1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992-2022 Free Software Foundation, Inc.
3 Contributed by Gary Funck (gary@intrepid.com).
4 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
5 Extensively modified by Jason Merrill (jason@cygnus.com).
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* TODO: Emit .debug_line header even when there are no functions, since
24 the file numbers are used by .debug_info. Alternately, leave
25 out locations for types and decls.
26 Avoid talking about ctors and op= for PODs.
27 Factor out common prologue sequences into multiple CIEs. */
29 /* The first part of this file deals with the DWARF 2 frame unwind
30 information, which is also used by the GCC efficient exception handling
31 mechanism. The second part, controlled only by an #ifdef
32 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 /* DWARF2 Abbreviation Glossary:
37 CFA = Canonical Frame Address
38 a fixed address on the stack which identifies a call frame.
39 We define it to be the value of SP just before the call insn.
40 The CFA register and offset, which may change during the course
41 of the function, are used to calculate its value at runtime.
43 CFI = Call Frame Instruction
44 an instruction for the DWARF2 abstract machine
46 CIE = Common Information Entry
47 information describing information common to one or more FDEs
49 DIE = Debugging Information Entry
51 FDE = Frame Description Entry
52 information describing the stack call frame, in particular,
53 how to restore registers
55 DW_CFA_... = DWARF2 CFA call frame instruction
56 DW_TAG_... = DWARF2 DIE tag */
60 #include "coretypes.h"
67 #include "stringpool.h"
68 #include "insn-config.h"
71 #include "diagnostic.h"
72 #include "fold-const.h"
73 #include "stor-layout.h"
81 #include "dwarf2out.h"
82 #include "dwarf2ctf.h"
83 #include "dwarf2asm.h"
86 #include "tree-pretty-print.h"
87 #include "print-rtl.h"
89 #include "common/common-target.h"
90 #include "langhooks.h"
95 #include "gdb/gdb-index.h"
97 #include "stringpool.h"
99 #include "file-prefix-map.h" /* remap_debug_filename() */
101 static void dwarf2out_source_line (unsigned int, unsigned int, const char *,
103 static rtx_insn
*last_var_location_insn
;
104 static rtx_insn
*cached_next_real_insn
;
105 static void dwarf2out_decl (tree
);
106 static bool is_redundant_typedef (const_tree
);
108 #ifndef XCOFF_DEBUGGING_INFO
109 #define XCOFF_DEBUGGING_INFO 0
112 #ifndef HAVE_XCOFF_DWARF_EXTRAS
113 #define HAVE_XCOFF_DWARF_EXTRAS 0
116 #ifdef VMS_DEBUGGING_INFO
117 int vms_file_stats_name (const char *, long long *, long *, char *, int *);
119 /* Define this macro to be a nonzero value if the directory specifications
120 which are output in the debug info should end with a separator. */
121 #define DWARF2_DIR_SHOULD_END_WITH_SEPARATOR 1
122 /* Define this macro to evaluate to a nonzero value if GCC should refrain
123 from generating indirect strings in DWARF2 debug information, for instance
124 if your target is stuck with an old version of GDB that is unable to
125 process them properly or uses VMS Debug. */
126 #define DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET 1
128 #define DWARF2_DIR_SHOULD_END_WITH_SEPARATOR 0
129 #define DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET 0
132 /* ??? Poison these here until it can be done generically. They've been
133 totally replaced in this file; make sure it stays that way. */
134 #undef DWARF2_UNWIND_INFO
135 #undef DWARF2_FRAME_INFO
136 #if (GCC_VERSION >= 3000)
137 #pragma GCC poison DWARF2_UNWIND_INFO DWARF2_FRAME_INFO
140 /* The size of the target's pointer type. */
142 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
145 /* Array of RTXes referenced by the debugging information, which therefore
146 must be kept around forever. */
147 static GTY(()) vec
<rtx
, va_gc
> *used_rtx_array
;
149 /* A pointer to the base of a list of incomplete types which might be
150 completed at some later time. incomplete_types_list needs to be a
151 vec<tree, va_gc> *because we want to tell the garbage collector about
153 static GTY(()) vec
<tree
, va_gc
> *incomplete_types
;
155 /* Pointers to various DWARF2 sections. */
156 static GTY(()) section
*debug_info_section
;
157 static GTY(()) section
*debug_skeleton_info_section
;
158 static GTY(()) section
*debug_abbrev_section
;
159 static GTY(()) section
*debug_skeleton_abbrev_section
;
160 static GTY(()) section
*debug_aranges_section
;
161 static GTY(()) section
*debug_addr_section
;
162 static GTY(()) section
*debug_macinfo_section
;
163 static const char *debug_macinfo_section_name
;
164 static unsigned macinfo_label_base
= 1;
165 static GTY(()) section
*debug_line_section
;
166 static GTY(()) section
*debug_skeleton_line_section
;
167 static GTY(()) section
*debug_loc_section
;
168 static GTY(()) section
*debug_pubnames_section
;
169 static GTY(()) section
*debug_pubtypes_section
;
170 static GTY(()) section
*debug_str_section
;
171 static GTY(()) section
*debug_line_str_section
;
172 static GTY(()) section
*debug_str_dwo_section
;
173 static GTY(()) section
*debug_str_offsets_section
;
174 static GTY(()) section
*debug_ranges_section
;
175 static GTY(()) section
*debug_ranges_dwo_section
;
176 static GTY(()) section
*debug_frame_section
;
178 /* Maximum size (in bytes) of an artificially generated label. */
179 #define MAX_ARTIFICIAL_LABEL_BYTES 40
181 /* According to the (draft) DWARF 3 specification, the initial length
182 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
183 bytes are 0xffffffff, followed by the length stored in the next 8
186 However, the SGI/MIPS ABI uses an initial length which is equal to
187 dwarf_offset_size. It is defined (elsewhere) accordingly. */
189 #ifndef DWARF_INITIAL_LENGTH_SIZE
190 #define DWARF_INITIAL_LENGTH_SIZE (dwarf_offset_size == 4 ? 4 : 12)
193 #ifndef DWARF_INITIAL_LENGTH_SIZE_STR
194 #define DWARF_INITIAL_LENGTH_SIZE_STR (dwarf_offset_size == 4 ? "-4" : "-12")
197 /* Round SIZE up to the nearest BOUNDARY. */
198 #define DWARF_ROUND(SIZE,BOUNDARY) \
199 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
201 /* CIE identifier. */
202 #if HOST_BITS_PER_WIDE_INT >= 64
203 #define DWARF_CIE_ID \
204 (unsigned HOST_WIDE_INT) (dwarf_offset_size == 4 ? DW_CIE_ID : DW64_CIE_ID)
206 #define DWARF_CIE_ID DW_CIE_ID
210 /* A vector for a table that contains frame description
211 information for each routine. */
212 #define NOT_INDEXED (-1U)
213 #define NO_INDEX_ASSIGNED (-2U)
215 static GTY(()) vec
<dw_fde_ref
, va_gc
> *fde_vec
;
217 struct GTY((for_user
)) indirect_string_node
{
219 unsigned int refcount
;
220 enum dwarf_form form
;
225 struct indirect_string_hasher
: ggc_ptr_hash
<indirect_string_node
>
227 typedef const char *compare_type
;
229 static hashval_t
hash (indirect_string_node
*);
230 static bool equal (indirect_string_node
*, const char *);
233 static GTY (()) hash_table
<indirect_string_hasher
> *debug_str_hash
;
235 static GTY (()) hash_table
<indirect_string_hasher
> *debug_line_str_hash
;
237 /* With split_debug_info, both the comp_dir and dwo_name go in the
238 main object file, rather than the dwo, similar to the force_direct
239 parameter elsewhere but with additional complications:
241 1) The string is needed in both the main object file and the dwo.
242 That is, the comp_dir and dwo_name will appear in both places.
244 2) Strings can use four forms: DW_FORM_string, DW_FORM_strp,
245 DW_FORM_line_strp or DW_FORM_strx/GNU_str_index.
247 3) GCC chooses the form to use late, depending on the size and
250 Rather than forcing the all debug string handling functions and
251 callers to deal with these complications, simply use a separate,
252 special-cased string table for any attribute that should go in the
253 main object file. This limits the complexity to just the places
256 static GTY (()) hash_table
<indirect_string_hasher
> *skeleton_debug_str_hash
;
258 static GTY(()) int dw2_string_counter
;
260 /* True if the compilation unit places functions in more than one section. */
261 static GTY(()) bool have_multiple_function_sections
= false;
263 /* The default cold text section. */
264 static GTY(()) section
*cold_text_section
;
266 /* True if currently in text section. */
267 static GTY(()) bool in_text_section_p
= false;
269 /* Last debug-on location in corresponding section. */
270 static GTY(()) const char *last_text_label
;
271 static GTY(()) const char *last_cold_label
;
273 /* Mark debug-on/off locations per section.
274 NULL means the section is not used at all. */
275 static GTY(()) vec
<const char *, va_gc
> *switch_text_ranges
;
276 static GTY(()) vec
<const char *, va_gc
> *switch_cold_ranges
;
278 /* The DIE for C++14 'auto' in a function return type. */
279 static GTY(()) dw_die_ref auto_die
;
281 /* The DIE for C++14 'decltype(auto)' in a function return type. */
282 static GTY(()) dw_die_ref decltype_auto_die
;
284 /* Forward declarations for functions defined in this file. */
286 static void output_call_frame_info (int);
288 /* Personality decl of current unit. Used only when assembler does not support
290 static GTY(()) rtx current_unit_personality
;
292 /* Whether an eh_frame section is required. */
293 static GTY(()) bool do_eh_frame
= false;
295 /* .debug_rnglists next index. */
296 static unsigned int rnglist_idx
;
298 /* Data and reference forms for relocatable data. */
299 #define DW_FORM_data (dwarf_offset_size == 8 ? DW_FORM_data8 : DW_FORM_data4)
300 #define DW_FORM_ref (dwarf_offset_size == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
302 #ifndef DEBUG_FRAME_SECTION
303 #define DEBUG_FRAME_SECTION ".debug_frame"
306 #ifndef FUNC_BEGIN_LABEL
307 #define FUNC_BEGIN_LABEL "LFB"
310 #ifndef FUNC_SECOND_SECT_LABEL
311 #define FUNC_SECOND_SECT_LABEL "LFSB"
314 #ifndef FUNC_END_LABEL
315 #define FUNC_END_LABEL "LFE"
318 #ifndef PROLOGUE_END_LABEL
319 #define PROLOGUE_END_LABEL "LPE"
322 #ifndef EPILOGUE_BEGIN_LABEL
323 #define EPILOGUE_BEGIN_LABEL "LEB"
326 #ifndef FRAME_BEGIN_LABEL
327 #define FRAME_BEGIN_LABEL "Lframe"
329 #define CIE_AFTER_SIZE_LABEL "LSCIE"
330 #define CIE_END_LABEL "LECIE"
331 #define FDE_LABEL "LSFDE"
332 #define FDE_AFTER_SIZE_LABEL "LASFDE"
333 #define FDE_END_LABEL "LEFDE"
334 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
335 #define LINE_NUMBER_END_LABEL "LELT"
336 #define LN_PROLOG_AS_LABEL "LASLTP"
337 #define LN_PROLOG_END_LABEL "LELTP"
338 #define DIE_LABEL_PREFIX "DW"
340 /* Match the base name of a file to the base name of a compilation unit. */
343 matches_main_base (const char *path
)
345 /* Cache the last query. */
346 static const char *last_path
= NULL
;
347 static int last_match
= 0;
348 if (path
!= last_path
)
351 int length
= base_of_path (path
, &base
);
353 last_match
= (length
== main_input_baselength
354 && memcmp (base
, main_input_basename
, length
) == 0);
359 #ifdef DEBUG_DEBUG_STRUCT
362 dump_struct_debug (tree type
, enum debug_info_usage usage
,
363 enum debug_struct_file criterion
, int generic
,
364 int matches
, int result
)
366 /* Find the type name. */
367 tree type_decl
= TYPE_STUB_DECL (type
);
369 const char *name
= 0;
370 if (TREE_CODE (t
) == TYPE_DECL
)
373 name
= IDENTIFIER_POINTER (t
);
375 fprintf (stderr
, " struct %d %s %s %s %s %d %p %s\n",
377 DECL_IN_SYSTEM_HEADER (type_decl
) ? "sys" : "usr",
378 matches
? "bas" : "hdr",
379 generic
? "gen" : "ord",
380 usage
== DINFO_USAGE_DFN
? ";" :
381 usage
== DINFO_USAGE_DIR_USE
? "." : "*",
383 (void*) type_decl
, name
);
386 #define DUMP_GSTRUCT(type, usage, criterion, generic, matches, result) \
387 dump_struct_debug (type, usage, criterion, generic, matches, result)
391 #define DUMP_GSTRUCT(type, usage, criterion, generic, matches, result) \
396 /* Get the number of HOST_WIDE_INTs needed to represent the precision
400 get_full_len (const wide_int
&op
)
402 int prec
= wi::get_precision (op
);
403 return ((prec
+ HOST_BITS_PER_WIDE_INT
- 1)
404 / HOST_BITS_PER_WIDE_INT
);
408 should_emit_struct_debug (tree type
, enum debug_info_usage usage
)
410 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
413 enum debug_struct_file criterion
;
415 bool generic
= lang_hooks
.types
.generic_p (type
);
418 criterion
= debug_struct_generic
[usage
];
420 criterion
= debug_struct_ordinary
[usage
];
422 if (criterion
== DINFO_STRUCT_FILE_NONE
)
423 return DUMP_GSTRUCT (type
, usage
, criterion
, generic
, false, false);
424 if (criterion
== DINFO_STRUCT_FILE_ANY
)
425 return DUMP_GSTRUCT (type
, usage
, criterion
, generic
, false, true);
427 type_decl
= TYPE_STUB_DECL (TYPE_MAIN_VARIANT (type
));
429 if (type_decl
!= NULL
)
431 if (criterion
== DINFO_STRUCT_FILE_SYS
&& DECL_IN_SYSTEM_HEADER (type_decl
))
432 return DUMP_GSTRUCT (type
, usage
, criterion
, generic
, false, true);
434 if (matches_main_base (DECL_SOURCE_FILE (type_decl
)))
435 return DUMP_GSTRUCT (type
, usage
, criterion
, generic
, true, true);
438 return DUMP_GSTRUCT (type
, usage
, criterion
, generic
, false, false);
441 /* Switch [BACK] to eh_frame_section. If we don't have an eh_frame_section,
442 switch to the data section instead, and write out a synthetic start label
443 for collect2 the first time around. */
446 switch_to_eh_frame_section (bool back ATTRIBUTE_UNUSED
)
448 if (eh_frame_section
== 0)
452 if (EH_TABLES_CAN_BE_READ_ONLY
)
458 fde_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1,
460 per_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,
462 lsda_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,
465 || ((fde_encoding
& 0x70) != DW_EH_PE_absptr
466 && (fde_encoding
& 0x70) != DW_EH_PE_aligned
467 && (per_encoding
& 0x70) != DW_EH_PE_absptr
468 && (per_encoding
& 0x70) != DW_EH_PE_aligned
469 && (lsda_encoding
& 0x70) != DW_EH_PE_absptr
470 && (lsda_encoding
& 0x70) != DW_EH_PE_aligned
))
471 ? 0 : SECTION_WRITE
);
474 flags
= SECTION_WRITE
;
476 #ifdef EH_FRAME_SECTION_NAME
477 eh_frame_section
= get_section (EH_FRAME_SECTION_NAME
, flags
, NULL
);
479 eh_frame_section
= ((flags
== SECTION_WRITE
)
480 ? data_section
: readonly_data_section
);
481 #endif /* EH_FRAME_SECTION_NAME */
484 switch_to_section (eh_frame_section
);
486 #ifdef EH_FRAME_THROUGH_COLLECT2
487 /* We have no special eh_frame section. Emit special labels to guide
491 tree label
= get_file_function_name ("F");
492 ASM_OUTPUT_ALIGN (asm_out_file
, floor_log2 (PTR_SIZE
));
493 targetm
.asm_out
.globalize_label (asm_out_file
,
494 IDENTIFIER_POINTER (label
));
495 ASM_OUTPUT_LABEL (asm_out_file
, IDENTIFIER_POINTER (label
));
500 /* Switch [BACK] to the eh or debug frame table section, depending on
504 switch_to_frame_table_section (int for_eh
, bool back
)
507 switch_to_eh_frame_section (back
);
510 if (!debug_frame_section
)
511 debug_frame_section
= get_section (DEBUG_FRAME_SECTION
,
512 SECTION_DEBUG
, NULL
);
513 switch_to_section (debug_frame_section
);
517 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
519 enum dw_cfi_oprnd_type
520 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi
)
525 case DW_CFA_GNU_window_save
:
526 case DW_CFA_remember_state
:
527 case DW_CFA_restore_state
:
528 return dw_cfi_oprnd_unused
;
531 case DW_CFA_advance_loc1
:
532 case DW_CFA_advance_loc2
:
533 case DW_CFA_advance_loc4
:
534 case DW_CFA_MIPS_advance_loc8
:
535 return dw_cfi_oprnd_addr
;
538 case DW_CFA_offset_extended
:
540 case DW_CFA_offset_extended_sf
:
541 case DW_CFA_def_cfa_sf
:
543 case DW_CFA_restore_extended
:
544 case DW_CFA_undefined
:
545 case DW_CFA_same_value
:
546 case DW_CFA_def_cfa_register
:
547 case DW_CFA_register
:
548 case DW_CFA_expression
:
549 case DW_CFA_val_expression
:
550 return dw_cfi_oprnd_reg_num
;
552 case DW_CFA_def_cfa_offset
:
553 case DW_CFA_GNU_args_size
:
554 case DW_CFA_def_cfa_offset_sf
:
555 return dw_cfi_oprnd_offset
;
557 case DW_CFA_def_cfa_expression
:
558 return dw_cfi_oprnd_loc
;
565 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
567 enum dw_cfi_oprnd_type
568 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi
)
573 case DW_CFA_def_cfa_sf
:
575 case DW_CFA_offset_extended_sf
:
576 case DW_CFA_offset_extended
:
577 return dw_cfi_oprnd_offset
;
579 case DW_CFA_register
:
580 return dw_cfi_oprnd_reg_num
;
582 case DW_CFA_expression
:
583 case DW_CFA_val_expression
:
584 return dw_cfi_oprnd_loc
;
586 case DW_CFA_def_cfa_expression
:
587 return dw_cfi_oprnd_cfa_loc
;
590 return dw_cfi_oprnd_unused
;
594 /* Output one FDE. */
597 output_fde (dw_fde_ref fde
, bool for_eh
, bool second
,
598 char *section_start_label
, int fde_encoding
, char *augmentation
,
599 bool any_lsda_needed
, int lsda_encoding
)
601 const char *begin
, *end
;
602 static unsigned int j
;
603 char l1
[MAX_ARTIFICIAL_LABEL_BYTES
], l2
[MAX_ARTIFICIAL_LABEL_BYTES
];
605 targetm
.asm_out
.emit_unwind_label (asm_out_file
, fde
->decl
, for_eh
,
607 targetm
.asm_out
.internal_label (asm_out_file
, FDE_LABEL
,
609 ASM_GENERATE_INTERNAL_LABEL (l1
, FDE_AFTER_SIZE_LABEL
, for_eh
+ j
);
610 ASM_GENERATE_INTERNAL_LABEL (l2
, FDE_END_LABEL
, for_eh
+ j
);
611 if (!XCOFF_DEBUGGING_INFO
|| for_eh
)
613 if (DWARF_INITIAL_LENGTH_SIZE
- dwarf_offset_size
== 4 && !for_eh
)
614 dw2_asm_output_data (4, 0xffffffff, "Initial length escape value"
615 " indicating 64-bit DWARF extension");
616 dw2_asm_output_delta (for_eh
? 4 : dwarf_offset_size
, l2
, l1
,
619 ASM_OUTPUT_LABEL (asm_out_file
, l1
);
622 dw2_asm_output_delta (4, l1
, section_start_label
, "FDE CIE offset");
624 dw2_asm_output_offset (dwarf_offset_size
, section_start_label
,
625 debug_frame_section
, "FDE CIE offset");
627 begin
= second
? fde
->dw_fde_second_begin
: fde
->dw_fde_begin
;
628 end
= second
? fde
->dw_fde_second_end
: fde
->dw_fde_end
;
632 rtx sym_ref
= gen_rtx_SYMBOL_REF (Pmode
, begin
);
633 SYMBOL_REF_FLAGS (sym_ref
) |= SYMBOL_FLAG_LOCAL
;
634 dw2_asm_output_encoded_addr_rtx (fde_encoding
, sym_ref
, false,
635 "FDE initial location");
636 dw2_asm_output_delta (size_of_encoded_value (fde_encoding
),
637 end
, begin
, "FDE address range");
641 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, begin
, "FDE initial location");
642 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, end
, begin
, "FDE address range");
649 int size
= size_of_encoded_value (lsda_encoding
);
651 if (lsda_encoding
== DW_EH_PE_aligned
)
653 int offset
= ( 4 /* Length */
655 + 2 * size_of_encoded_value (fde_encoding
)
656 + 1 /* Augmentation size */ );
657 int pad
= -offset
& (PTR_SIZE
- 1);
660 gcc_assert (size_of_uleb128 (size
) == 1);
663 dw2_asm_output_data_uleb128 (size
, "Augmentation size");
665 if (fde
->uses_eh_lsda
)
667 ASM_GENERATE_INTERNAL_LABEL (l1
, second
? "LLSDAC" : "LLSDA",
668 fde
->funcdef_number
);
669 dw2_asm_output_encoded_addr_rtx (lsda_encoding
,
670 gen_rtx_SYMBOL_REF (Pmode
, l1
),
672 "Language Specific Data Area");
676 if (lsda_encoding
== DW_EH_PE_aligned
)
677 ASM_OUTPUT_ALIGN (asm_out_file
, floor_log2 (PTR_SIZE
));
678 dw2_asm_output_data (size_of_encoded_value (lsda_encoding
), 0,
679 "Language Specific Data Area (none)");
683 dw2_asm_output_data_uleb128 (0, "Augmentation size");
686 /* Loop through the Call Frame Instructions associated with this FDE. */
687 fde
->dw_fde_current_label
= begin
;
689 size_t from
, until
, i
;
692 until
= vec_safe_length (fde
->dw_fde_cfi
);
694 if (fde
->dw_fde_second_begin
== NULL
)
697 until
= fde
->dw_fde_switch_cfi_index
;
699 from
= fde
->dw_fde_switch_cfi_index
;
701 for (i
= from
; i
< until
; i
++)
702 output_cfi ((*fde
->dw_fde_cfi
)[i
], fde
, for_eh
);
705 /* If we are to emit a ref/link from function bodies to their frame tables,
706 do it now. This is typically performed to make sure that tables
707 associated with functions are dragged with them and not discarded in
708 garbage collecting links. We need to do this on a per function basis to
709 cope with -ffunction-sections. */
711 #ifdef ASM_OUTPUT_DWARF_TABLE_REF
712 /* Switch to the function section, emit the ref to the tables, and
713 switch *back* into the table section. */
714 switch_to_section (function_section (fde
->decl
));
715 ASM_OUTPUT_DWARF_TABLE_REF (section_start_label
);
716 switch_to_frame_table_section (for_eh
, true);
719 /* Pad the FDE out to an address sized boundary. */
720 ASM_OUTPUT_ALIGN (asm_out_file
,
721 floor_log2 ((for_eh
? PTR_SIZE
: DWARF2_ADDR_SIZE
)));
722 ASM_OUTPUT_LABEL (asm_out_file
, l2
);
727 /* Return true if frame description entry FDE is needed for EH. */
730 fde_needed_for_eh_p (dw_fde_ref fde
)
732 if (flag_asynchronous_unwind_tables
)
735 if (TARGET_USES_WEAK_UNWIND_INFO
&& DECL_WEAK (fde
->decl
))
738 if (fde
->uses_eh_lsda
)
741 /* If exceptions are enabled, we have collected nothrow info. */
742 if (flag_exceptions
&& (fde
->all_throwers_are_sibcalls
|| fde
->nothrow
))
748 /* Output the call frame information used to record information
749 that relates to calculating the frame pointer, and records the
750 location of saved registers. */
753 output_call_frame_info (int for_eh
)
758 char l1
[MAX_ARTIFICIAL_LABEL_BYTES
], l2
[MAX_ARTIFICIAL_LABEL_BYTES
];
759 char section_start_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
760 bool any_lsda_needed
= false;
761 char augmentation
[6];
762 int augmentation_size
;
763 int fde_encoding
= DW_EH_PE_absptr
;
764 int per_encoding
= DW_EH_PE_absptr
;
765 int lsda_encoding
= DW_EH_PE_absptr
;
767 rtx personality
= NULL
;
770 /* Don't emit a CIE if there won't be any FDEs. */
774 /* Nothing to do if the assembler's doing it all. */
775 if (dwarf2out_do_cfi_asm ())
778 /* If we don't have any functions we'll want to unwind out of, don't emit
779 any EH unwind information. If we make FDEs linkonce, we may have to
780 emit an empty label for an FDE that wouldn't otherwise be emitted. We
781 want to avoid having an FDE kept around when the function it refers to
782 is discarded. Example where this matters: a primary function template
783 in C++ requires EH information, an explicit specialization doesn't. */
786 bool any_eh_needed
= false;
788 FOR_EACH_VEC_ELT (*fde_vec
, i
, fde
)
790 if (fde
->uses_eh_lsda
)
791 any_eh_needed
= any_lsda_needed
= true;
792 else if (fde_needed_for_eh_p (fde
))
793 any_eh_needed
= true;
794 else if (TARGET_USES_WEAK_UNWIND_INFO
)
795 targetm
.asm_out
.emit_unwind_label (asm_out_file
, fde
->decl
, 1, 1);
802 /* We're going to be generating comments, so turn on app. */
806 /* Switch to the proper frame section, first time. */
807 switch_to_frame_table_section (for_eh
, false);
809 ASM_GENERATE_INTERNAL_LABEL (section_start_label
, FRAME_BEGIN_LABEL
, for_eh
);
810 ASM_OUTPUT_LABEL (asm_out_file
, section_start_label
);
812 /* Output the CIE. */
813 ASM_GENERATE_INTERNAL_LABEL (l1
, CIE_AFTER_SIZE_LABEL
, for_eh
);
814 ASM_GENERATE_INTERNAL_LABEL (l2
, CIE_END_LABEL
, for_eh
);
815 if (!XCOFF_DEBUGGING_INFO
|| for_eh
)
817 if (DWARF_INITIAL_LENGTH_SIZE
- dwarf_offset_size
== 4 && !for_eh
)
818 dw2_asm_output_data (4, 0xffffffff,
819 "Initial length escape value indicating 64-bit DWARF extension");
820 dw2_asm_output_delta (for_eh
? 4 : dwarf_offset_size
, l2
, l1
,
821 "Length of Common Information Entry");
823 ASM_OUTPUT_LABEL (asm_out_file
, l1
);
825 /* Now that the CIE pointer is PC-relative for EH,
826 use 0 to identify the CIE. */
827 dw2_asm_output_data ((for_eh
? 4 : dwarf_offset_size
),
828 (for_eh
? 0 : DWARF_CIE_ID
),
829 "CIE Identifier Tag");
831 /* Use the CIE version 3 for DWARF3; allow DWARF2 to continue to
832 use CIE version 1, unless that would produce incorrect results
833 due to overflowing the return register column. */
834 return_reg
= DWARF2_FRAME_REG_OUT (DWARF_FRAME_RETURN_COLUMN
, for_eh
);
836 if (return_reg
>= 256 || dwarf_version
> 2)
838 dw2_asm_output_data (1, dw_cie_version
, "CIE Version");
841 augmentation_size
= 0;
843 personality
= current_unit_personality
;
849 z Indicates that a uleb128 is present to size the
850 augmentation section.
851 L Indicates the encoding (and thus presence) of
852 an LSDA pointer in the FDE augmentation.
853 R Indicates a non-default pointer encoding for
855 P Indicates the presence of an encoding + language
856 personality routine in the CIE augmentation. */
858 fde_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
859 per_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
860 lsda_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
862 p
= augmentation
+ 1;
866 augmentation_size
+= 1 + size_of_encoded_value (per_encoding
);
867 assemble_external_libcall (personality
);
872 augmentation_size
+= 1;
874 if (fde_encoding
!= DW_EH_PE_absptr
)
877 augmentation_size
+= 1;
879 if (p
> augmentation
+ 1)
881 augmentation
[0] = 'z';
885 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
886 if (personality
&& per_encoding
== DW_EH_PE_aligned
)
888 int offset
= ( 4 /* Length */
890 + 1 /* CIE version */
891 + strlen (augmentation
) + 1 /* Augmentation */
892 + size_of_uleb128 (1) /* Code alignment */
893 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT
)
895 + 1 /* Augmentation size */
896 + 1 /* Personality encoding */ );
897 int pad
= -offset
& (PTR_SIZE
- 1);
899 augmentation_size
+= pad
;
901 /* Augmentations should be small, so there's scarce need to
902 iterate for a solution. Die if we exceed one uleb128 byte. */
903 gcc_assert (size_of_uleb128 (augmentation_size
) == 1);
907 dw2_asm_output_nstring (augmentation
, -1, "CIE Augmentation");
908 if (dw_cie_version
>= 4)
910 dw2_asm_output_data (1, DWARF2_ADDR_SIZE
, "CIE Address Size");
911 dw2_asm_output_data (1, 0, "CIE Segment Size");
913 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
914 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT
,
915 "CIE Data Alignment Factor");
917 if (dw_cie_version
== 1)
918 dw2_asm_output_data (1, return_reg
, "CIE RA Column");
920 dw2_asm_output_data_uleb128 (return_reg
, "CIE RA Column");
924 dw2_asm_output_data_uleb128 (augmentation_size
, "Augmentation size");
927 dw2_asm_output_data (1, per_encoding
, "Personality (%s)",
928 eh_data_format_name (per_encoding
));
929 dw2_asm_output_encoded_addr_rtx (per_encoding
,
935 dw2_asm_output_data (1, lsda_encoding
, "LSDA Encoding (%s)",
936 eh_data_format_name (lsda_encoding
));
938 if (fde_encoding
!= DW_EH_PE_absptr
)
939 dw2_asm_output_data (1, fde_encoding
, "FDE Encoding (%s)",
940 eh_data_format_name (fde_encoding
));
943 FOR_EACH_VEC_ELT (*cie_cfi_vec
, i
, cfi
)
944 output_cfi (cfi
, NULL
, for_eh
);
946 /* Pad the CIE out to an address sized boundary. */
947 ASM_OUTPUT_ALIGN (asm_out_file
,
948 floor_log2 (for_eh
? PTR_SIZE
: DWARF2_ADDR_SIZE
));
949 ASM_OUTPUT_LABEL (asm_out_file
, l2
);
951 /* Loop through all of the FDE's. */
952 FOR_EACH_VEC_ELT (*fde_vec
, i
, fde
)
956 /* Don't emit EH unwind info for leaf functions that don't need it. */
957 if (for_eh
&& !fde_needed_for_eh_p (fde
))
960 for (k
= 0; k
< (fde
->dw_fde_second_begin
? 2 : 1); k
++)
961 output_fde (fde
, for_eh
, k
, section_start_label
, fde_encoding
,
962 augmentation
, any_lsda_needed
, lsda_encoding
);
965 if (for_eh
&& targetm
.terminate_dw2_eh_frame_info
)
966 dw2_asm_output_data (4, 0, "End of Table");
968 /* Turn off app to make assembly quicker. */
973 /* Emit .cfi_startproc and .cfi_personality/.cfi_lsda if needed. */
976 dwarf2out_do_cfi_startproc (bool second
)
981 fprintf (asm_out_file
, "\t.cfi_startproc\n");
983 targetm
.asm_out
.post_cfi_startproc (asm_out_file
, current_function_decl
);
985 /* .cfi_personality and .cfi_lsda are only relevant to DWARF2
987 if (targetm_common
.except_unwind_info (&global_options
) != UI_DWARF2
)
990 rtx personality
= get_personality_function (current_function_decl
);
994 enc
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
997 /* ??? The GAS support isn't entirely consistent. We have to
998 handle indirect support ourselves, but PC-relative is done
999 in the assembler. Further, the assembler can't handle any
1000 of the weirder relocation types. */
1001 if (enc
& DW_EH_PE_indirect
)
1003 if (targetm
.asm_out
.make_eh_symbol_indirect
!= NULL
)
1004 ref
= targetm
.asm_out
.make_eh_symbol_indirect (ref
, true);
1006 ref
= dw2_force_const_mem (ref
, true);
1009 fprintf (asm_out_file
, "\t.cfi_personality %#x,", enc
);
1010 output_addr_const (asm_out_file
, ref
);
1011 fputc ('\n', asm_out_file
);
1014 if (crtl
->uses_eh_lsda
)
1016 char lab
[MAX_ARTIFICIAL_LABEL_BYTES
];
1018 enc
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
1019 ASM_GENERATE_INTERNAL_LABEL (lab
, second
? "LLSDAC" : "LLSDA",
1020 current_function_funcdef_no
);
1021 ref
= gen_rtx_SYMBOL_REF (Pmode
, lab
);
1022 SYMBOL_REF_FLAGS (ref
) = SYMBOL_FLAG_LOCAL
;
1024 if (enc
& DW_EH_PE_indirect
)
1026 if (targetm
.asm_out
.make_eh_symbol_indirect
!= NULL
)
1027 ref
= targetm
.asm_out
.make_eh_symbol_indirect (ref
, true);
1029 ref
= dw2_force_const_mem (ref
, true);
1032 fprintf (asm_out_file
, "\t.cfi_lsda %#x,", enc
);
1033 output_addr_const (asm_out_file
, ref
);
1034 fputc ('\n', asm_out_file
);
1038 /* Allocate CURRENT_FDE. Immediately initialize all we can, noting that
1039 this allocation may be done before pass_final. */
1042 dwarf2out_alloc_current_fde (void)
1046 fde
= ggc_cleared_alloc
<dw_fde_node
> ();
1047 fde
->decl
= current_function_decl
;
1048 fde
->funcdef_number
= current_function_funcdef_no
;
1049 fde
->fde_index
= vec_safe_length (fde_vec
);
1050 fde
->all_throwers_are_sibcalls
= crtl
->all_throwers_are_sibcalls
;
1051 fde
->uses_eh_lsda
= crtl
->uses_eh_lsda
;
1052 fde
->nothrow
= crtl
->nothrow
;
1053 fde
->drap_reg
= INVALID_REGNUM
;
1054 fde
->vdrap_reg
= INVALID_REGNUM
;
1056 /* Record the FDE associated with this function. */
1058 vec_safe_push (fde_vec
, fde
);
1063 /* Output a marker (i.e. a label) for the beginning of a function, before
1067 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED
,
1068 unsigned int column ATTRIBUTE_UNUSED
,
1069 const char *file ATTRIBUTE_UNUSED
)
1071 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
1077 current_function_func_begin_label
= NULL
;
1079 do_frame
= dwarf2out_do_frame ();
1081 /* ??? current_function_func_begin_label is also used by except.cc for
1082 call-site information. We must emit this label if it might be used. */
1084 && (!flag_exceptions
1085 || targetm_common
.except_unwind_info (&global_options
) == UI_SJLJ
))
1088 fnsec
= function_section (current_function_decl
);
1089 switch_to_section (fnsec
);
1090 ASM_GENERATE_INTERNAL_LABEL (label
, FUNC_BEGIN_LABEL
,
1091 current_function_funcdef_no
);
1092 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, FUNC_BEGIN_LABEL
,
1093 current_function_funcdef_no
);
1094 dup_label
= xstrdup (label
);
1095 current_function_func_begin_label
= dup_label
;
1097 /* We can elide FDE allocation if we're not emitting frame unwind info. */
1101 /* Unlike the debug version, the EH version of frame unwind info is a per-
1102 function setting so we need to record whether we need it for the unit. */
1103 do_eh_frame
|= dwarf2out_do_eh_frame ();
1105 /* Cater to the various TARGET_ASM_OUTPUT_MI_THUNK implementations that
1106 emit insns as rtx but bypass the bulk of rest_of_compilation, which
1107 would include pass_dwarf2_frame. If we've not created the FDE yet,
1111 fde
= dwarf2out_alloc_current_fde ();
1113 /* Initialize the bits of CURRENT_FDE that were not available earlier. */
1114 fde
->dw_fde_begin
= dup_label
;
1115 fde
->dw_fde_current_label
= dup_label
;
1116 fde
->in_std_section
= (fnsec
== text_section
1117 || (cold_text_section
&& fnsec
== cold_text_section
));
1118 fde
->ignored_debug
= DECL_IGNORED_P (current_function_decl
);
1119 in_text_section_p
= fnsec
== text_section
;
1121 /* We only want to output line number information for the genuine dwarf2
1122 prologue case, not the eh frame case. */
1123 #ifdef DWARF2_DEBUGGING_INFO
1125 dwarf2out_source_line (line
, column
, file
, 0, true);
1128 if (dwarf2out_do_cfi_asm ())
1129 dwarf2out_do_cfi_startproc (false);
1132 rtx personality
= get_personality_function (current_function_decl
);
1133 if (!current_unit_personality
)
1134 current_unit_personality
= personality
;
1136 /* We cannot keep a current personality per function as without CFI
1137 asm, at the point where we emit the CFI data, there is no current
1138 function anymore. */
1139 if (personality
&& current_unit_personality
!= personality
)
1140 sorry ("multiple EH personalities are supported only with assemblers "
1141 "supporting %<.cfi_personality%> directive");
1145 /* Output a marker (i.e. a label) for the end of the generated code
1146 for a function prologue. This gets called *after* the prologue code has
1150 dwarf2out_vms_end_prologue (unsigned int line ATTRIBUTE_UNUSED
,
1151 const char *file ATTRIBUTE_UNUSED
)
1153 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
1155 /* Output a label to mark the endpoint of the code generated for this
1157 ASM_GENERATE_INTERNAL_LABEL (label
, PROLOGUE_END_LABEL
,
1158 current_function_funcdef_no
);
1159 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, PROLOGUE_END_LABEL
,
1160 current_function_funcdef_no
);
1161 cfun
->fde
->dw_fde_vms_end_prologue
= xstrdup (label
);
1164 /* Output a marker (i.e. a label) for the beginning of the generated code
1165 for a function epilogue. This gets called *before* the prologue code has
1169 dwarf2out_vms_begin_epilogue (unsigned int line ATTRIBUTE_UNUSED
,
1170 const char *file ATTRIBUTE_UNUSED
)
1172 dw_fde_ref fde
= cfun
->fde
;
1173 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
1175 if (fde
->dw_fde_vms_begin_epilogue
)
1178 /* Output a label to mark the endpoint of the code generated for this
1180 ASM_GENERATE_INTERNAL_LABEL (label
, EPILOGUE_BEGIN_LABEL
,
1181 current_function_funcdef_no
);
1182 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, EPILOGUE_BEGIN_LABEL
,
1183 current_function_funcdef_no
);
1184 fde
->dw_fde_vms_begin_epilogue
= xstrdup (label
);
1187 /* Mark the ranges of non-debug subsections in the std text sections. */
1190 mark_ignored_debug_section (dw_fde_ref fde
, bool second
)
1193 const char *begin_label
, *end_label
;
1194 const char **last_end_label
;
1195 vec
<const char *, va_gc
> **switch_ranges
;
1199 std_section
= fde
->second_in_std_section
;
1200 begin_label
= fde
->dw_fde_second_begin
;
1201 end_label
= fde
->dw_fde_second_end
;
1205 std_section
= fde
->in_std_section
;
1206 begin_label
= fde
->dw_fde_begin
;
1207 end_label
= fde
->dw_fde_end
;
1213 if (in_text_section_p
)
1215 last_end_label
= &last_text_label
;
1216 switch_ranges
= &switch_text_ranges
;
1220 last_end_label
= &last_cold_label
;
1221 switch_ranges
= &switch_cold_ranges
;
1224 if (fde
->ignored_debug
)
1226 if (*switch_ranges
&& !(vec_safe_length (*switch_ranges
) & 1))
1227 vec_safe_push (*switch_ranges
, *last_end_label
);
1231 *last_end_label
= end_label
;
1233 if (!*switch_ranges
)
1234 vec_alloc (*switch_ranges
, 16);
1235 else if (vec_safe_length (*switch_ranges
) & 1)
1236 vec_safe_push (*switch_ranges
, begin_label
);
1240 /* Output a marker (i.e. a label) for the absolute end of the generated code
1241 for a function definition. This gets called *after* the epilogue code has
1245 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED
,
1246 const char *file ATTRIBUTE_UNUSED
)
1249 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
1251 last_var_location_insn
= NULL
;
1252 cached_next_real_insn
= NULL
;
1254 if (dwarf2out_do_cfi_asm ())
1255 fprintf (asm_out_file
, "\t.cfi_endproc\n");
1257 /* Output a label to mark the endpoint of the code generated for this
1259 ASM_GENERATE_INTERNAL_LABEL (label
, FUNC_END_LABEL
,
1260 current_function_funcdef_no
);
1261 ASM_OUTPUT_LABEL (asm_out_file
, label
);
1263 gcc_assert (fde
!= NULL
);
1264 if (fde
->dw_fde_second_begin
== NULL
)
1265 fde
->dw_fde_end
= xstrdup (label
);
1267 mark_ignored_debug_section (fde
, fde
->dw_fde_second_begin
!= NULL
);
1271 dwarf2out_frame_finish (void)
1273 /* Output call frame information. */
1274 if (targetm
.debug_unwind_info () == UI_DWARF2
)
1275 output_call_frame_info (0);
1277 /* Output another copy for the unwinder. */
1279 output_call_frame_info (1);
1282 static void var_location_switch_text_section (void);
1283 static void set_cur_line_info_table (section
*);
1286 dwarf2out_switch_text_section (void)
1288 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
1290 dw_fde_ref fde
= cfun
->fde
;
1292 gcc_assert (cfun
&& fde
&& fde
->dw_fde_second_begin
== NULL
);
1294 ASM_GENERATE_INTERNAL_LABEL (label
, FUNC_SECOND_SECT_LABEL
,
1295 current_function_funcdef_no
);
1297 fde
->dw_fde_second_begin
= ggc_strdup (label
);
1298 if (!in_cold_section_p
)
1300 fde
->dw_fde_end
= crtl
->subsections
.cold_section_end_label
;
1301 fde
->dw_fde_second_end
= crtl
->subsections
.hot_section_end_label
;
1305 fde
->dw_fde_end
= crtl
->subsections
.hot_section_end_label
;
1306 fde
->dw_fde_second_end
= crtl
->subsections
.cold_section_end_label
;
1308 have_multiple_function_sections
= true;
1310 if (dwarf2out_do_cfi_asm ())
1311 fprintf (asm_out_file
, "\t.cfi_endproc\n");
1313 mark_ignored_debug_section (fde
, false);
1315 /* Now do the real section switch. */
1316 sect
= current_function_section ();
1317 switch_to_section (sect
);
1319 fde
->second_in_std_section
1320 = (sect
== text_section
1321 || (cold_text_section
&& sect
== cold_text_section
));
1322 in_text_section_p
= sect
== text_section
;
1324 if (dwarf2out_do_cfi_asm ())
1325 dwarf2out_do_cfi_startproc (true);
1327 var_location_switch_text_section ();
1329 if (cold_text_section
!= NULL
)
1330 set_cur_line_info_table (sect
);
1333 /* And now, the subset of the debugging information support code necessary
1334 for emitting location expressions. */
1336 /* Describe an entry into the .debug_addr section. */
1340 ate_kind_rtx_dtprel
,
1344 struct GTY((for_user
)) addr_table_entry
{
1346 unsigned int refcount
;
1348 union addr_table_entry_struct_union
1350 rtx
GTY ((tag ("0"))) rtl
;
1351 char * GTY ((tag ("1"))) label
;
1353 GTY ((desc ("%1.kind"))) addr
;
1356 typedef unsigned int var_loc_view
;
1358 /* Location lists are ranges + location descriptions for that range,
1359 so you can track variables that are in different places over
1360 their entire life. */
1361 typedef struct GTY(()) dw_loc_list_struct
{
1362 dw_loc_list_ref dw_loc_next
;
1363 const char *begin
; /* Label and addr_entry for start of range */
1364 addr_table_entry
*begin_entry
;
1365 const char *end
; /* Label for end of range */
1366 addr_table_entry
*end_entry
;
1367 char *ll_symbol
; /* Label for beginning of location list.
1368 Only on head of list. */
1369 char *vl_symbol
; /* Label for beginning of view list. Ditto. */
1370 const char *section
; /* Section this loclist is relative to */
1371 dw_loc_descr_ref expr
;
1372 var_loc_view vbegin
, vend
;
1374 /* True if all addresses in this and subsequent lists are known to be
1377 /* True if this list has been replaced by dw_loc_next. */
1379 /* True if it has been emitted into .debug_loc* / .debug_loclists*
1381 unsigned char emitted
: 1;
1382 /* True if hash field is index rather than hash value. */
1383 unsigned char num_assigned
: 1;
1384 /* True if .debug_loclists.dwo offset has been emitted for it already. */
1385 unsigned char offset_emitted
: 1;
1386 /* True if note_variable_value_in_expr has been called on it. */
1387 unsigned char noted_variable_value
: 1;
1388 /* True if the range should be emitted even if begin and end
1393 static dw_loc_descr_ref
int_loc_descriptor (poly_int64
);
1394 static dw_loc_descr_ref
uint_loc_descriptor (unsigned HOST_WIDE_INT
);
1396 /* Convert a DWARF stack opcode into its string name. */
1399 dwarf_stack_op_name (unsigned int op
)
1401 const char *name
= get_DW_OP_name (op
);
1406 return "OP_<unknown>";
1409 /* Return TRUE iff we're to output location view lists as a separate
1410 attribute next to the location lists, as an extension compatible
1411 with DWARF 2 and above. */
1414 dwarf2out_locviews_in_attribute ()
1416 return debug_variable_location_views
== 1;
1419 /* Return TRUE iff we're to output location view lists as part of the
1420 location lists, as proposed for standardization after DWARF 5. */
1423 dwarf2out_locviews_in_loclist ()
1425 #ifndef DW_LLE_view_pair
1428 return debug_variable_location_views
== -1;
1432 /* Return a pointer to a newly allocated location description. Location
1433 descriptions are simple expression terms that can be strung
1434 together to form more complicated location (address) descriptions. */
1436 static inline dw_loc_descr_ref
1437 new_loc_descr (enum dwarf_location_atom op
, unsigned HOST_WIDE_INT oprnd1
,
1438 unsigned HOST_WIDE_INT oprnd2
)
1440 dw_loc_descr_ref descr
= ggc_cleared_alloc
<dw_loc_descr_node
> ();
1442 descr
->dw_loc_opc
= op
;
1443 descr
->dw_loc_oprnd1
.val_class
= dw_val_class_unsigned_const
;
1444 descr
->dw_loc_oprnd1
.val_entry
= NULL
;
1445 descr
->dw_loc_oprnd1
.v
.val_unsigned
= oprnd1
;
1446 descr
->dw_loc_oprnd2
.val_class
= dw_val_class_unsigned_const
;
1447 descr
->dw_loc_oprnd2
.val_entry
= NULL
;
1448 descr
->dw_loc_oprnd2
.v
.val_unsigned
= oprnd2
;
1453 /* Add a location description term to a location description expression. */
1456 add_loc_descr (dw_loc_descr_ref
*list_head
, dw_loc_descr_ref descr
)
1458 dw_loc_descr_ref
*d
;
1460 /* Find the end of the chain. */
1461 for (d
= list_head
; (*d
) != NULL
; d
= &(*d
)->dw_loc_next
)
1467 /* Compare two location operands for exact equality. */
1470 dw_val_equal_p (dw_val_node
*a
, dw_val_node
*b
)
1472 if (a
->val_class
!= b
->val_class
)
1474 switch (a
->val_class
)
1476 case dw_val_class_none
:
1478 case dw_val_class_addr
:
1479 return rtx_equal_p (a
->v
.val_addr
, b
->v
.val_addr
);
1481 case dw_val_class_offset
:
1482 case dw_val_class_unsigned_const
:
1483 case dw_val_class_const
:
1484 case dw_val_class_unsigned_const_implicit
:
1485 case dw_val_class_const_implicit
:
1486 case dw_val_class_range_list
:
1487 /* These are all HOST_WIDE_INT, signed or unsigned. */
1488 return a
->v
.val_unsigned
== b
->v
.val_unsigned
;
1490 case dw_val_class_loc
:
1491 return a
->v
.val_loc
== b
->v
.val_loc
;
1492 case dw_val_class_loc_list
:
1493 return a
->v
.val_loc_list
== b
->v
.val_loc_list
;
1494 case dw_val_class_view_list
:
1495 return a
->v
.val_view_list
== b
->v
.val_view_list
;
1496 case dw_val_class_die_ref
:
1497 return a
->v
.val_die_ref
.die
== b
->v
.val_die_ref
.die
;
1498 case dw_val_class_fde_ref
:
1499 return a
->v
.val_fde_index
== b
->v
.val_fde_index
;
1500 case dw_val_class_symview
:
1501 return strcmp (a
->v
.val_symbolic_view
, b
->v
.val_symbolic_view
) == 0;
1502 case dw_val_class_lbl_id
:
1503 case dw_val_class_lineptr
:
1504 case dw_val_class_macptr
:
1505 case dw_val_class_loclistsptr
:
1506 case dw_val_class_high_pc
:
1507 return strcmp (a
->v
.val_lbl_id
, b
->v
.val_lbl_id
) == 0;
1508 case dw_val_class_str
:
1509 return a
->v
.val_str
== b
->v
.val_str
;
1510 case dw_val_class_flag
:
1511 return a
->v
.val_flag
== b
->v
.val_flag
;
1512 case dw_val_class_file
:
1513 case dw_val_class_file_implicit
:
1514 return a
->v
.val_file
== b
->v
.val_file
;
1515 case dw_val_class_decl_ref
:
1516 return a
->v
.val_decl_ref
== b
->v
.val_decl_ref
;
1518 case dw_val_class_const_double
:
1519 return (a
->v
.val_double
.high
== b
->v
.val_double
.high
1520 && a
->v
.val_double
.low
== b
->v
.val_double
.low
);
1522 case dw_val_class_wide_int
:
1523 return *a
->v
.val_wide
== *b
->v
.val_wide
;
1525 case dw_val_class_vec
:
1527 size_t a_len
= a
->v
.val_vec
.elt_size
* a
->v
.val_vec
.length
;
1528 size_t b_len
= b
->v
.val_vec
.elt_size
* b
->v
.val_vec
.length
;
1530 return (a_len
== b_len
1531 && !memcmp (a
->v
.val_vec
.array
, b
->v
.val_vec
.array
, a_len
));
1534 case dw_val_class_data8
:
1535 return memcmp (a
->v
.val_data8
, b
->v
.val_data8
, 8) == 0;
1537 case dw_val_class_vms_delta
:
1538 return (!strcmp (a
->v
.val_vms_delta
.lbl1
, b
->v
.val_vms_delta
.lbl1
)
1539 && !strcmp (a
->v
.val_vms_delta
.lbl2
, b
->v
.val_vms_delta
.lbl2
));
1541 case dw_val_class_discr_value
:
1542 return (a
->v
.val_discr_value
.pos
== b
->v
.val_discr_value
.pos
1543 && a
->v
.val_discr_value
.v
.uval
== b
->v
.val_discr_value
.v
.uval
);
1544 case dw_val_class_discr_list
:
1545 /* It makes no sense comparing two discriminant value lists. */
1551 /* Compare two location atoms for exact equality. */
1554 loc_descr_equal_p_1 (dw_loc_descr_ref a
, dw_loc_descr_ref b
)
1556 if (a
->dw_loc_opc
!= b
->dw_loc_opc
)
1559 /* ??? This is only ever set for DW_OP_constNu, for N equal to the
1560 address size, but since we always allocate cleared storage it
1561 should be zero for other types of locations. */
1562 if (a
->dtprel
!= b
->dtprel
)
1565 return (dw_val_equal_p (&a
->dw_loc_oprnd1
, &b
->dw_loc_oprnd1
)
1566 && dw_val_equal_p (&a
->dw_loc_oprnd2
, &b
->dw_loc_oprnd2
));
1569 /* Compare two complete location expressions for exact equality. */
1572 loc_descr_equal_p (dw_loc_descr_ref a
, dw_loc_descr_ref b
)
1578 if (a
== NULL
|| b
== NULL
)
1580 if (!loc_descr_equal_p_1 (a
, b
))
1589 /* Add a constant POLY_OFFSET to a location expression. */
1592 loc_descr_plus_const (dw_loc_descr_ref
*list_head
, poly_int64 poly_offset
)
1594 dw_loc_descr_ref loc
;
1597 gcc_assert (*list_head
!= NULL
);
1599 if (known_eq (poly_offset
, 0))
1602 /* Find the end of the chain. */
1603 for (loc
= *list_head
; loc
->dw_loc_next
!= NULL
; loc
= loc
->dw_loc_next
)
1606 HOST_WIDE_INT offset
;
1607 if (!poly_offset
.is_constant (&offset
))
1609 loc
->dw_loc_next
= int_loc_descriptor (poly_offset
);
1610 add_loc_descr (&loc
->dw_loc_next
, new_loc_descr (DW_OP_plus
, 0, 0));
1615 if (loc
->dw_loc_opc
== DW_OP_fbreg
1616 || (loc
->dw_loc_opc
>= DW_OP_breg0
&& loc
->dw_loc_opc
<= DW_OP_breg31
))
1617 p
= &loc
->dw_loc_oprnd1
.v
.val_int
;
1618 else if (loc
->dw_loc_opc
== DW_OP_bregx
)
1619 p
= &loc
->dw_loc_oprnd2
.v
.val_int
;
1621 /* If the last operation is fbreg, breg{0..31,x}, optimize by adjusting its
1622 offset. Don't optimize if an signed integer overflow would happen. */
1624 && ((offset
> 0 && *p
<= INTTYPE_MAXIMUM (HOST_WIDE_INT
) - offset
)
1625 || (offset
< 0 && *p
>= INTTYPE_MINIMUM (HOST_WIDE_INT
) - offset
)))
1628 else if (offset
> 0)
1629 loc
->dw_loc_next
= new_loc_descr (DW_OP_plus_uconst
, offset
, 0);
1634 = uint_loc_descriptor (-(unsigned HOST_WIDE_INT
) offset
);
1635 add_loc_descr (&loc
->dw_loc_next
, new_loc_descr (DW_OP_minus
, 0, 0));
1639 /* Return a pointer to a newly allocated location description for
1642 static inline dw_loc_descr_ref
1643 new_reg_loc_descr (unsigned int reg
, poly_int64 offset
)
1645 HOST_WIDE_INT const_offset
;
1646 if (offset
.is_constant (&const_offset
))
1649 return new_loc_descr ((enum dwarf_location_atom
) (DW_OP_breg0
+ reg
),
1652 return new_loc_descr (DW_OP_bregx
, reg
, const_offset
);
1656 dw_loc_descr_ref ret
= new_reg_loc_descr (reg
, 0);
1657 loc_descr_plus_const (&ret
, offset
);
1662 /* Add a constant OFFSET to a location list. */
1665 loc_list_plus_const (dw_loc_list_ref list_head
, poly_int64 offset
)
1668 for (d
= list_head
; d
!= NULL
; d
= d
->dw_loc_next
)
1669 loc_descr_plus_const (&d
->expr
, offset
);
1672 #define DWARF_REF_SIZE \
1673 (dwarf_version == 2 ? DWARF2_ADDR_SIZE : dwarf_offset_size)
1675 /* The number of bits that can be encoded by largest DW_FORM_dataN.
1676 In DWARF4 and earlier it is DW_FORM_data8 with 64 bits, in DWARF5
1677 DW_FORM_data16 with 128 bits. */
1678 #define DWARF_LARGEST_DATA_FORM_BITS \
1679 (dwarf_version >= 5 ? 128 : 64)
1681 /* Utility inline function for construction of ops that were GNU extension
1683 static inline enum dwarf_location_atom
1684 dwarf_OP (enum dwarf_location_atom op
)
1688 case DW_OP_implicit_pointer
:
1689 if (dwarf_version
< 5)
1690 return DW_OP_GNU_implicit_pointer
;
1693 case DW_OP_entry_value
:
1694 if (dwarf_version
< 5)
1695 return DW_OP_GNU_entry_value
;
1698 case DW_OP_const_type
:
1699 if (dwarf_version
< 5)
1700 return DW_OP_GNU_const_type
;
1703 case DW_OP_regval_type
:
1704 if (dwarf_version
< 5)
1705 return DW_OP_GNU_regval_type
;
1708 case DW_OP_deref_type
:
1709 if (dwarf_version
< 5)
1710 return DW_OP_GNU_deref_type
;
1714 if (dwarf_version
< 5)
1715 return DW_OP_GNU_convert
;
1718 case DW_OP_reinterpret
:
1719 if (dwarf_version
< 5)
1720 return DW_OP_GNU_reinterpret
;
1724 if (dwarf_version
< 5)
1725 return DW_OP_GNU_addr_index
;
1729 if (dwarf_version
< 5)
1730 return DW_OP_GNU_const_index
;
1739 /* Similarly for attributes. */
1740 static inline enum dwarf_attribute
1741 dwarf_AT (enum dwarf_attribute at
)
1745 case DW_AT_call_return_pc
:
1746 if (dwarf_version
< 5)
1747 return DW_AT_low_pc
;
1750 case DW_AT_call_tail_call
:
1751 if (dwarf_version
< 5)
1752 return DW_AT_GNU_tail_call
;
1755 case DW_AT_call_origin
:
1756 if (dwarf_version
< 5)
1757 return DW_AT_abstract_origin
;
1760 case DW_AT_call_target
:
1761 if (dwarf_version
< 5)
1762 return DW_AT_GNU_call_site_target
;
1765 case DW_AT_call_target_clobbered
:
1766 if (dwarf_version
< 5)
1767 return DW_AT_GNU_call_site_target_clobbered
;
1770 case DW_AT_call_parameter
:
1771 if (dwarf_version
< 5)
1772 return DW_AT_abstract_origin
;
1775 case DW_AT_call_value
:
1776 if (dwarf_version
< 5)
1777 return DW_AT_GNU_call_site_value
;
1780 case DW_AT_call_data_value
:
1781 if (dwarf_version
< 5)
1782 return DW_AT_GNU_call_site_data_value
;
1785 case DW_AT_call_all_calls
:
1786 if (dwarf_version
< 5)
1787 return DW_AT_GNU_all_call_sites
;
1790 case DW_AT_call_all_tail_calls
:
1791 if (dwarf_version
< 5)
1792 return DW_AT_GNU_all_tail_call_sites
;
1795 case DW_AT_dwo_name
:
1796 if (dwarf_version
< 5)
1797 return DW_AT_GNU_dwo_name
;
1800 case DW_AT_addr_base
:
1801 if (dwarf_version
< 5)
1802 return DW_AT_GNU_addr_base
;
1811 /* And similarly for tags. */
1812 static inline enum dwarf_tag
1813 dwarf_TAG (enum dwarf_tag tag
)
1817 case DW_TAG_call_site
:
1818 if (dwarf_version
< 5)
1819 return DW_TAG_GNU_call_site
;
1822 case DW_TAG_call_site_parameter
:
1823 if (dwarf_version
< 5)
1824 return DW_TAG_GNU_call_site_parameter
;
1833 /* And similarly for forms. */
1834 static inline enum dwarf_form
1835 dwarf_FORM (enum dwarf_form form
)
1840 if (dwarf_version
< 5)
1841 return DW_FORM_GNU_addr_index
;
1845 if (dwarf_version
< 5)
1846 return DW_FORM_GNU_str_index
;
1855 static unsigned long int get_base_type_offset (dw_die_ref
);
1857 /* Return the size of a location descriptor. */
1859 static unsigned long
1860 size_of_loc_descr (dw_loc_descr_ref loc
)
1862 unsigned long size
= 1;
1864 switch (loc
->dw_loc_opc
)
1867 size
+= DWARF2_ADDR_SIZE
;
1869 case DW_OP_GNU_addr_index
:
1871 case DW_OP_GNU_const_index
:
1873 gcc_assert (loc
->dw_loc_oprnd1
.val_entry
->index
!= NO_INDEX_ASSIGNED
);
1874 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.val_entry
->index
);
1893 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
1896 size
+= size_of_sleb128 (loc
->dw_loc_oprnd1
.v
.val_int
);
1901 case DW_OP_plus_uconst
:
1902 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
1940 size
+= size_of_sleb128 (loc
->dw_loc_oprnd1
.v
.val_int
);
1943 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
1946 size
+= size_of_sleb128 (loc
->dw_loc_oprnd1
.v
.val_int
);
1949 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
1950 size
+= size_of_sleb128 (loc
->dw_loc_oprnd2
.v
.val_int
);
1953 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
1955 case DW_OP_bit_piece
:
1956 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
1957 size
+= size_of_uleb128 (loc
->dw_loc_oprnd2
.v
.val_unsigned
);
1959 case DW_OP_deref_size
:
1960 case DW_OP_xderef_size
:
1969 case DW_OP_call_ref
:
1970 case DW_OP_GNU_variable_value
:
1971 size
+= DWARF_REF_SIZE
;
1973 case DW_OP_implicit_value
:
1974 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
)
1975 + loc
->dw_loc_oprnd1
.v
.val_unsigned
;
1977 case DW_OP_implicit_pointer
:
1978 case DW_OP_GNU_implicit_pointer
:
1979 size
+= DWARF_REF_SIZE
+ size_of_sleb128 (loc
->dw_loc_oprnd2
.v
.val_int
);
1981 case DW_OP_entry_value
:
1982 case DW_OP_GNU_entry_value
:
1984 unsigned long op_size
= size_of_locs (loc
->dw_loc_oprnd1
.v
.val_loc
);
1985 size
+= size_of_uleb128 (op_size
) + op_size
;
1988 case DW_OP_const_type
:
1989 case DW_OP_GNU_const_type
:
1992 = get_base_type_offset (loc
->dw_loc_oprnd1
.v
.val_die_ref
.die
);
1993 size
+= size_of_uleb128 (o
) + 1;
1994 switch (loc
->dw_loc_oprnd2
.val_class
)
1996 case dw_val_class_vec
:
1997 size
+= loc
->dw_loc_oprnd2
.v
.val_vec
.length
1998 * loc
->dw_loc_oprnd2
.v
.val_vec
.elt_size
;
2000 case dw_val_class_const
:
2001 size
+= HOST_BITS_PER_WIDE_INT
/ BITS_PER_UNIT
;
2003 case dw_val_class_const_double
:
2004 size
+= HOST_BITS_PER_DOUBLE_INT
/ BITS_PER_UNIT
;
2006 case dw_val_class_wide_int
:
2007 size
+= (get_full_len (*loc
->dw_loc_oprnd2
.v
.val_wide
)
2008 * HOST_BITS_PER_WIDE_INT
/ BITS_PER_UNIT
);
2015 case DW_OP_regval_type
:
2016 case DW_OP_GNU_regval_type
:
2019 = get_base_type_offset (loc
->dw_loc_oprnd2
.v
.val_die_ref
.die
);
2020 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
)
2021 + size_of_uleb128 (o
);
2024 case DW_OP_deref_type
:
2025 case DW_OP_GNU_deref_type
:
2028 = get_base_type_offset (loc
->dw_loc_oprnd2
.v
.val_die_ref
.die
);
2029 size
+= 1 + size_of_uleb128 (o
);
2033 case DW_OP_reinterpret
:
2034 case DW_OP_GNU_convert
:
2035 case DW_OP_GNU_reinterpret
:
2036 if (loc
->dw_loc_oprnd1
.val_class
== dw_val_class_unsigned_const
)
2037 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
2041 = get_base_type_offset (loc
->dw_loc_oprnd1
.v
.val_die_ref
.die
);
2042 size
+= size_of_uleb128 (o
);
2045 case DW_OP_GNU_parameter_ref
:
2055 /* Return the size of a series of location descriptors. */
2058 size_of_locs (dw_loc_descr_ref loc
)
2063 /* If there are no skip or bra opcodes, don't fill in the dw_loc_addr
2064 field, to avoid writing to a PCH file. */
2065 for (size
= 0, l
= loc
; l
!= NULL
; l
= l
->dw_loc_next
)
2067 if (l
->dw_loc_opc
== DW_OP_skip
|| l
->dw_loc_opc
== DW_OP_bra
)
2069 size
+= size_of_loc_descr (l
);
2074 for (size
= 0, l
= loc
; l
!= NULL
; l
= l
->dw_loc_next
)
2076 l
->dw_loc_addr
= size
;
2077 size
+= size_of_loc_descr (l
);
2083 /* Return the size of the value in a DW_AT_discr_value attribute. */
2086 size_of_discr_value (dw_discr_value
*discr_value
)
2088 if (discr_value
->pos
)
2089 return size_of_uleb128 (discr_value
->v
.uval
);
2091 return size_of_sleb128 (discr_value
->v
.sval
);
2094 /* Return the size of the value in a DW_AT_discr_list attribute. */
2097 size_of_discr_list (dw_discr_list_ref discr_list
)
2101 for (dw_discr_list_ref list
= discr_list
;
2103 list
= list
->dw_discr_next
)
2105 /* One byte for the discriminant value descriptor, and then one or two
2106 LEB128 numbers, depending on whether it's a single case label or a
2109 size
+= size_of_discr_value (&list
->dw_discr_lower_bound
);
2110 if (list
->dw_discr_range
!= 0)
2111 size
+= size_of_discr_value (&list
->dw_discr_upper_bound
);
2116 static HOST_WIDE_INT
extract_int (const unsigned char *, unsigned);
2117 static void get_ref_die_offset_label (char *, dw_die_ref
);
2118 static unsigned long int get_ref_die_offset (dw_die_ref
);
2120 /* Output location description stack opcode's operands (if any).
2121 The for_eh_or_skip parameter controls whether register numbers are
2122 converted using DWARF2_FRAME_REG_OUT, which is needed in the case that
2123 hard reg numbers have been processed via DWARF_FRAME_REGNUM (i.e. for unwind
2124 info). This should be suppressed for the cases that have not been converted
2125 (i.e. symbolic debug info), by setting the parameter < 0. See PR47324. */
2128 output_loc_operands (dw_loc_descr_ref loc
, int for_eh_or_skip
)
2130 dw_val_ref val1
= &loc
->dw_loc_oprnd1
;
2131 dw_val_ref val2
= &loc
->dw_loc_oprnd2
;
2133 switch (loc
->dw_loc_opc
)
2135 #ifdef DWARF2_DEBUGGING_INFO
2138 dw2_asm_output_data (2, val1
->v
.val_int
, NULL
);
2143 gcc_assert (targetm
.asm_out
.output_dwarf_dtprel
);
2144 targetm
.asm_out
.output_dwarf_dtprel (asm_out_file
, 4,
2146 fputc ('\n', asm_out_file
);
2151 dw2_asm_output_data (4, val1
->v
.val_int
, NULL
);
2156 gcc_assert (targetm
.asm_out
.output_dwarf_dtprel
);
2157 targetm
.asm_out
.output_dwarf_dtprel (asm_out_file
, 8,
2159 fputc ('\n', asm_out_file
);
2164 gcc_assert (HOST_BITS_PER_WIDE_INT
>= 64);
2165 dw2_asm_output_data (8, val1
->v
.val_int
, NULL
);
2172 gcc_assert (val1
->val_class
== dw_val_class_loc
);
2173 offset
= val1
->v
.val_loc
->dw_loc_addr
- (loc
->dw_loc_addr
+ 3);
2175 dw2_asm_output_data (2, offset
, NULL
);
2178 case DW_OP_implicit_value
:
2179 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
2180 switch (val2
->val_class
)
2182 case dw_val_class_const
:
2183 dw2_asm_output_data (val1
->v
.val_unsigned
, val2
->v
.val_int
, NULL
);
2185 case dw_val_class_vec
:
2187 unsigned int elt_size
= val2
->v
.val_vec
.elt_size
;
2188 unsigned int len
= val2
->v
.val_vec
.length
;
2192 if (elt_size
> sizeof (HOST_WIDE_INT
))
2197 for (i
= 0, p
= (unsigned char *) val2
->v
.val_vec
.array
;
2200 dw2_asm_output_data (elt_size
, extract_int (p
, elt_size
),
2201 "fp or vector constant word %u", i
);
2204 case dw_val_class_const_double
:
2206 unsigned HOST_WIDE_INT first
, second
;
2208 if (WORDS_BIG_ENDIAN
)
2210 first
= val2
->v
.val_double
.high
;
2211 second
= val2
->v
.val_double
.low
;
2215 first
= val2
->v
.val_double
.low
;
2216 second
= val2
->v
.val_double
.high
;
2218 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT
/ HOST_BITS_PER_CHAR
,
2220 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT
/ HOST_BITS_PER_CHAR
,
2224 case dw_val_class_wide_int
:
2227 int len
= get_full_len (*val2
->v
.val_wide
);
2228 if (WORDS_BIG_ENDIAN
)
2229 for (i
= len
- 1; i
>= 0; --i
)
2230 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT
/ HOST_BITS_PER_CHAR
,
2231 val2
->v
.val_wide
->elt (i
), NULL
);
2233 for (i
= 0; i
< len
; ++i
)
2234 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT
/ HOST_BITS_PER_CHAR
,
2235 val2
->v
.val_wide
->elt (i
), NULL
);
2238 case dw_val_class_addr
:
2239 gcc_assert (val1
->v
.val_unsigned
== DWARF2_ADDR_SIZE
);
2240 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE
, val2
->v
.val_addr
, NULL
);
2255 case DW_OP_implicit_value
:
2256 /* We currently don't make any attempt to make sure these are
2257 aligned properly like we do for the main unwind info, so
2258 don't support emitting things larger than a byte if we're
2259 only doing unwinding. */
2264 dw2_asm_output_data (1, val1
->v
.val_int
, NULL
);
2267 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
2270 dw2_asm_output_data_sleb128 (val1
->v
.val_int
, NULL
);
2273 dw2_asm_output_data (1, val1
->v
.val_int
, NULL
);
2275 case DW_OP_plus_uconst
:
2276 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
2310 dw2_asm_output_data_sleb128 (val1
->v
.val_int
, NULL
);
2314 unsigned r
= val1
->v
.val_unsigned
;
2315 if (for_eh_or_skip
>= 0)
2316 r
= DWARF2_FRAME_REG_OUT (r
, for_eh_or_skip
);
2317 gcc_assert (size_of_uleb128 (r
)
2318 == size_of_uleb128 (val1
->v
.val_unsigned
));
2319 dw2_asm_output_data_uleb128 (r
, NULL
);
2323 dw2_asm_output_data_sleb128 (val1
->v
.val_int
, NULL
);
2327 unsigned r
= val1
->v
.val_unsigned
;
2328 if (for_eh_or_skip
>= 0)
2329 r
= DWARF2_FRAME_REG_OUT (r
, for_eh_or_skip
);
2330 gcc_assert (size_of_uleb128 (r
)
2331 == size_of_uleb128 (val1
->v
.val_unsigned
));
2332 dw2_asm_output_data_uleb128 (r
, NULL
);
2333 dw2_asm_output_data_sleb128 (val2
->v
.val_int
, NULL
);
2337 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
2339 case DW_OP_bit_piece
:
2340 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
2341 dw2_asm_output_data_uleb128 (val2
->v
.val_unsigned
, NULL
);
2343 case DW_OP_deref_size
:
2344 case DW_OP_xderef_size
:
2345 dw2_asm_output_data (1, val1
->v
.val_int
, NULL
);
2351 if (targetm
.asm_out
.output_dwarf_dtprel
)
2353 targetm
.asm_out
.output_dwarf_dtprel (asm_out_file
,
2356 fputc ('\n', asm_out_file
);
2363 #ifdef DWARF2_DEBUGGING_INFO
2364 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE
, val1
->v
.val_addr
, NULL
);
2371 case DW_OP_GNU_addr_index
:
2373 case DW_OP_GNU_const_index
:
2375 gcc_assert (loc
->dw_loc_oprnd1
.val_entry
->index
!= NO_INDEX_ASSIGNED
);
2376 dw2_asm_output_data_uleb128 (loc
->dw_loc_oprnd1
.val_entry
->index
,
2377 "(index into .debug_addr)");
2383 unsigned long die_offset
2384 = get_ref_die_offset (val1
->v
.val_die_ref
.die
);
2385 /* Make sure the offset has been computed and that we can encode it as
2387 gcc_assert (die_offset
> 0
2388 && die_offset
<= (loc
->dw_loc_opc
== DW_OP_call2
2391 dw2_asm_output_data ((loc
->dw_loc_opc
== DW_OP_call2
) ? 2 : 4,
2396 case DW_OP_call_ref
:
2397 case DW_OP_GNU_variable_value
:
2399 char label
[MAX_ARTIFICIAL_LABEL_BYTES
2400 + HOST_BITS_PER_WIDE_INT
/ 2 + 2];
2401 gcc_assert (val1
->val_class
== dw_val_class_die_ref
);
2402 get_ref_die_offset_label (label
, val1
->v
.val_die_ref
.die
);
2403 dw2_asm_output_offset (DWARF_REF_SIZE
, label
, debug_info_section
, NULL
);
2407 case DW_OP_implicit_pointer
:
2408 case DW_OP_GNU_implicit_pointer
:
2410 char label
[MAX_ARTIFICIAL_LABEL_BYTES
2411 + HOST_BITS_PER_WIDE_INT
/ 2 + 2];
2412 gcc_assert (val1
->val_class
== dw_val_class_die_ref
);
2413 get_ref_die_offset_label (label
, val1
->v
.val_die_ref
.die
);
2414 dw2_asm_output_offset (DWARF_REF_SIZE
, label
, debug_info_section
, NULL
);
2415 dw2_asm_output_data_sleb128 (val2
->v
.val_int
, NULL
);
2419 case DW_OP_entry_value
:
2420 case DW_OP_GNU_entry_value
:
2421 dw2_asm_output_data_uleb128 (size_of_locs (val1
->v
.val_loc
), NULL
);
2422 output_loc_sequence (val1
->v
.val_loc
, for_eh_or_skip
);
2425 case DW_OP_const_type
:
2426 case DW_OP_GNU_const_type
:
2428 unsigned long o
= get_base_type_offset (val1
->v
.val_die_ref
.die
), l
;
2430 dw2_asm_output_data_uleb128 (o
, NULL
);
2431 switch (val2
->val_class
)
2433 case dw_val_class_const
:
2434 l
= HOST_BITS_PER_WIDE_INT
/ HOST_BITS_PER_CHAR
;
2435 dw2_asm_output_data (1, l
, NULL
);
2436 dw2_asm_output_data (l
, val2
->v
.val_int
, NULL
);
2438 case dw_val_class_vec
:
2440 unsigned int elt_size
= val2
->v
.val_vec
.elt_size
;
2441 unsigned int len
= val2
->v
.val_vec
.length
;
2446 dw2_asm_output_data (1, l
, NULL
);
2447 if (elt_size
> sizeof (HOST_WIDE_INT
))
2452 for (i
= 0, p
= (unsigned char *) val2
->v
.val_vec
.array
;
2455 dw2_asm_output_data (elt_size
, extract_int (p
, elt_size
),
2456 "fp or vector constant word %u", i
);
2459 case dw_val_class_const_double
:
2461 unsigned HOST_WIDE_INT first
, second
;
2462 l
= HOST_BITS_PER_WIDE_INT
/ HOST_BITS_PER_CHAR
;
2464 dw2_asm_output_data (1, 2 * l
, NULL
);
2465 if (WORDS_BIG_ENDIAN
)
2467 first
= val2
->v
.val_double
.high
;
2468 second
= val2
->v
.val_double
.low
;
2472 first
= val2
->v
.val_double
.low
;
2473 second
= val2
->v
.val_double
.high
;
2475 dw2_asm_output_data (l
, first
, NULL
);
2476 dw2_asm_output_data (l
, second
, NULL
);
2479 case dw_val_class_wide_int
:
2482 int len
= get_full_len (*val2
->v
.val_wide
);
2483 l
= HOST_BITS_PER_WIDE_INT
/ HOST_BITS_PER_CHAR
;
2485 dw2_asm_output_data (1, len
* l
, NULL
);
2486 if (WORDS_BIG_ENDIAN
)
2487 for (i
= len
- 1; i
>= 0; --i
)
2488 dw2_asm_output_data (l
, val2
->v
.val_wide
->elt (i
), NULL
);
2490 for (i
= 0; i
< len
; ++i
)
2491 dw2_asm_output_data (l
, val2
->v
.val_wide
->elt (i
), NULL
);
2499 case DW_OP_regval_type
:
2500 case DW_OP_GNU_regval_type
:
2502 unsigned r
= val1
->v
.val_unsigned
;
2503 unsigned long o
= get_base_type_offset (val2
->v
.val_die_ref
.die
);
2505 if (for_eh_or_skip
>= 0)
2507 r
= DWARF2_FRAME_REG_OUT (r
, for_eh_or_skip
);
2508 gcc_assert (size_of_uleb128 (r
)
2509 == size_of_uleb128 (val1
->v
.val_unsigned
));
2511 dw2_asm_output_data_uleb128 (r
, NULL
);
2512 dw2_asm_output_data_uleb128 (o
, NULL
);
2515 case DW_OP_deref_type
:
2516 case DW_OP_GNU_deref_type
:
2518 unsigned long o
= get_base_type_offset (val2
->v
.val_die_ref
.die
);
2520 dw2_asm_output_data (1, val1
->v
.val_int
, NULL
);
2521 dw2_asm_output_data_uleb128 (o
, NULL
);
2525 case DW_OP_reinterpret
:
2526 case DW_OP_GNU_convert
:
2527 case DW_OP_GNU_reinterpret
:
2528 if (loc
->dw_loc_oprnd1
.val_class
== dw_val_class_unsigned_const
)
2529 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
2532 unsigned long o
= get_base_type_offset (val1
->v
.val_die_ref
.die
);
2534 dw2_asm_output_data_uleb128 (o
, NULL
);
2538 case DW_OP_GNU_parameter_ref
:
2541 gcc_assert (val1
->val_class
== dw_val_class_die_ref
);
2542 o
= get_ref_die_offset (val1
->v
.val_die_ref
.die
);
2543 dw2_asm_output_data (4, o
, NULL
);
2548 /* Other codes have no operands. */
2553 /* Output a sequence of location operations.
2554 The for_eh_or_skip parameter controls whether register numbers are
2555 converted using DWARF2_FRAME_REG_OUT, which is needed in the case that
2556 hard reg numbers have been processed via DWARF_FRAME_REGNUM (i.e. for unwind
2557 info). This should be suppressed for the cases that have not been converted
2558 (i.e. symbolic debug info), by setting the parameter < 0. See PR47324. */
2561 output_loc_sequence (dw_loc_descr_ref loc
, int for_eh_or_skip
)
2563 for (; loc
!= NULL
; loc
= loc
->dw_loc_next
)
2565 enum dwarf_location_atom opc
= loc
->dw_loc_opc
;
2566 /* Output the opcode. */
2567 if (for_eh_or_skip
>= 0
2568 && opc
>= DW_OP_breg0
&& opc
<= DW_OP_breg31
)
2570 unsigned r
= (opc
- DW_OP_breg0
);
2571 r
= DWARF2_FRAME_REG_OUT (r
, for_eh_or_skip
);
2572 gcc_assert (r
<= 31);
2573 opc
= (enum dwarf_location_atom
) (DW_OP_breg0
+ r
);
2575 else if (for_eh_or_skip
>= 0
2576 && opc
>= DW_OP_reg0
&& opc
<= DW_OP_reg31
)
2578 unsigned r
= (opc
- DW_OP_reg0
);
2579 r
= DWARF2_FRAME_REG_OUT (r
, for_eh_or_skip
);
2580 gcc_assert (r
<= 31);
2581 opc
= (enum dwarf_location_atom
) (DW_OP_reg0
+ r
);
2584 dw2_asm_output_data (1, opc
,
2585 "%s", dwarf_stack_op_name (opc
));
2587 /* Output the operand(s) (if any). */
2588 output_loc_operands (loc
, for_eh_or_skip
);
2592 /* Output location description stack opcode's operands (if any).
2593 The output is single bytes on a line, suitable for .cfi_escape. */
2596 output_loc_operands_raw (dw_loc_descr_ref loc
)
2598 dw_val_ref val1
= &loc
->dw_loc_oprnd1
;
2599 dw_val_ref val2
= &loc
->dw_loc_oprnd2
;
2601 switch (loc
->dw_loc_opc
)
2604 case DW_OP_GNU_addr_index
:
2606 case DW_OP_GNU_const_index
:
2608 case DW_OP_implicit_value
:
2609 /* We cannot output addresses in .cfi_escape, only bytes. */
2615 case DW_OP_deref_size
:
2616 case DW_OP_xderef_size
:
2617 fputc (',', asm_out_file
);
2618 dw2_asm_output_data_raw (1, val1
->v
.val_int
);
2623 fputc (',', asm_out_file
);
2624 dw2_asm_output_data_raw (2, val1
->v
.val_int
);
2629 fputc (',', asm_out_file
);
2630 dw2_asm_output_data_raw (4, val1
->v
.val_int
);
2635 gcc_assert (HOST_BITS_PER_WIDE_INT
>= 64);
2636 fputc (',', asm_out_file
);
2637 dw2_asm_output_data_raw (8, val1
->v
.val_int
);
2645 gcc_assert (val1
->val_class
== dw_val_class_loc
);
2646 offset
= val1
->v
.val_loc
->dw_loc_addr
- (loc
->dw_loc_addr
+ 3);
2648 fputc (',', asm_out_file
);
2649 dw2_asm_output_data_raw (2, offset
);
2655 unsigned r
= DWARF2_FRAME_REG_OUT (val1
->v
.val_unsigned
, 1);
2656 gcc_assert (size_of_uleb128 (r
)
2657 == size_of_uleb128 (val1
->v
.val_unsigned
));
2658 fputc (',', asm_out_file
);
2659 dw2_asm_output_data_uleb128_raw (r
);
2664 case DW_OP_plus_uconst
:
2666 fputc (',', asm_out_file
);
2667 dw2_asm_output_data_uleb128_raw (val1
->v
.val_unsigned
);
2670 case DW_OP_bit_piece
:
2671 fputc (',', asm_out_file
);
2672 dw2_asm_output_data_uleb128_raw (val1
->v
.val_unsigned
);
2673 dw2_asm_output_data_uleb128_raw (val2
->v
.val_unsigned
);
2710 fputc (',', asm_out_file
);
2711 dw2_asm_output_data_sleb128_raw (val1
->v
.val_int
);
2716 unsigned r
= DWARF2_FRAME_REG_OUT (val1
->v
.val_unsigned
, 1);
2717 gcc_assert (size_of_uleb128 (r
)
2718 == size_of_uleb128 (val1
->v
.val_unsigned
));
2719 fputc (',', asm_out_file
);
2720 dw2_asm_output_data_uleb128_raw (r
);
2721 fputc (',', asm_out_file
);
2722 dw2_asm_output_data_sleb128_raw (val2
->v
.val_int
);
2726 case DW_OP_implicit_pointer
:
2727 case DW_OP_entry_value
:
2728 case DW_OP_const_type
:
2729 case DW_OP_regval_type
:
2730 case DW_OP_deref_type
:
2732 case DW_OP_reinterpret
:
2733 case DW_OP_GNU_implicit_pointer
:
2734 case DW_OP_GNU_entry_value
:
2735 case DW_OP_GNU_const_type
:
2736 case DW_OP_GNU_regval_type
:
2737 case DW_OP_GNU_deref_type
:
2738 case DW_OP_GNU_convert
:
2739 case DW_OP_GNU_reinterpret
:
2740 case DW_OP_GNU_parameter_ref
:
2745 /* Other codes have no operands. */
2751 output_loc_sequence_raw (dw_loc_descr_ref loc
)
2755 enum dwarf_location_atom opc
= loc
->dw_loc_opc
;
2756 /* Output the opcode. */
2757 if (opc
>= DW_OP_breg0
&& opc
<= DW_OP_breg31
)
2759 unsigned r
= (opc
- DW_OP_breg0
);
2760 r
= DWARF2_FRAME_REG_OUT (r
, 1);
2761 gcc_assert (r
<= 31);
2762 opc
= (enum dwarf_location_atom
) (DW_OP_breg0
+ r
);
2764 else if (opc
>= DW_OP_reg0
&& opc
<= DW_OP_reg31
)
2766 unsigned r
= (opc
- DW_OP_reg0
);
2767 r
= DWARF2_FRAME_REG_OUT (r
, 1);
2768 gcc_assert (r
<= 31);
2769 opc
= (enum dwarf_location_atom
) (DW_OP_reg0
+ r
);
2771 /* Output the opcode. */
2772 fprintf (asm_out_file
, "%#x", opc
);
2773 output_loc_operands_raw (loc
);
2775 if (!loc
->dw_loc_next
)
2777 loc
= loc
->dw_loc_next
;
2779 fputc (',', asm_out_file
);
2784 build_breg_loc (struct dw_loc_descr_node
**head
, unsigned int regno
)
2787 add_loc_descr (head
, new_loc_descr ((enum dwarf_location_atom
)
2788 (DW_OP_breg0
+ regno
), 0, 0));
2790 add_loc_descr (head
, new_loc_descr (DW_OP_bregx
, regno
, 0));
2793 /* Build a dwarf location for a cfa_reg spanning multiple
2794 consecutive registers. */
2796 struct dw_loc_descr_node
*
2797 build_span_loc (struct cfa_reg reg
)
2799 struct dw_loc_descr_node
*head
= NULL
;
2801 gcc_assert (reg
.span_width
> 0);
2802 gcc_assert (reg
.span
> 1);
2804 /* Start from the highest number register as it goes in the upper bits. */
2805 unsigned int regno
= reg
.reg
+ reg
.span
- 1;
2806 build_breg_loc (&head
, regno
);
2808 /* Deal with the remaining registers in the span. */
2809 for (int i
= reg
.span
- 2; i
>= 0; i
--)
2811 add_loc_descr (&head
, int_loc_descriptor (reg
.span_width
* 8));
2812 add_loc_descr (&head
, new_loc_descr (DW_OP_shl
, 0, 0));
2814 build_breg_loc (&head
, regno
);
2815 add_loc_descr (&head
, new_loc_descr (DW_OP_plus
, 0, 0));
2820 /* This function builds a dwarf location descriptor sequence from a
2821 dw_cfa_location, adding the given OFFSET to the result of the
2824 struct dw_loc_descr_node
*
2825 build_cfa_loc (dw_cfa_location
*cfa
, poly_int64 offset
)
2827 struct dw_loc_descr_node
*head
, *tmp
;
2829 offset
+= cfa
->offset
;
2831 if (cfa
->reg
.span
> 1)
2833 head
= build_span_loc (cfa
->reg
);
2835 if (maybe_ne (offset
, 0))
2836 loc_descr_plus_const (&head
, offset
);
2838 else if (cfa
->indirect
)
2840 head
= new_reg_loc_descr (cfa
->reg
.reg
, cfa
->base_offset
);
2841 head
->dw_loc_oprnd1
.val_class
= dw_val_class_const
;
2842 head
->dw_loc_oprnd1
.val_entry
= NULL
;
2843 tmp
= new_loc_descr (DW_OP_deref
, 0, 0);
2844 add_loc_descr (&head
, tmp
);
2845 loc_descr_plus_const (&head
, offset
);
2848 head
= new_reg_loc_descr (cfa
->reg
.reg
, offset
);
2853 /* This function builds a dwarf location descriptor sequence for
2854 the address at OFFSET from the CFA when stack is aligned to
2857 struct dw_loc_descr_node
*
2858 build_cfa_aligned_loc (dw_cfa_location
*cfa
,
2859 poly_int64 offset
, HOST_WIDE_INT alignment
)
2861 struct dw_loc_descr_node
*head
;
2862 unsigned int dwarf_fp
2863 = DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM
);
2865 /* When CFA is defined as FP+OFFSET, emulate stack alignment. */
2866 if (cfa
->reg
.reg
== HARD_FRAME_POINTER_REGNUM
&& cfa
->indirect
== 0)
2868 head
= new_reg_loc_descr (dwarf_fp
, 0);
2869 add_loc_descr (&head
, int_loc_descriptor (alignment
));
2870 add_loc_descr (&head
, new_loc_descr (DW_OP_and
, 0, 0));
2871 loc_descr_plus_const (&head
, offset
);
2874 head
= new_reg_loc_descr (dwarf_fp
, offset
);
2878 /* And now, the support for symbolic debugging information. */
2880 /* .debug_str support. */
2882 static void dwarf2out_init (const char *);
2883 static void dwarf2out_finish (const char *);
2884 static void dwarf2out_early_finish (const char *);
2885 static void dwarf2out_assembly_start (void);
2886 static void dwarf2out_define (unsigned int, const char *);
2887 static void dwarf2out_undef (unsigned int, const char *);
2888 static void dwarf2out_start_source_file (unsigned, const char *);
2889 static void dwarf2out_end_source_file (unsigned);
2890 static void dwarf2out_function_decl (tree
);
2891 static void dwarf2out_begin_block (unsigned, unsigned);
2892 static void dwarf2out_end_block (unsigned, unsigned);
2893 static bool dwarf2out_ignore_block (const_tree
);
2894 static void dwarf2out_set_ignored_loc (unsigned, unsigned, const char *);
2895 static void dwarf2out_early_global_decl (tree
);
2896 static void dwarf2out_late_global_decl (tree
);
2897 static void dwarf2out_type_decl (tree
, int);
2898 static void dwarf2out_imported_module_or_decl (tree
, tree
, tree
, bool, bool);
2899 static void dwarf2out_imported_module_or_decl_1 (tree
, tree
, tree
,
2901 static void dwarf2out_abstract_function (tree
);
2902 static void dwarf2out_var_location (rtx_insn
*);
2903 static void dwarf2out_inline_entry (tree
);
2904 static void dwarf2out_size_function (tree
);
2905 static void dwarf2out_begin_function (tree
);
2906 static void dwarf2out_end_function (unsigned int);
2907 static void dwarf2out_register_main_translation_unit (tree unit
);
2908 static void dwarf2out_set_name (tree
, tree
);
2909 static void dwarf2out_register_external_die (tree decl
, const char *sym
,
2910 unsigned HOST_WIDE_INT off
);
2911 static bool dwarf2out_die_ref_for_decl (tree decl
, const char **sym
,
2912 unsigned HOST_WIDE_INT
*off
);
2914 /* The debug hooks structure. */
2916 const struct gcc_debug_hooks dwarf2_debug_hooks
=
2920 dwarf2out_early_finish
,
2921 dwarf2out_assembly_start
,
2924 dwarf2out_start_source_file
,
2925 dwarf2out_end_source_file
,
2926 dwarf2out_begin_block
,
2927 dwarf2out_end_block
,
2928 dwarf2out_ignore_block
,
2929 dwarf2out_source_line
,
2930 dwarf2out_set_ignored_loc
,
2931 dwarf2out_begin_prologue
,
2932 #if VMS_DEBUGGING_INFO
2933 dwarf2out_vms_end_prologue
,
2934 dwarf2out_vms_begin_epilogue
,
2936 debug_nothing_int_charstar
,
2937 debug_nothing_int_charstar
,
2939 dwarf2out_end_epilogue
,
2940 dwarf2out_begin_function
,
2941 dwarf2out_end_function
, /* end_function */
2942 dwarf2out_register_main_translation_unit
,
2943 dwarf2out_function_decl
, /* function_decl */
2944 dwarf2out_early_global_decl
,
2945 dwarf2out_late_global_decl
,
2946 dwarf2out_type_decl
, /* type_decl */
2947 dwarf2out_imported_module_or_decl
,
2948 dwarf2out_die_ref_for_decl
,
2949 dwarf2out_register_external_die
,
2950 debug_nothing_tree
, /* deferred_inline_function */
2951 /* The DWARF 2 backend tries to reduce debugging bloat by not
2952 emitting the abstract description of inline functions until
2953 something tries to reference them. */
2954 dwarf2out_abstract_function
, /* outlining_inline_function */
2955 debug_nothing_rtx_code_label
, /* label */
2956 debug_nothing_int
, /* handle_pch */
2957 dwarf2out_var_location
,
2958 dwarf2out_inline_entry
, /* inline_entry */
2959 dwarf2out_size_function
, /* size_function */
2960 dwarf2out_switch_text_section
,
2962 1, /* start_end_main_source_file */
2963 TYPE_SYMTAB_IS_DIE
/* tree_type_symtab_field */
2966 const struct gcc_debug_hooks dwarf2_lineno_debug_hooks
=
2969 debug_nothing_charstar
,
2970 debug_nothing_charstar
,
2971 dwarf2out_assembly_start
,
2972 debug_nothing_int_charstar
,
2973 debug_nothing_int_charstar
,
2974 debug_nothing_int_charstar
,
2976 debug_nothing_int_int
, /* begin_block */
2977 debug_nothing_int_int
, /* end_block */
2978 debug_true_const_tree
, /* ignore_block */
2979 dwarf2out_source_line
, /* source_line */
2980 debug_nothing_int_int_charstar
, /* set_ignored_loc */
2981 debug_nothing_int_int_charstar
, /* begin_prologue */
2982 debug_nothing_int_charstar
, /* end_prologue */
2983 debug_nothing_int_charstar
, /* begin_epilogue */
2984 debug_nothing_int_charstar
, /* end_epilogue */
2985 debug_nothing_tree
, /* begin_function */
2986 debug_nothing_int
, /* end_function */
2987 debug_nothing_tree
, /* register_main_translation_unit */
2988 debug_nothing_tree
, /* function_decl */
2989 debug_nothing_tree
, /* early_global_decl */
2990 debug_nothing_tree
, /* late_global_decl */
2991 debug_nothing_tree_int
, /* type_decl */
2992 debug_nothing_tree_tree_tree_bool_bool
,/* imported_module_or_decl */
2993 debug_false_tree_charstarstar_uhwistar
,/* die_ref_for_decl */
2994 debug_nothing_tree_charstar_uhwi
, /* register_external_die */
2995 debug_nothing_tree
, /* deferred_inline_function */
2996 debug_nothing_tree
, /* outlining_inline_function */
2997 debug_nothing_rtx_code_label
, /* label */
2998 debug_nothing_int
, /* handle_pch */
2999 debug_nothing_rtx_insn
, /* var_location */
3000 debug_nothing_tree
, /* inline_entry */
3001 debug_nothing_tree
, /* size_function */
3002 debug_nothing_void
, /* switch_text_section */
3003 debug_nothing_tree_tree
, /* set_name */
3004 0, /* start_end_main_source_file */
3005 TYPE_SYMTAB_IS_ADDRESS
/* tree_type_symtab_field */
3008 /* NOTE: In the comments in this file, many references are made to
3009 "Debugging Information Entries". This term is abbreviated as `DIE'
3010 throughout the remainder of this file. */
3012 /* An internal representation of the DWARF output is built, and then
3013 walked to generate the DWARF debugging info. The walk of the internal
3014 representation is done after the entire program has been compiled.
3015 The types below are used to describe the internal representation. */
3017 /* Whether to put type DIEs into their own section .debug_types instead
3018 of making them part of the .debug_info section. Only supported for
3019 Dwarf V4 or higher and the user didn't disable them through
3020 -fno-debug-types-section. It is more efficient to put them in a
3021 separate comdat sections since the linker will then be able to
3022 remove duplicates. But not all tools support .debug_types sections
3023 yet. For Dwarf V5 or higher .debug_types doesn't exist any more,
3024 it is DW_UT_type unit type in .debug_info section. For late LTO
3025 debug there should be almost no types emitted so avoid enabling
3026 -fdebug-types-section there. */
3028 #define use_debug_types (dwarf_version >= 4 \
3029 && flag_debug_types_section \
3032 /* Various DIE's use offsets relative to the beginning of the
3033 .debug_info section to refer to each other. */
3035 typedef long int dw_offset
;
3037 struct comdat_type_node
;
3039 /* The entries in the line_info table more-or-less mirror the opcodes
3040 that are used in the real dwarf line table. Arrays of these entries
3041 are collected per section when DWARF2_ASM_LINE_DEBUG_INFO is not
3044 enum dw_line_info_opcode
{
3045 /* Emit DW_LNE_set_address; the operand is the label index. */
3048 /* Emit a row to the matrix with the given line. This may be done
3049 via any combination of DW_LNS_copy, DW_LNS_advance_line, and
3053 /* Emit a DW_LNS_set_file. */
3056 /* Emit a DW_LNS_set_column. */
3059 /* Emit a DW_LNS_negate_stmt; the operand is ignored. */
3062 /* Emit a DW_LNS_set_prologue_end/epilogue_begin; the operand is ignored. */
3063 LI_set_prologue_end
,
3064 LI_set_epilogue_begin
,
3066 /* Emit a DW_LNE_set_discriminator. */
3067 LI_set_discriminator
,
3069 /* Output a Fixed Advance PC; the target PC is the label index; the
3070 base PC is the previous LI_adv_address or LI_set_address entry.
3071 We only use this when emitting debug views without assembler
3072 support, at explicit user request. Ideally, we should only use
3073 it when the offset might be zero but we can't tell: it's the only
3074 way to maybe change the PC without resetting the view number. */
3078 typedef struct GTY(()) dw_line_info_struct
{
3079 enum dw_line_info_opcode opcode
;
3081 } dw_line_info_entry
;
3084 struct GTY(()) dw_line_info_table
{
3085 /* The label that marks the end of this section. */
3086 const char *end_label
;
3088 /* The values for the last row of the matrix, as collected in the table.
3089 These are used to minimize the changes to the next row. */
3090 unsigned int file_num
;
3091 unsigned int line_num
;
3092 unsigned int column_num
;
3097 /* This denotes the NEXT view number.
3099 If it is 0, it is known that the NEXT view will be the first view
3102 If it is -1, we're forcing the view number to be reset, e.g. at a
3105 The meaning of other nonzero values depends on whether we're
3106 computing views internally or leaving it for the assembler to do
3107 so. If we're emitting them internally, view denotes the view
3108 number since the last known advance of PC. If we're leaving it
3109 for the assembler, it denotes the LVU label number that we're
3110 going to ask the assembler to assign. */
3113 /* This counts the number of symbolic views emitted in this table
3114 since the latest view reset. Its max value, over all tables,
3115 sets symview_upper_bound. */
3116 var_loc_view symviews_since_reset
;
3118 #define FORCE_RESET_NEXT_VIEW(x) ((x) = (var_loc_view)-1)
3119 #define RESET_NEXT_VIEW(x) ((x) = (var_loc_view)0)
3120 #define FORCE_RESETTING_VIEW_P(x) ((x) == (var_loc_view)-1)
3121 #define RESETTING_VIEW_P(x) ((x) == (var_loc_view)0 || FORCE_RESETTING_VIEW_P (x))
3123 vec
<dw_line_info_entry
, va_gc
> *entries
;
3126 /* This is an upper bound for view numbers that the assembler may
3127 assign to symbolic views output in this translation. It is used to
3128 decide how big a field to use to represent view numbers in
3129 symview-classed attributes. */
3131 static var_loc_view symview_upper_bound
;
3133 /* If we're keep track of location views and their reset points, and
3134 INSN is a reset point (i.e., it necessarily advances the PC), mark
3135 the next view in TABLE as reset. */
3138 maybe_reset_location_view (rtx_insn
*insn
, dw_line_info_table
*table
)
3140 if (!debug_internal_reset_location_views
)
3143 /* Maybe turn (part of?) this test into a default target hook. */
3146 if (targetm
.reset_location_view
)
3147 reset
= targetm
.reset_location_view (insn
);
3151 else if (JUMP_TABLE_DATA_P (insn
))
3153 else if (GET_CODE (insn
) == USE
3154 || GET_CODE (insn
) == CLOBBER
3155 || GET_CODE (insn
) == ASM_INPUT
3156 || asm_noperands (insn
) >= 0)
3158 else if (get_attr_min_length (insn
) > 0)
3161 if (reset
> 0 && !RESETTING_VIEW_P (table
->view
))
3162 RESET_NEXT_VIEW (table
->view
);
3165 /* The Debugging Information Entry (DIE) structure. DIEs form a tree.
