2011-04-12 Diego Novillo <dnovillo@google.com>
[official-gcc.git] / gcc / optabs.c
blobd1cfd3a3f9b269ac50a0e271f6cb42a0bb30670e
1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "diagnostic-core.h"
29 /* Include insn-config.h before expr.h so that HAVE_conditional_move
30 is properly defined. */
31 #include "insn-config.h"
32 #include "rtl.h"
33 #include "tree.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "function.h"
37 #include "except.h"
38 #include "expr.h"
39 #include "optabs.h"
40 #include "libfuncs.h"
41 #include "recog.h"
42 #include "reload.h"
43 #include "ggc.h"
44 #include "basic-block.h"
45 #include "target.h"
47 struct target_optabs default_target_optabs;
48 struct target_libfuncs default_target_libfuncs;
49 #if SWITCHABLE_TARGET
50 struct target_optabs *this_target_optabs = &default_target_optabs;
51 struct target_libfuncs *this_target_libfuncs = &default_target_libfuncs;
52 #endif
54 #define libfunc_hash \
55 (this_target_libfuncs->x_libfunc_hash)
57 /* Contains the optab used for each rtx code. */
58 optab code_to_optab[NUM_RTX_CODE + 1];
60 static void prepare_float_lib_cmp (rtx, rtx, enum rtx_code, rtx *,
61 enum machine_mode *);
62 static rtx expand_unop_direct (enum machine_mode, optab, rtx, rtx, int);
64 /* Debug facility for use in GDB. */
65 void debug_optab_libfuncs (void);
67 /* Prefixes for the current version of decimal floating point (BID vs. DPD) */
68 #if ENABLE_DECIMAL_BID_FORMAT
69 #define DECIMAL_PREFIX "bid_"
70 #else
71 #define DECIMAL_PREFIX "dpd_"
72 #endif
74 /* Used for libfunc_hash. */
76 static hashval_t
77 hash_libfunc (const void *p)
79 const struct libfunc_entry *const e = (const struct libfunc_entry *) p;
81 return (((int) e->mode1 + (int) e->mode2 * NUM_MACHINE_MODES)
82 ^ e->optab);
85 /* Used for libfunc_hash. */
87 static int
88 eq_libfunc (const void *p, const void *q)
90 const struct libfunc_entry *const e1 = (const struct libfunc_entry *) p;
91 const struct libfunc_entry *const e2 = (const struct libfunc_entry *) q;
93 return (e1->optab == e2->optab
94 && e1->mode1 == e2->mode1
95 && e1->mode2 == e2->mode2);
98 /* Return libfunc corresponding operation defined by OPTAB converting
99 from MODE2 to MODE1. Trigger lazy initialization if needed, return NULL
100 if no libfunc is available. */
102 convert_optab_libfunc (convert_optab optab, enum machine_mode mode1,
103 enum machine_mode mode2)
105 struct libfunc_entry e;
106 struct libfunc_entry **slot;
108 e.optab = (size_t) (optab - &convert_optab_table[0]);
109 e.mode1 = mode1;
110 e.mode2 = mode2;
111 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, NO_INSERT);
112 if (!slot)
114 if (optab->libcall_gen)
116 optab->libcall_gen (optab, optab->libcall_basename, mode1, mode2);
117 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, NO_INSERT);
118 if (slot)
119 return (*slot)->libfunc;
120 else
121 return NULL;
123 return NULL;
125 return (*slot)->libfunc;
128 /* Return libfunc corresponding operation defined by OPTAB in MODE.
129 Trigger lazy initialization if needed, return NULL if no libfunc is
130 available. */
132 optab_libfunc (optab optab, enum machine_mode mode)
134 struct libfunc_entry e;
135 struct libfunc_entry **slot;
137 e.optab = (size_t) (optab - &optab_table[0]);
138 e.mode1 = mode;
139 e.mode2 = VOIDmode;
140 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, NO_INSERT);
141 if (!slot)
143 if (optab->libcall_gen)
145 optab->libcall_gen (optab, optab->libcall_basename,
146 optab->libcall_suffix, mode);
147 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash,
148 &e, NO_INSERT);
149 if (slot)
150 return (*slot)->libfunc;
151 else
152 return NULL;
154 return NULL;
156 return (*slot)->libfunc;
160 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
161 the result of operation CODE applied to OP0 (and OP1 if it is a binary
162 operation).
164 If the last insn does not set TARGET, don't do anything, but return 1.
166 If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
167 don't add the REG_EQUAL note but return 0. Our caller can then try
168 again, ensuring that TARGET is not one of the operands. */
170 static int
171 add_equal_note (rtx insns, rtx target, enum rtx_code code, rtx op0, rtx op1)
173 rtx last_insn, insn, set;
174 rtx note;
176 gcc_assert (insns && INSN_P (insns) && NEXT_INSN (insns));
178 if (GET_RTX_CLASS (code) != RTX_COMM_ARITH
179 && GET_RTX_CLASS (code) != RTX_BIN_ARITH
180 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE
181 && GET_RTX_CLASS (code) != RTX_COMPARE
182 && GET_RTX_CLASS (code) != RTX_UNARY)
183 return 1;
185 if (GET_CODE (target) == ZERO_EXTRACT)
186 return 1;
188 for (last_insn = insns;
189 NEXT_INSN (last_insn) != NULL_RTX;
190 last_insn = NEXT_INSN (last_insn))
193 set = single_set (last_insn);
194 if (set == NULL_RTX)
195 return 1;
197 if (! rtx_equal_p (SET_DEST (set), target)
198 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
199 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
200 || ! rtx_equal_p (XEXP (SET_DEST (set), 0), target)))
201 return 1;
203 /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
204 besides the last insn. */
205 if (reg_overlap_mentioned_p (target, op0)
206 || (op1 && reg_overlap_mentioned_p (target, op1)))
208 insn = PREV_INSN (last_insn);
209 while (insn != NULL_RTX)
211 if (reg_set_p (target, insn))
212 return 0;
214 insn = PREV_INSN (insn);
218 if (GET_RTX_CLASS (code) == RTX_UNARY)
219 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
220 else
221 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
223 set_unique_reg_note (last_insn, REG_EQUAL, note);
225 return 1;
228 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
229 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
230 not actually do a sign-extend or zero-extend, but can leave the
231 higher-order bits of the result rtx undefined, for example, in the case
232 of logical operations, but not right shifts. */
234 static rtx
235 widen_operand (rtx op, enum machine_mode mode, enum machine_mode oldmode,
236 int unsignedp, int no_extend)
238 rtx result;
240 /* If we don't have to extend and this is a constant, return it. */
241 if (no_extend && GET_MODE (op) == VOIDmode)
242 return op;
244 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
245 extend since it will be more efficient to do so unless the signedness of
246 a promoted object differs from our extension. */
247 if (! no_extend
248 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
249 && SUBREG_PROMOTED_UNSIGNED_P (op) == unsignedp))
250 return convert_modes (mode, oldmode, op, unsignedp);
252 /* If MODE is no wider than a single word, we return a paradoxical
253 SUBREG. */
254 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
255 return gen_rtx_SUBREG (mode, force_reg (GET_MODE (op), op), 0);
257 /* Otherwise, get an object of MODE, clobber it, and set the low-order
258 part to OP. */
260 result = gen_reg_rtx (mode);
261 emit_clobber (result);
262 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
263 return result;
266 /* Return the optab used for computing the operation given by the tree code,
267 CODE and the tree EXP. This function is not always usable (for example, it
268 cannot give complete results for multiplication or division) but probably
269 ought to be relied on more widely throughout the expander. */
270 optab
271 optab_for_tree_code (enum tree_code code, const_tree type,
272 enum optab_subtype subtype)
274 bool trapv;
275 switch (code)
277 case BIT_AND_EXPR:
278 return and_optab;
280 case BIT_IOR_EXPR:
281 return ior_optab;
283 case BIT_NOT_EXPR:
284 return one_cmpl_optab;
286 case BIT_XOR_EXPR:
287 return xor_optab;
289 case TRUNC_MOD_EXPR:
290 case CEIL_MOD_EXPR:
291 case FLOOR_MOD_EXPR:
292 case ROUND_MOD_EXPR:
293 return TYPE_UNSIGNED (type) ? umod_optab : smod_optab;
295 case RDIV_EXPR:
296 case TRUNC_DIV_EXPR:
297 case CEIL_DIV_EXPR:
298 case FLOOR_DIV_EXPR:
299 case ROUND_DIV_EXPR:
300 case EXACT_DIV_EXPR:
301 if (TYPE_SATURATING(type))
302 return TYPE_UNSIGNED(type) ? usdiv_optab : ssdiv_optab;
303 return TYPE_UNSIGNED (type) ? udiv_optab : sdiv_optab;
305 case LSHIFT_EXPR:
306 if (TREE_CODE (type) == VECTOR_TYPE)
308 if (subtype == optab_vector)
309 return TYPE_SATURATING (type) ? NULL : vashl_optab;
311 gcc_assert (subtype == optab_scalar);
313 if (TYPE_SATURATING(type))
314 return TYPE_UNSIGNED(type) ? usashl_optab : ssashl_optab;
315 return ashl_optab;
317 case RSHIFT_EXPR:
318 if (TREE_CODE (type) == VECTOR_TYPE)
320 if (subtype == optab_vector)
321 return TYPE_UNSIGNED (type) ? vlshr_optab : vashr_optab;
323 gcc_assert (subtype == optab_scalar);
325 return TYPE_UNSIGNED (type) ? lshr_optab : ashr_optab;
327 case LROTATE_EXPR:
328 if (TREE_CODE (type) == VECTOR_TYPE)
330 if (subtype == optab_vector)
331 return vrotl_optab;
333 gcc_assert (subtype == optab_scalar);
335 return rotl_optab;
337 case RROTATE_EXPR:
338 if (TREE_CODE (type) == VECTOR_TYPE)
340 if (subtype == optab_vector)
341 return vrotr_optab;
343 gcc_assert (subtype == optab_scalar);
345 return rotr_optab;
347 case MAX_EXPR:
348 return TYPE_UNSIGNED (type) ? umax_optab : smax_optab;
350 case MIN_EXPR:
351 return TYPE_UNSIGNED (type) ? umin_optab : smin_optab;
353 case REALIGN_LOAD_EXPR:
354 return vec_realign_load_optab;
356 case WIDEN_SUM_EXPR:
357 return TYPE_UNSIGNED (type) ? usum_widen_optab : ssum_widen_optab;
359 case DOT_PROD_EXPR:
360 return TYPE_UNSIGNED (type) ? udot_prod_optab : sdot_prod_optab;
362 case WIDEN_MULT_PLUS_EXPR:
363 return (TYPE_UNSIGNED (type)
364 ? (TYPE_SATURATING (type)
365 ? usmadd_widen_optab : umadd_widen_optab)
366 : (TYPE_SATURATING (type)
367 ? ssmadd_widen_optab : smadd_widen_optab));
369 case WIDEN_MULT_MINUS_EXPR:
370 return (TYPE_UNSIGNED (type)
371 ? (TYPE_SATURATING (type)
372 ? usmsub_widen_optab : umsub_widen_optab)
373 : (TYPE_SATURATING (type)
374 ? ssmsub_widen_optab : smsub_widen_optab));
376 case FMA_EXPR:
377 return fma_optab;
379 case REDUC_MAX_EXPR:
380 return TYPE_UNSIGNED (type) ? reduc_umax_optab : reduc_smax_optab;
382 case REDUC_MIN_EXPR:
383 return TYPE_UNSIGNED (type) ? reduc_umin_optab : reduc_smin_optab;
385 case REDUC_PLUS_EXPR:
386 return TYPE_UNSIGNED (type) ? reduc_uplus_optab : reduc_splus_optab;
388 case VEC_LSHIFT_EXPR:
389 return vec_shl_optab;
391 case VEC_RSHIFT_EXPR:
392 return vec_shr_optab;
394 case VEC_WIDEN_MULT_HI_EXPR:
395 return TYPE_UNSIGNED (type) ?
396 vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
398 case VEC_WIDEN_MULT_LO_EXPR:
399 return TYPE_UNSIGNED (type) ?
400 vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
402 case VEC_UNPACK_HI_EXPR:
403 return TYPE_UNSIGNED (type) ?
404 vec_unpacku_hi_optab : vec_unpacks_hi_optab;
406 case VEC_UNPACK_LO_EXPR:
407 return TYPE_UNSIGNED (type) ?
408 vec_unpacku_lo_optab : vec_unpacks_lo_optab;
410 case VEC_UNPACK_FLOAT_HI_EXPR:
411 /* The signedness is determined from input operand. */
412 return TYPE_UNSIGNED (type) ?
413 vec_unpacku_float_hi_optab : vec_unpacks_float_hi_optab;
415 case VEC_UNPACK_FLOAT_LO_EXPR:
416 /* The signedness is determined from input operand. */
417 return TYPE_UNSIGNED (type) ?
418 vec_unpacku_float_lo_optab : vec_unpacks_float_lo_optab;
420 case VEC_PACK_TRUNC_EXPR:
421 return vec_pack_trunc_optab;
423 case VEC_PACK_SAT_EXPR:
424 return TYPE_UNSIGNED (type) ? vec_pack_usat_optab : vec_pack_ssat_optab;
426 case VEC_PACK_FIX_TRUNC_EXPR:
427 /* The signedness is determined from output operand. */
428 return TYPE_UNSIGNED (type) ?
429 vec_pack_ufix_trunc_optab : vec_pack_sfix_trunc_optab;
431 default:
432 break;
435 trapv = INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type);
436 switch (code)
438 case POINTER_PLUS_EXPR:
439 case PLUS_EXPR:
440 if (TYPE_SATURATING(type))
441 return TYPE_UNSIGNED(type) ? usadd_optab : ssadd_optab;
442 return trapv ? addv_optab : add_optab;
444 case MINUS_EXPR:
445 if (TYPE_SATURATING(type))
446 return TYPE_UNSIGNED(type) ? ussub_optab : sssub_optab;
447 return trapv ? subv_optab : sub_optab;
449 case MULT_EXPR:
450 if (TYPE_SATURATING(type))
451 return TYPE_UNSIGNED(type) ? usmul_optab : ssmul_optab;
452 return trapv ? smulv_optab : smul_optab;
454 case NEGATE_EXPR:
455 if (TYPE_SATURATING(type))
456 return TYPE_UNSIGNED(type) ? usneg_optab : ssneg_optab;
457 return trapv ? negv_optab : neg_optab;
459 case ABS_EXPR:
460 return trapv ? absv_optab : abs_optab;
462 case VEC_EXTRACT_EVEN_EXPR:
463 return vec_extract_even_optab;
465 case VEC_EXTRACT_ODD_EXPR:
466 return vec_extract_odd_optab;
468 case VEC_INTERLEAVE_HIGH_EXPR:
469 return vec_interleave_high_optab;
471 case VEC_INTERLEAVE_LOW_EXPR:
472 return vec_interleave_low_optab;
474 default:
475 return NULL;
480 /* Expand vector widening operations.
482 There are two different classes of operations handled here:
483 1) Operations whose result is wider than all the arguments to the operation.
484 Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR
485 In this case OP0 and optionally OP1 would be initialized,
486 but WIDE_OP wouldn't (not relevant for this case).
487 2) Operations whose result is of the same size as the last argument to the
488 operation, but wider than all the other arguments to the operation.
489 Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR.
490 In the case WIDE_OP, OP0 and optionally OP1 would be initialized.
492 E.g, when called to expand the following operations, this is how
493 the arguments will be initialized:
494 nops OP0 OP1 WIDE_OP
495 widening-sum 2 oprnd0 - oprnd1
496 widening-dot-product 3 oprnd0 oprnd1 oprnd2
497 widening-mult 2 oprnd0 oprnd1 -
498 type-promotion (vec-unpack) 1 oprnd0 - - */
501 expand_widen_pattern_expr (sepops ops, rtx op0, rtx op1, rtx wide_op,
502 rtx target, int unsignedp)
504 struct expand_operand eops[4];
505 tree oprnd0, oprnd1, oprnd2;
506 enum machine_mode wmode = VOIDmode, tmode0, tmode1 = VOIDmode;
507 optab widen_pattern_optab;
508 enum insn_code icode;
509 int nops = TREE_CODE_LENGTH (ops->code);
510 int op;
512 oprnd0 = ops->op0;
513 tmode0 = TYPE_MODE (TREE_TYPE (oprnd0));
514 widen_pattern_optab =
515 optab_for_tree_code (ops->code, TREE_TYPE (oprnd0), optab_default);
516 if (ops->code == WIDEN_MULT_PLUS_EXPR
517 || ops->code == WIDEN_MULT_MINUS_EXPR)
518 icode = optab_handler (widen_pattern_optab,
519 TYPE_MODE (TREE_TYPE (ops->op2)));
520 else
521 icode = optab_handler (widen_pattern_optab, tmode0);
522 gcc_assert (icode != CODE_FOR_nothing);
524 if (nops >= 2)
526 oprnd1 = ops->op1;
527 tmode1 = TYPE_MODE (TREE_TYPE (oprnd1));
530 /* The last operand is of a wider mode than the rest of the operands. */
531 if (nops == 2)
532 wmode = tmode1;
533 else if (nops == 3)
535 gcc_assert (tmode1 == tmode0);
536 gcc_assert (op1);
537 oprnd2 = ops->op2;
538 wmode = TYPE_MODE (TREE_TYPE (oprnd2));
541 op = 0;
542 create_output_operand (&eops[op++], target, TYPE_MODE (ops->type));
543 create_convert_operand_from (&eops[op++], op0, tmode0, unsignedp);
544 if (op1)
545 create_convert_operand_from (&eops[op++], op1, tmode1, unsignedp);
546 if (wide_op)
547 create_convert_operand_from (&eops[op++], wide_op, wmode, unsignedp);
548 expand_insn (icode, op, eops);
549 return eops[0].value;
552 /* Generate code to perform an operation specified by TERNARY_OPTAB
553 on operands OP0, OP1 and OP2, with result having machine-mode MODE.
555 UNSIGNEDP is for the case where we have to widen the operands
556 to perform the operation. It says to use zero-extension.
558 If TARGET is nonzero, the value
559 is generated there, if it is convenient to do so.
560 In all cases an rtx is returned for the locus of the value;
561 this may or may not be TARGET. */
564 expand_ternary_op (enum machine_mode mode, optab ternary_optab, rtx op0,
565 rtx op1, rtx op2, rtx target, int unsignedp)
567 struct expand_operand ops[4];
568 enum insn_code icode = optab_handler (ternary_optab, mode);
570 gcc_assert (optab_handler (ternary_optab, mode) != CODE_FOR_nothing);
572 create_output_operand (&ops[0], target, mode);
573 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
574 create_convert_operand_from (&ops[2], op1, mode, unsignedp);
575 create_convert_operand_from (&ops[3], op2, mode, unsignedp);
576 expand_insn (icode, 4, ops);
577 return ops[0].value;
581 /* Like expand_binop, but return a constant rtx if the result can be
582 calculated at compile time. The arguments and return value are
583 otherwise the same as for expand_binop. */
585 static rtx
586 simplify_expand_binop (enum machine_mode mode, optab binoptab,
587 rtx op0, rtx op1, rtx target, int unsignedp,
588 enum optab_methods methods)
590 if (CONSTANT_P (op0) && CONSTANT_P (op1))
592 rtx x = simplify_binary_operation (binoptab->code, mode, op0, op1);
594 if (x)
595 return x;
598 return expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods);
601 /* Like simplify_expand_binop, but always put the result in TARGET.
602 Return true if the expansion succeeded. */
604 bool
605 force_expand_binop (enum machine_mode mode, optab binoptab,
606 rtx op0, rtx op1, rtx target, int unsignedp,
607 enum optab_methods methods)
609 rtx x = simplify_expand_binop (mode, binoptab, op0, op1,
610 target, unsignedp, methods);
611 if (x == 0)
612 return false;
613 if (x != target)
614 emit_move_insn (target, x);
615 return true;
618 /* Generate insns for VEC_LSHIFT_EXPR, VEC_RSHIFT_EXPR. */
621 expand_vec_shift_expr (sepops ops, rtx target)
623 struct expand_operand eops[3];
624 enum insn_code icode;
625 rtx rtx_op1, rtx_op2;
626 enum machine_mode mode = TYPE_MODE (ops->type);
627 tree vec_oprnd = ops->op0;
628 tree shift_oprnd = ops->op1;
629 optab shift_optab;
631 switch (ops->code)
633 case VEC_RSHIFT_EXPR:
634 shift_optab = vec_shr_optab;
635 break;
636 case VEC_LSHIFT_EXPR:
637 shift_optab = vec_shl_optab;
638 break;
639 default:
640 gcc_unreachable ();
643 icode = optab_handler (shift_optab, mode);
644 gcc_assert (icode != CODE_FOR_nothing);
646 rtx_op1 = expand_normal (vec_oprnd);
647 rtx_op2 = expand_normal (shift_oprnd);
649 create_output_operand (&eops[0], target, mode);
650 create_input_operand (&eops[1], rtx_op1, GET_MODE (rtx_op1));
651 create_convert_operand_from_type (&eops[2], rtx_op2, TREE_TYPE (shift_oprnd));
652 expand_insn (icode, 3, eops);
654 return eops[0].value;
657 /* This subroutine of expand_doubleword_shift handles the cases in which
658 the effective shift value is >= BITS_PER_WORD. The arguments and return
659 value are the same as for the parent routine, except that SUPERWORD_OP1
660 is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
661 INTO_TARGET may be null if the caller has decided to calculate it. */
663 static bool
664 expand_superword_shift (optab binoptab, rtx outof_input, rtx superword_op1,
665 rtx outof_target, rtx into_target,
666 int unsignedp, enum optab_methods methods)
668 if (into_target != 0)
669 if (!force_expand_binop (word_mode, binoptab, outof_input, superword_op1,
670 into_target, unsignedp, methods))
671 return false;
673 if (outof_target != 0)
675 /* For a signed right shift, we must fill OUTOF_TARGET with copies
676 of the sign bit, otherwise we must fill it with zeros. */
677 if (binoptab != ashr_optab)
678 emit_move_insn (outof_target, CONST0_RTX (word_mode));
679 else
680 if (!force_expand_binop (word_mode, binoptab,
681 outof_input, GEN_INT (BITS_PER_WORD - 1),
682 outof_target, unsignedp, methods))
683 return false;
685 return true;
688 /* This subroutine of expand_doubleword_shift handles the cases in which
689 the effective shift value is < BITS_PER_WORD. The arguments and return
690 value are the same as for the parent routine. */
692 static bool
693 expand_subword_shift (enum machine_mode op1_mode, optab binoptab,
694 rtx outof_input, rtx into_input, rtx op1,
695 rtx outof_target, rtx into_target,
696 int unsignedp, enum optab_methods methods,
697 unsigned HOST_WIDE_INT shift_mask)
699 optab reverse_unsigned_shift, unsigned_shift;
700 rtx tmp, carries;
702 reverse_unsigned_shift = (binoptab == ashl_optab ? lshr_optab : ashl_optab);
703 unsigned_shift = (binoptab == ashl_optab ? ashl_optab : lshr_optab);
705 /* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT.
706 We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in
707 the opposite direction to BINOPTAB. */
708 if (CONSTANT_P (op1) || shift_mask >= BITS_PER_WORD)
710 carries = outof_input;
711 tmp = immed_double_const (BITS_PER_WORD, 0, op1_mode);
712 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
713 0, true, methods);
715 else
717 /* We must avoid shifting by BITS_PER_WORD bits since that is either
718 the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or
719 has unknown behavior. Do a single shift first, then shift by the
720 remainder. It's OK to use ~OP1 as the remainder if shift counts
721 are truncated to the mode size. */
722 carries = expand_binop (word_mode, reverse_unsigned_shift,
723 outof_input, const1_rtx, 0, unsignedp, methods);
724 if (shift_mask == BITS_PER_WORD - 1)
726 tmp = immed_double_const (-1, -1, op1_mode);
727 tmp = simplify_expand_binop (op1_mode, xor_optab, op1, tmp,
728 0, true, methods);
730 else
732 tmp = immed_double_const (BITS_PER_WORD - 1, 0, op1_mode);
733 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
734 0, true, methods);
737 if (tmp == 0 || carries == 0)
738 return false;
739 carries = expand_binop (word_mode, reverse_unsigned_shift,
740 carries, tmp, 0, unsignedp, methods);
741 if (carries == 0)
742 return false;
744 /* Shift INTO_INPUT logically by OP1. This is the last use of INTO_INPUT
745 so the result can go directly into INTO_TARGET if convenient. */
746 tmp = expand_binop (word_mode, unsigned_shift, into_input, op1,
747 into_target, unsignedp, methods);
748 if (tmp == 0)
749 return false;
751 /* Now OR in the bits carried over from OUTOF_INPUT. */
752 if (!force_expand_binop (word_mode, ior_optab, tmp, carries,
753 into_target, unsignedp, methods))
754 return false;
756 /* Use a standard word_mode shift for the out-of half. */
757 if (outof_target != 0)
758 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
759 outof_target, unsignedp, methods))
760 return false;
762 return true;
766 #ifdef HAVE_conditional_move
767 /* Try implementing expand_doubleword_shift using conditional moves.
768 The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
769 otherwise it is by >= BITS_PER_WORD. SUBWORD_OP1 and SUPERWORD_OP1
770 are the shift counts to use in the former and latter case. All other
771 arguments are the same as the parent routine. */
773 static bool
774 expand_doubleword_shift_condmove (enum machine_mode op1_mode, optab binoptab,
775 enum rtx_code cmp_code, rtx cmp1, rtx cmp2,
776 rtx outof_input, rtx into_input,
777 rtx subword_op1, rtx superword_op1,
778 rtx outof_target, rtx into_target,
779 int unsignedp, enum optab_methods methods,
780 unsigned HOST_WIDE_INT shift_mask)
782 rtx outof_superword, into_superword;
784 /* Put the superword version of the output into OUTOF_SUPERWORD and
785 INTO_SUPERWORD. */
786 outof_superword = outof_target != 0 ? gen_reg_rtx (word_mode) : 0;
787 if (outof_target != 0 && subword_op1 == superword_op1)
789 /* The value INTO_TARGET >> SUBWORD_OP1, which we later store in
790 OUTOF_TARGET, is the same as the value of INTO_SUPERWORD. */
791 into_superword = outof_target;
792 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
793 outof_superword, 0, unsignedp, methods))
794 return false;
796 else
798 into_superword = gen_reg_rtx (word_mode);
799 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
800 outof_superword, into_superword,
801 unsignedp, methods))
802 return false;
805 /* Put the subword version directly in OUTOF_TARGET and INTO_TARGET. */
806 if (!expand_subword_shift (op1_mode, binoptab,
807 outof_input, into_input, subword_op1,
808 outof_target, into_target,
809 unsignedp, methods, shift_mask))
810 return false;
812 /* Select between them. Do the INTO half first because INTO_SUPERWORD
813 might be the current value of OUTOF_TARGET. */
814 if (!emit_conditional_move (into_target, cmp_code, cmp1, cmp2, op1_mode,
815 into_target, into_superword, word_mode, false))
816 return false;
818 if (outof_target != 0)
819 if (!emit_conditional_move (outof_target, cmp_code, cmp1, cmp2, op1_mode,
820 outof_target, outof_superword,
821 word_mode, false))
822 return false;
824 return true;
826 #endif
828 /* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
829 OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
830 input operand; the shift moves bits in the direction OUTOF_INPUT->
831 INTO_TARGET. OUTOF_TARGET and INTO_TARGET are the equivalent words
832 of the target. OP1 is the shift count and OP1_MODE is its mode.
833 If OP1 is constant, it will have been truncated as appropriate
834 and is known to be nonzero.
836 If SHIFT_MASK is zero, the result of word shifts is undefined when the
837 shift count is outside the range [0, BITS_PER_WORD). This routine must
838 avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).
840 If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
841 masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
842 fill with zeros or sign bits as appropriate.
844 If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
845 a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
846 Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
847 In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
848 are undefined.
850 BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop. This function
851 may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
852 OUTOF_INPUT and OUTOF_TARGET. OUTOF_TARGET can be null if the parent
853 function wants to calculate it itself.
855 Return true if the shift could be successfully synthesized. */
857 static bool
858 expand_doubleword_shift (enum machine_mode op1_mode, optab binoptab,
859 rtx outof_input, rtx into_input, rtx op1,
860 rtx outof_target, rtx into_target,
861 int unsignedp, enum optab_methods methods,
862 unsigned HOST_WIDE_INT shift_mask)
864 rtx superword_op1, tmp, cmp1, cmp2;
865 rtx subword_label, done_label;
866 enum rtx_code cmp_code;
868 /* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will
869 fill the result with sign or zero bits as appropriate. If so, the value
870 of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1). Recursively call
871 this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT
872 and INTO_INPUT), then emit code to set up OUTOF_TARGET.
874 This isn't worthwhile for constant shifts since the optimizers will
875 cope better with in-range shift counts. */
876 if (shift_mask >= BITS_PER_WORD
877 && outof_target != 0
878 && !CONSTANT_P (op1))
880 if (!expand_doubleword_shift (op1_mode, binoptab,
881 outof_input, into_input, op1,
882 0, into_target,
883 unsignedp, methods, shift_mask))
884 return false;
885 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
886 outof_target, unsignedp, methods))
887 return false;
888 return true;
891 /* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2)
892 is true when the effective shift value is less than BITS_PER_WORD.
