* ggc.h (empty_string): Delete.
[official-gcc.git] / gcc / stor-layout.c
blob1574e4383e8ec0f57bc4ca89ae5323f785d5fe1c
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "function.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "stringpool.h"
31 #include "regs.h"
32 #include "emit-rtl.h"
33 #include "cgraph.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "varasm.h"
38 #include "print-tree.h"
39 #include "langhooks.h"
40 #include "tree-inline.h"
41 #include "dumpfile.h"
42 #include "gimplify.h"
43 #include "debug.h"
45 /* Data type for the expressions representing sizes of data types.
46 It is the first integer type laid out. */
47 tree sizetype_tab[(int) stk_type_kind_last];
49 /* If nonzero, this is an upper limit on alignment of structure fields.
50 The value is measured in bits. */
51 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
53 static tree self_referential_size (tree);
54 static void finalize_record_size (record_layout_info);
55 static void finalize_type_size (tree);
56 static void place_union_field (record_layout_info, tree);
57 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
58 HOST_WIDE_INT, tree);
59 extern void debug_rli (record_layout_info);
61 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
62 to serve as the actual size-expression for a type or decl. */
64 tree
65 variable_size (tree size)
67 /* Obviously. */
68 if (TREE_CONSTANT (size))
69 return size;
71 /* If the size is self-referential, we can't make a SAVE_EXPR (see
72 save_expr for the rationale). But we can do something else. */
73 if (CONTAINS_PLACEHOLDER_P (size))
74 return self_referential_size (size);
76 /* If we are in the global binding level, we can't make a SAVE_EXPR
77 since it may end up being shared across functions, so it is up
78 to the front-end to deal with this case. */
79 if (lang_hooks.decls.global_bindings_p ())
80 return size;
82 return save_expr (size);
85 /* An array of functions used for self-referential size computation. */
86 static GTY(()) vec<tree, va_gc> *size_functions;
88 /* Return true if T is a self-referential component reference. */
90 static bool
91 self_referential_component_ref_p (tree t)
93 if (TREE_CODE (t) != COMPONENT_REF)
94 return false;
96 while (REFERENCE_CLASS_P (t))
97 t = TREE_OPERAND (t, 0);
99 return (TREE_CODE (t) == PLACEHOLDER_EXPR);
102 /* Similar to copy_tree_r but do not copy component references involving
103 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
104 and substituted in substitute_in_expr. */
106 static tree
107 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
109 enum tree_code code = TREE_CODE (*tp);
111 /* Stop at types, decls, constants like copy_tree_r. */
112 if (TREE_CODE_CLASS (code) == tcc_type
113 || TREE_CODE_CLASS (code) == tcc_declaration
114 || TREE_CODE_CLASS (code) == tcc_constant)
116 *walk_subtrees = 0;
117 return NULL_TREE;
120 /* This is the pattern built in ada/make_aligning_type. */
121 else if (code == ADDR_EXPR
122 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
124 *walk_subtrees = 0;
125 return NULL_TREE;
128 /* Default case: the component reference. */
129 else if (self_referential_component_ref_p (*tp))
131 *walk_subtrees = 0;
132 return NULL_TREE;
135 /* We're not supposed to have them in self-referential size trees
136 because we wouldn't properly control when they are evaluated.
137 However, not creating superfluous SAVE_EXPRs requires accurate
138 tracking of readonly-ness all the way down to here, which we
139 cannot always guarantee in practice. So punt in this case. */
140 else if (code == SAVE_EXPR)
141 return error_mark_node;
143 else if (code == STATEMENT_LIST)
144 gcc_unreachable ();
146 return copy_tree_r (tp, walk_subtrees, data);
149 /* Given a SIZE expression that is self-referential, return an equivalent
150 expression to serve as the actual size expression for a type. */
152 static tree
153 self_referential_size (tree size)
155 static unsigned HOST_WIDE_INT fnno = 0;
156 vec<tree> self_refs = vNULL;
157 tree param_type_list = NULL, param_decl_list = NULL;
158 tree t, ref, return_type, fntype, fnname, fndecl;
159 unsigned int i;
160 char buf[128];
161 vec<tree, va_gc> *args = NULL;
163 /* Do not factor out simple operations. */
164 t = skip_simple_constant_arithmetic (size);
165 if (TREE_CODE (t) == CALL_EXPR || self_referential_component_ref_p (t))
166 return size;
168 /* Collect the list of self-references in the expression. */
169 find_placeholder_in_expr (size, &self_refs);
170 gcc_assert (self_refs.length () > 0);
172 /* Obtain a private copy of the expression. */
173 t = size;
174 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
175 return size;
176 size = t;
178 /* Build the parameter and argument lists in parallel; also
179 substitute the former for the latter in the expression. */
180 vec_alloc (args, self_refs.length ());
181 FOR_EACH_VEC_ELT (self_refs, i, ref)
183 tree subst, param_name, param_type, param_decl;
185 if (DECL_P (ref))
187 /* We shouldn't have true variables here. */
188 gcc_assert (TREE_READONLY (ref));
189 subst = ref;
191 /* This is the pattern built in ada/make_aligning_type. */
192 else if (TREE_CODE (ref) == ADDR_EXPR)
193 subst = ref;
194 /* Default case: the component reference. */
195 else
196 subst = TREE_OPERAND (ref, 1);
198 sprintf (buf, "p%d", i);
199 param_name = get_identifier (buf);
200 param_type = TREE_TYPE (ref);
201 param_decl
202 = build_decl (input_location, PARM_DECL, param_name, param_type);
203 DECL_ARG_TYPE (param_decl) = param_type;
204 DECL_ARTIFICIAL (param_decl) = 1;
205 TREE_READONLY (param_decl) = 1;
207 size = substitute_in_expr (size, subst, param_decl);
209 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
210 param_decl_list = chainon (param_decl, param_decl_list);
211 args->quick_push (ref);
214 self_refs.release ();
216 /* Append 'void' to indicate that the number of parameters is fixed. */
217 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
219 /* The 3 lists have been created in reverse order. */
220 param_type_list = nreverse (param_type_list);
221 param_decl_list = nreverse (param_decl_list);
223 /* Build the function type. */
224 return_type = TREE_TYPE (size);
225 fntype = build_function_type (return_type, param_type_list);
227 /* Build the function declaration. */
228 sprintf (buf, "SZ" HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
229 fnname = get_file_function_name (buf);
230 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
231 for (t = param_decl_list; t; t = DECL_CHAIN (t))
232 DECL_CONTEXT (t) = fndecl;
233 DECL_ARGUMENTS (fndecl) = param_decl_list;
234 DECL_RESULT (fndecl)
235 = build_decl (input_location, RESULT_DECL, 0, return_type);
236 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
238 /* The function has been created by the compiler and we don't
239 want to emit debug info for it. */
240 DECL_ARTIFICIAL (fndecl) = 1;
241 DECL_IGNORED_P (fndecl) = 1;
243 /* It is supposed to be "const" and never throw. */
244 TREE_READONLY (fndecl) = 1;
245 TREE_NOTHROW (fndecl) = 1;
247 /* We want it to be inlined when this is deemed profitable, as
248 well as discarded if every call has been integrated. */
249 DECL_DECLARED_INLINE_P (fndecl) = 1;
251 /* It is made up of a unique return statement. */
252 DECL_INITIAL (fndecl) = make_node (BLOCK);
253 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
254 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
255 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
256 TREE_STATIC (fndecl) = 1;
258 /* Put it onto the list of size functions. */
259 vec_safe_push (size_functions, fndecl);
261 /* Replace the original expression with a call to the size function. */
262 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
265 /* Take, queue and compile all the size functions. It is essential that
266 the size functions be gimplified at the very end of the compilation
267 in order to guarantee transparent handling of self-referential sizes.
268 Otherwise the GENERIC inliner would not be able to inline them back
269 at each of their call sites, thus creating artificial non-constant
270 size expressions which would trigger nasty problems later on. */
272 void
273 finalize_size_functions (void)
275 unsigned int i;
276 tree fndecl;
278 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
280 allocate_struct_function (fndecl, false);
281 set_cfun (NULL);
282 dump_function (TDI_original, fndecl);
284 /* As these functions are used to describe the layout of variable-length
285 structures, debug info generation needs their implementation. */
286 debug_hooks->size_function (fndecl);
287 gimplify_function_tree (fndecl);
288 cgraph_node::finalize_function (fndecl, false);
291 vec_free (size_functions);
294 /* Return the machine mode to use for a nonscalar of SIZE bits. The
295 mode must be in class MCLASS, and have exactly that many value bits;
296 it may have padding as well. If LIMIT is nonzero, modes of wider
297 than MAX_FIXED_MODE_SIZE will not be used. */
299 machine_mode
300 mode_for_size (unsigned int size, enum mode_class mclass, int limit)
302 machine_mode mode;
303 int i;
305 if (limit && size > MAX_FIXED_MODE_SIZE)
306 return BLKmode;
308 /* Get the first mode which has this size, in the specified class. */
309 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
310 mode = GET_MODE_WIDER_MODE (mode))
311 if (GET_MODE_PRECISION (mode) == size)
312 return mode;
314 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
315 for (i = 0; i < NUM_INT_N_ENTS; i ++)
316 if (int_n_data[i].bitsize == size
317 && int_n_enabled_p[i])
318 return int_n_data[i].m;
320 return BLKmode;
323 /* Similar, except passed a tree node. */
325 machine_mode
326 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
328 unsigned HOST_WIDE_INT uhwi;
329 unsigned int ui;
331 if (!tree_fits_uhwi_p (size))
332 return BLKmode;
333 uhwi = tree_to_uhwi (size);
334 ui = uhwi;
335 if (uhwi != ui)
336 return BLKmode;
337 return mode_for_size (ui, mclass, limit);
340 /* Similar, but never return BLKmode; return the narrowest mode that
341 contains at least the requested number of value bits. */
343 machine_mode
344 smallest_mode_for_size (unsigned int size, enum mode_class mclass)
346 machine_mode mode = VOIDmode;
347 int i;
349 /* Get the first mode which has at least this size, in the
350 specified class. */
351 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
352 mode = GET_MODE_WIDER_MODE (mode))
353 if (GET_MODE_PRECISION (mode) >= size)
354 break;
356 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
357 for (i = 0; i < NUM_INT_N_ENTS; i ++)
358 if (int_n_data[i].bitsize >= size
359 && int_n_data[i].bitsize < GET_MODE_PRECISION (mode)
360 && int_n_enabled_p[i])
361 mode = int_n_data[i].m;
363 if (mode == VOIDmode)
364 gcc_unreachable ();
366 return mode;
369 /* Find an integer mode of the exact same size, or BLKmode on failure. */
371 machine_mode
372 int_mode_for_mode (machine_mode mode)
374 switch (GET_MODE_CLASS (mode))
376 case MODE_INT:
377 case MODE_PARTIAL_INT:
378 break;
380 case MODE_COMPLEX_INT:
381 case MODE_COMPLEX_FLOAT:
382 case MODE_FLOAT:
383 case MODE_DECIMAL_FLOAT:
384 case MODE_VECTOR_INT:
385 case MODE_VECTOR_FLOAT:
386 case MODE_FRACT:
387 case MODE_ACCUM:
388 case MODE_UFRACT:
389 case MODE_UACCUM:
390 case MODE_VECTOR_FRACT:
391 case MODE_VECTOR_ACCUM:
392 case MODE_VECTOR_UFRACT:
393 case MODE_VECTOR_UACCUM:
394 case MODE_POINTER_BOUNDS:
395 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
396 break;
398 case MODE_RANDOM:
399 if (mode == BLKmode)
400 break;
402 /* fall through */
404 case MODE_CC:
405 default:
406 gcc_unreachable ();
409 return mode;
412 /* Find a mode that can be used for efficient bitwise operations on MODE.
