 return wide_int::from (1, p, UNSIGNED);
11880 while (wi::gt_p (c, 1, UNSIGNED))
11882 wide_int t = d;
11883 wide_int q = wi::divmod_trunc (c, d, UNSIGNED, &d);
11884 c = t;
11885 wide_int s = x0;
11886 x0 = wi::sub (x1, wi::mul (q, x0));
11887 x1 = s;
11889 if (wi::lt_p (x1, 0, SIGNED))
11890 x1 += d;
11891 return x1;
11894 /* Optimize x % C1 == C2 for signed modulo if C1 is a power of two and C2
11895 is non-zero and C3 ((1<<(prec-1)) | (C1 - 1)):
11896 for C2 > 0 to x & C3 == C2
11897 for C2 < 0 to x & C3 == (C2 & C3). */
11898 enum tree_code
11899 maybe_optimize_pow2p_mod_cmp (enum tree_code code, tree *arg0, tree *arg1)
11901 gimple *stmt = get_def_for_expr (*arg0, TRUNC_MOD_EXPR);
11902 tree treeop0 = gimple_assign_rhs1 (stmt);
11903 tree treeop1 = gimple_assign_rhs2 (stmt);
11904 tree type = TREE_TYPE (*arg0);
11905 scalar_int_mode mode;
11906 if (!is_a <scalar_int_mode> (TYPE_MODE (type), &mode))
11907 return code;
11908 if (GET_MODE_BITSIZE (mode) != TYPE_PRECISION (type)
11909 || TYPE_PRECISION (type) <= 1
11910 || TYPE_UNSIGNED (type)
11911 /* Signed x % c == 0 should have been optimized into unsigned modulo
11912 earlier. */
11913 || integer_zerop (*arg1)
11914 /* If c is known to be non-negative, modulo will be expanded as unsigned
11915 modulo. */
11916 || get_range_pos_neg (treeop0) == 1)
11917 return code;
11919 /* x % c == d where d < 0 && d <= -c should be always false. */
11920 if (tree_int_cst_sgn (*arg1) == -1
11921 && -wi::to_widest (treeop1) >= wi::to_widest (*arg1))
11922 return code;
11924 int prec = TYPE_PRECISION (type);
11925 wide_int w = wi::to_wide (treeop1) - 1;
11926 w |= wi::shifted_mask (0, prec - 1, true, prec);
11927 tree c3 = wide_int_to_tree (type, w);
11928 tree c4 = *arg1;
11929 if (tree_int_cst_sgn (*arg1) == -1)
11930 c4 = wide_int_to_tree (type, w & wi::to_wide (*arg1));
11932 rtx op0 = expand_normal (treeop0);
11933 treeop0 = make_tree (TREE_TYPE (treeop0), op0);
11935 bool speed_p = optimize_insn_for_speed_p ();
11937 do_pending_stack_adjust ();
11939 location_t loc = gimple_location (stmt);
11940 struct separate_ops ops;
11941 ops.code = TRUNC_MOD_EXPR;
11942 ops.location = loc;
11943 ops.type = TREE_TYPE (treeop0);
11944 ops.op0 = treeop0;
11945 ops.op1 = treeop1;
11946 ops.op2 = NULL_TREE;
11947 start_sequence ();
11948 rtx mor = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
11949 EXPAND_NORMAL);
11950 rtx_insn *moinsns = get_insns ();
11951 end_sequence ();
11953 unsigned mocost = seq_cost (moinsns, speed_p);
11954 mocost += rtx_cost (mor, mode, EQ, 0, speed_p);
11955 mocost += rtx_cost (expand_normal (*arg1), mode, EQ, 1, speed_p);
11957 ops.code = BIT_AND_EXPR;
11958 ops.location = loc;
11959 ops.type = TREE_TYPE (treeop0);
11960 ops.op0 = treeop0;
11961 ops.op1 = c3;
11962 ops.op2 = NULL_TREE;
11963 start_sequence ();
11964 rtx mur = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
11965 EXPAND_NORMAL);
11966 rtx_insn *muinsns = get_insns ();
11967 end_sequence ();
11969 unsigned mucost = seq_cost (muinsns, speed_p);
11970 mucost += rtx_cost (mur, mode, EQ, 0, speed_p);
11971 mucost += rtx_cost (expand_normal (c4), mode, EQ, 1, speed_p);
11973 if (mocost <= mucost)
11975 emit_insn (moinsns);
11976 *arg0 = make_tree (TREE_TYPE (*arg0), mor);
11977 return code;
11980 emit_insn (muinsns);
11981 *arg0 = make_tree (TREE_TYPE (*arg0), mur);
11982 *arg1 = c4;
11983 return code;
11986 /* Attempt to optimize unsigned (X % C1) == C2 (or (X % C1) != C2).
