1 /* Handle modules, which amounts to loading and saving symbols and
2 their attendant structures.
3 Copyright (C) 2000-2017 Free Software Foundation, Inc.
4 Contributed by Andy Vaught
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* The syntax of gfortran modules resembles that of lisp lists, i.e. a
23 sequence of atoms, which can be left or right parenthesis, names,
24 integers or strings. Parenthesis are always matched which allows
25 us to skip over sections at high speed without having to know
26 anything about the internal structure of the lists. A "name" is
27 usually a fortran 95 identifier, but can also start with '@' in
28 order to reference a hidden symbol.
30 The first line of a module is an informational message about what
31 created the module, the file it came from and when it was created.
32 The second line is a warning for people not to edit the module.
33 The rest of the module looks like:
35 ( ( <Interface info for UPLUS> )
36 ( <Interface info for UMINUS> )
39 ( ( <name of operator interface> <module of op interface> <i/f1> ... )
42 ( ( <name of generic interface> <module of generic interface> <i/f1> ... )
45 ( ( <common name> <symbol> <saved flag>)
51 ( <Symbol Number (in no particular order)>
53 <Module name of symbol>
54 ( <symbol information> )
63 In general, symbols refer to other symbols by their symbol number,
64 which are zero based. Symbols are written to the module in no
69 #include "coretypes.h"
73 #include "stringpool.h"
76 #include "parse.h" /* FIXME */
77 #include "constructor.h"
82 #define MODULE_EXTENSION ".mod"
83 #define SUBMODULE_EXTENSION ".smod"
85 /* Don't put any single quote (') in MOD_VERSION, if you want it to be
87 #define MOD_VERSION "14"
90 /* Structure that describes a position within a module file. */
99 /* Structure for list of symbols of intrinsic modules. */
112 P_UNKNOWN
= 0, P_OTHER
, P_NAMESPACE
, P_COMPONENT
, P_SYMBOL
116 /* The fixup structure lists pointers to pointers that have to
117 be updated when a pointer value becomes known. */
119 typedef struct fixup_t
122 struct fixup_t
*next
;
127 /* Structure for holding extra info needed for pointers being read. */
143 typedef struct pointer_info
145 BBT_HEADER (pointer_info
);
149 /* The first component of each member of the union is the pointer
156 void *pointer
; /* Member for doing pointer searches. */
161 char *true_name
, *module
, *binding_label
;
163 gfc_symtree
*symtree
;
164 enum gfc_rsym_state state
;
165 int ns
, referenced
, renamed
;
173 enum gfc_wsym_state state
;
182 #define gfc_get_pointer_info() XCNEW (pointer_info)
185 /* Local variables */
187 /* The gzFile for the module we're reading or writing. */
188 static gzFile module_fp
;
191 /* The name of the module we're reading (USE'ing) or writing. */
192 static const char *module_name
;
193 /* The name of the .smod file that the submodule will write to. */
194 static const char *submodule_name
;
196 static gfc_use_list
*module_list
;
198 /* If we're reading an intrinsic module, this is its ID. */
199 static intmod_id current_intmod
;
201 /* Content of module. */
202 static char* module_content
;
204 static long module_pos
;
205 static int module_line
, module_column
, only_flag
;
206 static int prev_module_line
, prev_module_column
;
209 { IO_INPUT
, IO_OUTPUT
}
212 static gfc_use_rename
*gfc_rename_list
;
213 static pointer_info
*pi_root
;
214 static int symbol_number
; /* Counter for assigning symbol numbers */
216 /* Tells mio_expr_ref to make symbols for unused equivalence members. */
217 static bool in_load_equiv
;
221 /*****************************************************************/
223 /* Pointer/integer conversion. Pointers between structures are stored
224 as integers in the module file. The next couple of subroutines
225 handle this translation for reading and writing. */
227 /* Recursively free the tree of pointer structures. */
230 free_pi_tree (pointer_info
*p
)
235 if (p
->fixup
!= NULL
)
236 gfc_internal_error ("free_pi_tree(): Unresolved fixup");
238 free_pi_tree (p
->left
);
239 free_pi_tree (p
->right
);
241 if (iomode
== IO_INPUT
)
243 XDELETEVEC (p
->u
.rsym
.true_name
);
244 XDELETEVEC (p
->u
.rsym
.module
);
245 XDELETEVEC (p
->u
.rsym
.binding_label
);
252 /* Compare pointers when searching by pointer. Used when writing a
256 compare_pointers (void *_sn1
, void *_sn2
)
258 pointer_info
*sn1
, *sn2
;
260 sn1
= (pointer_info
*) _sn1
;
261 sn2
= (pointer_info
*) _sn2
;
263 if (sn1
->u
.pointer
< sn2
->u
.pointer
)
265 if (sn1
->u
.pointer
> sn2
->u
.pointer
)
272 /* Compare integers when searching by integer. Used when reading a
276 compare_integers (void *_sn1
, void *_sn2
)
278 pointer_info
*sn1
, *sn2
;
280 sn1
= (pointer_info
*) _sn1
;
281 sn2
= (pointer_info
*) _sn2
;
283 if (sn1
->integer
< sn2
->integer
)
285 if (sn1
->integer
> sn2
->integer
)
292 /* Initialize the pointer_info tree. */
301 compare
= (iomode
== IO_INPUT
) ? compare_integers
: compare_pointers
;
303 /* Pointer 0 is the NULL pointer. */
304 p
= gfc_get_pointer_info ();
309 gfc_insert_bbt (&pi_root
, p
, compare
);
311 /* Pointer 1 is the current namespace. */
312 p
= gfc_get_pointer_info ();
313 p
->u
.pointer
= gfc_current_ns
;
315 p
->type
= P_NAMESPACE
;
317 gfc_insert_bbt (&pi_root
, p
, compare
);
323 /* During module writing, call here with a pointer to something,
324 returning the pointer_info node. */
326 static pointer_info
*
327 find_pointer (void *gp
)
334 if (p
->u
.pointer
== gp
)
336 p
= (gp
< p
->u
.pointer
) ? p
->left
: p
->right
;
343 /* Given a pointer while writing, returns the pointer_info tree node,
344 creating it if it doesn't exist. */
346 static pointer_info
*
347 get_pointer (void *gp
)
351 p
= find_pointer (gp
);
355 /* Pointer doesn't have an integer. Give it one. */
356 p
= gfc_get_pointer_info ();
359 p
->integer
= symbol_number
++;
361 gfc_insert_bbt (&pi_root
, p
, compare_pointers
);
367 /* Given an integer during reading, find it in the pointer_info tree,
368 creating the node if not found. */
370 static pointer_info
*
371 get_integer (int integer
)
381 c
= compare_integers (&t
, p
);
385 p
= (c
< 0) ? p
->left
: p
->right
;
391 p
= gfc_get_pointer_info ();
392 p
->integer
= integer
;
395 gfc_insert_bbt (&pi_root
, p
, compare_integers
);
401 /* Resolve any fixups using a known pointer. */
404 resolve_fixups (fixup_t
*f
, void *gp
)
417 /* Convert a string such that it starts with a lower-case character. Used
418 to convert the symtree name of a derived-type to the symbol name or to
419 the name of the associated generic function. */
422 gfc_dt_lower_string (const char *name
)
424 if (name
[0] != (char) TOLOWER ((unsigned char) name
[0]))
425 return gfc_get_string ("%c%s", (char) TOLOWER ((unsigned char) name
[0]),
427 return gfc_get_string ("%s", name
);
431 /* Convert a string such that it starts with an upper-case character. Used to
432 return the symtree-name for a derived type; the symbol name itself and the
433 symtree/symbol name of the associated generic function start with a lower-
437 gfc_dt_upper_string (const char *name
)
439 if (name
[0] != (char) TOUPPER ((unsigned char) name
[0]))
440 return gfc_get_string ("%c%s", (char) TOUPPER ((unsigned char) name
[0]),
442 return gfc_get_string ("%s", name
);
445 /* Call here during module reading when we know what pointer to
446 associate with an integer. Any fixups that exist are resolved at
450 associate_integer_pointer (pointer_info
*p
, void *gp
)
452 if (p
->u
.pointer
!= NULL
)
453 gfc_internal_error ("associate_integer_pointer(): Already associated");
457 resolve_fixups (p
->fixup
, gp
);
463 /* During module reading, given an integer and a pointer to a pointer,
464 either store the pointer from an already-known value or create a
465 fixup structure in order to store things later. Returns zero if
466 the reference has been actually stored, or nonzero if the reference
467 must be fixed later (i.e., associate_integer_pointer must be called
468 sometime later. Returns the pointer_info structure. */
470 static pointer_info
*
471 add_fixup (int integer
, void *gp
)
477 p
= get_integer (integer
);
479 if (p
->integer
== 0 || p
->u
.pointer
!= NULL
)
482 *cp
= (char *) p
->u
.pointer
;
491 f
->pointer
= (void **) gp
;
498 /*****************************************************************/
500 /* Parser related subroutines */
502 /* Free the rename list left behind by a USE statement. */
505 free_rename (gfc_use_rename
*list
)
507 gfc_use_rename
*next
;
509 for (; list
; list
= next
)
517 /* Match a USE statement. */
522 char name
[GFC_MAX_SYMBOL_LEN
+ 1], module_nature
[GFC_MAX_SYMBOL_LEN
+ 1];
523 gfc_use_rename
*tail
= NULL
, *new_use
;
524 interface_type type
, type2
;
527 gfc_use_list
*use_list
;
529 use_list
= gfc_get_use_list ();
531 if (gfc_match (" , ") == MATCH_YES
)
533 if ((m
= gfc_match (" %n ::", module_nature
)) == MATCH_YES
)
535 if (!gfc_notify_std (GFC_STD_F2003
, "module "
536 "nature in USE statement at %C"))
539 if (strcmp (module_nature
, "intrinsic") == 0)
540 use_list
->intrinsic
= true;
543 if (strcmp (module_nature
, "non_intrinsic") == 0)
544 use_list
->non_intrinsic
= true;
547 gfc_error ("Module nature in USE statement at %C shall "
548 "be either INTRINSIC or NON_INTRINSIC");
555 /* Help output a better error message than "Unclassifiable
557 gfc_match (" %n", module_nature
);
558 if (strcmp (module_nature
, "intrinsic") == 0
559 || strcmp (module_nature
, "non_intrinsic") == 0)
560 gfc_error ("\"::\" was expected after module nature at %C "
561 "but was not found");
568 m
= gfc_match (" ::");
569 if (m
== MATCH_YES
&&
570 !gfc_notify_std(GFC_STD_F2003
, "\"USE :: module\" at %C"))
575 m
= gfc_match ("% ");
584 use_list
->where
= gfc_current_locus
;
586 m
= gfc_match_name (name
);
593 use_list
->module_name
= gfc_get_string ("%s", name
);
595 if (gfc_match_eos () == MATCH_YES
)
598 if (gfc_match_char (',') != MATCH_YES
)
601 if (gfc_match (" only :") == MATCH_YES
)
602 use_list
->only_flag
= true;
604 if (gfc_match_eos () == MATCH_YES
)
609 /* Get a new rename struct and add it to the rename list. */
610 new_use
= gfc_get_use_rename ();
611 new_use
->where
= gfc_current_locus
;
614 if (use_list
->rename
== NULL
)
615 use_list
->rename
= new_use
;
617 tail
->next
= new_use
;
620 /* See what kind of interface we're dealing with. Assume it is
622 new_use
->op
= INTRINSIC_NONE
;
623 if (gfc_match_generic_spec (&type
, name
, &op
) == MATCH_ERROR
)
628 case INTERFACE_NAMELESS
:
629 gfc_error ("Missing generic specification in USE statement at %C");
632 case INTERFACE_USER_OP
:
633 case INTERFACE_GENERIC
:
635 m
= gfc_match (" =>");
637 if (type
== INTERFACE_USER_OP
&& m
== MATCH_YES
638 && (!gfc_notify_std(GFC_STD_F2003
, "Renaming "
639 "operators in USE statements at %C")))
642 if (type
== INTERFACE_USER_OP
)
643 new_use
->op
= INTRINSIC_USER
;
645 if (use_list
->only_flag
)
648 strcpy (new_use
->use_name
, name
);
651 strcpy (new_use
->local_name
, name
);
652 m
= gfc_match_generic_spec (&type2
, new_use
->use_name
, &op
);
657 if (m
== MATCH_ERROR
)
665 strcpy (new_use
->local_name
, name
);
667 m
= gfc_match_generic_spec (&type2
, new_use
->use_name
, &op
);
672 if (m
== MATCH_ERROR
)
676 if (strcmp (new_use
->use_name
, use_list
->module_name
) == 0
677 || strcmp (new_use
->local_name
, use_list
->module_name
) == 0)
679 gfc_error ("The name %qs at %C has already been used as "
680 "an external module name", use_list
->module_name
);
685 case INTERFACE_INTRINSIC_OP
:
693 if (gfc_match_eos () == MATCH_YES
)
695 if (gfc_match_char (',') != MATCH_YES
)
702 gfc_use_list
*last
= module_list
;
705 last
->next
= use_list
;
708 module_list
= use_list
;
713 gfc_syntax_error (ST_USE
);
716 free_rename (use_list
->rename
);
722 /* Match a SUBMODULE statement.
724 According to F2008:11.2.3.2, "The submodule identifier is the
725 ordered pair whose first element is the ancestor module name and
726 whose second element is the submodule name. 'Submodule_name' is
727 used for the submodule filename and uses '@' as a separator, whilst
728 the name of the symbol for the module uses '.' as a a separator.
729 The reasons for these choices are:
730 (i) To follow another leading brand in the submodule filenames;
731 (ii) Since '.' is not particularly visible in the filenames; and
732 (iii) The linker does not permit '@' in mnemonics. */
735 gfc_match_submodule (void)
738 char name
[GFC_MAX_SYMBOL_LEN
+ 1];
739 gfc_use_list
*use_list
;
740 bool seen_colon
= false;
742 if (!gfc_notify_std (GFC_STD_F2008
, "SUBMODULE declaration at %C"))
745 if (gfc_current_state () != COMP_NONE
)
747 gfc_error ("SUBMODULE declaration at %C cannot appear within "
748 "another scoping unit");
752 gfc_new_block
= NULL
;
753 gcc_assert (module_list
== NULL
);
755 if (gfc_match_char ('(') != MATCH_YES
)
760 m
= gfc_match (" %n", name
);
764 use_list
= gfc_get_use_list ();
765 use_list
->where
= gfc_current_locus
;
769 gfc_use_list
*last
= module_list
;
772 last
->next
= use_list
;
773 use_list
->module_name
774 = gfc_get_string ("%s.%s", module_list
->module_name
, name
);
775 use_list
->submodule_name
776 = gfc_get_string ("%s@%s", module_list
->module_name
, name
);
780 module_list
= use_list
;
781 use_list
->module_name
= gfc_get_string ("%s", name
);
782 use_list
->submodule_name
= use_list
->module_name
;
785 if (gfc_match_char (')') == MATCH_YES
)
788 if (gfc_match_char (':') != MATCH_YES
795 m
= gfc_match (" %s%t", &gfc_new_block
);
799 submodule_name
= gfc_get_string ("%s@%s", module_list
->module_name
,
800 gfc_new_block
->name
);
802 gfc_new_block
->name
= gfc_get_string ("%s.%s",
803 module_list
->module_name
,
804 gfc_new_block
->name
);
806 if (!gfc_add_flavor (&gfc_new_block
->attr
, FL_MODULE
,
807 gfc_new_block
->name
, NULL
))
810 /* Just retain the ultimate .(s)mod file for reading, since it
811 contains all the information in its ancestors. */
812 use_list
= module_list
;
813 for (; module_list
->next
; use_list
= module_list
)
815 module_list
= use_list
->next
;
822 gfc_error ("Syntax error in SUBMODULE statement at %C");
827 /* Given a name and a number, inst, return the inst name
828 under which to load this symbol. Returns NULL if this
829 symbol shouldn't be loaded. If inst is zero, returns
830 the number of instances of this name. If interface is
831 true, a user-defined operator is sought, otherwise only
832 non-operators are sought. */
835 find_use_name_n (const char *name
, int *inst
, bool interface
)
838 const char *low_name
= NULL
;
841 /* For derived types. */
842 if (name
[0] != (char) TOLOWER ((unsigned char) name
[0]))
843 low_name
= gfc_dt_lower_string (name
);
846 for (u
= gfc_rename_list
; u
; u
= u
->next
)
848 if ((!low_name
&& strcmp (u
->use_name
, name
) != 0)
849 || (low_name
&& strcmp (u
->use_name
, low_name
) != 0)
850 || (u
->op
== INTRINSIC_USER
&& !interface
)
851 || (u
->op
!= INTRINSIC_USER
&& interface
))
864 return only_flag
? NULL
: name
;
870 if (u
->local_name
[0] == '\0')
872 return gfc_dt_upper_string (u
->local_name
);
875 return (u
->local_name
[0] != '\0') ? u
->local_name
: name
;
879 /* Given a name, return the name under which to load this symbol.
880 Returns NULL if this symbol shouldn't be loaded. */
883 find_use_name (const char *name
, bool interface
)
886 return find_use_name_n (name
, &i
, interface
);
890 /* Given a real name, return the number of use names associated with it. */
893 number_use_names (const char *name
, bool interface
)
896 find_use_name_n (name
, &i
, interface
);
901 /* Try to find the operator in the current list. */
903 static gfc_use_rename
*
904 find_use_operator (gfc_intrinsic_op op
)
908 for (u
= gfc_rename_list
; u
; u
= u
->next
)
916 /*****************************************************************/
918 /* The next couple of subroutines maintain a tree used to avoid a
919 brute-force search for a combination of true name and module name.
920 While symtree names, the name that a particular symbol is known by
921 can changed with USE statements, we still have to keep track of the
922 true names to generate the correct reference, and also avoid
923 loading the same real symbol twice in a program unit.
925 When we start reading, the true name tree is built and maintained
926 as symbols are read. The tree is searched as we load new symbols
927 to see if it already exists someplace in the namespace. */
929 typedef struct true_name
931 BBT_HEADER (true_name
);
937 static true_name
*true_name_root
;
940 /* Compare two true_name structures. */
943 compare_true_names (void *_t1
, void *_t2
)
948 t1
= (true_name
*) _t1
;
949 t2
= (true_name
*) _t2
;
951 c
= ((t1
->sym
->module
> t2
->sym
->module
)
952 - (t1
->sym
->module
< t2
->sym
->module
));
956 return strcmp (t1
->name
, t2
->name
);
960 /* Given a true name, search the true name tree to see if it exists
961 within the main namespace. */
964 find_true_name (const char *name
, const char *module
)
970 t
.name
= gfc_get_string ("%s", name
);
972 sym
.module
= gfc_get_string ("%s", module
);
980 c
= compare_true_names ((void *) (&t
), (void *) p
);
984 p
= (c
< 0) ? p
->left
: p
->right
;
991 /* Given a gfc_symbol pointer that is not in the true name tree, add it. */
994 add_true_name (gfc_symbol
*sym
)
998 t
= XCNEW (true_name
);
1000 if (gfc_fl_struct (sym
->attr
.flavor
))
1001 t
->name
= gfc_dt_upper_string (sym
->name
);
1003 t
->name
= sym
->name
;
1005 gfc_insert_bbt (&true_name_root
, t
, compare_true_names
);
1009 /* Recursive function to build the initial true name tree by
1010 recursively traversing the current namespace. */
1013 build_tnt (gfc_symtree
*st
)
1019 build_tnt (st
->left
);
1020 build_tnt (st
->right
);
1022 if (gfc_fl_struct (st
->n
.sym
->attr
.flavor
))
1023 name
= gfc_dt_upper_string (st
->n
.sym
->name
);
1025 name
= st
->n
.sym
->name
;
1027 if (find_true_name (name
, st
->n
.sym
->module
) != NULL
)
1030 add_true_name (st
->n
.sym
);
1034 /* Initialize the true name tree with the current namespace. */
1037 init_true_name_tree (void)
1039 true_name_root
= NULL
;
1040 build_tnt (gfc_current_ns
->sym_root
);
1044 /* Recursively free a true name tree node. */
1047 free_true_name (true_name
*t
)
1051 free_true_name (t
->left
);
1052 free_true_name (t
->right
);
1058 /*****************************************************************/
1060 /* Module reading and writing. */
1062 /* The following are versions similar to the ones in scanner.c, but
1063 for dealing with compressed module files. */
1066 gzopen_included_file_1 (const char *name
, gfc_directorylist
*list
,
1067 bool module
, bool system
)
1070 gfc_directorylist
*p
;
1073 for (p
= list
; p
; p
= p
->next
)
1075 if (module
&& !p
->use_for_modules
)
1078 fullname
= (char *) alloca(strlen (p
->path
) + strlen (name
) + 1);
1079 strcpy (fullname
, p
->path
);
1080 strcat (fullname
, name
);
1082 f
= gzopen (fullname
, "r");
1085 if (gfc_cpp_makedep ())
1086 gfc_cpp_add_dep (fullname
, system
);
1096 gzopen_included_file (const char *name
, bool include_cwd
, bool module
)
1100 if (IS_ABSOLUTE_PATH (name
) || include_cwd
)
1102 f
= gzopen (name
, "r");
1103 if (f
&& gfc_cpp_makedep ())
1104 gfc_cpp_add_dep (name
, false);
1108 f
= gzopen_included_file_1 (name
, include_dirs
, module
, false);
1114 gzopen_intrinsic_module (const char* name
)
1118 if (IS_ABSOLUTE_PATH (name
))
1120 f
= gzopen (name
, "r");
1121 if (f
&& gfc_cpp_makedep ())
1122 gfc_cpp_add_dep (name
, true);
1126 f
= gzopen_included_file_1 (name
, intrinsic_modules_dirs
, true, true);
1134 ATOM_NAME
, ATOM_LPAREN
, ATOM_RPAREN
, ATOM_INTEGER
, ATOM_STRING
1137 static atom_type last_atom
;
1140 /* The name buffer must be at least as long as a symbol name. Right
1141 now it's not clear how we're going to store numeric constants--
1142 probably as a hexadecimal string, since this will allow the exact
1143 number to be preserved (this can't be done by a decimal
1144 representation). Worry about that later. TODO! */
1146 #define MAX_ATOM_SIZE 100
1148 static int atom_int
;
1149 static char *atom_string
, atom_name
[MAX_ATOM_SIZE
];
1152 /* Report problems with a module. Error reporting is not very
1153 elaborate, since this sorts of errors shouldn't really happen.