413 Return BLKmode if no such mode exists. */
415 machine_mode
416 bitwise_mode_for_mode (machine_mode mode)
418 /* Quick exit if we already have a suitable mode. */
419 unsigned int bitsize = GET_MODE_BITSIZE (mode);
420 if (SCALAR_INT_MODE_P (mode) && bitsize <= MAX_FIXED_MODE_SIZE)
421 return mode;
423 /* Reuse the sanity checks from int_mode_for_mode. */
424 gcc_checking_assert ((int_mode_for_mode (mode), true));
426 /* Try to replace complex modes with complex modes. In general we
427 expect both components to be processed independently, so we only
428 care whether there is a register for the inner mode. */
429 if (COMPLEX_MODE_P (mode))
431 machine_mode trial = mode;
432 if (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT)
433 trial = mode_for_size (bitsize, MODE_COMPLEX_INT, false);
434 if (trial != BLKmode
435 && have_regs_of_mode[GET_MODE_INNER (trial)])
436 return trial;
439 /* Try to replace vector modes with vector modes. Also try using vector
440 modes if an integer mode would be too big. */
441 if (VECTOR_MODE_P (mode) || bitsize > MAX_FIXED_MODE_SIZE)
443 machine_mode trial = mode;
444 if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
445 trial = mode_for_size (bitsize, MODE_VECTOR_INT, 0);
446 if (trial != BLKmode
447 && have_regs_of_mode[trial]
448 && targetm.vector_mode_supported_p (trial))
449 return trial;
452 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
453 return mode_for_size (bitsize, MODE_INT, true);
456 /* Find a type that can be used for efficient bitwise operations on MODE.
457 Return null if no such mode exists. */
459 tree
460 bitwise_type_for_mode (machine_mode mode)
462 mode = bitwise_mode_for_mode (mode);
463 if (mode == BLKmode)
464 return NULL_TREE;
466 unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
467 tree inner_type = build_nonstandard_integer_type (inner_size, true);
469 if (VECTOR_MODE_P (mode))
470 return build_vector_type_for_mode (inner_type, mode);
472 if (COMPLEX_MODE_P (mode))
473 return build_complex_type (inner_type);
475 gcc_checking_assert (GET_MODE_INNER (mode) == mode);
476 return inner_type;
479 /* Find a mode that is suitable for representing a vector with
480 NUNITS elements of mode INNERMODE. Returns BLKmode if there
481 is no suitable mode. */
483 machine_mode
484 mode_for_vector (machine_mode innermode, unsigned nunits)
486 machine_mode mode;
488 /* First, look for a supported vector type. */
489 if (SCALAR_FLOAT_MODE_P (innermode))
490 mode = MIN_MODE_VECTOR_FLOAT;
491 else if (SCALAR_FRACT_MODE_P (innermode))
492 mode = MIN_MODE_VECTOR_FRACT;
493 else if (SCALAR_UFRACT_MODE_P (innermode))
494 mode = MIN_MODE_VECTOR_UFRACT;
495 else if (SCALAR_ACCUM_MODE_P (innermode))
496 mode = MIN_MODE_VECTOR_ACCUM;
497 else if (SCALAR_UACCUM_MODE_P (innermode))
498 mode = MIN_MODE_VECTOR_UACCUM;
499 else
500 mode = MIN_MODE_VECTOR_INT;
502 /* Do not check vector_mode_supported_p here. We'll do that
503 later in vector_type_mode. */
504 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
505 if (GET_MODE_NUNITS (mode) == nunits
506 && GET_MODE_INNER (mode) == innermode)
507 break;
509 /* For integers, try mapping it to a same-sized scalar mode. */
510 if (mode == VOIDmode
511 && GET_MODE_CLASS (innermode) == MODE_INT)
512 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
513 MODE_INT, 0);
515 if (mode == VOIDmode
516 || (GET_MODE_CLASS (mode) == MODE_INT
517 && !have_regs_of_mode[mode]))
518 return BLKmode;
520 return mode;
523 /* Return the alignment of MODE. This will be bounded by 1 and
524 BIGGEST_ALIGNMENT. */
526 unsigned int
527 get_mode_alignment (machine_mode mode)
529 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
532 /* Return the natural mode of an array, given that it is SIZE bytes in
533 total and has elements of type ELEM_TYPE. */
535 static machine_mode
536 mode_for_array (tree elem_type, tree size)
538 tree elem_size;
539 unsigned HOST_WIDE_INT int_size, int_elem_size;
540 bool limit_p;
542 /* One-element arrays get the component type's mode. */
543 elem_size = TYPE_SIZE (elem_type);
544 if (simple_cst_equal (size, elem_size))
545 return TYPE_MODE (elem_type);
547 limit_p = true;
548 if (tree_fits_uhwi_p (size) && tree_fits_uhwi_p (elem_size))
550 int_size = tree_to_uhwi (size);
551 int_elem_size = tree_to_uhwi (elem_size);
552 if (int_elem_size > 0
553 && int_size % int_elem_size == 0
554 && targetm.array_mode_supported_p (TYPE_MODE (elem_type),
555 int_size / int_elem_size))
556 limit_p = false;
558 return mode_for_size_tree (size, MODE_INT, limit_p);
561 /* Subroutine of layout_decl: Force alignment required for the data type.
562 But if the decl itself wants greater alignment, don't override that. */
564 static inline void
565 do_type_align (tree type, tree decl)
567 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
569 SET_DECL_ALIGN (decl, TYPE_ALIGN (type));
570 if (TREE_CODE (decl) == FIELD_DECL)
571 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
575 /* Set the size, mode and alignment of a ..._DECL node.
576 TYPE_DECL does need this for C++.
577 Note that LABEL_DECL and CONST_DECL nodes do not need this,
578 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
579 Don't call layout_decl for them.
581 KNOWN_ALIGN is the amount of alignment we can assume this
582 decl has with no special effort. It is relevant only for FIELD_DECLs
583 and depends on the previous fields.
584 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
585 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
586 the record will be aligned to suit. */
588 void
589 layout_decl (tree decl, unsigned int known_align)
591 tree type = TREE_TYPE (decl);
592 enum tree_code code = TREE_CODE (decl);
593 rtx rtl = NULL_RTX;
594 location_t loc = DECL_SOURCE_LOCATION (decl);
596 if (code == CONST_DECL)
597 return;
599 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
600 || code == TYPE_DECL || code == FIELD_DECL);
602 rtl = DECL_RTL_IF_SET (decl);
604 if (type == error_mark_node)
605 type = void_type_node;
607 /* Usually the size and mode come from the data type without change,
608 however, the front-end may set the explicit width of the field, so its
609 size may not be the same as the size of its type. This happens with
610 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
611 also happens with other fields. For example, the C++ front-end creates
612 zero-sized fields corresponding to empty base classes, and depends on
613 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
614 size in bytes from the size in bits. If we have already set the mode,
615 don't set it again since we can be called twice for FIELD_DECLs. */
617 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
618 if (DECL_MODE (decl) == VOIDmode)
619 SET_DECL_MODE (decl, TYPE_MODE (type));
621 if (DECL_SIZE (decl) == 0)
623 DECL_SIZE (decl) = TYPE_SIZE (type);
624 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
626 else if (DECL_SIZE_UNIT (decl) == 0)
627 DECL_SIZE_UNIT (decl)
628 = fold_convert_loc (loc, sizetype,
629 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
630 bitsize_unit_node));
632 if (code != FIELD_DECL)
633 /* For non-fields, update the alignment from the type. */
634 do_type_align (type, decl);
635 else
636 /* For fields, it's a bit more complicated... */
638 bool old_user_align = DECL_USER_ALIGN (decl);
639 bool zero_bitfield = false;
640 bool packed_p = DECL_PACKED (decl);
641 unsigned int mfa;
643 if (DECL_BIT_FIELD (decl))
645 DECL_BIT_FIELD_TYPE (decl) = type;
647 /* A zero-length bit-field affects the alignment of the next
648 field. In essence such bit-fields are not influenced by
649 any packing due to #pragma pack or attribute packed. */
650 if (integer_zerop (DECL_SIZE (decl))
651 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
653 zero_bitfield = true;
654 packed_p = false;
655 if (PCC_BITFIELD_TYPE_MATTERS)
656 do_type_align (type, decl);
657 else
659 #ifdef EMPTY_FIELD_BOUNDARY
660 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
662 SET_DECL_ALIGN (decl, EMPTY_FIELD_BOUNDARY);
663 DECL_USER_ALIGN (decl) = 0;
665 #endif
669 /* See if we can use an ordinary integer mode for a bit-field.
670 Conditions are: a fixed size that is correct for another mode,
671 occupying a complete byte or bytes on proper boundary. */
672 if (TYPE_SIZE (type) != 0
673 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
674 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
676 machine_mode xmode
677 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
678 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
680 if (xmode != BLKmode
681 && !(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
682 && (known_align == 0 || known_align >= xalign))
684 SET_DECL_ALIGN (decl, MAX (xalign, DECL_ALIGN (decl)));
685 SET_DECL_MODE (decl, xmode);
686 DECL_BIT_FIELD (decl) = 0;
690 /* Turn off DECL_BIT_FIELD if we won't need it set. */
691 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
692 && known_align >= TYPE_ALIGN (type)
693 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
694 DECL_BIT_FIELD (decl) = 0;
696 else if (packed_p && DECL_USER_ALIGN (decl))
697 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
698 round up; we'll reduce it again below. We want packing to
699 supersede USER_ALIGN inherited from the type, but defer to
700 alignment explicitly specified on the field decl. */;
701 else
702 do_type_align (type, decl);
704 /* If the field is packed and not explicitly aligned, give it the
705 minimum alignment. Note that do_type_align may set
706 DECL_USER_ALIGN, so we need to check old_user_align instead. */
707 if (packed_p
708 && !old_user_align)
709 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), BITS_PER_UNIT));
711 if (! packed_p && ! DECL_USER_ALIGN (decl))
713 /* Some targets (i.e. i386, VMS) limit struct field alignment
714 to a lower boundary than alignment of variables unless
715 it was overridden by attribute aligned. */
716 #ifdef BIGGEST_FIELD_ALIGNMENT
717 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl),
718 (unsigned) BIGGEST_FIELD_ALIGNMENT));
719 #endif
720 #ifdef ADJUST_FIELD_ALIGN
721 SET_DECL_ALIGN (decl, ADJUST_FIELD_ALIGN (decl, TREE_TYPE (decl),
722 DECL_ALIGN (decl)));
723 #endif
726 if (zero_bitfield)
727 mfa = initial_max_fld_align * BITS_PER_UNIT;
728 else
729 mfa = maximum_field_alignment;
730 /* Should this be controlled by DECL_USER_ALIGN, too? */
731 if (mfa != 0)
732 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), mfa));
735 /* Evaluate nonconstant size only once, either now or as soon as safe. */
736 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
737 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
738 if (DECL_SIZE_UNIT (decl) != 0
739 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
740 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
742 /* If requested, warn about definitions of large data objects. */
743 if (warn_larger_than
744 && (code == VAR_DECL || code == PARM_DECL)
745 && ! DECL_EXTERNAL (decl))
747 tree size = DECL_SIZE_UNIT (decl);
749 if (size != 0 && TREE_CODE (size) == INTEGER_CST
750 && compare_tree_int (size, larger_than_size) > 0)
752 int size_as_int = TREE_INT_CST_LOW (size);
754 if (compare_tree_int (size, size_as_int) == 0)
755 warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
756 else
757 warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
758 decl, larger_than_size);
762 /* If the RTL was already set, update its mode and mem attributes. */
763 if (rtl)
765 PUT_MODE (rtl, DECL_MODE (decl));
766 SET_DECL_RTL (decl, 0);
767 if (MEM_P (rtl))
768 set_mem_attributes (rtl, decl, 1);
769 SET_DECL_RTL (decl, rtl);
773 /* Given a VAR_DECL, PARM_DECL, RESULT_DECL, or FIELD_DECL, clears the
774 results of a previous call to layout_decl and calls it again. */
776 void
777 relayout_decl (tree decl)
779 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
780 SET_DECL_MODE (decl, VOIDmode);
781 if (!DECL_USER_ALIGN (decl))
782 SET_DECL_ALIGN (decl, 0);
783 if (DECL_RTL_SET_P (decl))
784 SET_DECL_RTL (decl, 0);
786 layout_decl (decl, 0);
789 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
790 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
791 is to be passed to all other layout functions for this record. It is the
792 responsibility of the caller to call `free' for the storage returned.
