* tree-vrp.c (operand_less_p): New.
[official-gcc.git] / gcc / tree-vrp.c
blob908f22bbaed41b59edb0cc795bf5518cec861284
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "flags.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "diagnostic.h"
35 #include "cfgloop.h"
36 #include "tree-scalar-evolution.h"
37 #include "tree-ssa-propagate.h"
38 #include "tree-chrec.h"
40 /* Set of SSA names found during the dominator traversal of a
41 sub-graph in find_assert_locations. */
42 static sbitmap found_in_subgraph;
44 /* Local functions. */
45 static int compare_values (tree val1, tree val2);
47 /* Location information for ASSERT_EXPRs. Each instance of this
48 structure describes an ASSERT_EXPR for an SSA name. Since a single
49 SSA name may have more than one assertion associated with it, these
50 locations are kept in a linked list attached to the corresponding
51 SSA name. */
52 struct assert_locus_d
54 /* Basic block where the assertion would be inserted. */
55 basic_block bb;
57 /* Some assertions need to be inserted on an edge (e.g., assertions
58 generated by COND_EXPRs). In those cases, BB will be NULL. */
59 edge e;
61 /* Pointer to the statement that generated this assertion. */
62 block_stmt_iterator si;
64 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
65 enum tree_code comp_code;
67 /* Value being compared against. */
68 tree val;
70 /* Next node in the linked list. */
71 struct assert_locus_d *next;
74 typedef struct assert_locus_d *assert_locus_t;
76 /* If bit I is present, it means that SSA name N_i has a list of
77 assertions that should be inserted in the IL. */
78 static bitmap need_assert_for;
80 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
81 holds a list of ASSERT_LOCUS_T nodes that describe where
82 ASSERT_EXPRs for SSA name N_I should be inserted. */
83 static assert_locus_t *asserts_for;
85 /* Set of blocks visited in find_assert_locations. Used to avoid
86 visiting the same block more than once. */
87 static sbitmap blocks_visited;
89 /* Value range array. After propagation, VR_VALUE[I] holds the range
90 of values that SSA name N_I may take. */
91 static value_range_t **vr_value;
94 /* Return true if ARG is marked with the nonnull attribute in the
95 current function signature. */
97 static bool
98 nonnull_arg_p (tree arg)
100 tree t, attrs, fntype;
101 unsigned HOST_WIDE_INT arg_num;
103 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
105 fntype = TREE_TYPE (current_function_decl);
106 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
108 /* If "nonnull" wasn't specified, we know nothing about the argument. */
109 if (attrs == NULL_TREE)
110 return false;
112 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
113 if (TREE_VALUE (attrs) == NULL_TREE)
114 return true;
116 /* Get the position number for ARG in the function signature. */
117 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
119 t = TREE_CHAIN (t), arg_num++)
121 if (t == arg)
122 break;
125 gcc_assert (t == arg);
127 /* Now see if ARG_NUM is mentioned in the nonnull list. */
128 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
130 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
131 return true;
134 return false;
138 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
140 static void
141 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
142 tree max, bitmap equiv)
144 #if defined ENABLE_CHECKING
145 /* Check the validity of the range. */
146 if (t == VR_RANGE || t == VR_ANTI_RANGE)
148 int cmp;
150 gcc_assert (min && max);
152 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
153 gcc_assert (min != TYPE_MIN_VALUE (TREE_TYPE (min))
154 || max != TYPE_MAX_VALUE (TREE_TYPE (max)));
156 cmp = compare_values (min, max);
157 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
160 if (t == VR_UNDEFINED || t == VR_VARYING)
161 gcc_assert (min == NULL_TREE && max == NULL_TREE);
163 if (t == VR_UNDEFINED || t == VR_VARYING)
164 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
165 #endif
167 vr->type = t;
168 vr->min = min;
169 vr->max = max;
171 /* Since updating the equivalence set involves deep copying the
172 bitmaps, only do it if absolutely necessary. */
173 if (vr->equiv == NULL)
174 vr->equiv = BITMAP_ALLOC (NULL);
176 if (equiv != vr->equiv)
178 if (equiv && !bitmap_empty_p (equiv))
179 bitmap_copy (vr->equiv, equiv);
180 else
181 bitmap_clear (vr->equiv);
186 /* Copy value range FROM into value range TO. */
188 static inline void
189 copy_value_range (value_range_t *to, value_range_t *from)
191 set_value_range (to, from->type, from->min, from->max, from->equiv);
194 /* Set value range VR to a non-negative range of type TYPE. */
196 static inline void
197 set_value_range_to_nonnegative (value_range_t *vr, tree type)
199 tree zero = build_int_cst (type, 0);
200 set_value_range (vr, VR_RANGE, zero, TYPE_MAX_VALUE (type), vr->equiv);
203 /* Set value range VR to a non-NULL range of type TYPE. */
205 static inline void
206 set_value_range_to_nonnull (value_range_t *vr, tree type)
208 tree zero = build_int_cst (type, 0);
209 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
213 /* Set value range VR to a NULL range of type TYPE. */
215 static inline void
216 set_value_range_to_null (value_range_t *vr, tree type)
218 tree zero = build_int_cst (type, 0);
219 set_value_range (vr, VR_RANGE, zero, zero, vr->equiv);
223 /* Set value range VR to VR_VARYING. */
225 static inline void
226 set_value_range_to_varying (value_range_t *vr)
228 vr->type = VR_VARYING;
229 vr->min = vr->max = NULL_TREE;
230 if (vr->equiv)
231 bitmap_clear (vr->equiv);
235 /* Set value range VR to VR_UNDEFINED. */
237 static inline void
238 set_value_range_to_undefined (value_range_t *vr)
240 vr->type = VR_UNDEFINED;
241 vr->min = vr->max = NULL_TREE;
242 if (vr->equiv)
243 bitmap_clear (vr->equiv);
247 /* Return value range information for VAR.
249 If we have no values ranges recorded (ie, VRP is not running), then
250 return NULL. Otherwise create an empty range if none existed for VAR. */
252 static value_range_t *
253 get_value_range (tree var)
255 value_range_t *vr;
256 tree sym;
257 unsigned ver = SSA_NAME_VERSION (var);
259 /* If we have no recorded ranges, then return NULL. */
260 if (! vr_value)
261 return NULL;
263 vr = vr_value[ver];
264 if (vr)
265 return vr;
267 /* Create a default value range. */
268 vr_value[ver] = vr = XCNEW (value_range_t);
270 /* Allocate an equivalence set. */
271 vr->equiv = BITMAP_ALLOC (NULL);
273 /* If VAR is a default definition, the variable can take any value
274 in VAR's type. */
275 sym = SSA_NAME_VAR (var);
276 if (var == gimple_default_def (cfun, sym))
278 /* Try to use the "nonnull" attribute to create ~[0, 0]
279 anti-ranges for pointers. Note that this is only valid with
280 default definitions of PARM_DECLs. */
281 if (TREE_CODE (sym) == PARM_DECL
282 && POINTER_TYPE_P (TREE_TYPE (sym))
283 && nonnull_arg_p (sym))
284 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
285 else
286 set_value_range_to_varying (vr);
289 return vr;
292 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
294 static inline bool
295 vrp_operand_equal_p (tree val1, tree val2)
297 return (val1 == val2
298 || (val1 && val2
299 && operand_equal_p (val1, val2, 0)));
302 /* Return true, if the bitmaps B1 and B2 are equal. */
304 static inline bool
305 vrp_bitmap_equal_p (bitmap b1, bitmap b2)
307 return (b1 == b2
308 || (b1 && b2
309 && bitmap_equal_p (b1, b2)));
312 /* Update the value range and equivalence set for variable VAR to
313 NEW_VR. Return true if NEW_VR is different from VAR's previous
314 value.
316 NOTE: This function assumes that NEW_VR is a temporary value range
317 object created for the sole purpose of updating VAR's range. The
318 storage used by the equivalence set from NEW_VR will be freed by
319 this function. Do not call update_value_range when NEW_VR
320 is the range object associated with another SSA name. */
322 static inline bool
323 update_value_range (tree var, value_range_t *new_vr)
325 value_range_t *old_vr;
326 bool is_new;
328 /* Update the value range, if necessary. */
329 old_vr = get_value_range (var);
330 is_new = old_vr->type != new_vr->type
331 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
332 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
333 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
335 if (is_new)
336 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
337 new_vr->equiv);
339 BITMAP_FREE (new_vr->equiv);
340 new_vr->equiv = NULL;
342 return is_new;
346 /* Add VAR and VAR's equivalence set to EQUIV. */
348 static void
349 add_equivalence (bitmap equiv, tree var)
351 unsigned ver = SSA_NAME_VERSION (var);
352 value_range_t *vr = vr_value[ver];
354 bitmap_set_bit (equiv, ver);
355 if (vr && vr->equiv)
356 bitmap_ior_into (equiv, vr->equiv);
360 /* Return true if VR is ~[0, 0]. */
362 static inline bool
363 range_is_nonnull (value_range_t *vr)
365 return vr->type == VR_ANTI_RANGE
366 && integer_zerop (vr->min)
367 && integer_zerop (vr->max);
371 /* Return true if VR is [0, 0]. */
373 static inline bool
374 range_is_null (value_range_t *vr)
376 return vr->type == VR_RANGE
377 && integer_zerop (vr->min)
378 && integer_zerop (vr->max);
382 /* Return true if value range VR involves at least one symbol. */
384 static inline bool
385 symbolic_range_p (value_range_t *vr)
387 return (!is_gimple_min_invariant (vr->min)
388 || !is_gimple_min_invariant (vr->max));
391 /* Like tree_expr_nonnegative_p, but this function uses value ranges
392 obtained so far. */
394 static bool
395 vrp_expr_computes_nonnegative (tree expr)
397 return tree_expr_nonnegative_p (expr);
400 /* Like tree_expr_nonzero_p, but this function uses value ranges
401 obtained so far. */
403 static bool
404 vrp_expr_computes_nonzero (tree expr)
406 if (tree_expr_nonzero_p (expr))
407 return true;
409 /* If we have an expression of the form &X->a, then the expression
410 is nonnull if X is nonnull. */
411 if (TREE_CODE (expr) == ADDR_EXPR)
413 tree base = get_base_address (TREE_OPERAND (expr, 0));
415 if (base != NULL_TREE
416 && TREE_CODE (base) == INDIRECT_REF
417 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
419 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
420 if (range_is_nonnull (vr))
421 return true;
425 return false;
428 /* Returns true if EXPR is a valid value (as expected by compare_values) --
429 a gimple invariant, or SSA_NAME +- CST. */
431 static bool
432 valid_value_p (tree expr)
434 if (TREE_CODE (expr) == SSA_NAME)
435 return true;
437 if (TREE_CODE (expr) == PLUS_EXPR
438 || TREE_CODE (expr) == MINUS_EXPR)
439 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
440 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
442 return is_gimple_min_invariant (expr);
445 /* Return
446 1 if VAL < VAL2
447 0 if !(VAL < VAL2)
448 -2 if those are incomparable. */
449 static inline int
450 operand_less_p (tree val, tree val2)
452 tree tcmp;
453 /* LT is folded faster than GE and others. Inline the common case. */
454 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
456 if (TYPE_UNSIGNED (TREE_TYPE (val)))
457 return INT_CST_LT_UNSIGNED (val, val2);
458 else
459 return INT_CST_LT (val, val2);
461 else
462 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
463 if (!tcmp)
464 return -2;
465 return !integer_zerop (tcmp);
468 /* Compare two values VAL1 and VAL2. Return
470 -2 if VAL1 and VAL2 cannot be compared at compile-time,
471 -1 if VAL1 < VAL2,
472 0 if VAL1 == VAL2,
473 +1 if VAL1 > VAL2, and
474 +2 if VAL1 != VAL2
476 This is similar to tree_int_cst_compare but supports pointer values
477 and values that cannot be compared at compile time. */
479 static int
480 compare_values (tree val1, tree val2)
482 if (val1 == val2)
483 return 0;
485 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
486 both integers. */
487 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
488 == POINTER_TYPE_P (TREE_TYPE (val2)));
490 if ((TREE_CODE (val1) == SSA_NAME
491 || TREE_CODE (val1) == PLUS_EXPR
492 || TREE_CODE (val1) == MINUS_EXPR)
493 && (TREE_CODE (val2) == SSA_NAME
494 || TREE_CODE (val2) == PLUS_EXPR
495 || TREE_CODE (val2) == MINUS_EXPR))
497 tree n1, c1, n2, c2;
498 enum tree_code code1, code2;
500 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
501 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
502 same name, return -2. */
503 if (TREE_CODE (val1) == SSA_NAME)
505 code1 = SSA_NAME;
506 n1 = val1;
507 c1 = NULL_TREE;
509 else
511 code1 = TREE_CODE (val1);
512 n1 = TREE_OPERAND (val1, 0);
513 c1 = TREE_OPERAND (val1, 1);
514 if (tree_int_cst_sgn (c1) == -1)
516 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
517 if (!c1)
518 return -2;
519 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
523 if (TREE_CODE (val2) == SSA_NAME)
525 code2 = SSA_NAME;
526 n2 = val2;
527 c2 = NULL_TREE;
529 else
531 code2 = TREE_CODE (val2);
532 n2 = TREE_OPERAND (val2, 0);
533 c2 = TREE_OPERAND (val2, 1);
534 if (tree_int_cst_sgn (c2) == -1)
536 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
537 if (!c2)
538 return -2;
539 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
543 /* Both values must use the same name. */
544 if (n1 != n2)
545 return -2;
547 if (code1 == SSA_NAME
548 && code2 == SSA_NAME)
549 /* NAME == NAME */
550 return 0;
552 /* If overflow is defined we cannot simplify more. */
553 if (TYPE_UNSIGNED (TREE_TYPE (val1))
554 || flag_wrapv)
555 return -2;
557 if (code1 == SSA_NAME)
559 if (code2 == PLUS_EXPR)
560 /* NAME < NAME + CST */
561 return -1;
562 else if (code2 == MINUS_EXPR)
563 /* NAME > NAME - CST */
564 return 1;
566 else if (code1 == PLUS_EXPR)
568 if (code2 == SSA_NAME)
569 /* NAME + CST > NAME */
570 return 1;
571 else if (code2 == PLUS_EXPR)
572 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
573 return compare_values (c1, c2);
574 else if (code2 == MINUS_EXPR)
575 /* NAME + CST1 > NAME - CST2 */
576 return 1;
578 else if (code1 == MINUS_EXPR)
580 if (code2 == SSA_NAME)
581 /* NAME - CST < NAME */
582 return -1;
583 else if (code2 == PLUS_EXPR)
584 /* NAME - CST1 < NAME + CST2 */
585 return -1;
586 else if (code2 == MINUS_EXPR)
587 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
588 C1 and C2 are swapped in the call to compare_values. */
589 return compare_values (c2, c1);
592 gcc_unreachable ();
595 /* We cannot compare non-constants. */
596 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
597 return -2;
599 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
601 /* We cannot compare overflowed values. */
602 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
603 return -2;
605 return tree_int_cst_compare (val1, val2);
607 else
609 tree t;
611 /* First see if VAL1 and VAL2 are not the same. */
612 if (val1 == val2 || operand_equal_p (val1, val2, 0))
613 return 0;
615 /* If VAL1 is a lower address than VAL2, return -1. */
616 if (operand_less_p (val1, val2) == 1)
617 return -1;
619 /* If VAL1 is a higher address than VAL2, return +1. */
620 if (operand_less_p (val2, val1) == 1)
621 return 1;
623 /* If VAL1 is different than VAL2, return +2. */
624 t = fold_binary (NE_EXPR, boolean_type_node, val1, val2);
625 if (t == boolean_true_node)
626 return 2;
628 return -2;
633 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
634 0 if VAL is not inside VR,
635 -2 if we cannot tell either way.
637 FIXME, the current semantics of this functions are a bit quirky
638 when taken in the context of VRP. In here we do not care
639 about VR's type. If VR is the anti-range ~[3, 5] the call
640 value_inside_range (4, VR) will return 1.
642 This is counter-intuitive in a strict sense, but the callers
643 currently expect this. They are calling the function
644 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
645 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
646 themselves.
648 This also applies to value_ranges_intersect_p and
649 range_includes_zero_p. The semantics of VR_RANGE and
650 VR_ANTI_RANGE should be encoded here, but that also means
651 adapting the users of these functions to the new semantics.
653 Benchmark compile/20001226-1.c compilation time after changing this
654 function. */
656 static inline int
657 value_inside_range (tree val, value_range_t * vr)
659 int cmp1, cmp2;
661 cmp1 = operand_less_p (val, vr->min);
662 if (cmp1 == -2)
663 return -2;
664 if (cmp1 == 1)
665 return 0;
667 cmp2 = operand_less_p (vr->max, val);
668 if (cmp2 == -2)
669 return -2;
671 return !cmp2;
675 /* Return true if value ranges VR0 and VR1 have a non-empty
676 intersection.
678 Benchmark compile/20001226-1.c compilation time after changing this
679 function.
682 static inline bool
683 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
685 return (value_inside_range (vr1->min, vr0) == 1
686 || value_inside_range (vr1->max, vr0) == 1
687 || value_inside_range (vr0->min, vr1) == 1
688 || value_inside_range (vr0->max, vr1) == 1);
692 /* Return true if VR includes the value zero, false otherwise. FIXME,
693 currently this will return false for an anti-range like ~[-4, 3].