1154 This subroutine never returns. */
1156 static void bad_module (const char *) ATTRIBUTE_NORETURN
;
1159 bad_module (const char *msgid
)
1161 XDELETEVEC (module_content
);
1162 module_content
= NULL
;
1167 gfc_fatal_error ("Reading module %qs at line %d column %d: %s",
1168 module_name
, module_line
, module_column
, msgid
);
1171 gfc_fatal_error ("Writing module %qs at line %d column %d: %s",
1172 module_name
, module_line
, module_column
, msgid
);
1175 gfc_fatal_error ("Module %qs at line %d column %d: %s",
1176 module_name
, module_line
, module_column
, msgid
);
1182 /* Set the module's input pointer. */
1185 set_module_locus (module_locus
*m
)
1187 module_column
= m
->column
;
1188 module_line
= m
->line
;
1189 module_pos
= m
->pos
;
1193 /* Get the module's input pointer so that we can restore it later. */
1196 get_module_locus (module_locus
*m
)
1198 m
->column
= module_column
;
1199 m
->line
= module_line
;
1200 m
->pos
= module_pos
;
1204 /* Get the next character in the module, updating our reckoning of
1210 const char c
= module_content
[module_pos
++];
1212 bad_module ("Unexpected EOF");
1214 prev_module_line
= module_line
;
1215 prev_module_column
= module_column
;
1227 /* Unget a character while remembering the line and column. Works for
1228 a single character only. */
1231 module_unget_char (void)
1233 module_line
= prev_module_line
;
1234 module_column
= prev_module_column
;
1238 /* Parse a string constant. The delimiter is guaranteed to be a
1248 atom_string
= XNEWVEC (char, cursz
);
1256 int c2
= module_char ();
1259 module_unget_char ();
1267 atom_string
= XRESIZEVEC (char, atom_string
, cursz
);
1269 atom_string
[len
] = c
;
1273 atom_string
= XRESIZEVEC (char, atom_string
, len
+ 1);
1274 atom_string
[len
] = '\0'; /* C-style string for debug purposes. */
1278 /* Parse a small integer. */
1281 parse_integer (int c
)
1290 module_unget_char ();
1294 atom_int
= 10 * atom_int
+ c
- '0';
1295 if (atom_int
> 99999999)
1296 bad_module ("Integer overflow");
1318 if (!ISALNUM (c
) && c
!= '_' && c
!= '-')
1320 module_unget_char ();
1325 if (++len
> GFC_MAX_SYMBOL_LEN
)
1326 bad_module ("Name too long");
1334 /* Read the next atom in the module's input stream. */
1345 while (c
== ' ' || c
== '\r' || c
== '\n');
1370 return ATOM_INTEGER
;
1428 bad_module ("Bad name");
1435 /* Peek at the next atom on the input. */
1446 while (c
== ' ' || c
== '\r' || c
== '\n');
1451 module_unget_char ();
1455 module_unget_char ();
1459 module_unget_char ();
1472 module_unget_char ();
1473 return ATOM_INTEGER
;
1527 module_unget_char ();
1531 bad_module ("Bad name");
1536 /* Read the next atom from the input, requiring that it be a
1540 require_atom (atom_type type
)
1546 column
= module_column
;
1555 p
= _("Expected name");
1558 p
= _("Expected left parenthesis");
1561 p
= _("Expected right parenthesis");
1564 p
= _("Expected integer");
1567 p
= _("Expected string");
1570 gfc_internal_error ("require_atom(): bad atom type required");
1573 module_column
= column
;
1580 /* Given a pointer to an mstring array, require that the current input
1581 be one of the strings in the array. We return the enum value. */
1584 find_enum (const mstring
*m
)
1588 i
= gfc_string2code (m
, atom_name
);
1592 bad_module ("find_enum(): Enum not found");
1598 /* Read a string. The caller is responsible for freeing. */
1604 require_atom (ATOM_STRING
);
1611 /**************** Module output subroutines ***************************/
1613 /* Output a character to a module file. */
1616 write_char (char out
)
1618 if (gzputc (module_fp
, out
) == EOF
)
1619 gfc_fatal_error ("Error writing modules file: %s", xstrerror (errno
));
1631 /* Write an atom to a module. The line wrapping isn't perfect, but it
1632 should work most of the time. This isn't that big of a deal, since
1633 the file really isn't meant to be read by people anyway. */
1636 write_atom (atom_type atom
, const void *v
)
1640 /* Workaround -Wmaybe-uninitialized false positive during
1641 profiledbootstrap by initializing them. */
1649 p
= (const char *) v
;
1661 i
= *((const int *) v
);
1663 gfc_internal_error ("write_atom(): Writing negative integer");
1665 sprintf (buffer
, "%d", i
);
1670 gfc_internal_error ("write_atom(): Trying to write dab atom");
1674 if(p
== NULL
|| *p
== '\0')
1679 if (atom
!= ATOM_RPAREN
)
1681 if (module_column
+ len
> 72)
1686 if (last_atom
!= ATOM_LPAREN
&& module_column
!= 1)
1691 if (atom
== ATOM_STRING
)
1694 while (p
!= NULL
&& *p
)
1696 if (atom
== ATOM_STRING
&& *p
== '\'')
1701 if (atom
== ATOM_STRING
)
1709 /***************** Mid-level I/O subroutines *****************/
1711 /* These subroutines let their caller read or write atoms without
1712 caring about which of the two is actually happening. This lets a
1713 subroutine concentrate on the actual format of the data being
1716 static void mio_expr (gfc_expr
**);
1717 pointer_info
*mio_symbol_ref (gfc_symbol
**);
1718 pointer_info
*mio_interface_rest (gfc_interface
**);
1719 static void mio_symtree_ref (gfc_symtree
**);
1721 /* Read or write an enumerated value. On writing, we return the input
1722 value for the convenience of callers. We avoid using an integer
1723 pointer because enums are sometimes inside bitfields. */
1726 mio_name (int t
, const mstring
*m
)
1728 if (iomode
== IO_OUTPUT
)
1729 write_atom (ATOM_NAME
, gfc_code2string (m
, t
));
1732 require_atom (ATOM_NAME
);
1739 /* Specialization of mio_name. */
1741 #define DECL_MIO_NAME(TYPE) \
1742 static inline TYPE \
1743 MIO_NAME(TYPE) (TYPE t, const mstring *m) \
1745 return (TYPE) mio_name ((int) t, m); \
1747 #define MIO_NAME(TYPE) mio_name_##TYPE
1752 if (iomode
== IO_OUTPUT
)
1753 write_atom (ATOM_LPAREN
, NULL
);
1755 require_atom (ATOM_LPAREN
);
1762 if (iomode
== IO_OUTPUT
)
1763 write_atom (ATOM_RPAREN
, NULL
);
1765 require_atom (ATOM_RPAREN
);
1770 mio_integer (int *ip
)
1772 if (iomode
== IO_OUTPUT
)
1773 write_atom (ATOM_INTEGER
, ip
);
1776 require_atom (ATOM_INTEGER
);
1782 /* Read or write a gfc_intrinsic_op value. */
1785 mio_intrinsic_op (gfc_intrinsic_op
* op
)
1787 /* FIXME: Would be nicer to do this via the operators symbolic name. */
1788 if (iomode
== IO_OUTPUT
)
1790 int converted
= (int) *op
;
1791 write_atom (ATOM_INTEGER
, &converted
);
1795 require_atom (ATOM_INTEGER
);
1796 *op
= (gfc_intrinsic_op
) atom_int
;
1801 /* Read or write a character pointer that points to a string on the heap. */
1804 mio_allocated_string (const char *s
)
1806 if (iomode
== IO_OUTPUT
)
1808 write_atom (ATOM_STRING
, s
);
1813 require_atom (ATOM_STRING
);
1819 /* Functions for quoting and unquoting strings. */
1822 quote_string (const gfc_char_t
*s
, const size_t slength
)
1824 const gfc_char_t
*p
;
1828 /* Calculate the length we'll need: a backslash takes two ("\\"),
1829 non-printable characters take 10 ("\Uxxxxxxxx") and others take 1. */
1830 for (p
= s
, i
= 0; i
< slength
; p
++, i
++)
1834 else if (!gfc_wide_is_printable (*p
))
1840 q
= res
= XCNEWVEC (char, len
+ 1);
1841 for (p
= s
, i
= 0; i
< slength
; p
++, i
++)
1844 *q
++ = '\\', *q
++ = '\\';
1845 else if (!gfc_wide_is_printable (*p
))
1847 sprintf (q
, "\\U%08" HOST_WIDE_INT_PRINT
"x",
1848 (unsigned HOST_WIDE_INT
) *p
);
1852 *q
++ = (unsigned char) *p
;
1860 unquote_string (const char *s
)
1866 for (p
= s
, len
= 0; *p
; p
++, len
++)
1873 else if (p
[1] == 'U')
1874 p
+= 9; /* That is a "\U????????". */
1876 gfc_internal_error ("unquote_string(): got bad string");
1879 res
= gfc_get_wide_string (len
+ 1);
1880 for (i
= 0, p
= s
; i
< len
; i
++, p
++)
1885 res
[i
] = (unsigned char) *p
;
1886 else if (p
[1] == '\\')
1888 res
[i
] = (unsigned char) '\\';
1893 /* We read the 8-digits hexadecimal constant that follows. */
1898 gcc_assert (p
[1] == 'U');
1899 for (j
= 0; j
< 8; j
++)
1902 gcc_assert (sscanf (&p
[j
+2], "%01x", &n
) == 1);
1916 /* Read or write a character pointer that points to a wide string on the
1917 heap, performing quoting/unquoting of nonprintable characters using the
1918 form \U???????? (where each ? is a hexadecimal digit).
1919 Length is the length of the string, only known and used in output mode. */
1921 static const gfc_char_t
*
1922 mio_allocated_wide_string (const gfc_char_t
*s
, const size_t length
)
1924 if (iomode
== IO_OUTPUT
)
1926 char *quoted
= quote_string (s
, length
);
1927 write_atom (ATOM_STRING
, quoted
);
1933 gfc_char_t
*unquoted
;
1935 require_atom (ATOM_STRING
);
1936 unquoted
= unquote_string (atom_string
);
1943 /* Read or write a string that is in static memory. */
1946 mio_pool_string (const char **stringp
)
1948 /* TODO: one could write the string only once, and refer to it via a
1951 /* As a special case we have to deal with a NULL string. This
1952 happens for the 'module' member of 'gfc_symbol's that are not in a
1953 module. We read / write these as the empty string. */
1954 if (iomode
== IO_OUTPUT
)
1956 const char *p
= *stringp
== NULL
? "" : *stringp
;
1957 write_atom (ATOM_STRING
, p
);
1961 require_atom (ATOM_STRING
);
1962 *stringp
= (atom_string
[0] == '\0'
1963 ? NULL
: gfc_get_string ("%s", atom_string
));
1969 /* Read or write a string that is inside of some already-allocated
1973 mio_internal_string (char *string
)
1975 if (iomode
== IO_OUTPUT
)
1976 write_atom (ATOM_STRING
, string
);
1979 require_atom (ATOM_STRING
);
1980 strcpy (string
, atom_string
);
1987 { AB_ALLOCATABLE
, AB_DIMENSION
, AB_EXTERNAL
, AB_INTRINSIC
, AB_OPTIONAL
,
1988 AB_POINTER
, AB_TARGET
, AB_DUMMY
, AB_RESULT
, AB_DATA
,
1989 AB_IN_NAMELIST
, AB_IN_COMMON
, AB_FUNCTION
, AB_SUBROUTINE
, AB_SEQUENCE
,
1990 AB_ELEMENTAL
, AB_PURE
, AB_RECURSIVE
, AB_GENERIC
, AB_ALWAYS_EXPLICIT
,
1991 AB_CRAY_POINTER
, AB_CRAY_POINTEE
, AB_THREADPRIVATE
,
1992 AB_ALLOC_COMP
, AB_POINTER_COMP
, AB_PROC_POINTER_COMP
, AB_PRIVATE_COMP
,
1993 AB_VALUE
, AB_VOLATILE
, AB_PROTECTED
, AB_LOCK_COMP
, AB_EVENT_COMP
,
1994 AB_IS_BIND_C
, AB_IS_C_INTEROP
, AB_IS_ISO_C
, AB_ABSTRACT
, AB_ZERO_COMP
,
1995 AB_IS_CLASS
, AB_PROCEDURE
, AB_PROC_POINTER
, AB_ASYNCHRONOUS
, AB_CODIMENSION
,
1996 AB_COARRAY_COMP
, AB_VTYPE
, AB_VTAB
, AB_CONTIGUOUS
, AB_CLASS_POINTER
,
1997 AB_IMPLICIT_PURE
, AB_ARTIFICIAL
, AB_UNLIMITED_POLY
, AB_OMP_DECLARE_TARGET
,
1998 AB_ARRAY_OUTER_DEPENDENCY
, AB_MODULE_PROCEDURE
, AB_OACC_DECLARE_CREATE
,
1999 AB_OACC_DECLARE_COPYIN
, AB_OACC_DECLARE_DEVICEPTR
,
2000 AB_OACC_DECLARE_DEVICE_RESIDENT
, AB_OACC_DECLARE_LINK
,
2001 AB_OMP_DECLARE_TARGET_LINK
2004 static const mstring attr_bits
[] =
2006 minit ("ALLOCATABLE", AB_ALLOCATABLE
),
2007 minit ("ARTIFICIAL", AB_ARTIFICIAL
),
2008 minit ("ASYNCHRONOUS", AB_ASYNCHRONOUS
),
2009 minit ("DIMENSION", AB_DIMENSION
),
2010 minit ("CODIMENSION", AB_CODIMENSION
),
2011 minit ("CONTIGUOUS", AB_CONTIGUOUS
),
2012 minit ("EXTERNAL", AB_EXTERNAL
),
2013 minit ("INTRINSIC", AB_INTRINSIC
),
2014 minit ("OPTIONAL", AB_OPTIONAL
),
2015 minit ("POINTER", AB_POINTER
),
2016 minit ("VOLATILE", AB_VOLATILE
),
2017 minit ("TARGET", AB_TARGET
),
2018 minit ("THREADPRIVATE", AB_THREADPRIVATE
),
2019 minit ("DUMMY", AB_DUMMY
),
2020 minit ("RESULT", AB_RESULT
),
2021 minit ("DATA", AB_DATA
),
2022 minit ("IN_NAMELIST", AB_IN_NAMELIST
),
2023 minit ("IN_COMMON", AB_IN_COMMON
),
2024 minit ("FUNCTION", AB_FUNCTION
),
2025 minit ("SUBROUTINE", AB_SUBROUTINE
),
2026 minit ("SEQUENCE", AB_SEQUENCE
),
2027 minit ("ELEMENTAL", AB_ELEMENTAL
),
2028 minit ("PURE", AB_PURE
),
2029 minit ("RECURSIVE", AB_RECURSIVE
),
2030 minit ("GENERIC", AB_GENERIC
),
2031 minit ("ALWAYS_EXPLICIT", AB_ALWAYS_EXPLICIT
),
2032 minit ("CRAY_POINTER", AB_CRAY_POINTER
),
2033 minit ("CRAY_POINTEE", AB_CRAY_POINTEE
),
2034 minit ("IS_BIND_C", AB_IS_BIND_C
),
2035 minit ("IS_C_INTEROP", AB_IS_C_INTEROP
),
2036 minit ("IS_ISO_C", AB_IS_ISO_C
),
2037 minit ("VALUE", AB_VALUE
),
2038 minit ("ALLOC_COMP", AB_ALLOC_COMP
),
2039 minit ("COARRAY_COMP", AB_COARRAY_COMP
),
2040 minit ("LOCK_COMP", AB_LOCK_COMP
),
2041 minit ("EVENT_COMP", AB_EVENT_COMP
),
2042 minit ("POINTER_COMP", AB_POINTER_COMP
),
2043 minit ("PROC_POINTER_COMP", AB_PROC_POINTER_COMP
),
2044 minit ("PRIVATE_COMP", AB_PRIVATE_COMP
),
2045 minit ("ZERO_COMP", AB_ZERO_COMP
),
2046 minit ("PROTECTED", AB_PROTECTED
),
2047 minit ("ABSTRACT", AB_ABSTRACT
),
2048 minit ("IS_CLASS", AB_IS_CLASS
),
2049 minit ("PROCEDURE", AB_PROCEDURE
),
2050 minit ("PROC_POINTER", AB_PROC_POINTER
),
2051 minit ("VTYPE", AB_VTYPE
),
2052 minit ("VTAB", AB_VTAB
),
2053 minit ("CLASS_POINTER", AB_CLASS_POINTER
),
2054 minit ("IMPLICIT_PURE", AB_IMPLICIT_PURE
),
2055 minit ("UNLIMITED_POLY", AB_UNLIMITED_POLY
),
2056 minit ("OMP_DECLARE_TARGET", AB_OMP_DECLARE_TARGET
),
2057 minit ("ARRAY_OUTER_DEPENDENCY", AB_ARRAY_OUTER_DEPENDENCY
),
2058 minit ("MODULE_PROCEDURE", AB_MODULE_PROCEDURE
),
2059 minit ("OACC_DECLARE_CREATE", AB_OACC_DECLARE_CREATE
),
2060 minit ("OACC_DECLARE_COPYIN", AB_OACC_DECLARE_COPYIN
),
2061 minit ("OACC_DECLARE_DEVICEPTR", AB_OACC_DECLARE_DEVICEPTR
),
2062 minit ("OACC_DECLARE_DEVICE_RESIDENT", AB_OACC_DECLARE_DEVICE_RESIDENT
),
2063 minit ("OACC_DECLARE_LINK", AB_OACC_DECLARE_LINK
),
2064 minit ("OMP_DECLARE_TARGET_LINK", AB_OMP_DECLARE_TARGET_LINK
),
2068 /* For binding attributes. */
2069 static const mstring binding_passing
[] =
2072 minit ("NOPASS", 1),
2075 static const mstring binding_overriding
[] =
2077 minit ("OVERRIDABLE", 0),
2078 minit ("NON_OVERRIDABLE", 1),
2079 minit ("DEFERRED", 2),
2082 static const mstring binding_generic
[] =
2084 minit ("SPECIFIC", 0),
2085 minit ("GENERIC", 1),
2088 static const mstring binding_ppc
[] =
2090 minit ("NO_PPC", 0),
2095 /* Specialization of mio_name. */
2096 DECL_MIO_NAME (ab_attribute
)
2097 DECL_MIO_NAME (ar_type
)
2098 DECL_MIO_NAME (array_type
)
2100 DECL_MIO_NAME (expr_t
)
2101 DECL_MIO_NAME (gfc_access
)
2102 DECL_MIO_NAME (gfc_intrinsic_op
)
2103 DECL_MIO_NAME (ifsrc
)
2104 DECL_MIO_NAME (save_state
)
2105 DECL_MIO_NAME (procedure_type
)
2106 DECL_MIO_NAME (ref_type
)
2107 DECL_MIO_NAME (sym_flavor
)
2108 DECL_MIO_NAME (sym_intent
)
2109 #undef DECL_MIO_NAME
2111 /* Symbol attributes are stored in list with the first three elements
2112 being the enumerated fields, while the remaining elements (if any)
2113 indicate the individual attribute bits. The access field is not
2114 saved-- it controls what symbols are exported when a module is
2118 mio_symbol_attribute (symbol_attribute
*attr
)
2121 unsigned ext_attr
,extension_level
;
2125 attr
->flavor
= MIO_NAME (sym_flavor
) (attr
->flavor
, flavors
);
2126 attr
->intent
= MIO_NAME (sym_intent
) (attr
->intent
, intents
);
2127 attr
->proc
= MIO_NAME (procedure_type
) (attr
->proc
, procedures
);
2128 attr
->if_source
= MIO_NAME (ifsrc
) (attr
->if_source
, ifsrc_types
);
2129 attr
->save
= MIO_NAME (save_state
) (attr
->save
, save_status
);
2131 ext_attr
= attr
->ext_attr
;
2132 mio_integer ((int *) &ext_attr
);
2133 attr
->ext_attr
= ext_attr
;
2135 extension_level
= attr
->extension
;
2136 mio_integer ((int *) &extension_level
);
2137 attr
->extension
= extension_level
;
2139 if (iomode
== IO_OUTPUT
)
2141 if (attr
->allocatable
)
2142 MIO_NAME (ab_attribute
) (AB_ALLOCATABLE
, attr_bits
);
2143 if (attr
->artificial
)
2144 MIO_NAME (ab_attribute
) (AB_ARTIFICIAL
, attr_bits
);
2145 if (attr
->asynchronous
)
2146 MIO_NAME (ab_attribute
) (AB_ASYNCHRONOUS
, attr_bits
);
2147 if (attr
->dimension
)
2148 MIO_NAME (ab_attribute
) (AB_DIMENSION
, attr_bits
);
2149 if (attr
->codimension
)
2150 MIO_NAME (ab_attribute
) (AB_CODIMENSION
, attr_bits
);
2151 if (attr
->contiguous
)
2152 MIO_NAME (ab_attribute
) (AB_CONTIGUOUS
, attr_bits
);
2154 MIO_NAME (ab_attribute
) (AB_EXTERNAL
, attr_bits
);
2155 if (attr
->intrinsic
)
2156 MIO_NAME (ab_attribute
) (AB_INTRINSIC
, attr_bits
);
2158 MIO_NAME (ab_attribute
) (AB_OPTIONAL
, attr_bits
);
2160 MIO_NAME (ab_attribute
) (AB_POINTER
, attr_bits
);
2161 if (attr
->class_pointer
)
2162 MIO_NAME (ab_attribute
) (AB_CLASS_POINTER
, attr_bits
);
2163 if (attr
->is_protected
)
2164 MIO_NAME (ab_attribute
) (AB_PROTECTED
, attr_bits
);
2166 MIO_NAME (ab_attribute
) (AB_VALUE
, attr_bits
);
2167 if (attr
->volatile_
)
2168 MIO_NAME (ab_attribute
) (AB_VOLATILE
, attr_bits
);
2170 MIO_NAME (ab_attribute
) (AB_TARGET
, attr_bits
);
2171 if (attr
->threadprivate
)
2172 MIO_NAME (ab_attribute
) (AB_THREADPRIVATE
, attr_bits
);
2174 MIO_NAME (ab_attribute
) (AB_DUMMY
, attr_bits
);
2176 MIO_NAME (ab_attribute
) (AB_RESULT