893 Set SUPERWORD_OP1 to the shift count that should be used to shift
894 OUTOF_INPUT into INTO_TARGET when the condition is false. */
895 tmp = immed_double_const (BITS_PER_WORD, 0, op1_mode);
896 if (!CONSTANT_P (op1) && shift_mask == BITS_PER_WORD - 1)
898 /* Set CMP1 to OP1 & BITS_PER_WORD. The result is zero iff OP1
899 is a subword shift count. */
900 cmp1 = simplify_expand_binop (op1_mode, and_optab, op1, tmp,
901 0, true, methods);
902 cmp2 = CONST0_RTX (op1_mode);
903 cmp_code = EQ;
904 superword_op1 = op1;
906 else
908 /* Set CMP1 to OP1 - BITS_PER_WORD. */
909 cmp1 = simplify_expand_binop (op1_mode, sub_optab, op1, tmp,
910 0, true, methods);
911 cmp2 = CONST0_RTX (op1_mode);
912 cmp_code = LT;
913 superword_op1 = cmp1;
915 if (cmp1 == 0)
916 return false;
918 /* If we can compute the condition at compile time, pick the
919 appropriate subroutine. */
920 tmp = simplify_relational_operation (cmp_code, SImode, op1_mode, cmp1, cmp2);
921 if (tmp != 0 && CONST_INT_P (tmp))
923 if (tmp == const0_rtx)
924 return expand_superword_shift (binoptab, outof_input, superword_op1,
925 outof_target, into_target,
926 unsignedp, methods);
927 else
928 return expand_subword_shift (op1_mode, binoptab,
929 outof_input, into_input, op1,
930 outof_target, into_target,
931 unsignedp, methods, shift_mask);
934 #ifdef HAVE_conditional_move
935 /* Try using conditional moves to generate straight-line code. */
937 rtx start = get_last_insn ();
938 if (expand_doubleword_shift_condmove (op1_mode, binoptab,
939 cmp_code, cmp1, cmp2,
940 outof_input, into_input,
941 op1, superword_op1,
942 outof_target, into_target,
943 unsignedp, methods, shift_mask))
944 return true;
945 delete_insns_since (start);
947 #endif
949 /* As a last resort, use branches to select the correct alternative. */
950 subword_label = gen_label_rtx ();
951 done_label = gen_label_rtx ();
953 NO_DEFER_POP;
954 do_compare_rtx_and_jump (cmp1, cmp2, cmp_code, false, op1_mode,
955 0, 0, subword_label, -1);
956 OK_DEFER_POP;
958 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
959 outof_target, into_target,
960 unsignedp, methods))
961 return false;
963 emit_jump_insn (gen_jump (done_label));
964 emit_barrier ();
965 emit_label (subword_label);
967 if (!expand_subword_shift (op1_mode, binoptab,
968 outof_input, into_input, op1,
969 outof_target, into_target,
970 unsignedp, methods, shift_mask))
971 return false;
973 emit_label (done_label);
974 return true;
977 /* Subroutine of expand_binop. Perform a double word multiplication of
978 operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
979 as the target's word_mode. This function return NULL_RTX if anything
980 goes wrong, in which case it may have already emitted instructions
981 which need to be deleted.
983 If we want to multiply two two-word values and have normal and widening
984 multiplies of single-word values, we can do this with three smaller
985 multiplications.
987 The multiplication proceeds as follows:
988 _______________________
989 [__op0_high_|__op0_low__]
990 _______________________
991 * [__op1_high_|__op1_low__]
992 _______________________________________________
993 _______________________
994 (1) [__op0_low__*__op1_low__]
995 _______________________
996 (2a) [__op0_low__*__op1_high_]
997 _______________________
998 (2b) [__op0_high_*__op1_low__]
999 _______________________
1000 (3) [__op0_high_*__op1_high_]
1003 This gives a 4-word result. Since we are only interested in the
1004 lower 2 words, partial result (3) and the upper words of (2a) and
1005 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1006 calculated using non-widening multiplication.
1008 (1), however, needs to be calculated with an unsigned widening
1009 multiplication. If this operation is not directly supported we
1010 try using a signed widening multiplication and adjust the result.
1011 This adjustment works as follows:
1013 If both operands are positive then no adjustment is needed.
1015 If the operands have different signs, for example op0_low < 0 and
1016 op1_low >= 0, the instruction treats the most significant bit of
1017 op0_low as a sign bit instead of a bit with significance
1018 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1019 with 2**BITS_PER_WORD - op0_low, and two's complements the
1020 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1021 the result.
1023 Similarly, if both operands are negative, we need to add
1024 (op0_low + op1_low) * 2**BITS_PER_WORD.
1026 We use a trick to adjust quickly. We logically shift op0_low right
1027 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1028 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1029 logical shift exists, we do an arithmetic right shift and subtract
1030 the 0 or -1. */
1032 static rtx
1033 expand_doubleword_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
1034 bool umulp, enum optab_methods methods)
1036 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
1037 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
1038 rtx wordm1 = umulp ? NULL_RTX : GEN_INT (BITS_PER_WORD - 1);
1039 rtx product, adjust, product_high, temp;
1041 rtx op0_high = operand_subword_force (op0, high, mode);
1042 rtx op0_low = operand_subword_force (op0, low, mode);
1043 rtx op1_high = operand_subword_force (op1, high, mode);
1044 rtx op1_low = operand_subword_force (op1, low, mode);
1046 /* If we're using an unsigned multiply to directly compute the product
1047 of the low-order words of the operands and perform any required
1048 adjustments of the operands, we begin by trying two more multiplications
1049 and then computing the appropriate sum.
1051 We have checked above that the required addition is provided.
1052 Full-word addition will normally always succeed, especially if
1053 it is provided at all, so we don't worry about its failure. The
1054 multiplication may well fail, however, so we do handle that. */
1056 if (!umulp)
1058 /* ??? This could be done with emit_store_flag where available. */
1059 temp = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
1060 NULL_RTX, 1, methods);
1061 if (temp)
1062 op0_high = expand_binop (word_mode, add_optab, op0_high, temp,
1063 NULL_RTX, 0, OPTAB_DIRECT);
1064 else
1066 temp = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
1067 NULL_RTX, 0, methods);
1068 if (!temp)
1069 return NULL_RTX;
1070 op0_high = expand_binop (word_mode, sub_optab, op0_high, temp,
1071 NULL_RTX, 0, OPTAB_DIRECT);
1074 if (!op0_high)
1075 return NULL_RTX;
1078 adjust = expand_binop (word_mode, smul_optab, op0_high, op1_low,
1079 NULL_RTX, 0, OPTAB_DIRECT);
1080 if (!adjust)
1081 return NULL_RTX;
1083 /* OP0_HIGH should now be dead. */
1085 if (!umulp)
1087 /* ??? This could be done with emit_store_flag where available. */
1088 temp = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
1089 NULL_RTX, 1, methods);
1090 if (temp)
1091 op1_high = expand_binop (word_mode, add_optab, op1_high, temp,
1092 NULL_RTX, 0, OPTAB_DIRECT);
1093 else
1095 temp = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
1096 NULL_RTX, 0, methods);
1097 if (!temp)
1098 return NULL_RTX;
1099 op1_high = expand_binop (word_mode, sub_optab, op1_high, temp,
1100 NULL_RTX, 0, OPTAB_DIRECT);
1103 if (!op1_high)
1104 return NULL_RTX;
1107 temp = expand_binop (word_mode, smul_optab, op1_high, op0_low,
1108 NULL_RTX, 0, OPTAB_DIRECT);
1109 if (!temp)
1110 return NULL_RTX;
1112 /* OP1_HIGH should now be dead. */
1114 adjust = expand_binop (word_mode, add_optab, adjust, temp,
1115 NULL_RTX, 0, OPTAB_DIRECT);
1117 if (target && !REG_P (target))
1118 target = NULL_RTX;
1120 if (umulp)
1121 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
1122 target, 1, OPTAB_DIRECT);
1123 else
1124 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
1125 target, 1, OPTAB_DIRECT);
1127 if (!product)
1128 return NULL_RTX;
1130 product_high = operand_subword (product, high, 1, mode);
1131 adjust = expand_binop (word_mode, add_optab, product_high, adjust,
1132 NULL_RTX, 0, OPTAB_DIRECT);
1133 emit_move_insn (product_high, adjust);
1134 return product;
1137 /* Wrapper around expand_binop which takes an rtx code to specify
1138 the operation to perform, not an optab pointer. All other
1139 arguments are the same. */
1141 expand_simple_binop (enum machine_mode mode, enum rtx_code code, rtx op0,
1142 rtx op1, rtx target, int unsignedp,
1143 enum optab_methods methods)
1145 optab binop = code_to_optab[(int) code];
1146 gcc_assert (binop);
1148 return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
1151 /* Return whether OP0 and OP1 should be swapped when expanding a commutative
1152 binop. Order them according to commutative_operand_precedence and, if
1153 possible, try to put TARGET or a pseudo first. */
1154 static bool
1155 swap_commutative_operands_with_target (rtx target, rtx op0, rtx op1)
1157 int op0_prec = commutative_operand_precedence (op0);
1158 int op1_prec = commutative_operand_precedence (op1);
1160 if (op0_prec < op1_prec)
1161 return true;
1163 if (op0_prec > op1_prec)
1164 return false;
1166 /* With equal precedence, both orders are ok, but it is better if the
1167 first operand is TARGET, or if both TARGET and OP0 are pseudos. */
1168 if (target == 0 || REG_P (target))
1169 return (REG_P (op1) && !REG_P (op0)) || target == op1;
1170 else
1171 return rtx_equal_p (op1, target);
1174 /* Return true if BINOPTAB implements a shift operation. */
1176 static bool
1177 shift_optab_p (optab binoptab)
1179 switch (binoptab->code)
1181 case ASHIFT:
1182 case SS_ASHIFT:
1183 case US_ASHIFT:
1184 case ASHIFTRT:
1185 case LSHIFTRT:
1186 case ROTATE:
1187 case ROTATERT:
1188 return true;
1190 default:
1191 return false;
1195 /* Return true if BINOPTAB implements a commutative binary operation. */
1197 static bool
1198 commutative_optab_p (optab binoptab)
1200 return (GET_RTX_CLASS (binoptab->code) == RTX_COMM_ARITH
1201 || binoptab == smul_widen_optab
1202 || binoptab == umul_widen_optab
1203 || binoptab == smul_highpart_optab
1204 || binoptab == umul_highpart_optab);
1207 /* X is to be used in mode MODE as an operand to BINOPTAB. If we're
1208 optimizing, and if the operand is a constant that costs more than
1209 1 instruction, force the constant into a register and return that
1210 register. Return X otherwise. UNSIGNEDP says whether X is unsigned. */
1212 static rtx
1213 avoid_expensive_constant (enum machine_mode mode, optab binoptab,
1214 rtx x, bool unsignedp)
1216 bool speed = optimize_insn_for_speed_p ();
1218 if (mode != VOIDmode
1219 && optimize
1220 && CONSTANT_P (x)
1221 && rtx_cost (x, binoptab->code, speed) > rtx_cost (x, SET, speed))
1223 if (CONST_INT_P (x))
1225 HOST_WIDE_INT intval = trunc_int_for_mode (INTVAL (x), mode);
1226 if (intval != INTVAL (x))
1227 x = GEN_INT (intval);
1229 else
1230 x = convert_modes (mode, VOIDmode, x, unsignedp);
1231 x = force_reg (mode, x);
1233 return x;
1236 /* Helper function for expand_binop: handle the case where there
1237 is an insn that directly implements the indicated operation.
1238 Returns null if this is not possible. */
1239 static rtx
1240 expand_binop_directly (enum machine_mode mode, optab binoptab,
1241 rtx op0, rtx op1,
1242 rtx target, int unsignedp, enum optab_methods methods,
1243 rtx last)
1245 enum insn_code icode = optab_handler (binoptab, mode);
1246 enum machine_mode mode0 = insn_data[(int) icode].operand[1].mode;
1247 enum machine_mode mode1 = insn_data[(int) icode].operand[2].mode;
1248 enum machine_mode tmp_mode;
1249 struct expand_operand ops[3];
1250 bool commutative_p;
1251 rtx pat;
1252 rtx xop0 = op0, xop1 = op1;
1253 rtx swap;
1255 /* If it is a commutative operator and the modes would match
1256 if we would swap the operands, we can save the conversions. */
1257 commutative_p = commutative_optab_p (binoptab);
1258 if (commutative_p
1259 && GET_MODE (xop0) != mode0 && GET_MODE (xop1) != mode1
1260 && GET_MODE (xop0) == mode1 && GET_MODE (xop1) == mode1)
1262 swap = xop0;
1263 xop0 = xop1;
1264 xop1 = swap;
1267 /* If we are optimizing, force expensive constants into a register. */
1268 xop0 = avoid_expensive_constant (mode0, binoptab, xop0, unsignedp);
1269 if (!shift_optab_p (binoptab))
1270 xop1 = avoid_expensive_constant (mode1, binoptab, xop1, unsignedp);
1272 /* Now, if insn's predicates don't allow our operands, put them into
1273 pseudo regs. */
1275 if (binoptab == vec_pack_trunc_optab
1276 || binoptab == vec_pack_usat_optab
1277 || binoptab == vec_pack_ssat_optab
1278 || binoptab == vec_pack_ufix_trunc_optab
1279 || binoptab == vec_pack_sfix_trunc_optab)
1281 /* The mode of the result is different then the mode of the
1282 arguments. */
1283 tmp_mode = insn_data[(int) icode].operand[0].mode;
1284 if (GET_MODE_NUNITS (tmp_mode) != 2 * GET_MODE_NUNITS (mode))
1286 delete_insns_since (last);
1287 return NULL_RTX;
1290 else
1291 tmp_mode = mode;
1293 create_output_operand (&ops[0], target, tmp_mode);
1294 create_convert_operand_from (&ops[1], xop0, mode, unsignedp);
1295 create_convert_operand_from (&ops[2], xop1, mode, unsignedp);
1296 if (maybe_legitimize_operands (icode, 0, 3, ops))
1298 /* If operation is commutative,
1299 try to make the first operand a register.
1300 Even better, try to make it the same as the target.
1301 Also try to make the last operand a constant. */
1302 if (commutative_p
1303 && swap_commutative_operands_with_target (ops[0].value, ops[1].value,
1304 ops[2].value))
1306 swap = ops[2].value;
1307 ops[2].value = ops[1].value;
1308 ops[1].value = swap;
1311 pat = GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value);
1312 if (pat)
1314 /* If PAT is composed of more than one insn, try to add an appropriate
1315 REG_EQUAL note to it. If we can't because TEMP conflicts with an
1316 operand, call expand_binop again, this time without a target. */
1317 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
1318 && ! add_equal_note (pat, ops[0].value, binoptab->code,
1319 ops[1].value, ops[2].value))
1321 delete_insns_since (last);
1322 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
1323 unsignedp, methods);
1326 emit_insn (pat);
1327 return ops[0].value;
1330 delete_insns_since (last);
1331 return NULL_RTX;
1334 /* Generate code to perform an operation specified by BINOPTAB
1335 on operands OP0 and OP1, with result having machine-mode MODE.
1337 UNSIGNEDP is for the case where we have to widen the operands
1338 to perform the operation. It says to use zero-extension.
1340 If TARGET is nonzero, the value
1341 is generated there, if it is convenient to do so.
1342 In all cases an rtx is returned for the locus of the value;
1343 this may or may not be TARGET. */
1346 expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1,
1347 rtx target, int unsignedp, enum optab_methods methods)
1349 enum optab_methods next_methods
1350 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
1351 ? OPTAB_WIDEN : methods);
1352 enum mode_class mclass;
1353 enum machine_mode wider_mode;
1354 rtx libfunc;
1355 rtx temp;
1356 rtx entry_last = get_last_insn ();
1357 rtx last;
1359 mclass = GET_MODE_CLASS (mode);
1361 /* If subtracting an integer constant, convert this into an addition of
1362 the negated constant. */
1364 if (binoptab == sub_optab && CONST_INT_P (op1))
1366 op1 = negate_rtx (mode, op1);
1367 binoptab = add_optab;
1370 /* Record where to delete back to if we backtrack. */
1371 last = get_last_insn ();
1373 /* If we can do it with a three-operand insn, do so. */
1375 if (methods != OPTAB_MUST_WIDEN
1376 && optab_handler (binoptab, mode) != CODE_FOR_nothing)
1378 temp = expand_binop_directly (mode, binoptab, op0, op1, target,
1379 unsignedp, methods, last);
1380 if (temp)
1381 return temp;
1384 /* If we were trying to rotate, and that didn't work, try rotating
1385 the other direction before falling back to shifts and bitwise-or. */
1386 if (((binoptab == rotl_optab
1387 && optab_handler (rotr_optab, mode) != CODE_FOR_nothing)
1388 || (binoptab == rotr_optab
1389 && optab_handler (rotl_optab, mode) != CODE_FOR_nothing))
1390 && mclass == MODE_INT)
1392 optab otheroptab = (binoptab == rotl_optab ? rotr_optab : rotl_optab);
1393 rtx newop1;
1394 unsigned int bits = GET_MODE_BITSIZE (mode);
1396 if (CONST_INT_P (op1))
1397 newop1 = GEN_INT (bits - INTVAL (op1));
1398 else if (targetm.shift_truncation_mask (mode) == bits - 1)
1399 newop1 = negate_rtx (GET_MODE (op1), op1);
1400 else
1401 newop1 = expand_binop (GET_MODE (op1), sub_optab,
1402 GEN_INT (bits), op1,
1403 NULL_RTX, unsignedp, OPTAB_DIRECT);
1405 temp = expand_binop_directly (mode, otheroptab, op0, newop1,
1406 target, unsignedp, methods, last);
1407 if (temp)
1408 return temp;
1411 /* If this is a multiply, see if we can do a widening operation that
1412 takes operands of this mode and makes a wider mode. */
1414 if (binoptab == smul_optab
1415 && GET_MODE_WIDER_MODE (mode) != VOIDmode
1416 && (optab_handler ((unsignedp ? umul_widen_optab : smul_widen_optab),
1417 GET_MODE_WIDER_MODE (mode))
1418 != CODE_FOR_nothing))
1420 temp = expand_binop (GET_MODE_WIDER_MODE (mode),
1421 unsignedp ? umul_widen_optab : smul_widen_optab,
1422 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
1424 if (temp != 0)
1426 if (GET_MODE_CLASS (mode) == MODE_INT
1427 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1428 GET_MODE_BITSIZE (GET_MODE (temp))))
1429 return gen_lowpart (mode, temp);
1430 else
1431 return convert_to_mode (mode, temp, unsignedp);
1435 /* Look for a wider mode of the same class for which we think we
1436 can open-code the operation. Check for a widening multiply at the
1437 wider mode as well. */
1439 if (CLASS_HAS_WIDER_MODES_P (mclass)
1440 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
1441 for (wider_mode = GET_MODE_WIDER_MODE (mode);
1442 wider_mode != VOIDmode;
1443 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1445 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing
1446 || (binoptab == smul_optab
1447 && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
1448 && (optab_handler ((unsignedp ? umul_widen_optab
1449 : smul_widen_optab),
1450 GET_MODE_WIDER_MODE (wider_mode))
1451 != CODE_FOR_nothing)))
1453 rtx xop0 = op0, xop1 = op1;
1454 int no_extend = 0;
1456 /* For certain integer operations, we need not actually extend
1457 the narrow operands, as long as we will truncate
1458 the results to the same narrowness. */
1460 if ((binoptab == ior_optab || binoptab == and_optab
1461 || binoptab == xor_optab
1462 || binoptab == add_optab || binoptab == sub_optab
1463 || binoptab == smul_optab || binoptab == ashl_optab)
1464 && mclass == MODE_INT)
1466 no_extend = 1;
1467 xop0 = avoid_expensive_constant (mode, binoptab,
1468 xop0, unsignedp);
1469 if (binoptab != ashl_optab)
1470 xop1 = avoid_expensive_constant (mode, binoptab,
1471 xop1, unsignedp);
1474 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
1476 /* The second operand of a shift must always be extended. */
1477 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1478 no_extend && binoptab != ashl_optab);
1480 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1481 unsignedp, OPTAB_DIRECT);
1482 if (temp)
1484 if (mclass != MODE_INT
1485 || !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1486 GET_MODE_BITSIZE (wider_mode)))
1488 if (target == 0)
1489 target = gen_reg_rtx (mode);
1490 convert_move (target, temp, 0);
1491 return target;
1493 else
1494 return gen_lowpart (mode, temp);
1496 else
1497 delete_insns_since (last);
1501 /* If operation is commutative,
1502 try to make the first operand a register.
1503 Even better, try to make it the same as the target.
1504 Also try to make the last operand a constant. */
1505 if (commutative_optab_p (binoptab)
1506 && swap_commutative_operands_with_target (target, op0, op1))
1508 temp = op1;
1509 op1 = op0;
1510 op0 = temp;
1513 /* These can be done a word at a time. */
1514 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
1515 && mclass == MODE_INT
1516 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
1517 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
1519 int i;
1520 rtx insns;
1522 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1523 won't be accurate, so use a new target. */
1524 if (target == 0 || target == op0 || target == op1)
1525 target = gen_reg_rtx (mode);
1527 start_sequence ();
1529 /* Do the actual arithmetic. */
1530 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
1532 rtx target_piece = operand_subword (target, i, 1, mode);
1533 rtx x = expand_binop (word_mode, binoptab,
1534 operand_subword_force (op0, i, mode),
1535 operand_subword_force (op1, i, mode),
1536 target_piece, unsignedp, next_methods);
1538 if (x == 0)
1539 break;
1541 if (target_piece != x)
1542 emit_move_insn (target_piece, x);
1545 insns = get_insns ();
1546 end_sequence ();
1548 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
1550 emit_insn (insns);
1551 return target;
1555 /* Synthesize double word shifts from single word shifts. */
1556 if ((binoptab == lshr_optab || binoptab == ashl_optab
1557 || binoptab == ashr_optab)
1558 && mclass == MODE_INT
1559 && (CONST_INT_P (op1) || optimize_insn_for_speed_p ())
1560 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1561 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing
1562 && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
1563 && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
1565 unsigned HOST_WIDE_INT shift_mask, double_shift_mask;
1566 enum machine_mode op1_mode;
1568 double_shift_mask = targetm.shift_truncation_mask (mode);
1569 shift_mask = targetm.shift_truncation_mask (word_mode);
1570 op1_mode = GET_MODE (op1) != VOIDmode ? GET_MODE (op1) : word_mode;
1572 /* Apply the truncation to constant shifts. */
1573 if (double_shift_mask > 0 && CONST_INT_P (op1))
1574 op1 = GEN_INT (INTVAL (op1) & double_shift_mask);
1576 if (op1 == CONST0_RTX (op1_mode))
1577 return op0;
1579 /* Make sure that this is a combination that expand_doubleword_shift
1580 can handle. See the comments there for details. */
1581 if (double_shift_mask == 0
1582 || (shift_mask == BITS_PER_WORD - 1
1583 && double_shift_mask == BITS_PER_WORD * 2 - 1))
1585 rtx insns;
1586 rtx into_target, outof_target;
1587 rtx into_input, outof_input;
1588 int left_shift, outof_word;
1590 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1591 won't be accurate, so use a new target. */
1592 if (target == 0 || target == op0 || target == op1)
1593 target = gen_reg_rtx (mode);
1595 start_sequence ();
1597 /* OUTOF_* is the word we are shifting bits away from, and
1598 INTO_* is the word that we are shifting bits towards, thus
1599 they differ depending on the direction of the shift and
1600 WORDS_BIG_ENDIAN. */
1602 left_shift = binoptab == ashl_optab;
1603 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1605 outof_target = operand_subword (target, outof_word, 1, mode);
1606 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1608 outof_input = operand_subword_force (op0, outof_word, mode);
1609 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1611 if (expand_doubleword_shift (op1_mode, binoptab,
1612 outof_input, into_input, op1,
1613 outof_target, into_target,
1614 unsignedp, next_methods, shift_mask))
1616 insns = get_insns ();
1617 end_sequence ();
1619 emit_insn (insns);
1620 return target;
1622 end_sequence ();
1626 /* Synthesize double word rotates from single word shifts. */
1627 if ((binoptab == rotl_optab || binoptab == rotr_optab)
1628 && mclass == MODE_INT
1629 && CONST_INT_P (op1)
1630 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1631 && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
1632 && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
1634 rtx insns;
1635 rtx into_target, outof_target;
1636 rtx into_input, outof_input;
1637 rtx inter;
1638 int shift_count, left_shift, outof_word;
1640 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1641 won't be accurate, so use a new target. Do this also if target is not
1642 a REG, first because having a register instead may open optimization
1643 opportunities, and second because if target and op0 happen to be MEMs
1644 designating the same location, we would risk clobbering it too early
1645 in the code sequence we generate below. */
1646 if (target == 0 || target == op0 || target == op1 || ! REG_P (target))
1647 target = gen_reg_rtx (mode);
1649 start_sequence ();
1651 shift_count = INTVAL (op1);
1653 /* OUTOF_* is the word we are shifting bits away from, and
1654 INTO_* is the word that we are shifting bits towards, thus
1655 they differ depending on the direction of the shift and
1656 WORDS_BIG_ENDIAN. */
1658 left_shift = (binoptab == rotl_optab);
1659 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1661 outof_target = operand_subword (target, outof_word, 1, mode);
1662 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1664 outof_input = operand_subword_force (op0, outof_word, mode);
1665 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1667 if (shift_count == BITS_PER_WORD)
1669 /* This is just a word swap. */
1670 emit_move_insn (outof_target, into_input);
1671 emit_move_insn (into_target, outof_input);
1672 inter = const0_rtx;
1674 else
1676 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1677 rtx first_shift_count, second_shift_count;
1678 optab reverse_unsigned_shift, unsigned_shift;
1680 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1681 ? lshr_optab : ashl_optab);
1683 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1684 ? ashl_optab : lshr_optab);
1686 if (shift_count > BITS_PER_WORD)
1688 first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
1689 second_shift_count = GEN_INT (2 * BITS_PER_WORD - shift_count);
1691 else
1693 first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
1694 second_shift_count = GEN_INT (shift_count);
1697 into_temp1 = expand_binop (word_mode, unsigned_shift,
1698 outof_input, first_shift_count,
1699 NULL_RTX, unsignedp, next_methods);
1700 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1701 into_input, second_shift_count,
1702 NULL_RTX, unsignedp, next_methods);
1704 if (into_temp1 != 0 && into_temp2 != 0)
1705 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1706 into_target, unsignedp, next_methods);
1707 else
1708 inter = 0;
1710 if (inter != 0 && inter != into_target)
1711 emit_move_insn (into_target, inter);
1713 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1714 into_input, first_shift_count,
1715 NULL_RTX, unsignedp, next_methods);
1716 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1717 outof_input, second_shift_count,
1718 NULL_RTX, unsignedp, next_methods);
1720 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1721 inter = expand_binop (word_mode, ior_optab,
1722 outof_temp1, outof_temp2,
1723 outof_target, unsignedp, next_methods);
1725 if (inter != 0 && inter != outof_target)
1726 emit_move_insn (outof_target, inter);
1729 insns = get_insns ();
1730 end_sequence ();
1732 if (inter != 0)
1734 emit_insn (insns);
1735 return target;
1739 /* These can be done a word at a time by propagating carries. */
1740 if ((binoptab == add_optab || binoptab == sub_optab)
1741 && mclass == MODE_INT
1742 && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
1743 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
1745 unsigned int i;
1746 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
1747 const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
1748 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
1749 rtx xop0, xop1, xtarget;
1751 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1752 value is one of those, use it. Otherwise, use 1 since it is the
1753 one easiest to get. */
1754 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1755 int normalizep = STORE_FLAG_VALUE;
1756 #else
1757 int normalizep = 1;
1758 #endif
1760 /* Prepare the operands. */
1761 xop0 = force_reg (mode, op0);
1762 xop1 = force_reg (mode, op1);
1764 xtarget = gen_reg_rtx (mode);
1766 if (target == 0 || !REG_P (target))
1767 target = xtarget;
1769 /* Indicate for flow that the entire target reg is being set. */
1770 if (REG_P (target))
1771 emit_clobber (xtarget);
1773 /* Do the actual arithmetic. */
1774 for (i = 0; i < nwords; i++)
1776 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
1777 rtx target_piece = operand_subword (xtarget, index, 1, mode);
1778 rtx op0_piece = operand_subword_force (xop0, index, mode);
1779 rtx op1_piece = operand_subword_force (xop1, index, mode);
1780 rtx x;
1782 /* Main add/subtract of the input operands. */
1783 x = expand_binop (word_mode, binoptab,
1784 op0_piece, op1_piece,
1785 target_piece, unsignedp, next_methods);
1786 if (x == 0)
1787 break;
1789 if (i + 1 < nwords)
1791 /* Store carry from main add/subtract. */
1792 carry_out = gen_reg_rtx (word_mode);
1793 carry_out = emit_store_flag_force (carry_out,
1794 (binoptab == add_optab
1795 ? LT : GT),
1796 x, op0_piece,
1797 word_mode, 1, normalizep);
1800 if (i > 0)
1802 rtx newx;
1804 /* Add/subtract previous carry to main result. */
1805 newx = expand_binop (word_mode,
1806 normalizep == 1 ? binoptab : otheroptab,
1807 x, carry_in,
1808 NULL_RTX, 1, next_methods);
1810 if (i + 1 < nwords)
1812 /* Get out carry from adding/subtracting carry in. */
1813 rtx carry_tmp = gen_reg_rtx (word_mode);
1814 carry_tmp = emit_store_flag_force (carry_tmp,
1815 (binoptab == add_optab
1816 ? LT : GT),
1817 newx, x,
1818 word_mode, 1, normalizep);
1820 /* Logical-ior the two poss. carry together. */
1821 carry_out = expand_binop (word_mode, ior_optab,
1822 carry_out, carry_tmp,
1823 carry_out, 0, next_methods);
1824 if (carry_out == 0)
1825 break;
1827 emit_move_insn (target_piece, newx);
1829 else
1831 if (x != target_piece)
1832 emit_move_insn (target_piece, x);
1835 carry_in = carry_out;
1838 if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
1840 if (optab_handler (mov_optab, mode) != CODE_FOR_nothing
1841 || ! rtx_equal_p (target, xtarget))
1843 rtx temp = emit_move_insn (target, xtarget);
1845 set_unique_reg_note (temp,
1846 REG_EQUAL,
1847 gen_rtx_fmt_ee (binoptab->code, mode,
1848 copy_rtx (xop0),
1849 copy_rtx (xop1)));
1851 else
1852 target = xtarget;
1854 return target;
1857 else
1858 delete_insns_since (last);
1861 /* Attempt to synthesize double word multiplies using a sequence of word
1862 mode multiplications. We first attempt to generate a sequence using a
1863 more efficient unsigned widening multiply, and if that fails we then
1864 try using a signed widening multiply. */
1866 if (binoptab == smul_optab
1867 && mclass == MODE_INT
1868 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1869 && optab_handler (smul_optab, word_mode) != CODE_FOR_nothing
1870 && optab_handler (add_optab, word_mode) != CODE_FOR_nothing)
1872 rtx product = NULL_RTX;
1874 if (optab_handler (umul_widen_optab, mode) != CODE_FOR_nothing)
1876 product = expand_doubleword_mult (mode, op0, op1, target,
1877 true, methods);
1878 if (!product)
1879 delete_insns_since (last);
1882 if (product == NULL_RTX
1883 && optab_handler (smul_widen_optab, mode) != CODE_FOR_nothing)
1885 product = expand_doubleword_mult (mode, op0, op1, target,
1886 false, methods);
1887 if (!product)
1888 delete_insns_since (last);
1891 if (product != NULL_RTX)
1893 if (optab_handler (mov_optab, mode) != CODE_FOR_nothing)
1895 temp = emit_move_insn (target ? target : product, product);
1896 set_unique_reg_note (temp,
1897 REG_EQUAL,
1898 gen_rtx_fmt_ee (MULT, mode,
1899 copy_rtx (op0),
1900 copy_rtx (op1)));
1902 return product;
1906 /* It can't be open-coded in this mode.