11987 If C1 is odd to:
11988 (X - C2) * C3 <= C4 (or >), where
11989 C3 is modular multiplicative inverse of C1 and 1<<prec and
11990 C4 is ((1<<prec) - 1) / C1 or ((1<<prec) - 1) / C1 - 1 (the latter
11991 if C2 > ((1<<prec) - 1) % C1).
11992 If C1 is even, S = ctz (C1) and C2 is 0, use
11993 ((X * C3) r>> S) <= C4, where C3 is modular multiplicative
11994 inverse of C1>>S and 1<<prec and C4 is (((1<<prec) - 1) / (C1>>S)) >> S.
11996 For signed (X % C1) == 0 if C1 is odd to (all operations in it
11997 unsigned):
11998 (X * C3) + C4 <= 2 * C4, where
11999 C3 is modular multiplicative inverse of (unsigned) C1 and 1<<prec and
12000 C4 is ((1<<(prec - 1) - 1) / C1).
12001 If C1 is even, S = ctz(C1), use
12002 ((X * C3) + C4) r>> S <= (C4 >> (S - 1))
12003 where C3 is modular multiplicative inverse of (unsigned)(C1>>S) and 1<<prec
12004 and C4 is ((1<<(prec - 1) - 1) / (C1>>S)) & (-1<<S).
12006 See the Hacker's Delight book, section 10-17. */
12007 enum tree_code
12008 maybe_optimize_mod_cmp (enum tree_code code, tree *arg0, tree *arg1)
12010 gcc_checking_assert (code == EQ_EXPR || code == NE_EXPR);
12011 gcc_checking_assert (TREE_CODE (*arg1) == INTEGER_CST);
12013 if (optimize < 2)
12014 return code;
12016 gimple *stmt = get_def_for_expr (*arg0, TRUNC_MOD_EXPR);
12017 if (stmt == NULL)
12018 return code;
12020 tree treeop0 = gimple_assign_rhs1 (stmt);
12021 tree treeop1 = gimple_assign_rhs2 (stmt);
12022 if (TREE_CODE (treeop0) != SSA_NAME
12023 || TREE_CODE (treeop1) != INTEGER_CST
12024 /* Don't optimize the undefined behavior case x % 0;
12025 x % 1 should have been optimized into zero, punt if
12026 it makes it here for whatever reason;
12027 x % -c should have been optimized into x % c. */
12028 || compare_tree_int (treeop1, 2) <= 0
12029 /* Likewise x % c == d where d >= c should be always false. */
12030 || tree_int_cst_le (treeop1, *arg1))
12031 return code;
12033 /* Unsigned x % pow2 is handled right already, for signed
12034 modulo handle it in maybe_optimize_pow2p_mod_cmp. */
12035 if (integer_pow2p (treeop1))
12036 return maybe_optimize_pow2p_mod_cmp (code, arg0, arg1);
12038 tree type = TREE_TYPE (*arg0);
12039 scalar_int_mode mode;
12040 if (!is_a <scalar_int_mode> (TYPE_MODE (type), &mode))
12041 return code;
12042 if (GET_MODE_BITSIZE (mode) != TYPE_PRECISION (type)
12043 || TYPE_PRECISION (type) <= 1)
12044 return code;
12046 signop sgn = UNSIGNED;
12047 /* If both operands are known to have the sign bit clear, handle
12048 even the signed modulo case as unsigned. treeop1 is always
12049 positive >= 2, checked above. */
12050 if (!TYPE_UNSIGNED (type) && get_range_pos_neg (treeop0) != 1)
12051 sgn = SIGNED;
12053 if (!TYPE_UNSIGNED (type))
12055 if (tree_int_cst_sgn (*arg1) == -1)
12056 return code;
12057 type = unsigned_type_for (type);
12058 if (!type || TYPE_MODE (type) != TYPE_MODE (TREE_TYPE (*arg0)))
12059 return code;
12062 int prec = TYPE_PRECISION (type);
12063 wide_int w = wi::to_wide (treeop1);
12064 int shift = wi::ctz (w);