694 This will be wrong when the semantics of value_inside_range are
695 modified (currently the users of this function expect these
696 semantics). */
698 static inline bool
699 range_includes_zero_p (value_range_t *vr)
701 tree zero;
703 gcc_assert (vr->type != VR_UNDEFINED
704 && vr->type != VR_VARYING
705 && !symbolic_range_p (vr));
707 zero = build_int_cst (TREE_TYPE (vr->min), 0);
708 return (value_inside_range (zero, vr) == 1);
711 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
712 false otherwise or if no value range information is available. */
714 bool
715 ssa_name_nonnegative_p (tree t)
717 value_range_t *vr = get_value_range (t);
719 if (!vr)
720 return false;
722 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
723 which would return a useful value should be encoded as a VR_RANGE. */
724 if (vr->type == VR_RANGE)
726 int result = compare_values (vr->min, integer_zero_node);
728 return (result == 0 || result == 1);
730 return false;
733 /* Return true if T, an SSA_NAME, is known to be nonzero. Return
734 false otherwise or if no value range information is available. */
736 bool
737 ssa_name_nonzero_p (tree t)
739 value_range_t *vr = get_value_range (t);
741 if (!vr)
742 return false;
744 /* A VR_RANGE which does not include zero is a nonzero value. */
745 if (vr->type == VR_RANGE && !symbolic_range_p (vr))
746 return ! range_includes_zero_p (vr);
748 /* A VR_ANTI_RANGE which does include zero is a nonzero value. */
749 if (vr->type == VR_ANTI_RANGE && !symbolic_range_p (vr))
750 return range_includes_zero_p (vr);
752 return false;
756 /* Extract value range information from an ASSERT_EXPR EXPR and store
757 it in *VR_P. */
759 static void
760 extract_range_from_assert (value_range_t *vr_p, tree expr)
762 tree var, cond, limit, min, max, type;
763 value_range_t *var_vr, *limit_vr;
764 enum tree_code cond_code;
766 var = ASSERT_EXPR_VAR (expr);
767 cond = ASSERT_EXPR_COND (expr);
769 gcc_assert (COMPARISON_CLASS_P (cond));
771 /* Find VAR in the ASSERT_EXPR conditional. */
772 if (var == TREE_OPERAND (cond, 0))
774 /* If the predicate is of the form VAR COMP LIMIT, then we just
775 take LIMIT from the RHS and use the same comparison code. */
776 limit = TREE_OPERAND (cond, 1);
777 cond_code = TREE_CODE (cond);
779 else
781 /* If the predicate is of the form LIMIT COMP VAR, then we need
782 to flip around the comparison code to create the proper range
783 for VAR. */
784 limit = TREE_OPERAND (cond, 0);
785 cond_code = swap_tree_comparison (TREE_CODE (cond));
788 type = TREE_TYPE (limit);
789 gcc_assert (limit != var);
791 /* For pointer arithmetic, we only keep track of pointer equality
792 and inequality. */
793 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
795 set_value_range_to_varying (vr_p);
796 return;
799 /* If LIMIT is another SSA name and LIMIT has a range of its own,
800 try to use LIMIT's range to avoid creating symbolic ranges
801 unnecessarily. */
802 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
804 /* LIMIT's range is only interesting if it has any useful information. */
805 if (limit_vr
806 && (limit_vr->type == VR_UNDEFINED
807 || limit_vr->type == VR_VARYING
808 || symbolic_range_p (limit_vr)))
809 limit_vr = NULL;
811 /* Initially, the new range has the same set of equivalences of
812 VAR's range. This will be revised before returning the final
813 value. Since assertions may be chained via mutually exclusive
814 predicates, we will need to trim the set of equivalences before
815 we are done. */
816 gcc_assert (vr_p->equiv == NULL);
817 vr_p->equiv = BITMAP_ALLOC (NULL);
818 add_equivalence (vr_p->equiv, var);
820 /* Extract a new range based on the asserted comparison for VAR and
821 LIMIT's value range. Notice that if LIMIT has an anti-range, we
822 will only use it for equality comparisons (EQ_EXPR). For any
823 other kind of assertion, we cannot derive a range from LIMIT's
824 anti-range that can be used to describe the new range. For
825 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
826 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
827 no single range for x_2 that could describe LE_EXPR, so we might
828 as well build the range [b_4, +INF] for it. */
829 if (cond_code == EQ_EXPR)
831 enum value_range_type range_type;
833 if (limit_vr)
835 range_type = limit_vr->type;
836 min = limit_vr->min;
837 max = limit_vr->max;
839 else
841 range_type = VR_RANGE;
842 min = limit;
843 max = limit;
846 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
848 /* When asserting the equality VAR == LIMIT and LIMIT is another
849 SSA name, the new range will also inherit the equivalence set
850 from LIMIT. */
851 if (TREE_CODE (limit) == SSA_NAME)
852 add_equivalence (vr_p->equiv, limit);
854 else if (cond_code == NE_EXPR)
856 /* As described above, when LIMIT's range is an anti-range and
857 this assertion is an inequality (NE_EXPR), then we cannot
858 derive anything from the anti-range. For instance, if
859 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
860 not imply that VAR's range is [0, 0]. So, in the case of
861 anti-ranges, we just assert the inequality using LIMIT and
862 not its anti-range.
864 If LIMIT_VR is a range, we can only use it to build a new
865 anti-range if LIMIT_VR is a single-valued range. For
866 instance, if LIMIT_VR is [0, 1], the predicate
867 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
868 Rather, it means that for value 0 VAR should be ~[0, 0]
869 and for value 1, VAR should be ~[1, 1]. We cannot
870 represent these ranges.
872 The only situation in which we can build a valid
873 anti-range is when LIMIT_VR is a single-valued range
874 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
875 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
876 if (limit_vr
877 && limit_vr->type == VR_RANGE
878 && compare_values (limit_vr->min, limit_vr->max) == 0)
880 min = limit_vr->min;
881 max = limit_vr->max;
883 else
885 /* In any other case, we cannot use LIMIT's range to build a
886 valid anti-range. */
887 min = max = limit;
890 /* If MIN and MAX cover the whole range for their type, then
891 just use the original LIMIT. */
892 if (INTEGRAL_TYPE_P (type)
893 && min == TYPE_MIN_VALUE (type)
894 && max == TYPE_MAX_VALUE (type))
895 min = max = limit;
897 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
899 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
901 min = TYPE_MIN_VALUE (type);
903 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
904 max = limit;
905 else
907 /* If LIMIT_VR is of the form [N1, N2], we need to build the
908 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
909 LT_EXPR. */
910 max = limit_vr->max;
913 /* If the maximum value forces us to be out of bounds, simply punt.
914 It would be pointless to try and do anything more since this
915 all should be optimized away above us. */
916 if (cond_code == LT_EXPR && compare_values (max, min) == 0)
917 set_value_range_to_varying (vr_p);
918 else
920 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
921 if (cond_code == LT_EXPR)
923 tree one = build_int_cst (type, 1);
924 max = fold_build2 (MINUS_EXPR, type, max, one);
927 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
930 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
932 max = TYPE_MAX_VALUE (type);
934 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
935 min = limit;
936 else
938 /* If LIMIT_VR is of the form [N1, N2], we need to build the
939 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
940 GT_EXPR. */
941 min = limit_vr->min;
944 /* If the minimum value forces us to be out of bounds, simply punt.
945 It would be pointless to try and do anything more since this
946 all should be optimized away above us. */
947 if (cond_code == GT_EXPR && compare_values (min, max) == 0)
948 set_value_range_to_varying (vr_p);
949 else
951 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
952 if (cond_code == GT_EXPR)
954 tree one = build_int_cst (type, 1);
955 min = fold_build2 (PLUS_EXPR, type, min, one);
958 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
961 else
962 gcc_unreachable ();
964 /* If VAR already had a known range, it may happen that the new
965 range we have computed and VAR's range are not compatible. For
966 instance,
968 if (p_5 == NULL)
969 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
970 x_7 = p_6->fld;
971 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
973 While the above comes from a faulty program, it will cause an ICE
974 later because p_8 and p_6 will have incompatible ranges and at
975 the same time will be considered equivalent. A similar situation
976 would arise from
978 if (i_5 > 10)
979 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
980 if (i_5 < 5)
981 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
983 Again i_6 and i_7 will have incompatible ranges. It would be
984 pointless to try and do anything with i_7's range because
985 anything dominated by 'if (i_5 < 5)' will be optimized away.
986 Note, due to the wa in which simulation proceeds, the statement
987 i_7 = ASSERT_EXPR <...> we would never be visited because the
988 conditional 'if (i_5 < 5)' always evaluates to false. However,
989 this extra check does not hurt and may protect against future
990 changes to VRP that may get into a situation similar to the
991 NULL pointer dereference example.
993 Note that these compatibility tests are only needed when dealing
994 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
995 are both anti-ranges, they will always be compatible, because two
996 anti-ranges will always have a non-empty intersection. */
998 var_vr = get_value_range (var);
1000 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1001 ranges or anti-ranges. */
1002 if (vr_p->type == VR_VARYING
1003 || vr_p->type == VR_UNDEFINED
1004 || var_vr->type == VR_VARYING
1005 || var_vr->type == VR_UNDEFINED
1006 || symbolic_range_p (vr_p)
1007 || symbolic_range_p (var_vr))
1008 return;
1010 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1012 /* If the two ranges have a non-empty intersection, we can
1013 refine the resulting range. Since the assert expression
1014 creates an equivalency and at the same time it asserts a
1015 predicate, we can take the intersection of the two ranges to
1016 get better precision. */
1017 if (value_ranges_intersect_p (var_vr, vr_p))
1019 /* Use the larger of the two minimums. */
1020 if (compare_values (vr_p->min, var_vr->min) == -1)
1021 min = var_vr->min;
1022 else
1023 min = vr_p->min;
1025 /* Use the smaller of the two maximums. */
1026 if (compare_values (vr_p->max, var_vr->max) == 1)
1027 max = var_vr->max;
1028 else
1029 max = vr_p->max;
1031 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1033 else
1035 /* The two ranges do not intersect, set the new range to
1036 VARYING, because we will not be able to do anything
1037 meaningful with it. */
1038 set_value_range_to_varying (vr_p);
1041 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1042 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1044 /* A range and an anti-range will cancel each other only if
1045 their ends are the same. For instance, in the example above,
1046 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1047 so VR_P should be set to VR_VARYING. */
1048 if (compare_values (var_vr->min, vr_p->min) == 0
1049 && compare_values (var_vr->max, vr_p->max) == 0)
1050 set_value_range_to_varying (vr_p);
1051 else
1053 tree min, max, anti_min, anti_max, real_min, real_max;
1055 /* We want to compute the logical AND of the two ranges;
1056 there are three cases to consider.
1059 1. The VR_ANTI_RANGE range is completely within the
1060 VR_RANGE and the endpoints of the ranges are
1061 different. In that case the resulting range
1062 should be whichever range is more precise.
1063 Typically that will be the VR_RANGE.
1065 2. The VR_ANTI_RANGE is completely disjoint from
1066 the VR_RANGE. In this case the resulting range
1067 should be the VR_RANGE.
1069 3. There is some overlap between the VR_ANTI_RANGE
1070 and the VR_RANGE.
1072 3a. If the high limit of the VR_ANTI_RANGE resides
1073 within the VR_RANGE, then the result is a new
1074 VR_RANGE starting at the high limit of the
1075 the VR_ANTI_RANGE + 1 and extending to the
1076 high limit of the original VR_RANGE.
1078 3b. If the low limit of the VR_ANTI_RANGE resides
1079 within the VR_RANGE, then the result is a new
1080 VR_RANGE starting at the low limit of the original
1081 VR_RANGE and extending to the low limit of the
1082 VR_ANTI_RANGE - 1. */
1083 if (vr_p->type == VR_ANTI_RANGE)
1085 anti_min = vr_p->min;
1086 anti_max = vr_p->max;
1087 real_min = var_vr->min;
1088 real_max = var_vr->max;
1090 else
1092 anti_min = var_vr->min;
1093 anti_max = var_vr->max;
1094 real_min = vr_p->min;
1095 real_max = vr_p->max;
1099 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1100 not including any endpoints. */
1101 if (compare_values (anti_max, real_max) == -1
1102 && compare_values (anti_min, real_min) == 1)
1104 set_value_range (vr_p, VR_RANGE, real_min,
1105 real_max, vr_p->equiv);
1107 /* Case 2, VR_ANTI_RANGE completely disjoint from
1108 VR_RANGE. */
1109 else if (compare_values (anti_min, real_max) == 1
1110 || compare_values (anti_max, real_min) == -1)
1112 set_value_range (vr_p, VR_RANGE, real_min,
1113 real_max, vr_p->equiv);
1115 /* Case 3a, the anti-range extends into the low
1116 part of the real range. Thus creating a new
1117 low for the real range. */
1118 else if ((compare_values (anti_max, real_min) == 1
1119 || compare_values (anti_max, real_min) == 0)
1120 && compare_values (anti_max, real_max) == -1)
1122 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1123 anti_max,
1124 build_int_cst (TREE_TYPE (var_vr->min), 1));
1125 max = real_max;
1126 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1128 /* Case 3b, the anti-range extends into the high
1129 part of the real range. Thus creating a new
1130 higher for the real range. */
1131 else if (compare_values (anti_min, real_min) == 1
1132 && (compare_values (anti_min, real_max) == -1
1133 || compare_values (anti_min, real_max) == 0))
1135 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1136 anti_min,
1137 build_int_cst (TREE_TYPE (var_vr->min), 1));
1138 min = real_min;
1139 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1146 /* Extract range information from SSA name VAR and store it in VR. If
1147 VAR has an interesting range, use it. Otherwise, create the
1148 range [VAR, VAR] and return it. This is useful in situations where
1149 we may have conditionals testing values of VARYING names. For
1150 instance,
1152 x_3 = y_5;
1153 if (x_3 > y_5)
1156 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1157 always false. */
1159 static void
1160 extract_range_from_ssa_name (value_range_t *vr, tree var)
1162 value_range_t *var_vr = get_value_range (var);
1164 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1165 copy_value_range (vr, var_vr);
1166 else
1167 set_value_range (vr, VR_RANGE, var, var, NULL);
1169 add_equivalence (vr->equiv, var);
1173 /* Wrapper around int_const_binop. If the operation overflows and we
1174 are not using wrapping arithmetic, then adjust the result to be
1175 -INF or +INF depending on CODE, VAL1 and VAL2. */
1177 static inline tree
1178 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1180 tree res;
1182 res = int_const_binop (code, val1, val2, 0);
1184 /* If we are not using wrapping arithmetic, operate symbolically
1185 on -INF and +INF. */
1186 if (TYPE_UNSIGNED (TREE_TYPE (val1))
1187 || flag_wrapv)
1189 int checkz = compare_values (res, val1);
1190 bool overflow = false;
1192 /* Ensure that res = val1 [+*] val2 >= val1
1193 or that res = val1 - val2 <= val1. */
1194 if ((code == PLUS_EXPR
1195 && !(checkz == 1 || checkz == 0))
1196 || (code == MINUS_EXPR
1197 && !(checkz == 0 || checkz == -1)))
1199 overflow = true;
1201 /* Checking for multiplication overflow is done by dividing the
1202 output of the multiplication by the first input of the
1203 multiplication. If the result of that division operation is
1204 not equal to the second input of the multiplication, then the
1205 multiplication overflowed. */
1206 else if (code == MULT_EXPR && !integer_zerop (val1))
1208 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1209 res,
1210 val1, 0);
1211 int check = compare_values (tmp, val2);
1213 if (check != 0)
1214 overflow = true;
1217 if (overflow)
1219 res = copy_node (res);
1220 TREE_OVERFLOW (res) = 1;
1224 else if (TREE_OVERFLOW (res)
1225 && !TREE_OVERFLOW (val1)
1226 && !TREE_OVERFLOW (val2))
1228 /* If the operation overflowed but neither VAL1 nor VAL2 are
1229 overflown, return -INF or +INF depending on the operation
1230 and the combination of signs of the operands. */
1231 int sgn1 = tree_int_cst_sgn (val1);
1232 int sgn2 = tree_int_cst_sgn (val2);
1234 /* Notice that we only need to handle the restricted set of
1235 operations handled by extract_range_from_binary_expr.