3166 The children of each node form a circular list linked by
3167 die_sib. die_child points to the node *before* the "first" child node. */
3169 typedef struct GTY((chain_circular ("%h.die_sib"), for_user
)) die_struct
{
3170 union die_symbol_or_type_node
3172 const char * GTY ((tag ("0"))) die_symbol
;
3173 comdat_type_node
*GTY ((tag ("1"))) die_type_node
;
3175 GTY ((desc ("%0.comdat_type_p"))) die_id
;
3176 vec
<dw_attr_node
, va_gc
> *die_attr
;
3177 dw_die_ref die_parent
;
3178 dw_die_ref die_child
;
3180 dw_die_ref die_definition
; /* ref from a specification to its definition */
3181 dw_offset die_offset
;
3182 unsigned long die_abbrev
;
3184 unsigned int decl_id
;
3185 enum dwarf_tag die_tag
;
3186 /* Die is used and must not be pruned as unused. */
3187 BOOL_BITFIELD die_perennial_p
: 1;
3188 BOOL_BITFIELD comdat_type_p
: 1; /* DIE has a type signature */
3189 /* For an external ref to die_symbol if die_offset contains an extra
3190 offset to that symbol. */
3191 BOOL_BITFIELD with_offset
: 1;
3192 /* Whether this DIE was removed from the DIE tree, for example via
3193 prune_unused_types. We don't consider those present from the
3194 DIE lookup routines. */
3195 BOOL_BITFIELD removed
: 1;
3196 /* Lots of spare bits. */
3200 /* Set to TRUE while dwarf2out_early_global_decl is running. */
3201 static bool early_dwarf
;
3202 static bool early_dwarf_finished
;
3203 class set_early_dwarf
{
3206 set_early_dwarf () : saved(early_dwarf
)
3208 gcc_assert (! early_dwarf_finished
);
3211 ~set_early_dwarf () { early_dwarf
= saved
; }
3214 /* Evaluate 'expr' while 'c' is set to each child of DIE in order. */
3215 #define FOR_EACH_CHILD(die, c, expr) do { \
3216 c = die->die_child; \
3220 } while (c != die->die_child); \
3223 /* The pubname structure */
3225 typedef struct GTY(()) pubname_struct
{
3232 struct GTY(()) dw_ranges
{
3234 /* If this is positive, it's a block number, otherwise it's a
3235 bitwise-negated index into dw_ranges_by_label. */
3237 /* If idx is equal to DW_RANGES_IDX_SKELETON, it should be emitted
3238 into .debug_rnglists section rather than .debug_rnglists.dwo
3239 for -gsplit-dwarf and DWARF >= 5. */
3240 #define DW_RANGES_IDX_SKELETON ((1U << 31) - 1)
3241 /* Index for the range list for DW_FORM_rnglistx. */
3242 unsigned int idx
: 31;
3243 /* True if this range might be possibly in a different section
3244 from previous entry. */
3245 unsigned int maybe_new_sec
: 1;
3246 addr_table_entry
*begin_entry
;
3247 addr_table_entry
*end_entry
;
3250 /* A structure to hold a macinfo entry. */
3252 typedef struct GTY(()) macinfo_struct
{
3254 unsigned HOST_WIDE_INT lineno
;
3260 struct GTY(()) dw_ranges_by_label
{
3265 /* The comdat type node structure. */
3266 struct GTY(()) comdat_type_node
3268 dw_die_ref root_die
;
3269 dw_die_ref type_die
;
3270 dw_die_ref skeleton_die
;
3271 char signature
[DWARF_TYPE_SIGNATURE_SIZE
];
3272 comdat_type_node
*next
;
3275 /* A list of DIEs for which we can't determine ancestry (parent_die
3276 field) just yet. Later in dwarf2out_finish we will fill in the
3278 typedef struct GTY(()) limbo_die_struct
{
3280 /* The tree for which this DIE was created. We use this to
3281 determine ancestry later. */
3283 struct limbo_die_struct
*next
;
3287 typedef struct skeleton_chain_struct
3291 struct skeleton_chain_struct
*parent
;
3293 skeleton_chain_node
;
3295 /* Define a macro which returns nonzero for a TYPE_DECL which was
3296 implicitly generated for a type.
3298 Note that, unlike the C front-end (which generates a NULL named
3299 TYPE_DECL node for each complete tagged type, each array type,
3300 and each function type node created) the C++ front-end generates
3301 a _named_ TYPE_DECL node for each tagged type node created.
3302 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3303 generate a DW_TAG_typedef DIE for them. Likewise with the Ada
3304 front-end, but for each type, tagged or not. */
3306 #define TYPE_DECL_IS_STUB(decl) \
3307 (DECL_NAME (decl) == NULL_TREE \
3308 || (DECL_ARTIFICIAL (decl) \
3309 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3310 /* This is necessary for stub decls that \
3311 appear in nested inline functions. */ \
3312 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3313 && (decl_ultimate_origin (decl) \
3314 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3316 /* Information concerning the compilation unit's programming
3317 language, and compiler version. */
3319 /* Fixed size portion of the DWARF compilation unit header. */
3320 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3321 (DWARF_INITIAL_LENGTH_SIZE + dwarf_offset_size \
3322 + (dwarf_version >= 5 ? 4 : 3))
3324 /* Fixed size portion of the DWARF comdat type unit header. */
3325 #define DWARF_COMDAT_TYPE_UNIT_HEADER_SIZE \
3326 (DWARF_COMPILE_UNIT_HEADER_SIZE \
3327 + DWARF_TYPE_SIGNATURE_SIZE + dwarf_offset_size)
3329 /* Fixed size portion of the DWARF skeleton compilation unit header. */
3330 #define DWARF_COMPILE_UNIT_SKELETON_HEADER_SIZE \
3331 (DWARF_COMPILE_UNIT_HEADER_SIZE + (dwarf_version >= 5 ? 8 : 0))
3333 /* Fixed size portion of public names info. */
3334 #define DWARF_PUBNAMES_HEADER_SIZE (2 * dwarf_offset_size + 2)
3336 /* Fixed size portion of the address range info. */
3337 #define DWARF_ARANGES_HEADER_SIZE \
3338 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + dwarf_offset_size + 4, \
3339 DWARF2_ADDR_SIZE * 2) \
3340 - DWARF_INITIAL_LENGTH_SIZE)
3342 /* Size of padding portion in the address range info. It must be
3343 aligned to twice the pointer size. */
3344 #define DWARF_ARANGES_PAD_SIZE \
3345 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + dwarf_offset_size + 4, \
3346 DWARF2_ADDR_SIZE * 2) \
3347 - (DWARF_INITIAL_LENGTH_SIZE + dwarf_offset_size + 4))
3349 /* Use assembler line directives if available. */
3350 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3351 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3352 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3354 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3358 /* Use assembler views in line directives if available. */
3359 #ifndef DWARF2_ASM_VIEW_DEBUG_INFO
3360 #ifdef HAVE_AS_DWARF2_DEBUG_VIEW
3361 #define DWARF2_ASM_VIEW_DEBUG_INFO 1
3363 #define DWARF2_ASM_VIEW_DEBUG_INFO 0
3367 /* Return true if GCC configure detected assembler support for .loc. */
3370 dwarf2out_default_as_loc_support (void)
3372 return DWARF2_ASM_LINE_DEBUG_INFO
;
3373 #if (GCC_VERSION >= 3000)
3374 # undef DWARF2_ASM_LINE_DEBUG_INFO
3375 # pragma GCC poison DWARF2_ASM_LINE_DEBUG_INFO
3379 /* Return true if GCC configure detected assembler support for views
3380 in .loc directives. */
3383 dwarf2out_default_as_locview_support (void)
3385 return DWARF2_ASM_VIEW_DEBUG_INFO
;
3386 #if (GCC_VERSION >= 3000)
3387 # undef DWARF2_ASM_VIEW_DEBUG_INFO
3388 # pragma GCC poison DWARF2_ASM_VIEW_DEBUG_INFO
3392 /* A bit is set in ZERO_VIEW_P if we are using the assembler-supported
3393 view computation, and it refers to a view identifier for which we
3394 will not emit a label because it is known to map to a view number
3395 zero. We won't allocate the bitmap if we're not using assembler
3396 support for location views, but we have to make the variable
3397 visible for GGC and for code that will be optimized out for lack of
3398 support but that's still parsed and compiled. We could abstract it
3399 out with macros, but it's not worth it. */
3400 static GTY(()) bitmap zero_view_p
;
3402 /* Evaluate to TRUE iff N is known to identify the first location view
3403 at its PC. When not using assembler location view computation,
3404 that must be view number zero. Otherwise, ZERO_VIEW_P is allocated
3405 and views label numbers recorded in it are the ones known to be
3407 #define ZERO_VIEW_P(N) ((N) == (var_loc_view)0 \
3408 || (N) == (var_loc_view)-1 \
3410 && bitmap_bit_p (zero_view_p, (N))))
3412 /* Return true iff we're to emit .loc directives for the assembler to
3413 generate line number sections.
3415 When we're not emitting views, all we need from the assembler is
3416 support for .loc directives.
3418 If we are emitting views, we can only use the assembler's .loc
3419 support if it also supports views.
3421 When the compiler is emitting the line number programs and
3422 computing view numbers itself, it resets view numbers at known PC
3423 changes and counts from that, and then it emits view numbers as
3424 literal constants in locviewlists. There are cases in which the
3425 compiler is not sure about PC changes, e.g. when extra alignment is
3426 requested for a label. In these cases, the compiler may not reset
3427 the view counter, and the potential PC advance in the line number
3428 program will use an opcode that does not reset the view counter
3429 even if the PC actually changes, so that compiler and debug info
3430 consumer can keep view numbers in sync.
3432 When the compiler defers view computation to the assembler, it
3433 emits symbolic view numbers in locviewlists, with the exception of
3434 views known to be zero (forced resets, or reset after
3435 compiler-visible PC changes): instead of emitting symbols for
3436 these, we emit literal zero and assert the assembler agrees with
3437 the compiler's assessment. We could use symbolic views everywhere,
3438 instead of special-casing zero views, but then we'd be unable to
3439 optimize out locviewlists that contain only zeros. */
3442 output_asm_line_debug_info (void)
3444 return (dwarf2out_as_loc_support
3445 && (dwarf2out_as_locview_support
3446 || !debug_variable_location_views
));
3449 static bool asm_outputs_debug_line_str (void);
3451 /* Minimum line offset in a special line info. opcode.
3452 This value was chosen to give a reasonable range of values. */
3453 #define DWARF_LINE_BASE -10
3455 /* First special line opcode - leave room for the standard opcodes. */
3456 #define DWARF_LINE_OPCODE_BASE ((int)DW_LNS_set_isa + 1)
3458 /* Range of line offsets in a special line info. opcode. */
3459 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3461 /* Flag that indicates the initial value of the is_stmt_start flag.
3462 In the present implementation, we do not mark any lines as
3463 the beginning of a source statement, because that information
3464 is not made available by the GCC front-end. */
3465 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3467 /* Maximum number of operations per instruction bundle. */
3468 #ifndef DWARF_LINE_DEFAULT_MAX_OPS_PER_INSN
3469 #define DWARF_LINE_DEFAULT_MAX_OPS_PER_INSN 1
3472 /* This location is used by calc_die_sizes() to keep track
3473 the offset of each DIE within the .debug_info section. */
3474 static unsigned long next_die_offset
;
3476 /* Record the root of the DIE's built for the current compilation unit. */
3477 static GTY(()) dw_die_ref single_comp_unit_die
;
3479 /* A list of type DIEs that have been separated into comdat sections. */
3480 static GTY(()) comdat_type_node
*comdat_type_list
;
3482 /* A list of CU DIEs that have been separated. */
3483 static GTY(()) limbo_die_node
*cu_die_list
;
3485 /* A list of DIEs with a NULL parent waiting to be relocated. */
3486 static GTY(()) limbo_die_node
*limbo_die_list
;
3488 /* A list of DIEs for which we may have to generate
3489 DW_AT_{,MIPS_}linkage_name once their DECL_ASSEMBLER_NAMEs are set. */
3490 static GTY(()) limbo_die_node
*deferred_asm_name
;
3492 struct dwarf_file_hasher
: ggc_ptr_hash
<dwarf_file_data
>
3494 typedef const char *compare_type
;
3496 static hashval_t
hash (dwarf_file_data
*);
3497 static bool equal (dwarf_file_data
*, const char *);
3500 /* Filenames referenced by this compilation unit. */
3501 static GTY(()) hash_table
<dwarf_file_hasher
> *file_table
;
3503 struct decl_die_hasher
: ggc_ptr_hash
<die_node
>
3505 typedef tree compare_type
;
3507 static hashval_t
hash (die_node
*);
3508 static bool equal (die_node
*, tree
);
3510 /* A hash table of references to DIE's that describe declarations.
3511 The key is a DECL_UID() which is a unique number identifying each decl. */
3512 static GTY (()) hash_table
<decl_die_hasher
> *decl_die_table
;
3514 struct GTY ((for_user
)) variable_value_struct
{
3515 unsigned int decl_id
;
3516 vec
<dw_die_ref
, va_gc
> *dies
;
3519 struct variable_value_hasher
: ggc_ptr_hash
<variable_value_struct
>
3521 typedef tree compare_type
;
3523 static hashval_t
hash (variable_value_struct
*);
3524 static bool equal (variable_value_struct
*, tree
);
3526 /* A hash table of DIEs that contain DW_OP_GNU_variable_value with
3527 dw_val_class_decl_ref class, indexed by FUNCTION_DECLs which is
3528 DECL_CONTEXT of the referenced VAR_DECLs. */
3529 static GTY (()) hash_table
<variable_value_hasher
> *variable_value_hash
;
3531 struct block_die_hasher
: ggc_ptr_hash
<die_struct
>
3533 static hashval_t
hash (die_struct
*);
3534 static bool equal (die_struct
*, die_struct
*);
3537 /* A hash table of references to DIE's that describe COMMON blocks.
3538 The key is DECL_UID() ^ die_parent. */
3539 static GTY (()) hash_table
<block_die_hasher
> *common_block_die_table
;
3541 typedef struct GTY(()) die_arg_entry_struct
{
3547 /* Node of the variable location list. */
3548 struct GTY ((chain_next ("%h.next"))) var_loc_node
{
3549 /* Either NOTE_INSN_VAR_LOCATION, or, for SRA optimized variables,
3550 EXPR_LIST chain. For small bitsizes, bitsize is encoded
3551 in mode of the EXPR_LIST node and first EXPR_LIST operand
3552 is either NOTE_INSN_VAR_LOCATION for a piece with a known
3553 location or NULL for padding. For larger bitsizes,
3554 mode is 0 and first operand is a CONCAT with bitsize
3555 as first CONCAT operand and NOTE_INSN_VAR_LOCATION resp.
3556 NULL as second operand. */
3558 const char * GTY (()) label
;
3559 struct var_loc_node
* GTY (()) next
;
3563 /* Variable location list. */
3564 struct GTY ((for_user
)) var_loc_list_def
{
3565 struct var_loc_node
* GTY (()) first
;
3567 /* Pointer to the last but one or last element of the
3568 chained list. If the list is empty, both first and
3569 last are NULL, if the list contains just one node
3570 or the last node certainly is not redundant, it points
3571 to the last node, otherwise points to the last but one.
3572 Do not mark it for GC because it is marked through the chain. */
3573 struct var_loc_node
* GTY ((skip ("%h"))) last
;
3575 /* Pointer to the last element before section switch,
3576 if NULL, either sections weren't switched or first
3577 is after section switch. */
3578 struct var_loc_node
* GTY ((skip ("%h"))) last_before_switch
;
3580 /* DECL_UID of the variable decl. */
3581 unsigned int decl_id
;
3583 typedef struct var_loc_list_def var_loc_list
;
3585 /* Call argument location list. */
3586 struct GTY ((chain_next ("%h.next"))) call_arg_loc_node
{
3587 rtx
GTY (()) call_arg_loc_note
;
3588 const char * GTY (()) label
;
3589 tree
GTY (()) block
;
3591 rtx
GTY (()) symbol_ref
;
3592 struct call_arg_loc_node
* GTY (()) next
;
3596 struct decl_loc_hasher
: ggc_ptr_hash
<var_loc_list
>
3598 typedef const_tree compare_type
;
3600 static hashval_t
hash (var_loc_list
*);
3601 static bool equal (var_loc_list
*, const_tree
);
3604 /* Table of decl location linked lists. */
3605 static GTY (()) hash_table
<decl_loc_hasher
> *decl_loc_table
;
3607 /* Head and tail of call_arg_loc chain. */
3608 static GTY (()) struct call_arg_loc_node
*call_arg_locations
;
3609 static struct call_arg_loc_node
*call_arg_loc_last
;
3611 /* Number of call sites in the current function. */
3612 static int call_site_count
= -1;
3613 /* Number of tail call sites in the current function. */
3614 static int tail_call_site_count
= -1;
3616 /* A cached location list. */
3617 struct GTY ((for_user
)) cached_dw_loc_list_def
{
3618 /* The DECL_UID of the decl that this entry describes. */
3619 unsigned int decl_id
;
3621 /* The cached location list. */
3622 dw_loc_list_ref loc_list
;
3624 typedef struct cached_dw_loc_list_def cached_dw_loc_list
;
3626 struct dw_loc_list_hasher
: ggc_ptr_hash
<cached_dw_loc_list
>
3629 typedef const_tree compare_type
;
3631 static hashval_t
hash (cached_dw_loc_list
*);
3632 static bool equal (cached_dw_loc_list
*, const_tree
);
3635 /* Table of cached location lists. */
3636 static GTY (()) hash_table
<dw_loc_list_hasher
> *cached_dw_loc_list_table
;
3638 /* A vector of references to DIE's that are uniquely identified by their tag,
3639 presence/absence of children DIE's, and list of attribute/value pairs. */
3640 static GTY(()) vec
<dw_die_ref
, va_gc
> *abbrev_die_table
;
3642 /* A hash map to remember the stack usage for DWARF procedures. The value
3643 stored is the stack size difference between before the DWARF procedure
3644 invokation and after it returned. In other words, for a DWARF procedure
3645 that consumes N stack slots and that pushes M ones, this stores M - N. */
3646 static hash_map
<dw_die_ref
, int> *dwarf_proc_stack_usage_map
;
3648 /* A global counter for generating labels for line number data. */
3649 static unsigned int line_info_label_num
;
3651 /* The current table to which we should emit line number information
3652 for the current function. This will be set up at the beginning of
3653 assembly for the function. */
3654 static GTY(()) dw_line_info_table
*cur_line_info_table
;
3656 /* The two default tables of line number info. */
3657 static GTY(()) dw_line_info_table
*text_section_line_info
;
3658 static GTY(()) dw_line_info_table
*cold_text_section_line_info
;
3660 /* The set of all non-default tables of line number info. */
3661 static GTY(()) vec
<dw_line_info_table
*, va_gc
> *separate_line_info
;
3663 /* A flag to tell pubnames/types export if there is an info section to
3665 static bool info_section_emitted
;
3667 /* A pointer to the base of a table that contains a list of publicly
3668 accessible names. */
3669 static GTY (()) vec
<pubname_entry
, va_gc
> *pubname_table
;
3671 /* A pointer to the base of a table that contains a list of publicly
3672 accessible types. */
3673 static GTY (()) vec
<pubname_entry
, va_gc
> *pubtype_table
;
3675 /* A pointer to the base of a table that contains a list of macro
3676 defines/undefines (and file start/end markers). */
3677 static GTY (()) vec
<macinfo_entry
, va_gc
> *macinfo_table
;
3679 /* True if .debug_macinfo or .debug_macros section is going to be
3681 #define have_macinfo \
3682 ((!XCOFF_DEBUGGING_INFO || HAVE_XCOFF_DWARF_EXTRAS) \
3683 && debug_info_level >= DINFO_LEVEL_VERBOSE \
3684 && !macinfo_table->is_empty ())
3686 /* Vector of dies for which we should generate .debug_ranges info. */
3687 static GTY (()) vec
<dw_ranges
, va_gc
> *ranges_table
;
3689 /* Vector of pairs of labels referenced in ranges_table. */
3690 static GTY (()) vec
<dw_ranges_by_label
, va_gc
> *ranges_by_label
;
3692 /* Whether we have location lists that need outputting */
3693 static GTY(()) bool have_location_lists
;
3695 /* Unique label counter. */
3696 static GTY(()) unsigned int loclabel_num
;
3698 /* Unique label counter for point-of-call tables. */
3699 static GTY(()) unsigned int poc_label_num
;
3701 /* The last file entry emitted by maybe_emit_file(). */
3702 static GTY(()) struct dwarf_file_data
* last_emitted_file
;
3704 /* Number of internal labels generated by gen_internal_sym(). */
3705 static GTY(()) int label_num
;
3707 static GTY(()) vec
<die_arg_entry
, va_gc
> *tmpl_value_parm_die_table
;
3709 /* Instances of generic types for which we need to generate debug
3710 info that describe their generic parameters and arguments. That
3711 generation needs to happen once all types are properly laid out so
3712 we do it at the end of compilation. */
3713 static GTY(()) vec
<tree
, va_gc
> *generic_type_instances
;
3715 /* Offset from the "steady-state frame pointer" to the frame base,
3716 within the current function. */
3717 static poly_int64 frame_pointer_fb_offset
;
3718 static bool frame_pointer_fb_offset_valid
;
3720 static vec
<dw_die_ref
> base_types
;
3722 /* Flags to represent a set of attribute classes for attributes that represent
3723 a scalar value (bounds, pointers, ...). */
3726 dw_scalar_form_constant
= 0x01,
3727 dw_scalar_form_exprloc
= 0x02,
3728 dw_scalar_form_reference
= 0x04
3731 /* Forward declarations for functions defined in this file. */
3733 static int is_pseudo_reg (const_rtx
);
3734 static tree
type_main_variant (tree
);
3735 static int is_tagged_type (const_tree
);
3736 static const char *dwarf_tag_name (unsigned);
3737 static const char *dwarf_attr_name (unsigned);
3738 static const char *dwarf_form_name (unsigned);
3739 static tree
decl_ultimate_origin (const_tree
);
3740 static tree
decl_class_context (tree
);
3741 static void add_dwarf_attr (dw_die_ref
, dw_attr_node
*);
3742 static inline unsigned int AT_index (dw_attr_node
*);
3743 static void add_AT_flag (dw_die_ref
, enum dwarf_attribute
, unsigned);
3744 static inline unsigned AT_flag (dw_attr_node
*);
3745 static void add_AT_int (dw_die_ref
, enum dwarf_attribute
, HOST_WIDE_INT
);
3746 static void add_AT_unsigned (dw_die_ref
, enum dwarf_attribute
, unsigned HOST_WIDE_INT
);
3747 static void add_AT_double (dw_die_ref
, enum dwarf_attribute
,
3748 HOST_WIDE_INT
, unsigned HOST_WIDE_INT
);
3749 static inline void add_AT_vec (dw_die_ref
, enum dwarf_attribute
, unsigned int,
3750 unsigned int, unsigned char *);
3751 static void add_AT_data8 (dw_die_ref
, enum dwarf_attribute
, unsigned char *);
3752 static void add_AT_string (dw_die_ref
, enum dwarf_attribute
, const char *);
3753 static inline const char *AT_string (dw_attr_node
*);
3754 static enum dwarf_form
AT_string_form (dw_attr_node
*);
3755 static void add_AT_die_ref (dw_die_ref
, enum dwarf_attribute
, dw_die_ref
);
3756 static void add_AT_specification (dw_die_ref
, dw_die_ref
);
3757 static inline dw_die_ref
AT_ref (dw_attr_node
*);
3758 static inline int AT_ref_external (dw_attr_node
*);
3759 static inline void set_AT_ref_external (dw_attr_node
*, int);
3760 static void add_AT_loc (dw_die_ref
, enum dwarf_attribute
, dw_loc_descr_ref
);
3761 static void add_AT_loc_list (dw_die_ref
, enum dwarf_attribute
,
3763 static inline dw_loc_list_ref
AT_loc_list (dw_attr_node
*);
3764 static void add_AT_view_list (dw_die_ref
, enum dwarf_attribute
);
3765 static inline dw_loc_list_ref
AT_loc_list (dw_attr_node
*);
3766 static addr_table_entry
*add_addr_table_entry (void *, enum ate_kind
);
3767 static void remove_addr_table_entry (addr_table_entry
*);
3768 static void add_AT_addr (dw_die_ref
, enum dwarf_attribute
, rtx
, bool);
3769 static inline rtx
AT_addr (dw_attr_node
*);
3770 static void add_AT_symview (dw_die_ref
, enum dwarf_attribute
, const char *);
3771 static void add_AT_lbl_id (dw_die_ref
, enum dwarf_attribute
, const char *);
3772 static void add_AT_lineptr (dw_die_ref
, enum dwarf_attribute
, const char *);
3773 static void add_AT_macptr (dw_die_ref
, enum dwarf_attribute
, const char *);
3774 static void add_AT_range_list (dw_die_ref
, enum dwarf_attribute
,
3775 unsigned long, bool);
3776 static inline const char *AT_lbl (dw_attr_node
*);
3777 static const char *get_AT_low_pc (dw_die_ref
);
3778 static bool is_c (void);
3779 static bool is_cxx (void);
3780 static bool is_cxx (const_tree
);
3781 static bool is_fortran (void);
3782 static bool is_ada (void);
3783 static bool remove_AT (dw_die_ref
, enum dwarf_attribute
);
3784 static void remove_child_TAG (dw_die_ref
, enum dwarf_tag
);
3785 static void add_child_die (dw_die_ref
, dw_die_ref
);
3786 static dw_die_ref
new_die (enum dwarf_tag
, dw_die_ref
, tree
);
3787 static dw_die_ref
strip_naming_typedef (tree
, dw_die_ref
);
3788 static dw_die_ref
lookup_type_die_strip_naming_typedef (tree
);
3789 static void equate_type_number_to_die (tree
, dw_die_ref
);
3790 static var_loc_list
*lookup_decl_loc (const_tree
);
3791 static void equate_decl_number_to_die (tree
, dw_die_ref
);
3792 static struct var_loc_node
*add_var_loc_to_decl (tree
, rtx
, const char *, var_loc_view
);
3793 static void print_spaces (FILE *);
3794 static void print_die (dw_die_ref
, FILE *);
3795 static void loc_checksum (dw_loc_descr_ref
, struct md5_ctx
*);
3796 static void attr_checksum (dw_attr_node
*, struct md5_ctx
*, int *);
3797 static void die_checksum (dw_die_ref
, struct md5_ctx
*, int *);
3798 static void checksum_sleb128 (HOST_WIDE_INT
, struct md5_ctx
*);
3799 static void checksum_uleb128 (unsigned HOST_WIDE_INT
, struct md5_ctx
*);
3800 static void loc_checksum_ordered (dw_loc_descr_ref
, struct md5_ctx
*);
3801 static void attr_checksum_ordered (enum dwarf_tag
, dw_attr_node
*,
3802 struct md5_ctx
*, int *);
3803 struct checksum_attributes
;
3804 static void collect_checksum_attributes (struct checksum_attributes
*, dw_die_ref
);
3805 static void die_checksum_ordered (dw_die_ref
, struct md5_ctx
*, int *);
3806 static void checksum_die_context (dw_die_ref
, struct md5_ctx
*);
3807 static void generate_type_signature (dw_die_ref
, comdat_type_node
*);
3808 static int same_loc_p (dw_loc_descr_ref
, dw_loc_descr_ref
, int *);
3809 static int same_dw_val_p (const dw_val_node
*, const dw_val_node
*, int *);
3810 static int same_attr_p (dw_attr_node
*, dw_attr_node
*, int *);
3811 static int same_die_p (dw_die_ref
, dw_die_ref
, int *);
3812 static int is_type_die (dw_die_ref
);
3813 static inline bool is_template_instantiation (dw_die_ref
);
3814 static int is_declaration_die (dw_die_ref
);
3815 static int should_move_die_to_comdat (dw_die_ref
);
3816 static dw_die_ref
clone_as_declaration (dw_die_ref
);
3817 static dw_die_ref
clone_die (dw_die_ref
);
3818 static dw_die_ref
clone_tree (dw_die_ref
);
3819 static dw_die_ref
copy_declaration_context (dw_die_ref
, dw_die_ref
);
3820 static void generate_skeleton_ancestor_tree (skeleton_chain_node
*);
3821 static void generate_skeleton_bottom_up (skeleton_chain_node
*);
3822 static dw_die_ref
generate_skeleton (dw_die_ref
);
3823 static dw_die_ref
remove_child_or_replace_with_skeleton (dw_die_ref
,
3826 static void break_out_comdat_types (dw_die_ref
);
3827 static void copy_decls_for_unworthy_types (dw_die_ref
);
3829 static void add_sibling_attributes (dw_die_ref
);
3830 static void output_location_lists (dw_die_ref
);
3831 static int constant_size (unsigned HOST_WIDE_INT
);
3832 static unsigned long size_of_die (dw_die_ref
);
3833 static void calc_die_sizes (dw_die_ref
);
3834 static void calc_base_type_die_sizes (void);
3835 static void mark_dies (dw_die_ref
);
3836 static void unmark_dies (dw_die_ref
);
3837 static void unmark_all_dies (dw_die_ref
);
3838 static unsigned long size_of_pubnames (vec
<pubname_entry
, va_gc
> *);
3839 static unsigned long size_of_aranges (void);
3840 static enum dwarf_form
value_format (dw_attr_node
*);
3841 static void output_value_format (dw_attr_node
*);
3842 static void output_abbrev_section (void);
3843 static void output_die_abbrevs (unsigned long, dw_die_ref
);
3844 static void output_die (dw_die_ref
);
3845 static void output_compilation_unit_header (enum dwarf_unit_type
);
3846 static void output_comp_unit (dw_die_ref
, int, const unsigned char *);
3847 static void output_comdat_type_unit (comdat_type_node
*, bool);
3848 static const char *dwarf2_name (tree
, int);
3849 static void add_pubname (tree
, dw_die_ref
);
3850 static void add_enumerator_pubname (const char *, dw_die_ref
);
3851 static void add_pubname_string (const char *, dw_die_ref
);
3852 static void add_pubtype (tree
, dw_die_ref
);
3853 static void output_pubnames (vec
<pubname_entry
, va_gc
> *);
3854 static void output_aranges (void);
3855 static unsigned int add_ranges (const_tree
, bool = false);
3856 static void add_ranges_by_labels (dw_die_ref
, const char *, const char *,
3858 static void output_ranges (void);
3859 static dw_line_info_table
*new_line_info_table (void);
3860 static void output_line_info (bool);
3861 static void output_file_names (void);
3862 static int is_base_type (tree
);
3863 static dw_die_ref
subrange_type_die (tree
, tree
, tree
, tree
, dw_die_ref
);
3864 static int decl_quals (const_tree
);
3865 static dw_die_ref
modified_type_die (tree
, int, bool, dw_die_ref
);
3866 static dw_die_ref
generic_parameter_die (tree
, tree
, bool, dw_die_ref
);
3867 static dw_die_ref
template_parameter_pack_die (tree
, tree
, dw_die_ref
);
3868 static unsigned int dbx_reg_number (const_rtx
);
3869 static void add_loc_descr_op_piece (dw_loc_descr_ref
*, int);
3870 static dw_loc_descr_ref
reg_loc_descriptor (rtx
, enum var_init_status
);
3871 static dw_loc_descr_ref
one_reg_loc_descriptor (unsigned int,
3872 enum var_init_status
);
3873 static dw_loc_descr_ref
multiple_reg_loc_descriptor (rtx
, rtx
,
3874 enum var_init_status
);
3875 static dw_loc_descr_ref
based_loc_descr (rtx
, poly_int64
,
3876 enum var_init_status
);
3877 static int is_based_loc (const_rtx
);
3878 static bool resolve_one_addr (rtx
*);
3879 static dw_loc_descr_ref
concat_loc_descriptor (rtx
, rtx
,
3880 enum var_init_status
);
3881 static dw_loc_descr_ref
loc_descriptor (rtx
, machine_mode mode
,
3882 enum var_init_status
);
3883 struct loc_descr_context
;
3884 static void add_loc_descr_to_each (dw_loc_list_ref list
, dw_loc_descr_ref ref
);
3885 static void add_loc_list (dw_loc_list_ref
*ret
, dw_loc_list_ref list
);
3886 static dw_loc_list_ref
loc_list_from_tree (tree
, int,
3887 struct loc_descr_context
*);
3888 static dw_loc_descr_ref
loc_descriptor_from_tree (tree
, int,
3889 struct loc_descr_context
*);
3890 static tree
field_type (const_tree
);
3891 static unsigned int simple_type_align_in_bits (const_tree
);
3892 static unsigned int simple_decl_align_in_bits (const_tree
);
3893 static unsigned HOST_WIDE_INT
simple_type_size_in_bits (const_tree
);
3895 static dw_loc_descr_ref
field_byte_offset (const_tree
, struct vlr_context
*,
3897 static void add_AT_location_description (dw_die_ref
, enum dwarf_attribute
,
3899 static void add_data_member_location_attribute (dw_die_ref
, tree
,
3900 struct vlr_context
*);
3901 static bool add_const_value_attribute (dw_die_ref
, machine_mode
, rtx
);
3902 static void insert_int (HOST_WIDE_INT
, unsigned, unsigned char *);
3903 static void insert_wide_int (const wide_int
&, unsigned char *, int);
3904 static unsigned insert_float (const_rtx
, unsigned char *);
3905 static rtx
rtl_for_decl_location (tree
);
3906 static bool add_location_or_const_value_attribute (dw_die_ref
, tree
, bool);
3907 static bool tree_add_const_value_attribute (dw_die_ref
, tree
);
3908 static bool tree_add_const_value_attribute_for_decl (dw_die_ref
, tree
);
3909 static void add_desc_attribute (dw_die_ref
, tree
);
3910 static void add_gnat_descriptive_type_attribute (dw_die_ref
, tree
, dw_die_ref
);
3911 static void add_comp_dir_attribute (dw_die_ref
);
3912 static void add_scalar_info (dw_die_ref
, enum dwarf_attribute
, tree
, int,
3913 struct loc_descr_context
*);
3914 static void add_bound_info (dw_die_ref
, enum dwarf_attribute
, tree
,
3915 struct loc_descr_context
*);
3916 static void add_subscript_info (dw_die_ref
, tree
, bool);
3917 static void add_byte_size_attribute (dw_die_ref
, tree
);
3918 static void add_alignment_attribute (dw_die_ref
, tree
);
3919 static void add_bit_offset_attribute (dw_die_ref
, tree
);
3920 static void add_bit_size_attribute (dw_die_ref
, tree
);
3921 static void add_prototyped_attribute (dw_die_ref
, tree
);
3922 static void add_abstract_origin_attribute (dw_die_ref
, tree
);
3923 static void add_pure_or_virtual_attribute (dw_die_ref
, tree
);
3924 static void add_src_coords_attributes (dw_die_ref
, tree
);
3925 static void add_name_and_src_coords_attributes (dw_die_ref
, tree
, bool = false);
3926 static void add_discr_value (dw_die_ref
, dw_discr_value
*);
3927 static void add_discr_list (dw_die_ref
, dw_discr_list_ref
);
3928 static inline dw_discr_list_ref
AT_discr_list (dw_attr_node
*);
3929 static dw_die_ref
scope_die_for (tree
, dw_die_ref
);
3930 static inline int local_scope_p (dw_die_ref
);
3931 static inline int class_scope_p (dw_die_ref
);
3932 static inline int class_or_namespace_scope_p (dw_die_ref
);
3933 static void add_type_attribute (dw_die_ref
, tree
, int, bool, dw_die_ref
);
3934 static void add_calling_convention_attribute (dw_die_ref
, tree
);
3935 static const char *type_tag (const_tree
);
3936 static tree
member_declared_type (const_tree
);
3938 static const char *decl_start_label (tree
);
3940 static void gen_array_type_die (tree
, dw_die_ref
);
3941 static void gen_descr_array_type_die (tree
, struct array_descr_info
*, dw_die_ref
);
3943 static void gen_entry_point_die (tree
, dw_die_ref
);
3945 static dw_die_ref
gen_enumeration_type_die (tree
, dw_die_ref
);
3946 static dw_die_ref
gen_formal_parameter_die (tree
, tree
, bool, dw_die_ref
);
3947 static dw_die_ref
gen_formal_parameter_pack_die (tree
, tree
, dw_die_ref
, tree
*);
3948 static void gen_unspecified_parameters_die (tree
, dw_die_ref
);
3949 static void gen_formal_types_die (tree
, dw_die_ref
);
3950 static void gen_subprogram_die (tree
, dw_die_ref
);
3951 static void gen_variable_die (tree
, tree
, dw_die_ref
);
3952 static void gen_const_die (tree
, dw_die_ref
);
3953 static void gen_label_die (tree
, dw_die_ref
);
3954 static void gen_lexical_block_die (tree
, dw_die_ref
);
3955 static void gen_inlined_subroutine_die (tree
, dw_die_ref
);
3956 static void gen_field_die (tree
, struct vlr_context
*, dw_die_ref
);
3957 static void gen_ptr_to_mbr_type_die (tree
, dw_die_ref
);
3958 static dw_die_ref
gen_compile_unit_die (const char *);
3959 static void gen_inheritance_die (tree
, tree
, tree
, dw_die_ref
);
3960 static void gen_member_die (tree
, dw_die_ref
);
3961 static void gen_struct_or_union_type_die (tree
, dw_die_ref
,
3962 enum debug_info_usage
);
3963 static void gen_subroutine_type_die (tree
, dw_die_ref
);
3964 static void gen_typedef_die (tree
, dw_die_ref
);
3965 static void gen_type_die (tree
, dw_die_ref
);
3966 static void gen_block_die (tree
, dw_die_ref
);
3967 static void decls_for_scope (tree
, dw_die_ref
, bool = true);
3968 static bool is_naming_typedef_decl (const_tree
);
3969 static inline dw_die_ref
get_context_die (tree
);
3970 static void gen_namespace_die (tree
, dw_die_ref
);
3971 static dw_die_ref
gen_namelist_decl (tree
, dw_die_ref
, tree
);
3972 static dw_die_ref
gen_decl_die (tree
, tree
, struct vlr_context
*, dw_die_ref
);
3973 static dw_die_ref
force_decl_die (tree
);
3974 static dw_die_ref
force_type_die (tree
);
3975 static dw_die_ref
setup_namespace_context (tree
, dw_die_ref
);
3976 static dw_die_ref
declare_in_namespace (tree
, dw_die_ref
);
3977 static struct dwarf_file_data
* lookup_filename (const char *);
3978 static void retry_incomplete_types (void);
3979 static void gen_type_die_for_member (tree
, tree
, dw_die_ref
);
3980 static void gen_generic_params_dies (tree
);
3981 static void gen_tagged_type_die (tree
, dw_die_ref
, enum debug_info_usage
);
3982 static void gen_type_die_with_usage (tree
, dw_die_ref
, enum debug_info_usage
);
3983 static void splice_child_die (dw_die_ref
, dw_die_ref
);
3984 static int file_info_cmp (const void *, const void *);
3985 static dw_loc_list_ref
new_loc_list (dw_loc_descr_ref
, const char *, var_loc_view
,
3986 const char *, var_loc_view
, const char *);
3987 static void output_loc_list (dw_loc_list_ref
);
3988 static char *gen_internal_sym (const char *);
3989 static bool want_pubnames (void);
3991 static void prune_unmark_dies (dw_die_ref
);
3992 static void prune_unused_types_mark_generic_parms_dies (dw_die_ref
);
3993 static void prune_unused_types_mark (dw_die_ref
, int);
3994 static void prune_unused_types_walk (dw_die_ref
);
3995 static void prune_unused_types_walk_attribs (dw_die_ref
);
3996 static void prune_unused_types_prune (dw_die_ref
);
3997 static void prune_unused_types (void);
3998 static int maybe_emit_file (struct dwarf_file_data
*fd
);
3999 static inline const char *AT_vms_delta1 (dw_attr_node
*);
4000 static inline const char *AT_vms_delta2 (dw_attr_node
*);
4001 #if VMS_DEBUGGING_INFO
4002 static inline void add_AT_vms_delta (dw_die_ref
, enum dwarf_attribute
,
4003 const char *, const char *);
4005 static void append_entry_to_tmpl_value_parm_die_table (dw_die_ref
, tree
);
4006 static void gen_remaining_tmpl_value_param_die_attribute (void);
4007 static bool generic_type_p (tree
);
4008 static void schedule_generic_params_dies_gen (tree t
);
4009 static void gen_scheduled_generic_parms_dies (void);
4010 static void resolve_variable_values (void);
4012 static const char *comp_dir_string (void);
4014 static void hash_loc_operands (dw_loc_descr_ref
, inchash::hash
&);
4016 /* enum for tracking thread-local variables whose address is really an offset
4017 relative to the TLS pointer, which will need link-time relocation, but will
4018 not need relocation by the DWARF consumer. */
4026 /* Return the operator to use for an address of a variable. For dtprel_true, we
4027 use DW_OP_const*. For regular variables, which need both link-time
4028 relocation and consumer-level relocation (e.g., to account for shared objects
4029 loaded at a random address), we use DW_OP_addr*. */
4031 static inline enum dwarf_location_atom
4032 dw_addr_op (enum dtprel_bool dtprel
)
4034 if (dtprel
== dtprel_true
)
4035 return (dwarf_split_debug_info
? dwarf_OP (DW_OP_constx
)
4036 : (DWARF2_ADDR_SIZE
== 4 ? DW_OP_const4u
: DW_OP_const8u
));
4038 return dwarf_split_debug_info
? dwarf_OP (DW_OP_addrx
) : DW_OP_addr
;
4041 /* Return a pointer to a newly allocated address location description. If
4042 dwarf_split_debug_info is true, then record the address with the appropriate
4044 static inline dw_loc_descr_ref
4045 new_addr_loc_descr (rtx addr
, enum dtprel_bool dtprel
)
4047 dw_loc_descr_ref ref
= new_loc_descr (dw_addr_op (dtprel
), 0, 0);
4049 ref
->dw_loc_oprnd1
.val_class
= dw_val_class_addr
;
4050 ref
->dw_loc_oprnd1
.v
.val_addr
= addr
;
4051 ref
->dtprel
= dtprel
;
4052 if (dwarf_split_debug_info
)
4053 ref
->dw_loc_oprnd1
.val_entry
4054 = add_addr_table_entry (addr
,
4055 dtprel
? ate_kind_rtx_dtprel
: ate_kind_rtx
);
4057 ref
->dw_loc_oprnd1
.val_entry
= NULL
;
4062 /* Section names used to hold DWARF debugging information. */
4064 #ifndef DEBUG_INFO_SECTION
4065 #define DEBUG_INFO_SECTION ".debug_info"
4067 #ifndef DEBUG_DWO_INFO_SECTION
4068 #define DEBUG_DWO_INFO_SECTION ".debug_info.dwo"
4070 #ifndef DEBUG_LTO_INFO_SECTION
4071 #define DEBUG_LTO_INFO_SECTION ".gnu.debuglto_.debug_info"
4073 #ifndef DEBUG_LTO_DWO_INFO_SECTION
4074 #define DEBUG_LTO_DWO_INFO_SECTION ".gnu.debuglto_.debug_info.dwo"
4076 #ifndef DEBUG_ABBREV_SECTION
4077 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
4079 #ifndef DEBUG_LTO_ABBREV_SECTION
4080 #define DEBUG_LTO_ABBREV_SECTION ".gnu.debuglto_.debug_abbrev"
4082 #ifndef DEBUG_DWO_ABBREV_SECTION
4083 #define DEBUG_DWO_ABBREV_SECTION ".debug_abbrev.dwo"
4085 #ifndef DEBUG_LTO_DWO_ABBREV_SECTION
4086 #define DEBUG_LTO_DWO_ABBREV_SECTION ".gnu.debuglto_.debug_abbrev.dwo"
4088 #ifndef DEBUG_ARANGES_SECTION
4089 #define DEBUG_ARANGES_SECTION ".debug_aranges"
4091 #ifndef DEBUG_ADDR_SECTION
4092 #define DEBUG_ADDR_SECTION ".debug_addr"
4094 #ifndef DEBUG_MACINFO_SECTION
4095 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
4097 #ifndef DEBUG_LTO_MACINFO_SECTION
4098 #define DEBUG_LTO_MACINFO_SECTION ".gnu.debuglto_.debug_macinfo"
4100 #ifndef DEBUG_DWO_MACINFO_SECTION
4101 #define DEBUG_DWO_MACINFO_SECTION ".debug_macinfo.dwo"
4103 #ifndef DEBUG_LTO_DWO_MACINFO_SECTION
4104 #define DEBUG_LTO_DWO_MACINFO_SECTION ".gnu.debuglto_.debug_macinfo.dwo"
4106 #ifndef DEBUG_MACRO_SECTION
4107 #define DEBUG_MACRO_SECTION ".debug_macro"
4109 #ifndef DEBUG_LTO_MACRO_SECTION
4110 #define DEBUG_LTO_MACRO_SECTION ".gnu.debuglto_.debug_macro"
4112 #ifndef DEBUG_DWO_MACRO_SECTION
4113 #define DEBUG_DWO_MACRO_SECTION ".debug_macro.dwo"
4115 #ifndef DEBUG_LTO_DWO_MACRO_SECTION
4116 #define DEBUG_LTO_DWO_MACRO_SECTION ".gnu.debuglto_.debug_macro.dwo"
4118 #ifndef DEBUG_LINE_SECTION
4119 #define DEBUG_LINE_SECTION ".debug_line"
4121 #ifndef DEBUG_LTO_LINE_SECTION
4122 #define DEBUG_LTO_LINE_SECTION ".gnu.debuglto_.debug_line"
4124 #ifndef DEBUG_DWO_LINE_SECTION
4125 #define DEBUG_DWO_LINE_SECTION ".debug_line.dwo"
4127 #ifndef DEBUG_LTO_DWO_LINE_SECTION
4128 #define DEBUG_LTO_DWO_LINE_SECTION ".gnu.debuglto_.debug_line.dwo"
4130 #ifndef DEBUG_LOC_SECTION
4131 #define DEBUG_LOC_SECTION ".debug_loc"
4133 #ifndef DEBUG_DWO_LOC_SECTION
4134 #define DEBUG_DWO_LOC_SECTION ".debug_loc.dwo"
4136 #ifndef DEBUG_LOCLISTS_SECTION
4137 #define DEBUG_LOCLISTS_SECTION ".debug_loclists"
4139 #ifndef DEBUG_DWO_LOCLISTS_SECTION
4140 #define DEBUG_DWO_LOCLISTS_SECTION ".debug_loclists.dwo"
4142 #ifndef DEBUG_PUBNAMES_SECTION
4143 #define DEBUG_PUBNAMES_SECTION \
4144 ((debug_generate_pub_sections == 2) \
4145 ? ".debug_gnu_pubnames" : ".debug_pubnames")
4147 #ifndef DEBUG_PUBTYPES_SECTION
4148 #define DEBUG_PUBTYPES_SECTION \
4149 ((debug_generate_pub_sections == 2) \
4150 ? ".debug_gnu_pubtypes" : ".debug_pubtypes")
4152 #ifndef DEBUG_STR_OFFSETS_SECTION
4153 #define DEBUG_STR_OFFSETS_SECTION ".debug_str_offsets"
4155 #ifndef DEBUG_DWO_STR_OFFSETS_SECTION
4156 #define DEBUG_DWO_STR_OFFSETS_SECTION ".debug_str_offsets.dwo"
4158 #ifndef DEBUG_LTO_DWO_STR_OFFSETS_SECTION
4159 #define DEBUG_LTO_DWO_STR_OFFSETS_SECTION ".gnu.debuglto_.debug_str_offsets.dwo"
4161 #ifndef DEBUG_STR_SECTION
4162 #define DEBUG_STR_SECTION ".debug_str"
4164 #ifndef DEBUG_LTO_STR_SECTION
4165 #define DEBUG_LTO_STR_SECTION ".gnu.debuglto_.debug_str"
4167 #ifndef DEBUG_STR_DWO_SECTION
4168 #define DEBUG_STR_DWO_SECTION ".debug_str.dwo"
4170 #ifndef DEBUG_LTO_STR_DWO_SECTION
4171 #define DEBUG_LTO_STR_DWO_SECTION ".gnu.debuglto_.debug_str.dwo"
4173 #ifndef DEBUG_RANGES_SECTION
4174 #define DEBUG_RANGES_SECTION ".debug_ranges"
4176 #ifndef DEBUG_RNGLISTS_SECTION
4177 #define DEBUG_RNGLISTS_SECTION ".debug_rnglists"
4179 #ifndef DEBUG_DWO_RNGLISTS_SECTION
4180 #define DEBUG_DWO_RNGLISTS_SECTION ".debug_rnglists.dwo"
4182 #ifndef DEBUG_LINE_STR_SECTION
4183 #define DEBUG_LINE_STR_SECTION ".debug_line_str"
4185 #ifndef DEBUG_LTO_LINE_STR_SECTION
4186 #define DEBUG_LTO_LINE_STR_SECTION ".gnu.debuglto_.debug_line_str"
4189 /* Section flags for .debug_str section. */
4190 #define DEBUG_STR_SECTION_FLAGS \
4191 (HAVE_GAS_SHF_MERGE && flag_merge_debug_strings \
4192 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
4195 /* Section flags for .debug_str.dwo section. */
4196 #define DEBUG_STR_DWO_SECTION_FLAGS (SECTION_DEBUG | SECTION_EXCLUDE)
4198 /* Attribute used to refer to the macro section. */
4199 #define DEBUG_MACRO_ATTRIBUTE (dwarf_version >= 5 ? DW_AT_macros \
4200 : dwarf_strict ? DW_AT_macro_info : DW_AT_GNU_macros)
4202 /* Labels we insert at beginning sections we can reference instead of
4203 the section names themselves. */
4205 #ifndef TEXT_SECTION_LABEL
4206 #define TEXT_SECTION_LABEL "Ltext"
4208 #ifndef COLD_TEXT_SECTION_LABEL
4209 #define COLD_TEXT_SECTION_LABEL "Ltext_cold"
4211 #ifndef DEBUG_LINE_SECTION_LABEL
4212 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
4214 #ifndef DEBUG_SKELETON_LINE_SECTION_LABEL
4215 #define DEBUG_SKELETON_LINE_SECTION_LABEL "Lskeleton_debug_line"
4217 #ifndef DEBUG_INFO_SECTION_LABEL
4218 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
4220 #ifndef DEBUG_SKELETON_INFO_SECTION_LABEL
4221 #define DEBUG_SKELETON_INFO_SECTION_LABEL "Lskeleton_debug_info"
4223 #ifndef DEBUG_ABBREV_SECTION_LABEL
4224 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
4226 #ifndef DEBUG_SKELETON_ABBREV_SECTION_LABEL
4227 #define DEBUG_SKELETON_ABBREV_SECTION_LABEL "Lskeleton_debug_abbrev"
4229 #ifndef DEBUG_ADDR_SECTION_LABEL
4230 #define DEBUG_ADDR_SECTION_LABEL "Ldebug_addr"
4232 #ifndef DEBUG_LOC_SECTION_LABEL
4233 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
4235 #ifndef DEBUG_RANGES_SECTION_LABEL
4236 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
4238 #ifndef DEBUG_MACINFO_SECTION_LABEL
4239 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
4241 #ifndef DEBUG_MACRO_SECTION_LABEL
4242 #define DEBUG_MACRO_SECTION_LABEL "Ldebug_macro"
4244 #define SKELETON_COMP_DIE_ABBREV 1
4245 #define SKELETON_TYPE_DIE_ABBREV 2
4247 /* Definitions of defaults for formats and names of various special
4248 (artificial) labels which may be generated within this file (when the -g
4249 options is used and DWARF2_DEBUGGING_INFO is in effect.
4250 If necessary, these may be overridden from within the tm.h file, but
4251 typically, overriding these defaults is unnecessary. */
4253 static char text_end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4254 static char text_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4255 static char cold_text_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4256 static char cold_end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4257 static char abbrev_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4258 static char debug_info_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4259 static char debug_skeleton_info_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4260 static char debug_skeleton_abbrev_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4261 static char debug_line_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4262 static char debug_addr_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4263 static char debug_skeleton_line_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4264 static char macinfo_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4265 static char loc_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4266 static char ranges_section_label
[2 * MAX_ARTIFICIAL_LABEL_BYTES
];
4267 static char ranges_base_label
[2 * MAX_ARTIFICIAL_LABEL_BYTES
];
4269 #ifndef TEXT_END_LABEL
4270 #define TEXT_END_LABEL "Letext"
4272 #ifndef COLD_END_LABEL
4273 #define COLD_END_LABEL "Letext_cold"
4275 #ifndef BLOCK_BEGIN_LABEL
4276 #define BLOCK_BEGIN_LABEL "LBB"
4278 #ifndef BLOCK_INLINE_ENTRY_LABEL
4279 #define BLOCK_INLINE_ENTRY_LABEL "LBI"
4281 #ifndef BLOCK_END_LABEL
4282 #define BLOCK_END_LABEL "LBE"
4284 #ifndef LINE_CODE_LABEL
4285 #define LINE_CODE_LABEL "LM"
4289 /* Return the root of the DIE's built for the current compilation unit. */
4291 comp_unit_die (void)
4293 if (!single_comp_unit_die
)
4294 single_comp_unit_die
= gen_compile_unit_die (NULL
);
4295 return single_comp_unit_die
;
4298 /* We allow a language front-end to designate a function that is to be
4299 called to "demangle" any name before it is put into a DIE. */
4301 static const char *(*demangle_name_func
) (const char *);
4304 dwarf2out_set_demangle_name_func (const char *(*func
) (const char *))
4306 demangle_name_func
= func
;
4309 /* Test if rtl node points to a pseudo register. */
4312 is_pseudo_reg (const_rtx rtl
)
4314 return ((REG_P (rtl
) && REGNO (rtl
) >= FIRST_PSEUDO_REGISTER
)
4315 || (GET_CODE (rtl
) == SUBREG
4316 && REGNO (SUBREG_REG (rtl
)) >= FIRST_PSEUDO_REGISTER
));
4319 /* Return a reference to a type, with its const and volatile qualifiers
4323 type_main_variant (tree type
)
4325 type
= TYPE_MAIN_VARIANT (type
);
4327 /* ??? There really should be only one main variant among any group of
4328 variants of a given type (and all of the MAIN_VARIANT values for all
4329 members of the group should point to that one type) but sometimes the C
4330 front-end messes this up for array types, so we work around that bug
4332 if (TREE_CODE (type
) == ARRAY_TYPE
)
4333 while (type
!= TYPE_MAIN_VARIANT (type
))
4334 type
= TYPE_MAIN_VARIANT (type
);
4339 /* Return nonzero if the given type node represents a tagged type. */
4342 is_tagged_type (const_tree type
)
4344 enum tree_code code
= TREE_CODE (type
);
4346 return (code
== RECORD_TYPE
|| code
== UNION_TYPE
4347 || code
== QUAL_UNION_TYPE
|| code
== ENUMERAL_TYPE
);
4350 /* Set label to debug_info_section_label + die_offset of a DIE reference. */
4353 get_ref_die_offset_label (char *label
, dw_die_ref ref
)
4355 sprintf (label
, "%s+%ld", debug_info_section_label
, ref
->die_offset
);
4358 /* Return die_offset of a DIE reference to a base type. */
4360 static unsigned long int
4361 get_base_type_offset (dw_die_ref ref
)
4363 if (ref
->die_offset
)
4364 return ref
->die_offset
;
4365 if (comp_unit_die ()->die_abbrev
)
4367 calc_base_type_die_sizes ();
4368 gcc_assert (ref
->die_offset
);
4370 return ref
->die_offset
;
4373 /* Return die_offset of a DIE reference other than base type. */
4375 static unsigned long int
4376 get_ref_die_offset (dw_die_ref ref
)
4378 gcc_assert (ref
->die_offset
);
4379 return ref
->die_offset
;
4382 /* Convert a DIE tag into its string name. */
4385 dwarf_tag_name (unsigned int tag
)
4387 const char *name
= get_DW_TAG_name (tag
);
4392 return "DW_TAG_<unknown>";
4395 /* Convert a DWARF attribute code into its string name. */
4398 dwarf_attr_name (unsigned int attr
)
4404 #if VMS_DEBUGGING_INFO
4405 case DW_AT_HP_prologue
:
4406 return "DW_AT_HP_prologue";
4408 case DW_AT_MIPS_loop_unroll_factor
:
4409 return "DW_AT_MIPS_loop_unroll_factor";
4412 #if VMS_DEBUGGING_INFO
4413 case DW_AT_HP_epilogue
:
4414 return "DW_AT_HP_epilogue";
4416 case DW_AT_MIPS_stride
:
4417 return "DW_AT_MIPS_stride";
4421 name
= get_DW_AT_name (attr
);
4426 return "DW_AT_<unknown>";
4429 /* Convert a DWARF value form code into its string name. */
4432 dwarf_form_name (unsigned int form
)
4434 const char *name
= get_DW_FORM_name (form
);
4439 return "DW_FORM_<unknown>";
4442 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4443 instance of an inlined instance of a decl which is local to an inline
4444 function, so we have to trace all of the way back through the origin chain
4445 to find out what sort of node actually served as the original seed for the
4449 decl_ultimate_origin (const_tree decl
)
4451 if (!CODE_CONTAINS_STRUCT (TREE_CODE (decl
), TS_DECL_COMMON
))
4454 /* DECL_ABSTRACT_ORIGIN can point to itself; ignore that if
4455 we're trying to output the abstract instance of this function. */
4456 if (DECL_ABSTRACT_P (decl
) && DECL_ABSTRACT_ORIGIN (decl
) == decl
)
4459 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4460 most distant ancestor, this should never happen. */
4461 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl
)));
4463 return DECL_ABSTRACT_ORIGIN (decl
);
4466 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4467 of a virtual function may refer to a base class, so we check the 'this'
4471 decl_class_context (tree decl
)
4473 tree context
= NULL_TREE
;
4475 if (TREE_CODE (decl
) != FUNCTION_DECL
|| ! DECL_VINDEX (decl
))
4476 context
= DECL_CONTEXT (decl
);
4478 context
= TYPE_MAIN_VARIANT
4479 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl
)))));
4481 if (context
&& !TYPE_P (context
))
4482 context
= NULL_TREE
;
4487 /* Add an attribute/value pair to a DIE. */
4490 add_dwarf_attr (dw_die_ref die
, dw_attr_node
*attr
)
4492 /* Maybe this should be an assert? */
4498 /* Check we do not add duplicate attrs. Can't use get_AT here
4499 because that recurses to the specification/abstract origin DIE. */
4502 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
4503 gcc_assert (a
->dw_attr
!= attr
->dw_attr
);
4506 vec_safe_reserve (die
->die_attr
, 1);
4507 vec_safe_push (die
->die_attr
, *attr
);
4511 AT_class (dw_attr_node
*a
)
4513 return a
->dw_attr_val
.val_class
;
4516 /* Return the index for any attribute that will be referenced with a
4517 DW_FORM_addrx/GNU_addr_index or DW_FORM_strx/GNU_str_index. String
4518 indices are stored in dw_attr_val.v.val_str for reference counting
4521 static inline unsigned int
4522 AT_index (dw_attr_node
*a
)
4524 if (AT_class (a
) == dw_val_class_str
)
4525 return a
->dw_attr_val
.v
.val_str
->index
;
4526 else if (a
->dw_attr_val
.val_entry
!= NULL
)
4527 return a
->dw_attr_val
.val_entry
->index
;
4531 /* Add a flag value attribute to a DIE. */
4534 add_AT_flag (dw_die_ref die
, enum dwarf_attribute attr_kind
, unsigned int flag
)
4538 attr
.dw_attr
= attr_kind
;
4539 attr
.dw_attr_val
.val_class
= dw_val_class_flag
;
4540 attr
.dw_attr_val
.val_entry
= NULL
;
4541 attr
.dw_attr_val
.v
.val_flag
= flag
;
4542 add_dwarf_attr (die
, &attr
);
4545 static inline unsigned
4546 AT_flag (dw_attr_node
*a
)
4548 gcc_assert (a
&& AT_class (a
) == dw_val_class_flag
);
4549 return a
->dw_attr_val
.v
.val_flag
;
4552 /* Add a signed integer attribute value to a DIE. */
4555 add_AT_int (dw_die_ref die
, enum dwarf_attribute attr_kind
, HOST_WIDE_INT int_val
)
4559 attr
.dw_attr
= attr_kind
;
4560 attr
.dw_attr_val
.val_class
= dw_val_class_const
;
4561 attr
.dw_attr_val
.val_entry
= NULL
;
4562 attr
.dw_attr_val
.v
.val_int
= int_val
;
4563 add_dwarf_attr (die
, &attr
);
4567 AT_int (dw_attr_node
*a
)
4569 gcc_assert (a
&& (AT_class (a
) == dw_val_class_const
4570 || AT_class (a
) == dw_val_class_const_implicit
));
4571 return a
->dw_attr_val
.v
.val_int
;
4574 /* Add an unsigned integer attribute value to a DIE. */
4577 add_AT_unsigned (dw_die_ref die
, enum dwarf_attribute attr_kind
,
4578 unsigned HOST_WIDE_INT unsigned_val
)
4582 attr
.dw_attr
= attr_kind
;
4583 attr
.dw_attr_val
.val_class
= dw_val_class_unsigned_const
;
4584 attr
.dw_attr_val
.val_entry
= NULL
;
4585 attr
.dw_attr_val
.v
.val_unsigned
= unsigned_val
;
4586 add_dwarf_attr (die
, &attr
);
4589 unsigned HOST_WIDE_INT
4590 AT_unsigned (dw_attr_node
*a
)
4592 gcc_assert (a
&& (AT_class (a
) == dw_val_class_unsigned_const
4593 || AT_class (a
) == dw_val_class_unsigned_const_implicit
));
4594 return a
->dw_attr_val
.v
.val_unsigned
;
4597 /* Add an unsigned wide integer attribute value to a DIE. */
4600 add_AT_wide (dw_die_ref die
, enum dwarf_attribute attr_kind
,
4605 attr
.dw_attr
= attr_kind
;
4606 attr
.dw_attr_val
.val_class
= dw_val_class_wide_int
;
4607 attr
.dw_attr_val
.val_entry
= NULL
;
4608 attr
.dw_attr_val
.v
.val_wide
= ggc_alloc
<wide_int
> ();
4609 *attr
.dw_attr_val
.v
.val_wide
= w
;
4610 add_dwarf_attr (die
, &attr
);
4613 /* Add an unsigned double integer attribute value to a DIE. */
4616 add_AT_double (dw_die_ref die
, enum dwarf_attribute attr_kind
,
4617 HOST_WIDE_INT high
, unsigned HOST_WIDE_INT low
)
4621 attr
.dw_attr
= attr_kind
;
4622 attr
.dw_attr_val
.val_class
= dw_val_class_const_double
;
4623 attr
.dw_attr_val
.val_entry
= NULL
;
4624 attr
.dw_attr_val
.v
.val_double
.high
= high
;
4625 attr
.dw_attr_val
.v
.val_double
.low
= low
;
4626 add_dwarf_attr (die
, &attr
);
4629 /* Add a floating point attribute value to a DIE and return it. */
4632 add_AT_vec (dw_die_ref die
, enum dwarf_attribute attr_kind
,
4633 unsigned int length
, unsigned int elt_size
, unsigned char *array
)
4637 attr
.dw_attr
= attr_kind
;
4638 attr
.dw_attr_val
.val_class
= dw_val_class_vec
;
4639 attr
.dw_attr_val
.val_entry
= NULL
;
4640 attr
.dw_attr_val
.v
.val_vec
.length
= length
;
4641 attr
.dw_attr_val
.v
.val_vec
.elt_size
= elt_size
;
4642 attr
.dw_attr_val
.v
.val_vec
.array
= array
;
4643 add_dwarf_attr (die
, &attr
);
4646 /* Add an 8-byte data attribute value to a DIE. */
4649 add_AT_data8 (dw_die_ref die
, enum dwarf_attribute attr_kind
,
4650 unsigned char data8
[8])
4654 attr
.dw_attr
= attr_kind
;
4655 attr
.dw_attr_val
.val_class
= dw_val_class_data8
;
4656 attr
.dw_attr_val
.val_entry
= NULL
;
4657 memcpy (attr
.dw_attr_val
.v
.val_data8
, data8
, 8);
4658 add_dwarf_attr (die
, &attr
);
4661 /* Add DW_AT_low_pc and DW_AT_high_pc to a DIE. When using
4662 dwarf_split_debug_info, address attributes in dies destined for the
4663 final executable have force_direct set to avoid using indexed
4667 add_AT_low_high_pc (dw_die_ref die
, const char *lbl_low
, const char *lbl_high
,
4673 lbl_id
= xstrdup (lbl_low
);
4674 attr
.dw_attr
= DW_AT_low_pc
;
4675 attr
.dw_attr_val
.val_class
= dw_val_class_lbl_id
;
4676 attr
.dw_attr_val
.v
.val_lbl_id
= lbl_id
;
4677 if (dwarf_split_debug_info
&& !force_direct
)
4678 attr
.dw_attr_val
.val_entry
4679 = add_addr_table_entry (lbl_id
, ate_kind_label
);
4681 attr
.dw_attr_val
.val_entry
= NULL
;
4682 add_dwarf_attr (die
, &attr
);
4684 attr
.dw_attr
= DW_AT_high_pc
;
4685 if (dwarf_version
< 4)
4686 attr
.dw_attr_val
.val_class
= dw_val_class_lbl_id
;
4688 attr
.dw_attr_val
.val_class
= dw_val_class_high_pc
;
4689 lbl_id
= xstrdup (lbl_high
);
4690 attr
.dw_attr_val
.v
.val_lbl_id
= lbl_id
;
4691 if (attr
.dw_attr_val
.val_class
== dw_val_class_lbl_id
4692 && dwarf_split_debug_info
&& !force_direct
)
4693 attr
.dw_attr_val
.val_entry
4694 = add_addr_table_entry (lbl_id
, ate_kind_label
);
4696 attr
.dw_attr_val
.val_entry
= NULL
;
4697 add_dwarf_attr (die
, &attr
);
4700 /* Hash and equality functions for debug_str_hash. */
4703 indirect_string_hasher::hash (indirect_string_node
*x
)
4705 return htab_hash_string (x
->str
);
4709 indirect_string_hasher::equal (indirect_string_node
*x1
, const char *x2
)
4711 return strcmp (x1
->str
, x2
) == 0;
4714 /* Add STR to the given string hash table. */
4716 static struct indirect_string_node
*
4717 find_AT_string_in_table (const char *str
,
4718 hash_table
<indirect_string_hasher
> *table
,
4719 enum insert_option insert
= INSERT
)
4721 struct indirect_string_node
*node
;
4723 indirect_string_node
**slot
4724 = table
->find_slot_with_hash (str
, htab_hash_string (str
), insert
);
4727 node
= ggc_cleared_alloc
<indirect_string_node
> ();
4728 node
->str
= ggc_strdup (str
);
4738 /* Add STR to the indirect string hash table. */
4740 static struct indirect_string_node
*
4741 find_AT_string (const char *str
, enum insert_option insert
= INSERT
)
4743 if (! debug_str_hash
)
4744 debug_str_hash
= hash_table
<indirect_string_hasher
>::create_ggc (10);
4746 return find_AT_string_in_table (str
, debug_str_hash
, insert
);
4749 /* Add a string attribute value to a DIE. */
4752 add_AT_string (dw_die_ref die
, enum dwarf_attribute attr_kind
, const char *str
)
4755 struct indirect_string_node
*node
;
4757 node
= find_AT_string (str
);
4759 attr
.dw_attr
= attr_kind
;
4760 attr
.dw_attr_val
.val_class
= dw_val_class_str
;
4761 attr
.dw_attr_val
.val_entry
= NULL
;
4762 attr
.dw_attr_val
.v
.val_str
= node
;
4763 add_dwarf_attr (die
, &attr
);
4766 static inline const char *
4767 AT_string (dw_attr_node
*a
)
4769 gcc_assert (a
&& AT_class (a
) == dw_val_class_str
);
4770 return a
->dw_attr_val
.v
.val_str
->str
;
4773 /* Call this function directly to bypass AT_string_form's logic to put
4774 the string inline in the die. */
4777 set_indirect_string (struct indirect_string_node
*node
)
4779 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4780 /* Already indirect is a no op. */
4781 if (node
->form
== DW_FORM_strp
4782 || node
->form
== DW_FORM_line_strp
4783 || node
->form
== dwarf_FORM (DW_FORM_strx
))
4785 gcc_assert (node
->label
);
4788 ASM_GENERATE_INTERNAL_LABEL (label
, "LASF", dw2_string_counter
);
4789 ++dw2_string_counter
;
4790 node
->label
= xstrdup (label
);
4792 if (!dwarf_split_debug_info
)
4794 node
->form
= DW_FORM_strp
;
4795 node
->index
= NOT_INDEXED
;
4799 node
->form
= dwarf_FORM (DW_FORM_strx
);
4800 node
->index
= NO_INDEX_ASSIGNED
;
4804 /* A helper function for dwarf2out_finish, called to reset indirect
4805 string decisions done for early LTO dwarf output before fat object
4809 reset_indirect_string (indirect_string_node
**h
, void *)
4811 struct indirect_string_node
*node
= *h
;
4812 if (node
->form
== DW_FORM_strp
4813 || node
->form
== DW_FORM_line_strp
4814 || node
->form
== dwarf_FORM (DW_FORM_strx
))
4818 node
->form
= (dwarf_form
) 0;
4824 /* Add a string representing a file or filepath attribute value to a DIE. */
4827 add_filepath_AT_string (dw_die_ref die
, enum dwarf_attribute attr_kind
,
4830 if (! asm_outputs_debug_line_str ())
4831 add_AT_string (die
, attr_kind
, str
);
4835 struct indirect_string_node
*node
;
4837 if (!debug_line_str_hash
)
4839 = hash_table
<indirect_string_hasher
>::create_ggc (10);
4841 node
= find_AT_string_in_table (str
, debug_line_str_hash
);
4842 set_indirect_string (node
);
4843 node
->form
= DW_FORM_line_strp
;
4845 attr
.dw_attr
= attr_kind
;
4846 attr
.dw_attr_val
.val_class
= dw_val_class_str
;
4847 attr
.dw_attr_val
.val_entry
= NULL
;
4848 attr
.dw_attr_val
.v
.val_str
= node
;
4849 add_dwarf_attr (die
, &attr
);
4853 /* Find out whether a string should be output inline in DIE
4854 or out-of-line in .debug_str section. */
4856 static enum dwarf_form
4857 find_string_form (struct indirect_string_node
*node
)
4864 len
= strlen (node
->str
) + 1;
4866 /* If the string is shorter or equal to the size of the reference, it is
4867 always better to put it inline. */
4868 if (len
<= (unsigned) dwarf_offset_size
|| node
->refcount
== 0)
4869 return node
->form
= DW_FORM_string
;
4871 /* If we cannot expect the linker to merge strings in .debug_str
4872 section, only put it into .debug_str if it is worth even in this
4874 if (DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET
4875 || ((debug_str_section
->common
.flags
& SECTION_MERGE
) == 0
4876 && (len
- dwarf_offset_size
) * node
->refcount
<= len
))
4877 return node
->form
= DW_FORM_string
;
4879 set_indirect_string (node
);
4884 /* Find out whether the string referenced from the attribute should be
4885 output inline in DIE or out-of-line in .debug_str section. */
4887 static enum dwarf_form
4888 AT_string_form (dw_attr_node
*a
)
4890 gcc_assert (a
&& AT_class (a
) == dw_val_class_str
);
4891 return find_string_form (a
->dw_attr_val
.v
.val_str
);
4894 /* Add a DIE reference attribute value to a DIE. */
4897 add_AT_die_ref (dw_die_ref die
, enum dwarf_attribute attr_kind
, dw_die_ref targ_die
)
4900 gcc_checking_assert (targ_die
!= NULL
);
4902 /* With LTO we can end up trying to reference something we didn't create
4903 a DIE for. Avoid crashing later on a NULL referenced DIE. */
4904 if (targ_die
== NULL
)
4907 attr
.dw_attr
= attr_kind
;
4908 attr
.dw_attr_val
.val_class
= dw_val_class_die_ref
;
4909 attr
.dw_attr_val
.val_entry
= NULL
;
4910 attr
.dw_attr_val
.v
.val_die_ref
.die
= targ_die
;
4911 attr
.dw_attr_val
.v
.val_die_ref
.external
= 0;
4912 add_dwarf_attr (die
, &attr
);
4915 /* Change DIE reference REF to point to NEW_DIE instead. */
4918 change_AT_die_ref (dw_attr_node
*ref
, dw_die_ref new_die
)
4920 gcc_assert (ref
->dw_attr_val
.val_class
== dw_val_class_die_ref
);
4921 ref
->dw_attr_val
.v
.val_die_ref
.die
= new_die
;
4922 ref
->dw_attr_val
.v
.val_die_ref
.external
= 0;
4925 /* Add an AT_specification attribute to a DIE, and also make the back
4926 pointer from the specification to the definition. */
4929 add_AT_specification (dw_die_ref die
, dw_die_ref targ_die
)
4931 add_AT_die_ref (die
, DW_AT_specification
, targ_die
);
4932 gcc_assert (!targ_die
->die_definition
);
4933 targ_die
->die_definition
= die
;
4936 static inline dw_die_ref
4937 AT_ref (dw_attr_node
*a
)
4939 gcc_assert (a
&& AT_class (a
) == dw_val_class_die_ref
);
4940 return a
->dw_attr_val
.v
.val_die_ref
.die
;
4944 AT_ref_external (dw_attr_node
*a
)
4946 if (a
&& AT_class (a
) == dw_val_class_die_ref
)
4947 return a
->dw_attr_val
.v
.val_die_ref
.external
;
4953 set_AT_ref_external (dw_attr_node
*a
, int i
)
4955 gcc_assert (a
&& AT_class (a
) == dw_val_class_die_ref
);
4956 a
->dw_attr_val
.v
.val_die_ref
.external
= i
;
4959 /* Add a location description attribute value to a DIE. */
4962 add_AT_loc (dw_die_ref die
, enum dwarf_attribute attr_kind
, dw_loc_descr_ref loc
)
4966 attr
.dw_attr
= attr_kind
;
4967 attr
.dw_attr_val
.val_class
= dw_val_class_loc
;
4968 attr
.dw_attr_val
.val_entry
= NULL
;
4969 attr
.dw_attr_val
.v
.val_loc
= loc
;
4970 add_dwarf_attr (die
, &attr
);
4974 AT_loc (dw_attr_node
*a
)
4976 gcc_assert (a
&& AT_class (a
) == dw_val_class_loc
);
4977 return a
->dw_attr_val
.v
.val_loc
;
4981 add_AT_loc_list (dw_die_ref die
, enum dwarf_attribute attr_kind
, dw_loc_list_ref loc_list
)
4985 if (XCOFF_DEBUGGING_INFO
&& !HAVE_XCOFF_DWARF_EXTRAS
)
4988 attr
.dw_attr
= attr_kind
;
4989 attr
.dw_attr_val
.val_class
= dw_val_class_loc_list
;
4990 attr
.dw_attr_val
.val_entry
= NULL
;
4991 attr
.dw_attr_val
.v
.val_loc_list
= loc_list
;
4992 add_dwarf_attr (die
, &attr
);
4993 have_location_lists
= true;
4996 static inline dw_loc_list_ref
4997 AT_loc_list (dw_attr_node
*a
)
4999 gcc_assert (a
&& AT_class (a
) == dw_val_class_loc_list
);
5000 return a
->dw_attr_val
.v
.val_loc_list
;
5003 /* Add a view list attribute to DIE. It must have a DW_AT_location
5004 attribute, because the view list complements the location list. */
5007 add_AT_view_list (dw_die_ref die
, enum dwarf_attribute attr_kind
)
5011 if (XCOFF_DEBUGGING_INFO
&& !HAVE_XCOFF_DWARF_EXTRAS
)
5014 attr
.dw_attr
= attr_kind
;
5015 attr
.dw_attr_val
.val_class
= dw_val_class_view_list
;
5016 attr
.dw_attr_val
.val_entry
= NULL
;
5017 attr
.dw_attr_val
.v
.val_view_list
= die
;
5018 add_dwarf_attr (die
, &attr
);
5019 gcc_checking_assert (get_AT (die
, DW_AT_location
));
5020 gcc_assert (have_location_lists
);
5023 /* Return a pointer to the location list referenced by the attribute.
5024 If the named attribute is a view list, look up the corresponding
5025 DW_AT_location attribute and return its location list. */
5027 static inline dw_loc_list_ref
*
5028 AT_loc_list_ptr (dw_attr_node
*a
)
5031 switch (AT_class (a
))
5033 case dw_val_class_loc_list
:
5034 return &a
->dw_attr_val
.v
.val_loc_list
;
5035 case dw_val_class_view_list
:
5038 l
= get_AT (a
->dw_attr_val
.v
.val_view_list
, DW_AT_location
);
5041 gcc_checking_assert (l
+ 1 == a
);
5042 return AT_loc_list_ptr (l
);
5049 /* Return the location attribute value associated with a view list
5052 static inline dw_val_node
*
5053 view_list_to_loc_list_val_node (dw_val_node
*val
)
5055 gcc_assert (val
->val_class
== dw_val_class_view_list
);
5056 dw_attr_node
*loc
= get_AT (val
->v
.val_view_list
, DW_AT_location
);
5059 gcc_checking_assert (&(loc
+ 1)->dw_attr_val
== val
);
5060 gcc_assert (AT_class (loc
) == dw_val_class_loc_list
);
5061 return &loc
->dw_attr_val
;
5064 struct addr_hasher
: ggc_ptr_hash
<addr_table_entry
>
5066 static hashval_t
hash (addr_table_entry
*);
5067 static bool equal (addr_table_entry
*, addr_table_entry
*);
5070 /* Table of entries into the .debug_addr section. */
5072 static GTY (()) hash_table
<addr_hasher
> *addr_index_table
;
5074 /* Hash an address_table_entry. */
5077 addr_hasher::hash (addr_table_entry
*a
)
5079 inchash::hash hstate
;
5085 case ate_kind_rtx_dtprel
:
5088 case ate_kind_label
:
5089 return htab_hash_string (a
->addr
.label
);
5093 inchash::add_rtx (a
->addr
.rtl
, hstate
);
5094 return hstate
.end ();
5097 /* Determine equality for two address_table_entries. */
5100 addr_hasher::equal (addr_table_entry
*a1
, addr_table_entry
*a2
)
5102 if (a1
->kind
!= a2
->kind
)
5107 case ate_kind_rtx_dtprel
:
5108 return rtx_equal_p (a1
->addr
.rtl
, a2
->addr
.rtl
);
5109 case ate_kind_label
:
5110 return strcmp (a1
->addr
.label
, a2
->addr
.label
) == 0;
5116 /* Initialize an addr_table_entry. */
5119 init_addr_table_entry (addr_table_entry
*e
, enum ate_kind kind
, void *addr
)
5125 case ate_kind_rtx_dtprel
:
5126 e
->addr
.rtl
= (rtx
) addr
;
5128 case ate_kind_label
:
5129 e
->addr
.label
= (char *) addr
;
5133 e
->index
= NO_INDEX_ASSIGNED
;
5136 /* Add attr to the address table entry to the table. Defer setting an
5137 index until output time. */
5139 static addr_table_entry
*
5140 add_addr_table_entry (void *addr
, enum ate_kind kind
)
5142 addr_table_entry
*node
;
5143 addr_table_entry finder
;
5145 gcc_assert (dwarf_split_debug_info
);
5146 if (! addr_index_table
)
5147 addr_index_table
= hash_table
<addr_hasher
>::create_ggc (10);
5148 init_addr_table_entry (&finder
, kind
, addr
);
5149 addr_table_entry
**slot
= addr_index_table
->find_slot (&finder
, INSERT
);
5151 if (*slot
== HTAB_EMPTY_ENTRY
)
5153 node
= ggc_cleared_alloc
<addr_table_entry
> ();
5154 init_addr_table_entry (node
, kind
, addr
);
5164 /* Remove an entry from the addr table by decrementing its refcount.
5165 Strictly, decrementing the refcount would be enough, but the
5166 assertion that the entry is actually in the table has found
5170 remove_addr_table_entry (addr_table_entry
*entry
)
5172 gcc_assert (dwarf_split_debug_info
&& addr_index_table
);
5173 /* After an index is assigned, the table is frozen. */
5174 gcc_assert (entry
->refcount
> 0 && entry
->index
== NO_INDEX_ASSIGNED
);
5178 /* Given a location list, remove all addresses it refers to from the
5182 remove_loc_list_addr_table_entries (dw_loc_descr_ref descr
)
5184 for (; descr
; descr
= descr
->dw_loc_next
)
5185 if (descr
->dw_loc_oprnd1
.val_entry
!= NULL
)
5187 gcc_assert (descr
->dw_loc_oprnd1
.val_entry
->index
== NO_INDEX_ASSIGNED
);
5188 remove_addr_table_entry (descr
->dw_loc_oprnd1
.val_entry
);
5192 /* A helper function for dwarf2out_finish called through
5193 htab_traverse. Assign an addr_table_entry its index. All entries
5194 must be collected into the table when this function is called,
5195 because the indexing code relies on htab_traverse to traverse nodes
5196 in the same order for each run. */
5199 index_addr_table_entry (addr_table_entry
**h
, unsigned int *index
)
5201 addr_table_entry
*node
= *h
;
5203 /* Don't index unreferenced nodes. */
5204 if (node
->refcount
== 0)
5207 gcc_assert (node
->index
== NO_INDEX_ASSIGNED
);
5208 node
->index
= *index
;
5214 /* Return the tag of a given DIE. */
5217 dw_get_die_tag (dw_die_ref die
)
5219 return die
->die_tag
;
5222 /* Return a reference to the children list of a given DIE. */
5225 dw_get_die_child (dw_die_ref die
)
5227 return die
->die_child
;
5230 /* Return a reference to the sibling of a given DIE. */
5233 dw_get_die_sib (dw_die_ref die
)
5235 return die
->die_sib
;
5238 /* Add an address constant attribute value to a DIE. When using
5239 dwarf_split_debug_info, address attributes in dies destined for the
5240 final executable should be direct references--setting the parameter
5241 force_direct ensures this behavior. */
5244 add_AT_addr (dw_die_ref die
, enum dwarf_attribute attr_kind
, rtx addr
,
5249 attr
.dw_attr
= attr_kind
;
5250 attr
.dw_attr_val
.val_class
= dw_val_class_addr
;
5251 attr
.dw_attr_val
.v
.val_addr
= addr
;
5252 if (dwarf_split_debug_info
&& !force_direct
)
5253 attr
.dw_attr_val
.val_entry
= add_addr_table_entry (addr
, ate_kind_rtx
);
5255 attr
.dw_attr_val
.val_entry
= NULL
;
5256 add_dwarf_attr (die
, &attr
);
5259 /* Get the RTX from to an address DIE attribute. */
5262 AT_addr (dw_attr_node
*a
)
5264 gcc_assert (a
&& AT_class (a
) == dw_val_class_addr
);
5265 return a
->dw_attr_val
.v
.val_addr
;
5268 /* Add a file attribute value to a DIE. */
5271 add_AT_file (dw_die_ref die
, enum dwarf_attribute attr_kind
,
5272 struct dwarf_file_data
*fd
)
5276 attr
.dw_attr
= attr_kind
;
5277 attr
.dw_attr_val
.val_class
= dw_val_class_file
;
5278 attr
.dw_attr_val
.val_entry
= NULL
;
5279 attr
.dw_attr_val
.v
.val_file
= fd
;
5280 add_dwarf_attr (die
, &attr
);
5283 /* Get the dwarf_file_data from a file DIE attribute. */
5285 static inline struct dwarf_file_data
*
5286 AT_file (dw_attr_node
*a
)
5288 gcc_assert (a
&& (AT_class (a
) == dw_val_class_file
5289 || AT_class (a
) == dw_val_class_file_implicit
));
5290 return a
->dw_attr_val
.v
.val_file
;
5293 #if VMS_DEBUGGING_INFO
5294 /* Add a vms delta attribute value to a DIE. */
5297 add_AT_vms_delta (dw_die_ref die
, enum dwarf_attribute attr_kind
,
5298 const char *lbl1
, const char *lbl2
)
5302 attr
.dw_attr
= attr_kind
;
5303 attr
.dw_attr_val
.val_class
= dw_val_class_vms_delta
;
5304 attr
.dw_attr_val
.val_entry
= NULL
;
5305 attr
.dw_attr_val
.v
.val_vms_delta
.lbl1
= xstrdup (lbl1
);
5306 attr
.dw_attr_val
.v
.val_vms_delta
.lbl2
= xstrdup (lbl2
);
5307 add_dwarf_attr (die
, &attr
);
5311 /* Add a symbolic view identifier attribute value to a DIE. */
5314 add_AT_symview (dw_die_ref die
, enum dwarf_attribute attr_kind
,
5315 const char *view_label
)
5319 attr
.dw_attr
= attr_kind
;
5320 attr
.dw_attr_val
.val_class
= dw_val_class_symview
;
5321 attr
.dw_attr_val
.val_entry
= NULL
;
5322 attr
.dw_attr_val
.v
.val_symbolic_view
= xstrdup (view_label
);
5323 add_dwarf_attr (die
, &attr
);
5326 /* Add a label identifier attribute value to a DIE. */
5329 add_AT_lbl_id (dw_die_ref die
, enum dwarf_attribute attr_kind
,
5334 attr
.dw_attr
= attr_kind
;
5335 attr
.dw_attr_val
.val_class
= dw_val_class_lbl_id
;
5336 attr
.dw_attr_val
.val_entry
= NULL
;
5337 attr
.dw_attr_val
.v
.val_lbl_id
= xstrdup (lbl_id
);
5338 if (dwarf_split_debug_info
)
5339 attr
.dw_attr_val
.val_entry
5340 = add_addr_table_entry (attr
.dw_attr_val
.v
.val_lbl_id
,
5342 add_dwarf_attr (die
, &attr
);
5345 /* Add a section offset attribute value to a DIE, an offset into the
5346 debug_line section. */
5349 add_AT_lineptr (dw_die_ref die
, enum dwarf_attribute attr_kind
,
5354 attr
.dw_attr
= attr_kind
;
5355 attr
.dw_attr_val
.val_class
= dw_val_class_lineptr
;
5356 attr
.dw_attr_val
.val_entry
= NULL
;
5357 attr
.dw_attr_val
.v
.val_lbl_id
= xstrdup (label
);
5358 add_dwarf_attr (die
, &attr
);
5361 /* Add a section offset attribute value to a DIE, an offset into the
5362 debug_macinfo section. */
5365 add_AT_macptr (dw_die_ref die
, enum dwarf_attribute attr_kind
,
5370 attr
.dw_attr
= attr_kind
;
5371 attr
.dw_attr_val
.val_class
= dw_val_class_macptr
;
5372 attr
.dw_attr_val
.val_entry
= NULL
;
5373 attr
.dw_attr_val
.v
.val_lbl_id
= xstrdup (label
);
5374 add_dwarf_attr (die
, &attr
);
5377 /* Add a range_list attribute value to a DIE. When using
5378 dwarf_split_debug_info, address attributes in dies destined for the
5379 final executable should be direct references--setting the parameter
5380 force_direct ensures this behavior. */
5382 #define UNRELOCATED_OFFSET ((addr_table_entry *) 1)
5383 #define RELOCATED_OFFSET (NULL)
5386 add_AT_range_list (dw_die_ref die
, enum dwarf_attribute attr_kind
,
5387 long unsigned int offset
, bool force_direct
)
5391 attr
.dw_attr
= attr_kind
;
5392 attr
.dw_attr_val
.val_class
= dw_val_class_range_list
;
5393 /* For the range_list attribute, use val_entry to store whether the
5394 offset should follow split-debug-info or normal semantics. This
5395 value is read in output_range_list_offset. */
5396 if (dwarf_split_debug_info
&& !force_direct
)
5397 attr
.dw_attr_val
.val_entry
= UNRELOCATED_OFFSET
;
5399 attr
.dw_attr_val
.val_entry
= RELOCATED_OFFSET
;
5400 attr
.dw_attr_val
.v
.val_offset
= offset
;
5401 add_dwarf_attr (die
, &attr
);
5404 /* Return the start label of a delta attribute. */
5406 static inline const char *
5407 AT_vms_delta1 (dw_attr_node
*a
)
5409 gcc_assert (a
&& (AT_class (a
) == dw_val_class_vms_delta
));
5410 return a
->dw_attr_val
.v
.val_vms_delta
.lbl1
;
5413 /* Return the end label of a delta attribute. */
5415 static inline const char *
5416 AT_vms_delta2 (dw_attr_node
*a
)
5418 gcc_assert (a
&& (AT_class (a
) == dw_val_class_vms_delta
));
5419 return a
->dw_attr_val
.v
.val_vms_delta
.lbl2
;
5422 static inline const char *
5423 AT_lbl (dw_attr_node
*a
)
5425 gcc_assert (a
&& (AT_class (a
) == dw_val_class_lbl_id
5426 || AT_class (a
) == dw_val_class_lineptr
5427 || AT_class (a
) == dw_val_class_macptr
5428 || AT_class (a
) == dw_val_class_loclistsptr
5429 || AT_class (a
) == dw_val_class_high_pc
));
5430 return a
->dw_attr_val
.v
.val_lbl_id
;
5433 /* Get the attribute of type attr_kind. */
5436 get_AT (dw_die_ref die
, enum dwarf_attribute attr_kind
)
5440 dw_die_ref spec
= NULL
;
5445 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
5446 if (a
->dw_attr
== attr_kind
)
5448 else if (a
->dw_attr
== DW_AT_specification
5449 || a
->dw_attr
== DW_AT_abstract_origin
)
5453 return get_AT (spec
, attr_kind
);
5458 /* Returns the parent of the declaration of DIE. */
5461 get_die_parent (dw_die_ref die
)
5468 if ((t
= get_AT_ref (die
, DW_AT_abstract_origin
))
5469 || (t
= get_AT_ref (die
, DW_AT_specification
)))
5472 return die
->die_parent
;
5475 /* Return the "low pc" attribute value, typically associated with a subprogram
5476 DIE. Return null if the "low pc" attribute is either not present, or if it
5477 cannot be represented as an assembler label identifier. */
5479 static inline const char *
5480 get_AT_low_pc (dw_die_ref die
)
5482 dw_attr_node
*a
= get_AT (die
, DW_AT_low_pc
);
5484 return a
? AT_lbl (a
) : NULL
;
5487 /* Return the value of the string attribute designated by ATTR_KIND, or
5488 NULL if it is not present. */
5491 get_AT_string (dw_die_ref die
, enum dwarf_attribute attr_kind
)
5493 dw_attr_node
*a
= get_AT (die
, attr_kind
);
5495 return a
? AT_string (a
) : NULL
;
5498 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5499 if it is not present. */
5502 get_AT_flag (dw_die_ref die
, enum dwarf_attribute attr_kind
)
5504 dw_attr_node
*a
= get_AT (die
, attr_kind
);
5506 return a
? AT_flag (a
) : 0;
5509 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5510 if it is not present. */
5513 get_AT_unsigned (dw_die_ref die
, enum dwarf_attribute attr_kind
)
5515 dw_attr_node
*a
= get_AT (die
, attr_kind
);
5517 return a
? AT_unsigned (a
) : 0;
5521 get_AT_ref (dw_die_ref die
, enum dwarf_attribute attr_kind
)
5523 dw_attr_node
*a
= get_AT (die
, attr_kind
);
5525 return a
? AT_ref (a
) : NULL
;
5528 struct dwarf_file_data
*
5529 get_AT_file (dw_die_ref die
, enum dwarf_attribute attr_kind
)
5531 dw_attr_node
*a
= get_AT (die
, attr_kind
);
5533 return a
? AT_file (a
) : NULL
;
5536 /* Return TRUE if the language is C. */
5541 unsigned int lang
= get_AT_unsigned (comp_unit_die (), DW_AT_language
);
5543 return (lang
== DW_LANG_C
|| lang
== DW_LANG_C89
|| lang
== DW_LANG_C99
5544 || lang
== DW_LANG_C11
|| lang
== DW_LANG_ObjC
);
5549 /* Return TRUE if the language is C++. */
5554 unsigned int lang
= get_AT_unsigned (comp_unit_die (), DW_AT_language
);
5556 return (lang
== DW_LANG_C_plus_plus
|| lang
== DW_LANG_ObjC_plus_plus
5557 || lang
== DW_LANG_C_plus_plus_11
|| lang
== DW_LANG_C_plus_plus_14
);
5560 /* Return TRUE if DECL was created by the C++ frontend. */
5563 is_cxx (const_tree decl
)
5567 const_tree context
= get_ultimate_context (decl
);
5568 if (context
&& TRANSLATION_UNIT_LANGUAGE (context
))
5569 return startswith (TRANSLATION_UNIT_LANGUAGE (context
), "GNU C++");
5574 /* Return TRUE if the language is Fortran. */
5579 unsigned int lang
= get_AT_unsigned (comp_unit_die (), DW_AT_language
);
5581 return (lang
== DW_LANG_Fortran77
5582 || lang
== DW_LANG_Fortran90
5583 || lang
== DW_LANG_Fortran95
5584 || lang
== DW_LANG_Fortran03
5585 || lang
== DW_LANG_Fortran08
);
5589 is_fortran (const_tree decl
)
5593 const_tree context
= get_ultimate_context (decl
);
5594 if (context
&& TRANSLATION_UNIT_LANGUAGE (context
))
5595 return (strncmp (TRANSLATION_UNIT_LANGUAGE (context
),
5596 "GNU Fortran", 11) == 0
5597 || strcmp (TRANSLATION_UNIT_LANGUAGE (context
),
5600 return is_fortran ();
5603 /* Return TRUE if the language is Ada. */
5608 unsigned int lang
= get_AT_unsigned (comp_unit_die (), DW_AT_language
);
5610 return lang
== DW_LANG_Ada95
|| lang
== DW_LANG_Ada83
;
5613 /* Return TRUE if the language is D. */
5618 unsigned int lang
= get_AT_unsigned (comp_unit_die (), DW_AT_language
);
5620 return lang
== DW_LANG_D
;
5623 /* Remove the specified attribute if present. Return TRUE if removal
5627 remove_AT (dw_die_ref die
, enum dwarf_attribute attr_kind
)
5635 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
5636 if (a
->dw_attr
== attr_kind
)
5638 if (AT_class (a
) == dw_val_class_str
)
5639 if (a
->dw_attr_val
.v
.val_str
->refcount
)
5640 a
->dw_attr_val
.v
.val_str
->refcount
--;
5642 /* vec::ordered_remove should help reduce the number of abbrevs
5644 die
->die_attr
->ordered_remove (ix
);
5650 /* Remove CHILD from its parent. PREV must have the property that
5651 PREV->DIE_SIB == CHILD. Does not alter CHILD. */
5654 remove_child_with_prev (dw_die_ref child
, dw_die_ref prev
)
5656 gcc_assert (child
->die_parent
== prev
->die_parent
);
5657 gcc_assert (prev
->die_sib
== child
);
5660 gcc_assert (child
->die_parent
->die_child
== child
);
5664 prev
->die_sib
= child
->die_sib
;
5665 if (child
->die_parent
->die_child
== child
)
5666 child
->die_parent
->die_child
= prev
;
5667 child
->die_sib
= NULL
;
5670 /* Replace OLD_CHILD with NEW_CHILD. PREV must have the property that
5671 PREV->DIE_SIB == OLD_CHILD. Does not alter OLD_CHILD. */
5674 replace_child (dw_die_ref old_child
, dw_die_ref new_child
, dw_die_ref prev
)
5676 dw_die_ref parent
= old_child
->die_parent
;
5678 gcc_assert (parent
== prev
->die_parent
);
5679 gcc_assert (prev
->die_sib
== old_child
);
5681 new_child
->die_parent
= parent
;
5682 if (prev
== old_child
)
5684 gcc_assert (parent
->die_child
== old_child
);
5685 new_child
->die_sib
= new_child
;
5689 prev
->die_sib
= new_child
;
5690 new_child
->die_sib
= old_child
->die_sib
;
5692 if (old_child
->die_parent
->die_child
== old_child
)
5693 old_child
->die_parent
->die_child
= new_child
;
5694 old_child
->die_sib
= NULL
;
5697 /* Move all children from OLD_PARENT to NEW_PARENT. */
5700 move_all_children (dw_die_ref old_parent
, dw_die_ref new_parent
)
5703 new_parent
->die_child
= old_parent
->die_child
;
5704 old_parent
->die_child
= NULL
;
5705 FOR_EACH_CHILD (new_parent
, c
, c
->die_parent
= new_parent
);
5708 /* Remove child DIE whose die_tag is TAG. Do nothing if no child
5712 remove_child_TAG (dw_die_ref die
, enum dwarf_tag tag
)
5718 dw_die_ref prev
= c
;
5720 while (c
->die_tag
== tag
)
5722 remove_child_with_prev (c
, prev
);
5723 c
->die_parent
= NULL
;
5724 /* Might have removed every child. */
5725 if (die
->die_child
== NULL
)
5729 } while (c
!= die
->die_child
);
5732 /* Add a CHILD_DIE as the last child of DIE. */
5735 add_child_die (dw_die_ref die
, dw_die_ref child_die
)
5737 /* FIXME this should probably be an assert. */
5738 if (! die
|| ! child_die
)
5740 gcc_assert (die
!= child_die
);
5742 child_die
->die_parent
= die
;
5745 child_die
->die_sib
= die
->die_child
->die_sib
;
5746 die
->die_child
->die_sib
= child_die
;
5749 child_die
->die_sib
= child_die
;
5750 die
->die_child
= child_die
;
5753 /* Like add_child_die, but put CHILD_DIE after AFTER_DIE. */
5756 add_child_die_after (dw_die_ref die
, dw_die_ref child_die
,
5757 dw_die_ref after_die
)
5763 && die
!= child_die
);
5765 child_die
->die_parent
= die
;
5766 child_die
->die_sib
= after_die
->die_sib
;
5767 after_die
->die_sib
= child_die
;
5768 if (die
->die_child
== after_die
)
5769 die
->die_child
= child_die
;
5772 /* Unassociate CHILD from its parent, and make its parent be
5776 reparent_child (dw_die_ref child
, dw_die_ref new_parent
)
5778 for (dw_die_ref p
= child
->die_parent
->die_child
; ; p
= p
->die_sib
)
5779 if (p
->die_sib
== child
)
5781 remove_child_with_prev (child
, p
);
5784 add_child_die (new_parent
, child
);
5787 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5788 is the specification, to the end of PARENT's list of children.