793 Note that garbage collection is not permitted until we finish laying
794 out the record. */
796 record_layout_info
797 start_record_layout (tree t)
799 record_layout_info rli = XNEW (struct record_layout_info_s);
801 rli->t = t;
803 /* If the type has a minimum specified alignment (via an attribute
804 declaration, for example) use it -- otherwise, start with a
805 one-byte alignment. */
806 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
807 rli->unpacked_align = rli->record_align;
808 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
810 #ifdef STRUCTURE_SIZE_BOUNDARY
811 /* Packed structures don't need to have minimum size. */
812 if (! TYPE_PACKED (t))
814 unsigned tmp;
816 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
817 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
818 if (maximum_field_alignment != 0)
819 tmp = MIN (tmp, maximum_field_alignment);
820 rli->record_align = MAX (rli->record_align, tmp);
822 #endif
824 rli->offset = size_zero_node;
825 rli->bitpos = bitsize_zero_node;
826 rli->prev_field = 0;
827 rli->pending_statics = 0;
828 rli->packed_maybe_necessary = 0;
829 rli->remaining_in_alignment = 0;
831 return rli;
834 /* Return the combined bit position for the byte offset OFFSET and the
835 bit position BITPOS.
837 These functions operate on byte and bit positions present in FIELD_DECLs
838 and assume that these expressions result in no (intermediate) overflow.
839 This assumption is necessary to fold the expressions as much as possible,
840 so as to avoid creating artificially variable-sized types in languages
841 supporting variable-sized types like Ada. */
843 tree
844 bit_from_pos (tree offset, tree bitpos)
846 if (TREE_CODE (offset) == PLUS_EXPR)
847 offset = size_binop (PLUS_EXPR,
848 fold_convert (bitsizetype, TREE_OPERAND (offset, 0)),
849 fold_convert (bitsizetype, TREE_OPERAND (offset, 1)));
850 else
851 offset = fold_convert (bitsizetype, offset);
852 return size_binop (PLUS_EXPR, bitpos,
853 size_binop (MULT_EXPR, offset, bitsize_unit_node));
856 /* Return the combined truncated byte position for the byte offset OFFSET and
857 the bit position BITPOS. */
859 tree
860 byte_from_pos (tree offset, tree bitpos)
862 tree bytepos;
863 if (TREE_CODE (bitpos) == MULT_EXPR
864 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
865 bytepos = TREE_OPERAND (bitpos, 0);
866 else
867 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
868 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
871 /* Split the bit position POS into a byte offset *POFFSET and a bit
872 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
874 void
875 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
876 tree pos)
878 tree toff_align = bitsize_int (off_align);
879 if (TREE_CODE (pos) == MULT_EXPR
880 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
882 *poffset = size_binop (MULT_EXPR,
883 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
884 size_int (off_align / BITS_PER_UNIT));
885 *pbitpos = bitsize_zero_node;
887 else
889 *poffset = size_binop (MULT_EXPR,
890 fold_convert (sizetype,
891 size_binop (FLOOR_DIV_EXPR, pos,
892 toff_align)),
893 size_int (off_align / BITS_PER_UNIT));
894 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
898 /* Given a pointer to bit and byte offsets and an offset alignment,
899 normalize the offsets so they are within the alignment. */
901 void
902 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
904 /* If the bit position is now larger than it should be, adjust it
905 downwards. */
906 if (compare_tree_int (*pbitpos, off_align) >= 0)
908 tree offset, bitpos;
909 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
910 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
911 *pbitpos = bitpos;
915 /* Print debugging information about the information in RLI. */
917 DEBUG_FUNCTION void
918 debug_rli (record_layout_info rli)
920 print_node_brief (stderr, "type", rli->t, 0);
921 print_node_brief (stderr, "\noffset", rli->offset, 0);
922 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
924 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
925 rli->record_align, rli->unpacked_align,
926 rli->offset_align);
928 /* The ms_struct code is the only that uses this. */
929 if (targetm.ms_bitfield_layout_p (rli->t))
930 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
932 if (rli->packed_maybe_necessary)
933 fprintf (stderr, "packed may be necessary\n");
935 if (!vec_safe_is_empty (rli->pending_statics))
937 fprintf (stderr, "pending statics:\n");
938 debug_vec_tree (rli->pending_statics);
942 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
943 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
945 void
946 normalize_rli (record_layout_info rli)
948 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
951 /* Returns the size in bytes allocated so far. */
953 tree
954 rli_size_unit_so_far (record_layout_info rli)
956 return byte_from_pos (rli->offset, rli->bitpos);
959 /* Returns the size in bits allocated so far. */
961 tree
962 rli_size_so_far (record_layout_info rli)
964 return bit_from_pos (rli->offset, rli->bitpos);
967 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
968 the next available location within the record is given by KNOWN_ALIGN.
969 Update the variable alignment fields in RLI, and return the alignment
970 to give the FIELD. */
972 unsigned int
973 update_alignment_for_field (record_layout_info rli, tree field,
974 unsigned int known_align)
976 /* The alignment required for FIELD. */
977 unsigned int desired_align;
978 /* The type of this field. */
979 tree type = TREE_TYPE (field);
980 /* True if the field was explicitly aligned by the user. */
981 bool user_align;
982 bool is_bitfield;
984 /* Do not attempt to align an ERROR_MARK node */
985 if (TREE_CODE (type) == ERROR_MARK)
986 return 0;
988 /* Lay out the field so we know what alignment it needs. */
989 layout_decl (field, known_align);
990 desired_align = DECL_ALIGN (field);
991 user_align = DECL_USER_ALIGN (field);
993 is_bitfield = (type != error_mark_node
994 && DECL_BIT_FIELD_TYPE (field)
995 && ! integer_zerop (TYPE_SIZE (type)));
997 /* Record must have at least as much alignment as any field.
998 Otherwise, the alignment of the field within the record is
999 meaningless. */
1000 if (targetm.ms_bitfield_layout_p (rli->t))
1002 /* Here, the alignment of the underlying type of a bitfield can
1003 affect the alignment of a record; even a zero-sized field
1004 can do this. The alignment should be to the alignment of
1005 the type, except that for zero-size bitfields this only
1006 applies if there was an immediately prior, nonzero-size
1007 bitfield. (That's the way it is, experimentally.) */
1008 if ((!is_bitfield && !DECL_PACKED (field))
1009 || ((DECL_SIZE (field) == NULL_TREE
1010 || !integer_zerop (DECL_SIZE (field)))
1011 ? !DECL_PACKED (field)
1012 : (rli->prev_field
1013 && DECL_BIT_FIELD_TYPE (rli->prev_field)
1014 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
1016 unsigned int type_align = TYPE_ALIGN (type);
1017 type_align = MAX (type_align, desired_align);
1018 if (maximum_field_alignment != 0)
1019 type_align = MIN (type_align, maximum_field_alignment);
1020 rli->record_align = MAX (rli->record_align, type_align);
1021 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1024 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
1026 /* Named bit-fields cause the entire structure to have the
1027 alignment implied by their type. Some targets also apply the same
1028 rules to unnamed bitfields. */
1029 if (DECL_NAME (field) != 0
1030 || targetm.align_anon_bitfield ())
1032 unsigned int type_align = TYPE_ALIGN (type);
1034 #ifdef ADJUST_FIELD_ALIGN
1035 if (! TYPE_USER_ALIGN (type))
1036 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1037 #endif
1039 /* Targets might chose to handle unnamed and hence possibly
1040 zero-width bitfield. Those are not influenced by #pragmas
1041 or packed attributes. */
1042 if (integer_zerop (DECL_SIZE (field)))
1044 if (initial_max_fld_align)
1045 type_align = MIN (type_align,
1046 initial_max_fld_align * BITS_PER_UNIT);
1048 else if (maximum_field_alignment != 0)
1049 type_align = MIN (type_align, maximum_field_alignment);
1050 else if (DECL_PACKED (field))
1051 type_align = MIN (type_align, BITS_PER_UNIT);
1053 /* The alignment of the record is increased to the maximum
1054 of the current alignment, the alignment indicated on the
1055 field (i.e., the alignment specified by an __aligned__
1056 attribute), and the alignment indicated by the type of
1057 the field. */
1058 rli->record_align = MAX (rli->record_align, desired_align);
1059 rli->record_align = MAX (rli->record_align, type_align);
1061 if (warn_packed)
1062 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1063 user_align |= TYPE_USER_ALIGN (type);
1066 else
1068 rli->record_align = MAX (rli->record_align, desired_align);
1069 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1072 TYPE_USER_ALIGN (rli->t) |= user_align;
1074 return desired_align;
1077 /* Called from place_field to handle unions. */
1079 static void
1080 place_union_field (record_layout_info rli, tree field)
1082 update_alignment_for_field (rli, field, /*known_align=*/0);
1084 DECL_FIELD_OFFSET (field) = size_zero_node;
1085 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1086 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1088 /* If this is an ERROR_MARK return *after* having set the
1089 field at the start of the union. This helps when parsing
1090 invalid fields. */
1091 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1092 return;
1094 if (AGGREGATE_TYPE_P (TREE_TYPE (field))
1095 && TYPE_TYPELESS_STORAGE (TREE_TYPE (field)))
1096 TYPE_TYPELESS_STORAGE (rli->t) = 1;
1098 /* We assume the union's size will be a multiple of a byte so we don't
1099 bother with BITPOS. */
1100 if (TREE_CODE (rli->t) == UNION_TYPE)
1101 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1102 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1103 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1104 DECL_SIZE_UNIT (field), rli->offset);
1107 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1108 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1109 units of alignment than the underlying TYPE. */
1110 static int
1111 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1112 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1114 /* Note that the calculation of OFFSET might overflow; we calculate it so
1115 that we still get the right result as long as ALIGN is a power of two. */
1116 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1118 offset = offset % align;
1119 return ((offset + size + align - 1) / align
1120 > tree_to_uhwi (TYPE_SIZE (type)) / align);
1123 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1124 is a FIELD_DECL to be added after those fields already present in
1125 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1126 callers that desire that behavior must manually perform that step.) */
1128 void
1129 place_field (record_layout_info rli, tree field)
1131 /* The alignment required for FIELD. */
1132 unsigned int desired_align;
1133 /* The alignment FIELD would have if we just dropped it into the
1134 record as it presently stands. */
1135 unsigned int known_align;
1136 unsigned int actual_align;
1137 /* The type of this field. */
1138 tree type = TREE_TYPE (field);
1140 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1142 /* If FIELD is static, then treat it like a separate variable, not
1143 really like a structure field. If it is a FUNCTION_DECL, it's a
1144 method. In both cases, all we do is lay out the decl, and we do
1145 it *after* the record is laid out. */
1146 if (VAR_P (field))
1148 vec_safe_push (rli->pending_statics, field);
1149 return;
1152 /* Enumerators and enum types which are local to this class need not
1153 be laid out. Likewise for initialized constant fields. */
1154 else if (TREE_CODE (field) != FIELD_DECL)
1155 return;
1157 /* Unions are laid out very differently than records, so split
1158 that code off to another function. */
1159 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1161 place_union_field (rli, field);
1162 return;
1165 else if (TREE_CODE (type) == ERROR_MARK)
1167 /* Place this field at the current allocation position, so we
1168 maintain monotonicity. */
1169 DECL_FIELD_OFFSET (field) = rli->offset;
1170 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1171 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1172 return;
1175 if (AGGREGATE_TYPE_P (type)
1176 && TYPE_TYPELESS_STORAGE (type))
1177 TYPE_TYPELESS_STORAGE (rli->t) = 1;
1179 /* Work out the known alignment so far. Note that A & (-A) is the
1180 value of the least-significant bit in A that is one. */
1181 if (! integer_zerop (rli->bitpos))
1182 known_align = least_bit_hwi (tree_to_uhwi (rli->bitpos));
1183 else if (integer_zerop (rli->offset))
1184 known_align = 0;
1185 else if (tree_fits_uhwi_p (rli->offset))
1186 known_align = (BITS_PER_UNIT
1187 * least_bit_hwi (tree_to_uhwi (rli->offset)));
1188 else
1189 known_align = rli->offset_align;
1191 desired_align = update_alignment_for_field (rli, field, known_align);
1192 if (known_align == 0)
1193 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1195 if (warn_packed && DECL_PACKED (field))
1197 if (known_align >= TYPE_ALIGN (type))
1199 if (TYPE_ALIGN (type) > desired_align)
1201 if (STRICT_ALIGNMENT)
1202 warning (OPT_Wattributes, "packed attribute causes "
1203 "inefficient alignment for %q+D", field);
1204 /* Don't warn if DECL_PACKED was set by the type. */
1205 else if (!TYPE_PACKED (rli->t))
1206 warning (OPT_Wattributes, "packed attribute is "
1207 "unnecessary for %q+D", field);
1210 else
1211 rli->packed_maybe_necessary = 1;
1214 /* Does this field automatically have alignment it needs by virtue
1215 of the fields that precede it and the record's own alignment? */
1216 if (known_align < desired_align)
1218 /* No, we need to skip space before this field.