1236 Among them, only multiplication, addition and subtraction
1237 can yield overflow without overflown operands because we
1238 are working with integral types only... except in the
1239 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1240 for division too. */
1242 /* For multiplication, the sign of the overflow is given
1243 by the comparison of the signs of the operands. */
1244 if ((code == MULT_EXPR && sgn1 == sgn2)
1245 /* For addition, the operands must be of the same sign
1246 to yield an overflow. Its sign is therefore that
1247 of one of the operands, for example the first. */
1248 || (code == PLUS_EXPR && sgn1 > 0)
1249 /* For subtraction, the operands must be of different
1250 signs to yield an overflow. Its sign is therefore
1251 that of the first operand or the opposite of that
1252 of the second operand. A first operand of 0 counts
1253 as positive here, for the corner case 0 - (-INF),
1254 which overflows, but must yield +INF. */
1255 || (code == MINUS_EXPR && sgn1 >= 0)
1256 /* For division, the only case is -INF / -1 = +INF. */
1257 || code == TRUNC_DIV_EXPR
1258 || code == FLOOR_DIV_EXPR
1259 || code == CEIL_DIV_EXPR
1260 || code == EXACT_DIV_EXPR
1261 || code == ROUND_DIV_EXPR)
1262 return TYPE_MAX_VALUE (TREE_TYPE (res));
1263 else
1264 return TYPE_MIN_VALUE (TREE_TYPE (res));
1267 return res;
1271 /* Extract range information from a binary expression EXPR based on
1272 the ranges of each of its operands and the expression code. */
1274 static void
1275 extract_range_from_binary_expr (value_range_t *vr, tree expr)
1277 enum tree_code code = TREE_CODE (expr);
1278 enum value_range_type type;
1279 tree op0, op1, min, max;
1280 int cmp;
1281 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1282 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1284 /* Not all binary expressions can be applied to ranges in a
1285 meaningful way. Handle only arithmetic operations. */
1286 if (code != PLUS_EXPR
1287 && code != MINUS_EXPR
1288 && code != MULT_EXPR
1289 && code != TRUNC_DIV_EXPR
1290 && code != FLOOR_DIV_EXPR
1291 && code != CEIL_DIV_EXPR
1292 && code != EXACT_DIV_EXPR
1293 && code != ROUND_DIV_EXPR
1294 && code != MIN_EXPR
1295 && code != MAX_EXPR
1296 && code != BIT_AND_EXPR
1297 && code != TRUTH_ANDIF_EXPR
1298 && code != TRUTH_ORIF_EXPR
1299 && code != TRUTH_AND_EXPR
1300 && code != TRUTH_OR_EXPR)
1302 set_value_range_to_varying (vr);
1303 return;
1306 /* Get value ranges for each operand. For constant operands, create
1307 a new value range with the operand to simplify processing. */
1308 op0 = TREE_OPERAND (expr, 0);
1309 if (TREE_CODE (op0) == SSA_NAME)
1310 vr0 = *(get_value_range (op0));
1311 else if (is_gimple_min_invariant (op0))
1312 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
1313 else
1314 set_value_range_to_varying (&vr0);
1316 op1 = TREE_OPERAND (expr, 1);
1317 if (TREE_CODE (op1) == SSA_NAME)
1318 vr1 = *(get_value_range (op1));
1319 else if (is_gimple_min_invariant (op1))
1320 set_value_range (&vr1, VR_RANGE, op1, op1, NULL);
1321 else
1322 set_value_range_to_varying (&vr1);
1324 /* If either range is UNDEFINED, so is the result. */
1325 if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
1327 set_value_range_to_undefined (vr);
1328 return;
1331 /* The type of the resulting value range defaults to VR0.TYPE. */
1332 type = vr0.type;
1334 /* Refuse to operate on VARYING ranges, ranges of different kinds
1335 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
1336 because we may be able to derive a useful range even if one of
1337 the operands is VR_VARYING or symbolic range. TODO, we may be
1338 able to derive anti-ranges in some cases. */
1339 if (code != BIT_AND_EXPR
1340 && code != TRUTH_AND_EXPR
1341 && code != TRUTH_OR_EXPR
1342 && (vr0.type == VR_VARYING
1343 || vr1.type == VR_VARYING
1344 || vr0.type != vr1.type
1345 || symbolic_range_p (&vr0)
1346 || symbolic_range_p (&vr1)))
1348 set_value_range_to_varying (vr);
1349 return;
1352 /* Now evaluate the expression to determine the new range. */
1353 if (POINTER_TYPE_P (TREE_TYPE (expr))
1354 || POINTER_TYPE_P (TREE_TYPE (op0))
1355 || POINTER_TYPE_P (TREE_TYPE (op1)))
1357 /* For pointer types, we are really only interested in asserting
1358 whether the expression evaluates to non-NULL. FIXME, we used
1359 to gcc_assert (code == PLUS_EXPR || code == MINUS_EXPR), but
1360 ivopts is generating expressions with pointer multiplication
1361 in them. */
1362 if (code == PLUS_EXPR)
1364 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
1365 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1366 else if (range_is_null (&vr0) && range_is_null (&vr1))
1367 set_value_range_to_null (vr, TREE_TYPE (expr));
1368 else
1369 set_value_range_to_varying (vr);
1371 else
1373 /* Subtracting from a pointer, may yield 0, so just drop the
1374 resulting range to varying. */
1375 set_value_range_to_varying (vr);
1378 return;
1381 /* For integer ranges, apply the operation to each end of the
1382 range and see what we end up with. */
1383 if (code == TRUTH_ANDIF_EXPR
1384 || code == TRUTH_ORIF_EXPR
1385 || code == TRUTH_AND_EXPR
1386 || code == TRUTH_OR_EXPR)
1388 /* If one of the operands is zero, we know that the whole
1389 expression evaluates zero. */
1390 if (code == TRUTH_AND_EXPR
1391 && ((vr0.type == VR_RANGE
1392 && integer_zerop (vr0.min)
1393 && integer_zerop (vr0.max))
1394 || (vr1.type == VR_RANGE
1395 && integer_zerop (vr1.min)
1396 && integer_zerop (vr1.max))))
1398 type = VR_RANGE;
1399 min = max = build_int_cst (TREE_TYPE (expr), 0);
1401 /* If one of the operands is one, we know that the whole
1402 expression evaluates one. */
1403 else if (code == TRUTH_OR_EXPR
1404 && ((vr0.type == VR_RANGE
1405 && integer_onep (vr0.min)
1406 && integer_onep (vr0.max))
1407 || (vr1.type == VR_RANGE
1408 && integer_onep (vr1.min)
1409 && integer_onep (vr1.max))))
1411 type = VR_RANGE;
1412 min = max = build_int_cst (TREE_TYPE (expr), 1);
1414 else if (vr0.type != VR_VARYING
1415 && vr1.type != VR_VARYING
1416 && vr0.type == vr1.type
1417 && !symbolic_range_p (&vr0)
1418 && !symbolic_range_p (&vr1))
1420 /* Boolean expressions cannot be folded with int_const_binop. */
1421 min = fold_binary (code, TREE_TYPE (expr), vr0.min, vr1.min);
1422 max = fold_binary (code, TREE_TYPE (expr), vr0.max, vr1.max);
1424 else
1426 set_value_range_to_varying (vr);
1427 return;
1430 else if (code == PLUS_EXPR
1431 || code == MIN_EXPR
1432 || code == MAX_EXPR)
1434 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
1435 VR_VARYING. It would take more effort to compute a precise
1436 range for such a case. For example, if we have op0 == 1 and
1437 op1 == -1 with their ranges both being ~[0,0], we would have
1438 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
1439 Note that we are guaranteed to have vr0.type == vr1.type at
1440 this point. */
1441 if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
1443 set_value_range_to_varying (vr);
1444 return;
1447 /* For operations that make the resulting range directly
1448 proportional to the original ranges, apply the operation to
1449 the same end of each range. */
1450 min = vrp_int_const_binop (code, vr0.min, vr1.min);
1451 max = vrp_int_const_binop (code, vr0.max, vr1.max);
1453 else if (code == MULT_EXPR
1454 || code == TRUNC_DIV_EXPR
1455 || code == FLOOR_DIV_EXPR
1456 || code == CEIL_DIV_EXPR
1457 || code == EXACT_DIV_EXPR
1458 || code == ROUND_DIV_EXPR)
1460 tree val[4];
1461 size_t i;
1463 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
1464 drop to VR_VARYING. It would take more effort to compute a
1465 precise range for such a case. For example, if we have
1466 op0 == 65536 and op1 == 65536 with their ranges both being
1467 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
1468 we cannot claim that the product is in ~[0,0]. Note that we
1469 are guaranteed to have vr0.type == vr1.type at this
1470 point. */
1471 if (code == MULT_EXPR
1472 && vr0.type == VR_ANTI_RANGE
1473 && (flag_wrapv || TYPE_UNSIGNED (TREE_TYPE (op0))))
1475 set_value_range_to_varying (vr);
1476 return;
1479 /* Multiplications and divisions are a bit tricky to handle,
1480 depending on the mix of signs we have in the two ranges, we
1481 need to operate on different values to get the minimum and
1482 maximum values for the new range. One approach is to figure
1483 out all the variations of range combinations and do the
1484 operations.
1486 However, this involves several calls to compare_values and it
1487 is pretty convoluted. It's simpler to do the 4 operations
1488 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
1489 MAX1) and then figure the smallest and largest values to form
1490 the new range. */
1492 /* Divisions by zero result in a VARYING value. */
1493 if (code != MULT_EXPR
1494 && (vr0.type == VR_ANTI_RANGE || range_includes_zero_p (&vr1)))
1496 set_value_range_to_varying (vr);
1497 return;
1500 /* Compute the 4 cross operations. */
1501 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
1503 val[1] = (vr1.max != vr1.min)
1504 ? vrp_int_const_binop (code, vr0.min, vr1.max)
1505 : NULL_TREE;
1507 val[2] = (vr0.max != vr0.min)
1508 ? vrp_int_const_binop (code, vr0.max, vr1.min)
1509 : NULL_TREE;
1511 val[3] = (vr0.min != vr0.max && vr1.min != vr1.max)
1512 ? vrp_int_const_binop (code, vr0.max, vr1.max)
1513 : NULL_TREE;
1515 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
1516 of VAL[i]. */
1517 min = val[0];
1518 max = val[0];
1519 for (i = 1; i < 4; i++)
1521 if (!is_gimple_min_invariant (min) || TREE_OVERFLOW (min)
1522 || !is_gimple_min_invariant (max) || TREE_OVERFLOW (max))
1523 break;
1525 if (val[i])
1527 if (!is_gimple_min_invariant (val[i]) || TREE_OVERFLOW (val[i]))
1529 /* If we found an overflowed value, set MIN and MAX
1530 to it so that we set the resulting range to
1531 VARYING. */
1532 min = max = val[i];
1533 break;
1536 if (compare_values (val[i], min) == -1)
1537 min = val[i];
1539 if (compare_values (val[i], max) == 1)
1540 max = val[i];
1544 else if (code == MINUS_EXPR)
1546 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
1547 VR_VARYING. It would take more effort to compute a precise
1548 range for such a case. For example, if we have op0 == 1 and
1549 op1 == 1 with their ranges both being ~[0,0], we would have
1550 op0 - op1 == 0, so we cannot claim that the difference is in
1551 ~[0,0]. Note that we are guaranteed to have
1552 vr0.type == vr1.type at this point. */
1553 if (vr0.type == VR_ANTI_RANGE)
1555 set_value_range_to_varying (vr);
1556 return;
1559 /* For MINUS_EXPR, apply the operation to the opposite ends of
1560 each range. */
1561 min = vrp_int_const_binop (code, vr0.min, vr1.max);
1562 max = vrp_int_const_binop (code, vr0.max, vr1.min);
1564 else if (code == BIT_AND_EXPR)
1566 if (vr0.type == VR_RANGE
1567 && vr0.min == vr0.max
1568 && tree_expr_nonnegative_p (vr0.max)
1569 && TREE_CODE (vr0.max) == INTEGER_CST)
1571 min = build_int_cst (TREE_TYPE (expr), 0);
1572 max = vr0.max;
1574 else if (vr1.type == VR_RANGE
1575 && vr1.min == vr1.max
1576 && tree_expr_nonnegative_p (vr1.max)
1577 && TREE_CODE (vr1.max) == INTEGER_CST)
1579 type = VR_RANGE;
1580 min = build_int_cst (TREE_TYPE (expr), 0);
1581 max = vr1.max;
1583 else
1585 set_value_range_to_varying (vr);
1586 return;
1589 else
1590 gcc_unreachable ();
1592 /* If either MIN or MAX overflowed, then set the resulting range to
1593 VARYING. */
1594 if (!is_gimple_min_invariant (min) || TREE_OVERFLOW (min)
1595 || !is_gimple_min_invariant (max) || TREE_OVERFLOW (max))
1597 set_value_range_to_varying (vr);
1598 return;
1601 cmp = compare_values (min, max);
1602 if (cmp == -2 || cmp == 1)
1604 /* If the new range has its limits swapped around (MIN > MAX),
1605 then the operation caused one of them to wrap around, mark
1606 the new range VARYING. */
1607 set_value_range_to_varying (vr);
1609 else
1610 set_value_range (vr, type, min, max, NULL);
1614 /* Extract range information from a unary expression EXPR based on
1615 the range of its operand and the expression code. */
1617 static void
1618 extract_range_from_unary_expr (value_range_t *vr, tree expr)
1620 enum tree_code code = TREE_CODE (expr);
1621 tree min, max, op0;
1622 int cmp;
1623 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1625 /* Refuse to operate on certain unary expressions for which we
1626 cannot easily determine a resulting range. */
1627 if (code == FIX_TRUNC_EXPR
1628 || code == FLOAT_EXPR
1629 || code == BIT_NOT_EXPR
1630 || code == NON_LVALUE_EXPR
1631 || code == CONJ_EXPR)
1633 set_value_range_to_varying (vr);
1634 return;
1637 /* Get value ranges for the operand. For constant operands, create
1638 a new value range with the operand to simplify processing. */
1639 op0 = TREE_OPERAND (expr, 0);
1640 if (TREE_CODE (op0) == SSA_NAME)
1641 vr0 = *(get_value_range (op0));
1642 else if (is_gimple_min_invariant (op0))
1643 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
1644 else
1645 set_value_range_to_varying (&vr0);
1647 /* If VR0 is UNDEFINED, so is the result. */
1648 if (vr0.type == VR_UNDEFINED)
1650 set_value_range_to_undefined (vr);
1651 return;
1654 /* Refuse to operate on symbolic ranges, or if neither operand is
1655 a pointer or integral type. */
1656 if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
1657 && !POINTER_TYPE_P (TREE_TYPE (op0)))
1658 || (vr0.type != VR_VARYING
1659 && symbolic_range_p (&vr0)))
1661 set_value_range_to_varying (vr);
1662 return;
1665 /* If the expression involves pointers, we are only interested in
1666 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
1667 if (POINTER_TYPE_P (TREE_TYPE (expr)) || POINTER_TYPE_P (TREE_TYPE (op0)))
1669 if (range_is_nonnull (&vr0) || tree_expr_nonzero_p (expr))
1670 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1671 else if (range_is_null (&vr0))
1672 set_value_range_to_null (vr, TREE_TYPE (expr));
1673 else
1674 set_value_range_to_varying (vr);
1676 return;
1679 /* Handle unary expressions on integer ranges. */
1680 if (code == NOP_EXPR || code == CONVERT_EXPR)
1682 tree inner_type = TREE_TYPE (op0);
1683 tree outer_type = TREE_TYPE (expr);
1685 /* If VR0 represents a simple range, then try to convert
1686 the min and max values for the range to the same type
1687 as OUTER_TYPE. If the results compare equal to VR0's
1688 min and max values and the new min is still less than
1689 or equal to the new max, then we can safely use the newly
1690 computed range for EXPR. This allows us to compute
1691 accurate ranges through many casts. */
1692 if (vr0.type == VR_RANGE
1693 || (vr0.type == VR_VARYING
1694 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)))
1696 tree new_min, new_max, orig_min, orig_max;
1698 /* Convert the input operand min/max to OUTER_TYPE. If
1699 the input has no range information, then use the min/max
1700 for the input's type. */
1701 if (vr0.type == VR_RANGE)
1703 orig_min = vr0.min;
1704 orig_max = vr0.max;
1706 else
1708 orig_min = TYPE_MIN_VALUE (inner_type);
1709 orig_max = TYPE_MAX_VALUE (inner_type);
1712 new_min = fold_convert (outer_type, orig_min);
1713 new_max = fold_convert (outer_type, orig_max);
1715 /* Verify the new min/max values are gimple values and
1716 that they compare equal to the original input's
1717 min/max values. */
1718 if (is_gimple_val (new_min)
1719 && is_gimple_val (new_max)
1720 && tree_int_cst_equal (new_min, orig_min)
1721 && tree_int_cst_equal (new_max, orig_max)
1722 && compare_values (new_min, new_max) <= 0
1723 && compare_values (new_min, new_max) >= -1)
1725 set_value_range (vr, VR_RANGE, new_min, new_max, vr->equiv);
1726 return;
1730 /* When converting types of different sizes, set the result to
1731 VARYING. Things like sign extensions and precision loss may
1732 change the range. For instance, if x_3 is of type 'long long
1733 int' and 'y_5 = (unsigned short) x_3', if x_3 is ~[0, 0], it
1734 is impossible to know at compile time whether y_5 will be
1735 ~[0, 0]. */
1736 if (TYPE_SIZE (inner_type) != TYPE_SIZE (outer_type)
1737 || TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
1739 set_value_range_to_varying (vr);
1740 return;
1744 /* Conversion of a VR_VARYING value to a wider type can result
1745 in a usable range. So wait until after we've handled conversions
1746 before dropping the result to VR_VARYING if we had a source
1747 operand that is VR_VARYING. */
1748 if (vr0.type == VR_VARYING)
1750 set_value_range_to_varying (vr);
1751 return;
1754 /* Apply the operation to each end of the range and see what we end
1755 up with. */
1756 if (code == NEGATE_EXPR
1757 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
1759 /* NEGATE_EXPR flips the range around. We need to treat
1760 TYPE_MIN_VALUE specially dependent on wrapping, range type
1761 and if it was used as minimum or maximum value:
1762 -~[MIN, MIN] == ~[MIN, MIN]
1763 -[MIN, 0] == [0, MAX] for -fno-wrapv
1764 -[MIN, 0] == [0, MIN] for -fwrapv (will be set to varying later) */
1765 min = vr0.max == TYPE_MIN_VALUE (TREE_TYPE (expr))
1766 ? TYPE_MIN_VALUE (TREE_TYPE (expr))
1767 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1769 max = vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr))
1770 ? (vr0.type == VR_ANTI_RANGE || flag_wrapv
1771 ? TYPE_MIN_VALUE (TREE_TYPE (expr))
1772 : TYPE_MAX_VALUE (TREE_TYPE (expr)))
1773 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1776 else if (code == NEGATE_EXPR
1777 && TYPE_UNSIGNED (TREE_TYPE (expr)))
1779 if (!range_includes_zero_p (&vr0))
1781 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1782 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1784 else
1786 if (range_is_null (&vr0))
1787 set_value_range_to_null (vr, TREE_TYPE (expr));
1788 else
1789 set_value_range_to_varying (vr);
1790 return;
1793 else if (code == ABS_EXPR
1794 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
1796 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
1797 useful range. */
1798 if (flag_wrapv
1799 && ((vr0.type == VR_RANGE
1800 && vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
1801 || (vr0.type == VR_ANTI_RANGE
1802 && vr0.min != TYPE_MIN_VALUE (TREE_TYPE (expr))
1803 && !range_includes_zero_p (&vr0))))
1805 set_value_range_to_varying (vr);
1806 return;
1809 /* ABS_EXPR may flip the range around, if the original range
1810 included negative values. */
1811 min = (vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
1812 ? TYPE_MAX_VALUE (TREE_TYPE (expr))
1813 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1815 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1817 cmp = compare_values (min, max);
1819 /* If a VR_ANTI_RANGEs contains zero, then we have
1820 ~[-INF, min(MIN, MAX)]. */
1821 if (vr0.type == VR_ANTI_RANGE)
1823 if (range_includes_zero_p (&vr0))
1825 tree type_min_value = TYPE_MIN_VALUE (TREE_TYPE (expr));
1827 /* Take the lower of the two values. */
1828 if (cmp != 1)
1829 max = min;
1831 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
1832 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
1833 flag_wrapv is set and the original anti-range doesn't include
1834 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
1835 min = (flag_wrapv && vr0.min != type_min_value
1836 ? int_const_binop (PLUS_EXPR,
1837 type_min_value,
1838 integer_one_node, 0)
1839 : type_min_value);
1841 else
1843 /* All else has failed, so create the range [0, INF], even for
1844 flag_wrapv since TYPE_MIN_VALUE is in the original
1845 anti-range. */
1846 vr0.type = VR_RANGE;
1847 min = build_int_cst (TREE_TYPE (expr), 0);
1848 max = TYPE_MAX_VALUE (TREE_TYPE (expr));
1852 /* If the range contains zero then we know that the minimum value in the
1853 range will be zero. */
1854 else if (range_includes_zero_p (&vr0))
1856 if (cmp == 1)
1857 max = min;
1858 min = build_int_cst (TREE_TYPE (expr), 0);
1860 else
1862 /* If the range was reversed, swap MIN and MAX. */
1863 if (cmp == 1)
1865 tree t = min;
1866 min = max;
1867 max = t;
1871 else
1873 /* Otherwise, operate on each end of the range. */
1874 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1875 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1878 cmp = compare_values (min, max);