5789 This is done by removing and re-adding it. */
5792 splice_child_die (dw_die_ref parent
, dw_die_ref child
)
5794 /* We want the declaration DIE from inside the class, not the
5795 specification DIE at toplevel. */
5796 if (child
->die_parent
!= parent
)
5798 dw_die_ref tmp
= get_AT_ref (child
, DW_AT_specification
);
5804 gcc_assert (child
->die_parent
== parent
5805 || (child
->die_parent
5806 == get_AT_ref (parent
, DW_AT_specification
)));
5808 reparent_child (child
, parent
);
5811 /* Create and return a new die with TAG_VALUE as tag. */
5814 new_die_raw (enum dwarf_tag tag_value
)
5816 dw_die_ref die
= ggc_cleared_alloc
<die_node
> ();
5817 die
->die_tag
= tag_value
;
5821 /* Create and return a new die with a parent of PARENT_DIE. If
5822 PARENT_DIE is NULL, the new DIE is placed in limbo and an
5823 associated tree T must be supplied to determine parenthood
5826 static inline dw_die_ref
5827 new_die (enum dwarf_tag tag_value
, dw_die_ref parent_die
, tree t
)
5829 dw_die_ref die
= new_die_raw (tag_value
);
5831 if (parent_die
!= NULL
)
5832 add_child_die (parent_die
, die
);
5835 limbo_die_node
*limbo_node
;
5837 /* No DIEs created after early dwarf should end up in limbo,
5838 because the limbo list should not persist past LTO
5840 if (tag_value
!= DW_TAG_compile_unit
5841 /* These are allowed because they're generated while
5842 breaking out COMDAT units late. */
5843 && tag_value
!= DW_TAG_type_unit
5844 && tag_value
!= DW_TAG_skeleton_unit
5846 /* Allow nested functions to live in limbo because they will
5847 only temporarily live there, as decls_for_scope will fix
5849 && (TREE_CODE (t
) != FUNCTION_DECL
5850 || !decl_function_context (t
))
5851 /* Same as nested functions above but for types. Types that
5852 are local to a function will be fixed in
5854 && (!RECORD_OR_UNION_TYPE_P (t
)
5855 || !TYPE_CONTEXT (t
)
5856 || TREE_CODE (TYPE_CONTEXT (t
)) != FUNCTION_DECL
)
5857 /* FIXME debug-early: Allow late limbo DIE creation for LTO,
5858 especially in the ltrans stage, but once we implement LTO
5859 dwarf streaming, we should remove this exception. */
5862 fprintf (stderr
, "symbol ended up in limbo too late:");
5863 debug_generic_stmt (t
);
5867 limbo_node
= ggc_cleared_alloc
<limbo_die_node
> ();
5868 limbo_node
->die
= die
;
5869 limbo_node
->created_for
= t
;
5870 limbo_node
->next
= limbo_die_list
;
5871 limbo_die_list
= limbo_node
;
5877 /* Return the DIE associated with the given type specifier. */
5880 lookup_type_die (tree type
)
5882 dw_die_ref die
= TYPE_SYMTAB_DIE (type
);
5883 if (die
&& die
->removed
)
5885 TYPE_SYMTAB_DIE (type
) = NULL
;
5891 /* Given a TYPE_DIE representing the type TYPE, if TYPE is an
5892 anonymous type named by the typedef TYPE_DIE, return the DIE of the
5893 anonymous type instead the one of the naming typedef. */
5895 static inline dw_die_ref
5896 strip_naming_typedef (tree type
, dw_die_ref type_die
)
5899 && TREE_CODE (type
) == RECORD_TYPE
5901 && type_die
->die_tag
== DW_TAG_typedef
5902 && is_naming_typedef_decl (TYPE_NAME (type
)))
5903 type_die
= get_AT_ref (type_die
, DW_AT_type
);
5907 /* Like lookup_type_die, but if type is an anonymous type named by a
5908 typedef[1], return the DIE of the anonymous type instead the one of
5909 the naming typedef. This is because in gen_typedef_die, we did
5910 equate the anonymous struct named by the typedef with the DIE of
5911 the naming typedef. So by default, lookup_type_die on an anonymous
5912 struct yields the DIE of the naming typedef.
5914 [1]: Read the comment of is_naming_typedef_decl to learn about what
5915 a naming typedef is. */
5917 static inline dw_die_ref
5918 lookup_type_die_strip_naming_typedef (tree type
)
5920 dw_die_ref die
= lookup_type_die (type
);
5921 return strip_naming_typedef (type
, die
);
5924 /* Equate a DIE to a given type specifier. */
5927 equate_type_number_to_die (tree type
, dw_die_ref type_die
)
5929 TYPE_SYMTAB_DIE (type
) = type_die
;
5932 static dw_die_ref
maybe_create_die_with_external_ref (tree
);
5933 struct GTY(()) sym_off_pair
5935 const char * GTY((skip
)) sym
;
5936 unsigned HOST_WIDE_INT off
;
5938 static GTY(()) hash_map
<tree
, sym_off_pair
> *external_die_map
;
5940 /* Returns a hash value for X (which really is a die_struct). */
5943 decl_die_hasher::hash (die_node
*x
)
5945 return (hashval_t
) x
->decl_id
;
5948 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5951 decl_die_hasher::equal (die_node
*x
, tree y
)
5953 return (x
->decl_id
== DECL_UID (y
));
5956 /* Return the DIE associated with a given declaration. */
5959 lookup_decl_die (tree decl
)
5961 dw_die_ref
*die
= decl_die_table
->find_slot_with_hash (decl
, DECL_UID (decl
),
5966 return maybe_create_die_with_external_ref (decl
);
5969 if ((*die
)->removed
)
5971 decl_die_table
->clear_slot (die
);
5978 /* Return the DIE associated with BLOCK. */
5980 static inline dw_die_ref
5981 lookup_block_die (tree block
)
5983 dw_die_ref die
= BLOCK_DIE (block
);
5984 if (!die
&& in_lto_p
)
5985 return maybe_create_die_with_external_ref (block
);
5989 /* Associate DIE with BLOCK. */
5992 equate_block_to_die (tree block
, dw_die_ref die
)
5994 BLOCK_DIE (block
) = die
;
5999 /* For DECL which might have early dwarf output query a SYMBOL + OFFSET
6000 style reference. Return true if we found one refering to a DIE for
6001 DECL, otherwise return false. */
6004 dwarf2out_die_ref_for_decl (tree decl
, const char **sym
,
6005 unsigned HOST_WIDE_INT
*off
)
6011 /* During WPA stage and incremental linking we use a hash-map
6012 to store the decl <-> label + offset map. */
6013 if (!external_die_map
)
6015 sym_off_pair
*desc
= external_die_map
->get (decl
);
6023 if (TREE_CODE (decl
) == BLOCK
)
6024 die
= lookup_block_die (decl
);
6026 die
= lookup_decl_die (decl
);
6030 /* Similar to get_ref_die_offset_label, but using the "correct"
6032 *off
= die
->die_offset
;
6033 while (die
->die_parent
)
6034 die
= die
->die_parent
;
6035 /* For the containing CU DIE we compute a die_symbol in
6036 compute_comp_unit_symbol. */
6037 gcc_assert (die
->die_tag
== DW_TAG_compile_unit
6038 && die
->die_id
.die_symbol
!= NULL
);
6039 *sym
= die
->die_id
.die_symbol
;
6043 /* Add a reference of kind ATTR_KIND to a DIE at SYMBOL + OFFSET to DIE. */
6046 add_AT_external_die_ref (dw_die_ref die
, enum dwarf_attribute attr_kind
,
6047 const char *symbol
, HOST_WIDE_INT offset
)
6049 /* Create a fake DIE that contains the reference. Don't use
6050 new_die because we don't want to end up in the limbo list. */
6051 /* ??? We probably want to share these, thus put a ref to the DIE
6052 we create here to the external_die_map entry. */
6053 dw_die_ref ref
= new_die_raw (die
->die_tag
);
6054 ref
->die_id
.die_symbol
= symbol
;
6055 ref
->die_offset
= offset
;
6056 ref
->with_offset
= 1;
6057 add_AT_die_ref (die
, attr_kind
, ref
);
6060 /* Create a DIE for DECL if required and add a reference to a DIE
6061 at SYMBOL + OFFSET which contains attributes dumped early. */
6064 dwarf2out_register_external_die (tree decl
, const char *sym
,
6065 unsigned HOST_WIDE_INT off
)
6067 if (debug_info_level
== DINFO_LEVEL_NONE
)
6070 if (!external_die_map
)
6071 external_die_map
= hash_map
<tree
, sym_off_pair
>::create_ggc (1000);
6072 gcc_checking_assert (!external_die_map
->get (decl
));
6073 sym_off_pair p
= { IDENTIFIER_POINTER (get_identifier (sym
)), off
};
6074 external_die_map
->put (decl
, p
);
6077 /* If we have a registered external DIE for DECL return a new DIE for
6078 the concrete instance with an appropriate abstract origin. */
6081 maybe_create_die_with_external_ref (tree decl
)
6083 if (!external_die_map
)
6085 sym_off_pair
*desc
= external_die_map
->get (decl
);
6089 const char *sym
= desc
->sym
;
6090 unsigned HOST_WIDE_INT off
= desc
->off
;
6091 external_die_map
->remove (decl
);
6094 dw_die_ref die
= (TREE_CODE (decl
) == BLOCK
6095 ? lookup_block_die (decl
) : lookup_decl_die (decl
));
6100 dw_die_ref parent
= NULL
;
6101 /* Need to lookup a DIE for the decls context - the containing
6102 function or translation unit. */
6103 if (TREE_CODE (decl
) == BLOCK
)
6105 ctx
= BLOCK_SUPERCONTEXT (decl
);
6106 /* ??? We do not output DIEs for all scopes thus skip as
6107 many DIEs as needed. */
6108 while (TREE_CODE (ctx
) == BLOCK
6109 && !lookup_block_die (ctx
))
6110 ctx
= BLOCK_SUPERCONTEXT (ctx
);
6113 ctx
= DECL_CONTEXT (decl
);
6114 /* Peel types in the context stack. */
6115 while (ctx
&& TYPE_P (ctx
))
6116 ctx
= TYPE_CONTEXT (ctx
);
6117 /* Likewise namespaces in case we do not want to emit DIEs for them. */
6118 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
6119 while (ctx
&& TREE_CODE (ctx
) == NAMESPACE_DECL
)
6120 ctx
= DECL_CONTEXT (ctx
);
6123 if (TREE_CODE (ctx
) == BLOCK
)
6124 parent
= lookup_block_die (ctx
);
6125 else if (TREE_CODE (ctx
) == TRANSLATION_UNIT_DECL
6126 /* Keep the 1:1 association during WPA. */
6128 && flag_incremental_link
!= INCREMENTAL_LINK_LTO
)
6129 /* Otherwise all late annotations go to the main CU which
6130 imports the original CUs. */
6131 parent
= comp_unit_die ();
6132 else if (TREE_CODE (ctx
) == FUNCTION_DECL
6133 && TREE_CODE (decl
) != FUNCTION_DECL
6134 && TREE_CODE (decl
) != PARM_DECL
6135 && TREE_CODE (decl
) != RESULT_DECL
6136 && TREE_CODE (decl
) != BLOCK
)
6137 /* Leave function local entities parent determination to when
6138 we process scope vars. */
6141 parent
= lookup_decl_die (ctx
);
6144 /* In some cases the FEs fail to set DECL_CONTEXT properly.
6145 Handle this case gracefully by globalizing stuff. */
6146 parent
= comp_unit_die ();
6147 /* Create a DIE "stub". */
6148 switch (TREE_CODE (decl
))
6150 case TRANSLATION_UNIT_DECL
:
6152 die
= comp_unit_die ();
6153 /* We re-target all CU decls to the LTRANS CU DIE, so no need
6154 to create a DIE for the original CUs. */
6157 case NAMESPACE_DECL
:
6158 if (is_fortran (decl
))
6159 die
= new_die (DW_TAG_module
, parent
, decl
);
6161 die
= new_die (DW_TAG_namespace
, parent
, decl
);
6164 die
= new_die (DW_TAG_subprogram
, parent
, decl
);
6167 die
= new_die (DW_TAG_variable
, parent
, decl
);
6170 die
= new_die (DW_TAG_variable
, parent
, decl
);
6173 die
= new_die (DW_TAG_formal_parameter
, parent
, decl
);
6176 die
= new_die (DW_TAG_constant
, parent
, decl
);
6179 die
= new_die (DW_TAG_label
, parent
, decl
);
6182 die
= new_die (DW_TAG_lexical_block
, parent
, decl
);
6187 if (TREE_CODE (decl
) == BLOCK
)
6188 equate_block_to_die (decl
, die
);
6190 equate_decl_number_to_die (decl
, die
);
6192 add_desc_attribute (die
, decl
);
6194 /* Add a reference to the DIE providing early debug at $sym + off. */
6195 add_AT_external_die_ref (die
, DW_AT_abstract_origin
, sym
, off
);
6200 /* Returns a hash value for X (which really is a var_loc_list). */
6203 decl_loc_hasher::hash (var_loc_list
*x
)
6205 return (hashval_t
) x
->decl_id
;
6208 /* Return nonzero if decl_id of var_loc_list X is the same as
6212 decl_loc_hasher::equal (var_loc_list
*x
, const_tree y
)
6214 return (x
->decl_id
== DECL_UID (y
));
6217 /* Return the var_loc list associated with a given declaration. */
6219 static inline var_loc_list
*
6220 lookup_decl_loc (const_tree decl
)
6222 if (!decl_loc_table
)
6224 return decl_loc_table
->find_with_hash (decl
, DECL_UID (decl
));
6227 /* Returns a hash value for X (which really is a cached_dw_loc_list_list). */
6230 dw_loc_list_hasher::hash (cached_dw_loc_list
*x
)
6232 return (hashval_t
) x
->decl_id
;
6235 /* Return nonzero if decl_id of cached_dw_loc_list X is the same as
6239 dw_loc_list_hasher::equal (cached_dw_loc_list
*x
, const_tree y
)
6241 return (x
->decl_id
== DECL_UID (y
));
6244 /* Equate a DIE to a particular declaration. */
6247 equate_decl_number_to_die (tree decl
, dw_die_ref decl_die
)
6249 unsigned int decl_id
= DECL_UID (decl
);
6251 *decl_die_table
->find_slot_with_hash (decl
, decl_id
, INSERT
) = decl_die
;
6252 decl_die
->decl_id
= decl_id
;
6255 /* Return how many bits covers PIECE EXPR_LIST. */
6257 static HOST_WIDE_INT
6258 decl_piece_bitsize (rtx piece
)
6260 int ret
= (int) GET_MODE (piece
);
6263 gcc_assert (GET_CODE (XEXP (piece
, 0)) == CONCAT
6264 && CONST_INT_P (XEXP (XEXP (piece
, 0), 0)));
6265 return INTVAL (XEXP (XEXP (piece
, 0), 0));
6268 /* Return pointer to the location of location note in PIECE EXPR_LIST. */
6271 decl_piece_varloc_ptr (rtx piece
)
6273 if ((int) GET_MODE (piece
))
6274 return &XEXP (piece
, 0);
6276 return &XEXP (XEXP (piece
, 0), 1);
6279 /* Create an EXPR_LIST for location note LOC_NOTE covering BITSIZE bits.
6280 Next is the chain of following piece nodes. */
6282 static rtx_expr_list
*
6283 decl_piece_node (rtx loc_note
, HOST_WIDE_INT bitsize
, rtx next
)
6285 if (bitsize
> 0 && bitsize
<= (int) MAX_MACHINE_MODE
)
6286 return alloc_EXPR_LIST (bitsize
, loc_note
, next
);
6288 return alloc_EXPR_LIST (0, gen_rtx_CONCAT (VOIDmode
,
6293 /* Return rtx that should be stored into loc field for
6294 LOC_NOTE and BITPOS/BITSIZE. */
6297 construct_piece_list (rtx loc_note
, HOST_WIDE_INT bitpos
,
6298 HOST_WIDE_INT bitsize
)
6302 loc_note
= decl_piece_node (loc_note
, bitsize
, NULL_RTX
);
6304 loc_note
= decl_piece_node (NULL_RTX
, bitpos
, loc_note
);
6309 /* This function either modifies location piece list *DEST in
6310 place (if SRC and INNER is NULL), or copies location piece list
6311 *SRC to *DEST while modifying it. Location BITPOS is modified
6312 to contain LOC_NOTE, any pieces overlapping it are removed resp.
6313 not copied and if needed some padding around it is added.
6314 When modifying in place, DEST should point to EXPR_LIST where
6315 earlier pieces cover PIECE_BITPOS bits, when copying SRC points
6316 to the start of the whole list and INNER points to the EXPR_LIST
6317 where earlier pieces cover PIECE_BITPOS bits. */
6320 adjust_piece_list (rtx
*dest
, rtx
*src
, rtx
*inner
,
6321 HOST_WIDE_INT bitpos
, HOST_WIDE_INT piece_bitpos
,
6322 HOST_WIDE_INT bitsize
, rtx loc_note
)
6325 bool copy
= inner
!= NULL
;
6329 /* First copy all nodes preceding the current bitpos. */
6330 while (src
!= inner
)
6332 *dest
= decl_piece_node (*decl_piece_varloc_ptr (*src
),
6333 decl_piece_bitsize (*src
), NULL_RTX
);
6334 dest
= &XEXP (*dest
, 1);
6335 src
= &XEXP (*src
, 1);
6338 /* Add padding if needed. */
6339 if (bitpos
!= piece_bitpos
)
6341 *dest
= decl_piece_node (NULL_RTX
, bitpos
- piece_bitpos
,
6342 copy
? NULL_RTX
: *dest
);
6343 dest
= &XEXP (*dest
, 1);
6345 else if (*dest
&& decl_piece_bitsize (*dest
) == bitsize
)
6348 /* A piece with correct bitpos and bitsize already exist,
6349 just update the location for it and return. */
6350 *decl_piece_varloc_ptr (*dest
) = loc_note
;
6353 /* Add the piece that changed. */
6354 *dest
= decl_piece_node (loc_note
, bitsize
, copy
? NULL_RTX
: *dest
);
6355 dest
= &XEXP (*dest
, 1);
6356 /* Skip over pieces that overlap it. */
6357 diff
= bitpos
- piece_bitpos
+ bitsize
;
6360 while (diff
> 0 && *src
)
6363 diff
-= decl_piece_bitsize (piece
);
6365 src
= &XEXP (piece
, 1);
6368 *src
= XEXP (piece
, 1);
6369 free_EXPR_LIST_node (piece
);
6372 /* Add padding if needed. */
6373 if (diff
< 0 && *src
)
6377 *dest
= decl_piece_node (NULL_RTX
, -diff
, copy
? NULL_RTX
: *dest
);
6378 dest
= &XEXP (*dest
, 1);
6382 /* Finally copy all nodes following it. */
6385 *dest
= decl_piece_node (*decl_piece_varloc_ptr (*src
),
6386 decl_piece_bitsize (*src
), NULL_RTX
);
6387 dest
= &XEXP (*dest
, 1);
6388 src
= &XEXP (*src
, 1);
6392 /* Add a variable location node to the linked list for DECL. */
6394 static struct var_loc_node
*
6395 add_var_loc_to_decl (tree decl
, rtx loc_note
, const char *label
, var_loc_view view
)
6397 unsigned int decl_id
;
6399 struct var_loc_node
*loc
= NULL
;
6400 HOST_WIDE_INT bitsize
= -1, bitpos
= -1;
6402 if (VAR_P (decl
) && DECL_HAS_DEBUG_EXPR_P (decl
))
6404 tree realdecl
= DECL_DEBUG_EXPR (decl
);
6405 if (handled_component_p (realdecl
)
6406 || (TREE_CODE (realdecl
) == MEM_REF
6407 && TREE_CODE (TREE_OPERAND (realdecl
, 0)) == ADDR_EXPR
))
6410 tree innerdecl
= get_ref_base_and_extent_hwi (realdecl
, &bitpos
,
6411 &bitsize
, &reverse
);
6413 || !DECL_P (innerdecl
)
6414 || DECL_IGNORED_P (innerdecl
)
6415 || TREE_STATIC (innerdecl
)
6417 || bitpos
+ bitsize
> 256)
6423 decl_id
= DECL_UID (decl
);
6425 = decl_loc_table
->find_slot_with_hash (decl
, decl_id
, INSERT
);
6428 temp
= ggc_cleared_alloc
<var_loc_list
> ();
6429 temp
->decl_id
= decl_id
;
6435 /* For PARM_DECLs try to keep around the original incoming value,
6436 even if that means we'll emit a zero-range .debug_loc entry. */
6438 && temp
->first
== temp
->last
6439 && TREE_CODE (decl
) == PARM_DECL
6440 && NOTE_P (temp
->first
->loc
)
6441 && NOTE_VAR_LOCATION_DECL (temp
->first
->loc
) == decl
6442 && DECL_INCOMING_RTL (decl
)
6443 && NOTE_VAR_LOCATION_LOC (temp
->first
->loc
)
6444 && GET_CODE (NOTE_VAR_LOCATION_LOC (temp
->first
->loc
))
6445 == GET_CODE (DECL_INCOMING_RTL (decl
))
6446 && prev_real_insn (as_a
<rtx_insn
*> (temp
->first
->loc
)) == NULL_RTX
6448 || !rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp
->first
->loc
),
6449 NOTE_VAR_LOCATION_LOC (loc_note
))
6450 || (NOTE_VAR_LOCATION_STATUS (temp
->first
->loc
)
6451 != NOTE_VAR_LOCATION_STATUS (loc_note
))))
6453 loc
= ggc_cleared_alloc
<var_loc_node
> ();
6454 temp
->first
->next
= loc
;
6456 loc
->loc
= construct_piece_list (loc_note
, bitpos
, bitsize
);
6458 else if (temp
->last
)
6460 struct var_loc_node
*last
= temp
->last
, *unused
= NULL
;
6461 rtx
*piece_loc
= NULL
, last_loc_note
;
6462 HOST_WIDE_INT piece_bitpos
= 0;
6466 gcc_assert (last
->next
== NULL
);
6468 if (bitsize
!= -1 && GET_CODE (last
->loc
) == EXPR_LIST
)
6470 piece_loc
= &last
->loc
;
6473 HOST_WIDE_INT cur_bitsize
= decl_piece_bitsize (*piece_loc
);
6474 if (piece_bitpos
+ cur_bitsize
> bitpos
)
6476 piece_bitpos
+= cur_bitsize
;
6477 piece_loc
= &XEXP (*piece_loc
, 1);
6481 /* TEMP->LAST here is either pointer to the last but one or
6482 last element in the chained list, LAST is pointer to the
6484 if (label
&& strcmp (last
->label
, label
) == 0 && last
->view
== view
)
6486 /* For SRA optimized variables if there weren't any real
6487 insns since last note, just modify the last node. */
6488 if (piece_loc
!= NULL
)
6490 adjust_piece_list (piece_loc
, NULL
, NULL
,
6491 bitpos
, piece_bitpos
, bitsize
, loc_note
);
6494 /* If the last note doesn't cover any instructions, remove it. */
6495 if (temp
->last
!= last
)
6497 temp
->last
->next
= NULL
;
6500 gcc_assert (strcmp (last
->label
, label
) != 0 || last
->view
!= view
);
6504 gcc_assert (temp
->first
== temp
->last
6505 || (temp
->first
->next
== temp
->last
6506 && TREE_CODE (decl
) == PARM_DECL
));
6507 memset (temp
->last
, '\0', sizeof (*temp
->last
));
6508 temp
->last
->loc
= construct_piece_list (loc_note
, bitpos
, bitsize
);
6512 if (bitsize
== -1 && NOTE_P (last
->loc
))
6513 last_loc_note
= last
->loc
;
6514 else if (piece_loc
!= NULL
6515 && *piece_loc
!= NULL_RTX
6516 && piece_bitpos
== bitpos
6517 && decl_piece_bitsize (*piece_loc
) == bitsize
)
6518 last_loc_note
= *decl_piece_varloc_ptr (*piece_loc
);
6520 last_loc_note
= NULL_RTX
;
6521 /* If the current location is the same as the end of the list,
6522 and either both or neither of the locations is uninitialized,
6523 we have nothing to do. */
6524 if (last_loc_note
== NULL_RTX
6525 || (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (last_loc_note
),
6526 NOTE_VAR_LOCATION_LOC (loc_note
)))
6527 || ((NOTE_VAR_LOCATION_STATUS (last_loc_note
)
6528 != NOTE_VAR_LOCATION_STATUS (loc_note
))
6529 && ((NOTE_VAR_LOCATION_STATUS (last_loc_note
)
6530 == VAR_INIT_STATUS_UNINITIALIZED
)
6531 || (NOTE_VAR_LOCATION_STATUS (loc_note
)
6532 == VAR_INIT_STATUS_UNINITIALIZED
))))
6534 /* Add LOC to the end of list and update LAST. If the last
6535 element of the list has been removed above, reuse its
6536 memory for the new node, otherwise allocate a new one. */
6540 memset (loc
, '\0', sizeof (*loc
));
6543 loc
= ggc_cleared_alloc
<var_loc_node
> ();
6544 if (bitsize
== -1 || piece_loc
== NULL
)
6545 loc
->loc
= construct_piece_list (loc_note
, bitpos
, bitsize
);
6547 adjust_piece_list (&loc
->loc
, &last
->loc
, piece_loc
,
6548 bitpos
, piece_bitpos
, bitsize
, loc_note
);
6550 /* Ensure TEMP->LAST will point either to the new last but one
6551 element of the chain, or to the last element in it. */
6552 if (last
!= temp
->last
)
6560 loc
= ggc_cleared_alloc
<var_loc_node
> ();
6563 loc
->loc
= construct_piece_list (loc_note
, bitpos
, bitsize
);
6568 /* Keep track of the number of spaces used to indent the
6569 output of the debugging routines that print the structure of
6570 the DIE internal representation. */
6571 static int print_indent
;
6573 /* Indent the line the number of spaces given by print_indent. */
6576 print_spaces (FILE *outfile
)
6578 fprintf (outfile
, "%*s", print_indent
, "");
6581 /* Print a type signature in hex. */
6584 print_signature (FILE *outfile
, char *sig
)
6588 for (i
= 0; i
< DWARF_TYPE_SIGNATURE_SIZE
; i
++)
6589 fprintf (outfile
, "%02x", sig
[i
] & 0xff);
6593 print_discr_value (FILE *outfile
, dw_discr_value
*discr_value
)
6595 if (discr_value
->pos
)
6596 fprintf (outfile
, HOST_WIDE_INT_PRINT_UNSIGNED
, discr_value
->v
.sval
);
6598 fprintf (outfile
, HOST_WIDE_INT_PRINT_DEC
, discr_value
->v
.uval
);
6601 static void print_loc_descr (dw_loc_descr_ref
, FILE *);
6603 /* Print the value associated to the VAL DWARF value node to OUTFILE. If
6604 RECURSE, output location descriptor operations. */
6607 print_dw_val (dw_val_node
*val
, bool recurse
, FILE *outfile
)
6609 switch (val
->val_class
)
6611 case dw_val_class_addr
:
6612 fprintf (outfile
, "address");
6614 case dw_val_class_offset
:
6615 fprintf (outfile
, "offset");
6617 case dw_val_class_loc
:
6618 fprintf (outfile
, "location descriptor");
6619 if (val
->v
.val_loc
== NULL
)
6620 fprintf (outfile
, " -> <null>\n");
6623 fprintf (outfile
, ":\n");
6625 print_loc_descr (val
->v
.val_loc
, outfile
);
6630 if (flag_dump_noaddr
|| flag_dump_unnumbered
)
6631 fprintf (outfile
, " #\n");
6633 fprintf (outfile
, " (%p)\n", (void *) val
->v
.val_loc
);
6636 case dw_val_class_loc_list
:
6637 fprintf (outfile
, "location list -> label:%s",
6638 val
->v
.val_loc_list
->ll_symbol
);
6640 case dw_val_class_view_list
:
6641 val
= view_list_to_loc_list_val_node (val
);
6642 fprintf (outfile
, "location list with views -> labels:%s and %s",
6643 val
->v
.val_loc_list
->ll_symbol
,
6644 val
->v
.val_loc_list
->vl_symbol
);
6646 case dw_val_class_range_list
:
6647 fprintf (outfile
, "range list");
6649 case dw_val_class_const
:
6650 case dw_val_class_const_implicit
:
6651 fprintf (outfile
, HOST_WIDE_INT_PRINT_DEC
, val
->v
.val_int
);
6653 case dw_val_class_unsigned_const
:
6654 case dw_val_class_unsigned_const_implicit
:
6655 fprintf (outfile
, HOST_WIDE_INT_PRINT_UNSIGNED
, val
->v
.val_unsigned
);
6657 case dw_val_class_const_double
:
6658 fprintf (outfile
, "constant (" HOST_WIDE_INT_PRINT_DEC
","\
6659 HOST_WIDE_INT_PRINT_UNSIGNED
")",
6660 val
->v
.val_double
.high
,
6661 val
->v
.val_double
.low
);
6663 case dw_val_class_wide_int
:
6665 int i
= val
->v
.val_wide
->get_len ();
6666 fprintf (outfile
, "constant (");
6668 if (val
->v
.val_wide
->elt (i
- 1) == 0)
6669 fprintf (outfile
, "0x");
6670 fprintf (outfile
, HOST_WIDE_INT_PRINT_HEX
,
6671 val
->v
.val_wide
->elt (--i
));
6673 fprintf (outfile
, HOST_WIDE_INT_PRINT_PADDED_HEX
,
6674 val
->v
.val_wide
->elt (i
));
6675 fprintf (outfile
, ")");
6678 case dw_val_class_vec
:
6679 fprintf (outfile
, "floating-point or vector constant");
6681 case dw_val_class_flag
:
6682 fprintf (outfile
, "%u", val
->v
.val_flag
);
6684 case dw_val_class_die_ref
:
6685 if (val
->v
.val_die_ref
.die
!= NULL
)
6687 dw_die_ref die
= val
->v
.val_die_ref
.die
;
6689 if (die
->comdat_type_p
)
6691 fprintf (outfile
, "die -> signature: ");
6692 print_signature (outfile
,
6693 die
->die_id
.die_type_node
->signature
);
6695 else if (die
->die_id
.die_symbol
)
6697 fprintf (outfile
, "die -> label: %s", die
->die_id
.die_symbol
);
6698 if (die
->with_offset
)
6699 fprintf (outfile
, " + %ld", die
->die_offset
);
6702 fprintf (outfile
, "die -> %ld", die
->die_offset
);
6703 if (flag_dump_noaddr
|| flag_dump_unnumbered
)
6704 fprintf (outfile
, " #");
6706 fprintf (outfile
, " (%p)", (void *) die
);
6709 fprintf (outfile
, "die -> <null>");
6711 case dw_val_class_vms_delta
:
6712 fprintf (outfile
, "delta: @slotcount(%s-%s)",
6713 val
->v
.val_vms_delta
.lbl2
, val
->v
.val_vms_delta
.lbl1
);
6715 case dw_val_class_symview
:
6716 fprintf (outfile
, "view: %s", val
->v
.val_symbolic_view
);
6718 case dw_val_class_lbl_id
:
6719 case dw_val_class_lineptr
:
6720 case dw_val_class_macptr
:
6721 case dw_val_class_loclistsptr
:
6722 case dw_val_class_high_pc
:
6723 fprintf (outfile
, "label: %s", val
->v
.val_lbl_id
);
6725 case dw_val_class_str
:
6726 if (val
->v
.val_str
->str
!= NULL
)
6727 fprintf (outfile
, "\"%s\"", val
->v
.val_str
->str
);
6729 fprintf (outfile
, "<null>");
6731 case dw_val_class_file
:
6732 case dw_val_class_file_implicit
:
6733 fprintf (outfile
, "\"%s\" (%d)", val
->v
.val_file
->filename
,
6734 val
->v
.val_file
->emitted_number
);
6736 case dw_val_class_data8
:
6740 for (i
= 0; i
< 8; i
++)
6741 fprintf (outfile
, "%02x", val
->v
.val_data8
[i
]);
6744 case dw_val_class_discr_value
:
6745 print_discr_value (outfile
, &val
->v
.val_discr_value
);
6747 case dw_val_class_discr_list
:
6748 for (dw_discr_list_ref node
= val
->v
.val_discr_list
;
6750 node
= node
->dw_discr_next
)
6752 if (node
->dw_discr_range
)
6754 fprintf (outfile
, " .. ");
6755 print_discr_value (outfile
, &node
->dw_discr_lower_bound
);
6756 print_discr_value (outfile
, &node
->dw_discr_upper_bound
);
6759 print_discr_value (outfile
, &node
->dw_discr_lower_bound
);
6761 if (node
->dw_discr_next
!= NULL
)
6762 fprintf (outfile
, " | ");
6769 /* Likewise, for a DIE attribute. */
6772 print_attribute (dw_attr_node
*a
, bool recurse
, FILE *outfile
)
6774 print_dw_val (&a
->dw_attr_val
, recurse
, outfile
);
6778 /* Print the list of operands in the LOC location description to OUTFILE. This
6779 routine is a debugging aid only. */
6782 print_loc_descr (dw_loc_descr_ref loc
, FILE *outfile
)
6784 dw_loc_descr_ref l
= loc
;
6788 print_spaces (outfile
);
6789 fprintf (outfile
, "<null>\n");
6793 for (l
= loc
; l
!= NULL
; l
= l
->dw_loc_next
)
6795 print_spaces (outfile
);
6796 if (flag_dump_noaddr
|| flag_dump_unnumbered
)
6797 fprintf (outfile
, "#");
6799 fprintf (outfile
, "(%p)", (void *) l
);
6800 fprintf (outfile
, " %s",
6801 dwarf_stack_op_name (l
->dw_loc_opc
));
6802 if (l
->dw_loc_oprnd1
.val_class
!= dw_val_class_none
)
6804 fprintf (outfile
, " ");
6805 print_dw_val (&l
->dw_loc_oprnd1
, false, outfile
);
6807 if (l
->dw_loc_oprnd2
.val_class
!= dw_val_class_none
)
6809 fprintf (outfile
, ", ");
6810 print_dw_val (&l
->dw_loc_oprnd2
, false, outfile
);
6812 fprintf (outfile
, "\n");
6816 /* Print the information associated with a given DIE, and its children.
6817 This routine is a debugging aid only. */
6820 print_die (dw_die_ref die
, FILE *outfile
)
6826 print_spaces (outfile
);
6827 fprintf (outfile
, "DIE %4ld: %s ",
6828 die
->die_offset
, dwarf_tag_name (die
->die_tag
));
6829 if (flag_dump_noaddr
|| flag_dump_unnumbered
)
6830 fprintf (outfile
, "#\n");
6832 fprintf (outfile
, "(%p)\n", (void*) die
);
6833 print_spaces (outfile
);
6834 fprintf (outfile
, " abbrev id: %lu", die
->die_abbrev
);
6835 fprintf (outfile
, " offset: %ld", die
->die_offset
);
6836 fprintf (outfile
, " mark: %d\n", die
->die_mark
);
6838 if (die
->comdat_type_p
)
6840 print_spaces (outfile
);
6841 fprintf (outfile
, " signature: ");
6842 print_signature (outfile
, die
->die_id
.die_type_node
->signature
);
6843 fprintf (outfile
, "\n");
6846 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
6848 print_spaces (outfile
);
6849 fprintf (outfile
, " %s: ", dwarf_attr_name (a
->dw_attr
));
6851 print_attribute (a
, true, outfile
);
6852 fprintf (outfile
, "\n");
6855 if (die
->die_child
!= NULL
)
6858 FOR_EACH_CHILD (die
, c
, print_die (c
, outfile
));
6861 if (print_indent
== 0)
6862 fprintf (outfile
, "\n");
6865 /* Print the list of operations in the LOC location description. */
6868 debug_dwarf_loc_descr (dw_loc_descr_ref loc
)
6870 print_loc_descr (loc
, stderr
);
6873 /* Print the information collected for a given DIE. */
6876 debug_dwarf_die (dw_die_ref die
)
6878 print_die (die
, stderr
);
6882 debug (die_struct
&ref
)
6884 print_die (&ref
, stderr
);
6888 debug (die_struct
*ptr
)
6893 fprintf (stderr
, "<nil>\n");
6897 /* Print all DWARF information collected for the compilation unit.
6898 This routine is a debugging aid only. */
6904 print_die (comp_unit_die (), stderr
);
6907 /* Verify the DIE tree structure. */
6910 verify_die (dw_die_ref die
)
6912 gcc_assert (!die
->die_mark
);
6913 if (die
->die_parent
== NULL
6914 && die
->die_sib
== NULL
)
6916 /* Verify the die_sib list is cyclic. */
6923 while (x
&& !x
->die_mark
);
6924 gcc_assert (x
== die
);
6928 /* Verify all dies have the same parent. */
6929 gcc_assert (x
->die_parent
== die
->die_parent
);
6932 /* Verify the child has the proper parent and recurse. */
6933 gcc_assert (x
->die_child
->die_parent
== x
);
6934 verify_die (x
->die_child
);
6939 while (x
&& x
->die_mark
);
6942 /* Sanity checks on DIEs. */
6945 check_die (dw_die_ref die
)
6949 bool inline_found
= false;
6950 int n_location
= 0, n_low_pc
= 0, n_high_pc
= 0, n_artificial
= 0;
6951 int n_decl_line
= 0, n_decl_column
= 0, n_decl_file
= 0;
6952 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
6957 if (a
->dw_attr_val
.v
.val_unsigned
)
6958 inline_found
= true;
6960 case DW_AT_location
:
6969 case DW_AT_artificial
:
6972 case DW_AT_decl_column
:
6975 case DW_AT_decl_line
:
6978 case DW_AT_decl_file
:
6985 if (n_location
> 1 || n_low_pc
> 1 || n_high_pc
> 1 || n_artificial
> 1
6986 || n_decl_column
> 1 || n_decl_line
> 1 || n_decl_file
> 1)
6988 fprintf (stderr
, "Duplicate attributes in DIE:\n");
6989 debug_dwarf_die (die
);
6994 /* A debugging information entry that is a member of an abstract
6995 instance tree [that has DW_AT_inline] should not contain any
6996 attributes which describe aspects of the subroutine which vary
6997 between distinct inlined expansions or distinct out-of-line
6999 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
7000 gcc_assert (a
->dw_attr
!= DW_AT_low_pc
7001 && a
->dw_attr
!= DW_AT_high_pc
7002 && a
->dw_attr
!= DW_AT_location
7003 && a
->dw_attr
!= DW_AT_frame_base
7004 && a
->dw_attr
!= DW_AT_call_all_calls
7005 && a
->dw_attr
!= DW_AT_GNU_all_call_sites
);
7009 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
7010 #define CHECKSUM_BLOCK(FOO, SIZE) md5_process_bytes ((FOO), (SIZE), ctx)
7011 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
7013 /* Calculate the checksum of a location expression. */
7016 loc_checksum (dw_loc_descr_ref loc
, struct md5_ctx
*ctx
)
7019 inchash::hash hstate
;
7022 tem
= (loc
->dtprel
<< 8) | ((unsigned int) loc
->dw_loc_opc
);
7024 hash_loc_operands (loc
, hstate
);
7025 hash
= hstate
.end();
7029 /* Calculate the checksum of an attribute. */
7032 attr_checksum (dw_attr_node
*at
, struct md5_ctx
*ctx
, int *mark
)
7034 dw_loc_descr_ref loc
;
7037 CHECKSUM (at
->dw_attr
);
7039 /* We don't care that this was compiled with a different compiler
7040 snapshot; if the output is the same, that's what matters. */
7041 if (at
->dw_attr
== DW_AT_producer
)
7044 switch (AT_class (at
))
7046 case dw_val_class_const
:
7047 case dw_val_class_const_implicit
:
7048 CHECKSUM (at
->dw_attr_val
.v
.val_int
);
7050 case dw_val_class_unsigned_const
:
7051 case dw_val_class_unsigned_const_implicit
:
7052 CHECKSUM (at
->dw_attr_val
.v
.val_unsigned
);
7054 case dw_val_class_const_double
:
7055 CHECKSUM (at
->dw_attr_val
.v
.val_double
);
7057 case dw_val_class_wide_int
:
7058 CHECKSUM_BLOCK (at
->dw_attr_val
.v
.val_wide
->get_val (),
7059 get_full_len (*at
->dw_attr_val
.v
.val_wide
)
7060 * HOST_BITS_PER_WIDE_INT
/ HOST_BITS_PER_CHAR
);
7062 case dw_val_class_vec
:
7063 CHECKSUM_BLOCK (at
->dw_attr_val
.v
.val_vec
.array
,
7064 (at
->dw_attr_val
.v
.val_vec
.length
7065 * at
->dw_attr_val
.v
.val_vec
.elt_size
));
7067 case dw_val_class_flag
:
7068 CHECKSUM (at
->dw_attr_val
.v
.val_flag
);
7070 case dw_val_class_str
:
7071 CHECKSUM_STRING (AT_string (at
));
7074 case dw_val_class_addr
:
7076 gcc_assert (GET_CODE (r
) == SYMBOL_REF
);
7077 CHECKSUM_STRING (XSTR (r
, 0));
7080 case dw_val_class_offset
:
7081 CHECKSUM (at
->dw_attr_val
.v
.val_offset
);
7084 case dw_val_class_loc
:
7085 for (loc
= AT_loc (at
); loc
; loc
= loc
->dw_loc_next
)
7086 loc_checksum (loc
, ctx
);
7089 case dw_val_class_die_ref
:
7090 die_checksum (AT_ref (at
), ctx
, mark
);
7093 case dw_val_class_fde_ref
:
7094 case dw_val_class_vms_delta
:
7095 case dw_val_class_symview
:
7096 case dw_val_class_lbl_id
:
7097 case dw_val_class_lineptr
:
7098 case dw_val_class_macptr
:
7099 case dw_val_class_loclistsptr
:
7100 case dw_val_class_high_pc
:
7103 case dw_val_class_file
:
7104 case dw_val_class_file_implicit
:
7105 CHECKSUM_STRING (AT_file (at
)->filename
);
7108 case dw_val_class_data8
:
7109 CHECKSUM (at
->dw_attr_val
.v
.val_data8
);
7117 /* Calculate the checksum of a DIE. */
7120 die_checksum (dw_die_ref die
, struct md5_ctx
*ctx
, int *mark
)
7126 /* To avoid infinite recursion. */
7129 CHECKSUM (die
->die_mark
);
7132 die
->die_mark
= ++(*mark
);
7134 CHECKSUM (die
->die_tag
);
7136 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
7137 attr_checksum (a
, ctx
, mark
);
7139 FOR_EACH_CHILD (die
, c
, die_checksum (c
, ctx
, mark
));
7143 #undef CHECKSUM_BLOCK
7144 #undef CHECKSUM_STRING
7146 /* For DWARF-4 types, include the trailing NULL when checksumming strings. */
7147 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
7148 #define CHECKSUM_BLOCK(FOO, SIZE) md5_process_bytes ((FOO), (SIZE), ctx)
7149 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO) + 1, ctx)
7150 #define CHECKSUM_SLEB128(FOO) checksum_sleb128 ((FOO), ctx)
7151 #define CHECKSUM_ULEB128(FOO) checksum_uleb128 ((FOO), ctx)
7152 #define CHECKSUM_ATTR(FOO) \
7153 if (FOO) attr_checksum_ordered (die->die_tag, (FOO), ctx, mark)
7155 /* Calculate the checksum of a number in signed LEB128 format. */
7158 checksum_sleb128 (HOST_WIDE_INT value
, struct md5_ctx
*ctx
)
7165 byte
= (value
& 0x7f);
7167 more
= !((value
== 0 && (byte
& 0x40) == 0)
7168 || (value
== -1 && (byte
& 0x40) != 0));
7177 /* Calculate the checksum of a number in unsigned LEB128 format. */
7180 checksum_uleb128 (unsigned HOST_WIDE_INT value
, struct md5_ctx
*ctx
)
7184 unsigned char byte
= (value
& 0x7f);
7187 /* More bytes to follow. */
7195 /* Checksum the context of the DIE. This adds the names of any
7196 surrounding namespaces or structures to the checksum. */
7199 checksum_die_context (dw_die_ref die
, struct md5_ctx
*ctx
)
7203 int tag
= die
->die_tag
;
7205 if (tag
!= DW_TAG_namespace
7206 && tag
!= DW_TAG_structure_type
7207 && tag
!= DW_TAG_class_type
)
7210 name
= get_AT_string (die
, DW_AT_name
);
7212 spec
= get_AT_ref (die
, DW_AT_specification
);
7216 if (die
->die_parent
!= NULL
)
7217 checksum_die_context (die
->die_parent
, ctx
);
7219 CHECKSUM_ULEB128 ('C');
7220 CHECKSUM_ULEB128 (tag
);
7222 CHECKSUM_STRING (name
);
7225 /* Calculate the checksum of a location expression. */
7228 loc_checksum_ordered (dw_loc_descr_ref loc
, struct md5_ctx
*ctx
)
7230 /* Special case for lone DW_OP_plus_uconst: checksum as if the location
7231 were emitted as a DW_FORM_sdata instead of a location expression. */
7232 if (loc
->dw_loc_opc
== DW_OP_plus_uconst
&& loc
->dw_loc_next
== NULL
)
7234 CHECKSUM_ULEB128 (DW_FORM_sdata
);
7235 CHECKSUM_SLEB128 ((HOST_WIDE_INT
) loc
->dw_loc_oprnd1
.v
.val_unsigned
);
7239 /* Otherwise, just checksum the raw location expression. */
7242 inchash::hash hstate
;
7245 CHECKSUM_ULEB128 (loc
->dtprel
);
7246 CHECKSUM_ULEB128 (loc
->dw_loc_opc
);
7247 hash_loc_operands (loc
, hstate
);
7248 hash
= hstate
.end ();
7250 loc
= loc
->dw_loc_next
;
7254 /* Calculate the checksum of an attribute. */
7257 attr_checksum_ordered (enum dwarf_tag tag
, dw_attr_node
*at
,
7258 struct md5_ctx
*ctx
, int *mark
)
7260 dw_loc_descr_ref loc
;
7263 if (AT_class (at
) == dw_val_class_die_ref
)
7265 dw_die_ref target_die
= AT_ref (at
);
7267 /* For pointer and reference types, we checksum only the (qualified)
7268 name of the target type (if there is a name). For friend entries,
7269 we checksum only the (qualified) name of the target type or function.
7270 This allows the checksum to remain the same whether the target type
7271 is complete or not. */
7272 if ((at
->dw_attr
== DW_AT_type
7273 && (tag
== DW_TAG_pointer_type
7274 || tag
== DW_TAG_reference_type
7275 || tag
== DW_TAG_rvalue_reference_type
7276 || tag
== DW_TAG_ptr_to_member_type
))
7277 || (at
->dw_attr
== DW_AT_friend
7278 && tag
== DW_TAG_friend
))
7280 dw_attr_node
*name_attr
= get_AT (target_die
, DW_AT_name
);
7282 if (name_attr
!= NULL
)
7284 dw_die_ref decl
= get_AT_ref (target_die
, DW_AT_specification
);
7288 CHECKSUM_ULEB128 ('N');
7289 CHECKSUM_ULEB128 (at
->dw_attr
);
7290 if (decl
->die_parent
!= NULL
)
7291 checksum_die_context (decl
->die_parent
, ctx
);
7292 CHECKSUM_ULEB128 ('E');
7293 CHECKSUM_STRING (AT_string (name_attr
));
7298 /* For all other references to another DIE, we check to see if the
7299 target DIE has already been visited. If it has, we emit a
7300 backward reference; if not, we descend recursively. */
7301 if (target_die
->die_mark
> 0)
7303 CHECKSUM_ULEB128 ('R');
7304 CHECKSUM_ULEB128 (at
->dw_attr
);
7305 CHECKSUM_ULEB128 (target_die
->die_mark
);
7309 dw_die_ref decl
= get_AT_ref (target_die
, DW_AT_specification
);
7313 target_die
->die_mark
= ++(*mark
);
7314 CHECKSUM_ULEB128 ('T');
7315 CHECKSUM_ULEB128 (at
->dw_attr
);
7316 if (decl
->die_parent
!= NULL
)
7317 checksum_die_context (decl
->die_parent
, ctx
);
7318 die_checksum_ordered (target_die
, ctx
, mark
);
7323 CHECKSUM_ULEB128 ('A');
7324 CHECKSUM_ULEB128 (at
->dw_attr
);
7326 switch (AT_class (at
))
7328 case dw_val_class_const
:
7329 case dw_val_class_const_implicit
:
7330 CHECKSUM_ULEB128 (DW_FORM_sdata
);
7331 CHECKSUM_SLEB128 (at
->dw_attr_val
.v
.val_int
);
7334 case dw_val_class_unsigned_const
:
7335 case dw_val_class_unsigned_const_implicit
:
7336 CHECKSUM_ULEB128 (DW_FORM_sdata
);
7337 CHECKSUM_SLEB128 ((int) at
->dw_attr_val
.v
.val_unsigned
);
7340 case dw_val_class_const_double
:
7341 CHECKSUM_ULEB128 (DW_FORM_block
);
7342 CHECKSUM_ULEB128 (sizeof (at
->dw_attr_val
.v
.val_double
));
7343 CHECKSUM (at
->dw_attr_val
.v
.val_double
);
7346 case dw_val_class_wide_int
:
7347 CHECKSUM_ULEB128 (DW_FORM_block
);
7348 CHECKSUM_ULEB128 (get_full_len (*at
->dw_attr_val
.v
.val_wide
)
7349 * HOST_BITS_PER_WIDE_INT
/ BITS_PER_UNIT
);
7350 CHECKSUM_BLOCK (at
->dw_attr_val
.v
.val_wide
->get_val (),
7351 get_full_len (*at
->dw_attr_val
.v
.val_wide
)
7352 * HOST_BITS_PER_WIDE_INT
/ HOST_BITS_PER_CHAR
);
7355 case dw_val_class_vec
:
7356 CHECKSUM_ULEB128 (DW_FORM_block
);
7357 CHECKSUM_ULEB128 (at
->dw_attr_val
.v
.val_vec
.length
7358 * at
->dw_attr_val
.v
.val_vec
.elt_size
);
7359 CHECKSUM_BLOCK (at
->dw_attr_val
.v
.val_vec
.array
,
7360 (at
->dw_attr_val
.v
.val_vec
.length
7361 * at
->dw_attr_val
.v
.val_vec
.elt_size
));
7364 case dw_val_class_flag
:
7365 CHECKSUM_ULEB128 (DW_FORM_flag
);
7366 CHECKSUM_ULEB128 (at
->dw_attr_val
.v
.val_flag
? 1 : 0);
7369 case dw_val_class_str
:
7370 CHECKSUM_ULEB128 (DW_FORM_string
);
7371 CHECKSUM_STRING (AT_string (at
));
7374 case dw_val_class_addr
:
7376 gcc_assert (GET_CODE (r
) == SYMBOL_REF
);
7377 CHECKSUM_ULEB128 (DW_FORM_string
);
7378 CHECKSUM_STRING (XSTR (r
, 0));
7381 case dw_val_class_offset
:
7382 CHECKSUM_ULEB128 (DW_FORM_sdata
);
7383 CHECKSUM_ULEB128 (at
->dw_attr_val
.v
.val_offset
);
7386 case dw_val_class_loc
:
7387 for (loc
= AT_loc (at
); loc
; loc
= loc
->dw_loc_next
)
7388 loc_checksum_ordered (loc
, ctx
);
7391 case dw_val_class_fde_ref
:
7392 case dw_val_class_symview
:
7393 case dw_val_class_lbl_id
:
7394 case dw_val_class_lineptr
:
7395 case dw_val_class_macptr
:
7396 case dw_val_class_loclistsptr
:
7397 case dw_val_class_high_pc
:
7400 case dw_val_class_file
:
7401 case dw_val_class_file_implicit
:
7402 CHECKSUM_ULEB128 (DW_FORM_string
);
7403 CHECKSUM_STRING (AT_file (at
)->filename
);
7406 case dw_val_class_data8
:
7407 CHECKSUM (at
->dw_attr_val
.v
.val_data8
);
7415 struct checksum_attributes
7417 dw_attr_node
*at_name
;
7418 dw_attr_node
*at_type
;
7419 dw_attr_node
*at_friend
;
7420 dw_attr_node
*at_accessibility
;
7421 dw_attr_node
*at_address_class
;
7422 dw_attr_node
*at_alignment
;
7423 dw_attr_node
*at_allocated
;
7424 dw_attr_node
*at_artificial
;
7425 dw_attr_node
*at_associated
;
7426 dw_attr_node
*at_binary_scale
;
7427 dw_attr_node
*at_bit_offset
;
7428 dw_attr_node
*at_bit_size
;
7429 dw_attr_node
*at_bit_stride
;
7430 dw_attr_node
*at_byte_size
;
7431 dw_attr_node
*at_byte_stride
;
7432 dw_attr_node
*at_const_value
;
7433 dw_attr_node
*at_containing_type
;
7434 dw_attr_node
*at_count
;
7435 dw_attr_node
*at_data_location
;
7436 dw_attr_node
*at_data_member_location
;
7437 dw_attr_node
*at_decimal_scale
;
7438 dw_attr_node
*at_decimal_sign
;
7439 dw_attr_node
*at_default_value
;
7440 dw_attr_node
*at_digit_count
;
7441 dw_attr_node
*at_discr
;
7442 dw_attr_node
*at_discr_list
;
7443 dw_attr_node
*at_discr_value
;
7444 dw_attr_node
*at_encoding
;
7445 dw_attr_node
*at_endianity
;
7446 dw_attr_node
*at_explicit
;
7447 dw_attr_node
*at_is_optional
;
7448 dw_attr_node
*at_location
;
7449 dw_attr_node
*at_lower_bound
;
7450 dw_attr_node
*at_mutable
;
7451 dw_attr_node
*at_ordering
;
7452 dw_attr_node
*at_picture_string
;
7453 dw_attr_node
*at_prototyped
;
7454 dw_attr_node
*at_small
;
7455 dw_attr_node
*at_segment
;
7456 dw_attr_node
*at_string_length
;
7457 dw_attr_node
*at_string_length_bit_size
;
7458 dw_attr_node
*at_string_length_byte_size
;
7459 dw_attr_node
*at_threads_scaled
;
7460 dw_attr_node
*at_upper_bound
;
7461 dw_attr_node
*at_use_location
;
7462 dw_attr_node
*at_use_UTF8
;
7463 dw_attr_node
*at_variable_parameter
;
7464 dw_attr_node
*at_virtuality
;
7465 dw_attr_node
*at_visibility
;
7466 dw_attr_node
*at_vtable_elem_location
;
7469 /* Collect the attributes that we will want to use for the checksum. */
7472 collect_checksum_attributes (struct checksum_attributes
*attrs
, dw_die_ref die
)
7477 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
7488 attrs
->at_friend
= a
;
7490 case DW_AT_accessibility
:
7491 attrs
->at_accessibility
= a
;
7493 case DW_AT_address_class
:
7494 attrs
->at_address_class
= a
;
7496 case DW_AT_alignment
:
7497 attrs
->at_alignment
= a
;
7499 case DW_AT_allocated
:
7500 attrs
->at_allocated
= a
;
7502 case DW_AT_artificial
:
7503 attrs
->at_artificial
= a
;
7505 case DW_AT_associated
:
7506 attrs
->at_associated
= a
;
7508 case DW_AT_binary_scale
:
7509 attrs
->at_binary_scale
= a
;
7511 case DW_AT_bit_offset
:
7512 attrs
->at_bit_offset
= a
;
7514 case DW_AT_bit_size
:
7515 attrs
->at_bit_size
= a
;
7517 case DW_AT_bit_stride
:
7518 attrs
->at_bit_stride
= a
;
7520 case DW_AT_byte_size
:
7521 attrs
->at_byte_size
= a
;
7523 case DW_AT_byte_stride
:
7524 attrs
->at_byte_stride
= a
;
7526 case DW_AT_const_value
:
7527 attrs
->at_const_value
= a
;
7529 case DW_AT_containing_type
:
7530 attrs
->at_containing_type
= a
;
7533 attrs
->at_count
= a
;
7535 case DW_AT_data_location
:
7536 attrs
->at_data_location
= a
;
7538 case DW_AT_data_member_location
:
7539 attrs
->at_data_member_location
= a
;
7541 case DW_AT_decimal_scale
:
7542 attrs
->at_decimal_scale
= a
;
7544 case DW_AT_decimal_sign
:
7545 attrs
->at_decimal_sign
= a
;
7547 case DW_AT_default_value
:
7548 attrs
->at_default_value
= a
;
7550 case DW_AT_digit_count
:
7551 attrs
->at_digit_count
= a
;
7554 attrs
->at_discr
= a
;
7556 case DW_AT_discr_list
:
7557 attrs
->at_discr_list
= a
;
7559 case DW_AT_discr_value
:
7560 attrs
->at_discr_value
= a
;
7562 case DW_AT_encoding
:
7563 attrs
->at_encoding
= a
;
7565 case DW_AT_endianity
:
7566 attrs
->at_endianity
= a
;
7568 case DW_AT_explicit
:
7569 attrs
->at_explicit
= a
;
7571 case DW_AT_is_optional
:
7572 attrs
->at_is_optional
= a
;
7574 case DW_AT_location
:
7575 attrs
->at_location
= a
;
7577 case DW_AT_lower_bound
:
7578 attrs
->at_lower_bound
= a
;
7581 attrs
->at_mutable
= a
;
7583 case DW_AT_ordering
:
7584 attrs
->at_ordering
= a
;
7586 case DW_AT_picture_string
:
7587 attrs
->at_picture_string
= a
;
7589 case DW_AT_prototyped
:
7590 attrs
->at_prototyped
= a
;
7593 attrs
->at_small
= a
;
7596 attrs
->at_segment
= a
;
7598 case DW_AT_string_length
:
7599 attrs
->at_string_length
= a
;
7601 case DW_AT_string_length_bit_size
:
7602 attrs
->at_string_length_bit_size
= a
;
7604 case DW_AT_string_length_byte_size
:
7605 attrs
->at_string_length_byte_size
= a
;
7607 case DW_AT_threads_scaled
:
7608 attrs
->at_threads_scaled
= a
;
7610 case DW_AT_upper_bound
:
7611 attrs
->at_upper_bound
= a
;
7613 case DW_AT_use_location
:
7614 attrs
->at_use_location
= a
;
7616 case DW_AT_use_UTF8
:
7617 attrs
->at_use_UTF8
= a
;
7619 case DW_AT_variable_parameter
:
7620 attrs
->at_variable_parameter
= a
;
7622 case DW_AT_virtuality
:
7623 attrs
->at_virtuality
= a
;
7625 case DW_AT_visibility
:
7626 attrs
->at_visibility
= a
;
7628 case DW_AT_vtable_elem_location
:
7629 attrs
->at_vtable_elem_location
= a
;
7637 /* Calculate the checksum of a DIE, using an ordered subset of attributes. */
7640 die_checksum_ordered (dw_die_ref die
, struct md5_ctx
*ctx
, int *mark
)
7644 struct checksum_attributes attrs
;
7646 CHECKSUM_ULEB128 ('D');
7647 CHECKSUM_ULEB128 (die
->die_tag
);
7649 memset (&attrs
, 0, sizeof (attrs
));
7651 decl
= get_AT_ref (die
, DW_AT_specification
);
7653 collect_checksum_attributes (&attrs
, decl
);
7654 collect_checksum_attributes (&attrs
, die
);
7656 CHECKSUM_ATTR (attrs
.at_name
);
7657 CHECKSUM_ATTR (attrs
.at_accessibility
);
7658 CHECKSUM_ATTR (attrs
.at_address_class
);
7659 CHECKSUM_ATTR (attrs
.at_allocated
);
7660 CHECKSUM_ATTR (attrs
.at_artificial
);
7661 CHECKSUM_ATTR (attrs
.at_associated
);
7662 CHECKSUM_ATTR (attrs
.at_binary_scale
);
7663 CHECKSUM_ATTR (attrs
.at_bit_offset
);
7664 CHECKSUM_ATTR (attrs
.at_bit_size
);
7665 CHECKSUM_ATTR (attrs
.at_bit_stride
);
7666 CHECKSUM_ATTR (attrs
.at_byte_size
);
7667 CHECKSUM_ATTR (attrs
.at_byte_stride
);
7668 CHECKSUM_ATTR (attrs
.at_const_value
);
7669 CHECKSUM_ATTR (attrs
.at_containing_type
);
7670 CHECKSUM_ATTR (attrs
.at_count
);
7671 CHECKSUM_ATTR (attrs
.at_data_location
);
7672 CHECKSUM_ATTR (attrs
.at_data_member_location
);
7673 CHECKSUM_ATTR (attrs
.at_decimal_scale
);
7674 CHECKSUM_ATTR (attrs
.at_decimal_sign
);
7675 CHECKSUM_ATTR (attrs
.at_default_value
);
7676 CHECKSUM_ATTR (attrs
.at_digit_count
);
7677 CHECKSUM_ATTR (attrs
.at_discr
);
7678 CHECKSUM_ATTR (attrs
.at_discr_list
);
7679 CHECKSUM_ATTR (attrs
.at_discr_value
);
7680 CHECKSUM_ATTR (attrs
.at_encoding
);
7681 CHECKSUM_ATTR (attrs
.at_endianity
);
7682 CHECKSUM_ATTR (attrs
.at_explicit
);
7683 CHECKSUM_ATTR (attrs
.at_is_optional
);
7684 CHECKSUM_ATTR (attrs
.at_location
);
7685 CHECKSUM_ATTR (attrs
.at_lower_bound
);
7686 CHECKSUM_ATTR (attrs
.at_mutable
);
7687 CHECKSUM_ATTR (attrs
.at_ordering
);
7688 CHECKSUM_ATTR (attrs
.at_picture_string
);
7689 CHECKSUM_ATTR (attrs
.at_prototyped
);
7690 CHECKSUM_ATTR (attrs
.at_small
);
7691 CHECKSUM_ATTR (attrs
.at_segment
);
7692 CHECKSUM_ATTR (attrs
.at_string_length
);
7693 CHECKSUM_ATTR (attrs
.at_string_length_bit_size
);
7694 CHECKSUM_ATTR (attrs
.at_string_length_byte_size
);
7695 CHECKSUM_ATTR (attrs
.at_threads_scaled
);
7696 CHECKSUM_ATTR (attrs
.at_upper_bound
);
7697 CHECKSUM_ATTR (attrs
.at_use_location
);
7698 CHECKSUM_ATTR (attrs
.at_use_UTF8
);
7699 CHECKSUM_ATTR (attrs
.at_variable_parameter
);
7700 CHECKSUM_ATTR (attrs
.at_virtuality
);
7701 CHECKSUM_ATTR (attrs
.at_visibility
);
7702 CHECKSUM_ATTR (attrs
.at_vtable_elem_location
);
7703 CHECKSUM_ATTR (attrs
.at_type
);
7704 CHECKSUM_ATTR (attrs
.at_friend
);
7705 CHECKSUM_ATTR (attrs
.at_alignment
);
7707 /* Checksum the child DIEs. */
7710 dw_attr_node
*name_attr
;
7713 name_attr
= get_AT (c
, DW_AT_name
);
7714 if (is_template_instantiation (c
))
7716 /* Ignore instantiations of member type and function templates. */
7718 else if (name_attr
!= NULL
7719 && (is_type_die (c
) || c
->die_tag
== DW_TAG_subprogram
))
7721 /* Use a shallow checksum for named nested types and member
7723 CHECKSUM_ULEB128 ('S');
7724 CHECKSUM_ULEB128 (c
->die_tag
);
7725 CHECKSUM_STRING (AT_string (name_attr
));
7729 /* Use a deep checksum for other children. */
7730 /* Mark this DIE so it gets processed when unmarking. */
7731 if (c
->die_mark
== 0)
7733 die_checksum_ordered (c
, ctx
, mark
);
7735 } while (c
!= die
->die_child
);
7737 CHECKSUM_ULEB128 (0);
7740 /* Add a type name and tag to a hash. */
7742 die_odr_checksum (int tag
, const char *name
, md5_ctx
*ctx
)
7744 CHECKSUM_ULEB128 (tag
);
7745 CHECKSUM_STRING (name
);
7749 #undef CHECKSUM_STRING
7750 #undef CHECKSUM_ATTR
7751 #undef CHECKSUM_LEB128
7752 #undef CHECKSUM_ULEB128
7754 /* Generate the type signature for DIE. This is computed by generating an
7755 MD5 checksum over the DIE's tag, its relevant attributes, and its
7756 children. Attributes that are references to other DIEs are processed
7757 by recursion, using the MARK field to prevent infinite recursion.
7758 If the DIE is nested inside a namespace or another type, we also
7759 need to include that context in the signature. The lower 64 bits
7760 of the resulting MD5 checksum comprise the signature. */
7763 generate_type_signature (dw_die_ref die
, comdat_type_node
*type_node
)
7767 unsigned char checksum
[16];
7772 name
= get_AT_string (die
, DW_AT_name
);
7773 decl
= get_AT_ref (die
, DW_AT_specification
);
7774 parent
= get_die_parent (die
);
7776 /* First, compute a signature for just the type name (and its surrounding
7777 context, if any. This is stored in the type unit DIE for link-time
7778 ODR (one-definition rule) checking. */
7780 if (is_cxx () && name
!= NULL
)
7782 md5_init_ctx (&ctx
);
7784 /* Checksum the names of surrounding namespaces and structures. */
7786 checksum_die_context (parent
, &ctx
);
7788 /* Checksum the current DIE. */
7789 die_odr_checksum (die
->die_tag
, name
, &ctx
);
7790 md5_finish_ctx (&ctx
, checksum
);
7792 add_AT_data8 (type_node
->root_die
, DW_AT_GNU_odr_signature
, &checksum
[8]);
7795 /* Next, compute the complete type signature. */
7797 md5_init_ctx (&ctx
);
7799 die
->die_mark
= mark
;
7801 /* Checksum the names of surrounding namespaces and structures. */
7803 checksum_die_context (parent
, &ctx
);
7805 /* Checksum the DIE and its children. */
7806 die_checksum_ordered (die
, &ctx
, &mark
);
7807 unmark_all_dies (die
);
7808 md5_finish_ctx (&ctx
, checksum
);
7810 /* Store the signature in the type node and link the type DIE and the
7811 type node together. */
7812 memcpy (type_node
->signature
, &checksum
[16 - DWARF_TYPE_SIGNATURE_SIZE
],
7813 DWARF_TYPE_SIGNATURE_SIZE
);
7814 die
->comdat_type_p
= true;
7815 die
->die_id
.die_type_node
= type_node
;
7816 type_node
->type_die
= die
;
7818 /* If the DIE is a specification, link its declaration to the type node
7822 decl
->comdat_type_p
= true;
7823 decl
->die_id
.die_type_node
= type_node
;
7827 /* Do the location expressions look same? */
7829 same_loc_p (dw_loc_descr_ref loc1
, dw_loc_descr_ref loc2
, int *mark
)
7831 return loc1
->dw_loc_opc
== loc2
->dw_loc_opc
7832 && same_dw_val_p (&loc1
->dw_loc_oprnd1
, &loc2
->dw_loc_oprnd1
, mark
)
7833 && same_dw_val_p (&loc1
->dw_loc_oprnd2
, &loc2
->dw_loc_oprnd2
, mark
);
7836 /* Do the values look the same? */
7838 same_dw_val_p (const dw_val_node
*v1
, const dw_val_node
*v2
, int *mark
)
7840 dw_loc_descr_ref loc1
, loc2
;
7843 if (v1
->val_class
!= v2
->val_class
)
7846 switch (v1
->val_class
)
7848 case dw_val_class_const
:
7849 case dw_val_class_const_implicit
:
7850 return v1
->v
.val_int
== v2
->v
.val_int
;
7851 case dw_val_class_unsigned_const
:
7852 case dw_val_class_unsigned_const_implicit
:
7853 return v1
->v
.val_unsigned
== v2
->v
.val_unsigned
;
7854 case dw_val_class_const_double
:
7855 return v1
->v
.val_double
.high
== v2
->v
.val_double
.high
7856 && v1
->v
.val_double
.low
== v2
->v
.val_double
.low
;
7857 case dw_val_class_wide_int
:
7858 return *v1
->v
.val_wide
== *v2
->v
.val_wide
;
7859 case dw_val_class_vec
:
7860 if (v1
->v
.val_vec
.length
!= v2
->v
.val_vec
.length
7861 || v1
->v
.val_vec
.elt_size
!= v2
->v
.val_vec
.elt_size
)
7863 if (memcmp (v1
->v
.val_vec
.array
, v2
->v
.val_vec
.array
,
7864 v1
->v
.val_vec
.length
* v1
->v
.val_vec
.elt_size
))
7867 case dw_val_class_flag
:
7868 return v1
->v
.val_flag
== v2
->v
.val_flag
;
7869 case dw_val_class_str
:
7870 return !strcmp (v1
->v
.val_str
->str
, v2
->v
.val_str
->str
);
7872 case dw_val_class_addr
:
7873 r1
= v1
->v
.val_addr
;
7874 r2
= v2
->v
.val_addr
;
7875 if (GET_CODE (r1
) != GET_CODE (r2
))
7877 return !rtx_equal_p (r1
, r2
);
7879 case dw_val_class_offset
:
7880 return v1
->v
.val_offset
== v2
->v
.val_offset
;
7882 case dw_val_class_loc
:
7883 for (loc1
= v1
->v
.val_loc
, loc2
= v2
->v
.val_loc
;
7885 loc1
= loc1
->dw_loc_next
, loc2
= loc2
->dw_loc_next
)
7886 if (!same_loc_p (loc1
, loc2
, mark
))
7888 return !loc1
&& !loc2
;
7890 case dw_val_class_die_ref
:
7891 return same_die_p (v1
->v
.val_die_ref
.die
, v2
->v
.val_die_ref
.die
, mark
);
7893 case dw_val_class_symview
:
7894 return strcmp (v1
->v
.val_symbolic_view
, v2
->v
.val_symbolic_view
) == 0;
7896 case dw_val_class_fde_ref
:
7897 case dw_val_class_vms_delta
:
7898 case dw_val_class_lbl_id
:
7899 case dw_val_class_lineptr
:
7900 case dw_val_class_macptr
:
7901 case dw_val_class_loclistsptr
:
7902 case dw_val_class_high_pc
:
7905 case dw_val_class_file
:
7906 case dw_val_class_file_implicit
:
7907 return v1
->v
.val_file
== v2
->v
.val_file
;
7909 case dw_val_class_data8
:
7910 return !memcmp (v1
->v
.val_data8
, v2
->v
.val_data8
, 8);
7917 /* Do the attributes look the same? */
7920 same_attr_p (dw_attr_node
*at1
, dw_attr_node
*at2
, int *mark
)
7922 if (at1
->dw_attr
!= at2
->dw_attr
)
7925 /* We don't care that this was compiled with a different compiler
7926 snapshot; if the output is the same, that's what matters. */
7927 if (at1
->dw_attr
== DW_AT_producer
)
7930 return same_dw_val_p (&at1
->dw_attr_val
, &at2
->dw_attr_val
, mark
);
7933 /* Do the dies look the same? */
7936 same_die_p (dw_die_ref die1
, dw_die_ref die2
, int *mark
)
7942 /* To avoid infinite recursion. */
7944 return die1
->die_mark
== die2
->die_mark
;
7945 die1
->die_mark
= die2
->die_mark
= ++(*mark
);
7947 if (die1
->die_tag
!= die2
->die_tag
)
7950 if (vec_safe_length (die1
->die_attr
) != vec_safe_length (die2
->die_attr
))
7953 FOR_EACH_VEC_SAFE_ELT (die1
->die_attr
, ix
, a1
)
7954 if (!same_attr_p (a1
, &(*die2
->die_attr
)[ix
], mark
))
7957 c1
= die1
->die_child
;
7958 c2
= die2
->die_child
;
7967 if (!same_die_p (c1
, c2
, mark
))
7971 if (c1
== die1
->die_child
)
7973 if (c2
== die2
->die_child
)
7983 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
7984 children, and set die_symbol. */
7987 compute_comp_unit_symbol (dw_die_ref unit_die
)
7989 const char *die_name
= get_AT_string (unit_die
, DW_AT_name
);
7990 const char *base
= die_name
? lbasename (die_name
) : "anonymous";
7991 char *name
= XALLOCAVEC (char, strlen (base
) + 64);
7994 unsigned char checksum
[16];
7997 /* Compute the checksum of the DIE, then append part of it as hex digits to
7998 the name filename of the unit. */
8000 md5_init_ctx (&ctx
);
8002 die_checksum (unit_die
, &ctx
, &mark
);
8003 unmark_all_dies (unit_die
);
8004 md5_finish_ctx (&ctx
, checksum
);
8006 /* When we this for comp_unit_die () we have a DW_AT_name that might
8007 not start with a letter but with anything valid for filenames and
8008 clean_symbol_name doesn't fix that up. Prepend 'g' if the first
8009 character is not a letter. */
8010 sprintf (name
, "%s%s.", ISALPHA (*base
) ? "" : "g", base
);
8011 clean_symbol_name (name
);
8013 p
= name
+ strlen (name
);
8014 for (i
= 0; i
< 4; i
++)
8016 sprintf (p
, "%.2x", checksum
[i
]);
8020 unit_die
->die_id
.die_symbol
= xstrdup (name
);
8023 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
8026 is_type_die (dw_die_ref die
)
8028 switch (die
->die_tag
)
8030 case DW_TAG_array_type
:
8031 case DW_TAG_class_type
:
8032 case DW_TAG_interface_type
:
8033 case DW_TAG_enumeration_type
:
8034 case DW_TAG_pointer_type
:
8035 case DW_TAG_reference_type
:
8036 case DW_TAG_rvalue_reference_type
:
8037 case DW_TAG_string_type
:
8038 case DW_TAG_structure_type
:
8039 case DW_TAG_subroutine_type
:
8040 case DW_TAG_union_type
:
8041 case DW_TAG_ptr_to_member_type
:
8042 case DW_TAG_set_type
:
8043 case DW_TAG_subrange_type
:
8044 case DW_TAG_base_type
:
8045 case DW_TAG_const_type
:
8046 case DW_TAG_file_type
:
8047 case DW_TAG_packed_type
:
8048 case DW_TAG_volatile_type
:
8049 case DW_TAG_typedef
:
8056 /* Returns true iff C is a compile-unit DIE. */
8059 is_cu_die (dw_die_ref c
)
8061 return c
&& (c
->die_tag
== DW_TAG_compile_unit
8062 || c
->die_tag
== DW_TAG_skeleton_unit
);
8065 /* Returns true iff C is a unit DIE of some sort. */
8068 is_unit_die (dw_die_ref c
)
8070 return c
&& (c
->die_tag
== DW_TAG_compile_unit
8071 || c
->die_tag
== DW_TAG_partial_unit
8072 || c
->die_tag
== DW_TAG_type_unit
8073 || c
->die_tag
== DW_TAG_skeleton_unit
);
8076 /* Returns true iff C is a namespace DIE. */
8079 is_namespace_die (dw_die_ref c
)
8081 return c
&& c
->die_tag
== DW_TAG_namespace
;
8084 /* Return non-zero if this DIE is a template parameter. */
8087 is_template_parameter (dw_die_ref die
)
8089 switch (die
->die_tag
)
8091 case DW_TAG_template_type_param
:
8092 case DW_TAG_template_value_param
:
8093 case DW_TAG_GNU_template_template_param
:
8094 case DW_TAG_GNU_template_parameter_pack
:
8101 /* Return non-zero if this DIE represents a template instantiation. */
8104 is_template_instantiation (dw_die_ref die
)
8108 if (!is_type_die (die
) && die
->die_tag
!= DW_TAG_subprogram
)
8110 FOR_EACH_CHILD (die
, c
, if (is_template_parameter (c
)) return true);
8115 gen_internal_sym (const char *prefix
)
8117 char buf
[MAX_ARTIFICIAL_LABEL_BYTES
];
8119 ASM_GENERATE_INTERNAL_LABEL (buf
, prefix
, label_num
++);
8120 return xstrdup (buf
);
8123 /* Return non-zero if this DIE is a declaration. */
8126 is_declaration_die (dw_die_ref die
)
8131 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
8132 if (a
->dw_attr
== DW_AT_declaration
)
8138 /* Return non-zero if this DIE is nested inside a subprogram. */
8141 is_nested_in_subprogram (dw_die_ref die
)
8143 dw_die_ref decl
= get_AT_ref (die
, DW_AT_specification
);
8147 return local_scope_p (decl
);
8150 /* Return non-zero if this DIE contains a defining declaration of a
8154 contains_subprogram_definition (dw_die_ref die
)
8158 if (die
->die_tag
== DW_TAG_subprogram
&& ! is_declaration_die (die
))
8160 FOR_EACH_CHILD (die
, c
, if (contains_subprogram_definition (c
)) return 1);
8164 /* Return non-zero if this is a type DIE that should be moved to a
8165 COMDAT .debug_types section or .debug_info section with DW_UT_*type
8169 should_move_die_to_comdat (dw_die_ref die
)
8171 switch (die
->die_tag
)
8173 case DW_TAG_class_type
:
8174 case DW_TAG_structure_type
:
8175 case DW_TAG_enumeration_type
:
8176 case DW_TAG_union_type
:
8177 /* Don't move declarations, inlined instances, types nested in a
8178 subprogram, or types that contain subprogram definitions. */
8179 if (is_declaration_die (die
)
8180 || get_AT (die
, DW_AT_abstract_origin
)
8181 || is_nested_in_subprogram (die
)
8182 || contains_subprogram_definition (die
))
8185 case DW_TAG_array_type
:
8186 case DW_TAG_interface_type
:
8187 case DW_TAG_pointer_type
:
8188 case DW_TAG_reference_type
:
8189 case DW_TAG_rvalue_reference_type
:
8190 case DW_TAG_string_type
:
8191 case DW_TAG_subroutine_type
:
8192 case DW_TAG_ptr_to_member_type
:
8193 case DW_TAG_set_type
:
8194 case DW_TAG_subrange_type
:
8195 case DW_TAG_base_type
:
8196 case DW_TAG_const_type
:
8197 case DW_TAG_file_type
:
8198 case DW_TAG_packed_type
:
8199 case DW_TAG_volatile_type
:
8200 case DW_TAG_typedef
:
8206 /* Make a clone of DIE. */
8209 clone_die (dw_die_ref die
)
8211 dw_die_ref clone
= new_die_raw (die
->die_tag
);
8215 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
8216 add_dwarf_attr (clone
, a
);
8221 /* Make a clone of the tree rooted at DIE. */
8224 clone_tree (dw_die_ref die
)
8227 dw_die_ref clone
= clone_die (die
);
8229 FOR_EACH_CHILD (die
, c
, add_child_die (clone
, clone_tree (c
)));
8234 /* Make a clone of DIE as a declaration. */
8237 clone_as_declaration (dw_die_ref die
)
8244 /* If the DIE is already a declaration, just clone it. */
8245 if (is_declaration_die (die
))
8246 return clone_die (die
);
8248 /* If the DIE is a specification, just clone its declaration DIE. */
8249 decl
= get_AT_ref (die
, DW_AT_specification
);
8252 clone
= clone_die (decl
);
8253 if (die
->comdat_type_p
)
8254 add_AT_die_ref (clone
, DW_AT_signature
, die
);
8258 clone
= new_die_raw (die
->die_tag
);
8260 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
8262 /* We don't want to copy over all attributes.
8263 For example we don't want DW_AT_byte_size because otherwise we will no
8264 longer have a declaration and GDB will treat it as a definition. */
8268 case DW_AT_abstract_origin
:
8269 case DW_AT_artificial
:
8270 case DW_AT_containing_type
:
8271 case DW_AT_external
:
8274 case DW_AT_virtuality
:
8275 case DW_AT_linkage_name
:
8276 case DW_AT_MIPS_linkage_name
:
8277 add_dwarf_attr (clone
, a
);
8279 case DW_AT_byte_size
:
8280 case DW_AT_alignment
:
8286 if (die
->comdat_type_p
)
8287 add_AT_die_ref (clone
, DW_AT_signature
, die
);
8289 add_AT_flag (clone
, DW_AT_declaration
, 1);
8294 /* Structure to map a DIE in one CU to its copy in a comdat type unit. */
8296 struct decl_table_entry
8302 /* Helpers to manipulate hash table of copied declarations. */
8304 /* Hashtable helpers. */
8306 struct decl_table_entry_hasher
: free_ptr_hash
<decl_table_entry
>
8308 typedef die_struct
*compare_type
;
8309 static inline hashval_t
hash (const decl_table_entry
*);
8310 static inline bool equal (const decl_table_entry
*, const die_struct
*);
8314 decl_table_entry_hasher::hash (const decl_table_entry
*entry
)
8316 return htab_hash_pointer (entry
->orig
);
8320 decl_table_entry_hasher::equal (const decl_table_entry
*entry1
,
8321 const die_struct
*entry2
)
8323 return entry1
->orig
== entry2
;
8326 typedef hash_table
<decl_table_entry_hasher
> decl_hash_type
;
8328 /* Copy DIE and its ancestors, up to, but not including, the compile unit
8329 or type unit entry, to a new tree. Adds the new tree to UNIT and returns
8330 a pointer to the copy of DIE. If DECL_TABLE is provided, it is used
8331 to check if the ancestor has already been copied into UNIT. */
8334 copy_ancestor_tree (dw_die_ref unit
, dw_die_ref die
,
8335 decl_hash_type
*decl_table
)
8337 dw_die_ref parent
= die
->die_parent
;
8338 dw_die_ref new_parent
= unit
;
8340 decl_table_entry
**slot
= NULL
;
8341 struct decl_table_entry
*entry
= NULL
;
8343 /* If DIE refers to a stub unfold that so we get the appropriate
8344 DIE registered as orig in decl_table. */
8345 if (dw_die_ref c
= get_AT_ref (die
, DW_AT_signature
))
8350 /* Check if the entry has already been copied to UNIT. */
8351 slot
= decl_table
->find_slot_with_hash (die
, htab_hash_pointer (die
),
8353 if (*slot
!= HTAB_EMPTY_ENTRY
)
8359 /* Record in DECL_TABLE that DIE has been copied to UNIT. */
8360 entry
= XCNEW (struct decl_table_entry
);
8368 dw_die_ref spec
= get_AT_ref (parent
, DW_AT_specification
);
8371 if (!is_unit_die (parent
))
8372 new_parent
= copy_ancestor_tree (unit
, parent
, decl_table
);
8375 copy
= clone_as_declaration (die
);
8376 add_child_die (new_parent
, copy
);
8380 /* Record the pointer to the copy. */
8386 /* Copy the declaration context to the new type unit DIE. This includes
8387 any surrounding namespace or type declarations. If the DIE has an
8388 AT_specification attribute, it also includes attributes and children
8389 attached to the specification, and returns a pointer to the original
8390 parent of the declaration DIE. Returns NULL otherwise. */
8393 copy_declaration_context (dw_die_ref unit
, dw_die_ref die
)
8396 dw_die_ref new_decl
;
8397 dw_die_ref orig_parent
= NULL
;
8399 decl
= get_AT_ref (die
, DW_AT_specification
);
8408 /* The original DIE will be changed to a declaration, and must
8409 be moved to be a child of the original declaration DIE. */
8410 orig_parent
= decl
->die_parent
;
8412 /* Copy the type node pointer from the new DIE to the original
8413 declaration DIE so we can forward references later. */
8414 decl
->comdat_type_p
= true;
8415 decl
->die_id
.die_type_node
= die
->die_id
.die_type_node
;
8417 remove_AT (die
, DW_AT_specification
);
8419 FOR_EACH_VEC_SAFE_ELT (decl
->die_attr
, ix
, a
)
8421 if (a
->dw_attr
!= DW_AT_name
8422 && a
->dw_attr
!= DW_AT_declaration
8423 && a
->dw_attr
!= DW_AT_external
)
8424 add_dwarf_attr (die
, a
);
8427 FOR_EACH_CHILD (decl
, c
, add_child_die (die
, clone_tree (c
)));
8430 if (decl
->die_parent
!= NULL
8431 && !is_unit_die (decl
->die_parent
))
8433 new_decl
= copy_ancestor_tree (unit
, decl
, NULL
);
8434 if (new_decl
!= NULL
)
8436 remove_AT (new_decl
, DW_AT_signature
);
8437 add_AT_specification (die
, new_decl
);
8444 /* Generate the skeleton ancestor tree for the given NODE, then clone
8445 the DIE and add the clone into the tree. */
8448 generate_skeleton_ancestor_tree (skeleton_chain_node
*node
)
8450 if (node
->new_die
!= NULL
)
8453 node
->new_die
= clone_as_declaration (node
->old_die
);
8455 if (node
->parent
!= NULL
)
8457 generate_skeleton_ancestor_tree (node
->parent
);
8458 add_child_die (node
->parent
->new_die
, node
->new_die
);
8462 /* Generate a skeleton tree of DIEs containing any declarations that are
8463 found in the original tree. We traverse the tree looking for declaration
8464 DIEs, and construct the skeleton from the bottom up whenever we find one. */
8467 generate_skeleton_bottom_up (skeleton_chain_node
*parent
)
8469 skeleton_chain_node node
;
8472 dw_die_ref prev
= NULL
;
8473 dw_die_ref next
= NULL
;
8475 node
.parent
= parent
;
8477 first
= c
= parent
->old_die
->die_child
;
8481 if (prev
== NULL
|| prev
->die_sib
== c
)
8484 next
= (c
== first
? NULL
: c
->die_sib
);
8486 node
.new_die
= NULL
;
8487 if (is_declaration_die (c
))
8489 if (is_template_instantiation (c
))
8491 /* Instantiated templates do not need to be cloned into the
8492 type unit. Just move the DIE and its children back to
8493 the skeleton tree (in the main CU). */
8494 remove_child_with_prev (c
, prev
);
8495 add_child_die (parent
->new_die
, c
);
8498 else if (c
->comdat_type_p
)
8500 /* This is the skeleton of earlier break_out_comdat_types
8501 type. Clone the existing DIE, but keep the children
8502 under the original (which is in the main CU). */
8503 dw_die_ref clone
= clone_die (c
);
8505 replace_child (c
, clone
, prev
);
8506 generate_skeleton_ancestor_tree (parent
);
8507 add_child_die (parent
->new_die
, c
);
8513 /* Clone the existing DIE, move the original to the skeleton
8514 tree (which is in the main CU), and put the clone, with
8515 all the original's children, where the original came from
8516 (which is about to be moved to the type unit). */
8517 dw_die_ref clone
= clone_die (c
);
8518 move_all_children (c
, clone
);
8520 /* If the original has a DW_AT_object_pointer attribute,
8521 it would now point to a child DIE just moved to the
8522 cloned tree, so we need to remove that attribute from
8524 remove_AT (c
, DW_AT_object_pointer
);
8526 replace_child (c
, clone
, prev
);
8527 generate_skeleton_ancestor_tree (parent
);
8528 add_child_die (parent
->new_die
, c
);
8529 node
.old_die
= clone
;
8534 generate_skeleton_bottom_up (&node
);
8535 } while (next
!= NULL
);
8538 /* Wrapper function for generate_skeleton_bottom_up. */
8541 generate_skeleton (dw_die_ref die
)
8543 skeleton_chain_node node
;
8546 node
.new_die
= NULL
;
8549 /* If this type definition is nested inside another type,
8550 and is not an instantiation of a template, always leave
8551 at least a declaration in its place. */
8552 if (die
->die_parent
!= NULL
8553 && is_type_die (die
->die_parent
)
8554 && !is_template_instantiation (die
))
8555 node
.new_die
= clone_as_declaration (die
);
8557 generate_skeleton_bottom_up (&node
);
8558 return node
.new_die
;
8561 /* Remove the CHILD DIE from its parent, possibly replacing it with a cloned
8562 declaration. The original DIE is moved to a new compile unit so that
8563 existing references to it follow it to the new location. If any of the
8564 original DIE's descendants is a declaration, we need to replace the
8565 original DIE with a skeleton tree and move the declarations back into the
8569 remove_child_or_replace_with_skeleton (dw_die_ref unit
, dw_die_ref child
,
8572 dw_die_ref skeleton
, orig_parent
;
8574 /* Copy the declaration context to the type unit DIE. If the returned
8575 ORIG_PARENT is not NULL, the skeleton needs to be added as a child of
8577 orig_parent
= copy_declaration_context (unit
, child
);
8579 skeleton
= generate_skeleton (child
);
8580 if (skeleton
== NULL
)
8581 remove_child_with_prev (child
, prev
);
8584 skeleton
->comdat_type_p
= true;
8585 skeleton
->die_id
.die_type_node
= child
->die_id
.die_type_node
;
8587 /* If the original DIE was a specification, we need to put
8588 the skeleton under the parent DIE of the declaration.
8589 This leaves the original declaration in the tree, but
8590 it will be pruned later since there are no longer any
8591 references to it. */
8592 if (orig_parent
!= NULL
)
8594 remove_child_with_prev (child
, prev
);
8595 add_child_die (orig_parent
, skeleton
);
8598 replace_child (child
, skeleton
, prev
);
8605 copy_dwarf_procs_ref_in_attrs (dw_die_ref die
,
8606 comdat_type_node
*type_node
,
8607 hash_map
<dw_die_ref
, dw_die_ref
> &copied_dwarf_procs
);
8609 /* Helper for copy_dwarf_procs_ref_in_dies. Make a copy of the DIE DWARF
8610 procedure, put it under TYPE_NODE and return the copy. Continue looking for
8611 DWARF procedure references in the DW_AT_location attribute. */
8614 copy_dwarf_procedure (dw_die_ref die
,
8615 comdat_type_node
*type_node
,
8616 hash_map
<dw_die_ref
, dw_die_ref
> &copied_dwarf_procs
)
8618 gcc_assert (die
->die_tag
== DW_TAG_dwarf_procedure
);
8620 /* DWARF procedures are not supposed to have children... */
8621 gcc_assert (die
->die_child
== NULL
);
8623 /* ... and they are supposed to have only one attribute: DW_AT_location. */
8624 gcc_assert (vec_safe_length (die
->die_attr
) == 1
8625 && ((*die
->die_attr
)[0].dw_attr
== DW_AT_location
));
8627 /* Do not copy more than once DWARF procedures. */
8629 dw_die_ref
&die_copy
= copied_dwarf_procs
.get_or_insert (die
, &existed
);
8633 die_copy
= clone_die (die
);
8634 add_child_die (type_node
->root_die
, die_copy
);
8635 copy_dwarf_procs_ref_in_attrs (die_copy
, type_node
, copied_dwarf_procs
);
8639 /* Helper for copy_dwarf_procs_ref_in_dies. Look for references to DWARF
8640 procedures in DIE's attributes. */
8643 copy_dwarf_procs_ref_in_attrs (dw_die_ref die
,
8644 comdat_type_node
*type_node
,
8645 hash_map
<dw_die_ref
, dw_die_ref
> &copied_dwarf_procs
)
8650 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, i
, a
)
8652 dw_loc_descr_ref loc
;
8654 if (a
->dw_attr_val
.val_class
!= dw_val_class_loc
)
8657 for (loc
= a
->dw_attr_val
.v
.val_loc
; loc
!= NULL
; loc
= loc
->dw_loc_next
)
8659 switch (loc
->dw_loc_opc
)
8663 case DW_OP_call_ref
:
8664 gcc_assert (loc
->dw_loc_oprnd1
.val_class
8665 == dw_val_class_die_ref
);
8666 loc
->dw_loc_oprnd1
.v
.val_die_ref
.die
8667 = copy_dwarf_procedure (loc
->dw_loc_oprnd1
.v
.val_die_ref
.die
,
8669 copied_dwarf_procs
);
8678 /* Copy DWARF procedures that are referenced by the DIE tree to TREE_NODE and
8679 rewrite references to point to the copies.
8681 References are looked for in DIE's attributes and recursively in all its
8682 children attributes that are location descriptions. COPIED_DWARF_PROCS is a
8683 mapping from old DWARF procedures to their copy. It is used not to copy
8684 twice the same DWARF procedure under TYPE_NODE. */
8687 copy_dwarf_procs_ref_in_dies (dw_die_ref die
,
8688 comdat_type_node
*type_node
,
8689 hash_map
<dw_die_ref
, dw_die_ref
> &copied_dwarf_procs
)
8693 copy_dwarf_procs_ref_in_attrs (die
, type_node
, copied_dwarf_procs
);
8694 FOR_EACH_CHILD (die
, c
, copy_dwarf_procs_ref_in_dies (c
,
8696 copied_dwarf_procs
));
8699 /* Traverse the DIE and set up additional .debug_types or .debug_info
8700 DW_UT_*type sections for each type worthy of being placed in a COMDAT
8704 break_out_comdat_types (dw_die_ref die
)
8708 dw_die_ref prev
= NULL
;
8709 dw_die_ref next
= NULL
;
8710 dw_die_ref unit
= NULL
;
8712 first
= c
= die
->die_child
;
8716 if (prev
== NULL
|| prev
->die_sib
== c
)
8719 next
= (c
== first
? NULL
: c
->die_sib
);
8720 if (should_move_die_to_comdat (c
))
8722 dw_die_ref replacement
;
8723 comdat_type_node
*type_node
;
8725 /* Break out nested types into their own type units. */
8726 break_out_comdat_types (c
);
8728 /* Create a new type unit DIE as the root for the new tree. */
8729 unit
= new_die (DW_TAG_type_unit
, NULL
, NULL
);
8730 add_AT_unsigned (unit
, DW_AT_language
,
8731 get_AT_unsigned (comp_unit_die (), DW_AT_language
));
8733 /* Add the new unit's type DIE into the comdat type list. */
8734 type_node
= ggc_cleared_alloc
<comdat_type_node
> ();
8735 type_node
->root_die
= unit
;
8736 type_node
->next
= comdat_type_list
;
8737 comdat_type_list
= type_node
;
8739 /* Generate the type signature. */
8740 generate_type_signature (c
, type_node
);
8742 /* Copy the declaration context, attributes, and children of the
8743 declaration into the new type unit DIE, then remove this DIE
8744 from the main CU (or replace it with a skeleton if necessary). */
8745 replacement
= remove_child_or_replace_with_skeleton (unit
, c
, prev
);
8746 type_node
->skeleton_die
= replacement
;
8748 /* Add the DIE to the new compunit. */
8749 add_child_die (unit
, c
);
8751 /* Types can reference DWARF procedures for type size or data location
8752 expressions. Calls in DWARF expressions cannot target procedures
8753 that are not in the same section. So we must copy DWARF procedures
8754 along with this type and then rewrite references to them. */
8755 hash_map
<dw_die_ref
, dw_die_ref
> copied_dwarf_procs
;
8756 copy_dwarf_procs_ref_in_dies (c
, type_node
, copied_dwarf_procs
);
8758 if (replacement
!= NULL
)
8761 else if (c
->die_tag
== DW_TAG_namespace
8762 || c
->die_tag
== DW_TAG_class_type
8763 || c
->die_tag
== DW_TAG_structure_type
8764 || c
->die_tag
== DW_TAG_union_type
)
8766 /* Look for nested types that can be broken out. */
8767 break_out_comdat_types (c
);
8769 } while (next
!= NULL
);
8772 /* Like clone_tree, but copy DW_TAG_subprogram DIEs as declarations.
8773 Enter all the cloned children into the hash table decl_table. */
8776 clone_tree_partial (dw_die_ref die
, decl_hash_type
*decl_table
)
8780 struct decl_table_entry
*entry
;
8781 decl_table_entry
**slot
;
8783 if (die
->die_tag
== DW_TAG_subprogram
)
8784 clone
= clone_as_declaration (die
);
8786 clone
= clone_die (die
);
8788 slot
= decl_table
->find_slot_with_hash (die
,
8789 htab_hash_pointer (die
), INSERT
);
8791 /* Assert that DIE isn't in the hash table yet. If it would be there
8792 before, the ancestors would be necessarily there as well, therefore
8793 clone_tree_partial wouldn't be called. */
8794 gcc_assert (*slot
== HTAB_EMPTY_ENTRY
);
8796 entry
= XCNEW (struct decl_table_entry
);
8798 entry
->copy
= clone
;
8801 if (die
->die_tag
!= DW_TAG_subprogram
)
8802 FOR_EACH_CHILD (die
, c
,
8803 add_child_die (clone
, clone_tree_partial (c
, decl_table
)));
8808 /* Walk the DIE and its children, looking for references to incomplete
8809 or trivial types that are unmarked (i.e., that are not in the current
8813 copy_decls_walk (dw_die_ref unit
, dw_die_ref die
, decl_hash_type
*decl_table
)
8819 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
8821 if (AT_class (a
) == dw_val_class_die_ref
)
8823 dw_die_ref targ
= AT_ref (a
);
8824 decl_table_entry
**slot
;
8825 struct decl_table_entry
*entry
;
8827 if (targ
->die_mark
!= 0 || targ
->comdat_type_p
)
8830 slot
= decl_table
->find_slot_with_hash (targ
,
8831 htab_hash_pointer (targ
),
8834 if (*slot
!= HTAB_EMPTY_ENTRY
)
8836 /* TARG has already been copied, so we just need to
8837 modify the reference to point to the copy. */
8839 a
->dw_attr_val
.v
.val_die_ref
.die
= entry
->copy
;
8843 dw_die_ref parent
= unit
;
8844 dw_die_ref copy
= clone_die (targ
);
8846 /* Record in DECL_TABLE that TARG has been copied.
8847 Need to do this now, before the recursive call,
8848 because DECL_TABLE may be expanded and SLOT
8849 would no longer be a valid pointer. */
8850 entry
= XCNEW (struct decl_table_entry
);
8855 /* If TARG is not a declaration DIE, we need to copy its
8857 if (!is_declaration_die (targ
))
8861 add_child_die (copy
,
8862 clone_tree_partial (c
, decl_table
)));
8865 /* Make sure the cloned tree is marked as part of the
8869 /* If TARG has surrounding context, copy its ancestor tree
8870 into the new type unit. */
8871 if (targ
->die_parent
!= NULL
8872 && !is_unit_die (targ
->die_parent
))
8873 parent
= copy_ancestor_tree (unit
, targ
->die_parent
,
8876 add_child_die (parent
, copy
);
8877 a
->dw_attr_val
.v
.val_die_ref
.die
= copy
;
8879 /* Make sure the newly-copied DIE is walked. If it was
8880 installed in a previously-added context, it won't
8881 get visited otherwise. */
8884 /* Find the highest point of the newly-added tree,
8885 mark each node along the way, and walk from there. */
8886 parent
->die_mark
= 1;
8887 while (parent
->die_parent
8888 && parent
->die_parent
->die_mark
== 0)
8890 parent
= parent
->die_parent
;
8891 parent
->die_mark
= 1;
8893 copy_decls_walk (unit
, parent
, decl_table
);
8899 FOR_EACH_CHILD (die
, c
, copy_decls_walk (unit
, c
, decl_table
));
8902 /* Collect skeleton dies in DIE created by break_out_comdat_types already
8903 and record them in DECL_TABLE. */
8906 collect_skeleton_dies (dw_die_ref die
, decl_hash_type
*decl_table
)
8910 if (dw_attr_node
*a
= get_AT (die
, DW_AT_signature
))
8912 dw_die_ref targ
= AT_ref (a
);
8913 gcc_assert (targ
->die_mark
== 0 && targ
->comdat_type_p
);
8914 decl_table_entry
**slot
8915 = decl_table
->find_slot_with_hash (targ
,
8916 htab_hash_pointer (targ
),
8918 gcc_assert (*slot
== HTAB_EMPTY_ENTRY
);
8919 /* Record in DECL_TABLE that TARG has been already copied
8920 by remove_child_or_replace_with_skeleton. */
8921 decl_table_entry
*entry
= XCNEW (struct decl_table_entry
);
8926 FOR_EACH_CHILD (die
, c
, collect_skeleton_dies (c
, decl_table
));
8929 /* Copy declarations for "unworthy" types into the new comdat section.