1907 Use a library call if one is available and caller says that's ok. */
1909 libfunc = optab_libfunc (binoptab, mode);
1910 if (libfunc
1911 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
1913 rtx insns;
1914 rtx op1x = op1;
1915 enum machine_mode op1_mode = mode;
1916 rtx value;
1918 start_sequence ();
1920 if (shift_optab_p (binoptab))
1922 op1_mode = targetm.libgcc_shift_count_mode ();
1923 /* Specify unsigned here,
1924 since negative shift counts are meaningless. */
1925 op1x = convert_to_mode (op1_mode, op1, 1);
1928 if (GET_MODE (op0) != VOIDmode
1929 && GET_MODE (op0) != mode)
1930 op0 = convert_to_mode (mode, op0, unsignedp);
1932 /* Pass 1 for NO_QUEUE so we don't lose any increments
1933 if the libcall is cse'd or moved. */
1934 value = emit_library_call_value (libfunc,
1935 NULL_RTX, LCT_CONST, mode, 2,
1936 op0, mode, op1x, op1_mode);
1938 insns = get_insns ();
1939 end_sequence ();
1941 target = gen_reg_rtx (mode);
1942 emit_libcall_block (insns, target, value,
1943 gen_rtx_fmt_ee (binoptab->code, mode, op0, op1));
1945 return target;
1948 delete_insns_since (last);
1950 /* It can't be done in this mode. Can we do it in a wider mode? */
1952 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
1953 || methods == OPTAB_MUST_WIDEN))
1955 /* Caller says, don't even try. */
1956 delete_insns_since (entry_last);
1957 return 0;
1960 /* Compute the value of METHODS to pass to recursive calls.
1961 Don't allow widening to be tried recursively. */
1963 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
1965 /* Look for a wider mode of the same class for which it appears we can do
1966 the operation. */
1968 if (CLASS_HAS_WIDER_MODES_P (mclass))
1970 for (wider_mode = GET_MODE_WIDER_MODE (mode);
1971 wider_mode != VOIDmode;
1972 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1974 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing
1975 || (methods == OPTAB_LIB
1976 && optab_libfunc (binoptab, wider_mode)))
1978 rtx xop0 = op0, xop1 = op1;
1979 int no_extend = 0;
1981 /* For certain integer operations, we need not actually extend
1982 the narrow operands, as long as we will truncate
1983 the results to the same narrowness. */
1985 if ((binoptab == ior_optab || binoptab == and_optab
1986 || binoptab == xor_optab
1987 || binoptab == add_optab || binoptab == sub_optab
1988 || binoptab == smul_optab || binoptab == ashl_optab)
1989 && mclass == MODE_INT)
1990 no_extend = 1;
1992 xop0 = widen_operand (xop0, wider_mode, mode,
1993 unsignedp, no_extend);
1995 /* The second operand of a shift must always be extended. */
1996 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1997 no_extend && binoptab != ashl_optab);
1999 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
2000 unsignedp, methods);
2001 if (temp)
2003 if (mclass != MODE_INT
2004 || !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
2005 GET_MODE_BITSIZE (wider_mode)))
2007 if (target == 0)
2008 target = gen_reg_rtx (mode);
2009 convert_move (target, temp, 0);
2010 return target;
2012 else
2013 return gen_lowpart (mode, temp);
2015 else
2016 delete_insns_since (last);
2021 delete_insns_since (entry_last);
2022 return 0;
2025 /* Expand a binary operator which has both signed and unsigned forms.
2026 UOPTAB is the optab for unsigned operations, and SOPTAB is for
2027 signed operations.
2029 If we widen unsigned operands, we may use a signed wider operation instead
2030 of an unsigned wider operation, since the result would be the same. */
2033 sign_expand_binop (enum machine_mode mode, optab uoptab, optab soptab,
2034 rtx op0, rtx op1, rtx target, int unsignedp,
2035 enum optab_methods methods)
2037 rtx temp;
2038 optab direct_optab = unsignedp ? uoptab : soptab;
2039 struct optab_d wide_soptab;
2041 /* Do it without widening, if possible. */
2042 temp = expand_binop (mode, direct_optab, op0, op1, target,
2043 unsignedp, OPTAB_DIRECT);
2044 if (temp || methods == OPTAB_DIRECT)
2045 return temp;
2047 /* Try widening to a signed int. Make a fake signed optab that
2048 hides any signed insn for direct use. */
2049 wide_soptab = *soptab;
2050 set_optab_handler (&wide_soptab, mode, CODE_FOR_nothing);
2051 /* We don't want to generate new hash table entries from this fake
2052 optab. */
2053 wide_soptab.libcall_gen = NULL;
2055 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
2056 unsignedp, OPTAB_WIDEN);
2058 /* For unsigned operands, try widening to an unsigned int. */
2059 if (temp == 0 && unsignedp)
2060 temp = expand_binop (mode, uoptab, op0, op1, target,
2061 unsignedp, OPTAB_WIDEN);
2062 if (temp || methods == OPTAB_WIDEN)
2063 return temp;
2065 /* Use the right width libcall if that exists. */
2066 temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB);
2067 if (temp || methods == OPTAB_LIB)
2068 return temp;
2070 /* Must widen and use a libcall, use either signed or unsigned. */
2071 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
2072 unsignedp, methods);
2073 if (temp != 0)
2074 return temp;
2075 if (unsignedp)
2076 return expand_binop (mode, uoptab, op0, op1, target,
2077 unsignedp, methods);
2078 return 0;
2081 /* Generate code to perform an operation specified by UNOPPTAB
2082 on operand OP0, with two results to TARG0 and TARG1.
2083 We assume that the order of the operands for the instruction
2084 is TARG0, TARG1, OP0.
2086 Either TARG0 or TARG1 may be zero, but what that means is that
2087 the result is not actually wanted. We will generate it into
2088 a dummy pseudo-reg and discard it. They may not both be zero.
2090 Returns 1 if this operation can be performed; 0 if not. */
2093 expand_twoval_unop (optab unoptab, rtx op0, rtx targ0, rtx targ1,
2094 int unsignedp)
2096 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2097 enum mode_class mclass;
2098 enum machine_mode wider_mode;
2099 rtx entry_last = get_last_insn ();
2100 rtx last;
2102 mclass = GET_MODE_CLASS (mode);
2104 if (!targ0)
2105 targ0 = gen_reg_rtx (mode);
2106 if (!targ1)
2107 targ1 = gen_reg_rtx (mode);
2109 /* Record where to go back to if we fail. */
2110 last = get_last_insn ();
2112 if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
2114 struct expand_operand ops[3];
2115 enum insn_code icode = optab_handler (unoptab, mode);
2117 create_fixed_operand (&ops[0], targ0);
2118 create_fixed_operand (&ops[1], targ1);
2119 create_convert_operand_from (&ops[2], op0, mode, unsignedp);
2120 if (maybe_expand_insn (icode, 3, ops))
2121 return 1;
2124 /* It can't be done in this mode. Can we do it in a wider mode? */
2126 if (CLASS_HAS_WIDER_MODES_P (mclass))
2128 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2129 wider_mode != VOIDmode;
2130 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2132 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2134 rtx t0 = gen_reg_rtx (wider_mode);
2135 rtx t1 = gen_reg_rtx (wider_mode);
2136 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2138 if (expand_twoval_unop (unoptab, cop0, t0, t1, unsignedp))
2140 convert_move (targ0, t0, unsignedp);
2141 convert_move (targ1, t1, unsignedp);
2142 return 1;
2144 else
2145 delete_insns_since (last);
2150 delete_insns_since (entry_last);
2151 return 0;
2154 /* Generate code to perform an operation specified by BINOPTAB
2155 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2156 We assume that the order of the operands for the instruction
2157 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2158 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2160 Either TARG0 or TARG1 may be zero, but what that means is that
2161 the result is not actually wanted. We will generate it into
2162 a dummy pseudo-reg and discard it. They may not both be zero.
2164 Returns 1 if this operation can be performed; 0 if not. */
2167 expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1,
2168 int unsignedp)
2170 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2171 enum mode_class mclass;
2172 enum machine_mode wider_mode;
2173 rtx entry_last = get_last_insn ();
2174 rtx last;
2176 mclass = GET_MODE_CLASS (mode);
2178 if (!targ0)
2179 targ0 = gen_reg_rtx (mode);
2180 if (!targ1)
2181 targ1 = gen_reg_rtx (mode);
2183 /* Record where to go back to if we fail. */
2184 last = get_last_insn ();
2186 if (optab_handler (binoptab, mode) != CODE_FOR_nothing)
2188 struct expand_operand ops[4];
2189 enum insn_code icode = optab_handler (binoptab, mode);
2190 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2191 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
2192 rtx xop0 = op0, xop1 = op1;
2194 /* If we are optimizing, force expensive constants into a register. */
2195 xop0 = avoid_expensive_constant (mode0, binoptab, xop0, unsignedp);
2196 xop1 = avoid_expensive_constant (mode1, binoptab, xop1, unsignedp);
2198 create_fixed_operand (&ops[0], targ0);
2199 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
2200 create_convert_operand_from (&ops[2], op1, mode, unsignedp);
2201 create_fixed_operand (&ops[3], targ1);
2202 if (maybe_expand_insn (icode, 4, ops))
2203 return 1;
2204 delete_insns_since (last);
2207 /* It can't be done in this mode. Can we do it in a wider mode? */
2209 if (CLASS_HAS_WIDER_MODES_P (mclass))
2211 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2212 wider_mode != VOIDmode;
2213 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2215 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing)
2217 rtx t0 = gen_reg_rtx (wider_mode);
2218 rtx t1 = gen_reg_rtx (wider_mode);
2219 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2220 rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
2222 if (expand_twoval_binop (binoptab, cop0, cop1,
2223 t0, t1, unsignedp))
2225 convert_move (targ0, t0, unsignedp);
2226 convert_move (targ1, t1, unsignedp);
2227 return 1;
2229 else
2230 delete_insns_since (last);
2235 delete_insns_since (entry_last);
2236 return 0;
2239 /* Expand the two-valued library call indicated by BINOPTAB, but
2240 preserve only one of the values. If TARG0 is non-NULL, the first
2241 value is placed into TARG0; otherwise the second value is placed
2242 into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The
2243 value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
2244 This routine assumes that the value returned by the library call is
2245 as if the return value was of an integral mode twice as wide as the
2246 mode of OP0. Returns 1 if the call was successful. */
2248 bool
2249 expand_twoval_binop_libfunc (optab binoptab, rtx op0, rtx op1,
2250 rtx targ0, rtx targ1, enum rtx_code code)
2252 enum machine_mode mode;
2253 enum machine_mode libval_mode;
2254 rtx libval;
2255 rtx insns;
2256 rtx libfunc;
2258 /* Exactly one of TARG0 or TARG1 should be non-NULL. */
2259 gcc_assert (!targ0 != !targ1);
2261 mode = GET_MODE (op0);
2262 libfunc = optab_libfunc (binoptab, mode);
2263 if (!libfunc)
2264 return false;
2266 /* The value returned by the library function will have twice as
2267 many bits as the nominal MODE. */
2268 libval_mode = smallest_mode_for_size (2 * GET_MODE_BITSIZE (mode),
2269 MODE_INT);
2270 start_sequence ();
2271 libval = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
2272 libval_mode, 2,
2273 op0, mode,
2274 op1, mode);
2275 /* Get the part of VAL containing the value that we want. */
2276 libval = simplify_gen_subreg (mode, libval, libval_mode,
2277 targ0 ? 0 : GET_MODE_SIZE (mode));
2278 insns = get_insns ();
2279 end_sequence ();
2280 /* Move the into the desired location. */
2281 emit_libcall_block (insns, targ0 ? targ0 : targ1, libval,
2282 gen_rtx_fmt_ee (code, mode, op0, op1));
2284 return true;
2288 /* Wrapper around expand_unop which takes an rtx code to specify
2289 the operation to perform, not an optab pointer. All other
2290 arguments are the same. */
2292 expand_simple_unop (enum machine_mode mode, enum rtx_code code, rtx op0,
2293 rtx target, int unsignedp)
2295 optab unop = code_to_optab[(int) code];
2296 gcc_assert (unop);
2298 return expand_unop (mode, unop, op0, target, unsignedp);
2301 /* Try calculating
2302 (clz:narrow x)
2304 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)). */
2305 static rtx
2306 widen_clz (enum machine_mode mode, rtx op0, rtx target)
2308 enum mode_class mclass = GET_MODE_CLASS (mode);
2309 if (CLASS_HAS_WIDER_MODES_P (mclass))
2311 enum machine_mode wider_mode;
2312 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2313 wider_mode != VOIDmode;
2314 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2316 if (optab_handler (clz_optab, wider_mode) != CODE_FOR_nothing)
2318 rtx xop0, temp, last;
2320 last = get_last_insn ();
2322 if (target == 0)
2323 target = gen_reg_rtx (mode);
2324 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2325 temp = expand_unop (wider_mode, clz_optab, xop0, NULL_RTX, true);
2326 if (temp != 0)
2327 temp = expand_binop (wider_mode, sub_optab, temp,
2328 GEN_INT (GET_MODE_BITSIZE (wider_mode)
2329 - GET_MODE_BITSIZE (mode)),
2330 target, true, OPTAB_DIRECT);
2331 if (temp == 0)
2332 delete_insns_since (last);
2334 return temp;
2338 return 0;
2341 /* Try calculating clz of a double-word quantity as two clz's of word-sized
2342 quantities, choosing which based on whether the high word is nonzero. */
2343 static rtx
2344 expand_doubleword_clz (enum machine_mode mode, rtx op0, rtx target)
2346 rtx xop0 = force_reg (mode, op0);
2347 rtx subhi = gen_highpart (word_mode, xop0);
2348 rtx sublo = gen_lowpart (word_mode, xop0);
2349 rtx hi0_label = gen_label_rtx ();
2350 rtx after_label = gen_label_rtx ();
2351 rtx seq, temp, result;
2353 /* If we were not given a target, use a word_mode register, not a
2354 'mode' register. The result will fit, and nobody is expecting
2355 anything bigger (the return type of __builtin_clz* is int). */
2356 if (!target)
2357 target = gen_reg_rtx (word_mode);
2359 /* In any case, write to a word_mode scratch in both branches of the
2360 conditional, so we can ensure there is a single move insn setting
2361 'target' to tag a REG_EQUAL note on. */
2362 result = gen_reg_rtx (word_mode);
2364 start_sequence ();
2366 /* If the high word is not equal to zero,
2367 then clz of the full value is clz of the high word. */
2368 emit_cmp_and_jump_insns (subhi, CONST0_RTX (word_mode), EQ, 0,
2369 word_mode, true, hi0_label);
2371 temp = expand_unop_direct (word_mode, clz_optab, subhi, result, true);
2372 if (!temp)
2373 goto fail;
2375 if (temp != result)
2376 convert_move (result, temp, true);
2378 emit_jump_insn (gen_jump (after_label));
2379 emit_barrier ();
2381 /* Else clz of the full value is clz of the low word plus the number
2382 of bits in the high word. */
2383 emit_label (hi0_label);
2385 temp = expand_unop_direct (word_mode, clz_optab, sublo, 0, true);
2386 if (!temp)
2387 goto fail;
2388 temp = expand_binop (word_mode, add_optab, temp,
2389 GEN_INT (GET_MODE_BITSIZE (word_mode)),
2390 result, true, OPTAB_DIRECT);
2391 if (!temp)
2392 goto fail;
2393 if (temp != result)
2394 convert_move (result, temp, true);
2396 emit_label (after_label);
2397 convert_move (target, result, true);
2399 seq = get_insns ();
2400 end_sequence ();
2402 add_equal_note (seq, target, CLZ, xop0, 0);
2403 emit_insn (seq);
2404 return target;
2406 fail:
2407 end_sequence ();
2408 return 0;
2411 /* Try calculating
2412 (bswap:narrow x)
2414 (lshiftrt:wide (bswap:wide x) ((width wide) - (width narrow))). */
2415 static rtx
2416 widen_bswap (enum machine_mode mode, rtx op0, rtx target)
2418 enum mode_class mclass = GET_MODE_CLASS (mode);
2419 enum machine_mode wider_mode;
2420 rtx x, last;
2422 if (!CLASS_HAS_WIDER_MODES_P (mclass))
2423 return NULL_RTX;
2425 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2426 wider_mode != VOIDmode;
2427 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2428 if (optab_handler (bswap_optab, wider_mode) != CODE_FOR_nothing)
2429 goto found;
2430 return NULL_RTX;
2432 found:
2433 last = get_last_insn ();
2435 x = widen_operand (op0, wider_mode, mode, true, true);
2436 x = expand_unop (wider_mode, bswap_optab, x, NULL_RTX, true);
2438 if (x != 0)
2439 x = expand_shift (RSHIFT_EXPR, wider_mode, x,
2440 size_int (GET_MODE_BITSIZE (wider_mode)
2441 - GET_MODE_BITSIZE (mode)),
2442 NULL_RTX, true);
2444 if (x != 0)
2446 if (target == 0)
2447 target = gen_reg_rtx (mode);
2448 emit_move_insn (target, gen_lowpart (mode, x));
2450 else
2451 delete_insns_since (last);
2453 return target;
2456 /* Try calculating bswap as two bswaps of two word-sized operands. */
2458 static rtx
2459 expand_doubleword_bswap (enum machine_mode mode, rtx op, rtx target)
2461 rtx t0, t1;
2463 t1 = expand_unop (word_mode, bswap_optab,
2464 operand_subword_force (op, 0, mode), NULL_RTX, true);
2465 t0 = expand_unop (word_mode, bswap_optab,
2466 operand_subword_force (op, 1, mode), NULL_RTX, true);
2468 if (target == 0)
2469 target = gen_reg_rtx (mode);
2470 if (REG_P (target))
2471 emit_clobber (target);
2472 emit_move_insn (operand_subword (target, 0, 1, mode), t0);
2473 emit_move_insn (operand_subword (target, 1, 1, mode), t1);
2475 return target;
2478 /* Try calculating (parity x) as (and (popcount x) 1), where
2479 popcount can also be done in a wider mode. */
2480 static rtx
2481 expand_parity (enum machine_mode mode, rtx op0, rtx target)
2483 enum mode_class mclass = GET_MODE_CLASS (mode);
2484 if (CLASS_HAS_WIDER_MODES_P (mclass))
2486 enum machine_mode wider_mode;
2487 for (wider_mode = mode; wider_mode != VOIDmode;
2488 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2490 if (optab_handler (popcount_optab, wider_mode) != CODE_FOR_nothing)
2492 rtx xop0, temp, last;
2494 last = get_last_insn ();
2496 if (target == 0)
2497 target = gen_reg_rtx (mode);
2498 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2499 temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX,
2500 true);
2501 if (temp != 0)
2502 temp = expand_binop (wider_mode, and_optab, temp, const1_rtx,
2503 target, true, OPTAB_DIRECT);
2504 if (temp == 0)
2505 delete_insns_since (last);
2507 return temp;
2511 return 0;
2514 /* Try calculating ctz(x) as K - clz(x & -x) ,
2515 where K is GET_MODE_BITSIZE(mode) - 1.
2517 Both __builtin_ctz and __builtin_clz are undefined at zero, so we
2518 don't have to worry about what the hardware does in that case. (If
2519 the clz instruction produces the usual value at 0, which is K, the
2520 result of this code sequence will be -1; expand_ffs, below, relies
2521 on this. It might be nice to have it be K instead, for consistency
2522 with the (very few) processors that provide a ctz with a defined
2523 value, but that would take one more instruction, and it would be
2524 less convenient for expand_ffs anyway. */
2526 static rtx
2527 expand_ctz (enum machine_mode mode, rtx op0, rtx target)
2529 rtx seq, temp;
2531 if (optab_handler (clz_optab, mode) == CODE_FOR_nothing)
2532 return 0;
2534 start_sequence ();
2536 temp = expand_unop_direct (mode, neg_optab, op0, NULL_RTX, true);
2537 if (temp)
2538 temp = expand_binop (mode, and_optab, op0, temp, NULL_RTX,
2539 true, OPTAB_DIRECT);
2540 if (temp)
2541 temp = expand_unop_direct (mode, clz_optab, temp, NULL_RTX, true);
2542 if (temp)
2543 temp = expand_binop (mode, sub_optab, GEN_INT (GET_MODE_BITSIZE (mode) - 1),
2544 temp, target,
2545 true, OPTAB_DIRECT);
2546 if (temp == 0)
2548 end_sequence ();
2549 return 0;
2552 seq = get_insns ();
2553 end_sequence ();
2555 add_equal_note (seq, temp, CTZ, op0, 0);
2556 emit_insn (seq);
2557 return temp;
2561 /* Try calculating ffs(x) using ctz(x) if we have that instruction, or
2562 else with the sequence used by expand_clz.
2564 The ffs builtin promises to return zero for a zero value and ctz/clz
2565 may have an undefined value in that case. If they do not give us a
2566 convenient value, we have to generate a test and branch. */
2567 static rtx
2568 expand_ffs (enum machine_mode mode, rtx op0, rtx target)
2570 HOST_WIDE_INT val = 0;
2571 bool defined_at_zero = false;
2572 rtx temp, seq;
2574 if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing)
2576 start_sequence ();
2578 temp = expand_unop_direct (mode, ctz_optab, op0, 0, true);
2579 if (!temp)
2580 goto fail;
2582 defined_at_zero = (CTZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2);
2584 else if (optab_handler (clz_optab, mode) != CODE_FOR_nothing)
2586 start_sequence ();
2587 temp = expand_ctz (mode, op0, 0);
2588 if (!temp)
2589 goto fail;
2591 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2)
2593 defined_at_zero = true;
2594 val = (GET_MODE_BITSIZE (mode) - 1) - val;
2597 else
2598 return 0;
2600 if (defined_at_zero && val == -1)
2601 /* No correction needed at zero. */;
2602 else
2604 /* We don't try to do anything clever with the situation found
2605 on some processors (eg Alpha) where ctz(0:mode) ==
2606 bitsize(mode). If someone can think of a way to send N to -1
2607 and leave alone all values in the range 0..N-1 (where N is a
2608 power of two), cheaper than this test-and-branch, please add it.
2610 The test-and-branch is done after the operation itself, in case
2611 the operation sets condition codes that can be recycled for this.
2612 (This is true on i386, for instance.) */
2614 rtx nonzero_label = gen_label_rtx ();
2615 emit_cmp_and_jump_insns (op0, CONST0_RTX (mode), NE, 0,
2616 mode, true, nonzero_label);
2618 convert_move (temp, GEN_INT (-1), false);
2619 emit_label (nonzero_label);
2622 /* temp now has a value in the range -1..bitsize-1. ffs is supposed
2623 to produce a value in the range 0..bitsize. */
2624 temp = expand_binop (mode, add_optab, temp, GEN_INT (1),
2625 target, false, OPTAB_DIRECT);
2626 if (!temp)
2627 goto fail;
2629 seq = get_insns ();
2630 end_sequence ();
2632 add_equal_note (seq, temp, FFS, op0, 0);
2633 emit_insn (seq);
2634 return temp;
2636 fail:
2637 end_sequence ();
2638 return 0;
2641 /* Extract the OMODE lowpart from VAL, which has IMODE. Under certain
2642 conditions, VAL may already be a SUBREG against which we cannot generate
2643 a further SUBREG. In this case, we expect forcing the value into a
2644 register will work around the situation. */
2646 static rtx
2647 lowpart_subreg_maybe_copy (enum machine_mode omode, rtx val,
2648 enum machine_mode imode)
2650 rtx ret;
2651 ret = lowpart_subreg (omode, val, imode);
2652 if (ret == NULL)
2654 val = force_reg (imode, val);
2655 ret = lowpart_subreg (omode, val, imode);
2656 gcc_assert (ret != NULL);
2658 return ret;
2661 /* Expand a floating point absolute value or negation operation via a
2662 logical operation on the sign bit. */
2664 static rtx
2665 expand_absneg_bit (enum rtx_code code, enum machine_mode mode,
2666 rtx op0, rtx target)
2668 const struct real_format *fmt;
2669 int bitpos, word, nwords, i;
2670 enum machine_mode imode;
2671 double_int mask;
2672 rtx temp, insns;
2674 /* The format has to have a simple sign bit. */
2675 fmt = REAL_MODE_FORMAT (mode);
2676 if (fmt == NULL)
2677 return NULL_RTX;
2679 bitpos = fmt->signbit_rw;
2680 if (bitpos < 0)
2681 return NULL_RTX;
2683 /* Don't create negative zeros if the format doesn't support them. */
2684 if (code == NEG && !fmt->has_signed_zero)
2685 return NULL_RTX;
2687 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
2689 imode = int_mode_for_mode (mode);
2690 if (imode == BLKmode)
2691 return NULL_RTX;
2692 word = 0;
2693 nwords = 1;
2695 else
2697 imode = word_mode;
2699 if (FLOAT_WORDS_BIG_ENDIAN)
2700 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
2701 else
2702 word = bitpos / BITS_PER_WORD;
2703 bitpos = bitpos % BITS_PER_WORD;
2704 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
2707 mask = double_int_setbit (double_int_zero, bitpos);
2708 if (code == ABS)
2709 mask = double_int_not (mask);
2711 if (target == 0 || target == op0)
2712 target = gen_reg_rtx (mode);
2714 if (nwords > 1)
2716 start_sequence ();
2718 for (i = 0; i < nwords; ++i)
2720 rtx targ_piece = operand_subword (target, i, 1, mode);
2721 rtx op0_piece = operand_subword_force (op0, i, mode);
2723 if (i == word)
2725 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
2726 op0_piece,
2727 immed_double_int_const (mask, imode),
2728 targ_piece, 1, OPTAB_LIB_WIDEN);
2729 if (temp != targ_piece)
2730 emit_move_insn (targ_piece, temp);
2732 else
2733 emit_move_insn (targ_piece, op0_piece);
2736 insns = get_insns ();
2737 end_sequence ();
2739 emit_insn (insns);
2741 else
2743 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
2744 gen_lowpart (imode, op0),
2745 immed_double_int_const (mask, imode),
2746 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
2747 target = lowpart_subreg_maybe_copy (mode, temp, imode);
2749 set_unique_reg_note (get_last_insn (), REG_EQUAL,
2750 gen_rtx_fmt_e (code, mode, copy_rtx (op0)));
2753 return target;
2756 /* As expand_unop, but will fail rather than attempt the operation in a
2757 different mode or with a libcall. */
2758 static rtx
2759 expand_unop_direct (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
2760 int unsignedp)
2762 if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
2764 struct expand_operand ops[2];
2765 enum insn_code icode = optab_handler (unoptab, mode);
2766 rtx last = get_last_insn ();
2767 rtx pat;
2769 create_output_operand (&ops[0], target, mode);
2770 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
2771 pat = maybe_gen_insn (icode, 2, ops);
2772 if (pat)
2774 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
2775 && ! add_equal_note (pat, ops[0].value, unoptab->code,
2776 ops[1].value, NULL_RTX))
2778 delete_insns_since (last);
2779 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
2782 emit_insn (pat);
2784 return ops[0].value;
2787 return 0;
2790 /* Generate code to perform an operation specified by UNOPTAB
2791 on operand OP0, with result having machine-mode MODE.
2793 UNSIGNEDP is for the case where we have to widen the operands
2794 to perform the operation. It says to use zero-extension.
2796 If TARGET is nonzero, the value
2797 is generated there, if it is convenient to do so.