1879 if (cmp == -2 || cmp == 1)
1881 /* If the new range has its limits swapped around (MIN > MAX),
1882 then the operation caused one of them to wrap around, mark
1883 the new range VARYING. */
1884 set_value_range_to_varying (vr);
1886 else
1887 set_value_range (vr, vr0.type, min, max, NULL);
1891 /* Extract range information from a comparison expression EXPR based
1892 on the range of its operand and the expression code. */
1894 static void
1895 extract_range_from_comparison (value_range_t *vr, tree expr)
1897 tree val = vrp_evaluate_conditional (expr, false);
1898 if (val)
1900 /* Since this expression was found on the RHS of an assignment,
1901 its type may be different from _Bool. Convert VAL to EXPR's
1902 type. */
1903 val = fold_convert (TREE_TYPE (expr), val);
1904 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
1906 else
1907 set_value_range_to_varying (vr);
1911 /* Try to compute a useful range out of expression EXPR and store it
1912 in *VR. */
1914 static void
1915 extract_range_from_expr (value_range_t *vr, tree expr)
1917 enum tree_code code = TREE_CODE (expr);
1919 if (code == ASSERT_EXPR)
1920 extract_range_from_assert (vr, expr);
1921 else if (code == SSA_NAME)
1922 extract_range_from_ssa_name (vr, expr);
1923 else if (TREE_CODE_CLASS (code) == tcc_binary
1924 || code == TRUTH_ANDIF_EXPR
1925 || code == TRUTH_ORIF_EXPR
1926 || code == TRUTH_AND_EXPR
1927 || code == TRUTH_OR_EXPR
1928 || code == TRUTH_XOR_EXPR)
1929 extract_range_from_binary_expr (vr, expr);
1930 else if (TREE_CODE_CLASS (code) == tcc_unary)
1931 extract_range_from_unary_expr (vr, expr);
1932 else if (TREE_CODE_CLASS (code) == tcc_comparison)
1933 extract_range_from_comparison (vr, expr);
1934 else if (is_gimple_min_invariant (expr))
1935 set_value_range (vr, VR_RANGE, expr, expr, NULL);
1936 else
1937 set_value_range_to_varying (vr);
1939 /* If we got a varying range from the tests above, try a final
1940 time to derive a nonnegative or nonzero range. This time
1941 relying primarily on generic routines in fold in conjunction
1942 with range data. */
1943 if (vr->type == VR_VARYING)
1945 if (INTEGRAL_TYPE_P (TREE_TYPE (expr))
1946 && vrp_expr_computes_nonnegative (expr))
1947 set_value_range_to_nonnegative (vr, TREE_TYPE (expr));
1948 else if (vrp_expr_computes_nonzero (expr))
1949 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1953 /* Given a range VR, a LOOP and a variable VAR, determine whether it
1954 would be profitable to adjust VR using scalar evolution information
1955 for VAR. If so, update VR with the new limits. */
1957 static void
1958 adjust_range_with_scev (value_range_t *vr, struct loop *loop, tree stmt,
1959 tree var)
1961 tree init, step, chrec, tmin, tmax, min, max, type;
1962 enum ev_direction dir;
1964 /* TODO. Don't adjust anti-ranges. An anti-range may provide
1965 better opportunities than a regular range, but I'm not sure. */
1966 if (vr->type == VR_ANTI_RANGE)
1967 return;
1969 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
1970 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
1971 return;
1973 init = initial_condition_in_loop_num (chrec, loop->num);
1974 step = evolution_part_in_loop_num (chrec, loop->num);
1976 /* If STEP is symbolic, we can't know whether INIT will be the
1977 minimum or maximum value in the range. Also, unless INIT is
1978 a simple expression, compare_values and possibly other functions
1979 in tree-vrp won't be able to handle it. */
1980 if (step == NULL_TREE
1981 || !is_gimple_min_invariant (step)
1982 || !valid_value_p (init))
1983 return;
1985 dir = scev_direction (chrec);
1986 if (/* Do not adjust ranges if we do not know whether the iv increases
1987 or decreases, ... */
1988 dir == EV_DIR_UNKNOWN
1989 /* ... or if it may wrap. */
1990 || scev_probably_wraps_p (init, step, stmt,
1991 current_loops->parray[CHREC_VARIABLE (chrec)],
1992 true))
1993 return;
1995 type = TREE_TYPE (var);
1996 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
1997 tmin = lower_bound_in_type (type, type);
1998 else
1999 tmin = TYPE_MIN_VALUE (type);
2000 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
2001 tmax = upper_bound_in_type (type, type);
2002 else
2003 tmax = TYPE_MAX_VALUE (type);
2005 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2007 min = tmin;
2008 max = tmax;
2010 /* For VARYING or UNDEFINED ranges, just about anything we get
2011 from scalar evolutions should be better. */
2013 if (dir == EV_DIR_DECREASES)
2014 max = init;
2015 else
2016 min = init;
2018 /* If we would create an invalid range, then just assume we
2019 know absolutely nothing. This may be over-conservative,
2020 but it's clearly safe, and should happen only in unreachable
2021 parts of code, or for invalid programs. */
2022 if (compare_values (min, max) == 1)
2023 return;
2025 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2027 else if (vr->type == VR_RANGE)
2029 min = vr->min;
2030 max = vr->max;
2032 if (dir == EV_DIR_DECREASES)
2034 /* INIT is the maximum value. If INIT is lower than VR->MAX
2035 but no smaller than VR->MIN, set VR->MAX to INIT. */
2036 if (compare_values (init, max) == -1)
2038 max = init;
2040 /* If we just created an invalid range with the minimum
2041 greater than the maximum, we fail conservatively.
2042 This should happen only in unreachable
2043 parts of code, or for invalid programs. */
2044 if (compare_values (min, max) == 1)
2045 return;
2048 else
2050 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
2051 if (compare_values (init, min) == 1)
2053 min = init;
2055 /* Again, avoid creating invalid range by failing. */
2056 if (compare_values (min, max) == 1)
2057 return;
2061 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2066 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
2068 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
2069 all the values in the ranges.
2071 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
2073 - Return NULL_TREE if it is not always possible to determine the
2074 value of the comparison. */
2077 static tree
2078 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1)
2080 /* VARYING or UNDEFINED ranges cannot be compared. */
2081 if (vr0->type == VR_VARYING
2082 || vr0->type == VR_UNDEFINED
2083 || vr1->type == VR_VARYING
2084 || vr1->type == VR_UNDEFINED)
2085 return NULL_TREE;
2087 /* Anti-ranges need to be handled separately. */
2088 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
2090 /* If both are anti-ranges, then we cannot compute any
2091 comparison. */
2092 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
2093 return NULL_TREE;
2095 /* These comparisons are never statically computable. */
2096 if (comp == GT_EXPR
2097 || comp == GE_EXPR
2098 || comp == LT_EXPR
2099 || comp == LE_EXPR)
2100 return NULL_TREE;
2102 /* Equality can be computed only between a range and an
2103 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
2104 if (vr0->type == VR_RANGE)
2106 /* To simplify processing, make VR0 the anti-range. */
2107 value_range_t *tmp = vr0;
2108 vr0 = vr1;
2109 vr1 = tmp;
2112 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
2114 if (compare_values (vr0->min, vr1->min) == 0
2115 && compare_values (vr0->max, vr1->max) == 0)
2116 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2118 return NULL_TREE;
2121 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
2122 operands around and change the comparison code. */
2123 if (comp == GT_EXPR || comp == GE_EXPR)
2125 value_range_t *tmp;
2126 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
2127 tmp = vr0;
2128 vr0 = vr1;
2129 vr1 = tmp;
2132 if (comp == EQ_EXPR)
2134 /* Equality may only be computed if both ranges represent
2135 exactly one value. */
2136 if (compare_values (vr0->min, vr0->max) == 0
2137 && compare_values (vr1->min, vr1->max) == 0)
2139 int cmp_min = compare_values (vr0->min, vr1->min);
2140 int cmp_max = compare_values (vr0->max, vr1->max);
2141 if (cmp_min == 0 && cmp_max == 0)
2142 return boolean_true_node;
2143 else if (cmp_min != -2 && cmp_max != -2)
2144 return boolean_false_node;
2146 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
2147 else if (compare_values (vr0->min, vr1->max) == 1
2148 || compare_values (vr1->min, vr0->max) == 1)
2149 return boolean_false_node;
2151 return NULL_TREE;
2153 else if (comp == NE_EXPR)
2155 int cmp1, cmp2;
2157 /* If VR0 is completely to the left or completely to the right
2158 of VR1, they are always different. Notice that we need to
2159 make sure that both comparisons yield similar results to
2160 avoid comparing values that cannot be compared at
2161 compile-time. */
2162 cmp1 = compare_values (vr0->max, vr1->min);
2163 cmp2 = compare_values (vr0->min, vr1->max);
2164 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
2165 return boolean_true_node;
2167 /* If VR0 and VR1 represent a single value and are identical,
2168 return false. */
2169 else if (compare_values (vr0->min, vr0->max) == 0
2170 && compare_values (vr1->min, vr1->max) == 0
2171 && compare_values (vr0->min, vr1->min) == 0
2172 && compare_values (vr0->max, vr1->max) == 0)
2173 return boolean_false_node;
2175 /* Otherwise, they may or may not be different. */
2176 else
2177 return NULL_TREE;
2179 else if (comp == LT_EXPR || comp == LE_EXPR)
2181 int tst;
2183 /* If VR0 is to the left of VR1, return true. */
2184 tst = compare_values (vr0->max, vr1->min);
2185 if ((comp == LT_EXPR && tst == -1)
2186 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2187 return boolean_true_node;
2189 /* If VR0 is to the right of VR1, return false. */
2190 tst = compare_values (vr0->min, vr1->max);
2191 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2192 || (comp == LE_EXPR && tst == 1))
2193 return boolean_false_node;
2195 /* Otherwise, we don't know. */
2196 return NULL_TREE;
2199 gcc_unreachable ();
2203 /* Given a value range VR, a value VAL and a comparison code COMP, return
2204 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
2205 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
2206 always returns false. Return NULL_TREE if it is not always
2207 possible to determine the value of the comparison. */
2209 static tree
2210 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val)
2212 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2213 return NULL_TREE;
2215 /* Anti-ranges need to be handled separately. */
2216 if (vr->type == VR_ANTI_RANGE)
2218 /* For anti-ranges, the only predicates that we can compute at
2219 compile time are equality and inequality. */
2220 if (comp == GT_EXPR
2221 || comp == GE_EXPR
2222 || comp == LT_EXPR
2223 || comp == LE_EXPR)
2224 return NULL_TREE;
2226 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
2227 if (value_inside_range (val, vr) == 1)
2228 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2230 return NULL_TREE;
2233 if (comp == EQ_EXPR)
2235 /* EQ_EXPR may only be computed if VR represents exactly
2236 one value. */
2237 if (compare_values (vr->min, vr->max) == 0)
2239 int cmp = compare_values (vr->min, val);
2240 if (cmp == 0)
2241 return boolean_true_node;
2242 else if (cmp == -1 || cmp == 1 || cmp == 2)
2243 return boolean_false_node;
2245 else if (compare_values (val, vr->min) == -1
2246 || compare_values (vr->max, val) == -1)
2247 return boolean_false_node;
2249 return NULL_TREE;
2251 else if (comp == NE_EXPR)
2253 /* If VAL is not inside VR, then they are always different. */
2254 if (compare_values (vr->max, val) == -1
2255 || compare_values (vr->min, val) == 1)
2256 return boolean_true_node;
2258 /* If VR represents exactly one value equal to VAL, then return
2259 false. */
2260 if (compare_values (vr->min, vr->max) == 0
2261 && compare_values (vr->min, val) == 0)
2262 return boolean_false_node;
2264 /* Otherwise, they may or may not be different. */
2265 return NULL_TREE;
2267 else if (comp == LT_EXPR || comp == LE_EXPR)
2269 int tst;
2271 /* If VR is to the left of VAL, return true. */
2272 tst = compare_values (vr->max, val);
2273 if ((comp == LT_EXPR && tst == -1)
2274 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2275 return boolean_true_node;
2277 /* If VR is to the right of VAL, return false. */
2278 tst = compare_values (vr->min, val);
2279 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2280 || (comp == LE_EXPR && tst == 1))
2281 return boolean_false_node;
2283 /* Otherwise, we don't know. */
2284 return NULL_TREE;
2286 else if (comp == GT_EXPR || comp == GE_EXPR)
2288 int tst;
2290 /* If VR is to the right of VAL, return true. */
2291 tst = compare_values (vr->min, val);
2292 if ((comp == GT_EXPR && tst == 1)
2293 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
2294 return boolean_true_node;
2296 /* If VR is to the left of VAL, return false. */
2297 tst = compare_values (vr->max, val);
2298 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
2299 || (comp == GE_EXPR && tst == -1))
2300 return boolean_false_node;
2302 /* Otherwise, we don't know. */
2303 return NULL_TREE;
2306 gcc_unreachable ();
2310 /* Debugging dumps. */
2312 void dump_value_range (FILE *, value_range_t *);
2313 void debug_value_range (value_range_t *);
2314 void dump_all_value_ranges (FILE *);
2315 void debug_all_value_ranges (void);
2316 void dump_vr_equiv (FILE *, bitmap);
2317 void debug_vr_equiv (bitmap);
2320 /* Dump value range VR to FILE. */
2322 void
2323 dump_value_range (FILE *file, value_range_t *vr)
2325 if (vr == NULL)
2326 fprintf (file, "[]");
2327 else if (vr->type == VR_UNDEFINED)
2328 fprintf (file, "UNDEFINED");
2329 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
2331 tree type = TREE_TYPE (vr->min);
2333 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
2335 if (INTEGRAL_TYPE_P (type)
2336 && !TYPE_UNSIGNED (type)
2337 && vr->min == TYPE_MIN_VALUE (type))
2338 fprintf (file, "-INF");
2339 else
2340 print_generic_expr (file, vr->min, 0);
2342 fprintf (file, ", ");
2344 if (INTEGRAL_TYPE_P (type)
2345 && vr->max == TYPE_MAX_VALUE (type))
2346 fprintf (file, "+INF");
2347 else
2348 print_generic_expr (file, vr->max, 0);
2350 fprintf (file, "]");
2352 if (vr->equiv)
2354 bitmap_iterator bi;
2355 unsigned i, c = 0;
2357 fprintf (file, " EQUIVALENCES: { ");
2359 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
2361 print_generic_expr (file, ssa_name (i), 0);
2362 fprintf (file, " ");
2363 c++;
2366 fprintf (file, "} (%u elements)", c);
2369 else if (vr->type == VR_VARYING)
2370 fprintf (file, "VARYING");
2371 else
2372 fprintf (file, "INVALID RANGE");
2376 /* Dump value range VR to stderr. */
2378 void
2379 debug_value_range (value_range_t *vr)
2381 dump_value_range (stderr, vr);
2382 fprintf (stderr, "\n");
2386 /* Dump value ranges of all SSA_NAMEs to FILE. */
2388 void
2389 dump_all_value_ranges (FILE *file)
2391 size_t i;
2393 for (i = 0; i < num_ssa_names; i++)
2395 if (vr_value[i])
2397 print_generic_expr (file, ssa_name (i), 0);
2398 fprintf (file, ": ");
2399 dump_value_range (file, vr_value[i]);
2400 fprintf (file, "\n");
2404 fprintf (file, "\n");
2408 /* Dump all value ranges to stderr. */
2410 void
2411 debug_all_value_ranges (void)
2413 dump_all_value_ranges (stderr);
2417 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
2418 create a new SSA name N and return the assertion assignment
2419 'V = ASSERT_EXPR <V, V OP W>'. */
2421 static tree
2422 build_assert_expr_for (tree cond, tree v)
2424 tree n, assertion;
2426 gcc_assert (TREE_CODE (v) == SSA_NAME);
2427 n = duplicate_ssa_name (v, NULL_TREE);
2429 if (COMPARISON_CLASS_P (cond))
2431 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
2432 assertion = build2 (GIMPLE_MODIFY_STMT, TREE_TYPE (v), n, a);
2434 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
2436 /* Given !V, build the assignment N = false. */
2437 tree op0 = TREE_OPERAND (cond, 0);
2438 gcc_assert (op0 == v);
2439 assertion = build2 (GIMPLE_MODIFY_STMT, TREE_TYPE (v), n,
2440 boolean_false_node);
2442 else if (TREE_CODE (cond) == SSA_NAME)
2444 /* Given V, build the assignment N = true. */
2445 gcc_assert (v == cond);
2446 assertion = build2 (GIMPLE_MODIFY_STMT,
2447 TREE_TYPE (v), n, boolean_true_node);
2449 else
2450 gcc_unreachable ();
2452 SSA_NAME_DEF_STMT (n) = assertion;
2454 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
2455 operand of the ASSERT_EXPR. Register the new name and the old one
2456 in the replacement table so that we can fix the SSA web after
2457 adding all the ASSERT_EXPRs. */
2458 register_new_name_mapping (n, v);
2460 return assertion;
2464 /* Return false if EXPR is a predicate expression involving floating
2465 point values. */
2467 static inline bool
2468 fp_predicate (tree expr)
2470 return (COMPARISON_CLASS_P (expr)
2471 && FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))));
2475 /* If the range of values taken by OP can be inferred after STMT executes,
2476 return the comparison code (COMP_CODE_P) and value (VAL_P) that
2477 describes the inferred range. Return true if a range could be
2478 inferred. */
2480 static bool
2481 infer_value_range (tree stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
2483 *val_p = NULL_TREE;
2484 *comp_code_p = ERROR_MARK;
2486 /* Do not attempt to infer anything in names that flow through
2487 abnormal edges. */
2488 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
2489 return false;
2491 /* Similarly, don't infer anything from statements that may throw
2492 exceptions. */
2493 if (tree_could_throw_p (stmt))
2494 return false;
2496 /* If STMT is the last statement of a basic block with no
2497 successors, there is no point inferring anything about any of its
2498 operands. We would not be able to find a proper insertion point
2499 for the assertion, anyway. */
2500 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (bb_for_stmt (stmt)->succs) == 0)
2501 return false;
2503 /* We can only assume that a pointer dereference will yield
2504 non-NULL if -fdelete-null-pointer-checks is enabled. */
2505 if (flag_delete_null_pointer_checks && POINTER_TYPE_P (TREE_TYPE (op)))
2507 bool is_store;
2508 unsigned num_uses, num_derefs;
2510 count_uses_and_derefs (op, stmt, &num_uses, &num_derefs, &is_store);
2511 if (num_derefs > 0)
2513 *val_p = build_int_cst (TREE_TYPE (op), 0);
2514 *comp_code_p = NE_EXPR;
2515 return true;
2519 return false;
2523 void dump_asserts_for (FILE *, tree);
2524 void debug_asserts_for (tree);
2525 void dump_all_asserts (FILE *);
2526 void debug_all_asserts (void);
2528 /* Dump all the registered assertions for NAME to FILE. */
2530 void
2531 dump_asserts_for (FILE *file, tree name)
2533 assert_locus_t loc;
2535 fprintf (file, "Assertions to be inserted for ");
2536 print_generic_expr (file, name, 0);
2537 fprintf (file, "\n");
2539 loc = asserts_for[SSA_NAME_VERSION (name)];
2540 while (loc)
2542 fprintf (file, "\t");
2543 print_generic_expr (file, bsi_stmt (loc->si), 0);
2544 fprintf (file, "\n\tBB #%d", loc->bb->index);
2545 if (loc->e)
2547 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
2548 loc->e->dest->index);
2549 dump_edge_info (file, loc->e, 0);
2551 fprintf (file, "\n\tPREDICATE: ");
2552 print_generic_expr (file, name, 0);
2553 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
2554 print_generic_expr (file, loc->val, 0);
2555 fprintf (file, "\n\n");
2556 loc = loc->next;
2559 fprintf (file, "\n");
2563 /* Dump all the registered assertions for NAME to stderr. */
2565 void
2566 debug_asserts_for (tree name)
2568 dump_asserts_for (stderr, name);
2572 /* Dump all the registered assertions for all the names to FILE. */
2574 void
2575 dump_all_asserts (FILE *file)
2577 unsigned i;
2578 bitmap_iterator bi;
2580 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
2581 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
2582 dump_asserts_for (file, ssa_name (i));
2583 fprintf (file, "\n");
2587 /* Dump all the registered assertions for all the names to stderr. */
2589 void
2590 debug_all_asserts (void)
2592 dump_all_asserts (stderr);
2596 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
2597 'NAME COMP_CODE VAL' at a location that dominates block BB or
2598 E->DEST, then register this location as a possible insertion point
2599 for ASSERT_EXPR <NAME, NAME COMP_CODE VAL>.