12065 /* Unsigned (X % C1) == C2 is equivalent to (X - C2) % C1 == 0 if
12066 C2 <= -1U % C1, because for any Z >= 0U - C2 in that case (Z % C1) != 0.
12067 If C1 is odd, we can handle all cases by subtracting
12068 C4 below. We could handle even the even C1 and C2 > -1U % C1 cases
12069 e.g. by testing for overflow on the subtraction, punt on that for now
12070 though. */
12071 if ((sgn == SIGNED || shift) && !integer_zerop (*arg1))
12073 if (sgn == SIGNED)
12074 return code;
12075 wide_int x = wi::umod_trunc (wi::mask (prec, false, prec), w);
12076 if (wi::gtu_p (wi::to_wide (*arg1), x))
12077 return code;
12080 imm_use_iterator imm_iter;
12081 use_operand_p use_p;
12082 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, treeop0)
12084 gimple *use_stmt = USE_STMT (use_p);
12085 /* Punt if treeop0 is used in the same bb in a division
12086 or another modulo with the same divisor. We should expect
12087 the division and modulo combined together. */
12088 if (use_stmt == stmt
12089 || gimple_bb (use_stmt) != gimple_bb (stmt))
12090 continue;
12091 if (!is_gimple_assign (use_stmt)
12092 || (gimple_assign_rhs_code (use_stmt) != TRUNC_DIV_EXPR
12093 && gimple_assign_rhs_code (use_stmt) != TRUNC_MOD_EXPR))
12094 continue;
12095 if (gimple_assign_rhs1 (use_stmt) != treeop0
12096 || !operand_equal_p (gimple_assign_rhs2 (use_stmt), treeop1, 0))
12097 continue;
12098 return code;
12101 w = wi::lrshift (w, shift);
12102 wide_int a = wide_int::from (w, prec + 1, UNSIGNED);
12103 wide_int b = wi::shifted_mask (prec, 1, false, prec + 1);
12104 wide_int m = wide_int::from (mod_inv (a, b), prec, UNSIGNED);
12105 tree c3 = wide_int_to_tree (type, m);
12106 tree c5 = NULL_TREE;
12107 wide_int d, e;
12108 if (sgn == UNSIGNED)
12110 d = wi::divmod_trunc (wi::mask (prec, false, prec), w, UNSIGNED, &e);
12111 /* Use <= floor ((1<<prec) - 1) / C1 only if C2 <= ((1<<prec) - 1) % C1,
12112 otherwise use < or subtract one from C4. E.g. for
12113 x % 3U == 0 we transform this into x * 0xaaaaaaab <= 0x55555555, but
12114 x % 3U == 1 already needs to be
12115 (x - 1) * 0xaaaaaaabU <= 0x55555554. */
12116 if (!shift && wi::gtu_p (wi::to_wide (*arg1), e))
12117 d -= 1;
12118 if (shift)
12119 d = wi::lrshift (d, shift);
12121 else
12123 e = wi::udiv_trunc (wi::mask (prec - 1, false, prec), w);
12124 if (!shift)
12125 d = wi::lshift (e, 1);
12126 else
12128 e = wi::bit_and (e, wi::mask (shift, true, prec));
12129 d = wi::lrshift (e, shift - 1);
12131 c5 = wide_int_to_tree (type, e);
12133 tree c4 = wide_int_to_tree (type, d);
12135 rtx op0 = expand_normal (treeop0);
12136 treeop0 = make_tree (TREE_TYPE (treeop0), op0);
12138 bool speed_p = optimize_insn_for_speed_p ();
12140 do_pending_stack_adjust ();
12142 location_t loc = gimple_location (stmt);
12143 struct separate_ops ops;
12144 ops.code = TRUNC_MOD_EXPR;
12145 ops.location = loc;
12146 ops.type = TREE_TYPE (treeop0);
12147 ops.op0 = treeop0;
12148 ops.op1 = treeop1;
12149 ops.op2 = NULL_TREE;
12150 start_sequence ();
12151 rtx mor = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
12152 EXPAND_NORMAL);
12153 rtx_insn *moinsns = get_insns ();
12154 end_sequence ();
12156 unsigned mocost = seq_cost (moinsns, speed_p);
12157 mocost += rtx_cost (mor, mode, EQ, 0, speed_p);
12158 mocost += rtx_cost (expand_normal (*arg1), mode, EQ, 1, speed_p);
12160 tree t = fold_convert_loc (loc, type, treeop0);
12161 if (!integer_zerop (*arg1))
12162 t = fold_build2_loc (loc, MINUS_EXPR, type, t, fold_convert (type, *arg1));
12163 t = fold_build2_loc (loc, MULT_EXPR, type, t, c3);
12164 if (sgn == SIGNED)
12165 t = fold_build2_loc (loc, PLUS_EXPR, type, t, c5);
12166 if (shift)
12168 tree s = build_int_cst (NULL_TREE, shift);