2798 In all cases an rtx is returned for the locus of the value;
2799 this may or may not be TARGET. */
2802 expand_unop (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
2803 int unsignedp)
2805 enum mode_class mclass = GET_MODE_CLASS (mode);
2806 enum machine_mode wider_mode;
2807 rtx temp;
2808 rtx libfunc;
2810 temp = expand_unop_direct (mode, unoptab, op0, target, unsignedp);
2811 if (temp)
2812 return temp;
2814 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2816 /* Widening (or narrowing) clz needs special treatment. */
2817 if (unoptab == clz_optab)
2819 temp = widen_clz (mode, op0, target);
2820 if (temp)
2821 return temp;
2823 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
2824 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
2826 temp = expand_doubleword_clz (mode, op0, target);
2827 if (temp)
2828 return temp;
2831 goto try_libcall;
2834 /* Widening (or narrowing) bswap needs special treatment. */
2835 if (unoptab == bswap_optab)
2837 temp = widen_bswap (mode, op0, target);
2838 if (temp)
2839 return temp;
2841 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
2842 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
2844 temp = expand_doubleword_bswap (mode, op0, target);
2845 if (temp)
2846 return temp;
2849 goto try_libcall;
2852 if (CLASS_HAS_WIDER_MODES_P (mclass))
2853 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2854 wider_mode != VOIDmode;
2855 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2857 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2859 rtx xop0 = op0;
2860 rtx last = get_last_insn ();
2862 /* For certain operations, we need not actually extend
2863 the narrow operand, as long as we will truncate the
2864 results to the same narrowness. */
2866 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
2867 (unoptab == neg_optab
2868 || unoptab == one_cmpl_optab)
2869 && mclass == MODE_INT);
2871 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2872 unsignedp);
2874 if (temp)
2876 if (mclass != MODE_INT
2877 || !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
2878 GET_MODE_BITSIZE (wider_mode)))
2880 if (target == 0)
2881 target = gen_reg_rtx (mode);
2882 convert_move (target, temp, 0);
2883 return target;
2885 else
2886 return gen_lowpart (mode, temp);
2888 else
2889 delete_insns_since (last);
2893 /* These can be done a word at a time. */
2894 if (unoptab == one_cmpl_optab
2895 && mclass == MODE_INT
2896 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
2897 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
2899 int i;
2900 rtx insns;
2902 if (target == 0 || target == op0)
2903 target = gen_reg_rtx (mode);
2905 start_sequence ();
2907 /* Do the actual arithmetic. */
2908 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
2910 rtx target_piece = operand_subword (target, i, 1, mode);
2911 rtx x = expand_unop (word_mode, unoptab,
2912 operand_subword_force (op0, i, mode),
2913 target_piece, unsignedp);
2915 if (target_piece != x)
2916 emit_move_insn (target_piece, x);
2919 insns = get_insns ();
2920 end_sequence ();
2922 emit_insn (insns);
2923 return target;
2926 if (unoptab->code == NEG)
2928 /* Try negating floating point values by flipping the sign bit. */
2929 if (SCALAR_FLOAT_MODE_P (mode))
2931 temp = expand_absneg_bit (NEG, mode, op0, target);
2932 if (temp)
2933 return temp;
2936 /* If there is no negation pattern, and we have no negative zero,
2937 try subtracting from zero. */
2938 if (!HONOR_SIGNED_ZEROS (mode))
2940 temp = expand_binop (mode, (unoptab == negv_optab
2941 ? subv_optab : sub_optab),
2942 CONST0_RTX (mode), op0, target,
2943 unsignedp, OPTAB_DIRECT);
2944 if (temp)
2945 return temp;
2949 /* Try calculating parity (x) as popcount (x) % 2. */
2950 if (unoptab == parity_optab)
2952 temp = expand_parity (mode, op0, target);
2953 if (temp)
2954 return temp;
2957 /* Try implementing ffs (x) in terms of clz (x). */
2958 if (unoptab == ffs_optab)
2960 temp = expand_ffs (mode, op0, target);
2961 if (temp)
2962 return temp;
2965 /* Try implementing ctz (x) in terms of clz (x). */
2966 if (unoptab == ctz_optab)
2968 temp = expand_ctz (mode, op0, target);
2969 if (temp)
2970 return temp;
2973 try_libcall:
2974 /* Now try a library call in this mode. */
2975 libfunc = optab_libfunc (unoptab, mode);
2976 if (libfunc)
2978 rtx insns;
2979 rtx value;
2980 rtx eq_value;
2981 enum machine_mode outmode = mode;
2983 /* All of these functions return small values. Thus we choose to
2984 have them return something that isn't a double-word. */
2985 if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab
2986 || unoptab == popcount_optab || unoptab == parity_optab)
2987 outmode
2988 = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node),
2989 optab_libfunc (unoptab, mode)));
2991 start_sequence ();
2993 /* Pass 1 for NO_QUEUE so we don't lose any increments
2994 if the libcall is cse'd or moved. */
2995 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, outmode,
2996 1, op0, mode);
2997 insns = get_insns ();
2998 end_sequence ();
3000 target = gen_reg_rtx (outmode);
3001 eq_value = gen_rtx_fmt_e (unoptab->code, mode, op0);
3002 if (GET_MODE_SIZE (outmode) < GET_MODE_SIZE (mode))
3003 eq_value = simplify_gen_unary (TRUNCATE, outmode, eq_value, mode);
3004 else if (GET_MODE_SIZE (outmode) > GET_MODE_SIZE (mode))
3005 eq_value = simplify_gen_unary (ZERO_EXTEND, outmode, eq_value, mode);
3006 emit_libcall_block (insns, target, value, eq_value);
3008 return target;
3011 /* It can't be done in this mode. Can we do it in a wider mode? */
3013 if (CLASS_HAS_WIDER_MODES_P (mclass))
3015 for (wider_mode = GET_MODE_WIDER_MODE (mode);
3016 wider_mode != VOIDmode;
3017 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3019 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing
3020 || optab_libfunc (unoptab, wider_mode))
3022 rtx xop0 = op0;
3023 rtx last = get_last_insn ();
3025 /* For certain operations, we need not actually extend
3026 the narrow operand, as long as we will truncate the
3027 results to the same narrowness. */
3029 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3030 (unoptab == neg_optab
3031 || unoptab == one_cmpl_optab)
3032 && mclass == MODE_INT);
3034 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3035 unsignedp);
3037 /* If we are generating clz using wider mode, adjust the
3038 result. */
3039 if (unoptab == clz_optab && temp != 0)
3040 temp = expand_binop (wider_mode, sub_optab, temp,
3041 GEN_INT (GET_MODE_BITSIZE (wider_mode)
3042 - GET_MODE_BITSIZE (mode)),
3043 target, true, OPTAB_DIRECT);
3045 if (temp)
3047 if (mclass != MODE_INT)
3049 if (target == 0)
3050 target = gen_reg_rtx (mode);
3051 convert_move (target, temp, 0);
3052 return target;
3054 else
3055 return gen_lowpart (mode, temp);
3057 else
3058 delete_insns_since (last);
3063 /* One final attempt at implementing negation via subtraction,
3064 this time allowing widening of the operand. */
3065 if (unoptab->code == NEG && !HONOR_SIGNED_ZEROS (mode))
3067 rtx temp;
3068 temp = expand_binop (mode,
3069 unoptab == negv_optab ? subv_optab : sub_optab,
3070 CONST0_RTX (mode), op0,
3071 target, unsignedp, OPTAB_LIB_WIDEN);
3072 if (temp)
3073 return temp;
3076 return 0;
3079 /* Emit code to compute the absolute value of OP0, with result to
3080 TARGET if convenient. (TARGET may be 0.) The return value says
3081 where the result actually is to be found.
3083 MODE is the mode of the operand; the mode of the result is
3084 different but can be deduced from MODE.
3089 expand_abs_nojump (enum machine_mode mode, rtx op0, rtx target,
3090 int result_unsignedp)
3092 rtx temp;
3094 if (! flag_trapv)
3095 result_unsignedp = 1;
3097 /* First try to do it with a special abs instruction. */
3098 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
3099 op0, target, 0);
3100 if (temp != 0)
3101 return temp;
3103 /* For floating point modes, try clearing the sign bit. */
3104 if (SCALAR_FLOAT_MODE_P (mode))
3106 temp = expand_absneg_bit (ABS, mode, op0, target);
3107 if (temp)
3108 return temp;
3111 /* If we have a MAX insn, we can do this as MAX (x, -x). */
3112 if (optab_handler (smax_optab, mode) != CODE_FOR_nothing
3113 && !HONOR_SIGNED_ZEROS (mode))
3115 rtx last = get_last_insn ();
3117 temp = expand_unop (mode, neg_optab, op0, NULL_RTX, 0);
3118 if (temp != 0)
3119 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3120 OPTAB_WIDEN);
3122 if (temp != 0)
3123 return temp;
3125 delete_insns_since (last);
3128 /* If this machine has expensive jumps, we can do integer absolute
3129 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
3130 where W is the width of MODE. */
3132 if (GET_MODE_CLASS (mode) == MODE_INT
3133 && BRANCH_COST (optimize_insn_for_speed_p (),
3134 false) >= 2)
3136 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
3137 size_int (GET_MODE_BITSIZE (mode) - 1),
3138 NULL_RTX, 0);
3140 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3141 OPTAB_LIB_WIDEN);
3142 if (temp != 0)
3143 temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
3144 temp, extended, target, 0, OPTAB_LIB_WIDEN);
3146 if (temp != 0)
3147 return temp;
3150 return NULL_RTX;
3154 expand_abs (enum machine_mode mode, rtx op0, rtx target,
3155 int result_unsignedp, int safe)
3157 rtx temp, op1;
3159 if (! flag_trapv)
3160 result_unsignedp = 1;
3162 temp = expand_abs_nojump (mode, op0, target, result_unsignedp);
3163 if (temp != 0)
3164 return temp;
3166 /* If that does not win, use conditional jump and negate. */
3168 /* It is safe to use the target if it is the same
3169 as the source if this is also a pseudo register */
3170 if (op0 == target && REG_P (op0)
3171 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
3172 safe = 1;
3174 op1 = gen_label_rtx ();
3175 if (target == 0 || ! safe
3176 || GET_MODE (target) != mode
3177 || (MEM_P (target) && MEM_VOLATILE_P (target))
3178 || (REG_P (target)
3179 && REGNO (target) < FIRST_PSEUDO_REGISTER))
3180 target = gen_reg_rtx (mode);
3182 emit_move_insn (target, op0);
3183 NO_DEFER_POP;
3185 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
3186 NULL_RTX, NULL_RTX, op1, -1);
3188 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
3189 target, target, 0);
3190 if (op0 != target)
3191 emit_move_insn (target, op0);
3192 emit_label (op1);
3193 OK_DEFER_POP;
3194 return target;
3197 /* Emit code to compute the one's complement absolute value of OP0
3198 (if (OP0 < 0) OP0 = ~OP0), with result to TARGET if convenient.
3199 (TARGET may be NULL_RTX.) The return value says where the result
3200 actually is to be found.
3202 MODE is the mode of the operand; the mode of the result is
3203 different but can be deduced from MODE. */
3206 expand_one_cmpl_abs_nojump (enum machine_mode mode, rtx op0, rtx target)
3208 rtx temp;
3210 /* Not applicable for floating point modes. */
3211 if (FLOAT_MODE_P (mode))
3212 return NULL_RTX;
3214 /* If we have a MAX insn, we can do this as MAX (x, ~x). */
3215 if (optab_handler (smax_optab, mode) != CODE_FOR_nothing)
3217 rtx last = get_last_insn ();
3219 temp = expand_unop (mode, one_cmpl_optab, op0, NULL_RTX, 0);
3220 if (temp != 0)
3221 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3222 OPTAB_WIDEN);
3224 if (temp != 0)
3225 return temp;
3227 delete_insns_since (last);
3230 /* If this machine has expensive jumps, we can do one's complement
3231 absolute value of X as (((signed) x >> (W-1)) ^ x). */
3233 if (GET_MODE_CLASS (mode) == MODE_INT
3234 && BRANCH_COST (optimize_insn_for_speed_p (),
3235 false) >= 2)
3237 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
3238 size_int (GET_MODE_BITSIZE (mode) - 1),
3239 NULL_RTX, 0);
3241 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3242 OPTAB_LIB_WIDEN);
3244 if (temp != 0)
3245 return temp;
3248 return NULL_RTX;
3251 /* A subroutine of expand_copysign, perform the copysign operation using the
3252 abs and neg primitives advertised to exist on the target. The assumption
3253 is that we have a split register file, and leaving op0 in fp registers,
3254 and not playing with subregs so much, will help the register allocator. */
3256 static rtx
3257 expand_copysign_absneg (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3258 int bitpos, bool op0_is_abs)
3260 enum machine_mode imode;
3261 enum insn_code icode;
3262 rtx sign, label;
3264 if (target == op1)
3265 target = NULL_RTX;
3267 /* Check if the back end provides an insn that handles signbit for the
3268 argument's mode. */
3269 icode = optab_handler (signbit_optab, mode);
3270 if (icode != CODE_FOR_nothing)
3272 imode = insn_data[(int) icode].operand[0].mode;
3273 sign = gen_reg_rtx (imode);
3274 emit_unop_insn (icode, sign, op1, UNKNOWN);
3276 else
3278 double_int mask;
3280 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3282 imode = int_mode_for_mode (mode);
3283 if (imode == BLKmode)
3284 return NULL_RTX;
3285 op1 = gen_lowpart (imode, op1);
3287 else
3289 int word;
3291 imode = word_mode;
3292 if (FLOAT_WORDS_BIG_ENDIAN)
3293 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3294 else
3295 word = bitpos / BITS_PER_WORD;
3296 bitpos = bitpos % BITS_PER_WORD;
3297 op1 = operand_subword_force (op1, word, mode);
3300 mask = double_int_setbit (double_int_zero, bitpos);
3302 sign = expand_binop (imode, and_optab, op1,
3303 immed_double_int_const (mask, imode),
3304 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3307 if (!op0_is_abs)
3309 op0 = expand_unop (mode, abs_optab, op0, target, 0);
3310 if (op0 == NULL)
3311 return NULL_RTX;
3312 target = op0;
3314 else
3316 if (target == NULL_RTX)
3317 target = copy_to_reg (op0);
3318 else
3319 emit_move_insn (target, op0);
3322 label = gen_label_rtx ();
3323 emit_cmp_and_jump_insns (sign, const0_rtx, EQ, NULL_RTX, imode, 1, label);
3325 if (GET_CODE (op0) == CONST_DOUBLE)
3326 op0 = simplify_unary_operation (NEG, mode, op0, mode);
3327 else
3328 op0 = expand_unop (mode, neg_optab, op0, target, 0);
3329 if (op0 != target)
3330 emit_move_insn (target, op0);
3332 emit_label (label);
3334 return target;
3338 /* A subroutine of expand_copysign, perform the entire copysign operation
3339 with integer bitmasks. BITPOS is the position of the sign bit; OP0_IS_ABS
3340 is true if op0 is known to have its sign bit clear. */
3342 static rtx
3343 expand_copysign_bit (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3344 int bitpos, bool op0_is_abs)
3346 enum machine_mode imode;
3347 double_int mask;
3348 int word, nwords, i;
3349 rtx temp, insns;
3351 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3353 imode = int_mode_for_mode (mode);
3354 if (imode == BLKmode)
3355 return NULL_RTX;
3356 word = 0;
3357 nwords = 1;
3359 else
3361 imode = word_mode;
3363 if (FLOAT_WORDS_BIG_ENDIAN)
3364 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3365 else
3366 word = bitpos / BITS_PER_WORD;
3367 bitpos = bitpos % BITS_PER_WORD;
3368 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
3371 mask = double_int_setbit (double_int_zero, bitpos);
3373 if (target == 0 || target == op0 || target == op1)
3374 target = gen_reg_rtx (mode);
3376 if (nwords > 1)
3378 start_sequence ();
3380 for (i = 0; i < nwords; ++i)
3382 rtx targ_piece = operand_subword (target, i, 1, mode);
3383 rtx op0_piece = operand_subword_force (op0, i, mode);
3385 if (i == word)
3387 if (!op0_is_abs)
3388 op0_piece
3389 = expand_binop (imode, and_optab, op0_piece,
3390 immed_double_int_const (double_int_not (mask),
3391 imode),
3392 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3394 op1 = expand_binop (imode, and_optab,
3395 operand_subword_force (op1, i, mode),
3396 immed_double_int_const (mask, imode),
3397 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3399 temp = expand_binop (imode, ior_optab, op0_piece, op1,
3400 targ_piece, 1, OPTAB_LIB_WIDEN);
3401 if (temp != targ_piece)
3402 emit_move_insn (targ_piece, temp);
3404 else
3405 emit_move_insn (targ_piece, op0_piece);
3408 insns = get_insns ();
3409 end_sequence ();
3411 emit_insn (insns);
3413 else
3415 op1 = expand_binop (imode, and_optab, gen_lowpart (imode, op1),
3416 immed_double_int_const (mask, imode),
3417 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3419 op0 = gen_lowpart (imode, op0);
3420 if (!op0_is_abs)
3421 op0 = expand_binop (imode, and_optab, op0,
3422 immed_double_int_const (double_int_not (mask),
3423 imode),
3424 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3426 temp = expand_binop (imode, ior_optab, op0, op1,
3427 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
3428 target = lowpart_subreg_maybe_copy (mode, temp, imode);
3431 return target;
3434 /* Expand the C99 copysign operation. OP0 and OP1 must be the same
3435 scalar floating point mode. Return NULL if we do not know how to
3436 expand the operation inline. */
3439 expand_copysign (rtx op0, rtx op1, rtx target)
3441 enum machine_mode mode = GET_MODE (op0);
3442 const struct real_format *fmt;
3443 bool op0_is_abs;
3444 rtx temp;
3446 gcc_assert (SCALAR_FLOAT_MODE_P (mode));
3447 gcc_assert (GET_MODE (op1) == mode);
3449 /* First try to do it with a special instruction. */
3450 temp = expand_binop (mode, copysign_optab, op0, op1,
3451 target, 0, OPTAB_DIRECT);
3452 if (temp)
3453 return temp;
3455 fmt = REAL_MODE_FORMAT (mode);
3456 if (fmt == NULL || !fmt->has_signed_zero)
3457 return NULL_RTX;
3459 op0_is_abs = false;
3460 if (GET_CODE (op0) == CONST_DOUBLE)
3462 if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0)))
3463 op0 = simplify_unary_operation (ABS, mode, op0, mode);
3464 op0_is_abs = true;
3467 if (fmt->signbit_ro >= 0
3468 && (GET_CODE (op0) == CONST_DOUBLE
3469 || (optab_handler (neg_optab, mode) != CODE_FOR_nothing
3470 && optab_handler (abs_optab, mode) != CODE_FOR_nothing)))
3472 temp = expand_copysign_absneg (mode, op0, op1, target,
3473 fmt->signbit_ro, op0_is_abs);
3474 if (temp)
3475 return temp;
3478 if (fmt->signbit_rw < 0)
3479 return NULL_RTX;
3480 return expand_copysign_bit (mode, op0, op1, target,
3481 fmt->signbit_rw, op0_is_abs);
3484 /* Generate an instruction whose insn-code is INSN_CODE,
3485 with two operands: an output TARGET and an input OP0.
3486 TARGET *must* be nonzero, and the output is always stored there.
3487 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3488 the value that is stored into TARGET.
3490 Return false if expansion failed. */
3492 bool
3493 maybe_emit_unop_insn (enum insn_code icode, rtx target, rtx op0,
3494 enum rtx_code code)
3496 struct expand_operand ops[2];
3497 rtx pat;
3499 create_output_operand (&ops[0], target, GET_MODE (target));
3500 create_input_operand (&ops[1], op0, GET_MODE (op0));
3501 pat = maybe_gen_insn (icode, 2, ops);
3502 if (!pat)
3503 return false;
3505 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX && code != UNKNOWN)
3506 add_equal_note (pat, ops[0].value, code, ops[1].value, NULL_RTX);
3508 emit_insn (pat);
3510 if (ops[0].value != target)
3511 emit_move_insn (target, ops[0].value);
3512 return true;
3514 /* Generate an instruction whose insn-code is INSN_CODE,
3515 with two operands: an output TARGET and an input OP0.
3516 TARGET *must* be nonzero, and the output is always stored there.
3517 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3518 the value that is stored into TARGET. */
3520 void
3521 emit_unop_insn (enum insn_code icode, rtx target, rtx op0, enum rtx_code code)
3523 bool ok = maybe_emit_unop_insn (icode, target, op0, code);
3524 gcc_assert (ok);
3527 struct no_conflict_data
3529 rtx target, first, insn;
3530 bool must_stay;
3533 /* Called via note_stores by emit_libcall_block. Set P->must_stay if
3534 the currently examined clobber / store has to stay in the list of
3535 insns that constitute the actual libcall block. */
3536 static void
3537 no_conflict_move_test (rtx dest, const_rtx set, void *p0)
3539 struct no_conflict_data *p= (struct no_conflict_data *) p0;
3541 /* If this inns directly contributes to setting the target, it must stay. */
3542 if (reg_overlap_mentioned_p (p->target, dest))
3543 p->must_stay = true;
3544 /* If we haven't committed to keeping any other insns in the list yet,
3545 there is nothing more to check. */
3546 else if (p->insn == p->first)
3547 return;
3548 /* If this insn sets / clobbers a register that feeds one of the insns
3549 already in the list, this insn has to stay too. */
3550 else if (reg_overlap_mentioned_p (dest, PATTERN (p->first))
3551 || (CALL_P (p->first) && (find_reg_fusage (p->first, USE, dest)))
3552 || reg_used_between_p (dest, p->first, p->insn)
3553 /* Likewise if this insn depends on a register set by a previous
3554 insn in the list, or if it sets a result (presumably a hard
3555 register) that is set or clobbered by a previous insn.
3556 N.B. the modified_*_p (SET_DEST...) tests applied to a MEM
3557 SET_DEST perform the former check on the address, and the latter
3558 check on the MEM. */
3559 || (GET_CODE (set) == SET
3560 && (modified_in_p (SET_SRC (set), p->first)
3561 || modified_in_p (SET_DEST (set), p->first)
3562 || modified_between_p (SET_SRC (set), p->first, p->insn)
3563 || modified_between_p (SET_DEST (set), p->first, p->insn))))
3564 p->must_stay = true;
3568 /* Emit code to make a call to a constant function or a library call.
3570 INSNS is a list containing all insns emitted in the call.
3571 These insns leave the result in RESULT. Our block is to copy RESULT
3572 to TARGET, which is logically equivalent to EQUIV.
3574 We first emit any insns that set a pseudo on the assumption that these are
3575 loading constants into registers; doing so allows them to be safely cse'ed
3576 between blocks. Then we emit all the other insns in the block, followed by
3577 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3578 note with an operand of EQUIV. */
3580 void
3581 emit_libcall_block (rtx insns, rtx target, rtx result, rtx equiv)
3583 rtx final_dest = target;
3584 rtx next, last, insn;
3586 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3587 into a MEM later. Protect the libcall block from this change. */
3588 if (! REG_P (target) || REG_USERVAR_P (target))
3589 target = gen_reg_rtx (GET_MODE (target));
3591 /* If we're using non-call exceptions, a libcall corresponding to an
3592 operation that may trap may also trap. */
3593 /* ??? See the comment in front of make_reg_eh_region_note. */
3594 if (cfun->can_throw_non_call_exceptions && may_trap_p (equiv))
3596 for (insn = insns; insn; insn = NEXT_INSN (insn))
3597 if (CALL_P (insn))
3599 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3600 if (note)
3602 int lp_nr = INTVAL (XEXP (note, 0));
3603 if (lp_nr == 0 || lp_nr == INT_MIN)
3604 remove_note (insn, note);
3608 else
3610 /* Look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3611 reg note to indicate that this call cannot throw or execute a nonlocal
3612 goto (unless there is already a REG_EH_REGION note, in which case
3613 we update it). */
3614 for (insn = insns; insn; insn = NEXT_INSN (insn))
3615 if (CALL_P (insn))
3616 make_reg_eh_region_note_nothrow_nononlocal (insn);
3619 /* First emit all insns that set pseudos. Remove them from the list as
3620 we go. Avoid insns that set pseudos which were referenced in previous
3621 insns. These can be generated by move_by_pieces, for example,
3622 to update an address. Similarly, avoid insns that reference things
3623 set in previous insns. */
3625 for (insn = insns; insn; insn = next)
3627 rtx set = single_set (insn);
3629 next = NEXT_INSN (insn);
3631 if (set != 0 && REG_P (SET_DEST (set))
3632 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3634 struct no_conflict_data data;
3636 data.target = const0_rtx;
3637 data.first = insns;
3638 data.insn = insn;
3639 data.must_stay = 0;
3640 note_stores (PATTERN (insn), no_conflict_move_test, &data);
3641 if (! data.must_stay)
3643 if (PREV_INSN (insn))
3644 NEXT_INSN (PREV_INSN (insn)) = next;
3645 else
3646 insns = next;
3648 if (next)
3649 PREV_INSN (next) = PREV_INSN (insn);
3651 add_insn (insn);
3655 /* Some ports use a loop to copy large arguments onto the stack.
3656 Don't move anything outside such a loop. */
3657 if (LABEL_P (insn))
3658 break;
3661 /* Write the remaining insns followed by the final copy. */
3662 for (insn = insns; insn; insn = next)
3664 next = NEXT_INSN (insn);
3666 add_insn (insn);
3669 last = emit_move_insn (target, result);
3670 if (optab_handler (mov_optab, GET_MODE (target)) != CODE_FOR_nothing)
3671 set_unique_reg_note (last, REG_EQUAL, copy_rtx (equiv));
3673 if (final_dest != target)
3674 emit_move_insn (final_dest, target);
3677 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
3678 PURPOSE describes how this comparison will be used. CODE is the rtx
3679 comparison code we will be using.
3681 ??? Actually, CODE is slightly weaker than that. A target is still
3682 required to implement all of the normal bcc operations, but not
3683 required to implement all (or any) of the unordered bcc operations. */
3686 can_compare_p (enum rtx_code code, enum machine_mode mode,
3687 enum can_compare_purpose purpose)
3689 rtx test;
3690 test = gen_rtx_fmt_ee (code, mode, const0_rtx, const0_rtx);
3693 enum insn_code icode;
3695 if (purpose == ccp_jump
3696 && (icode = optab_handler (cbranch_optab, mode)) != CODE_FOR_nothing
3697 && insn_operand_matches (icode, 0, test))
3698 return 1;
3699 if (purpose == ccp_store_flag
3700 && (icode = optab_handler (cstore_optab, mode)) != CODE_FOR_nothing
3701 && insn_operand_matches (icode, 1, test))
3702 return 1;
3703 if (purpose == ccp_cmov
3704 && optab_handler (cmov_optab, mode) != CODE_FOR_nothing)
3705 return 1;
3707 mode = GET_MODE_WIDER_MODE (mode);
3708 PUT_MODE (test, mode);
3710 while (mode != VOIDmode);
3712 return 0;
3715 /* This function is called when we are going to emit a compare instruction that
3716 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
3718 *PMODE is the mode of the inputs (in case they are const_int).
3719 *PUNSIGNEDP nonzero says that the operands are unsigned;
3720 this matters if they need to be widened (as given by METHODS).
3722 If they have mode BLKmode, then SIZE specifies the size of both operands.
3724 This function performs all the setup necessary so that the caller only has
3725 to emit a single comparison insn. This setup can involve doing a BLKmode
3726 comparison or emitting a library call to perform the comparison if no insn
3727 is available to handle it.