2601 BB, E and SI provide the exact insertion point for the new
2602 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
2603 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
2604 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
2605 must not be NULL. */
2607 static void
2608 register_new_assert_for (tree name,
2609 enum tree_code comp_code,
2610 tree val,
2611 basic_block bb,
2612 edge e,
2613 block_stmt_iterator si)
2615 assert_locus_t n, loc, last_loc;
2616 bool found;
2617 basic_block dest_bb;
2619 #if defined ENABLE_CHECKING
2620 gcc_assert (bb == NULL || e == NULL);
2622 if (e == NULL)
2623 gcc_assert (TREE_CODE (bsi_stmt (si)) != COND_EXPR
2624 && TREE_CODE (bsi_stmt (si)) != SWITCH_EXPR);
2625 #endif
2627 /* The new assertion A will be inserted at BB or E. We need to
2628 determine if the new location is dominated by a previously
2629 registered location for A. If we are doing an edge insertion,
2630 assume that A will be inserted at E->DEST. Note that this is not
2631 necessarily true.
2633 If E is a critical edge, it will be split. But even if E is
2634 split, the new block will dominate the same set of blocks that
2635 E->DEST dominates.
2637 The reverse, however, is not true, blocks dominated by E->DEST
2638 will not be dominated by the new block created to split E. So,
2639 if the insertion location is on a critical edge, we will not use
2640 the new location to move another assertion previously registered
2641 at a block dominated by E->DEST. */
2642 dest_bb = (bb) ? bb : e->dest;
2644 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
2645 VAL at a block dominating DEST_BB, then we don't need to insert a new
2646 one. Similarly, if the same assertion already exists at a block
2647 dominated by DEST_BB and the new location is not on a critical
2648 edge, then update the existing location for the assertion (i.e.,
2649 move the assertion up in the dominance tree).
2651 Note, this is implemented as a simple linked list because there
2652 should not be more than a handful of assertions registered per
2653 name. If this becomes a performance problem, a table hashed by
2654 COMP_CODE and VAL could be implemented. */
2655 loc = asserts_for[SSA_NAME_VERSION (name)];
2656 last_loc = loc;
2657 found = false;
2658 while (loc)
2660 if (loc->comp_code == comp_code
2661 && (loc->val == val
2662 || operand_equal_p (loc->val, val, 0)))
2664 /* If the assertion NAME COMP_CODE VAL has already been
2665 registered at a basic block that dominates DEST_BB, then
2666 we don't need to insert the same assertion again. Note
2667 that we don't check strict dominance here to avoid
2668 replicating the same assertion inside the same basic
2669 block more than once (e.g., when a pointer is
2670 dereferenced several times inside a block).
2672 An exception to this rule are edge insertions. If the
2673 new assertion is to be inserted on edge E, then it will
2674 dominate all the other insertions that we may want to
2675 insert in DEST_BB. So, if we are doing an edge
2676 insertion, don't do this dominance check. */
2677 if (e == NULL
2678 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
2679 return;
2681 /* Otherwise, if E is not a critical edge and DEST_BB
2682 dominates the existing location for the assertion, move
2683 the assertion up in the dominance tree by updating its
2684 location information. */
2685 if ((e == NULL || !EDGE_CRITICAL_P (e))
2686 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
2688 loc->bb = dest_bb;
2689 loc->e = e;
2690 loc->si = si;
2691 return;
2695 /* Update the last node of the list and move to the next one. */
2696 last_loc = loc;
2697 loc = loc->next;
2700 /* If we didn't find an assertion already registered for
2701 NAME COMP_CODE VAL, add a new one at the end of the list of
2702 assertions associated with NAME. */
2703 n = XNEW (struct assert_locus_d);
2704 n->bb = dest_bb;
2705 n->e = e;
2706 n->si = si;
2707 n->comp_code = comp_code;
2708 n->val = val;
2709 n->next = NULL;
2711 if (last_loc)
2712 last_loc->next = n;
2713 else
2714 asserts_for[SSA_NAME_VERSION (name)] = n;
2716 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
2719 /* COND is a predicate which uses NAME. Extract a suitable test code
2720 and value and store them into *CODE_P and *VAL_P so the predicate
2721 is normalized to NAME *CODE_P *VAL_P.
2723 If no extraction was possible, return FALSE, otherwise return TRUE.
2725 If INVERT is true, then we invert the result stored into *CODE_P. */
2727 static bool
2728 extract_code_and_val_from_cond (tree name, tree cond, bool invert,
2729 enum tree_code *code_p, tree *val_p)
2731 enum tree_code comp_code;
2732 tree val;
2734 /* Predicates may be a single SSA name or NAME OP VAL. */
2735 if (cond == name)
2737 /* If the predicate is a name, it must be NAME, in which
2738 case we create the predicate NAME == true or
2739 NAME == false accordingly. */
2740 comp_code = EQ_EXPR;
2741 val = invert ? boolean_false_node : boolean_true_node;
2743 else
2745 /* Otherwise, we have a comparison of the form NAME COMP VAL
2746 or VAL COMP NAME. */
2747 if (name == TREE_OPERAND (cond, 1))
2749 /* If the predicate is of the form VAL COMP NAME, flip
2750 COMP around because we need to register NAME as the
2751 first operand in the predicate. */
2752 comp_code = swap_tree_comparison (TREE_CODE (cond));
2753 val = TREE_OPERAND (cond, 0);
2755 else
2757 /* The comparison is of the form NAME COMP VAL, so the
2758 comparison code remains unchanged. */
2759 comp_code = TREE_CODE (cond);
2760 val = TREE_OPERAND (cond, 1);
2763 /* Invert the comparison code as necessary. */
2764 if (invert)
2765 comp_code = invert_tree_comparison (comp_code, 0);
2767 /* VRP does not handle float types. */
2768 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
2769 return false;
2771 /* Do not register always-false predicates.
2772 FIXME: this works around a limitation in fold() when dealing with
2773 enumerations. Given 'enum { N1, N2 } x;', fold will not
2774 fold 'if (x > N2)' to 'if (0)'. */
2775 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
2776 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2778 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
2779 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
2781 if (comp_code == GT_EXPR
2782 && (!max
2783 || compare_values (val, max) == 0))
2784 return false;
2786 if (comp_code == LT_EXPR
2787 && (!min
2788 || compare_values (val, min) == 0))
2789 return false;
2792 *code_p = comp_code;
2793 *val_p = val;
2794 return true;
2797 /* OP is an operand of a truth value expression which is known to have
2798 a particular value. Register any asserts for OP and for any
2799 operands in OP's defining statement.
2801 If CODE is EQ_EXPR, then we want to register OP is zero (false),
2802 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
2804 static bool
2805 register_edge_assert_for_1 (tree op, enum tree_code code,
2806 edge e, block_stmt_iterator bsi)
2808 bool retval = false;
2809 tree op_def, rhs, val;
2811 /* We only care about SSA_NAMEs. */
2812 if (TREE_CODE (op) != SSA_NAME)
2813 return false;
2815 /* We know that OP will have a zero or nonzero value. If OP is used
2816 more than once go ahead and register an assert for OP.
2818 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
2819 it will always be set for OP (because OP is used in a COND_EXPR in
2820 the subgraph). */
2821 if (!has_single_use (op))
2823 val = build_int_cst (TREE_TYPE (op), 0);
2824 register_new_assert_for (op, code, val, NULL, e, bsi);
2825 retval = true;
2828 /* Now look at how OP is set. If it's set from a comparison,
2829 a truth operation or some bit operations, then we may be able
2830 to register information about the operands of that assignment. */
2831 op_def = SSA_NAME_DEF_STMT (op);
2832 if (TREE_CODE (op_def) != GIMPLE_MODIFY_STMT)
2833 return retval;
2835 rhs = GIMPLE_STMT_OPERAND (op_def, 1);
2837 if (COMPARISON_CLASS_P (rhs))
2839 bool invert = (code == EQ_EXPR ? true : false);
2840 tree op0 = TREE_OPERAND (rhs, 0);
2841 tree op1 = TREE_OPERAND (rhs, 1);
2843 /* Conditionally register an assert for each SSA_NAME in the
2844 comparison. */
2845 if (TREE_CODE (op0) == SSA_NAME
2846 && !has_single_use (op0)
2847 && extract_code_and_val_from_cond (op0, rhs,
2848 invert, &code, &val))
2850 register_new_assert_for (op0, code, val, NULL, e, bsi);
2851 retval = true;
2854 /* Similarly for the second operand of the comparison. */
2855 if (TREE_CODE (op1) == SSA_NAME
2856 && !has_single_use (op1)
2857 && extract_code_and_val_from_cond (op1, rhs,
2858 invert, &code, &val))
2860 register_new_assert_for (op1, code, val, NULL, e, bsi);
2861 retval = true;
2864 else if ((code == NE_EXPR
2865 && (TREE_CODE (rhs) == TRUTH_AND_EXPR
2866 || TREE_CODE (rhs) == BIT_AND_EXPR))
2867 || (code == EQ_EXPR
2868 && (TREE_CODE (rhs) == TRUTH_OR_EXPR
2869 || TREE_CODE (rhs) == BIT_IOR_EXPR)))
2871 /* Recurse on each operand. */
2872 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
2873 code, e, bsi);
2874 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 1),
2875 code, e, bsi);
2877 else if (TREE_CODE (rhs) == TRUTH_NOT_EXPR)
2879 /* Recurse, flipping CODE. */
2880 code = invert_tree_comparison (code, false);
2881 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
2882 code, e, bsi);
2884 else if (TREE_CODE (rhs) == SSA_NAME)
2886 /* Recurse through the copy. */
2887 retval |= register_edge_assert_for_1 (rhs, code, e, bsi);
2889 else if (TREE_CODE (rhs) == NOP_EXPR
2890 || TREE_CODE (rhs) == CONVERT_EXPR
2891 || TREE_CODE (rhs) == VIEW_CONVERT_EXPR
2892 || TREE_CODE (rhs) == NON_LVALUE_EXPR)
2894 /* Recurse through the type conversion. */
2895 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
2896 code, e, bsi);
2899 return retval;
2902 /* Try to register an edge assertion for SSA name NAME on edge E for
2903 the condition COND contributing to the conditional jump pointed to by SI.
2904 Return true if an assertion for NAME could be registered. */
2906 static bool
2907 register_edge_assert_for (tree name, edge e, block_stmt_iterator si, tree cond)
2909 tree val;
2910 enum tree_code comp_code;
2911 bool retval = false;
2912 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
2914 /* Do not attempt to infer anything in names that flow through
2915 abnormal edges. */
2916 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
2917 return false;
2919 if (!extract_code_and_val_from_cond (name, cond, is_else_edge,
2920 &comp_code, &val))
2921 return false;
2923 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
2924 reachable from E. */
2925 if (TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name)))
2927 register_new_assert_for (name, comp_code, val, NULL, e, si);
2928 retval = true;
2931 /* If COND is effectively an equality test of an SSA_NAME against
2932 the value zero or one, then we may be able to assert values
2933 for SSA_NAMEs which flow into COND. */
2935 /* In the case of NAME == 1 or NAME != 0, for TRUTH_AND_EXPR defining
2936 statement of NAME we can assert both operands of the TRUTH_AND_EXPR
2937 have nonzero value. */
2938 if (((comp_code == EQ_EXPR && integer_onep (val))
2939 || (comp_code == NE_EXPR && integer_zerop (val))))
2941 tree def_stmt = SSA_NAME_DEF_STMT (name);
2943 if (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
2944 && (TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == TRUTH_AND_EXPR
2945 || TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == BIT_AND_EXPR))
2947 tree op0 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
2948 tree op1 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 1);
2949 retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
2950 retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
2954 /* In the case of NAME == 0 or NAME != 1, for TRUTH_OR_EXPR defining
2955 statement of NAME we can assert both operands of the TRUTH_OR_EXPR
2956 have zero value. */
2957 if (((comp_code == EQ_EXPR && integer_zerop (val))
2958 || (comp_code == NE_EXPR && integer_onep (val))))
2960 tree def_stmt = SSA_NAME_DEF_STMT (name);
2962 if (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
2963 && (TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == TRUTH_OR_EXPR
2964 || TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == BIT_IOR_EXPR))
2966 tree op0 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
2967 tree op1 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 1);
2968 retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
2969 retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
2973 return retval;
2977 static bool find_assert_locations (basic_block bb);
2979 /* Determine whether the outgoing edges of BB should receive an
2980 ASSERT_EXPR for each of the operands of BB's LAST statement.
2981 The last statement of BB must be a COND_EXPR or a SWITCH_EXPR.
2983 If any of the sub-graphs rooted at BB have an interesting use of
2984 the predicate operands, an assert location node is added to the
2985 list of assertions for the corresponding operands. */
2987 static bool
2988 find_conditional_asserts (basic_block bb, tree last)
2990 bool need_assert;
2991 block_stmt_iterator bsi;
2992 tree op;
2993 edge_iterator ei;
2994 edge e;
2995 ssa_op_iter iter;
2997 need_assert = false;
2998 bsi = bsi_for_stmt (last);
3000 /* Look for uses of the operands in each of the sub-graphs
3001 rooted at BB. We need to check each of the outgoing edges
3002 separately, so that we know what kind of ASSERT_EXPR to
3003 insert. */
3004 FOR_EACH_EDGE (e, ei, bb->succs)
3006 if (e->dest == bb)
3007 continue;
3009 /* Remove the COND_EXPR operands from the FOUND_IN_SUBGRAPH bitmap.
3010 Otherwise, when we finish traversing each of the sub-graphs, we
3011 won't know whether the variables were found in the sub-graphs or
3012 if they had been found in a block upstream from BB.
3014 This is actually a bad idea is some cases, particularly jump
3015 threading. Consider a CFG like the following:
3025 Assume that one or more operands in the conditional at the
3026 end of block 0 are used in a conditional in block 2, but not
3027 anywhere in block 1. In this case we will not insert any
3028 assert statements in block 1, which may cause us to miss
3029 opportunities to optimize, particularly for jump threading. */
3030 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3031 RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3033 /* Traverse the strictly dominated sub-graph rooted at E->DEST
3034 to determine if any of the operands in the conditional
3035 predicate are used. */
3036 if (e->dest != bb)
3037 need_assert |= find_assert_locations (e->dest);
3039 /* Register the necessary assertions for each operand in the
3040 conditional predicate. */
3041 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3042 need_assert |= register_edge_assert_for (op, e, bsi,
3043 COND_EXPR_COND (last));
3046 /* Finally, indicate that we have found the operands in the
3047 conditional. */
3048 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3049 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3051 return need_assert;
3055 /* Traverse all the statements in block BB looking for statements that
3056 may generate useful assertions for the SSA names in their operand.
3057 If a statement produces a useful assertion A for name N_i, then the
3058 list of assertions already generated for N_i is scanned to
3059 determine if A is actually needed.