1219 Bump the cumulative size to multiple of field alignment. */
1221 if (!targetm.ms_bitfield_layout_p (rli->t)
1222 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1223 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1225 /* If the alignment is still within offset_align, just align
1226 the bit position. */
1227 if (desired_align < rli->offset_align)
1228 rli->bitpos = round_up (rli->bitpos, desired_align);
1229 else
1231 /* First adjust OFFSET by the partial bits, then align. */
1232 rli->offset
1233 = size_binop (PLUS_EXPR, rli->offset,
1234 fold_convert (sizetype,
1235 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1236 bitsize_unit_node)));
1237 rli->bitpos = bitsize_zero_node;
1239 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1242 if (! TREE_CONSTANT (rli->offset))
1243 rli->offset_align = desired_align;
1244 if (targetm.ms_bitfield_layout_p (rli->t))
1245 rli->prev_field = NULL;
1248 /* Handle compatibility with PCC. Note that if the record has any
1249 variable-sized fields, we need not worry about compatibility. */
1250 if (PCC_BITFIELD_TYPE_MATTERS
1251 && ! targetm.ms_bitfield_layout_p (rli->t)
1252 && TREE_CODE (field) == FIELD_DECL
1253 && type != error_mark_node
1254 && DECL_BIT_FIELD (field)
1255 && (! DECL_PACKED (field)
1256 /* Enter for these packed fields only to issue a warning. */
1257 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1258 && maximum_field_alignment == 0
1259 && ! integer_zerop (DECL_SIZE (field))
1260 && tree_fits_uhwi_p (DECL_SIZE (field))
1261 && tree_fits_uhwi_p (rli->offset)
1262 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1264 unsigned int type_align = TYPE_ALIGN (type);
1265 tree dsize = DECL_SIZE (field);
1266 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1267 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1268 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1270 #ifdef ADJUST_FIELD_ALIGN
1271 if (! TYPE_USER_ALIGN (type))
1272 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1273 #endif
1275 /* A bit field may not span more units of alignment of its type
1276 than its type itself. Advance to next boundary if necessary. */
1277 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1279 if (DECL_PACKED (field))
1281 if (warn_packed_bitfield_compat == 1)
1282 inform
1283 (input_location,
1284 "offset of packed bit-field %qD has changed in GCC 4.4",
1285 field);
1287 else
1288 rli->bitpos = round_up (rli->bitpos, type_align);
1291 if (! DECL_PACKED (field))
1292 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1295 #ifdef BITFIELD_NBYTES_LIMITED
1296 if (BITFIELD_NBYTES_LIMITED
1297 && ! targetm.ms_bitfield_layout_p (rli->t)
1298 && TREE_CODE (field) == FIELD_DECL
1299 && type != error_mark_node
1300 && DECL_BIT_FIELD_TYPE (field)
1301 && ! DECL_PACKED (field)
1302 && ! integer_zerop (DECL_SIZE (field))
1303 && tree_fits_uhwi_p (DECL_SIZE (field))
1304 && tree_fits_uhwi_p (rli->offset)
1305 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1307 unsigned int type_align = TYPE_ALIGN (type);
1308 tree dsize = DECL_SIZE (field);
1309 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1310 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1311 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1313 #ifdef ADJUST_FIELD_ALIGN
1314 if (! TYPE_USER_ALIGN (type))
1315 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1316 #endif
1318 if (maximum_field_alignment != 0)
1319 type_align = MIN (type_align, maximum_field_alignment);
1320 /* ??? This test is opposite the test in the containing if
1321 statement, so this code is unreachable currently. */
1322 else if (DECL_PACKED (field))
1323 type_align = MIN (type_align, BITS_PER_UNIT);
1325 /* A bit field may not span the unit of alignment of its type.
1326 Advance to next boundary if necessary. */
1327 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1328 rli->bitpos = round_up (rli->bitpos, type_align);
1330 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1332 #endif
1334 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1335 A subtlety:
1336 When a bit field is inserted into a packed record, the whole
1337 size of the underlying type is used by one or more same-size
1338 adjacent bitfields. (That is, if its long:3, 32 bits is
1339 used in the record, and any additional adjacent long bitfields are
1340 packed into the same chunk of 32 bits. However, if the size
1341 changes, a new field of that size is allocated.) In an unpacked
1342 record, this is the same as using alignment, but not equivalent
1343 when packing.
1345 Note: for compatibility, we use the type size, not the type alignment
1346 to determine alignment, since that matches the documentation */
1348 if (targetm.ms_bitfield_layout_p (rli->t))
1350 tree prev_saved = rli->prev_field;
1351 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1353 /* This is a bitfield if it exists. */
1354 if (rli->prev_field)
1356 /* If both are bitfields, nonzero, and the same size, this is
1357 the middle of a run. Zero declared size fields are special
1358 and handled as "end of run". (Note: it's nonzero declared
1359 size, but equal type sizes!) (Since we know that both
1360 the current and previous fields are bitfields by the
1361 time we check it, DECL_SIZE must be present for both.) */
1362 if (DECL_BIT_FIELD_TYPE (field)
1363 && !integer_zerop (DECL_SIZE (field))
1364 && !integer_zerop (DECL_SIZE (rli->prev_field))
1365 && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1366 && tree_fits_uhwi_p (TYPE_SIZE (type))
1367 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1369 /* We're in the middle of a run of equal type size fields; make
1370 sure we realign if we run out of bits. (Not decl size,
1371 type size!) */
1372 HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1374 if (rli->remaining_in_alignment < bitsize)
1376 HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1378 /* out of bits; bump up to next 'word'. */
1379 rli->bitpos
1380 = size_binop (PLUS_EXPR, rli->bitpos,
1381 bitsize_int (rli->remaining_in_alignment));
1382 rli->prev_field = field;
1383 if (typesize < bitsize)
1384 rli->remaining_in_alignment = 0;
1385 else
1386 rli->remaining_in_alignment = typesize - bitsize;
1388 else
1389 rli->remaining_in_alignment -= bitsize;
1391 else
1393 /* End of a run: if leaving a run of bitfields of the same type
1394 size, we have to "use up" the rest of the bits of the type
1395 size.
1397 Compute the new position as the sum of the size for the prior
1398 type and where we first started working on that type.
1399 Note: since the beginning of the field was aligned then
1400 of course the end will be too. No round needed. */
1402 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1404 rli->bitpos
1405 = size_binop (PLUS_EXPR, rli->bitpos,
1406 bitsize_int (rli->remaining_in_alignment));
1408 else
1409 /* We "use up" size zero fields; the code below should behave
1410 as if the prior field was not a bitfield. */
1411 prev_saved = NULL;
1413 /* Cause a new bitfield to be captured, either this time (if
1414 currently a bitfield) or next time we see one. */
1415 if (!DECL_BIT_FIELD_TYPE (field)
1416 || integer_zerop (DECL_SIZE (field)))
1417 rli->prev_field = NULL;
1420 normalize_rli (rli);
1423 /* If we're starting a new run of same type size bitfields
1424 (or a run of non-bitfields), set up the "first of the run"
1425 fields.
1427 That is, if the current field is not a bitfield, or if there
1428 was a prior bitfield the type sizes differ, or if there wasn't
1429 a prior bitfield the size of the current field is nonzero.