3728 The values which are passed in through pointers can be modified; the caller
3729 should perform the comparison on the modified values. Constant
3730 comparisons must have already been folded. */
3732 static void
3733 prepare_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size,
3734 int unsignedp, enum optab_methods methods,
3735 rtx *ptest, enum machine_mode *pmode)
3737 enum machine_mode mode = *pmode;
3738 rtx libfunc, test;
3739 enum machine_mode cmp_mode;
3740 enum mode_class mclass;
3742 /* The other methods are not needed. */
3743 gcc_assert (methods == OPTAB_DIRECT || methods == OPTAB_WIDEN
3744 || methods == OPTAB_LIB_WIDEN);
3746 /* If we are optimizing, force expensive constants into a register. */
3747 if (CONSTANT_P (x) && optimize
3748 && (rtx_cost (x, COMPARE, optimize_insn_for_speed_p ())
3749 > COSTS_N_INSNS (1)))
3750 x = force_reg (mode, x);
3752 if (CONSTANT_P (y) && optimize
3753 && (rtx_cost (y, COMPARE, optimize_insn_for_speed_p ())
3754 > COSTS_N_INSNS (1)))
3755 y = force_reg (mode, y);
3757 #ifdef HAVE_cc0
3758 /* Make sure if we have a canonical comparison. The RTL
3759 documentation states that canonical comparisons are required only
3760 for targets which have cc0. */
3761 gcc_assert (!CONSTANT_P (x) || CONSTANT_P (y));
3762 #endif
3764 /* Don't let both operands fail to indicate the mode. */
3765 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
3766 x = force_reg (mode, x);
3767 if (mode == VOIDmode)
3768 mode = GET_MODE (x) != VOIDmode ? GET_MODE (x) : GET_MODE (y);
3770 /* Handle all BLKmode compares. */
3772 if (mode == BLKmode)
3774 enum machine_mode result_mode;
3775 enum insn_code cmp_code;
3776 tree length_type;
3777 rtx libfunc;
3778 rtx result;
3779 rtx opalign
3780 = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
3782 gcc_assert (size);
3784 /* Try to use a memory block compare insn - either cmpstr
3785 or cmpmem will do. */
3786 for (cmp_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3787 cmp_mode != VOIDmode;
3788 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode))
3790 cmp_code = direct_optab_handler (cmpmem_optab, cmp_mode);
3791 if (cmp_code == CODE_FOR_nothing)
3792 cmp_code = direct_optab_handler (cmpstr_optab, cmp_mode);
3793 if (cmp_code == CODE_FOR_nothing)
3794 cmp_code = direct_optab_handler (cmpstrn_optab, cmp_mode);
3795 if (cmp_code == CODE_FOR_nothing)
3796 continue;
3798 /* Must make sure the size fits the insn's mode. */
3799 if ((CONST_INT_P (size)
3800 && INTVAL (size) >= (1 << GET_MODE_BITSIZE (cmp_mode)))
3801 || (GET_MODE_BITSIZE (GET_MODE (size))
3802 > GET_MODE_BITSIZE (cmp_mode)))
3803 continue;
3805 result_mode = insn_data[cmp_code].operand[0].mode;
3806 result = gen_reg_rtx (result_mode);
3807 size = convert_to_mode (cmp_mode, size, 1);
3808 emit_insn (GEN_FCN (cmp_code) (result, x, y, size, opalign));
3810 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, result, const0_rtx);
3811 *pmode = result_mode;
3812 return;
3815 if (methods != OPTAB_LIB && methods != OPTAB_LIB_WIDEN)
3816 goto fail;
3818 /* Otherwise call a library function, memcmp. */
3819 libfunc = memcmp_libfunc;
3820 length_type = sizetype;
3821 result_mode = TYPE_MODE (integer_type_node);
3822 cmp_mode = TYPE_MODE (length_type);
3823 size = convert_to_mode (TYPE_MODE (length_type), size,
3824 TYPE_UNSIGNED (length_type));
3826 result = emit_library_call_value (libfunc, 0, LCT_PURE,
3827 result_mode, 3,
3828 XEXP (x, 0), Pmode,
3829 XEXP (y, 0), Pmode,
3830 size, cmp_mode);
3832 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, result, const0_rtx);
3833 *pmode = result_mode;
3834 return;
3837 /* Don't allow operands to the compare to trap, as that can put the
3838 compare and branch in different basic blocks. */
3839 if (cfun->can_throw_non_call_exceptions)
3841 if (may_trap_p (x))
3842 x = force_reg (mode, x);
3843 if (may_trap_p (y))
3844 y = force_reg (mode, y);
3847 if (GET_MODE_CLASS (mode) == MODE_CC)
3849 gcc_assert (can_compare_p (comparison, CCmode, ccp_jump));
3850 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
3851 return;
3854 mclass = GET_MODE_CLASS (mode);
3855 test = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
3856 cmp_mode = mode;
3859 enum insn_code icode;
3860 icode = optab_handler (cbranch_optab, cmp_mode);
3861 if (icode != CODE_FOR_nothing
3862 && insn_operand_matches (icode, 0, test))
3864 rtx last = get_last_insn ();
3865 rtx op0 = prepare_operand (icode, x, 1, mode, cmp_mode, unsignedp);
3866 rtx op1 = prepare_operand (icode, y, 2, mode, cmp_mode, unsignedp);
3867 if (op0 && op1
3868 && insn_operand_matches (icode, 1, op0)
3869 && insn_operand_matches (icode, 2, op1))
3871 XEXP (test, 0) = op0;
3872 XEXP (test, 1) = op1;
3873 *ptest = test;
3874 *pmode = cmp_mode;
3875 return;
3877 delete_insns_since (last);
3880 if (methods == OPTAB_DIRECT || !CLASS_HAS_WIDER_MODES_P (mclass))
3881 break;
3882 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode);
3884 while (cmp_mode != VOIDmode);
3886 if (methods != OPTAB_LIB_WIDEN)
3887 goto fail;
3889 if (!SCALAR_FLOAT_MODE_P (mode))
3891 rtx result;
3893 /* Handle a libcall just for the mode we are using. */
3894 libfunc = optab_libfunc (cmp_optab, mode);
3895 gcc_assert (libfunc);
3897 /* If we want unsigned, and this mode has a distinct unsigned
3898 comparison routine, use that. */
3899 if (unsignedp)
3901 rtx ulibfunc = optab_libfunc (ucmp_optab, mode);
3902 if (ulibfunc)
3903 libfunc = ulibfunc;
3906 result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
3907 targetm.libgcc_cmp_return_mode (),
3908 2, x, mode, y, mode);
3910 /* There are two kinds of comparison routines. Biased routines
3911 return 0/1/2, and unbiased routines return -1/0/1. Other parts
3912 of gcc expect that the comparison operation is equivalent
3913 to the modified comparison. For signed comparisons compare the
3914 result against 1 in the biased case, and zero in the unbiased
3915 case. For unsigned comparisons always compare against 1 after
3916 biasing the unbiased result by adding 1. This gives us a way to
3917 represent LTU. */
3918 x = result;
3919 y = const1_rtx;
3921 if (!TARGET_LIB_INT_CMP_BIASED)
3923 if (unsignedp)
3924 x = plus_constant (result, 1);
3925 else
3926 y = const0_rtx;
3929 *pmode = word_mode;
3930 prepare_cmp_insn (x, y, comparison, NULL_RTX, unsignedp, methods,
3931 ptest, pmode);
3933 else
3934 prepare_float_lib_cmp (x, y, comparison, ptest, pmode);
3936 return;
3938 fail:
3939 *ptest = NULL_RTX;
3942 /* Before emitting an insn with code ICODE, make sure that X, which is going
3943 to be used for operand OPNUM of the insn, is converted from mode MODE to
3944 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
3945 that it is accepted by the operand predicate. Return the new value. */
3948 prepare_operand (enum insn_code icode, rtx x, int opnum, enum machine_mode mode,
3949 enum machine_mode wider_mode, int unsignedp)
3951 if (mode != wider_mode)
3952 x = convert_modes (wider_mode, mode, x, unsignedp);
3954 if (!insn_operand_matches (icode, opnum, x))
3956 if (reload_completed)
3957 return NULL_RTX;
3958 x = copy_to_mode_reg (insn_data[(int) icode].operand[opnum].mode, x);
3961 return x;
3964 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
3965 we can do the branch. */
3967 static void
3968 emit_cmp_and_jump_insn_1 (rtx test, enum machine_mode mode, rtx label)
3970 enum machine_mode optab_mode;
3971 enum mode_class mclass;
3972 enum insn_code icode;
3974 mclass = GET_MODE_CLASS (mode);
3975 optab_mode = (mclass == MODE_CC) ? CCmode : mode;
3976 icode = optab_handler (cbranch_optab, optab_mode);
3978 gcc_assert (icode != CODE_FOR_nothing);
3979 gcc_assert (insn_operand_matches (icode, 0, test));
3980 emit_jump_insn (GEN_FCN (icode) (test, XEXP (test, 0), XEXP (test, 1), label));
3983 /* Generate code to compare X with Y so that the condition codes are
3984 set and to jump to LABEL if the condition is true. If X is a
3985 constant and Y is not a constant, then the comparison is swapped to
3986 ensure that the comparison RTL has the canonical form.
3988 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
3989 need to be widened. UNSIGNEDP is also used to select the proper
3990 branch condition code.
3992 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
3994 MODE is the mode of the inputs (in case they are const_int).
3996 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
3997 It will be potentially converted into an unsigned variant based on
3998 UNSIGNEDP to select a proper jump instruction. */
4000 void
4001 emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size,
4002 enum machine_mode mode, int unsignedp, rtx label)
4004 rtx op0 = x, op1 = y;
4005 rtx test;
4007 /* Swap operands and condition to ensure canonical RTL. */
4008 if (swap_commutative_operands_p (x, y)
4009 && can_compare_p (swap_condition (comparison), mode, ccp_jump))
4011 op0 = y, op1 = x;
4012 comparison = swap_condition (comparison);
4015 /* If OP0 is still a constant, then both X and Y must be constants
4016 or the opposite comparison is not supported. Force X into a register
4017 to create canonical RTL. */
4018 if (CONSTANT_P (op0))
4019 op0 = force_reg (mode, op0);
4021 if (unsignedp)
4022 comparison = unsigned_condition (comparison);
4024 prepare_cmp_insn (op0, op1, comparison, size, unsignedp, OPTAB_LIB_WIDEN,
4025 &test, &mode);
4026 emit_cmp_and_jump_insn_1 (test, mode, label);
4030 /* Emit a library call comparison between floating point X and Y.
4031 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
4033 static void
4034 prepare_float_lib_cmp (rtx x, rtx y, enum rtx_code comparison,
4035 rtx *ptest, enum machine_mode *pmode)
4037 enum rtx_code swapped = swap_condition (comparison);
4038 enum rtx_code reversed = reverse_condition_maybe_unordered (comparison);
4039 enum machine_mode orig_mode = GET_MODE (x);
4040 enum machine_mode mode, cmp_mode;
4041 rtx true_rtx, false_rtx;
4042 rtx value, target, insns, equiv;
4043 rtx libfunc = 0;
4044 bool reversed_p = false;
4045 cmp_mode = targetm.libgcc_cmp_return_mode ();
4047 for (mode = orig_mode;
4048 mode != VOIDmode;
4049 mode = GET_MODE_WIDER_MODE (mode))
4051 if (code_to_optab[comparison]
4052 && (libfunc = optab_libfunc (code_to_optab[comparison], mode)))
4053 break;
4055 if (code_to_optab[swapped]
4056 && (libfunc = optab_libfunc (code_to_optab[swapped], mode)))
4058 rtx tmp;
4059 tmp = x; x = y; y = tmp;
4060 comparison = swapped;
4061 break;
4064 if (code_to_optab[reversed]
4065 && (libfunc = optab_libfunc (code_to_optab[reversed], mode)))
4067 comparison = reversed;
4068 reversed_p = true;
4069 break;
4073 gcc_assert (mode != VOIDmode);
4075 if (mode != orig_mode)
4077 x = convert_to_mode (mode, x, 0);
4078 y = convert_to_mode (mode, y, 0);
4081 /* Attach a REG_EQUAL note describing the semantics of the libcall to
4082 the RTL. The allows the RTL optimizers to delete the libcall if the
4083 condition can be determined at compile-time. */
4084 if (comparison == UNORDERED
4085 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4087 true_rtx = const_true_rtx;
4088 false_rtx = const0_rtx;
4090 else
4092 switch (comparison)
4094 case EQ:
4095 true_rtx = const0_rtx;
4096 false_rtx = const_true_rtx;
4097 break;
4099 case NE:
4100 true_rtx = const_true_rtx;
4101 false_rtx = const0_rtx;
4102 break;
4104 case GT:
4105 true_rtx = const1_rtx;
4106 false_rtx = const0_rtx;
4107 break;
4109 case GE:
4110 true_rtx = const0_rtx;
4111 false_rtx = constm1_rtx;
4112 break;
4114 case LT:
4115 true_rtx = constm1_rtx;
4116 false_rtx = const0_rtx;
4117 break;
4119 case LE:
4120 true_rtx = const0_rtx;
4121 false_rtx = const1_rtx;
4122 break;
4124 default:
4125 gcc_unreachable ();
4129 if (comparison == UNORDERED)
4131 rtx temp = simplify_gen_relational (NE, cmp_mode, mode, x, x);
4132 equiv = simplify_gen_relational (NE, cmp_mode, mode, y, y);
4133 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4134 temp, const_true_rtx, equiv);
4136 else
4138 equiv = simplify_gen_relational (comparison, cmp_mode, mode, x, y);
4139 if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4140 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4141 equiv, true_rtx, false_rtx);
4144 start_sequence ();
4145 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4146 cmp_mode, 2, x, mode, y, mode);
4147 insns = get_insns ();
4148 end_sequence ();
4150 target = gen_reg_rtx (cmp_mode);
4151 emit_libcall_block (insns, target, value, equiv);
4153 if (comparison == UNORDERED
4154 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison)
4155 || reversed_p)
4156 *ptest = gen_rtx_fmt_ee (reversed_p ? EQ : NE, VOIDmode, target, false_rtx);
4157 else
4158 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, target, const0_rtx);
4160 *pmode = cmp_mode;
4163 /* Generate code to indirectly jump to a location given in the rtx LOC. */
4165 void
4166 emit_indirect_jump (rtx loc)
4168 struct expand_operand ops[1];
4170 create_address_operand (&ops[0], loc);
4171 expand_jump_insn (CODE_FOR_indirect_jump, 1, ops);
4172 emit_barrier ();
4175 #ifdef HAVE_conditional_move
4177 /* Emit a conditional move instruction if the machine supports one for that
4178 condition and machine mode.
4180 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4181 the mode to use should they be constants. If it is VOIDmode, they cannot
4182 both be constants.
4184 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4185 should be stored there. MODE is the mode to use should they be constants.
4186 If it is VOIDmode, they cannot both be constants.
4188 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4189 is not supported. */
4192 emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1,
4193 enum machine_mode cmode, rtx op2, rtx op3,
4194 enum machine_mode mode, int unsignedp)
4196 rtx tem, comparison, last;
4197 enum insn_code icode;
4198 enum rtx_code reversed;
4200 /* If one operand is constant, make it the second one. Only do this
4201 if the other operand is not constant as well. */
4203 if (swap_commutative_operands_p (op0, op1))
4205 tem = op0;
4206 op0 = op1;
4207 op1 = tem;
4208 code = swap_condition (code);
4211 /* get_condition will prefer to generate LT and GT even if the old
4212 comparison was against zero, so undo that canonicalization here since
4213 comparisons against zero are cheaper. */
4214 if (code == LT && op1 == const1_rtx)
4215 code = LE, op1 = const0_rtx;
4216 else if (code == GT && op1 == constm1_rtx)
4217 code = GE, op1 = const0_rtx;
4219 if (cmode == VOIDmode)
4220 cmode = GET_MODE (op0);
4222 if (swap_commutative_operands_p (op2, op3)
4223 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4224 != UNKNOWN))
4226 tem = op2;
4227 op2 = op3;
4228 op3 = tem;
4229 code = reversed;
4232 if (mode == VOIDmode)
4233 mode = GET_MODE (op2);
4235 icode = direct_optab_handler (movcc_optab, mode);
4237 if (icode == CODE_FOR_nothing)
4238 return 0;
4240 if (!target)
4241 target = gen_reg_rtx (mode);
4243 code = unsignedp ? unsigned_condition (code) : code;
4244 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4246 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4247 return NULL and let the caller figure out how best to deal with this
4248 situation. */
4249 if (!COMPARISON_P (comparison))
4250 return NULL_RTX;
4252 do_pending_stack_adjust ();
4253 last = get_last_insn ();
4254 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4255 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4256 &comparison, &cmode);
4257 if (comparison)
4259 struct expand_operand ops[4];
4261 create_output_operand (&ops[0], target, mode);
4262 create_fixed_operand (&ops[1], comparison);
4263 create_input_operand (&ops[2], op2, mode);
4264 create_input_operand (&ops[3], op3, mode);
4265 if (maybe_expand_insn (icode, 4, ops))
4267 if (ops[0].value != target)
4268 convert_move (target, ops[0].value, false);
4269 return target;
4272 delete_insns_since (last);
4273 return NULL_RTX;
4276 /* Return nonzero if a conditional move of mode MODE is supported.
4278 This function is for combine so it can tell whether an insn that looks
4279 like a conditional move is actually supported by the hardware. If we
4280 guess wrong we lose a bit on optimization, but that's it. */
4281 /* ??? sparc64 supports conditionally moving integers values based on fp
4282 comparisons, and vice versa. How do we handle them? */
4285 can_conditionally_move_p (enum machine_mode mode)
4287 if (direct_optab_handler (movcc_optab, mode) != CODE_FOR_nothing)
4288 return 1;
4290 return 0;
4293 #endif /* HAVE_conditional_move */
4295 /* Emit a conditional addition instruction if the machine supports one for that
4296 condition and machine mode.
4298 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4299 the mode to use should they be constants. If it is VOIDmode, they cannot
4300 both be constants.
4302 OP2 should be stored in TARGET if the comparison is true, otherwise OP2+OP3
4303 should be stored there. MODE is the mode to use should they be constants.
4304 If it is VOIDmode, they cannot both be constants.
4306 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4307 is not supported. */
4310 emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1,
4311 enum machine_mode cmode, rtx op2, rtx op3,
4312 enum machine_mode mode, int unsignedp)
4314 rtx tem, comparison, last;
4315 enum insn_code icode;
4316 enum rtx_code reversed;
4318 /* If one operand is constant, make it the second one. Only do this
4319 if the other operand is not constant as well. */
4321 if (swap_commutative_operands_p (op0, op1))
4323 tem = op0;
4324 op0 = op1;
4325 op1 = tem;
4326 code = swap_condition (code);
4329 /* get_condition will prefer to generate LT and GT even if the old
4330 comparison was against zero, so undo that canonicalization here since
4331 comparisons against zero are cheaper. */
4332 if (code == LT && op1 == const1_rtx)
4333 code = LE, op1 = const0_rtx;
4334 else if (code == GT && op1 == constm1_rtx)
4335 code = GE, op1 = const0_rtx;
4337 if (cmode == VOIDmode)
4338 cmode = GET_MODE (op0);
4340 if (swap_commutative_operands_p (op2, op3)
4341 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4342 != UNKNOWN))
4344 tem = op2;
4345 op2 = op3;
4346 op3 = tem;
4347 code = reversed;
4350 if (mode == VOIDmode)
4351 mode = GET_MODE (op2);
4353 icode = optab_handler (addcc_optab, mode);
4355 if (icode == CODE_FOR_nothing)
4356 return 0;
4358 if (!target)
4359 target = gen_reg_rtx (mode);
4361 code = unsignedp ? unsigned_condition (code) : code;
4362 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4364 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4365 return NULL and let the caller figure out how best to deal with this
4366 situation. */
4367 if (!COMPARISON_P (comparison))
4368 return NULL_RTX;
4370 do_pending_stack_adjust ();
4371 last = get_last_insn ();
4372 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4373 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4374 &comparison, &cmode);
4375 if (comparison)
4377 struct expand_operand ops[4];
4379 create_output_operand (&ops[0], target, mode);
4380 create_fixed_operand (&ops[1], comparison);
4381 create_input_operand (&ops[2], op2, mode);
4382 create_input_operand (&ops[3], op3, mode);
4383 if (maybe_expand_insn (icode, 4, ops))
4385 if (ops[0].value != target)
4386 convert_move (target, ops[0].value, false);
4387 return target;
4390 delete_insns_since (last);
4391 return NULL_RTX;
4394 /* These functions attempt to generate an insn body, rather than
4395 emitting the insn, but if the gen function already emits them, we
4396 make no attempt to turn them back into naked patterns. */
4398 /* Generate and return an insn body to add Y to X. */
4401 gen_add2_insn (rtx x, rtx y)
4403 enum insn_code icode = optab_handler (add_optab, GET_MODE (x));
4405 gcc_assert (insn_operand_matches (icode, 0, x));
4406 gcc_assert (insn_operand_matches (icode, 1, x));
4407 gcc_assert (insn_operand_matches (icode, 2, y));
4409 return GEN_FCN (icode) (x, x, y);
4412 /* Generate and return an insn body to add r1 and c,
4413 storing the result in r0. */
4416 gen_add3_insn (rtx r0, rtx r1, rtx c)
4418 enum insn_code icode = optab_handler (add_optab, GET_MODE (r0));
4420 if (icode == CODE_FOR_nothing
4421 || !insn_operand_matches (icode, 0, r0)
4422 || !insn_operand_matches (icode, 1, r1)
4423 || !insn_operand_matches (icode, 2, c))
4424 return NULL_RTX;
4426 return GEN_FCN (icode) (r0, r1, c);
4430 have_add2_insn (rtx x, rtx y)
4432 enum insn_code icode;
4434 gcc_assert (GET_MODE (x) != VOIDmode);
4436 icode = optab_handler (add_optab, GET_MODE (x));
4438 if (icode == CODE_FOR_nothing)
4439 return 0;
4441 if (!insn_operand_matches (icode, 0, x)
4442 || !insn_operand_matches (icode, 1, x)
4443 || !insn_operand_matches (icode, 2, y))
4444 return 0;
4446 return 1;
4449 /* Generate and return an insn body to subtract Y from X. */
4452 gen_sub2_insn (rtx x, rtx y)
4454 enum insn_code icode = optab_handler (sub_optab, GET_MODE (x));
4456 gcc_assert (insn_operand_matches (icode, 0, x));
4457 gcc_assert (insn_operand_matches (icode, 1, x));
4458 gcc_assert (insn_operand_matches (icode, 2, y));
4460 return GEN_FCN (icode) (x, x, y);
4463 /* Generate and return an insn body to subtract r1 and c,
4464 storing the result in r0. */
4467 gen_sub3_insn (rtx r0, rtx r1, rtx c)
4469 enum insn_code icode = optab_handler (sub_optab, GET_MODE (r0));
4471 if (icode == CODE_FOR_nothing
4472 || !insn_operand_matches (icode, 0, r0)
4473 || !insn_operand_matches (icode, 1, r1)
4474 || !insn_operand_matches (icode, 2, c))
4475 return NULL_RTX;
4477 return GEN_FCN (icode) (r0, r1, c);
4481 have_sub2_insn (rtx x, rtx y)
4483 enum insn_code icode;
4485 gcc_assert (GET_MODE (x) != VOIDmode);
4487 icode = optab_handler (sub_optab, GET_MODE (x));
4489 if (icode == CODE_FOR_nothing)
4490 return 0;
4492 if (!insn_operand_matches (icode, 0, x)
4493 || !insn_operand_matches (icode, 1, x)
4494 || !insn_operand_matches (icode, 2, y))
4495 return 0;
4497 return 1;
4500 /* Generate the body of an instruction to copy Y into X.
4501 It may be a list of insns, if one insn isn't enough. */
4504 gen_move_insn (rtx x, rtx y)
4506 rtx seq;
4508 start_sequence ();
4509 emit_move_insn_1 (x, y);
4510 seq = get_insns ();
4511 end_sequence ();
4512 return seq;
4515 /* Return the insn code used to extend FROM_MODE to TO_MODE.
4516 UNSIGNEDP specifies zero-extension instead of sign-extension. If
4517 no such operation exists, CODE_FOR_nothing will be returned. */
4519 enum insn_code
4520 can_extend_p (enum machine_mode to_mode, enum machine_mode from_mode,
4521 int unsignedp)
4523 convert_optab tab;
4524 #ifdef HAVE_ptr_extend
4525 if (unsignedp < 0)
4526 return CODE_FOR_ptr_extend;
4527 #endif
4529 tab = unsignedp ? zext_optab : sext_optab;
4530 return convert_optab_handler (tab, to_mode, from_mode);
4533 /* Generate the body of an insn to extend Y (with mode MFROM)
4534 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4537 gen_extend_insn (rtx x, rtx y, enum machine_mode mto,
4538 enum machine_mode mfrom, int unsignedp)
4540 enum insn_code icode = can_extend_p (mto, mfrom, unsignedp);
4541 return GEN_FCN (icode) (x, y);
4544 /* can_fix_p and can_float_p say whether the target machine
4545 can directly convert a given fixed point type to
4546 a given floating point type, or vice versa.
4547 The returned value is the CODE_FOR_... value to use,
4548 or CODE_FOR_nothing if these modes cannot be directly converted.
4550 *TRUNCP_PTR is set to 1 if it is necessary to output
4551 an explicit FTRUNC insn before the fix insn; otherwise 0. */
4553 static enum insn_code
4554 can_fix_p (enum machine_mode fixmode, enum machine_mode fltmode,
4555 int unsignedp, int *truncp_ptr)
4557 convert_optab tab;
4558 enum insn_code icode;
4560 tab = unsignedp ? ufixtrunc_optab : sfixtrunc_optab;
4561 icode = convert_optab_handler (tab, fixmode, fltmode);
4562 if (icode != CODE_FOR_nothing)
4564 *truncp_ptr = 0;
4565 return icode;
4568 /* FIXME: This requires a port to define both FIX and FTRUNC pattern
4569 for this to work. We need to rework the fix* and ftrunc* patterns
4570 and documentation. */
4571 tab = unsignedp ? ufix_optab : sfix_optab;
4572 icode = convert_optab_handler (tab, fixmode, fltmode);
4573 if (icode != CODE_FOR_nothing
4574 && optab_handler (ftrunc_optab, fltmode) != CODE_FOR_nothing)
4576 *truncp_ptr = 1;
4577 return icode;
4580 *truncp_ptr = 0;
4581 return CODE_FOR_nothing;
4584 static enum insn_code
4585 can_float_p (enum machine_mode fltmode, enum machine_mode fixmode,
4586 int unsignedp)
4588 convert_optab tab;
4590 tab = unsignedp ? ufloat_optab : sfloat_optab;
4591 return convert_optab_handler (tab, fltmode, fixmode);
4594 /* Generate code to convert FROM to floating point
4595 and store in TO. FROM must be fixed point and not VOIDmode.
4596 UNSIGNEDP nonzero means regard FROM as unsigned.
4597 Normally this is done by correcting the final value
4598 if it is negative. */
4600 void
4601 expand_float (rtx to, rtx from, int unsignedp)
4603 enum insn_code icode;
4604 rtx target = to;
4605 enum machine_mode fmode, imode;
4606 bool can_do_signed = false;
4608 /* Crash now, because we won't be able to decide which mode to use. */
4609 gcc_assert (GET_MODE (from) != VOIDmode);
4611 /* Look for an insn to do the conversion. Do it in the specified
4612 modes if possible; otherwise convert either input, output or both to
4613 wider mode. If the integer mode is wider than the mode of FROM,
4614 we can do the conversion signed even if the input is unsigned. */
4616 for (fmode = GET_MODE (to); fmode != VOIDmode;
4617 fmode = GET_MODE_WIDER_MODE (fmode))
4618 for (imode = GET_MODE (from); imode != VOIDmode;
4619 imode = GET_MODE_WIDER_MODE (imode))
4621 int doing_unsigned = unsignedp;
4623 if (fmode != GET_MODE (to)
4624 && significand_size (fmode) < GET_MODE_BITSIZE (GET_MODE (from)))
4625 continue;
4627 icode = can_float_p (fmode, imode, unsignedp);
4628 if (icode == CODE_FOR_nothing && unsignedp)
4630 enum insn_code scode = can_float_p (fmode, imode, 0);
4631 if (scode != CODE_FOR_nothing)
4632 can_do_signed = true;
4633 if (imode != GET_MODE (from))
4634 icode = scode, doing_unsigned = 0;
4637 if (icode != CODE_FOR_nothing)
4639 if (imode != GET_MODE (from))
4640 from = convert_to_mode (imode, from, unsignedp);
4642 if (fmode != GET_MODE (to))
4643 target = gen_reg_rtx (fmode);
4645 emit_unop_insn (icode, target, from,
4646 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
4648 if (target != to)
4649 convert_move (to, target, 0);
4650 return;
4654 /* Unsigned integer, and no way to convert directly. Convert as signed,
4655 then unconditionally adjust the result. */
4656 if (unsignedp && can_do_signed)
4658 rtx label = gen_label_rtx ();
4659 rtx temp;
4660 REAL_VALUE_TYPE offset;
4662 /* Look for a usable floating mode FMODE wider than the source and at
4663 least as wide as the target. Using FMODE will avoid rounding woes
4664 with unsigned values greater than the signed maximum value. */
4666 for (fmode = GET_MODE (to); fmode != VOIDmode;
4667 fmode = GET_MODE_WIDER_MODE (fmode))
4668 if (GET_MODE_BITSIZE (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
4669 && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
4670 break;
4672 if (fmode == VOIDmode)
4674 /* There is no such mode. Pretend the target is wide enough. */
4675 fmode = GET_MODE (to);
4677 /* Avoid double-rounding when TO is narrower than FROM. */
4678 if ((significand_size (fmode) + 1)
4679 < GET_MODE_BITSIZE (GET_MODE (from)))
4681 rtx temp1;
4682 rtx neglabel = gen_label_rtx ();
4684 /* Don't use TARGET if it isn't a register, is a hard register,
4685 or is the wrong mode. */
4686 if (!REG_P (target)
4687 || REGNO (target) < FIRST_PSEUDO_REGISTER
4688 || GET_MODE (target) != fmode)
4689 target = gen_reg_rtx (fmode);
4691 imode = GET_MODE (from);
4692 do_pending_stack_adjust ();
4694 /* Test whether the sign bit is set. */
4695 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
4696 0, neglabel);
4698 /* The sign bit is not set. Convert as signed. */
4699 expand_float (target, from, 0);
4700 emit_jump_insn (gen_jump (label));
4701 emit_barrier ();
4703 /* The sign bit is set.