, attr_bits
);
2177 /* We deliberately don't preserve the "entry" flag. */
2180 MIO_NAME (ab_attribute
) (AB_DATA
, attr_bits
);
2181 if (attr
->in_namelist
)
2182 MIO_NAME (ab_attribute
) (AB_IN_NAMELIST
, attr_bits
);
2183 if (attr
->in_common
)
2184 MIO_NAME (ab_attribute
) (AB_IN_COMMON
, attr_bits
);
2187 MIO_NAME (ab_attribute
) (AB_FUNCTION
, attr_bits
);
2188 if (attr
->subroutine
)
2189 MIO_NAME (ab_attribute
) (AB_SUBROUTINE
, attr_bits
);
2191 MIO_NAME (ab_attribute
) (AB_GENERIC
, attr_bits
);
2193 MIO_NAME (ab_attribute
) (AB_ABSTRACT
, attr_bits
);
2196 MIO_NAME (ab_attribute
) (AB_SEQUENCE
, attr_bits
);
2197 if (attr
->elemental
)
2198 MIO_NAME (ab_attribute
) (AB_ELEMENTAL
, attr_bits
);
2200 MIO_NAME (ab_attribute
) (AB_PURE
, attr_bits
);
2201 if (attr
->implicit_pure
)
2202 MIO_NAME (ab_attribute
) (AB_IMPLICIT_PURE
, attr_bits
);
2203 if (attr
->unlimited_polymorphic
)
2204 MIO_NAME (ab_attribute
) (AB_UNLIMITED_POLY
, attr_bits
);
2205 if (attr
->recursive
)
2206 MIO_NAME (ab_attribute
) (AB_RECURSIVE
, attr_bits
);
2207 if (attr
->always_explicit
)
2208 MIO_NAME (ab_attribute
) (AB_ALWAYS_EXPLICIT
, attr_bits
);
2209 if (attr
->cray_pointer
)
2210 MIO_NAME (ab_attribute
) (AB_CRAY_POINTER
, attr_bits
);
2211 if (attr
->cray_pointee
)
2212 MIO_NAME (ab_attribute
) (AB_CRAY_POINTEE
, attr_bits
);
2213 if (attr
->is_bind_c
)
2214 MIO_NAME(ab_attribute
) (AB_IS_BIND_C
, attr_bits
);
2215 if (attr
->is_c_interop
)
2216 MIO_NAME(ab_attribute
) (AB_IS_C_INTEROP
, attr_bits
);
2218 MIO_NAME(ab_attribute
) (AB_IS_ISO_C
, attr_bits
);
2219 if (attr
->alloc_comp
)
2220 MIO_NAME (ab_attribute
) (AB_ALLOC_COMP
, attr_bits
);
2221 if (attr
->pointer_comp
)
2222 MIO_NAME (ab_attribute
) (AB_POINTER_COMP
, attr_bits
);
2223 if (attr
->proc_pointer_comp
)
2224 MIO_NAME (ab_attribute
) (AB_PROC_POINTER_COMP
, attr_bits
);
2225 if (attr
->private_comp
)
2226 MIO_NAME (ab_attribute
) (AB_PRIVATE_COMP
, attr_bits
);
2227 if (attr
->coarray_comp
)
2228 MIO_NAME (ab_attribute
) (AB_COARRAY_COMP
, attr_bits
);
2229 if (attr
->lock_comp
)
2230 MIO_NAME (ab_attribute
) (AB_LOCK_COMP
, attr_bits
);
2231 if (attr
->event_comp
)
2232 MIO_NAME (ab_attribute
) (AB_EVENT_COMP
, attr_bits
);
2233 if (attr
->zero_comp
)
2234 MIO_NAME (ab_attribute
) (AB_ZERO_COMP
, attr_bits
);
2236 MIO_NAME (ab_attribute
) (AB_IS_CLASS
, attr_bits
);
2237 if (attr
->procedure
)
2238 MIO_NAME (ab_attribute
) (AB_PROCEDURE
, attr_bits
);
2239 if (attr
->proc_pointer
)
2240 MIO_NAME (ab_attribute
) (AB_PROC_POINTER
, attr_bits
);
2242 MIO_NAME (ab_attribute
) (AB_VTYPE
, attr_bits
);
2244 MIO_NAME (ab_attribute
) (AB_VTAB
, attr_bits
);
2245 if (attr
->omp_declare_target
)
2246 MIO_NAME (ab_attribute
) (AB_OMP_DECLARE_TARGET
, attr_bits
);
2247 if (attr
->array_outer_dependency
)
2248 MIO_NAME (ab_attribute
) (AB_ARRAY_OUTER_DEPENDENCY
, attr_bits
);
2249 if (attr
->module_procedure
)
2250 MIO_NAME (ab_attribute
) (AB_MODULE_PROCEDURE
, attr_bits
);
2251 if (attr
->oacc_declare_create
)
2252 MIO_NAME (ab_attribute
) (AB_OACC_DECLARE_CREATE
, attr_bits
);
2253 if (attr
->oacc_declare_copyin
)
2254 MIO_NAME (ab_attribute
) (AB_OACC_DECLARE_COPYIN
, attr_bits
);
2255 if (attr
->oacc_declare_deviceptr
)
2256 MIO_NAME (ab_attribute
) (AB_OACC_DECLARE_DEVICEPTR
, attr_bits
);
2257 if (attr
->oacc_declare_device_resident
)
2258 MIO_NAME (ab_attribute
) (AB_OACC_DECLARE_DEVICE_RESIDENT
, attr_bits
);
2259 if (attr
->oacc_declare_link
)
2260 MIO_NAME (ab_attribute
) (AB_OACC_DECLARE_LINK
, attr_bits
);
2261 if (attr
->omp_declare_target_link
)
2262 MIO_NAME (ab_attribute
) (AB_OMP_DECLARE_TARGET_LINK
, attr_bits
);
2272 if (t
== ATOM_RPAREN
)
2275 bad_module ("Expected attribute bit name");
2277 switch ((ab_attribute
) find_enum (attr_bits
))
2279 case AB_ALLOCATABLE
:
2280 attr
->allocatable
= 1;
2283 attr
->artificial
= 1;
2285 case AB_ASYNCHRONOUS
:
2286 attr
->asynchronous
= 1;
2289 attr
->dimension
= 1;
2291 case AB_CODIMENSION
:
2292 attr
->codimension
= 1;
2295 attr
->contiguous
= 1;
2301 attr
->intrinsic
= 1;
2309 case AB_CLASS_POINTER
:
2310 attr
->class_pointer
= 1;
2313 attr
->is_protected
= 1;
2319 attr
->volatile_
= 1;
2324 case AB_THREADPRIVATE
:
2325 attr
->threadprivate
= 1;
2336 case AB_IN_NAMELIST
:
2337 attr
->in_namelist
= 1;
2340 attr
->in_common
= 1;
2346 attr
->subroutine
= 1;
2358 attr
->elemental
= 1;
2363 case AB_IMPLICIT_PURE
:
2364 attr
->implicit_pure
= 1;
2366 case AB_UNLIMITED_POLY
:
2367 attr
->unlimited_polymorphic
= 1;
2370 attr
->recursive
= 1;
2372 case AB_ALWAYS_EXPLICIT
:
2373 attr
->always_explicit
= 1;
2375 case AB_CRAY_POINTER
:
2376 attr
->cray_pointer
= 1;
2378 case AB_CRAY_POINTEE
:
2379 attr
->cray_pointee
= 1;
2382 attr
->is_bind_c
= 1;
2384 case AB_IS_C_INTEROP
:
2385 attr
->is_c_interop
= 1;
2391 attr
->alloc_comp
= 1;
2393 case AB_COARRAY_COMP
:
2394 attr
->coarray_comp
= 1;
2397 attr
->lock_comp
= 1;
2400 attr
->event_comp
= 1;
2402 case AB_POINTER_COMP
:
2403 attr
->pointer_comp
= 1;
2405 case AB_PROC_POINTER_COMP
:
2406 attr
->proc_pointer_comp
= 1;
2408 case AB_PRIVATE_COMP
:
2409 attr
->private_comp
= 1;
2412 attr
->zero_comp
= 1;
2418 attr
->procedure
= 1;
2420 case AB_PROC_POINTER
:
2421 attr
->proc_pointer
= 1;
2429 case AB_OMP_DECLARE_TARGET
:
2430 attr
->omp_declare_target
= 1;
2432 case AB_OMP_DECLARE_TARGET_LINK
:
2433 attr
->omp_declare_target_link
= 1;
2435 case AB_ARRAY_OUTER_DEPENDENCY
:
2436 attr
->array_outer_dependency
=1;
2438 case AB_MODULE_PROCEDURE
:
2439 attr
->module_procedure
=1;
2441 case AB_OACC_DECLARE_CREATE
:
2442 attr
->oacc_declare_create
= 1;
2444 case AB_OACC_DECLARE_COPYIN
:
2445 attr
->oacc_declare_copyin
= 1;
2447 case AB_OACC_DECLARE_DEVICEPTR
:
2448 attr
->oacc_declare_deviceptr
= 1;
2450 case AB_OACC_DECLARE_DEVICE_RESIDENT
:
2451 attr
->oacc_declare_device_resident
= 1;
2453 case AB_OACC_DECLARE_LINK
:
2454 attr
->oacc_declare_link
= 1;
2462 static const mstring bt_types
[] = {
2463 minit ("INTEGER", BT_INTEGER
),
2464 minit ("REAL", BT_REAL
),
2465 minit ("COMPLEX", BT_COMPLEX
),
2466 minit ("LOGICAL", BT_LOGICAL
),
2467 minit ("CHARACTER", BT_CHARACTER
),
2468 minit ("UNION", BT_UNION
),
2469 minit ("DERIVED", BT_DERIVED
),
2470 minit ("CLASS", BT_CLASS
),
2471 minit ("PROCEDURE", BT_PROCEDURE
),
2472 minit ("UNKNOWN", BT_UNKNOWN
),
2473 minit ("VOID", BT_VOID
),
2474 minit ("ASSUMED", BT_ASSUMED
),
2480 mio_charlen (gfc_charlen
**clp
)
2486 if (iomode
== IO_OUTPUT
)
2490 mio_expr (&cl
->length
);
2494 if (peek_atom () != ATOM_RPAREN
)
2496 cl
= gfc_new_charlen (gfc_current_ns
, NULL
);
2497 mio_expr (&cl
->length
);
2506 /* See if a name is a generated name. */
2509 check_unique_name (const char *name
)
2511 return *name
== '@';
2516 mio_typespec (gfc_typespec
*ts
)
2520 ts
->type
= MIO_NAME (bt
) (ts
->type
, bt_types
);
2522 if (!gfc_bt_struct (ts
->type
) && ts
->type
!= BT_CLASS
)
2523 mio_integer (&ts
->kind
);
2525 mio_symbol_ref (&ts
->u
.derived
);
2527 mio_symbol_ref (&ts
->interface
);
2529 /* Add info for C interop and is_iso_c. */
2530 mio_integer (&ts
->is_c_interop
);
2531 mio_integer (&ts
->is_iso_c
);
2533 /* If the typespec is for an identifier either from iso_c_binding, or
2534 a constant that was initialized to an identifier from it, use the
2535 f90_type. Otherwise, use the ts->type, since it shouldn't matter. */
2537 ts
->f90_type
= MIO_NAME (bt
) (ts
->f90_type
, bt_types
);
2539 ts
->f90_type
= MIO_NAME (bt
) (ts
->type
, bt_types
);
2541 if (ts
->type
!= BT_CHARACTER
)
2543 /* ts->u.cl is only valid for BT_CHARACTER. */
2548 mio_charlen (&ts
->u
.cl
);
2550 /* So as not to disturb the existing API, use an ATOM_NAME to
2551 transmit deferred characteristic for characters (F2003). */
2552 if (iomode
== IO_OUTPUT
)
2554 if (ts
->type
== BT_CHARACTER
&& ts
->deferred
)
2555 write_atom (ATOM_NAME
, "DEFERRED_CL");
2557 else if (peek_atom () != ATOM_RPAREN
)
2559 if (parse_atom () != ATOM_NAME
)
2560 bad_module ("Expected string");
2568 static const mstring array_spec_types
[] = {
2569 minit ("EXPLICIT", AS_EXPLICIT
),
2570 minit ("ASSUMED_RANK", AS_ASSUMED_RANK
),
2571 minit ("ASSUMED_SHAPE", AS_ASSUMED_SHAPE
),
2572 minit ("DEFERRED", AS_DEFERRED
),
2573 minit ("ASSUMED_SIZE", AS_ASSUMED_SIZE
),
2579 mio_array_spec (gfc_array_spec
**asp
)
2586 if (iomode
== IO_OUTPUT
)
2594 /* mio_integer expects nonnegative values. */
2595 rank
= as
->rank
> 0 ? as
->rank
: 0;
2596 mio_integer (&rank
);
2600 if (peek_atom () == ATOM_RPAREN
)
2606 *asp
= as
= gfc_get_array_spec ();
2607 mio_integer (&as
->rank
);
2610 mio_integer (&as
->corank
);
2611 as
->type
= MIO_NAME (array_type
) (as
->type
, array_spec_types
);
2613 if (iomode
== IO_INPUT
&& as
->type
== AS_ASSUMED_RANK
)
2615 if (iomode
== IO_INPUT
&& as
->corank
)
2616 as
->cotype
= (as
->type
== AS_DEFERRED
) ? AS_DEFERRED
: AS_EXPLICIT
;
2618 if (as
->rank
+ as
->corank
> 0)
2619 for (i
= 0; i
< as
->rank
+ as
->corank
; i
++)
2621 mio_expr (&as
->lower
[i
]);
2622 mio_expr (&as
->upper
[i
]);
2630 /* Given a pointer to an array reference structure (which lives in a
2631 gfc_ref structure), find the corresponding array specification
2632 structure. Storing the pointer in the ref structure doesn't quite
2633 work when loading from a module. Generating code for an array
2634 reference also needs more information than just the array spec. */
2636 static const mstring array_ref_types
[] = {
2637 minit ("FULL", AR_FULL
),
2638 minit ("ELEMENT", AR_ELEMENT
),
2639 minit ("SECTION", AR_SECTION
),
2645 mio_array_ref (gfc_array_ref
*ar
)
2650 ar
->type
= MIO_NAME (ar_type
) (ar
->type
, array_ref_types
);
2651 mio_integer (&ar
->dimen
);
2659 for (i
= 0; i
< ar
->dimen
; i
++)
2660 mio_expr (&ar
->start
[i
]);
2665 for (i
= 0; i
< ar
->dimen
; i
++)
2667 mio_expr (&ar
->start
[i
]);
2668 mio_expr (&ar
->end
[i
]);
2669 mio_expr (&ar
->stride
[i
]);
2675 gfc_internal_error ("mio_array_ref(): Unknown array ref");
2678 /* Unfortunately, ar->dimen_type is an anonymous enumerated type so
2679 we can't call mio_integer directly. Instead loop over each element
2680 and cast it to/from an integer. */
2681 if (iomode
== IO_OUTPUT
)
2683 for (i
= 0; i
< ar
->dimen
; i
++)
2685 int tmp
= (int)ar
->dimen_type
[i
];
2686 write_atom (ATOM_INTEGER
, &tmp
);
2691 for (i
= 0; i
< ar
->dimen
; i
++)
2693 require_atom (ATOM_INTEGER
);
2694 ar
->dimen_type
[i
] = (enum gfc_array_ref_dimen_type
) atom_int
;
2698 if (iomode
== IO_INPUT
)
2700 ar
->where
= gfc_current_locus
;
2702 for (i
= 0; i
< ar
->dimen
; i
++)
2703 ar
->c_where
[i
] = gfc_current_locus
;
2710 /* Saves or restores a pointer. The pointer is converted back and
2711 forth from an integer. We return the pointer_info pointer so that
2712 the caller can take additional action based on the pointer type. */
2714 static pointer_info
*
2715 mio_pointer_ref (void *gp
)
2719 if (iomode
== IO_OUTPUT
)
2721 p
= get_pointer (*((char **) gp
));
2722 write_atom (ATOM_INTEGER
, &p
->integer
);
2726 require_atom (ATOM_INTEGER
);
2727 p
= add_fixup (atom_int
, gp
);
2734 /* Save and load references to components that occur within
2735 expressions. We have to describe these references by a number and
2736 by name. The number is necessary for forward references during
2737 reading, and the name is necessary if the symbol already exists in
2738 the namespace and is not loaded again. */
2741 mio_component_ref (gfc_component
**cp
)
2745 p
= mio_pointer_ref (cp
);
2746 if (p
->type
== P_UNKNOWN
)
2747 p
->type
= P_COMPONENT
;
2751 static void mio_namespace_ref (gfc_namespace
**nsp
);
2752 static void mio_formal_arglist (gfc_formal_arglist
**formal
);
2753 static void mio_typebound_proc (gfc_typebound_proc
** proc
);
2756 mio_component (gfc_component
*c
, int vtype
)
2763 if (iomode
== IO_OUTPUT
)
2765 p
= get_pointer (c
);
2766 mio_integer (&p
->integer
);
2771 p
= get_integer (n
);
2772 associate_integer_pointer (p
, c
);
2775 if (p
->type
== P_UNKNOWN
)
2776 p
->type
= P_COMPONENT
;
2778 mio_pool_string (&c
->name
);
2779 mio_typespec (&c
->ts
);
2780 mio_array_spec (&c
->as
);
2782 mio_symbol_attribute (&c
->attr
);
2783 if (c
->ts
.type
== BT_CLASS
)
2784 c
->attr
.class_ok
= 1;
2785 c
->attr
.access
= MIO_NAME (gfc_access
) (c
->attr
.access
, access_types
);
2787 if (!vtype
|| strcmp (c
->name
, "_final") == 0
2788 || strcmp (c
->name
, "_hash") == 0)
2789 mio_expr (&c
->initializer
);
2791 if (c
->attr
.proc_pointer
)
2792 mio_typebound_proc (&c
->tb
);
2799 mio_component_list (gfc_component
**cp
, int vtype
)
2801 gfc_component
*c
, *tail
;
2805 if (iomode
== IO_OUTPUT
)
2807 for (c
= *cp
; c
; c
= c
->next
)
2808 mio_component (c
, vtype
);
2817 if (peek_atom () == ATOM_RPAREN
)
2820 c
= gfc_get_component ();
2821 mio_component (c
, vtype
);
2837 mio_actual_arg (gfc_actual_arglist
*a
)
2840 mio_pool_string (&a
->name
);
2841 mio_expr (&a
->expr
);
2847 mio_actual_arglist (gfc_actual_arglist
**ap
)
2849 gfc_actual_arglist
*a
, *tail
;
2853 if (iomode
== IO_OUTPUT
)
2855 for (a
= *ap
; a
; a
= a
->next
)
2865 if (peek_atom () != ATOM_LPAREN
)
2868 a
= gfc_get_actual_arglist ();
2884 /* Read and write formal argument lists. */
2887 mio_formal_arglist (gfc_formal_arglist
**formal
)
2889 gfc_formal_arglist
*f
, *tail
;
2893 if (iomode
== IO_OUTPUT
)
2895 for (f
= *formal
; f
; f
= f
->next
)
2896 mio_symbol_ref (&f
->sym
);
2900 *formal
= tail
= NULL
;
2902 while (peek_atom () != ATOM_RPAREN
)
2904 f
= gfc_get_formal_arglist ();
2905 mio_symbol_ref (&f
->sym
);
2907 if (*formal
== NULL
)
2920 /* Save or restore a reference to a symbol node. */
2923 mio_symbol_ref (gfc_symbol
**symp
)
2927 p
= mio_pointer_ref (symp
);
2928 if (p
->type
== P_UNKNOWN
)
2931 if (iomode
== IO_OUTPUT
)
2933 if (p
->u
.wsym
.state
== UNREFERENCED
)
2934 p
->u
.wsym
.state
= NEEDS_WRITE
;
2938 if (p
->u
.rsym
.state
== UNUSED
)
2939 p
->u
.rsym
.state
= NEEDED
;
2945 /* Save or restore a reference to a symtree node. */
2948 mio_symtree_ref (gfc_symtree
**stp
)
2953 if (iomode
== IO_OUTPUT
)
2954 mio_symbol_ref (&(*stp
)->n
.sym
);
2957 require_atom (ATOM_INTEGER
);
2958 p
= get_integer (atom_int
);
2960 /* An unused equivalence member; make a symbol and a symtree
2962 if (in_load_equiv
&& p
->u
.rsym
.symtree
== NULL
)
2964 /* Since this is not used, it must have a unique name. */
2965 p
->u
.rsym
.symtree
= gfc_get_unique_symtree (gfc_current_ns
);
2967 /* Make the symbol. */
2968 if (p
->u
.rsym
.sym
== NULL
)
2970 p
->u
.rsym
.sym
= gfc_new_symbol (p
->u
.rsym
.true_name
,
2972 p
->u
.rsym
.sym
->module
= gfc_get_string ("%s", p
->u
.rsym
.module
);
2975 p
->u
.rsym
.symtree
->n
.sym
= p
->u
.rsym
.sym
;
2976 p
->u
.rsym
.symtree
->n
.sym
->refs
++;
2977 p
->u
.rsym
.referenced
= 1;
2979 /* If the symbol is PRIVATE and in COMMON, load_commons will
2980 generate a fixup symbol, which must be associated. */
2982 resolve_fixups (p
->fixup
, p
->u
.rsym
.sym
);
2986 if (p
->type
== P_UNKNOWN
)
2989 if (p
->u
.rsym
.state
== UNUSED
)
2990 p
->u
.rsym
.state
= NEEDED
;
2992 if (p
->u
.rsym
.symtree
!= NULL
)
2994 *stp
= p
->u
.rsym
.symtree
;
2998 f
= XCNEW (fixup_t
);
3000 f
->next
= p
->u
.rsym
.stfixup
;
3001 p
->u
.rsym
.stfixup
= f
;
3003 f
->pointer
= (void **) stp
;
3010 mio_iterator (gfc_iterator
**ip
)
3016 if (iomode
== IO_OUTPUT
)
3023 if (peek_atom () == ATOM_RPAREN
)
3029 *ip
= gfc_get_iterator ();
3034 mio_expr (&iter
->var
);
3035 mio_expr (&iter
->start
);
3036 mio_expr (&iter
->end
);
3037 mio_expr (&iter
->step
);
3045 mio_constructor (gfc_constructor_base
*cp
)
3051 if (iomode
== IO_OUTPUT
)
3053 for (c
= gfc_constructor_first (*cp
); c
; c
= gfc_constructor_next (c
))
3056 mio_expr (&c
->expr
);
3057 mio_iterator (&c
->iterator
);
3063 while (peek_atom () != ATOM_RPAREN
)
3065 c
= gfc_constructor_append_expr (cp
, NULL
, NULL
);
3068 mio_expr (&c
->expr
);
3069 mio_iterator (&c
->iterator
);
3078 static const mstring ref_types
[] = {
3079 minit ("ARRAY", REF_ARRAY
),
3080 minit ("COMPONENT", REF_COMPONENT
),
3081 minit ("SUBSTRING", REF_SUBSTRING
),
3087 mio_ref (gfc_ref
**rp
)
3094 r
->type
= MIO_NAME (ref_type
) (r
->type
, ref_types
);
3099 mio_array_ref (&r
->u
.ar
);
3103 mio_symbol_ref (&r
->u
.c
.sym
);
3104 mio_component_ref (&r
->u
.c
.component
);
3108 mio_expr (&r
->u
.ss
.start
);
3109 mio_expr (&r
->u
.ss
.end
);
3110 mio_charlen (&r
->u
.ss
.length
);
3119 mio_ref_list (gfc_ref
**rp
)
3121 gfc_ref
*ref
, *head
, *tail
;
3125 if (iomode
== IO_OUTPUT
)
3127 for (ref
= *rp