3061 If N_i already had the assertion A at a location dominating the
3062 current location, then nothing needs to be done. Otherwise, the
3063 new location for A is recorded instead.
3065 1- For every statement S in BB, all the variables used by S are
3066 added to bitmap FOUND_IN_SUBGRAPH.
3068 2- If statement S uses an operand N in a way that exposes a known
3069 value range for N, then if N was not already generated by an
3070 ASSERT_EXPR, create a new assert location for N. For instance,
3071 if N is a pointer and the statement dereferences it, we can
3072 assume that N is not NULL.
3074 3- COND_EXPRs are a special case of #2. We can derive range
3075 information from the predicate but need to insert different
3076 ASSERT_EXPRs for each of the sub-graphs rooted at the
3077 conditional block. If the last statement of BB is a conditional
3078 expression of the form 'X op Y', then
3080 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
3082 b) If the conditional is the only entry point to the sub-graph
3083 corresponding to the THEN_CLAUSE, recurse into it. On
3084 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
3085 an ASSERT_EXPR is added for the corresponding variable.
3087 c) Repeat step (b) on the ELSE_CLAUSE.
3089 d) Mark X and Y in FOUND_IN_SUBGRAPH.
3091 For instance,
3093 if (a == 9)
3094 b = a;
3095 else
3096 b = c + 1;
3098 In this case, an assertion on the THEN clause is useful to
3099 determine that 'a' is always 9 on that edge. However, an assertion
3100 on the ELSE clause would be unnecessary.
3102 4- If BB does not end in a conditional expression, then we recurse
3103 into BB's dominator children.
3105 At the end of the recursive traversal, every SSA name will have a
3106 list of locations where ASSERT_EXPRs should be added. When a new
3107 location for name N is found, it is registered by calling
3108 register_new_assert_for. That function keeps track of all the
3109 registered assertions to prevent adding unnecessary assertions.
3110 For instance, if a pointer P_4 is dereferenced more than once in a
3111 dominator tree, only the location dominating all the dereference of
3112 P_4 will receive an ASSERT_EXPR.
3114 If this function returns true, then it means that there are names
3115 for which we need to generate ASSERT_EXPRs. Those assertions are
3116 inserted by process_assert_insertions.
3118 TODO. Handle SWITCH_EXPR. */
3120 static bool
3121 find_assert_locations (basic_block bb)
3123 block_stmt_iterator si;
3124 tree last, phi;
3125 bool need_assert;
3126 basic_block son;
3128 if (TEST_BIT (blocks_visited, bb->index))
3129 return false;
3131 SET_BIT (blocks_visited, bb->index);
3133 need_assert = false;
3135 /* Traverse all PHI nodes in BB marking used operands. */
3136 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
3138 use_operand_p arg_p;
3139 ssa_op_iter i;
3141 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
3143 tree arg = USE_FROM_PTR (arg_p);
3144 if (TREE_CODE (arg) == SSA_NAME)
3146 gcc_assert (is_gimple_reg (PHI_RESULT (phi)));
3147 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (arg));
3152 /* Traverse all the statements in BB marking used names and looking
3153 for statements that may infer assertions for their used operands. */
3154 last = NULL_TREE;
3155 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
3157 tree stmt, op;
3158 ssa_op_iter i;
3160 stmt = bsi_stmt (si);
3162 /* See if we can derive an assertion for any of STMT's operands. */
3163 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
3165 tree value;
3166 enum tree_code comp_code;
3168 /* Mark OP in bitmap FOUND_IN_SUBGRAPH. If STMT is inside
3169 the sub-graph of a conditional block, when we return from
3170 this recursive walk, our parent will use the
3171 FOUND_IN_SUBGRAPH bitset to determine if one of the
3172 operands it was looking for was present in the sub-graph. */
3173 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3175 /* If OP is used in such a way that we can infer a value
3176 range for it, and we don't find a previous assertion for
3177 it, create a new assertion location node for OP. */
3178 if (infer_value_range (stmt, op, &comp_code, &value))
3180 /* If we are able to infer a nonzero value range for OP,
3181 then walk backwards through the use-def chain to see if OP
3182 was set via a typecast.
3184 If so, then we can also infer a nonzero value range
3185 for the operand of the NOP_EXPR. */
3186 if (comp_code == NE_EXPR && integer_zerop (value))
3188 tree t = op;
3189 tree def_stmt = SSA_NAME_DEF_STMT (t);
3191 while (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
3192 && TREE_CODE
3193 (GIMPLE_STMT_OPERAND (def_stmt, 1)) == NOP_EXPR
3194 && TREE_CODE
3195 (TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1),
3196 0)) == SSA_NAME
3197 && POINTER_TYPE_P
3198 (TREE_TYPE (TREE_OPERAND
3199 (GIMPLE_STMT_OPERAND (def_stmt,
3200 1), 0))))
3202 t = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
3203 def_stmt = SSA_NAME_DEF_STMT (t);
3205 /* Note we want to register the assert for the
3206 operand of the NOP_EXPR after SI, not after the
3207 conversion. */
3208 if (! has_single_use (t))
3210 register_new_assert_for (t, comp_code, value,
3211 bb, NULL, si);
3212 need_assert = true;
3217 /* If OP is used only once, namely in this STMT, don't
3218 bother creating an ASSERT_EXPR for it. Such an
3219 ASSERT_EXPR would do nothing but increase compile time. */
3220 if (!has_single_use (op))
3222 register_new_assert_for (op, comp_code, value, bb, NULL, si);
3223 need_assert = true;
3228 /* Remember the last statement of the block. */
3229 last = stmt;
3232 /* If BB's last statement is a conditional expression
3233 involving integer operands, recurse into each of the sub-graphs
3234 rooted at BB to determine if we need to add ASSERT_EXPRs. */
3235 if (last
3236 && TREE_CODE (last) == COND_EXPR
3237 && !fp_predicate (COND_EXPR_COND (last))
3238 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
3239 need_assert |= find_conditional_asserts (bb, last);
3241 /* Recurse into the dominator children of BB. */
3242 for (son = first_dom_son (CDI_DOMINATORS, bb);
3243 son;
3244 son = next_dom_son (CDI_DOMINATORS, son))
3245 need_assert |= find_assert_locations (son);
3247 return need_assert;
3251 /* Create an ASSERT_EXPR for NAME and insert it in the location
3252 indicated by LOC. Return true if we made any edge insertions. */
3254 static bool
3255 process_assert_insertions_for (tree name, assert_locus_t loc)
3257 /* Build the comparison expression NAME_i COMP_CODE VAL. */
3258 tree stmt, cond, assert_expr;
3259 edge_iterator ei;
3260 edge e;
3262 cond = build2 (loc->comp_code, boolean_type_node, name, loc->val);
3263 assert_expr = build_assert_expr_for (cond, name);
3265 if (loc->e)
3267 /* We have been asked to insert the assertion on an edge. This
3268 is used only by COND_EXPR and SWITCH_EXPR assertions. */
3269 #if defined ENABLE_CHECKING
3270 gcc_assert (TREE_CODE (bsi_stmt (loc->si)) == COND_EXPR
3271 || TREE_CODE (bsi_stmt (loc->si)) == SWITCH_EXPR);
3272 #endif
3274 bsi_insert_on_edge (loc->e, assert_expr);
3275 return true;
3278 /* Otherwise, we can insert right after LOC->SI iff the
3279 statement must not be the last statement in the block. */
3280 stmt = bsi_stmt (loc->si);
3281 if (!stmt_ends_bb_p (stmt))
3283 bsi_insert_after (&loc->si, assert_expr, BSI_SAME_STMT);
3284 return false;
3287 /* If STMT must be the last statement in BB, we can only insert new
3288 assertions on the non-abnormal edge out of BB. Note that since
3289 STMT is not control flow, there may only be one non-abnormal edge
3290 out of BB. */
3291 FOR_EACH_EDGE (e, ei, loc->bb->succs)
3292 if (!(e->flags & EDGE_ABNORMAL))
3294 bsi_insert_on_edge (e, assert_expr);
3295 return true;
3298 gcc_unreachable ();
3302 /* Process all the insertions registered for every name N_i registered
3303 in NEED_ASSERT_FOR. The list of assertions to be inserted are
3304 found in ASSERTS_FOR[i]. */
3306 static void
3307 process_assert_insertions (void)
3309 unsigned i;
3310 bitmap_iterator bi;
3311 bool update_edges_p = false;
3312 int num_asserts = 0;
3314 if (dump_file && (dump_flags & TDF_DETAILS))
3315 dump_all_asserts (dump_file);
3317 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
3319 assert_locus_t loc = asserts_for[i];
3320 gcc_assert (loc);
3322 while (loc)
3324 assert_locus_t next = loc->next;
3325 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
3326 free (loc);
3327 loc = next;
3328 num_asserts++;
3332 if (update_edges_p)
3333 bsi_commit_edge_inserts ();
3335 if (dump_file && (dump_flags & TDF_STATS))
3336 fprintf (dump_file, "\nNumber of ASSERT_EXPR expressions inserted: %d\n\n",
3337 num_asserts);
3341 /* Traverse the flowgraph looking for conditional jumps to insert range
3342 expressions. These range expressions are meant to provide information
3343 to optimizations that need to reason in terms of value ranges. They
3344 will not be expanded into RTL. For instance, given:
3346 x = ...
3347 y = ...
3348 if (x < y)
3349 y = x - 2;
3350 else
3351 x = y + 3;
3353 this pass will transform the code into:
3355 x = ...
3356 y = ...
3357 if (x < y)
3359 x = ASSERT_EXPR <x, x < y>
3360 y = x - 2
3362 else
3364 y = ASSERT_EXPR <y, x <= y>
3365 x = y + 3
3368 The idea is that once copy and constant propagation have run, other
3369 optimizations will be able to determine what ranges of values can 'x'
3370 take in different paths of the code, simply by checking the reaching
3371 definition of 'x'. */
3373 static void
3374 insert_range_assertions (void)
3376 edge e;
3377 edge_iterator ei;
3378 bool update_ssa_p;
3380 found_in_subgraph = sbitmap_alloc (num_ssa_names);
3381 sbitmap_zero (found_in_subgraph);
3383 blocks_visited = sbitmap_alloc (last_basic_block);
3384 sbitmap_zero (blocks_visited);
3386 need_assert_for = BITMAP_ALLOC (NULL);
3387 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
3389 calculate_dominance_info (CDI_DOMINATORS);
3391 update_ssa_p = false;
3392 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3393 if (find_assert_locations (e->dest))
3394 update_ssa_p = true;
3396 if (update_ssa_p)
3398 process_assert_insertions ();
3399 update_ssa (TODO_update_ssa_no_phi);
3402 if (dump_file && (dump_flags & TDF_DETAILS))
3404 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
3405 dump_function_to_file (current_function_decl, dump_file, dump_flags);
3408 sbitmap_free (found_in_subgraph);
3409 free (asserts_for);
3410 BITMAP_FREE (need_assert_for);
3414 /* Convert range assertion expressions into the implied copies and
3415 copy propagate away the copies. Doing the trivial copy propagation
3416 here avoids the need to run the full copy propagation pass after
3417 VRP.
3419 FIXME, this will eventually lead to copy propagation removing the
3420 names that had useful range information attached to them. For
3421 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
3422 then N_i will have the range [3, +INF].
3424 However, by converting the assertion into the implied copy
3425 operation N_i = N_j, we will then copy-propagate N_j into the uses
3426 of N_i and lose the range information. We may want to hold on to
3427 ASSERT_EXPRs a little while longer as the ranges could be used in
3428 things like jump threading.
3430 The problem with keeping ASSERT_EXPRs around is that passes after
3431 VRP need to handle them appropriately.
3433 Another approach would be to make the range information a first
3434 class property of the SSA_NAME so that it can be queried from
3435 any pass. This is made somewhat more complex by the need for
3436 multiple ranges to be associated with one SSA_NAME. */
3438 static void
3439 remove_range_assertions (void)
3441 basic_block bb;
3442 block_stmt_iterator si;
3444 /* Note that the BSI iterator bump happens at the bottom of the
3445 loop and no bump is necessary if we're removing the statement
3446 referenced by the current BSI. */
3447 FOR_EACH_BB (bb)
3448 for (si = bsi_start (bb); !bsi_end_p (si);)
3450 tree stmt = bsi_stmt (si);
3451 tree use_stmt;
3453 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
3454 && TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 1)) == ASSERT_EXPR)
3456 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1), var;
3457 tree cond = fold (ASSERT_EXPR_COND (rhs));
3458 use_operand_p use_p;
3459 imm_use_iterator iter;
3461 gcc_assert (cond != boolean_false_node);
3463 /* Propagate the RHS into every use of the LHS. */
3464 var = ASSERT_EXPR_VAR (rhs);
3465 FOR_EACH_IMM_USE_STMT (use_stmt, iter,
3466 GIMPLE_STMT_OPERAND (stmt, 0))
3467 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3469 SET_USE (use_p, var);
3470 gcc_assert (TREE_CODE (var) == SSA_NAME);
3473 /* And finally, remove the copy, it is not needed. */
3474 bsi_remove (&si, true);
3476 else
3477 bsi_next (&si);
3480 sbitmap_free (blocks_visited);
3484 /* Return true if STMT is interesting for VRP. */
3486 static bool
3487 stmt_interesting_for_vrp (tree stmt)
3489 if (TREE_CODE (stmt) == PHI_NODE
3490 && is_gimple_reg (PHI_RESULT (stmt))
3491 && (INTEGRAL_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))
3492 || POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))))
3493 return true;
3494 else if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
3496 tree lhs = GIMPLE_STMT_OPERAND (stmt, 0);
3497 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
3499 /* In general, assignments with virtual operands are not useful
3500 for deriving ranges, with the obvious exception of calls to
3501 builtin functions. */
3502 if (TREE_CODE (lhs) == SSA_NAME
3503 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3504 || POINTER_TYPE_P (TREE_TYPE (lhs)))
3505 && ((TREE_CODE (rhs) == CALL_EXPR
3506 && TREE_CODE (TREE_OPERAND (rhs, 0)) == ADDR_EXPR
3507 && DECL_P (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0))
3508 && DECL_IS_BUILTIN (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0)))
3509 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)))
3510 return true;
3512 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
3513 return true;
3515 return false;
3519 /* Initialize local data structures for VRP. */
3521 static void
3522 vrp_initialize (void)
3524 basic_block bb;
3526 vr_value = XCNEWVEC (value_range_t *, num_ssa_names);
3528 FOR_EACH_BB (bb)
3530 block_stmt_iterator si;
3531 tree phi;
3533 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
3535 if (!stmt_interesting_for_vrp (phi))
3537 tree lhs = PHI_RESULT (phi);
3538 set_value_range_to_varying (get_value_range (lhs));
3539 DONT_SIMULATE_AGAIN (phi) = true;
3541 else
3542 DONT_SIMULATE_AGAIN (phi) = false;
3545 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
3547 tree stmt = bsi_stmt (si);
3549 if (!stmt_interesting_for_vrp (stmt))
3551 ssa_op_iter i;
3552 tree def;
3553 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
3554 set_value_range_to_varying (get_value_range (def));
3555 DONT_SIMULATE_AGAIN (stmt) = true;
3557 else
3559 DONT_SIMULATE_AGAIN (stmt) = false;
3566 /* Visit assignment STMT. If it produces an interesting range, record
3567 the SSA name in *OUTPUT_P. */
3569 static enum ssa_prop_result
3570 vrp_visit_assignment (tree stmt, tree *output_p)
3572 tree lhs, rhs, def;
3573 ssa_op_iter iter;
3575 lhs = GIMPLE_STMT_OPERAND (stmt, 0);
3576 rhs = GIMPLE_STMT_OPERAND (stmt, 1);
3578 /* We only keep track of ranges in integral and pointer types. */
3579 if (TREE_CODE (lhs) == SSA_NAME
3580 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3581 /* It is valid to have NULL MIN/MAX values on a type. See
3582 build_range_type. */
3583 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
3584 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
3585 || POINTER_TYPE_P (TREE_TYPE (lhs))))
3587 struct loop *l;
3588 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3590 extract_range_from_expr (&new_vr, rhs);
3592 /* If STMT is inside a loop, we may be able to know something
3593 else about the range of LHS by examining scalar evolution
3594 information. */
3595 if (current_loops && (l = loop_containing_stmt (stmt)))
3596 adjust_range_with_scev (&new_vr, l, stmt, lhs);
3598 if (update_value_range (lhs, &new_vr))
3600 *output_p = lhs;
3602 if (dump_file && (dump_flags & TDF_DETAILS))
3604 fprintf (dump_file, "Found new range for ");
3605 print_generic_expr (dump_file, lhs, 0);
3606 fprintf (dump_file, ": ");
3607 dump_value_range (dump_file, &new_vr);
3608 fprintf (dump_file, "\n\n");
3611 if (new_vr.type == VR_VARYING)
3612 return SSA_PROP_VARYING;
3614 return SSA_PROP_INTERESTING;
3617 return SSA_PROP_NOT_INTERESTING;
3620 /* Every other statement produces no useful ranges. */
3621 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
3622 set_value_range_to_varying (get_value_range (def));
3624 return SSA_PROP_VARYING;
3628 /* Compare all the value ranges for names equivalent to VAR with VAL
3629 using comparison code COMP. Return the same value returned by
3630 compare_range_with_value. */
3632 static tree
3633 compare_name_with_value (enum tree_code comp, tree var, tree val)
3635 bitmap_iterator bi;
3636 unsigned i;
3637 bitmap e;
3638 tree retval, t;
3640 t = retval = NULL_TREE;
3642 /* Get the set of equivalences for VAR. */
3643 e = get_value_range (var)->equiv;
3645 /* Add VAR to its own set of equivalences so that VAR's value range
3646 is processed by this loop (otherwise, we would have to replicate
3647 the body of the loop just to check VAR's value range). */
3648 bitmap_set_bit (e, SSA_NAME_VERSION (var));
3650 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
3652 value_range_t equiv_vr = *(vr_value[i]);
3654 /* If name N_i does not have a valid range, use N_i as its own
3655 range. This allows us to compare against names that may
3656 have N_i in their ranges. */
3657 if (equiv_vr.type == VR_VARYING || equiv_vr.type == VR_UNDEFINED)
3659 equiv_vr.type = VR_RANGE;
3660 equiv_vr.min = ssa_name (i);
3661 equiv_vr.max = ssa_name (i);
3664 t = compare_range_with_value (comp, &equiv_vr, val);
3665 if (t)
3667 /* If we get different answers from different members
3668 of the equivalence set this check must be in a dead
3669 code region. Folding it to a trap representation
3670 would be correct here. For now just return don't-know. */
3671 if (retval != NULL
3672 && t != retval)
3674 retval = NULL_TREE;
3675 break;
3677 retval = t;
3681 /* Remove VAR from its own equivalence set. */
3682 bitmap_clear_bit (e, SSA_NAME_VERSION (var));
3684 if (retval)
3685 return retval;
3687 /* We couldn't find a non-NULL value for the predicate. */
3688 return NULL_TREE;
3692 /* Given a comparison code COMP and names N1 and N2, compare all the
3693 ranges equivalent to N1 against all the ranges equivalent to N2
3694 to determine the value of N1 COMP N2. Return the same value
3695 returned by compare_ranges. */
3697 static tree
3698 compare_names (enum tree_code comp, tree n1, tree n2)
3700 tree t, retval;
3701 bitmap e1, e2;
3702 bitmap_iterator bi1, bi2;
3703 unsigned i1, i2;
3705 /* Compare the ranges of every name equivalent to N1 against the
3706 ranges of every name equivalent to N2. */
3707 e1 = get_value_range (n1)->equiv;
3708 e2 = get_value_range (n2)->equiv;
3710 /* Add N1 and N2 to their own set of equivalences to avoid
3711 duplicating the body of the loop just to check N1 and N2
3712 ranges. */
3713 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
3714 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
3716 /* If the equivalence sets have a common intersection, then the two
3717 names can be compared without checking their ranges. */
3718 if (bitmap_intersect_p (e1, e2))
3720 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3721 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3723 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
3724 ? boolean_true_node
3725 : boolean_false_node;
3728 /* Otherwise, compare all the equivalent ranges. First, add N1 and
3729 N2 to their own set of equivalences to avoid duplicating the body
3730 of the loop just to check N1 and N2 ranges. */
3731 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
3733 value_range_t vr1 = *(vr_value[i1]);
3735 /* If the range is VARYING or UNDEFINED, use the name itself. */
3736 if (vr1.type == VR_VARYING || vr1.type == VR_UNDEFINED)
3738 vr1.type = VR_RANGE;
3739 vr1.min = ssa_name (i1);
3740 vr1.max = ssa_name (i1);
3743 t = retval = NULL_TREE;
3744 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
3746 value_range_t vr2 = *(vr_value[i2]);
3748 if (vr2.type == VR_VARYING || vr2.type == VR_UNDEFINED)
3750 vr2.type = VR_RANGE;
3751 vr2.min = ssa_name (i2);
3752 vr2.max = ssa_name (i2);
3755 t = compare_ranges (comp, &vr1, &vr2);
3756 if (t)
3758 /* If we get different answers from different members
3759 of the equivalence set this check must be in a dead
3760 code region. Folding it to a trap representation
3761 would be correct here. For now just return don't-know. */
3762 if (retval != NULL
3763 && t != retval)
3765 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3766 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3767 return NULL_TREE;
3769 retval = t;
3773 if (retval)
3775 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3776 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3777 return retval;
3781 /* None of the equivalent ranges are useful in computing this
3782 comparison. */
3783 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3784 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3785 return NULL_TREE;