12169 t = fold_build2_loc (loc, RROTATE_EXPR, type, t, s);
12172 start_sequence ();
12173 rtx mur = expand_normal (t);
12174 rtx_insn *muinsns = get_insns ();
12175 end_sequence ();
12177 unsigned mucost = seq_cost (muinsns, speed_p);
12178 mucost += rtx_cost (mur, mode, LE, 0, speed_p);
12179 mucost += rtx_cost (expand_normal (c4), mode, LE, 1, speed_p);
12181 if (mocost <= mucost)
12183 emit_insn (moinsns);
12184 *arg0 = make_tree (TREE_TYPE (*arg0), mor);
12185 return code;
12188 emit_insn (muinsns);
12189 *arg0 = make_tree (type, mur);
12190 *arg1 = c4;
12191 return code == EQ_EXPR ? LE_EXPR : GT_EXPR;
12194 /* Generate code to calculate OPS, and exploded expression
12195 using a store-flag instruction and return an rtx for the result.
12196 OPS reflects a comparison.
12198 If TARGET is nonzero, store the result there if convenient.
12200 Return zero if there is no suitable set-flag instruction
12201 available on this machine.
12203 Once expand_expr has been called on the arguments of the comparison,
12204 we are committed to doing the store flag, since it is not safe to
12205 re-evaluate the expression. We emit the store-flag insn by calling
12206 emit_store_flag, but only expand the arguments if we have a reason
12207 to believe that emit_store_flag will be successful. If we think that
12208 it will, but it isn't, we have to simulate the store-flag with a
12209 set/jump/set sequence. */
12211 static rtx
12212 do_store_flag (sepops ops, rtx target, machine_mode mode)
12214 enum rtx_code code;
12215 tree arg0, arg1, type;
12216 machine_mode operand_mode;
12217 int unsignedp;
12218 rtx op0, op1;
12219 rtx subtarget = target;
12220 location_t loc = ops->location;
12222 arg0 = ops->op0;
12223 arg1 = ops->op1;
12225 /* Don't crash if the comparison was erroneous. */
12226 if (arg0 == error_mark_node || arg1 == error_mark_node)
12227 return const0_rtx;
12229 type = TREE_TYPE (arg0);
12230 operand_mode = TYPE_MODE (type);
12231 unsignedp = TYPE_UNSIGNED (type);
12233 /* We won't bother with BLKmode store-flag operations because it would mean
12234 passing a lot of information to emit_store_flag. */
12235 if (operand_mode == BLKmode)
12236 return 0;
12238 /* We won't bother with store-flag operations involving function pointers
12239 when function pointers must be canonicalized before comparisons. */
12240 if (targetm.have_canonicalize_funcptr_for_compare ()
12241 && ((POINTER_TYPE_P (TREE_TYPE (arg0))
12242 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (arg0))))
12243 || (POINTER_TYPE_P (TREE_TYPE (arg1))
12244 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (arg1))))))
12245 return 0;
12247 STRIP_NOPS (arg0);
12248 STRIP_NOPS (arg1);
12250 /* For vector typed comparisons emit code to generate the desired
12251 all-ones or all-zeros mask. */
12252 if (TREE_CODE (ops->type) == VECTOR_TYPE)
12254 tree ifexp = build2 (ops->code, ops->type, arg0, arg1);
12255 if (VECTOR_BOOLEAN_TYPE_P (ops->type)
12256 && expand_vec_cmp_expr_p (TREE_TYPE (arg0), ops->type, ops->code))
12257 return expand_vec_cmp_expr (ops->type, ifexp, target);
12258 else
12259 gcc_unreachable ();
12262 /* Optimize (x % C1) == C2 or (x % C1) != C2 if it is beneficial
12263 into (x - C2) * C3 < C4. */
12264 if ((ops->code == EQ_EXPR || ops->code == NE_EXPR)
12265 && TREE_CODE (arg0) == SSA_NAME
12266 && TREE_CODE (arg1) == INTEGER_CST)
12268 enum tree_code new_code = maybe_optimize_mod_cmp (ops->code,
12269 &arg0, &arg1);
12270 if (new_code != ops->code)
12272 struct separate_ops nops = *ops;
12273 nops.code = ops->code = new_code;
12274 nops.op0 = arg0;
12275 nops.op1 = arg1;
12276 nops.type = TREE_TYPE (arg0);