; ref
; ref
= ref
->next
)
3134 while (peek_atom () != ATOM_RPAREN
)
3137 head
= tail
= gfc_get_ref ();
3140 tail
->next
= gfc_get_ref ();
3154 /* Read and write an integer value. */
3157 mio_gmp_integer (mpz_t
*integer
)
3161 if (iomode
== IO_INPUT
)
3163 if (parse_atom () != ATOM_STRING
)
3164 bad_module ("Expected integer string");
3166 mpz_init (*integer
);
3167 if (mpz_set_str (*integer
, atom_string
, 10))
3168 bad_module ("Error converting integer");
3174 p
= mpz_get_str (NULL
, 10, *integer
);
3175 write_atom (ATOM_STRING
, p
);
3182 mio_gmp_real (mpfr_t
*real
)
3187 if (iomode
== IO_INPUT
)
3189 if (parse_atom () != ATOM_STRING
)
3190 bad_module ("Expected real string");
3193 mpfr_set_str (*real
, atom_string
, 16, GFC_RND_MODE
);
3198 p
= mpfr_get_str (NULL
, &exponent
, 16, 0, *real
, GFC_RND_MODE
);
3200 if (mpfr_nan_p (*real
) || mpfr_inf_p (*real
))
3202 write_atom (ATOM_STRING
, p
);
3207 atom_string
= XCNEWVEC (char, strlen (p
) + 20);
3209 sprintf (atom_string
, "0.%s@%ld", p
, exponent
);
3211 /* Fix negative numbers. */
3212 if (atom_string
[2] == '-')
3214 atom_string
[0] = '-';
3215 atom_string
[1] = '0';
3216 atom_string
[2] = '.';
3219 write_atom (ATOM_STRING
, atom_string
);
3227 /* Save and restore the shape of an array constructor. */
3230 mio_shape (mpz_t
**pshape
, int rank
)
3236 /* A NULL shape is represented by (). */
3239 if (iomode
== IO_OUTPUT
)
3251 if (t
== ATOM_RPAREN
)
3258 shape
= gfc_get_shape (rank
);
3262 for (n
= 0; n
< rank
; n
++)
3263 mio_gmp_integer (&shape
[n
]);
3269 static const mstring expr_types
[] = {
3270 minit ("OP", EXPR_OP
),
3271 minit ("FUNCTION", EXPR_FUNCTION
),
3272 minit ("CONSTANT", EXPR_CONSTANT
),
3273 minit ("VARIABLE", EXPR_VARIABLE
),
3274 minit ("SUBSTRING", EXPR_SUBSTRING
),
3275 minit ("STRUCTURE", EXPR_STRUCTURE
),
3276 minit ("ARRAY", EXPR_ARRAY
),
3277 minit ("NULL", EXPR_NULL
),
3278 minit ("COMPCALL", EXPR_COMPCALL
),
3282 /* INTRINSIC_ASSIGN is missing because it is used as an index for
3283 generic operators, not in expressions. INTRINSIC_USER is also
3284 replaced by the correct function name by the time we see it. */
3286 static const mstring intrinsics
[] =
3288 minit ("UPLUS", INTRINSIC_UPLUS
),
3289 minit ("UMINUS", INTRINSIC_UMINUS
),
3290 minit ("PLUS", INTRINSIC_PLUS
),
3291 minit ("MINUS", INTRINSIC_MINUS
),
3292 minit ("TIMES", INTRINSIC_TIMES
),
3293 minit ("DIVIDE", INTRINSIC_DIVIDE
),
3294 minit ("POWER", INTRINSIC_POWER
),
3295 minit ("CONCAT", INTRINSIC_CONCAT
),
3296 minit ("AND", INTRINSIC_AND
),
3297 minit ("OR", INTRINSIC_OR
),
3298 minit ("EQV", INTRINSIC_EQV
),
3299 minit ("NEQV", INTRINSIC_NEQV
),
3300 minit ("EQ_SIGN", INTRINSIC_EQ
),
3301 minit ("EQ", INTRINSIC_EQ_OS
),
3302 minit ("NE_SIGN", INTRINSIC_NE
),
3303 minit ("NE", INTRINSIC_NE_OS
),
3304 minit ("GT_SIGN", INTRINSIC_GT
),
3305 minit ("GT", INTRINSIC_GT_OS
),
3306 minit ("GE_SIGN", INTRINSIC_GE
),
3307 minit ("GE", INTRINSIC_GE_OS
),
3308 minit ("LT_SIGN", INTRINSIC_LT
),
3309 minit ("LT", INTRINSIC_LT_OS
),
3310 minit ("LE_SIGN", INTRINSIC_LE
),
3311 minit ("LE", INTRINSIC_LE_OS
),
3312 minit ("NOT", INTRINSIC_NOT
),
3313 minit ("PARENTHESES", INTRINSIC_PARENTHESES
),
3314 minit ("USER", INTRINSIC_USER
),
3319 /* Remedy a couple of situations where the gfc_expr's can be defective. */
3322 fix_mio_expr (gfc_expr
*e
)
3324 gfc_symtree
*ns_st
= NULL
;
3327 if (iomode
!= IO_OUTPUT
)
3332 /* If this is a symtree for a symbol that came from a contained module
3333 namespace, it has a unique name and we should look in the current
3334 namespace to see if the required, non-contained symbol is available
3335 yet. If so, the latter should be written. */
3336 if (e
->symtree
->n
.sym
&& check_unique_name (e
->symtree
->name
))
3338 const char *name
= e
->symtree
->n
.sym
->name
;
3339 if (gfc_fl_struct (e
->symtree
->n
.sym
->attr
.flavor
))
3340 name
= gfc_dt_upper_string (name
);
3341 ns_st
= gfc_find_symtree (gfc_current_ns
->sym_root
, name
);
3344 /* On the other hand, if the existing symbol is the module name or the
3345 new symbol is a dummy argument, do not do the promotion. */
3346 if (ns_st
&& ns_st
->n
.sym
3347 && ns_st
->n
.sym
->attr
.flavor
!= FL_MODULE
3348 && !e
->symtree
->n
.sym
->attr
.dummy
)
3351 else if (e
->expr_type
== EXPR_FUNCTION
3352 && (e
->value
.function
.name
|| e
->value
.function
.isym
))
3356 /* In some circumstances, a function used in an initialization
3357 expression, in one use associated module, can fail to be
3358 coupled to its symtree when used in a specification
3359 expression in another module. */
3360 fname
= e
->value
.function
.esym
? e
->value
.function
.esym
->name
3361 : e
->value
.function
.isym
->name
;
3362 e
->symtree
= gfc_find_symtree (gfc_current_ns
->sym_root
, fname
);
3367 /* This is probably a reference to a private procedure from another
3368 module. To prevent a segfault, make a generic with no specific
3369 instances. If this module is used, without the required
3370 specific coming from somewhere, the appropriate error message
3372 gfc_get_symbol (fname
, gfc_current_ns
, &sym
);
3373 sym
->attr
.flavor
= FL_PROCEDURE
;
3374 sym
->attr
.generic
= 1;
3375 e
->symtree
= gfc_find_symtree (gfc_current_ns
->sym_root
, fname
);
3376 gfc_commit_symbol (sym
);
3381 /* Read and write expressions. The form "()" is allowed to indicate a
3385 mio_expr (gfc_expr
**ep
)
3393 if (iomode
== IO_OUTPUT
)
3402 MIO_NAME (expr_t
) (e
->expr_type
, expr_types
);
3407 if (t
== ATOM_RPAREN
)
3414 bad_module ("Expected expression type");
3416 e
= *ep
= gfc_get_expr ();
3417 e
->where
= gfc_current_locus
;
3418 e
->expr_type
= (expr_t
) find_enum (expr_types
);
3421 mio_typespec (&e
->ts
);
3422 mio_integer (&e
->rank
);
3426 switch (e
->expr_type
)
3430 = MIO_NAME (gfc_intrinsic_op
) (e
->value
.op
.op
, intrinsics
);
3432 switch (e
->value
.op
.op
)
3434 case INTRINSIC_UPLUS
:
3435 case INTRINSIC_UMINUS
:
3437 case INTRINSIC_PARENTHESES
:
3438 mio_expr (&e
->value
.op
.op1
);
3441 case INTRINSIC_PLUS
:
3442 case INTRINSIC_MINUS
:
3443 case INTRINSIC_TIMES
:
3444 case INTRINSIC_DIVIDE
:
3445 case INTRINSIC_POWER
:
3446 case INTRINSIC_CONCAT
:
3450 case INTRINSIC_NEQV
:
3452 case INTRINSIC_EQ_OS
:
3454 case INTRINSIC_NE_OS
:
3456 case INTRINSIC_GT_OS
:
3458 case INTRINSIC_GE_OS
:
3460 case INTRINSIC_LT_OS
:
3462 case INTRINSIC_LE_OS
:
3463 mio_expr (&e
->value
.op
.op1
);
3464 mio_expr (&e
->value
.op
.op2
);
3467 case INTRINSIC_USER
:
3468 /* INTRINSIC_USER should not appear in resolved expressions,
3469 though for UDRs we need to stream unresolved ones. */
3470 if (iomode
== IO_OUTPUT
)
3471 write_atom (ATOM_STRING
, e
->value
.op
.uop
->name
);
3474 char *name
= read_string ();
3475 const char *uop_name
= find_use_name (name
, true);
3476 if (uop_name
== NULL
)
3478 size_t len
= strlen (name
);
3479 char *name2
= XCNEWVEC (char, len
+ 2);
3480 memcpy (name2
, name
, len
);
3482 name2
[len
+ 1] = '\0';
3484 uop_name
= name
= name2
;
3486 e
->value
.op
.uop
= gfc_get_uop (uop_name
);
3489 mio_expr (&e
->value
.op
.op1
);
3490 mio_expr (&e
->value
.op
.op2
);
3494 bad_module ("Bad operator");
3500 mio_symtree_ref (&e
->symtree
);
3501 mio_actual_arglist (&e
->value
.function
.actual
);
3503 if (iomode
== IO_OUTPUT
)
3505 e
->value
.function
.name
3506 = mio_allocated_string (e
->value
.function
.name
);
3507 if (e
->value
.function
.esym
)
3511 else if (e
->value
.function
.isym
== NULL
)
3515 mio_integer (&flag
);
3519 mio_symbol_ref (&e
->value
.function
.esym
);
3522 mio_ref_list (&e
->ref
);
3527 write_atom (ATOM_STRING
, e
->value
.function
.isym
->name
);
3532 require_atom (ATOM_STRING
);
3533 if (atom_string
[0] == '\0')
3534 e
->value
.function
.name
= NULL
;
3536 e
->value
.function
.name
= gfc_get_string ("%s", atom_string
);
3539 mio_integer (&flag
);
3543 mio_symbol_ref (&e
->value
.function
.esym
);
3546 mio_ref_list (&e
->ref
);
3551 require_atom (ATOM_STRING
);
3552 e
->value
.function
.isym
= gfc_find_function (atom_string
);
3560 mio_symtree_ref (&e
->symtree
);
3561 mio_ref_list (&e
->ref
);
3564 case EXPR_SUBSTRING
:
3565 e
->value
.character
.string
3566 = CONST_CAST (gfc_char_t
*,
3567 mio_allocated_wide_string (e
->value
.character
.string
,
3568 e
->value
.character
.length
));
3569 mio_ref_list (&e
->ref
);
3572 case EXPR_STRUCTURE
:
3574 mio_constructor (&e
->value
.constructor
);
3575 mio_shape (&e
->shape
, e
->rank
);
3582 mio_gmp_integer (&e
->value
.integer
);
3586 gfc_set_model_kind (e
->ts
.kind
);
3587 mio_gmp_real (&e
->value
.real
);
3591 gfc_set_model_kind (e
->ts
.kind
);
3592 mio_gmp_real (&mpc_realref (e
->value
.complex));
3593 mio_gmp_real (&mpc_imagref (e
->value
.complex));
3597 mio_integer (&e
->value
.logical
);
3601 mio_integer (&e
->value
.character
.length
);
3602 e
->value
.character
.string
3603 = CONST_CAST (gfc_char_t
*,
3604 mio_allocated_wide_string (e
->value
.character
.string
,
3605 e
->value
.character
.length
));
3609 bad_module ("Bad type in constant expression");
3627 /* Read and write namelists. */
3630 mio_namelist (gfc_symbol
*sym
)
3632 gfc_namelist
*n
, *m
;
3633 const char *check_name
;
3637 if (iomode
== IO_OUTPUT
)
3639 for (n
= sym
->namelist
; n
; n
= n
->next
)
3640 mio_symbol_ref (&n
->sym
);
3644 /* This departure from the standard is flagged as an error.
3645 It does, in fact, work correctly. TODO: Allow it
3647 if (sym
->attr
.flavor
== FL_NAMELIST
)
3649 check_name
= find_use_name (sym
->name
, false);
3650 if (check_name
&& strcmp (check_name
, sym
->name
) != 0)
3651 gfc_error ("Namelist %s cannot be renamed by USE "
3652 "association to %s", sym
->name
, check_name
);
3656 while (peek_atom () != ATOM_RPAREN
)
3658 n
= gfc_get_namelist ();
3659 mio_symbol_ref (&n
->sym
);
3661 if (sym
->namelist
== NULL
)
3668 sym
->namelist_tail
= m
;
3675 /* Save/restore lists of gfc_interface structures. When loading an
3676 interface, we are really appending to the existing list of
3677 interfaces. Checking for duplicate and ambiguous interfaces has to
3678 be done later when all symbols have been loaded. */
3681 mio_interface_rest (gfc_interface
**ip
)
3683 gfc_interface
*tail
, *p
;
3684 pointer_info
*pi
= NULL
;
3686 if (iomode
== IO_OUTPUT
)
3689 for (p
= *ip
; p
; p
= p
->next
)
3690 mio_symbol_ref (&p
->sym
);
3705 if (peek_atom () == ATOM_RPAREN
)
3708 p
= gfc_get_interface ();
3709 p
->where
= gfc_current_locus
;
3710 pi
= mio_symbol_ref (&p
->sym
);
3726 /* Save/restore a nameless operator interface. */
3729 mio_interface (gfc_interface
**ip
)
3732 mio_interface_rest (ip
);
3736 /* Save/restore a named operator interface. */
3739 mio_symbol_interface (const char **name
, const char **module
,
3743 mio_pool_string (name
);
3744 mio_pool_string (module
);
3745 mio_interface_rest (ip
);
3750 mio_namespace_ref (gfc_namespace
**nsp
)
3755 p
= mio_pointer_ref (nsp
);
3757 if (p
->type
== P_UNKNOWN
)
3758 p
->type
= P_NAMESPACE
;
3760 if (iomode
== IO_INPUT
&& p
->integer
!= 0)
3762 ns
= (gfc_namespace
*) p
->u
.pointer
;
3765 ns
= gfc_get_namespace (NULL
, 0);
3766 associate_integer_pointer (p
, ns
);
3774 /* Save/restore the f2k_derived namespace of a derived-type symbol. */
3776 static gfc_namespace
* current_f2k_derived
;
3779 mio_typebound_proc (gfc_typebound_proc
** proc
)
3782 int overriding_flag
;
3784 if (iomode
== IO_INPUT
)
3786 *proc
= gfc_get_typebound_proc (NULL
);
3787 (*proc
)->where
= gfc_current_locus
;
3793 (*proc
)->access
= MIO_NAME (gfc_access
) ((*proc
)->access
, access_types
);
3795 /* IO the NON_OVERRIDABLE/DEFERRED combination. */
3796 gcc_assert (!((*proc
)->deferred
&& (*proc
)->non_overridable
));
3797 overriding_flag
= ((*proc
)->deferred
<< 1) | (*proc
)->non_overridable
;
3798 overriding_flag
= mio_name (overriding_flag
, binding_overriding
);
3799 (*proc
)->deferred
= ((overriding_flag
& 2) != 0);
3800 (*proc
)->non_overridable
= ((overriding_flag
& 1) != 0);
3801 gcc_assert (!((*proc
)->deferred
&& (*proc
)->non_overridable
));
3803 (*proc
)->nopass
= mio_name ((*proc
)->nopass
, binding_passing
);
3804 (*proc
)->is_generic
= mio_name ((*proc
)->is_generic
, binding_generic
);
3805 (*proc
)->ppc
= mio_name((*proc
)->ppc
, binding_ppc
);
3807 mio_pool_string (&((*proc
)->pass_arg
));
3809 flag
= (int) (*proc
)->pass_arg_num
;
3810 mio_integer (&flag
);
3811 (*proc
)->pass_arg_num
= (unsigned) flag
;
3813 if ((*proc
)->is_generic
)
3820 if (iomode
== IO_OUTPUT
)
3821 for (g
= (*proc
)->u
.generic
; g
; g
= g
->next
)
3823 iop
= (int) g
->is_operator
;
3825 mio_allocated_string (g
->specific_st
->name
);
3829 (*proc
)->u
.generic
= NULL
;
3830 while (peek_atom () != ATOM_RPAREN
)
3832 gfc_symtree
** sym_root
;
3834 g
= gfc_get_tbp_generic ();
3838 g
->is_operator
= (bool) iop
;
3840 require_atom (ATOM_STRING
);
3841 sym_root
= ¤t_f2k_derived
->tb_sym_root
;
3842 g
->specific_st
= gfc_get_tbp_symtree (sym_root
, atom_string
);
3845 g
->next
= (*proc
)->u
.generic
;
3846 (*proc
)->u
.generic
= g
;
3852 else if (!(*proc
)->ppc
)
3853 mio_symtree_ref (&(*proc
)->u
.specific
);
3858 /* Walker-callback function for this purpose. */
3860 mio_typebound_symtree (gfc_symtree
* st
)
3862 if (iomode
== IO_OUTPUT
&& !st
->n
.tb
)
3865 if (iomode
== IO_OUTPUT
)
3868 mio_allocated_string (st
->name
);
3870 /* For IO_INPUT, the above is done in mio_f2k_derived. */
3872 mio_typebound_proc (&st
->n
.tb
);
3876 /* IO a full symtree (in all depth). */
3878 mio_full_typebound_tree (gfc_symtree
** root
)
3882 if (iomode
== IO_OUTPUT
)
3883 gfc_traverse_symtree (*root
, &mio_typebound_symtree
);
3886 while (peek_atom () == ATOM_LPAREN
)
3892 require_atom (ATOM_STRING
);
3893 st
= gfc_get_tbp_symtree (root
, atom_string
);
3896 mio_typebound_symtree (st
);
3904 mio_finalizer (gfc_finalizer
**f
)
3906 if (iomode
== IO_OUTPUT
)
3909 gcc_assert ((*f
)->proc_tree
); /* Should already be resolved. */
3910 mio_symtree_ref (&(*f
)->proc_tree
);
3914 *f
= gfc_get_finalizer ();
3915 (*f
)->where
= gfc_current_locus
; /* Value should not matter. */
3918 mio_symtree_ref (&(*f
)->proc_tree
);
3919 (*f
)->proc_sym
= NULL
;
3924 mio_f2k_derived (gfc_namespace
*f2k
)
3926 current_f2k_derived
= f2k
;
3928 /* Handle the list of finalizer procedures. */
3930 if (iomode
== IO_OUTPUT
)
3933 for (f
= f2k
->finalizers
; f
; f
= f
->next
)
3938 f2k
->finalizers
= NULL
;
3939 while (peek_atom () != ATOM_RPAREN
)
3941 gfc_finalizer
*cur
= NULL
;
3942 mio_finalizer (&cur
);
3943 cur
->next
= f2k
->finalizers
;
3944 f2k
->finalizers
= cur
;
3949 /* Handle type-bound procedures. */
3950 mio_full_typebound_tree (&f2k
->tb_sym_root
);
3952 /* Type-bound user operators. */
3953 mio_full_typebound_tree (&f2k
->tb_uop_root
);
3955 /* Type-bound intrinsic operators. */
3957 if (iomode
== IO_OUTPUT
)
3960 for (op
= GFC_INTRINSIC_BEGIN
; op
!= GFC_INTRINSIC_END
; ++op
)
3962 gfc_intrinsic_op realop
;
3964 if (op
== INTRINSIC_USER
|| !f2k
->tb_op
[op
])
3968 realop
= (gfc_intrinsic_op
) op
;
3969 mio_intrinsic_op (&realop
);
3970 mio_typebound_proc (&f2k
->tb_op
[op
]);
3975 while (peek_atom () != ATOM_RPAREN
)
3977 gfc_intrinsic_op op
= GFC_INTRINSIC_BEGIN
; /* Silence GCC. */
3980 mio_intrinsic_op (&op
);
3981 mio_typebound_proc (&f2k
->tb_op
[op
]);
3988 mio_full_f2k_derived (gfc_symbol
*sym
)
3992 if (iomode
== IO_OUTPUT
)
3994 if (sym
->f2k_derived
)
3995 mio_f2k_derived (sym
->f2k_derived
);
3999 if (peek_atom () != ATOM_RPAREN
)
4001 sym
->f2k_derived
= gfc_get_namespace (NULL
, 0);
4002 mio_f2k_derived (sym
->f2k_derived
);
4005 gcc_assert (!sym
->f2k_derived
);
4011 static const mstring omp_declare_simd_clauses
[] =
4013 minit ("INBRANCH", 0),
4014 minit ("NOTINBRANCH", 1),
4015 minit ("SIMDLEN", 2),
4016 minit ("UNIFORM", 3),
4017 minit ("LINEAR", 4),
4018 minit ("ALIGNED", 5),
4022 /* Handle !$omp declare simd. */
4025 mio_omp_declare_simd (gfc_namespace
*ns
, gfc_omp_declare_simd
**odsp
)
4027 if (iomode
== IO_OUTPUT
)
4032 else if (peek_atom () != ATOM_LPAREN
)
4035 gfc_omp_declare_simd
*ods
= *odsp
;
4038 if (iomode
== IO_OUTPUT
)
4040 write_atom (ATOM_NAME
, "OMP_DECLARE_SIMD");
4043 gfc_omp_namelist
*n
;
4045 if (ods
->clauses
->inbranch
)
4046 mio_name (0, omp_declare_simd_clauses
);
4047 if (ods
->clauses
->notinbranch
)
4048 mio_name (1, omp_declare_simd_clauses
);
4049 if (ods
->clauses
->simdlen_expr
)
4051 mio_name (2, omp_declare_simd_clauses
);
4052 mio_expr (&ods
->clauses
->simdlen_expr
);
4054 for (n
= ods
->clauses
->lists
[OMP_LIST_UNIFORM
]; n