3789 /* Given a conditional predicate COND, try to determine if COND yields
3790 true or false based on the value ranges of its operands. Return
3791 BOOLEAN_TRUE_NODE if the conditional always evaluates to true,
3792 BOOLEAN_FALSE_NODE if the conditional always evaluates to false, and,
3793 NULL if the conditional cannot be evaluated at compile time.
3795 If USE_EQUIV_P is true, the ranges of all the names equivalent with
3796 the operands in COND are used when trying to compute its value.
3797 This is only used during final substitution. During propagation,
3798 we only check the range of each variable and not its equivalents. */
3800 tree
3801 vrp_evaluate_conditional (tree cond, bool use_equiv_p)
3803 gcc_assert (TREE_CODE (cond) == SSA_NAME
3804 || TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison);
3806 if (TREE_CODE (cond) == SSA_NAME)
3808 value_range_t *vr;
3809 tree retval;
3811 if (use_equiv_p)
3812 retval = compare_name_with_value (NE_EXPR, cond, boolean_false_node);
3813 else
3815 value_range_t *vr = get_value_range (cond);
3816 retval = compare_range_with_value (NE_EXPR, vr, boolean_false_node);
3819 /* If COND has a known boolean range, return it. */
3820 if (retval)
3821 return retval;
3823 /* Otherwise, if COND has a symbolic range of exactly one value,
3824 return it. */
3825 vr = get_value_range (cond);
3826 if (vr->type == VR_RANGE && vr->min == vr->max)
3827 return vr->min;
3829 else
3831 tree op0 = TREE_OPERAND (cond, 0);
3832 tree op1 = TREE_OPERAND (cond, 1);
3834 /* We only deal with integral and pointer types. */
3835 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
3836 && !POINTER_TYPE_P (TREE_TYPE (op0)))
3837 return NULL_TREE;
3839 if (use_equiv_p)
3841 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
3842 return compare_names (TREE_CODE (cond), op0, op1);
3843 else if (TREE_CODE (op0) == SSA_NAME)
3844 return compare_name_with_value (TREE_CODE (cond), op0, op1);
3845 else if (TREE_CODE (op1) == SSA_NAME)
3846 return compare_name_with_value (
3847 swap_tree_comparison (TREE_CODE (cond)), op1, op0);
3849 else
3851 value_range_t *vr0, *vr1;
3853 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
3854 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
3856 if (vr0 && vr1)
3857 return compare_ranges (TREE_CODE (cond), vr0, vr1);
3858 else if (vr0 && vr1 == NULL)
3859 return compare_range_with_value (TREE_CODE (cond), vr0, op1);
3860 else if (vr0 == NULL && vr1)
3861 return compare_range_with_value (
3862 swap_tree_comparison (TREE_CODE (cond)), vr1, op0);
3866 /* Anything else cannot be computed statically. */
3867 return NULL_TREE;
3871 /* Visit conditional statement STMT. If we can determine which edge
3872 will be taken out of STMT's basic block, record it in
3873 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
3874 SSA_PROP_VARYING. */
3876 static enum ssa_prop_result
3877 vrp_visit_cond_stmt (tree stmt, edge *taken_edge_p)
3879 tree cond, val;
3881 *taken_edge_p = NULL;
3883 /* FIXME. Handle SWITCH_EXPRs. But first, the assert pass needs to
3884 add ASSERT_EXPRs for them. */
3885 if (TREE_CODE (stmt) == SWITCH_EXPR)
3886 return SSA_PROP_VARYING;
3888 cond = COND_EXPR_COND (stmt);
3890 if (dump_file && (dump_flags & TDF_DETAILS))
3892 tree use;
3893 ssa_op_iter i;
3895 fprintf (dump_file, "\nVisiting conditional with predicate: ");
3896 print_generic_expr (dump_file, cond, 0);
3897 fprintf (dump_file, "\nWith known ranges\n");
3899 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
3901 fprintf (dump_file, "\t");
3902 print_generic_expr (dump_file, use, 0);
3903 fprintf (dump_file, ": ");
3904 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
3907 fprintf (dump_file, "\n");
3910 /* Compute the value of the predicate COND by checking the known
3911 ranges of each of its operands.
3913 Note that we cannot evaluate all the equivalent ranges here
3914 because those ranges may not yet be final and with the current
3915 propagation strategy, we cannot determine when the value ranges
3916 of the names in the equivalence set have changed.
3918 For instance, given the following code fragment
3920 i_5 = PHI <8, i_13>
3922 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
3923 if (i_14 == 1)
3926 Assume that on the first visit to i_14, i_5 has the temporary
3927 range [8, 8] because the second argument to the PHI function is
3928 not yet executable. We derive the range ~[0, 0] for i_14 and the
3929 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
3930 the first time, since i_14 is equivalent to the range [8, 8], we
3931 determine that the predicate is always false.
3933 On the next round of propagation, i_13 is determined to be
3934 VARYING, which causes i_5 to drop down to VARYING. So, another
3935 visit to i_14 is scheduled. In this second visit, we compute the
3936 exact same range and equivalence set for i_14, namely ~[0, 0] and
3937 { i_5 }. But we did not have the previous range for i_5
3938 registered, so vrp_visit_assignment thinks that the range for
3939 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
3940 is not visited again, which stops propagation from visiting
3941 statements in the THEN clause of that if().
3943 To properly fix this we would need to keep the previous range
3944 value for the names in the equivalence set. This way we would've
3945 discovered that from one visit to the other i_5 changed from
3946 range [8, 8] to VR_VARYING.
3948 However, fixing this apparent limitation may not be worth the
3949 additional checking. Testing on several code bases (GCC, DLV,
3950 MICO, TRAMP3D and SPEC2000) showed that doing this results in
3951 4 more predicates folded in SPEC. */
3952 val = vrp_evaluate_conditional (cond, false);
3953 if (val)
3954 *taken_edge_p = find_taken_edge (bb_for_stmt (stmt), val);
3956 if (dump_file && (dump_flags & TDF_DETAILS))
3958 fprintf (dump_file, "\nPredicate evaluates to: ");
3959 if (val == NULL_TREE)
3960 fprintf (dump_file, "DON'T KNOW\n");
3961 else
3962 print_generic_stmt (dump_file, val, 0);
3965 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
3969 /* Evaluate statement STMT. If the statement produces a useful range,
3970 return SSA_PROP_INTERESTING and record the SSA name with the
3971 interesting range into *OUTPUT_P.
3973 If STMT is a conditional branch and we can determine its truth
3974 value, the taken edge is recorded in *TAKEN_EDGE_P.
3976 If STMT produces a varying value, return SSA_PROP_VARYING. */
3978 static enum ssa_prop_result
3979 vrp_visit_stmt (tree stmt, edge *taken_edge_p, tree *output_p)
3981 tree def;
3982 ssa_op_iter iter;
3983 stmt_ann_t ann;
3985 if (dump_file && (dump_flags & TDF_DETAILS))
3987 fprintf (dump_file, "\nVisiting statement:\n");
3988 print_generic_stmt (dump_file, stmt, dump_flags);
3989 fprintf (dump_file, "\n");
3992 ann = stmt_ann (stmt);
3993 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
3995 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
3997 /* In general, assignments with virtual operands are not useful
3998 for deriving ranges, with the obvious exception of calls to
3999 builtin functions. */
4000 if ((TREE_CODE (rhs) == CALL_EXPR
4001 && TREE_CODE (TREE_OPERAND (rhs, 0)) == ADDR_EXPR
4002 && DECL_P (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0))
4003 && DECL_IS_BUILTIN (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0)))
4004 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
4005 return vrp_visit_assignment (stmt, output_p);
4007 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
4008 return vrp_visit_cond_stmt (stmt, taken_edge_p);
4010 /* All other statements produce nothing of interest for VRP, so mark
4011 their outputs varying and prevent further simulation. */
4012 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
4013 set_value_range_to_varying (get_value_range (def));
4015 return SSA_PROP_VARYING;
4019 /* Meet operation for value ranges. Given two value ranges VR0 and
4020 VR1, store in VR0 a range that contains both VR0 and VR1. This
4021 may not be the smallest possible such range. */
4023 static void
4024 vrp_meet (value_range_t *vr0, value_range_t *vr1)
4026 if (vr0->type == VR_UNDEFINED)
4028 copy_value_range (vr0, vr1);
4029 return;
4032 if (vr1->type == VR_UNDEFINED)
4034 /* Nothing to do. VR0 already has the resulting range. */
4035 return;
4038 if (vr0->type == VR_VARYING)
4040 /* Nothing to do. VR0 already has the resulting range. */
4041 return;
4044 if (vr1->type == VR_VARYING)
4046 set_value_range_to_varying (vr0);
4047 return;
4050 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
4052 int cmp;
4053 tree min, max;
4055 /* Compute the convex hull of the ranges. The lower limit of
4056 the new range is the minimum of the two ranges. If they
4057 cannot be compared, then give up. */
4058 cmp = compare_values (vr0->min, vr1->min);
4059 if (cmp == 0 || cmp == 1)
4060 min = vr1->min;
4061 else if (cmp == -1)
4062 min = vr0->min;
4063 else
4064 goto give_up;
4066 /* Similarly, the upper limit of the new range is the maximum
4067 of the two ranges. If they cannot be compared, then
4068 give up. */
4069 cmp = compare_values (vr0->max, vr1->max);
4070 if (cmp == 0 || cmp == -1)
4071 max = vr1->max;
4072 else if (cmp == 1)
4073 max = vr0->max;
4074 else
4075 goto give_up;
4077 /* The resulting set of equivalences is the intersection of
4078 the two sets. */
4079 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
4080 bitmap_and_into (vr0->equiv, vr1->equiv);
4081 else if (vr0->equiv && !vr1->equiv)
4082 bitmap_clear (vr0->equiv);
4084 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
4086 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
4088 /* Two anti-ranges meet only if their complements intersect.
4089 Only handle the case of identical ranges. */
4090 if (compare_values (vr0->min, vr1->min) == 0
4091 && compare_values (vr0->max, vr1->max) == 0
4092 && compare_values (vr0->min, vr0->max) == 0)
4094 /* The resulting set of equivalences is the intersection of
4095 the two sets. */
4096 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
4097 bitmap_and_into (vr0->equiv, vr1->equiv);
4098 else if (vr0->equiv && !vr1->equiv)
4099 bitmap_clear (vr0->equiv);
4101 else
4102 goto give_up;
4104 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
4106 /* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
4107 only handle the case where the ranges have an empty intersection.
4108 The result of the meet operation is the anti-range. */
4109 if (!symbolic_range_p (vr0)
4110 && !symbolic_range_p (vr1)
4111 && !value_ranges_intersect_p (vr0, vr1))
4113 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
4114 set. We need to compute the intersection of the two
4115 equivalence sets. */
4116 if (vr1->type == VR_ANTI_RANGE)
4117 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
4119 /* The resulting set of equivalences is the intersection of
4120 the two sets. */
4121 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
4122 bitmap_and_into (vr0->equiv, vr1->equiv);
4123 else if (vr0->equiv && !vr1->equiv)
4124 bitmap_clear (vr0->equiv);
4126 else
4127 goto give_up;
4129 else
4130 gcc_unreachable ();
4132 return;
4134 give_up:
4135 /* Failed to find an efficient meet. Before giving up and setting
4136 the result to VARYING, see if we can at least derive a useful
4137 anti-range. FIXME, all this nonsense about distinguishing
4138 anti-ranges from ranges is necessary because of the odd
4139 semantics of range_includes_zero_p and friends. */
4140 if (!symbolic_range_p (vr0)
4141 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
4142 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
4143 && !symbolic_range_p (vr1)
4144 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
4145 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
4147 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
4149 /* Since this meet operation did not result from the meeting of
4150 two equivalent names, VR0 cannot have any equivalences. */
4151 if (vr0->equiv)
4152 bitmap_clear (vr0->equiv);
4154 else
4155 set_value_range_to_varying (vr0);
4159 /* Visit all arguments for PHI node PHI that flow through executable
4160 edges. If a valid value range can be derived from all the incoming
4161 value ranges, set a new range for the LHS of PHI. */
4163 static enum ssa_prop_result
4164 vrp_visit_phi_node (tree phi)
4166 int i;
4167 tree lhs = PHI_RESULT (phi);
4168 value_range_t *lhs_vr = get_value_range (lhs);
4169 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
4171 copy_value_range (&vr_result, lhs_vr);
4173 if (dump_file && (dump_flags & TDF_DETAILS))
4175 fprintf (dump_file, "\nVisiting PHI node: ");
4176 print_generic_expr (dump_file, phi, dump_flags);
4179 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
4181 edge e = PHI_ARG_EDGE (phi, i);
4183 if (dump_file && (dump_flags & TDF_DETAILS))
4185 fprintf (dump_file,
4186 "\n Argument #%d (%d -> %d %sexecutable)\n",
4187 i, e->src->index, e->dest->index,
4188 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
4191 if (e->flags & EDGE_EXECUTABLE)
4193 tree arg = PHI_ARG_DEF (phi, i);
4194 value_range_t vr_arg;
4196 if (TREE_CODE (arg) == SSA_NAME)
4197 vr_arg = *(get_value_range (arg));
4198 else
4200 vr_arg.type = VR_RANGE;
4201 vr_arg.min = arg;
4202 vr_arg.max = arg;
4203 vr_arg.equiv = NULL;
4206 if (dump_file && (dump_flags & TDF_DETAILS))
4208 fprintf (dump_file, "\t");
4209 print_generic_expr (dump_file, arg, dump_flags);
4210 fprintf (dump_file, "\n\tValue: ");
4211 dump_value_range (dump_file, &vr_arg);
4212 fprintf (dump_file, "\n");
4215 vrp_meet (&vr_result, &vr_arg);
4217 if (vr_result.type == VR_VARYING)
4218 break;
4222 if (vr_result.type == VR_VARYING)
4223 goto varying;
4225 /* To prevent infinite iterations in the algorithm, derive ranges
4226 when the new value is slightly bigger or smaller than the
4227 previous one. */
4228 if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE)
4230 if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
4232 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
4233 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
4235 /* If the new minimum is smaller or larger than the previous
4236 one, go all the way to -INF. In the first case, to avoid
4237 iterating millions of times to reach -INF, and in the
4238 other case to avoid infinite bouncing between different
4239 minimums. */
4240 if (cmp_min > 0 || cmp_min < 0)
4241 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
4243 /* Similarly, if the new maximum is smaller or larger than
4244 the previous one, go all the way to +INF. */
4245 if (cmp_max < 0 || cmp_max > 0)
4246 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
4248 /* If we ended up with a (-INF, +INF) range, set it to
4249 VARYING. */
4250 if (vr_result.min == TYPE_MIN_VALUE (TREE_TYPE (vr_result.min))
4251 && vr_result.max == TYPE_MAX_VALUE (TREE_TYPE (vr_result.max)))
4252 goto varying;
4256 /* If the new range is different than the previous value, keep
4257 iterating. */
4258 if (update_value_range (lhs, &vr_result))
4259 return SSA_PROP_INTERESTING;
4261 /* Nothing changed, don't add outgoing edges. */
4262 return SSA_PROP_NOT_INTERESTING;
4264 /* No match found. Set the LHS to VARYING. */
4265 varying:
4266 set_value_range_to_varying (lhs_vr);
4267 return SSA_PROP_VARYING;
4270 /* Simplify a division or modulo operator to a right shift or
4271 bitwise and if the first operand is unsigned or is greater
4272 than zero and the second operand is an exact power of two. */
4274 static void
4275 simplify_div_or_mod_using_ranges (tree stmt, tree rhs, enum tree_code rhs_code)
4277 tree val = NULL;
4278 tree op = TREE_OPERAND (rhs, 0);
4279 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
4281 if (TYPE_UNSIGNED (TREE_TYPE (op)))
4283 val = integer_one_node;
4285 else
4287 val = compare_range_with_value (GT_EXPR, vr, integer_zero_node);
4290 if (val && integer_onep (val))
4292 tree t;
4293 tree op0 = TREE_OPERAND (rhs, 0);
4294 tree op1 = TREE_OPERAND (rhs, 1);
4296 if (rhs_code == TRUNC_DIV_EXPR)
4298 t = build_int_cst (NULL_TREE, tree_log2 (op1));
4299 t = build2 (RSHIFT_EXPR, TREE_TYPE (op0), op0, t);
4301 else
4303 t = build_int_cst (TREE_TYPE (op1), 1);
4304 t = int_const_binop (MINUS_EXPR, op1, t, 0);
4305 t = fold_convert (TREE_TYPE (op0), t);
4306 t = build2 (BIT_AND_EXPR, TREE_TYPE (op0), op0, t);
4309 GIMPLE_STMT_OPERAND (stmt, 1) = t;
4310 update_stmt (stmt);
4314 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
4315 ABS_EXPR. If the operand is <= 0, then simplify the
4316 ABS_EXPR into a NEGATE_EXPR. */
4318 static void
4319 simplify_abs_using_ranges (tree stmt, tree rhs)
4321 tree val = NULL;
4322 tree op = TREE_OPERAND (rhs, 0);
4323 tree type = TREE_TYPE (op);
4324 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
4326 if (TYPE_UNSIGNED (type))
4328 val = integer_zero_node;
4330 else if (vr)
4332 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node);
4333 if (!val)
4335 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node);
4337 if (val)
4339 if (integer_zerop (val))
4340 val = integer_one_node;
4341 else if (integer_onep (val))
4342 val = integer_zero_node;
4346 if (val
4347 && (integer_onep (val) || integer_zerop (val)))
4349 tree t;
4351 if (integer_onep (val))
4352 t = build1 (NEGATE_EXPR, TREE_TYPE (op), op);
4353 else
4354 t = op;
4356 GIMPLE_STMT_OPERAND (stmt, 1) = t;
4357 update_stmt (stmt);
4362 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
4363 a known value range VR.