1431 Note: we must be sure to test ONLY the type size if there was
1432 a prior bitfield and ONLY for the current field being zero if
1433 there wasn't. */
1435 if (!DECL_BIT_FIELD_TYPE (field)
1436 || (prev_saved != NULL
1437 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1438 : !integer_zerop (DECL_SIZE (field)) ))
1440 /* Never smaller than a byte for compatibility. */
1441 unsigned int type_align = BITS_PER_UNIT;
1443 /* (When not a bitfield), we could be seeing a flex array (with
1444 no DECL_SIZE). Since we won't be using remaining_in_alignment
1445 until we see a bitfield (and come by here again) we just skip
1446 calculating it. */
1447 if (DECL_SIZE (field) != NULL
1448 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1449 && tree_fits_uhwi_p (DECL_SIZE (field)))
1451 unsigned HOST_WIDE_INT bitsize
1452 = tree_to_uhwi (DECL_SIZE (field));
1453 unsigned HOST_WIDE_INT typesize
1454 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1456 if (typesize < bitsize)
1457 rli->remaining_in_alignment = 0;
1458 else
1459 rli->remaining_in_alignment = typesize - bitsize;
1462 /* Now align (conventionally) for the new type. */
1463 type_align = TYPE_ALIGN (TREE_TYPE (field));
1465 if (maximum_field_alignment != 0)
1466 type_align = MIN (type_align, maximum_field_alignment);
1468 rli->bitpos = round_up (rli->bitpos, type_align);
1470 /* If we really aligned, don't allow subsequent bitfields
1471 to undo that. */
1472 rli->prev_field = NULL;
1476 /* Offset so far becomes the position of this field after normalizing. */
1477 normalize_rli (rli);
1478 DECL_FIELD_OFFSET (field) = rli->offset;
1479 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1480 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1482 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1483 if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
1484 DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
1486 /* If this field ended up more aligned than we thought it would be (we
1487 approximate this by seeing if its position changed), lay out the field
1488 again; perhaps we can use an integral mode for it now. */
1489 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1490 actual_align = least_bit_hwi (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1491 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1492 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1493 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1494 actual_align = (BITS_PER_UNIT
1495 * least_bit_hwi (tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1496 else
1497 actual_align = DECL_OFFSET_ALIGN (field);
1498 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1499 store / extract bit field operations will check the alignment of the
1500 record against the mode of bit fields. */
1502 if (known_align != actual_align)
1503 layout_decl (field, actual_align);
1505 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1506 rli->prev_field = field;
1508 /* Now add size of this field to the size of the record. If the size is
1509 not constant, treat the field as being a multiple of bytes and just
1510 adjust the offset, resetting the bit position. Otherwise, apportion the
1511 size amongst the bit position and offset. First handle the case of an
1512 unspecified size, which can happen when we have an invalid nested struct
1513 definition, such as struct j { struct j { int i; } }. The error message
1514 is printed in finish_struct. */
1515 if (DECL_SIZE (field) == 0)
1516 /* Do nothing. */;
1517 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1518 || TREE_OVERFLOW (DECL_SIZE (field)))
1520 rli->offset
1521 = size_binop (PLUS_EXPR, rli->offset,
1522 fold_convert (sizetype,
1523 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1524 bitsize_unit_node)));
1525 rli->offset
1526 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1527 rli->bitpos = bitsize_zero_node;
1528 rli->offset_align = MIN (rli->offset_align, desired_align);
1530 else if (targetm.ms_bitfield_layout_p (rli->t))
1532 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1534 /* If we ended a bitfield before the full length of the type then
1535 pad the struct out to the full length of the last type. */
1536 if ((DECL_CHAIN (field) == NULL
1537 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
1538 && DECL_BIT_FIELD_TYPE (field)
1539 && !integer_zerop (DECL_SIZE (field)))
1540 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1541 bitsize_int (rli->remaining_in_alignment));
1543 normalize_rli (rli);
1545 else
1547 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1548 normalize_rli (rli);
1552 /* Assuming that all the fields have been laid out, this function uses
1553 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1554 indicated by RLI. */
1556 static void
1557 finalize_record_size (record_layout_info rli)
1559 tree unpadded_size, unpadded_size_unit;
1561 /* Now we want just byte and bit offsets, so set the offset alignment
1562 to be a byte and then normalize. */
1563 rli->offset_align = BITS_PER_UNIT;
1564 normalize_rli (rli);
1566 /* Determine the desired alignment. */
1567 #ifdef ROUND_TYPE_ALIGN
1568 SET_TYPE_ALIGN (rli->t, ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1569 rli->record_align));
1570 #else
1571 SET_TYPE_ALIGN (rli->t, MAX (TYPE_ALIGN (rli->t), rli->record_align));
1572 #endif
1574 /* Compute the size so far. Be sure to allow for extra bits in the
1575 size in bytes. We have guaranteed above that it will be no more
1576 than a single byte. */
1577 unpadded_size = rli_size_so_far (rli);
1578 unpadded_size_unit = rli_size_unit_so_far (rli);
1579 if (! integer_zerop (rli->bitpos))
1580 unpadded_size_unit
1581 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1583 /* Round the size up to be a multiple of the required alignment. */
1584 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1585 TYPE_SIZE_UNIT (rli->t)
1586 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1588 if (TREE_CONSTANT (unpadded_size)
1589 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1590 && input_location != BUILTINS_LOCATION)
1591 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1593 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1594 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1595 && TREE_CONSTANT (unpadded_size))
1597 tree unpacked_size;
1599 #ifdef ROUND_TYPE_ALIGN
1600 rli->unpacked_align
1601 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1602 #else
1603 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1604 #endif
1606 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1607 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1609 if (TYPE_NAME (rli->t))
1611 tree name;
1613 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1614 name = TYPE_NAME (rli->t);
1615 else
1616 name = DECL_NAME (TYPE_NAME (rli->t));
1618 if (STRICT_ALIGNMENT)
1619 warning (OPT_Wpacked, "packed attribute causes inefficient "
1620 "alignment for %qE", name);
1621 else
1622 warning (OPT_Wpacked,
1623 "packed attribute is unnecessary for %qE", name);
1625 else
1627 if (STRICT_ALIGNMENT)
1628 warning (OPT_Wpacked,
1629 "packed attribute causes inefficient alignment");
1630 else
1631 warning (OPT_Wpacked, "packed attribute is unnecessary");
1637 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1639 void
1640 compute_record_mode (tree type)
1642 tree field;
1643 machine_mode mode = VOIDmode;
1645 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1646 However, if possible, we use a mode that fits in a register
1647 instead, in order to allow for better optimization down the
1648 line. */
1649 SET_TYPE_MODE (type, BLKmode);
1651 if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
1652 return;
1654 /* A record which has any BLKmode members must itself be
1655 BLKmode; it can't go in a register. Unless the member is
1656 BLKmode only because it isn't aligned. */
1657 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1659 if (TREE_CODE (field) != FIELD_DECL)
1660 continue;
1662 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1663 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1664 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1665 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1666 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1667 || ! tree_fits_uhwi_p (bit_position (field))
1668 || DECL_SIZE (field) == 0
1669 || ! tree_fits_uhwi_p (DECL_SIZE (field)))
1670 return;
1672 /* If this field is the whole struct, remember its mode so
1673 that, say, we can put a double in a class into a DF
1674 register instead of forcing it to live in the stack. */
1675 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1676 mode = DECL_MODE (field);
1678 /* With some targets, it is sub-optimal to access an aligned
1679 BLKmode structure as a scalar. */
1680 if (targetm.member_type_forces_blk (field, mode))
1681 return;
1684 /* If we only have one real field; use its mode if that mode's size
1685 matches the type's size. This only applies to RECORD_TYPE. This
1686 does not apply to unions. */
1687 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1688 && tree_fits_uhwi_p (TYPE_SIZE (type))
1689 && GET_MODE_BITSIZE (mode) == tree_to_uhwi (TYPE_SIZE (type)))
1690 SET_TYPE_MODE (type, mode);
1691 else
1692 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1));
1694 /* If structure's known alignment is less than what the scalar
1695 mode would need, and it matters, then stick with BLKmode. */
1696 if (TYPE_MODE (type) != BLKmode
1697 && STRICT_ALIGNMENT
1698 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1699 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1701 /* If this is the only reason this type is BLKmode, then
1702 don't force containing types to be BLKmode. */
1703 TYPE_NO_FORCE_BLK (type) = 1;
1704 SET_TYPE_MODE (type, BLKmode);
1708 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1709 out. */
1711 static void
1712 finalize_type_size (tree type)
1714 /* Normally, use the alignment corresponding to the mode chosen.
1715 However, where strict alignment is not required, avoid
1716 over-aligning structures, since most compilers do not do this
1717 alignment. */
1718 if (TYPE_MODE (type) != BLKmode
1719 && TYPE_MODE (type) != VOIDmode
1720 && (STRICT_ALIGNMENT || !AGGREGATE_TYPE_P (type)))
1722 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1724 /* Don't override a larger alignment requirement coming from a user
1725 alignment of one of the fields. */
1726 if (mode_align >= TYPE_ALIGN (type))
1728 SET_TYPE_ALIGN (type, mode_align);
1729 TYPE_USER_ALIGN (type) = 0;
1733 /* Do machine-dependent extra alignment. */
1734 #ifdef ROUND_TYPE_ALIGN
1735 SET_TYPE_ALIGN (type,
1736 ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT));
1737 #endif
1739 /* If we failed to find a simple way to calculate the unit size
1740 of the type, find it by division. */
1741 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1742 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1743 result will fit in sizetype. We will get more efficient code using
1744 sizetype, so we force a conversion. */
1745 TYPE_SIZE_UNIT (type)
1746 = fold_convert (sizetype,
1747 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1748 bitsize_unit_node));
1750 if (TYPE_SIZE (type) != 0)
1752 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1753 TYPE_SIZE_UNIT (type)
1754 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1757 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1758 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1759 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1760 if (TYPE_SIZE_UNIT (type) != 0
1761 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1762 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1764 /* Also layout any other variants of the type. */
1765 if (TYPE_NEXT_VARIANT (type)
1766 || type != TYPE_MAIN_VARIANT (type))
1768 tree variant;
1769 /* Record layout info of this variant. */
1770 tree size = TYPE_SIZE (type);
1771 tree size_unit = TYPE_SIZE_UNIT (type);
1772 unsigned int align = TYPE_ALIGN (type);
1773 unsigned int precision = TYPE_PRECISION (type);
1774 unsigned int user_align = TYPE_USER_ALIGN (type);
1775 machine_mode mode = TYPE_MODE (type);
1777 /* Copy it into all variants. */
1778 for (variant = TYPE_MAIN_VARIANT (type);
1779 variant != 0;
1780 variant = TYPE_NEXT_VARIANT (variant))
1782 TYPE_SIZE (variant) = size;
1783 TYPE_SIZE_UNIT (variant) = size_unit;
1784 unsigned valign = align;
1785 if (TYPE_USER_ALIGN (variant))
1786 valign = MAX (valign, TYPE_ALIGN (variant));
1787 else
1788 TYPE_USER_ALIGN (variant) = user_align;
1789 SET_TYPE_ALIGN (variant, valign);
1790 TYPE_PRECISION (variant) = precision;
1791 SET_TYPE_MODE (variant, mode);
1796 /* Return a new underlying object for a bitfield started with FIELD. */
1798 static tree
1799 start_bitfield_representative (tree field)
1801 tree repr = make_node (FIELD_DECL);
1802 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1803 /* Force the representative to begin at a BITS_PER_UNIT aligned
1804 boundary - C++ may use tail-padding of a base object to
1805 continue packing bits so the bitfield region does not start
1806 at bit zero (see g++.dg/abi/bitfield5.C for example).