; n
= n
->next
)
4056 mio_name (3, omp_declare_simd_clauses
);
4057 mio_symbol_ref (&n
->sym
);
4059 for (n
= ods
->clauses
->lists
[OMP_LIST_LINEAR
]; n
; n
= n
->next
)
4061 mio_name (4, omp_declare_simd_clauses
);
4062 mio_symbol_ref (&n
->sym
);
4063 mio_expr (&n
->expr
);
4065 for (n
= ods
->clauses
->lists
[OMP_LIST_ALIGNED
]; n
; n
= n
->next
)
4067 mio_name (5, omp_declare_simd_clauses
);
4068 mio_symbol_ref (&n
->sym
);
4069 mio_expr (&n
->expr
);
4075 gfc_omp_namelist
**ptrs
[3] = { NULL
, NULL
, NULL
};
4077 require_atom (ATOM_NAME
);
4078 *odsp
= ods
= gfc_get_omp_declare_simd ();
4079 ods
->where
= gfc_current_locus
;
4080 ods
->proc_name
= ns
->proc_name
;
4081 if (peek_atom () == ATOM_NAME
)
4083 ods
->clauses
= gfc_get_omp_clauses ();
4084 ptrs
[0] = &ods
->clauses
->lists
[OMP_LIST_UNIFORM
];
4085 ptrs
[1] = &ods
->clauses
->lists
[OMP_LIST_LINEAR
];
4086 ptrs
[2] = &ods
->clauses
->lists
[OMP_LIST_ALIGNED
];
4088 while (peek_atom () == ATOM_NAME
)
4090 gfc_omp_namelist
*n
;
4091 int t
= mio_name (0, omp_declare_simd_clauses
);
4095 case 0: ods
->clauses
->inbranch
= true; break;
4096 case 1: ods
->clauses
->notinbranch
= true; break;
4097 case 2: mio_expr (&ods
->clauses
->simdlen_expr
); break;
4101 *ptrs
[t
- 3] = n
= gfc_get_omp_namelist ();
4102 ptrs
[t
- 3] = &n
->next
;
4103 mio_symbol_ref (&n
->sym
);
4105 mio_expr (&n
->expr
);
4111 mio_omp_declare_simd (ns
, &ods
->next
);
4117 static const mstring omp_declare_reduction_stmt
[] =
4119 minit ("ASSIGN", 0),
4126 mio_omp_udr_expr (gfc_omp_udr
*udr
, gfc_symbol
**sym1
, gfc_symbol
**sym2
,
4127 gfc_namespace
*ns
, bool is_initializer
)
4129 if (iomode
== IO_OUTPUT
)
4131 if ((*sym1
)->module
== NULL
)
4133 (*sym1
)->module
= module_name
;
4134 (*sym2
)->module
= module_name
;
4136 mio_symbol_ref (sym1
);
4137 mio_symbol_ref (sym2
);
4138 if (ns
->code
->op
== EXEC_ASSIGN
)
4140 mio_name (0, omp_declare_reduction_stmt
);
4141 mio_expr (&ns
->code
->expr1
);
4142 mio_expr (&ns
->code
->expr2
);
4147 mio_name (1, omp_declare_reduction_stmt
);
4148 mio_symtree_ref (&ns
->code
->symtree
);
4149 mio_actual_arglist (&ns
->code
->ext
.actual
);
4151 flag
= ns
->code
->resolved_isym
!= NULL
;
4152 mio_integer (&flag
);
4154 write_atom (ATOM_STRING
, ns
->code
->resolved_isym
->name
);
4156 mio_symbol_ref (&ns
->code
->resolved_sym
);
4161 pointer_info
*p1
= mio_symbol_ref (sym1
);
4162 pointer_info
*p2
= mio_symbol_ref (sym2
);
4164 gcc_assert (p1
->u
.rsym
.ns
== p2
->u
.rsym
.ns
);
4165 gcc_assert (p1
->u
.rsym
.sym
== NULL
);
4166 /* Add hidden symbols to the symtree. */
4167 pointer_info
*q
= get_integer (p1
->u
.rsym
.ns
);
4168 q
->u
.pointer
= (void *) ns
;
4169 sym
= gfc_new_symbol (is_initializer
? "omp_priv" : "omp_out", ns
);
4171 sym
->module
= gfc_get_string ("%s", p1
->u
.rsym
.module
);
4172 associate_integer_pointer (p1
, sym
);
4173 sym
->attr
.omp_udr_artificial_var
= 1;
4174 gcc_assert (p2
->u
.rsym
.sym
== NULL
);
4175 sym
= gfc_new_symbol (is_initializer
? "omp_orig" : "omp_in", ns
);
4177 sym
->module
= gfc_get_string ("%s", p2
->u
.rsym
.module
);
4178 associate_integer_pointer (p2
, sym
);
4179 sym
->attr
.omp_udr_artificial_var
= 1;
4180 if (mio_name (0, omp_declare_reduction_stmt
) == 0)
4182 ns
->code
= gfc_get_code (EXEC_ASSIGN
);
4183 mio_expr (&ns
->code
->expr1
);
4184 mio_expr (&ns
->code
->expr2
);
4189 ns
->code
= gfc_get_code (EXEC_CALL
);
4190 mio_symtree_ref (&ns
->code
->symtree
);
4191 mio_actual_arglist (&ns
->code
->ext
.actual
);
4193 mio_integer (&flag
);
4196 require_atom (ATOM_STRING
);
4197 ns
->code
->resolved_isym
= gfc_find_subroutine (atom_string
);
4201 mio_symbol_ref (&ns
->code
->resolved_sym
);
4203 ns
->code
->loc
= gfc_current_locus
;
4209 /* Unlike most other routines, the address of the symbol node is already
4210 fixed on input and the name/module has already been filled in.
4211 If you update the symbol format here, don't forget to update read_module
4212 as well (look for "seek to the symbol's component list"). */
4215 mio_symbol (gfc_symbol
*sym
)
4217 int intmod
= INTMOD_NONE
;
4221 mio_symbol_attribute (&sym
->attr
);
4223 /* Note that components are always saved, even if they are supposed
4224 to be private. Component access is checked during searching. */
4225 mio_component_list (&sym
->components
, sym
->attr
.vtype
);
4226 if (sym
->components
!= NULL
)
4227 sym
->component_access
4228 = MIO_NAME (gfc_access
) (sym
->component_access
, access_types
);
4230 mio_typespec (&sym
->ts
);
4231 if (sym
->ts
.type
== BT_CLASS
)
4232 sym
->attr
.class_ok
= 1;
4234 if (iomode
== IO_OUTPUT
)
4235 mio_namespace_ref (&sym
->formal_ns
);
4238 mio_namespace_ref (&sym
->formal_ns
);
4240 sym
->formal_ns
->proc_name
= sym
;
4243 /* Save/restore common block links. */
4244 mio_symbol_ref (&sym
->common_next
);
4246 mio_formal_arglist (&sym
->formal
);
4248 if (sym
->attr
.flavor
== FL_PARAMETER
)
4249 mio_expr (&sym
->value
);
4251 mio_array_spec (&sym
->as
);
4253 mio_symbol_ref (&sym
->result
);
4255 if (sym
->attr
.cray_pointee
)
4256 mio_symbol_ref (&sym
->cp_pointer
);
4258 /* Load/save the f2k_derived namespace of a derived-type symbol. */
4259 mio_full_f2k_derived (sym
);
4263 /* Add the fields that say whether this is from an intrinsic module,
4264 and if so, what symbol it is within the module. */
4265 /* mio_integer (&(sym->from_intmod)); */
4266 if (iomode
== IO_OUTPUT
)
4268 intmod
= sym
->from_intmod
;
4269 mio_integer (&intmod
);
4273 mio_integer (&intmod
);
4275 sym
->from_intmod
= current_intmod
;
4277 sym
->from_intmod
= (intmod_id
) intmod
;
4280 mio_integer (&(sym
->intmod_sym_id
));
4282 if (gfc_fl_struct (sym
->attr
.flavor
))
4283 mio_integer (&(sym
->hash_value
));
4286 && sym
->formal_ns
->proc_name
== sym
4287 && sym
->formal_ns
->entries
== NULL
)
4288 mio_omp_declare_simd (sym
->formal_ns
, &sym
->formal_ns
->omp_declare_simd
);
4294 /************************* Top level subroutines *************************/
4296 /* A recursive function to look for a specific symbol by name and by
4297 module. Whilst several symtrees might point to one symbol, its
4298 is sufficient for the purposes here than one exist. Note that
4299 generic interfaces are distinguished as are symbols that have been
4300 renamed in another module. */
4301 static gfc_symtree
*
4302 find_symbol (gfc_symtree
*st
, const char *name
,
4303 const char *module
, int generic
)
4306 gfc_symtree
*retval
, *s
;
4308 if (st
== NULL
|| st
->n
.sym
== NULL
)
4311 c
= strcmp (name
, st
->n
.sym
->name
);
4312 if (c
== 0 && st
->n
.sym
->module
4313 && strcmp (module
, st
->n
.sym
->module
) == 0
4314 && !check_unique_name (st
->name
))
4316 s
= gfc_find_symtree (gfc_current_ns
->sym_root
, name
);
4318 /* Detect symbols that are renamed by use association in another
4319 module by the absence of a symtree and null attr.use_rename,
4320 since the latter is not transmitted in the module file. */
4321 if (((!generic
&& !st
->n
.sym
->attr
.generic
)
4322 || (generic
&& st
->n
.sym
->attr
.generic
))
4323 && !(s
== NULL
&& !st
->n
.sym
->attr
.use_rename
))
4327 retval
= find_symbol (st
->left
, name
, module
, generic
);
4330 retval
= find_symbol (st
->right
, name
, module
, generic
);
4336 /* Skip a list between balanced left and right parens.
4337 By setting NEST_LEVEL one assumes that a number of NEST_LEVEL opening parens
4338 have been already parsed by hand, and the remaining of the content is to be
4339 skipped here. The default value is 0 (balanced parens). */
4342 skip_list (int nest_level
= 0)
4349 switch (parse_atom ())
4372 /* Load operator interfaces from the module. Interfaces are unusual
4373 in that they attach themselves to existing symbols. */
4376 load_operator_interfaces (void)
4379 char name
[GFC_MAX_SYMBOL_LEN
+ 1], module
[GFC_MAX_SYMBOL_LEN
+ 1];
4381 pointer_info
*pi
= NULL
;
4386 while (peek_atom () != ATOM_RPAREN
)
4390 mio_internal_string (name
);
4391 mio_internal_string (module
);
4393 n
= number_use_names (name
, true);
4396 for (i
= 1; i
<= n
; i
++)
4398 /* Decide if we need to load this one or not. */
4399 p
= find_use_name_n (name
, &i
, true);
4403 while (parse_atom () != ATOM_RPAREN
);
4409 uop
= gfc_get_uop (p
);
4410 pi
= mio_interface_rest (&uop
->op
);
4414 if (gfc_find_uop (p
, NULL
))
4416 uop
= gfc_get_uop (p
);
4417 uop
->op
= gfc_get_interface ();
4418 uop
->op
->where
= gfc_current_locus
;
4419 add_fixup (pi
->integer
, &uop
->op
->sym
);
4428 /* Load interfaces from the module. Interfaces are unusual in that
4429 they attach themselves to existing symbols. */
4432 load_generic_interfaces (void)
4435 char name
[GFC_MAX_SYMBOL_LEN
+ 1], module
[GFC_MAX_SYMBOL_LEN
+ 1];
4437 gfc_interface
*generic
= NULL
, *gen
= NULL
;
4439 bool ambiguous_set
= false;
4443 while (peek_atom () != ATOM_RPAREN
)
4447 mio_internal_string (name
);
4448 mio_internal_string (module
);
4450 n
= number_use_names (name
, false);
4451 renamed
= n
? 1 : 0;
4454 for (i
= 1; i
<= n
; i
++)
4457 /* Decide if we need to load this one or not. */
4458 p
= find_use_name_n (name
, &i
, false);
4460 st
= find_symbol (gfc_current_ns
->sym_root
,
4461 name
, module_name
, 1);
4463 if (!p
|| gfc_find_symbol (p
, NULL
, 0, &sym
))
4465 /* Skip the specific names for these cases. */
4466 while (i
== 1 && parse_atom () != ATOM_RPAREN
);
4471 /* If the symbol exists already and is being USEd without being
4472 in an ONLY clause, do not load a new symtree(11.3.2). */
4473 if (!only_flag
&& st
)
4481 if (strcmp (st
->name
, p
) != 0)
4483 st
= gfc_new_symtree (&gfc_current_ns
->sym_root
, p
);
4489 /* Since we haven't found a valid generic interface, we had
4493 gfc_get_symbol (p
, NULL
, &sym
);
4494 sym
->name
= gfc_get_string ("%s", name
);
4495 sym
->module
= module_name
;
4496 sym
->attr
.flavor
= FL_PROCEDURE
;
4497 sym
->attr
.generic
= 1;
4498 sym
->attr
.use_assoc
= 1;
4503 /* Unless sym is a generic interface, this reference
4506 st
= gfc_find_symtree (gfc_current_ns
->sym_root
, p
);
4510 if (st
&& !sym
->attr
.generic
4513 && strcmp (module
, sym
->module
))
4515 ambiguous_set
= true;
4520 sym
->attr
.use_only
= only_flag
;
4521 sym
->attr
.use_rename
= renamed
;
4525 mio_interface_rest (&sym
->generic
);
4526 generic
= sym
->generic
;
4528 else if (!sym
->generic
)
4530 sym
->generic
= generic
;
4531 sym
->attr
.generic_copy
= 1;
4534 /* If a procedure that is not generic has generic interfaces
4535 that include itself, it is generic! We need to take care
4536 to retain symbols ambiguous that were already so. */
4537 if (sym
->attr
.use_assoc
4538 && !sym
->attr
.generic
4539 && sym
->attr
.flavor
== FL_PROCEDURE
)
4541 for (gen
= generic
; gen
; gen
= gen
->next
)
4543 if (gen
->sym
== sym
)
4545 sym
->attr
.generic
= 1;
4560 /* Load common blocks. */
4565 char name
[GFC_MAX_SYMBOL_LEN
+ 1];
4570 while (peek_atom () != ATOM_RPAREN
)
4575 mio_internal_string (name
);
4577 p
= gfc_get_common (name
, 1);
4579 mio_symbol_ref (&p
->head
);
4580 mio_integer (&flags
);
4584 p
->threadprivate
= 1;
4587 /* Get whether this was a bind(c) common or not. */
4588 mio_integer (&p
->is_bind_c
);
4589 /* Get the binding label. */
4590 label
= read_string ();
4592 p
->binding_label
= IDENTIFIER_POINTER (get_identifier (label
));
4602 /* Load equivalences. The flag in_load_equiv informs mio_expr_ref of this
4603 so that unused variables are not loaded and so that the expression can
4609 gfc_equiv
*head
, *tail
, *end
, *eq
, *equiv
;
4613 in_load_equiv
= true;
4615 end
= gfc_current_ns
->equiv
;
4616 while (end
!= NULL
&& end
->next
!= NULL
)
4619 while (peek_atom () != ATOM_RPAREN
) {
4623 while(peek_atom () != ATOM_RPAREN
)
4626 head
= tail
= gfc_get_equiv ();
4629 tail
->eq
= gfc_get_equiv ();
4633 mio_pool_string (&tail
->module
);
4634 mio_expr (&tail
->expr
);
4637 /* Check for duplicate equivalences being loaded from different modules */
4639 for (equiv
= gfc_current_ns
->equiv
; equiv
; equiv
= equiv
->next
)
4641 if (equiv
->module
&& head
->module
4642 && strcmp (equiv
->module
, head
->module
) == 0)
4651 for (eq
= head
; eq
; eq
= head
)
4654 gfc_free_expr (eq
->expr
);
4660 gfc_current_ns
->equiv
= head
;
4671 in_load_equiv
= false;
4675 /* This function loads OpenMP user defined reductions. */
4677 load_omp_udrs (void)
4680 while (peek_atom () != ATOM_RPAREN
)
4682 const char *name
= NULL
, *newname
;
4686 gfc_omp_reduction_op rop
= OMP_REDUCTION_USER
;
4689 mio_pool_string (&name
);
4692 if (strncmp (name
, "operator ", sizeof ("operator ") - 1) == 0)
4694 const char *p
= name
+ sizeof ("operator ") - 1;
4695 if (strcmp (p
, "+") == 0)
4696 rop
= OMP_REDUCTION_PLUS
;
4697 else if (strcmp (p
, "*") == 0)
4698 rop
= OMP_REDUCTION_TIMES
;
4699 else if (strcmp (p
, "-") == 0)
4700 rop
= OMP_REDUCTION_MINUS
;
4701 else if (strcmp (p
, ".and.") == 0)
4702 rop
= OMP_REDUCTION_AND
;
4703 else if (strcmp (p
, ".or.") == 0)
4704 rop
= OMP_REDUCTION_OR
;
4705 else if (strcmp (p
, ".eqv.") == 0)
4706 rop
= OMP_REDUCTION_EQV
;
4707 else if (strcmp (p
, ".neqv.") == 0)
4708 rop
= OMP_REDUCTION_NEQV
;
4711 if (rop
== OMP_REDUCTION_USER
&& name
[0] == '.')
4713 size_t len
= strlen (name
+ 1);
4714 altname
= XALLOCAVEC (char, len
);
4715 gcc_assert (name
[len
] == '.');
4716 memcpy (altname
, name
+ 1, len
- 1);
4717 altname
[len
- 1] = '\0';
4720 if (rop
== OMP_REDUCTION_USER
)
4721 newname
= find_use_name (altname
? altname
: name
, !!altname
);
4722 else if (only_flag
&& find_use_operator ((gfc_intrinsic_op
) rop
) == NULL
)
4724 if (newname
== NULL
)
4729 if (altname
&& newname
!= altname
)
4731 size_t len
= strlen (newname
);
4732 altname
= XALLOCAVEC (char, len
+ 3);
4734 memcpy (altname
+ 1, newname
, len
);
4735 altname
[len
+ 1] = '.';
4736 altname
[len
+ 2] = '\0';
4737 name
= gfc_get_string ("%s", altname
);
4739 st
= gfc_find_symtree (gfc_current_ns
->omp_udr_root
, name
);
4740 gfc_omp_udr
*udr
= gfc_omp_udr_find (st
, &ts
);
4743 require_atom (ATOM_INTEGER
);
4744 pointer_info
*p
= get_integer (atom_int
);
4745 if (strcmp (p
->u
.rsym
.module
, udr
->omp_out
->module
))
4747 gfc_error ("Ambiguous !$OMP DECLARE REDUCTION from "
4749 p
->u
.rsym
.module
, &gfc_current_locus
);
4750 gfc_error ("Previous !$OMP DECLARE REDUCTION from module "
4752 udr
->omp_out
->module
, &udr
->where
);
4757 udr
= gfc_get_omp_udr ();
4761 udr
->where
= gfc_current_locus
;
4762 udr
->combiner_ns
= gfc_get_namespace (gfc_current_ns
, 1);
4763 udr
->combiner_ns
->proc_name
= gfc_current_ns
->proc_name
;
4764 mio_omp_udr_expr (udr
, &udr
->omp_out
, &udr
->omp_in
, udr
->combiner_ns
,
4766 if (peek_atom () != ATOM_RPAREN
)
4768 udr
->initializer_ns
= gfc_get_namespace (gfc_current_ns
, 1);
4769 udr
->initializer_ns
->proc_name
= gfc_current_ns
->proc_name
;
4770 mio_omp_udr_expr (udr
, &udr
->omp_priv
, &udr
->omp_orig
,
4771 udr
->initializer_ns
, true);
4775 udr
->next
= st
->n
.omp_udr
;
4776 st
->n
.omp_udr
= udr
;
4780 st
= gfc_new_symtree (&gfc_current_ns
->omp_udr_root
, name
);
4781 st
->n
.omp_udr
= udr
;
4789 /* Recursive function to traverse the pointer_info tree and load a
4790 needed symbol. We return nonzero if we load a symbol and stop the
4791 traversal, because the act of loading can alter the tree. */
4794 load_needed (pointer_info
*p
)
4805 rv
|= load_needed (p
->left
);
4806 rv
|= load_needed (p
->right
);
4808 if (p
->type
!= P_SYMBOL
|| p
->u
.rsym
.state
!= NEEDED
)
4811 p
->u
.rsym
.state
= USED
;
4813 set_module_locus (&p
->u
.rsym
.where
);
4815 sym
= p
->u
.rsym
.sym
;
4818 q
= get_integer (p
->u
.rsym
.ns
);
4820 ns
= (gfc_namespace
*) q
->u
.pointer
;
4823 /* Create an interface namespace if necessary. These are
4824 the namespaces that hold the formal parameters of module
4827 ns
= gfc_get_namespace (NULL
, 0);
4828 associate_integer_pointer (q
, ns
);
4831 /* Use the module sym as 'proc_name' so that gfc_get_symbol_decl
4832 doesn't go pear-shaped if the symbol is used. */
4834 gfc_find_symbol (p
->u
.rsym
.module
, gfc_current_ns
,
4837 sym
= gfc_new_symbol (p
->u
.rsym
.true_name
, ns
);
4838 sym
->name
= gfc_dt_lower_string (p
->u
.rsym
.true_name
);
4839 sym
->module
= gfc_get_string ("%s", p
->u
.rsym
.module
);
4840 if (p
->u
.rsym
.binding_label
)
4841 sym
->binding_label
= IDENTIFIER_POINTER (get_identifier
4842 (p
->u
.rsym
.binding_label
));
4844 associate_integer_pointer (p
, sym
);
4848 sym
->attr
.use_assoc
= 1;
4850 /* Unliked derived types, a STRUCTURE may share names with other symbols.