4704 Convert to a usable (positive signed) value by shifting right
4705 one bit, while remembering if a nonzero bit was shifted
4706 out; i.e., compute (from & 1) | (from >> 1). */
4708 emit_label (neglabel);
4709 temp = expand_binop (imode, and_optab, from, const1_rtx,
4710 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4711 temp1 = expand_shift (RSHIFT_EXPR, imode, from, integer_one_node,
4712 NULL_RTX, 1);
4713 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
4714 OPTAB_LIB_WIDEN);
4715 expand_float (target, temp, 0);
4717 /* Multiply by 2 to undo the shift above. */
4718 temp = expand_binop (fmode, add_optab, target, target,
4719 target, 0, OPTAB_LIB_WIDEN);
4720 if (temp != target)
4721 emit_move_insn (target, temp);
4723 do_pending_stack_adjust ();
4724 emit_label (label);
4725 goto done;
4729 /* If we are about to do some arithmetic to correct for an
4730 unsigned operand, do it in a pseudo-register. */
4732 if (GET_MODE (to) != fmode
4733 || !REG_P (to) || REGNO (to) < FIRST_PSEUDO_REGISTER)
4734 target = gen_reg_rtx (fmode);
4736 /* Convert as signed integer to floating. */
4737 expand_float (target, from, 0);
4739 /* If FROM is negative (and therefore TO is negative),
4740 correct its value by 2**bitwidth. */
4742 do_pending_stack_adjust ();
4743 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
4744 0, label);
4747 real_2expN (&offset, GET_MODE_BITSIZE (GET_MODE (from)), fmode);
4748 temp = expand_binop (fmode, add_optab, target,
4749 CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
4750 target, 0, OPTAB_LIB_WIDEN);
4751 if (temp != target)
4752 emit_move_insn (target, temp);
4754 do_pending_stack_adjust ();
4755 emit_label (label);
4756 goto done;
4759 /* No hardware instruction available; call a library routine. */
4761 rtx libfunc;
4762 rtx insns;
4763 rtx value;
4764 convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab;
4766 if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
4767 from = convert_to_mode (SImode, from, unsignedp);
4769 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
4770 gcc_assert (libfunc);
4772 start_sequence ();
4774 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4775 GET_MODE (to), 1, from,
4776 GET_MODE (from));
4777 insns = get_insns ();
4778 end_sequence ();
4780 emit_libcall_block (insns, target, value,
4781 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FLOAT : FLOAT,
4782 GET_MODE (to), from));
4785 done:
4787 /* Copy result to requested destination
4788 if we have been computing in a temp location. */
4790 if (target != to)
4792 if (GET_MODE (target) == GET_MODE (to))
4793 emit_move_insn (to, target);
4794 else
4795 convert_move (to, target, 0);
4799 /* Generate code to convert FROM to fixed point and store in TO. FROM
4800 must be floating point. */
4802 void
4803 expand_fix (rtx to, rtx from, int unsignedp)
4805 enum insn_code icode;
4806 rtx target = to;
4807 enum machine_mode fmode, imode;
4808 int must_trunc = 0;
4810 /* We first try to find a pair of modes, one real and one integer, at
4811 least as wide as FROM and TO, respectively, in which we can open-code
4812 this conversion. If the integer mode is wider than the mode of TO,
4813 we can do the conversion either signed or unsigned. */
4815 for (fmode = GET_MODE (from); fmode != VOIDmode;
4816 fmode = GET_MODE_WIDER_MODE (fmode))
4817 for (imode = GET_MODE (to); imode != VOIDmode;
4818 imode = GET_MODE_WIDER_MODE (imode))
4820 int doing_unsigned = unsignedp;
4822 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
4823 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
4824 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
4826 if (icode != CODE_FOR_nothing)
4828 rtx last = get_last_insn ();
4829 if (fmode != GET_MODE (from))
4830 from = convert_to_mode (fmode, from, 0);
4832 if (must_trunc)
4834 rtx temp = gen_reg_rtx (GET_MODE (from));
4835 from = expand_unop (GET_MODE (from), ftrunc_optab, from,
4836 temp, 0);
4839 if (imode != GET_MODE (to))
4840 target = gen_reg_rtx (imode);
4842 if (maybe_emit_unop_insn (icode, target, from,
4843 doing_unsigned ? UNSIGNED_FIX : FIX))
4845 if (target != to)
4846 convert_move (to, target, unsignedp);
4847 return;
4849 delete_insns_since (last);
4853 /* For an unsigned conversion, there is one more way to do it.
4854 If we have a signed conversion, we generate code that compares
4855 the real value to the largest representable positive number. If if
4856 is smaller, the conversion is done normally. Otherwise, subtract
4857 one plus the highest signed number, convert, and add it back.
4859 We only need to check all real modes, since we know we didn't find
4860 anything with a wider integer mode.
4862 This code used to extend FP value into mode wider than the destination.
4863 This is needed for decimal float modes which cannot accurately
4864 represent one plus the highest signed number of the same size, but
4865 not for binary modes. Consider, for instance conversion from SFmode
4866 into DImode.
4868 The hot path through the code is dealing with inputs smaller than 2^63
4869 and doing just the conversion, so there is no bits to lose.
4871 In the other path we know the value is positive in the range 2^63..2^64-1
4872 inclusive. (as for other input overflow happens and result is undefined)
4873 So we know that the most important bit set in mantissa corresponds to
4874 2^63. The subtraction of 2^63 should not generate any rounding as it
4875 simply clears out that bit. The rest is trivial. */
4877 if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
4878 for (fmode = GET_MODE (from); fmode != VOIDmode;
4879 fmode = GET_MODE_WIDER_MODE (fmode))
4880 if (CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0, &must_trunc)
4881 && (!DECIMAL_FLOAT_MODE_P (fmode)
4882 || GET_MODE_BITSIZE (fmode) > GET_MODE_BITSIZE (GET_MODE (to))))
4884 int bitsize;
4885 REAL_VALUE_TYPE offset;
4886 rtx limit, lab1, lab2, insn;
4888 bitsize = GET_MODE_BITSIZE (GET_MODE (to));
4889 real_2expN (&offset, bitsize - 1, fmode);
4890 limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
4891 lab1 = gen_label_rtx ();
4892 lab2 = gen_label_rtx ();
4894 if (fmode != GET_MODE (from))
4895 from = convert_to_mode (fmode, from, 0);
4897 /* See if we need to do the subtraction. */
4898 do_pending_stack_adjust ();
4899 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
4900 0, lab1);
4902 /* If not, do the signed "fix" and branch around fixup code. */
4903 expand_fix (to, from, 0);
4904 emit_jump_insn (gen_jump (lab2));
4905 emit_barrier ();
4907 /* Otherwise, subtract 2**(N-1), convert to signed number,
4908 then add 2**(N-1). Do the addition using XOR since this
4909 will often generate better code. */
4910 emit_label (lab1);
4911 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
4912 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4913 expand_fix (to, target, 0);
4914 target = expand_binop (GET_MODE (to), xor_optab, to,
4915 gen_int_mode
4916 ((HOST_WIDE_INT) 1 << (bitsize - 1),
4917 GET_MODE (to)),
4918 to, 1, OPTAB_LIB_WIDEN);
4920 if (target != to)
4921 emit_move_insn (to, target);
4923 emit_label (lab2);
4925 if (optab_handler (mov_optab, GET_MODE (to)) != CODE_FOR_nothing)
4927 /* Make a place for a REG_NOTE and add it. */
4928 insn = emit_move_insn (to, to);
4929 set_unique_reg_note (insn,
4930 REG_EQUAL,
4931 gen_rtx_fmt_e (UNSIGNED_FIX,
4932 GET_MODE (to),
4933 copy_rtx (from)));
4936 return;
4939 /* We can't do it with an insn, so use a library call. But first ensure
4940 that the mode of TO is at least as wide as SImode, since those are the
4941 only library calls we know about. */
4943 if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
4945 target = gen_reg_rtx (SImode);
4947 expand_fix (target, from, unsignedp);
4949 else
4951 rtx insns;
4952 rtx value;
4953 rtx libfunc;
4955 convert_optab tab = unsignedp ? ufix_optab : sfix_optab;
4956 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
4957 gcc_assert (libfunc);
4959 start_sequence ();
4961 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4962 GET_MODE (to), 1, from,
4963 GET_MODE (from));
4964 insns = get_insns ();
4965 end_sequence ();
4967 emit_libcall_block (insns, target, value,
4968 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
4969 GET_MODE (to), from));
4972 if (target != to)
4974 if (GET_MODE (to) == GET_MODE (target))
4975 emit_move_insn (to, target);
4976 else
4977 convert_move (to, target, 0);
4981 /* Generate code to convert FROM or TO a fixed-point.
4982 If UINTP is true, either TO or FROM is an unsigned integer.
4983 If SATP is true, we need to saturate the result. */
4985 void
4986 expand_fixed_convert (rtx to, rtx from, int uintp, int satp)
4988 enum machine_mode to_mode = GET_MODE (to);
4989 enum machine_mode from_mode = GET_MODE (from);
4990 convert_optab tab;
4991 enum rtx_code this_code;
4992 enum insn_code code;
4993 rtx insns, value;
4994 rtx libfunc;
4996 if (to_mode == from_mode)
4998 emit_move_insn (to, from);
4999 return;
5002 if (uintp)
5004 tab = satp ? satfractuns_optab : fractuns_optab;
5005 this_code = satp ? UNSIGNED_SAT_FRACT : UNSIGNED_FRACT_CONVERT;
5007 else
5009 tab = satp ? satfract_optab : fract_optab;
5010 this_code = satp ? SAT_FRACT : FRACT_CONVERT;
5012 code = convert_optab_handler (tab, to_mode, from_mode);
5013 if (code != CODE_FOR_nothing)
5015 emit_unop_insn (code, to, from, this_code);
5016 return;
5019 libfunc = convert_optab_libfunc (tab, to_mode, from_mode);
5020 gcc_assert (libfunc);
5022 start_sequence ();
5023 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, to_mode,
5024 1, from, from_mode);
5025 insns = get_insns ();
5026 end_sequence ();
5028 emit_libcall_block (insns, to, value,
5029 gen_rtx_fmt_e (tab->code, to_mode, from));
5032 /* Generate code to convert FROM to fixed point and store in TO. FROM
5033 must be floating point, TO must be signed. Use the conversion optab
5034 TAB to do the conversion. */
5036 bool
5037 expand_sfix_optab (rtx to, rtx from, convert_optab tab)
5039 enum insn_code icode;
5040 rtx target = to;
5041 enum machine_mode fmode, imode;
5043 /* We first try to find a pair of modes, one real and one integer, at
5044 least as wide as FROM and TO, respectively, in which we can open-code
5045 this conversion. If the integer mode is wider than the mode of TO,
5046 we can do the conversion either signed or unsigned. */
5048 for (fmode = GET_MODE (from); fmode != VOIDmode;
5049 fmode = GET_MODE_WIDER_MODE (fmode))
5050 for (imode = GET_MODE (to); imode != VOIDmode;
5051 imode = GET_MODE_WIDER_MODE (imode))
5053 icode = convert_optab_handler (tab, imode, fmode);
5054 if (icode != CODE_FOR_nothing)
5056 rtx last = get_last_insn ();
5057 if (fmode != GET_MODE (from))
5058 from = convert_to_mode (fmode, from, 0);
5060 if (imode != GET_MODE (to))
5061 target = gen_reg_rtx (imode);
5063 if (!maybe_emit_unop_insn (icode, target, from, UNKNOWN))
5065 delete_insns_since (last);
5066 continue;
5068 if (target != to)
5069 convert_move (to, target, 0);
5070 return true;
5074 return false;
5077 /* Report whether we have an instruction to perform the operation
5078 specified by CODE on operands of mode MODE. */
5080 have_insn_for (enum rtx_code code, enum machine_mode mode)
5082 return (code_to_optab[(int) code] != 0
5083 && (optab_handler (code_to_optab[(int) code], mode)
5084 != CODE_FOR_nothing));
5087 /* Set all insn_code fields to CODE_FOR_nothing. */
5089 static void
5090 init_insn_codes (void)
5092 memset (optab_table, 0, sizeof (optab_table));
5093 memset (convert_optab_table, 0, sizeof (convert_optab_table));
5094 memset (direct_optab_table, 0, sizeof (direct_optab_table));
5097 /* Initialize OP's code to CODE, and write it into the code_to_optab table. */
5098 static inline void
5099 init_optab (optab op, enum rtx_code code)
5101 op->code = code;
5102 code_to_optab[(int) code] = op;
5105 /* Same, but fill in its code as CODE, and do _not_ write it into
5106 the code_to_optab table. */
5107 static inline void
5108 init_optabv (optab op, enum rtx_code code)
5110 op->code = code;
5113 /* Conversion optabs never go in the code_to_optab table. */
5114 static void
5115 init_convert_optab (convert_optab op, enum rtx_code code)
5117 op->code = code;
5120 /* Initialize the libfunc fields of an entire group of entries in some
5121 optab. Each entry is set equal to a string consisting of a leading
5122 pair of underscores followed by a generic operation name followed by
5123 a mode name (downshifted to lowercase) followed by a single character
5124 representing the number of operands for the given operation (which is
5125 usually one of the characters '2', '3', or '4').
5127 OPTABLE is the table in which libfunc fields are to be initialized.
5128 OPNAME is the generic (string) name of the operation.
5129 SUFFIX is the character which specifies the number of operands for
5130 the given generic operation.
5131 MODE is the mode to generate for.
5134 static void
5135 gen_libfunc (optab optable, const char *opname, int suffix, enum machine_mode mode)
5137 unsigned opname_len = strlen (opname);
5138 const char *mname = GET_MODE_NAME (mode);
5139 unsigned mname_len = strlen (mname);
5140 char *libfunc_name = XALLOCAVEC (char, 2 + opname_len + mname_len + 1 + 1);
5141 char *p;
5142 const char *q;
5144 p = libfunc_name;
5145 *p++ = '_';
5146 *p++ = '_';
5147 for (q = opname; *q; )
5148 *p++ = *q++;
5149 for (q = mname; *q; q++)
5150 *p++ = TOLOWER (*q);
5151 *p++ = suffix;
5152 *p = '\0';
5154 set_optab_libfunc (optable, mode,
5155 ggc_alloc_string (libfunc_name, p - libfunc_name));
5158 /* Like gen_libfunc, but verify that integer operation is involved. */
5160 static void
5161 gen_int_libfunc (optab optable, const char *opname, char suffix,
5162 enum machine_mode mode)
5164 int maxsize = 2 * BITS_PER_WORD;
5166 if (GET_MODE_CLASS (mode) != MODE_INT)
5167 return;
5168 if (maxsize < LONG_LONG_TYPE_SIZE)
5169 maxsize = LONG_LONG_TYPE_SIZE;
5170 if (GET_MODE_CLASS (mode) != MODE_INT
5171 || mode < word_mode || GET_MODE_BITSIZE (mode) > maxsize)
5172 return;
5173 gen_libfunc (optable, opname, suffix, mode);
5176 /* Like gen_libfunc, but verify that FP and set decimal prefix if needed. */
5178 static void
5179 gen_fp_libfunc (optab optable, const char *opname, char suffix,
5180 enum machine_mode mode)
5182 char *dec_opname;
5184 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5185 gen_libfunc (optable, opname, suffix, mode);
5186 if (DECIMAL_FLOAT_MODE_P (mode))
5188 dec_opname = XALLOCAVEC (char, sizeof (DECIMAL_PREFIX) + strlen (opname));
5189 /* For BID support, change the name to have either a bid_ or dpd_ prefix
5190 depending on the low level floating format used. */
5191 memcpy (dec_opname, DECIMAL_PREFIX, sizeof (DECIMAL_PREFIX) - 1);
5192 strcpy (dec_opname + sizeof (DECIMAL_PREFIX) - 1, opname);
5193 gen_libfunc (optable, dec_opname, suffix, mode);
5197 /* Like gen_libfunc, but verify that fixed-point operation is involved. */
5199 static void
5200 gen_fixed_libfunc (optab optable, const char *opname, char suffix,
5201 enum machine_mode mode)
5203 if (!ALL_FIXED_POINT_MODE_P (mode))
5204 return;
5205 gen_libfunc (optable, opname, suffix, mode);
5208 /* Like gen_libfunc, but verify that signed fixed-point operation is
5209 involved. */
5211 static void
5212 gen_signed_fixed_libfunc (optab optable, const char *opname, char suffix,
5213 enum machine_mode mode)
5215 if (!SIGNED_FIXED_POINT_MODE_P (mode))
5216 return;
5217 gen_libfunc (optable, opname, suffix, mode);
5220 /* Like gen_libfunc, but verify that unsigned fixed-point operation is
5221 involved. */
5223 static void
5224 gen_unsigned_fixed_libfunc (optab optable, const char *opname, char suffix,
5225 enum machine_mode mode)
5227 if (!UNSIGNED_FIXED_POINT_MODE_P (mode))
5228 return;
5229 gen_libfunc (optable, opname, suffix, mode);
5232 /* Like gen_libfunc, but verify that FP or INT operation is involved. */
5234 static void
5235 gen_int_fp_libfunc (optab optable, const char *name, char suffix,
5236 enum machine_mode mode)
5238 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5239 gen_fp_libfunc (optable, name, suffix, mode);
5240 if (INTEGRAL_MODE_P (mode))
5241 gen_int_libfunc (optable, name, suffix, mode);
5244 /* Like gen_libfunc, but verify that FP or INT operation is involved
5245 and add 'v' suffix for integer operation. */
5247 static void
5248 gen_intv_fp_libfunc (optab optable, const char *name, char suffix,
5249 enum machine_mode mode)
5251 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5252 gen_fp_libfunc (optable, name, suffix, mode);
5253 if (GET_MODE_CLASS (mode) == MODE_INT)
5255 int len = strlen (name);
5256 char *v_name = XALLOCAVEC (char, len + 2);
5257 strcpy (v_name, name);
5258 v_name[len] = 'v';
5259 v_name[len + 1] = 0;
5260 gen_int_libfunc (optable, v_name, suffix, mode);
5264 /* Like gen_libfunc, but verify that FP or INT or FIXED operation is
5265 involved. */
5267 static void
5268 gen_int_fp_fixed_libfunc (optab optable, const char *name, char suffix,
5269 enum machine_mode mode)
5271 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5272 gen_fp_libfunc (optable, name, suffix, mode);
5273 if (INTEGRAL_MODE_P (mode))
5274 gen_int_libfunc (optable, name, suffix, mode);
5275 if (ALL_FIXED_POINT_MODE_P (mode))
5276 gen_fixed_libfunc (optable, name, suffix, mode);
5279 /* Like gen_libfunc, but verify that FP or INT or signed FIXED operation is
5280 involved. */
5282 static void
5283 gen_int_fp_signed_fixed_libfunc (optab optable, const char *name, char suffix,
5284 enum machine_mode mode)
5286 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5287 gen_fp_libfunc (optable, name, suffix, mode);
5288 if (INTEGRAL_MODE_P (mode))
5289 gen_int_libfunc (optable, name, suffix, mode);
5290 if (SIGNED_FIXED_POINT_MODE_P (mode))
5291 gen_signed_fixed_libfunc (optable, name, suffix, mode);
5294 /* Like gen_libfunc, but verify that INT or FIXED operation is
5295 involved. */
5297 static void
5298 gen_int_fixed_libfunc (optab optable, const char *name, char suffix,
5299 enum machine_mode mode)
5301 if (INTEGRAL_MODE_P (mode))
5302 gen_int_libfunc (optable, name, suffix, mode);
5303 if (ALL_FIXED_POINT_MODE_P (mode))
5304 gen_fixed_libfunc (optable, name, suffix, mode);
5307 /* Like gen_libfunc, but verify that INT or signed FIXED operation is
5308 involved. */
5310 static void
5311 gen_int_signed_fixed_libfunc (optab optable, const char *name, char suffix,
5312 enum machine_mode mode)
5314 if (INTEGRAL_MODE_P (mode))
5315 gen_int_libfunc (optable, name, suffix, mode);
5316 if (SIGNED_FIXED_POINT_MODE_P (mode))
5317 gen_signed_fixed_libfunc (optable, name, suffix, mode);
5320 /* Like gen_libfunc, but verify that INT or unsigned FIXED operation is
5321 involved. */
5323 static void
5324 gen_int_unsigned_fixed_libfunc (optab optable, const char *name, char suffix,
5325 enum machine_mode mode)
5327 if (INTEGRAL_MODE_P (mode))
5328 gen_int_libfunc (optable, name, suffix, mode);
5329 if (UNSIGNED_FIXED_POINT_MODE_P (mode))
5330 gen_unsigned_fixed_libfunc (optable, name, suffix, mode);
5333 /* Initialize the libfunc fields of an entire group of entries of an
5334 inter-mode-class conversion optab. The string formation rules are
5335 similar to the ones for init_libfuncs, above, but instead of having
5336 a mode name and an operand count these functions have two mode names
5337 and no operand count. */
5339 static void
5340 gen_interclass_conv_libfunc (convert_optab tab,
5341 const char *opname,
5342 enum machine_mode tmode,
5343 enum machine_mode fmode)
5345 size_t opname_len = strlen (opname);
5346 size_t mname_len = 0;
5348 const char *fname, *tname;
5349 const char *q;
5350 char *libfunc_name, *suffix;
5351 char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
5352 char *p;
5354 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5355 depends on which underlying decimal floating point format is used. */
5356 const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
5358 mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
5360 nondec_name = XALLOCAVEC (char, 2 + opname_len + mname_len + 1 + 1);
5361 nondec_name[0] = '_';
5362 nondec_name[1] = '_';
5363 memcpy (&nondec_name[2], opname, opname_len);
5364 nondec_suffix = nondec_name + opname_len + 2;
5366 dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
5367 dec_name[0] = '_';
5368 dec_name[1] = '_';
5369 memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
5370 memcpy (&dec_name[2+dec_len], opname, opname_len);
5371 dec_suffix = dec_name + dec_len + opname_len + 2;
5373 fname = GET_MODE_NAME (fmode);
5374 tname = GET_MODE_NAME (tmode);
5376 if (DECIMAL_FLOAT_MODE_P(fmode) || DECIMAL_FLOAT_MODE_P(tmode))
5378 libfunc_name = dec_name;
5379 suffix = dec_suffix;
5381 else
5383 libfunc_name = nondec_name;
5384 suffix = nondec_suffix;
5387 p = suffix;
5388 for (q = fname; *q; p++, q++)
5389 *p = TOLOWER (*q);
5390 for (q = tname; *q; p++, q++)
5391 *p = TOLOWER (*q);
5393 *p = '\0';
5395 set_conv_libfunc (tab, tmode, fmode,
5396 ggc_alloc_string (libfunc_name, p - libfunc_name));
5399 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5400 int->fp conversion. */
5402 static void
5403 gen_int_to_fp_conv_libfunc (convert_optab tab,
5404 const char *opname,
5405 enum machine_mode tmode,
5406 enum machine_mode fmode)
5408 if (GET_MODE_CLASS (fmode) != MODE_INT)
5409 return;
5410 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5411 return;
5412 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5415 /* ufloat_optab is special by using floatun for FP and floatuns decimal fp
5416 naming scheme. */
5418 static void
5419 gen_ufloat_conv_libfunc (convert_optab tab,
5420 const char *opname ATTRIBUTE_UNUSED,
5421 enum machine_mode tmode,
5422 enum machine_mode fmode)
5424 if (DECIMAL_FLOAT_MODE_P (tmode))
5425 gen_int_to_fp_conv_libfunc (tab, "floatuns", tmode, fmode);
5426 else
5427 gen_int_to_fp_conv_libfunc (tab, "floatun", tmode, fmode);
5430 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5431 fp->int conversion. */
5433 static void
5434 gen_int_to_fp_nondecimal_conv_libfunc (convert_optab tab,
5435 const char *opname,
5436 enum machine_mode tmode,
5437 enum machine_mode fmode)
5439 if (GET_MODE_CLASS (fmode) != MODE_INT)
5440 return;
5441 if (GET_MODE_CLASS (tmode) != MODE_FLOAT)
5442 return;
5443 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5446 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5447 fp->int conversion with no decimal floating point involved. */
5449 static void
5450 gen_fp_to_int_conv_libfunc (convert_optab tab,
5451 const char *opname,
5452 enum machine_mode tmode,
5453 enum machine_mode fmode)
5455 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5456 return;
5457 if (GET_MODE_CLASS (tmode) != MODE_INT)
5458 return;
5459 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5462 /* Initialize the libfunc fields of an of an intra-mode-class conversion optab.