1807 Unallocated bits may happen for other reasons as well,
1808 for example Ada which allows explicit bit-granular structure layout. */
1809 DECL_FIELD_BIT_OFFSET (repr)
1810 = size_binop (BIT_AND_EXPR,
1811 DECL_FIELD_BIT_OFFSET (field),
1812 bitsize_int (~(BITS_PER_UNIT - 1)));
1813 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1814 DECL_SIZE (repr) = DECL_SIZE (field);
1815 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1816 DECL_PACKED (repr) = DECL_PACKED (field);
1817 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1818 /* There are no indirect accesses to this field. If we introduce
1819 some then they have to use the record alias set. This makes
1820 sure to properly conflict with [indirect] accesses to addressable
1821 fields of the bitfield group. */
1822 DECL_NONADDRESSABLE_P (repr) = 1;
1823 return repr;
1826 /* Finish up a bitfield group that was started by creating the underlying
1827 object REPR with the last field in the bitfield group FIELD. */
1829 static void
1830 finish_bitfield_representative (tree repr, tree field)
1832 unsigned HOST_WIDE_INT bitsize, maxbitsize;
1833 machine_mode mode;
1834 tree nextf, size;
1836 size = size_diffop (DECL_FIELD_OFFSET (field),
1837 DECL_FIELD_OFFSET (repr));
1838 while (TREE_CODE (size) == COMPOUND_EXPR)
1839 size = TREE_OPERAND (size, 1);
1840 gcc_assert (tree_fits_uhwi_p (size));
1841 bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
1842 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1843 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
1844 + tree_to_uhwi (DECL_SIZE (field)));
1846 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1847 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1849 /* Now nothing tells us how to pad out bitsize ... */
1850 nextf = DECL_CHAIN (field);
1851 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
1852 nextf = DECL_CHAIN (nextf);
1853 if (nextf)
1855 tree maxsize;
1856 /* If there was an error, the field may be not laid out
1857 correctly. Don't bother to do anything. */
1858 if (TREE_TYPE (nextf) == error_mark_node)
1859 return;
1860 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
1861 DECL_FIELD_OFFSET (repr));
1862 if (tree_fits_uhwi_p (maxsize))
1864 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1865 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
1866 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1867 /* If the group ends within a bitfield nextf does not need to be
1868 aligned to BITS_PER_UNIT. Thus round up. */
1869 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1871 else
1872 maxbitsize = bitsize;
1874 else
1876 /* Note that if the C++ FE sets up tail-padding to be re-used it
1877 creates a as-base variant of the type with TYPE_SIZE adjusted
1878 accordingly. So it is safe to include tail-padding here. */
1879 tree aggsize = lang_hooks.types.unit_size_without_reusable_padding
1880 (DECL_CONTEXT (field));
1881 tree maxsize = size_diffop (aggsize, DECL_FIELD_OFFSET (repr));
1882 /* We cannot generally rely on maxsize to fold to an integer constant,
1883 so use bitsize as fallback for this case. */
1884 if (tree_fits_uhwi_p (maxsize))
1885 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1886 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1887 else
1888 maxbitsize = bitsize;
1891 /* Only if we don't artificially break up the representative in
1892 the middle of a large bitfield with different possibly
1893 overlapping representatives. And all representatives start
1894 at byte offset. */
1895 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
1897 /* Find the smallest nice mode to use. */
1898 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1899 mode = GET_MODE_WIDER_MODE (mode))
1900 if (GET_MODE_BITSIZE (mode) >= bitsize)
1901 break;
1902 if (mode != VOIDmode
1903 && (GET_MODE_BITSIZE (mode) > maxbitsize
1904 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE))
1905 mode = VOIDmode;
1907 if (mode == VOIDmode)
1909 /* We really want a BLKmode representative only as a last resort,
1910 considering the member b in
1911 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1912 Otherwise we simply want to split the representative up
1913 allowing for overlaps within the bitfield region as required for
1914 struct { int a : 7; int b : 7;
1915 int c : 10; int d; } __attribute__((packed));
1916 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1917 DECL_SIZE (repr) = bitsize_int (bitsize);
1918 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
1919 SET_DECL_MODE (repr, BLKmode);
1920 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
1921 bitsize / BITS_PER_UNIT);
1923 else
1925 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
1926 DECL_SIZE (repr) = bitsize_int (modesize);
1927 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
1928 SET_DECL_MODE (repr, mode);
1929 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
1932 /* Remember whether the bitfield group is at the end of the
1933 structure or not. */
1934 DECL_CHAIN (repr) = nextf;
1937 /* Compute and set FIELD_DECLs for the underlying objects we should
1938 use for bitfield access for the structure T. */
1940 void
1941 finish_bitfield_layout (tree t)
1943 tree field, prev;
1944 tree repr = NULL_TREE;
1946 /* Unions would be special, for the ease of type-punning optimizations
1947 we could use the underlying type as hint for the representative
1948 if the bitfield would fit and the representative would not exceed
1949 the union in size. */
1950 if (TREE_CODE (t) != RECORD_TYPE)
1951 return;
1953 for (prev = NULL_TREE, field = TYPE_FIELDS (t);
1954 field; field = DECL_CHAIN (field))
1956 if (TREE_CODE (field) != FIELD_DECL)
1957 continue;
1959 /* In the C++ memory model, consecutive bit fields in a structure are
1960 considered one memory location and updating a memory location
1961 may not store into adjacent memory locations. */
1962 if (!repr
1963 && DECL_BIT_FIELD_TYPE (field))
1965 /* Start new representative. */
1966 repr = start_bitfield_representative (field);
1968 else if (repr
1969 && ! DECL_BIT_FIELD_TYPE (field))
1971 /* Finish off new representative. */
1972 finish_bitfield_representative (repr, prev);
1973 repr = NULL_TREE;
1975 else if (DECL_BIT_FIELD_TYPE (field))
1977 gcc_assert (repr != NULL_TREE);
1979 /* Zero-size bitfields finish off a representative and
1980 do not have a representative themselves. This is
1981 required by the C++ memory model. */
1982 if (integer_zerop (DECL_SIZE (field)))
1984 finish_bitfield_representative (repr, prev);
1985 repr = NULL_TREE;
1988 /* We assume that either DECL_FIELD_OFFSET of the representative
1989 and each bitfield member is a constant or they are equal.
1990 This is because we need to be able to compute the bit-offset
1991 of each field relative to the representative in get_bit_range
1992 during RTL expansion.
1993 If these constraints are not met, simply force a new
1994 representative to be generated. That will at most
1995 generate worse code but still maintain correctness with
1996 respect to the C++ memory model. */
1997 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
1998 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1999 || operand_equal_p (DECL_FIELD_OFFSET (repr),
2000 DECL_FIELD_OFFSET (field), 0)))
2002 finish_bitfield_representative (repr, prev);
2003 repr = start_bitfield_representative (field);
2006 else
2007 continue;
2009 if (repr)
2010 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
2012 prev = field;
2015 if (repr)
2016 finish_bitfield_representative (repr, prev);
2019 /* Do all of the work required to layout the type indicated by RLI,
2020 once the fields have been laid out. This function will call `free'
2021 for RLI, unless FREE_P is false. Passing a value other than false
2022 for FREE_P is bad practice; this option only exists to support the
2023 G++ 3.2 ABI. */
2025 void
2026 finish_record_layout (record_layout_info rli, int free_p)
2028 tree variant;
2030 /* Compute the final size. */
2031 finalize_record_size (rli);
2033 /* Compute the TYPE_MODE for the record. */
2034 compute_record_mode (rli->t);
2036 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2037 finalize_type_size (rli->t);
2039 /* Compute bitfield representatives. */
2040 finish_bitfield_layout (rli->t);
2042 /* Propagate TYPE_PACKED and TYPE_REVERSE_STORAGE_ORDER to variants.
2043 With C++ templates, it is too early to do this when the attribute
2044 is being parsed. */
2045 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2046 variant = TYPE_NEXT_VARIANT (variant))
2048 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2049 TYPE_REVERSE_STORAGE_ORDER (variant)
2050 = TYPE_REVERSE_STORAGE_ORDER (rli->t);
2053 /* Lay out any static members. This is done now because their type
2054 may use the record's type. */
2055 while (!vec_safe_is_empty (rli->pending_statics))
2056 layout_decl (rli->pending_statics->pop (), 0);
2058 /* Clean up. */
2059 if (free_p)
2061 vec_free (rli->pending_statics);
2062 free (rli);
2067 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2068 NAME, its fields are chained in reverse on FIELDS.
2070 If ALIGN_TYPE is non-null, it is given the same alignment as
2071 ALIGN_TYPE. */
2073 void
2074 finish_builtin_struct (tree type, const char *name, tree fields,
2075 tree align_type)
2077 tree tail, next;
2079 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2081 DECL_FIELD_CONTEXT (fields) = type;
2082 next = DECL_CHAIN (fields);
2083 DECL_CHAIN (fields) = tail;
2085 TYPE_FIELDS (type) = tail;
2087 if (align_type)
2089 SET_TYPE_ALIGN (type, TYPE_ALIGN (align_type));
2090 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2093 layout_type (type);
2094 #if 0 /* not yet, should get fixed properly later */
2095 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2096 #else
2097 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2098 TYPE_DECL, get_identifier (name), type);
2099 #endif
2100 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2101 layout_decl (TYPE_NAME (type), 0);
2104 /* Calculate the mode, size, and alignment for TYPE.
2105 For an array type, calculate the element separation as well.
2106 Record TYPE on the chain of permanent or temporary types
2107 so that dbxout will find out about it.
2109 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2110 layout_type does nothing on such a type.
2112 If the type is incomplete, its TYPE_SIZE remains zero. */
2114 void
2115 layout_type (tree type)
2117 gcc_assert (type);
2119 if (type == error_mark_node)
2120 return;
2122 /* We don't want finalize_type_size to copy an alignment attribute to
2123 variants that don't have it. */
2124 type = TYPE_MAIN_VARIANT (type);
2126 /* Do nothing if type has been laid out before. */
2127 if (TYPE_SIZE (type))
2128 return;
2130 switch (TREE_CODE (type))
2132 case LANG_TYPE:
2133 /* This kind of type is the responsibility
2134 of the language-specific code. */
2135 gcc_unreachable ();
2137 case BOOLEAN_TYPE:
2138 case INTEGER_TYPE:
2139 case ENUMERAL_TYPE:
2140 SET_TYPE_MODE (type,
2141 smallest_mode_for_size (TYPE_PRECISION (type), MODE_INT));
2142 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2143 /* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */
2144 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2145 break;
2147 case REAL_TYPE:
2148 /* Allow the caller to choose the type mode, which is how decimal
2149 floats are distinguished from binary ones. */
2150 if (TYPE_MODE (type) == VOIDmode)
2151 SET_TYPE_MODE (type,
2152 mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0));
2153 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2154 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2155 break;
2157 case FIXED_POINT_TYPE:
2158 /* TYPE_MODE (type) has been set already. */
2159 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2160 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2161 break;
2163 case COMPLEX_TYPE:
2164 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2165 SET_TYPE_MODE (type,
2166 GET_MODE_COMPLEX_MODE (TYPE_MODE (TREE_TYPE (type))));
2168 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2169 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2170 break;
2172 case VECTOR_TYPE:
2174 int nunits = TYPE_VECTOR_SUBPARTS (type);
2175 tree innertype = TREE_TYPE (type);
2177 gcc_assert (!(nunits & (nunits - 1)));
2179 /* Find an appropriate mode for the vector type. */
2180 if (TYPE_MODE (type) == VOIDmode)
2181 SET_TYPE_MODE (type,
2182 mode_for_vector (TYPE_MODE (innertype), nunits));
2184 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2185 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2186 /* Several boolean vector elements may fit in a single unit. */
2187 if (VECTOR_BOOLEAN_TYPE_P (type)
2188 && type->type_common.mode != BLKmode)
2189 TYPE_SIZE_UNIT (type)
2190 = size_int (GET_MODE_SIZE (type->type_common.mode));
2191 else
2192 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2193 TYPE_SIZE_UNIT (innertype),
2194 size_int (nunits));
2195 TYPE_SIZE (type) = int_const_binop (MULT_EXPR,
2196 TYPE_SIZE (innertype),
2197 bitsize_int (nunits));
2199 /* For vector types, we do not default to the mode's alignment.