8930 Incomplete types, modified types, and certain other types aren't broken
8931 out into comdat sections of their own, so they don't have a signature,
8932 and we need to copy the declaration into the same section so that we
8933 don't have an external reference. */
8936 copy_decls_for_unworthy_types (dw_die_ref unit
)
8939 decl_hash_type
decl_table (10);
8940 collect_skeleton_dies (unit
, &decl_table
);
8941 copy_decls_walk (unit
, unit
, &decl_table
);
8945 /* Traverse the DIE and add a sibling attribute if it may have the
8946 effect of speeding up access to siblings. To save some space,
8947 avoid generating sibling attributes for DIE's without children. */
8950 add_sibling_attributes (dw_die_ref die
)
8954 if (! die
->die_child
)
8957 if (die
->die_parent
&& die
!= die
->die_parent
->die_child
)
8958 add_AT_die_ref (die
, DW_AT_sibling
, die
->die_sib
);
8960 FOR_EACH_CHILD (die
, c
, add_sibling_attributes (c
));
8963 /* Output all location lists for the DIE and its children. */
8966 output_location_lists (dw_die_ref die
)
8972 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
8973 if (AT_class (a
) == dw_val_class_loc_list
)
8974 output_loc_list (AT_loc_list (a
));
8976 FOR_EACH_CHILD (die
, c
, output_location_lists (c
));
8979 /* During assign_location_list_indexes and output_loclists_offset the
8980 current index, after it the number of assigned indexes (i.e. how
8981 large the .debug_loclists* offset table should be). */
8982 static unsigned int loc_list_idx
;
8984 /* Output all location list offsets for the DIE and its children. */
8987 output_loclists_offsets (dw_die_ref die
)
8993 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
8994 if (AT_class (a
) == dw_val_class_loc_list
)
8996 dw_loc_list_ref l
= AT_loc_list (a
);
8997 if (l
->offset_emitted
)
8999 dw2_asm_output_delta (dwarf_offset_size
, l
->ll_symbol
,
9000 loc_section_label
, NULL
);
9001 gcc_assert (l
->hash
== loc_list_idx
);
9003 l
->offset_emitted
= true;
9006 FOR_EACH_CHILD (die
, c
, output_loclists_offsets (c
));
9009 /* Recursively set indexes of location lists. */
9012 assign_location_list_indexes (dw_die_ref die
)
9018 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
9019 if (AT_class (a
) == dw_val_class_loc_list
)
9021 dw_loc_list_ref list
= AT_loc_list (a
);
9022 if (!list
->num_assigned
)
9024 list
->num_assigned
= true;
9025 list
->hash
= loc_list_idx
++;
9029 FOR_EACH_CHILD (die
, c
, assign_location_list_indexes (c
));
9032 /* We want to limit the number of external references, because they are
9033 larger than local references: a relocation takes multiple words, and
9034 even a sig8 reference is always eight bytes, whereas a local reference
9035 can be as small as one byte (though DW_FORM_ref is usually 4 in GCC).
9036 So if we encounter multiple external references to the same type DIE, we
9037 make a local typedef stub for it and redirect all references there.
9039 This is the element of the hash table for keeping track of these
9049 /* Hashtable helpers. */
9051 struct external_ref_hasher
: free_ptr_hash
<external_ref
>
9053 static inline hashval_t
hash (const external_ref
*);
9054 static inline bool equal (const external_ref
*, const external_ref
*);
9058 external_ref_hasher::hash (const external_ref
*r
)
9060 dw_die_ref die
= r
->type
;
9063 /* We can't use the address of the DIE for hashing, because
9064 that will make the order of the stub DIEs non-deterministic. */
9065 if (! die
->comdat_type_p
)
9066 /* We have a symbol; use it to compute a hash. */
9067 h
= htab_hash_string (die
->die_id
.die_symbol
);
9070 /* We have a type signature; use a subset of the bits as the hash.
9071 The 8-byte signature is at least as large as hashval_t. */
9072 comdat_type_node
*type_node
= die
->die_id
.die_type_node
;
9073 memcpy (&h
, type_node
->signature
, sizeof (h
));
9079 external_ref_hasher::equal (const external_ref
*r1
, const external_ref
*r2
)
9081 return r1
->type
== r2
->type
;
9084 typedef hash_table
<external_ref_hasher
> external_ref_hash_type
;
9086 /* Return a pointer to the external_ref for references to DIE. */
9088 static struct external_ref
*
9089 lookup_external_ref (external_ref_hash_type
*map
, dw_die_ref die
)
9091 struct external_ref ref
, *ref_p
;
9092 external_ref
**slot
;
9095 slot
= map
->find_slot (&ref
, INSERT
);
9096 if (*slot
!= HTAB_EMPTY_ENTRY
)
9099 ref_p
= XCNEW (struct external_ref
);
9105 /* Subroutine of optimize_external_refs, below.
9107 If we see a type skeleton, record it as our stub. If we see external
9108 references, remember how many we've seen. */
9111 optimize_external_refs_1 (dw_die_ref die
, external_ref_hash_type
*map
)
9116 struct external_ref
*ref_p
;
9118 if (is_type_die (die
)
9119 && (c
= get_AT_ref (die
, DW_AT_signature
)))
9121 /* This is a local skeleton; use it for local references. */
9122 ref_p
= lookup_external_ref (map
, c
);
9126 /* Scan the DIE references, and remember any that refer to DIEs from
9127 other CUs (i.e. those which are not marked). */
9128 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
9129 if (AT_class (a
) == dw_val_class_die_ref
9130 && (c
= AT_ref (a
))->die_mark
== 0
9133 ref_p
= lookup_external_ref (map
, c
);
9137 FOR_EACH_CHILD (die
, c
, optimize_external_refs_1 (c
, map
));
9140 /* htab_traverse callback function for optimize_external_refs, below. SLOT
9141 points to an external_ref, DATA is the CU we're processing. If we don't
9142 already have a local stub, and we have multiple refs, build a stub. */
9145 dwarf2_build_local_stub (external_ref
**slot
, dw_die_ref data
)
9147 struct external_ref
*ref_p
= *slot
;
9149 if (ref_p
->stub
== NULL
&& ref_p
->n_refs
> 1 && !dwarf_strict
)
9151 /* We have multiple references to this type, so build a small stub.
9152 Both of these forms are a bit dodgy from the perspective of the
9153 DWARF standard, since technically they should have names. */
9154 dw_die_ref cu
= data
;
9155 dw_die_ref type
= ref_p
->type
;
9156 dw_die_ref stub
= NULL
;
9158 if (type
->comdat_type_p
)
9160 /* If we refer to this type via sig8, use AT_signature. */
9161 stub
= new_die (type
->die_tag
, cu
, NULL_TREE
);
9162 add_AT_die_ref (stub
, DW_AT_signature
, type
);
9166 /* Otherwise, use a typedef with no name. */
9167 stub
= new_die (DW_TAG_typedef
, cu
, NULL_TREE
);
9168 add_AT_die_ref (stub
, DW_AT_type
, type
);
9177 /* DIE is a unit; look through all the DIE references to see if there are
9178 any external references to types, and if so, create local stubs for
9179 them which will be applied in build_abbrev_table. This is useful because
9180 references to local DIEs are smaller. */
9182 static external_ref_hash_type
*
9183 optimize_external_refs (dw_die_ref die
)
9185 external_ref_hash_type
*map
= new external_ref_hash_type (10);
9186 optimize_external_refs_1 (die
, map
);
9187 map
->traverse
<dw_die_ref
, dwarf2_build_local_stub
> (die
);
9191 /* The following 3 variables are temporaries that are computed only during the
9192 build_abbrev_table call and used and released during the following
9193 optimize_abbrev_table call. */
9195 /* First abbrev_id that can be optimized based on usage. */
9196 static unsigned int abbrev_opt_start
;
9198 /* Maximum abbrev_id of a base type plus one (we can't optimize DIEs with
9199 abbrev_id smaller than this, because they must be already sized
9200 during build_abbrev_table). */
9201 static unsigned int abbrev_opt_base_type_end
;
9203 /* Vector of usage counts during build_abbrev_table. Indexed by
9204 abbrev_id - abbrev_opt_start. */
9205 static vec
<unsigned int> abbrev_usage_count
;
9207 /* Vector of all DIEs added with die_abbrev >= abbrev_opt_start. */
9208 static vec
<dw_die_ref
> sorted_abbrev_dies
;
9210 /* The format of each DIE (and its attribute value pairs) is encoded in an
9211 abbreviation table. This routine builds the abbreviation table and assigns
9212 a unique abbreviation id for each abbreviation entry. The children of each
9213 die are visited recursively. */
9216 build_abbrev_table (dw_die_ref die
, external_ref_hash_type
*extern_map
)
9218 unsigned int abbrev_id
= 0;
9224 /* Scan the DIE references, and replace any that refer to
9225 DIEs from other CUs (i.e. those which are not marked) with
9226 the local stubs we built in optimize_external_refs. */
9227 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
9228 if (AT_class (a
) == dw_val_class_die_ref
9229 && (c
= AT_ref (a
))->die_mark
== 0)
9231 struct external_ref
*ref_p
;
9232 gcc_assert (AT_ref (a
)->comdat_type_p
|| AT_ref (a
)->die_id
.die_symbol
);
9235 && (ref_p
= lookup_external_ref (extern_map
, c
))
9236 && ref_p
->stub
&& ref_p
->stub
!= die
)
9238 gcc_assert (a
->dw_attr
!= DW_AT_signature
);
9239 change_AT_die_ref (a
, ref_p
->stub
);
9242 /* We aren't changing this reference, so mark it external. */
9243 set_AT_ref_external (a
, 1);
9246 FOR_EACH_VEC_SAFE_ELT (abbrev_die_table
, abbrev_id
, abbrev
)
9248 dw_attr_node
*die_a
, *abbrev_a
;
9254 if (abbrev
->die_tag
!= die
->die_tag
)
9256 if ((abbrev
->die_child
!= NULL
) != (die
->die_child
!= NULL
))
9259 if (vec_safe_length (abbrev
->die_attr
) != vec_safe_length (die
->die_attr
))
9262 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, die_a
)
9264 abbrev_a
= &(*abbrev
->die_attr
)[ix
];
9265 if ((abbrev_a
->dw_attr
!= die_a
->dw_attr
)
9266 || (value_format (abbrev_a
) != value_format (die_a
)))
9276 if (abbrev_id
>= vec_safe_length (abbrev_die_table
))
9278 vec_safe_push (abbrev_die_table
, die
);
9279 if (abbrev_opt_start
)
9280 abbrev_usage_count
.safe_push (0);
9282 if (abbrev_opt_start
&& abbrev_id
>= abbrev_opt_start
)
9284 abbrev_usage_count
[abbrev_id
- abbrev_opt_start
]++;
9285 sorted_abbrev_dies
.safe_push (die
);
9288 die
->die_abbrev
= abbrev_id
;
9289 FOR_EACH_CHILD (die
, c
, build_abbrev_table (c
, extern_map
));
9292 /* Callback function for sorted_abbrev_dies vector sorting. We sort
9293 by die_abbrev's usage count, from the most commonly used
9294 abbreviation to the least. */
9297 die_abbrev_cmp (const void *p1
, const void *p2
)
9299 dw_die_ref die1
= *(const dw_die_ref
*) p1
;
9300 dw_die_ref die2
= *(const dw_die_ref
*) p2
;
9302 gcc_checking_assert (die1
->die_abbrev
>= abbrev_opt_start
);
9303 gcc_checking_assert (die2
->die_abbrev
>= abbrev_opt_start
);
9305 if (die1
->die_abbrev
>= abbrev_opt_base_type_end
9306 && die2
->die_abbrev
>= abbrev_opt_base_type_end
)
9308 if (abbrev_usage_count
[die1
->die_abbrev
- abbrev_opt_start
]
9309 > abbrev_usage_count
[die2
->die_abbrev
- abbrev_opt_start
])
9311 if (abbrev_usage_count
[die1
->die_abbrev
- abbrev_opt_start
]
9312 < abbrev_usage_count
[die2
->die_abbrev
- abbrev_opt_start
])
9316 /* Stabilize the sort. */
9317 if (die1
->die_abbrev
< die2
->die_abbrev
)
9319 if (die1
->die_abbrev
> die2
->die_abbrev
)
9325 /* Convert dw_val_class_const and dw_val_class_unsigned_const class attributes
9326 of DIEs in between sorted_abbrev_dies[first_id] and abbrev_dies[end_id - 1]
9327 into dw_val_class_const_implicit or
9328 dw_val_class_unsigned_const_implicit. */
9331 optimize_implicit_const (unsigned int first_id
, unsigned int end
,
9332 vec
<bool> &implicit_consts
)
9334 /* It never makes sense if there is just one DIE using the abbreviation. */
9335 if (end
< first_id
+ 2)
9340 dw_die_ref die
= sorted_abbrev_dies
[first_id
];
9341 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
9342 if (implicit_consts
[ix
])
9344 enum dw_val_class new_class
= dw_val_class_none
;
9345 switch (AT_class (a
))
9347 case dw_val_class_unsigned_const
:
9348 if ((HOST_WIDE_INT
) AT_unsigned (a
) < 0)
9351 /* The .debug_abbrev section will grow by
9352 size_of_sleb128 (AT_unsigned (a)) and we avoid the constants
9353 in all the DIEs using that abbreviation. */
9354 if (constant_size (AT_unsigned (a
)) * (end
- first_id
)
9355 <= (unsigned) size_of_sleb128 (AT_unsigned (a
)))
9358 new_class
= dw_val_class_unsigned_const_implicit
;
9361 case dw_val_class_const
:
9362 new_class
= dw_val_class_const_implicit
;
9365 case dw_val_class_file
:
9366 new_class
= dw_val_class_file_implicit
;
9372 for (i
= first_id
; i
< end
; i
++)
9373 (*sorted_abbrev_dies
[i
]->die_attr
)[ix
].dw_attr_val
.val_class
9378 /* Attempt to optimize abbreviation table from abbrev_opt_start
9379 abbreviation above. */
9382 optimize_abbrev_table (void)
9384 if (abbrev_opt_start
9385 && vec_safe_length (abbrev_die_table
) > abbrev_opt_start
9386 && (dwarf_version
>= 5 || vec_safe_length (abbrev_die_table
) > 127))
9388 auto_vec
<bool, 32> implicit_consts
;
9389 sorted_abbrev_dies
.qsort (die_abbrev_cmp
);
9391 unsigned int abbrev_id
= abbrev_opt_start
- 1;
9392 unsigned int first_id
= ~0U;
9393 unsigned int last_abbrev_id
= 0;
9396 if (abbrev_opt_base_type_end
> abbrev_opt_start
)
9397 abbrev_id
= abbrev_opt_base_type_end
- 1;
9398 /* Reassign abbreviation ids from abbrev_opt_start above, so that
9399 most commonly used abbreviations come first. */
9400 FOR_EACH_VEC_ELT (sorted_abbrev_dies
, i
, die
)
9405 /* If calc_base_type_die_sizes has been called, the CU and
9406 base types after it can't be optimized, because we've already
9407 calculated their DIE offsets. We've sorted them first. */
9408 if (die
->die_abbrev
< abbrev_opt_base_type_end
)
9410 if (die
->die_abbrev
!= last_abbrev_id
)
9412 last_abbrev_id
= die
->die_abbrev
;
9413 if (dwarf_version
>= 5 && first_id
!= ~0U)
9414 optimize_implicit_const (first_id
, i
, implicit_consts
);
9416 (*abbrev_die_table
)[abbrev_id
] = die
;
9417 if (dwarf_version
>= 5)
9420 implicit_consts
.truncate (0);
9422 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
9423 switch (AT_class (a
))
9425 case dw_val_class_const
:
9426 case dw_val_class_unsigned_const
:
9427 case dw_val_class_file
:
9428 implicit_consts
.safe_push (true);
9431 implicit_consts
.safe_push (false);
9436 else if (dwarf_version
>= 5)
9438 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
9439 if (!implicit_consts
[ix
])
9443 dw_attr_node
*other_a
9444 = &(*(*abbrev_die_table
)[abbrev_id
]->die_attr
)[ix
];
9445 if (!dw_val_equal_p (&a
->dw_attr_val
,
9446 &other_a
->dw_attr_val
))
9447 implicit_consts
[ix
] = false;
9450 die
->die_abbrev
= abbrev_id
;
9452 gcc_assert (abbrev_id
== vec_safe_length (abbrev_die_table
) - 1);
9453 if (dwarf_version
>= 5 && first_id
!= ~0U)
9454 optimize_implicit_const (first_id
, i
, implicit_consts
);
9457 abbrev_opt_start
= 0;
9458 abbrev_opt_base_type_end
= 0;
9459 abbrev_usage_count
.release ();
9460 sorted_abbrev_dies
.release ();
9463 /* Return the power-of-two number of bytes necessary to represent VALUE. */
9466 constant_size (unsigned HOST_WIDE_INT value
)
9473 log
= floor_log2 (value
);
9476 log
= 1 << (floor_log2 (log
) + 1);
9481 /* Return the size of a DIE as it is represented in the
9482 .debug_info section. */
9484 static unsigned long
9485 size_of_die (dw_die_ref die
)
9487 unsigned long size
= 0;
9490 enum dwarf_form form
;
9492 size
+= size_of_uleb128 (die
->die_abbrev
);
9493 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
9495 switch (AT_class (a
))
9497 case dw_val_class_addr
:
9498 if (dwarf_split_debug_info
&& AT_index (a
) != NOT_INDEXED
)
9500 gcc_assert (AT_index (a
) != NO_INDEX_ASSIGNED
);
9501 size
+= size_of_uleb128 (AT_index (a
));
9504 size
+= DWARF2_ADDR_SIZE
;
9506 case dw_val_class_offset
:
9507 size
+= dwarf_offset_size
;
9509 case dw_val_class_loc
:
9511 unsigned long lsize
= size_of_locs (AT_loc (a
));
9514 if (dwarf_version
>= 4)
9515 size
+= size_of_uleb128 (lsize
);
9517 size
+= constant_size (lsize
);
9521 case dw_val_class_loc_list
:
9522 if (dwarf_split_debug_info
&& dwarf_version
>= 5)
9524 gcc_assert (AT_loc_list (a
)->num_assigned
);
9525 size
+= size_of_uleb128 (AT_loc_list (a
)->hash
);
9528 size
+= dwarf_offset_size
;
9530 case dw_val_class_view_list
:
9531 size
+= dwarf_offset_size
;
9533 case dw_val_class_range_list
:
9534 if (value_format (a
) == DW_FORM_rnglistx
)
9536 gcc_assert (rnglist_idx
);
9537 dw_ranges
*r
= &(*ranges_table
)[a
->dw_attr_val
.v
.val_offset
];
9538 size
+= size_of_uleb128 (r
->idx
);
9541 size
+= dwarf_offset_size
;
9543 case dw_val_class_const
:
9544 size
+= size_of_sleb128 (AT_int (a
));
9546 case dw_val_class_unsigned_const
:
9548 int csize
= constant_size (AT_unsigned (a
));
9549 if (dwarf_version
== 3
9550 && a
->dw_attr
== DW_AT_data_member_location
9552 size
+= size_of_uleb128 (AT_unsigned (a
));
9557 case dw_val_class_symview
:
9558 if (symview_upper_bound
<= 0xff)
9560 else if (symview_upper_bound
<= 0xffff)
9562 else if (symview_upper_bound
<= 0xffffffff)
9567 case dw_val_class_const_implicit
:
9568 case dw_val_class_unsigned_const_implicit
:
9569 case dw_val_class_file_implicit
:
9570 /* These occupy no size in the DIE, just an extra sleb128 in
9573 case dw_val_class_const_double
:
9574 size
+= HOST_BITS_PER_DOUBLE_INT
/ HOST_BITS_PER_CHAR
;
9575 if (HOST_BITS_PER_WIDE_INT
>= DWARF_LARGEST_DATA_FORM_BITS
)
9578 case dw_val_class_wide_int
:
9579 size
+= (get_full_len (*a
->dw_attr_val
.v
.val_wide
)
9580 * HOST_BITS_PER_WIDE_INT
/ HOST_BITS_PER_CHAR
);
9581 if (get_full_len (*a
->dw_attr_val
.v
.val_wide
)
9582 * HOST_BITS_PER_WIDE_INT
> DWARF_LARGEST_DATA_FORM_BITS
)
9585 case dw_val_class_vec
:
9586 size
+= constant_size (a
->dw_attr_val
.v
.val_vec
.length
9587 * a
->dw_attr_val
.v
.val_vec
.elt_size
)
9588 + a
->dw_attr_val
.v
.val_vec
.length
9589 * a
->dw_attr_val
.v
.val_vec
.elt_size
; /* block */
9591 case dw_val_class_flag
:
9592 if (dwarf_version
>= 4)
9593 /* Currently all add_AT_flag calls pass in 1 as last argument,
9594 so DW_FORM_flag_present can be used. If that ever changes,
9595 we'll need to use DW_FORM_flag and have some optimization
9596 in build_abbrev_table that will change those to
9597 DW_FORM_flag_present if it is set to 1 in all DIEs using
9598 the same abbrev entry. */
9599 gcc_assert (a
->dw_attr_val
.v
.val_flag
== 1);
9603 case dw_val_class_die_ref
:
9604 if (AT_ref_external (a
))
9606 /* In DWARF4, we use DW_FORM_ref_sig8; for earlier versions
9607 we use DW_FORM_ref_addr. In DWARF2, DW_FORM_ref_addr
9608 is sized by target address length, whereas in DWARF3
9609 it's always sized as an offset. */
9610 if (AT_ref (a
)->comdat_type_p
)
9611 size
+= DWARF_TYPE_SIGNATURE_SIZE
;
9612 else if (dwarf_version
== 2)
9613 size
+= DWARF2_ADDR_SIZE
;
9615 size
+= dwarf_offset_size
;
9618 size
+= dwarf_offset_size
;
9620 case dw_val_class_fde_ref
:
9621 size
+= dwarf_offset_size
;
9623 case dw_val_class_lbl_id
:
9624 if (dwarf_split_debug_info
&& AT_index (a
) != NOT_INDEXED
)
9626 gcc_assert (AT_index (a
) != NO_INDEX_ASSIGNED
);
9627 size
+= size_of_uleb128 (AT_index (a
));
9630 size
+= DWARF2_ADDR_SIZE
;
9632 case dw_val_class_lineptr
:
9633 case dw_val_class_macptr
:
9634 case dw_val_class_loclistsptr
:
9635 size
+= dwarf_offset_size
;
9637 case dw_val_class_str
:
9638 form
= AT_string_form (a
);
9639 if (form
== DW_FORM_strp
|| form
== DW_FORM_line_strp
)
9640 size
+= dwarf_offset_size
;
9641 else if (form
== dwarf_FORM (DW_FORM_strx
))
9642 size
+= size_of_uleb128 (AT_index (a
));
9644 size
+= strlen (a
->dw_attr_val
.v
.val_str
->str
) + 1;
9646 case dw_val_class_file
:
9647 size
+= constant_size (maybe_emit_file (a
->dw_attr_val
.v
.val_file
));
9649 case dw_val_class_data8
:
9652 case dw_val_class_vms_delta
:
9653 size
+= dwarf_offset_size
;
9655 case dw_val_class_high_pc
:
9656 size
+= DWARF2_ADDR_SIZE
;
9658 case dw_val_class_discr_value
:
9659 size
+= size_of_discr_value (&a
->dw_attr_val
.v
.val_discr_value
);
9661 case dw_val_class_discr_list
:
9663 unsigned block_size
= size_of_discr_list (AT_discr_list (a
));
9665 /* This is a block, so we have the block length and then its
9667 size
+= constant_size (block_size
) + block_size
;
9678 /* Size the debugging information associated with a given DIE. Visits the
9679 DIE's children recursively. Updates the global variable next_die_offset, on
9680 each time through. Uses the current value of next_die_offset to update the
9681 die_offset field in each DIE. */
9684 calc_die_sizes (dw_die_ref die
)
9688 gcc_assert (die
->die_offset
== 0
9689 || (unsigned long int) die
->die_offset
== next_die_offset
);
9690 die
->die_offset
= next_die_offset
;
9691 next_die_offset
+= size_of_die (die
);
9693 FOR_EACH_CHILD (die
, c
, calc_die_sizes (c
));
9695 if (die
->die_child
!= NULL
)
9696 /* Count the null byte used to terminate sibling lists. */
9697 next_die_offset
+= 1;
9700 /* Size just the base type children at the start of the CU.
9701 This is needed because build_abbrev needs to size locs
9702 and sizing of type based stack ops needs to know die_offset
9703 values for the base types. */
9706 calc_base_type_die_sizes (void)
9708 unsigned long die_offset
= (dwarf_split_debug_info
9709 ? DWARF_COMPILE_UNIT_SKELETON_HEADER_SIZE
9710 : DWARF_COMPILE_UNIT_HEADER_SIZE
);
9712 dw_die_ref base_type
;
9713 #if ENABLE_ASSERT_CHECKING
9714 dw_die_ref prev
= comp_unit_die ()->die_child
;
9717 die_offset
+= size_of_die (comp_unit_die ());
9718 for (i
= 0; base_types
.iterate (i
, &base_type
); i
++)
9720 #if ENABLE_ASSERT_CHECKING
9721 gcc_assert (base_type
->die_offset
== 0
9722 && prev
->die_sib
== base_type
9723 && base_type
->die_child
== NULL
9724 && base_type
->die_abbrev
);
9727 if (abbrev_opt_start
9728 && base_type
->die_abbrev
>= abbrev_opt_base_type_end
)
9729 abbrev_opt_base_type_end
= base_type
->die_abbrev
+ 1;
9730 base_type
->die_offset
= die_offset
;
9731 die_offset
+= size_of_die (base_type
);
9735 /* Set the marks for a die and its children. We do this so
9736 that we know whether or not a reference needs to use FORM_ref_addr; only
9737 DIEs in the same CU will be marked. We used to clear out the offset
9738 and use that as the flag, but ran into ordering problems. */
9741 mark_dies (dw_die_ref die
)
9745 gcc_assert (!die
->die_mark
);
9748 FOR_EACH_CHILD (die
, c
, mark_dies (c
));
9751 /* Clear the marks for a die and its children. */
9754 unmark_dies (dw_die_ref die
)
9758 if (! use_debug_types
)
9759 gcc_assert (die
->die_mark
);
9762 FOR_EACH_CHILD (die
, c
, unmark_dies (c
));
9765 /* Clear the marks for a die, its children and referred dies. */
9768 unmark_all_dies (dw_die_ref die
)
9778 FOR_EACH_CHILD (die
, c
, unmark_all_dies (c
));
9780 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
9781 if (AT_class (a
) == dw_val_class_die_ref
)
9782 unmark_all_dies (AT_ref (a
));
9785 /* Calculate if the entry should appear in the final output file. It may be
9786 from a pruned a type. */
9789 include_pubname_in_output (vec
<pubname_entry
, va_gc
> *table
, pubname_entry
*p
)
9791 /* By limiting gnu pubnames to definitions only, gold can generate a
9792 gdb index without entries for declarations, which don't include
9793 enough information to be useful. */
9794 if (debug_generate_pub_sections
== 2 && is_declaration_die (p
->die
))
9797 if (table
== pubname_table
)
9799 /* Enumerator names are part of the pubname table, but the
9800 parent DW_TAG_enumeration_type die may have been pruned.
9801 Don't output them if that is the case. */
9802 if (p
->die
->die_tag
== DW_TAG_enumerator
&&
9803 (p
->die
->die_parent
== NULL
9804 || !p
->die
->die_parent
->die_perennial_p
))
9807 /* Everything else in the pubname table is included. */
9811 /* The pubtypes table shouldn't include types that have been
9813 return (p
->die
->die_offset
!= 0
9814 || !flag_eliminate_unused_debug_types
);
9817 /* Return the size of the .debug_pubnames or .debug_pubtypes table
9818 generated for the compilation unit. */
9820 static unsigned long
9821 size_of_pubnames (vec
<pubname_entry
, va_gc
> *names
)
9826 int space_for_flags
= (debug_generate_pub_sections
== 2) ? 1 : 0;
9828 size
= DWARF_PUBNAMES_HEADER_SIZE
;
9829 FOR_EACH_VEC_ELT (*names
, i
, p
)
9830 if (include_pubname_in_output (names
, p
))
9831 size
+= strlen (p
->name
) + dwarf_offset_size
+ 1 + space_for_flags
;
9833 size
+= dwarf_offset_size
;
9837 /* Return the size of the information in the .debug_aranges section. */
9839 static unsigned long
9840 size_of_aranges (void)
9844 size
= DWARF_ARANGES_HEADER_SIZE
;
9846 /* Count the address/length pair for this compilation unit. */
9847 if (switch_text_ranges
)
9848 size
+= 2 * DWARF2_ADDR_SIZE
9849 * (vec_safe_length (switch_text_ranges
) / 2 + 1);
9850 if (switch_cold_ranges
)
9851 size
+= 2 * DWARF2_ADDR_SIZE
9852 * (vec_safe_length (switch_cold_ranges
) / 2 + 1);
9853 if (have_multiple_function_sections
)
9858 FOR_EACH_VEC_ELT (*fde_vec
, fde_idx
, fde
)
9860 if (fde
->ignored_debug
)
9862 if (!fde
->in_std_section
)
9863 size
+= 2 * DWARF2_ADDR_SIZE
;
9864 if (fde
->dw_fde_second_begin
&& !fde
->second_in_std_section
)
9865 size
+= 2 * DWARF2_ADDR_SIZE
;
9869 /* Count the two zero words used to terminated the address range table. */
9870 size
+= 2 * DWARF2_ADDR_SIZE
;
9874 /* Select the encoding of an attribute value. */
9876 static enum dwarf_form
9877 value_format (dw_attr_node
*a
)
9879 switch (AT_class (a
))
9881 case dw_val_class_addr
:
9882 /* Only very few attributes allow DW_FORM_addr. */
9887 case DW_AT_entry_pc
:
9888 case DW_AT_trampoline
:
9889 return (AT_index (a
) == NOT_INDEXED
9890 ? DW_FORM_addr
: dwarf_FORM (DW_FORM_addrx
));
9894 switch (DWARF2_ADDR_SIZE
)
9897 return DW_FORM_data1
;
9899 return DW_FORM_data2
;
9901 return DW_FORM_data4
;
9903 return DW_FORM_data8
;
9907 case dw_val_class_loc_list
:
9908 if (dwarf_split_debug_info
9909 && dwarf_version
>= 5
9910 && AT_loc_list (a
)->num_assigned
)
9911 return DW_FORM_loclistx
;
9913 case dw_val_class_view_list
:
9914 case dw_val_class_range_list
:
9915 /* For range lists in DWARF 5, use DW_FORM_rnglistx from .debug_info.dwo
9916 but in .debug_info use DW_FORM_sec_offset, which is shorter if we
9917 care about sizes of .debug* sections in shared libraries and
9918 executables and don't take into account relocations that affect just
9919 relocatable objects - for DW_FORM_rnglistx we'd have to emit offset
9920 table in the .debug_rnglists section. */
9921 if (dwarf_split_debug_info
9922 && dwarf_version
>= 5
9923 && AT_class (a
) == dw_val_class_range_list
9925 && a
->dw_attr_val
.val_entry
!= RELOCATED_OFFSET
)
9926 return DW_FORM_rnglistx
;
9927 if (dwarf_version
>= 4)
9928 return DW_FORM_sec_offset
;
9930 case dw_val_class_vms_delta
:
9931 case dw_val_class_offset
:
9932 switch (dwarf_offset_size
)
9935 return DW_FORM_data4
;
9937 return DW_FORM_data8
;
9941 case dw_val_class_loc
:
9942 if (dwarf_version
>= 4)
9943 return DW_FORM_exprloc
;
9944 switch (constant_size (size_of_locs (AT_loc (a
))))
9947 return DW_FORM_block1
;
9949 return DW_FORM_block2
;
9951 return DW_FORM_block4
;
9955 case dw_val_class_const
:
9956 return DW_FORM_sdata
;
9957 case dw_val_class_unsigned_const
:
9958 switch (constant_size (AT_unsigned (a
)))
9961 return DW_FORM_data1
;
9963 return DW_FORM_data2
;
9965 /* In DWARF3 DW_AT_data_member_location with
9966 DW_FORM_data4 or DW_FORM_data8 is a loclistptr, not
9967 constant, so we need to use DW_FORM_udata if we need
9968 a large constant. */
9969 if (dwarf_version
== 3 && a
->dw_attr
== DW_AT_data_member_location
)
9970 return DW_FORM_udata
;
9971 return DW_FORM_data4
;
9973 if (dwarf_version
== 3 && a
->dw_attr
== DW_AT_data_member_location
)
9974 return DW_FORM_udata
;
9975 return DW_FORM_data8
;
9979 case dw_val_class_const_implicit
:
9980 case dw_val_class_unsigned_const_implicit
:
9981 case dw_val_class_file_implicit
:
9982 return DW_FORM_implicit_const
;
9983 case dw_val_class_const_double
:
9984 switch (HOST_BITS_PER_WIDE_INT
)
9987 return DW_FORM_data2
;
9989 return DW_FORM_data4
;
9991 return DW_FORM_data8
;
9993 if (dwarf_version
>= 5)
9994 return DW_FORM_data16
;
9997 return DW_FORM_block1
;
9999 case dw_val_class_wide_int
:
10000 switch (get_full_len (*a
->dw_attr_val
.v
.val_wide
) * HOST_BITS_PER_WIDE_INT
)
10003 return DW_FORM_data1
;
10005 return DW_FORM_data2
;
10007 return DW_FORM_data4
;
10009 return DW_FORM_data8
;
10011 if (dwarf_version
>= 5)
10012 return DW_FORM_data16
;
10015 return DW_FORM_block1
;
10017 case dw_val_class_symview
:
10018 /* ??? We might use uleb128, but then we'd have to compute
10019 .debug_info offsets in the assembler. */
10020 if (symview_upper_bound
<= 0xff)
10021 return DW_FORM_data1
;
10022 else if (symview_upper_bound
<= 0xffff)
10023 return DW_FORM_data2
;
10024 else if (symview_upper_bound
<= 0xffffffff)
10025 return DW_FORM_data4
;
10027 return DW_FORM_data8
;
10028 case dw_val_class_vec
:
10029 switch (constant_size (a
->dw_attr_val
.v
.val_vec
.length
10030 * a
->dw_attr_val
.v
.val_vec
.elt_size
))
10033 return DW_FORM_block1
;
10035 return DW_FORM_block2
;
10037 return DW_FORM_block4
;
10039 gcc_unreachable ();
10041 case dw_val_class_flag
:
10042 if (dwarf_version
>= 4)
10044 /* Currently all add_AT_flag calls pass in 1 as last argument,
10045 so DW_FORM_flag_present can be used. If that ever changes,
10046 we'll need to use DW_FORM_flag and have some optimization
10047 in build_abbrev_table that will change those to
10048 DW_FORM_flag_present if it is set to 1 in all DIEs using
10049 the same abbrev entry. */
10050 gcc_assert (a
->dw_attr_val
.v
.val_flag
== 1);
10051 return DW_FORM_flag_present
;
10053 return DW_FORM_flag
;
10054 case dw_val_class_die_ref
:
10055 if (AT_ref_external (a
))
10057 if (AT_ref (a
)->comdat_type_p
)
10058 return DW_FORM_ref_sig8
;
10060 return DW_FORM_ref_addr
;
10063 return DW_FORM_ref
;
10064 case dw_val_class_fde_ref
:
10065 return DW_FORM_data
;
10066 case dw_val_class_lbl_id
:
10067 return (AT_index (a
) == NOT_INDEXED
10068 ? DW_FORM_addr
: dwarf_FORM (DW_FORM_addrx
));
10069 case dw_val_class_lineptr
:
10070 case dw_val_class_macptr
:
10071 case dw_val_class_loclistsptr
:
10072 return dwarf_version
>= 4 ? DW_FORM_sec_offset
: DW_FORM_data
;
10073 case dw_val_class_str
:
10074 return AT_string_form (a
);
10075 case dw_val_class_file
:
10076 switch (constant_size (maybe_emit_file (a
->dw_attr_val
.v
.val_file
)))
10079 return DW_FORM_data1
;
10081 return DW_FORM_data2
;
10083 return DW_FORM_data4
;
10085 gcc_unreachable ();
10088 case dw_val_class_data8
:
10089 return DW_FORM_data8
;
10091 case dw_val_class_high_pc
:
10092 switch (DWARF2_ADDR_SIZE
)
10095 return DW_FORM_data1
;
10097 return DW_FORM_data2
;
10099 return DW_FORM_data4
;
10101 return DW_FORM_data8
;
10103 gcc_unreachable ();
10106 case dw_val_class_discr_value
:
10107 return (a
->dw_attr_val
.v
.val_discr_value
.pos
10110 case dw_val_class_discr_list
:
10111 switch (constant_size (size_of_discr_list (AT_discr_list (a
))))
10114 return DW_FORM_block1
;
10116 return DW_FORM_block2
;
10118 return DW_FORM_block4
;
10120 gcc_unreachable ();
10124 gcc_unreachable ();
10128 /* Output the encoding of an attribute value. */
10131 output_value_format (dw_attr_node
*a
)
10133 enum dwarf_form form
= value_format (a
);
10135 dw2_asm_output_data_uleb128 (form
, "(%s)", dwarf_form_name (form
));
10138 /* Given a die and id, produce the appropriate abbreviations. */
10141 output_die_abbrevs (unsigned long abbrev_id
, dw_die_ref abbrev
)
10144 dw_attr_node
*a_attr
;
10146 dw2_asm_output_data_uleb128 (abbrev_id
, "(abbrev code)");
10147 dw2_asm_output_data_uleb128 (abbrev
->die_tag
, "(TAG: %s)",
10148 dwarf_tag_name (abbrev
->die_tag
));
10150 if (abbrev
->die_child
!= NULL
)
10151 dw2_asm_output_data (1, DW_children_yes
, "DW_children_yes");
10153 dw2_asm_output_data (1, DW_children_no
, "DW_children_no");
10155 for (ix
= 0; vec_safe_iterate (abbrev
->die_attr
, ix
, &a_attr
); ix
++)
10157 dw2_asm_output_data_uleb128 (a_attr
->dw_attr
, "(%s)",
10158 dwarf_attr_name (a_attr
->dw_attr
));
10159 output_value_format (a_attr
);
10160 if (value_format (a_attr
) == DW_FORM_implicit_const
)
10162 if (AT_class (a_attr
) == dw_val_class_file_implicit
)
10164 int f
= maybe_emit_file (a_attr
->dw_attr_val
.v
.val_file
);
10165 const char *filename
= a_attr
->dw_attr_val
.v
.val_file
->filename
;
10166 dw2_asm_output_data_sleb128 (f
, "(%s)", filename
);
10169 dw2_asm_output_data_sleb128 (a_attr
->dw_attr_val
.v
.val_int
, NULL
);
10173 dw2_asm_output_data (1, 0, NULL
);
10174 dw2_asm_output_data (1, 0, NULL
);
10178 /* Output the .debug_abbrev section which defines the DIE abbreviation
10182 output_abbrev_section (void)
10184 unsigned int abbrev_id
;
10187 FOR_EACH_VEC_SAFE_ELT (abbrev_die_table
, abbrev_id
, abbrev
)
10188 if (abbrev_id
!= 0)
10189 output_die_abbrevs (abbrev_id
, abbrev
);
10191 /* Terminate the table. */
10192 dw2_asm_output_data (1, 0, NULL
);
10195 /* Return a new location list, given the begin and end range, and the
10198 static inline dw_loc_list_ref
10199 new_loc_list (dw_loc_descr_ref expr
, const char *begin
, var_loc_view vbegin
,
10200 const char *end
, var_loc_view vend
,
10201 const char *section
)
10203 dw_loc_list_ref retlist
= ggc_cleared_alloc
<dw_loc_list_node
> ();
10205 retlist
->begin
= begin
;
10206 retlist
->begin_entry
= NULL
;
10207 retlist
->end
= end
;
10208 retlist
->end_entry
= NULL
;
10209 retlist
->expr
= expr
;
10210 retlist
->section
= section
;
10211 retlist
->vbegin
= vbegin
;
10212 retlist
->vend
= vend
;
10217 /* Return true iff there's any nonzero view number in the loc list.
10219 ??? When views are not enabled, we'll often extend a single range
10220 to the entire function, so that we emit a single location
10221 expression rather than a location list. With views, even with a
10222 single range, we'll output a list if start or end have a nonzero
10223 view. If we change this, we may want to stop splitting a single
10224 range in dw_loc_list just because of a nonzero view, even if it
10225 straddles across hot/cold partitions. */
10228 loc_list_has_views (dw_loc_list_ref list
)
10230 if (!debug_variable_location_views
)
10233 for (dw_loc_list_ref loc
= list
;
10234 loc
!= NULL
; loc
= loc
->dw_loc_next
)
10235 if (!ZERO_VIEW_P (loc
->vbegin
) || !ZERO_VIEW_P (loc
->vend
))
10241 /* Generate a new internal symbol for this location list node, if it
10242 hasn't got one yet. */
10245 gen_llsym (dw_loc_list_ref list
)
10247 gcc_assert (!list
->ll_symbol
);
10248 list
->ll_symbol
= gen_internal_sym ("LLST");
10250 if (!loc_list_has_views (list
))
10253 if (dwarf2out_locviews_in_attribute ())
10255 /* Use the same label_num for the view list. */
10257 list
->vl_symbol
= gen_internal_sym ("LVUS");
10260 list
->vl_symbol
= list
->ll_symbol
;
10263 /* Generate a symbol for the list, but only if we really want to emit
10267 maybe_gen_llsym (dw_loc_list_ref list
)
10269 if (!list
|| (!list
->dw_loc_next
&& !loc_list_has_views (list
)))
10275 /* Determine whether or not to skip loc_list entry CURR. If SIZEP is
10276 NULL, don't consider size of the location expression. If we're not
10277 to skip it, and SIZEP is non-null, store the size of CURR->expr's
10278 representation in *SIZEP. */
10281 skip_loc_list_entry (dw_loc_list_ref curr
, unsigned long *sizep
= NULL
)
10283 /* Don't output an entry that starts and ends at the same address. */
10284 if (strcmp (curr
->begin
, curr
->end
) == 0
10285 && curr
->vbegin
== curr
->vend
&& !curr
->force
)
10291 unsigned long size
= size_of_locs (curr
->expr
);
10293 /* If the expression is too large, drop it on the floor. We could
10294 perhaps put it into DW_TAG_dwarf_procedure and refer to that
10295 in the expression, but >= 64KB expressions for a single value
10296 in a single range are unlikely very useful. */
10297 if (dwarf_version
< 5 && size
> 0xffff)
10305 /* Output a view pair loclist entry for CURR, if it requires one. */
10308 dwarf2out_maybe_output_loclist_view_pair (dw_loc_list_ref curr
)
10310 if (!dwarf2out_locviews_in_loclist ())
10313 if (ZERO_VIEW_P (curr
->vbegin
) && ZERO_VIEW_P (curr
->vend
))
10316 #ifdef DW_LLE_view_pair
10317 dw2_asm_output_data (1, DW_LLE_view_pair
, "DW_LLE_view_pair");
10319 if (dwarf2out_as_locview_support
)
10321 if (ZERO_VIEW_P (curr
->vbegin
))
10322 dw2_asm_output_data_uleb128 (0, "Location view begin");
10325 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
10326 ASM_GENERATE_INTERNAL_LABEL (label
, "LVU", curr
->vbegin
);
10327 dw2_asm_output_symname_uleb128 (label
, "Location view begin");
10330 if (ZERO_VIEW_P (curr
->vend
))
10331 dw2_asm_output_data_uleb128 (0, "Location view end");
10334 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
10335 ASM_GENERATE_INTERNAL_LABEL (label
, "LVU", curr
->vend
);
10336 dw2_asm_output_symname_uleb128 (label
, "Location view end");
10341 dw2_asm_output_data_uleb128 (curr
->vbegin
, "Location view begin");
10342 dw2_asm_output_data_uleb128 (curr
->vend
, "Location view end");
10344 #endif /* DW_LLE_view_pair */
10349 /* Output the location list given to us. */
10352 output_loc_list (dw_loc_list_ref list_head
)
10354 int vcount
= 0, lcount
= 0;
10356 if (list_head
->emitted
)
10358 list_head
->emitted
= true;
10360 if (list_head
->vl_symbol
&& dwarf2out_locviews_in_attribute ())
10362 ASM_OUTPUT_LABEL (asm_out_file
, list_head
->vl_symbol
);
10364 for (dw_loc_list_ref curr
= list_head
; curr
!= NULL
;
10365 curr
= curr
->dw_loc_next
)
10367 unsigned long size
;
10369 if (skip_loc_list_entry (curr
, &size
))
10374 /* ?? dwarf_split_debug_info? */
10375 if (dwarf2out_as_locview_support
)
10377 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
10379 if (!ZERO_VIEW_P (curr
->vbegin
))
10381 ASM_GENERATE_INTERNAL_LABEL (label
, "LVU", curr
->vbegin
);
10382 dw2_asm_output_symname_uleb128 (label
,
10383 "View list begin (%s)",
10384 list_head
->vl_symbol
);
10387 dw2_asm_output_data_uleb128 (0,
10388 "View list begin (%s)",
10389 list_head
->vl_symbol
);
10391 if (!ZERO_VIEW_P (curr
->vend
))
10393 ASM_GENERATE_INTERNAL_LABEL (label
, "LVU", curr
->vend
);
10394 dw2_asm_output_symname_uleb128 (label
,
10395 "View list end (%s)",
10396 list_head
->vl_symbol
);
10399 dw2_asm_output_data_uleb128 (0,
10400 "View list end (%s)",
10401 list_head
->vl_symbol
);
10405 dw2_asm_output_data_uleb128 (curr
->vbegin
,
10406 "View list begin (%s)",
10407 list_head
->vl_symbol
);
10408 dw2_asm_output_data_uleb128 (curr
->vend
,
10409 "View list end (%s)",
10410 list_head
->vl_symbol
);
10415 ASM_OUTPUT_LABEL (asm_out_file
, list_head
->ll_symbol
);
10417 const char *last_section
= NULL
;
10418 const char *base_label
= NULL
;
10420 /* Walk the location list, and output each range + expression. */
10421 for (dw_loc_list_ref curr
= list_head
; curr
!= NULL
;
10422 curr
= curr
->dw_loc_next
)
10424 unsigned long size
;
10426 /* Skip this entry? If we skip it here, we must skip it in the
10427 view list above as well. */
10428 if (skip_loc_list_entry (curr
, &size
))
10433 if (dwarf_version
>= 5)
10435 if (dwarf_split_debug_info
&& HAVE_AS_LEB128
)
10437 dwarf2out_maybe_output_loclist_view_pair (curr
);
10438 /* For -gsplit-dwarf, emit DW_LLE_startx_length, which has
10439 uleb128 index into .debug_addr and uleb128 length. */
10440 dw2_asm_output_data (1, DW_LLE_startx_length
,
10441 "DW_LLE_startx_length (%s)",
10442 list_head
->ll_symbol
);
10443 dw2_asm_output_data_uleb128 (curr
->begin_entry
->index
,
10444 "Location list range start index "
10445 "(%s)", curr
->begin
);
10446 dw2_asm_output_delta_uleb128 (curr
->end
, curr
->begin
,
10447 "Location list length (%s)",
10448 list_head
->ll_symbol
);
10450 else if (dwarf_split_debug_info
)
10452 dwarf2out_maybe_output_loclist_view_pair (curr
);
10453 /* For -gsplit-dwarf without usable .uleb128 support, emit
10454 DW_LLE_startx_endx, which has two uleb128 indexes into
10456 dw2_asm_output_data (1, DW_LLE_startx_endx
,
10457 "DW_LLE_startx_endx (%s)",
10458 list_head
->ll_symbol
);
10459 dw2_asm_output_data_uleb128 (curr
->begin_entry
->index
,
10460 "Location list range start index "
10461 "(%s)", curr
->begin
);
10462 dw2_asm_output_data_uleb128 (curr
->end_entry
->index
,
10463 "Location list range end index "
10464 "(%s)", curr
->end
);
10466 else if (!have_multiple_function_sections
&& HAVE_AS_LEB128
)
10468 dwarf2out_maybe_output_loclist_view_pair (curr
);
10469 /* If all code is in .text section, the base address is
10470 already provided by the CU attributes. Use
10471 DW_LLE_offset_pair where both addresses are uleb128 encoded
10472 offsets against that base. */
10473 dw2_asm_output_data (1, DW_LLE_offset_pair
,
10474 "DW_LLE_offset_pair (%s)",
10475 list_head
->ll_symbol
);
10476 dw2_asm_output_delta_uleb128 (curr
->begin
, curr
->section
,
10477 "Location list begin address (%s)",
10478 list_head
->ll_symbol
);
10479 dw2_asm_output_delta_uleb128 (curr
->end
, curr
->section
,
10480 "Location list end address (%s)",
10481 list_head
->ll_symbol
);
10483 else if (HAVE_AS_LEB128
)
10485 /* Otherwise, find out how many consecutive entries could share
10486 the same base entry. If just one, emit DW_LLE_start_length,
10487 otherwise emit DW_LLE_base_address for the base address
10488 followed by a series of DW_LLE_offset_pair. */
10489 if (last_section
== NULL
|| curr
->section
!= last_section
)
10491 dw_loc_list_ref curr2
;
10492 for (curr2
= curr
->dw_loc_next
; curr2
!= NULL
;
10493 curr2
= curr2
->dw_loc_next
)
10495 if (strcmp (curr2
->begin
, curr2
->end
) == 0
10500 if (curr2
== NULL
|| curr
->section
!= curr2
->section
)
10501 last_section
= NULL
;
10504 last_section
= curr
->section
;
10505 base_label
= curr
->begin
;
10506 dw2_asm_output_data (1, DW_LLE_base_address
,
10507 "DW_LLE_base_address (%s)",
10508 list_head
->ll_symbol
);
10509 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, base_label
,
10510 "Base address (%s)",
10511 list_head
->ll_symbol
);
10514 /* Only one entry with the same base address. Use
10515 DW_LLE_start_length with absolute address and uleb128
10517 if (last_section
== NULL
)
10519 dwarf2out_maybe_output_loclist_view_pair (curr
);
10520 dw2_asm_output_data (1, DW_LLE_start_length
,
10521 "DW_LLE_start_length (%s)",
10522 list_head
->ll_symbol
);
10523 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, curr
->begin
,
10524 "Location list begin address (%s)",
10525 list_head
->ll_symbol
);
10526 dw2_asm_output_delta_uleb128 (curr
->end
, curr
->begin
,
10527 "Location list length "
10528 "(%s)", list_head
->ll_symbol
);
10530 /* Otherwise emit DW_LLE_offset_pair, relative to above emitted
10531 DW_LLE_base_address. */
10534 dwarf2out_maybe_output_loclist_view_pair (curr
);
10535 dw2_asm_output_data (1, DW_LLE_offset_pair
,
10536 "DW_LLE_offset_pair (%s)",
10537 list_head
->ll_symbol
);
10538 dw2_asm_output_delta_uleb128 (curr
->begin
, base_label
,
10539 "Location list begin address "
10540 "(%s)", list_head
->ll_symbol
);
10541 dw2_asm_output_delta_uleb128 (curr
->end
, base_label
,
10542 "Location list end address "
10543 "(%s)", list_head
->ll_symbol
);
10546 /* The assembler does not support .uleb128 directive. Emit
10547 DW_LLE_start_end with a pair of absolute addresses. */
10550 dwarf2out_maybe_output_loclist_view_pair (curr
);
10551 dw2_asm_output_data (1, DW_LLE_start_end
,
10552 "DW_LLE_start_end (%s)",
10553 list_head
->ll_symbol
);
10554 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, curr
->begin
,
10555 "Location list begin address (%s)",
10556 list_head
->ll_symbol
);
10557 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, curr
->end
,
10558 "Location list end address (%s)",
10559 list_head
->ll_symbol
);
10562 else if (dwarf_split_debug_info
)
10564 /* For -gsplit-dwarf -gdwarf-{2,3,4} emit index into .debug_addr
10565 and 4 byte length. */
10566 dw2_asm_output_data (1, DW_LLE_GNU_start_length_entry
,
10567 "Location list start/length entry (%s)",
10568 list_head
->ll_symbol
);
10569 dw2_asm_output_data_uleb128 (curr
->begin_entry
->index
,
10570 "Location list range start index (%s)",
10572 /* The length field is 4 bytes. If we ever need to support
10573 an 8-byte length, we can add a new DW_LLE code or fall back
10574 to DW_LLE_GNU_start_end_entry. */
10575 dw2_asm_output_delta (4, curr
->end
, curr
->begin
,
10576 "Location list range length (%s)",
10577 list_head
->ll_symbol
);
10579 else if (!have_multiple_function_sections
)
10581 /* Pair of relative addresses against start of text section. */
10582 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, curr
->begin
, curr
->section
,
10583 "Location list begin address (%s)",
10584 list_head
->ll_symbol
);
10585 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, curr
->end
, curr
->section
,
10586 "Location list end address (%s)",
10587 list_head
->ll_symbol
);
10591 /* Pair of absolute addresses. */
10592 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, curr
->begin
,
10593 "Location list begin address (%s)",
10594 list_head
->ll_symbol
);
10595 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, curr
->end
,
10596 "Location list end address (%s)",
10597 list_head
->ll_symbol
);
10600 /* Output the block length for this list of location operations. */
10601 if (dwarf_version
>= 5)
10602 dw2_asm_output_data_uleb128 (size
, "Location expression size");
10605 gcc_assert (size
<= 0xffff);
10606 dw2_asm_output_data (2, size
, "Location expression size");
10609 output_loc_sequence (curr
->expr
, -1);
10612 /* And finally list termination. */
10613 if (dwarf_version
>= 5)
10614 dw2_asm_output_data (1, DW_LLE_end_of_list
,
10615 "DW_LLE_end_of_list (%s)", list_head
->ll_symbol
);
10616 else if (dwarf_split_debug_info
)
10617 dw2_asm_output_data (1, DW_LLE_GNU_end_of_list_entry
,
10618 "Location list terminator (%s)",
10619 list_head
->ll_symbol
);
10622 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0,
10623 "Location list terminator begin (%s)",
10624 list_head
->ll_symbol
);
10625 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0,
10626 "Location list terminator end (%s)",
10627 list_head
->ll_symbol
);
10630 gcc_assert (!list_head
->vl_symbol
10631 || vcount
== lcount
* (dwarf2out_locviews_in_attribute () ? 1 : 0));
10634 /* Output a range_list offset into the .debug_ranges or .debug_rnglists
10635 section. Emit a relocated reference if val_entry is NULL, otherwise,
10636 emit an indirect reference. */
10639 output_range_list_offset (dw_attr_node
*a
)
10641 const char *name
= dwarf_attr_name (a
->dw_attr
);
10643 if (a
->dw_attr_val
.val_entry
== RELOCATED_OFFSET
)
10645 if (dwarf_version
>= 5)
10647 dw_ranges
*r
= &(*ranges_table
)[a
->dw_attr_val
.v
.val_offset
];
10648 dw2_asm_output_offset (dwarf_offset_size
, r
->label
,
10649 debug_ranges_section
, "%s", name
);
10653 char *p
= strchr (ranges_section_label
, '\0');
10654 sprintf (p
, "+" HOST_WIDE_INT_PRINT_HEX
,
10655 a
->dw_attr_val
.v
.val_offset
* 2 * DWARF2_ADDR_SIZE
);
10656 dw2_asm_output_offset (dwarf_offset_size
, ranges_section_label
,
10657 debug_ranges_section
, "%s", name
);
10661 else if (dwarf_version
>= 5)
10663 dw_ranges
*r
= &(*ranges_table
)[a
->dw_attr_val
.v
.val_offset
];
10664 gcc_assert (rnglist_idx
);
10665 dw2_asm_output_data_uleb128 (r
->idx
, "%s", name
);
10668 dw2_asm_output_data (dwarf_offset_size
,
10669 a
->dw_attr_val
.v
.val_offset
* 2 * DWARF2_ADDR_SIZE
,
10670 "%s (offset from %s)", name
, ranges_section_label
);
10673 /* Output the offset into the debug_loc section. */
10676 output_loc_list_offset (dw_attr_node
*a
)
10678 char *sym
= AT_loc_list (a
)->ll_symbol
;
10681 if (!dwarf_split_debug_info
)
10682 dw2_asm_output_offset (dwarf_offset_size
, sym
, debug_loc_section
,
10683 "%s", dwarf_attr_name (a
->dw_attr
));
10684 else if (dwarf_version
>= 5)
10686 gcc_assert (AT_loc_list (a
)->num_assigned
);
10687 dw2_asm_output_data_uleb128 (AT_loc_list (a
)->hash
, "%s (%s)",
10688 dwarf_attr_name (a
->dw_attr
),
10692 dw2_asm_output_delta (dwarf_offset_size
, sym
, loc_section_label
,
10693 "%s", dwarf_attr_name (a
->dw_attr
));
10696 /* Output the offset into the debug_loc section. */
10699 output_view_list_offset (dw_attr_node
*a
)
10701 char *sym
= (*AT_loc_list_ptr (a
))->vl_symbol
;
10704 if (dwarf_split_debug_info
)
10705 dw2_asm_output_delta (dwarf_offset_size
, sym
, loc_section_label
,
10706 "%s", dwarf_attr_name (a
->dw_attr
));
10708 dw2_asm_output_offset (dwarf_offset_size
, sym
, debug_loc_section
,
10709 "%s", dwarf_attr_name (a
->dw_attr
));
10712 /* Output an attribute's index or value appropriately. */
10715 output_attr_index_or_value (dw_attr_node
*a
)
10717 const char *name
= dwarf_attr_name (a
->dw_attr
);
10719 if (dwarf_split_debug_info
&& AT_index (a
) != NOT_INDEXED
)
10721 dw2_asm_output_data_uleb128 (AT_index (a
), "%s", name
);
10724 switch (AT_class (a
))
10726 case dw_val_class_addr
:
10727 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE
, AT_addr (a
), "%s", name
);
10729 case dw_val_class_high_pc
:
10730 case dw_val_class_lbl_id
:
10731 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, AT_lbl (a
), "%s", name
);
10734 gcc_unreachable ();
10738 /* Output a type signature. */
10741 output_signature (const char *sig
, const char *name
)
10745 for (i
= 0; i
< DWARF_TYPE_SIGNATURE_SIZE
; i
++)
10746 dw2_asm_output_data (1, sig
[i
], i
== 0 ? "%s" : NULL
, name
);
10749 /* Output a discriminant value. */
10752 output_discr_value (dw_discr_value
*discr_value
, const char *name
)
10754 if (discr_value
->pos
)
10755 dw2_asm_output_data_uleb128 (discr_value
->v
.uval
, "%s", name
);
10757 dw2_asm_output_data_sleb128 (discr_value
->v
.sval
, "%s", name
);
10760 /* Output the DIE and its attributes. Called recursively to generate
10761 the definitions of each child DIE. */
10764 output_die (dw_die_ref die
)
10768 unsigned long size
;
10771 dw2_asm_output_data_uleb128 (die
->die_abbrev
, "(DIE (%#lx) %s)",
10772 (unsigned long)die
->die_offset
,
10773 dwarf_tag_name (die
->die_tag
));
10775 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
10777 const char *name
= dwarf_attr_name (a
->dw_attr
);
10779 switch (AT_class (a
))
10781 case dw_val_class_addr
:
10782 output_attr_index_or_value (a
);
10785 case dw_val_class_offset
:
10786 dw2_asm_output_data (dwarf_offset_size
, a
->dw_attr_val
.v
.val_offset
,
10790 case dw_val_class_range_list
:
10791 output_range_list_offset (a
);
10794 case dw_val_class_loc
:
10795 size
= size_of_locs (AT_loc (a
));
10797 /* Output the block length for this list of location operations. */
10798 if (dwarf_version
>= 4)
10799 dw2_asm_output_data_uleb128 (size
, "%s", name
);
10801 dw2_asm_output_data (constant_size (size
), size
, "%s", name
);
10803 output_loc_sequence (AT_loc (a
), -1);
10806 case dw_val_class_const
:
10807 /* ??? It would be slightly more efficient to use a scheme like is
10808 used for unsigned constants below, but gdb 4.x does not sign
10809 extend. Gdb 5.x does sign extend. */
10810 dw2_asm_output_data_sleb128 (AT_int (a
), "%s", name
);
10813 case dw_val_class_unsigned_const
:
10815 int csize
= constant_size (AT_unsigned (a
));
10816 if (dwarf_version
== 3
10817 && a
->dw_attr
== DW_AT_data_member_location
10819 dw2_asm_output_data_uleb128 (AT_unsigned (a
), "%s", name
);
10821 dw2_asm_output_data (csize
, AT_unsigned (a
), "%s", name
);
10825 case dw_val_class_symview
:
10828 if (symview_upper_bound
<= 0xff)
10830 else if (symview_upper_bound
<= 0xffff)
10832 else if (symview_upper_bound
<= 0xffffffff)
10836 dw2_asm_output_addr (vsize
, a
->dw_attr_val
.v
.val_symbolic_view
,
10841 case dw_val_class_const_implicit
:
10842 if (flag_debug_asm
)
10843 fprintf (asm_out_file
, "\t\t\t%s %s ("
10844 HOST_WIDE_INT_PRINT_DEC
")\n",
10845 ASM_COMMENT_START
, name
, AT_int (a
));
10848 case dw_val_class_unsigned_const_implicit
:
10849 if (flag_debug_asm
)
10850 fprintf (asm_out_file
, "\t\t\t%s %s ("
10851 HOST_WIDE_INT_PRINT_HEX
")\n",
10852 ASM_COMMENT_START
, name
, AT_unsigned (a
));
10855 case dw_val_class_const_double
:
10857 unsigned HOST_WIDE_INT first
, second
;
10859 if (HOST_BITS_PER_WIDE_INT
>= DWARF_LARGEST_DATA_FORM_BITS
)
10860 dw2_asm_output_data (1,
10861 HOST_BITS_PER_DOUBLE_INT
10862 / HOST_BITS_PER_CHAR
,
10865 if (WORDS_BIG_ENDIAN
)
10867 first
= a
->dw_attr_val
.v
.val_double
.high
;
10868 second
= a
->dw_attr_val
.v
.val_double
.low
;
10872 first
= a
->dw_attr_val
.v
.val_double
.low
;
10873 second
= a
->dw_attr_val
.v
.val_double
.high
;
10876 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT
/ HOST_BITS_PER_CHAR
,
10877 first
, "%s", name
);
10878 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT
/ HOST_BITS_PER_CHAR
,
10883 case dw_val_class_wide_int
:
10886 int len
= get_full_len (*a
->dw_attr_val
.v
.val_wide
);
10887 int l
= HOST_BITS_PER_WIDE_INT
/ HOST_BITS_PER_CHAR
;
10888 if (len
* HOST_BITS_PER_WIDE_INT
> DWARF_LARGEST_DATA_FORM_BITS
)
10889 dw2_asm_output_data (1, get_full_len (*a
->dw_attr_val
.v
.val_wide
)
10892 if (WORDS_BIG_ENDIAN
)
10893 for (i
= len
- 1; i
>= 0; --i
)
10895 dw2_asm_output_data (l
, a
->dw_attr_val
.v
.val_wide
->elt (i
),
10900 for (i
= 0; i
< len
; ++i
)
10902 dw2_asm_output_data (l
, a
->dw_attr_val
.v
.val_wide
->elt (i
),
10909 case dw_val_class_vec
:
10911 unsigned int elt_size
= a
->dw_attr_val
.v
.val_vec
.elt_size
;
10912 unsigned int len
= a
->dw_attr_val
.v
.val_vec
.length
;
10916 dw2_asm_output_data (constant_size (len
* elt_size
),
10917 len
* elt_size
, "%s", name
);
10918 if (elt_size
> sizeof (HOST_WIDE_INT
))
10923 for (i
= 0, p
= (unsigned char *) a
->dw_attr_val
.v
.val_vec
.array
;
10925 i
++, p
+= elt_size
)
10926 dw2_asm_output_data (elt_size
, extract_int (p
, elt_size
),
10927 "fp or vector constant word %u", i
);
10931 case dw_val_class_flag
:
10932 if (dwarf_version
>= 4)
10934 /* Currently all add_AT_flag calls pass in 1 as last argument,
10935 so DW_FORM_flag_present can be used. If that ever changes,
10936 we'll need to use DW_FORM_flag and have some optimization
10937 in build_abbrev_table that will change those to
10938 DW_FORM_flag_present if it is set to 1 in all DIEs using
10939 the same abbrev entry. */
10940 gcc_assert (AT_flag (a
) == 1);
10941 if (flag_debug_asm
)
10942 fprintf (asm_out_file
, "\t\t\t%s %s\n",
10943 ASM_COMMENT_START
, name
);
10946 dw2_asm_output_data (1, AT_flag (a
), "%s", name
);
10949 case dw_val_class_loc_list
:
10950 output_loc_list_offset (a
);
10953 case dw_val_class_view_list
:
10954 output_view_list_offset (a
);
10957 case dw_val_class_die_ref
:
10958 if (AT_ref_external (a
))
10960 if (AT_ref (a
)->comdat_type_p
)
10962 comdat_type_node
*type_node
10963 = AT_ref (a
)->die_id
.die_type_node
;
10965 gcc_assert (type_node
);
10966 output_signature (type_node
->signature
, name
);
10970 const char *sym
= AT_ref (a
)->die_id
.die_symbol
;
10974 /* In DWARF2, DW_FORM_ref_addr is sized by target address
10975 length, whereas in DWARF3 it's always sized as an
10977 if (dwarf_version
== 2)
10978 size
= DWARF2_ADDR_SIZE
;
10980 size
= dwarf_offset_size
;
10981 /* ??? We cannot unconditionally output die_offset if
10982 non-zero - others might create references to those
10984 And we do not clear its DIE offset after outputting it
10985 (and the label refers to the actual DIEs, not the
10986 DWARF CU unit header which is when using label + offset
10987 would be the correct thing to do).
10988 ??? This is the reason for the with_offset flag. */
10989 if (AT_ref (a
)->with_offset
)
10990 dw2_asm_output_offset (size
, sym
, AT_ref (a
)->die_offset
,
10991 debug_info_section
, "%s", name
);
10993 dw2_asm_output_offset (size
, sym
, debug_info_section
, "%s",
10999 gcc_assert (AT_ref (a
)->die_offset
);
11000 dw2_asm_output_data (dwarf_offset_size
, AT_ref (a
)->die_offset
,
11005 case dw_val_class_fde_ref
:
11007 char l1
[MAX_ARTIFICIAL_LABEL_BYTES
];
11009 ASM_GENERATE_INTERNAL_LABEL (l1
, FDE_LABEL
,
11010 a
->dw_attr_val
.v
.val_fde_index
* 2);
11011 dw2_asm_output_offset (dwarf_offset_size
, l1
, debug_frame_section
,
11016 case dw_val_class_vms_delta
:
11017 #ifdef ASM_OUTPUT_DWARF_VMS_DELTA
11018 dw2_asm_output_vms_delta (dwarf_offset_size
,
11019 AT_vms_delta2 (a
), AT_vms_delta1 (a
),
11022 dw2_asm_output_delta (dwarf_offset_size
,
11023 AT_vms_delta2 (a
), AT_vms_delta1 (a
),
11028 case dw_val_class_lbl_id
:
11029 output_attr_index_or_value (a
);
11032 case dw_val_class_lineptr
:
11033 dw2_asm_output_offset (dwarf_offset_size
, AT_lbl (a
),
11034 debug_line_section
, "%s", name
);
11037 case dw_val_class_macptr
:
11038 dw2_asm_output_offset (dwarf_offset_size
, AT_lbl (a
),
11039 debug_macinfo_section
, "%s", name
);
11042 case dw_val_class_loclistsptr
:
11043 dw2_asm_output_offset (dwarf_offset_size
, AT_lbl (a
),
11044 debug_loc_section
, "%s", name
);
11047 case dw_val_class_str
:
11048 if (a
->dw_attr_val
.v
.val_str
->form
== DW_FORM_strp
)
11049 dw2_asm_output_offset (dwarf_offset_size
,
11050 a
->dw_attr_val
.v
.val_str
->label
,
11052 "%s: \"%s\"", name
, AT_string (a
));
11053 else if (a
->dw_attr_val
.v
.val_str
->form
== DW_FORM_line_strp
)
11054 dw2_asm_output_offset (dwarf_offset_size
,
11055 a
->dw_attr_val
.v
.val_str
->label
,
11056 debug_line_str_section
,
11057 "%s: \"%s\"", name
, AT_string (a
));
11058 else if (a
->dw_attr_val
.v
.val_str
->form
== dwarf_FORM (DW_FORM_strx
))
11059 dw2_asm_output_data_uleb128 (AT_index (a
),
11060 "%s: \"%s\"", name
, AT_string (a
));
11062 dw2_asm_output_nstring (AT_string (a
), -1, "%s", name
);
11065 case dw_val_class_file
:
11067 int f
= maybe_emit_file (a
->dw_attr_val
.v
.val_file
);
11069 dw2_asm_output_data (constant_size (f
), f
, "%s (%s)", name
,
11070 a
->dw_attr_val
.v
.val_file
->filename
);
11074 case dw_val_class_file_implicit
:
11075 if (flag_debug_asm
)
11076 fprintf (asm_out_file
, "\t\t\t%s %s (%d, %s)\n",
11077 ASM_COMMENT_START
, name
,
11078 maybe_emit_file (a
->dw_attr_val
.v
.val_file
),
11079 a
->dw_attr_val
.v
.val_file
->filename
);
11082 case dw_val_class_data8
:
11086 for (i
= 0; i
< 8; i
++)
11087 dw2_asm_output_data (1, a
->dw_attr_val
.v
.val_data8
[i
],
11088 i
== 0 ? "%s" : NULL
, name
);
11092 case dw_val_class_high_pc
:
11093 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, AT_lbl (a
),
11094 get_AT_low_pc (die
), "DW_AT_high_pc");
11097 case dw_val_class_discr_value
:
11098 output_discr_value (&a
->dw_attr_val
.v
.val_discr_value
, name
);
11101 case dw_val_class_discr_list
:
11103 dw_discr_list_ref list
= AT_discr_list (a
);
11104 const int size
= size_of_discr_list (list
);
11106 /* This is a block, so output its length first. */
11107 dw2_asm_output_data (constant_size (size
), size
,
11108 "%s: block size", name
);
11110 for (; list
!= NULL
; list
= list
->dw_discr_next
)
11112 /* One byte for the discriminant value descriptor, and then as
11113 many LEB128 numbers as required. */
11114 if (list
->dw_discr_range
)
11115 dw2_asm_output_data (1, DW_DSC_range
,
11116 "%s: DW_DSC_range", name
);
11118 dw2_asm_output_data (1, DW_DSC_label
,
11119 "%s: DW_DSC_label", name
);
11121 output_discr_value (&list
->dw_discr_lower_bound
, name
);
11122 if (list
->dw_discr_range
)
11123 output_discr_value (&list
->dw_discr_upper_bound
, name
);
11129 gcc_unreachable ();
11133 FOR_EACH_CHILD (die
, c
, output_die (c
));
11135 /* Add null byte to terminate sibling list. */
11136 if (die
->die_child
!= NULL
)
11137 dw2_asm_output_data (1, 0, "end of children of DIE %#lx",
11138 (unsigned long) die
->die_offset
);
11141 /* Output the dwarf version number. */
11144 output_dwarf_version ()
11146 /* ??? For now, if -gdwarf-6 is specified, we output version 5 with
11147 views in loclist. That will change eventually. */
11148 if (dwarf_version
== 6)
11153 warning (0, "%<-gdwarf-6%> is output as version 5 with "
11154 "incompatibilities");
11157 dw2_asm_output_data (2, 5, "DWARF version number");
11160 dw2_asm_output_data (2, dwarf_version
, "DWARF version number");
11163 /* Output the compilation unit that appears at the beginning of the
11164 .debug_info section, and precedes the DIE descriptions. */
11167 output_compilation_unit_header (enum dwarf_unit_type ut
)
11169 if (!XCOFF_DEBUGGING_INFO
)
11171 if (DWARF_INITIAL_LENGTH_SIZE
- dwarf_offset_size
== 4)
11172 dw2_asm_output_data (4, 0xffffffff,
11173 "Initial length escape value indicating 64-bit DWARF extension");
11174 dw2_asm_output_data (dwarf_offset_size
,
11175 next_die_offset
- DWARF_INITIAL_LENGTH_SIZE
,
11176 "Length of Compilation Unit Info");
11179 output_dwarf_version ();
11180 if (dwarf_version
>= 5)
11185 case DW_UT_compile
: name
= "DW_UT_compile"; break;
11186 case DW_UT_type
: name
= "DW_UT_type"; break;
11187 case DW_UT_split_compile
: name
= "DW_UT_split_compile"; break;
11188 case DW_UT_split_type
: name
= "DW_UT_split_type"; break;
11189 default: gcc_unreachable ();
11191 dw2_asm_output_data (1, ut
, "%s", name
);
11192 dw2_asm_output_data (1, DWARF2_ADDR_SIZE
, "Pointer Size (in bytes)");
11194 dw2_asm_output_offset (dwarf_offset_size
, abbrev_section_label
,
11195 debug_abbrev_section
,
11196 "Offset Into Abbrev. Section");
11197 if (dwarf_version
< 5)
11198 dw2_asm_output_data (1, DWARF2_ADDR_SIZE
, "Pointer Size (in bytes)");
11201 /* Output the compilation unit DIE and its children. */
11204 output_comp_unit (dw_die_ref die
, int output_if_empty
,
11205 const unsigned char *dwo_id
)
11207 const char *secname
, *oldsym
;
11210 /* Unless we are outputting main CU, we may throw away empty ones. */
11211 if (!output_if_empty
&& die
->die_child
== NULL
)
11214 /* Even if there are no children of this DIE, we must output the information
11215 about the compilation unit. Otherwise, on an empty translation unit, we
11216 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
11217 will then complain when examining the file. First mark all the DIEs in
11218 this CU so we know which get local refs. */
11221 external_ref_hash_type
*extern_map
= optimize_external_refs (die
);
11223 /* For now, optimize only the main CU, in order to optimize the rest
11224 we'd need to see all of them earlier. Leave the rest for post-linking
11226 if (die
== comp_unit_die ())
11227 abbrev_opt_start
= vec_safe_length (abbrev_die_table
);
11229 build_abbrev_table (die
, extern_map
);
11231 optimize_abbrev_table ();
11235 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
11236 next_die_offset
= (dwo_id
11237 ? DWARF_COMPILE_UNIT_SKELETON_HEADER_SIZE
11238 : DWARF_COMPILE_UNIT_HEADER_SIZE
);
11239 calc_die_sizes (die
);
11241 oldsym
= die
->die_id
.die_symbol
;
11242 if (oldsym
&& die
->comdat_type_p
)
11244 tmp
= XALLOCAVEC (char, strlen (oldsym
) + 24);
11246 sprintf (tmp
, ".gnu.linkonce.wi.%s", oldsym
);
11248 die
->die_id
.die_symbol
= NULL
;
11249 switch_to_section (get_section (secname
, SECTION_DEBUG
, NULL
));
11253 switch_to_section (debug_info_section
);
11254 ASM_OUTPUT_LABEL (asm_out_file
, debug_info_section_label
);
11255 info_section_emitted
= true;
11258 /* For LTO cross unit DIE refs we want a symbol on the start of the
11259 debuginfo section, not on the CU DIE. */
11260 if ((flag_generate_lto
|| flag_generate_offload
) && oldsym
)
11262 /* ??? No way to get visibility assembled without a decl. */
11263 tree decl
= build_decl (UNKNOWN_LOCATION
, VAR_DECL
,
11264 get_identifier (oldsym
), char_type_node
);
11265 TREE_PUBLIC (decl
) = true;
11266 TREE_STATIC (decl
) = true;
11267 DECL_ARTIFICIAL (decl
) = true;
11268 DECL_VISIBILITY (decl
) = VISIBILITY_HIDDEN
;
11269 DECL_VISIBILITY_SPECIFIED (decl
) = true;
11270 targetm
.asm_out
.assemble_visibility (decl
, VISIBILITY_HIDDEN
);
11271 #ifdef ASM_WEAKEN_LABEL
11272 /* We prefer a .weak because that handles duplicates from duplicate
11273 archive members in a graceful way. */
11274 ASM_WEAKEN_LABEL (asm_out_file
, oldsym
);
11276 targetm
.asm_out
.globalize_label (asm_out_file
, oldsym
);
11278 ASM_OUTPUT_LABEL (asm_out_file
, oldsym
);
11281 /* Output debugging information. */
11282 output_compilation_unit_header (dwo_id
11283 ? DW_UT_split_compile
: DW_UT_compile
);
11284 if (dwarf_version
>= 5)
11286 if (dwo_id
!= NULL
)
11287 for (int i
= 0; i
< 8; i
++)
11288 dw2_asm_output_data (1, dwo_id
[i
], i
== 0 ? "DWO id" : NULL
);
11292 /* Leave the marks on the main CU, so we can check them in
11293 output_pubnames. */
11297 die
->die_id
.die_symbol
= oldsym
;
11301 /* Whether to generate the DWARF accelerator tables in .debug_pubnames
11302 and .debug_pubtypes. This is configured per-target, but can be
11303 overridden by the -gpubnames or -gno-pubnames options. */
11306 want_pubnames (void)
11308 if (debug_info_level
<= DINFO_LEVEL_TERSE
11309 /* Names and types go to the early debug part only. */
11312 if (debug_generate_pub_sections
!= -1)
11313 return debug_generate_pub_sections
;
11314 return targetm
.want_debug_pub_sections
;
11317 /* Add the DW_AT_GNU_pubnames and DW_AT_GNU_pubtypes attributes. */
11320 add_AT_pubnames (dw_die_ref die
)
11322 if (want_pubnames ())
11323 add_AT_flag (die
, DW_AT_GNU_pubnames
, 1);
11326 /* Add a string attribute value to a skeleton DIE. */
11329 add_skeleton_AT_string (dw_die_ref die
, enum dwarf_attribute attr_kind
,
11333 struct indirect_string_node
*node
;
11335 if (! skeleton_debug_str_hash
)
11336 skeleton_debug_str_hash
11337 = hash_table
<indirect_string_hasher
>::create_ggc (10);
11339 node
= find_AT_string_in_table (str
, skeleton_debug_str_hash
);
11340 find_string_form (node
);
11341 if (node
->form
== dwarf_FORM (DW_FORM_strx
))
11342 node
->form
= DW_FORM_strp
;
11344 attr
.dw_attr
= attr_kind
;
11345 attr
.dw_attr_val
.val_class
= dw_val_class_str
;
11346 attr
.dw_attr_val
.val_entry
= NULL
;
11347 attr
.dw_attr_val
.v
.val_str
= node
;
11348 add_dwarf_attr (die
, &attr
);
11351 /* Helper function to generate top-level dies for skeleton debug_info and
11355 add_top_level_skeleton_die_attrs (dw_die_ref die
)
11357 const char *dwo_file_name
= concat (aux_base_name
, ".dwo", NULL
);
11358 const char *comp_dir
= comp_dir_string ();
11360 add_skeleton_AT_string (die
, dwarf_AT (DW_AT_dwo_name
), dwo_file_name
);
11361 if (comp_dir
!= NULL
)
11362 add_skeleton_AT_string (die
, DW_AT_comp_dir
, comp_dir
);
11363 add_AT_pubnames (die
);
11364 if (addr_index_table
!= NULL
&& addr_index_table
->size () > 0)
11365 add_AT_lineptr (die
, dwarf_AT (DW_AT_addr_base
), debug_addr_section_label
);
11368 /* Output skeleton debug sections that point to the dwo file. */
11371 output_skeleton_debug_sections (dw_die_ref comp_unit
,
11372 const unsigned char *dwo_id
)
11374 /* These attributes will be found in the full debug_info section. */
11375 remove_AT (comp_unit
, DW_AT_producer
);
11376 remove_AT (comp_unit
, DW_AT_language
);
11378 switch_to_section (debug_skeleton_info_section
);
11379 ASM_OUTPUT_LABEL (asm_out_file
, debug_skeleton_info_section_label
);
11381 /* Produce the skeleton compilation-unit header. This one differs enough from
11382 a normal CU header that it's better not to call output_compilation_unit
11384 if (DWARF_INITIAL_LENGTH_SIZE
- dwarf_offset_size
== 4)
11385 dw2_asm_output_data (4, 0xffffffff,
11386 "Initial length escape value indicating 64-bit "
11387 "DWARF extension");
11389 dw2_asm_output_data (dwarf_offset_size
,
11390 DWARF_COMPILE_UNIT_SKELETON_HEADER_SIZE
11391 - DWARF_INITIAL_LENGTH_SIZE
11392 + size_of_die (comp_unit
),
11393 "Length of Compilation Unit Info");
11394 output_dwarf_version ();
11395 if (dwarf_version
>= 5)
11397 dw2_asm_output_data (1, DW_UT_skeleton
, "DW_UT_skeleton");
11398 dw2_asm_output_data (1, DWARF2_ADDR_SIZE
, "Pointer Size (in bytes)");
11400 dw2_asm_output_offset (dwarf_offset_size
, debug_skeleton_abbrev_section_label
,
11401 debug_skeleton_abbrev_section
,
11402 "Offset Into Abbrev. Section");
11403 if (dwarf_version
< 5)
11404 dw2_asm_output_data (1, DWARF2_ADDR_SIZE
, "Pointer Size (in bytes)");
11406 for (int i
= 0; i
< 8; i
++)
11407 dw2_asm_output_data (1, dwo_id
[i
], i
== 0 ? "DWO id" : NULL
);
11409 comp_unit
->die_abbrev
= SKELETON_COMP_DIE_ABBREV
;
11410 output_die (comp_unit
);
11412 /* Build the skeleton debug_abbrev section. */
11413 switch_to_section (debug_skeleton_abbrev_section
);
11414 ASM_OUTPUT_LABEL (asm_out_file
, debug_skeleton_abbrev_section_label
);
11416 output_die_abbrevs (SKELETON_COMP_DIE_ABBREV
, comp_unit
);
11418 dw2_asm_output_data (1, 0, "end of skeleton .debug_abbrev");
11421 /* Output a comdat type unit DIE and its children. */
11424 output_comdat_type_unit (comdat_type_node
*node
,
11425 bool early_lto_debug ATTRIBUTE_UNUSED
)
11427 const char *secname
;
11430 #if defined (OBJECT_FORMAT_ELF)
11434 /* First mark all the DIEs in this CU so we know which get local refs. */
11435 mark_dies (node
->root_die
);
11437 external_ref_hash_type
*extern_map
= optimize_external_refs (node
->root_die
);
11439 build_abbrev_table (node
->root_die
, extern_map
);
11444 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
11445 next_die_offset
= DWARF_COMDAT_TYPE_UNIT_HEADER_SIZE
;
11446 calc_die_sizes (node
->root_die
);
11448 #if defined (OBJECT_FORMAT_ELF)
11449 if (dwarf_version
>= 5)
11451 if (!dwarf_split_debug_info
)
11452 secname
= early_lto_debug
? DEBUG_LTO_INFO_SECTION
: DEBUG_INFO_SECTION
;
11454 secname
= (early_lto_debug
11455 ? DEBUG_LTO_DWO_INFO_SECTION
: DEBUG_DWO_INFO_SECTION
);
11457 else if (!dwarf_split_debug_info
)
11458 secname
= early_lto_debug
? ".gnu.debuglto_.debug_types" : ".debug_types";
11460 secname
= (early_lto_debug
11461 ? ".gnu.debuglto_.debug_types.dwo" : ".debug_types.dwo");
11463 tmp
= XALLOCAVEC (char, 4 + DWARF_TYPE_SIGNATURE_SIZE
* 2);
11464 sprintf (tmp
, dwarf_version
>= 5 ? "wi." : "wt.");
11465 for (i
= 0; i
< DWARF_TYPE_SIGNATURE_SIZE
; i
++)
11466 sprintf (tmp
+ 3 + i
* 2, "%02x", node
->signature
[i
] & 0xff);
11467 comdat_key
= get_identifier (tmp
);
11468 targetm
.asm_out
.named_section (secname
,
11469 SECTION_DEBUG
| SECTION_LINKONCE
,
11472 tmp
= XALLOCAVEC (char, 18 + DWARF_TYPE_SIGNATURE_SIZE
* 2);
11473 sprintf (tmp
, (dwarf_version
>= 5
11474 ? ".gnu.linkonce.wi." : ".gnu.linkonce.wt."));
11475 for (i
= 0; i
< DWARF_TYPE_SIGNATURE_SIZE
; i
++)
11476 sprintf (tmp
+ 17 + i
* 2, "%02x", node
->signature
[i
] & 0xff);
11478 switch_to_section (get_section (secname
, SECTION_DEBUG
, NULL
));
11481 /* Output debugging information. */
11482 output_compilation_unit_header (dwarf_split_debug_info
11483 ? DW_UT_split_type
: DW_UT_type
);
11484 output_signature (node
->signature
, "Type Signature");
11485 dw2_asm_output_data (dwarf_offset_size
, node
->type_die
->die_offset
,
11486 "Offset to Type DIE");
11487 output_die (node
->root_die
);
11489 unmark_dies (node
->root_die
);
11492 /* Return the DWARF2/3 pubname associated with a decl. */
11494 static const char *
11495 dwarf2_name (tree decl
, int scope
)
11497 if (DECL_NAMELESS (decl
))
11499 return lang_hooks
.dwarf_name (decl
, scope
? 1 : 0);
11502 /* Add a new entry to .debug_pubnames if appropriate. */
11505 add_pubname_string (const char *str
, dw_die_ref die
)
11510 e
.name
= xstrdup (str
);
11511 vec_safe_push (pubname_table
, e
);
11515 add_pubname (tree decl
, dw_die_ref die
)
11517 if (!want_pubnames ())
11520 /* Don't add items to the table when we expect that the consumer will have
11521 just read the enclosing die. For example, if the consumer is looking at a
11522 class_member, it will either be inside the class already, or will have just
11523 looked up the class to find the member. Either way, searching the class is
11524 faster than searching the index. */
11525 if ((TREE_PUBLIC (decl
) && !class_scope_p (die
->die_parent
))
11526 || is_cu_die (die
->die_parent
) || is_namespace_die (die
->die_parent
))
11528 const char *name
= dwarf2_name (decl
, 1);
11531 add_pubname_string (name
, die
);
11535 /* Add an enumerator to the pubnames section. */
11538 add_enumerator_pubname (const char *scope_name
, dw_die_ref die
)
11542 gcc_assert (scope_name
);
11543 e
.name
= concat (scope_name
, get_AT_string (die
, DW_AT_name
), NULL
);
11545 vec_safe_push (pubname_table
, e
);
11548 /* Add a new entry to .debug_pubtypes if appropriate. */
11551 add_pubtype (tree decl
, dw_die_ref die
)
11555 if (!want_pubnames ())
11558 if ((TREE_PUBLIC (decl
)
11559 || is_cu_die (die
->die_parent
) || is_namespace_die (die
->die_parent
))
11560 && (die
->die_tag
== DW_TAG_typedef
|| COMPLETE_TYPE_P (decl
)))
11563 const char *scope_name
= "";
11564 const char *sep
= is_cxx () ? "::" : ".";
11567 scope
= TYPE_P (decl
) ? TYPE_CONTEXT (decl
) : NULL
;
11568 if (scope
&& TREE_CODE (scope
) == NAMESPACE_DECL
)
11570 scope_name
= lang_hooks
.dwarf_name (scope
, 1);
11571 if (scope_name
!= NULL
&& scope_name
[0] != '\0')
11572 scope_name
= concat (scope_name
, sep
, NULL
);
11578 name
= type_tag (decl
);
11580 name
= lang_hooks
.dwarf_name (decl
, 1);
11582 /* If we don't have a name for the type, there's no point in adding
11583 it to the table. */
11584 if (name
!= NULL
&& name
[0] != '\0')
11587 e
.name
= concat (scope_name
, name
, NULL
);
11588 vec_safe_push (pubtype_table
, e
);
11591 /* Although it might be more consistent to add the pubinfo for the
11592 enumerators as their dies are created, they should only be added if the
11593 enum type meets the criteria above. So rather than re-check the parent
11594 enum type whenever an enumerator die is created, just output them all
11595 here. This isn't protected by the name conditional because anonymous
11596 enums don't have names. */
11597 if (die
->die_tag
== DW_TAG_enumeration_type
)
11601 FOR_EACH_CHILD (die
, c
, add_enumerator_pubname (scope_name
, c
));
11606 /* Output a single entry in the pubnames table. */
11609 output_pubname (dw_offset die_offset
, pubname_entry
*entry
)
11611 dw_die_ref die
= entry
->die
;
11612 int is_static
= get_AT_flag (die
, DW_AT_external
) ? 0 : 1;
11614 dw2_asm_output_data (dwarf_offset_size
, die_offset
, "DIE offset");
11616 if (debug_generate_pub_sections
== 2)
11618 /* This logic follows gdb's method for determining the value of the flag
11620 uint32_t flags
= GDB_INDEX_SYMBOL_KIND_NONE
;
11621 switch (die
->die_tag
)
11623 case DW_TAG_typedef
:
11624 case DW_TAG_base_type
:
11625 case DW_TAG_subrange_type
:
11626 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags
, GDB_INDEX_SYMBOL_KIND_TYPE
);
11627 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags
, 1);
11629 case DW_TAG_enumerator
:
11630 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags
,
11631 GDB_INDEX_SYMBOL_KIND_VARIABLE
);
11633 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags
, 1);
11635 case DW_TAG_subprogram
:
11636 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags
,
11637 GDB_INDEX_SYMBOL_KIND_FUNCTION
);
11639 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags
, is_static
);
11641 case DW_TAG_constant
:
11642 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags
,
11643 GDB_INDEX_SYMBOL_KIND_VARIABLE
);
11644 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags
, is_static
);
11646 case DW_TAG_variable
:
11647 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags
,
11648 GDB_INDEX_SYMBOL_KIND_VARIABLE
);
11649 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags
, is_static
);
11651 case DW_TAG_namespace
:
11652 case DW_TAG_imported_declaration
:
11653 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags
, GDB_INDEX_SYMBOL_KIND_TYPE
);
11655 case DW_TAG_class_type
:
11656 case DW_TAG_interface_type
:
11657 case DW_TAG_structure_type
:
11658 case DW_TAG_union_type
:
11659 case DW_TAG_enumeration_type
:
11660 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags
, GDB_INDEX_SYMBOL_KIND_TYPE
);
11662 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags
, 1);
11665 /* An unusual tag. Leave the flag-byte empty. */
11668 dw2_asm_output_data (1, flags
>> GDB_INDEX_CU_BITSIZE
,
11669 "GDB-index flags");
11672 dw2_asm_output_nstring (entry
->name
, -1, "external name");
11676 /* Output the public names table used to speed up access to externally
11677 visible names; or the public types table used to find type definitions. */
11680 output_pubnames (vec
<pubname_entry
, va_gc
> *names
)
11683 unsigned long pubnames_length
= size_of_pubnames (names
);
11684 pubname_entry
*pub
;
11686 if (!XCOFF_DEBUGGING_INFO
)
11688 if (DWARF_INITIAL_LENGTH_SIZE
- dwarf_offset_size
== 4)
11689 dw2_asm_output_data (4, 0xffffffff,
11690 "Initial length escape value indicating 64-bit DWARF extension");
11691 dw2_asm_output_data (dwarf_offset_size
, pubnames_length
,
11692 "Pub Info Length");
11695 /* Version number for pubnames/pubtypes is independent of dwarf version. */
11696 dw2_asm_output_data (2, 2, "DWARF pubnames/pubtypes version");
11698 if (dwarf_split_debug_info
)
11699 dw2_asm_output_offset (dwarf_offset_size
, debug_skeleton_info_section_label
,
11700 debug_skeleton_info_section
,
11701 "Offset of Compilation Unit Info");
11703 dw2_asm_output_offset (dwarf_offset_size
, debug_info_section_label
,
11704 debug_info_section
,
11705 "Offset of Compilation Unit Info");
11706 dw2_asm_output_data (dwarf_offset_size
, next_die_offset
,
11707 "Compilation Unit Length");
11709 FOR_EACH_VEC_ELT (*names
, i
, pub
)
11711 if (include_pubname_in_output (names
, pub
))
11713 dw_offset die_offset
= pub
->die
->die_offset
;
11715 /* We shouldn't see pubnames for DIEs outside of the main CU. */
11716 if (names
== pubname_table
&& pub
->die
->die_tag
!= DW_TAG_enumerator
)
11717 gcc_assert (pub
->die
->die_mark
);
11719 /* If we're putting types in their own .debug_types sections,
11720 the .debug_pubtypes table will still point to the compile
11721 unit (not the type unit), so we want to use the offset of
11722 the skeleton DIE (if there is one). */
11723 if (pub
->die
->comdat_type_p
&& names
== pubtype_table
)
11725 comdat_type_node
*type_node
= pub
->die
->die_id
.die_type_node
;
11727 if (type_node
!= NULL
)
11728 die_offset
= (type_node
->skeleton_die
!= NULL
11729 ? type_node
->skeleton_die
->die_offset
11730 : comp_unit_die ()->die_offset
);
11733 output_pubname (die_offset
, pub
);
11737 dw2_asm_output_data (dwarf_offset_size
, 0, NULL
);
11740 /* Output public names and types tables if necessary. */
11743 output_pubtables (void)
11745 if (!want_pubnames () || !info_section_emitted
)
11748 switch_to_section (debug_pubnames_section
);
11749 output_pubnames (pubname_table
);
11750 /* ??? Only defined by DWARF3, but emitted by Darwin for DWARF2.
11751 It shouldn't hurt to emit it always, since pure DWARF2 consumers
11752 simply won't look for the section. */
11753 switch_to_section (debug_pubtypes_section
);
11754 output_pubnames (pubtype_table
);
11758 /* Output the information that goes into the .debug_aranges table.
11759 Namely, define the beginning and ending address range of the
11760 text section generated for this compilation unit. */
11763 output_aranges (void)
11766 unsigned long aranges_length
= size_of_aranges ();
11768 if (!XCOFF_DEBUGGING_INFO
)
11770 if (DWARF_INITIAL_LENGTH_SIZE
- dwarf_offset_size
== 4)
11771 dw2_asm_output_data (4, 0xffffffff,
11772 "Initial length escape value indicating 64-bit DWARF extension");
11773 dw2_asm_output_data (dwarf_offset_size
, aranges_length
,
11774 "Length of Address Ranges Info");
11777 /* Version number for aranges is still 2, even up to DWARF5. */
11778 dw2_asm_output_data (2, 2, "DWARF aranges version");
11779 if (dwarf_split_debug_info
)
11780 dw2_asm_output_offset (dwarf_offset_size
, debug_skeleton_info_section_label
,
11781 debug_skeleton_info_section
,
11782 "Offset of Compilation Unit Info");
11784 dw2_asm_output_offset (dwarf_offset_size
, debug_info_section_label
,
11785 debug_info_section
,
11786 "Offset of Compilation Unit Info");
11787 dw2_asm_output_data (1, DWARF2_ADDR_SIZE
, "Size of Address");
11788 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
11790 /* We need to align to twice the pointer size here. */
11791 if (DWARF_ARANGES_PAD_SIZE
)
11793 /* Pad using a 2 byte words so that padding is correct for any
11795 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
11796 2 * DWARF2_ADDR_SIZE
);
11797 for (i
= 2; i
< (unsigned) DWARF_ARANGES_PAD_SIZE
; i
+= 2)
11798 dw2_asm_output_data (2, 0, NULL
);
11801 /* It is necessary not to output these entries if the sections were
11802 not used; if the sections were not used, the length will be 0 and
11803 the address may end up as 0 if the section is discarded by ld
11804 --gc-sections, leaving an invalid (0, 0) entry that can be
11805 confused with the terminator. */
11806 if (switch_text_ranges
)
11808 const char *prev_loc
= text_section_label
;
11812 FOR_EACH_VEC_ELT (*switch_text_ranges
, idx
, loc
)
11815 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, prev_loc
, "Address");
11816 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, loc
, prev_loc
, "Length");
11824 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, prev_loc
, "Address");
11825 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, text_end_label
,
11826 prev_loc
, "Length");
11830 if (switch_cold_ranges
)
11832 const char *prev_loc
= cold_text_section_label
;
11836 FOR_EACH_VEC_ELT (*switch_cold_ranges
, idx
, loc
)
11839 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, prev_loc
, "Address");
11840 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, loc
, prev_loc
, "Length");
11848 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, prev_loc
, "Address");
11849 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, cold_end_label
,
11850 prev_loc
, "Length");
11854 if (have_multiple_function_sections
)
11859 FOR_EACH_VEC_ELT (*fde_vec
, fde_idx
, fde
)
11861 if (fde
->ignored_debug
)
11863 if (!fde
->in_std_section
)
11865 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, fde
->dw_fde_begin
,
11867 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, fde
->dw_fde_end
,
11868 fde
->dw_fde_begin
, "Length");
11870 if (fde
->dw_fde_second_begin
&& !fde
->second_in_std_section
)
11872 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, fde
->dw_fde_second_begin
,
11874 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, fde
->dw_fde_second_end
,
11875 fde
->dw_fde_second_begin
, "Length");
11880 /* Output the terminator words. */
11881 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0, NULL
);
11882 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0, NULL
);
11885 /* Add a new entry to .debug_ranges. Return its index into
11886 ranges_table vector. */
11888 static unsigned int
11889 add_ranges_num (int num
, bool maybe_new_sec
)
11891 dw_ranges r
= { NULL
, num
, 0, maybe_new_sec
, NULL
, NULL
};
11892 vec_safe_push (ranges_table
, r
);
11893 return vec_safe_length (ranges_table
) - 1;
11896 /* Add a new entry to .debug_ranges corresponding to a block, or a
11897 range terminator if BLOCK is NULL. MAYBE_NEW_SEC is true if
11898 this entry might be in a different section from previous range. */
11900 static unsigned int
11901 add_ranges (const_tree block
, bool maybe_new_sec
)
11903 return add_ranges_num (block
? BLOCK_NUMBER (block
) : 0, maybe_new_sec
);
11906 /* Note that (*rnglist_table)[offset] is either a head of a rnglist
11907 chain, or middle entry of a chain that will be directly referred to. */
11910 note_rnglist_head (unsigned int offset
)
11912 if (dwarf_version
< 5 || (*ranges_table
)[offset
].label
)
11914 (*ranges_table
)[offset
].label
= gen_internal_sym ("LLRL");
11917 /* Add a new entry to .debug_ranges corresponding to a pair of labels.