4365 If there is one and only one value which will satisfy the
4366 conditional, then return that value. Else return NULL. */
4368 static tree
4369 test_for_singularity (enum tree_code cond_code, tree op0,
4370 tree op1, value_range_t *vr)
4372 tree min = NULL;
4373 tree max = NULL;
4375 /* Extract minimum/maximum values which satisfy the
4376 the conditional as it was written. */
4377 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
4379 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
4381 max = op1;
4382 if (cond_code == LT_EXPR)
4384 tree one = build_int_cst (TREE_TYPE (op0), 1);
4385 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
4388 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
4390 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
4392 min = op1;
4393 if (cond_code == GT_EXPR)
4395 tree one = build_int_cst (TREE_TYPE (op0), 1);
4396 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
4400 /* Now refine the minimum and maximum values using any
4401 value range information we have for op0. */
4402 if (min && max)
4404 if (compare_values (vr->min, min) == -1)
4405 min = min;
4406 else
4407 min = vr->min;
4408 if (compare_values (vr->max, max) == 1)
4409 max = max;
4410 else
4411 max = vr->max;
4413 /* If the new min/max values have converged to a single value,
4414 then there is only one value which can satisfy the condition,
4415 return that value. */
4416 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
4417 return min;
4419 return NULL;
4422 /* Simplify a conditional using a relational operator to an equality
4423 test if the range information indicates only one value can satisfy
4424 the original conditional. */
4426 static void
4427 simplify_cond_using_ranges (tree stmt)
4429 tree cond = COND_EXPR_COND (stmt);
4430 tree op0 = TREE_OPERAND (cond, 0);
4431 tree op1 = TREE_OPERAND (cond, 1);
4432 enum tree_code cond_code = TREE_CODE (cond);
4434 if (cond_code != NE_EXPR
4435 && cond_code != EQ_EXPR
4436 && TREE_CODE (op0) == SSA_NAME
4437 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
4438 && is_gimple_min_invariant (op1))
4440 value_range_t *vr = get_value_range (op0);
4442 /* If we have range information for OP0, then we might be
4443 able to simplify this conditional. */
4444 if (vr->type == VR_RANGE)
4446 tree new = test_for_singularity (cond_code, op0, op1, vr);
4448 if (new)
4450 if (dump_file)
4452 fprintf (dump_file, "Simplified relational ");
4453 print_generic_expr (dump_file, cond, 0);
4454 fprintf (dump_file, " into ");
4457 COND_EXPR_COND (stmt)
4458 = build2 (EQ_EXPR, boolean_type_node, op0, new);
4459 update_stmt (stmt);
4461 if (dump_file)
4463 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
4464 fprintf (dump_file, "\n");
4466 return;
4470 /* Try again after inverting the condition. We only deal
4471 with integral types here, so no need to worry about
4472 issues with inverting FP comparisons. */
4473 cond_code = invert_tree_comparison (cond_code, false);
4474 new = test_for_singularity (cond_code, op0, op1, vr);
4476 if (new)
4478 if (dump_file)
4480 fprintf (dump_file, "Simplified relational ");
4481 print_generic_expr (dump_file, cond, 0);
4482 fprintf (dump_file, " into ");
4485 COND_EXPR_COND (stmt)
4486 = build2 (NE_EXPR, boolean_type_node, op0, new);
4487 update_stmt (stmt);
4489 if (dump_file)
4491 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
4492 fprintf (dump_file, "\n");
4494 return;
4501 /* Simplify STMT using ranges if possible. */
4503 void
4504 simplify_stmt_using_ranges (tree stmt)
4506 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
4508 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
4509 enum tree_code rhs_code = TREE_CODE (rhs);
4511 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
4512 and BIT_AND_EXPR respectively if the first operand is greater
4513 than zero and the second operand is an exact power of two. */
4514 if ((rhs_code == TRUNC_DIV_EXPR || rhs_code == TRUNC_MOD_EXPR)
4515 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0)))
4516 && integer_pow2p (TREE_OPERAND (rhs, 1)))
4517 simplify_div_or_mod_using_ranges (stmt, rhs, rhs_code);
4519 /* Transform ABS (X) into X or -X as appropriate. */
4520 if (rhs_code == ABS_EXPR
4521 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
4522 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0))))
4523 simplify_abs_using_ranges (stmt, rhs);
4525 else if (TREE_CODE (stmt) == COND_EXPR
4526 && COMPARISON_CLASS_P (COND_EXPR_COND (stmt)))
4528 simplify_cond_using_ranges (stmt);
4532 /* Stack of dest,src equivalency pairs that need to be restored after
4533 each attempt to thread a block's incoming edge to an outgoing edge.
4535 A NULL entry is used to mark the end of pairs which need to be
4536 restored. */
4537 static VEC(tree,heap) *stack;
4539 /* A trivial wrapper so that we can present the generic jump
4540 threading code with a simple API for simplifying statements. */
4541 static tree
4542 simplify_stmt_for_jump_threading (tree stmt)
4544 /* We only use VRP information to simplify conditionals. This is
4545 overly conservative, but it's unclear if doing more would be
4546 worth the compile time cost. */
4547 if (TREE_CODE (stmt) != COND_EXPR)
4548 return NULL;
4550 return vrp_evaluate_conditional (COND_EXPR_COND (stmt), true);
4553 /* Blocks which have more than one predecessor and more than
4554 one successor present jump threading opportunities. ie,
4555 when the block is reached from a specific predecessor, we
4556 may be able to determine which of the outgoing edges will
4557 be traversed. When this optimization applies, we are able
4558 to avoid conditionals at runtime and we may expose secondary
4559 optimization opportunities.
4561 This routine is effectively a driver for the generic jump
4562 threading code. It basically just presents the generic code
4563 with edges that may be suitable for jump threading.
4565 Unlike DOM, we do not iterate VRP if jump threading was successful.
4566 While iterating may expose new opportunities for VRP, it is expected
4567 those opportunities would be very limited and the compile time cost
4568 to expose those opportunities would be significant.
4570 As jump threading opportunities are discovered, they are registered
4571 for later realization. */
4573 static void
4574 identify_jump_threads (void)
4576 basic_block bb;
4577 tree dummy;
4579 /* Ugh. When substituting values earlier in this pass we can
4580 wipe the dominance information. So rebuild the dominator
4581 information as we need it within the jump threading code. */
4582 calculate_dominance_info (CDI_DOMINATORS);
4584 /* We do not allow VRP information to be used for jump threading
4585 across a back edge in the CFG. Otherwise it becomes too
4586 difficult to avoid eliminating loop exit tests. Of course
4587 EDGE_DFS_BACK is not accurate at this time so we have to
4588 recompute it. */
4589 mark_dfs_back_edges ();
4591 /* Allocate our unwinder stack to unwind any temporary equivalences
4592 that might be recorded. */
4593 stack = VEC_alloc (tree, heap, 20);
4595 /* To avoid lots of silly node creation, we create a single
4596 conditional and just modify it in-place when attempting to
4597 thread jumps. */
4598 dummy = build2 (EQ_EXPR, boolean_type_node, NULL, NULL);
4599 dummy = build3 (COND_EXPR, void_type_node, dummy, NULL, NULL);
4601 /* Walk through all the blocks finding those which present a
4602 potential jump threading opportunity. We could set this up
4603 as a dominator walker and record data during the walk, but
4604 I doubt it's worth the effort for the classes of jump
4605 threading opportunities we are trying to identify at this
4606 point in compilation. */
4607 FOR_EACH_BB (bb)
4609 tree last, cond;
4611 /* If the generic jump threading code does not find this block
4612 interesting, then there is nothing to do. */
4613 if (! potentially_threadable_block (bb))
4614 continue;
4616 /* We only care about blocks ending in a COND_EXPR. While there
4617 may be some value in handling SWITCH_EXPR here, I doubt it's
4618 terribly important. */
4619 last = bsi_stmt (bsi_last (bb));
4620 if (TREE_CODE (last) != COND_EXPR)
4621 continue;
4623 /* We're basically looking for any kind of conditional with
4624 integral type arguments. */
4625 cond = COND_EXPR_COND (last);
4626 if ((TREE_CODE (cond) == SSA_NAME
4627 && INTEGRAL_TYPE_P (TREE_TYPE (cond)))
4628 || (COMPARISON_CLASS_P (cond)
4629 && TREE_CODE (TREE_OPERAND (cond, 0)) == SSA_NAME
4630 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 0)))
4631 && (TREE_CODE (TREE_OPERAND (cond, 1)) == SSA_NAME
4632 || is_gimple_min_invariant (TREE_OPERAND (cond, 1)))
4633 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 1)))))
4635 edge_iterator ei;
4636 edge e;
4638 /* We've got a block with multiple predecessors and multiple
4639 successors which also ends in a suitable conditional. For
4640 each predecessor, see if we can thread it to a specific
4641 successor. */
4642 FOR_EACH_EDGE (e, ei, bb->preds)
4644 /* Do not thread across back edges or abnormal edges
4645 in the CFG. */
4646 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
4647 continue;
4649 thread_across_edge (dummy, e, true,
4650 &stack,
4651 simplify_stmt_for_jump_threading);
4656 /* We do not actually update the CFG or SSA graphs at this point as
4657 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
4658 handle ASSERT_EXPRs gracefully. */
4661 /* We identified all the jump threading opportunities earlier, but could
4662 not transform the CFG at that time. This routine transforms the
4663 CFG and arranges for the dominator tree to be rebuilt if necessary.
4665 Note the SSA graph update will occur during the normal TODO
4666 processing by the pass manager. */
4667 static void
4668 finalize_jump_threads (void)
4670 bool cfg_altered = false;
4671 cfg_altered = thread_through_all_blocks ();
4673 /* If we threaded jumps, then we need to recompute the dominance
4674 information, to safely do that we must clean up the CFG first. */
4675 if (cfg_altered)
4677 free_dominance_info (CDI_DOMINATORS);
4678 cleanup_tree_cfg ();
4679 calculate_dominance_info (CDI_DOMINATORS);
4681 VEC_free (tree, heap, stack);
4685 /* Traverse all the blocks folding conditionals with known ranges. */
4687 static void
4688 vrp_finalize (void)
4690 size_t i;
4691 prop_value_t *single_val_range;
4692 bool do_value_subst_p;
4694 if (dump_file)
4696 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
4697 dump_all_value_ranges (dump_file);
4698 fprintf (dump_file, "\n");
4701 /* We may have ended with ranges that have exactly one value. Those
4702 values can be substituted as any other copy/const propagated
4703 value using substitute_and_fold. */
4704 single_val_range = XCNEWVEC (prop_value_t, num_ssa_names);
4706 do_value_subst_p = false;
4707 for (i = 0; i < num_ssa_names; i++)
4708 if (vr_value[i]
4709 && vr_value[i]->type == VR_RANGE
4710 && vr_value[i]->min == vr_value[i]->max)
4712 single_val_range[i].value = vr_value[i]->min;
4713 do_value_subst_p = true;
4716 if (!do_value_subst_p)
4718 /* We found no single-valued ranges, don't waste time trying to
4719 do single value substitution in substitute_and_fold. */
4720 free (single_val_range);
4721 single_val_range = NULL;
4724 substitute_and_fold (single_val_range, true);
4726 /* We must identify jump threading opportunities before we release
4727 the datastructures built by VRP. */
4728 identify_jump_threads ();
4730 /* Free allocated memory. */
4731 for (i = 0; i < num_ssa_names; i++)
4732 if (vr_value[i])
4734 BITMAP_FREE (vr_value[i]->equiv);
4735 free (vr_value[i]);
4738 free (single_val_range);
4739 free (vr_value);
4741 /* So that we can distinguish between VRP data being available
4742 and not available. */
4743 vr_value = NULL;
4747 /* Main entry point to VRP (Value Range Propagation). This pass is
4748 loosely based on J. R. C. Patterson, ``Accurate Static Branch
4749 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
4750 Programming Language Design and Implementation, pp. 67-78, 1995.
4751 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
4753 This is essentially an SSA-CCP pass modified to deal with ranges
4754 instead of constants.
4756 While propagating ranges, we may find that two or more SSA name
4757 have equivalent, though distinct ranges. For instance,
4759 1 x_9 = p_3->a;
4760 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
4761 3 if (p_4 == q_2)
4762 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
4763 5 endif
4764 6 if (q_2)
4766 In the code above, pointer p_5 has range [q_2, q_2], but from the
4767 code we can also determine that p_5 cannot be NULL and, if q_2 had
4768 a non-varying range, p_5's range should also be compatible with it.
4770 These equivalences are created by two expressions: ASSERT_EXPR and
4771 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
4772 result of another assertion, then we can use the fact that p_5 and
4773 p_4 are equivalent when evaluating p_5's range.
4775 Together with value ranges, we also propagate these equivalences
4776 between names so that we can take advantage of information from
4777 multiple ranges when doing final replacement. Note that this
4778 equivalency relation is transitive but not symmetric.
4780 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
4781 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
4782 in contexts where that assertion does not hold (e.g., in line 6).
4784 TODO, the main difference between this pass and Patterson's is that
4785 we do not propagate edge probabilities. We only compute whether
4786 edges can be taken or not. That is, instead of having a spectrum
4787 of jump probabilities between 0 and 1, we only deal with 0, 1 and
4788 DON'T KNOW. In the future, it may be worthwhile to propagate
4789 probabilities to aid branch prediction. */
4791 static unsigned int
4792 execute_vrp (void)
4794 insert_range_assertions ();
4796 loop_optimizer_init (LOOPS_NORMAL);
4797 if (current_loops)
4798 scev_initialize ();
4800 vrp_initialize ();
4801 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
4802 vrp_finalize ();
4804 if (current_loops)
4806 scev_finalize ();
4807 loop_optimizer_finalize ();
4810 /* ASSERT_EXPRs must be removed before finalizing jump threads
4811 as finalizing jump threads calls the CFG cleanup code which
4812 does not properly handle ASSERT_EXPRs. */
4813 remove_range_assertions ();
4815 /* If we exposed any new variables, go ahead and put them into
4816 SSA form now, before we handle jump threading. This simplifies
4817 interactions between rewriting of _DECL nodes into SSA form
4818 and rewriting SSA_NAME nodes into SSA form after block
4819 duplication and CFG manipulation. */
4820 update_ssa (TODO_update_ssa);
4822 finalize_jump_threads ();
4823 return 0;
4826 static bool
4827 gate_vrp (void)
4829 return flag_tree_vrp != 0;
4832 struct tree_opt_pass pass_vrp =
4834 "vrp", /* name */
4835 gate_vrp, /* gate */
4836 execute_vrp, /* execute */
4837 NULL, /* sub */
4838 NULL, /* next */
4839 0, /* static_pass_number */
4840 TV_TREE_VRP, /* tv_id */
4841 PROP_ssa | PROP_alias, /* properties_required */
4842 0, /* properties_provided */
4843 0, /* properties_destroyed */
4844 0, /* todo_flags_start */
4845 TODO_cleanup_cfg
4846 | TODO_ggc_collect
4847 | TODO_verify_ssa
4848 | TODO_dump_func
4849 | TODO_update_ssa
4850 | TODO_update_smt_usage, /* todo_flags_finish */
4851 0 /* letter */