4851 We greedily converted the the symbol name to lowercase before we knew its
4852 type, so now we must fix it. */
4853 if (sym
->attr
.flavor
== FL_STRUCT
)
4854 sym
->name
= gfc_dt_upper_string (sym
->name
);
4856 /* Mark as only or rename for later diagnosis for explicitly imported
4857 but not used warnings; don't mark internal symbols such as __vtab,
4858 __def_init etc. Only mark them if they have been explicitly loaded. */
4860 if (only_flag
&& sym
->name
[0] != '_' && sym
->name
[1] != '_')
4864 /* Search the use/rename list for the variable; if the variable is
4866 for (u
= gfc_rename_list
; u
; u
= u
->next
)
4868 if (strcmp (u
->use_name
, sym
->name
) == 0)
4870 sym
->attr
.use_only
= 1;
4876 if (p
->u
.rsym
.renamed
)
4877 sym
->attr
.use_rename
= 1;
4883 /* Recursive function for cleaning up things after a module has been read. */
4886 read_cleanup (pointer_info
*p
)
4894 read_cleanup (p
->left
);
4895 read_cleanup (p
->right
);
4897 if (p
->type
== P_SYMBOL
&& p
->u
.rsym
.state
== USED
&& !p
->u
.rsym
.referenced
)
4900 /* Add hidden symbols to the symtree. */
4901 q
= get_integer (p
->u
.rsym
.ns
);
4902 ns
= (gfc_namespace
*) q
->u
.pointer
;
4904 if (!p
->u
.rsym
.sym
->attr
.vtype
4905 && !p
->u
.rsym
.sym
->attr
.vtab
)
4906 st
= gfc_get_unique_symtree (ns
);
4909 /* There is no reason to use 'unique_symtrees' for vtabs or
4910 vtypes - their name is fine for a symtree and reduces the
4911 namespace pollution. */
4912 st
= gfc_find_symtree (ns
->sym_root
, p
->u
.rsym
.sym
->name
);
4914 st
= gfc_new_symtree (&ns
->sym_root
, p
->u
.rsym
.sym
->name
);
4917 st
->n
.sym
= p
->u
.rsym
.sym
;
4920 /* Fixup any symtree references. */
4921 p
->u
.rsym
.symtree
= st
;
4922 resolve_fixups (p
->u
.rsym
.stfixup
, st
);
4923 p
->u
.rsym
.stfixup
= NULL
;
4926 /* Free unused symbols. */
4927 if (p
->type
== P_SYMBOL
&& p
->u
.rsym
.state
== UNUSED
)
4928 gfc_free_symbol (p
->u
.rsym
.sym
);
4932 /* It is not quite enough to check for ambiguity in the symbols by
4933 the loaded symbol and the new symbol not being identical. */
4935 check_for_ambiguous (gfc_symtree
*st
, pointer_info
*info
)
4939 symbol_attribute attr
;
4942 if (gfc_current_ns
->proc_name
&& st
->name
== gfc_current_ns
->proc_name
->name
)
4944 gfc_error ("%qs of module %qs, imported at %C, is also the name of the "
4945 "current program unit", st
->name
, module_name
);
4950 rsym
= info
->u
.rsym
.sym
;
4954 if (st_sym
->attr
.vtab
|| st_sym
->attr
.vtype
)
4957 /* If the existing symbol is generic from a different module and
4958 the new symbol is generic there can be no ambiguity. */
4959 if (st_sym
->attr
.generic
4961 && st_sym
->module
!= module_name
)
4963 /* The new symbol's attributes have not yet been read. Since
4964 we need attr.generic, read it directly. */
4965 get_module_locus (&locus
);
4966 set_module_locus (&info
->u
.rsym
.where
);
4969 mio_symbol_attribute (&attr
);
4970 set_module_locus (&locus
);
4979 /* Read a module file. */
4984 module_locus operator_interfaces
, user_operators
, omp_udrs
;
4986 char name
[GFC_MAX_SYMBOL_LEN
+ 1];
4988 /* Workaround -Wmaybe-uninitialized false positive during
4989 profiledbootstrap by initializing them. */
4990 int ambiguous
= 0, j
, nuse
, symbol
= 0;
4991 pointer_info
*info
, *q
;
4992 gfc_use_rename
*u
= NULL
;
4996 get_module_locus (&operator_interfaces
); /* Skip these for now. */
4999 get_module_locus (&user_operators
);
5003 /* Skip commons and equivalences for now. */
5007 /* Skip OpenMP UDRs. */
5008 get_module_locus (&omp_udrs
);
5013 /* Create the fixup nodes for all the symbols. */
5015 while (peek_atom () != ATOM_RPAREN
)
5018 require_atom (ATOM_INTEGER
);
5019 info
= get_integer (atom_int
);
5021 info
->type
= P_SYMBOL
;
5022 info
->u
.rsym
.state
= UNUSED
;
5024 info
->u
.rsym
.true_name
= read_string ();
5025 info
->u
.rsym
.module
= read_string ();
5026 bind_label
= read_string ();
5027 if (strlen (bind_label
))
5028 info
->u
.rsym
.binding_label
= bind_label
;
5030 XDELETEVEC (bind_label
);
5032 require_atom (ATOM_INTEGER
);
5033 info
->u
.rsym
.ns
= atom_int
;
5035 get_module_locus (&info
->u
.rsym
.where
);
5037 /* See if the symbol has already been loaded by a previous module.
5038 If so, we reference the existing symbol and prevent it from
5039 being loaded again. This should not happen if the symbol being
5040 read is an index for an assumed shape dummy array (ns != 1). */
5042 sym
= find_true_name (info
->u
.rsym
.true_name
, info
->u
.rsym
.module
);
5045 || (sym
->attr
.flavor
== FL_VARIABLE
&& info
->u
.rsym
.ns
!=1))
5051 info
->u
.rsym
.state
= USED
;
5052 info
->u
.rsym
.sym
= sym
;
5053 /* The current symbol has already been loaded, so we can avoid loading
5054 it again. However, if it is a derived type, some of its components
5055 can be used in expressions in the module. To avoid the module loading
5056 failing, we need to associate the module's component pointer indexes
5057 with the existing symbol's component pointers. */
5058 if (gfc_fl_struct (sym
->attr
.flavor
))
5062 /* First seek to the symbol's component list. */
5063 mio_lparen (); /* symbol opening. */
5064 skip_list (); /* skip symbol attribute. */
5066 mio_lparen (); /* component list opening. */
5067 for (c
= sym
->components
; c
; c
= c
->next
)
5070 const char *comp_name
;
5073 mio_lparen (); /* component opening. */
5075 p
= get_integer (n
);
5076 if (p
->u
.pointer
== NULL
)
5077 associate_integer_pointer (p
, c
);
5078 mio_pool_string (&comp_name
);
5079 gcc_assert (comp_name
== c
->name
);
5080 skip_list (1); /* component end. */
5082 mio_rparen (); /* component list closing. */
5084 skip_list (1); /* symbol end. */
5089 /* Some symbols do not have a namespace (eg. formal arguments),
5090 so the automatic "unique symtree" mechanism must be suppressed
5091 by marking them as referenced. */
5092 q
= get_integer (info
->u
.rsym
.ns
);
5093 if (q
->u
.pointer
== NULL
)
5095 info
->u
.rsym
.referenced
= 1;
5102 /* Parse the symtree lists. This lets us mark which symbols need to
5103 be loaded. Renaming is also done at this point by replacing the
5108 while (peek_atom () != ATOM_RPAREN
)
5110 mio_internal_string (name
);
5111 mio_integer (&ambiguous
);
5112 mio_integer (&symbol
);
5114 info
= get_integer (symbol
);
5116 /* See how many use names there are. If none, go through the start
5117 of the loop at least once. */
5118 nuse
= number_use_names (name
, false);
5119 info
->u
.rsym
.renamed
= nuse
? 1 : 0;
5124 for (j
= 1; j
<= nuse
; j
++)
5126 /* Get the jth local name for this symbol. */
5127 p
= find_use_name_n (name
, &j
, false);
5129 if (p
== NULL
&& strcmp (name
, module_name
) == 0)
5132 /* Exception: Always import vtabs & vtypes. */
5133 if (p
== NULL
&& name
[0] == '_'
5134 && (strncmp (name
, "__vtab_", 5) == 0
5135 || strncmp (name
, "__vtype_", 6) == 0))
5138 /* Skip symtree nodes not in an ONLY clause, unless there
5139 is an existing symtree loaded from another USE statement. */
5142 st
= gfc_find_symtree (gfc_current_ns
->sym_root
, name
);
5144 && strcmp (st
->n
.sym
->name
, info
->u
.rsym
.true_name
) == 0
5145 && st
->n
.sym
->module
!= NULL
5146 && strcmp (st
->n
.sym
->module
, info
->u
.rsym
.module
) == 0)
5148 info
->u
.rsym
.symtree
= st
;
5149 info
->u
.rsym
.sym
= st
->n
.sym
;
5154 /* If a symbol of the same name and module exists already,
5155 this symbol, which is not in an ONLY clause, must not be
5156 added to the namespace(11.3.2). Note that find_symbol
5157 only returns the first occurrence that it finds. */
5158 if (!only_flag
&& !info
->u
.rsym
.renamed
5159 && strcmp (name
, module_name
) != 0
5160 && find_symbol (gfc_current_ns
->sym_root
, name
,
5164 st
= gfc_find_symtree (gfc_current_ns
->sym_root
, p
);
5167 && !(st
->n
.sym
&& st
->n
.sym
->attr
.used_in_submodule
))
5169 /* Check for ambiguous symbols. */
5170 if (check_for_ambiguous (st
, info
))
5173 info
->u
.rsym
.symtree
= st
;
5179 /* This symbol is host associated from a module in a
5180 submodule. Hide it with a unique symtree. */
5181 gfc_symtree
*s
= gfc_get_unique_symtree (gfc_current_ns
);
5182 s
->n
.sym
= st
->n
.sym
;
5187 /* Create a symtree node in the current namespace for this
5189 st
= check_unique_name (p
)
5190 ? gfc_get_unique_symtree (gfc_current_ns
)
5191 : gfc_new_symtree (&gfc_current_ns
->sym_root
, p
);
5192 st
->ambiguous
= ambiguous
;
5195 sym
= info
->u
.rsym
.sym
;
5197 /* Create a symbol node if it doesn't already exist. */
5200 info
->u
.rsym
.sym
= gfc_new_symbol (info
->u
.rsym
.true_name
,
5202 info
->u
.rsym
.sym
->name
= gfc_dt_lower_string (info
->u
.rsym
.true_name
);
5203 sym
= info
->u
.rsym
.sym
;
5204 sym
->module
= gfc_get_string ("%s", info
->u
.rsym
.module
);
5206 if (info
->u
.rsym
.binding_label
)
5208 tree id
= get_identifier (info
->u
.rsym
.binding_label
);
5209 sym
->binding_label
= IDENTIFIER_POINTER (id
);
5216 if (strcmp (name
, p
) != 0)
5217 sym
->attr
.use_rename
= 1;
5220 || (strncmp (name
, "__vtab_", 5) != 0
5221 && strncmp (name
, "__vtype_", 6) != 0))
5222 sym
->attr
.use_only
= only_flag
;
5224 /* Store the symtree pointing to this symbol. */
5225 info
->u
.rsym
.symtree
= st
;
5227 if (info
->u
.rsym
.state
== UNUSED
)
5228 info
->u
.rsym
.state
= NEEDED
;
5229 info
->u
.rsym
.referenced
= 1;
5236 /* Load intrinsic operator interfaces. */
5237 set_module_locus (&operator_interfaces
);
5240 for (i
= GFC_INTRINSIC_BEGIN
; i
!= GFC_INTRINSIC_END
; i
++)
5242 if (i
== INTRINSIC_USER
)
5247 u
= find_use_operator ((gfc_intrinsic_op
) i
);
5258 mio_interface (&gfc_current_ns
->op
[i
]);
5259 if (u
&& !gfc_current_ns
->op
[i
])
5265 /* Load generic and user operator interfaces. These must follow the
5266 loading of symtree because otherwise symbols can be marked as
5269 set_module_locus (&user_operators
);
5271 load_operator_interfaces ();
5272 load_generic_interfaces ();
5277 /* Load OpenMP user defined reductions. */
5278 set_module_locus (&omp_udrs
);
5281 /* At this point, we read those symbols that are needed but haven't
5282 been loaded yet. If one symbol requires another, the other gets
5283 marked as NEEDED if its previous state was UNUSED. */
5285 while (load_needed (pi_root
));
5287 /* Make sure all elements of the rename-list were found in the module. */
5289 for (u
= gfc_rename_list
; u
; u
= u
->next
)
5294 if (u
->op
== INTRINSIC_NONE
)
5296 gfc_error ("Symbol %qs referenced at %L not found in module %qs",
5297 u
->use_name
, &u
->where
, module_name
);
5301 if (u
->op
== INTRINSIC_USER
)
5303 gfc_error ("User operator %qs referenced at %L not found "
5304 "in module %qs", u
->use_name
, &u
->where
, module_name
);
5308 gfc_error ("Intrinsic operator %qs referenced at %L not found "
5309 "in module %qs", gfc_op2string (u
->op
), &u
->where
,
5313 /* Clean up symbol nodes that were never loaded, create references
5314 to hidden symbols. */
5316 read_cleanup (pi_root
);
5320 /* Given an access type that is specific to an entity and the default
5321 access, return nonzero if the entity is publicly accessible. If the
5322 element is declared as PUBLIC, then it is public; if declared
5323 PRIVATE, then private, and otherwise it is public unless the default
5324 access in this context has been declared PRIVATE. */
5326 static bool dump_smod
= false;
5329 check_access (gfc_access specific_access
, gfc_access default_access
)
5334 if (specific_access
== ACCESS_PUBLIC
)
5336 if (specific_access
== ACCESS_PRIVATE
)
5339 if (flag_module_private
)
5340 return default_access
== ACCESS_PUBLIC
;
5342 return default_access
!= ACCESS_PRIVATE
;
5347 gfc_check_symbol_access (gfc_symbol
*sym
)
5349 if (sym
->attr
.vtab
|| sym
->attr
.vtype
)
5352 return check_access (sym
->attr
.access
, sym
->ns
->default_access
);
5356 /* A structure to remember which commons we've already written. */
5358 struct written_common
5360 BBT_HEADER(written_common
);
5361 const char *name
, *label
;
5364 static struct written_common
*written_commons
= NULL
;
5366 /* Comparison function used for balancing the binary tree. */
5369 compare_written_commons (void *a1
, void *b1
)
5371 const char *aname
= ((struct written_common
*) a1
)->name
;
5372 const char *alabel
= ((struct written_common
*) a1
)->label
;
5373 const char *bname
= ((struct written_common
*) b1
)->name
;
5374 const char *blabel
= ((struct written_common
*) b1
)->label
;
5375 int c
= strcmp (aname
, bname
);
5377 return (c
!= 0 ? c
: strcmp (alabel
, blabel
));
5380 /* Free a list of written commons. */
5383 free_written_common (struct written_common
*w
)
5389 free_written_common (w
->left
);
5391 free_written_common (w
->right
);
5396 /* Write a common block to the module -- recursive helper function. */
5399 write_common_0 (gfc_symtree
*st
, bool this_module
)
5405 struct written_common
*w
;
5406 bool write_me
= true;
5411 write_common_0 (st
->left
, this_module
);
5413 /* We will write out the binding label, or "" if no label given. */
5414 name
= st
->n
.common
->name
;
5416 label
= (p
->is_bind_c
&& p
->binding_label
) ? p
->binding_label
: "";
5418 /* Check if we've already output this common. */
5419 w
= written_commons
;
5422 int c
= strcmp (name
, w
->name
);
5423 c
= (c
!= 0 ? c
: strcmp (label
, w
->label
));
5427 w
= (c
< 0) ? w
->left
: w
->right
;
5430 if (this_module
&& p
->use_assoc
)
5435 /* Write the common to the module. */
5437 mio_pool_string (&name
);
5439 mio_symbol_ref (&p
->head
);
5440 flags
= p
->saved
? 1 : 0;
5441 if (p
->threadprivate
)
5443 mio_integer (&flags
);
5445 /* Write out whether the common block is bind(c) or not. */
5446 mio_integer (&(p
->is_bind_c
));
5448 mio_pool_string (&label
);
5451 /* Record that we have written this common. */
5452 w
= XCNEW (struct written_common
);
5455 gfc_insert_bbt (&written_commons
, w
, compare_written_commons
);
5458 write_common_0 (st
->right
, this_module
);
5462 /* Write a common, by initializing the list of written commons, calling
5463 the recursive function write_common_0() and cleaning up afterwards. */
5466 write_common (gfc_symtree
*st
)
5468 written_commons
= NULL
;
5469 write_common_0 (st
, true);
5470 write_common_0 (st
, false);
5471 free_written_common (written_commons
);
5472 written_commons
= NULL
;
5476 /* Write the blank common block to the module. */
5479 write_blank_common (void)
5481 const char * name
= BLANK_COMMON_NAME
;
5483 /* TODO: Blank commons are not bind(c). The F2003 standard probably says
5484 this, but it hasn't been checked. Just making it so for now. */
5487 if (gfc_current_ns
->blank_common
.head
== NULL
)
5492 mio_pool_string (&name
);
5494 mio_symbol_ref (&gfc_current_ns
->blank_common
.head
);
5495 saved
= gfc_current_ns
->blank_common
.saved
;
5496 mio_integer (&saved
);
5498 /* Write out whether the common block is bind(c) or not. */
5499 mio_integer (&is_bind_c
);
5501 /* Write out an empty binding label. */
5502 write_atom (ATOM_STRING
, "");
5508 /* Write equivalences to the module. */
5517 for (eq
= gfc_current_ns
->equiv
; eq
; eq
= eq
->next
)
5521 for (e
= eq
; e
; e
= e
->eq
)
5523 if (e
->module
== NULL
)
5524 e
->module
= gfc_get_string ("%s.eq.%d", module_name
, num
);
5525 mio_allocated_string (e
->module
);
5526 mio_expr (&e
->expr
);
5535 /* Write a symbol to the module. */
5538 write_symbol (int n
, gfc_symbol
*sym
)
5542 if (sym
->attr
.flavor
== FL_UNKNOWN
|| sym
->attr
.flavor
== FL_LABEL
)
5543 gfc_internal_error ("write_symbol(): bad module symbol %qs", sym
->name
);
5547 if (gfc_fl_struct (sym
->attr
.flavor
))
5550 name
= gfc_dt_upper_string (sym
->name
);
5551 mio_pool_string (&name
);
5554 mio_pool_string (&sym
->name
);
5556 mio_pool_string (&sym
->module
);
5557 if ((sym
->attr
.is_bind_c
|| sym
->attr
.is_iso_c
) && sym
->binding_label
)
5559 label
= sym
->binding_label
;
5560 mio_pool_string (&label
);
5563 write_atom (ATOM_STRING
, "");
5565 mio_pointer_ref (&sym
->ns
);
5572 /* Recursive traversal function to write the initial set of symbols to
5573 the module. We check to see if the symbol should be written
5574 according to the access specification. */
5577 write_symbol0 (gfc_symtree
*st
)
5581 bool dont_write
= false;
5586 write_symbol0 (st
->left
);
5589 if (sym
->module
== NULL
)
5590 sym
->module
= module_name
;
5592 if (sym
->attr
.flavor
== FL_PROCEDURE
&& sym
->attr
.generic
5593 && !sym
->attr
.subroutine
&& !sym
->attr
.function
)
5596 if (!gfc_check_symbol_access (sym
))
5601 p
= get_pointer (sym
);
5602 if (p
->type
== P_UNKNOWN
)
5605 if (p
->u
.wsym
.state
!= WRITTEN
)
5607 write_symbol (p
->integer
, sym
);
5608 p
->u
.wsym
.state
= WRITTEN
;
5612 write_symbol0 (st
->right
);
5617 write_omp_udr (gfc_omp_udr
*udr
)
5621 case OMP_REDUCTION_USER
:
5622 /* Non-operators can't be used outside of the module. */
5623 if (udr
->name
[0] != '.')