11918 When using dwarf_split_debug_info, address attributes in dies destined
11919 for the final executable should be direct references--setting the
11920 parameter force_direct ensures this behavior. */
11923 add_ranges_by_labels (dw_die_ref die
, const char *begin
, const char *end
,
11924 bool *added
, bool force_direct
)
11926 unsigned int in_use
= vec_safe_length (ranges_by_label
);
11927 unsigned int offset
;
11928 dw_ranges_by_label rbl
= { begin
, end
};
11929 vec_safe_push (ranges_by_label
, rbl
);
11930 offset
= add_ranges_num (-(int)in_use
- 1, true);
11933 add_AT_range_list (die
, DW_AT_ranges
, offset
, force_direct
);
11935 note_rnglist_head (offset
);
11936 if (dwarf_split_debug_info
&& force_direct
)
11937 (*ranges_table
)[offset
].idx
= DW_RANGES_IDX_SKELETON
;
11941 /* Emit .debug_ranges section. */
11944 output_ranges (void)
11947 static const char *const start_fmt
= "Offset %#x";
11948 const char *fmt
= start_fmt
;
11951 switch_to_section (debug_ranges_section
);
11952 ASM_OUTPUT_LABEL (asm_out_file
, ranges_section_label
);
11953 FOR_EACH_VEC_SAFE_ELT (ranges_table
, i
, r
)
11955 int block_num
= r
->num
;
11959 char blabel
[MAX_ARTIFICIAL_LABEL_BYTES
];
11960 char elabel
[MAX_ARTIFICIAL_LABEL_BYTES
];
11962 ASM_GENERATE_INTERNAL_LABEL (blabel
, BLOCK_BEGIN_LABEL
, block_num
);
11963 ASM_GENERATE_INTERNAL_LABEL (elabel
, BLOCK_END_LABEL
, block_num
);
11965 /* If all code is in the text section, then the compilation
11966 unit base address defaults to DW_AT_low_pc, which is the
11967 base of the text section. */
11968 if (!have_multiple_function_sections
)
11970 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, blabel
,
11971 text_section_label
,
11972 fmt
, i
* 2 * DWARF2_ADDR_SIZE
);
11973 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, elabel
,
11974 text_section_label
, NULL
);
11977 /* Otherwise, the compilation unit base address is zero,
11978 which allows us to use absolute addresses, and not worry
11979 about whether the target supports cross-section
11983 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, blabel
,
11984 fmt
, i
* 2 * DWARF2_ADDR_SIZE
);
11985 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, elabel
, NULL
);
11991 /* Negative block_num stands for an index into ranges_by_label. */
11992 else if (block_num
< 0)
11994 int lab_idx
= - block_num
- 1;
11996 if (!have_multiple_function_sections
)
11998 gcc_unreachable ();
12000 /* If we ever use add_ranges_by_labels () for a single
12001 function section, all we have to do is to take out
12002 the #if 0 above. */
12003 dw2_asm_output_delta (DWARF2_ADDR_SIZE
,
12004 (*ranges_by_label
)[lab_idx
].begin
,
12005 text_section_label
,
12006 fmt
, i
* 2 * DWARF2_ADDR_SIZE
);
12007 dw2_asm_output_delta (DWARF2_ADDR_SIZE
,
12008 (*ranges_by_label
)[lab_idx
].end
,
12009 text_section_label
, NULL
);
12014 dw2_asm_output_addr (DWARF2_ADDR_SIZE
,
12015 (*ranges_by_label
)[lab_idx
].begin
,
12016 fmt
, i
* 2 * DWARF2_ADDR_SIZE
);
12017 dw2_asm_output_addr (DWARF2_ADDR_SIZE
,
12018 (*ranges_by_label
)[lab_idx
].end
,
12024 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0, NULL
);
12025 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0, NULL
);
12031 /* Non-zero if .debug_line_str should be used for .debug_line section
12032 strings or strings that are likely shareable with those. */
12033 #define DWARF5_USE_DEBUG_LINE_STR \
12034 (!DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET \
12035 && (DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) != 0 \
12036 /* FIXME: there is no .debug_line_str.dwo section, \
12037 for -gsplit-dwarf we should use DW_FORM_strx instead. */ \
12038 && !dwarf_split_debug_info)
12041 /* Returns TRUE if we are outputting DWARF5 and the assembler supports
12042 DWARF5 .debug_line tables using .debug_line_str or we generate
12043 it ourselves, except for split-dwarf which doesn't have a
12044 .debug_line_str. */
12046 asm_outputs_debug_line_str (void)
12048 if (dwarf_version
>= 5
12049 && ! output_asm_line_debug_info ()
12050 && DWARF5_USE_DEBUG_LINE_STR
)
12054 #if defined(HAVE_AS_GDWARF_5_DEBUG_FLAG) && defined(HAVE_AS_WORKING_DWARF_N_FLAG)
12055 return !dwarf_split_debug_info
&& dwarf_version
>= 5;
12062 /* Return true if it is beneficial to use DW_RLE_base_address{,x}.
12063 I is index of the following range. */
12066 use_distinct_base_address_for_range (unsigned int i
)
12068 if (i
>= vec_safe_length (ranges_table
))
12071 dw_ranges
*r2
= &(*ranges_table
)[i
];
12072 /* Use DW_RLE_base_address{,x} if there is a next range in the
12073 range list and is guaranteed to be in the same section. */
12074 return r2
->num
!= 0 && r2
->label
== NULL
&& !r2
->maybe_new_sec
;
12077 /* Assign .debug_rnglists indexes and unique indexes into the debug_addr
12078 section when needed. */
12081 index_rnglists (void)
12087 FOR_EACH_VEC_SAFE_ELT (ranges_table
, i
, r
)
12089 if (r
->label
&& r
->idx
!= DW_RANGES_IDX_SKELETON
)
12090 r
->idx
= rnglist_idx
++;
12092 int block_num
= r
->num
;
12093 if ((HAVE_AS_LEB128
|| block_num
< 0)
12094 && !have_multiple_function_sections
)
12096 if (HAVE_AS_LEB128
&& (r
->label
|| r
->maybe_new_sec
))
12100 char blabel
[MAX_ARTIFICIAL_LABEL_BYTES
];
12101 char elabel
[MAX_ARTIFICIAL_LABEL_BYTES
];
12103 ASM_GENERATE_INTERNAL_LABEL (blabel
, BLOCK_BEGIN_LABEL
, block_num
);
12104 ASM_GENERATE_INTERNAL_LABEL (elabel
, BLOCK_END_LABEL
, block_num
);
12106 if (HAVE_AS_LEB128
)
12108 if (!base
&& use_distinct_base_address_for_range (i
+ 1))
12110 r
->begin_entry
= add_addr_table_entry (xstrdup (blabel
),
12115 /* If we have a base, no need for further
12116 begin_entry/end_entry, as DW_RLE_offset_pair will be
12120 = add_addr_table_entry (xstrdup (blabel
), ate_kind_label
);
12121 /* No need for end_entry, DW_RLE_start{,x}_length will use
12122 length as opposed to a pair of addresses. */
12127 = add_addr_table_entry (xstrdup (blabel
), ate_kind_label
);
12129 = add_addr_table_entry (xstrdup (elabel
), ate_kind_label
);
12133 /* Negative block_num stands for an index into ranges_by_label. */
12134 else if (block_num
< 0)
12136 int lab_idx
= - block_num
- 1;
12137 const char *blabel
= (*ranges_by_label
)[lab_idx
].begin
;
12138 const char *elabel
= (*ranges_by_label
)[lab_idx
].end
;
12141 = add_addr_table_entry (xstrdup (blabel
), ate_kind_label
);
12142 if (!HAVE_AS_LEB128
)
12144 = add_addr_table_entry (xstrdup (elabel
), ate_kind_label
);
12149 /* Emit .debug_rnglists or (when DWO is true) .debug_rnglists.dwo section. */
12152 output_rnglists (unsigned generation
, bool dwo
)
12156 char l1
[MAX_ARTIFICIAL_LABEL_BYTES
];
12157 char l2
[MAX_ARTIFICIAL_LABEL_BYTES
];
12158 char basebuf
[MAX_ARTIFICIAL_LABEL_BYTES
];
12161 switch_to_section (debug_ranges_dwo_section
);
12164 switch_to_section (debug_ranges_section
);
12165 ASM_OUTPUT_LABEL (asm_out_file
, ranges_section_label
);
12167 /* There are up to 4 unique ranges labels per generation.
12168 See also init_sections_and_labels. */
12169 ASM_GENERATE_INTERNAL_LABEL (l1
, DEBUG_RANGES_SECTION_LABEL
,
12170 2 + 2 * dwo
+ generation
* 6);
12171 ASM_GENERATE_INTERNAL_LABEL (l2
, DEBUG_RANGES_SECTION_LABEL
,
12172 3 + 2 * dwo
+ generation
* 6);
12173 if (DWARF_INITIAL_LENGTH_SIZE
- dwarf_offset_size
== 4)
12174 dw2_asm_output_data (4, 0xffffffff,
12175 "Initial length escape value indicating "
12176 "64-bit DWARF extension");
12177 dw2_asm_output_delta (dwarf_offset_size
, l2
, l1
,
12178 "Length of Range Lists");
12179 ASM_OUTPUT_LABEL (asm_out_file
, l1
);
12180 output_dwarf_version ();
12181 dw2_asm_output_data (1, DWARF2_ADDR_SIZE
, "Address Size");
12182 dw2_asm_output_data (1, 0, "Segment Size");
12183 /* Emit the offset table only for -gsplit-dwarf. If we don't care
12184 about relocation sizes and primarily care about the size of .debug*
12185 sections in linked shared libraries and executables, then
12186 the offset table plus corresponding DW_FORM_rnglistx uleb128 indexes
12187 into it are usually larger than just DW_FORM_sec_offset offsets
12188 into the .debug_rnglists section. */
12189 dw2_asm_output_data (4, dwo
? rnglist_idx
: 0,
12190 "Offset Entry Count");
12193 ASM_OUTPUT_LABEL (asm_out_file
, ranges_base_label
);
12194 FOR_EACH_VEC_SAFE_ELT (ranges_table
, i
, r
)
12195 if (r
->label
&& r
->idx
!= DW_RANGES_IDX_SKELETON
)
12196 dw2_asm_output_delta (dwarf_offset_size
, r
->label
,
12197 ranges_base_label
, NULL
);
12200 const char *lab
= "";
12201 const char *base
= NULL
;
12202 bool skipping
= false;
12204 FOR_EACH_VEC_SAFE_ELT (ranges_table
, i
, r
)
12206 int block_num
= r
->num
;
12210 if (dwarf_split_debug_info
12211 && (r
->idx
== DW_RANGES_IDX_SKELETON
) == dwo
)
12217 ASM_OUTPUT_LABEL (asm_out_file
, r
->label
);
12222 if (block_num
== 0)
12226 if (HAVE_AS_LEB128
&& (r
->label
|| r
->maybe_new_sec
))
12230 char blabel
[MAX_ARTIFICIAL_LABEL_BYTES
];
12231 char elabel
[MAX_ARTIFICIAL_LABEL_BYTES
];
12233 ASM_GENERATE_INTERNAL_LABEL (blabel
, BLOCK_BEGIN_LABEL
, block_num
);
12234 ASM_GENERATE_INTERNAL_LABEL (elabel
, BLOCK_END_LABEL
, block_num
);
12236 if (HAVE_AS_LEB128
)
12238 /* If all code is in the text section, then the compilation
12239 unit base address defaults to DW_AT_low_pc, which is the
12240 base of the text section. */
12241 if (!have_multiple_function_sections
)
12243 dw2_asm_output_data (1, DW_RLE_offset_pair
,
12244 "DW_RLE_offset_pair (%s)", lab
);
12245 dw2_asm_output_delta_uleb128 (blabel
, text_section_label
,
12246 "Range begin address (%s)", lab
);
12247 dw2_asm_output_delta_uleb128 (elabel
, text_section_label
,
12248 "Range end address (%s)", lab
);
12251 if (base
== NULL
&& use_distinct_base_address_for_range (i
+ 1))
12253 if (dwarf_split_debug_info
)
12255 dw2_asm_output_data (1, DW_RLE_base_addressx
,
12256 "DW_RLE_base_addressx (%s)", lab
);
12257 dw2_asm_output_data_uleb128 (r
->begin_entry
->index
,
12258 "Base address index (%s)",
12263 dw2_asm_output_data (1, DW_RLE_base_address
,
12264 "DW_RLE_base_address (%s)", lab
);
12265 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, blabel
,
12266 "Base address (%s)", lab
);
12268 strcpy (basebuf
, blabel
);
12273 dw2_asm_output_data (1, DW_RLE_offset_pair
,
12274 "DW_RLE_offset_pair (%s)", lab
);
12275 dw2_asm_output_delta_uleb128 (blabel
, base
,
12276 "Range begin address (%s)", lab
);
12277 dw2_asm_output_delta_uleb128 (elabel
, base
,
12278 "Range end address (%s)", lab
);
12281 if (dwarf_split_debug_info
)
12283 dw2_asm_output_data (1, DW_RLE_startx_length
,
12284 "DW_RLE_startx_length (%s)", lab
);
12285 dw2_asm_output_data_uleb128 (r
->begin_entry
->index
,
12286 "Range begin address index "
12291 dw2_asm_output_data (1, DW_RLE_start_length
,
12292 "DW_RLE_start_length (%s)", lab
);
12293 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, blabel
,
12294 "Range begin address (%s)", lab
);
12296 dw2_asm_output_delta_uleb128 (elabel
, blabel
,
12297 "Range length (%s)", lab
);
12299 else if (dwarf_split_debug_info
)
12301 dw2_asm_output_data (1, DW_RLE_startx_endx
,
12302 "DW_RLE_startx_endx (%s)", lab
);
12303 dw2_asm_output_data_uleb128 (r
->begin_entry
->index
,
12304 "Range begin address index "
12306 dw2_asm_output_data_uleb128 (r
->end_entry
->index
,
12307 "Range end address index "
12312 dw2_asm_output_data (1, DW_RLE_start_end
,
12313 "DW_RLE_start_end (%s)", lab
);
12314 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, blabel
,
12315 "Range begin address (%s)", lab
);
12316 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, elabel
,
12317 "Range end address (%s)", lab
);
12321 /* Negative block_num stands for an index into ranges_by_label. */
12322 else if (block_num
< 0)
12324 int lab_idx
= - block_num
- 1;
12325 const char *blabel
= (*ranges_by_label
)[lab_idx
].begin
;
12326 const char *elabel
= (*ranges_by_label
)[lab_idx
].end
;
12328 if (!have_multiple_function_sections
)
12329 gcc_unreachable ();
12330 if (HAVE_AS_LEB128
)
12332 if (dwarf_split_debug_info
)
12334 dw2_asm_output_data (1, DW_RLE_startx_length
,
12335 "DW_RLE_startx_length (%s)", lab
);
12336 dw2_asm_output_data_uleb128 (r
->begin_entry
->index
,
12337 "Range begin address index "
12342 dw2_asm_output_data (1, DW_RLE_start_length
,
12343 "DW_RLE_start_length (%s)", lab
);
12344 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, blabel
,
12345 "Range begin address (%s)", lab
);
12347 dw2_asm_output_delta_uleb128 (elabel
, blabel
,
12348 "Range length (%s)", lab
);
12350 else if (dwarf_split_debug_info
)
12352 dw2_asm_output_data (1, DW_RLE_startx_endx
,
12353 "DW_RLE_startx_endx (%s)", lab
);
12354 dw2_asm_output_data_uleb128 (r
->begin_entry
->index
,
12355 "Range begin address index "
12357 dw2_asm_output_data_uleb128 (r
->end_entry
->index
,
12358 "Range end address index "
12363 dw2_asm_output_data (1, DW_RLE_start_end
,
12364 "DW_RLE_start_end (%s)", lab
);
12365 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, blabel
,
12366 "Range begin address (%s)", lab
);
12367 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, elabel
,
12368 "Range end address (%s)", lab
);
12372 dw2_asm_output_data (1, DW_RLE_end_of_list
,
12373 "DW_RLE_end_of_list (%s)", lab
);
12375 ASM_OUTPUT_LABEL (asm_out_file
, l2
);
12379 /* Data structure containing information about input files. */
12382 const char *path
; /* Complete file name. */
12383 const char *fname
; /* File name part. */
12384 int length
; /* Length of entire string. */
12385 struct dwarf_file_data
* file_idx
; /* Index in input file table. */
12386 int dir_idx
; /* Index in directory table. */
12389 /* Data structure containing information about directories with source
12393 const char *path
; /* Path including directory name. */
12394 int length
; /* Path length. */
12395 int prefix
; /* Index of directory entry which is a prefix. */
12396 int count
; /* Number of files in this directory. */
12397 int dir_idx
; /* Index of directory used as base. */
12400 /* Callback function for file_info comparison. We sort by looking at
12401 the directories in the path. */
12404 file_info_cmp (const void *p1
, const void *p2
)
12406 const struct file_info
*const s1
= (const struct file_info
*) p1
;
12407 const struct file_info
*const s2
= (const struct file_info
*) p2
;
12408 const unsigned char *cp1
;
12409 const unsigned char *cp2
;
12411 /* Take care of file names without directories. We need to make sure that
12412 we return consistent values to qsort since some will get confused if
12413 we return the same value when identical operands are passed in opposite
12414 orders. So if neither has a directory, return 0 and otherwise return
12415 1 or -1 depending on which one has the directory. We want the one with
12416 the directory to sort after the one without, so all no directory files
12417 are at the start (normally only the compilation unit file). */
12418 if ((s1
->path
== s1
->fname
|| s2
->path
== s2
->fname
))
12419 return (s2
->path
== s2
->fname
) - (s1
->path
== s1
->fname
);
12421 cp1
= (const unsigned char *) s1
->path
;
12422 cp2
= (const unsigned char *) s2
->path
;
12428 /* Reached the end of the first path? If so, handle like above,
12429 but now we want longer directory prefixes before shorter ones. */
12430 if ((cp1
== (const unsigned char *) s1
->fname
)
12431 || (cp2
== (const unsigned char *) s2
->fname
))
12432 return ((cp1
== (const unsigned char *) s1
->fname
)
12433 - (cp2
== (const unsigned char *) s2
->fname
));
12435 /* Character of current path component the same? */
12436 else if (*cp1
!= *cp2
)
12437 return *cp1
- *cp2
;
12441 struct file_name_acquire_data
12443 struct file_info
*files
;
12448 /* Traversal function for the hash table. */
12451 file_name_acquire (dwarf_file_data
**slot
, file_name_acquire_data
*fnad
)
12453 struct dwarf_file_data
*d
= *slot
;
12454 struct file_info
*fi
;
12457 gcc_assert (fnad
->max_files
>= d
->emitted_number
);
12459 if (! d
->emitted_number
)
12462 gcc_assert (fnad
->max_files
!= fnad
->used_files
);
12464 fi
= fnad
->files
+ fnad
->used_files
++;
12468 /* Skip all leading "./". */
12469 while (f
[0] == '.' && IS_DIR_SEPARATOR (f
[1]))
12472 /* Create a new array entry. */
12474 fi
->length
= strlen (f
);
12477 /* Search for the file name part. */
12478 f
= strrchr (f
, DIR_SEPARATOR
);
12479 #if defined (DIR_SEPARATOR_2)
12481 const char *g
= strrchr (fi
->path
, DIR_SEPARATOR_2
);
12485 if (f
== NULL
|| f
< g
)
12491 fi
->fname
= f
== NULL
? fi
->path
: f
+ 1;
12495 /* Helper function for output_file_names. Emit a FORM encoded
12496 string STR, with assembly comment start ENTRY_KIND and
12500 output_line_string (enum dwarf_form form
, const char *str
,
12501 const char *entry_kind
, unsigned int idx
)
12505 case DW_FORM_string
:
12506 dw2_asm_output_nstring (str
, -1, "%s: %#x", entry_kind
, idx
);
12508 case DW_FORM_line_strp
:
12509 if (!debug_line_str_hash
)
12510 debug_line_str_hash
12511 = hash_table
<indirect_string_hasher
>::create_ggc (10);
12513 struct indirect_string_node
*node
;
12514 node
= find_AT_string_in_table (str
, debug_line_str_hash
);
12515 set_indirect_string (node
);
12517 dw2_asm_output_offset (dwarf_offset_size
, node
->label
,
12518 debug_line_str_section
, "%s: %#x: \"%s\"",
12519 entry_kind
, 0, node
->str
);
12522 gcc_unreachable ();
12526 /* Output the directory table and the file name table. We try to minimize
12527 the total amount of memory needed. A heuristic is used to avoid large
12528 slowdowns with many input files. */
12531 output_file_names (void)
12533 struct file_name_acquire_data fnad
;
12535 struct file_info
*files
;
12536 struct dir_info
*dirs
;
12544 if (!last_emitted_file
)
12546 if (dwarf_version
>= 5)
12548 const char *comp_dir
= comp_dir_string ();
12549 if (comp_dir
== NULL
)
12551 dw2_asm_output_data (1, 1, "Directory entry format count");
12552 enum dwarf_form str_form
= DW_FORM_string
;
12553 if (DWARF5_USE_DEBUG_LINE_STR
)
12554 str_form
= DW_FORM_line_strp
;
12555 dw2_asm_output_data_uleb128 (DW_LNCT_path
, "DW_LNCT_path");
12556 dw2_asm_output_data_uleb128 (str_form
, "%s",
12557 get_DW_FORM_name (str_form
));
12558 dw2_asm_output_data_uleb128 (1, "Directories count");
12559 if (str_form
== DW_FORM_string
)
12560 dw2_asm_output_nstring (comp_dir
, -1, "Directory Entry: %#x", 0);
12562 output_line_string (str_form
, comp_dir
, "Directory Entry", 0);
12563 const char *filename0
= get_AT_string (comp_unit_die (), DW_AT_name
);
12564 if (filename0
== NULL
)
12566 #ifdef VMS_DEBUGGING_INFO
12567 dw2_asm_output_data (1, 4, "File name entry format count");
12569 dw2_asm_output_data (1, 2, "File name entry format count");
12571 dw2_asm_output_data_uleb128 (DW_LNCT_path
, "DW_LNCT_path");
12572 dw2_asm_output_data_uleb128 (str_form
, "%s",
12573 get_DW_FORM_name (str_form
));
12574 dw2_asm_output_data_uleb128 (DW_LNCT_directory_index
,
12575 "DW_LNCT_directory_index");
12576 dw2_asm_output_data_uleb128 (DW_FORM_data1
, "%s",
12577 get_DW_FORM_name (DW_FORM_data1
));
12578 #ifdef VMS_DEBUGGING_INFO
12579 dw2_asm_output_data_uleb128 (DW_LNCT_timestamp
, "DW_LNCT_timestamp");
12580 dw2_asm_output_data_uleb128 (DW_FORM_udata
, "DW_FORM_udata");
12581 dw2_asm_output_data_uleb128 (DW_LNCT_size
, "DW_LNCT_size");
12582 dw2_asm_output_data_uleb128 (DW_FORM_udata
, "DW_FORM_udata");
12584 dw2_asm_output_data_uleb128 (1, "File names count");
12586 output_line_string (str_form
, filename0
, "File Entry", 0);
12587 dw2_asm_output_data (1, 0, NULL
);
12588 #ifdef VMS_DEBUGGING_INFO
12589 dw2_asm_output_data_uleb128 (0, NULL
);
12590 dw2_asm_output_data_uleb128 (0, NULL
);
12595 dw2_asm_output_data (1, 0, "End directory table");
12596 dw2_asm_output_data (1, 0, "End file name table");
12601 numfiles
= last_emitted_file
->emitted_number
;
12603 /* Allocate the various arrays we need. */
12604 files
= XALLOCAVEC (struct file_info
, numfiles
);
12605 dirs
= XALLOCAVEC (struct dir_info
, numfiles
);
12607 fnad
.files
= files
;
12608 fnad
.used_files
= 0;
12609 fnad
.max_files
= numfiles
;
12610 file_table
->traverse
<file_name_acquire_data
*, file_name_acquire
> (&fnad
);
12611 gcc_assert (fnad
.used_files
== fnad
.max_files
);
12613 qsort (files
, numfiles
, sizeof (files
[0]), file_info_cmp
);
12615 /* Find all the different directories used. */
12616 dirs
[0].path
= files
[0].path
;
12617 dirs
[0].length
= files
[0].fname
- files
[0].path
;
12618 dirs
[0].prefix
= -1;
12620 dirs
[0].dir_idx
= 0;
12621 files
[0].dir_idx
= 0;
12624 for (i
= 1; i
< numfiles
; i
++)
12625 if (files
[i
].fname
- files
[i
].path
== dirs
[ndirs
- 1].length
12626 && memcmp (dirs
[ndirs
- 1].path
, files
[i
].path
,
12627 dirs
[ndirs
- 1].length
) == 0)
12629 /* Same directory as last entry. */
12630 files
[i
].dir_idx
= ndirs
- 1;
12631 ++dirs
[ndirs
- 1].count
;
12637 /* This is a new directory. */
12638 dirs
[ndirs
].path
= files
[i
].path
;
12639 dirs
[ndirs
].length
= files
[i
].fname
- files
[i
].path
;
12640 dirs
[ndirs
].count
= 1;
12641 dirs
[ndirs
].dir_idx
= ndirs
;
12642 files
[i
].dir_idx
= ndirs
;
12644 /* Search for a prefix. */
12645 dirs
[ndirs
].prefix
= -1;
12646 for (j
= 0; j
< ndirs
; j
++)
12647 if (dirs
[j
].length
< dirs
[ndirs
].length
12648 && dirs
[j
].length
> 1
12649 && (dirs
[ndirs
].prefix
== -1
12650 || dirs
[j
].length
> dirs
[dirs
[ndirs
].prefix
].length
)
12651 && memcmp (dirs
[j
].path
, dirs
[ndirs
].path
, dirs
[j
].length
) == 0)
12652 dirs
[ndirs
].prefix
= j
;
12657 /* Now to the actual work. We have to find a subset of the directories which
12658 allow expressing the file name using references to the directory table
12659 with the least amount of characters. We do not do an exhaustive search
12660 where we would have to check out every combination of every single
12661 possible prefix. Instead we use a heuristic which provides nearly optimal
12662 results in most cases and never is much off. */
12663 saved
= XALLOCAVEC (int, ndirs
);
12664 savehere
= XALLOCAVEC (int, ndirs
);
12666 memset (saved
, '\0', ndirs
* sizeof (saved
[0]));
12667 for (i
= 0; i
< ndirs
; i
++)
12672 /* We can always save some space for the current directory. But this
12673 does not mean it will be enough to justify adding the directory. */
12674 savehere
[i
] = dirs
[i
].length
;
12675 total
= (savehere
[i
] - saved
[i
]) * dirs
[i
].count
;
12677 for (j
= i
+ 1; j
< ndirs
; j
++)
12680 if (saved
[j
] < dirs
[i
].length
)
12682 /* Determine whether the dirs[i] path is a prefix of the
12686 k
= dirs
[j
].prefix
;
12687 while (k
!= -1 && k
!= (int) i
)
12688 k
= dirs
[k
].prefix
;
12692 /* Yes it is. We can possibly save some memory by
12693 writing the filenames in dirs[j] relative to
12695 savehere
[j
] = dirs
[i
].length
;
12696 total
+= (savehere
[j
] - saved
[j
]) * dirs
[j
].count
;
12701 /* Check whether we can save enough to justify adding the dirs[i]
12703 if (total
> dirs
[i
].length
+ 1)
12705 /* It's worthwhile adding. */
12706 for (j
= i
; j
< ndirs
; j
++)
12707 if (savehere
[j
] > 0)
12709 /* Remember how much we saved for this directory so far. */
12710 saved
[j
] = savehere
[j
];
12712 /* Remember the prefix directory. */
12713 dirs
[j
].dir_idx
= i
;
12718 /* Emit the directory name table. */
12719 idx_offset
= dirs
[0].length
> 0 ? 1 : 0;
12720 enum dwarf_form str_form
= DW_FORM_string
;
12721 enum dwarf_form idx_form
= DW_FORM_udata
;
12722 if (dwarf_version
>= 5)
12724 const char *comp_dir
= comp_dir_string ();
12725 if (comp_dir
== NULL
)
12727 dw2_asm_output_data (1, 1, "Directory entry format count");
12728 if (DWARF5_USE_DEBUG_LINE_STR
)
12729 str_form
= DW_FORM_line_strp
;
12730 dw2_asm_output_data_uleb128 (DW_LNCT_path
, "DW_LNCT_path");
12731 dw2_asm_output_data_uleb128 (str_form
, "%s",
12732 get_DW_FORM_name (str_form
));
12733 dw2_asm_output_data_uleb128 (ndirs
+ idx_offset
, "Directories count");
12734 if (str_form
== DW_FORM_string
)
12736 dw2_asm_output_nstring (comp_dir
, -1, "Directory Entry: %#x", 0);
12737 for (i
= 1 - idx_offset
; i
< ndirs
; i
++)
12738 dw2_asm_output_nstring (dirs
[i
].path
,
12740 - !DWARF2_DIR_SHOULD_END_WITH_SEPARATOR
,
12741 "Directory Entry: %#x", i
+ idx_offset
);
12745 output_line_string (str_form
, comp_dir
, "Directory Entry", 0);
12746 for (i
= 1 - idx_offset
; i
< ndirs
; i
++)
12749 = ggc_alloc_string (dirs
[i
].path
,
12751 - !DWARF2_DIR_SHOULD_END_WITH_SEPARATOR
);
12752 output_line_string (str_form
, str
, "Directory Entry",
12753 (unsigned) i
+ idx_offset
);
12759 for (i
= 1 - idx_offset
; i
< ndirs
; i
++)
12760 dw2_asm_output_nstring (dirs
[i
].path
,
12762 - !DWARF2_DIR_SHOULD_END_WITH_SEPARATOR
,
12763 "Directory Entry: %#x", i
+ idx_offset
);
12765 dw2_asm_output_data (1, 0, "End directory table");
12768 /* We have to emit them in the order of emitted_number since that's
12769 used in the debug info generation. To do this efficiently we
12770 generate a back-mapping of the indices first. */
12771 backmap
= XALLOCAVEC (int, numfiles
);
12772 for (i
= 0; i
< numfiles
; i
++)
12773 backmap
[files
[i
].file_idx
->emitted_number
- 1] = i
;
12775 if (dwarf_version
>= 5)
12777 const char *filename0
= get_AT_string (comp_unit_die (), DW_AT_name
);
12778 if (filename0
== NULL
)
12780 /* DW_LNCT_directory_index can use DW_FORM_udata, DW_FORM_data1 and
12781 DW_FORM_data2. Choose one based on the number of directories
12782 and how much space would they occupy in each encoding.
12783 If we have at most 256 directories, all indexes fit into
12784 a single byte, so DW_FORM_data1 is most compact (if there
12785 are at most 128 directories, DW_FORM_udata would be as
12786 compact as that, but not shorter and slower to decode). */
12787 if (ndirs
+ idx_offset
<= 256)
12788 idx_form
= DW_FORM_data1
;
12789 /* If there are more than 65536 directories, we have to use
12790 DW_FORM_udata, DW_FORM_data2 can't refer to them.
12791 Otherwise, compute what space would occupy if all the indexes
12792 used DW_FORM_udata - sum - and compare that to how large would
12793 be DW_FORM_data2 encoding, and pick the more efficient one. */
12794 else if (ndirs
+ idx_offset
<= 65536)
12796 unsigned HOST_WIDE_INT sum
= 1;
12797 for (i
= 0; i
< numfiles
; i
++)
12799 int file_idx
= backmap
[i
];
12800 int dir_idx
= dirs
[files
[file_idx
].dir_idx
].dir_idx
;
12801 sum
+= size_of_uleb128 (dir_idx
);
12803 if (sum
>= HOST_WIDE_INT_UC (2) * (numfiles
+ 1))
12804 idx_form
= DW_FORM_data2
;
12806 #ifdef VMS_DEBUGGING_INFO
12807 dw2_asm_output_data (1, 4, "File name entry format count");
12809 dw2_asm_output_data (1, 2, "File name entry format count");
12811 dw2_asm_output_data_uleb128 (DW_LNCT_path
, "DW_LNCT_path");
12812 dw2_asm_output_data_uleb128 (str_form
, "%s",
12813 get_DW_FORM_name (str_form
));
12814 dw2_asm_output_data_uleb128 (DW_LNCT_directory_index
,
12815 "DW_LNCT_directory_index");
12816 dw2_asm_output_data_uleb128 (idx_form
, "%s",
12817 get_DW_FORM_name (idx_form
));
12818 #ifdef VMS_DEBUGGING_INFO
12819 dw2_asm_output_data_uleb128 (DW_LNCT_timestamp
, "DW_LNCT_timestamp");
12820 dw2_asm_output_data_uleb128 (DW_FORM_udata
, "DW_FORM_udata");
12821 dw2_asm_output_data_uleb128 (DW_LNCT_size
, "DW_LNCT_size");
12822 dw2_asm_output_data_uleb128 (DW_FORM_udata
, "DW_FORM_udata");
12824 dw2_asm_output_data_uleb128 (numfiles
+ 1, "File names count");
12826 output_line_string (str_form
, filename0
, "File Entry", 0);
12828 /* Include directory index. */
12829 if (idx_form
!= DW_FORM_udata
)
12830 dw2_asm_output_data (idx_form
== DW_FORM_data1
? 1 : 2,
12833 dw2_asm_output_data_uleb128 (0, NULL
);
12835 #ifdef VMS_DEBUGGING_INFO
12836 dw2_asm_output_data_uleb128 (0, NULL
);
12837 dw2_asm_output_data_uleb128 (0, NULL
);
12841 /* Now write all the file names. */
12842 for (i
= 0; i
< numfiles
; i
++)
12844 int file_idx
= backmap
[i
];
12845 int dir_idx
= dirs
[files
[file_idx
].dir_idx
].dir_idx
;
12847 #ifdef VMS_DEBUGGING_INFO
12848 #define MAX_VMS_VERSION_LEN 6 /* ";32768" */
12850 /* Setting these fields can lead to debugger miscomparisons,
12851 but VMS Debug requires them to be set correctly. */
12856 int maxfilelen
= (strlen (files
[file_idx
].path
)
12857 + dirs
[dir_idx
].length
12858 + MAX_VMS_VERSION_LEN
+ 1);
12859 char *filebuf
= XALLOCAVEC (char, maxfilelen
);
12861 vms_file_stats_name (files
[file_idx
].path
, 0, 0, 0, &ver
);
12862 snprintf (filebuf
, maxfilelen
, "%s;%d",
12863 files
[file_idx
].path
+ dirs
[dir_idx
].length
, ver
);
12865 output_line_string (str_form
, filebuf
, "File Entry", (unsigned) i
+ 1);
12867 /* Include directory index. */
12868 if (dwarf_version
>= 5 && idx_form
!= DW_FORM_udata
)
12869 dw2_asm_output_data (idx_form
== DW_FORM_data1
? 1 : 2,
12870 dir_idx
+ idx_offset
, NULL
);
12872 dw2_asm_output_data_uleb128 (dir_idx
+ idx_offset
, NULL
);
12874 /* Modification time. */
12875 dw2_asm_output_data_uleb128 ((vms_file_stats_name (files
[file_idx
].path
,
12876 &cdt
, 0, 0, 0) == 0)
12879 /* File length in bytes. */
12880 dw2_asm_output_data_uleb128 ((vms_file_stats_name (files
[file_idx
].path
,
12881 0, &siz
, 0, 0) == 0)
12884 output_line_string (str_form
,
12885 files
[file_idx
].path
+ dirs
[dir_idx
].length
,
12886 "File Entry", (unsigned) i
+ 1);
12888 /* Include directory index. */
12889 if (dwarf_version
>= 5 && idx_form
!= DW_FORM_udata
)
12890 dw2_asm_output_data (idx_form
== DW_FORM_data1
? 1 : 2,
12891 dir_idx
+ idx_offset
, NULL
);
12893 dw2_asm_output_data_uleb128 (dir_idx
+ idx_offset
, NULL
);
12895 if (dwarf_version
>= 5)
12898 /* Modification time. */
12899 dw2_asm_output_data_uleb128 (0, NULL
);
12901 /* File length in bytes. */
12902 dw2_asm_output_data_uleb128 (0, NULL
);
12903 #endif /* VMS_DEBUGGING_INFO */
12906 if (dwarf_version
< 5)
12907 dw2_asm_output_data (1, 0, "End file name table");
12911 /* Output one line number table into the .debug_line section. */
12914 output_one_line_info_table (dw_line_info_table
*table
)
12916 char line_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
12917 unsigned int current_line
= 1;
12918 bool current_is_stmt
= DWARF_LINE_DEFAULT_IS_STMT_START
;
12919 dw_line_info_entry
*ent
, *prev_addr
;
12925 FOR_EACH_VEC_SAFE_ELT (table
->entries
, i
, ent
)
12927 switch (ent
->opcode
)
12929 case LI_set_address
:
12930 /* ??? Unfortunately, we have little choice here currently, and
12931 must always use the most general form. GCC does not know the
12932 address delta itself, so we can't use DW_LNS_advance_pc. Many
12933 ports do have length attributes which will give an upper bound
12934 on the address range. We could perhaps use length attributes
12935 to determine when it is safe to use DW_LNS_fixed_advance_pc. */
12936 ASM_GENERATE_INTERNAL_LABEL (line_label
, LINE_CODE_LABEL
, ent
->val
);
12940 /* This can handle any delta. This takes
12941 4+DWARF2_ADDR_SIZE bytes. */
12942 dw2_asm_output_data (1, 0, "set address %s%s", line_label
,
12943 debug_variable_location_views
12944 ? ", reset view to 0" : "");
12945 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE
, NULL
);
12946 dw2_asm_output_data (1, DW_LNE_set_address
, NULL
);
12947 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, line_label
, NULL
);
12952 case LI_adv_address
:
12954 ASM_GENERATE_INTERNAL_LABEL (line_label
, LINE_CODE_LABEL
, ent
->val
);
12955 char prev_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
12956 ASM_GENERATE_INTERNAL_LABEL (prev_label
, LINE_CODE_LABEL
, prev_addr
->val
);
12960 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc
, "fixed advance PC, increment view to %i", view
);
12961 dw2_asm_output_delta (2, line_label
, prev_label
,
12962 "from %s to %s", prev_label
, line_label
);
12969 if (ent
->val
== current_line
)
12971 /* We still need to start a new row, so output a copy insn. */
12972 dw2_asm_output_data (1, DW_LNS_copy
,
12973 "copy line %u", current_line
);
12977 int line_offset
= ent
->val
- current_line
;
12978 int line_delta
= line_offset
- DWARF_LINE_BASE
;
12980 current_line
= ent
->val
;
12981 if (line_delta
>= 0 && line_delta
< (DWARF_LINE_RANGE
- 1))
12983 /* This can handle deltas from -10 to 234, using the current
12984 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE.
12985 This takes 1 byte. */
12986 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE
+ line_delta
,
12987 "line %u", current_line
);
12991 /* This can handle any delta. This takes at least 4 bytes,
12992 depending on the value being encoded. */
12993 dw2_asm_output_data (1, DW_LNS_advance_line
,
12994 "advance to line %u", current_line
);
12995 dw2_asm_output_data_sleb128 (line_offset
, NULL
);
12996 dw2_asm_output_data (1, DW_LNS_copy
, NULL
);
13002 dw2_asm_output_data (1, DW_LNS_set_file
, "set file %u", ent
->val
);
13003 dw2_asm_output_data_uleb128 (ent
->val
, "%u", ent
->val
);
13006 case LI_set_column
:
13007 dw2_asm_output_data (1, DW_LNS_set_column
, "column %u", ent
->val
);
13008 dw2_asm_output_data_uleb128 (ent
->val
, "%u", ent
->val
);
13011 case LI_negate_stmt
:
13012 current_is_stmt
= !current_is_stmt
;
13013 dw2_asm_output_data (1, DW_LNS_negate_stmt
,
13014 "is_stmt %d", current_is_stmt
);
13017 case LI_set_prologue_end
:
13018 dw2_asm_output_data (1, DW_LNS_set_prologue_end
,
13019 "set prologue end");
13022 case LI_set_epilogue_begin
:
13023 dw2_asm_output_data (1, DW_LNS_set_epilogue_begin
,
13024 "set epilogue begin");
13027 case LI_set_discriminator
:
13028 dw2_asm_output_data (1, 0, "discriminator %u", ent
->val
);
13029 dw2_asm_output_data_uleb128 (1 + size_of_uleb128 (ent
->val
), NULL
);
13030 dw2_asm_output_data (1, DW_LNE_set_discriminator
, NULL
);
13031 dw2_asm_output_data_uleb128 (ent
->val
, NULL
);
13036 /* Emit debug info for the address of the end of the table. */
13037 dw2_asm_output_data (1, 0, "set address %s", table
->end_label
);
13038 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE
, NULL
);
13039 dw2_asm_output_data (1, DW_LNE_set_address
, NULL
);
13040 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, table
->end_label
, NULL
);
13042 dw2_asm_output_data (1, 0, "end sequence");
13043 dw2_asm_output_data_uleb128 (1, NULL
);
13044 dw2_asm_output_data (1, DW_LNE_end_sequence
, NULL
);
13047 static unsigned int output_line_info_generation
;
13049 /* Output the source line number correspondence information. This
13050 information goes into the .debug_line section. */
13053 output_line_info (bool prologue_only
)
13055 char l1
[MAX_ARTIFICIAL_LABEL_BYTES
], l2
[MAX_ARTIFICIAL_LABEL_BYTES
];
13056 char p1
[MAX_ARTIFICIAL_LABEL_BYTES
], p2
[MAX_ARTIFICIAL_LABEL_BYTES
];
13057 bool saw_one
= false;
13060 ASM_GENERATE_INTERNAL_LABEL (l1
, LINE_NUMBER_BEGIN_LABEL
,
13061 output_line_info_generation
);
13062 ASM_GENERATE_INTERNAL_LABEL (l2
, LINE_NUMBER_END_LABEL
,
13063 output_line_info_generation
);
13064 ASM_GENERATE_INTERNAL_LABEL (p1
, LN_PROLOG_AS_LABEL
,
13065 output_line_info_generation
);
13066 ASM_GENERATE_INTERNAL_LABEL (p2
, LN_PROLOG_END_LABEL
,
13067 output_line_info_generation
++);
13069 if (!XCOFF_DEBUGGING_INFO
)
13071 if (DWARF_INITIAL_LENGTH_SIZE
- dwarf_offset_size
== 4)
13072 dw2_asm_output_data (4, 0xffffffff,
13073 "Initial length escape value indicating 64-bit DWARF extension");
13074 dw2_asm_output_delta (dwarf_offset_size
, l2
, l1
,
13075 "Length of Source Line Info");
13078 ASM_OUTPUT_LABEL (asm_out_file
, l1
);
13080 output_dwarf_version ();
13081 if (dwarf_version
>= 5)
13083 dw2_asm_output_data (1, DWARF2_ADDR_SIZE
, "Address Size");
13084 dw2_asm_output_data (1, 0, "Segment Size");
13086 dw2_asm_output_delta (dwarf_offset_size
, p2
, p1
, "Prolog Length");
13087 ASM_OUTPUT_LABEL (asm_out_file
, p1
);
13089 /* Define the architecture-dependent minimum instruction length (in bytes).
13090 In this implementation of DWARF, this field is used for information
13091 purposes only. Since GCC generates assembly language, we have no
13092 a priori knowledge of how many instruction bytes are generated for each
13093 source line, and therefore can use only the DW_LNE_set_address and
13094 DW_LNS_fixed_advance_pc line information commands. Accordingly, we fix
13095 this as '1', which is "correct enough" for all architectures,
13096 and don't let the target override. */
13097 dw2_asm_output_data (1, 1, "Minimum Instruction Length");
13099 if (dwarf_version
>= 4)
13100 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_MAX_OPS_PER_INSN
,
13101 "Maximum Operations Per Instruction");
13102 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START
,
13103 "Default is_stmt_start flag");
13104 dw2_asm_output_data (1, DWARF_LINE_BASE
,
13105 "Line Base Value (Special Opcodes)");
13106 dw2_asm_output_data (1, DWARF_LINE_RANGE
,
13107 "Line Range Value (Special Opcodes)");
13108 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE
,
13109 "Special Opcode Base");
13111 for (opc
= 1; opc
< DWARF_LINE_OPCODE_BASE
; opc
++)
13116 case DW_LNS_advance_pc
:
13117 case DW_LNS_advance_line
:
13118 case DW_LNS_set_file
:
13119 case DW_LNS_set_column
:
13120 case DW_LNS_fixed_advance_pc
:
13121 case DW_LNS_set_isa
:
13129 dw2_asm_output_data (1, n_op_args
, "opcode: %#x has %d args",
13133 /* Write out the information about the files we use. */
13134 output_file_names ();
13135 ASM_OUTPUT_LABEL (asm_out_file
, p2
);
13138 /* Output the marker for the end of the line number info. */
13139 ASM_OUTPUT_LABEL (asm_out_file
, l2
);
13143 if (separate_line_info
)
13145 dw_line_info_table
*table
;
13148 FOR_EACH_VEC_ELT (*separate_line_info
, i
, table
)
13151 output_one_line_info_table (table
);
13155 if (cold_text_section_line_info
&& cold_text_section_line_info
->in_use
)
13157 output_one_line_info_table (cold_text_section_line_info
);
13161 /* ??? Some Darwin linkers crash on a .debug_line section with no
13162 sequences. Further, merely a DW_LNE_end_sequence entry is not
13163 sufficient -- the address column must also be initialized.
13164 Make sure to output at least one set_address/end_sequence pair,
13165 choosing .text since that section is always present. */
13166 if (text_section_line_info
->in_use
|| !saw_one
)
13167 output_one_line_info_table (text_section_line_info
);
13169 /* Output the marker for the end of the line number info. */
13170 ASM_OUTPUT_LABEL (asm_out_file
, l2
);
13173 /* Return true if DW_AT_endianity should be emitted according to REVERSE. */
13176 need_endianity_attribute_p (bool reverse
)
13178 return reverse
&& (dwarf_version
>= 3 || !dwarf_strict
);
13181 /* Given a pointer to a tree node for some base type, return a pointer to
13182 a DIE that describes the given type. REVERSE is true if the type is
13183 to be interpreted in the reverse storage order wrt the target order.
13185 This routine must only be called for GCC type nodes that correspond to
13186 Dwarf base (fundamental) types. */
13189 base_type_die (tree type
, bool reverse
)
13191 dw_die_ref base_type_result
;
13192 enum dwarf_type encoding
;
13193 bool fpt_used
= false;
13194 struct fixed_point_type_info fpt_info
;
13195 tree type_bias
= NULL_TREE
;
13197 /* If this is a subtype that should not be emitted as a subrange type,
13198 use the base type. See subrange_type_for_debug_p. */
13199 if (TREE_CODE (type
) == INTEGER_TYPE
&& TREE_TYPE (type
) != NULL_TREE
)
13200 type
= TREE_TYPE (type
);
13202 switch (TREE_CODE (type
))
13205 if ((dwarf_version
>= 4 || !dwarf_strict
)
13206 && TYPE_NAME (type
)
13207 && TREE_CODE (TYPE_NAME (type
)) == TYPE_DECL
13208 && DECL_IS_UNDECLARED_BUILTIN (TYPE_NAME (type
))
13209 && DECL_NAME (TYPE_NAME (type
)))
13211 const char *name
= IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type
)));
13212 if (strcmp (name
, "char16_t") == 0
13213 || strcmp (name
, "char32_t") == 0)
13215 encoding
= DW_ATE_UTF
;
13219 if ((dwarf_version
>= 3 || !dwarf_strict
)
13220 && lang_hooks
.types
.get_fixed_point_type_info
)
13222 memset (&fpt_info
, 0, sizeof (fpt_info
));
13223 if (lang_hooks
.types
.get_fixed_point_type_info (type
, &fpt_info
))
13226 encoding
= ((TYPE_UNSIGNED (type
))
13227 ? DW_ATE_unsigned_fixed
13228 : DW_ATE_signed_fixed
);
13232 if (TYPE_STRING_FLAG (type
))
13234 if (TYPE_UNSIGNED (type
))
13235 encoding
= DW_ATE_unsigned_char
;
13237 encoding
= DW_ATE_signed_char
;
13239 else if (TYPE_UNSIGNED (type
))
13240 encoding
= DW_ATE_unsigned
;
13242 encoding
= DW_ATE_signed
;
13245 && lang_hooks
.types
.get_type_bias
)
13246 type_bias
= lang_hooks
.types
.get_type_bias (type
);
13250 if (DECIMAL_FLOAT_MODE_P (TYPE_MODE (type
)))
13252 if (dwarf_version
>= 3 || !dwarf_strict
)
13253 encoding
= DW_ATE_decimal_float
;
13255 encoding
= DW_ATE_lo_user
;
13258 encoding
= DW_ATE_float
;
13261 case FIXED_POINT_TYPE
:
13262 if (!(dwarf_version
>= 3 || !dwarf_strict
))
13263 encoding
= DW_ATE_lo_user
;
13264 else if (TYPE_UNSIGNED (type
))
13265 encoding
= DW_ATE_unsigned_fixed
;
13267 encoding
= DW_ATE_signed_fixed
;
13270 /* Dwarf2 doesn't know anything about complex ints, so use
13271 a user defined type for it. */
13273 if (TREE_CODE (TREE_TYPE (type
)) == REAL_TYPE
)
13274 encoding
= DW_ATE_complex_float
;
13276 encoding
= DW_ATE_lo_user
;
13280 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
13281 encoding
= DW_ATE_boolean
;
13285 /* No other TREE_CODEs are Dwarf fundamental types. */
13286 gcc_unreachable ();
13289 base_type_result
= new_die_raw (DW_TAG_base_type
);
13291 add_AT_unsigned (base_type_result
, DW_AT_byte_size
,
13292 int_size_in_bytes (type
));
13293 add_AT_unsigned (base_type_result
, DW_AT_encoding
, encoding
);
13295 if (need_endianity_attribute_p (reverse
))
13296 add_AT_unsigned (base_type_result
, DW_AT_endianity
,
13297 BYTES_BIG_ENDIAN
? DW_END_little
: DW_END_big
);
13299 add_alignment_attribute (base_type_result
, type
);
13303 switch (fpt_info
.scale_factor_kind
)
13305 case fixed_point_scale_factor_binary
:
13306 add_AT_int (base_type_result
, DW_AT_binary_scale
,
13307 fpt_info
.scale_factor
.binary
);
13310 case fixed_point_scale_factor_decimal
:
13311 add_AT_int (base_type_result
, DW_AT_decimal_scale
,
13312 fpt_info
.scale_factor
.decimal
);
13315 case fixed_point_scale_factor_arbitrary
:
13316 /* Arbitrary scale factors cannot be described in standard DWARF. */
13319 /* Describe the scale factor as a rational constant. */
13320 const dw_die_ref scale_factor
13321 = new_die (DW_TAG_constant
, comp_unit_die (), type
);
13323 add_scalar_info (scale_factor
, DW_AT_GNU_numerator
,
13324 fpt_info
.scale_factor
.arbitrary
.numerator
,
13325 dw_scalar_form_constant
, NULL
);
13326 add_scalar_info (scale_factor
, DW_AT_GNU_denominator
,
13327 fpt_info
.scale_factor
.arbitrary
.denominator
,
13328 dw_scalar_form_constant
, NULL
);
13330 add_AT_die_ref (base_type_result
, DW_AT_small
, scale_factor
);
13335 gcc_unreachable ();
13340 add_scalar_info (base_type_result
, DW_AT_GNU_bias
, type_bias
,
13341 dw_scalar_form_constant
13342 | dw_scalar_form_exprloc
13343 | dw_scalar_form_reference
,
13346 return base_type_result
;
13349 /* A C++ function with deduced return type can have a TEMPLATE_TYPE_PARM
13350 named 'auto' in its type: return true for it, false otherwise. */
13353 is_cxx_auto (tree type
)
13357 tree name
= TYPE_IDENTIFIER (type
);
13358 if (name
== get_identifier ("auto")
13359 || name
== get_identifier ("decltype(auto)"))
13365 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
13366 given input type is a Dwarf "fundamental" type. Otherwise return null. */
13369 is_base_type (tree type
)
13371 switch (TREE_CODE (type
))
13375 case FIXED_POINT_TYPE
:
13385 case QUAL_UNION_TYPE
:
13386 case ENUMERAL_TYPE
:
13387 case FUNCTION_TYPE
:
13390 case REFERENCE_TYPE
:
13398 if (is_cxx_auto (type
))
13400 gcc_unreachable ();
13404 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
13405 node, return the size in bits for the type if it is a constant, or else
13406 return the alignment for the type if the type's size is not constant, or
13407 else return BITS_PER_WORD if the type actually turns out to be an
13408 ERROR_MARK node. */
13410 static inline unsigned HOST_WIDE_INT
13411 simple_type_size_in_bits (const_tree type
)
13413 if (TREE_CODE (type
) == ERROR_MARK
)
13414 return BITS_PER_WORD
;
13415 else if (TYPE_SIZE (type
) == NULL_TREE
)
13417 else if (tree_fits_uhwi_p (TYPE_SIZE (type
)))
13418 return tree_to_uhwi (TYPE_SIZE (type
));
13420 return TYPE_ALIGN (type
);
13423 /* Similarly, but return an offset_int instead of UHWI. */
13425 static inline offset_int
13426 offset_int_type_size_in_bits (const_tree type
)
13428 if (TREE_CODE (type
) == ERROR_MARK
)
13429 return BITS_PER_WORD
;
13430 else if (TYPE_SIZE (type
) == NULL_TREE
)
13432 else if (TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
)
13433 return wi::to_offset (TYPE_SIZE (type
));
13435 return TYPE_ALIGN (type
);
13438 /* Given a pointer to a tree node for a subrange type, return a pointer
13439 to a DIE that describes the given type. */
13442 subrange_type_die (tree type
, tree low
, tree high
, tree bias
,
13443 dw_die_ref context_die
)
13445 dw_die_ref subrange_die
;
13446 const HOST_WIDE_INT size_in_bytes
= int_size_in_bytes (type
);
13448 if (context_die
== NULL
)
13449 context_die
= comp_unit_die ();
13451 subrange_die
= new_die (DW_TAG_subrange_type
, context_die
, type
);
13453 if (int_size_in_bytes (TREE_TYPE (type
)) != size_in_bytes
)
13455 /* The size of the subrange type and its base type do not match,
13456 so we need to generate a size attribute for the subrange type. */
13457 add_AT_unsigned (subrange_die
, DW_AT_byte_size
, size_in_bytes
);
13460 add_alignment_attribute (subrange_die
, type
);
13463 add_bound_info (subrange_die
, DW_AT_lower_bound
, low
, NULL
);
13465 add_bound_info (subrange_die
, DW_AT_upper_bound
, high
, NULL
);
13466 if (bias
&& !dwarf_strict
)
13467 add_scalar_info (subrange_die
, DW_AT_GNU_bias
, bias
,
13468 dw_scalar_form_constant
13469 | dw_scalar_form_exprloc
13470 | dw_scalar_form_reference
,
13473 return subrange_die
;
13476 /* Returns the (const and/or volatile) cv_qualifiers associated with
13477 the decl node. This will normally be augmented with the
13478 cv_qualifiers of the underlying type in add_type_attribute. */
13481 decl_quals (const_tree decl
)
13483 return ((TREE_READONLY (decl
)
13484 /* The C++ front-end correctly marks reference-typed
13485 variables as readonly, but from a language (and debug
13486 info) standpoint they are not const-qualified. */
13487 && TREE_CODE (TREE_TYPE (decl
)) != REFERENCE_TYPE
13488 ? TYPE_QUAL_CONST
: TYPE_UNQUALIFIED
)
13489 | (TREE_THIS_VOLATILE (decl
)
13490 ? TYPE_QUAL_VOLATILE
: TYPE_UNQUALIFIED
));
13493 /* Determine the TYPE whose qualifiers match the largest strict subset
13494 of the given TYPE_QUALS, and return its qualifiers. Ignore all
13495 qualifiers outside QUAL_MASK. */
13498 get_nearest_type_subqualifiers (tree type
, int type_quals
, int qual_mask
)
13501 int best_rank
= 0, best_qual
= 0, max_rank
;
13503 type_quals
&= qual_mask
;
13504 max_rank
= popcount_hwi (type_quals
) - 1;
13506 for (t
= TYPE_MAIN_VARIANT (type
); t
&& best_rank
< max_rank
;
13507 t
= TYPE_NEXT_VARIANT (t
))
13509 int q
= TYPE_QUALS (t
) & qual_mask
;
13511 if ((q
& type_quals
) == q
&& q
!= type_quals
13512 && check_base_type (t
, type
))
13514 int rank
= popcount_hwi (q
);
13516 if (rank
> best_rank
)
13527 struct dwarf_qual_info_t
{ int q
; enum dwarf_tag t
; };
13528 static const dwarf_qual_info_t dwarf_qual_info
[] =
13530 { TYPE_QUAL_CONST
, DW_TAG_const_type
},
13531 { TYPE_QUAL_VOLATILE
, DW_TAG_volatile_type
},
13532 { TYPE_QUAL_RESTRICT
, DW_TAG_restrict_type
},
13533 { TYPE_QUAL_ATOMIC
, DW_TAG_atomic_type
}
13535 static const unsigned int dwarf_qual_info_size
13536 = sizeof (dwarf_qual_info
) / sizeof (dwarf_qual_info
[0]);
13538 /* If DIE is a qualified DIE of some base DIE with the same parent,
13539 return the base DIE, otherwise return NULL. Set MASK to the
13540 qualifiers added compared to the returned DIE. */
13543 qualified_die_p (dw_die_ref die
, int *mask
, unsigned int depth
)
13546 for (i
= 0; i
< dwarf_qual_info_size
; i
++)
13547 if (die
->die_tag
== dwarf_qual_info
[i
].t
)
13549 if (i
== dwarf_qual_info_size
)
13551 if (vec_safe_length (die
->die_attr
) != 1)
13553 dw_die_ref type
= get_AT_ref (die
, DW_AT_type
);
13554 if (type
== NULL
|| type
->die_parent
!= die
->die_parent
)
13556 *mask
|= dwarf_qual_info
[i
].q
;
13559 dw_die_ref ret
= qualified_die_p (type
, mask
, depth
- 1);
13566 /* If TYPE is long double or complex long double that
13567 should be emitted as artificial typedef to _Float128 or
13568 complex _Float128, return the type it should be emitted as.
13569 This is done in case the target already supports 16-byte
13570 composite floating point type (ibm_extended_format). */
13573 long_double_as_float128 (tree type
)
13575 if (type
!= long_double_type_node
13576 && type
!= complex_long_double_type_node
)
13579 machine_mode mode
, fmode
;
13580 if (TREE_CODE (type
) == COMPLEX_TYPE
)
13581 mode
= TYPE_MODE (TREE_TYPE (type
));
13583 mode
= TYPE_MODE (type
);
13584 if (known_eq (GET_MODE_SIZE (mode
), 16) && !MODE_COMPOSITE_P (mode
))
13585 FOR_EACH_MODE_IN_CLASS (fmode
, MODE_FLOAT
)
13586 if (known_eq (GET_MODE_SIZE (fmode
), 16)
13587 && MODE_COMPOSITE_P (fmode
))
13589 if (type
== long_double_type_node
)
13591 if (float128_type_node
13592 && (TYPE_MODE (float128_type_node
)
13593 == TYPE_MODE (type
)))
13594 return float128_type_node
;
13597 for (int i
= 0; i
< NUM_FLOATN_NX_TYPES
; i
++)
13598 if (COMPLEX_FLOATN_NX_TYPE_NODE (i
) != NULL_TREE
13599 && (TYPE_MODE (COMPLEX_FLOATN_NX_TYPE_NODE (i
))
13600 == TYPE_MODE (type
)))
13601 return COMPLEX_FLOATN_NX_TYPE_NODE (i
);
13607 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
13608 entry that chains the modifiers specified by CV_QUALS in front of the
13609 given type. REVERSE is true if the type is to be interpreted in the
13610 reverse storage order wrt the target order. */
13613 modified_type_die (tree type
, int cv_quals
, bool reverse
,
13614 dw_die_ref context_die
)
13616 enum tree_code code
= TREE_CODE (type
);
13617 dw_die_ref mod_type_die
;
13618 dw_die_ref sub_die
= NULL
;
13619 tree item_type
= NULL
;
13620 tree qualified_type
;
13621 tree name
, low
, high
;
13622 dw_die_ref mod_scope
;
13623 struct array_descr_info info
;
13624 /* Only these cv-qualifiers are currently handled. */
13625 const int cv_qual_mask
= (TYPE_QUAL_CONST
| TYPE_QUAL_VOLATILE
13626 | TYPE_QUAL_RESTRICT
| TYPE_QUAL_ATOMIC
|
13627 ENCODE_QUAL_ADDR_SPACE(~0U));
13628 const bool reverse_base_type
13629 = need_endianity_attribute_p (reverse
) && is_base_type (type
);
13631 if (code
== ERROR_MARK
)
13634 if (lang_hooks
.types
.get_debug_type
)
13636 tree debug_type
= lang_hooks
.types
.get_debug_type (type
);
13638 if (debug_type
!= NULL_TREE
&& debug_type
!= type
)
13639 return modified_type_die (debug_type
, cv_quals
, reverse
, context_die
);
13642 cv_quals
&= cv_qual_mask
;
13644 /* Don't emit DW_TAG_restrict_type for DWARFv2, since it is a type
13645 tag modifier (and not an attribute) old consumers won't be able
13647 if (dwarf_version
< 3)
13648 cv_quals
&= ~TYPE_QUAL_RESTRICT
;
13650 /* Likewise for DW_TAG_atomic_type for DWARFv5. */
13651 if (dwarf_version
< 5)
13652 cv_quals
&= ~TYPE_QUAL_ATOMIC
;
13654 /* See if we already have the appropriately qualified variant of
13656 qualified_type
= get_qualified_type (type
, cv_quals
);
13658 if (qualified_type
== sizetype
)
13660 /* Try not to expose the internal sizetype type's name. */
13661 if (TYPE_NAME (qualified_type
)
13662 && TREE_CODE (TYPE_NAME (qualified_type
)) == TYPE_DECL
)
13664 tree t
= TREE_TYPE (TYPE_NAME (qualified_type
));
13666 gcc_checking_assert (TREE_CODE (t
) == INTEGER_TYPE
13667 && (TYPE_PRECISION (t
)
13668 == TYPE_PRECISION (qualified_type
))
13669 && (TYPE_UNSIGNED (t
)
13670 == TYPE_UNSIGNED (qualified_type
)));
13671 qualified_type
= t
;
13673 else if (qualified_type
== sizetype
13674 && TREE_CODE (sizetype
) == TREE_CODE (size_type_node
)
13675 && TYPE_PRECISION (sizetype
) == TYPE_PRECISION (size_type_node
)
13676 && TYPE_UNSIGNED (sizetype
) == TYPE_UNSIGNED (size_type_node
))
13677 qualified_type
= size_type_node
;
13678 if (type
== sizetype
)
13679 type
= qualified_type
;
13682 /* If we do, then we can just use its DIE, if it exists. */
13683 if (qualified_type
)
13685 mod_type_die
= lookup_type_die (qualified_type
);
13687 /* DW_AT_endianity doesn't come from a qualifier on the type, so it is
13688 dealt with specially: the DIE with the attribute, if it exists, is
13689 placed immediately after the regular DIE for the same base type. */
13691 && (!reverse_base_type
13692 || ((mod_type_die
= mod_type_die
->die_sib
) != NULL
13693 && get_AT_unsigned (mod_type_die
, DW_AT_endianity
))))
13694 return mod_type_die
;
13697 name
= qualified_type
? TYPE_NAME (qualified_type
) : NULL
;
13699 /* Handle C typedef types. */
13701 && TREE_CODE (name
) == TYPE_DECL
13702 && DECL_ORIGINAL_TYPE (name
)
13703 && !DECL_ARTIFICIAL (name
))
13705 tree dtype
= TREE_TYPE (name
);
13707 /* Skip the typedef for base types with DW_AT_endianity, no big deal. */
13708 if (qualified_type
== dtype
&& !reverse_base_type
)
13710 tree origin
= decl_ultimate_origin (name
);
13712 /* Typedef variants that have an abstract origin don't get their own
13713 type DIE (see gen_typedef_die), so fall back on the ultimate
13714 abstract origin instead. */
13715 if (origin
!= NULL
&& origin
!= name
)
13716 return modified_type_die (TREE_TYPE (origin
), cv_quals
, reverse
,
13719 /* For a named type, use the typedef. */
13720 gen_type_die (qualified_type
, context_die
);
13721 return lookup_type_die (qualified_type
);
13725 int dquals
= TYPE_QUALS_NO_ADDR_SPACE (dtype
);
13726 dquals
&= cv_qual_mask
;
13727 if ((dquals
& ~cv_quals
) != TYPE_UNQUALIFIED
13728 || (cv_quals
== dquals
&& DECL_ORIGINAL_TYPE (name
) != type
))
13729 /* cv-unqualified version of named type. Just use
13730 the unnamed type to which it refers. */
13731 return modified_type_die (DECL_ORIGINAL_TYPE (name
), cv_quals
,
13732 reverse
, context_die
);
13733 /* Else cv-qualified version of named type; fall through. */
13737 mod_scope
= scope_die_for (type
, context_die
);
13741 int sub_quals
= 0, first_quals
= 0;
13743 dw_die_ref first
= NULL
, last
= NULL
;
13745 /* Determine a lesser qualified type that most closely matches
13746 this one. Then generate DW_TAG_* entries for the remaining
13748 sub_quals
= get_nearest_type_subqualifiers (type
, cv_quals
,
13750 if (sub_quals
&& use_debug_types
)
13752 bool needed
= false;
13753 /* If emitting type units, make sure the order of qualifiers
13754 is canonical. Thus, start from unqualified type if
13755 an earlier qualifier is missing in sub_quals, but some later
13756 one is present there. */
13757 for (i
= 0; i
< dwarf_qual_info_size
; i
++)
13758 if (dwarf_qual_info
[i
].q
& cv_quals
& ~sub_quals
)
13760 else if (needed
&& (dwarf_qual_info
[i
].q
& cv_quals
))
13766 mod_type_die
= modified_type_die (type
, sub_quals
, reverse
, context_die
);
13767 if (mod_scope
&& mod_type_die
&& mod_type_die
->die_parent
== mod_scope
)
13769 /* As not all intermediate qualified DIEs have corresponding
13770 tree types, ensure that qualified DIEs in the same scope
13771 as their DW_AT_type are emitted after their DW_AT_type,
13772 only with other qualified DIEs for the same type possibly
13773 in between them. Determine the range of such qualified
13774 DIEs now (first being the base type, last being corresponding
13775 last qualified DIE for it). */
13776 unsigned int count
= 0;
13777 first
= qualified_die_p (mod_type_die
, &first_quals
,
13778 dwarf_qual_info_size
);
13780 first
= mod_type_die
;
13781 gcc_assert ((first_quals
& ~sub_quals
) == 0);
13782 for (count
= 0, last
= first
;
13783 count
< (1U << dwarf_qual_info_size
);
13784 count
++, last
= last
->die_sib
)
13787 if (last
== mod_scope
->die_child
)
13789 if (qualified_die_p (last
->die_sib
, &quals
, dwarf_qual_info_size
)
13795 for (i
= 0; i
< dwarf_qual_info_size
; i
++)
13796 if (dwarf_qual_info
[i
].q
& cv_quals
& ~sub_quals
)
13799 if (first
&& first
!= last
)
13801 for (d
= first
->die_sib
; ; d
= d
->die_sib
)
13804 qualified_die_p (d
, &quals
, dwarf_qual_info_size
);
13805 if (quals
== (first_quals
| dwarf_qual_info
[i
].q
))
13821 d
= new_die_raw (dwarf_qual_info
[i
].t
);
13822 add_child_die_after (mod_scope
, d
, last
);
13826 d
= new_die (dwarf_qual_info
[i
].t
, mod_scope
, type
);
13828 add_AT_die_ref (d
, DW_AT_type
, mod_type_die
);
13830 first_quals
|= dwarf_qual_info
[i
].q
;
13833 else if (code
== POINTER_TYPE
|| code
== REFERENCE_TYPE
)
13835 dwarf_tag tag
= DW_TAG_pointer_type
;
13836 if (code
== REFERENCE_TYPE
)
13838 if (TYPE_REF_IS_RVALUE (type
) && dwarf_version
>= 4)
13839 tag
= DW_TAG_rvalue_reference_type
;
13841 tag
= DW_TAG_reference_type
;
13843 mod_type_die
= new_die (tag
, mod_scope
, type
);
13845 add_AT_unsigned (mod_type_die
, DW_AT_byte_size
,
13846 simple_type_size_in_bits (type
) / BITS_PER_UNIT
);
13847 add_alignment_attribute (mod_type_die
, type
);
13848 item_type
= TREE_TYPE (type
);
13850 addr_space_t as
= TYPE_ADDR_SPACE (item_type
);
13851 if (!ADDR_SPACE_GENERIC_P (as
))
13853 int action
= targetm
.addr_space
.debug (as
);
13856 /* Positive values indicate an address_class. */
13857 add_AT_unsigned (mod_type_die
, DW_AT_address_class
, action
);
13861 /* Negative values indicate an (inverted) segment base reg. */
13863 = one_reg_loc_descriptor (~action
, VAR_INIT_STATUS_INITIALIZED
);
13864 add_AT_loc (mod_type_die
, DW_AT_segment
, d
);
13868 else if (code
== ARRAY_TYPE
13869 || (lang_hooks
.types
.get_array_descr_info
13870 && lang_hooks
.types
.get_array_descr_info (type
, &info
)))
13872 gen_type_die (type
, context_die
);
13873 return lookup_type_die (type
);
13875 else if (code
== INTEGER_TYPE
13876 && TREE_TYPE (type
) != NULL_TREE
13877 && subrange_type_for_debug_p (type
, &low
, &high
))
13879 tree bias
= NULL_TREE
;
13880 if (lang_hooks
.types
.get_type_bias
)
13881 bias
= lang_hooks
.types
.get_type_bias (type
);
13882 mod_type_die
= subrange_type_die (type
, low
, high
, bias
, context_die
);
13883 item_type
= TREE_TYPE (type
);
13885 else if (is_base_type (type
))
13887 /* If a target supports long double as different floating point
13888 modes with the same 16-byte size, use normal DW_TAG_base_type
13889 only for the composite (ibm_extended_real_format) type and
13890 for the other for the time being emit instead a "_Float128"
13891 or "complex _Float128" DW_TAG_base_type and a "long double"
13892 or "complex long double" typedef to it. */
13893 if (tree other_type
= long_double_as_float128 (type
))
13895 dw_die_ref other_die
;
13896 if (TYPE_NAME (other_type
))
13898 = modified_type_die (other_type
, TYPE_UNQUALIFIED
, reverse
,
13902 other_die
= base_type_die (type
, reverse
);
13903 add_child_die (comp_unit_die (), other_die
);
13904 add_name_attribute (other_die
,
13905 TREE_CODE (type
) == COMPLEX_TYPE
13906 ? "complex _Float128" : "_Float128");
13908 mod_type_die
= new_die_raw (DW_TAG_typedef
);
13909 add_AT_die_ref (mod_type_die
, DW_AT_type
, other_die
);
13912 mod_type_die
= base_type_die (type
, reverse
);
13914 /* The DIE with DW_AT_endianity is placed right after the naked DIE. */
13915 if (reverse_base_type
)
13917 dw_die_ref after_die
13918 = modified_type_die (type
, cv_quals
, false, context_die
);
13919 add_child_die_after (comp_unit_die (), mod_type_die
, after_die
);
13922 add_child_die (comp_unit_die (), mod_type_die
);
13924 add_pubtype (type
, mod_type_die
);
13928 gen_type_die (type
, context_die
);
13930 /* We have to get the type_main_variant here (and pass that to the
13931 `lookup_type_die' routine) because the ..._TYPE node we have
13932 might simply be a *copy* of some original type node (where the
13933 copy was created to help us keep track of typedef names) and
13934 that copy might have a different TYPE_UID from the original
13936 if (code
== FUNCTION_TYPE
|| code
== METHOD_TYPE
)
13938 /* For function/method types, can't just use type_main_variant here,
13939 because that can have different ref-qualifiers for C++,
13940 but try to canonicalize. */
13941 tree main
= TYPE_MAIN_VARIANT (type
);
13942 for (tree t
= main
; t
; t
= TYPE_NEXT_VARIANT (t
))
13943 if (TYPE_QUALS_NO_ADDR_SPACE (t
) == 0
13944 && check_base_type (t
, main
)
13945 && check_lang_type (t
, type
))
13946 return lookup_type_die (t
);
13947 return lookup_type_die (type
);
13949 /* Vectors have the debugging information in the type,
13950 not the main variant. */
13951 else if (code
== VECTOR_TYPE
)
13952 return lookup_type_die (type
);
13954 return lookup_type_die (type_main_variant (type
));
13957 /* Builtin types don't have a DECL_ORIGINAL_TYPE. For those,
13958 don't output a DW_TAG_typedef, since there isn't one in the
13959 user's program; just attach a DW_AT_name to the type.
13960 Don't attach a DW_AT_name to DW_TAG_const_type or DW_TAG_volatile_type
13961 if the base type already has the same name. */
13963 && ((TREE_CODE (name
) != TYPE_DECL
13964 && (qualified_type
== TYPE_MAIN_VARIANT (type
)
13965 || (cv_quals
== TYPE_UNQUALIFIED
)))
13966 || (TREE_CODE (name
) == TYPE_DECL
13967 && TREE_TYPE (name
) == qualified_type
13968 && DECL_NAME (name
))))
13970 if (TREE_CODE (name
) == TYPE_DECL
)
13971 /* Could just call add_name_and_src_coords_attributes here,
13972 but since this is a builtin type it doesn't have any
13973 useful source coordinates anyway. */
13974 name
= DECL_NAME (name
);
13975 add_name_attribute (mod_type_die
, IDENTIFIER_POINTER (name
));
13977 /* This probably indicates a bug. */
13978 else if (mod_type_die
&& mod_type_die
->die_tag
== DW_TAG_base_type
)
13980 name
= TYPE_IDENTIFIER (type
);
13981 add_name_attribute (mod_type_die
,
13982 name
? IDENTIFIER_POINTER (name
) : "__unknown__");
13985 if (qualified_type
&& !reverse_base_type
)
13986 equate_type_number_to_die (qualified_type
, mod_type_die
);
13989 /* We must do this after the equate_type_number_to_die call, in case
13990 this is a recursive type. This ensures that the modified_type_die
13991 recursion will terminate even if the type is recursive. Recursive
13992 types are possible in Ada. */
13993 sub_die
= modified_type_die (item_type
,
13994 TYPE_QUALS_NO_ADDR_SPACE (item_type
),
13998 if (sub_die
!= NULL
)
13999 add_AT_die_ref (mod_type_die
, DW_AT_type
, sub_die
);
14001 add_gnat_descriptive_type_attribute (mod_type_die
, type
, context_die
);
14002 if (TYPE_ARTIFICIAL (type
))
14003 add_AT_flag (mod_type_die
, DW_AT_artificial
, 1);
14005 return mod_type_die
;
14008 /* Generate DIEs for the generic parameters of T.
14009 T must be either a generic type or a generic function.
14010 See http://gcc.gnu.org/wiki/TemplateParmsDwarf for more. */
14013 gen_generic_params_dies (tree t
)
14017 dw_die_ref die
= NULL
;
14020 if (!t
|| (TYPE_P (t
) && !COMPLETE_TYPE_P (t
)))
14024 die
= lookup_type_die (t
);
14025 else if (DECL_P (t
))
14026 die
= lookup_decl_die (t
);
14030 parms
= lang_hooks
.get_innermost_generic_parms (t
);
14032 /* T has no generic parameter. It means T is neither a generic type
14033 or function. End of story. */
14036 parms_num
= TREE_VEC_LENGTH (parms
);
14037 args
= lang_hooks
.get_innermost_generic_args (t
);
14038 if (TREE_CHAIN (args
) && TREE_CODE (TREE_CHAIN (args
)) == INTEGER_CST
)
14039 non_default
= int_cst_value (TREE_CHAIN (args
));
14041 non_default
= TREE_VEC_LENGTH (args
);
14042 for (i
= 0; i
< parms_num
; i
++)
14044 tree parm
, arg
, arg_pack_elems
;
14045 dw_die_ref parm_die
;
14047 parm
= TREE_VEC_ELT (parms
, i
);
14048 arg
= TREE_VEC_ELT (args
, i
);
14049 arg_pack_elems
= lang_hooks
.types
.get_argument_pack_elems (arg
);
14050 gcc_assert (parm
&& TREE_VALUE (parm
) && arg
);
14052 if (parm
&& TREE_VALUE (parm
) && arg
)
14054 /* If PARM represents a template parameter pack,
14055 emit a DW_TAG_GNU_template_parameter_pack DIE, followed
14056 by DW_TAG_template_*_parameter DIEs for the argument
14057 pack elements of ARG. Note that ARG would then be
14058 an argument pack. */
14059 if (arg_pack_elems
)
14060 parm_die
= template_parameter_pack_die (TREE_VALUE (parm
),
14064 parm_die
= generic_parameter_die (TREE_VALUE (parm
), arg
,
14065 true /* emit name */, die
);
14066 if (i
>= non_default
)
14067 add_AT_flag (parm_die
, DW_AT_default_value
, 1);
14072 /* Create and return a DIE for PARM which should be
14073 the representation of a generic type parameter.
14074 For instance, in the C++ front end, PARM would be a template parameter.
14075 ARG is the argument to PARM.
14076 EMIT_NAME_P if tree, the DIE will have DW_AT_name attribute set to the
14078 PARENT_DIE is the parent DIE which the new created DIE should be added to,
14079 as a child node. */
14082 generic_parameter_die (tree parm
, tree arg
,
14084 dw_die_ref parent_die
)
14086 dw_die_ref tmpl_die
= NULL
;
14087 const char *name
= NULL
;
14089 /* C++20 accepts class literals as template parameters, and var
14090 decls with initializers represent them. The VAR_DECLs would be
14091 rejected, but we can take the DECL_INITIAL constructor and
14092 attempt to expand it. */
14093 if (arg
&& VAR_P (arg
))
14094 arg
= DECL_INITIAL (arg
);
14096 if (!parm
|| !DECL_NAME (parm
) || !arg
)
14099 /* We support non-type generic parameters and arguments,
14100 type generic parameters and arguments, as well as
14101 generic generic parameters (a.k.a. template template parameters in C++)
14103 if (TREE_CODE (parm
) == PARM_DECL
)
14104 /* PARM is a nontype generic parameter */
14105 tmpl_die
= new_die (DW_TAG_template_value_param
, parent_die
, parm
);
14106 else if (TREE_CODE (parm
) == TYPE_DECL
)
14107 /* PARM is a type generic parameter. */
14108 tmpl_die
= new_die (DW_TAG_template_type_param
, parent_die
, parm
);
14109 else if (lang_hooks
.decls
.generic_generic_parameter_decl_p (parm
))
14110 /* PARM is a generic generic parameter.
14111 Its DIE is a GNU extension. It shall have a
14112 DW_AT_name attribute to represent the name of the template template
14113 parameter, and a DW_AT_GNU_template_name attribute to represent the
14114 name of the template template argument. */
14115 tmpl_die
= new_die (DW_TAG_GNU_template_template_param
,
14118 gcc_unreachable ();
14124 /* If PARM is a generic parameter pack, it means we are
14125 emitting debug info for a template argument pack element.
14126 In other terms, ARG is a template argument pack element.
14127 In that case, we don't emit any DW_AT_name attribute for
14131 name
= IDENTIFIER_POINTER (DECL_NAME (parm
));
14133 add_AT_string (tmpl_die
, DW_AT_name
, name
);
14136 if (!lang_hooks
.decls
.generic_generic_parameter_decl_p (parm
))
14138 /* DWARF3, 5.6.8 says if PARM is a non-type generic parameter
14139 TMPL_DIE should have a child DW_AT_type attribute that is set
14140 to the type of the argument to PARM, which is ARG.
14141 If PARM is a type generic parameter, TMPL_DIE should have a
14142 child DW_AT_type that is set to ARG. */
14143 tmpl_type
= TYPE_P (arg
) ? arg
: TREE_TYPE (arg
);
14144 add_type_attribute (tmpl_die
, tmpl_type
,
14145 (TREE_THIS_VOLATILE (tmpl_type
)
14146 ? TYPE_QUAL_VOLATILE
: TYPE_UNQUALIFIED
),
14147 false, parent_die
);
14151 /* So TMPL_DIE is a DIE representing a
14152 a generic generic template parameter, a.k.a template template
14153 parameter in C++ and arg is a template. */
14155 /* The DW_AT_GNU_template_name attribute of the DIE must be set
14156 to the name of the argument. */
14157 name
= dwarf2_name (TYPE_P (arg
) ? TYPE_NAME (arg
) : arg
, 1);
14159 add_AT_string (tmpl_die
, DW_AT_GNU_template_name
, name
);
14162 if (TREE_CODE (parm
) == PARM_DECL
)
14163 /* So PARM is a non-type generic parameter.
14164 DWARF3 5.6.8 says we must set a DW_AT_const_value child
14165 attribute of TMPL_DIE which value represents the value
14167 We must be careful here:
14168 The value of ARG might reference some function decls.
14169 We might currently be emitting debug info for a generic
14170 type and types are emitted before function decls, we don't
14171 know if the function decls referenced by ARG will actually be
14172 emitted after cgraph computations.
14173 So must defer the generation of the DW_AT_const_value to
14174 after cgraph is ready. */
14175 append_entry_to_tmpl_value_parm_die_table (tmpl_die
, arg
);
14181 /* Generate and return a DW_TAG_GNU_template_parameter_pack DIE representing.
14182 PARM_PACK must be a template parameter pack. The returned DIE
14183 will be child DIE of PARENT_DIE. */
14186 template_parameter_pack_die (tree parm_pack
,
14187 tree parm_pack_args
,
14188 dw_die_ref parent_die
)
14193 gcc_assert (parent_die
&& parm_pack
);
14195 die
= new_die (DW_TAG_GNU_template_parameter_pack
, parent_die
, parm_pack
);
14196 add_name_and_src_coords_attributes (die
, parm_pack
);
14197 for (j
= 0; j
< TREE_VEC_LENGTH (parm_pack_args
); j
++)
14198 generic_parameter_die (parm_pack
,
14199 TREE_VEC_ELT (parm_pack_args
, j
),
14200 false /* Don't emit DW_AT_name */,
14205 /* Return the DBX register number described by a given RTL node. */
14207 static unsigned int
14208 dbx_reg_number (const_rtx rtl
)
14210 unsigned regno
= REGNO (rtl
);
14212 gcc_assert (regno
< FIRST_PSEUDO_REGISTER
);
14214 #ifdef LEAF_REG_REMAP
14215 if (crtl
->uses_only_leaf_regs
)
14217 int leaf_reg
= LEAF_REG_REMAP (regno
);
14218 if (leaf_reg
!= -1)
14219 regno
= (unsigned) leaf_reg
;
14223 regno
= DBX_REGISTER_NUMBER (regno
);
14224 gcc_assert (regno
!= INVALID_REGNUM
);
14228 /* Optionally add a DW_OP_piece term to a location description expression.
14229 DW_OP_piece is only added if the location description expression already
14230 doesn't end with DW_OP_piece. */
14233 add_loc_descr_op_piece (dw_loc_descr_ref
*list_head
, int size
)
14235 dw_loc_descr_ref loc
;
14237 if (*list_head
!= NULL
)
14239 /* Find the end of the chain. */
14240 for (loc
= *list_head
; loc
->dw_loc_next
!= NULL
; loc
= loc
->dw_loc_next
)
14243 if (loc
->dw_loc_opc
!= DW_OP_piece
)
14244 loc
->dw_loc_next
= new_loc_descr (DW_OP_piece
, size
, 0);
14248 /* Return a location descriptor that designates a machine register or
14249 zero if there is none. */
14251 static dw_loc_descr_ref
14252 reg_loc_descriptor (rtx rtl
, enum var_init_status initialized
)
14256 if (REGNO (rtl
) >= FIRST_PSEUDO_REGISTER
)
14259 /* We only use "frame base" when we're sure we're talking about the
14260 post-prologue local stack frame. We do this by *not* running
14261 register elimination until this point, and recognizing the special
14262 argument pointer and soft frame pointer rtx's.
14263 Use DW_OP_fbreg offset DW_OP_stack_value in this case. */
14264 if ((rtl
== arg_pointer_rtx
|| rtl
== frame_pointer_rtx
)
14265 && eliminate_regs (rtl
, VOIDmode
, NULL_RTX
) != rtl
)
14267 dw_loc_descr_ref result
= NULL
;
14269 if (dwarf_version
>= 4 || !dwarf_strict
)
14271 result
= mem_loc_descriptor (rtl
, GET_MODE (rtl
), VOIDmode
,
14274 add_loc_descr (&result
,
14275 new_loc_descr (DW_OP_stack_value
, 0, 0));
14280 regs
= targetm
.dwarf_register_span (rtl
);
14282 if (REG_NREGS (rtl
) > 1 || regs
)
14283 return multiple_reg_loc_descriptor (rtl
, regs
, initialized
);
14286 unsigned int dbx_regnum
= dbx_reg_number (rtl
);
14287 if (dbx_regnum
== IGNORED_DWARF_REGNUM
)
14289 return one_reg_loc_descriptor (dbx_regnum
, initialized
);
14293 /* Return a location descriptor that designates a machine register for
14294 a given hard register number. */
14296 static dw_loc_descr_ref
14297 one_reg_loc_descriptor (unsigned int regno
, enum var_init_status initialized
)
14299 dw_loc_descr_ref reg_loc_descr
;
14303 = new_loc_descr ((enum dwarf_location_atom
) (DW_OP_reg0
+ regno
), 0, 0);
14305 reg_loc_descr
= new_loc_descr (DW_OP_regx
, regno
, 0);
14307 if (initialized
== VAR_INIT_STATUS_UNINITIALIZED
)
14308 add_loc_descr (®_loc_descr
, new_loc_descr (DW_OP_GNU_uninit
, 0, 0));
14310 return reg_loc_descr
;
14313 /* Given an RTL of a register, return a location descriptor that
14314 designates a value that spans more than one register. */
14316 static dw_loc_descr_ref
14317 multiple_reg_loc_descriptor (rtx rtl
, rtx regs
,
14318 enum var_init_status initialized
)
14321 dw_loc_descr_ref loc_result
= NULL
;
14323 /* Simple, contiguous registers. */
14324 if (regs
== NULL_RTX
)
14326 unsigned reg
= REGNO (rtl
);
14329 #ifdef LEAF_REG_REMAP
14330 if (crtl
->uses_only_leaf_regs
)
14332 int leaf_reg
= LEAF_REG_REMAP (reg
);
14333 if (leaf_reg
!= -1)
14334 reg
= (unsigned) leaf_reg
;
14338 gcc_assert ((unsigned) DBX_REGISTER_NUMBER (reg
) == dbx_reg_number (rtl
));
14339 nregs
= REG_NREGS (rtl
);
14341 /* At present we only track constant-sized pieces. */
14342 if (!GET_MODE_SIZE (GET_MODE (rtl
)).is_constant (&size
))
14349 dw_loc_descr_ref t
;
14351 t
= one_reg_loc_descriptor (DBX_REGISTER_NUMBER (reg
),
14352 VAR_INIT_STATUS_INITIALIZED
);
14353 add_loc_descr (&loc_result
, t
);
14354 add_loc_descr_op_piece (&loc_result
, size
);
14360 /* Now onto stupid register sets in non contiguous locations. */
14362 gcc_assert (GET_CODE (regs
) == PARALLEL
);
14364 /* At present we only track constant-sized pieces. */
14365 if (!GET_MODE_SIZE (GET_MODE (XVECEXP (regs
, 0, 0))).is_constant (&size
))
14369 for (i
= 0; i
< XVECLEN (regs
, 0); ++i
)
14371 dw_loc_descr_ref t
;
14373 t
= one_reg_loc_descriptor (dbx_reg_number (XVECEXP (regs
, 0, i
)),
14374 VAR_INIT_STATUS_INITIALIZED
);
14375 add_loc_descr (&loc_result
, t
);
14376 add_loc_descr_op_piece (&loc_result
, size
);
14379 if (loc_result
&& initialized
== VAR_INIT_STATUS_UNINITIALIZED
)
14380 add_loc_descr (&loc_result
, new_loc_descr (DW_OP_GNU_uninit
, 0, 0));
14384 static unsigned long size_of_int_loc_descriptor (HOST_WIDE_INT
);
14386 /* Return a location descriptor that designates a constant i,
14387 as a compound operation from constant (i >> shift), constant shift
14390 static dw_loc_descr_ref
14391 int_shift_loc_descriptor (HOST_WIDE_INT i
, int shift
)
14393 dw_loc_descr_ref ret
= int_loc_descriptor (i
>> shift
);
14394 add_loc_descr (&ret
, int_loc_descriptor (shift
));
14395 add_loc_descr (&ret
, new_loc_descr (DW_OP_shl
, 0, 0));
14399 /* Return a location descriptor that designates constant POLY_I. */
14401 static dw_loc_descr_ref
14402 int_loc_descriptor (poly_int64 poly_i
)
14404 enum dwarf_location_atom op
;
14407 if (!poly_i
.is_constant (&i
))
14409 /* Create location descriptions for the non-constant part and
14410 add any constant offset at the end. */
14411 dw_loc_descr_ref ret
= NULL
;
14412 HOST_WIDE_INT constant
= poly_i
.coeffs
[0];
14413 for (unsigned int j
= 1; j
< NUM_POLY_INT_COEFFS
; ++j
)
14415 HOST_WIDE_INT coeff
= poly_i
.coeffs
[j
];
14418 dw_loc_descr_ref start
= ret
;
14419 unsigned int factor
;
14421 unsigned int regno
= targetm
.dwarf_poly_indeterminate_value
14422 (j
, &factor
, &bias
);
14424 /* Add COEFF * ((REGNO / FACTOR) - BIAS) to the value:
14425 add COEFF * (REGNO / FACTOR) now and subtract
14426 COEFF * BIAS from the final constant part. */
14427 constant
-= coeff
* bias
;
14428 add_loc_descr (&ret
, new_reg_loc_descr (regno
, 0));
14429 if (coeff
% factor
== 0)
14433 int amount
= exact_log2 (factor
);
14434 gcc_assert (amount
>= 0);
14435 add_loc_descr (&ret
, int_loc_descriptor (amount
));
14436 add_loc_descr (&ret
, new_loc_descr (DW_OP_shr
, 0, 0));
14440 add_loc_descr (&ret
, int_loc_descriptor (coeff
));
14441 add_loc_descr (&ret
, new_loc_descr (DW_OP_mul
, 0, 0));
14444 add_loc_descr (&ret
, new_loc_descr (DW_OP_plus
, 0, 0));
14447 loc_descr_plus_const (&ret
, constant
);
14451 /* Pick the smallest representation of a constant, rather than just
14452 defaulting to the LEB encoding. */
14455 int clz
= clz_hwi (i
);
14456 int ctz
= ctz_hwi (i
);
14458 op
= (enum dwarf_location_atom
) (DW_OP_lit0
+ i
);
14459 else if (i
<= 0xff)
14460 op
= DW_OP_const1u
;
14461 else if (i
<= 0xffff)
14462 op
= DW_OP_const2u
;
14463 else if (clz
+ ctz
>= HOST_BITS_PER_WIDE_INT
- 5
14464 && clz
+ 5 + 255 >= HOST_BITS_PER_WIDE_INT
)
14465 /* DW_OP_litX DW_OP_litY DW_OP_shl takes just 3 bytes and
14466 DW_OP_litX DW_OP_const1u Y DW_OP_shl takes just 4 bytes,
14467 while DW_OP_const4u is 5 bytes. */
14468 return int_shift_loc_descriptor (i
, HOST_BITS_PER_WIDE_INT
- clz
- 5);
14469 else if (clz
+ ctz
>= HOST_BITS_PER_WIDE_INT
- 8
14470 && clz
+ 8 + 31 >= HOST_BITS_PER_WIDE_INT
)
14471 /* DW_OP_const1u X DW_OP_litY DW_OP_shl takes just 4 bytes,
14472 while DW_OP_const4u is 5 bytes. */
14473 return int_shift_loc_descriptor (i
, HOST_BITS_PER_WIDE_INT
- clz
- 8);
14475 else if (DWARF2_ADDR_SIZE
== 4 && i
> 0x7fffffff
14476 && size_of_int_loc_descriptor ((HOST_WIDE_INT
) (int32_t) i
)
14479 /* As i >= 2**31, the double cast above will yield a negative number.
14480 Since wrapping is defined in DWARF expressions we can output big
14481 positive integers as small negative ones, regardless of the size
14484 Here, since the evaluator will handle 32-bit values and since i >=
14485 2**31, we know it's going to be interpreted as a negative literal:
14486 store it this way if we can do better than 5 bytes this way. */
14487 return int_loc_descriptor ((HOST_WIDE_INT
) (int32_t) i
);
14489 else if (HOST_BITS_PER_WIDE_INT
== 32 || i
<= 0xffffffff)
14490 op
= DW_OP_const4u
;
14492 /* Past this point, i >= 0x100000000 and thus DW_OP_constu will take at
14493 least 6 bytes: see if we can do better before falling back to it. */
14494 else if (clz
+ ctz
>= HOST_BITS_PER_WIDE_INT
- 8
14495 && clz
+ 8 + 255 >= HOST_BITS_PER_WIDE_INT
)
14496 /* DW_OP_const1u X DW_OP_const1u Y DW_OP_shl takes just 5 bytes. */
14497 return int_shift_loc_descriptor (i
, HOST_BITS_PER_WIDE_INT
- clz
- 8);
14498 else if (clz
+ ctz
>= HOST_BITS_PER_WIDE_INT
- 16
14499 && clz
+ 16 + (size_of_uleb128 (i
) > 5 ? 255 : 31)
14500 >= HOST_BITS_PER_WIDE_INT
)
14501 /* DW_OP_const2u X DW_OP_litY DW_OP_shl takes just 5 bytes,
14502 DW_OP_const2u X DW_OP_const1u Y DW_OP_shl takes 6 bytes. */
14503 return int_shift_loc_descriptor (i
, HOST_BITS_PER_WIDE_INT
- clz
- 16);
14504 else if (clz
+ ctz
>= HOST_BITS_PER_WIDE_INT
- 32
14505 && clz
+ 32 + 31 >= HOST_BITS_PER_WIDE_INT
14506 && size_of_uleb128 (i
) > 6)
14507 /* DW_OP_const4u X DW_OP_litY DW_OP_shl takes just 7 bytes. */
14508 return int_shift_loc_descriptor (i
, HOST_BITS_PER_WIDE_INT
- clz
- 32);
14515 op
= DW_OP_const1s
;
14516 else if (i
>= -0x8000)
14517 op
= DW_OP_const2s
;
14518 else if (HOST_BITS_PER_WIDE_INT
== 32 || i
>= -0x80000000)
14520 if (size_of_int_loc_descriptor (i
) < 5)
14522 dw_loc_descr_ref ret
= int_loc_descriptor (-i
);
14523 add_loc_descr (&ret
, new_loc_descr (DW_OP_neg
, 0, 0));
14526 op
= DW_OP_const4s
;
14530 if (size_of_int_loc_descriptor (i
)
14531 < (unsigned long) 1 + size_of_sleb128 (i
))
14533 dw_loc_descr_ref ret
= int_loc_descriptor (-i
);
14534 add_loc_descr (&ret
, new_loc_descr (DW_OP_neg
, 0, 0));
14541 return new_loc_descr (op
, i
, 0);
14544 /* Likewise, for unsigned constants. */
14546 static dw_loc_descr_ref
14547 uint_loc_descriptor (unsigned HOST_WIDE_INT i
)
14549 const unsigned HOST_WIDE_INT max_int
= INTTYPE_MAXIMUM (HOST_WIDE_INT
);
14550 const unsigned HOST_WIDE_INT max_uint
14551 = INTTYPE_MAXIMUM (unsigned HOST_WIDE_INT
);
14553 /* If possible, use the clever signed constants handling. */
14555 return int_loc_descriptor ((HOST_WIDE_INT
) i
);
14557 /* Here, we are left with positive numbers that cannot be represented as
14558 HOST_WIDE_INT, i.e.:
14559 max (HOST_WIDE_INT) < i <= max (unsigned HOST_WIDE_INT)
14561 Using DW_OP_const4/8/./u operation to encode them consumes a lot of bytes
14562 whereas may be better to output a negative integer: thanks to integer
14563 wrapping, we know that:
14564 x = x - 2 ** DWARF2_ADDR_SIZE
14565 = x - 2 * (max (HOST_WIDE_INT) + 1)
14566 So numbers close to max (unsigned HOST_WIDE_INT) could be represented as
14567 small negative integers. Let's try that in cases it will clearly improve
14568 the encoding: there is no gain turning DW_OP_const4u into
14570 if (DWARF2_ADDR_SIZE
* 8 == HOST_BITS_PER_WIDE_INT
14571 && ((DWARF2_ADDR_SIZE
== 4 && i
> max_uint
- 0x8000)
14572 || (DWARF2_ADDR_SIZE
== 8 && i
> max_uint
- 0x80000000)))
14574 const unsigned HOST_WIDE_INT first_shift
= i
- max_int
- 1;
14576 /* Now, -1 < first_shift <= max (HOST_WIDE_INT)
14577 i.e. 0 <= first_shift <= max (HOST_WIDE_INT). */
14578 const HOST_WIDE_INT second_shift
14579 = (HOST_WIDE_INT
) first_shift
- (HOST_WIDE_INT
) max_int
- 1;
14581 /* So we finally have:
14582 -max (HOST_WIDE_INT) - 1 <= second_shift <= -1.