5463 The string formation rules are
5464 similar to the ones for init_libfunc, above. */
5466 static void
5467 gen_intraclass_conv_libfunc (convert_optab tab, const char *opname,
5468 enum machine_mode tmode, enum machine_mode fmode)
5470 size_t opname_len = strlen (opname);
5471 size_t mname_len = 0;
5473 const char *fname, *tname;
5474 const char *q;
5475 char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
5476 char *libfunc_name, *suffix;
5477 char *p;
5479 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5480 depends on which underlying decimal floating point format is used. */
5481 const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
5483 mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
5485 nondec_name = XALLOCAVEC (char, 2 + opname_len + mname_len + 1 + 1);
5486 nondec_name[0] = '_';
5487 nondec_name[1] = '_';
5488 memcpy (&nondec_name[2], opname, opname_len);
5489 nondec_suffix = nondec_name + opname_len + 2;
5491 dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
5492 dec_name[0] = '_';
5493 dec_name[1] = '_';
5494 memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
5495 memcpy (&dec_name[2 + dec_len], opname, opname_len);
5496 dec_suffix = dec_name + dec_len + opname_len + 2;
5498 fname = GET_MODE_NAME (fmode);
5499 tname = GET_MODE_NAME (tmode);
5501 if (DECIMAL_FLOAT_MODE_P(fmode) || DECIMAL_FLOAT_MODE_P(tmode))
5503 libfunc_name = dec_name;
5504 suffix = dec_suffix;
5506 else
5508 libfunc_name = nondec_name;
5509 suffix = nondec_suffix;
5512 p = suffix;
5513 for (q = fname; *q; p++, q++)
5514 *p = TOLOWER (*q);
5515 for (q = tname; *q; p++, q++)
5516 *p = TOLOWER (*q);
5518 *p++ = '2';
5519 *p = '\0';
5521 set_conv_libfunc (tab, tmode, fmode,
5522 ggc_alloc_string (libfunc_name, p - libfunc_name));
5525 /* Pick proper libcall for trunc_optab. We need to chose if we do
5526 truncation or extension and interclass or intraclass. */
5528 static void
5529 gen_trunc_conv_libfunc (convert_optab tab,
5530 const char *opname,
5531 enum machine_mode tmode,
5532 enum machine_mode fmode)
5534 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5535 return;
5536 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5537 return;
5538 if (tmode == fmode)
5539 return;
5541 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
5542 || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
5543 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5545 if (GET_MODE_PRECISION (fmode) <= GET_MODE_PRECISION (tmode))
5546 return;
5548 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
5549 && GET_MODE_CLASS (fmode) == MODE_FLOAT)
5550 || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
5551 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5554 /* Pick proper libcall for extend_optab. We need to chose if we do
5555 truncation or extension and interclass or intraclass. */
5557 static void
5558 gen_extend_conv_libfunc (convert_optab tab,
5559 const char *opname ATTRIBUTE_UNUSED,
5560 enum machine_mode tmode,
5561 enum machine_mode fmode)
5563 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5564 return;
5565 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5566 return;
5567 if (tmode == fmode)
5568 return;
5570 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
5571 || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
5572 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5574 if (GET_MODE_PRECISION (fmode) > GET_MODE_PRECISION (tmode))
5575 return;
5577 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
5578 && GET_MODE_CLASS (fmode) == MODE_FLOAT)
5579 || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
5580 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5583 /* Pick proper libcall for fract_optab. We need to chose if we do
5584 interclass or intraclass. */
5586 static void
5587 gen_fract_conv_libfunc (convert_optab tab,
5588 const char *opname,
5589 enum machine_mode tmode,
5590 enum machine_mode fmode)
5592 if (tmode == fmode)
5593 return;
5594 if (!(ALL_FIXED_POINT_MODE_P (tmode) || ALL_FIXED_POINT_MODE_P (fmode)))
5595 return;
5597 if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
5598 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5599 else
5600 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5603 /* Pick proper libcall for fractuns_optab. */
5605 static void
5606 gen_fractuns_conv_libfunc (convert_optab tab,
5607 const char *opname,
5608 enum machine_mode tmode,
5609 enum machine_mode fmode)
5611 if (tmode == fmode)
5612 return;
5613 /* One mode must be a fixed-point mode, and the other must be an integer
5614 mode. */
5615 if (!((ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT)
5616 || (ALL_FIXED_POINT_MODE_P (fmode)
5617 && GET_MODE_CLASS (tmode) == MODE_INT)))
5618 return;
5620 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5623 /* Pick proper libcall for satfract_optab. We need to chose if we do
5624 interclass or intraclass. */
5626 static void
5627 gen_satfract_conv_libfunc (convert_optab tab,
5628 const char *opname,
5629 enum machine_mode tmode,
5630 enum machine_mode fmode)
5632 if (tmode == fmode)
5633 return;
5634 /* TMODE must be a fixed-point mode. */
5635 if (!ALL_FIXED_POINT_MODE_P (tmode))
5636 return;
5638 if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
5639 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5640 else
5641 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5644 /* Pick proper libcall for satfractuns_optab. */
5646 static void
5647 gen_satfractuns_conv_libfunc (convert_optab tab,
5648 const char *opname,
5649 enum machine_mode tmode,
5650 enum machine_mode fmode)
5652 if (tmode == fmode)
5653 return;
5654 /* TMODE must be a fixed-point mode, and FMODE must be an integer mode. */
5655 if (!(ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT))
5656 return;
5658 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5661 /* A table of previously-created libfuncs, hashed by name. */
5662 static GTY ((param_is (union tree_node))) htab_t libfunc_decls;
5664 /* Hashtable callbacks for libfunc_decls. */
5666 static hashval_t
5667 libfunc_decl_hash (const void *entry)
5669 return IDENTIFIER_HASH_VALUE (DECL_NAME ((const_tree) entry));
5672 static int
5673 libfunc_decl_eq (const void *entry1, const void *entry2)
5675 return DECL_NAME ((const_tree) entry1) == (const_tree) entry2;
5678 /* Build a decl for a libfunc named NAME. */
5680 tree
5681 build_libfunc_function (const char *name)
5683 tree decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
5684 get_identifier (name),
5685 build_function_type (integer_type_node, NULL_TREE));
5686 /* ??? We don't have any type information except for this is
5687 a function. Pretend this is "int foo()". */
5688 DECL_ARTIFICIAL (decl) = 1;
5689 DECL_EXTERNAL (decl) = 1;
5690 TREE_PUBLIC (decl) = 1;
5691 gcc_assert (DECL_ASSEMBLER_NAME (decl));
5693 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
5694 are the flags assigned by targetm.encode_section_info. */
5695 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
5697 return decl;
5701 init_one_libfunc (const char *name)
5703 tree id, decl;
5704 void **slot;
5705 hashval_t hash;
5707 if (libfunc_decls == NULL)
5708 libfunc_decls = htab_create_ggc (37, libfunc_decl_hash,
5709 libfunc_decl_eq, NULL);
5711 /* See if we have already created a libfunc decl for this function. */
5712 id = get_identifier (name);
5713 hash = IDENTIFIER_HASH_VALUE (id);
5714 slot = htab_find_slot_with_hash (libfunc_decls, id, hash, INSERT);
5715 decl = (tree) *slot;
5716 if (decl == NULL)
5718 /* Create a new decl, so that it can be passed to
5719 targetm.encode_section_info. */
5720 decl = build_libfunc_function (name);
5721 *slot = decl;
5723 return XEXP (DECL_RTL (decl), 0);
5726 /* Adjust the assembler name of libfunc NAME to ASMSPEC. */
5729 set_user_assembler_libfunc (const char *name, const char *asmspec)
5731 tree id, decl;
5732 void **slot;
5733 hashval_t hash;
5735 id = get_identifier (name);
5736 hash = IDENTIFIER_HASH_VALUE (id);
5737 slot = htab_find_slot_with_hash (libfunc_decls, id, hash, NO_INSERT);
5738 gcc_assert (slot);
5739 decl = (tree) *slot;
5740 set_user_assembler_name (decl, asmspec);
5741 return XEXP (DECL_RTL (decl), 0);
5744 /* Call this to reset the function entry for one optab (OPTABLE) in mode
5745 MODE to NAME, which should be either 0 or a string constant. */
5746 void
5747 set_optab_libfunc (optab optable, enum machine_mode mode, const char *name)
5749 rtx val;
5750 struct libfunc_entry e;
5751 struct libfunc_entry **slot;
5752 e.optab = (size_t) (optable - &optab_table[0]);
5753 e.mode1 = mode;
5754 e.mode2 = VOIDmode;
5756 if (name)
5757 val = init_one_libfunc (name);
5758 else
5759 val = 0;
5760 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, INSERT);
5761 if (*slot == NULL)
5762 *slot = ggc_alloc_libfunc_entry ();
5763 (*slot)->optab = (size_t) (optable - &optab_table[0]);
5764 (*slot)->mode1 = mode;
5765 (*slot)->mode2 = VOIDmode;
5766 (*slot)->libfunc = val;
5769 /* Call this to reset the function entry for one conversion optab
5770 (OPTABLE) from mode FMODE to mode TMODE to NAME, which should be
5771 either 0 or a string constant. */
5772 void
5773 set_conv_libfunc (convert_optab optable, enum machine_mode tmode,
5774 enum machine_mode fmode, const char *name)
5776 rtx val;
5777 struct libfunc_entry e;
5778 struct libfunc_entry **slot;
5779 e.optab = (size_t) (optable - &convert_optab_table[0]);
5780 e.mode1 = tmode;
5781 e.mode2 = fmode;
5783 if (name)
5784 val = init_one_libfunc (name);
5785 else
5786 val = 0;
5787 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, INSERT);
5788 if (*slot == NULL)
5789 *slot = ggc_alloc_libfunc_entry ();
5790 (*slot)->optab = (size_t) (optable - &convert_optab_table[0]);
5791 (*slot)->mode1 = tmode;
5792 (*slot)->mode2 = fmode;
5793 (*slot)->libfunc = val;
5796 /* Call this to initialize the contents of the optabs
5797 appropriately for the current target machine. */
5799 void
5800 init_optabs (void)
5802 if (libfunc_hash)
5804 htab_empty (libfunc_hash);
5805 /* We statically initialize the insn_codes with the equivalent of
5806 CODE_FOR_nothing. Repeat the process if reinitialising. */
5807 init_insn_codes ();
5809 else
5810 libfunc_hash = htab_create_ggc (10, hash_libfunc, eq_libfunc, NULL);
5812 init_optab (add_optab, PLUS);
5813 init_optabv (addv_optab, PLUS);
5814 init_optab (sub_optab, MINUS);
5815 init_optabv (subv_optab, MINUS);
5816 init_optab (ssadd_optab, SS_PLUS);
5817 init_optab (usadd_optab, US_PLUS);
5818 init_optab (sssub_optab, SS_MINUS);
5819 init_optab (ussub_optab, US_MINUS);
5820 init_optab (smul_optab, MULT);
5821 init_optab (ssmul_optab, SS_MULT);
5822 init_optab (usmul_optab, US_MULT);
5823 init_optabv (smulv_optab, MULT);
5824 init_optab (smul_highpart_optab, UNKNOWN);
5825 init_optab (umul_highpart_optab, UNKNOWN);
5826 init_optab (smul_widen_optab, UNKNOWN);
5827 init_optab (umul_widen_optab, UNKNOWN);
5828 init_optab (usmul_widen_optab, UNKNOWN);
5829 init_optab (smadd_widen_optab, UNKNOWN);
5830 init_optab (umadd_widen_optab, UNKNOWN);
5831 init_optab (ssmadd_widen_optab, UNKNOWN);
5832 init_optab (usmadd_widen_optab, UNKNOWN);
5833 init_optab (smsub_widen_optab, UNKNOWN);
5834 init_optab (umsub_widen_optab, UNKNOWN);
5835 init_optab (ssmsub_widen_optab, UNKNOWN);
5836 init_optab (usmsub_widen_optab, UNKNOWN);
5837 init_optab (sdiv_optab, DIV);
5838 init_optab (ssdiv_optab, SS_DIV);
5839 init_optab (usdiv_optab, US_DIV);
5840 init_optabv (sdivv_optab, DIV);
5841 init_optab (sdivmod_optab, UNKNOWN);
5842 init_optab (udiv_optab, UDIV);
5843 init_optab (udivmod_optab, UNKNOWN);
5844 init_optab (smod_optab, MOD);
5845 init_optab (umod_optab, UMOD);
5846 init_optab (fmod_optab, UNKNOWN);
5847 init_optab (remainder_optab, UNKNOWN);
5848 init_optab (ftrunc_optab, UNKNOWN);
5849 init_optab (and_optab, AND);
5850 init_optab (ior_optab, IOR);
5851 init_optab (xor_optab, XOR);
5852 init_optab (ashl_optab, ASHIFT);
5853 init_optab (ssashl_optab, SS_ASHIFT);
5854 init_optab (usashl_optab, US_ASHIFT);
5855 init_optab (ashr_optab, ASHIFTRT);
5856 init_optab (lshr_optab, LSHIFTRT);
5857 init_optab (rotl_optab, ROTATE);
5858 init_optab (rotr_optab, ROTATERT);
5859 init_optab (smin_optab, SMIN);
5860 init_optab (smax_optab, SMAX);
5861 init_optab (umin_optab, UMIN);
5862 init_optab (umax_optab, UMAX);
5863 init_optab (pow_optab, UNKNOWN);
5864 init_optab (atan2_optab, UNKNOWN);
5865 init_optab (fma_optab, FMA);
5866 init_optab (fms_optab, UNKNOWN);
5867 init_optab (fnma_optab, UNKNOWN);
5868 init_optab (fnms_optab, UNKNOWN);
5870 /* These three have codes assigned exclusively for the sake of
5871 have_insn_for. */
5872 init_optab (mov_optab, SET);
5873 init_optab (movstrict_optab, STRICT_LOW_PART);
5874 init_optab (cbranch_optab, COMPARE);
5876 init_optab (cmov_optab, UNKNOWN);
5877 init_optab (cstore_optab, UNKNOWN);
5878 init_optab (ctrap_optab, UNKNOWN);
5880 init_optab (storent_optab, UNKNOWN);
5882 init_optab (cmp_optab, UNKNOWN);
5883 init_optab (ucmp_optab, UNKNOWN);
5885 init_optab (eq_optab, EQ);
5886 init_optab (ne_optab, NE);
5887 init_optab (gt_optab, GT);
5888 init_optab (ge_optab, GE);
5889 init_optab (lt_optab, LT);
5890 init_optab (le_optab, LE);
5891 init_optab (unord_optab, UNORDERED);
5893 init_optab (neg_optab, NEG);
5894 init_optab (ssneg_optab, SS_NEG);
5895 init_optab (usneg_optab, US_NEG);
5896 init_optabv (negv_optab, NEG);
5897 init_optab (abs_optab, ABS);
5898 init_optabv (absv_optab, ABS);
5899 init_optab (addcc_optab, UNKNOWN);
5900 init_optab (one_cmpl_optab, NOT);
5901 init_optab (bswap_optab, BSWAP);
5902 init_optab (ffs_optab, FFS);
5903 init_optab (clz_optab, CLZ);
5904 init_optab (ctz_optab, CTZ);
5905 init_optab (popcount_optab, POPCOUNT);
5906 init_optab (parity_optab, PARITY);
5907 init_optab (sqrt_optab, SQRT);
5908 init_optab (floor_optab, UNKNOWN);
5909 init_optab (ceil_optab, UNKNOWN);
5910 init_optab (round_optab, UNKNOWN);
5911 init_optab (btrunc_optab, UNKNOWN);
5912 init_optab (nearbyint_optab, UNKNOWN);
5913 init_optab (rint_optab, UNKNOWN);
5914 init_optab (sincos_optab, UNKNOWN);
5915 init_optab (sin_optab, UNKNOWN);
5916 init_optab (asin_optab, UNKNOWN);
5917 init_optab (cos_optab, UNKNOWN);
5918 init_optab (acos_optab, UNKNOWN);
5919 init_optab (exp_optab, UNKNOWN);
5920 init_optab (exp10_optab, UNKNOWN);
5921 init_optab (exp2_optab, UNKNOWN);
5922 init_optab (expm1_optab, UNKNOWN);
5923 init_optab (ldexp_optab, UNKNOWN);
5924 init_optab (scalb_optab, UNKNOWN);
5925 init_optab (significand_optab, UNKNOWN);
5926 init_optab (logb_optab, UNKNOWN);
5927 init_optab (ilogb_optab, UNKNOWN);
5928 init_optab (log_optab, UNKNOWN);
5929 init_optab (log10_optab, UNKNOWN);
5930 init_optab (log2_optab, UNKNOWN);
5931 init_optab (log1p_optab, UNKNOWN);
5932 init_optab (tan_optab, UNKNOWN);
5933 init_optab (atan_optab, UNKNOWN);
5934 init_optab (copysign_optab, UNKNOWN);
5935 init_optab (signbit_optab, UNKNOWN);
5937 init_optab (isinf_optab, UNKNOWN);
5939 init_optab (strlen_optab, UNKNOWN);
5940 init_optab (push_optab, UNKNOWN);
5942 init_optab (reduc_smax_optab, UNKNOWN);
5943 init_optab (reduc_umax_optab, UNKNOWN);
5944 init_optab (reduc_smin_optab, UNKNOWN);
5945 init_optab (reduc_umin_optab, UNKNOWN);
5946 init_optab (reduc_splus_optab, UNKNOWN);
5947 init_optab (reduc_uplus_optab, UNKNOWN);
5949 init_optab (ssum_widen_optab, UNKNOWN);
5950 init_optab (usum_widen_optab, UNKNOWN);
5951 init_optab (sdot_prod_optab, UNKNOWN);
5952 init_optab (udot_prod_optab, UNKNOWN);
5954 init_optab (vec_extract_optab, UNKNOWN);
5955 init_optab (vec_extract_even_optab, UNKNOWN);
5956 init_optab (vec_extract_odd_optab, UNKNOWN);
5957 init_optab (vec_interleave_high_optab, UNKNOWN);
5958 init_optab (vec_interleave_low_optab, UNKNOWN);
5959 init_optab (vec_set_optab, UNKNOWN);
5960 init_optab (vec_init_optab, UNKNOWN);
5961 init_optab (vec_shl_optab, UNKNOWN);
5962 init_optab (vec_shr_optab, UNKNOWN);
5963 init_optab (vec_realign_load_optab, UNKNOWN);
5964 init_optab (movmisalign_optab, UNKNOWN);
5965 init_optab (vec_widen_umult_hi_optab, UNKNOWN);
5966 init_optab (vec_widen_umult_lo_optab, UNKNOWN);
5967 init_optab (vec_widen_smult_hi_optab, UNKNOWN);
5968 init_optab (vec_widen_smult_lo_optab, UNKNOWN);
5969 init_optab (vec_unpacks_hi_optab, UNKNOWN);
5970 init_optab (vec_unpacks_lo_optab, UNKNOWN);
5971 init_optab (vec_unpacku_hi_optab, UNKNOWN);
5972 init_optab (vec_unpacku_lo_optab, UNKNOWN);
5973 init_optab (vec_unpacks_float_hi_optab, UNKNOWN);
5974 init_optab (vec_unpacks_float_lo_optab, UNKNOWN);
5975 init_optab (vec_unpacku_float_hi_optab, UNKNOWN);
5976 init_optab (vec_unpacku_float_lo_optab, UNKNOWN);
5977 init_optab (vec_pack_trunc_optab, UNKNOWN);
5978 init_optab (vec_pack_usat_optab, UNKNOWN);
5979 init_optab (vec_pack_ssat_optab, UNKNOWN);
5980 init_optab (vec_pack_ufix_trunc_optab, UNKNOWN);
5981 init_optab (vec_pack_sfix_trunc_optab, UNKNOWN);
5983 init_optab (powi_optab, UNKNOWN);
5985 /* Conversions. */
5986 init_convert_optab (sext_optab, SIGN_EXTEND);
5987 init_convert_optab (zext_optab, ZERO_EXTEND);
5988 init_convert_optab (trunc_optab, TRUNCATE);
5989 init_convert_optab (sfix_optab, FIX);
5990 init_convert_optab (ufix_optab, UNSIGNED_FIX);
5991 init_convert_optab (sfixtrunc_optab, UNKNOWN);
5992 init_convert_optab (ufixtrunc_optab, UNKNOWN);
5993 init_convert_optab (sfloat_optab, FLOAT);
5994 init_convert_optab (ufloat_optab, UNSIGNED_FLOAT);
5995 init_convert_optab (lrint_optab, UNKNOWN);
5996 init_convert_optab (lround_optab, UNKNOWN);
5997 init_convert_optab (lfloor_optab, UNKNOWN);
5998 init_convert_optab (lceil_optab, UNKNOWN);
6000 init_convert_optab (fract_optab, FRACT_CONVERT);
6001 init_convert_optab (fractuns_optab, UNSIGNED_FRACT_CONVERT);
6002 init_convert_optab (satfract_optab, SAT_FRACT);
6003 init_convert_optab (satfractuns_optab, UNSIGNED_SAT_FRACT);
6005 /* Fill in the optabs with the insns we support. */
6006 init_all_optabs ();
6008 /* Initialize the optabs with the names of the library functions. */
6009 add_optab->libcall_basename = "add";
6010 add_optab->libcall_suffix = '3';
6011 add_optab->libcall_gen = gen_int_fp_fixed_libfunc;
6012 addv_optab->libcall_basename = "add";
6013 addv_optab->libcall_suffix = '3';
6014 addv_optab->libcall_gen = gen_intv_fp_libfunc;
6015 ssadd_optab->libcall_basename = "ssadd";
6016 ssadd_optab->libcall_suffix = '3';
6017 ssadd_optab->libcall_gen = gen_signed_fixed_libfunc;
6018 usadd_optab->libcall_basename = "usadd";
6019 usadd_optab->libcall_suffix = '3';
6020 usadd_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6021 sub_optab->libcall_basename = "sub";
6022 sub_optab->libcall_suffix = '3';
6023 sub_optab->libcall_gen = gen_int_fp_fixed_libfunc;
6024 subv_optab->libcall_basename = "sub";
6025 subv_optab->libcall_suffix = '3';
6026 subv_optab->libcall_gen = gen_intv_fp_libfunc;
6027 sssub_optab->libcall_basename = "sssub";
6028 sssub_optab->libcall_suffix = '3';
6029 sssub_optab->libcall_gen = gen_signed_fixed_libfunc;
6030 ussub_optab->libcall_basename = "ussub";
6031 ussub_optab->libcall_suffix = '3';
6032 ussub_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6033 smul_optab->libcall_basename = "mul";
6034 smul_optab->libcall_suffix = '3';
6035 smul_optab->libcall_gen = gen_int_fp_fixed_libfunc;
6036 smulv_optab->libcall_basename = "mul";
6037 smulv_optab->libcall_suffix = '3';
6038 smulv_optab->libcall_gen = gen_intv_fp_libfunc;
6039 ssmul_optab->libcall_basename = "ssmul";
6040 ssmul_optab->libcall_suffix = '3';
6041 ssmul_optab->libcall_gen = gen_signed_fixed_libfunc;
6042 usmul_optab->libcall_basename = "usmul";
6043 usmul_optab->libcall_suffix = '3';
6044 usmul_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6045 sdiv_optab->libcall_basename = "div";
6046 sdiv_optab->libcall_suffix = '3';
6047 sdiv_optab->libcall_gen = gen_int_fp_signed_fixed_libfunc;
6048 sdivv_optab->libcall_basename = "divv";
6049 sdivv_optab->libcall_suffix = '3';
6050 sdivv_optab->libcall_gen = gen_int_libfunc;
6051 ssdiv_optab->libcall_basename = "ssdiv";
6052 ssdiv_optab->libcall_suffix = '3';
6053 ssdiv_optab->libcall_gen = gen_signed_fixed_libfunc;
6054 udiv_optab->libcall_basename = "udiv";
6055 udiv_optab->libcall_suffix = '3';
6056 udiv_optab->libcall_gen = gen_int_unsigned_fixed_libfunc;
6057 usdiv_optab->libcall_basename = "usdiv";
6058 usdiv_optab->libcall_suffix = '3';
6059 usdiv_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6060 sdivmod_optab->libcall_basename = "divmod";
6061 sdivmod_optab->libcall_suffix = '4';
6062 sdivmod_optab->libcall_gen = gen_int_libfunc;
6063 udivmod_optab->libcall_basename = "udivmod";
6064 udivmod_optab->libcall_suffix = '4';
6065 udivmod_optab->libcall_gen = gen_int_libfunc;
6066 smod_optab->libcall_basename = "mod";
6067 smod_optab->libcall_suffix = '3';
6068 smod_optab->libcall_gen = gen_int_libfunc;
6069 umod_optab->libcall_basename = "umod";
6070 umod_optab->libcall_suffix = '3';
6071 umod_optab->libcall_gen = gen_int_libfunc;
6072 ftrunc_optab->libcall_basename = "ftrunc";
6073 ftrunc_optab->libcall_suffix = '2';
6074 ftrunc_optab->libcall_gen = gen_fp_libfunc;
6075 and_optab->libcall_basename = "and";
6076 and_optab->libcall_suffix = '3';
6077 and_optab->libcall_gen = gen_int_libfunc;
6078 ior_optab->libcall_basename = "ior";
6079 ior_optab->libcall_suffix = '3';
6080 ior_optab->libcall_gen = gen_int_libfunc;
6081 xor_optab->libcall_basename = "xor";
6082 xor_optab->libcall_suffix = '3';
6083 xor_optab->libcall_gen = gen_int_libfunc;
6084 ashl_optab->libcall_basename = "ashl";
6085 ashl_optab->libcall_suffix = '3';
6086 ashl_optab->libcall_gen = gen_int_fixed_libfunc;
6087 ssashl_optab->libcall_basename = "ssashl";
6088 ssashl_optab->libcall_suffix = '3';
6089 ssashl_optab->libcall_gen = gen_signed_fixed_libfunc;
6090 usashl_optab->libcall_basename = "usashl";
6091 usashl_optab->libcall_suffix = '3';
6092 usashl_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6093 ashr_optab->libcall_basename = "ashr";
6094 ashr_optab->libcall_suffix = '3';
6095 ashr_optab->libcall_gen = gen_int_signed_fixed_libfunc;
6096 lshr_optab->libcall_basename = "lshr";
6097 lshr_optab->libcall_suffix = '3';
6098 lshr_optab->libcall_gen = gen_int_unsigned_fixed_libfunc;
6099 smin_optab->libcall_basename = "min";
6100 smin_optab->libcall_suffix = '3';
6101 smin_optab->libcall_gen = gen_int_fp_libfunc;
6102 smax_optab->libcall_basename = "max";
6103 smax_optab->libcall_suffix = '3';
6104 smax_optab->libcall_gen = gen_int_fp_libfunc;
6105 umin_optab->libcall_basename = "umin";
6106 umin_optab->libcall_suffix = '3';
6107 umin_optab->libcall_gen = gen_int_libfunc;
6108 umax_optab->libcall_basename = "umax";
6109 umax_optab->libcall_suffix = '3';
6110 umax_optab->libcall_gen = gen_int_libfunc;
6111 neg_optab->libcall_basename = "neg";
6112 neg_optab->libcall_suffix = '2';
6113 neg_optab->libcall_gen = gen_int_fp_fixed_libfunc;
6114 ssneg_optab->libcall_basename = "ssneg";
6115 ssneg_optab->libcall_suffix = '2';
6116 ssneg_optab->libcall_gen = gen_signed_fixed_libfunc;
6117 usneg_optab->libcall_basename = "usneg";
6118 usneg_optab->libcall_suffix = '2';
6119 usneg_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6120 negv_optab->libcall_basename = "neg";
6121 negv_optab->libcall_suffix = '2';
6122 negv_optab->libcall_gen = gen_intv_fp_libfunc;
6123 one_cmpl_optab->libcall_basename = "one_cmpl";
6124 one_cmpl_optab->libcall_suffix = '2';
6125 one_cmpl_optab->libcall_gen = gen_int_libfunc;
6126 ffs_optab->libcall_basename = "ffs";
6127 ffs_optab->libcall_suffix = '2';
6128 ffs_optab->libcall_gen = gen_int_libfunc;
6129 clz_optab->libcall_basename = "clz";
6130 clz_optab->libcall_suffix = '2';
6131 clz_optab->libcall_gen = gen_int_libfunc;
6132 ctz_optab->libcall_basename = "ctz";
6133 ctz_optab->libcall_suffix = '2';
6134 ctz_optab->libcall_gen = gen_int_libfunc;
6135 popcount_optab->libcall_basename = "popcount";
6136 popcount_optab->libcall_suffix = '2';
6137 popcount_optab->libcall_gen = gen_int_libfunc;
6138 parity_optab->libcall_basename = "parity";
6139 parity_optab->libcall_suffix = '2';
6140 parity_optab->libcall_gen = gen_int_libfunc;
6142 /* Comparison libcalls for integers MUST come in pairs,
6143 signed/unsigned. */
6144 cmp_optab->libcall_basename = "cmp";
6145 cmp_optab->libcall_suffix = '2';
6146 cmp_optab->libcall_gen = gen_int_fp_fixed_libfunc;
6147 ucmp_optab->libcall_basename = "ucmp";
6148 ucmp_optab->libcall_suffix = '2';
6149 ucmp_optab->libcall_gen = gen_int_libfunc;
6151 /* EQ etc are floating point only. */
6152 eq_optab->libcall_basename = "eq";
6153 eq_optab->libcall_suffix = '2';
6154 eq_optab->libcall_gen = gen_fp_libfunc;
6155 ne_optab->libcall_basename = "ne";
6156 ne_optab->libcall_suffix = '2';
6157 ne_optab->libcall_gen = gen_fp_libfunc;
6158 gt_optab->libcall_basename = "gt";
6159 gt_optab->libcall_suffix = '2';
6160 gt_optab->libcall_gen = gen_fp_libfunc;
6161 ge_optab->libcall_basename = "ge";
6162 ge_optab->libcall_suffix = '2';
6163 ge_optab->libcall_gen = gen_fp_libfunc;
6164 lt_optab->libcall_basename = "lt";
6165 lt_optab->libcall_suffix = '2';
6166 lt_optab->libcall_gen = gen_fp_libfunc;
6167 le_optab->libcall_basename = "le";
6168 le_optab->libcall_suffix = '2';
6169 le_optab->libcall_gen = gen_fp_libfunc;
6170 unord_optab->libcall_basename = "unord";
6171 unord_optab->libcall_suffix = '2';
6172 unord_optab->libcall_gen = gen_fp_libfunc;
6174 powi_optab->libcall_basename = "powi";
6175 powi_optab->libcall_suffix = '2';
6176 powi_optab->libcall_gen = gen_fp_libfunc;
6178 /* Conversions. */
6179 sfloat_optab->libcall_basename = "float";
6180 sfloat_optab->libcall_gen = gen_int_to_fp_conv_libfunc;
6181 ufloat_optab->libcall_gen = gen_ufloat_conv_libfunc;
6182 sfix_optab->libcall_basename = "fix";
6183 sfix_optab->libcall_gen = gen_fp_to_int_conv_libfunc;
6184 ufix_optab->libcall_basename = "fixuns";
6185 ufix_optab->libcall_gen = gen_fp_to_int_conv_libfunc;
6186 lrint_optab->libcall_basename = "lrint";
6187 lrint_optab->libcall_gen = gen_int_to_fp_nondecimal_conv_libfunc;
6188 lround_optab->libcall_basename = "lround";
6189 lround_optab->libcall_gen = gen_int_to_fp_nondecimal_conv_libfunc;
6190 lfloor_optab->libcall_basename = "lfloor";
6191 lfloor_optab->libcall_gen = gen_int_to_fp_nondecimal_conv_libfunc;
6192 lceil_optab->libcall_basename = "lceil";
6193 lceil_optab->libcall_gen = gen_int_to_fp_nondecimal_conv_libfunc;
6195 /* trunc_optab is also used for FLOAT_EXTEND. */
6196 sext_optab->libcall_basename = "extend";
6197 sext_optab->libcall_gen = gen_extend_conv_libfunc;
6198 trunc_optab->libcall_basename = "trunc";
6199 trunc_optab->libcall_gen = gen_trunc_conv_libfunc;
6201 /* Conversions for fixed-point modes and other modes. */
6202 fract_optab->libcall_basename = "fract";
6203 fract_optab->libcall_gen = gen_fract_conv_libfunc;
6204 satfract_optab->libcall_basename = "satfract";
6205 satfract_optab->libcall_gen = gen_satfract_conv_libfunc;
6206 fractuns_optab->libcall_basename = "fractuns";
6207 fractuns_optab->libcall_gen = gen_fractuns_conv_libfunc;
6208 satfractuns_optab->libcall_basename = "satfractuns";
6209 satfractuns_optab->libcall_gen = gen_satfractuns_conv_libfunc;
6211 /* The ffs function operates on `int'. Fall back on it if we do not
6212 have a libgcc2 function for that width. */
6213 if (INT_TYPE_SIZE < BITS_PER_WORD)
6214 set_optab_libfunc (ffs_optab, mode_for_size (INT_TYPE_SIZE, MODE_INT, 0),
6215 "ffs");
6217 /* Explicitly initialize the bswap libfuncs since we need them to be
6218 valid for things other than word_mode. */
6219 set_optab_libfunc (bswap_optab, SImode, "__bswapsi2");
6220 set_optab_libfunc (bswap_optab, DImode, "__bswapdi2");
6222 /* Use cabs for double complex abs, since systems generally have cabs.