2200 Instead, query a target hook, defaulting to natural alignment.
2201 This prevents ABI changes depending on whether or not native
2202 vector modes are supported. */
2203 SET_TYPE_ALIGN (type, targetm.vector_alignment (type));
2205 /* However, if the underlying mode requires a bigger alignment than
2206 what the target hook provides, we cannot use the mode. For now,
2207 simply reject that case. */
2208 gcc_assert (TYPE_ALIGN (type)
2209 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2210 break;
2213 case VOID_TYPE:
2214 /* This is an incomplete type and so doesn't have a size. */
2215 SET_TYPE_ALIGN (type, 1);
2216 TYPE_USER_ALIGN (type) = 0;
2217 SET_TYPE_MODE (type, VOIDmode);
2218 break;
2220 case POINTER_BOUNDS_TYPE:
2221 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2222 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2223 break;
2225 case OFFSET_TYPE:
2226 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2227 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE_UNITS);
2228 /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2229 integral, which may be an __intN. */
2230 SET_TYPE_MODE (type, mode_for_size (POINTER_SIZE, MODE_INT, 0));
2231 TYPE_PRECISION (type) = POINTER_SIZE;
2232 break;
2234 case FUNCTION_TYPE:
2235 case METHOD_TYPE:
2236 /* It's hard to see what the mode and size of a function ought to
2237 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2238 make it consistent with that. */
2239 SET_TYPE_MODE (type, mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0));
2240 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2241 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2242 break;
2244 case POINTER_TYPE:
2245 case REFERENCE_TYPE:
2247 machine_mode mode = TYPE_MODE (type);
2248 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2249 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2250 TYPE_UNSIGNED (type) = 1;
2251 TYPE_PRECISION (type) = GET_MODE_PRECISION (mode);
2253 break;
2255 case ARRAY_TYPE:
2257 tree index = TYPE_DOMAIN (type);
2258 tree element = TREE_TYPE (type);
2260 /* We need to know both bounds in order to compute the size. */
2261 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2262 && TYPE_SIZE (element))
2264 tree ub = TYPE_MAX_VALUE (index);
2265 tree lb = TYPE_MIN_VALUE (index);
2266 tree element_size = TYPE_SIZE (element);
2267 tree length;
2269 /* Make sure that an array of zero-sized element is zero-sized
2270 regardless of its extent. */
2271 if (integer_zerop (element_size))
2272 length = size_zero_node;
2274 /* The computation should happen in the original signedness so
2275 that (possible) negative values are handled appropriately
2276 when determining overflow. */
2277 else
2279 /* ??? When it is obvious that the range is signed
2280 represent it using ssizetype. */
2281 if (TREE_CODE (lb) == INTEGER_CST
2282 && TREE_CODE (ub) == INTEGER_CST
2283 && TYPE_UNSIGNED (TREE_TYPE (lb))
2284 && tree_int_cst_lt (ub, lb))
2286 lb = wide_int_to_tree (ssizetype,
2287 offset_int::from (lb, SIGNED));
2288 ub = wide_int_to_tree (ssizetype,
2289 offset_int::from (ub, SIGNED));
2291 length
2292 = fold_convert (sizetype,
2293 size_binop (PLUS_EXPR,
2294 build_int_cst (TREE_TYPE (lb), 1),
2295 size_binop (MINUS_EXPR, ub, lb)));
2298 /* ??? We have no way to distinguish a null-sized array from an
2299 array spanning the whole sizetype range, so we arbitrarily
2300 decide that [0, -1] is the only valid representation. */
2301 if (integer_zerop (length)
2302 && TREE_OVERFLOW (length)
2303 && integer_zerop (lb))
2304 length = size_zero_node;
2306 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2307 fold_convert (bitsizetype,
2308 length));
2310 /* If we know the size of the element, calculate the total size
2311 directly, rather than do some division thing below. This
2312 optimization helps Fortran assumed-size arrays (where the
2313 size of the array is determined at runtime) substantially. */
2314 if (TYPE_SIZE_UNIT (element))
2315 TYPE_SIZE_UNIT (type)
2316 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2319 /* Now round the alignment and size,
2320 using machine-dependent criteria if any. */
2322 unsigned align = TYPE_ALIGN (element);
2323 if (TYPE_USER_ALIGN (type))
2324 align = MAX (align, TYPE_ALIGN (type));
2325 else
2326 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2327 #ifdef ROUND_TYPE_ALIGN
2328 align = ROUND_TYPE_ALIGN (type, align, BITS_PER_UNIT);
2329 #else
2330 align = MAX (align, BITS_PER_UNIT);
2331 #endif
2332 SET_TYPE_ALIGN (type, align);
2333 SET_TYPE_MODE (type, BLKmode);
2334 if (TYPE_SIZE (type) != 0
2335 && ! targetm.member_type_forces_blk (type, VOIDmode)
2336 /* BLKmode elements force BLKmode aggregate;
2337 else extract/store fields may lose. */
2338 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2339 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2341 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2342 TYPE_SIZE (type)));
2343 if (TYPE_MODE (type) != BLKmode
2344 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2345 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2347 TYPE_NO_FORCE_BLK (type) = 1;
2348 SET_TYPE_MODE (type, BLKmode);
2351 if (AGGREGATE_TYPE_P (element))
2352 TYPE_TYPELESS_STORAGE (type) = TYPE_TYPELESS_STORAGE (element);
2353 /* When the element size is constant, check that it is at least as
2354 large as the element alignment. */
2355 if (TYPE_SIZE_UNIT (element)
2356 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2357 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2358 TYPE_ALIGN_UNIT. */
2359 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2360 && !integer_zerop (TYPE_SIZE_UNIT (element))
2361 && compare_tree_int (TYPE_SIZE_UNIT (element),
2362 TYPE_ALIGN_UNIT (element)) < 0)
2363 error ("alignment of array elements is greater than element size");
2364 break;
2367 case RECORD_TYPE:
2368 case UNION_TYPE:
2369 case QUAL_UNION_TYPE:
2371 tree field;
2372 record_layout_info rli;
2374 /* Initialize the layout information. */
2375 rli = start_record_layout (type);
2377 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2378 in the reverse order in building the COND_EXPR that denotes
2379 its size. We reverse them again later. */
2380 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2381 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2383 /* Place all the fields. */
2384 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2385 place_field (rli, field);
2387 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2388 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2390 /* Finish laying out the record. */
2391 finish_record_layout (rli, /*free_p=*/true);
2393 break;
2395 default:
2396 gcc_unreachable ();
2399 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2400 records and unions, finish_record_layout already called this
2401 function. */
2402 if (!RECORD_OR_UNION_TYPE_P (type))
2403 finalize_type_size (type);
2405 /* We should never see alias sets on incomplete aggregates. And we
2406 should not call layout_type on not incomplete aggregates. */
2407 if (AGGREGATE_TYPE_P (type))
2408 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2411 /* Return the least alignment required for type TYPE. */
2413 unsigned int
2414 min_align_of_type (tree type)
2416 unsigned int align = TYPE_ALIGN (type);
2417 if (!TYPE_USER_ALIGN (type))
2419 align = MIN (align, BIGGEST_ALIGNMENT);
2420 #ifdef BIGGEST_FIELD_ALIGNMENT
2421 align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
2422 #endif
2423 unsigned int field_align = align;
2424 #ifdef ADJUST_FIELD_ALIGN
2425 field_align = ADJUST_FIELD_ALIGN (NULL_TREE, type, field_align);
2426 #endif
2427 align = MIN (align, field_align);
2429 return align / BITS_PER_UNIT;
2432 /* Vector types need to re-check the target flags each time we report
2433 the machine mode. We need to do this because attribute target can
2434 change the result of vector_mode_supported_p and have_regs_of_mode
2435 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2436 change on a per-function basis. */
2437 /* ??? Possibly a better solution is to run through all the types
2438 referenced by a function and re-compute the TYPE_MODE once, rather
2439 than make the TYPE_MODE macro call a function. */
2441 machine_mode
2442 vector_type_mode (const_tree t)
2444 machine_mode mode;
2446 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
2448 mode = t->type_common.mode;
2449 if (VECTOR_MODE_P (mode)
2450 && (!targetm.vector_mode_supported_p (mode)
2451 || !have_regs_of_mode[mode]))
2453 machine_mode innermode = TREE_TYPE (t)->type_common.mode;
2455 /* For integers, try mapping it to a same-sized scalar mode. */
2456 if (GET_MODE_CLASS (innermode) == MODE_INT)
2458 mode = mode_for_size (TYPE_VECTOR_SUBPARTS (t)
2459 * GET_MODE_BITSIZE (innermode), MODE_INT, 0);
2461 if (mode != VOIDmode && have_regs_of_mode[mode])
2462 return mode;
2465 return BLKmode;
2468 return mode;
2471 /* Create and return a type for signed integers of PRECISION bits. */
2473 tree
2474 make_signed_type (int precision)
2476 tree type = make_node (INTEGER_TYPE);
2478 TYPE_PRECISION (type) = precision;
2480 fixup_signed_type (type);
2481 return type;
2484 /* Create and return a type for unsigned integers of PRECISION bits. */
2486 tree
2487 make_unsigned_type (int precision)
2489 tree type = make_node (INTEGER_TYPE);
2491 TYPE_PRECISION (type) = precision;
2493 fixup_unsigned_type (type);
2494 return type;
2497 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2498 and SATP. */
2500 tree
2501 make_fract_type (int precision, int unsignedp, int satp)
2503 tree type = make_node (FIXED_POINT_TYPE);
2505 TYPE_PRECISION (type) = precision;
2507 if (satp)
2508 TYPE_SATURATING (type) = 1;
2510 /* Lay out the type: set its alignment, size, etc. */
2511 if (unsignedp)
2513 TYPE_UNSIGNED (type) = 1;
2514 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UFRACT, 0));
2516 else
2517 SET_TYPE_MODE (type, mode_for_size (precision, MODE_FRACT, 0));
2518 layout_type (type);
2520 return type;
2523 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2524 and SATP. */
2526 tree
2527 make_accum_type (int precision, int unsignedp, int satp)
2529 tree type = make_node (FIXED_POINT_TYPE);
2531 TYPE_PRECISION (type) = precision;
2533 if (satp)
2534 TYPE_SATURATING (type) = 1;
2536 /* Lay out the type: set its alignment, size, etc. */
2537 if (unsignedp)
2539 TYPE_UNSIGNED (type) = 1;
2540 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UACCUM, 0));
2542 else
2543 SET_TYPE_MODE (type, mode_for_size (precision, MODE_ACCUM, 0));
2544 layout_type (type);
2546 return type;
2549 /* Initialize sizetypes so layout_type can use them. */
2551 void
2552 initialize_sizetypes (void)
2554 int precision, bprecision;
2556 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2557 if (strcmp (SIZETYPE, "unsigned int") == 0)
2558 precision = INT_TYPE_SIZE;
2559 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2560 precision = LONG_TYPE_SIZE;
2561 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2562 precision = LONG_LONG_TYPE_SIZE;
2563 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2564 precision = SHORT_TYPE_SIZE;
2565 else
2567 int i;
2569 precision = -1;
2570 for (i = 0; i < NUM_INT_N_ENTS; i++)
2571 if (int_n_enabled_p[i])
2573 char name[50];
2574 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
2576 if (strcmp (name, SIZETYPE) == 0)
2578 precision = int_n_data[i].bitsize;
2581 if (precision == -1)
2582 gcc_unreachable ();
2585 bprecision
2586 = MIN (precision + LOG2_BITS_PER_UNIT + 1, MAX_FIXED_MODE_SIZE);
2587 bprecision
2588 = GET_MODE_PRECISION (smallest_mode_for_size (bprecision, MODE_INT));
2589 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2590 bprecision = HOST_BITS_PER_DOUBLE_INT;
2592 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2593 sizetype = make_node (INTEGER_TYPE);
2594 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2595 TYPE_PRECISION (sizetype) = precision;
2596 TYPE_UNSIGNED (sizetype) = 1;
2597 bitsizetype = make_node (INTEGER_TYPE);
2598 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2599 TYPE_PRECISION (bitsizetype) = bprecision;
2600 TYPE_UNSIGNED (bitsizetype) = 1;
2602 /* Now layout both types manually. */
2603 SET_TYPE_MODE (sizetype, smallest_mode_for_size (precision, MODE_INT));
2604 SET_TYPE_ALIGN (sizetype, GET_MODE_ALIGNMENT (TYPE_MODE (sizetype)));
2605 TYPE_SIZE (sizetype) = bitsize_int (precision);
2606 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (TYPE_MODE (sizetype)));
2607 set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
2609 SET_TYPE_MODE (bitsizetype, smallest_mode_for_size (bprecision, MODE_INT));
2610 SET_TYPE_ALIGN (bitsizetype, GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype)));
2611 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2612 TYPE_SIZE_UNIT (bitsizetype)
2613 = size_int (GET_MODE_SIZE (TYPE_MODE (bitsizetype)));
2614 set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
2616 /* Create the signed variants of *sizetype. */
2617 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2618 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2619 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2620 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2623 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2624 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2625 for TYPE, based on the PRECISION and whether or not the TYPE
2626 IS_UNSIGNED. PRECISION need not correspond to a width supported
2627 natively by the hardware; for example, on a machine with 8-bit,
2628 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2629 61. */
2631 void
2632 set_min_and_max_values_for_integral_type (tree type,
2633 int precision,
2634 signop sgn)
2636 /* For bitfields with zero width we end up creating integer types
2637 with zero precision. Don't assign any minimum/maximum values
2638 to those types, they don't have any valid value. */
2639 if (precision < 1)
2640 return;
2642 TYPE_MIN_VALUE (type)
2643 = wide_int_to_tree (type, wi::min_value (precision, sgn));
2644 TYPE_MAX_VALUE (type)
2645 = wide_int_to_tree (type, wi::max_value (precision, sgn));
2648 /* Set the extreme values of TYPE based on its precision in bits,
2649 then lay it out. Used when make_signed_type won't do
2650 because the tree code is not INTEGER_TYPE.