14583 i.e. min (HOST_WIDE_INT) <= second_shift < 0. */
14584 return int_loc_descriptor (second_shift
);
14587 /* Last chance: fallback to a simple constant operation. */
14588 return new_loc_descr
14589 ((HOST_BITS_PER_WIDE_INT
== 32 || i
<= 0xffffffff)
14595 /* Generate and return a location description that computes the unsigned
14596 comparison of the two stack top entries (a OP b where b is the top-most
14597 entry and a is the second one). The KIND of comparison can be LT_EXPR,
14598 LE_EXPR, GT_EXPR or GE_EXPR. */
14600 static dw_loc_descr_ref
14601 uint_comparison_loc_list (enum tree_code kind
)
14603 enum dwarf_location_atom op
, flip_op
;
14604 dw_loc_descr_ref ret
, bra_node
, jmp_node
, tmp
;
14621 gcc_unreachable ();
14624 bra_node
= new_loc_descr (DW_OP_bra
, 0, 0);
14625 jmp_node
= new_loc_descr (DW_OP_skip
, 0, 0);
14627 /* Until DWARFv4, operations all work on signed integers. It is nevertheless
14628 possible to perform unsigned comparisons: we just have to distinguish
14631 1. when a and b have the same sign (as signed integers); then we should
14632 return: a OP(signed) b;
14634 2. when a is a negative signed integer while b is a positive one, then a
14635 is a greater unsigned integer than b; likewise when a and b's roles
14638 So first, compare the sign of the two operands. */
14639 ret
= new_loc_descr (DW_OP_over
, 0, 0);
14640 add_loc_descr (&ret
, new_loc_descr (DW_OP_over
, 0, 0));
14641 add_loc_descr (&ret
, new_loc_descr (DW_OP_xor
, 0, 0));
14642 /* If they have different signs (i.e. they have different sign bits), then
14643 the stack top value has now the sign bit set and thus it's smaller than
14645 add_loc_descr (&ret
, new_loc_descr (DW_OP_lit0
, 0, 0));
14646 add_loc_descr (&ret
, new_loc_descr (DW_OP_lt
, 0, 0));
14647 add_loc_descr (&ret
, bra_node
);
14649 /* We are in case 1. At this point, we know both operands have the same
14650 sign, to it's safe to use the built-in signed comparison. */
14651 add_loc_descr (&ret
, new_loc_descr (op
, 0, 0));
14652 add_loc_descr (&ret
, jmp_node
);
14654 /* We are in case 2. Here, we know both operands do not have the same sign,
14655 so we have to flip the signed comparison. */
14656 flip_op
= (kind
== LT_EXPR
|| kind
== LE_EXPR
) ? DW_OP_gt
: DW_OP_lt
;
14657 tmp
= new_loc_descr (flip_op
, 0, 0);
14658 bra_node
->dw_loc_oprnd1
.val_class
= dw_val_class_loc
;
14659 bra_node
->dw_loc_oprnd1
.v
.val_loc
= tmp
;
14660 add_loc_descr (&ret
, tmp
);
14662 /* This dummy operation is necessary to make the two branches join. */
14663 tmp
= new_loc_descr (DW_OP_nop
, 0, 0);
14664 jmp_node
->dw_loc_oprnd1
.val_class
= dw_val_class_loc
;
14665 jmp_node
->dw_loc_oprnd1
.v
.val_loc
= tmp
;
14666 add_loc_descr (&ret
, tmp
);
14671 /* Likewise, but takes the location description lists (might be destructive on
14672 them). Return NULL if either is NULL or if concatenation fails. */
14674 static dw_loc_list_ref
14675 loc_list_from_uint_comparison (dw_loc_list_ref left
, dw_loc_list_ref right
,
14676 enum tree_code kind
)
14678 if (left
== NULL
|| right
== NULL
)
14681 add_loc_list (&left
, right
);
14685 add_loc_descr_to_each (left
, uint_comparison_loc_list (kind
));
14689 /* Return size_of_locs (int_shift_loc_descriptor (i, shift))
14690 without actually allocating it. */
14692 static unsigned long
14693 size_of_int_shift_loc_descriptor (HOST_WIDE_INT i
, int shift
)
14695 return size_of_int_loc_descriptor (i
>> shift
)
14696 + size_of_int_loc_descriptor (shift
)
14700 /* Return size_of_locs (int_loc_descriptor (i)) without
14701 actually allocating it. */
14703 static unsigned long
14704 size_of_int_loc_descriptor (HOST_WIDE_INT i
)
14713 else if (i
<= 0xff)
14715 else if (i
<= 0xffff)
14719 if (clz
+ ctz
>= HOST_BITS_PER_WIDE_INT
- 5
14720 && clz
+ 5 + 255 >= HOST_BITS_PER_WIDE_INT
)
14721 return size_of_int_shift_loc_descriptor (i
, HOST_BITS_PER_WIDE_INT
14723 else if (clz
+ ctz
>= HOST_BITS_PER_WIDE_INT
- 8
14724 && clz
+ 8 + 31 >= HOST_BITS_PER_WIDE_INT
)
14725 return size_of_int_shift_loc_descriptor (i
, HOST_BITS_PER_WIDE_INT
14727 else if (DWARF2_ADDR_SIZE
== 4 && i
> 0x7fffffff
14728 && size_of_int_loc_descriptor ((HOST_WIDE_INT
) (int32_t) i
)
14730 return size_of_int_loc_descriptor ((HOST_WIDE_INT
) (int32_t) i
);
14731 else if (HOST_BITS_PER_WIDE_INT
== 32 || i
<= 0xffffffff)
14733 s
= size_of_uleb128 ((unsigned HOST_WIDE_INT
) i
);
14734 if (clz
+ ctz
>= HOST_BITS_PER_WIDE_INT
- 8
14735 && clz
+ 8 + 255 >= HOST_BITS_PER_WIDE_INT
)
14736 return size_of_int_shift_loc_descriptor (i
, HOST_BITS_PER_WIDE_INT
14738 else if (clz
+ ctz
>= HOST_BITS_PER_WIDE_INT
- 16
14739 && clz
+ 16 + (s
> 5 ? 255 : 31) >= HOST_BITS_PER_WIDE_INT
)
14740 return size_of_int_shift_loc_descriptor (i
, HOST_BITS_PER_WIDE_INT
14742 else if (clz
+ ctz
>= HOST_BITS_PER_WIDE_INT
- 32
14743 && clz
+ 32 + 31 >= HOST_BITS_PER_WIDE_INT
14745 return size_of_int_shift_loc_descriptor (i
, HOST_BITS_PER_WIDE_INT
14754 else if (i
>= -0x8000)
14756 else if (HOST_BITS_PER_WIDE_INT
== 32 || i
>= -0x80000000)
14758 if (-(unsigned HOST_WIDE_INT
) i
!= (unsigned HOST_WIDE_INT
) i
)
14760 s
= size_of_int_loc_descriptor (-i
) + 1;
14768 unsigned long r
= 1 + size_of_sleb128 (i
);
14769 if (-(unsigned HOST_WIDE_INT
) i
!= (unsigned HOST_WIDE_INT
) i
)
14771 s
= size_of_int_loc_descriptor (-i
) + 1;
14780 /* Return loc description representing "address" of integer value.
14781 This can appear only as toplevel expression. */
14783 static dw_loc_descr_ref
14784 address_of_int_loc_descriptor (int size
, HOST_WIDE_INT i
)
14787 dw_loc_descr_ref loc_result
= NULL
;
14789 if (!(dwarf_version
>= 4 || !dwarf_strict
))
14792 litsize
= size_of_int_loc_descriptor (i
);
14793 /* Determine if DW_OP_stack_value or DW_OP_implicit_value
14794 is more compact. For DW_OP_stack_value we need:
14795 litsize + 1 (DW_OP_stack_value)
14796 and for DW_OP_implicit_value:
14797 1 (DW_OP_implicit_value) + 1 (length) + size. */
14798 if ((int) DWARF2_ADDR_SIZE
>= size
&& litsize
+ 1 <= 1 + 1 + size
)
14800 loc_result
= int_loc_descriptor (i
);
14801 add_loc_descr (&loc_result
,
14802 new_loc_descr (DW_OP_stack_value
, 0, 0));
14806 loc_result
= new_loc_descr (DW_OP_implicit_value
,
14808 loc_result
->dw_loc_oprnd2
.val_class
= dw_val_class_const
;
14809 loc_result
->dw_loc_oprnd2
.v
.val_int
= i
;
14813 /* Return a location descriptor that designates a base+offset location. */
14815 static dw_loc_descr_ref
14816 based_loc_descr (rtx reg
, poly_int64 offset
,
14817 enum var_init_status initialized
)
14819 unsigned int regno
;
14820 dw_loc_descr_ref result
;
14821 dw_fde_ref fde
= cfun
->fde
;
14823 /* We only use "frame base" when we're sure we're talking about the
14824 post-prologue local stack frame. We do this by *not* running
14825 register elimination until this point, and recognizing the special
14826 argument pointer and soft frame pointer rtx's. */
14827 if (reg
== arg_pointer_rtx
|| reg
== frame_pointer_rtx
)
14829 rtx elim
= (ira_use_lra_p
14830 ? lra_eliminate_regs (reg
, VOIDmode
, NULL_RTX
)
14831 : eliminate_regs (reg
, VOIDmode
, NULL_RTX
));
14835 /* Allow hard frame pointer here even if frame pointer
14836 isn't used since hard frame pointer is encoded with
14837 DW_OP_fbreg which uses the DW_AT_frame_base attribute,
14838 not hard frame pointer directly. */
14839 elim
= strip_offset_and_add (elim
, &offset
);
14840 gcc_assert (elim
== hard_frame_pointer_rtx
14841 || elim
== stack_pointer_rtx
);
14843 /* If drap register is used to align stack, use frame
14844 pointer + offset to access stack variables. If stack
14845 is aligned without drap, use stack pointer + offset to
14846 access stack variables. */
14847 if (crtl
->stack_realign_tried
14848 && reg
== frame_pointer_rtx
)
14851 = DWARF_FRAME_REGNUM ((fde
&& fde
->drap_reg
!= INVALID_REGNUM
)
14852 ? HARD_FRAME_POINTER_REGNUM
14854 return new_reg_loc_descr (base_reg
, offset
);
14857 gcc_assert (frame_pointer_fb_offset_valid
);
14858 offset
+= frame_pointer_fb_offset
;
14859 HOST_WIDE_INT const_offset
;
14860 if (offset
.is_constant (&const_offset
))
14861 return new_loc_descr (DW_OP_fbreg
, const_offset
, 0);
14864 dw_loc_descr_ref ret
= new_loc_descr (DW_OP_fbreg
, 0, 0);
14865 loc_descr_plus_const (&ret
, offset
);
14871 regno
= REGNO (reg
);
14872 #ifdef LEAF_REG_REMAP
14873 if (crtl
->uses_only_leaf_regs
)
14875 int leaf_reg
= LEAF_REG_REMAP (regno
);
14876 if (leaf_reg
!= -1)
14877 regno
= (unsigned) leaf_reg
;
14880 regno
= DWARF_FRAME_REGNUM (regno
);
14882 HOST_WIDE_INT const_offset
;
14883 if (!optimize
&& fde
14884 && (fde
->drap_reg
== regno
|| fde
->vdrap_reg
== regno
)
14885 && offset
.is_constant (&const_offset
))
14887 /* Use cfa+offset to represent the location of arguments passed
14888 on the stack when drap is used to align stack.
14889 Only do this when not optimizing, for optimized code var-tracking
14890 is supposed to track where the arguments live and the register
14891 used as vdrap or drap in some spot might be used for something
14892 else in other part of the routine. */
14893 return new_loc_descr (DW_OP_fbreg
, const_offset
, 0);
14896 result
= new_reg_loc_descr (regno
, offset
);
14898 if (initialized
== VAR_INIT_STATUS_UNINITIALIZED
)
14899 add_loc_descr (&result
, new_loc_descr (DW_OP_GNU_uninit
, 0, 0));
14904 /* Return true if this RTL expression describes a base+offset calculation. */
14907 is_based_loc (const_rtx rtl
)
14909 return (GET_CODE (rtl
) == PLUS
14910 && ((REG_P (XEXP (rtl
, 0))
14911 && REGNO (XEXP (rtl
, 0)) < FIRST_PSEUDO_REGISTER
14912 && CONST_INT_P (XEXP (rtl
, 1)))));
14915 /* Try to handle TLS MEMs, for which mem_loc_descriptor on XEXP (mem, 0)
14918 static dw_loc_descr_ref
14919 tls_mem_loc_descriptor (rtx mem
)
14922 dw_loc_descr_ref loc_result
;
14924 if (MEM_EXPR (mem
) == NULL_TREE
|| !MEM_OFFSET_KNOWN_P (mem
))
14927 base
= get_base_address (MEM_EXPR (mem
));
14930 || !DECL_THREAD_LOCAL_P (base
))
14933 loc_result
= loc_descriptor_from_tree (MEM_EXPR (mem
), 1, NULL
);
14934 if (loc_result
== NULL
)
14937 if (maybe_ne (MEM_OFFSET (mem
), 0))
14938 loc_descr_plus_const (&loc_result
, MEM_OFFSET (mem
));
14943 /* Output debug info about reason why we failed to expand expression as dwarf
14947 expansion_failed (tree expr
, rtx rtl
, char const *reason
)
14949 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
14951 fprintf (dump_file
, "Failed to expand as dwarf: ");
14953 print_generic_expr (dump_file
, expr
, dump_flags
);
14956 fprintf (dump_file
, "\n");
14957 print_rtl (dump_file
, rtl
);
14959 fprintf (dump_file
, "\nReason: %s\n", reason
);
14963 /* Helper function for const_ok_for_output. */
14966 const_ok_for_output_1 (rtx rtl
)
14968 if (targetm
.const_not_ok_for_debug_p (rtl
))
14970 if (GET_CODE (rtl
) != UNSPEC
)
14972 expansion_failed (NULL_TREE
, rtl
,
14973 "Expression rejected for debug by the backend.\n");
14977 /* If delegitimize_address couldn't do anything with the UNSPEC, and
14978 the target hook doesn't explicitly allow it in debug info, assume
14979 we can't express it in the debug info. */
14980 /* Don't complain about TLS UNSPECs, those are just too hard to
14981 delegitimize. Note this could be a non-decl SYMBOL_REF such as
14982 one in a constant pool entry, so testing SYMBOL_REF_TLS_MODEL
14983 rather than DECL_THREAD_LOCAL_P is not just an optimization. */
14985 && (XVECLEN (rtl
, 0) == 0
14986 || GET_CODE (XVECEXP (rtl
, 0, 0)) != SYMBOL_REF
14987 || SYMBOL_REF_TLS_MODEL (XVECEXP (rtl
, 0, 0)) == TLS_MODEL_NONE
))
14988 inform (current_function_decl
14989 ? DECL_SOURCE_LOCATION (current_function_decl
)
14990 : UNKNOWN_LOCATION
,
14991 #if NUM_UNSPEC_VALUES > 0
14992 "non-delegitimized UNSPEC %s (%d) found in variable location",
14993 ((XINT (rtl
, 1) >= 0 && XINT (rtl
, 1) < NUM_UNSPEC_VALUES
)
14994 ? unspec_strings
[XINT (rtl
, 1)] : "unknown"),
14996 "non-delegitimized UNSPEC %d found in variable location",
14999 expansion_failed (NULL_TREE
, rtl
,
15000 "UNSPEC hasn't been delegitimized.\n");
15004 if (CONST_POLY_INT_P (rtl
))
15007 /* FIXME: Refer to PR60655. It is possible for simplification
15008 of rtl expressions in var tracking to produce such expressions.
15009 We should really identify / validate expressions
15010 enclosed in CONST that can be handled by assemblers on various
15011 targets and only handle legitimate cases here. */
15012 switch (GET_CODE (rtl
))
15021 /* Make sure SYMBOL_REFs/UNSPECs are at most in one of the
15023 subrtx_var_iterator::array_type array
;
15024 bool first
= false;
15025 FOR_EACH_SUBRTX_VAR (iter
, array
, XEXP (rtl
, 0), ALL
)
15026 if (SYMBOL_REF_P (*iter
)
15028 || GET_CODE (*iter
) == UNSPEC
)
15035 FOR_EACH_SUBRTX_VAR (iter
, array
, XEXP (rtl
, 1), ALL
)
15036 if (SYMBOL_REF_P (*iter
)
15038 || GET_CODE (*iter
) == UNSPEC
)
15044 /* Disallow negation of SYMBOL_REFs or UNSPECs when they
15045 appear in the second operand of MINUS. */
15046 subrtx_var_iterator::array_type array
;
15047 FOR_EACH_SUBRTX_VAR (iter
, array
, XEXP (rtl
, 1), ALL
)
15048 if (SYMBOL_REF_P (*iter
)
15050 || GET_CODE (*iter
) == UNSPEC
)
15058 if (CONSTANT_POOL_ADDRESS_P (rtl
))
15061 get_pool_constant_mark (rtl
, &marked
);
15062 /* If all references to this pool constant were optimized away,
15063 it was not output and thus we can't represent it. */
15066 expansion_failed (NULL_TREE
, rtl
,
15067 "Constant was removed from constant pool.\n");
15072 if (SYMBOL_REF_TLS_MODEL (rtl
) != TLS_MODEL_NONE
)
15075 /* Avoid references to external symbols in debug info, on several targets
15076 the linker might even refuse to link when linking a shared library,
15077 and in many other cases the relocations for .debug_info/.debug_loc are
15078 dropped, so the address becomes zero anyway. Hidden symbols, guaranteed
15079 to be defined within the same shared library or executable are fine. */
15080 if (SYMBOL_REF_EXTERNAL_P (rtl
))
15082 tree decl
= SYMBOL_REF_DECL (rtl
);
15084 if (decl
== NULL
|| !targetm
.binds_local_p (decl
))
15086 expansion_failed (NULL_TREE
, rtl
,
15087 "Symbol not defined in current TU.\n");
15095 /* Return true if constant RTL can be emitted in DW_OP_addr or
15096 DW_AT_const_value. TLS SYMBOL_REFs, external SYMBOL_REFs or
15097 non-marked constant pool SYMBOL_REFs can't be referenced in it. */
15100 const_ok_for_output (rtx rtl
)
15102 if (GET_CODE (rtl
) == SYMBOL_REF
)
15103 return const_ok_for_output_1 (rtl
);
15105 if (GET_CODE (rtl
) == CONST
)
15107 subrtx_var_iterator::array_type array
;
15108 FOR_EACH_SUBRTX_VAR (iter
, array
, XEXP (rtl
, 0), ALL
)
15109 if (!const_ok_for_output_1 (*iter
))
15117 /* Return a reference to DW_TAG_base_type corresponding to MODE and UNSIGNEDP
15118 if possible, NULL otherwise. */
15121 base_type_for_mode (machine_mode mode
, bool unsignedp
)
15123 dw_die_ref type_die
;
15124 tree type
= lang_hooks
.types
.type_for_mode (mode
, unsignedp
);
15128 switch (TREE_CODE (type
))
15136 type_die
= lookup_type_die (type
);
15138 type_die
= modified_type_die (type
, TYPE_UNQUALIFIED
, false,
15140 if (type_die
== NULL
|| type_die
->die_tag
!= DW_TAG_base_type
)
15145 /* For OP descriptor assumed to be in unsigned MODE, convert it to a unsigned
15146 type matching MODE, or, if MODE is narrower than or as wide as
15147 DWARF2_ADDR_SIZE, untyped. Return NULL if the conversion is not
15150 static dw_loc_descr_ref
15151 convert_descriptor_to_mode (scalar_int_mode mode
, dw_loc_descr_ref op
)
15153 machine_mode outer_mode
= mode
;
15154 dw_die_ref type_die
;
15155 dw_loc_descr_ref cvt
;
15157 if (GET_MODE_SIZE (mode
) <= DWARF2_ADDR_SIZE
)
15159 add_loc_descr (&op
, new_loc_descr (dwarf_OP (DW_OP_convert
), 0, 0));
15162 type_die
= base_type_for_mode (outer_mode
, 1);
15163 if (type_die
== NULL
)
15165 cvt
= new_loc_descr (dwarf_OP (DW_OP_convert
), 0, 0);
15166 cvt
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
15167 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.die
= type_die
;
15168 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
15169 add_loc_descr (&op
, cvt
);
15173 /* Return location descriptor for comparison OP with operands OP0 and OP1. */
15175 static dw_loc_descr_ref
15176 compare_loc_descriptor (enum dwarf_location_atom op
, dw_loc_descr_ref op0
,
15177 dw_loc_descr_ref op1
)
15179 dw_loc_descr_ref ret
= op0
;
15180 add_loc_descr (&ret
, op1
);
15181 add_loc_descr (&ret
, new_loc_descr (op
, 0, 0));
15182 if (STORE_FLAG_VALUE
!= 1)
15184 add_loc_descr (&ret
, int_loc_descriptor (STORE_FLAG_VALUE
));
15185 add_loc_descr (&ret
, new_loc_descr (DW_OP_mul
, 0, 0));
15190 /* Subroutine of scompare_loc_descriptor for the case in which we're
15191 comparing two scalar integer operands OP0 and OP1 that have mode OP_MODE,
15192 and in which OP_MODE is bigger than DWARF2_ADDR_SIZE. */
15194 static dw_loc_descr_ref
15195 scompare_loc_descriptor_wide (enum dwarf_location_atom op
,
15196 scalar_int_mode op_mode
,
15197 dw_loc_descr_ref op0
, dw_loc_descr_ref op1
)
15199 dw_die_ref type_die
= base_type_for_mode (op_mode
, 0);
15200 dw_loc_descr_ref cvt
;
15202 if (type_die
== NULL
)
15204 cvt
= new_loc_descr (dwarf_OP (DW_OP_convert
), 0, 0);
15205 cvt
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
15206 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.die
= type_die
;
15207 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
15208 add_loc_descr (&op0
, cvt
);
15209 cvt
= new_loc_descr (dwarf_OP (DW_OP_convert
), 0, 0);
15210 cvt
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
15211 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.die
= type_die
;
15212 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
15213 add_loc_descr (&op1
, cvt
);
15214 return compare_loc_descriptor (op
, op0
, op1
);
15217 /* Subroutine of scompare_loc_descriptor for the case in which we're
15218 comparing two scalar integer operands OP0 and OP1 that have mode OP_MODE,
15219 and in which OP_MODE is smaller than DWARF2_ADDR_SIZE. */
15221 static dw_loc_descr_ref
15222 scompare_loc_descriptor_narrow (enum dwarf_location_atom op
, rtx rtl
,
15223 scalar_int_mode op_mode
,
15224 dw_loc_descr_ref op0
, dw_loc_descr_ref op1
)
15226 int shift
= (DWARF2_ADDR_SIZE
- GET_MODE_SIZE (op_mode
)) * BITS_PER_UNIT
;
15227 /* For eq/ne, if the operands are known to be zero-extended,
15228 there is no need to do the fancy shifting up. */
15229 if (op
== DW_OP_eq
|| op
== DW_OP_ne
)
15231 dw_loc_descr_ref last0
, last1
;
15232 for (last0
= op0
; last0
->dw_loc_next
!= NULL
; last0
= last0
->dw_loc_next
)
15234 for (last1
= op1
; last1
->dw_loc_next
!= NULL
; last1
= last1
->dw_loc_next
)
15236 /* deref_size zero extends, and for constants we can check
15237 whether they are zero extended or not. */
15238 if (((last0
->dw_loc_opc
== DW_OP_deref_size
15239 && last0
->dw_loc_oprnd1
.v
.val_int
<= GET_MODE_SIZE (op_mode
))
15240 || (CONST_INT_P (XEXP (rtl
, 0))
15241 && (unsigned HOST_WIDE_INT
) INTVAL (XEXP (rtl
, 0))
15242 == (INTVAL (XEXP (rtl
, 0)) & GET_MODE_MASK (op_mode
))))
15243 && ((last1
->dw_loc_opc
== DW_OP_deref_size
15244 && last1
->dw_loc_oprnd1
.v
.val_int
<= GET_MODE_SIZE (op_mode
))
15245 || (CONST_INT_P (XEXP (rtl
, 1))
15246 && (unsigned HOST_WIDE_INT
) INTVAL (XEXP (rtl
, 1))
15247 == (INTVAL (XEXP (rtl
, 1)) & GET_MODE_MASK (op_mode
)))))
15248 return compare_loc_descriptor (op
, op0
, op1
);
15250 /* EQ/NE comparison against constant in narrower type than
15251 DWARF2_ADDR_SIZE can be performed either as
15252 DW_OP_const1u <shift> DW_OP_shl DW_OP_const* <cst << shift>
15255 DW_OP_const*u <mode_mask> DW_OP_and DW_OP_const* <cst & mode_mask>
15256 DW_OP_{eq,ne}. Pick whatever is shorter. */
15257 if (CONST_INT_P (XEXP (rtl
, 1))
15258 && GET_MODE_BITSIZE (op_mode
) < HOST_BITS_PER_WIDE_INT
15259 && (size_of_int_loc_descriptor (shift
) + 1
15260 + size_of_int_loc_descriptor (UINTVAL (XEXP (rtl
, 1)) << shift
)
15261 >= size_of_int_loc_descriptor (GET_MODE_MASK (op_mode
)) + 1
15262 + size_of_int_loc_descriptor (INTVAL (XEXP (rtl
, 1))
15263 & GET_MODE_MASK (op_mode
))))
15265 add_loc_descr (&op0
, int_loc_descriptor (GET_MODE_MASK (op_mode
)));
15266 add_loc_descr (&op0
, new_loc_descr (DW_OP_and
, 0, 0));
15267 op1
= int_loc_descriptor (INTVAL (XEXP (rtl
, 1))
15268 & GET_MODE_MASK (op_mode
));
15269 return compare_loc_descriptor (op
, op0
, op1
);
15272 add_loc_descr (&op0
, int_loc_descriptor (shift
));
15273 add_loc_descr (&op0
, new_loc_descr (DW_OP_shl
, 0, 0));
15274 if (CONST_INT_P (XEXP (rtl
, 1)))
15275 op1
= int_loc_descriptor (UINTVAL (XEXP (rtl
, 1)) << shift
);
15278 add_loc_descr (&op1
, int_loc_descriptor (shift
));
15279 add_loc_descr (&op1
, new_loc_descr (DW_OP_shl
, 0, 0));
15281 return compare_loc_descriptor (op
, op0
, op1
);
15284 /* Return location descriptor for signed comparison OP RTL. */
15286 static dw_loc_descr_ref
15287 scompare_loc_descriptor (enum dwarf_location_atom op
, rtx rtl
,
15288 machine_mode mem_mode
)
15290 machine_mode op_mode
= GET_MODE (XEXP (rtl
, 0));
15291 dw_loc_descr_ref op0
, op1
;
15293 if (op_mode
== VOIDmode
)
15294 op_mode
= GET_MODE (XEXP (rtl
, 1));
15295 if (op_mode
== VOIDmode
)
15298 scalar_int_mode int_op_mode
;
15300 && dwarf_version
< 5
15301 && (!is_a
<scalar_int_mode
> (op_mode
, &int_op_mode
)
15302 || GET_MODE_SIZE (int_op_mode
) > DWARF2_ADDR_SIZE
))
15305 op0
= mem_loc_descriptor (XEXP (rtl
, 0), op_mode
, mem_mode
,
15306 VAR_INIT_STATUS_INITIALIZED
);
15307 op1
= mem_loc_descriptor (XEXP (rtl
, 1), op_mode
, mem_mode
,
15308 VAR_INIT_STATUS_INITIALIZED
);
15310 if (op0
== NULL
|| op1
== NULL
)
15313 if (is_a
<scalar_int_mode
> (op_mode
, &int_op_mode
))
15315 if (GET_MODE_SIZE (int_op_mode
) < DWARF2_ADDR_SIZE
)
15316 return scompare_loc_descriptor_narrow (op
, rtl
, int_op_mode
, op0
, op1
);
15318 if (GET_MODE_SIZE (int_op_mode
) > DWARF2_ADDR_SIZE
)
15319 return scompare_loc_descriptor_wide (op
, int_op_mode
, op0
, op1
);
15321 return compare_loc_descriptor (op
, op0
, op1
);
15324 /* Return location descriptor for unsigned comparison OP RTL. */
15326 static dw_loc_descr_ref
15327 ucompare_loc_descriptor (enum dwarf_location_atom op
, rtx rtl
,
15328 machine_mode mem_mode
)
15330 dw_loc_descr_ref op0
, op1
;
15332 machine_mode test_op_mode
= GET_MODE (XEXP (rtl
, 0));
15333 if (test_op_mode
== VOIDmode
)
15334 test_op_mode
= GET_MODE (XEXP (rtl
, 1));
15336 scalar_int_mode op_mode
;
15337 if (!is_a
<scalar_int_mode
> (test_op_mode
, &op_mode
))
15341 && dwarf_version
< 5
15342 && GET_MODE_SIZE (op_mode
) > DWARF2_ADDR_SIZE
)
15345 op0
= mem_loc_descriptor (XEXP (rtl
, 0), op_mode
, mem_mode
,
15346 VAR_INIT_STATUS_INITIALIZED
);
15347 op1
= mem_loc_descriptor (XEXP (rtl
, 1), op_mode
, mem_mode
,
15348 VAR_INIT_STATUS_INITIALIZED
);
15350 if (op0
== NULL
|| op1
== NULL
)
15353 if (GET_MODE_SIZE (op_mode
) < DWARF2_ADDR_SIZE
)
15355 HOST_WIDE_INT mask
= GET_MODE_MASK (op_mode
);
15356 dw_loc_descr_ref last0
, last1
;
15357 for (last0
= op0
; last0
->dw_loc_next
!= NULL
; last0
= last0
->dw_loc_next
)
15359 for (last1
= op1
; last1
->dw_loc_next
!= NULL
; last1
= last1
->dw_loc_next
)
15361 if (CONST_INT_P (XEXP (rtl
, 0)))
15362 op0
= int_loc_descriptor (INTVAL (XEXP (rtl
, 0)) & mask
);
15363 /* deref_size zero extends, so no need to mask it again. */
15364 else if (last0
->dw_loc_opc
!= DW_OP_deref_size
15365 || last0
->dw_loc_oprnd1
.v
.val_int
> GET_MODE_SIZE (op_mode
))
15367 add_loc_descr (&op0
, int_loc_descriptor (mask
));
15368 add_loc_descr (&op0
, new_loc_descr (DW_OP_and
, 0, 0));
15370 if (CONST_INT_P (XEXP (rtl
, 1)))
15371 op1
= int_loc_descriptor (INTVAL (XEXP (rtl
, 1)) & mask
);
15372 /* deref_size zero extends, so no need to mask it again. */
15373 else if (last1
->dw_loc_opc
!= DW_OP_deref_size
15374 || last1
->dw_loc_oprnd1
.v
.val_int
> GET_MODE_SIZE (op_mode
))
15376 add_loc_descr (&op1
, int_loc_descriptor (mask
));
15377 add_loc_descr (&op1
, new_loc_descr (DW_OP_and
, 0, 0));
15380 else if (GET_MODE_SIZE (op_mode
) == DWARF2_ADDR_SIZE
)
15382 HOST_WIDE_INT bias
= 1;
15383 bias
<<= (DWARF2_ADDR_SIZE
* BITS_PER_UNIT
- 1);
15384 add_loc_descr (&op0
, new_loc_descr (DW_OP_plus_uconst
, bias
, 0));
15385 if (CONST_INT_P (XEXP (rtl
, 1)))
15386 op1
= int_loc_descriptor ((unsigned HOST_WIDE_INT
) bias
15387 + INTVAL (XEXP (rtl
, 1)));
15389 add_loc_descr (&op1
, new_loc_descr (DW_OP_plus_uconst
,
15392 return compare_loc_descriptor (op
, op0
, op1
);
15395 /* Return location descriptor for {U,S}{MIN,MAX}. */
15397 static dw_loc_descr_ref
15398 minmax_loc_descriptor (rtx rtl
, machine_mode mode
,
15399 machine_mode mem_mode
)
15401 enum dwarf_location_atom op
;
15402 dw_loc_descr_ref op0
, op1
, ret
;
15403 dw_loc_descr_ref bra_node
, drop_node
;
15405 scalar_int_mode int_mode
;
15407 && dwarf_version
< 5
15408 && (!is_a
<scalar_int_mode
> (mode
, &int_mode
)
15409 || GET_MODE_SIZE (int_mode
) > DWARF2_ADDR_SIZE
))
15412 op0
= mem_loc_descriptor (XEXP (rtl
, 0), mode
, mem_mode
,
15413 VAR_INIT_STATUS_INITIALIZED
);
15414 op1
= mem_loc_descriptor (XEXP (rtl
, 1), mode
, mem_mode
,
15415 VAR_INIT_STATUS_INITIALIZED
);
15417 if (op0
== NULL
|| op1
== NULL
)
15420 add_loc_descr (&op0
, new_loc_descr (DW_OP_dup
, 0, 0));
15421 add_loc_descr (&op1
, new_loc_descr (DW_OP_swap
, 0, 0));
15422 add_loc_descr (&op1
, new_loc_descr (DW_OP_over
, 0, 0));
15423 if (GET_CODE (rtl
) == UMIN
|| GET_CODE (rtl
) == UMAX
)
15425 /* Checked by the caller. */
15426 int_mode
= as_a
<scalar_int_mode
> (mode
);
15427 if (GET_MODE_SIZE (int_mode
) < DWARF2_ADDR_SIZE
)
15429 HOST_WIDE_INT mask
= GET_MODE_MASK (int_mode
);
15430 add_loc_descr (&op0
, int_loc_descriptor (mask
));
15431 add_loc_descr (&op0
, new_loc_descr (DW_OP_and
, 0, 0));
15432 add_loc_descr (&op1
, int_loc_descriptor (mask
));
15433 add_loc_descr (&op1
, new_loc_descr (DW_OP_and
, 0, 0));
15435 else if (GET_MODE_SIZE (int_mode
) == DWARF2_ADDR_SIZE
)
15437 HOST_WIDE_INT bias
= 1;
15438 bias
<<= (DWARF2_ADDR_SIZE
* BITS_PER_UNIT
- 1);
15439 add_loc_descr (&op0
, new_loc_descr (DW_OP_plus_uconst
, bias
, 0));
15440 add_loc_descr (&op1
, new_loc_descr (DW_OP_plus_uconst
, bias
, 0));
15443 else if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
15444 && GET_MODE_SIZE (int_mode
) < DWARF2_ADDR_SIZE
)
15446 int shift
= (DWARF2_ADDR_SIZE
- GET_MODE_SIZE (int_mode
)) * BITS_PER_UNIT
;
15447 add_loc_descr (&op0
, int_loc_descriptor (shift
));
15448 add_loc_descr (&op0
, new_loc_descr (DW_OP_shl
, 0, 0));
15449 add_loc_descr (&op1
, int_loc_descriptor (shift
));
15450 add_loc_descr (&op1
, new_loc_descr (DW_OP_shl
, 0, 0));
15452 else if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
15453 && GET_MODE_SIZE (int_mode
) > DWARF2_ADDR_SIZE
)
15455 dw_die_ref type_die
= base_type_for_mode (int_mode
, 0);
15456 dw_loc_descr_ref cvt
;
15457 if (type_die
== NULL
)
15459 cvt
= new_loc_descr (dwarf_OP (DW_OP_convert
), 0, 0);
15460 cvt
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
15461 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.die
= type_die
;
15462 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
15463 add_loc_descr (&op0
, cvt
);
15464 cvt
= new_loc_descr (dwarf_OP (DW_OP_convert
), 0, 0);
15465 cvt
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
15466 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.die
= type_die
;
15467 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
15468 add_loc_descr (&op1
, cvt
);
15471 if (GET_CODE (rtl
) == SMIN
|| GET_CODE (rtl
) == UMIN
)
15476 add_loc_descr (&ret
, op1
);
15477 add_loc_descr (&ret
, new_loc_descr (op
, 0, 0));
15478 bra_node
= new_loc_descr (DW_OP_bra
, 0, 0);
15479 add_loc_descr (&ret
, bra_node
);
15480 add_loc_descr (&ret
, new_loc_descr (DW_OP_swap
, 0, 0));
15481 drop_node
= new_loc_descr (DW_OP_drop
, 0, 0);
15482 add_loc_descr (&ret
, drop_node
);
15483 bra_node
->dw_loc_oprnd1
.val_class
= dw_val_class_loc
;
15484 bra_node
->dw_loc_oprnd1
.v
.val_loc
= drop_node
;
15485 if ((GET_CODE (rtl
) == SMIN
|| GET_CODE (rtl
) == SMAX
)
15486 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
15487 && GET_MODE_SIZE (int_mode
) > DWARF2_ADDR_SIZE
)
15488 ret
= convert_descriptor_to_mode (int_mode
, ret
);
15492 /* Helper function for mem_loc_descriptor. Perform OP binary op,
15493 but after converting arguments to type_die, afterwards
15494 convert back to unsigned. */
15496 static dw_loc_descr_ref
15497 typed_binop (enum dwarf_location_atom op
, rtx rtl
, dw_die_ref type_die
,
15498 scalar_int_mode mode
, machine_mode mem_mode
)
15500 dw_loc_descr_ref cvt
, op0
, op1
;
15502 if (type_die
== NULL
)
15504 op0
= mem_loc_descriptor (XEXP (rtl
, 0), mode
, mem_mode
,
15505 VAR_INIT_STATUS_INITIALIZED
);
15506 op1
= mem_loc_descriptor (XEXP (rtl
, 1), mode
, mem_mode
,
15507 VAR_INIT_STATUS_INITIALIZED
);
15508 if (op0
== NULL
|| op1
== NULL
)
15510 cvt
= new_loc_descr (dwarf_OP (DW_OP_convert
), 0, 0);
15511 cvt
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
15512 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.die
= type_die
;
15513 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
15514 add_loc_descr (&op0
, cvt
);
15515 cvt
= new_loc_descr (dwarf_OP (DW_OP_convert
), 0, 0);
15516 cvt
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
15517 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.die
= type_die
;
15518 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
15519 add_loc_descr (&op1
, cvt
);
15520 add_loc_descr (&op0
, op1
);
15521 add_loc_descr (&op0
, new_loc_descr (op
, 0, 0));
15522 return convert_descriptor_to_mode (mode
, op0
);
15525 /* CLZ (where constV is CLZ_DEFINED_VALUE_AT_ZERO computed value,
15526 const0 is DW_OP_lit0 or corresponding typed constant,
15527 const1 is DW_OP_lit1 or corresponding typed constant
15528 and constMSB is constant with just the MSB bit set
15530 DW_OP_dup DW_OP_bra <L1> DW_OP_drop constV DW_OP_skip <L4>
15531 L1: const0 DW_OP_swap
15532 L2: DW_OP_dup constMSB DW_OP_and DW_OP_bra <L3> const1 DW_OP_shl
15533 DW_OP_swap DW_OP_plus_uconst <1> DW_OP_swap DW_OP_skip <L2>
15538 DW_OP_dup DW_OP_bra <L1> DW_OP_drop constV DW_OP_skip <L4>
15539 L1: const0 DW_OP_swap
15540 L2: DW_OP_dup const1 DW_OP_and DW_OP_bra <L3> const1 DW_OP_shr
15541 DW_OP_swap DW_OP_plus_uconst <1> DW_OP_swap DW_OP_skip <L2>
15546 DW_OP_dup DW_OP_bra <L1> DW_OP_drop const0 DW_OP_skip <L4>
15547 L1: const1 DW_OP_swap
15548 L2: DW_OP_dup const1 DW_OP_and DW_OP_bra <L3> const1 DW_OP_shr
15549 DW_OP_swap DW_OP_plus_uconst <1> DW_OP_swap DW_OP_skip <L2>
15553 static dw_loc_descr_ref
15554 clz_loc_descriptor (rtx rtl
, scalar_int_mode mode
,
15555 machine_mode mem_mode
)
15557 dw_loc_descr_ref op0
, ret
, tmp
;
15558 HOST_WIDE_INT valv
;
15559 dw_loc_descr_ref l1jump
, l1label
;
15560 dw_loc_descr_ref l2jump
, l2label
;
15561 dw_loc_descr_ref l3jump
, l3label
;
15562 dw_loc_descr_ref l4jump
, l4label
;
15565 if (GET_MODE (XEXP (rtl
, 0)) != mode
)
15568 op0
= mem_loc_descriptor (XEXP (rtl
, 0), mode
, mem_mode
,
15569 VAR_INIT_STATUS_INITIALIZED
);
15573 if (GET_CODE (rtl
) == CLZ
)
15575 if (!CLZ_DEFINED_VALUE_AT_ZERO (mode
, valv
))
15576 valv
= GET_MODE_BITSIZE (mode
);
15578 else if (GET_CODE (rtl
) == FFS
)
15580 else if (!CTZ_DEFINED_VALUE_AT_ZERO (mode
, valv
))
15581 valv
= GET_MODE_BITSIZE (mode
);
15582 add_loc_descr (&ret
, new_loc_descr (DW_OP_dup
, 0, 0));
15583 l1jump
= new_loc_descr (DW_OP_bra
, 0, 0);
15584 add_loc_descr (&ret
, l1jump
);
15585 add_loc_descr (&ret
, new_loc_descr (DW_OP_drop
, 0, 0));
15586 tmp
= mem_loc_descriptor (GEN_INT (valv
), mode
, mem_mode
,
15587 VAR_INIT_STATUS_INITIALIZED
);
15590 add_loc_descr (&ret
, tmp
);
15591 l4jump
= new_loc_descr (DW_OP_skip
, 0, 0);
15592 add_loc_descr (&ret
, l4jump
);
15593 l1label
= mem_loc_descriptor (GET_CODE (rtl
) == FFS
15594 ? const1_rtx
: const0_rtx
,
15596 VAR_INIT_STATUS_INITIALIZED
);
15597 if (l1label
== NULL
)
15599 add_loc_descr (&ret
, l1label
);
15600 add_loc_descr (&ret
, new_loc_descr (DW_OP_swap
, 0, 0));
15601 l2label
= new_loc_descr (DW_OP_dup
, 0, 0);
15602 add_loc_descr (&ret
, l2label
);
15603 if (GET_CODE (rtl
) != CLZ
)
15605 else if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
15606 msb
= GEN_INT (HOST_WIDE_INT_1U
15607 << (GET_MODE_BITSIZE (mode
) - 1));
15609 msb
= immed_wide_int_const
15610 (wi::set_bit_in_zero (GET_MODE_PRECISION (mode
) - 1,
15611 GET_MODE_PRECISION (mode
)), mode
);
15612 if (GET_CODE (msb
) == CONST_INT
&& INTVAL (msb
) < 0)
15613 tmp
= new_loc_descr (HOST_BITS_PER_WIDE_INT
== 32
15614 ? DW_OP_const4u
: HOST_BITS_PER_WIDE_INT
== 64
15615 ? DW_OP_const8u
: DW_OP_constu
, INTVAL (msb
), 0);
15617 tmp
= mem_loc_descriptor (msb
, mode
, mem_mode
,
15618 VAR_INIT_STATUS_INITIALIZED
);
15621 add_loc_descr (&ret
, tmp
);
15622 add_loc_descr (&ret
, new_loc_descr (DW_OP_and
, 0, 0));
15623 l3jump
= new_loc_descr (DW_OP_bra
, 0, 0);
15624 add_loc_descr (&ret
, l3jump
);
15625 tmp
= mem_loc_descriptor (const1_rtx
, mode
, mem_mode
,
15626 VAR_INIT_STATUS_INITIALIZED
);
15629 add_loc_descr (&ret
, tmp
);
15630 add_loc_descr (&ret
, new_loc_descr (GET_CODE (rtl
) == CLZ
15631 ? DW_OP_shl
: DW_OP_shr
, 0, 0));
15632 add_loc_descr (&ret
, new_loc_descr (DW_OP_swap
, 0, 0));
15633 add_loc_descr (&ret
, new_loc_descr (DW_OP_plus_uconst
, 1, 0));
15634 add_loc_descr (&ret
, new_loc_descr (DW_OP_swap
, 0, 0));
15635 l2jump
= new_loc_descr (DW_OP_skip
, 0, 0);
15636 add_loc_descr (&ret
, l2jump
);
15637 l3label
= new_loc_descr (DW_OP_drop
, 0, 0);
15638 add_loc_descr (&ret
, l3label
);
15639 l4label
= new_loc_descr (DW_OP_nop
, 0, 0);
15640 add_loc_descr (&ret
, l4label
);
15641 l1jump
->dw_loc_oprnd1
.val_class
= dw_val_class_loc
;
15642 l1jump
->dw_loc_oprnd1
.v
.val_loc
= l1label
;
15643 l2jump
->dw_loc_oprnd1
.val_class
= dw_val_class_loc
;
15644 l2jump
->dw_loc_oprnd1
.v
.val_loc
= l2label
;
15645 l3jump
->dw_loc_oprnd1
.val_class
= dw_val_class_loc
;
15646 l3jump
->dw_loc_oprnd1
.v
.val_loc
= l3label
;
15647 l4jump
->dw_loc_oprnd1
.val_class
= dw_val_class_loc
;
15648 l4jump
->dw_loc_oprnd1
.v
.val_loc
= l4label
;
15652 /* POPCOUNT (const0 is DW_OP_lit0 or corresponding typed constant,
15653 const1 is DW_OP_lit1 or corresponding typed constant):
15655 L1: DW_OP_dup DW_OP_bra <L2> DW_OP_dup DW_OP_rot const1 DW_OP_and
15656 DW_OP_plus DW_OP_swap const1 DW_OP_shr DW_OP_skip <L1>
15660 L1: DW_OP_dup DW_OP_bra <L2> DW_OP_dup DW_OP_rot const1 DW_OP_and
15661 DW_OP_xor DW_OP_swap const1 DW_OP_shr DW_OP_skip <L1>
15664 static dw_loc_descr_ref
15665 popcount_loc_descriptor (rtx rtl
, scalar_int_mode mode
,
15666 machine_mode mem_mode
)
15668 dw_loc_descr_ref op0
, ret
, tmp
;
15669 dw_loc_descr_ref l1jump
, l1label
;
15670 dw_loc_descr_ref l2jump
, l2label
;
15672 if (GET_MODE (XEXP (rtl
, 0)) != mode
)
15675 op0
= mem_loc_descriptor (XEXP (rtl
, 0), mode
, mem_mode
,
15676 VAR_INIT_STATUS_INITIALIZED
);
15680 tmp
= mem_loc_descriptor (const0_rtx
, mode
, mem_mode
,
15681 VAR_INIT_STATUS_INITIALIZED
);
15684 add_loc_descr (&ret
, tmp
);
15685 add_loc_descr (&ret
, new_loc_descr (DW_OP_swap
, 0, 0));
15686 l1label
= new_loc_descr (DW_OP_dup
, 0, 0);
15687 add_loc_descr (&ret
, l1label
);
15688 l2jump
= new_loc_descr (DW_OP_bra
, 0, 0);
15689 add_loc_descr (&ret
, l2jump
);
15690 add_loc_descr (&ret
, new_loc_descr (DW_OP_dup
, 0, 0));
15691 add_loc_descr (&ret
, new_loc_descr (DW_OP_rot
, 0, 0));
15692 tmp
= mem_loc_descriptor (const1_rtx
, mode
, mem_mode
,
15693 VAR_INIT_STATUS_INITIALIZED
);
15696 add_loc_descr (&ret
, tmp
);
15697 add_loc_descr (&ret
, new_loc_descr (DW_OP_and
, 0, 0));
15698 add_loc_descr (&ret
, new_loc_descr (GET_CODE (rtl
) == POPCOUNT
15699 ? DW_OP_plus
: DW_OP_xor
, 0, 0));
15700 add_loc_descr (&ret
, new_loc_descr (DW_OP_swap
, 0, 0));
15701 tmp
= mem_loc_descriptor (const1_rtx
, mode
, mem_mode
,
15702 VAR_INIT_STATUS_INITIALIZED
);
15703 add_loc_descr (&ret
, tmp
);
15704 add_loc_descr (&ret
, new_loc_descr (DW_OP_shr
, 0, 0));
15705 l1jump
= new_loc_descr (DW_OP_skip
, 0, 0);
15706 add_loc_descr (&ret
, l1jump
);
15707 l2label
= new_loc_descr (DW_OP_drop
, 0, 0);
15708 add_loc_descr (&ret
, l2label
);
15709 l1jump
->dw_loc_oprnd1
.val_class
= dw_val_class_loc
;
15710 l1jump
->dw_loc_oprnd1
.v
.val_loc
= l1label
;
15711 l2jump
->dw_loc_oprnd1
.val_class
= dw_val_class_loc
;
15712 l2jump
->dw_loc_oprnd1
.v
.val_loc
= l2label
;
15716 /* BSWAP (constS is initial shift count, either 56 or 24):
15718 L1: DW_OP_pick <2> constS DW_OP_pick <3> DW_OP_minus DW_OP_shr
15719 const255 DW_OP_and DW_OP_pick <2> DW_OP_shl DW_OP_or
15720 DW_OP_swap DW_OP_dup const0 DW_OP_eq DW_OP_bra <L2> const8
15721 DW_OP_minus DW_OP_swap DW_OP_skip <L1>
15722 L2: DW_OP_drop DW_OP_swap DW_OP_drop */
15724 static dw_loc_descr_ref
15725 bswap_loc_descriptor (rtx rtl
, scalar_int_mode mode
,
15726 machine_mode mem_mode
)
15728 dw_loc_descr_ref op0
, ret
, tmp
;
15729 dw_loc_descr_ref l1jump
, l1label
;
15730 dw_loc_descr_ref l2jump
, l2label
;
15732 if (BITS_PER_UNIT
!= 8
15733 || (GET_MODE_BITSIZE (mode
) != 32
15734 && GET_MODE_BITSIZE (mode
) != 64))
15737 op0
= mem_loc_descriptor (XEXP (rtl
, 0), mode
, mem_mode
,
15738 VAR_INIT_STATUS_INITIALIZED
);
15743 tmp
= mem_loc_descriptor (GEN_INT (GET_MODE_BITSIZE (mode
) - 8),
15745 VAR_INIT_STATUS_INITIALIZED
);
15748 add_loc_descr (&ret
, tmp
);
15749 tmp
= mem_loc_descriptor (const0_rtx
, mode
, mem_mode
,
15750 VAR_INIT_STATUS_INITIALIZED
);
15753 add_loc_descr (&ret
, tmp
);
15754 l1label
= new_loc_descr (DW_OP_pick
, 2, 0);
15755 add_loc_descr (&ret
, l1label
);
15756 tmp
= mem_loc_descriptor (GEN_INT (GET_MODE_BITSIZE (mode
) - 8),
15758 VAR_INIT_STATUS_INITIALIZED
);
15759 add_loc_descr (&ret
, tmp
);
15760 add_loc_descr (&ret
, new_loc_descr (DW_OP_pick
, 3, 0));
15761 add_loc_descr (&ret
, new_loc_descr (DW_OP_minus
, 0, 0));
15762 add_loc_descr (&ret
, new_loc_descr (DW_OP_shr
, 0, 0));
15763 tmp
= mem_loc_descriptor (GEN_INT (255), mode
, mem_mode
,
15764 VAR_INIT_STATUS_INITIALIZED
);
15767 add_loc_descr (&ret
, tmp
);
15768 add_loc_descr (&ret
, new_loc_descr (DW_OP_and
, 0, 0));
15769 add_loc_descr (&ret
, new_loc_descr (DW_OP_pick
, 2, 0));
15770 add_loc_descr (&ret
, new_loc_descr (DW_OP_shl
, 0, 0));
15771 add_loc_descr (&ret
, new_loc_descr (DW_OP_or
, 0, 0));
15772 add_loc_descr (&ret
, new_loc_descr (DW_OP_swap
, 0, 0));
15773 add_loc_descr (&ret
, new_loc_descr (DW_OP_dup
, 0, 0));
15774 tmp
= mem_loc_descriptor (const0_rtx
, mode
, mem_mode
,
15775 VAR_INIT_STATUS_INITIALIZED
);
15776 add_loc_descr (&ret
, tmp
);
15777 add_loc_descr (&ret
, new_loc_descr (DW_OP_eq
, 0, 0));
15778 l2jump
= new_loc_descr (DW_OP_bra
, 0, 0);
15779 add_loc_descr (&ret
, l2jump
);
15780 tmp
= mem_loc_descriptor (GEN_INT (8), mode
, mem_mode
,
15781 VAR_INIT_STATUS_INITIALIZED
);
15782 add_loc_descr (&ret
, tmp
);
15783 add_loc_descr (&ret
, new_loc_descr (DW_OP_minus
, 0, 0));
15784 add_loc_descr (&ret
, new_loc_descr (DW_OP_swap
, 0, 0));
15785 l1jump
= new_loc_descr (DW_OP_skip
, 0, 0);
15786 add_loc_descr (&ret
, l1jump
);
15787 l2label
= new_loc_descr (DW_OP_drop
, 0, 0);
15788 add_loc_descr (&ret
, l2label
);
15789 add_loc_descr (&ret
, new_loc_descr (DW_OP_swap
, 0, 0));
15790 add_loc_descr (&ret
, new_loc_descr (DW_OP_drop
, 0, 0));
15791 l1jump
->dw_loc_oprnd1
.val_class
= dw_val_class_loc
;
15792 l1jump
->dw_loc_oprnd1
.v
.val_loc
= l1label
;
15793 l2jump
->dw_loc_oprnd1
.val_class
= dw_val_class_loc
;
15794 l2jump
->dw_loc_oprnd1
.v
.val_loc
= l2label
;
15798 /* ROTATE (constMASK is mode mask, BITSIZE is bitsize of mode):
15799 DW_OP_over DW_OP_over DW_OP_shl [ constMASK DW_OP_and ] DW_OP_rot
15800 [ DW_OP_swap constMASK DW_OP_and DW_OP_swap ] DW_OP_neg
15801 DW_OP_plus_uconst <BITSIZE> DW_OP_shr DW_OP_or
15803 ROTATERT is similar:
15804 DW_OP_over DW_OP_over DW_OP_neg DW_OP_plus_uconst <BITSIZE>
15805 DW_OP_shl [ constMASK DW_OP_and ] DW_OP_rot
15806 [ DW_OP_swap constMASK DW_OP_and DW_OP_swap ] DW_OP_shr DW_OP_or */
15808 static dw_loc_descr_ref
15809 rotate_loc_descriptor (rtx rtl
, scalar_int_mode mode
,
15810 machine_mode mem_mode
)
15812 rtx rtlop1
= XEXP (rtl
, 1);
15813 dw_loc_descr_ref op0
, op1
, ret
, mask
[2] = { NULL
, NULL
};
15816 if (is_narrower_int_mode (GET_MODE (rtlop1
), mode
))
15817 rtlop1
= gen_rtx_ZERO_EXTEND (mode
, rtlop1
);
15818 op0
= mem_loc_descriptor (XEXP (rtl
, 0), mode
, mem_mode
,
15819 VAR_INIT_STATUS_INITIALIZED
);
15820 op1
= mem_loc_descriptor (rtlop1
, mode
, mem_mode
,
15821 VAR_INIT_STATUS_INITIALIZED
);
15822 if (op0
== NULL
|| op1
== NULL
)
15824 if (GET_MODE_SIZE (mode
) < DWARF2_ADDR_SIZE
)
15825 for (i
= 0; i
< 2; i
++)
15827 if (GET_MODE_BITSIZE (mode
) < HOST_BITS_PER_WIDE_INT
)
15828 mask
[i
] = mem_loc_descriptor (GEN_INT (GET_MODE_MASK (mode
)),
15830 VAR_INIT_STATUS_INITIALIZED
);
15831 else if (GET_MODE_BITSIZE (mode
) == HOST_BITS_PER_WIDE_INT
)
15832 mask
[i
] = new_loc_descr (HOST_BITS_PER_WIDE_INT
== 32
15834 : HOST_BITS_PER_WIDE_INT
== 64
15835 ? DW_OP_const8u
: DW_OP_constu
,
15836 GET_MODE_MASK (mode
), 0);
15839 if (mask
[i
] == NULL
)
15841 add_loc_descr (&mask
[i
], new_loc_descr (DW_OP_and
, 0, 0));
15844 add_loc_descr (&ret
, op1
);
15845 add_loc_descr (&ret
, new_loc_descr (DW_OP_over
, 0, 0));
15846 add_loc_descr (&ret
, new_loc_descr (DW_OP_over
, 0, 0));
15847 if (GET_CODE (rtl
) == ROTATERT
)
15849 add_loc_descr (&ret
, new_loc_descr (DW_OP_neg
, 0, 0));
15850 add_loc_descr (&ret
, new_loc_descr (DW_OP_plus_uconst
,
15851 GET_MODE_BITSIZE (mode
), 0));
15853 add_loc_descr (&ret
, new_loc_descr (DW_OP_shl
, 0, 0));
15854 if (mask
[0] != NULL
)
15855 add_loc_descr (&ret
, mask
[0]);
15856 add_loc_descr (&ret
, new_loc_descr (DW_OP_rot
, 0, 0));
15857 if (mask
[1] != NULL
)
15859 add_loc_descr (&ret
, new_loc_descr (DW_OP_swap
, 0, 0));
15860 add_loc_descr (&ret
, mask
[1]);
15861 add_loc_descr (&ret
, new_loc_descr (DW_OP_swap
, 0, 0));
15863 if (GET_CODE (rtl
) == ROTATE
)
15865 add_loc_descr (&ret
, new_loc_descr (DW_OP_neg
, 0, 0));
15866 add_loc_descr (&ret
, new_loc_descr (DW_OP_plus_uconst
,
15867 GET_MODE_BITSIZE (mode
), 0));
15869 add_loc_descr (&ret
, new_loc_descr (DW_OP_shr
, 0, 0));
15870 add_loc_descr (&ret
, new_loc_descr (DW_OP_or
, 0, 0));
15874 /* Helper function for mem_loc_descriptor. Return DW_OP_GNU_parameter_ref
15875 for DEBUG_PARAMETER_REF RTL. */
15877 static dw_loc_descr_ref
15878 parameter_ref_descriptor (rtx rtl
)
15880 dw_loc_descr_ref ret
;
15885 gcc_assert (TREE_CODE (DEBUG_PARAMETER_REF_DECL (rtl
)) == PARM_DECL
);
15886 /* With LTO during LTRANS we get the late DIE that refers to the early
15887 DIE, thus we add another indirection here. This seems to confuse
15888 gdb enough to make gcc.dg/guality/pr68860-1.c FAIL with LTO. */
15889 ref
= lookup_decl_die (DEBUG_PARAMETER_REF_DECL (rtl
));
15890 ret
= new_loc_descr (DW_OP_GNU_parameter_ref
, 0, 0);
15893 ret
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
15894 ret
->dw_loc_oprnd1
.v
.val_die_ref
.die
= ref
;
15895 ret
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
15899 ret
->dw_loc_oprnd1
.val_class
= dw_val_class_decl_ref
;
15900 ret
->dw_loc_oprnd1
.v
.val_decl_ref
= DEBUG_PARAMETER_REF_DECL (rtl
);
15905 /* The following routine converts the RTL for a variable or parameter
15906 (resident in memory) into an equivalent Dwarf representation of a
15907 mechanism for getting the address of that same variable onto the top of a
15908 hypothetical "address evaluation" stack.
15910 When creating memory location descriptors, we are effectively transforming
15911 the RTL for a memory-resident object into its Dwarf postfix expression
15912 equivalent. This routine recursively descends an RTL tree, turning
15913 it into Dwarf postfix code as it goes.
15915 MODE is the mode that should be assumed for the rtl if it is VOIDmode.
15917 MEM_MODE is the mode of the memory reference, needed to handle some
15918 autoincrement addressing modes.
15920 Return 0 if we can't represent the location. */
15923 mem_loc_descriptor (rtx rtl
, machine_mode mode
,
15924 machine_mode mem_mode
,
15925 enum var_init_status initialized
)
15927 dw_loc_descr_ref mem_loc_result
= NULL
;
15928 enum dwarf_location_atom op
;
15929 dw_loc_descr_ref op0
, op1
;
15930 rtx inner
= NULL_RTX
;
15933 if (mode
== VOIDmode
)
15934 mode
= GET_MODE (rtl
);
15936 /* Note that for a dynamically sized array, the location we will generate a
15937 description of here will be the lowest numbered location which is
15938 actually within the array. That's *not* necessarily the same as the
15939 zeroth element of the array. */
15941 rtl
= targetm
.delegitimize_address (rtl
);
15943 if (mode
!= GET_MODE (rtl
) && GET_MODE (rtl
) != VOIDmode
)
15946 scalar_int_mode int_mode
= BImode
, inner_mode
, op1_mode
;
15947 switch (GET_CODE (rtl
))
15952 return mem_loc_descriptor (XEXP (rtl
, 0), mode
, mem_mode
, initialized
);
15955 /* The case of a subreg may arise when we have a local (register)
15956 variable or a formal (register) parameter which doesn't quite fill
15957 up an entire register. For now, just assume that it is
15958 legitimate to make the Dwarf info refer to the whole register which
15959 contains the given subreg. */
15960 if (!subreg_lowpart_p (rtl
))
15962 inner
= SUBREG_REG (rtl
);
15965 if (inner
== NULL_RTX
)
15966 inner
= XEXP (rtl
, 0);
15967 if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
15968 && is_a
<scalar_int_mode
> (GET_MODE (inner
), &inner_mode
)
15969 && (GET_MODE_SIZE (int_mode
) <= DWARF2_ADDR_SIZE
15970 #ifdef POINTERS_EXTEND_UNSIGNED
15971 || (int_mode
== Pmode
&& mem_mode
!= VOIDmode
)
15974 && GET_MODE_SIZE (inner_mode
) <= DWARF2_ADDR_SIZE
)
15976 mem_loc_result
= mem_loc_descriptor (inner
,
15978 mem_mode
, initialized
);
15981 if (dwarf_strict
&& dwarf_version
< 5)
15983 if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
15984 && is_a
<scalar_int_mode
> (GET_MODE (inner
), &inner_mode
)
15985 ? GET_MODE_SIZE (int_mode
) <= GET_MODE_SIZE (inner_mode
)
15986 : known_eq (GET_MODE_SIZE (mode
), GET_MODE_SIZE (GET_MODE (inner
))))
15988 dw_die_ref type_die
;
15989 dw_loc_descr_ref cvt
;
15991 mem_loc_result
= mem_loc_descriptor (inner
,
15993 mem_mode
, initialized
);
15994 if (mem_loc_result
== NULL
)
15996 type_die
= base_type_for_mode (mode
, SCALAR_INT_MODE_P (mode
));
15997 if (type_die
== NULL
)
15999 mem_loc_result
= NULL
;
16002 if (maybe_ne (GET_MODE_SIZE (mode
), GET_MODE_SIZE (GET_MODE (inner
))))
16003 cvt
= new_loc_descr (dwarf_OP (DW_OP_convert
), 0, 0);
16005 cvt
= new_loc_descr (dwarf_OP (DW_OP_reinterpret
), 0, 0);
16006 cvt
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
16007 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.die
= type_die
;
16008 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
16009 add_loc_descr (&mem_loc_result
, cvt
);
16010 if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
16011 && GET_MODE_SIZE (int_mode
) <= DWARF2_ADDR_SIZE
)
16013 /* Convert it to untyped afterwards. */
16014 cvt
= new_loc_descr (dwarf_OP (DW_OP_convert
), 0, 0);
16015 add_loc_descr (&mem_loc_result
, cvt
);
16021 if (!is_a
<scalar_int_mode
> (mode
, &int_mode
)
16022 || (GET_MODE_SIZE (int_mode
) > DWARF2_ADDR_SIZE
16023 && rtl
!= arg_pointer_rtx
16024 && rtl
!= frame_pointer_rtx
16025 #ifdef POINTERS_EXTEND_UNSIGNED
16026 && (int_mode
!= Pmode
|| mem_mode
== VOIDmode
)
16030 dw_die_ref type_die
;
16031 unsigned int dbx_regnum
;
16033 if (dwarf_strict
&& dwarf_version
< 5)
16035 if (REGNO (rtl
) >= FIRST_PSEUDO_REGISTER
)
16037 type_die
= base_type_for_mode (mode
, SCALAR_INT_MODE_P (mode
));
16038 if (type_die
== NULL
)
16041 dbx_regnum
= dbx_reg_number (rtl
);
16042 if (dbx_regnum
== IGNORED_DWARF_REGNUM
)
16044 mem_loc_result
= new_loc_descr (dwarf_OP (DW_OP_regval_type
),
16046 mem_loc_result
->dw_loc_oprnd2
.val_class
= dw_val_class_die_ref
;
16047 mem_loc_result
->dw_loc_oprnd2
.v
.val_die_ref
.die
= type_die
;
16048 mem_loc_result
->dw_loc_oprnd2
.v
.val_die_ref
.external
= 0;
16051 /* Whenever a register number forms a part of the description of the
16052 method for calculating the (dynamic) address of a memory resident
16053 object, DWARF rules require the register number be referred to as
16054 a "base register". This distinction is not based in any way upon
16055 what category of register the hardware believes the given register
16056 belongs to. This is strictly DWARF terminology we're dealing with
16057 here. Note that in cases where the location of a memory-resident
16058 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
16059 OP_CONST (0)) the actual DWARF location descriptor that we generate
16060 may just be OP_BASEREG (basereg). This may look deceptively like
16061 the object in question was allocated to a register (rather than in
16062 memory) so DWARF consumers need to be aware of the subtle
16063 distinction between OP_REG and OP_BASEREG. */
16064 if (REGNO (rtl
) < FIRST_PSEUDO_REGISTER
)
16065 mem_loc_result
= based_loc_descr (rtl
, 0, VAR_INIT_STATUS_INITIALIZED
);
16066 else if (stack_realign_drap
16068 && crtl
->args
.internal_arg_pointer
== rtl
16069 && REGNO (crtl
->drap_reg
) < FIRST_PSEUDO_REGISTER
)
16071 /* If RTL is internal_arg_pointer, which has been optimized
16072 out, use DRAP instead. */
16073 mem_loc_result
= based_loc_descr (crtl
->drap_reg
, 0,
16074 VAR_INIT_STATUS_INITIALIZED
);
16080 if (!is_a
<scalar_int_mode
> (mode
, &int_mode
)
16081 || !is_a
<scalar_int_mode
> (GET_MODE (XEXP (rtl
, 0)), &inner_mode
))
16083 op0
= mem_loc_descriptor (XEXP (rtl
, 0), inner_mode
,
16084 mem_mode
, VAR_INIT_STATUS_INITIALIZED
);
16087 else if (GET_CODE (rtl
) == ZERO_EXTEND
16088 && GET_MODE_SIZE (int_mode
) <= DWARF2_ADDR_SIZE
16089 && GET_MODE_BITSIZE (inner_mode
) < HOST_BITS_PER_WIDE_INT
16090 /* If DW_OP_const{1,2,4}u won't be used, it is shorter
16091 to expand zero extend as two shifts instead of
16093 && GET_MODE_SIZE (inner_mode
) <= 4)
16095 mem_loc_result
= op0
;
16096 add_loc_descr (&mem_loc_result
,
16097 int_loc_descriptor (GET_MODE_MASK (inner_mode
)));
16098 add_loc_descr (&mem_loc_result
, new_loc_descr (DW_OP_and
, 0, 0));
16100 else if (GET_MODE_SIZE (int_mode
) <= DWARF2_ADDR_SIZE
)
16102 int shift
= DWARF2_ADDR_SIZE
- GET_MODE_SIZE (inner_mode
);
16103 shift
*= BITS_PER_UNIT
;
16104 if (GET_CODE (rtl
) == SIGN_EXTEND
)
16108 mem_loc_result
= op0
;
16109 add_loc_descr (&mem_loc_result
, int_loc_descriptor (shift
));
16110 add_loc_descr (&mem_loc_result
, new_loc_descr (DW_OP_shl
, 0, 0));
16111 add_loc_descr (&mem_loc_result
, int_loc_descriptor (shift
));
16112 add_loc_descr (&mem_loc_result
, new_loc_descr (op
, 0, 0));
16114 else if (!dwarf_strict
|| dwarf_version
>= 5)
16116 dw_die_ref type_die1
, type_die2
;
16117 dw_loc_descr_ref cvt
;
16119 type_die1
= base_type_for_mode (inner_mode
,
16120 GET_CODE (rtl
) == ZERO_EXTEND
);
16121 if (type_die1
== NULL
)
16123 type_die2
= base_type_for_mode (int_mode
, 1);
16124 if (type_die2
== NULL
)
16126 mem_loc_result
= op0
;
16127 cvt
= new_loc_descr (dwarf_OP (DW_OP_convert
), 0, 0);
16128 cvt
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
16129 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.die
= type_die1
;
16130 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
16131 add_loc_descr (&mem_loc_result
, cvt
);
16132 cvt
= new_loc_descr (dwarf_OP (DW_OP_convert
), 0, 0);
16133 cvt
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
16134 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.die
= type_die2
;
16135 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
16136 add_loc_descr (&mem_loc_result
, cvt
);
16142 rtx new_rtl
= avoid_constant_pool_reference (rtl
);
16143 if (new_rtl
!= rtl
)
16145 mem_loc_result
= mem_loc_descriptor (new_rtl
, mode
, mem_mode
,
16147 if (mem_loc_result
!= NULL
)
16148 return mem_loc_result
;
16151 mem_loc_result
= mem_loc_descriptor (XEXP (rtl
, 0),
16152 get_address_mode (rtl
), mode
,
16153 VAR_INIT_STATUS_INITIALIZED
);
16154 if (mem_loc_result
== NULL
)
16155 mem_loc_result
= tls_mem_loc_descriptor (rtl
);
16156 if (mem_loc_result
!= NULL
)
16158 if (!is_a
<scalar_int_mode
> (mode
, &int_mode
)
16159 || GET_MODE_SIZE (int_mode
) > DWARF2_ADDR_SIZE
)
16161 dw_die_ref type_die
;
16162 dw_loc_descr_ref deref
;
16163 HOST_WIDE_INT size
;
16165 if (dwarf_strict
&& dwarf_version
< 5)
16167 if (!GET_MODE_SIZE (mode
).is_constant (&size
))
16170 = base_type_for_mode (mode
, SCALAR_INT_MODE_P (mode
));
16171 if (type_die
== NULL
)
16173 deref
= new_loc_descr (dwarf_OP (DW_OP_deref_type
), size
, 0);
16174 deref
->dw_loc_oprnd2
.val_class
= dw_val_class_die_ref
;
16175 deref
->dw_loc_oprnd2
.v
.val_die_ref
.die
= type_die
;
16176 deref
->dw_loc_oprnd2
.v
.val_die_ref
.external
= 0;
16177 add_loc_descr (&mem_loc_result
, deref
);
16179 else if (GET_MODE_SIZE (int_mode
) == DWARF2_ADDR_SIZE
)
16180 add_loc_descr (&mem_loc_result
, new_loc_descr (DW_OP_deref
, 0, 0));
16182 add_loc_descr (&mem_loc_result
,
16183 new_loc_descr (DW_OP_deref_size
,
16184 GET_MODE_SIZE (int_mode
), 0));
16189 return mem_loc_descriptor (XEXP (rtl
, 1), mode
, mem_mode
, initialized
);
16192 /* Some ports can transform a symbol ref into a label ref, because
16193 the symbol ref is too far away and has to be dumped into a constant
16198 if (!is_a
<scalar_int_mode
> (mode
, &int_mode
)
16199 || (GET_MODE_SIZE (int_mode
) > DWARF2_ADDR_SIZE
16200 #ifdef POINTERS_EXTEND_UNSIGNED
16201 && (int_mode
!= Pmode
|| mem_mode
== VOIDmode
)
16206 if (GET_CODE (rtl
) == UNSPEC
)
16208 /* If delegitimize_address couldn't do anything with the UNSPEC, we
16209 can't express it in the debug info. This can happen e.g. with some
16210 TLS UNSPECs. Allow UNSPECs formerly from CONST that the backend
16212 bool not_ok
= false;
16213 subrtx_var_iterator::array_type array
;
16214 FOR_EACH_SUBRTX_VAR (iter
, array
, rtl
, ALL
)
16215 if (*iter
!= rtl
&& !CONSTANT_P (*iter
))
16224 FOR_EACH_SUBRTX_VAR (iter
, array
, rtl
, ALL
)
16225 if (!const_ok_for_output_1 (*iter
))
16234 rtl
= gen_rtx_CONST (GET_MODE (rtl
), rtl
);
16238 if (GET_CODE (rtl
) == SYMBOL_REF
16239 && SYMBOL_REF_TLS_MODEL (rtl
) != TLS_MODEL_NONE
)
16241 dw_loc_descr_ref temp
;
16243 /* If this is not defined, we have no way to emit the data. */
16244 if (!targetm
.have_tls
|| !targetm
.asm_out
.output_dwarf_dtprel
)
16247 temp
= new_addr_loc_descr (rtl
, dtprel_true
);
16249 /* We check for DWARF 5 here because gdb did not implement
16250 DW_OP_form_tls_address until after 7.12. */
16251 mem_loc_result
= new_loc_descr ((dwarf_version
>= 5
16252 ? DW_OP_form_tls_address
16253 : DW_OP_GNU_push_tls_address
),
16255 add_loc_descr (&mem_loc_result
, temp
);
16260 if (!const_ok_for_output (rtl
))
16262 if (GET_CODE (rtl
) == CONST
)
16263 switch (GET_CODE (XEXP (rtl
, 0)))
16267 goto try_const_unop
;
16270 goto try_const_unop
;
16273 arg
= XEXP (XEXP (rtl
, 0), 0);
16274 if (!CONSTANT_P (arg
))
16275 arg
= gen_rtx_CONST (int_mode
, arg
);
16276 op0
= mem_loc_descriptor (arg
, int_mode
, mem_mode
,
16280 mem_loc_result
= op0
;
16281 add_loc_descr (&mem_loc_result
, new_loc_descr (op
, 0, 0));
16285 mem_loc_result
= mem_loc_descriptor (XEXP (rtl
, 0), int_mode
,
16286 mem_mode
, initialized
);
16293 mem_loc_result
= new_addr_loc_descr (rtl
, dtprel_false
);
16294 vec_safe_push (used_rtx_array
, rtl
);
16300 case DEBUG_IMPLICIT_PTR
:
16301 expansion_failed (NULL_TREE
, rtl
,
16302 "CONCAT/CONCATN/VAR_LOCATION is handled only by loc_descriptor");
16306 if (dwarf_strict
&& dwarf_version
< 5)
16308 if (REG_P (ENTRY_VALUE_EXP (rtl
)))
16310 if (!is_a
<scalar_int_mode
> (mode
, &int_mode
)
16311 || GET_MODE_SIZE (int_mode
) > DWARF2_ADDR_SIZE
)
16312 op0
= mem_loc_descriptor (ENTRY_VALUE_EXP (rtl
), mode
,
16313 VOIDmode
, VAR_INIT_STATUS_INITIALIZED
);
16316 unsigned int dbx_regnum
= dbx_reg_number (ENTRY_VALUE_EXP (rtl
));
16317 if (dbx_regnum
== IGNORED_DWARF_REGNUM
)
16319 op0
= one_reg_loc_descriptor (dbx_regnum
,
16320 VAR_INIT_STATUS_INITIALIZED
);
16323 else if (MEM_P (ENTRY_VALUE_EXP (rtl
))
16324 && REG_P (XEXP (ENTRY_VALUE_EXP (rtl
), 0)))
16326 op0
= mem_loc_descriptor (ENTRY_VALUE_EXP (rtl
), mode
,
16327 VOIDmode
, VAR_INIT_STATUS_INITIALIZED
);
16328 if (op0
&& op0
->dw_loc_opc
== DW_OP_fbreg
)
16332 gcc_unreachable ();
16335 mem_loc_result
= new_loc_descr (dwarf_OP (DW_OP_entry_value
), 0, 0);
16336 mem_loc_result
->dw_loc_oprnd1
.val_class
= dw_val_class_loc
;
16337 mem_loc_result
->dw_loc_oprnd1
.v
.val_loc
= op0
;
16340 case DEBUG_PARAMETER_REF
:
16341 mem_loc_result
= parameter_ref_descriptor (rtl
);
16345 /* Extract the PLUS expression nested inside and fall into
16346 PLUS code below. */
16347 rtl
= XEXP (rtl
, 1);
16352 /* Turn these into a PLUS expression and fall into the PLUS code
16354 rtl
= gen_rtx_PLUS (mode
, XEXP (rtl
, 0),
16355 gen_int_mode (GET_CODE (rtl
) == PRE_INC
16356 ? GET_MODE_UNIT_SIZE (mem_mode
)
16357 : -GET_MODE_UNIT_SIZE (mem_mode
),
16364 if (is_based_loc (rtl
)
16365 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
16366 && (GET_MODE_SIZE (int_mode
) <= DWARF2_ADDR_SIZE
16367 || XEXP (rtl
, 0) == arg_pointer_rtx
16368 || XEXP (rtl
, 0) == frame_pointer_rtx
))
16369 mem_loc_result
= based_loc_descr (XEXP (rtl
, 0),
16370 INTVAL (XEXP (rtl
, 1)),
16371 VAR_INIT_STATUS_INITIALIZED
);
16374 mem_loc_result
= mem_loc_descriptor (XEXP (rtl
, 0), mode
, mem_mode
,
16375 VAR_INIT_STATUS_INITIALIZED
);
16376 if (mem_loc_result
== 0)
16379 if (CONST_INT_P (XEXP (rtl
, 1))
16380 && (GET_MODE_SIZE (as_a
<scalar_int_mode
> (mode
))
16381 <= DWARF2_ADDR_SIZE
))
16382 loc_descr_plus_const (&mem_loc_result
, INTVAL (XEXP (rtl
, 1)));
16385 op1
= mem_loc_descriptor (XEXP (rtl
, 1), mode
, mem_mode
,
16386 VAR_INIT_STATUS_INITIALIZED
);
16389 add_loc_descr (&mem_loc_result
, op1
);
16390 add_loc_descr (&mem_loc_result
,
16391 new_loc_descr (DW_OP_plus
, 0, 0));
16396 /* If a pseudo-reg is optimized away, it is possible for it to
16397 be replaced with a MEM containing a multiply or shift. */
16407 if ((!dwarf_strict
|| dwarf_version
>= 5)
16408 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
16409 && GET_MODE_SIZE (int_mode
) > DWARF2_ADDR_SIZE
)
16411 mem_loc_result
= typed_binop (DW_OP_div
, rtl
,
16412 base_type_for_mode (mode
, 0),
16413 int_mode
, mem_mode
);
16436 if (!is_a
<scalar_int_mode
> (mode
, &int_mode
))
16438 op0
= mem_loc_descriptor (XEXP (rtl
, 0), int_mode
, mem_mode
,
16439 VAR_INIT_STATUS_INITIALIZED
);
16441 rtx rtlop1
= XEXP (rtl
, 1);
16442 if (is_a
<scalar_int_mode
> (GET_MODE (rtlop1
), &op1_mode
)
16443 && GET_MODE_BITSIZE (op1_mode
) < GET_MODE_BITSIZE (int_mode
))
16444 rtlop1
= gen_rtx_ZERO_EXTEND (int_mode
, rtlop1
);
16445 op1
= mem_loc_descriptor (rtlop1
, int_mode
, mem_mode
,
16446 VAR_INIT_STATUS_INITIALIZED
);
16449 if (op0
== 0 || op1
== 0)
16452 mem_loc_result
= op0
;
16453 add_loc_descr (&mem_loc_result
, op1
);
16454 add_loc_descr (&mem_loc_result
, new_loc_descr (op
, 0, 0));
16470 op0
= mem_loc_descriptor (XEXP (rtl
, 0), mode
, mem_mode
,
16471 VAR_INIT_STATUS_INITIALIZED
);
16472 if (XEXP (rtl
, 0) == XEXP (rtl
, 1))
16476 mem_loc_result
= op0
;
16477 add_loc_descr (&mem_loc_result
, new_loc_descr (DW_OP_dup
, 0, 0));
16478 add_loc_descr (&mem_loc_result
, new_loc_descr (op
, 0, 0));
16481 op1
= mem_loc_descriptor (XEXP (rtl
, 1), mode
, mem_mode
,
16482 VAR_INIT_STATUS_INITIALIZED
);
16484 if (op0
== 0 || op1
== 0)
16487 mem_loc_result
= op0
;
16488 add_loc_descr (&mem_loc_result
, op1
);
16489 add_loc_descr (&mem_loc_result
, new_loc_descr (op
, 0, 0));
16493 if ((!dwarf_strict
|| dwarf_version
>= 5)
16494 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
16495 && GET_MODE_SIZE (int_mode
) > DWARF2_ADDR_SIZE
)
16497 mem_loc_result
= typed_binop (DW_OP_mod
, rtl
,
16498 base_type_for_mode (mode
, 0),
16499 int_mode
, mem_mode
);
16503 op0
= mem_loc_descriptor (XEXP (rtl
, 0), mode
, mem_mode
,
16504 VAR_INIT_STATUS_INITIALIZED
);
16505 op1
= mem_loc_descriptor (XEXP (rtl
, 1), mode
, mem_mode
,
16506 VAR_INIT_STATUS_INITIALIZED
);
16508 if (op0
== 0 || op1
== 0)
16511 mem_loc_result
= op0
;
16512 add_loc_descr (&mem_loc_result
, op1
);
16513 add_loc_descr (&mem_loc_result
, new_loc_descr (DW_OP_over
, 0, 0));
16514 add_loc_descr (&mem_loc_result
, new_loc_descr (DW_OP_over
, 0, 0));
16515 add_loc_descr (&mem_loc_result
, new_loc_descr (DW_OP_div
, 0, 0));
16516 add_loc_descr (&mem_loc_result
, new_loc_descr (DW_OP_mul
, 0, 0));
16517 add_loc_descr (&mem_loc_result
, new_loc_descr (DW_OP_minus
, 0, 0));
16521 if ((!dwarf_strict
|| dwarf_version
>= 5)
16522 && is_a
<scalar_int_mode
> (mode
, &int_mode
))
16524 /* We can use a signed divide if the sign bit is not set. */
16525 if (GET_MODE_SIZE (int_mode
) < DWARF2_ADDR_SIZE
)
16531 mem_loc_result
= typed_binop (DW_OP_div
, rtl
,
16532 base_type_for_mode (int_mode
, 1),
16533 int_mode
, mem_mode
);
16550 op0
= mem_loc_descriptor (XEXP (rtl
, 0), mode
, mem_mode
,
16551 VAR_INIT_STATUS_INITIALIZED
);
16556 mem_loc_result
= op0
;
16557 add_loc_descr (&mem_loc_result
, new_loc_descr (op
, 0, 0));
16561 if (!is_a
<scalar_int_mode
> (mode
, &int_mode
)
16562 || GET_MODE_SIZE (int_mode
) <= DWARF2_ADDR_SIZE
16563 #ifdef POINTERS_EXTEND_UNSIGNED
16564 || (int_mode
== Pmode
16565 && mem_mode
!= VOIDmode
16566 && trunc_int_for_mode (INTVAL (rtl
), ptr_mode
) == INTVAL (rtl
))
16570 mem_loc_result
= int_loc_descriptor (INTVAL (rtl
));
16573 if ((!dwarf_strict
|| dwarf_version
>= 5)
16574 && (GET_MODE_BITSIZE (int_mode
) == HOST_BITS_PER_WIDE_INT
16575 || GET_MODE_BITSIZE (int_mode
) == HOST_BITS_PER_DOUBLE_INT
))
16577 dw_die_ref type_die
= base_type_for_mode (int_mode
, 1);
16578 scalar_int_mode amode
;
16579 if (type_die
== NULL
)
16581 if (INTVAL (rtl
) >= 0
16582 && (int_mode_for_size (DWARF2_ADDR_SIZE
* BITS_PER_UNIT
, 0)
16584 && trunc_int_for_mode (INTVAL (rtl
), amode
) == INTVAL (rtl
)
16585 /* const DW_OP_convert <XXX> vs.
16586 DW_OP_const_type <XXX, 1, const>. */
16587 && size_of_int_loc_descriptor (INTVAL (rtl
)) + 1 + 1
16588 < (unsigned long) 1 + 1 + 1 + GET_MODE_SIZE (int_mode
))
16590 mem_loc_result
= int_loc_descriptor (INTVAL (rtl
));
16591 op0
= new_loc_descr (dwarf_OP (DW_OP_convert
), 0, 0);
16592 op0
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
16593 op0
->dw_loc_oprnd1
.v
.val_die_ref
.die
= type_die
;
16594 op0
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
16595 add_loc_descr (&mem_loc_result
, op0
);
16596 return mem_loc_result
;
16598 mem_loc_result
= new_loc_descr (dwarf_OP (DW_OP_const_type
), 0,
16600 mem_loc_result
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
16601 mem_loc_result
->dw_loc_oprnd1
.v
.val_die_ref
.die
= type_die
;
16602 mem_loc_result
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
16603 if (GET_MODE_BITSIZE (int_mode
) == HOST_BITS_PER_WIDE_INT
)
16604 mem_loc_result
->dw_loc_oprnd2
.val_class
= dw_val_class_const
;
16607 mem_loc_result
->dw_loc_oprnd2
.val_class
16608 = dw_val_class_const_double
;
16609 mem_loc_result
->dw_loc_oprnd2
.v
.val_double
16610 = double_int::from_shwi (INTVAL (rtl
));
16616 if (!dwarf_strict
|| dwarf_version
>= 5)
16618 dw_die_ref type_die
;
16620 /* Note that if TARGET_SUPPORTS_WIDE_INT == 0, a
16621 CONST_DOUBLE rtx could represent either a large integer
16622 or a floating-point constant. If TARGET_SUPPORTS_WIDE_INT != 0,
16623 the value is always a floating point constant.
16625 When it is an integer, a CONST_DOUBLE is used whenever
16626 the constant requires 2 HWIs to be adequately represented.
16627 We output CONST_DOUBLEs as blocks. */
16628 if (mode
== VOIDmode
16629 || (GET_MODE (rtl
) == VOIDmode
16630 && maybe_ne (GET_MODE_BITSIZE (mode
),
16631 HOST_BITS_PER_DOUBLE_INT
)))
16633 type_die
= base_type_for_mode (mode
, SCALAR_INT_MODE_P (mode
));
16634 if (type_die
== NULL
)
16636 mem_loc_result
= new_loc_descr (dwarf_OP (DW_OP_const_type
), 0, 0);
16637 mem_loc_result
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
16638 mem_loc_result
->dw_loc_oprnd1
.v
.val_die_ref
.die
= type_die
;
16639 mem_loc_result
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
16640 #if TARGET_SUPPORTS_WIDE_INT == 0
16641 if (!SCALAR_FLOAT_MODE_P (mode
))
16643 mem_loc_result
->dw_loc_oprnd2
.val_class
16644 = dw_val_class_const_double
;
16645 mem_loc_result
->dw_loc_oprnd2
.v
.val_double
16646 = rtx_to_double_int (rtl
);
16651 scalar_float_mode float_mode
= as_a
<scalar_float_mode
> (mode
);
16652 unsigned int length
= GET_MODE_SIZE (float_mode
);
16653 unsigned char *array
= ggc_vec_alloc
<unsigned char> (length
);
16654 unsigned int elt_size
= insert_float (rtl
, array
);
16656 mem_loc_result
->dw_loc_oprnd2
.val_class
= dw_val_class_vec
;
16657 mem_loc_result
->dw_loc_oprnd2
.v
.val_vec
.length
16658 = length
/ elt_size
;
16659 mem_loc_result
->dw_loc_oprnd2
.v
.val_vec
.elt_size
= elt_size
;
16660 mem_loc_result
->dw_loc_oprnd2
.v
.val_vec
.array
= array
;
16665 case CONST_WIDE_INT
:
16666 if (!dwarf_strict
|| dwarf_version
>= 5)
16668 dw_die_ref type_die
;
16670 type_die
= base_type_for_mode (mode
, SCALAR_INT_MODE_P (mode
));
16671 if (type_die
== NULL
)
16673 mem_loc_result
= new_loc_descr (dwarf_OP (DW_OP_const_type
), 0, 0);
16674 mem_loc_result
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
16675 mem_loc_result
->dw_loc_oprnd1
.v
.val_die_ref
.die
= type_die
;
16676 mem_loc_result
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
16677 mem_loc_result
->dw_loc_oprnd2
.val_class
16678 = dw_val_class_wide_int
;
16679 mem_loc_result
->dw_loc_oprnd2
.v
.val_wide
= ggc_alloc
<wide_int
> ();
16680 *mem_loc_result
->dw_loc_oprnd2
.v
.val_wide
= rtx_mode_t (rtl
, mode
);
16684 case CONST_POLY_INT
:
16685 mem_loc_result
= int_loc_descriptor (rtx_to_poly_int64 (rtl
));
16689 mem_loc_result
= scompare_loc_descriptor (DW_OP_eq
, rtl
, mem_mode
);
16693 mem_loc_result
= scompare_loc_descriptor (DW_OP_ge
, rtl
, mem_mode
);
16697 mem_loc_result
= scompare_loc_descriptor (DW_OP_gt
, rtl
, mem_mode
);
16701 mem_loc_result
= scompare_loc_descriptor (DW_OP_le
, rtl
, mem_mode
);
16705 mem_loc_result
= scompare_loc_descriptor (DW_OP_lt
, rtl
, mem_mode
);
16709 mem_loc_result
= scompare_loc_descriptor (DW_OP_ne
, rtl
, mem_mode
);
16713 mem_loc_result
= ucompare_loc_descriptor (DW_OP_ge
, rtl
, mem_mode
);
16717 mem_loc_result
= ucompare_loc_descriptor (DW_OP_gt
, rtl
, mem_mode
);
16721 mem_loc_result
= ucompare_loc_descriptor (DW_OP_le
, rtl
, mem_mode
);
16725 mem_loc_result
= ucompare_loc_descriptor (DW_OP_lt
, rtl
, mem_mode
);
16730 if (!SCALAR_INT_MODE_P (mode
))
16735 mem_loc_result
= minmax_loc_descriptor (rtl
, mode
, mem_mode
);
16740 if (CONST_INT_P (XEXP (rtl
, 1))
16741 && CONST_INT_P (XEXP (rtl
, 2))
16742 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
16743 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (rtl
, 0)), &inner_mode
)
16744 && GET_MODE_SIZE (int_mode
) <= DWARF2_ADDR_SIZE
16745 && GET_MODE_SIZE (inner_mode
) <= DWARF2_ADDR_SIZE
16746 && ((unsigned) INTVAL (XEXP (rtl
, 1))
16747 + (unsigned) INTVAL (XEXP (rtl
, 2))
16748 <= GET_MODE_BITSIZE (int_mode
)))
16751 op0
= mem_loc_descriptor (XEXP (rtl
, 0), inner_mode
,
16752 mem_mode
, VAR_INIT_STATUS_INITIALIZED
);
16755 if (GET_CODE (rtl
) == SIGN_EXTRACT
)
16759 mem_loc_result
= op0
;
16760 size
= INTVAL (XEXP (rtl
, 1));
16761 shift
= INTVAL (XEXP (rtl
, 2));
16762 if (BITS_BIG_ENDIAN
)
16763 shift
= GET_MODE_BITSIZE (inner_mode
) - shift
- size
;
16764 if (shift
+ size
!= (int) DWARF2_ADDR_SIZE
)
16766 add_loc_descr (&mem_loc_result
,
16767 int_loc_descriptor (DWARF2_ADDR_SIZE
16769 add_loc_descr (&mem_loc_result
, new_loc_descr (DW_OP_shl
, 0, 0));
16771 if (size
!= (int) DWARF2_ADDR_SIZE
)
16773 add_loc_descr (&mem_loc_result
,
16774 int_loc_descriptor (DWARF2_ADDR_SIZE
- size
));
16775 add_loc_descr (&mem_loc_result
, new_loc_descr (op
, 0, 0));
16782 dw_loc_descr_ref op2
, bra_node
, drop_node
;
16783 op0
= mem_loc_descriptor (XEXP (rtl
, 0),
16784 GET_MODE (XEXP (rtl
, 0)) == VOIDmode
16785 ? word_mode
: GET_MODE (XEXP (rtl
, 0)),
16786 mem_mode
, VAR_INIT_STATUS_INITIALIZED
);
16787 op1
= mem_loc_descriptor (XEXP (rtl
, 1), mode
, mem_mode
,
16788 VAR_INIT_STATUS_INITIALIZED
);
16789 op2
= mem_loc_descriptor (XEXP (rtl
, 2), mode
, mem_mode
,
16790 VAR_INIT_STATUS_INITIALIZED
);
16791 if (op0
== NULL
|| op1
== NULL
|| op2
== NULL
)
16794 mem_loc_result
= op1
;
16795 add_loc_descr (&mem_loc_result
, op2
);
16796 add_loc_descr (&mem_loc_result
, op0
);
16797 bra_node
= new_loc_descr (DW_OP_bra
, 0, 0);
16798 add_loc_descr (&mem_loc_result
, bra_node
);
16799 add_loc_descr (&mem_loc_result
, new_loc_descr (DW_OP_swap
, 0, 0));
16800 drop_node
= new_loc_descr (DW_OP_drop
, 0, 0);
16801 add_loc_descr (&mem_loc_result
, drop_node
);
16802 bra_node
->dw_loc_oprnd1
.val_class
= dw_val_class_loc
;
16803 bra_node
->dw_loc_oprnd1
.v
.val_loc
= drop_node
;
16808 case FLOAT_TRUNCATE
:
16810 case UNSIGNED_FLOAT
:
16813 if (!dwarf_strict
|| dwarf_version
>= 5)
16815 dw_die_ref type_die
;
16816 dw_loc_descr_ref cvt
;
16818 op0
= mem_loc_descriptor (XEXP (rtl
, 0), GET_MODE (XEXP (rtl
, 0)),
16819 mem_mode
, VAR_INIT_STATUS_INITIALIZED
);
16822 if (is_a
<scalar_int_mode
> (GET_MODE (XEXP (rtl
, 0)), &int_mode
)
16823 && (GET_CODE (rtl
) == FLOAT
16824 || GET_MODE_SIZE (int_mode
) <= DWARF2_ADDR_SIZE
))
16826 type_die
= base_type_for_mode (int_mode
,
16827 GET_CODE (rtl
) == UNSIGNED_FLOAT
);
16828 if (type_die
== NULL
)
16830 cvt
= new_loc_descr (dwarf_OP (DW_OP_convert
), 0, 0);
16831 cvt
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
16832 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.die
= type_die
;
16833 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
16834 add_loc_descr (&op0
, cvt
);
16836 type_die
= base_type_for_mode (mode
, GET_CODE (rtl
) == UNSIGNED_FIX
);
16837 if (type_die
== NULL
)
16839 cvt
= new_loc_descr (dwarf_OP (DW_OP_convert
), 0, 0);
16840 cvt
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
16841 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.die
= type_die
;
16842 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
16843 add_loc_descr (&op0
, cvt
);
16844 if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
16845 && (GET_CODE (rtl
) == FIX
16846 || GET_MODE_SIZE (int_mode
) < DWARF2_ADDR_SIZE
))
16848 op0
= convert_descriptor_to_mode (int_mode
, op0
);
16852 mem_loc_result
= op0
;
16859 if (is_a
<scalar_int_mode
> (mode
, &int_mode
))
16860 mem_loc_result
= clz_loc_descriptor (rtl
, int_mode
, mem_mode
);
16865 if (is_a
<scalar_int_mode
> (mode
, &int_mode
))
16866 mem_loc_result
= popcount_loc_descriptor (rtl
, int_mode
, mem_mode
);
16870 if (is_a
<scalar_int_mode
> (mode
, &int_mode
))
16871 mem_loc_result
= bswap_loc_descriptor (rtl
, int_mode
, mem_mode
);
16876 if (is_a
<scalar_int_mode
> (mode
, &int_mode
))
16877 mem_loc_result
= rotate_loc_descriptor (rtl
, int_mode
, mem_mode
);
16881 /* In theory, we could implement the above. */
16882 /* DWARF cannot represent the unsigned compare operations
16907 case FRACT_CONVERT
:
16908 case UNSIGNED_FRACT_CONVERT
:
16910 case UNSIGNED_SAT_FRACT
:
16916 case VEC_DUPLICATE
:
16920 case STRICT_LOW_PART
:
16925 case SMUL_HIGHPART
:
16926 case UMUL_HIGHPART
:
16930 resolve_one_addr (&rtl
);
16933 /* RTL sequences inside PARALLEL record a series of DWARF operations for
16934 the expression. An UNSPEC rtx represents a raw DWARF operation,
16935 new_loc_descr is called for it to build the operation directly.
16936 Otherwise mem_loc_descriptor is called recursively. */
16940 dw_loc_descr_ref exp_result
= NULL
;
16942 for (; index
< XVECLEN (rtl
, 0); index
++)
16944 rtx elem
= XVECEXP (rtl
, 0, index
);
16945 if (GET_CODE (elem
) == UNSPEC
)
16947 /* Each DWARF operation UNSPEC contain two operands, if
16948 one operand is not used for the operation, const0_rtx is
16950 gcc_assert (XVECLEN (elem
, 0) == 2);
16952 HOST_WIDE_INT dw_op
= XINT (elem
, 1);
16953 HOST_WIDE_INT oprnd1
= INTVAL (XVECEXP (elem
, 0, 0));
16954 HOST_WIDE_INT oprnd2
= INTVAL (XVECEXP (elem
, 0, 1));
16956 = new_loc_descr ((enum dwarf_location_atom
) dw_op
, oprnd1
,
16961 = mem_loc_descriptor (elem
, mode
, mem_mode
,
16962 VAR_INIT_STATUS_INITIALIZED
);
16964 if (!mem_loc_result
)
16965 mem_loc_result
= exp_result
;
16967 add_loc_descr (&mem_loc_result
, exp_result
);
16976 print_rtl (stderr
, rtl
);
16977 gcc_unreachable ();
16982 if (mem_loc_result
&& initialized
== VAR_INIT_STATUS_UNINITIALIZED
)
16983 add_loc_descr (&mem_loc_result
, new_loc_descr (DW_OP_GNU_uninit
, 0, 0));
16985 return mem_loc_result
;
16988 /* Return a descriptor that describes the concatenation of two locations.
16989 This is typically a complex variable. */
16991 static dw_loc_descr_ref
16992 concat_loc_descriptor (rtx x0
, rtx x1
, enum var_init_status initialized
)
16994 /* At present we only track constant-sized pieces. */
16995 unsigned int size0
, size1
;
16996 if (!GET_MODE_SIZE (GET_MODE (x0
)).is_constant (&size0
)
16997 || !GET_MODE_SIZE (GET_MODE (x1
)).is_constant (&size1
))
17000 dw_loc_descr_ref cc_loc_result
= NULL
;
17001 dw_loc_descr_ref x0_ref
17002 = loc_descriptor (x0
, VOIDmode
, VAR_INIT_STATUS_INITIALIZED
);
17003 dw_loc_descr_ref x1_ref
17004 = loc_descriptor (x1
, VOIDmode
, VAR_INIT_STATUS_INITIALIZED
);
17006 if (x0_ref
== 0 || x1_ref
== 0)
17009 cc_loc_result
= x0_ref
;
17010 add_loc_descr_op_piece (&cc_loc_result
, size0
);
17012 add_loc_descr (&cc_loc_result
, x1_ref
);
17013 add_loc_descr_op_piece (&cc_loc_result
, size1
);
17015 if (initialized
== VAR_INIT_STATUS_UNINITIALIZED
)
17016 add_loc_descr (&cc_loc_result
, new_loc_descr (DW_OP_GNU_uninit
, 0, 0));
17018 return cc_loc_result
;
17021 /* Return a descriptor that describes the concatenation of N
17024 static dw_loc_descr_ref
17025 concatn_loc_descriptor (rtx concatn
, enum var_init_status initialized
)
17028 dw_loc_descr_ref cc_loc_result
= NULL
;
17029 unsigned int n
= XVECLEN (concatn
, 0);
17032 for (i
= 0; i
< n
; ++i
)
17034 dw_loc_descr_ref ref
;
17035 rtx x
= XVECEXP (concatn
, 0, i
);
17037 /* At present we only track constant-sized pieces. */
17038 if (!GET_MODE_SIZE (GET_MODE (x
)).is_constant (&size
))
17041 ref
= loc_descriptor (x
, VOIDmode
, VAR_INIT_STATUS_INITIALIZED
);
17045 add_loc_descr (&cc_loc_result
, ref
);
17046 add_loc_descr_op_piece (&cc_loc_result
, size
);
17049 if (cc_loc_result
&& initialized
== VAR_INIT_STATUS_UNINITIALIZED
)
17050 add_loc_descr (&cc_loc_result
, new_loc_descr (DW_OP_GNU_uninit
, 0, 0));
17052 return cc_loc_result
;
17055 /* Helper function for loc_descriptor. Return DW_OP_implicit_pointer
17056 for DEBUG_IMPLICIT_PTR RTL. */
17058 static dw_loc_descr_ref
17059 implicit_ptr_descriptor (rtx rtl
, HOST_WIDE_INT offset
)
17061 dw_loc_descr_ref ret
;
17064 if (dwarf_strict
&& dwarf_version
< 5)
17066 gcc_assert (TREE_CODE (DEBUG_IMPLICIT_PTR_DECL (rtl
)) == VAR_DECL
17067 || TREE_CODE (DEBUG_IMPLICIT_PTR_DECL (rtl
)) == PARM_DECL
17068 || TREE_CODE (DEBUG_IMPLICIT_PTR_DECL (rtl
)) == RESULT_DECL
);
17069 ref
= lookup_decl_die (DEBUG_IMPLICIT_PTR_DECL (rtl
));
17070 ret
= new_loc_descr (dwarf_OP (DW_OP_implicit_pointer
), 0, offset
);
17071 ret
->dw_loc_oprnd2
.val_class
= dw_val_class_const
;
17074 ret
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
17075 ret
->dw_loc_oprnd1
.v
.val_die_ref
.die
= ref
;
17076 ret
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
17080 ret
->dw_loc_oprnd1
.val_class
= dw_val_class_decl_ref
;
17081 ret
->dw_loc_oprnd1
.v
.val_decl_ref
= DEBUG_IMPLICIT_PTR_DECL (rtl
);
17086 /* Output a proper Dwarf location descriptor for a variable or parameter
17087 which is either allocated in a register or in a memory location. For a
17088 register, we just generate an OP_REG and the register number. For a
17089 memory location we provide a Dwarf postfix expression describing how to
17090 generate the (dynamic) address of the object onto the address stack.