12277 return do_store_flag (&nops, target, mode);
12281 /* Get the rtx comparison code to use. We know that EXP is a comparison
12282 operation of some type. Some comparisons against 1 and -1 can be
12283 converted to comparisons with zero. Do so here so that the tests
12284 below will be aware that we have a comparison with zero. These
12285 tests will not catch constants in the first operand, but constants
12286 are rarely passed as the first operand. */
12288 switch (ops->code)
12290 case EQ_EXPR:
12291 code = EQ;
12292 break;
12293 case NE_EXPR:
12294 code = NE;
12295 break;
12296 case LT_EXPR:
12297 if (integer_onep (arg1))
12298 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
12299 else
12300 code = unsignedp ? LTU : LT;
12301 break;
12302 case LE_EXPR:
12303 if (! unsignedp && integer_all_onesp (arg1))
12304 arg1 = integer_zero_node, code = LT;
12305 else
12306 code = unsignedp ? LEU : LE;
12307 break;
12308 case GT_EXPR:
12309 if (! unsignedp && integer_all_onesp (arg1))
12310 arg1 = integer_zero_node, code = GE;
12311 else
12312 code = unsignedp ? GTU : GT;
12313 break;
12314 case GE_EXPR:
12315 if (integer_onep (arg1))
12316 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
12317 else
12318 code = unsignedp ? GEU : GE;
12319 break;
12321 case UNORDERED_EXPR:
12322 code = UNORDERED;
12323 break;
12324 case ORDERED_EXPR:
12325 code = ORDERED;
12326 break;
12327 case UNLT_EXPR:
12328 code = UNLT;
12329 break;
12330 case UNLE_EXPR:
12331 code = UNLE;
12332 break;
12333 case UNGT_EXPR:
12334 code = UNGT;
12335 break;
12336 case UNGE_EXPR:
12337 code = UNGE;
12338 break;
12339 case UNEQ_EXPR:
12340 code = UNEQ;
12341 break;
12342 case LTGT_EXPR:
12343 code = LTGT;
12344 break;
12346 default:
12347 gcc_unreachable ();
12350 /* Put a constant second. */
12351 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
12352 || TREE_CODE (arg0) == FIXED_CST)
12354 std::swap (arg0, arg1);
12355 code = swap_condition (code);
12358 /* If this is an equality or inequality test of a single bit, we can
12359 do this by shifting the bit being tested to the low-order bit and
12360 masking the result with the constant 1. If the condition was EQ,
12361 we xor it with 1. This does not require an scc insn and is faster
12362 than an scc insn even if we have it.
12364 The code to make this transformation was moved into fold_single_bit_test,
12365 so we just call into the folder and expand its result. */
12367 if ((code == NE || code == EQ)
12368 && integer_zerop (arg1)
12369 && (TYPE_PRECISION (ops->type) != 1 || TYPE_UNSIGNED (ops->type)))
12371 gimple *srcstmt = get_def_for_expr (arg0, BIT_AND_EXPR);
12372 if (srcstmt
12373 && integer_pow2p (gimple_assign_rhs2 (srcstmt)))
12375 enum tree_code tcode = code == NE ? NE_EXPR : EQ_EXPR;
12376 type = lang_hooks.types.type_for_mode (mode, unsignedp);
12377 tree temp = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg1),
12378 gimple_assign_rhs1 (srcstmt),
12379 gimple_assign_rhs2 (srcstmt));
12380 temp = fold_single_bit_test (loc, tcode, temp, arg1, type);
12381 if (temp)
12382 return expand_expr (temp, target, VOIDmode, EXPAND_NORMAL);
12386 if (! get_subtarget (target)
12387 || GET_MODE (subtarget) != operand_mode)
12388 subtarget = 0;
12390 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
12392 if (target == 0)
12393 target = gen_reg_rtx (mode);
12395 /* Try a cstore if possible. */
12396 return emit_store_flag_force (target, code, op0, op1,
12397 operand_mode, unsignedp,
12398 (TYPE_PRECISION (ops->type) == 1
12399 && !TYPE_UNSIGNED (ops->type)) ? -1 : 1);
12402 /* Attempt to generate a casesi instruction. Returns 1 if successful,
12403 0 otherwise (i.e. if there is no casesi instruction).