2651 E.g. for Pascal, when the -fsigned-char option is given. */
2653 void
2654 fixup_signed_type (tree type)
2656 int precision = TYPE_PRECISION (type);
2658 set_min_and_max_values_for_integral_type (type, precision, SIGNED);
2660 /* Lay out the type: set its alignment, size, etc. */
2661 layout_type (type);
2664 /* Set the extreme values of TYPE based on its precision in bits,
2665 then lay it out. This is used both in `make_unsigned_type'
2666 and for enumeral types. */
2668 void
2669 fixup_unsigned_type (tree type)
2671 int precision = TYPE_PRECISION (type);
2673 TYPE_UNSIGNED (type) = 1;
2675 set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);
2677 /* Lay out the type: set its alignment, size, etc. */
2678 layout_type (type);
2681 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2682 starting at BITPOS.
2684 BITREGION_START is the bit position of the first bit in this
2685 sequence of bit fields. BITREGION_END is the last bit in this
2686 sequence. If these two fields are non-zero, we should restrict the
2687 memory access to that range. Otherwise, we are allowed to touch
2688 any adjacent non bit-fields.
2690 ALIGN is the alignment of the underlying object in bits.
2691 VOLATILEP says whether the bitfield is volatile. */
2693 bit_field_mode_iterator
2694 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2695 HOST_WIDE_INT bitregion_start,
2696 HOST_WIDE_INT bitregion_end,
2697 unsigned int align, bool volatilep)
2698 : m_mode (GET_CLASS_NARROWEST_MODE (MODE_INT)), m_bitsize (bitsize),
2699 m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2700 m_bitregion_end (bitregion_end), m_align (align),
2701 m_volatilep (volatilep), m_count (0)
2703 if (!m_bitregion_end)
2705 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2706 the bitfield is mapped and won't trap, provided that ALIGN isn't
2707 too large. The cap is the biggest required alignment for data,
2708 or at least the word size. And force one such chunk at least. */
2709 unsigned HOST_WIDE_INT units
2710 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2711 if (bitsize <= 0)
2712 bitsize = 1;
2713 m_bitregion_end = bitpos + bitsize + units - 1;
2714 m_bitregion_end -= m_bitregion_end % units + 1;
2718 /* Calls to this function return successively larger modes that can be used
2719 to represent the bitfield. Return true if another bitfield mode is
2720 available, storing it in *OUT_MODE if so. */
2722 bool
2723 bit_field_mode_iterator::next_mode (machine_mode *out_mode)
2725 for (; m_mode != VOIDmode; m_mode = GET_MODE_WIDER_MODE (m_mode))
2727 unsigned int unit = GET_MODE_BITSIZE (m_mode);
2729 /* Skip modes that don't have full precision. */
2730 if (unit != GET_MODE_PRECISION (m_mode))
2731 continue;
2733 /* Stop if the mode is too wide to handle efficiently. */
2734 if (unit > MAX_FIXED_MODE_SIZE)
2735 break;
2737 /* Don't deliver more than one multiword mode; the smallest one
2738 should be used. */
2739 if (m_count > 0 && unit > BITS_PER_WORD)
2740 break;
2742 /* Skip modes that are too small. */
2743 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2744 unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2745 if (subend > unit)
2746 continue;
2748 /* Stop if the mode goes outside the bitregion. */
2749 HOST_WIDE_INT start = m_bitpos - substart;
2750 if (m_bitregion_start && start < m_bitregion_start)
2751 break;
2752 HOST_WIDE_INT end = start + unit;
2753 if (end > m_bitregion_end + 1)
2754 break;
2756 /* Stop if the mode requires too much alignment. */
2757 if (GET_MODE_ALIGNMENT (m_mode) > m_align
2758 && SLOW_UNALIGNED_ACCESS (m_mode, m_align))
2759 break;
2761 *out_mode = m_mode;
2762 m_mode = GET_MODE_WIDER_MODE (m_mode);
2763 m_count++;
2764 return true;
2766 return false;
2769 /* Return true if smaller modes are generally preferred for this kind
2770 of bitfield. */
2772 bool
2773 bit_field_mode_iterator::prefer_smaller_modes ()
2775 return (m_volatilep
2776 ? targetm.narrow_volatile_bitfield ()
2777 : !SLOW_BYTE_ACCESS);
2780 /* Find the best machine mode to use when referencing a bit field of length
2781 BITSIZE bits starting at BITPOS.
2783 BITREGION_START is the bit position of the first bit in this
2784 sequence of bit fields. BITREGION_END is the last bit in this
2785 sequence. If these two fields are non-zero, we should restrict the
2786 memory access to that range. Otherwise, we are allowed to touch
2787 any adjacent non bit-fields.
2789 The underlying object is known to be aligned to a boundary of ALIGN bits.
2790 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2791 larger than LARGEST_MODE (usually SImode).
2793 If no mode meets all these conditions, we return VOIDmode.
2795 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2796 smallest mode meeting these conditions.
2798 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2799 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2800 all the conditions.
2802 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2803 decide which of the above modes should be used. */
2805 machine_mode
2806 get_best_mode (int bitsize, int bitpos,
2807 unsigned HOST_WIDE_INT bitregion_start,
2808 unsigned HOST_WIDE_INT bitregion_end,
2809 unsigned int align,
2810 machine_mode largest_mode, bool volatilep)
2812 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2813 bitregion_end, align, volatilep);
2814 machine_mode widest_mode = VOIDmode;
2815 machine_mode mode;
2816 while (iter.next_mode (&mode)
2817 /* ??? For historical reasons, reject modes that would normally
2818 receive greater alignment, even if unaligned accesses are
2819 acceptable. This has both advantages and disadvantages.
2820 Removing this check means that something like:
2822 struct s { unsigned int x; unsigned int y; };
2823 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2825 can be implemented using a single load and compare on
2826 64-bit machines that have no alignment restrictions.
2827 For example, on powerpc64-linux-gnu, we would generate:
2829 ld 3,0(3)
2830 cntlzd 3,3
2831 srdi 3,3,6
2834 rather than:
2836 lwz 9,0(3)
2837 cmpwi 7,9,0
2838 bne 7,.L3
2839 lwz 3,4(3)
2840 cntlzw 3,3
2841 srwi 3,3,5
2842 extsw 3,3
2844 .p2align 4,,15
2845 .L3:
2846 li 3,0
2849 However, accessing more than one field can make life harder
2850 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2851 has a series of unsigned short copies followed by a series of
2852 unsigned short comparisons. With this check, both the copies
2853 and comparisons remain 16-bit accesses and FRE is able
2854 to eliminate the latter. Without the check, the comparisons
2855 can be done using 2 64-bit operations, which FRE isn't able
2856 to handle in the same way.
2858 Either way, it would probably be worth disabling this check
2859 during expand. One particular example where removing the
2860 check would help is the get_best_mode call in store_bit_field.
2861 If we are given a memory bitregion of 128 bits that is aligned
2862 to a 64-bit boundary, and the bitfield we want to modify is
2863 in the second half of the bitregion, this check causes
2864 store_bitfield to turn the memory into a 64-bit reference
2865 to the _first_ half of the region. We later use
2866 adjust_bitfield_address to get a reference to the correct half,
2867 but doing so looks to adjust_bitfield_address as though we are
2868 moving past the end of the original object, so it drops the
2869 associated MEM_EXPR and MEM_OFFSET. Removing the check
2870 causes store_bit_field to keep a 128-bit memory reference,
2871 so that the final bitfield reference still has a MEM_EXPR
2872 and MEM_OFFSET. */
2873 && GET_MODE_ALIGNMENT (mode) <= align
2874 && (largest_mode == VOIDmode
2875 || GET_MODE_SIZE (mode) <= GET_MODE_SIZE (largest_mode)))
2877 widest_mode = mode;
2878 if (iter.prefer_smaller_modes ())
2879 break;
2881 return widest_mode;
2884 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2885 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2887 void
2888 get_mode_bounds (machine_mode mode, int sign,
2889 machine_mode target_mode,
2890 rtx *mmin, rtx *mmax)
2892 unsigned size = GET_MODE_PRECISION (mode);
2893 unsigned HOST_WIDE_INT min_val, max_val;
2895 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2897 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
2898 if (mode == BImode)
2900 if (STORE_FLAG_VALUE < 0)
2902 min_val = STORE_FLAG_VALUE;
2903 max_val = 0;
2905 else
2907 min_val = 0;
2908 max_val = STORE_FLAG_VALUE;
2911 else if (sign)
2913 min_val = -(HOST_WIDE_INT_1U << (size - 1));
2914 max_val = (HOST_WIDE_INT_1U << (size - 1)) - 1;
2916 else
2918 min_val = 0;
2919 max_val = (HOST_WIDE_INT_1U << (size - 1) << 1) - 1;
2922 *mmin = gen_int_mode (min_val, target_mode);
2923 *mmax = gen_int_mode (max_val, target_mode);
2926 #include "gt-stor-layout.h"