17092 MODE is mode of the decl if this loc_descriptor is going to be used in
17093 .debug_loc section where DW_OP_stack_value and DW_OP_implicit_value are
17094 allowed, VOIDmode otherwise.
17096 If we don't know how to describe it, return 0. */
17098 static dw_loc_descr_ref
17099 loc_descriptor (rtx rtl
, machine_mode mode
,
17100 enum var_init_status initialized
)
17102 dw_loc_descr_ref loc_result
= NULL
;
17103 scalar_int_mode int_mode
;
17105 switch (GET_CODE (rtl
))
17108 /* The case of a subreg may arise when we have a local (register)
17109 variable or a formal (register) parameter which doesn't quite fill
17110 up an entire register. For now, just assume that it is
17111 legitimate to make the Dwarf info refer to the whole register which
17112 contains the given subreg. */
17113 if (REG_P (SUBREG_REG (rtl
)) && subreg_lowpart_p (rtl
))
17114 loc_result
= loc_descriptor (SUBREG_REG (rtl
),
17115 GET_MODE (SUBREG_REG (rtl
)), initialized
);
17121 loc_result
= reg_loc_descriptor (rtl
, initialized
);
17125 loc_result
= mem_loc_descriptor (XEXP (rtl
, 0), get_address_mode (rtl
),
17126 GET_MODE (rtl
), initialized
);
17127 if (loc_result
== NULL
)
17128 loc_result
= tls_mem_loc_descriptor (rtl
);
17129 if (loc_result
== NULL
)
17131 rtx new_rtl
= avoid_constant_pool_reference (rtl
);
17132 if (new_rtl
!= rtl
)
17133 loc_result
= loc_descriptor (new_rtl
, mode
, initialized
);
17138 loc_result
= concat_loc_descriptor (XEXP (rtl
, 0), XEXP (rtl
, 1),
17143 loc_result
= concatn_loc_descriptor (rtl
, initialized
);
17148 if (GET_CODE (PAT_VAR_LOCATION_LOC (rtl
)) != PARALLEL
)
17150 rtx loc
= PAT_VAR_LOCATION_LOC (rtl
);
17151 if (GET_CODE (loc
) == EXPR_LIST
)
17152 loc
= XEXP (loc
, 0);
17153 loc_result
= loc_descriptor (loc
, mode
, initialized
);
17157 rtl
= XEXP (rtl
, 1);
17162 rtvec par_elems
= XVEC (rtl
, 0);
17163 int num_elem
= GET_NUM_ELEM (par_elems
);
17167 /* Create the first one, so we have something to add to. */
17168 loc_result
= loc_descriptor (XEXP (RTVEC_ELT (par_elems
, 0), 0),
17169 VOIDmode
, initialized
);
17170 if (loc_result
== NULL
)
17172 mode
= GET_MODE (XEXP (RTVEC_ELT (par_elems
, 0), 0));
17173 /* At present we only track constant-sized pieces. */
17174 if (!GET_MODE_SIZE (mode
).is_constant (&size
))
17176 add_loc_descr_op_piece (&loc_result
, size
);
17177 for (i
= 1; i
< num_elem
; i
++)
17179 dw_loc_descr_ref temp
;
17181 temp
= loc_descriptor (XEXP (RTVEC_ELT (par_elems
, i
), 0),
17182 VOIDmode
, initialized
);
17185 add_loc_descr (&loc_result
, temp
);
17186 mode
= GET_MODE (XEXP (RTVEC_ELT (par_elems
, i
), 0));
17187 /* At present we only track constant-sized pieces. */
17188 if (!GET_MODE_SIZE (mode
).is_constant (&size
))
17190 add_loc_descr_op_piece (&loc_result
, size
);
17196 if (mode
!= VOIDmode
&& mode
!= BLKmode
)
17198 int_mode
= as_a
<scalar_int_mode
> (mode
);
17199 loc_result
= address_of_int_loc_descriptor (GET_MODE_SIZE (int_mode
),
17205 if (mode
== VOIDmode
)
17206 mode
= GET_MODE (rtl
);
17208 if (mode
!= VOIDmode
&& (dwarf_version
>= 4 || !dwarf_strict
))
17210 gcc_assert (mode
== GET_MODE (rtl
) || VOIDmode
== GET_MODE (rtl
));
17212 /* Note that a CONST_DOUBLE rtx could represent either an integer
17213 or a floating-point constant. A CONST_DOUBLE is used whenever
17214 the constant requires more than one word in order to be
17215 adequately represented. We output CONST_DOUBLEs as blocks. */
17216 scalar_mode smode
= as_a
<scalar_mode
> (mode
);
17217 loc_result
= new_loc_descr (DW_OP_implicit_value
,
17218 GET_MODE_SIZE (smode
), 0);
17219 #if TARGET_SUPPORTS_WIDE_INT == 0
17220 if (!SCALAR_FLOAT_MODE_P (smode
))
17222 loc_result
->dw_loc_oprnd2
.val_class
= dw_val_class_const_double
;
17223 loc_result
->dw_loc_oprnd2
.v
.val_double
17224 = rtx_to_double_int (rtl
);
17229 unsigned int length
= GET_MODE_SIZE (smode
);
17230 unsigned char *array
= ggc_vec_alloc
<unsigned char> (length
);
17231 unsigned int elt_size
= insert_float (rtl
, array
);
17233 loc_result
->dw_loc_oprnd2
.val_class
= dw_val_class_vec
;
17234 loc_result
->dw_loc_oprnd2
.v
.val_vec
.length
= length
/ elt_size
;
17235 loc_result
->dw_loc_oprnd2
.v
.val_vec
.elt_size
= elt_size
;
17236 loc_result
->dw_loc_oprnd2
.v
.val_vec
.array
= array
;
17241 case CONST_WIDE_INT
:
17242 if (mode
== VOIDmode
)
17243 mode
= GET_MODE (rtl
);
17245 if (mode
!= VOIDmode
&& (dwarf_version
>= 4 || !dwarf_strict
))
17247 int_mode
= as_a
<scalar_int_mode
> (mode
);
17248 loc_result
= new_loc_descr (DW_OP_implicit_value
,
17249 GET_MODE_SIZE (int_mode
), 0);
17250 loc_result
->dw_loc_oprnd2
.val_class
= dw_val_class_wide_int
;
17251 loc_result
->dw_loc_oprnd2
.v
.val_wide
= ggc_alloc
<wide_int
> ();
17252 *loc_result
->dw_loc_oprnd2
.v
.val_wide
= rtx_mode_t (rtl
, int_mode
);
17257 if (mode
== VOIDmode
)
17258 mode
= GET_MODE (rtl
);
17260 if (mode
!= VOIDmode
17261 /* The combination of a length and byte elt_size doesn't extend
17262 naturally to boolean vectors, where several elements are packed
17263 into the same byte. */
17264 && GET_MODE_CLASS (mode
) != MODE_VECTOR_BOOL
17265 && (dwarf_version
>= 4 || !dwarf_strict
))
17267 unsigned int length
;
17268 if (!CONST_VECTOR_NUNITS (rtl
).is_constant (&length
))
17271 unsigned int elt_size
= GET_MODE_UNIT_SIZE (GET_MODE (rtl
));
17272 unsigned char *array
17273 = ggc_vec_alloc
<unsigned char> (length
* elt_size
);
17276 machine_mode imode
= GET_MODE_INNER (mode
);
17278 gcc_assert (mode
== GET_MODE (rtl
) || VOIDmode
== GET_MODE (rtl
));
17279 switch (GET_MODE_CLASS (mode
))
17281 case MODE_VECTOR_INT
:
17282 for (i
= 0, p
= array
; i
< length
; i
++, p
+= elt_size
)
17284 rtx elt
= CONST_VECTOR_ELT (rtl
, i
);
17285 insert_wide_int (rtx_mode_t (elt
, imode
), p
, elt_size
);
17289 case MODE_VECTOR_FLOAT
:
17290 for (i
= 0, p
= array
; i
< length
; i
++, p
+= elt_size
)
17292 rtx elt
= CONST_VECTOR_ELT (rtl
, i
);
17293 insert_float (elt
, p
);
17298 gcc_unreachable ();
17301 loc_result
= new_loc_descr (DW_OP_implicit_value
,
17302 length
* elt_size
, 0);
17303 loc_result
->dw_loc_oprnd2
.val_class
= dw_val_class_vec
;
17304 loc_result
->dw_loc_oprnd2
.v
.val_vec
.length
= length
;
17305 loc_result
->dw_loc_oprnd2
.v
.val_vec
.elt_size
= elt_size
;
17306 loc_result
->dw_loc_oprnd2
.v
.val_vec
.array
= array
;
17311 if (mode
== VOIDmode
17312 || CONST_SCALAR_INT_P (XEXP (rtl
, 0))
17313 || CONST_DOUBLE_AS_FLOAT_P (XEXP (rtl
, 0))
17314 || GET_CODE (XEXP (rtl
, 0)) == CONST_VECTOR
)
17316 loc_result
= loc_descriptor (XEXP (rtl
, 0), mode
, initialized
);
17321 if (!const_ok_for_output (rtl
))
17325 if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
17326 && GET_MODE_SIZE (int_mode
) == DWARF2_ADDR_SIZE
17327 && (dwarf_version
>= 4 || !dwarf_strict
))
17329 loc_result
= new_addr_loc_descr (rtl
, dtprel_false
);
17330 add_loc_descr (&loc_result
, new_loc_descr (DW_OP_stack_value
, 0, 0));
17331 vec_safe_push (used_rtx_array
, rtl
);
17335 case DEBUG_IMPLICIT_PTR
:
17336 loc_result
= implicit_ptr_descriptor (rtl
, 0);
17340 if (GET_CODE (XEXP (rtl
, 0)) == DEBUG_IMPLICIT_PTR
17341 && CONST_INT_P (XEXP (rtl
, 1)))
17344 = implicit_ptr_descriptor (XEXP (rtl
, 0), INTVAL (XEXP (rtl
, 1)));
17350 if ((is_a
<scalar_int_mode
> (mode
, &int_mode
)
17351 && GET_MODE (rtl
) == int_mode
17352 && GET_MODE_SIZE (int_mode
) <= DWARF2_ADDR_SIZE
17353 && dwarf_version
>= 4)
17354 || (!dwarf_strict
&& mode
!= VOIDmode
&& mode
!= BLKmode
))
17356 /* Value expression. */
17357 loc_result
= mem_loc_descriptor (rtl
, mode
, VOIDmode
, initialized
);
17359 add_loc_descr (&loc_result
,
17360 new_loc_descr (DW_OP_stack_value
, 0, 0));
17368 /* We need to figure out what section we should use as the base for the
17369 address ranges where a given location is valid.
17370 1. If this particular DECL has a section associated with it, use that.
17371 2. If this function has a section associated with it, use that.
17372 3. Otherwise, use the text section.
17373 XXX: If you split a variable across multiple sections, we won't notice. */
17375 static const char *
17376 secname_for_decl (const_tree decl
)
17378 const char *secname
;
17380 if (VAR_OR_FUNCTION_DECL_P (decl
)
17381 && (DECL_EXTERNAL (decl
) || TREE_PUBLIC (decl
) || TREE_STATIC (decl
))
17382 && DECL_SECTION_NAME (decl
))
17383 secname
= DECL_SECTION_NAME (decl
);
17384 else if (current_function_decl
&& DECL_SECTION_NAME (current_function_decl
))
17386 if (in_cold_section_p
)
17388 section
*sec
= current_function_section ();
17389 if (sec
->common
.flags
& SECTION_NAMED
)
17390 return sec
->named
.name
;
17392 secname
= DECL_SECTION_NAME (current_function_decl
);
17394 else if (cfun
&& in_cold_section_p
)
17395 secname
= crtl
->subsections
.cold_section_label
;
17397 secname
= text_section_label
;
17402 /* Return true when DECL_BY_REFERENCE is defined and set for DECL. */
17405 decl_by_reference_p (tree decl
)
17407 return ((TREE_CODE (decl
) == PARM_DECL
|| TREE_CODE (decl
) == RESULT_DECL
17409 && DECL_BY_REFERENCE (decl
));
17412 /* Helper function for dw_loc_list. Compute proper Dwarf location descriptor
17415 static dw_loc_descr_ref
17416 dw_loc_list_1 (tree loc
, rtx varloc
, int want_address
,
17417 enum var_init_status initialized
)
17419 int have_address
= 0;
17420 dw_loc_descr_ref descr
;
17423 if (want_address
!= 2)
17425 gcc_assert (GET_CODE (varloc
) == VAR_LOCATION
);
17427 if (GET_CODE (PAT_VAR_LOCATION_LOC (varloc
)) != PARALLEL
)
17429 varloc
= PAT_VAR_LOCATION_LOC (varloc
);
17430 if (GET_CODE (varloc
) == EXPR_LIST
)
17431 varloc
= XEXP (varloc
, 0);
17432 mode
= GET_MODE (varloc
);
17433 if (MEM_P (varloc
))
17435 rtx addr
= XEXP (varloc
, 0);
17436 descr
= mem_loc_descriptor (addr
, get_address_mode (varloc
),
17437 mode
, initialized
);
17442 rtx x
= avoid_constant_pool_reference (varloc
);
17444 descr
= mem_loc_descriptor (x
, mode
, VOIDmode
,
17449 descr
= mem_loc_descriptor (varloc
, mode
, VOIDmode
, initialized
);
17456 if (GET_CODE (varloc
) == VAR_LOCATION
)
17457 mode
= DECL_MODE (PAT_VAR_LOCATION_DECL (varloc
));
17459 mode
= DECL_MODE (loc
);
17460 descr
= loc_descriptor (varloc
, mode
, initialized
);
17467 if (want_address
== 2 && !have_address
17468 && (dwarf_version
>= 4 || !dwarf_strict
))
17470 if (int_size_in_bytes (TREE_TYPE (loc
)) > DWARF2_ADDR_SIZE
)
17472 expansion_failed (loc
, NULL_RTX
,
17473 "DWARF address size mismatch");
17476 add_loc_descr (&descr
, new_loc_descr (DW_OP_stack_value
, 0, 0));
17479 /* Show if we can't fill the request for an address. */
17480 if (want_address
&& !have_address
)
17482 expansion_failed (loc
, NULL_RTX
,
17483 "Want address and only have value");
17487 /* If we've got an address and don't want one, dereference. */
17488 if (!want_address
&& have_address
)
17490 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (loc
));
17491 enum dwarf_location_atom op
;
17493 if (size
> DWARF2_ADDR_SIZE
|| size
== -1)
17495 expansion_failed (loc
, NULL_RTX
,
17496 "DWARF address size mismatch");
17499 else if (size
== DWARF2_ADDR_SIZE
)
17502 op
= DW_OP_deref_size
;
17504 add_loc_descr (&descr
, new_loc_descr (op
, size
, 0));
17510 /* Create a DW_OP_piece or DW_OP_bit_piece for bitsize, or return NULL
17511 if it is not possible. */
17513 static dw_loc_descr_ref
17514 new_loc_descr_op_bit_piece (HOST_WIDE_INT bitsize
, HOST_WIDE_INT offset
)
17516 if ((bitsize
% BITS_PER_UNIT
) == 0 && offset
== 0)
17517 return new_loc_descr (DW_OP_piece
, bitsize
/ BITS_PER_UNIT
, 0);
17518 else if (dwarf_version
>= 3 || !dwarf_strict
)
17519 return new_loc_descr (DW_OP_bit_piece
, bitsize
, offset
);
17524 /* Helper function for dw_loc_list. Compute proper Dwarf location descriptor
17525 for VAR_LOC_NOTE for variable DECL that has been optimized by SRA. */
17527 static dw_loc_descr_ref
17528 dw_sra_loc_expr (tree decl
, rtx loc
)
17531 unsigned HOST_WIDE_INT padsize
= 0;
17532 dw_loc_descr_ref descr
, *descr_tail
;
17533 unsigned HOST_WIDE_INT decl_size
;
17535 enum var_init_status initialized
;
17537 if (DECL_SIZE (decl
) == NULL
17538 || !tree_fits_uhwi_p (DECL_SIZE (decl
)))
17541 decl_size
= tree_to_uhwi (DECL_SIZE (decl
));
17543 descr_tail
= &descr
;
17545 for (p
= loc
; p
; p
= XEXP (p
, 1))
17547 unsigned HOST_WIDE_INT bitsize
= decl_piece_bitsize (p
);
17548 rtx loc_note
= *decl_piece_varloc_ptr (p
);
17549 dw_loc_descr_ref cur_descr
;
17550 dw_loc_descr_ref
*tail
, last
= NULL
;
17551 unsigned HOST_WIDE_INT opsize
= 0;
17553 if (loc_note
== NULL_RTX
17554 || NOTE_VAR_LOCATION_LOC (loc_note
) == NULL_RTX
)
17556 padsize
+= bitsize
;
17559 initialized
= NOTE_VAR_LOCATION_STATUS (loc_note
);
17560 varloc
= NOTE_VAR_LOCATION (loc_note
);
17561 cur_descr
= dw_loc_list_1 (decl
, varloc
, 2, initialized
);
17562 if (cur_descr
== NULL
)
17564 padsize
+= bitsize
;
17568 /* Check that cur_descr either doesn't use
17569 DW_OP_*piece operations, or their sum is equal
17570 to bitsize. Otherwise we can't embed it. */
17571 for (tail
= &cur_descr
; *tail
!= NULL
;
17572 tail
= &(*tail
)->dw_loc_next
)
17573 if ((*tail
)->dw_loc_opc
== DW_OP_piece
)
17575 opsize
+= (*tail
)->dw_loc_oprnd1
.v
.val_unsigned
17579 else if ((*tail
)->dw_loc_opc
== DW_OP_bit_piece
)
17581 opsize
+= (*tail
)->dw_loc_oprnd1
.v
.val_unsigned
;
17585 if (last
!= NULL
&& opsize
!= bitsize
)
17587 padsize
+= bitsize
;
17588 /* Discard the current piece of the descriptor and release any
17589 addr_table entries it uses. */
17590 remove_loc_list_addr_table_entries (cur_descr
);
17594 /* If there is a hole, add DW_OP_*piece after empty DWARF
17595 expression, which means that those bits are optimized out. */
17598 if (padsize
> decl_size
)
17600 remove_loc_list_addr_table_entries (cur_descr
);
17601 goto discard_descr
;
17603 decl_size
-= padsize
;
17604 *descr_tail
= new_loc_descr_op_bit_piece (padsize
, 0);
17605 if (*descr_tail
== NULL
)
17607 remove_loc_list_addr_table_entries (cur_descr
);
17608 goto discard_descr
;
17610 descr_tail
= &(*descr_tail
)->dw_loc_next
;
17613 *descr_tail
= cur_descr
;
17615 if (bitsize
> decl_size
)
17616 goto discard_descr
;
17617 decl_size
-= bitsize
;
17620 HOST_WIDE_INT offset
= 0;
17621 if (GET_CODE (varloc
) == VAR_LOCATION
17622 && GET_CODE (PAT_VAR_LOCATION_LOC (varloc
)) != PARALLEL
)
17624 varloc
= PAT_VAR_LOCATION_LOC (varloc
);
17625 if (GET_CODE (varloc
) == EXPR_LIST
)
17626 varloc
= XEXP (varloc
, 0);
17630 if (GET_CODE (varloc
) == CONST
17631 || GET_CODE (varloc
) == SIGN_EXTEND
17632 || GET_CODE (varloc
) == ZERO_EXTEND
)
17633 varloc
= XEXP (varloc
, 0);
17634 else if (GET_CODE (varloc
) == SUBREG
)
17635 varloc
= SUBREG_REG (varloc
);
17640 /* DW_OP_bit_size offset should be zero for register
17641 or implicit location descriptions and empty location
17642 descriptions, but for memory addresses needs big endian
17644 if (MEM_P (varloc
))
17646 unsigned HOST_WIDE_INT memsize
;
17647 if (!poly_uint64 (MEM_SIZE (varloc
)).is_constant (&memsize
))
17648 goto discard_descr
;
17649 memsize
*= BITS_PER_UNIT
;
17650 if (memsize
!= bitsize
)
17652 if (BYTES_BIG_ENDIAN
!= WORDS_BIG_ENDIAN
17653 && (memsize
> BITS_PER_WORD
|| bitsize
> BITS_PER_WORD
))
17654 goto discard_descr
;
17655 if (memsize
< bitsize
)
17656 goto discard_descr
;
17657 if (BITS_BIG_ENDIAN
)
17658 offset
= memsize
- bitsize
;
17662 *descr_tail
= new_loc_descr_op_bit_piece (bitsize
, offset
);
17663 if (*descr_tail
== NULL
)
17664 goto discard_descr
;
17665 descr_tail
= &(*descr_tail
)->dw_loc_next
;
17669 /* If there were any non-empty expressions, add padding till the end of
17671 if (descr
!= NULL
&& decl_size
!= 0)
17673 *descr_tail
= new_loc_descr_op_bit_piece (decl_size
, 0);
17674 if (*descr_tail
== NULL
)
17675 goto discard_descr
;
17680 /* Discard the descriptor and release any addr_table entries it uses. */
17681 remove_loc_list_addr_table_entries (descr
);
17685 /* Return the dwarf representation of the location list LOC_LIST of
17686 DECL. WANT_ADDRESS has the same meaning as in loc_list_from_tree
17689 static dw_loc_list_ref
17690 dw_loc_list (var_loc_list
*loc_list
, tree decl
, int want_address
)
17692 const char *endname
, *secname
;
17693 var_loc_view endview
;
17695 enum var_init_status initialized
;
17696 struct var_loc_node
*node
;
17697 dw_loc_descr_ref descr
;
17698 char label_id
[MAX_ARTIFICIAL_LABEL_BYTES
];
17699 dw_loc_list_ref list
= NULL
;
17700 dw_loc_list_ref
*listp
= &list
;
17702 /* Now that we know what section we are using for a base,
17703 actually construct the list of locations.
17704 The first location information is what is passed to the
17705 function that creates the location list, and the remaining
17706 locations just get added on to that list.
17707 Note that we only know the start address for a location
17708 (IE location changes), so to build the range, we use
17709 the range [current location start, next location start].
17710 This means we have to special case the last node, and generate
17711 a range of [last location start, end of function label]. */
17713 if (cfun
&& crtl
->has_bb_partition
)
17715 bool save_in_cold_section_p
= in_cold_section_p
;
17716 in_cold_section_p
= first_function_block_is_cold
;
17717 if (loc_list
->last_before_switch
== NULL
)
17718 in_cold_section_p
= !in_cold_section_p
;
17719 secname
= secname_for_decl (decl
);
17720 in_cold_section_p
= save_in_cold_section_p
;
17723 secname
= secname_for_decl (decl
);
17725 for (node
= loc_list
->first
; node
; node
= node
->next
)
17727 bool range_across_switch
= false;
17728 if (GET_CODE (node
->loc
) == EXPR_LIST
17729 || NOTE_VAR_LOCATION_LOC (node
->loc
) != NULL_RTX
)
17731 if (GET_CODE (node
->loc
) == EXPR_LIST
)
17734 /* This requires DW_OP_{,bit_}piece, which is not usable
17735 inside DWARF expressions. */
17736 if (want_address
== 2)
17737 descr
= dw_sra_loc_expr (decl
, node
->loc
);
17741 initialized
= NOTE_VAR_LOCATION_STATUS (node
->loc
);
17742 varloc
= NOTE_VAR_LOCATION (node
->loc
);
17743 descr
= dw_loc_list_1 (decl
, varloc
, want_address
, initialized
);
17747 /* If section switch happens in between node->label
17748 and node->next->label (or end of function) and
17749 we can't emit it as a single entry list,
17750 emit two ranges, first one ending at the end
17751 of first partition and second one starting at the
17752 beginning of second partition. */
17753 if (node
== loc_list
->last_before_switch
17754 && (node
!= loc_list
->first
|| loc_list
->first
->next
17755 /* If we are to emit a view number, we will emit
17756 a loclist rather than a single location
17757 expression for the entire function (see
17758 loc_list_has_views), so we have to split the
17759 range that straddles across partitions. */
17760 || !ZERO_VIEW_P (node
->view
))
17761 && current_function_decl
)
17763 endname
= cfun
->fde
->dw_fde_end
;
17765 range_across_switch
= true;
17767 /* The variable has a location between NODE->LABEL and
17768 NODE->NEXT->LABEL. */
17769 else if (node
->next
)
17770 endname
= node
->next
->label
, endview
= node
->next
->view
;
17771 /* If the variable has a location at the last label
17772 it keeps its location until the end of function. */
17773 else if (!current_function_decl
)
17774 endname
= text_end_label
, endview
= 0;
17777 ASM_GENERATE_INTERNAL_LABEL (label_id
, FUNC_END_LABEL
,
17778 current_function_funcdef_no
);
17779 endname
= ggc_strdup (label_id
);
17783 *listp
= new_loc_list (descr
, node
->label
, node
->view
,
17784 endname
, endview
, secname
);
17785 if (TREE_CODE (decl
) == PARM_DECL
17786 && node
== loc_list
->first
17787 && NOTE_P (node
->loc
)
17788 && strcmp (node
->label
, endname
) == 0)
17789 (*listp
)->force
= true;
17790 listp
= &(*listp
)->dw_loc_next
;
17795 && crtl
->has_bb_partition
17796 && node
== loc_list
->last_before_switch
)
17798 bool save_in_cold_section_p
= in_cold_section_p
;
17799 in_cold_section_p
= !first_function_block_is_cold
;
17800 secname
= secname_for_decl (decl
);
17801 in_cold_section_p
= save_in_cold_section_p
;
17804 if (range_across_switch
)
17806 if (GET_CODE (node
->loc
) == EXPR_LIST
)
17807 descr
= dw_sra_loc_expr (decl
, node
->loc
);
17810 initialized
= NOTE_VAR_LOCATION_STATUS (node
->loc
);
17811 varloc
= NOTE_VAR_LOCATION (node
->loc
);
17812 descr
= dw_loc_list_1 (decl
, varloc
, want_address
,
17815 gcc_assert (descr
);
17816 /* The variable has a location between NODE->LABEL and
17817 NODE->NEXT->LABEL. */
17819 endname
= node
->next
->label
, endview
= node
->next
->view
;
17821 endname
= cfun
->fde
->dw_fde_second_end
, endview
= 0;
17822 *listp
= new_loc_list (descr
, cfun
->fde
->dw_fde_second_begin
, 0,
17823 endname
, endview
, secname
);
17824 listp
= &(*listp
)->dw_loc_next
;
17828 /* Try to avoid the overhead of a location list emitting a location
17829 expression instead, but only if we didn't have more than one
17830 location entry in the first place. If some entries were not
17831 representable, we don't want to pretend a single entry that was
17832 applies to the entire scope in which the variable is
17834 if (list
&& loc_list
->first
->next
)
17837 maybe_gen_llsym (list
);
17842 /* Return if the loc_list has only single element and thus can be represented
17843 as location description. */
17846 single_element_loc_list_p (dw_loc_list_ref list
)
17848 gcc_assert (!list
->dw_loc_next
|| list
->ll_symbol
);
17849 return !list
->ll_symbol
;
17852 /* Duplicate a single element of location list. */
17854 static inline dw_loc_descr_ref
17855 copy_loc_descr (dw_loc_descr_ref ref
)
17857 dw_loc_descr_ref copy
= ggc_alloc
<dw_loc_descr_node
> ();
17858 memcpy (copy
, ref
, sizeof (dw_loc_descr_node
));
17862 /* To each location in list LIST append loc descr REF. */
17865 add_loc_descr_to_each (dw_loc_list_ref list
, dw_loc_descr_ref ref
)
17867 dw_loc_descr_ref copy
;
17868 add_loc_descr (&list
->expr
, ref
);
17869 list
= list
->dw_loc_next
;
17872 copy
= copy_loc_descr (ref
);
17873 add_loc_descr (&list
->expr
, copy
);
17874 while (copy
->dw_loc_next
)
17875 copy
= copy
->dw_loc_next
= copy_loc_descr (copy
->dw_loc_next
);
17876 list
= list
->dw_loc_next
;
17880 /* To each location in list LIST prepend loc descr REF. */
17883 prepend_loc_descr_to_each (dw_loc_list_ref list
, dw_loc_descr_ref ref
)
17885 dw_loc_descr_ref copy
;
17886 dw_loc_descr_ref ref_end
= list
->expr
;
17887 add_loc_descr (&ref
, list
->expr
);
17889 list
= list
->dw_loc_next
;
17892 dw_loc_descr_ref end
= list
->expr
;
17893 list
->expr
= copy
= copy_loc_descr (ref
);
17894 while (copy
->dw_loc_next
!= ref_end
)
17895 copy
= copy
->dw_loc_next
= copy_loc_descr (copy
->dw_loc_next
);
17896 copy
->dw_loc_next
= end
;
17897 list
= list
->dw_loc_next
;
17901 /* Given two lists RET and LIST
17902 produce location list that is result of adding expression in LIST
17903 to expression in RET on each position in program.
17904 Might be destructive on both RET and LIST.
17906 TODO: We handle only simple cases of RET or LIST having at most one
17907 element. General case would involve sorting the lists in program order
17908 and merging them that will need some additional work.
17909 Adding that will improve quality of debug info especially for SRA-ed
17913 add_loc_list (dw_loc_list_ref
*ret
, dw_loc_list_ref list
)
17922 if (!list
->dw_loc_next
)
17924 add_loc_descr_to_each (*ret
, list
->expr
);
17927 if (!(*ret
)->dw_loc_next
)
17929 prepend_loc_descr_to_each (list
, (*ret
)->expr
);
17933 expansion_failed (NULL_TREE
, NULL_RTX
,
17934 "Don't know how to merge two non-trivial"
17935 " location lists.\n");
17940 /* LOC is constant expression. Try a luck, look it up in constant
17941 pool and return its loc_descr of its address. */
17943 static dw_loc_descr_ref
17944 cst_pool_loc_descr (tree loc
)
17946 /* Get an RTL for this, if something has been emitted. */
17947 rtx rtl
= lookup_constant_def (loc
);
17949 if (!rtl
|| !MEM_P (rtl
))
17954 gcc_assert (GET_CODE (XEXP (rtl
, 0)) == SYMBOL_REF
);
17956 /* TODO: We might get more coverage if we was actually delaying expansion
17957 of all expressions till end of compilation when constant pools are fully
17959 if (!TREE_ASM_WRITTEN (SYMBOL_REF_DECL (XEXP (rtl
, 0))))
17961 expansion_failed (loc
, NULL_RTX
,
17962 "CST value in contant pool but not marked.");
17965 return mem_loc_descriptor (XEXP (rtl
, 0), get_address_mode (rtl
),
17966 GET_MODE (rtl
), VAR_INIT_STATUS_INITIALIZED
);
17969 /* Return dw_loc_list representing address of addr_expr LOC
17970 by looking for inner INDIRECT_REF expression and turning
17971 it into simple arithmetics.
17973 See loc_list_from_tree for the meaning of CONTEXT. */
17975 static dw_loc_list_ref
17976 loc_list_for_address_of_addr_expr_of_indirect_ref (tree loc
, bool toplev
,
17977 loc_descr_context
*context
)
17980 poly_int64 bitsize
, bitpos
, bytepos
;
17982 int unsignedp
, reversep
, volatilep
= 0;
17983 dw_loc_list_ref list_ret
= NULL
, list_ret1
= NULL
;
17985 obj
= get_inner_reference (TREE_OPERAND (loc
, 0),
17986 &bitsize
, &bitpos
, &offset
, &mode
,
17987 &unsignedp
, &reversep
, &volatilep
);
17989 if (!multiple_p (bitpos
, BITS_PER_UNIT
, &bytepos
))
17991 expansion_failed (loc
, NULL_RTX
, "bitfield access");
17994 if (!INDIRECT_REF_P (obj
))
17996 expansion_failed (obj
,
17997 NULL_RTX
, "no indirect ref in inner refrence");
18000 if (!offset
&& known_eq (bitpos
, 0))
18001 list_ret
= loc_list_from_tree (TREE_OPERAND (obj
, 0), toplev
? 2 : 1,
18004 && int_size_in_bytes (TREE_TYPE (loc
)) <= DWARF2_ADDR_SIZE
18005 && (dwarf_version
>= 4 || !dwarf_strict
))
18007 list_ret
= loc_list_from_tree (TREE_OPERAND (obj
, 0), 0, context
);
18012 /* Variable offset. */
18013 list_ret1
= loc_list_from_tree (offset
, 0, context
);
18014 if (list_ret1
== 0)
18016 add_loc_list (&list_ret
, list_ret1
);
18019 add_loc_descr_to_each (list_ret
,
18020 new_loc_descr (DW_OP_plus
, 0, 0));
18022 HOST_WIDE_INT value
;
18023 if (bytepos
.is_constant (&value
) && value
> 0)
18024 add_loc_descr_to_each (list_ret
,
18025 new_loc_descr (DW_OP_plus_uconst
, value
, 0));
18026 else if (maybe_ne (bytepos
, 0))
18027 loc_list_plus_const (list_ret
, bytepos
);
18028 add_loc_descr_to_each (list_ret
,
18029 new_loc_descr (DW_OP_stack_value
, 0, 0));
18034 /* Set LOC to the next operation that is not a DW_OP_nop operation. In the case
18035 all operations from LOC are nops, move to the last one. Insert in NOPS all
18036 operations that are skipped. */
18039 loc_descr_to_next_no_nop (dw_loc_descr_ref
&loc
,
18040 hash_set
<dw_loc_descr_ref
> &nops
)
18042 while (loc
->dw_loc_next
!= NULL
&& loc
->dw_loc_opc
== DW_OP_nop
)
18045 loc
= loc
->dw_loc_next
;
18049 /* Helper for loc_descr_without_nops: free the location description operation
18053 free_loc_descr (const dw_loc_descr_ref
&loc
, void *data ATTRIBUTE_UNUSED
)
18059 /* Remove all DW_OP_nop operations from LOC except, if it exists, the one that
18063 loc_descr_without_nops (dw_loc_descr_ref
&loc
)
18065 if (loc
->dw_loc_opc
== DW_OP_nop
&& loc
->dw_loc_next
== NULL
)
18068 /* Set of all DW_OP_nop operations we remove. */
18069 hash_set
<dw_loc_descr_ref
> nops
;
18071 /* First, strip all prefix NOP operations in order to keep the head of the
18072 operations list. */
18073 loc_descr_to_next_no_nop (loc
, nops
);
18075 for (dw_loc_descr_ref cur
= loc
; cur
!= NULL
;)
18077 /* For control flow operations: strip "prefix" nops in destination
18079 if (cur
->dw_loc_oprnd1
.val_class
== dw_val_class_loc
)
18080 loc_descr_to_next_no_nop (cur
->dw_loc_oprnd1
.v
.val_loc
, nops
);
18081 if (cur
->dw_loc_oprnd2
.val_class
== dw_val_class_loc
)
18082 loc_descr_to_next_no_nop (cur
->dw_loc_oprnd2
.v
.val_loc
, nops
);
18084 /* Do the same for the operations that follow, then move to the next
18086 if (cur
->dw_loc_next
!= NULL
)
18087 loc_descr_to_next_no_nop (cur
->dw_loc_next
, nops
);
18088 cur
= cur
->dw_loc_next
;
18091 nops
.traverse
<void *, free_loc_descr
> (NULL
);
18095 struct dwarf_procedure_info
;
18097 /* Helper structure for location descriptions generation. */
18098 struct loc_descr_context
18100 /* The type that is implicitly referenced by DW_OP_push_object_address, or
18101 NULL_TREE if DW_OP_push_object_address in invalid for this location
18102 description. This is used when processing PLACEHOLDER_EXPR nodes. */
18104 /* The ..._DECL node that should be translated as a
18105 DW_OP_push_object_address operation. */
18107 /* Information about the DWARF procedure we are currently generating. NULL if
18108 we are not generating a DWARF procedure. */
18109 struct dwarf_procedure_info
*dpi
;
18110 /* True if integral PLACEHOLDER_EXPR stands for the first argument passed
18111 by consumer. Used for DW_TAG_generic_subrange attributes. */
18112 bool placeholder_arg
;
18113 /* True if PLACEHOLDER_EXPR has been seen. */
18114 bool placeholder_seen
;
18115 /* True if strict preservation of signedness has been requested. */
18116 bool strict_signedness
;
18119 /* DWARF procedures generation
18121 DWARF expressions (aka. location descriptions) are used to encode variable
18122 things such as sizes or offsets. Such computations can have redundant parts
18123 that can be factorized in order to reduce the size of the output debug
18124 information. This is the whole point of DWARF procedures.
18126 Thanks to stor-layout.cc, size and offset expressions in GENERIC trees are
18127 already factorized into functions ("size functions") in order to handle very
18128 big and complex types. Such functions are quite simple: they have integral
18129 arguments, they return an integral result and their body contains only a
18130 return statement with arithmetic expressions. This is the only kind of
18131 function we are interested in translating into DWARF procedures, here.
18133 DWARF expressions and DWARF procedure are executed using a stack, so we have
18134 to define some calling convention for them to interact. Let's say that:
18136 - Before calling a DWARF procedure, DWARF expressions must push on the stack
18137 all arguments in reverse order (right-to-left) so that when the DWARF
18138 procedure execution starts, the first argument is the top of the stack.
18140 - Then, when returning, the DWARF procedure must have consumed all arguments
18141 on the stack, must have pushed the result and touched nothing else.
18143 - Each integral argument and the result are integral types can be hold in a
18146 - We call "frame offset" the number of stack slots that are "under DWARF
18147 procedure control": it includes the arguments slots, the temporaries and
18148 the result slot. Thus, it is equal to the number of arguments when the
18149 procedure execution starts and must be equal to one (the result) when it
18152 /* Helper structure used when generating operations for a DWARF procedure. */
18153 struct dwarf_procedure_info
18155 /* The FUNCTION_DECL node corresponding to the DWARF procedure that is
18156 currently translated. */
18158 /* The number of arguments FNDECL takes. */
18159 unsigned args_count
;
18162 /* Return a pointer to a newly created DIE node for a DWARF procedure. Add
18163 LOCATION as its DW_AT_location attribute. If FNDECL is not NULL_TREE,
18164 equate it to this DIE. */
18167 new_dwarf_proc_die (dw_loc_descr_ref location
, tree fndecl
,
18168 dw_die_ref parent_die
)
18170 dw_die_ref dwarf_proc_die
;
18172 if ((dwarf_version
< 3 && dwarf_strict
)
18173 || location
== NULL
)
18176 dwarf_proc_die
= new_die (DW_TAG_dwarf_procedure
, parent_die
, fndecl
);
18178 equate_decl_number_to_die (fndecl
, dwarf_proc_die
);
18179 add_AT_loc (dwarf_proc_die
, DW_AT_location
, location
);
18180 return dwarf_proc_die
;
18183 /* Return whether TYPE is a supported type as a DWARF procedure argument
18184 type or return type (we handle only scalar types and pointer types that
18185 aren't wider than the DWARF expression evaluation stack). */
18188 is_handled_procedure_type (tree type
)
18190 return ((INTEGRAL_TYPE_P (type
)
18191 || TREE_CODE (type
) == OFFSET_TYPE
18192 || TREE_CODE (type
) == POINTER_TYPE
)
18193 && int_size_in_bytes (type
) <= DWARF2_ADDR_SIZE
);
18196 /* Helper for resolve_args_picking: do the same but stop when coming across
18197 visited nodes. For each node we visit, register in FRAME_OFFSETS the frame
18198 offset *before* evaluating the corresponding operation. */
18201 resolve_args_picking_1 (dw_loc_descr_ref loc
, unsigned initial_frame_offset
,
18202 struct dwarf_procedure_info
*dpi
,
18203 hash_map
<dw_loc_descr_ref
, unsigned> &frame_offsets
)
18205 /* The "frame_offset" identifier is already used to name a macro... */
18206 unsigned frame_offset_
= initial_frame_offset
;
18207 dw_loc_descr_ref l
;
18209 for (l
= loc
; l
!= NULL
;)
18212 unsigned &l_frame_offset
= frame_offsets
.get_or_insert (l
, &existed
);
18214 /* If we already met this node, there is nothing to compute anymore. */
18217 /* Make sure that the stack size is consistent wherever the execution
18218 flow comes from. */
18219 gcc_assert ((unsigned) l_frame_offset
== frame_offset_
);
18222 l_frame_offset
= frame_offset_
;
18224 /* If needed, relocate the picking offset with respect to the frame
18226 if (l
->frame_offset_rel
)
18228 unsigned HOST_WIDE_INT off
;
18229 switch (l
->dw_loc_opc
)
18232 off
= l
->dw_loc_oprnd1
.v
.val_unsigned
;
18241 gcc_unreachable ();
18243 /* frame_offset_ is the size of the current stack frame, including
18244 incoming arguments. Besides, the arguments are pushed
18245 right-to-left. Thus, in order to access the Nth argument from
18246 this operation node, the picking has to skip temporaries *plus*
18247 one stack slot per argument (0 for the first one, 1 for the second
18250 The targetted argument number (N) is already set as the operand,
18251 and the number of temporaries can be computed with:
18252 frame_offsets_ - dpi->args_count */
18253 off
+= frame_offset_
- dpi
->args_count
;
18255 /* DW_OP_pick handles only offsets from 0 to 255 (inclusive)... */
18261 l
->dw_loc_opc
= DW_OP_dup
;
18262 l
->dw_loc_oprnd1
.v
.val_unsigned
= 0;
18266 l
->dw_loc_opc
= DW_OP_over
;
18267 l
->dw_loc_oprnd1
.v
.val_unsigned
= 0;
18271 l
->dw_loc_opc
= DW_OP_pick
;
18272 l
->dw_loc_oprnd1
.v
.val_unsigned
= off
;
18276 /* Update frame_offset according to the effect the current operation has
18278 switch (l
->dw_loc_opc
)
18286 case DW_OP_plus_uconst
:
18322 case DW_OP_deref_size
:
18324 case DW_OP_bit_piece
:
18325 case DW_OP_implicit_value
:
18326 case DW_OP_stack_value
:
18327 case DW_OP_deref_type
:
18328 case DW_OP_convert
:
18329 case DW_OP_reinterpret
:
18330 case DW_OP_GNU_deref_type
:
18331 case DW_OP_GNU_convert
:
18332 case DW_OP_GNU_reinterpret
:
18336 case DW_OP_const1u
:
18337 case DW_OP_const1s
:
18338 case DW_OP_const2u
:
18339 case DW_OP_const2s
:
18340 case DW_OP_const4u
:
18341 case DW_OP_const4s
:
18342 case DW_OP_const8u
:
18343 case DW_OP_const8s
:
18414 case DW_OP_push_object_address
:
18415 case DW_OP_call_frame_cfa
:
18416 case DW_OP_GNU_variable_value
:
18417 case DW_OP_GNU_addr_index
:
18418 case DW_OP_GNU_const_index
:
18443 case DW_OP_xderef_size
:
18449 case DW_OP_call_ref
:
18451 dw_die_ref dwarf_proc
= l
->dw_loc_oprnd1
.v
.val_die_ref
.die
;
18452 int *stack_usage
= dwarf_proc_stack_usage_map
->get (dwarf_proc
);
18454 if (stack_usage
== NULL
)
18456 frame_offset_
+= *stack_usage
;
18460 case DW_OP_implicit_pointer
:
18461 case DW_OP_entry_value
:
18462 case DW_OP_const_type
:
18463 case DW_OP_regval_type
:
18464 case DW_OP_form_tls_address
:
18465 case DW_OP_GNU_push_tls_address
:
18466 case DW_OP_GNU_uninit
:
18467 case DW_OP_GNU_encoded_addr
:
18468 case DW_OP_GNU_implicit_pointer
:
18469 case DW_OP_GNU_entry_value
:
18470 case DW_OP_GNU_const_type
:
18471 case DW_OP_GNU_regval_type
:
18472 case DW_OP_GNU_parameter_ref
:
18473 /* loc_list_from_tree will probably not output these operations for
18474 size functions, so assume they will not appear here. */
18475 /* Fall through... */
18478 gcc_unreachable ();
18481 /* Now, follow the control flow (except subroutine calls). */
18482 switch (l
->dw_loc_opc
)
18485 if (!resolve_args_picking_1 (l
->dw_loc_next
, frame_offset_
, dpi
,
18488 /* Fall through. */
18491 l
= l
->dw_loc_oprnd1
.v
.val_loc
;
18494 case DW_OP_stack_value
:
18498 l
= l
->dw_loc_next
;
18506 /* Make a DFS over operations reachable through LOC (i.e. follow branch
18507 operations) in order to resolve the operand of DW_OP_pick operations that
18508 target DWARF procedure arguments (DPI). INITIAL_FRAME_OFFSET is the frame
18509 offset *before* LOC is executed. Return if all relocations were
18513 resolve_args_picking (dw_loc_descr_ref loc
, unsigned initial_frame_offset
,
18514 struct dwarf_procedure_info
*dpi
)
18516 /* Associate to all visited operations the frame offset *before* evaluating
18518 hash_map
<dw_loc_descr_ref
, unsigned> frame_offsets
;
18521 resolve_args_picking_1 (loc
, initial_frame_offset
, dpi
, frame_offsets
);
18524 /* Try to generate a DWARF procedure that computes the same result as FNDECL.
18525 Return NULL if it is not possible. */
18528 function_to_dwarf_procedure (tree fndecl
)
18530 struct dwarf_procedure_info dpi
;
18531 struct loc_descr_context ctx
= {
18532 NULL_TREE
, /* context_type */
18533 NULL_TREE
, /* base_decl */
18535 false, /* placeholder_arg */
18536 false, /* placeholder_seen */
18537 true /* strict_signedness */
18539 dw_die_ref dwarf_proc_die
;
18540 tree tree_body
= DECL_SAVED_TREE (fndecl
);
18541 dw_loc_descr_ref loc_body
, epilogue
;
18546 /* Do not generate multiple DWARF procedures for the same function
18548 dwarf_proc_die
= lookup_decl_die (fndecl
);
18549 if (dwarf_proc_die
!= NULL
)
18550 return dwarf_proc_die
;
18552 /* DWARF procedures are available starting with the DWARFv3 standard. */
18553 if (dwarf_version
< 3 && dwarf_strict
)
18556 /* We handle only functions for which we still have a body, that return a
18557 supported type and that takes arguments with supported types. Note that
18558 there is no point translating functions that return nothing. */
18559 if (tree_body
== NULL_TREE
18560 || DECL_RESULT (fndecl
) == NULL_TREE
18561 || !is_handled_procedure_type (TREE_TYPE (DECL_RESULT (fndecl
))))
18564 for (cursor
= DECL_ARGUMENTS (fndecl
);
18565 cursor
!= NULL_TREE
;
18566 cursor
= TREE_CHAIN (cursor
))
18567 if (!is_handled_procedure_type (TREE_TYPE (cursor
)))
18570 /* Match only "expr" in: RETURN_EXPR (MODIFY_EXPR (RESULT_DECL, expr)). */
18571 if (TREE_CODE (tree_body
) != RETURN_EXPR
)
18573 tree_body
= TREE_OPERAND (tree_body
, 0);
18574 if (TREE_CODE (tree_body
) != MODIFY_EXPR
18575 || TREE_OPERAND (tree_body
, 0) != DECL_RESULT (fndecl
))
18577 tree_body
= TREE_OPERAND (tree_body
, 1);
18579 /* Try to translate the body expression itself. Note that this will probably
18580 cause an infinite recursion if its call graph has a cycle. This is very
18581 unlikely for size functions, however, so don't bother with such things at
18583 dpi
.fndecl
= fndecl
;
18584 dpi
.args_count
= list_length (DECL_ARGUMENTS (fndecl
));
18585 loc_body
= loc_descriptor_from_tree (tree_body
, 0, &ctx
);
18589 /* After evaluating all operands in "loc_body", we should still have on the
18590 stack all arguments plus the desired function result (top of the stack).
18591 Generate code in order to keep only the result in our stack frame. */
18593 for (i
= 0; i
< dpi
.args_count
; ++i
)
18595 dw_loc_descr_ref op_couple
= new_loc_descr (DW_OP_swap
, 0, 0);
18596 op_couple
->dw_loc_next
= new_loc_descr (DW_OP_drop
, 0, 0);
18597 op_couple
->dw_loc_next
->dw_loc_next
= epilogue
;
18598 epilogue
= op_couple
;
18600 add_loc_descr (&loc_body
, epilogue
);
18601 if (!resolve_args_picking (loc_body
, dpi
.args_count
, &dpi
))
18604 /* Trailing nops from loc_descriptor_from_tree (if any) cannot be removed
18605 because they are considered useful. Now there is an epilogue, they are
18606 not anymore, so give it another try. */
18607 loc_descr_without_nops (loc_body
);
18609 /* fndecl may be used both as a regular DW_TAG_subprogram DIE and as
18610 a DW_TAG_dwarf_procedure, so we may have a conflict, here. It's unlikely,
18611 though, given that size functions do not come from source, so they should
18612 not have a dedicated DW_TAG_subprogram DIE. */
18614 = new_dwarf_proc_die (loc_body
, fndecl
,
18615 get_context_die (DECL_CONTEXT (fndecl
)));
18617 /* The called DWARF procedure consumes one stack slot per argument and
18618 returns one stack slot. */
18619 dwarf_proc_stack_usage_map
->put (dwarf_proc_die
, 1 - dpi
.args_count
);
18621 return dwarf_proc_die
;
18624 /* Helper function for loc_list_from_tree. Perform OP binary op,
18625 but after converting arguments to type_die, afterwards convert
18626 back to unsigned. */
18628 static dw_loc_list_ref
18629 typed_binop_from_tree (enum dwarf_location_atom op
, tree loc
,
18630 dw_die_ref type_die
, scalar_int_mode mode
,
18631 struct loc_descr_context
*context
)
18633 dw_loc_list_ref op0
, op1
;
18634 dw_loc_descr_ref cvt
, binop
;
18636 if (type_die
== NULL
)
18639 op0
= loc_list_from_tree (TREE_OPERAND (loc
, 0), 0, context
);
18640 op1
= loc_list_from_tree (TREE_OPERAND (loc
, 1), 0, context
);
18641 if (op0
== NULL
|| op1
== NULL
)
18644 cvt
= new_loc_descr (dwarf_OP (DW_OP_convert
), 0, 0);
18645 cvt
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
18646 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.die
= type_die
;
18647 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
18648 add_loc_descr_to_each (op0
, cvt
);
18650 cvt
= new_loc_descr (dwarf_OP (DW_OP_convert
), 0, 0);
18651 cvt
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
18652 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.die
= type_die
;
18653 cvt
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
18654 add_loc_descr_to_each (op1
, cvt
);
18656 add_loc_list (&op0
, op1
);
18660 binop
= new_loc_descr (op
, 0, 0);
18661 convert_descriptor_to_mode (mode
, binop
);
18662 add_loc_descr_to_each (op0
, binop
);
18667 /* Generate Dwarf location list representing LOC.
18668 If WANT_ADDRESS is false, expression computing LOC will be computed
18669 If WANT_ADDRESS is 1, expression computing address of LOC will be returned
18670 if WANT_ADDRESS is 2, expression computing address useable in location
18671 will be returned (i.e. DW_OP_reg can be used
18672 to refer to register values).
18674 CONTEXT provides information to customize the location descriptions
18675 generation. Its context_type field specifies what type is implicitly
18676 referenced by DW_OP_push_object_address. If it is NULL_TREE, this operation
18677 will not be generated.
18679 Its DPI field determines whether we are generating a DWARF expression for a
18680 DWARF procedure, so PARM_DECL references are processed specifically.
18682 If CONTEXT is NULL, the behavior is the same as if context_type, base_decl
18683 and dpi fields were null. */
18685 static dw_loc_list_ref
18686 loc_list_from_tree_1 (tree loc
, int want_address
,
18687 struct loc_descr_context
*context
)
18689 dw_loc_descr_ref ret
= NULL
, ret1
= NULL
;
18690 dw_loc_list_ref list_ret
= NULL
, list_ret1
= NULL
;
18691 int have_address
= 0;
18692 enum dwarf_location_atom op
;
18694 /* ??? Most of the time we do not take proper care for sign/zero
18695 extending the values properly. Hopefully this won't be a real
18698 if (context
!= NULL
18699 && context
->base_decl
== loc
18700 && want_address
== 0)
18702 if (dwarf_version
>= 3 || !dwarf_strict
)
18703 return new_loc_list (new_loc_descr (DW_OP_push_object_address
, 0, 0),
18704 NULL
, 0, NULL
, 0, NULL
);
18709 switch (TREE_CODE (loc
))
18712 expansion_failed (loc
, NULL_RTX
, "ERROR_MARK");
18715 case PLACEHOLDER_EXPR
:
18716 /* This case involves extracting fields from an object to determine the
18717 position of other fields. It is supposed to appear only as the first
18718 operand of COMPONENT_REF nodes and to reference precisely the type
18719 that the context allows or its enclosing type. */
18720 if (context
!= NULL
18721 && (TREE_TYPE (loc
) == context
->context_type
18722 || TREE_TYPE (loc
) == TYPE_CONTEXT (context
->context_type
))
18723 && want_address
>= 1)
18725 if (dwarf_version
>= 3 || !dwarf_strict
)
18727 ret
= new_loc_descr (DW_OP_push_object_address
, 0, 0);
18734 /* For DW_TAG_generic_subrange attributes, PLACEHOLDER_EXPR stands for
18735 the single argument passed by consumer. */
18736 else if (context
!= NULL
18737 && context
->placeholder_arg
18738 && INTEGRAL_TYPE_P (TREE_TYPE (loc
))
18739 && want_address
== 0)
18741 ret
= new_loc_descr (DW_OP_pick
, 0, 0);
18742 ret
->frame_offset_rel
= 1;
18743 context
->placeholder_seen
= true;
18747 expansion_failed (loc
, NULL_RTX
,
18748 "PLACEHOLDER_EXPR for an unexpected type");
18753 tree callee
= get_callee_fndecl (loc
);
18754 dw_die_ref dwarf_proc
;
18757 && is_handled_procedure_type (TREE_TYPE (TREE_TYPE (callee
)))
18758 && (dwarf_proc
= function_to_dwarf_procedure (callee
)))
18760 /* DWARF procedures are used for size functions, which are built
18761 when size expressions contain conditional constructs, so we
18762 request strict preservation of signedness for comparisons. */
18763 bool old_strict_signedness
;
18766 old_strict_signedness
= context
->strict_signedness
;
18767 context
->strict_signedness
= true;
18770 /* Evaluate arguments right-to-left so that the first argument
18771 will be the top-most one on the stack. */
18772 for (int i
= call_expr_nargs (loc
) - 1; i
>= 0; --i
)
18774 tree arg
= CALL_EXPR_ARG (loc
, i
);
18775 ret1
= loc_descriptor_from_tree (arg
, 0, context
);
18778 expansion_failed (arg
, NULL_RTX
, "CALL_EXPR argument");
18781 add_loc_descr (&ret
, ret1
);
18784 ret1
= new_loc_descr (DW_OP_call4
, 0, 0);
18785 ret1
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
18786 ret1
->dw_loc_oprnd1
.v
.val_die_ref
.die
= dwarf_proc
;
18787 ret1
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
18788 add_loc_descr (&ret
, ret1
);
18790 context
->strict_signedness
= old_strict_signedness
;
18793 expansion_failed (loc
, NULL_RTX
, "CALL_EXPR target");
18797 case PREINCREMENT_EXPR
:
18798 case PREDECREMENT_EXPR
:
18799 case POSTINCREMENT_EXPR
:
18800 case POSTDECREMENT_EXPR
:
18801 expansion_failed (loc
, NULL_RTX
, "PRE/POST INDCREMENT/DECREMENT");
18802 /* There are no opcodes for these operations. */
18806 /* If we already want an address, see if there is INDIRECT_REF inside
18807 e.g. for &this->field. */
18810 list_ret
= loc_list_for_address_of_addr_expr_of_indirect_ref
18811 (loc
, want_address
== 2, context
);
18814 else if (decl_address_ip_invariant_p (TREE_OPERAND (loc
, 0))
18815 && (ret
= cst_pool_loc_descr (loc
)))
18818 /* Otherwise, process the argument and look for the address. */
18819 if (!list_ret
&& !ret
)
18820 list_ret
= loc_list_from_tree_1 (TREE_OPERAND (loc
, 0), 1, context
);
18824 expansion_failed (loc
, NULL_RTX
, "need address of ADDR_EXPR");
18830 if (DECL_THREAD_LOCAL_P (loc
))
18833 enum dwarf_location_atom tls_op
;
18834 enum dtprel_bool dtprel
= dtprel_false
;
18836 if (targetm
.have_tls
)
18838 /* If this is not defined, we have no way to emit the
18840 if (!targetm
.asm_out
.output_dwarf_dtprel
)
18843 /* The way DW_OP_GNU_push_tls_address is specified, we
18844 can only look up addresses of objects in the current
18845 module. We used DW_OP_addr as first op, but that's
18846 wrong, because DW_OP_addr is relocated by the debug
18847 info consumer, while DW_OP_GNU_push_tls_address
18848 operand shouldn't be. */
18849 if (DECL_EXTERNAL (loc
) && !targetm
.binds_local_p (loc
))
18851 dtprel
= dtprel_true
;
18852 /* We check for DWARF 5 here because gdb did not implement
18853 DW_OP_form_tls_address until after 7.12. */
18854 tls_op
= (dwarf_version
>= 5 ? DW_OP_form_tls_address
18855 : DW_OP_GNU_push_tls_address
);
18859 if (!targetm
.emutls
.debug_form_tls_address
18860 || !(dwarf_version
>= 3 || !dwarf_strict
))
18862 /* We stuffed the control variable into the DECL_VALUE_EXPR
18863 to signal (via DECL_HAS_VALUE_EXPR_P) that the decl should
18864 no longer appear in gimple code. We used the control
18865 variable in specific so that we could pick it up here. */
18866 loc
= DECL_VALUE_EXPR (loc
);
18867 tls_op
= DW_OP_form_tls_address
;
18870 rtl
= rtl_for_decl_location (loc
);
18871 if (rtl
== NULL_RTX
)
18876 rtl
= XEXP (rtl
, 0);
18877 if (! CONSTANT_P (rtl
))
18880 ret
= new_addr_loc_descr (rtl
, dtprel
);
18881 ret1
= new_loc_descr (tls_op
, 0, 0);
18882 add_loc_descr (&ret
, ret1
);
18890 if (context
!= NULL
&& context
->dpi
!= NULL
18891 && DECL_CONTEXT (loc
) == context
->dpi
->fndecl
)
18893 /* We are generating code for a DWARF procedure and we want to access
18894 one of its arguments: find the appropriate argument offset and let
18895 the resolve_args_picking pass compute the offset that complies
18896 with the stack frame size. */
18900 for (cursor
= DECL_ARGUMENTS (context
->dpi
->fndecl
);
18901 cursor
!= NULL_TREE
&& cursor
!= loc
;
18902 cursor
= TREE_CHAIN (cursor
), ++i
)
18904 /* If we are translating a DWARF procedure, all referenced parameters
18905 must belong to the current function. */
18906 gcc_assert (cursor
!= NULL_TREE
);
18908 ret
= new_loc_descr (DW_OP_pick
, i
, 0);
18909 ret
->frame_offset_rel
= 1;
18915 if (DECL_HAS_VALUE_EXPR_P (loc
))
18917 tree value_expr
= DECL_VALUE_EXPR (loc
);
18919 /* Non-local frame structures are DECL_IGNORED_P variables so we need
18920 to wait until they get an RTX in order to reference them. */
18922 && TREE_CODE (value_expr
) == COMPONENT_REF
18923 && VAR_P (TREE_OPERAND (value_expr
, 0))
18924 && DECL_NONLOCAL_FRAME (TREE_OPERAND (value_expr
, 0)))
18927 return loc_list_from_tree_1 (value_expr
, want_address
, context
);
18932 case FUNCTION_DECL
:
18935 var_loc_list
*loc_list
= lookup_decl_loc (loc
);
18937 if (loc_list
&& loc_list
->first
)
18939 list_ret
= dw_loc_list (loc_list
, loc
, want_address
);
18940 have_address
= want_address
!= 0;
18943 rtl
= rtl_for_decl_location (loc
);
18944 if (rtl
== NULL_RTX
)
18946 if (TREE_CODE (loc
) != FUNCTION_DECL
18948 && want_address
!= 1
18949 && ! DECL_IGNORED_P (loc
)
18950 && (INTEGRAL_TYPE_P (TREE_TYPE (loc
))
18951 || POINTER_TYPE_P (TREE_TYPE (loc
)))
18952 && (GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (TREE_TYPE (loc
)))
18953 <= DWARF2_ADDR_SIZE
))
18955 dw_die_ref ref
= lookup_decl_die (loc
);
18958 ret
= new_loc_descr (DW_OP_GNU_variable_value
, 0, 0);
18959 ret
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
18960 ret
->dw_loc_oprnd1
.v
.val_die_ref
.die
= ref
;
18961 ret
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
18963 else if (current_function_decl
18964 && DECL_CONTEXT (loc
) == current_function_decl
)
18966 ret
= new_loc_descr (DW_OP_GNU_variable_value
, 0, 0);
18967 ret
->dw_loc_oprnd1
.val_class
= dw_val_class_decl_ref
;
18968 ret
->dw_loc_oprnd1
.v
.val_decl_ref
= loc
;
18972 expansion_failed (loc
, NULL_RTX
, "DECL has no RTL");
18975 else if (CONST_INT_P (rtl
))
18977 HOST_WIDE_INT val
= INTVAL (rtl
);
18978 if (TYPE_UNSIGNED (TREE_TYPE (loc
)))
18979 val
&= GET_MODE_MASK (DECL_MODE (loc
));
18980 ret
= int_loc_descriptor (val
);
18982 else if (GET_CODE (rtl
) == CONST_STRING
)
18984 expansion_failed (loc
, NULL_RTX
, "CONST_STRING");
18987 else if (CONSTANT_P (rtl
) && const_ok_for_output (rtl
))
18988 ret
= new_addr_loc_descr (rtl
, dtprel_false
);
18991 machine_mode mode
, mem_mode
;
18993 /* Certain constructs can only be represented at top-level. */
18994 if (want_address
== 2)
18996 ret
= loc_descriptor (rtl
, VOIDmode
,
18997 VAR_INIT_STATUS_INITIALIZED
);
19002 mode
= GET_MODE (rtl
);
19003 mem_mode
= VOIDmode
;
19007 mode
= get_address_mode (rtl
);
19008 rtl
= XEXP (rtl
, 0);
19011 ret
= mem_loc_descriptor (rtl
, mode
, mem_mode
,
19012 VAR_INIT_STATUS_INITIALIZED
);
19015 expansion_failed (loc
, rtl
,
19016 "failed to produce loc descriptor for rtl");
19022 if (!integer_zerop (TREE_OPERAND (loc
, 1)))
19029 list_ret
= loc_list_from_tree_1 (TREE_OPERAND (loc
, 0), 0, context
);
19033 case TARGET_MEM_REF
:
19035 case DEBUG_EXPR_DECL
:
19038 case COMPOUND_EXPR
:
19039 return loc_list_from_tree_1 (TREE_OPERAND (loc
, 1), want_address
,
19043 case VIEW_CONVERT_EXPR
:
19046 case NON_LVALUE_EXPR
:
19047 return loc_list_from_tree_1 (TREE_OPERAND (loc
, 0), want_address
,
19050 case COMPONENT_REF
:
19051 case BIT_FIELD_REF
:
19053 case ARRAY_RANGE_REF
:
19054 case REALPART_EXPR
:
19055 case IMAGPART_EXPR
:
19058 poly_int64 bitsize
, bitpos
, bytepos
;
19060 int unsignedp
, reversep
, volatilep
= 0;
19062 obj
= get_inner_reference (loc
, &bitsize
, &bitpos
, &offset
, &mode
,
19063 &unsignedp
, &reversep
, &volatilep
);
19065 gcc_assert (obj
!= loc
);
19067 list_ret
= loc_list_from_tree_1 (obj
,
19069 && known_eq (bitpos
, 0)
19070 && !offset
? 2 : 1,
19072 /* TODO: We can extract value of the small expression via shifting even
19073 for nonzero bitpos. */
19076 if (!multiple_p (bitpos
, BITS_PER_UNIT
, &bytepos
)
19077 || !multiple_p (bitsize
, BITS_PER_UNIT
))
19079 expansion_failed (loc
, NULL_RTX
,
19080 "bitfield access");
19084 if (offset
!= NULL_TREE
)
19086 /* Variable offset. */
19087 list_ret1
= loc_list_from_tree_1 (offset
, 0, context
);
19088 if (list_ret1
== 0)
19090 add_loc_list (&list_ret
, list_ret1
);
19093 add_loc_descr_to_each (list_ret
, new_loc_descr (DW_OP_plus
, 0, 0));
19096 HOST_WIDE_INT value
;
19097 if (bytepos
.is_constant (&value
) && value
> 0)
19098 add_loc_descr_to_each (list_ret
, new_loc_descr (DW_OP_plus_uconst
,
19100 else if (maybe_ne (bytepos
, 0))
19101 loc_list_plus_const (list_ret
, bytepos
);
19108 if ((want_address
|| !tree_fits_shwi_p (loc
))
19109 && (ret
= cst_pool_loc_descr (loc
)))
19111 else if (want_address
== 2
19112 && tree_fits_shwi_p (loc
)
19113 && (ret
= address_of_int_loc_descriptor
19114 (int_size_in_bytes (TREE_TYPE (loc
)),
19115 tree_to_shwi (loc
))))
19117 else if (tree_fits_shwi_p (loc
))
19118 ret
= int_loc_descriptor (tree_to_shwi (loc
));
19119 else if (tree_fits_uhwi_p (loc
))
19120 ret
= uint_loc_descriptor (tree_to_uhwi (loc
));
19123 expansion_failed (loc
, NULL_RTX
,
19124 "Integer operand is not host integer");
19133 expansion_failed (loc
, NULL_RTX
,
19134 "constant address with a runtime component");
19138 if (!poly_int_tree_p (loc
, &value
))
19140 expansion_failed (loc
, NULL_RTX
, "constant too big");
19143 ret
= int_loc_descriptor (value
);
19151 if ((ret
= cst_pool_loc_descr (loc
)))
19153 else if (TREE_CODE (loc
) == CONSTRUCTOR
)
19155 tree type
= TREE_TYPE (loc
);
19156 unsigned HOST_WIDE_INT size
= int_size_in_bytes (type
);
19157 unsigned HOST_WIDE_INT offset
= 0;
19158 unsigned HOST_WIDE_INT cnt
;
19159 constructor_elt
*ce
;
19161 if (TREE_CODE (type
) == RECORD_TYPE
)
19163 /* This is very limited, but it's enough to output
19164 pointers to member functions, as long as the
19165 referenced function is defined in the current
19166 translation unit. */
19167 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (loc
), cnt
, ce
)
19169 tree val
= ce
->value
;
19171 tree field
= ce
->index
;
19176 if (!field
|| DECL_BIT_FIELD (field
))
19178 expansion_failed (loc
, NULL_RTX
,
19179 "bitfield in record type constructor");
19180 size
= offset
= (unsigned HOST_WIDE_INT
)-1;
19185 HOST_WIDE_INT fieldsize
= tree_to_shwi (DECL_SIZE_UNIT (field
));
19186 unsigned HOST_WIDE_INT pos
= int_byte_position (field
);
19187 gcc_assert (pos
+ fieldsize
<= size
);
19190 expansion_failed (loc
, NULL_RTX
,
19191 "out-of-order fields in record constructor");
19192 size
= offset
= (unsigned HOST_WIDE_INT
)-1;
19198 ret1
= new_loc_descr (DW_OP_piece
, pos
- offset
, 0);
19199 add_loc_descr (&ret
, ret1
);
19202 if (val
&& fieldsize
!= 0)
19204 ret1
= loc_descriptor_from_tree (val
, want_address
, context
);
19207 expansion_failed (loc
, NULL_RTX
,
19208 "unsupported expression in field");
19209 size
= offset
= (unsigned HOST_WIDE_INT
)-1;
19213 add_loc_descr (&ret
, ret1
);
19217 ret1
= new_loc_descr (DW_OP_piece
, fieldsize
, 0);
19218 add_loc_descr (&ret
, ret1
);
19219 offset
= pos
+ fieldsize
;
19223 if (offset
!= size
)
19225 ret1
= new_loc_descr (DW_OP_piece
, size
- offset
, 0);
19226 add_loc_descr (&ret
, ret1
);
19230 have_address
= !!want_address
;
19233 expansion_failed (loc
, NULL_RTX
,
19234 "constructor of non-record type");
19237 /* We can construct small constants here using int_loc_descriptor. */
19238 expansion_failed (loc
, NULL_RTX
,
19239 "constructor or constant not in constant pool");
19242 case TRUTH_AND_EXPR
:
19243 case TRUTH_ANDIF_EXPR
:
19248 case TRUTH_XOR_EXPR
:
19253 case TRUTH_OR_EXPR
:
19254 case TRUTH_ORIF_EXPR
:
19259 case EXACT_DIV_EXPR
:
19260 case FLOOR_DIV_EXPR
:
19261 case TRUNC_DIV_EXPR
:
19262 /* Turn a divide by a power of 2 into a shift when possible. */
19263 if (TYPE_UNSIGNED (TREE_TYPE (loc
))
19264 && tree_fits_uhwi_p (TREE_OPERAND (loc
, 1)))
19266 const int log2
= exact_log2 (tree_to_uhwi (TREE_OPERAND (loc
, 1)));
19270 = loc_list_from_tree_1 (TREE_OPERAND (loc
, 0), 0, context
);
19274 add_loc_descr_to_each (list_ret
, uint_loc_descriptor (log2
));
19275 add_loc_descr_to_each (list_ret
,
19276 new_loc_descr (DW_OP_shr
, 0, 0));
19283 case CEIL_DIV_EXPR
:
19284 case ROUND_DIV_EXPR
:
19285 if (TYPE_UNSIGNED (TREE_TYPE (loc
)))
19287 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (loc
));
19288 scalar_int_mode int_mode
;
19290 if ((dwarf_strict
&& dwarf_version
< 5)
19291 || !is_a
<scalar_int_mode
> (mode
, &int_mode
))
19294 /* We can use a signed divide if the sign bit is not set. */
19295 if (GET_MODE_SIZE (int_mode
) < DWARF2_ADDR_SIZE
)
19301 list_ret
= typed_binop_from_tree (DW_OP_div
, loc
,
19302 base_type_for_mode (int_mode
, 1),
19303 int_mode
, context
);
19313 case FLOOR_MOD_EXPR
:
19314 case CEIL_MOD_EXPR
:
19315 case ROUND_MOD_EXPR
:
19316 case TRUNC_MOD_EXPR
:
19317 if (TYPE_UNSIGNED (TREE_TYPE (loc
)))
19322 list_ret
= loc_list_from_tree_1 (TREE_OPERAND (loc
, 0), 0, context
);
19323 list_ret1
= loc_list_from_tree_1 (TREE_OPERAND (loc
, 1), 0, context
);
19324 if (list_ret
== 0 || list_ret1
== 0)
19327 add_loc_list (&list_ret
, list_ret1
);
19330 add_loc_descr_to_each (list_ret
, new_loc_descr (DW_OP_over
, 0, 0));
19331 add_loc_descr_to_each (list_ret
, new_loc_descr (DW_OP_over
, 0, 0));
19332 add_loc_descr_to_each (list_ret
, new_loc_descr (DW_OP_div
, 0, 0));
19333 add_loc_descr_to_each (list_ret
, new_loc_descr (DW_OP_mul
, 0, 0));
19334 add_loc_descr_to_each (list_ret
, new_loc_descr (DW_OP_minus
, 0, 0));
19346 op
= (TYPE_UNSIGNED (TREE_TYPE (loc
)) ? DW_OP_shr
: DW_OP_shra
);
19349 case POINTER_PLUS_EXPR
:
19352 if (tree_fits_shwi_p (TREE_OPERAND (loc
, 1)))
19354 /* Big unsigned numbers can fit in HOST_WIDE_INT but it may be
19355 smarter to encode their opposite. The DW_OP_plus_uconst operation
19356 takes 1 + X bytes, X being the size of the ULEB128 addend. On the
19357 other hand, a "<push literal>; DW_OP_minus" pattern takes 1 + Y
19358 bytes, Y being the size of the operation that pushes the opposite
19359 of the addend. So let's choose the smallest representation. */
19360 const tree tree_addend
= TREE_OPERAND (loc
, 1);
19361 offset_int wi_addend
;
19362 HOST_WIDE_INT shwi_addend
;
19363 dw_loc_descr_ref loc_naddend
;
19365 list_ret
= loc_list_from_tree_1 (TREE_OPERAND (loc
, 0), 0, context
);
19369 /* Try to get the literal to push. It is the opposite of the addend,
19370 so as we rely on wrapping during DWARF evaluation, first decode
19371 the literal as a "DWARF-sized" signed number. */
19372 wi_addend
= wi::to_offset (tree_addend
);
19373 wi_addend
= wi::sext (wi_addend
, DWARF2_ADDR_SIZE
* 8);
19374 shwi_addend
= wi_addend
.to_shwi ();
19375 loc_naddend
= (shwi_addend
!= INTTYPE_MINIMUM (HOST_WIDE_INT
))
19376 ? int_loc_descriptor (-shwi_addend
)
19379 if (loc_naddend
!= NULL
19380 && ((unsigned) size_of_uleb128 (shwi_addend
)
19381 > size_of_loc_descr (loc_naddend
)))
19383 add_loc_descr_to_each (list_ret
, loc_naddend
);
19384 add_loc_descr_to_each (list_ret
,
19385 new_loc_descr (DW_OP_minus
, 0, 0));
19389 for (dw_loc_descr_ref loc_cur
= loc_naddend
; loc_cur
!= NULL
; )
19391 loc_naddend
= loc_cur
;
19392 loc_cur
= loc_cur
->dw_loc_next
;
19393 ggc_free (loc_naddend
);
19395 loc_list_plus_const (list_ret
, wi_addend
.to_shwi ());
19405 goto do_comp_binop
;
19409 goto do_comp_binop
;
19413 goto do_comp_binop
;
19417 goto do_comp_binop
;
19420 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc
, 0))))
19422 list_ret
= loc_list_from_tree (TREE_OPERAND (loc
, 0), 0, context
);
19423 list_ret1
= loc_list_from_tree (TREE_OPERAND (loc
, 1), 0, context
);
19424 list_ret
= loc_list_from_uint_comparison (list_ret
, list_ret1
,
19440 list_ret
= loc_list_from_tree_1 (TREE_OPERAND (loc
, 0), 0, context
);
19441 list_ret1
= loc_list_from_tree_1 (TREE_OPERAND (loc
, 1), 0, context
);
19442 if (list_ret
== 0 || list_ret1
== 0)
19445 add_loc_list (&list_ret
, list_ret1
);
19448 add_loc_descr_to_each (list_ret
, new_loc_descr (op
, 0, 0));
19451 case TRUTH_NOT_EXPR
:
19465 list_ret
= loc_list_from_tree_1 (TREE_OPERAND (loc
, 0), 0, context
);
19469 add_loc_descr_to_each (list_ret
, new_loc_descr (op
, 0, 0));
19475 const enum tree_code code
=
19476 TREE_CODE (loc
) == MIN_EXPR
? GT_EXPR
: LT_EXPR
;
19478 loc
= build3 (COND_EXPR
, TREE_TYPE (loc
),
19479 build2 (code
, integer_type_node
,
19480 TREE_OPERAND (loc
, 0), TREE_OPERAND (loc
, 1)),
19481 TREE_OPERAND (loc
, 1), TREE_OPERAND (loc
, 0));
19488 dw_loc_descr_ref lhs
19489 = loc_descriptor_from_tree (TREE_OPERAND (loc
, 1), 0, context
);
19490 dw_loc_list_ref rhs
19491 = loc_list_from_tree_1 (TREE_OPERAND (loc
, 2), 0, context
);
19492 dw_loc_descr_ref bra_node
, jump_node
, tmp
;
19494 /* DW_OP_bra is branch-on-nonzero so avoid doing useless work. */
19495 if (TREE_CODE (TREE_OPERAND (loc
, 0)) == NE_EXPR
19496 && integer_zerop (TREE_OPERAND (TREE_OPERAND (loc
, 0), 1)))
19498 = loc_list_from_tree_1 (TREE_OPERAND (TREE_OPERAND (loc
, 0), 0),
19501 list_ret
= loc_list_from_tree_1 (TREE_OPERAND (loc
, 0), 0, context
);
19502 if (list_ret
== 0 || lhs
== 0 || rhs
== 0)
19505 bra_node
= new_loc_descr (DW_OP_bra
, 0, 0);
19506 add_loc_descr_to_each (list_ret
, bra_node
);
19508 add_loc_list (&list_ret
, rhs
);
19509 jump_node
= new_loc_descr (DW_OP_skip
, 0, 0);
19510 add_loc_descr_to_each (list_ret
, jump_node
);
19512 add_loc_descr_to_each (list_ret
, lhs
);
19513 bra_node
->dw_loc_oprnd1
.val_class
= dw_val_class_loc
;
19514 bra_node
->dw_loc_oprnd1
.v
.val_loc
= lhs
;
19516 /* ??? Need a node to point the skip at. Use a nop. */
19517 tmp
= new_loc_descr (DW_OP_nop
, 0, 0);
19518 add_loc_descr_to_each (list_ret
, tmp
);
19519 jump_node
->dw_loc_oprnd1
.val_class
= dw_val_class_loc
;
19520 jump_node
->dw_loc_oprnd1
.v
.val_loc
= tmp
;
19524 case FIX_TRUNC_EXPR
:
19527 case COMPOUND_LITERAL_EXPR
:
19528 return loc_list_from_tree_1 (COMPOUND_LITERAL_EXPR_DECL (loc
),
19532 /* Leave front-end specific codes as simply unknown. This comes
19533 up, for instance, with the C STMT_EXPR. */
19534 if ((unsigned int) TREE_CODE (loc
)
19535 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE
)
19537 expansion_failed (loc
, NULL_RTX
,
19538 "language specific tree node");
19542 /* Otherwise this is a generic code; we should just lists all of
19543 these explicitly. We forgot one. */
19545 gcc_unreachable ();
19547 /* In a release build, we want to degrade gracefully: better to
19548 generate incomplete debugging information than to crash. */
19552 if (!ret
&& !list_ret
)
19555 if (want_address
== 2 && !have_address
19556 && (dwarf_version
>= 4 || !dwarf_strict
))
19558 if (int_size_in_bytes (TREE_TYPE (loc
)) > DWARF2_ADDR_SIZE
)
19560 expansion_failed (loc
, NULL_RTX
,
19561 "DWARF address size mismatch");
19565 add_loc_descr (&ret
, new_loc_descr (DW_OP_stack_value
, 0, 0));
19567 add_loc_descr_to_each (list_ret
,
19568 new_loc_descr (DW_OP_stack_value
, 0, 0));
19571 /* Show if we can't fill the request for an address. */
19572 if (want_address
&& !have_address
)
19574 expansion_failed (loc
, NULL_RTX
,
19575 "Want address and only have value");
19579 gcc_assert (!ret
|| !list_ret
);
19581 /* If we've got an address and don't want one, dereference. */
19582 if (!want_address
&& have_address
)
19584 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (loc
));
19585 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (loc
));
19586 scalar_int_mode int_mode
;
19587 dw_die_ref type_die
;
19588 dw_loc_descr_ref deref
;
19590 /* If the size is greater than DWARF2_ADDR_SIZE, bail out. */
19591 if (size
> DWARF2_ADDR_SIZE
|| size
== -1)
19593 expansion_failed (loc
, NULL_RTX
,
19594 "DWARF address size mismatch");
19598 /* If it is equal to DWARF2_ADDR_SIZE, extension does not matter. */
19599 else if (size
== DWARF2_ADDR_SIZE
)
19600 deref
= new_loc_descr (DW_OP_deref
, size
, 0);
19602 /* If it is lower than DWARF2_ADDR_SIZE, DW_OP_deref_size will zero-
19603 extend the value, which is really OK for unsigned types only. */
19604 else if (!(context
&& context
->strict_signedness
)
19605 || TYPE_UNSIGNED (TREE_TYPE (loc
))
19606 || (dwarf_strict
&& dwarf_version
< 5)
19607 || !is_a
<scalar_int_mode
> (mode
, &int_mode
)
19608 || !(type_die
= base_type_for_mode (mode
, false)))
19609 deref
= new_loc_descr (DW_OP_deref_size
, size
, 0);
19611 /* Use DW_OP_deref_type for signed integral types if possible, but
19612 convert back to the generic type to avoid type mismatches later. */
19615 deref
= new_loc_descr (dwarf_OP (DW_OP_deref_type
), size
, 0);
19616 deref
->dw_loc_oprnd2
.val_class
= dw_val_class_die_ref
;
19617 deref
->dw_loc_oprnd2
.v
.val_die_ref
.die
= type_die
;
19618 deref
->dw_loc_oprnd2
.v
.val_die_ref
.external
= 0;
19619 add_loc_descr (&deref
,
19620 new_loc_descr (dwarf_OP (DW_OP_convert
), 0, 0));
19624 add_loc_descr (&ret
, deref
);
19626 add_loc_descr_to_each (list_ret
, deref
);
19630 list_ret
= new_loc_list (ret
, NULL
, 0, NULL
, 0, NULL
);
19635 /* Likewise, but strip useless DW_OP_nop operations in the resulting
19638 static dw_loc_list_ref
19639 loc_list_from_tree (tree loc
, int want_address
,
19640 struct loc_descr_context
*context
)
19642 dw_loc_list_ref result
= loc_list_from_tree_1 (loc
, want_address
, context
);
19644 for (dw_loc_list_ref loc_cur
= result
;
19645 loc_cur
!= NULL
; loc_cur
= loc_cur
->dw_loc_next
)
19646 loc_descr_without_nops (loc_cur
->expr
);
19650 /* Same as above but return only single location expression. */
19651 static dw_loc_descr_ref
19652 loc_descriptor_from_tree (tree loc
, int want_address
,
19653 struct loc_descr_context
*context
)
19655 dw_loc_list_ref ret
= loc_list_from_tree (loc
, want_address
, context
);
19658 if (ret
->dw_loc_next
)
19660 expansion_failed (loc
, NULL_RTX
,
19661 "Location list where only loc descriptor needed");
19667 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
19668 pointer to the declared type for the relevant field variable, or return
19669 `integer_type_node' if the given node turns out to be an
19670 ERROR_MARK node. */
19673 field_type (const_tree decl
)
19677 if (TREE_CODE (decl
) == ERROR_MARK
)
19678 return integer_type_node
;
19680 type
= DECL_BIT_FIELD_TYPE (decl
);
19681 if (type
== NULL_TREE
)
19682 type
= TREE_TYPE (decl
);
19687 /* Given a pointer to a tree node, return the alignment in bits for
19688 it, or else return BITS_PER_WORD if the node actually turns out to
19689 be an ERROR_MARK node. */
19691 static inline unsigned
19692 simple_type_align_in_bits (const_tree type
)
19694 return (TREE_CODE (type
) != ERROR_MARK
) ? TYPE_ALIGN (type
) : BITS_PER_WORD
;
19697 static inline unsigned
19698 simple_decl_align_in_bits (const_tree decl
)
19700 return (TREE_CODE (decl
) != ERROR_MARK
) ? DECL_ALIGN (decl
) : BITS_PER_WORD
;
19703 /* Return the result of rounding T up to ALIGN. */
19705 static inline offset_int
19706 round_up_to_align (const offset_int
&t
, unsigned int align
)
19708 return wi::udiv_trunc (t
+ align
- 1, align
) * align
;
19711 /* Helper structure for RECORD_TYPE processing. */
19714 /* Root RECORD_TYPE. It is needed to generate data member location
19715 descriptions in variable-length records (VLR), but also to cope with
19716 variants, which are composed of nested structures multiplexed with
19717 QUAL_UNION_TYPE nodes. Each time such a structure is passed to a
19718 function processing a FIELD_DECL, it is required to be non null. */
19721 /* When generating a variant part in a RECORD_TYPE (i.e. a nested
19722 QUAL_UNION_TYPE), this holds an expression that computes the offset for
19723 this variant part as part of the root record (in storage units). For
19724 regular records, it must be NULL_TREE. */
19725 tree variant_part_offset
;
19728 /* Given a pointer to a FIELD_DECL, compute the byte offset of the lowest
19729 addressed byte of the "containing object" for the given FIELD_DECL. If
19730 possible, return a native constant through CST_OFFSET (in which case NULL is
19731 returned); otherwise return a DWARF expression that computes the offset.
19733 Set *CST_OFFSET to 0 and return NULL if we are unable to determine what
19734 that offset is, either because the argument turns out to be a pointer to an
19735 ERROR_MARK node, or because the offset expression is too complex for us.
19737 CTX is required: see the comment for VLR_CONTEXT. */
19739 static dw_loc_descr_ref
19740 field_byte_offset (const_tree decl
, struct vlr_context
*ctx
,
19741 HOST_WIDE_INT
*cst_offset
)
19744 dw_loc_list_ref loc_result
;
19748 if (TREE_CODE (decl
) == ERROR_MARK
)
19751 gcc_assert (TREE_CODE (decl
) == FIELD_DECL
);
19753 /* We cannot handle variable bit offsets at the moment, so abort if it's the
19755 if (TREE_CODE (DECL_FIELD_BIT_OFFSET (decl
)) != INTEGER_CST
)
19758 /* We used to handle only constant offsets in all cases. Now, we handle
19759 properly dynamic byte offsets only when PCC bitfield type doesn't
19761 if (PCC_BITFIELD_TYPE_MATTERS
19762 && DECL_BIT_FIELD_TYPE (decl
)
19763 && TREE_CODE (DECL_FIELD_OFFSET (decl
)) == INTEGER_CST
)
19765 offset_int object_offset_in_bits
;
19766 offset_int object_offset_in_bytes
;
19767 offset_int bitpos_int
;
19769 tree field_size_tree
;
19770 offset_int deepest_bitpos
;
19771 offset_int field_size_in_bits
;
19772 unsigned int type_align_in_bits
;
19773 unsigned int decl_align_in_bits
;
19774 offset_int type_size_in_bits
;
19776 bitpos_int
= wi::to_offset (bit_position (decl
));
19777 type
= field_type (decl
);
19778 type_size_in_bits
= offset_int_type_size_in_bits (type
);
19779 type_align_in_bits
= simple_type_align_in_bits (type
);
19781 field_size_tree
= DECL_SIZE (decl
);
19783 /* The size could be unspecified if there was an error, or for
19784 a flexible array member. */
19785 if (!field_size_tree
)
19786 field_size_tree
= bitsize_zero_node
;
19788 /* If the size of the field is not constant, use the type size. */
19789 if (TREE_CODE (field_size_tree
) == INTEGER_CST
)
19790 field_size_in_bits
= wi::to_offset (field_size_tree
);
19792 field_size_in_bits
= type_size_in_bits
;
19794 decl_align_in_bits
= simple_decl_align_in_bits (decl
);
19796 /* The GCC front-end doesn't make any attempt to keep track of the
19797 starting bit offset (relative to the start of the containing
19798 structure type) of the hypothetical "containing object" for a
19799 bit-field. Thus, when computing the byte offset value for the
19800 start of the "containing object" of a bit-field, we must deduce
19801 this information on our own. This can be rather tricky to do in
19802 some cases. For example, handling the following structure type
19803 definition when compiling for an i386/i486 target (which only
19804 aligns long long's to 32-bit boundaries) can be very tricky:
19806 struct S { int field1; long long field2:31; };
19808 Fortunately, there is a simple rule-of-thumb which can be used
19809 in such cases. When compiling for an i386/i486, GCC will
19810 allocate 8 bytes for the structure shown above. It decides to
19811 do this based upon one simple rule for bit-field allocation.
19812 GCC allocates each "containing object" for each bit-field at
19813 the first (i.e. lowest addressed) legitimate alignment boundary
19814 (based upon the required minimum alignment for the declared
19815 type of the field) which it can possibly use, subject to the
19816 condition that there is still enough available space remaining
19817 in the containing object (when allocated at the selected point)
19818 to fully accommodate all of the bits of the bit-field itself.
19820 This simple rule makes it obvious why GCC allocates 8 bytes for
19821 each object of the structure type shown above. When looking
19822 for a place to allocate the "containing object" for `field2',
19823 the compiler simply tries to allocate a 64-bit "containing
19824 object" at each successive 32-bit boundary (starting at zero)
19825 until it finds a place to allocate that 64- bit field such that
19826 at least 31 contiguous (and previously unallocated) bits remain
19827 within that selected 64 bit field. (As it turns out, for the
19828 example above, the compiler finds it is OK to allocate the
19829 "containing object" 64-bit field at bit-offset zero within the
19832 Here we attempt to work backwards from the limited set of facts
19833 we're given, and we try to deduce from those facts, where GCC
19834 must have believed that the containing object started (within
19835 the structure type). The value we deduce is then used (by the
19836 callers of this routine) to generate DW_AT_location and
19837 DW_AT_bit_offset attributes for fields (both bit-fields and, in
19838 the case of DW_AT_location, regular fields as well). */
19840 /* Figure out the bit-distance from the start of the structure to
19841 the "deepest" bit of the bit-field. */
19842 deepest_bitpos
= bitpos_int
+ field_size_in_bits
;
19844 /* This is the tricky part. Use some fancy footwork to deduce
19845 where the lowest addressed bit of the containing object must
19847 object_offset_in_bits
= deepest_bitpos
- type_size_in_bits
;
19849 /* Round up to type_align by default. This works best for
19851 object_offset_in_bits
19852 = round_up_to_align (object_offset_in_bits
, type_align_in_bits
);
19854 if (wi::gtu_p (object_offset_in_bits
, bitpos_int
))
19856 object_offset_in_bits
= deepest_bitpos
- type_size_in_bits
;
19858 /* Round up to decl_align instead. */
19859 object_offset_in_bits
19860 = round_up_to_align (object_offset_in_bits
, decl_align_in_bits
);
19863 object_offset_in_bytes
19864 = wi::lrshift (object_offset_in_bits
, LOG2_BITS_PER_UNIT
);
19865 if (ctx
->variant_part_offset
== NULL_TREE
)
19867 *cst_offset
= object_offset_in_bytes
.to_shwi ();
19870 tree_result
= wide_int_to_tree (sizetype
, object_offset_in_bytes
);
19873 tree_result
= byte_position (decl
);
19875 if (ctx
->variant_part_offset
!= NULL_TREE
)
19876 tree_result
= fold_build2 (PLUS_EXPR
, TREE_TYPE (tree_result
),
19877 ctx
->variant_part_offset
, tree_result
);
19879 /* If the byte offset is a constant, it's simplier to handle a native
19880 constant rather than a DWARF expression. */
19881 if (TREE_CODE (tree_result
) == INTEGER_CST
)
19883 *cst_offset
= wi::to_offset (tree_result
).to_shwi ();
19887 struct loc_descr_context loc_ctx
= {
19888 ctx
->struct_type
, /* context_type */
19889 NULL_TREE
, /* base_decl */
19891 false, /* placeholder_arg */
19892 false, /* placeholder_seen */
19893 false /* strict_signedness */
19895 loc_result
= loc_list_from_tree (tree_result
, 0, &loc_ctx
);
19897 /* We want a DWARF expression: abort if we only have a location list with
19898 multiple elements. */
19899 if (!loc_result
|| !single_element_loc_list_p (loc_result
))
19902 return loc_result
->expr
;
19905 /* The following routines define various Dwarf attributes and any data
19906 associated with them. */
19908 /* Add a location description attribute value to a DIE.