12405 DEFAULT_PROBABILITY is the probability of jumping to the default
12406 label. */
12408 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
12409 rtx table_label, rtx default_label, rtx fallback_label,
12410 profile_probability default_probability)
12412 class expand_operand ops[5];
12413 scalar_int_mode index_mode = SImode;
12414 rtx op1, op2, index;
12416 if (! targetm.have_casesi ())
12417 return 0;
12419 /* The index must be some form of integer. Convert it to SImode. */
12420 scalar_int_mode omode = SCALAR_INT_TYPE_MODE (index_type);
12421 if (GET_MODE_BITSIZE (omode) > GET_MODE_BITSIZE (index_mode))
12423 rtx rangertx = expand_normal (range);
12425 /* We must handle the endpoints in the original mode. */
12426 index_expr = build2 (MINUS_EXPR, index_type,
12427 index_expr, minval);
12428 minval = integer_zero_node;
12429 index = expand_normal (index_expr);
12430 if (default_label)
12431 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
12432 omode, 1, default_label,
12433 default_probability);
12434 /* Now we can safely truncate. */
12435 index = convert_to_mode (index_mode, index, 0);
12437 else
12439 if (omode != index_mode)
12441 index_type = lang_hooks.types.type_for_mode (index_mode, 0);
12442 index_expr = fold_convert (index_type, index_expr);
12445 index = expand_normal (index_expr);
12448 do_pending_stack_adjust ();
12450 op1 = expand_normal (minval);
12451 op2 = expand_normal (range);
12453 create_input_operand (&ops[0], index, index_mode);
12454 create_convert_operand_from_type (&ops[1], op1, TREE_TYPE (minval));
12455 create_convert_operand_from_type (&ops[2], op2, TREE_TYPE (range));
12456 create_fixed_operand (&ops[3], table_label);
12457 create_fixed_operand (&ops[4], (default_label
12458 ? default_label
12459 : fallback_label));
12460 expand_jump_insn (targetm.code_for_casesi, 5, ops);
12461 return 1;
12464 /* Attempt to generate a tablejump instruction; same concept. */
12465 /* Subroutine of the next function.
12467 INDEX is the value being switched on, with the lowest value
12468 in the table already subtracted.
12469 MODE is its expected mode (needed if INDEX is constant).
12470 RANGE is the length of the jump table.
12471 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
12473 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
12474 index value is out of range.
12475 DEFAULT_PROBABILITY is the probability of jumping to
12476 the default label. */
12478 static void
12479 do_tablejump (rtx index, machine_mode mode, rtx range, rtx table_label,
12480 rtx default_label, profile_probability default_probability)
12482 rtx temp, vector;
12484 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
12485 cfun->cfg->max_jumptable_ents = INTVAL (range);
12487 /* Do an unsigned comparison (in the proper mode) between the index
12488 expression and the value which represents the length of the range.
12489 Since we just finished subtracting the lower bound of the range
12490 from the index expression, this comparison allows us to simultaneously
12491 check that the original index expression value is both greater than
12492 or equal to the minimum value of the range and less than or equal to
12493 the maximum value of the range. */
12495 if (default_label)
12496 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
12497 default_label, default_probability);
12499 /* If index is in range, it must fit in Pmode.