5628 size_t len
= strlen (udr
->name
+ 1);
5629 char *name
= XALLOCAVEC (char, len
);
5630 memcpy (name
, udr
->name
, len
- 1);
5631 name
[len
- 1] = '\0';
5632 st
= gfc_find_symtree (gfc_current_ns
->uop_root
, name
);
5633 /* If corresponding user operator is private, don't write
5637 gfc_user_op
*uop
= st
->n
.uop
;
5638 if (!check_access (uop
->access
, uop
->ns
->default_access
))
5643 case OMP_REDUCTION_PLUS
:
5644 case OMP_REDUCTION_MINUS
:
5645 case OMP_REDUCTION_TIMES
:
5646 case OMP_REDUCTION_AND
:
5647 case OMP_REDUCTION_OR
:
5648 case OMP_REDUCTION_EQV
:
5649 case OMP_REDUCTION_NEQV
:
5650 /* If corresponding operator is private, don't write the UDR. */
5651 if (!check_access (gfc_current_ns
->operator_access
[udr
->rop
],
5652 gfc_current_ns
->default_access
))
5658 if (udr
->ts
.type
== BT_DERIVED
|| udr
->ts
.type
== BT_CLASS
)
5660 /* If derived type is private, don't write the UDR. */
5661 if (!gfc_check_symbol_access (udr
->ts
.u
.derived
))
5666 mio_pool_string (&udr
->name
);
5667 mio_typespec (&udr
->ts
);
5668 mio_omp_udr_expr (udr
, &udr
->omp_out
, &udr
->omp_in
, udr
->combiner_ns
, false);
5669 if (udr
->initializer_ns
)
5670 mio_omp_udr_expr (udr
, &udr
->omp_priv
, &udr
->omp_orig
,
5671 udr
->initializer_ns
, true);
5677 write_omp_udrs (gfc_symtree
*st
)
5682 write_omp_udrs (st
->left
);
5684 for (udr
= st
->n
.omp_udr
; udr
; udr
= udr
->next
)
5685 write_omp_udr (udr
);
5686 write_omp_udrs (st
->right
);
5690 /* Type for the temporary tree used when writing secondary symbols. */
5692 struct sorted_pointer_info
5694 BBT_HEADER (sorted_pointer_info
);
5699 #define gfc_get_sorted_pointer_info() XCNEW (sorted_pointer_info)
5701 /* Recursively traverse the temporary tree, free its contents. */
5704 free_sorted_pointer_info_tree (sorted_pointer_info
*p
)
5709 free_sorted_pointer_info_tree (p
->left
);
5710 free_sorted_pointer_info_tree (p
->right
);
5715 /* Comparison function for the temporary tree. */
5718 compare_sorted_pointer_info (void *_spi1
, void *_spi2
)
5720 sorted_pointer_info
*spi1
, *spi2
;
5721 spi1
= (sorted_pointer_info
*)_spi1
;
5722 spi2
= (sorted_pointer_info
*)_spi2
;
5724 if (spi1
->p
->integer
< spi2
->p
->integer
)
5726 if (spi1
->p
->integer
> spi2
->p
->integer
)
5732 /* Finds the symbols that need to be written and collects them in the
5733 sorted_pi tree so that they can be traversed in an order
5734 independent of memory addresses. */
5737 find_symbols_to_write(sorted_pointer_info
**tree
, pointer_info
*p
)
5742 if (p
->type
== P_SYMBOL
&& p
->u
.wsym
.state
== NEEDS_WRITE
)
5744 sorted_pointer_info
*sp
= gfc_get_sorted_pointer_info();
5747 gfc_insert_bbt (tree
, sp
, compare_sorted_pointer_info
);
5750 find_symbols_to_write (tree
, p
->left
);
5751 find_symbols_to_write (tree
, p
->right
);
5755 /* Recursive function that traverses the tree of symbols that need to be
5756 written and writes them in order. */
5759 write_symbol1_recursion (sorted_pointer_info
*sp
)
5764 write_symbol1_recursion (sp
->left
);
5766 pointer_info
*p1
= sp
->p
;
5767 gcc_assert (p1
->type
== P_SYMBOL
&& p1
->u
.wsym
.state
== NEEDS_WRITE
);
5769 p1
->u
.wsym
.state
= WRITTEN
;
5770 write_symbol (p1
->integer
, p1
->u
.wsym
.sym
);
5771 p1
->u
.wsym
.sym
->attr
.public_used
= 1;
5773 write_symbol1_recursion (sp
->right
);
5777 /* Write the secondary set of symbols to the module file. These are
5778 symbols that were not public yet are needed by the public symbols
5779 or another dependent symbol. The act of writing a symbol can add
5780 symbols to the pointer_info tree, so we return nonzero if a symbol
5781 was written and pass that information upwards. The caller will
5782 then call this function again until nothing was written. It uses
5783 the utility functions and a temporary tree to ensure a reproducible
5784 ordering of the symbol output and thus the module file. */
5787 write_symbol1 (pointer_info
*p
)
5792 /* Put symbols that need to be written into a tree sorted on the
5795 sorted_pointer_info
*spi_root
= NULL
;
5796 find_symbols_to_write (&spi_root
, p
);
5798 /* No symbols to write, return. */
5802 /* Otherwise, write and free the tree again. */
5803 write_symbol1_recursion (spi_root
);
5804 free_sorted_pointer_info_tree (spi_root
);
5810 /* Write operator interfaces associated with a symbol. */
5813 write_operator (gfc_user_op
*uop
)
5815 static char nullstring
[] = "";
5816 const char *p
= nullstring
;
5818 if (uop
->op
== NULL
|| !check_access (uop
->access
, uop
->ns
->default_access
))
5821 mio_symbol_interface (&uop
->name
, &p
, &uop
->op
);
5825 /* Write generic interfaces from the namespace sym_root. */
5828 write_generic (gfc_symtree
*st
)
5835 write_generic (st
->left
);
5838 if (sym
&& !check_unique_name (st
->name
)
5839 && sym
->generic
&& gfc_check_symbol_access (sym
))
5842 sym
->module
= module_name
;
5844 mio_symbol_interface (&st
->name
, &sym
->module
, &sym
->generic
);
5847 write_generic (st
->right
);
5852 write_symtree (gfc_symtree
*st
)
5859 /* A symbol in an interface body must not be visible in the
5861 if (sym
->ns
!= gfc_current_ns
5862 && sym
->ns
->proc_name
5863 && sym
->ns
->proc_name
->attr
.if_source
== IFSRC_IFBODY
)
5866 if (!gfc_check_symbol_access (sym
)
5867 || (sym
->attr
.flavor
== FL_PROCEDURE
&& sym
->attr
.generic
5868 && !sym
->attr
.subroutine
&& !sym
->attr
.function
))
5871 if (check_unique_name (st
->name
))
5874 p
= find_pointer (sym
);
5876 gfc_internal_error ("write_symtree(): Symbol not written");
5878 mio_pool_string (&st
->name
);
5879 mio_integer (&st
->ambiguous
);
5880 mio_integer (&p
->integer
);
5889 /* Write the operator interfaces. */
5892 for (i
= GFC_INTRINSIC_BEGIN
; i
!= GFC_INTRINSIC_END
; i
++)
5894 if (i
== INTRINSIC_USER
)
5897 mio_interface (check_access (gfc_current_ns
->operator_access
[i
],
5898 gfc_current_ns
->default_access
)
5899 ? &gfc_current_ns
->op
[i
] : NULL
);
5907 gfc_traverse_user_op (gfc_current_ns
, write_operator
);
5913 write_generic (gfc_current_ns
->sym_root
);
5919 write_blank_common ();
5920 write_common (gfc_current_ns
->common_root
);
5932 write_omp_udrs (gfc_current_ns
->omp_udr_root
);
5937 /* Write symbol information. First we traverse all symbols in the
5938 primary namespace, writing those that need to be written.
5939 Sometimes writing one symbol will cause another to need to be
5940 written. A list of these symbols ends up on the write stack, and
5941 we end by popping the bottom of the stack and writing the symbol
5942 until the stack is empty. */
5946 write_symbol0 (gfc_current_ns
->sym_root
);
5947 while (write_symbol1 (pi_root
))
5956 gfc_traverse_symtree (gfc_current_ns
->sym_root
, write_symtree
);
5961 /* Read a CRC32 sum from the gzip trailer of a module file. Returns
5962 true on success, false on failure. */
5965 read_crc32_from_module_file (const char* filename
, uLong
* crc
)
5971 /* Open the file in binary mode. */
5972 if ((file
= fopen (filename
, "rb")) == NULL
)
5975 /* The gzip crc32 value is found in the [END-8, END-4] bytes of the
5976 file. See RFC 1952. */
5977 if (fseek (file
, -8, SEEK_END
) != 0)
5983 /* Read the CRC32. */
5984 if (fread (buf
, 1, 4, file
) != 4)
5990 /* Close the file. */
5993 val
= (buf
[0] & 0xFF) + ((buf
[1] & 0xFF) << 8) + ((buf
[2] & 0xFF) << 16)
5994 + ((buf
[3] & 0xFF) << 24);
5997 /* For debugging, the CRC value printed in hexadecimal should match
5998 the CRC printed by "zcat -l -v filename".
5999 printf("CRC of file %s is %x\n", filename, val); */
6005 /* Given module, dump it to disk. If there was an error while
6006 processing the module, dump_flag will be set to zero and we delete
6007 the module file, even if it was already there. */
6010 dump_module (const char *name
, int dump_flag
)
6013 char *filename
, *filename_tmp
;
6016 module_name
= gfc_get_string ("%s", name
);
6020 name
= submodule_name
;
6021 n
= strlen (name
) + strlen (SUBMODULE_EXTENSION
) + 1;
6024 n
= strlen (name
) + strlen (MODULE_EXTENSION
) + 1;
6026 if (gfc_option
.module_dir
!= NULL
)
6028 n
+= strlen (gfc_option
.module_dir
);
6029 filename
= (char *) alloca (n
);
6030 strcpy (filename
, gfc_option
.module_dir
);
6031 strcat (filename
, name
);
6035 filename
= (char *) alloca (n
);
6036 strcpy (filename
, name
);
6040 strcat (filename
, SUBMODULE_EXTENSION
);
6042 strcat (filename
, MODULE_EXTENSION
);
6044 /* Name of the temporary file used to write the module. */
6045 filename_tmp
= (char *) alloca (n
+ 1);
6046 strcpy (filename_tmp
, filename
);
6047 strcat (filename_tmp
, "0");
6049 /* There was an error while processing the module. We delete the
6050 module file, even if it was already there. */
6057 if (gfc_cpp_makedep ())
6058 gfc_cpp_add_target (filename
);
6060 /* Write the module to the temporary file. */
6061 module_fp
= gzopen (filename_tmp
, "w");
6062 if (module_fp
== NULL
)
6063 gfc_fatal_error ("Can't open module file %qs for writing at %C: %s",
6064 filename_tmp
, xstrerror (errno
));
6066 gzprintf (module_fp
, "GFORTRAN module version '%s' created from %s\n",
6067 MOD_VERSION
, gfc_source_file
);
6069 /* Write the module itself. */
6076 free_pi_tree (pi_root
);
6081 if (gzclose (module_fp
))
6082 gfc_fatal_error ("Error writing module file %qs for writing: %s",
6083 filename_tmp
, xstrerror (errno
));
6085 /* Read the CRC32 from the gzip trailers of the module files and
6087 if (!read_crc32_from_module_file (filename_tmp
, &crc
)
6088 || !read_crc32_from_module_file (filename
, &crc_old
)
6091 /* Module file have changed, replace the old one. */
6092 if (remove (filename
) && errno
!= ENOENT
)
6093 gfc_fatal_error ("Can't delete module file %qs: %s", filename
,
6095 if (rename (filename_tmp
, filename
))
6096 gfc_fatal_error ("Can't rename module file %qs to %qs: %s",
6097 filename_tmp
, filename
, xstrerror (errno
));
6101 if (remove (filename_tmp
))
6102 gfc_fatal_error ("Can't delete temporary module file %qs: %s",
6103 filename_tmp
, xstrerror (errno
));
6108 /* Suppress the output of a .smod file by module, if no module
6109 procedures have been seen. */
6110 static bool no_module_procedures
;
6113 check_for_module_procedures (gfc_symbol
*sym
)
6115 if (sym
&& sym
->attr
.module_procedure
)
6116 no_module_procedures
= false;
6121 gfc_dump_module (const char *name
, int dump_flag
)
6123 if (gfc_state_stack
->state
== COMP_SUBMODULE
)
6128 no_module_procedures
= true;
6129 gfc_traverse_ns (gfc_current_ns
, check_for_module_procedures
);
6131 dump_module (name
, dump_flag
);
6133 if (no_module_procedures
|| dump_smod
)
6136 /* Write a submodule file from a module. The 'dump_smod' flag switches
6137 off the check for PRIVATE entities. */
6139 submodule_name
= module_name
;
6140 dump_module (name
, dump_flag
);
6145 create_intrinsic_function (const char *name
, int id
,
6146 const char *modname
, intmod_id module
,
6147 bool subroutine
, gfc_symbol
*result_type
)
6149 gfc_intrinsic_sym
*isym
;
6150 gfc_symtree
*tmp_symtree
;
6153 tmp_symtree
= gfc_find_symtree (gfc_current_ns
->sym_root
, name
);
6156 if (tmp_symtree
->n
.sym
&& tmp_symtree
->n
.sym
->module
6157 && strcmp (modname
, tmp_symtree
->n
.sym
->module
) == 0)
6159 gfc_error ("Symbol %qs at %C already declared", name
);
6163 gfc_get_sym_tree (name
, gfc_current_ns
, &tmp_symtree
, false);
6164 sym
= tmp_symtree
->n
.sym
;
6168 gfc_isym_id isym_id
= gfc_isym_id_by_intmod (module
, id
);
6169 isym
= gfc_intrinsic_subroutine_by_id (isym_id
);
6170 sym
->attr
.subroutine
= 1;
6174 gfc_isym_id isym_id
= gfc_isym_id_by_intmod (module
, id
);
6175 isym
= gfc_intrinsic_function_by_id (isym_id
);
6177 sym
->attr
.function
= 1;
6180 sym
->ts
.type
= BT_DERIVED
;
6181 sym
->ts
.u
.derived
= result_type
;
6182 sym
->ts
.is_c_interop
= 1;
6183 isym
->ts
.f90_type
= BT_VOID
;
6184 isym
->ts
.type
= BT_DERIVED
;
6185 isym
->ts
.f90_type
= BT_VOID
;
6186 isym
->ts
.u
.derived
= result_type
;
6187 isym
->ts
.is_c_interop
= 1;
6192 sym
->attr
.flavor
= FL_PROCEDURE
;
6193 sym
->attr
.intrinsic
= 1;
6195 sym
->module
= gfc_get_string ("%s", modname
);
6196 sym
->attr
.use_assoc
= 1;
6197 sym
->from_intmod
= module
;
6198 sym
->intmod_sym_id
= id
;
6202 /* Import the intrinsic ISO_C_BINDING module, generating symbols in
6203 the current namespace for all named constants, pointer types, and
6204 procedures in the module unless the only clause was used or a rename
6205 list was provided. */
6208 import_iso_c_binding_module (void)
6210 gfc_symbol
*mod_sym
= NULL
, *return_type
;
6211 gfc_symtree
*mod_symtree
= NULL
, *tmp_symtree
;
6212 gfc_symtree
*c_ptr
= NULL
, *c_funptr
= NULL
;
6213 const char *iso_c_module_name
= "__iso_c_binding";
6216 bool want_c_ptr
= false, want_c_funptr
= false;
6218 /* Look only in the current namespace. */
6219 mod_symtree
= gfc_find_symtree (gfc_current_ns
->sym_root
, iso_c_module_name
);
6221 if (mod_symtree
== NULL
)
6223 /* symtree doesn't already exist in current namespace. */
6224 gfc_get_sym_tree (iso_c_module_name
, gfc_current_ns
, &mod_symtree
,
6227 if (mod_symtree
!= NULL
)
6228 mod_sym
= mod_symtree
->n
.sym
;
6230 gfc_internal_error ("import_iso_c_binding_module(): Unable to "
6231 "create symbol for %s", iso_c_module_name
);
6233 mod_sym
->attr
.flavor
= FL_MODULE
;
6234 mod_sym
->attr
.intrinsic
= 1;
6235 mod_sym
->module
= gfc_get_string ("%s", iso_c_module_name
);
6236 mod_sym
->from_intmod
= INTMOD_ISO_C_BINDING
;
6239 /* Check whether C_PTR or C_FUNPTR are in the include list, if so, load it;
6240 check also whether C_NULL_(FUN)PTR or C_(FUN)LOC are requested, which
6242 for (u
= gfc_rename_list
; u
; u
= u
->next
)
6244 if (strcmp (c_interop_kinds_table
[ISOCBINDING_NULL_PTR
].name
,
6247 else if (strcmp (c_interop_kinds_table
[ISOCBINDING_LOC
].name
,
6250 else if (strcmp (c_interop_kinds_table
[ISOCBINDING_NULL_FUNPTR
].name
,
6252 want_c_funptr
= true;
6253 else if (strcmp (c_interop_kinds_table
[ISOCBINDING_FUNLOC
].name
,
6255 want_c_funptr
= true;
6256 else if (strcmp (c_interop_kinds_table
[ISOCBINDING_PTR
].name
,
6259 c_ptr
= generate_isocbinding_symbol (iso_c_module_name
,
6260 (iso_c_binding_symbol
)
6262 u
->local_name
[0] ? u
->local_name
6266 else if (strcmp (c_interop_kinds_table
[ISOCBINDING_FUNPTR
].name
,
6270 = generate_isocbinding_symbol (iso_c_module_name
,
6271 (iso_c_binding_symbol
)
6273 u
->local_name
[0] ? u
->local_name
6279 if ((want_c_ptr
|| !only_flag
) && !c_ptr
)
6280 c_ptr
= generate_isocbinding_symbol (iso_c_module_name
,
6281 (iso_c_binding_symbol
)
6283 NULL
, NULL
, only_flag
);
6284 if ((want_c_funptr
|| !only_flag
) && !c_funptr
)
6285 c_funptr
= generate_isocbinding_symbol (iso_c_module_name
,
6286 (iso_c_binding_symbol
)
6288 NULL
, NULL
, only_flag
);
6290 /* Generate the symbols for the named constants representing
6291 the kinds for intrinsic data types. */
6292 for (i
= 0; i
< ISOCBINDING_NUMBER
; i
++)
6295 for (u
= gfc_rename_list
; u
; u
= u
->next
)
6296 if (strcmp (c_interop_kinds_table
[i
].name
, u
->use_name
) == 0)
6305 #define NAMED_FUNCTION(a,b,c,d) \
6307 not_in_std = (gfc_option.allow_std & d) == 0; \
6310 #define NAMED_SUBROUTINE(a,b,c,d) \
6312 not_in_std = (gfc_option.allow_std & d) == 0; \
6315 #define NAMED_INTCST(a,b,c,d) \
6317 not_in_std = (gfc_option.allow_std & d) == 0; \
6320 #define NAMED_REALCST(a,b,c,d) \
6322 not_in_std = (gfc_option.allow_std & d) == 0; \
6325 #define NAMED_CMPXCST(a,b,c,d) \
6327 not_in_std = (gfc_option.allow_std & d) == 0; \
6330 #include "iso-c-binding.def"
6338 gfc_error ("The symbol %qs, referenced at %L, is not "
6339 "in the selected standard", name
, &u
->where
);
6345 #define NAMED_FUNCTION(a,b,c,d) \
6347 if (a == ISOCBINDING_LOC) \
6348 return_type = c_ptr->n.sym; \
6349 else if (a == ISOCBINDING_FUNLOC) \
6350 return_type = c_funptr->n.sym; \
6352 return_type = NULL; \
6353 create_intrinsic_function (u->local_name[0] \
6354 ? u->local_name : u->use_name, \
6355 a, iso_c_module_name, \
6356 INTMOD_ISO_C_BINDING, false, \
6359 #define NAMED_SUBROUTINE(a,b,c,d) \
6361 create_intrinsic_function (u->local_name[0] ? u->local_name \
6363 a, iso_c_module_name, \
6364 INTMOD_ISO_C_BINDING, true, NULL); \
6366 #include "iso-c-binding.def"
6368 case ISOCBINDING_PTR
:
6369 case ISOCBINDING_FUNPTR
:
6370 /* Already handled above. */
6373 if (i
== ISOCBINDING_NULL_PTR
)
6374 tmp_symtree
= c_ptr
;
6375 else if (i
== ISOCBINDING_NULL_FUNPTR
)
6376 tmp_symtree
= c_funptr
;
6379 generate_isocbinding_symbol (iso_c_module_name
,
6380 (iso_c_binding_symbol
) i
,
6382 ? u
->local_name
: u
->use_name
,
6383 tmp_symtree
, false);
6387 if (!found
&& !only_flag
)
6389 /* Skip, if the symbol is not in the enabled standard. */
6392 #define NAMED_FUNCTION(a,b,c,d) \
6394 if ((gfc_option.allow_std & d) == 0) \
6397 #define NAMED_SUBROUTINE(a,b,c,d) \
6399 if ((gfc_option.allow_std & d) == 0) \
6402 #define NAMED_INTCST(a,b,c,d) \
6404 if ((gfc_option.allow_std & d) == 0) \
6407 #define NAMED_REALCST(a,b,c,d) \
6409 if ((gfc_option.allow_std & d) == 0) \
6412 #define NAMED_CMPXCST(a,b,c,d) \
6414 if ((gfc_option.allow_std & d) == 0) \
6417 #include "iso-c-binding.def"
6419 ; /* Not GFC_STD_* versioned. */
6424 #define NAMED_FUNCTION(a,b,c,d) \
6426 if (a == ISOCBINDING_LOC) \
6427 return_type = c_ptr->n.sym; \