6223 Don't define any libcall for float complex, so that cabs will be used. */
6224 if (complex_double_type_node)
6225 set_optab_libfunc (abs_optab, TYPE_MODE (complex_double_type_node), "cabs");
6227 abort_libfunc = init_one_libfunc ("abort");
6228 memcpy_libfunc = init_one_libfunc ("memcpy");
6229 memmove_libfunc = init_one_libfunc ("memmove");
6230 memcmp_libfunc = init_one_libfunc ("memcmp");
6231 memset_libfunc = init_one_libfunc ("memset");
6232 setbits_libfunc = init_one_libfunc ("__setbits");
6234 #ifndef DONT_USE_BUILTIN_SETJMP
6235 setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
6236 longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
6237 #else
6238 setjmp_libfunc = init_one_libfunc ("setjmp");
6239 longjmp_libfunc = init_one_libfunc ("longjmp");
6240 #endif
6241 unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
6242 unwind_sjlj_unregister_libfunc
6243 = init_one_libfunc ("_Unwind_SjLj_Unregister");
6245 /* For function entry/exit instrumentation. */
6246 profile_function_entry_libfunc
6247 = init_one_libfunc ("__cyg_profile_func_enter");
6248 profile_function_exit_libfunc
6249 = init_one_libfunc ("__cyg_profile_func_exit");
6251 gcov_flush_libfunc = init_one_libfunc ("__gcov_flush");
6253 /* Allow the target to add more libcalls or rename some, etc. */
6254 targetm.init_libfuncs ();
6257 /* Print information about the current contents of the optabs on
6258 STDERR. */
6260 DEBUG_FUNCTION void
6261 debug_optab_libfuncs (void)
6263 int i;
6264 int j;
6265 int k;
6267 /* Dump the arithmetic optabs. */
6268 for (i = 0; i != (int) OTI_MAX; i++)
6269 for (j = 0; j < NUM_MACHINE_MODES; ++j)
6271 optab o;
6272 rtx l;
6274 o = &optab_table[i];
6275 l = optab_libfunc (o, (enum machine_mode) j);
6276 if (l)
6278 gcc_assert (GET_CODE (l) == SYMBOL_REF);
6279 fprintf (stderr, "%s\t%s:\t%s\n",
6280 GET_RTX_NAME (o->code),
6281 GET_MODE_NAME (j),
6282 XSTR (l, 0));
6286 /* Dump the conversion optabs. */
6287 for (i = 0; i < (int) COI_MAX; ++i)
6288 for (j = 0; j < NUM_MACHINE_MODES; ++j)
6289 for (k = 0; k < NUM_MACHINE_MODES; ++k)
6291 convert_optab o;
6292 rtx l;
6294 o = &convert_optab_table[i];
6295 l = convert_optab_libfunc (o, (enum machine_mode) j,
6296 (enum machine_mode) k);
6297 if (l)
6299 gcc_assert (GET_CODE (l) == SYMBOL_REF);
6300 fprintf (stderr, "%s\t%s\t%s:\t%s\n",
6301 GET_RTX_NAME (o->code),
6302 GET_MODE_NAME (j),
6303 GET_MODE_NAME (k),
6304 XSTR (l, 0));
6310 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
6311 CODE. Return 0 on failure. */
6314 gen_cond_trap (enum rtx_code code, rtx op1, rtx op2, rtx tcode)
6316 enum machine_mode mode = GET_MODE (op1);
6317 enum insn_code icode;
6318 rtx insn;
6319 rtx trap_rtx;
6321 if (mode == VOIDmode)
6322 return 0;
6324 icode = optab_handler (ctrap_optab, mode);
6325 if (icode == CODE_FOR_nothing)
6326 return 0;
6328 /* Some targets only accept a zero trap code. */
6329 if (!insn_operand_matches (icode, 3, tcode))
6330 return 0;
6332 do_pending_stack_adjust ();
6333 start_sequence ();
6334 prepare_cmp_insn (op1, op2, code, NULL_RTX, false, OPTAB_DIRECT,
6335 &trap_rtx, &mode);
6336 if (!trap_rtx)
6337 insn = NULL_RTX;
6338 else
6339 insn = GEN_FCN (icode) (trap_rtx, XEXP (trap_rtx, 0), XEXP (trap_rtx, 1),
6340 tcode);
6342 /* If that failed, then give up. */
6343 if (insn == 0)
6345 end_sequence ();
6346 return 0;
6349 emit_insn (insn);
6350 insn = get_insns ();
6351 end_sequence ();
6352 return insn;
6355 /* Return rtx code for TCODE. Use UNSIGNEDP to select signed
6356 or unsigned operation code. */
6358 static enum rtx_code
6359 get_rtx_code (enum tree_code tcode, bool unsignedp)
6361 enum rtx_code code;
6362 switch (tcode)
6364 case EQ_EXPR:
6365 code = EQ;
6366 break;
6367 case NE_EXPR:
6368 code = NE;
6369 break;
6370 case LT_EXPR:
6371 code = unsignedp ? LTU : LT;
6372 break;
6373 case LE_EXPR:
6374 code = unsignedp ? LEU : LE;
6375 break;
6376 case GT_EXPR:
6377 code = unsignedp ? GTU : GT;
6378 break;
6379 case GE_EXPR:
6380 code = unsignedp ? GEU : GE;
6381 break;
6383 case UNORDERED_EXPR:
6384 code = UNORDERED;
6385 break;
6386 case ORDERED_EXPR:
6387 code = ORDERED;
6388 break;
6389 case UNLT_EXPR:
6390 code = UNLT;
6391 break;
6392 case UNLE_EXPR:
6393 code = UNLE;
6394 break;
6395 case UNGT_EXPR:
6396 code = UNGT;
6397 break;
6398 case UNGE_EXPR:
6399 code = UNGE;
6400 break;
6401 case UNEQ_EXPR:
6402 code = UNEQ;
6403 break;
6404 case LTGT_EXPR:
6405 code = LTGT;
6406 break;
6408 default:
6409 gcc_unreachable ();
6411 return code;
6414 /* Return comparison rtx for COND. Use UNSIGNEDP to select signed or
6415 unsigned operators. Do not generate compare instruction. */
6417 static rtx
6418 vector_compare_rtx (tree cond, bool unsignedp, enum insn_code icode)
6420 struct expand_operand ops[2];
6421 enum rtx_code rcode;
6422 tree t_op0, t_op1;
6423 rtx rtx_op0, rtx_op1;
6425 /* This is unlikely. While generating VEC_COND_EXPR, auto vectorizer
6426 ensures that condition is a relational operation. */
6427 gcc_assert (COMPARISON_CLASS_P (cond));
6429 rcode = get_rtx_code (TREE_CODE (cond), unsignedp);
6430 t_op0 = TREE_OPERAND (cond, 0);
6431 t_op1 = TREE_OPERAND (cond, 1);
6433 /* Expand operands. */
6434 rtx_op0 = expand_expr (t_op0, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op0)),
6435 EXPAND_STACK_PARM);
6436 rtx_op1 = expand_expr (t_op1, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op1)),
6437 EXPAND_STACK_PARM);
6439 create_input_operand (&ops[0], rtx_op0, GET_MODE (rtx_op0));
6440 create_input_operand (&ops[1], rtx_op1, GET_MODE (rtx_op1));
6441 if (!maybe_legitimize_operands (icode, 4, 2, ops))
6442 gcc_unreachable ();
6443 return gen_rtx_fmt_ee (rcode, VOIDmode, ops[0].value, ops[1].value);
6446 /* Return insn code for TYPE, the type of a VEC_COND_EXPR. */
6448 static inline enum insn_code
6449 get_vcond_icode (tree type, enum machine_mode mode)
6451 enum insn_code icode = CODE_FOR_nothing;
6453 if (TYPE_UNSIGNED (type))
6454 icode = direct_optab_handler (vcondu_optab, mode);
6455 else
6456 icode = direct_optab_handler (vcond_optab, mode);
6457 return icode;
6460 /* Return TRUE iff, appropriate vector insns are available
6461 for vector cond expr with type TYPE in VMODE mode. */
6463 bool
6464 expand_vec_cond_expr_p (tree type, enum machine_mode vmode)
6466 if (get_vcond_icode (type, vmode) == CODE_FOR_nothing)
6467 return false;
6468 return true;
6471 /* Generate insns for a VEC_COND_EXPR, given its TYPE and its
6472 three operands. */
6475 expand_vec_cond_expr (tree vec_cond_type, tree op0, tree op1, tree op2,
6476 rtx target)
6478 struct expand_operand ops[6];
6479 enum insn_code icode;
6480 rtx comparison, rtx_op1, rtx_op2;
6481 enum machine_mode mode = TYPE_MODE (vec_cond_type);
6482 bool unsignedp = TYPE_UNSIGNED (vec_cond_type);
6484 icode = get_vcond_icode (vec_cond_type, mode);
6485 if (icode == CODE_FOR_nothing)
6486 return 0;
6488 comparison = vector_compare_rtx (op0, unsignedp, icode);
6489 rtx_op1 = expand_normal (op1);
6490 rtx_op2 = expand_normal (op2);
6492 create_output_operand (&ops[0], target, mode);
6493 create_input_operand (&ops[1], rtx_op1, mode);
6494 create_input_operand (&ops[2], rtx_op2, mode);
6495 create_fixed_operand (&ops[3], comparison);
6496 create_fixed_operand (&ops[4], XEXP (comparison, 0));
6497 create_fixed_operand (&ops[5], XEXP (comparison, 1));
6498 expand_insn (icode, 6, ops);
6499 return ops[0].value;
6503 /* This is an internal subroutine of the other compare_and_swap expanders.
6504 MEM, OLD_VAL and NEW_VAL are as you'd expect for a compare-and-swap
6505 operation. TARGET is an optional place to store the value result of
6506 the operation. ICODE is the particular instruction to expand. Return
6507 the result of the operation. */
6509 static rtx
6510 expand_val_compare_and_swap_1 (rtx mem, rtx old_val, rtx new_val,
6511 rtx target, enum insn_code icode)
6513 struct expand_operand ops[4];
6514 enum machine_mode mode = GET_MODE (mem);
6516 create_output_operand (&ops[0], target, mode);
6517 create_fixed_operand (&ops[1], mem);
6518 /* OLD_VAL and NEW_VAL may have been promoted to a wider mode.
6519 Shrink them if so. */
6520 create_convert_operand_to (&ops[2], old_val, mode, true);
6521 create_convert_operand_to (&ops[3], new_val, mode, true);
6522 if (maybe_expand_insn (icode, 4, ops))
6523 return ops[0].value;
6524 return NULL_RTX;
6527 /* Expand a compare-and-swap operation and return its value. */
6530 expand_val_compare_and_swap (rtx mem, rtx old_val, rtx new_val, rtx target)
6532 enum machine_mode mode = GET_MODE (mem);
6533 enum insn_code icode
6534 = direct_optab_handler (sync_compare_and_swap_optab, mode);
6536 if (icode == CODE_FOR_nothing)
6537 return NULL_RTX;
6539 return expand_val_compare_and_swap_1 (mem, old_val, new_val, target, icode);
6542 /* Helper function to find the MODE_CC set in a sync_compare_and_swap
6543 pattern. */
6545 static void
6546 find_cc_set (rtx x, const_rtx pat, void *data)
6548 if (REG_P (x) && GET_MODE_CLASS (GET_MODE (x)) == MODE_CC
6549 && GET_CODE (pat) == SET)
6551 rtx *p_cc_reg = (rtx *) data;
6552 gcc_assert (!*p_cc_reg);
6553 *p_cc_reg = x;
6557 /* Expand a compare-and-swap operation and store true into the result if
6558 the operation was successful and false otherwise. Return the result.
6559 Unlike other routines, TARGET is not optional. */
6562 expand_bool_compare_and_swap (rtx mem, rtx old_val, rtx new_val, rtx target)
6564 enum machine_mode mode = GET_MODE (mem);
6565 enum insn_code icode;
6566 rtx subtarget, seq, cc_reg;
6568 /* If the target supports a compare-and-swap pattern that simultaneously
6569 sets some flag for success, then use it. Otherwise use the regular
6570 compare-and-swap and follow that immediately with a compare insn. */
6571 icode = direct_optab_handler (sync_compare_and_swap_optab, mode);
6572 if (icode == CODE_FOR_nothing)
6573 return NULL_RTX;
6575 do_pending_stack_adjust ();
6578 start_sequence ();
6579 subtarget = expand_val_compare_and_swap_1 (mem, old_val, new_val,
6580 NULL_RTX, icode);
6581 cc_reg = NULL_RTX;
6582 if (subtarget == NULL_RTX)
6584 end_sequence ();
6585 return NULL_RTX;
6588 if (have_insn_for (COMPARE, CCmode))
6589 note_stores (PATTERN (get_last_insn ()), find_cc_set, &cc_reg);
6590 seq = get_insns ();
6591 end_sequence ();
6593 /* We might be comparing against an old value. Try again. :-( */
6594 if (!cc_reg && MEM_P (old_val))
6596 seq = NULL_RTX;
6597 old_val = force_reg (mode, old_val);
6600 while (!seq);
6602 emit_insn (seq);
6603 if (cc_reg)
6604 return emit_store_flag_force (target, EQ, cc_reg, const0_rtx, VOIDmode, 0, 1);
6605 else
6606 return emit_store_flag_force (target, EQ, subtarget, old_val, VOIDmode, 1, 1);
6609 /* This is a helper function for the other atomic operations. This function
6610 emits a loop that contains SEQ that iterates until a compare-and-swap
6611 operation at the end succeeds. MEM is the memory to be modified. SEQ is
6612 a set of instructions that takes a value from OLD_REG as an input and
6613 produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be
6614 set to the current contents of MEM. After SEQ, a compare-and-swap will
6615 attempt to update MEM with NEW_REG. The function returns true when the
6616 loop was generated successfully. */
6618 static bool
6619 expand_compare_and_swap_loop (rtx mem, rtx old_reg, rtx new_reg, rtx seq)
6621 enum machine_mode mode = GET_MODE (mem);
6622 enum insn_code icode;
6623 rtx label, cmp_reg, subtarget, cc_reg;
6625 /* The loop we want to generate looks like
6627 cmp_reg = mem;
6628 label:
6629 old_reg = cmp_reg;
6630 seq;
6631 cmp_reg = compare-and-swap(mem, old_reg, new_reg)
6632 if (cmp_reg != old_reg)
6633 goto label;
6635 Note that we only do the plain load from memory once. Subsequent
6636 iterations use the value loaded by the compare-and-swap pattern. */
6638 label = gen_label_rtx ();
6639 cmp_reg = gen_reg_rtx (mode);
6641 emit_move_insn (cmp_reg, mem);
6642 emit_label (label);
6643 emit_move_insn (old_reg, cmp_reg);
6644 if (seq)
6645 emit_insn (seq);
6647 /* If the target supports a compare-and-swap pattern that simultaneously
6648 sets some flag for success, then use it. Otherwise use the regular
6649 compare-and-swap and follow that immediately with a compare insn. */
6650 icode = direct_optab_handler (sync_compare_and_swap_optab, mode);
6651 if (icode == CODE_FOR_nothing)
6652 return false;
6654 subtarget = expand_val_compare_and_swap_1 (mem, old_reg, new_reg,
6655 cmp_reg, icode);
6656 if (subtarget == NULL_RTX)
6657 return false;
6659 cc_reg = NULL_RTX;
6660 if (have_insn_for (COMPARE, CCmode))
6661 note_stores (PATTERN (get_last_insn ()), find_cc_set, &cc_reg);
6662 if (cc_reg)
6664 cmp_reg = cc_reg;
6665 old_reg = const0_rtx;
6667 else
6669 if (subtarget != cmp_reg)
6670 emit_move_insn (cmp_reg, subtarget);
6673 /* ??? Mark this jump predicted not taken? */
6674 emit_cmp_and_jump_insns (cmp_reg, old_reg, NE, const0_rtx, GET_MODE (cmp_reg), 1,
6675 label);
6676 return true;
6679 /* This function generates the atomic operation MEM CODE= VAL. In this
6680 case, we do not care about any resulting value. Returns NULL if we
6681 cannot generate the operation. */
6684 expand_sync_operation (rtx mem, rtx val, enum rtx_code code)
6686 enum machine_mode mode = GET_MODE (mem);
6687 enum insn_code icode;
6688 rtx insn;
6690 /* Look to see if the target supports the operation directly. */
6691 switch (code)
6693 case PLUS:
6694 icode = direct_optab_handler (sync_add_optab, mode);
6695 break;
6696 case IOR:
6697 icode = direct_optab_handler (sync_ior_optab, mode);
6698 break;
6699 case XOR:
6700 icode = direct_optab_handler (sync_xor_optab, mode);
6701 break;
6702 case AND:
6703 icode = direct_optab_handler (sync_and_optab, mode);
6704 break;
6705 case NOT:
6706 icode = direct_optab_handler (sync_nand_optab, mode);
6707 break;
6709 case MINUS:
6710 icode = direct_optab_handler (sync_sub_optab, mode);
6711 if (icode == CODE_FOR_nothing || CONST_INT_P (val))
6713 icode = direct_optab_handler (sync_add_optab, mode);
6714 if (icode != CODE_FOR_nothing)
6716 val = expand_simple_unop (mode, NEG, val, NULL_RTX, 1);
6717 code = PLUS;
6720 break;
6722 default:
6723 gcc_unreachable ();
6726 /* Generate the direct operation, if present. */
6727 if (icode != CODE_FOR_nothing)
6729 struct expand_operand ops[2];
6731 create_fixed_operand (&ops[0], mem);
6732 /* VAL may have been promoted to a wider mode. Shrink it if so. */
6733 create_convert_operand_to (&ops[1], val, mode, true);
6734 if (maybe_expand_insn (icode, 2, ops))
6735 return const0_rtx;
6738 /* Failing that, generate a compare-and-swap loop in which we perform the
6739 operation with normal arithmetic instructions. */
6740 if (direct_optab_handler (sync_compare_and_swap_optab, mode)
6741 != CODE_FOR_nothing)
6743 rtx t0 = gen_reg_rtx (mode), t1;
6745 start_sequence ();
6747 t1 = t0;
6748 if (code == NOT)
6750 t1 = expand_simple_binop (mode, AND, t1, val, NULL_RTX,
6751 true, OPTAB_LIB_WIDEN);
6752 t1 = expand_simple_unop (mode, code, t1, NULL_RTX, true);
6754 else
6755 t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX,
6756 true, OPTAB_LIB_WIDEN);
6757 insn = get_insns ();
6758 end_sequence ();
6760 if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
6761 return const0_rtx;
6764 return NULL_RTX;
6767 /* This function generates the atomic operation MEM CODE= VAL. In this
6768 case, we do care about the resulting value: if AFTER is true then
6769 return the value MEM holds after the operation, if AFTER is false
6770 then return the value MEM holds before the operation. TARGET is an
6771 optional place for the result value to be stored. */
6774 expand_sync_fetch_operation (rtx mem, rtx val, enum rtx_code code,
6775 bool after, rtx target)
6777 enum machine_mode mode = GET_MODE (mem);
6778 enum insn_code old_code, new_code, icode;
6779 bool compensate;
6780 rtx insn;
6782 /* Look to see if the target supports the operation directly. */
6783 switch (code)
6785 case PLUS:
6786 old_code = direct_optab_handler (sync_old_add_optab, mode);
6787 new_code = direct_optab_handler (sync_new_add_optab, mode);
6788 break;
6789 case IOR:
6790 old_code = direct_optab_handler (sync_old_ior_optab, mode);
6791 new_code = direct_optab_handler (sync_new_ior_optab, mode);
6792 break;
6793 case XOR:
6794 old_code = direct_optab_handler (sync_old_xor_optab, mode);
6795 new_code = direct_optab_handler (sync_new_xor_optab, mode);
6796 break;
6797 case AND:
6798 old_code = direct_optab_handler (sync_old_and_optab, mode);
6799 new_code = direct_optab_handler (sync_new_and_optab, mode);
6800 break;
6801 case NOT:
6802 old_code = direct_optab_handler (sync_old_nand_optab, mode);
6803 new_code = direct_optab_handler (sync_new_nand_optab, mode);
6804 break;
6806 case MINUS:
6807 old_code = direct_optab_handler (sync_old_sub_optab, mode);
6808 new_code = direct_optab_handler (sync_new_sub_optab, mode);
6809 if ((old_code == CODE_FOR_nothing && new_code == CODE_FOR_nothing)
6810 || CONST_INT_P (val))
6812 old_code = direct_optab_handler (sync_old_add_optab, mode);
6813 new_code = direct_optab_handler (sync_new_add_optab, mode);
6814 if (old_code != CODE_FOR_nothing || new_code != CODE_FOR_nothing)
6816 val = expand_simple_unop (mode, NEG, val, NULL_RTX, 1);
6817 code = PLUS;
6820 break;
6822 default:
6823 gcc_unreachable ();
6826 /* If the target does supports the proper new/old operation, great. But
6827 if we only support the opposite old/new operation, check to see if we
6828 can compensate. In the case in which the old value is supported, then
6829 we can always perform the operation again with normal arithmetic. In
6830 the case in which the new value is supported, then we can only handle
6831 this in the case the operation is reversible. */
6832 compensate = false;
6833 if (after)
6835 icode = new_code;
6836 if (icode == CODE_FOR_nothing)
6838 icode = old_code;
6839 if (icode != CODE_FOR_nothing)
6840 compensate = true;
6843 else
6845 icode = old_code;
6846 if (icode == CODE_FOR_nothing
6847 && (code == PLUS || code == MINUS || code == XOR))
6849 icode = new_code;
6850 if (icode != CODE_FOR_nothing)
6851 compensate = true;
6855 /* If we found something supported, great. */
6856 if (icode != CODE_FOR_nothing)
6858 struct expand_operand ops[3];
6860 create_output_operand (&ops[0], target, mode);
6861 create_fixed_operand (&ops[1], mem);
6862 /* VAL may have been promoted to a wider mode. Shrink it if so. */
6863 create_convert_operand_to (&ops[2], val, mode, true);
6864 if (maybe_expand_insn (icode, 3, ops))
6866 target = ops[0].value;
6867 val = ops[2].value;
6868 /* If we need to compensate for using an operation with the
6869 wrong return value, do so now. */
6870 if (compensate)
6872 if (!after)
6874 if (code == PLUS)
6875 code = MINUS;
6876 else if (code == MINUS)
6877 code = PLUS;
6880 if (code == NOT)
6882 target = expand_simple_binop (mode, AND, target, val,
6883 NULL_RTX, true,
6884 OPTAB_LIB_WIDEN);
6885 target = expand_simple_unop (mode, code, target,
6886 NULL_RTX, true);
6888 else
6889 target = expand_simple_binop (mode, code, target, val,
6890 NULL_RTX, true,
6891 OPTAB_LIB_WIDEN);
6894 return target;
6898 /* Failing that, generate a compare-and-swap loop in which we perform the
6899 operation with normal arithmetic instructions. */
6900 if (direct_optab_handler (sync_compare_and_swap_optab, mode)
6901 != CODE_FOR_nothing)
6903 rtx t0 = gen_reg_rtx (mode), t1;
6905 if (!target || !register_operand (target, mode))
6906 target = gen_reg_rtx (mode);
6908 start_sequence ();
6910 if (!after)
6911 emit_move_insn (target, t0);
6912 t1 = t0;
6913 if (code == NOT)
6915 t1 = expand_simple_binop (mode, AND, t1, val, NULL_RTX,
6916 true, OPTAB_LIB_WIDEN);
6917 t1 = expand_simple_unop (mode, code, t1, NULL_RTX, true);
6919 else
6920 t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX,
6921 true, OPTAB_LIB_WIDEN);
6922 if (after)
6923 emit_move_insn (target, t1);
6925 insn = get_insns ();
6926 end_sequence ();
6928 if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
6929 return target;
6932 return NULL_RTX;
6935 /* This function expands a test-and-set operation. Ideally we atomically
6936 store VAL in MEM and return the previous value in MEM. Some targets
6937 may not support this operation and only support VAL with the constant 1;
6938 in this case while the return value will be 0/1, but the exact value
6939 stored in MEM is target defined. TARGET is an option place to stick
6940 the return value. */
6943 expand_sync_lock_test_and_set (rtx mem, rtx val, rtx target)
6945 enum machine_mode mode = GET_MODE (mem);
6946 enum insn_code icode;
6948 /* If the target supports the test-and-set directly, great. */
6949 icode = direct_optab_handler (sync_lock_test_and_set_optab, mode);
6950 if (icode != CODE_FOR_nothing)
6952 struct expand_operand ops[3];
6954 create_output_operand (&ops[0], target, mode);
6955 create_fixed_operand (&ops[1], mem);
6956 /* VAL may have been promoted to a wider mode. Shrink it if so. */
6957 create_convert_operand_to (&ops[2], val, mode, true);
6958 if (maybe_expand_insn (icode, 3, ops))
6959 return ops[0].value;
6962 /* Otherwise, use a compare-and-swap loop for the exchange. */
6963 if (direct_optab_handler (sync_compare_and_swap_optab, mode)
6964 != CODE_FOR_nothing)
6966 if (!target || !register_operand (target, mode))
6967 target = gen_reg_rtx (mode);
6968 if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
6969 val = convert_modes (mode, GET_MODE (val), val, 1);
6970 if (expand_compare_and_swap_loop (mem, target, val, NULL_RTX))
6971 return target;
6974 return NULL_RTX;
6977 /* Return true if OPERAND is suitable for operand number OPNO of
6978 instruction ICODE. */
6980 bool
6981 insn_operand_matches (enum insn_code icode, unsigned int opno, rtx operand)
6983 return (!insn_data[(int) icode].operand[opno].predicate
6984 || (insn_data[(int) icode].operand[opno].predicate
6985 (operand, insn_data[(int) icode].operand[opno].mode)));
6988 /* Try to make OP match operand OPNO of instruction ICODE. Return true
6989 on success, storing the new operand value back in OP. */
6991 static bool
6992 maybe_legitimize_operand (enum insn_code icode, unsigned int opno,
6993 struct expand_operand *op)
6995 enum machine_mode mode, imode;
6996 bool old_volatile_ok, result;
6998 old_volatile_ok = volatile_ok;
6999 mode = op->mode;
7000 result = false;
7001 switch (op->type)
7003 case EXPAND_FIXED:
7004 volatile_ok = true;
7005 break;
7007 case EXPAND_OUTPUT:
7008 gcc_assert (mode != VOIDmode);
7009 if (!op->value
7010 || op->value == const0_rtx
7011 || GET_MODE (op->value) != mode
7012 || !insn_operand_matches (icode, opno, op->value))
7013 op->value = gen_reg_rtx (mode);
7014 break;
7016 case EXPAND_INPUT:
7017 input:
7018 gcc_assert (mode != VOIDmode);
7019 gcc_assert (GET_MODE (op->value) == VOIDmode
7020 || GET_MODE (op->value) == mode);
7021 result = insn_operand_matches (icode, opno, op->value);
7022 if (!result)
7023 op->value = copy_to_mode_reg (mode, op->value);
7024 break;
7026 case EXPAND_CONVERT_TO:
7027 gcc_assert (mode != VOIDmode);
7028 op->value = convert_to_mode (mode, op->value, op->unsigned_p);
7029 goto input;
7031 case EXPAND_CONVERT_FROM:
7032 if (GET_MODE (op->value) != VOIDmode)
7033 mode = GET_MODE (op->value);
7034 else
7035 /* The caller must tell us what mode this value has. */
7036 gcc_assert (mode != VOIDmode);
7038 imode = insn_data[(int) icode].operand[opno].mode;
7039 if (imode != VOIDmode && imode != mode)
7041 op->value = convert_modes (imode, mode, op->value, op->unsigned_p);
7042 mode = imode;
7044 goto input;
7046 case EXPAND_ADDRESS:
7047 gcc_assert (mode != VOIDmode);
7048 op->value = convert_memory_address (mode, op->value);
7049 goto input;
7051 case EXPAND_INTEGER:
7052 mode = insn_data[(int) icode].operand[opno].mode;
7053 if (mode != VOIDmode && const_int_operand (op->value, mode))
7054 goto input;
7055 break;
7057 if (!result)
7058 result = insn_operand_matches (icode, opno, op->value);
7059 volatile_ok = old_volatile_ok;
7060 return result;
7063 /* Make OP describe an input operand that should have the same value
7064 as VALUE, after any mode conversion that the target might request.
7065 TYPE is the type of VALUE. */
7067 void
7068 create_convert_operand_from_type (struct expand_operand *op,
7069 rtx value, tree type)
7071 create_convert_operand_from (op, value, TYPE_MODE (type),
7072 TYPE_UNSIGNED (type));
7075 /* Try to make operands [OPS, OPS + NOPS) match operands [OPNO, OPNO + NOPS)
7076 of instruction ICODE. Return true on success, leaving the new operand
7077 values in the OPS themselves. Emit no code on failure. */
7079 bool
7080 maybe_legitimize_operands (enum insn_code icode, unsigned int opno,
7081 unsigned int nops, struct expand_operand *ops)
7083 rtx last;
7084 unsigned int i;
7086 last = get_last_insn ();
7087 for (i = 0; i < nops; i++)
7088 if (!maybe_legitimize_operand (icode, opno + i, &ops[i]))
7090 delete_insns_since (last);
7091 return false;
7093 return true;
7096 /* Try to generate instruction ICODE, using operands [OPS, OPS + NOPS)
7097 as its operands. Return the instruction pattern on success,
7098 and emit any necessary set-up code. Return null and emit no
7099 code on failure. */
7102 maybe_gen_insn (enum insn_code icode, unsigned int nops,
7103 struct expand_operand *ops)
7105 /* n_operands includes any automatically-generated match_scratches,
7106 so we can't check for equality here. */
7107 gcc_assert (nops <= (unsigned int) insn_data[(int) icode].n_operands);
7108 if (!maybe_legitimize_operands (icode, 0, nops, ops))
7109 return NULL_RTX;
7111 switch (nops)
7113 case 1:
7114 return GEN_FCN (icode) (ops[0].value);
7115 case 2:
7116 return GEN_FCN (icode) (ops[0].value, ops[1].value);
7117 case 3:
7118 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value);
7119 case 4:
7120 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
7121 ops[3].value);
7122 case 5:
7123 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
7124 ops[3].value, ops[4].value);
7125 case 6:
7126 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
7127 ops[3].value, ops[4].value, ops[5].value);
7129 gcc_unreachable ();
7132 /* Try to emit instruction ICODE, using operands [OPS, OPS + NOPS)
7133 as its operands. Return true on success and emit no code on failure. */
7135 bool
7136 maybe_expand_insn (enum insn_code icode, unsigned int nops,
7137 struct expand_operand *ops)
7139 rtx pat = maybe_gen_insn (icode, nops, ops);
7140 if (pat)
7142 emit_insn (pat);
7143 return true;
7145 return false;
7148 /* Like maybe_expand_insn, but for jumps. */
7150 bool
7151 maybe_expand_jump_insn (enum insn_code icode, unsigned int nops,
7152 struct expand_operand *ops)
7154 rtx pat = maybe_gen_insn (icode, nops, ops);
7155 if (pat)
7157 emit_jump_insn (pat);
7158 return true;
7160 return false;
7163 /* Emit instruction ICODE, using operands [OPS, OPS + NOPS)
7164 as its operands. */
7166 void
7167 expand_insn (enum insn_code icode, unsigned int nops,
7168 struct expand_operand *ops)
7170 if (!maybe_expand_insn (icode, nops, ops))
7171 gcc_unreachable ();
7174 /* Like expand_insn, but for jumps. */
7176 void
7177 expand_jump_insn (enum insn_code icode, unsigned int nops,
7178 struct expand_operand *ops)
7180 if (!maybe_expand_jump_insn (icode, nops, ops))
7181 gcc_unreachable ();
7184 #include "gt-optabs.h"