12500 Convert to Pmode so we can index with it. */
12501 if (mode != Pmode)
12503 unsigned int width;
12505 /* We know the value of INDEX is between 0 and RANGE. If we have a
12506 sign-extended subreg, and RANGE does not have the sign bit set, then
12507 we have a value that is valid for both sign and zero extension. In
12508 this case, we get better code if we sign extend. */
12509 if (GET_CODE (index) == SUBREG
12510 && SUBREG_PROMOTED_VAR_P (index)
12511 && SUBREG_PROMOTED_SIGNED_P (index)
12512 && ((width = GET_MODE_PRECISION (as_a <scalar_int_mode> (mode)))
12513 <= HOST_BITS_PER_WIDE_INT)
12514 && ! (UINTVAL (range) & (HOST_WIDE_INT_1U << (width - 1))))
12515 index = convert_to_mode (Pmode, index, 0);
12516 else
12517 index = convert_to_mode (Pmode, index, 1);
12520 /* Don't let a MEM slip through, because then INDEX that comes
12521 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
12522 and break_out_memory_refs will go to work on it and mess it up. */
12523 #ifdef PIC_CASE_VECTOR_ADDRESS
12524 if (flag_pic && !REG_P (index))
12525 index = copy_to_mode_reg (Pmode, index);
12526 #endif
12528 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
12529 GET_MODE_SIZE, because this indicates how large insns are. The other
12530 uses should all be Pmode, because they are addresses. This code
12531 could fail if addresses and insns are not the same size. */
12532 index = simplify_gen_binary (MULT, Pmode, index,
12533 gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE),
12534 Pmode));
12535 index = simplify_gen_binary (PLUS, Pmode, index,
12536 gen_rtx_LABEL_REF (Pmode, table_label));
12538 #ifdef PIC_CASE_VECTOR_ADDRESS
12539 if (flag_pic)
12540 index = PIC_CASE_VECTOR_ADDRESS (index);
12541 else
12542 #endif
12543 index = memory_address (CASE_VECTOR_MODE, index);
12544 temp = gen_reg_rtx (CASE_VECTOR_MODE);
12545 vector = gen_const_mem (CASE_VECTOR_MODE, index);
12546 convert_move (temp, vector, 0);
12548 emit_jump_insn (targetm.gen_tablejump (temp, table_label));
12550 /* If we are generating PIC code or if the table is PC-relative, the
12551 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
12552 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
12553 emit_barrier ();
12557 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
12558 rtx table_label, rtx default_label,
12559 profile_probability default_probability)
12561 rtx index;
12563 if (! targetm.have_tablejump ())
12564 return 0;
12566 index_expr = fold_build2 (MINUS_EXPR, index_type,
12567 fold_convert (index_type, index_expr),
12568 fold_convert (index_type, minval));
12569 index = expand_normal (index_expr);
12570 do_pending_stack_adjust ();
12572 do_tablejump (index, TYPE_MODE (index_type),
12573 convert_modes (TYPE_MODE (index_type),
12574 TYPE_MODE (TREE_TYPE (range)),
12575 expand_normal (range),
12576 TYPE_UNSIGNED (TREE_TYPE (range))),
12577 table_label, default_label, default_probability);
12578 return 1;
12581 /* Return a CONST_VECTOR rtx representing vector mask for
12582 a VECTOR_CST of booleans. */
12583 static rtx
12584 const_vector_mask_from_tree (tree exp)
12586 machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
12587 machine_mode inner = GET_MODE_INNER (mode);
12589 rtx_vector_builder builder (mode, VECTOR_CST_NPATTERNS (exp),
12590 VECTOR_CST_NELTS_PER_PATTERN (exp));
12591 unsigned int count = builder.encoded_nelts ();
12592 for (unsigned int i = 0; i < count; ++i)
12594 tree elt = VECTOR_CST_ELT (exp, i);
12595 gcc_assert (TREE_CODE (elt) == INTEGER_CST);
12596 if (integer_zerop (elt))
12597 builder.quick_push (CONST0_RTX (inner));
12598 else if (integer_onep (elt)
12599 || integer_minus_onep (elt))
12600 builder.quick_push (CONSTM1_RTX (inner));
12601 else
12602 gcc_unreachable ();
12604 return builder.build ();
12607 /* EXP is a VECTOR_CST in which each element is either all-zeros or all-ones.