6428 else if (a == ISOCBINDING_FUNLOC) \
6429 return_type = c_funptr->n.sym; \
6431 return_type = NULL; \
6432 create_intrinsic_function (b, a, iso_c_module_name, \
6433 INTMOD_ISO_C_BINDING, false, \
6436 #define NAMED_SUBROUTINE(a,b,c,d) \
6438 create_intrinsic_function (b, a, iso_c_module_name, \
6439 INTMOD_ISO_C_BINDING, true, NULL); \
6441 #include "iso-c-binding.def"
6443 case ISOCBINDING_PTR
:
6444 case ISOCBINDING_FUNPTR
:
6445 /* Already handled above. */
6448 if (i
== ISOCBINDING_NULL_PTR
)
6449 tmp_symtree
= c_ptr
;
6450 else if (i
== ISOCBINDING_NULL_FUNPTR
)
6451 tmp_symtree
= c_funptr
;
6454 generate_isocbinding_symbol (iso_c_module_name
,
6455 (iso_c_binding_symbol
) i
, NULL
,
6456 tmp_symtree
, false);
6461 for (u
= gfc_rename_list
; u
; u
= u
->next
)
6466 gfc_error ("Symbol %qs referenced at %L not found in intrinsic "
6467 "module ISO_C_BINDING", u
->use_name
, &u
->where
);
6472 /* Add an integer named constant from a given module. */
6475 create_int_parameter (const char *name
, int value
, const char *modname
,
6476 intmod_id module
, int id
)
6478 gfc_symtree
*tmp_symtree
;
6481 tmp_symtree
= gfc_find_symtree (gfc_current_ns
->sym_root
, name
);
6482 if (tmp_symtree
!= NULL
)
6484 if (strcmp (modname
, tmp_symtree
->n
.sym
->module
) == 0)
6487 gfc_error ("Symbol %qs already declared", name
);
6490 gfc_get_sym_tree (name
, gfc_current_ns
, &tmp_symtree
, false);
6491 sym
= tmp_symtree
->n
.sym
;
6493 sym
->module
= gfc_get_string ("%s", modname
);
6494 sym
->attr
.flavor
= FL_PARAMETER
;
6495 sym
->ts
.type
= BT_INTEGER
;
6496 sym
->ts
.kind
= gfc_default_integer_kind
;
6497 sym
->value
= gfc_get_int_expr (gfc_default_integer_kind
, NULL
, value
);
6498 sym
->attr
.use_assoc
= 1;
6499 sym
->from_intmod
= module
;
6500 sym
->intmod_sym_id
= id
;
6504 /* Value is already contained by the array constructor, but not
6508 create_int_parameter_array (const char *name
, int size
, gfc_expr
*value
,
6509 const char *modname
, intmod_id module
, int id
)
6511 gfc_symtree
*tmp_symtree
;
6514 tmp_symtree
= gfc_find_symtree (gfc_current_ns
->sym_root
, name
);
6515 if (tmp_symtree
!= NULL
)
6517 if (strcmp (modname
, tmp_symtree
->n
.sym
->module
) == 0)
6520 gfc_error ("Symbol %qs already declared", name
);
6523 gfc_get_sym_tree (name
, gfc_current_ns
, &tmp_symtree
, false);
6524 sym
= tmp_symtree
->n
.sym
;
6526 sym
->module
= gfc_get_string ("%s", modname
);
6527 sym
->attr
.flavor
= FL_PARAMETER
;
6528 sym
->ts
.type
= BT_INTEGER
;
6529 sym
->ts
.kind
= gfc_default_integer_kind
;
6530 sym
->attr
.use_assoc
= 1;
6531 sym
->from_intmod
= module
;
6532 sym
->intmod_sym_id
= id
;
6533 sym
->attr
.dimension
= 1;
6534 sym
->as
= gfc_get_array_spec ();
6536 sym
->as
->type
= AS_EXPLICIT
;
6537 sym
->as
->lower
[0] = gfc_get_int_expr (gfc_default_integer_kind
, NULL
, 1);
6538 sym
->as
->upper
[0] = gfc_get_int_expr (gfc_default_integer_kind
, NULL
, size
);
6541 sym
->value
->shape
= gfc_get_shape (1);
6542 mpz_init_set_ui (sym
->value
->shape
[0], size
);
6546 /* Add an derived type for a given module. */
6549 create_derived_type (const char *name
, const char *modname
,
6550 intmod_id module
, int id
)
6552 gfc_symtree
*tmp_symtree
;
6553 gfc_symbol
*sym
, *dt_sym
;
6554 gfc_interface
*intr
, *head
;
6556 tmp_symtree
= gfc_find_symtree (gfc_current_ns
->sym_root
, name
);
6557 if (tmp_symtree
!= NULL
)
6559 if (strcmp (modname
, tmp_symtree
->n
.sym
->module
) == 0)
6562 gfc_error ("Symbol %qs already declared", name
);
6565 gfc_get_sym_tree (name
, gfc_current_ns
, &tmp_symtree
, false);
6566 sym
= tmp_symtree
->n
.sym
;
6567 sym
->module
= gfc_get_string ("%s", modname
);
6568 sym
->from_intmod
= module
;
6569 sym
->intmod_sym_id
= id
;
6570 sym
->attr
.flavor
= FL_PROCEDURE
;
6571 sym
->attr
.function
= 1;
6572 sym
->attr
.generic
= 1;
6574 gfc_get_sym_tree (gfc_dt_upper_string (sym
->name
),
6575 gfc_current_ns
, &tmp_symtree
, false);
6576 dt_sym
= tmp_symtree
->n
.sym
;
6577 dt_sym
->name
= gfc_get_string ("%s", sym
->name
);
6578 dt_sym
->attr
.flavor
= FL_DERIVED
;
6579 dt_sym
->attr
.private_comp
= 1;
6580 dt_sym
->attr
.zero_comp
= 1;
6581 dt_sym
->attr
.use_assoc
= 1;
6582 dt_sym
->module
= gfc_get_string ("%s", modname
);
6583 dt_sym
->from_intmod
= module
;
6584 dt_sym
->intmod_sym_id
= id
;
6586 head
= sym
->generic
;
6587 intr
= gfc_get_interface ();
6589 intr
->where
= gfc_current_locus
;
6591 sym
->generic
= intr
;
6592 sym
->attr
.if_source
= IFSRC_DECL
;
6596 /* Read the contents of the module file into a temporary buffer. */
6599 read_module_to_tmpbuf ()
6601 /* We don't know the uncompressed size, so enlarge the buffer as
6607 module_content
= XNEWVEC (char, cursz
);
6611 int nread
= gzread (module_fp
, module_content
+ len
, rsize
);
6616 module_content
= XRESIZEVEC (char, module_content
, cursz
);
6617 rsize
= cursz
- len
;
6620 module_content
= XRESIZEVEC (char, module_content
, len
+ 1);
6621 module_content
[len
] = '\0';
6627 /* USE the ISO_FORTRAN_ENV intrinsic module. */
6630 use_iso_fortran_env_module (void)
6632 static char mod
[] = "iso_fortran_env";
6634 gfc_symbol
*mod_sym
;
6635 gfc_symtree
*mod_symtree
;
6639 intmod_sym symbol
[] = {
6640 #define NAMED_INTCST(a,b,c,d) { a, b, 0, d },
6641 #define NAMED_KINDARRAY(a,b,c,d) { a, b, 0, d },
6642 #define NAMED_DERIVED_TYPE(a,b,c,d) { a, b, 0, d },
6643 #define NAMED_FUNCTION(a,b,c,d) { a, b, c, d },
6644 #define NAMED_SUBROUTINE(a,b,c,d) { a, b, c, d },
6645 #include "iso-fortran-env.def"
6646 { ISOFORTRANENV_INVALID
, NULL
, -1234, 0 } };
6649 #define NAMED_INTCST(a,b,c,d) symbol[i++].value = c;
6650 #include "iso-fortran-env.def"
6652 /* Generate the symbol for the module itself. */
6653 mod_symtree
= gfc_find_symtree (gfc_current_ns
->sym_root
, mod
);
6654 if (mod_symtree
== NULL
)
6656 gfc_get_sym_tree (mod
, gfc_current_ns
, &mod_symtree
, false);
6657 gcc_assert (mod_symtree
);
6658 mod_sym
= mod_symtree
->n
.sym
;
6660 mod_sym
->attr
.flavor
= FL_MODULE
;
6661 mod_sym
->attr
.intrinsic
= 1;
6662 mod_sym
->module
= gfc_get_string ("%s", mod
);
6663 mod_sym
->from_intmod
= INTMOD_ISO_FORTRAN_ENV
;
6666 if (!mod_symtree
->n
.sym
->attr
.intrinsic
)
6667 gfc_error ("Use of intrinsic module %qs at %C conflicts with "
6668 "non-intrinsic module name used previously", mod
);
6670 /* Generate the symbols for the module integer named constants. */
6672 for (i
= 0; symbol
[i
].name
; i
++)
6675 for (u
= gfc_rename_list
; u
; u
= u
->next
)
6677 if (strcmp (symbol
[i
].name
, u
->use_name
) == 0)
6682 if (!gfc_notify_std (symbol
[i
].standard
, "The symbol %qs, "
6683 "referenced at %L, is not in the selected "
6684 "standard", symbol
[i
].name
, &u
->where
))
6687 if ((flag_default_integer
|| flag_default_real
)
6688 && symbol
[i
].id
== ISOFORTRANENV_NUMERIC_STORAGE_SIZE
)
6689 gfc_warning_now (0, "Use of the NUMERIC_STORAGE_SIZE named "
6690 "constant from intrinsic module "
6691 "ISO_FORTRAN_ENV at %L is incompatible with "
6692 "option %qs", &u
->where
,
6693 flag_default_integer
6694 ? "-fdefault-integer-8"
6695 : "-fdefault-real-8");
6696 switch (symbol
[i
].id
)
6698 #define NAMED_INTCST(a,b,c,d) \
6700 #include "iso-fortran-env.def"
6701 create_int_parameter (u
->local_name
[0] ? u
->local_name
6703 symbol
[i
].value
, mod
,
6704 INTMOD_ISO_FORTRAN_ENV
, symbol
[i
].id
);
6707 #define NAMED_KINDARRAY(a,b,KINDS,d) \
6709 expr = gfc_get_array_expr (BT_INTEGER, \
6710 gfc_default_integer_kind,\
6712 for (j = 0; KINDS[j].kind != 0; j++) \
6713 gfc_constructor_append_expr (&expr->value.constructor, \
6714 gfc_get_int_expr (gfc_default_integer_kind, NULL, \
6715 KINDS[j].kind), NULL); \
6716 create_int_parameter_array (u->local_name[0] ? u->local_name \
6719 INTMOD_ISO_FORTRAN_ENV, \
6722 #include "iso-fortran-env.def"
6724 #define NAMED_DERIVED_TYPE(a,b,TYPE,STD) \
6726 #include "iso-fortran-env.def"
6727 create_derived_type (u
->local_name
[0] ? u
->local_name
6729 mod
, INTMOD_ISO_FORTRAN_ENV
,
6733 #define NAMED_FUNCTION(a,b,c,d) \
6735 #include "iso-fortran-env.def"
6736 create_intrinsic_function (u
->local_name
[0] ? u
->local_name
6739 INTMOD_ISO_FORTRAN_ENV
, false,
6749 if (!found
&& !only_flag
)
6751 if ((gfc_option
.allow_std
& symbol
[i
].standard
) == 0)
6754 if ((flag_default_integer
|| flag_default_real
)
6755 && symbol
[i
].id
== ISOFORTRANENV_NUMERIC_STORAGE_SIZE
)
6757 "Use of the NUMERIC_STORAGE_SIZE named constant "
6758 "from intrinsic module ISO_FORTRAN_ENV at %C is "
6759 "incompatible with option %s",
6760 flag_default_integer
6761 ? "-fdefault-integer-8" : "-fdefault-real-8");
6763 switch (symbol
[i
].id
)
6765 #define NAMED_INTCST(a,b,c,d) \
6767 #include "iso-fortran-env.def"
6768 create_int_parameter (symbol
[i
].name
, symbol
[i
].value
, mod
,
6769 INTMOD_ISO_FORTRAN_ENV
, symbol
[i
].id
);
6772 #define NAMED_KINDARRAY(a,b,KINDS,d) \
6774 expr = gfc_get_array_expr (BT_INTEGER, gfc_default_integer_kind, \
6776 for (j = 0; KINDS[j].kind != 0; j++) \
6777 gfc_constructor_append_expr (&expr->value.constructor, \
6778 gfc_get_int_expr (gfc_default_integer_kind, NULL, \
6779 KINDS[j].kind), NULL); \
6780 create_int_parameter_array (symbol[i].name, j, expr, mod, \
6781 INTMOD_ISO_FORTRAN_ENV, symbol[i].id);\
6783 #include "iso-fortran-env.def"
6785 #define NAMED_DERIVED_TYPE(a,b,TYPE,STD) \
6787 #include "iso-fortran-env.def"
6788 create_derived_type (symbol
[i
].name
, mod
, INTMOD_ISO_FORTRAN_ENV
,
6792 #define NAMED_FUNCTION(a,b,c,d) \
6794 #include "iso-fortran-env.def"
6795 create_intrinsic_function (symbol
[i
].name
, symbol
[i
].id
, mod
,
6796 INTMOD_ISO_FORTRAN_ENV
, false,
6806 for (u
= gfc_rename_list
; u
; u
= u
->next
)
6811 gfc_error ("Symbol %qs referenced at %L not found in intrinsic "
6812 "module ISO_FORTRAN_ENV", u
->use_name
, &u
->where
);
6817 /* Process a USE directive. */
6820 gfc_use_module (gfc_use_list
*module
)
6825 gfc_symtree
*mod_symtree
;
6826 gfc_use_list
*use_stmt
;
6827 locus old_locus
= gfc_current_locus
;
6829 gfc_current_locus
= module
->where
;
6830 module_name
= module
->module_name
;
6831 gfc_rename_list
= module
->rename
;
6832 only_flag
= module
->only_flag
;
6833 current_intmod
= INTMOD_NONE
;
6836 gfc_warning_now (OPT_Wuse_without_only
,
6837 "USE statement at %C has no ONLY qualifier");
6839 if (gfc_state_stack
->state
== COMP_MODULE
6840 || module
->submodule_name
== NULL
)
6842 filename
= XALLOCAVEC (char, strlen (module_name
)
6843 + strlen (MODULE_EXTENSION
) + 1);
6844 strcpy (filename
, module_name
);
6845 strcat (filename
, MODULE_EXTENSION
);
6849 filename
= XALLOCAVEC (char, strlen (module
->submodule_name
)
6850 + strlen (SUBMODULE_EXTENSION
) + 1);
6851 strcpy (filename
, module
->submodule_name
);
6852 strcat (filename
, SUBMODULE_EXTENSION
);
6855 /* First, try to find an non-intrinsic module, unless the USE statement
6856 specified that the module is intrinsic. */
6858 if (!module
->intrinsic
)
6859 module_fp
= gzopen_included_file (filename
, true, true);
6861 /* Then, see if it's an intrinsic one, unless the USE statement
6862 specified that the module is non-intrinsic. */
6863 if (module_fp
== NULL
&& !module
->non_intrinsic
)
6865 if (strcmp (module_name
, "iso_fortran_env") == 0
6866 && gfc_notify_std (GFC_STD_F2003
, "ISO_FORTRAN_ENV "
6867 "intrinsic module at %C"))
6869 use_iso_fortran_env_module ();
6870 free_rename (module
->rename
);
6871 module
->rename
= NULL
;
6872 gfc_current_locus
= old_locus
;
6873 module
->intrinsic
= true;
6877 if (strcmp (module_name
, "iso_c_binding") == 0
6878 && gfc_notify_std (GFC_STD_F2003
, "ISO_C_BINDING module at %C"))
6880 import_iso_c_binding_module();
6881 free_rename (module
->rename
);
6882 module
->rename
= NULL
;
6883 gfc_current_locus
= old_locus
;
6884 module
->intrinsic
= true;
6888 module_fp
= gzopen_intrinsic_module (filename
);
6890 if (module_fp
== NULL
&& module
->intrinsic
)
6891 gfc_fatal_error ("Can't find an intrinsic module named %qs at %C",
6894 /* Check for the IEEE modules, so we can mark their symbols
6895 accordingly when we read them. */
6896 if (strcmp (module_name
, "ieee_features") == 0
6897 && gfc_notify_std (GFC_STD_F2003
, "IEEE_FEATURES module at %C"))
6899 current_intmod
= INTMOD_IEEE_FEATURES
;
6901 else if (strcmp (module_name
, "ieee_exceptions") == 0
6902 && gfc_notify_std (GFC_STD_F2003
,
6903 "IEEE_EXCEPTIONS module at %C"))
6905 current_intmod
= INTMOD_IEEE_EXCEPTIONS
;
6907 else if (strcmp (module_name
, "ieee_arithmetic") == 0
6908 && gfc_notify_std (GFC_STD_F2003
,
6909 "IEEE_ARITHMETIC module at %C"))
6911 current_intmod
= INTMOD_IEEE_ARITHMETIC
;
6915 if (module_fp
== NULL
)
6917 if (gfc_state_stack
->state
!= COMP_SUBMODULE
6918 && module
->submodule_name
== NULL
)
6919 gfc_fatal_error ("Can't open module file %qs for reading at %C: %s",
6920 filename
, xstrerror (errno
));
6922 gfc_fatal_error ("Module file %qs has not been generated, either "
6923 "because the module does not contain a MODULE "
6924 "PROCEDURE or there is an error in the module.",
6928 /* Check that we haven't already USEd an intrinsic module with the
6931 mod_symtree
= gfc_find_symtree (gfc_current_ns
->sym_root
, module_name
);
6932 if (mod_symtree
&& mod_symtree
->n
.sym
->attr
.intrinsic
)
6933 gfc_error ("Use of non-intrinsic module %qs at %C conflicts with "
6934 "intrinsic module name used previously", module_name
);
6941 read_module_to_tmpbuf ();
6942 gzclose (module_fp
);
6944 /* Skip the first line of the module, after checking that this is
6945 a gfortran module file. */
6951 bad_module ("Unexpected end of module");
6954 if ((start
== 1 && strcmp (atom_name
, "GFORTRAN") != 0)
6955 || (start
== 2 && strcmp (atom_name
, " module") != 0))
6956 gfc_fatal_error ("File %qs opened at %C is not a GNU Fortran"
6957 " module file", filename
);
6960 if (strcmp (atom_name
, " version") != 0
6961 || module_char () != ' '
6962 || parse_atom () != ATOM_STRING
6963 || strcmp (atom_string
, MOD_VERSION
))
6964 gfc_fatal_error ("Cannot read module file %qs opened at %C,"
6965 " because it was created by a different"
6966 " version of GNU Fortran", filename
);
6975 /* Make sure we're not reading the same module that we may be building. */
6976 for (p
= gfc_state_stack
; p
; p
= p
->previous
)
6977 if ((p
->state
== COMP_MODULE
|| p
->state
== COMP_SUBMODULE
)
6978 && strcmp (p
->sym
->name
, module_name
) == 0)
6979 gfc_fatal_error ("Can't USE the same %smodule we're building",
6980 p
->state
== COMP_SUBMODULE
? "sub" : "");
6983 init_true_name_tree ();
6987 free_true_name (true_name_root
);
6988 true_name_root
= NULL
;
6990 free_pi_tree (pi_root
);
6993 XDELETEVEC (module_content
);
6994 module_content
= NULL
;
6996 use_stmt
= gfc_get_use_list ();
6997 *use_stmt
= *module
;
6998 use_stmt
->next
= gfc_current_ns
->use_stmts
;
6999 gfc_current_ns
->use_stmts
= use_stmt
;
7001 gfc_current_locus
= old_locus
;
7005 /* Remove duplicated intrinsic operators from the rename list. */
7008 rename_list_remove_duplicate (gfc_use_rename
*list
)
7010 gfc_use_rename
*seek
, *last
;
7012 for (; list
; list
= list
->next
)
7013 if (list
->op
!= INTRINSIC_USER
&& list
->op
!= INTRINSIC_NONE
)
7016 for (seek
= list
->next
; seek
; seek
= last
->next
)
7018 if (list
->op
== seek
->op
)
7020 last
->next
= seek
->next
;
7030 /* Process all USE directives. */
7033 gfc_use_modules (void)
7035 gfc_use_list
*next
, *seek
, *last
;
7037 for (next
= module_list
; next
; next
= next
->next
)
7039 bool non_intrinsic
= next
->non_intrinsic
;
7040 bool intrinsic
= next
->intrinsic
;
7041 bool neither
= !non_intrinsic
&& !intrinsic
;
7043 for (seek
= next
->next
; seek
; seek
= seek
->next
)
7045 if (next
->module_name
!= seek
->module_name
)
7048 if (seek
->non_intrinsic
)
7049 non_intrinsic
= true;
7050 else if (seek
->intrinsic
)
7056 if (intrinsic
&& neither
&& !non_intrinsic
)
7061 filename
= XALLOCAVEC (char,
7062 strlen (next
->module_name
)
7063 + strlen (MODULE_EXTENSION
) + 1);
7064 strcpy (filename
, next
->module_name
);
7065 strcat (filename
, MODULE_EXTENSION
);
7066 fp
= gfc_open_included_file (filename
, true, true);
7069 non_intrinsic
= true;
7075 for (seek
= next
->next
; seek
; seek
= last
->next
)
7077 if (next
->module_name
!= seek
->module_name
)
7083 if ((!next
->intrinsic
&& !seek
->intrinsic
)
7084 || (next
->intrinsic
&& seek
->intrinsic
)
7087 if (!seek
->only_flag
)
7088 next
->only_flag
= false;
7091 gfc_use_rename
*r
= seek
->rename
;
7094 r
->next
= next
->rename
;
7095 next
->rename
= seek
->rename
;
7097 last
->next
= seek
->next
;
7105 for (; module_list
; module_list
= next
)
7107 next
= module_list
->next
;
7108 rename_list_remove_duplicate (module_list
->rename
);
7109 gfc_use_module (module_list
);
7112 gfc_rename_list
= NULL
;
7117 gfc_free_use_stmts (gfc_use_list
*use_stmts
)
7120 for (; use_stmts
; use_stmts
= next
)
7122 gfc_use_rename
*next_rename
;
7124 for (; use_stmts
->rename
; use_stmts
->rename
= next_rename
)
7126 next_rename
= use_stmts
->rename
->next
;
7127 free (use_stmts
->rename
);
7129 next
= use_stmts
->next
;
7136 gfc_module_init_2 (void)
7138 last_atom
= ATOM_LPAREN
;
7139 gfc_rename_list
= NULL
;
7145 gfc_module_done_2 (void)
7147 free_rename (gfc_rename_list
);
7148 gfc_rename_list
= NULL
;