12608 Return a constant scalar rtx of mode MODE in which bit X is set if element
12609 X of EXP is nonzero. */
12610 static rtx
12611 const_scalar_mask_from_tree (scalar_int_mode mode, tree exp)
12613 wide_int res = wi::zero (GET_MODE_PRECISION (mode));
12614 tree elt;
12616 /* The result has a fixed number of bits so the input must too. */
12617 unsigned int nunits = VECTOR_CST_NELTS (exp).to_constant ();
12618 for (unsigned int i = 0; i < nunits; ++i)
12620 elt = VECTOR_CST_ELT (exp, i);
12621 gcc_assert (TREE_CODE (elt) == INTEGER_CST);
12622 if (integer_all_onesp (elt))
12623 res = wi::set_bit (res, i);
12624 else
12625 gcc_assert (integer_zerop (elt));
12628 return immed_wide_int_const (res, mode);
12631 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
12632 static rtx
12633 const_vector_from_tree (tree exp)
12635 machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
12637 if (initializer_zerop (exp))
12638 return CONST0_RTX (mode);
12640 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp)))
12641 return const_vector_mask_from_tree (exp);
12643 machine_mode inner = GET_MODE_INNER (mode);
12645 rtx_vector_builder builder (mode, VECTOR_CST_NPATTERNS (exp),
12646 VECTOR_CST_NELTS_PER_PATTERN (exp));
12647 unsigned int count = builder.encoded_nelts ();
12648 for (unsigned int i = 0; i < count; ++i)
12650 tree elt = VECTOR_CST_ELT (exp, i);
12651 if (TREE_CODE (elt) == REAL_CST)
12652 builder.quick_push (const_double_from_real_value (TREE_REAL_CST (elt),
12653 inner));
12654 else if (TREE_CODE (elt) == FIXED_CST)
12655 builder.quick_push (CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
12656 inner));
12657 else
12658 builder.quick_push (immed_wide_int_const (wi::to_poly_wide (elt),
12659 inner));
12661 return builder.build ();
12664 /* Build a decl for a personality function given a language prefix. */
12666 tree
12667 build_personality_function (const char *lang)
12669 const char *unwind_and_version;
12670 tree decl, type;
12671 char *name;
12673 switch (targetm_common.except_unwind_info (&global_options))
12675 case UI_NONE:
12676 return NULL;
12677 case UI_SJLJ:
12678 unwind_and_version = "_sj0";
12679 break;
12680 case UI_DWARF2:
12681 case UI_TARGET:
12682 unwind_and_version = "_v0";
12683 break;
12684 case UI_SEH:
12685 unwind_and_version = "_seh0";
12686 break;
12687 default:
12688 gcc_unreachable ();
12691 name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL));
12693 type = build_function_type_list (unsigned_type_node,
12694 integer_type_node, integer_type_node,
12695 long_long_unsigned_type_node,
12696 ptr_type_node, ptr_type_node, NULL_TREE);
12697 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
12698 get_identifier (name), type);
12699 DECL_ARTIFICIAL (decl) = 1;
12700 DECL_EXTERNAL (decl) = 1;
12701 TREE_PUBLIC (decl) = 1;
12703 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
12704 are the flags assigned by targetm.encode_section_info. */
12705 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
12707 return decl;
12710 /* Extracts the personality function of DECL and returns the corresponding
12711 libfunc. */
12714 get_personality_function (tree decl)
12716 tree personality = DECL_FUNCTION_PERSONALITY (decl);
12717 enum eh_personality_kind pk;
12719 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
12720 if (pk == eh_personality_none)
12721 return NULL;
12723 if (!personality
12724 && pk == eh_personality_any)
12725 personality = lang_hooks.eh_personality ();
12727 if (pk == eh_personality_lang)
12728 gcc_assert (personality != NULL_TREE);
12730 return XEXP (DECL_RTL (personality), 0);
12733 /* Returns a tree for the size of EXP in bytes. */
12735 static tree
12736 tree_expr_size (const_tree exp)
12738 if (DECL_P (exp)
12739 && DECL_SIZE_UNIT (exp) != 0)
12740 return DECL_SIZE_UNIT (exp);
12741 else
12742 return size_in_bytes (TREE_TYPE (exp));
12745 /* Return an rtx for the size in bytes of the value of EXP. */
12748 expr_size (tree exp)
12750 tree size;
12752 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
12753 size = TREE_OPERAND (exp, 1);
12754 else
12756 size = tree_expr_size (exp);
12757 gcc_assert (size);
12758 gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
12761 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
12764 /* Return a wide integer for the size in bytes of the value of EXP, or -1
12765 if the size can vary or is larger than an integer. */
12767 static HOST_WIDE_INT
12768 int_expr_size (tree exp)
12770 tree size;
12772 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
12773 size = TREE_OPERAND (exp, 1);
12774 else
12776 size = tree_expr_size (exp);
12777 gcc_assert (size);
12780 if (size == 0 || !tree_fits_shwi_p (size))
12781 return -1;
12783 return tree_to_shwi (size);