19910 This emits location attributes suitable for whole variables and
19911 whole parameters. Note that the location attributes for struct fields are
19912 generated by the routine `data_member_location_attribute' below. */
19915 add_AT_location_description (dw_die_ref die
, enum dwarf_attribute attr_kind
,
19916 dw_loc_list_ref descr
)
19918 bool check_no_locviews
= true;
19921 if (single_element_loc_list_p (descr
))
19922 add_AT_loc (die
, attr_kind
, descr
->expr
);
19925 add_AT_loc_list (die
, attr_kind
, descr
);
19926 gcc_assert (descr
->ll_symbol
);
19927 if (attr_kind
== DW_AT_location
&& descr
->vl_symbol
19928 && dwarf2out_locviews_in_attribute ())
19930 add_AT_view_list (die
, DW_AT_GNU_locviews
);
19931 check_no_locviews
= false;
19935 if (check_no_locviews
)
19936 gcc_assert (!get_AT (die
, DW_AT_GNU_locviews
));
19939 /* Add DW_AT_accessibility attribute to DIE if needed. */
19942 add_accessibility_attribute (dw_die_ref die
, tree decl
)
19944 /* In DWARF3+ the default is DW_ACCESS_private only in DW_TAG_class_type
19945 children, otherwise the default is DW_ACCESS_public. In DWARF2
19946 the default has always been DW_ACCESS_public. */
19947 if (TREE_PROTECTED (decl
))
19948 add_AT_unsigned (die
, DW_AT_accessibility
, DW_ACCESS_protected
);
19949 else if (TREE_PRIVATE (decl
))
19951 if (dwarf_version
== 2
19952 || die
->die_parent
== NULL
19953 || die
->die_parent
->die_tag
!= DW_TAG_class_type
)
19954 add_AT_unsigned (die
, DW_AT_accessibility
, DW_ACCESS_private
);
19956 else if (dwarf_version
> 2
19958 && die
->die_parent
->die_tag
== DW_TAG_class_type
)
19959 add_AT_unsigned (die
, DW_AT_accessibility
, DW_ACCESS_public
);
19962 /* Attach the specialized form of location attribute used for data members of
19963 struct and union types. In the special case of a FIELD_DECL node which
19964 represents a bit-field, the "offset" part of this special location
19965 descriptor must indicate the distance in bytes from the lowest-addressed
19966 byte of the containing struct or union type to the lowest-addressed byte of
19967 the "containing object" for the bit-field. (See the `field_byte_offset'
19970 For any given bit-field, the "containing object" is a hypothetical object
19971 (of some integral or enum type) within which the given bit-field lives. The
19972 type of this hypothetical "containing object" is always the same as the
19973 declared type of the individual bit-field itself (for GCC anyway... the
19974 DWARF spec doesn't actually mandate this). Note that it is the size (in
19975 bytes) of the hypothetical "containing object" which will be given in the
19976 DW_AT_byte_size attribute for this bit-field. (See the
19977 `byte_size_attribute' function below.) It is also used when calculating the
19978 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
19981 CTX is required: see the comment for VLR_CONTEXT. */
19984 add_data_member_location_attribute (dw_die_ref die
,
19986 struct vlr_context
*ctx
)
19988 HOST_WIDE_INT offset
;
19989 dw_loc_descr_ref loc_descr
= 0;
19991 if (TREE_CODE (decl
) == TREE_BINFO
)
19993 /* We're working on the TAG_inheritance for a base class. */
19994 if (BINFO_VIRTUAL_P (decl
) && is_cxx ())
19996 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
19997 aren't at a fixed offset from all (sub)objects of the same
19998 type. We need to extract the appropriate offset from our
19999 vtable. The following dwarf expression means
20001 BaseAddr = ObAddr + *((*ObAddr) - Offset)
20003 This is specific to the V3 ABI, of course. */
20005 dw_loc_descr_ref tmp
;
20007 /* Make a copy of the object address. */
20008 tmp
= new_loc_descr (DW_OP_dup
, 0, 0);
20009 add_loc_descr (&loc_descr
, tmp
);
20011 /* Extract the vtable address. */
20012 tmp
= new_loc_descr (DW_OP_deref
, 0, 0);
20013 add_loc_descr (&loc_descr
, tmp
);
20015 /* Calculate the address of the offset. */
20016 offset
= tree_to_shwi (BINFO_VPTR_FIELD (decl
));
20017 gcc_assert (offset
< 0);
20019 tmp
= int_loc_descriptor (-offset
);
20020 add_loc_descr (&loc_descr
, tmp
);
20021 tmp
= new_loc_descr (DW_OP_minus
, 0, 0);
20022 add_loc_descr (&loc_descr
, tmp
);
20024 /* Extract the offset. */
20025 tmp
= new_loc_descr (DW_OP_deref
, 0, 0);
20026 add_loc_descr (&loc_descr
, tmp
);
20028 /* Add it to the object address. */
20029 tmp
= new_loc_descr (DW_OP_plus
, 0, 0);
20030 add_loc_descr (&loc_descr
, tmp
);
20033 offset
= tree_to_shwi (BINFO_OFFSET (decl
));
20037 loc_descr
= field_byte_offset (decl
, ctx
, &offset
);
20042 /* If loc_descr is available, then we know the offset is dynamic. */
20043 else if (gnat_encodings
== DWARF_GNAT_ENCODINGS_ALL
)
20049 /* Data member location evaluation starts with the base address on the
20050 stack. Compute the field offset and add it to this base address. */
20052 add_loc_descr (&loc_descr
, new_loc_descr (DW_OP_plus
, 0, 0));
20057 /* While DW_AT_data_bit_offset has been added already in DWARF4,
20058 e.g. GDB only added support to it in November 2016. For DWARF5
20059 we need newer debug info consumers anyway. We might change this
20060 to dwarf_version >= 4 once most consumers catched up. */
20061 if (dwarf_version
>= 5
20062 && TREE_CODE (decl
) == FIELD_DECL
20063 && DECL_BIT_FIELD_TYPE (decl
)
20064 && (ctx
->variant_part_offset
== NULL_TREE
20065 || TREE_CODE (ctx
->variant_part_offset
) == INTEGER_CST
))
20067 tree off
= bit_position (decl
);
20068 if (ctx
->variant_part_offset
)
20069 off
= bit_from_pos (ctx
->variant_part_offset
, off
);
20070 if (tree_fits_uhwi_p (off
) && get_AT (die
, DW_AT_bit_size
))
20072 remove_AT (die
, DW_AT_byte_size
);
20073 remove_AT (die
, DW_AT_bit_offset
);
20074 add_AT_unsigned (die
, DW_AT_data_bit_offset
, tree_to_uhwi (off
));
20078 if (dwarf_version
> 2)
20080 /* Don't need to output a location expression, just the constant. */
20082 add_AT_int (die
, DW_AT_data_member_location
, offset
);
20084 add_AT_unsigned (die
, DW_AT_data_member_location
, offset
);
20089 enum dwarf_location_atom op
;
20091 /* The DWARF2 standard says that we should assume that the structure
20092 address is already on the stack, so we can specify a structure
20093 field address by using DW_OP_plus_uconst. */
20094 op
= DW_OP_plus_uconst
;
20095 loc_descr
= new_loc_descr (op
, offset
, 0);
20099 add_AT_loc (die
, DW_AT_data_member_location
, loc_descr
);
20102 /* Writes integer values to dw_vec_const array. */
20105 insert_int (HOST_WIDE_INT val
, unsigned int size
, unsigned char *dest
)
20109 *dest
++ = val
& 0xff;
20115 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
20117 static HOST_WIDE_INT
20118 extract_int (const unsigned char *src
, unsigned int size
)
20120 HOST_WIDE_INT val
= 0;
20126 val
|= *--src
& 0xff;
20132 /* Writes wide_int values to dw_vec_const array. */
20135 insert_wide_int (const wide_int
&val
, unsigned char *dest
, int elt_size
)
20139 if (elt_size
<= HOST_BITS_PER_WIDE_INT
/BITS_PER_UNIT
)
20141 insert_int ((HOST_WIDE_INT
) val
.elt (0), elt_size
, dest
);
20145 /* We'd have to extend this code to support odd sizes. */
20146 gcc_assert (elt_size
% (HOST_BITS_PER_WIDE_INT
/ BITS_PER_UNIT
) == 0);
20148 int n
= elt_size
/ (HOST_BITS_PER_WIDE_INT
/ BITS_PER_UNIT
);
20150 if (WORDS_BIG_ENDIAN
)
20151 for (i
= n
- 1; i
>= 0; i
--)
20153 insert_int ((HOST_WIDE_INT
) val
.elt (i
), sizeof (HOST_WIDE_INT
), dest
);
20154 dest
+= sizeof (HOST_WIDE_INT
);
20157 for (i
= 0; i
< n
; i
++)
20159 insert_int ((HOST_WIDE_INT
) val
.elt (i
), sizeof (HOST_WIDE_INT
), dest
);
20160 dest
+= sizeof (HOST_WIDE_INT
);
20164 /* Writes floating point values to dw_vec_const array. */
20167 insert_float (const_rtx rtl
, unsigned char *array
)
20171 scalar_float_mode mode
= as_a
<scalar_float_mode
> (GET_MODE (rtl
));
20173 real_to_target (val
, CONST_DOUBLE_REAL_VALUE (rtl
), mode
);
20175 /* real_to_target puts 32-bit pieces in each long. Pack them. */
20176 if (GET_MODE_SIZE (mode
) < 4)
20178 gcc_assert (GET_MODE_SIZE (mode
) == 2);
20179 insert_int (val
[0], 2, array
);
20183 for (i
= 0; i
< GET_MODE_SIZE (mode
) / 4; i
++)
20185 insert_int (val
[i
], 4, array
);
20191 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
20192 does not have a "location" either in memory or in a register. These
20193 things can arise in GNU C when a constant is passed as an actual parameter
20194 to an inlined function. They can also arise in C++ where declared
20195 constants do not necessarily get memory "homes". */
20198 add_const_value_attribute (dw_die_ref die
, machine_mode mode
, rtx rtl
)
20200 scalar_mode int_mode
;
20202 switch (GET_CODE (rtl
))
20206 HOST_WIDE_INT val
= INTVAL (rtl
);
20209 add_AT_int (die
, DW_AT_const_value
, val
);
20211 add_AT_unsigned (die
, DW_AT_const_value
, (unsigned HOST_WIDE_INT
) val
);
20215 case CONST_WIDE_INT
:
20216 if (is_int_mode (mode
, &int_mode
)
20217 && (GET_MODE_PRECISION (int_mode
)
20218 & (HOST_BITS_PER_WIDE_INT
- 1)) == 0)
20220 wide_int w
= rtx_mode_t (rtl
, int_mode
);
20221 add_AT_wide (die
, DW_AT_const_value
, w
);
20227 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
20228 floating-point constant. A CONST_DOUBLE is used whenever the
20229 constant requires more than one word in order to be adequately
20231 if (TARGET_SUPPORTS_WIDE_INT
== 0
20232 && !SCALAR_FLOAT_MODE_P (GET_MODE (rtl
)))
20233 add_AT_double (die
, DW_AT_const_value
,
20234 CONST_DOUBLE_HIGH (rtl
), CONST_DOUBLE_LOW (rtl
));
20237 scalar_float_mode mode
= as_a
<scalar_float_mode
> (GET_MODE (rtl
));
20238 unsigned int length
= GET_MODE_SIZE (mode
);
20239 unsigned char *array
= ggc_vec_alloc
<unsigned char> (length
);
20240 unsigned int elt_size
= insert_float (rtl
, array
);
20242 add_AT_vec (die
, DW_AT_const_value
, length
/ elt_size
, elt_size
,
20249 unsigned int length
;
20250 if (!CONST_VECTOR_NUNITS (rtl
).is_constant (&length
))
20253 machine_mode mode
= GET_MODE (rtl
);
20254 /* The combination of a length and byte elt_size doesn't extend
20255 naturally to boolean vectors, where several elements are packed
20256 into the same byte. */
20257 if (GET_MODE_CLASS (mode
) == MODE_VECTOR_BOOL
)
20260 unsigned int elt_size
= GET_MODE_UNIT_SIZE (mode
);
20261 unsigned char *array
20262 = ggc_vec_alloc
<unsigned char> (length
* elt_size
);
20265 machine_mode imode
= GET_MODE_INNER (mode
);
20267 switch (GET_MODE_CLASS (mode
))
20269 case MODE_VECTOR_INT
:
20270 for (i
= 0, p
= array
; i
< length
; i
++, p
+= elt_size
)
20272 rtx elt
= CONST_VECTOR_ELT (rtl
, i
);
20273 insert_wide_int (rtx_mode_t (elt
, imode
), p
, elt_size
);
20277 case MODE_VECTOR_FLOAT
:
20278 for (i
= 0, p
= array
; i
< length
; i
++, p
+= elt_size
)
20280 rtx elt
= CONST_VECTOR_ELT (rtl
, i
);
20281 insert_float (elt
, p
);
20286 gcc_unreachable ();
20289 add_AT_vec (die
, DW_AT_const_value
, length
, elt_size
, array
);
20294 if (dwarf_version
>= 4 || !dwarf_strict
)
20296 dw_loc_descr_ref loc_result
;
20297 resolve_one_addr (&rtl
);
20299 loc_result
= new_addr_loc_descr (rtl
, dtprel_false
);
20300 add_loc_descr (&loc_result
, new_loc_descr (DW_OP_stack_value
, 0, 0));
20301 add_AT_loc (die
, DW_AT_location
, loc_result
);
20302 vec_safe_push (used_rtx_array
, rtl
);
20308 if (CONSTANT_P (XEXP (rtl
, 0)))
20309 return add_const_value_attribute (die
, mode
, XEXP (rtl
, 0));
20312 if (!const_ok_for_output (rtl
))
20316 if (dwarf_version
>= 4 || !dwarf_strict
)
20321 /* In cases where an inlined instance of an inline function is passed
20322 the address of an `auto' variable (which is local to the caller) we
20323 can get a situation where the DECL_RTL of the artificial local
20324 variable (for the inlining) which acts as a stand-in for the
20325 corresponding formal parameter (of the inline function) will look
20326 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
20327 exactly a compile-time constant expression, but it isn't the address
20328 of the (artificial) local variable either. Rather, it represents the
20329 *value* which the artificial local variable always has during its
20330 lifetime. We currently have no way to represent such quasi-constant
20331 values in Dwarf, so for now we just punt and generate nothing. */
20339 case CONST_POLY_INT
:
20343 if (GET_CODE (XEXP (rtl
, 0)) == CONST_STRING
20344 && MEM_READONLY_P (rtl
)
20345 && GET_MODE (rtl
) == BLKmode
)
20347 add_AT_string (die
, DW_AT_const_value
, XSTR (XEXP (rtl
, 0), 0));
20353 /* No other kinds of rtx should be possible here. */
20354 gcc_unreachable ();
20358 /* Determine whether the evaluation of EXPR references any variables
20359 or functions which aren't otherwise used (and therefore may not be
20362 reference_to_unused (tree
* tp
, int * walk_subtrees
,
20363 void * data ATTRIBUTE_UNUSED
)
20365 if (! EXPR_P (*tp
) && ! CONSTANT_CLASS_P (*tp
))
20366 *walk_subtrees
= 0;
20368 if (DECL_P (*tp
) && ! TREE_PUBLIC (*tp
) && ! TREE_USED (*tp
)
20369 && ! TREE_ASM_WRITTEN (*tp
))
20371 /* ??? The C++ FE emits debug information for using decls, so
20372 putting gcc_unreachable here falls over. See PR31899. For now
20373 be conservative. */
20374 else if (!symtab
->global_info_ready
&& VAR_P (*tp
))
20376 else if (VAR_P (*tp
))
20378 varpool_node
*node
= varpool_node::get (*tp
);
20379 if (!node
|| !node
->definition
)
20382 else if (TREE_CODE (*tp
) == FUNCTION_DECL
20383 && (!DECL_EXTERNAL (*tp
) || DECL_DECLARED_INLINE_P (*tp
)))
20385 /* The call graph machinery must have finished analyzing,
20386 optimizing and gimplifying the CU by now.
20387 So if *TP has no call graph node associated
20388 to it, it means *TP will not be emitted. */
20389 if (!symtab
->global_info_ready
|| !cgraph_node::get (*tp
))
20392 else if (TREE_CODE (*tp
) == STRING_CST
&& !TREE_ASM_WRITTEN (*tp
))
20398 /* Generate an RTL constant from a decl initializer INIT with decl type TYPE,
20399 for use in a later add_const_value_attribute call. */
20402 rtl_for_decl_init (tree init
, tree type
)
20404 rtx rtl
= NULL_RTX
;
20408 /* If a variable is initialized with a string constant without embedded
20409 zeros, build CONST_STRING. */
20410 if (TREE_CODE (init
) == STRING_CST
&& TREE_CODE (type
) == ARRAY_TYPE
)
20412 tree enttype
= TREE_TYPE (type
);
20413 tree domain
= TYPE_DOMAIN (type
);
20414 scalar_int_mode mode
;
20416 if (is_int_mode (TYPE_MODE (enttype
), &mode
)
20417 && GET_MODE_SIZE (mode
) == 1
20419 && TYPE_MAX_VALUE (domain
)
20420 && TREE_CODE (TYPE_MAX_VALUE (domain
)) == INTEGER_CST
20421 && integer_zerop (TYPE_MIN_VALUE (domain
))
20422 && compare_tree_int (TYPE_MAX_VALUE (domain
),
20423 TREE_STRING_LENGTH (init
) - 1) == 0
20424 && ((size_t) TREE_STRING_LENGTH (init
)
20425 == strlen (TREE_STRING_POINTER (init
)) + 1))
20427 rtl
= gen_rtx_CONST_STRING (VOIDmode
,
20428 ggc_strdup (TREE_STRING_POINTER (init
)));
20429 rtl
= gen_rtx_MEM (BLKmode
, rtl
);
20430 MEM_READONLY_P (rtl
) = 1;
20433 /* Other aggregates, and complex values, could be represented using
20435 else if (AGGREGATE_TYPE_P (type
)
20436 || (TREE_CODE (init
) == VIEW_CONVERT_EXPR
20437 && AGGREGATE_TYPE_P (TREE_TYPE (TREE_OPERAND (init
, 0))))
20438 || TREE_CODE (type
) == COMPLEX_TYPE
)
20440 /* Vectors only work if their mode is supported by the target.
20441 FIXME: generic vectors ought to work too. */
20442 else if (TREE_CODE (type
) == VECTOR_TYPE
20443 && !VECTOR_MODE_P (TYPE_MODE (type
)))
20445 /* If the initializer is something that we know will expand into an
20446 immediate RTL constant, expand it now. We must be careful not to
20447 reference variables which won't be output. */
20448 else if (initializer_constant_valid_p (init
, type
)
20449 && ! walk_tree (&init
, reference_to_unused
, NULL
, NULL
))
20451 /* Convert vector CONSTRUCTOR initializers to VECTOR_CST if
20453 if (TREE_CODE (type
) == VECTOR_TYPE
)
20454 switch (TREE_CODE (init
))
20459 if (TREE_CONSTANT (init
))
20461 vec
<constructor_elt
, va_gc
> *elts
= CONSTRUCTOR_ELTS (init
);
20462 bool constant_p
= true;
20464 unsigned HOST_WIDE_INT ix
;
20466 /* Even when ctor is constant, it might contain non-*_CST
20467 elements (e.g. { 1.0/0.0 - 1.0/0.0, 0.0 }) and those don't
20468 belong into VECTOR_CST nodes. */
20469 FOR_EACH_CONSTRUCTOR_VALUE (elts
, ix
, value
)
20470 if (!CONSTANT_CLASS_P (value
))
20472 constant_p
= false;
20478 init
= build_vector_from_ctor (type
, elts
);
20488 rtl
= expand_expr (init
, NULL_RTX
, VOIDmode
, EXPAND_INITIALIZER
);
20490 /* If expand_expr returns a MEM, it wasn't immediate. */
20491 gcc_assert (!rtl
|| !MEM_P (rtl
));
20497 /* Generate RTL for the variable DECL to represent its location. */
20500 rtl_for_decl_location (tree decl
)
20504 /* Here we have to decide where we are going to say the parameter "lives"
20505 (as far as the debugger is concerned). We only have a couple of
20506 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
20508 DECL_RTL normally indicates where the parameter lives during most of the
20509 activation of the function. If optimization is enabled however, this
20510 could be either NULL or else a pseudo-reg. Both of those cases indicate
20511 that the parameter doesn't really live anywhere (as far as the code
20512 generation parts of GCC are concerned) during most of the function's
20513 activation. That will happen (for example) if the parameter is never
20514 referenced within the function.
20516 We could just generate a location descriptor here for all non-NULL
20517 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
20518 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
20519 where DECL_RTL is NULL or is a pseudo-reg.
20521 Note however that we can only get away with using DECL_INCOMING_RTL as
20522 a backup substitute for DECL_RTL in certain limited cases. In cases
20523 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
20524 we can be sure that the parameter was passed using the same type as it is
20525 declared to have within the function, and that its DECL_INCOMING_RTL
20526 points us to a place where a value of that type is passed.
20528 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
20529 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
20530 because in these cases DECL_INCOMING_RTL points us to a value of some
20531 type which is *different* from the type of the parameter itself. Thus,
20532 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
20533 such cases, the debugger would end up (for example) trying to fetch a
20534 `float' from a place which actually contains the first part of a
20535 `double'. That would lead to really incorrect and confusing
20536 output at debug-time.
20538 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
20539 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
20540 are a couple of exceptions however. On little-endian machines we can
20541 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
20542 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
20543 an integral type that is smaller than TREE_TYPE (decl). These cases arise
20544 when (on a little-endian machine) a non-prototyped function has a
20545 parameter declared to be of type `short' or `char'. In such cases,
20546 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
20547 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
20548 passed `int' value. If the debugger then uses that address to fetch
20549 a `short' or a `char' (on a little-endian machine) the result will be
20550 the correct data, so we allow for such exceptional cases below.
20552 Note that our goal here is to describe the place where the given formal
20553 parameter lives during most of the function's activation (i.e. between the
20554 end of the prologue and the start of the epilogue). We'll do that as best
20555 as we can. Note however that if the given formal parameter is modified
20556 sometime during the execution of the function, then a stack backtrace (at
20557 debug-time) will show the function as having been called with the *new*
20558 value rather than the value which was originally passed in. This happens
20559 rarely enough that it is not a major problem, but it *is* a problem, and
20560 I'd like to fix it.
20562 A future version of dwarf2out.cc may generate two additional attributes for
20563 any given DW_TAG_formal_parameter DIE which will describe the "passed
20564 type" and the "passed location" for the given formal parameter in addition
20565 to the attributes we now generate to indicate the "declared type" and the
20566 "active location" for each parameter. This additional set of attributes
20567 could be used by debuggers for stack backtraces. Separately, note that
20568 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
20569 This happens (for example) for inlined-instances of inline function formal
20570 parameters which are never referenced. This really shouldn't be
20571 happening. All PARM_DECL nodes should get valid non-NULL
20572 DECL_INCOMING_RTL values. FIXME. */
20574 /* Use DECL_RTL as the "location" unless we find something better. */
20575 rtl
= DECL_RTL_IF_SET (decl
);
20577 /* When generating abstract instances, ignore everything except
20578 constants, symbols living in memory, and symbols living in
20579 fixed registers. */
20580 if (! reload_completed
)
20583 && (CONSTANT_P (rtl
)
20585 && CONSTANT_P (XEXP (rtl
, 0)))
20588 && TREE_STATIC (decl
))))
20590 rtl
= targetm
.delegitimize_address (rtl
);
20595 else if (TREE_CODE (decl
) == PARM_DECL
)
20597 if (rtl
== NULL_RTX
20598 || is_pseudo_reg (rtl
)
20600 && is_pseudo_reg (XEXP (rtl
, 0))
20601 && DECL_INCOMING_RTL (decl
)
20602 && MEM_P (DECL_INCOMING_RTL (decl
))
20603 && GET_MODE (rtl
) == GET_MODE (DECL_INCOMING_RTL (decl
))))
20605 tree declared_type
= TREE_TYPE (decl
);
20606 tree passed_type
= DECL_ARG_TYPE (decl
);
20607 machine_mode dmode
= TYPE_MODE (declared_type
);
20608 machine_mode pmode
= TYPE_MODE (passed_type
);
20610 /* This decl represents a formal parameter which was optimized out.
20611 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
20612 all cases where (rtl == NULL_RTX) just below. */
20613 if (dmode
== pmode
)
20614 rtl
= DECL_INCOMING_RTL (decl
);
20615 else if ((rtl
== NULL_RTX
|| is_pseudo_reg (rtl
))
20616 && SCALAR_INT_MODE_P (dmode
)
20617 && known_le (GET_MODE_SIZE (dmode
), GET_MODE_SIZE (pmode
))
20618 && DECL_INCOMING_RTL (decl
))
20620 rtx inc
= DECL_INCOMING_RTL (decl
);
20623 else if (MEM_P (inc
))
20625 if (BYTES_BIG_ENDIAN
)
20626 rtl
= adjust_address_nv (inc
, dmode
,
20627 GET_MODE_SIZE (pmode
)
20628 - GET_MODE_SIZE (dmode
));
20635 /* If the parm was passed in registers, but lives on the stack, then
20636 make a big endian correction if the mode of the type of the
20637 parameter is not the same as the mode of the rtl. */
20638 /* ??? This is the same series of checks that are made in dbxout.cc before
20639 we reach the big endian correction code there. It isn't clear if all
20640 of these checks are necessary here, but keeping them all is the safe
20642 else if (MEM_P (rtl
)
20643 && XEXP (rtl
, 0) != const0_rtx
20644 && ! CONSTANT_P (XEXP (rtl
, 0))
20645 /* Not passed in memory. */
20646 && !MEM_P (DECL_INCOMING_RTL (decl
))
20647 /* Not passed by invisible reference. */
20648 && (!REG_P (XEXP (rtl
, 0))
20649 || REGNO (XEXP (rtl
, 0)) == HARD_FRAME_POINTER_REGNUM
20650 || REGNO (XEXP (rtl
, 0)) == STACK_POINTER_REGNUM
20651 #if !HARD_FRAME_POINTER_IS_ARG_POINTER
20652 || REGNO (XEXP (rtl
, 0)) == ARG_POINTER_REGNUM
20655 /* Big endian correction check. */
20656 && BYTES_BIG_ENDIAN
20657 && TYPE_MODE (TREE_TYPE (decl
)) != GET_MODE (rtl
)
20658 && known_lt (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl
))),
20661 machine_mode addr_mode
= get_address_mode (rtl
);
20662 poly_int64 offset
= (UNITS_PER_WORD
20663 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl
))));
20665 rtl
= gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl
)),
20666 plus_constant (addr_mode
, XEXP (rtl
, 0), offset
));
20669 else if (VAR_P (decl
)
20672 && GET_MODE (rtl
) != TYPE_MODE (TREE_TYPE (decl
)))
20674 machine_mode addr_mode
= get_address_mode (rtl
);
20675 poly_int64 offset
= byte_lowpart_offset (TYPE_MODE (TREE_TYPE (decl
)),
20678 /* If a variable is declared "register" yet is smaller than
20679 a register, then if we store the variable to memory, it
20680 looks like we're storing a register-sized value, when in
20681 fact we are not. We need to adjust the offset of the
20682 storage location to reflect the actual value's bytes,
20683 else gdb will not be able to display it. */
20684 if (maybe_ne (offset
, 0))
20685 rtl
= gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl
)),
20686 plus_constant (addr_mode
, XEXP (rtl
, 0), offset
));
20689 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
20690 and will have been substituted directly into all expressions that use it.
20691 C does not have such a concept, but C++ and other languages do. */
20692 if (!rtl
&& VAR_P (decl
) && DECL_INITIAL (decl
))
20693 rtl
= rtl_for_decl_init (DECL_INITIAL (decl
), TREE_TYPE (decl
));
20696 rtl
= targetm
.delegitimize_address (rtl
);
20698 /* If we don't look past the constant pool, we risk emitting a
20699 reference to a constant pool entry that isn't referenced from
20700 code, and thus is not emitted. */
20702 rtl
= avoid_constant_pool_reference (rtl
);
20704 /* Try harder to get a rtl. If this symbol ends up not being emitted
20705 in the current CU, resolve_addr will remove the expression referencing
20707 if (rtl
== NULL_RTX
20708 && !(early_dwarf
&& (flag_generate_lto
|| flag_generate_offload
))
20710 && !DECL_EXTERNAL (decl
)
20711 && TREE_STATIC (decl
)
20712 && DECL_NAME (decl
)
20713 && !DECL_HARD_REGISTER (decl
)
20714 && DECL_MODE (decl
) != VOIDmode
)
20716 rtl
= make_decl_rtl_for_debug (decl
);
20718 || GET_CODE (XEXP (rtl
, 0)) != SYMBOL_REF
20719 || SYMBOL_REF_DECL (XEXP (rtl
, 0)) != decl
)
20726 /* Check whether decl is a Fortran COMMON symbol. If not, NULL_TREE is
20727 returned. If so, the decl for the COMMON block is returned, and the
20728 value is the offset into the common block for the symbol. */
20731 fortran_common (tree decl
, HOST_WIDE_INT
*value
)
20733 tree val_expr
, cvar
;
20735 poly_int64 bitsize
, bitpos
;
20737 HOST_WIDE_INT cbitpos
;
20738 int unsignedp
, reversep
, volatilep
= 0;
20740 /* If the decl isn't a VAR_DECL, or if it isn't static, or if
20741 it does not have a value (the offset into the common area), or if it
20742 is thread local (as opposed to global) then it isn't common, and shouldn't
20743 be handled as such. */
20745 || !TREE_STATIC (decl
)
20746 || !DECL_HAS_VALUE_EXPR_P (decl
)
20750 val_expr
= DECL_VALUE_EXPR (decl
);
20751 if (TREE_CODE (val_expr
) != COMPONENT_REF
)
20754 cvar
= get_inner_reference (val_expr
, &bitsize
, &bitpos
, &offset
, &mode
,
20755 &unsignedp
, &reversep
, &volatilep
);
20757 if (cvar
== NULL_TREE
20759 || DECL_ARTIFICIAL (cvar
)
20760 || !TREE_PUBLIC (cvar
)
20761 /* We don't expect to have to cope with variable offsets,
20762 since at present all static data must have a constant size. */
20763 || !bitpos
.is_constant (&cbitpos
))
20767 if (offset
!= NULL
)
20769 if (!tree_fits_shwi_p (offset
))
20771 *value
= tree_to_shwi (offset
);
20774 *value
+= cbitpos
/ BITS_PER_UNIT
;
20779 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
20780 data attribute for a variable or a parameter. We generate the
20781 DW_AT_const_value attribute only in those cases where the given variable
20782 or parameter does not have a true "location" either in memory or in a
20783 register. This can happen (for example) when a constant is passed as an
20784 actual argument in a call to an inline function. (It's possible that
20785 these things can crop up in other ways also.) Note that one type of
20786 constant value which can be passed into an inlined function is a constant
20787 pointer. This can happen for example if an actual argument in an inlined
20788 function call evaluates to a compile-time constant address.
20790 CACHE_P is true if it is worth caching the location list for DECL,
20791 so that future calls can reuse it rather than regenerate it from scratch.
20792 This is true for BLOCK_NONLOCALIZED_VARS in inlined subroutines,
20793 since we will need to refer to them each time the function is inlined. */
20796 add_location_or_const_value_attribute (dw_die_ref die
, tree decl
, bool cache_p
)
20799 dw_loc_list_ref list
;
20800 var_loc_list
*loc_list
;
20801 cached_dw_loc_list
*cache
;
20806 if (TREE_CODE (decl
) == ERROR_MARK
)
20809 if (get_AT (die
, DW_AT_location
)
20810 || get_AT (die
, DW_AT_const_value
))
20813 gcc_assert (VAR_P (decl
) || TREE_CODE (decl
) == PARM_DECL
20814 || TREE_CODE (decl
) == RESULT_DECL
);
20816 /* Try to get some constant RTL for this decl, and use that as the value of
20819 rtl
= rtl_for_decl_location (decl
);
20820 if (rtl
&& (CONSTANT_P (rtl
) || GET_CODE (rtl
) == CONST_STRING
)
20821 && add_const_value_attribute (die
, DECL_MODE (decl
), rtl
))
20824 /* See if we have single element location list that is equivalent to
20825 a constant value. That way we are better to use add_const_value_attribute
20826 rather than expanding constant value equivalent. */
20827 loc_list
= lookup_decl_loc (decl
);
20830 && loc_list
->first
->next
== NULL
20831 && NOTE_P (loc_list
->first
->loc
)
20832 && NOTE_VAR_LOCATION (loc_list
->first
->loc
)
20833 && NOTE_VAR_LOCATION_LOC (loc_list
->first
->loc
))
20835 struct var_loc_node
*node
;
20837 node
= loc_list
->first
;
20838 rtl
= NOTE_VAR_LOCATION_LOC (node
->loc
);
20839 if (GET_CODE (rtl
) == EXPR_LIST
)
20840 rtl
= XEXP (rtl
, 0);
20841 if ((CONSTANT_P (rtl
) || GET_CODE (rtl
) == CONST_STRING
)
20842 && add_const_value_attribute (die
, DECL_MODE (decl
), rtl
))
20845 /* If this decl is from BLOCK_NONLOCALIZED_VARS, we might need its
20846 list several times. See if we've already cached the contents. */
20848 if (loc_list
== NULL
|| cached_dw_loc_list_table
== NULL
)
20852 cache
= cached_dw_loc_list_table
->find_with_hash (decl
, DECL_UID (decl
));
20854 list
= cache
->loc_list
;
20858 list
= loc_list_from_tree (decl
, decl_by_reference_p (decl
) ? 0 : 2,
20860 /* It is usually worth caching this result if the decl is from
20861 BLOCK_NONLOCALIZED_VARS and if the list has at least two elements. */
20862 if (cache_p
&& list
&& list
->dw_loc_next
)
20864 cached_dw_loc_list
**slot
20865 = cached_dw_loc_list_table
->find_slot_with_hash (decl
,
20868 cache
= ggc_cleared_alloc
<cached_dw_loc_list
> ();
20869 cache
->decl_id
= DECL_UID (decl
);
20870 cache
->loc_list
= list
;
20876 add_AT_location_description (die
, DW_AT_location
, list
);
20879 /* None of that worked, so it must not really have a location;
20880 try adding a constant value attribute from the DECL_INITIAL. */
20881 return tree_add_const_value_attribute_for_decl (die
, decl
);
20884 /* Attach a DW_AT_const_value attribute to DIE. The value of the
20885 attribute is the const value T. */
20888 tree_add_const_value_attribute (dw_die_ref die
, tree t
)
20891 tree type
= TREE_TYPE (t
);
20894 if (!t
|| !TREE_TYPE (t
) || TREE_TYPE (t
) == error_mark_node
)
20898 gcc_assert (!DECL_P (init
));
20900 if (TREE_CODE (init
) == INTEGER_CST
)
20902 if (tree_fits_uhwi_p (init
))
20904 add_AT_unsigned (die
, DW_AT_const_value
, tree_to_uhwi (init
));
20907 if (tree_fits_shwi_p (init
))
20909 add_AT_int (die
, DW_AT_const_value
, tree_to_shwi (init
));
20913 /* Generate the RTL even if early_dwarf to force mangling of all refered to
20915 rtl
= rtl_for_decl_init (init
, type
);
20916 if (rtl
&& !early_dwarf
)
20917 return add_const_value_attribute (die
, TYPE_MODE (type
), rtl
);
20918 /* If the host and target are sane, try harder. */
20919 if (CHAR_BIT
== 8 && BITS_PER_UNIT
== 8
20920 && initializer_constant_valid_p (init
, type
))
20922 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (init
));
20923 if (size
> 0 && (int) size
== size
)
20925 unsigned char *array
= ggc_cleared_vec_alloc
<unsigned char> (size
);
20927 if (native_encode_initializer (init
, array
, size
) == size
)
20929 add_AT_vec (die
, DW_AT_const_value
, size
, 1, array
);
20938 /* Attach a DW_AT_const_value attribute to VAR_DIE. The value of the
20939 attribute is the const value of T, where T is an integral constant
20940 variable with static storage duration
20941 (so it can't be a PARM_DECL or a RESULT_DECL). */
20944 tree_add_const_value_attribute_for_decl (dw_die_ref var_die
, tree decl
)
20948 || (!VAR_P (decl
) && TREE_CODE (decl
) != CONST_DECL
)
20949 || (VAR_P (decl
) && !TREE_STATIC (decl
)))
20952 if (TREE_READONLY (decl
)
20953 && ! TREE_THIS_VOLATILE (decl
)
20954 && DECL_INITIAL (decl
))
20959 /* Don't add DW_AT_const_value if abstract origin already has one. */
20960 if (get_AT (var_die
, DW_AT_const_value
))
20963 return tree_add_const_value_attribute (var_die
, DECL_INITIAL (decl
));
20966 /* Convert the CFI instructions for the current function into a
20967 location list. This is used for DW_AT_frame_base when we targeting
20968 a dwarf2 consumer that does not support the dwarf3
20969 DW_OP_call_frame_cfa. OFFSET is a constant to be added to all CFA
20972 static dw_loc_list_ref
20973 convert_cfa_to_fb_loc_list (HOST_WIDE_INT offset
)
20977 dw_loc_list_ref list
, *list_tail
;
20979 dw_cfa_location last_cfa
, next_cfa
;
20980 const char *start_label
, *last_label
, *section
;
20981 dw_cfa_location remember
;
20984 gcc_assert (fde
!= NULL
);
20986 section
= secname_for_decl (current_function_decl
);
20990 memset (&next_cfa
, 0, sizeof (next_cfa
));
20991 next_cfa
.reg
.set_by_dwreg (INVALID_REGNUM
);
20992 remember
= next_cfa
;
20994 start_label
= fde
->dw_fde_begin
;
20996 /* ??? Bald assumption that the CIE opcode list does not contain
20997 advance opcodes. */
20998 FOR_EACH_VEC_ELT (*cie_cfi_vec
, ix
, cfi
)
20999 lookup_cfa_1 (cfi
, &next_cfa
, &remember
);
21001 last_cfa
= next_cfa
;
21002 last_label
= start_label
;
21004 if (fde
->dw_fde_second_begin
&& fde
->dw_fde_switch_cfi_index
== 0)
21006 /* If the first partition contained no CFI adjustments, the
21007 CIE opcodes apply to the whole first partition. */
21008 *list_tail
= new_loc_list (build_cfa_loc (&last_cfa
, offset
),
21009 fde
->dw_fde_begin
, 0, fde
->dw_fde_end
, 0, section
);
21010 list_tail
=&(*list_tail
)->dw_loc_next
;
21011 start_label
= last_label
= fde
->dw_fde_second_begin
;
21014 FOR_EACH_VEC_SAFE_ELT (fde
->dw_fde_cfi
, ix
, cfi
)
21016 switch (cfi
->dw_cfi_opc
)
21018 case DW_CFA_set_loc
:
21019 case DW_CFA_advance_loc1
:
21020 case DW_CFA_advance_loc2
:
21021 case DW_CFA_advance_loc4
:
21022 if (!cfa_equal_p (&last_cfa
, &next_cfa
))
21024 *list_tail
= new_loc_list (build_cfa_loc (&last_cfa
, offset
),
21025 start_label
, 0, last_label
, 0, section
);
21027 list_tail
= &(*list_tail
)->dw_loc_next
;
21028 last_cfa
= next_cfa
;
21029 start_label
= last_label
;
21031 last_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
21034 case DW_CFA_advance_loc
:
21035 /* The encoding is complex enough that we should never emit this. */
21036 gcc_unreachable ();
21039 lookup_cfa_1 (cfi
, &next_cfa
, &remember
);
21042 if (ix
+ 1 == fde
->dw_fde_switch_cfi_index
)
21044 if (!cfa_equal_p (&last_cfa
, &next_cfa
))
21046 *list_tail
= new_loc_list (build_cfa_loc (&last_cfa
, offset
),
21047 start_label
, 0, last_label
, 0, section
);
21049 list_tail
= &(*list_tail
)->dw_loc_next
;
21050 last_cfa
= next_cfa
;
21051 start_label
= last_label
;
21053 *list_tail
= new_loc_list (build_cfa_loc (&last_cfa
, offset
),
21054 start_label
, 0, fde
->dw_fde_end
, 0, section
);
21055 list_tail
= &(*list_tail
)->dw_loc_next
;
21056 start_label
= last_label
= fde
->dw_fde_second_begin
;
21060 if (!cfa_equal_p (&last_cfa
, &next_cfa
))
21062 *list_tail
= new_loc_list (build_cfa_loc (&last_cfa
, offset
),
21063 start_label
, 0, last_label
, 0, section
);
21064 list_tail
= &(*list_tail
)->dw_loc_next
;
21065 start_label
= last_label
;
21068 *list_tail
= new_loc_list (build_cfa_loc (&next_cfa
, offset
),
21070 fde
->dw_fde_second_begin
21071 ? fde
->dw_fde_second_end
: fde
->dw_fde_end
, 0,
21074 maybe_gen_llsym (list
);
21079 /* Compute a displacement from the "steady-state frame pointer" to the
21080 frame base (often the same as the CFA), and store it in
21081 frame_pointer_fb_offset. OFFSET is added to the displacement
21082 before the latter is negated. */
21085 compute_frame_pointer_to_fb_displacement (poly_int64 offset
)
21089 #ifdef FRAME_POINTER_CFA_OFFSET
21090 reg
= frame_pointer_rtx
;
21091 offset
+= FRAME_POINTER_CFA_OFFSET (current_function_decl
);
21093 reg
= arg_pointer_rtx
;
21094 offset
+= ARG_POINTER_CFA_OFFSET (current_function_decl
);
21097 elim
= (ira_use_lra_p
21098 ? lra_eliminate_regs (reg
, VOIDmode
, NULL_RTX
)
21099 : eliminate_regs (reg
, VOIDmode
, NULL_RTX
));
21100 elim
= strip_offset_and_add (elim
, &offset
);
21102 frame_pointer_fb_offset
= -offset
;
21104 /* ??? AVR doesn't set up valid eliminations when there is no stack frame
21105 in which to eliminate. This is because it's stack pointer isn't
21106 directly accessible as a register within the ISA. To work around
21107 this, assume that while we cannot provide a proper value for
21108 frame_pointer_fb_offset, we won't need one either. We can use
21109 hard frame pointer in debug info even if frame pointer isn't used
21110 since hard frame pointer in debug info is encoded with DW_OP_fbreg
21111 which uses the DW_AT_frame_base attribute, not hard frame pointer
21113 frame_pointer_fb_offset_valid
21114 = (elim
== hard_frame_pointer_rtx
|| elim
== stack_pointer_rtx
);
21117 /* Generate a DW_AT_name attribute given some string value to be included as
21118 the value of the attribute. */
21121 add_name_attribute (dw_die_ref die
, const char *name_string
)
21123 if (name_string
!= NULL
&& *name_string
!= 0)
21125 if (demangle_name_func
)
21126 name_string
= (*demangle_name_func
) (name_string
);
21128 add_AT_string (die
, DW_AT_name
, name_string
);
21132 /* Generate a DW_AT_name attribute given some string value representing a
21133 file or filepath to be included as value of the attribute. */
21135 add_filename_attribute (dw_die_ref die
, const char *name_string
)
21137 if (name_string
!= NULL
&& *name_string
!= 0)
21138 add_filepath_AT_string (die
, DW_AT_name
, name_string
);
21141 /* Generate a DW_AT_description attribute given some string value to be included
21142 as the value of the attribute. */
21145 add_desc_attribute (dw_die_ref die
, const char *name_string
)
21147 if (!flag_describe_dies
|| (dwarf_version
< 3 && dwarf_strict
))
21150 if (name_string
== NULL
|| *name_string
== 0)
21153 if (demangle_name_func
)
21154 name_string
= (*demangle_name_func
) (name_string
);
21156 add_AT_string (die
, DW_AT_description
, name_string
);
21159 /* Generate a DW_AT_description attribute given some decl to be included
21160 as the value of the attribute. */
21163 add_desc_attribute (dw_die_ref die
, tree decl
)
21167 if (!flag_describe_dies
|| (dwarf_version
< 3 && dwarf_strict
))
21170 if (decl
== NULL_TREE
|| !DECL_P (decl
))
21172 decl_name
= DECL_NAME (decl
);
21174 if (decl_name
!= NULL
&& IDENTIFIER_POINTER (decl_name
) != NULL
)
21176 const char *name
= dwarf2_name (decl
, 0);
21177 add_desc_attribute (die
, name
? name
: IDENTIFIER_POINTER (decl_name
));
21181 char *desc
= print_generic_expr_to_str (decl
);
21182 add_desc_attribute (die
, desc
);
21187 /* Retrieve the descriptive type of TYPE, if any, make sure it has a
21188 DIE and attach a DW_AT_GNAT_descriptive_type attribute to the DIE
21189 of TYPE accordingly.
21191 ??? This is a temporary measure until after we're able to generate
21192 regular DWARF for the complex Ada type system. */
21195 add_gnat_descriptive_type_attribute (dw_die_ref die
, tree type
,
21196 dw_die_ref context_die
)
21199 dw_die_ref dtype_die
;
21201 if (!lang_hooks
.types
.descriptive_type
)
21204 dtype
= lang_hooks
.types
.descriptive_type (type
);
21208 dtype_die
= lookup_type_die (dtype
);
21211 gen_type_die (dtype
, context_die
);
21212 dtype_die
= lookup_type_die (dtype
);
21213 gcc_assert (dtype_die
);
21216 add_AT_die_ref (die
, DW_AT_GNAT_descriptive_type
, dtype_die
);
21219 /* Retrieve the comp_dir string suitable for use with DW_AT_comp_dir. */
21221 static const char *
21222 comp_dir_string (void)
21225 char *wd_plus_sep
= NULL
;
21226 static const char *cached_wd
= NULL
;
21228 if (cached_wd
!= NULL
)
21231 wd
= get_src_pwd ();
21235 if (DWARF2_DIR_SHOULD_END_WITH_SEPARATOR
)
21237 size_t wdlen
= strlen (wd
);
21238 wd_plus_sep
= XNEWVEC (char, wdlen
+ 2);
21239 strcpy (wd_plus_sep
, wd
);
21240 wd_plus_sep
[wdlen
] = DIR_SEPARATOR
;
21241 wd_plus_sep
[wdlen
+ 1] = 0;
21245 cached_wd
= remap_debug_filename (wd
);
21247 /* remap_debug_filename can just pass through wd or return a new gc string.
21248 These two types can't be both stored in a GTY(())-tagged string, but since
21249 the cached value lives forever just copy it if needed. */
21250 if (cached_wd
!= wd
)
21252 cached_wd
= xstrdup (cached_wd
);
21253 if (DWARF2_DIR_SHOULD_END_WITH_SEPARATOR
&& wd_plus_sep
!= NULL
)
21254 free (wd_plus_sep
);
21260 /* Generate a DW_AT_comp_dir attribute for DIE. */
21263 add_comp_dir_attribute (dw_die_ref die
)
21265 const char * wd
= comp_dir_string ();
21267 add_filepath_AT_string (die
, DW_AT_comp_dir
, wd
);
21270 /* Given a tree node VALUE describing a scalar attribute ATTR (i.e. a bound, a
21271 pointer computation, ...), output a representation for that bound according
21272 to the accepted FORMS (see enum dw_scalar_form) and add it to DIE. See
21273 loc_list_from_tree for the meaning of CONTEXT. */
21276 add_scalar_info (dw_die_ref die
, enum dwarf_attribute attr
, tree value
,
21277 int forms
, struct loc_descr_context
*context
)
21279 dw_die_ref context_die
, decl_die
= NULL
;
21280 dw_loc_list_ref list
;
21281 bool strip_conversions
= true;
21282 bool placeholder_seen
= false;
21284 while (strip_conversions
)
21285 switch (TREE_CODE (value
))
21292 case VIEW_CONVERT_EXPR
:
21293 value
= TREE_OPERAND (value
, 0);
21297 strip_conversions
= false;
21301 /* If possible and permitted, output the attribute as a constant. */
21302 if ((forms
& dw_scalar_form_constant
) != 0
21303 && TREE_CODE (value
) == INTEGER_CST
)
21305 unsigned int prec
= simple_type_size_in_bits (TREE_TYPE (value
));
21307 /* If HOST_WIDE_INT is big enough then represent the bound as
21308 a constant value. We need to choose a form based on
21309 whether the type is signed or unsigned. We cannot just
21310 call add_AT_unsigned if the value itself is positive
21311 (add_AT_unsigned might add the unsigned value encoded as
21312 DW_FORM_data[1248]). Some DWARF consumers will lookup the
21313 bounds type and then sign extend any unsigned values found
21314 for signed types. This is needed only for
21315 DW_AT_{lower,upper}_bound, since for most other attributes,
21316 consumers will treat DW_FORM_data[1248] as unsigned values,
21317 regardless of the underlying type. */
21318 if (prec
<= HOST_BITS_PER_WIDE_INT
21319 || tree_fits_uhwi_p (value
))
21321 if (TYPE_UNSIGNED (TREE_TYPE (value
)))
21322 add_AT_unsigned (die
, attr
, TREE_INT_CST_LOW (value
));
21324 add_AT_int (die
, attr
, TREE_INT_CST_LOW (value
));
21326 else if (dwarf_version
>= 5
21327 && TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (value
))) == 128)
21328 /* Otherwise represent the bound as an unsigned value with
21329 the precision of its type. The precision and signedness
21330 of the type will be necessary to re-interpret it
21332 add_AT_wide (die
, attr
, wi::to_wide (value
));
21335 rtx v
= immed_wide_int_const (wi::to_wide (value
),
21336 TYPE_MODE (TREE_TYPE (value
)));
21337 dw_loc_descr_ref loc
21338 = loc_descriptor (v
, TYPE_MODE (TREE_TYPE (value
)),
21339 VAR_INIT_STATUS_INITIALIZED
);
21341 add_AT_loc (die
, attr
, loc
);
21346 /* Otherwise, if it's possible and permitted too, output a reference to
21348 if ((forms
& dw_scalar_form_reference
) != 0)
21350 tree decl
= NULL_TREE
;
21352 /* Some type attributes reference an outer type. For instance, the upper
21353 bound of an array may reference an embedding record (this happens in
21355 if (TREE_CODE (value
) == COMPONENT_REF
21356 && TREE_CODE (TREE_OPERAND (value
, 0)) == PLACEHOLDER_EXPR
21357 && TREE_CODE (TREE_OPERAND (value
, 1)) == FIELD_DECL
)
21358 decl
= TREE_OPERAND (value
, 1);
21360 else if (VAR_P (value
)
21361 || TREE_CODE (value
) == PARM_DECL
21362 || TREE_CODE (value
) == RESULT_DECL
)
21365 if (decl
!= NULL_TREE
)
21367 decl_die
= lookup_decl_die (decl
);
21369 /* ??? Can this happen, or should the variable have been bound
21370 first? Probably it can, since I imagine that we try to create
21371 the types of parameters in the order in which they exist in
21372 the list, and won't have created a forward reference to a
21373 later parameter. */
21374 if (decl_die
!= NULL
)
21376 if (get_AT (decl_die
, DW_AT_location
)
21377 || get_AT (decl_die
, DW_AT_data_member_location
)
21378 || get_AT (decl_die
, DW_AT_data_bit_offset
)
21379 || get_AT (decl_die
, DW_AT_const_value
))
21381 add_AT_die_ref (die
, attr
, decl_die
);
21388 /* Last chance: try to create a stack operation procedure to evaluate the
21389 value. Do nothing if even that is not possible or permitted. */
21390 if ((forms
& dw_scalar_form_exprloc
) == 0)
21393 list
= loc_list_from_tree (value
, 2, context
);
21394 if (context
&& context
->placeholder_arg
)
21396 placeholder_seen
= context
->placeholder_seen
;
21397 context
->placeholder_seen
= false;
21399 if (list
== NULL
|| single_element_loc_list_p (list
))
21401 /* If this attribute is not a reference nor constant, it is
21402 a DWARF expression rather than location description. For that
21403 loc_list_from_tree (value, 0, &context) is needed. */
21404 dw_loc_list_ref list2
= loc_list_from_tree (value
, 0, context
);
21405 if (list2
&& single_element_loc_list_p (list2
))
21407 if (placeholder_seen
)
21409 struct dwarf_procedure_info dpi
;
21410 dpi
.fndecl
= NULL_TREE
;
21411 dpi
.args_count
= 1;
21412 if (!resolve_args_picking (list2
->expr
, 1, &dpi
))
21415 add_AT_loc (die
, attr
, list2
->expr
);
21420 /* If that failed to give a single element location list, fall back to
21421 outputting this as a reference... still if permitted. */
21423 || (forms
& dw_scalar_form_reference
) == 0
21424 || placeholder_seen
)
21429 if (current_function_decl
== 0)
21430 context_die
= comp_unit_die ();
21432 context_die
= lookup_decl_die (current_function_decl
);
21434 decl_die
= new_die (DW_TAG_variable
, context_die
, value
);
21435 add_AT_flag (decl_die
, DW_AT_artificial
, 1);
21436 add_type_attribute (decl_die
, TREE_TYPE (value
), TYPE_QUAL_CONST
, false,
21440 add_AT_location_description (decl_die
, DW_AT_location
, list
);
21441 add_AT_die_ref (die
, attr
, decl_die
);
21444 /* Return the default for DW_AT_lower_bound, or -1 if there is not any
21448 lower_bound_default (void)
21450 switch (get_AT_unsigned (comp_unit_die (), DW_AT_language
))
21456 case DW_LANG_C_plus_plus
:
21457 case DW_LANG_C_plus_plus_11
:
21458 case DW_LANG_C_plus_plus_14
:
21460 case DW_LANG_ObjC_plus_plus
:
21462 case DW_LANG_Fortran77
:
21463 case DW_LANG_Fortran90
:
21464 case DW_LANG_Fortran95
:
21465 case DW_LANG_Fortran03
:
21466 case DW_LANG_Fortran08
:
21470 case DW_LANG_Python
:
21471 return dwarf_version
>= 4 ? 0 : -1;
21472 case DW_LANG_Ada95
:
21473 case DW_LANG_Ada83
:
21474 case DW_LANG_Cobol74
:
21475 case DW_LANG_Cobol85
:
21476 case DW_LANG_Modula2
:
21478 return dwarf_version
>= 4 ? 1 : -1;
21484 /* Given a tree node describing an array bound (either lower or upper) output
21485 a representation for that bound. */
21488 add_bound_info (dw_die_ref subrange_die
, enum dwarf_attribute bound_attr
,
21489 tree bound
, struct loc_descr_context
*context
)
21494 switch (TREE_CODE (bound
))
21496 /* Strip all conversions. */
21498 case VIEW_CONVERT_EXPR
:
21499 bound
= TREE_OPERAND (bound
, 0);
21502 /* All fixed-bounds are represented by INTEGER_CST nodes. Lower bounds
21503 are even omitted when they are the default. */
21505 /* If the value for this bound is the default one, we can even omit the
21507 if (bound_attr
== DW_AT_lower_bound
21508 && tree_fits_shwi_p (bound
)
21509 && (dflt
= lower_bound_default ()) != -1
21510 && tree_to_shwi (bound
) == dflt
)
21516 /* Let GNAT encodings do the magic for self-referential bounds. */
21518 && gnat_encodings
== DWARF_GNAT_ENCODINGS_ALL
21519 && contains_placeholder_p (bound
))
21522 add_scalar_info (subrange_die
, bound_attr
, bound
,
21523 dw_scalar_form_constant
21524 | dw_scalar_form_exprloc
21525 | dw_scalar_form_reference
,
21531 /* Add subscript info to TYPE_DIE, describing an array TYPE, collapsing
21532 possibly nested array subscripts in a flat sequence if COLLAPSE_P is true.
21534 This function reuses previously set type and bound information if
21538 add_subscript_info (dw_die_ref type_die
, tree type
, bool collapse_p
)
21540 dw_die_ref child
= type_die
->die_child
;
21541 struct array_descr_info info
;
21542 int dimension_number
;
21544 if (lang_hooks
.types
.get_array_descr_info
)
21546 memset (&info
, 0, sizeof (info
));
21547 if (lang_hooks
.types
.get_array_descr_info (type
, &info
))
21548 /* Fortran sometimes emits array types with no dimension. */
21549 gcc_assert (info
.ndimensions
>= 0
21550 && info
.ndimensions
21551 <= DWARF2OUT_ARRAY_DESCR_INFO_MAX_DIMEN
);
21554 info
.ndimensions
= 0;
21556 for (dimension_number
= 0;
21557 TREE_CODE (type
) == ARRAY_TYPE
&& (dimension_number
== 0 || collapse_p
);
21558 type
= TREE_TYPE (type
), dimension_number
++)
21560 tree domain
= TYPE_DOMAIN (type
);
21562 if (TYPE_STRING_FLAG (type
) && is_fortran () && dimension_number
> 0)
21565 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
21566 and (in GNU C only) variable bounds. Handle all three forms
21569 /* Find and reuse a previously generated DW_TAG_subrange_type if
21572 For multi-dimensional arrays, as we iterate through the
21573 various dimensions in the enclosing for loop above, we also
21574 iterate through the DIE children and pick at each
21575 DW_TAG_subrange_type previously generated (if available).
21576 Each child DW_TAG_subrange_type DIE describes the range of
21577 the current dimension. At this point we should have as many
21578 DW_TAG_subrange_type's as we have dimensions in the
21580 dw_die_ref subrange_die
= NULL
;
21584 child
= child
->die_sib
;
21585 if (child
->die_tag
== DW_TAG_subrange_type
)
21586 subrange_die
= child
;
21587 if (child
== type_die
->die_child
)
21589 /* If we wrapped around, stop looking next time. */
21593 if (child
->die_tag
== DW_TAG_subrange_type
)
21597 subrange_die
= new_die (DW_TAG_subrange_type
, type_die
, NULL
);
21601 /* We have an array type with specified bounds. */
21602 tree lower
= TYPE_MIN_VALUE (domain
);
21603 tree upper
= TYPE_MAX_VALUE (domain
);
21604 tree index_type
= TREE_TYPE (domain
);
21606 if (dimension_number
<= info
.ndimensions
- 1)
21608 lower
= info
.dimen
[dimension_number
].lower_bound
;
21609 upper
= info
.dimen
[dimension_number
].upper_bound
;
21610 index_type
= info
.dimen
[dimension_number
].bounds_type
;
21613 /* Define the index type. */
21614 if (index_type
&& !get_AT (subrange_die
, DW_AT_type
))
21615 add_type_attribute (subrange_die
, index_type
, TYPE_UNQUALIFIED
,
21618 /* ??? If upper is NULL, the array has unspecified length,
21619 but it does have a lower bound. This happens with Fortran
21621 Since the debugger is definitely going to need to know N
21622 to produce useful results, go ahead and output the lower
21623 bound solo, and hope the debugger can cope. */
21625 if (lower
&& !get_AT (subrange_die
, DW_AT_lower_bound
))
21626 add_bound_info (subrange_die
, DW_AT_lower_bound
, lower
, NULL
);
21628 if (!get_AT (subrange_die
, DW_AT_upper_bound
)
21629 && !get_AT (subrange_die
, DW_AT_count
))
21632 add_bound_info (subrange_die
, DW_AT_upper_bound
, upper
, NULL
);
21633 else if ((is_c () || is_cxx ()) && COMPLETE_TYPE_P (type
))
21634 /* Zero-length array. */
21635 add_bound_info (subrange_die
, DW_AT_count
,
21636 build_int_cst (TREE_TYPE (lower
), 0), NULL
);
21640 /* Otherwise we have an array type with an unspecified length. The
21641 DWARF-2 spec does not say how to handle this; let's just leave out the
21646 /* Add a DW_AT_byte_size attribute to DIE with TREE_NODE's size. */
21649 add_byte_size_attribute (dw_die_ref die
, tree tree_node
)
21651 dw_die_ref decl_die
;
21652 HOST_WIDE_INT size
;
21654 switch (TREE_CODE (tree_node
))
21659 case ENUMERAL_TYPE
:
21662 case QUAL_UNION_TYPE
:
21663 if (TREE_CODE (TYPE_SIZE_UNIT (tree_node
)) == VAR_DECL
21664 && (decl_die
= lookup_decl_die (TYPE_SIZE_UNIT (tree_node
))))
21666 add_AT_die_ref (die
, DW_AT_byte_size
, decl_die
);
21669 size
= int_size_in_bytes (tree_node
);
21672 /* For a data member of a struct or union, the DW_AT_byte_size is
21673 generally given as the number of bytes normally allocated for an
21674 object of the *declared* type of the member itself. This is true
21675 even for bit-fields. */
21676 size
= int_size_in_bytes (field_type (tree_node
));
21679 gcc_unreachable ();
21682 /* Note that `size' might be -1 when we get to this point. If it is, that
21683 indicates that the byte size of the entity in question is variable. */
21685 add_AT_unsigned (die
, DW_AT_byte_size
, size
);
21687 /* Support for dynamically-sized objects was introduced in DWARF3. */
21688 else if (TYPE_P (tree_node
)
21689 && (dwarf_version
>= 3 || !dwarf_strict
)
21690 && gnat_encodings
!= DWARF_GNAT_ENCODINGS_ALL
)
21692 struct loc_descr_context ctx
= {
21693 const_cast<tree
> (tree_node
), /* context_type */
21694 NULL_TREE
, /* base_decl */
21696 false, /* placeholder_arg */
21697 false, /* placeholder_seen */
21698 false /* strict_signedness */
21701 tree tree_size
= TYPE_SIZE_UNIT (TYPE_MAIN_VARIANT (tree_node
));
21702 add_scalar_info (die
, DW_AT_byte_size
, tree_size
,
21703 dw_scalar_form_constant
21704 | dw_scalar_form_exprloc
21705 | dw_scalar_form_reference
,
21710 /* Add a DW_AT_alignment attribute to DIE with TREE_NODE's non-default
21714 add_alignment_attribute (dw_die_ref die
, tree tree_node
)
21716 if (dwarf_version
< 5 && dwarf_strict
)
21721 if (DECL_P (tree_node
))
21723 if (!DECL_USER_ALIGN (tree_node
))
21726 align
= DECL_ALIGN_UNIT (tree_node
);
21728 else if (TYPE_P (tree_node
))
21730 if (!TYPE_USER_ALIGN (tree_node
))
21733 align
= TYPE_ALIGN_UNIT (tree_node
);
21736 gcc_unreachable ();
21738 add_AT_unsigned (die
, DW_AT_alignment
, align
);
21741 /* For a FIELD_DECL node which represents a bit-field, output an attribute
21742 which specifies the distance in bits from the highest order bit of the
21743 "containing object" for the bit-field to the highest order bit of the
21746 For any given bit-field, the "containing object" is a hypothetical object
21747 (of some integral or enum type) within which the given bit-field lives. The
21748 type of this hypothetical "containing object" is always the same as the
21749 declared type of the individual bit-field itself. The determination of the
21750 exact location of the "containing object" for a bit-field is rather
21751 complicated. It's handled by the `field_byte_offset' function (above).
21753 Note that it is the size (in bytes) of the hypothetical "containing object"
21754 which will be given in the DW_AT_byte_size attribute for this bit-field.
21755 (See `byte_size_attribute' above). */
21758 add_bit_offset_attribute (dw_die_ref die
, tree decl
)
21760 HOST_WIDE_INT object_offset_in_bytes
;
21761 tree original_type
= DECL_BIT_FIELD_TYPE (decl
);
21762 HOST_WIDE_INT bitpos_int
;
21763 HOST_WIDE_INT highest_order_object_bit_offset
;
21764 HOST_WIDE_INT highest_order_field_bit_offset
;
21765 HOST_WIDE_INT bit_offset
;
21767 /* The containing object is within the DECL_CONTEXT. */
21768 struct vlr_context ctx
= { DECL_CONTEXT (decl
), NULL_TREE
};
21770 field_byte_offset (decl
, &ctx
, &object_offset_in_bytes
);
21772 /* Must be a field and a bit field. */
21773 gcc_assert (original_type
&& TREE_CODE (decl
) == FIELD_DECL
);
21775 /* We can't yet handle bit-fields whose offsets are variable, so if we
21776 encounter such things, just return without generating any attribute
21777 whatsoever. Likewise for variable or too large size. */
21778 if (! tree_fits_shwi_p (bit_position (decl
))
21779 || ! tree_fits_uhwi_p (DECL_SIZE (decl
)))
21782 bitpos_int
= int_bit_position (decl
);
21784 /* Note that the bit offset is always the distance (in bits) from the
21785 highest-order bit of the "containing object" to the highest-order bit of
21786 the bit-field itself. Since the "high-order end" of any object or field
21787 is different on big-endian and little-endian machines, the computation
21788 below must take account of these differences. */
21789 highest_order_object_bit_offset
= object_offset_in_bytes
* BITS_PER_UNIT
;
21790 highest_order_field_bit_offset
= bitpos_int
;
21792 if (! BYTES_BIG_ENDIAN
)
21794 highest_order_field_bit_offset
+= tree_to_shwi (DECL_SIZE (decl
));
21795 highest_order_object_bit_offset
+=
21796 simple_type_size_in_bits (original_type
);
21800 = (! BYTES_BIG_ENDIAN
21801 ? highest_order_object_bit_offset
- highest_order_field_bit_offset
21802 : highest_order_field_bit_offset
- highest_order_object_bit_offset
);
21804 if (bit_offset
< 0)
21805 add_AT_int (die
, DW_AT_bit_offset
, bit_offset
);
21807 add_AT_unsigned (die
, DW_AT_bit_offset
, (unsigned HOST_WIDE_INT
) bit_offset
);
21810 /* For a FIELD_DECL node which represents a bit field, output an attribute
21811 which specifies the length in bits of the given field. */
21814 add_bit_size_attribute (dw_die_ref die
, tree decl
)
21816 /* Must be a field and a bit field. */
21817 gcc_assert (TREE_CODE (decl
) == FIELD_DECL
21818 && DECL_BIT_FIELD_TYPE (decl
));
21820 if (tree_fits_uhwi_p (DECL_SIZE (decl
)))
21821 add_AT_unsigned (die
, DW_AT_bit_size
, tree_to_uhwi (DECL_SIZE (decl
)));
21824 /* If the compiled language is ANSI C, then add a 'prototyped'
21825 attribute, if arg types are given for the parameters of a function. */
21828 add_prototyped_attribute (dw_die_ref die
, tree func_type
)
21830 switch (get_AT_unsigned (comp_unit_die (), DW_AT_language
))
21837 if (prototype_p (func_type
))
21838 add_AT_flag (die
, DW_AT_prototyped
, 1);
21845 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
21846 by looking in the type declaration, the object declaration equate table or
21847 the block mapping. */
21850 add_abstract_origin_attribute (dw_die_ref die
, tree origin
)
21852 dw_die_ref origin_die
= NULL
;
21854 /* For late LTO debug output we want to refer directly to the abstract
21855 DIE in the early debug rather to the possibly existing concrete
21856 instance and avoid creating that just for this purpose. */
21857 sym_off_pair
*desc
;
21859 && external_die_map
21860 && (desc
= external_die_map
->get (origin
)))
21862 add_AT_external_die_ref (die
, DW_AT_abstract_origin
,
21863 desc
->sym
, desc
->off
);
21867 if (DECL_P (origin
))
21868 origin_die
= lookup_decl_die (origin
);
21869 else if (TYPE_P (origin
))
21870 origin_die
= lookup_type_die (origin
);
21871 else if (TREE_CODE (origin
) == BLOCK
)
21872 origin_die
= lookup_block_die (origin
);
21874 /* XXX: Functions that are never lowered don't always have correct block
21875 trees (in the case of java, they simply have no block tree, in some other
21876 languages). For these functions, there is nothing we can really do to
21877 output correct debug info for inlined functions in all cases. Rather
21878 than die, we'll just produce deficient debug info now, in that we will
21879 have variables without a proper abstract origin. In the future, when all
21880 functions are lowered, we should re-add a gcc_assert (origin_die)
21886 /* Like above, if we already created a concrete instance DIE
21887 do not use that for the abstract origin but the early DIE
21890 && (a
= get_AT (origin_die
, DW_AT_abstract_origin
)))
21891 origin_die
= AT_ref (a
);
21892 add_AT_die_ref (die
, DW_AT_abstract_origin
, origin_die
);
21896 /* We do not currently support the pure_virtual attribute. */
21899 add_pure_or_virtual_attribute (dw_die_ref die
, tree func_decl
)
21901 if (DECL_VINDEX (func_decl
))
21903 add_AT_unsigned (die
, DW_AT_virtuality
, DW_VIRTUALITY_virtual
);
21905 if (tree_fits_shwi_p (DECL_VINDEX (func_decl
)))
21906 add_AT_loc (die
, DW_AT_vtable_elem_location
,
21907 new_loc_descr (DW_OP_constu
,
21908 tree_to_shwi (DECL_VINDEX (func_decl
)),
21911 /* GNU extension: Record what type this method came from originally. */
21912 if (debug_info_level
> DINFO_LEVEL_TERSE
21913 && DECL_CONTEXT (func_decl
))
21914 add_AT_die_ref (die
, DW_AT_containing_type
,
21915 lookup_type_die (DECL_CONTEXT (func_decl
)));
21919 /* Add a DW_AT_linkage_name or DW_AT_MIPS_linkage_name attribute for the
21920 given decl. This used to be a vendor extension until after DWARF 4
21921 standardized it. */
21924 add_linkage_attr (dw_die_ref die
, tree decl
)
21926 const char *name
= IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl
));
21928 /* Mimic what assemble_name_raw does with a leading '*'. */
21929 if (name
[0] == '*')
21932 if (dwarf_version
>= 4)
21933 add_AT_string (die
, DW_AT_linkage_name
, name
);
21935 add_AT_string (die
, DW_AT_MIPS_linkage_name
, name
);
21938 /* Add source coordinate attributes for the given decl. */
21941 add_src_coords_attributes (dw_die_ref die
, tree decl
)
21943 expanded_location s
;
21945 if (LOCATION_LOCUS (DECL_SOURCE_LOCATION (decl
)) == UNKNOWN_LOCATION
)
21947 s
= expand_location (DECL_SOURCE_LOCATION (decl
));
21948 add_AT_file (die
, DW_AT_decl_file
, lookup_filename (s
.file
));
21949 add_AT_unsigned (die
, DW_AT_decl_line
, s
.line
);
21950 if (debug_column_info
&& s
.column
)
21951 add_AT_unsigned (die
, DW_AT_decl_column
, s
.column
);
21954 /* Add DW_AT_{,MIPS_}linkage_name attribute for the given decl. */
21957 add_linkage_name_raw (dw_die_ref die
, tree decl
)
21959 /* Defer until we have an assembler name set. */
21960 if (!DECL_ASSEMBLER_NAME_SET_P (decl
))
21962 limbo_die_node
*asm_name
;
21964 asm_name
= ggc_cleared_alloc
<limbo_die_node
> ();
21965 asm_name
->die
= die
;
21966 asm_name
->created_for
= decl
;
21967 asm_name
->next
= deferred_asm_name
;
21968 deferred_asm_name
= asm_name
;
21970 else if (DECL_ASSEMBLER_NAME (decl
) != DECL_NAME (decl
))
21971 add_linkage_attr (die
, decl
);
21974 /* Add DW_AT_{,MIPS_}linkage_name attribute for the given decl if desired. */
21977 add_linkage_name (dw_die_ref die
, tree decl
)
21979 if (debug_info_level
> DINFO_LEVEL_NONE
21980 && VAR_OR_FUNCTION_DECL_P (decl
)
21981 && TREE_PUBLIC (decl
)
21982 && !(VAR_P (decl
) && DECL_REGISTER (decl
))
21983 && die
->die_tag
!= DW_TAG_member
)
21984 add_linkage_name_raw (die
, decl
);
21987 /* Add a DW_AT_name attribute and source coordinate attribute for the
21988 given decl, but only if it actually has a name. */
21991 add_name_and_src_coords_attributes (dw_die_ref die
, tree decl
,
21992 bool no_linkage_name
)
21996 decl_name
= DECL_NAME (decl
);
21997 if (decl_name
!= NULL
&& IDENTIFIER_POINTER (decl_name
) != NULL
)
21999 const char *name
= dwarf2_name (decl
, 0);
22001 add_name_attribute (die
, name
);
22003 add_desc_attribute (die
, decl
);
22005 if (! DECL_ARTIFICIAL (decl
))
22006 add_src_coords_attributes (die
, decl
);
22008 if (!no_linkage_name
)
22009 add_linkage_name (die
, decl
);
22012 add_desc_attribute (die
, decl
);
22014 #ifdef VMS_DEBUGGING_INFO
22015 /* Get the function's name, as described by its RTL. This may be different
22016 from the DECL_NAME name used in the source file. */
22017 if (TREE_CODE (decl
) == FUNCTION_DECL
&& TREE_ASM_WRITTEN (decl
))
22019 add_AT_addr (die
, DW_AT_VMS_rtnbeg_pd_address
,
22020 XEXP (DECL_RTL (decl
), 0), false);
22021 vec_safe_push (used_rtx_array
, XEXP (DECL_RTL (decl
), 0));
22023 #endif /* VMS_DEBUGGING_INFO */
22026 /* Add VALUE as a DW_AT_discr_value attribute to DIE. */
22029 add_discr_value (dw_die_ref die
, dw_discr_value
*value
)
22033 attr
.dw_attr
= DW_AT_discr_value
;
22034 attr
.dw_attr_val
.val_class
= dw_val_class_discr_value
;
22035 attr
.dw_attr_val
.val_entry
= NULL
;
22036 attr
.dw_attr_val
.v
.val_discr_value
.pos
= value
->pos
;
22038 attr
.dw_attr_val
.v
.val_discr_value
.v
.uval
= value
->v
.uval
;
22040 attr
.dw_attr_val
.v
.val_discr_value
.v
.sval
= value
->v
.sval
;
22041 add_dwarf_attr (die
, &attr
);
22044 /* Add DISCR_LIST as a DW_AT_discr_list to DIE. */
22047 add_discr_list (dw_die_ref die
, dw_discr_list_ref discr_list
)
22051 attr
.dw_attr
= DW_AT_discr_list
;
22052 attr
.dw_attr_val
.val_class
= dw_val_class_discr_list
;
22053 attr
.dw_attr_val
.val_entry
= NULL
;
22054 attr
.dw_attr_val
.v
.val_discr_list
= discr_list
;
22055 add_dwarf_attr (die
, &attr
);
22058 static inline dw_discr_list_ref
22059 AT_discr_list (dw_attr_node
*attr
)
22061 return attr
->dw_attr_val
.v
.val_discr_list
;
22064 #ifdef VMS_DEBUGGING_INFO
22065 /* Output the debug main pointer die for VMS */
22068 dwarf2out_vms_debug_main_pointer (void)
22070 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
22073 /* Allocate the VMS debug main subprogram die. */
22074 die
= new_die_raw (DW_TAG_subprogram
);
22075 add_name_attribute (die
, VMS_DEBUG_MAIN_POINTER
);
22076 ASM_GENERATE_INTERNAL_LABEL (label
, PROLOGUE_END_LABEL
,
22077 current_function_funcdef_no
);
22078 add_AT_lbl_id (die
, DW_AT_entry_pc
, label
);
22080 /* Make it the first child of comp_unit_die (). */
22081 die
->die_parent
= comp_unit_die ();
22082 if (comp_unit_die ()->die_child
)
22084 die
->die_sib
= comp_unit_die ()->die_child
->die_sib
;
22085 comp_unit_die ()->die_child
->die_sib
= die
;
22089 die
->die_sib
= die
;
22090 comp_unit_die ()->die_child
= die
;
22093 #endif /* VMS_DEBUGGING_INFO */
22095 /* walk_tree helper function for uses_local_type, below. */
22098 uses_local_type_r (tree
*tp
, int *walk_subtrees
, void *data ATTRIBUTE_UNUSED
)
22101 *walk_subtrees
= 0;
22104 tree name
= TYPE_NAME (*tp
);
22105 if (name
&& DECL_P (name
) && decl_function_context (name
))
22111 /* If TYPE involves a function-local type (including a local typedef to a
22112 non-local type), returns that type; otherwise returns NULL_TREE. */
22115 uses_local_type (tree type
)
22117 tree used
= walk_tree_without_duplicates (&type
, uses_local_type_r
, NULL
);
22121 /* Return the DIE for the scope that immediately contains this type.
22122 Non-named types that do not involve a function-local type get global
22123 scope. Named types nested in namespaces or other types get their
22124 containing scope. All other types (i.e. function-local named types) get
22125 the current active scope. */
22128 scope_die_for (tree t
, dw_die_ref context_die
)
22130 dw_die_ref scope_die
= NULL
;
22131 tree containing_scope
;
22133 /* Non-types always go in the current scope. */
22134 gcc_assert (TYPE_P (t
));
22136 /* Use the scope of the typedef, rather than the scope of the type
22138 if (TYPE_NAME (t
) && DECL_P (TYPE_NAME (t
)))
22139 containing_scope
= DECL_CONTEXT (TYPE_NAME (t
));
22141 containing_scope
= TYPE_CONTEXT (t
);
22143 /* Use the containing namespace if there is one. */
22144 if (containing_scope
&& TREE_CODE (containing_scope
) == NAMESPACE_DECL
)
22146 if (context_die
== lookup_decl_die (containing_scope
))
22148 else if (debug_info_level
> DINFO_LEVEL_TERSE
)
22149 context_die
= get_context_die (containing_scope
);
22151 containing_scope
= NULL_TREE
;
22154 /* Ignore function type "scopes" from the C frontend. They mean that
22155 a tagged type is local to a parmlist of a function declarator, but
22156 that isn't useful to DWARF. */
22157 if (containing_scope
&& TREE_CODE (containing_scope
) == FUNCTION_TYPE
)
22158 containing_scope
= NULL_TREE
;
22160 if (SCOPE_FILE_SCOPE_P (containing_scope
))
22162 /* If T uses a local type keep it local as well, to avoid references
22163 to function-local DIEs from outside the function. */
22164 if (current_function_decl
&& uses_local_type (t
))
22165 scope_die
= context_die
;
22167 scope_die
= comp_unit_die ();
22169 else if (TYPE_P (containing_scope
))
22171 /* For types, we can just look up the appropriate DIE. */
22172 if (debug_info_level
> DINFO_LEVEL_TERSE
)
22173 scope_die
= get_context_die (containing_scope
);
22176 scope_die
= lookup_type_die_strip_naming_typedef (containing_scope
);
22177 if (scope_die
== NULL
)
22178 scope_die
= comp_unit_die ();
22182 scope_die
= context_die
;
22187 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
22190 local_scope_p (dw_die_ref context_die
)
22192 for (; context_die
; context_die
= context_die
->die_parent
)
22193 if (context_die
->die_tag
== DW_TAG_inlined_subroutine
22194 || context_die
->die_tag
== DW_TAG_subprogram
)
22200 /* Returns nonzero if CONTEXT_DIE is a class. */
22203 class_scope_p (dw_die_ref context_die
)
22205 return (context_die
22206 && (context_die
->die_tag
== DW_TAG_structure_type
22207 || context_die
->die_tag
== DW_TAG_class_type
22208 || context_die
->die_tag
== DW_TAG_interface_type
22209 || context_die
->die_tag
== DW_TAG_union_type
));
22212 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
22213 whether or not to treat a DIE in this context as a declaration. */
22216 class_or_namespace_scope_p (dw_die_ref context_die
)
22218 return (class_scope_p (context_die
)
22219 || (context_die
&& context_die
->die_tag
== DW_TAG_namespace
));
22222 /* Many forms of DIEs require a "type description" attribute. This
22223 routine locates the proper "type descriptor" die for the type given
22224 by 'type' plus any additional qualifiers given by 'cv_quals', and
22225 adds a DW_AT_type attribute below the given die. */
22228 add_type_attribute (dw_die_ref object_die
, tree type
, int cv_quals
,
22229 bool reverse
, dw_die_ref context_die
)
22231 enum tree_code code
= TREE_CODE (type
);
22232 dw_die_ref type_die
= NULL
;
22234 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
22237 /* ??? If this type is an unnamed subrange type of an integral, floating-point
22238 or fixed-point type, use the inner type. This is because we have no
22239 support for unnamed types in base_type_die. This can happen if this is
22240 an Ada subrange type. Correct solution is emit a subrange type die. */
22241 if ((code
== INTEGER_TYPE
|| code
== REAL_TYPE
|| code
== FIXED_POINT_TYPE
)
22242 && TREE_TYPE (type
) != 0 && TYPE_NAME (type
) == 0)
22243 type
= TREE_TYPE (type
), code
= TREE_CODE (type
);
22245 if (code
== ERROR_MARK
22246 /* Handle a special case. For functions whose return type is void, we
22247 generate *no* type attribute. (Note that no object may have type
22248 `void', so this only applies to function return types). */
22249 || code
== VOID_TYPE
)
22252 type_die
= modified_type_die (type
,
22253 cv_quals
| TYPE_QUALS (type
),
22257 if (type_die
!= NULL
)
22258 add_AT_die_ref (object_die
, DW_AT_type
, type_die
);
22261 /* Given an object die, add the calling convention attribute for the
22262 function call type. */
22264 add_calling_convention_attribute (dw_die_ref subr_die
, tree decl
)
22266 enum dwarf_calling_convention value
= DW_CC_normal
;
22268 value
= ((enum dwarf_calling_convention
)
22269 targetm
.dwarf_calling_convention (TREE_TYPE (decl
)));
22272 && id_equal (DECL_ASSEMBLER_NAME (decl
), "MAIN__"))
22274 /* DWARF 2 doesn't provide a way to identify a program's source-level
22275 entry point. DW_AT_calling_convention attributes are only meant
22276 to describe functions' calling conventions. However, lacking a
22277 better way to signal the Fortran main program, we used this for
22278 a long time, following existing custom. Now, DWARF 4 has
22279 DW_AT_main_subprogram, which we add below, but some tools still
22280 rely on the old way, which we thus keep. */
22281 value
= DW_CC_program
;
22283 if (dwarf_version
>= 4 || !dwarf_strict
)
22284 add_AT_flag (subr_die
, DW_AT_main_subprogram
, 1);
22287 /* Only add the attribute if the backend requests it, and
22288 is not DW_CC_normal. */
22289 if (value
&& (value
!= DW_CC_normal
))
22290 add_AT_unsigned (subr_die
, DW_AT_calling_convention
, value
);
22293 /* Given a tree pointer to a struct, class, union, or enum type node, return
22294 a pointer to the (string) tag name for the given type, or zero if the type
22295 was declared without a tag. */
22297 static const char *
22298 type_tag (const_tree type
)
22300 const char *name
= 0;
22302 if (TYPE_NAME (type
) != 0)
22306 /* Find the IDENTIFIER_NODE for the type name. */
22307 if (TREE_CODE (TYPE_NAME (type
)) == IDENTIFIER_NODE
22308 && !TYPE_NAMELESS (type
))
22309 t
= TYPE_NAME (type
);
22311 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
22312 a TYPE_DECL node, regardless of whether or not a `typedef' was
22314 else if (TREE_CODE (TYPE_NAME (type
)) == TYPE_DECL
22315 && ! DECL_IGNORED_P (TYPE_NAME (type
)))
22317 /* We want to be extra verbose. Don't call dwarf_name if
22318 DECL_NAME isn't set. The default hook for decl_printable_name
22319 doesn't like that, and in this context it's correct to return
22320 0, instead of "<anonymous>" or the like. */
22321 if (DECL_NAME (TYPE_NAME (type
))
22322 && !DECL_NAMELESS (TYPE_NAME (type
)))
22323 name
= lang_hooks
.dwarf_name (TYPE_NAME (type
), 2);
22326 /* Now get the name as a string, or invent one. */
22327 if (!name
&& t
!= 0)
22328 name
= IDENTIFIER_POINTER (t
);
22331 return (name
== 0 || *name
== '\0') ? 0 : name
;
22334 /* Return the type associated with a data member, make a special check
22335 for bit field types. */
22338 member_declared_type (const_tree member
)
22340 return (DECL_BIT_FIELD_TYPE (member
)
22341 ? DECL_BIT_FIELD_TYPE (member
) : TREE_TYPE (member
));
22344 /* Get the decl's label, as described by its RTL. This may be different
22345 from the DECL_NAME name used in the source file. */
22348 static const char *
22349 decl_start_label (tree decl
)
22352 const char *fnname
;
22354 x
= DECL_RTL (decl
);
22355 gcc_assert (MEM_P (x
));
22358 gcc_assert (GET_CODE (x
) == SYMBOL_REF
);
22360 fnname
= XSTR (x
, 0);
22365 /* For variable-length arrays that have been previously generated, but
22366 may be incomplete due to missing subscript info, fill the subscript
22367 info. Return TRUE if this is one of those cases. */
22370 fill_variable_array_bounds (tree type
)
22372 if (TREE_ASM_WRITTEN (type
)
22373 && TREE_CODE (type
) == ARRAY_TYPE
22374 && variably_modified_type_p (type
, NULL
))
22376 dw_die_ref array_die
= lookup_type_die (type
);
22379 add_subscript_info (array_die
, type
, !is_ada ());
22385 /* These routines generate the internal representation of the DIE's for
22386 the compilation unit. Debugging information is collected by walking
22387 the declaration trees passed in from dwarf2out_decl(). */
22390 gen_array_type_die (tree type
, dw_die_ref context_die
)
22392 dw_die_ref array_die
;
22394 /* GNU compilers represent multidimensional array types as sequences of one
22395 dimensional array types whose element types are themselves array types.
22396 We sometimes squish that down to a single array_type DIE with multiple
22397 subscripts in the Dwarf debugging info. The draft Dwarf specification
22398 say that we are allowed to do this kind of compression in C, because
22399 there is no difference between an array of arrays and a multidimensional
22400 array. We don't do this for Ada to remain as close as possible to the
22401 actual representation, which is especially important against the language
22402 flexibilty wrt arrays of variable size. */
22404 bool collapse_nested_arrays
= !is_ada ();
22406 if (fill_variable_array_bounds (type
))
22409 dw_die_ref scope_die
= scope_die_for (type
, context_die
);
22412 /* Emit DW_TAG_string_type for Fortran character types (with kind 1 only, as
22413 DW_TAG_string_type doesn't have DW_AT_type attribute). */
22414 if (TREE_CODE (type
) == ARRAY_TYPE
22415 && TYPE_STRING_FLAG (type
)
22417 && TYPE_MODE (TREE_TYPE (type
)) == TYPE_MODE (char_type_node
))
22419 HOST_WIDE_INT size
;
22421 array_die
= new_die (DW_TAG_string_type
, scope_die
, type
);
22422 add_name_attribute (array_die
, type_tag (type
));
22423 equate_type_number_to_die (type
, array_die
);
22424 size
= int_size_in_bytes (type
);
22426 add_AT_unsigned (array_die
, DW_AT_byte_size
, size
);
22427 /* ??? We can't annotate types late, but for LTO we may not
22428 generate a location early either (gfortran.dg/save_6.f90). */
22429 else if (! (early_dwarf
&& (flag_generate_lto
|| flag_generate_offload
))
22430 && TYPE_DOMAIN (type
) != NULL_TREE
22431 && TYPE_MAX_VALUE (TYPE_DOMAIN (type
)) != NULL_TREE
)
22433 tree szdecl
= TYPE_MAX_VALUE (TYPE_DOMAIN (type
));
22434 tree rszdecl
= szdecl
;
22436 size
= int_size_in_bytes (TREE_TYPE (szdecl
));
22437 if (!DECL_P (szdecl
))
22439 if (TREE_CODE (szdecl
) == INDIRECT_REF
22440 && DECL_P (TREE_OPERAND (szdecl
, 0)))
22442 rszdecl
= TREE_OPERAND (szdecl
, 0);
22443 if (int_size_in_bytes (TREE_TYPE (rszdecl
))
22444 != DWARF2_ADDR_SIZE
)
22452 dw_loc_list_ref loc
22453 = loc_list_from_tree (rszdecl
, szdecl
== rszdecl
? 2 : 0,
22457 add_AT_location_description (array_die
, DW_AT_string_length
,
22459 if (size
!= DWARF2_ADDR_SIZE
)
22460 add_AT_unsigned (array_die
, dwarf_version
>= 5
22461 ? DW_AT_string_length_byte_size
22462 : DW_AT_byte_size
, size
);
22469 array_die
= new_die (DW_TAG_array_type
, scope_die
, type
);
22470 add_name_attribute (array_die
, type_tag (type
));
22471 equate_type_number_to_die (type
, array_die
);
22473 if (TREE_CODE (type
) == VECTOR_TYPE
)
22474 add_AT_flag (array_die
, DW_AT_GNU_vector
, 1);
22476 /* For Fortran multidimensional arrays use DW_ORD_col_major ordering. */
22478 && TREE_CODE (type
) == ARRAY_TYPE
22479 && TREE_CODE (TREE_TYPE (type
)) == ARRAY_TYPE
22480 && !TYPE_STRING_FLAG (TREE_TYPE (type
)))
22481 add_AT_unsigned (array_die
, DW_AT_ordering
, DW_ORD_col_major
);
22484 /* We default the array ordering. Debuggers will probably do the right
22485 things even if DW_AT_ordering is not present. It's not even an issue
22486 until we start to get into multidimensional arrays anyway. If a debugger
22487 is ever caught doing the Wrong Thing for multi-dimensional arrays,
22488 then we'll have to put the DW_AT_ordering attribute back in. (But if
22489 and when we find out that we need to put these in, we will only do so
22490 for multidimensional arrays. */
22491 add_AT_unsigned (array_die
, DW_AT_ordering
, DW_ORD_row_major
);
22494 if (TREE_CODE (type
) == VECTOR_TYPE
)
22496 /* For VECTOR_TYPEs we use an array die with appropriate bounds. */
22497 dw_die_ref subrange_die
= new_die (DW_TAG_subrange_type
, array_die
, NULL
);
22498 add_bound_info (subrange_die
, DW_AT_lower_bound
, size_zero_node
, NULL
);
22499 add_bound_info (subrange_die
, DW_AT_upper_bound
,
22500 size_int (TYPE_VECTOR_SUBPARTS (type
) - 1), NULL
);
22503 add_subscript_info (array_die
, type
, collapse_nested_arrays
);
22505 /* Add representation of the type of the elements of this array type and
22506 emit the corresponding DIE if we haven't done it already. */
22507 element_type
= TREE_TYPE (type
);
22508 if (collapse_nested_arrays
)
22509 while (TREE_CODE (element_type
) == ARRAY_TYPE
)
22511 if (TYPE_STRING_FLAG (element_type
) && is_fortran ())
22513 element_type
= TREE_TYPE (element_type
);
22516 add_type_attribute (array_die
, element_type
, TYPE_UNQUALIFIED
,
22517 TREE_CODE (type
) == ARRAY_TYPE
22518 && TYPE_REVERSE_STORAGE_ORDER (type
),
22521 add_gnat_descriptive_type_attribute (array_die
, type
, context_die
);
22522 if (TYPE_ARTIFICIAL (type
))
22523 add_AT_flag (array_die
, DW_AT_artificial
, 1);
22525 if (get_AT (array_die
, DW_AT_name
))
22526 add_pubtype (type
, array_die
);
22528 add_alignment_attribute (array_die
, type
);
22531 /* This routine generates DIE for array with hidden descriptor, details
22532 are filled into *info by a langhook. */
22535 gen_descr_array_type_die (tree type
, struct array_descr_info
*info
,
22536 dw_die_ref context_die
)
22538 const dw_die_ref scope_die
= scope_die_for (type
, context_die
);
22539 const dw_die_ref array_die
= new_die (DW_TAG_array_type
, scope_die
, type
);
22540 struct loc_descr_context context
= {
22541 type
, /* context_type */
22542 info
->base_decl
, /* base_decl */
22544 false, /* placeholder_arg */
22545 false, /* placeholder_seen */
22546 false /* strict_signedness */
22548 enum dwarf_tag subrange_tag
= DW_TAG_subrange_type
;
22551 add_name_attribute (array_die
, type_tag (type
));
22552 equate_type_number_to_die (type
, array_die
);
22554 if (info
->ndimensions
> 1)
22555 switch (info
->ordering
)
22557 case array_descr_ordering_row_major
:
22558 add_AT_unsigned (array_die
, DW_AT_ordering
, DW_ORD_row_major
);
22560 case array_descr_ordering_column_major
:
22561 add_AT_unsigned (array_die
, DW_AT_ordering
, DW_ORD_col_major
);
22567 if (dwarf_version
>= 3 || !dwarf_strict
)
22569 if (info
->data_location
)
22570 add_scalar_info (array_die
, DW_AT_data_location
, info
->data_location
,
22571 dw_scalar_form_exprloc
, &context
);
22572 if (info
->associated
)
22573 add_scalar_info (array_die
, DW_AT_associated
, info
->associated
,
22574 dw_scalar_form_constant
22575 | dw_scalar_form_exprloc
22576 | dw_scalar_form_reference
, &context
);
22577 if (info
->allocated
)
22578 add_scalar_info (array_die
, DW_AT_allocated
, info
->allocated
,
22579 dw_scalar_form_constant
22580 | dw_scalar_form_exprloc
22581 | dw_scalar_form_reference
, &context
);
22584 const enum dwarf_attribute attr
22585 = (info
->stride_in_bits
) ? DW_AT_bit_stride
: DW_AT_byte_stride
;
22587 = (info
->stride_in_bits
)
22588 ? dw_scalar_form_constant
22589 : (dw_scalar_form_constant
22590 | dw_scalar_form_exprloc
22591 | dw_scalar_form_reference
);
22593 add_scalar_info (array_die
, attr
, info
->stride
, forms
, &context
);
22596 if (dwarf_version
>= 5)
22600 add_scalar_info (array_die
, DW_AT_rank
, info
->rank
,
22601 dw_scalar_form_constant
22602 | dw_scalar_form_exprloc
, &context
);
22603 subrange_tag
= DW_TAG_generic_subrange
;
22604 context
.placeholder_arg
= true;
22608 add_gnat_descriptive_type_attribute (array_die
, type
, context_die
);
22610 for (dim
= 0; dim
< info
->ndimensions
; dim
++)
22612 dw_die_ref subrange_die
= new_die (subrange_tag
, array_die
, NULL
);
22614 if (info
->dimen
[dim
].bounds_type
)
22615 add_type_attribute (subrange_die
,
22616 info
->dimen
[dim
].bounds_type
, TYPE_UNQUALIFIED
,
22617 false, context_die
);
22618 if (info
->dimen
[dim
].lower_bound
)
22619 add_bound_info (subrange_die
, DW_AT_lower_bound
,
22620 info
->dimen
[dim
].lower_bound
, &context
);
22621 if (info
->dimen
[dim
].upper_bound
)
22622 add_bound_info (subrange_die
, DW_AT_upper_bound
,
22623 info
->dimen
[dim
].upper_bound
, &context
);
22624 if ((dwarf_version
>= 3 || !dwarf_strict
) && info
->dimen
[dim
].stride
)
22625 add_scalar_info (subrange_die
, DW_AT_byte_stride
,
22626 info
->dimen
[dim
].stride
,
22627 dw_scalar_form_constant
22628 | dw_scalar_form_exprloc
22629 | dw_scalar_form_reference
,
22633 gen_type_die (info
->element_type
, context_die
);
22634 add_type_attribute (array_die
, info
->element_type
, TYPE_UNQUALIFIED
,
22635 TREE_CODE (type
) == ARRAY_TYPE
22636 && TYPE_REVERSE_STORAGE_ORDER (type
),
22639 if (get_AT (array_die
, DW_AT_name
))
22640 add_pubtype (type
, array_die
);
22642 add_alignment_attribute (array_die
, type
);
22647 gen_entry_point_die (tree decl
, dw_die_ref context_die
)
22649 tree origin
= decl_ultimate_origin (decl
);
22650 dw_die_ref decl_die
= new_die (DW_TAG_entry_point
, context_die
, decl
);
22652 if (origin
!= NULL
)
22653 add_abstract_origin_attribute (decl_die
, origin
);
22656 add_name_and_src_coords_attributes (decl_die
, decl
);
22657 add_type_attribute (decl_die
, TREE_TYPE (TREE_TYPE (decl
)),
22658 TYPE_UNQUALIFIED
, false, context_die
);
22661 if (DECL_ABSTRACT_P (decl
))
22662 equate_decl_number_to_die (decl
, decl_die
);
22664 add_AT_lbl_id (decl_die
, DW_AT_low_pc
, decl_start_label (decl
));
22668 /* Walk through the list of incomplete types again, trying once more to
22669 emit full debugging info for them. */
22672 retry_incomplete_types (void)
22677 for (i
= vec_safe_length (incomplete_types
) - 1; i
>= 0; i
--)
22678 if (should_emit_struct_debug ((*incomplete_types
)[i
], DINFO_USAGE_DIR_USE
))
22679 gen_type_die ((*incomplete_types
)[i
], comp_unit_die ());
22680 vec_safe_truncate (incomplete_types
, 0);
22683 /* Determine what tag to use for a record type. */
22685 static enum dwarf_tag
22686 record_type_tag (tree type
)
22688 if (! lang_hooks
.types
.classify_record
)
22689 return DW_TAG_structure_type
;
22691 switch (lang_hooks
.types
.classify_record (type
))
22693 case RECORD_IS_STRUCT
:
22694 return DW_TAG_structure_type
;
22696 case RECORD_IS_CLASS
:
22697 return DW_TAG_class_type
;
22699 case RECORD_IS_INTERFACE
:
22700 if (dwarf_version
>= 3 || !dwarf_strict
)
22701 return DW_TAG_interface_type
;
22702 return DW_TAG_structure_type
;
22705 gcc_unreachable ();
22709 /* Generate a DIE to represent an enumeration type. Note that these DIEs
22710 include all of the information about the enumeration values also. Each
22711 enumerated type name/value is listed as a child of the enumerated type
22715 gen_enumeration_type_die (tree type
, dw_die_ref context_die
)
22717 dw_die_ref type_die
= lookup_type_die (type
);
22718 dw_die_ref orig_type_die
= type_die
;
22720 if (type_die
== NULL
)
22722 type_die
= new_die (DW_TAG_enumeration_type
,
22723 scope_die_for (type
, context_die
), type
);
22724 equate_type_number_to_die (type
, type_die
);
22725 add_name_attribute (type_die
, type_tag (type
));
22726 if ((dwarf_version
>= 4 || !dwarf_strict
)
22727 && ENUM_IS_SCOPED (type
))
22728 add_AT_flag (type_die
, DW_AT_enum_class
, 1);
22729 if (ENUM_IS_OPAQUE (type
) && TYPE_SIZE (type
))
22730 add_AT_flag (type_die
, DW_AT_declaration
, 1);
22732 add_AT_unsigned (type_die
, DW_AT_encoding
,
22733 TYPE_UNSIGNED (type
)
22737 else if (! TYPE_SIZE (type
) || ENUM_IS_OPAQUE (type
))
22740 remove_AT (type_die
, DW_AT_declaration
);
22742 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
22743 given enum type is incomplete, do not generate the DW_AT_byte_size
22744 attribute or the DW_AT_element_list attribute. */
22745 if (TYPE_SIZE (type
))
22749 if (!ENUM_IS_OPAQUE (type
))
22750 TREE_ASM_WRITTEN (type
) = 1;
22751 if (!orig_type_die
|| !get_AT (type_die
, DW_AT_byte_size
))
22752 add_byte_size_attribute (type_die
, type
);
22753 if (!orig_type_die
|| !get_AT (type_die
, DW_AT_alignment
))
22754 add_alignment_attribute (type_die
, type
);
22755 if ((dwarf_version
>= 3 || !dwarf_strict
)
22756 && (!orig_type_die
|| !get_AT (type_die
, DW_AT_type
)))
22758 tree underlying
= lang_hooks
.types
.enum_underlying_base_type (type
);
22759 add_type_attribute (type_die
, underlying
, TYPE_UNQUALIFIED
, false,
22762 if (TYPE_STUB_DECL (type
) != NULL_TREE
)
22764 if (!orig_type_die
|| !get_AT (type_die
, DW_AT_decl_file
))
22765 add_src_coords_attributes (type_die
, TYPE_STUB_DECL (type
));
22766 if (!orig_type_die
|| !get_AT (type_die
, DW_AT_accessibility
))
22767 add_accessibility_attribute (type_die
, TYPE_STUB_DECL (type
));
22770 /* If the first reference to this type was as the return type of an
22771 inline function, then it may not have a parent. Fix this now. */
22772 if (type_die
->die_parent
== NULL
)
22773 add_child_die (scope_die_for (type
, context_die
), type_die
);
22775 for (link
= TYPE_VALUES (type
);
22776 link
!= NULL
; link
= TREE_CHAIN (link
))
22778 dw_die_ref enum_die
= new_die (DW_TAG_enumerator
, type_die
, link
);
22779 tree value
= TREE_VALUE (link
);
22781 if (DECL_P (value
))
22782 equate_decl_number_to_die (value
, enum_die
);
22784 gcc_assert (!ENUM_IS_OPAQUE (type
));
22785 add_name_attribute (enum_die
,
22786 IDENTIFIER_POINTER (TREE_PURPOSE (link
)));
22788 if (TREE_CODE (value
) == CONST_DECL
)
22789 value
= DECL_INITIAL (value
);
22791 if (simple_type_size_in_bits (TREE_TYPE (value
))
22792 <= HOST_BITS_PER_WIDE_INT
|| tree_fits_shwi_p (value
))
22794 /* For constant forms created by add_AT_unsigned DWARF
22795 consumers (GDB, elfutils, etc.) always zero extend
22796 the value. Only when the actual value is negative
22797 do we need to use add_AT_int to generate a constant
22798 form that can represent negative values. */
22799 HOST_WIDE_INT val
= TREE_INT_CST_LOW (value
);
22800 if (TYPE_UNSIGNED (TREE_TYPE (value
)) || val
>= 0)
22801 add_AT_unsigned (enum_die
, DW_AT_const_value
,
22802 (unsigned HOST_WIDE_INT
) val
);
22804 add_AT_int (enum_die
, DW_AT_const_value
, val
);
22807 /* Enumeration constants may be wider than HOST_WIDE_INT. Handle
22808 that here. TODO: This should be re-worked to use correct
22809 signed/unsigned double tags for all cases. */
22810 add_AT_wide (enum_die
, DW_AT_const_value
, wi::to_wide (value
));
22813 add_gnat_descriptive_type_attribute (type_die
, type
, context_die
);
22814 if (TYPE_ARTIFICIAL (type
)
22815 && (!orig_type_die
|| !get_AT (type_die
, DW_AT_artificial
)))
22816 add_AT_flag (type_die
, DW_AT_artificial
, 1);
22819 add_AT_flag (type_die
, DW_AT_declaration
, 1);
22821 add_pubtype (type
, type_die
);
22826 /* Generate a DIE to represent either a real live formal parameter decl or to
22827 represent just the type of some formal parameter position in some function
22830 Note that this routine is a bit unusual because its argument may be a
22831 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
22832 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
22833 node. If it's the former then this function is being called to output a
22834 DIE to represent a formal parameter object (or some inlining thereof). If
22835 it's the latter, then this function is only being called to output a
22836 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
22837 argument type of some subprogram type.
22838 If EMIT_NAME_P is true, name and source coordinate attributes
22842 gen_formal_parameter_die (tree node
, tree origin
, bool emit_name_p
,
22843 dw_die_ref context_die
)
22845 tree node_or_origin
= node
? node
: origin
;
22846 tree ultimate_origin
;
22847 dw_die_ref parm_die
= NULL
;
22849 if (DECL_P (node_or_origin
))
22851 parm_die
= lookup_decl_die (node
);
22853 /* If the contexts differ, we may not be talking about the same
22855 ??? When in LTO the DIE parent is the "abstract" copy and the
22856 context_die is the specification "copy". */
22858 && parm_die
->die_parent
!= context_die
22859 && (parm_die
->die_parent
->die_tag
!= DW_TAG_GNU_formal_parameter_pack
22860 || parm_die
->die_parent
->die_parent
!= context_die
)
22863 gcc_assert (!DECL_ABSTRACT_P (node
));
22864 /* This can happen when creating a concrete instance, in
22865 which case we need to create a new DIE that will get
22866 annotated with DW_AT_abstract_origin. */
22870 if (parm_die
&& parm_die
->die_parent
== NULL
)
22872 /* Check that parm_die already has the right attributes that
22873 we would have added below. If any attributes are
22874 missing, fall through to add them. */
22875 if (! DECL_ABSTRACT_P (node_or_origin
)
22876 && !get_AT (parm_die
, DW_AT_location
)
22877 && !get_AT (parm_die
, DW_AT_const_value
))
22878 /* We are missing location info, and are about to add it. */
22882 add_child_die (context_die
, parm_die
);
22888 /* If we have a previously generated DIE, use it, unless this is an
22889 concrete instance (origin != NULL), in which case we need a new
22890 DIE with a corresponding DW_AT_abstract_origin. */
22892 if (parm_die
&& origin
== NULL
)
22893 reusing_die
= true;
22896 parm_die
= new_die (DW_TAG_formal_parameter
, context_die
, node
);
22897 reusing_die
= false;
22900 switch (TREE_CODE_CLASS (TREE_CODE (node_or_origin
)))
22902 case tcc_declaration
:
22903 ultimate_origin
= decl_ultimate_origin (node_or_origin
);
22904 if (node
|| ultimate_origin
)
22905 origin
= ultimate_origin
;
22910 if (origin
!= NULL
)
22911 add_abstract_origin_attribute (parm_die
, origin
);
22912 else if (emit_name_p
)
22913 add_name_and_src_coords_attributes (parm_die
, node
);
22915 || (! DECL_ABSTRACT_P (node_or_origin
)
22916 && variably_modified_type_p (TREE_TYPE (node_or_origin
),
22917 decl_function_context
22918 (node_or_origin
))))
22920 tree type
= TREE_TYPE (node_or_origin
);
22921 if (decl_by_reference_p (node_or_origin
))
22922 add_type_attribute (parm_die
, TREE_TYPE (type
),
22924 false, context_die
);
22926 add_type_attribute (parm_die
, type
,
22927 decl_quals (node_or_origin
),
22928 false, context_die
);
22930 if (origin
== NULL
&& DECL_ARTIFICIAL (node
))
22931 add_AT_flag (parm_die
, DW_AT_artificial
, 1);
22933 if (node
&& node
!= origin
)
22934 equate_decl_number_to_die (node
, parm_die
);
22935 if (! DECL_ABSTRACT_P (node_or_origin
))
22936 add_location_or_const_value_attribute (parm_die
, node_or_origin
,
22942 /* We were called with some kind of a ..._TYPE node. */
22943 add_type_attribute (parm_die
, node_or_origin
, TYPE_UNQUALIFIED
, false,
22948 gcc_unreachable ();
22954 /* Generate and return a DW_TAG_GNU_formal_parameter_pack. Also generate
22955 children DW_TAG_formal_parameter DIEs representing the arguments of the
22958 PARM_PACK must be a function parameter pack.
22959 PACK_ARG is the first argument of the parameter pack. Its TREE_CHAIN
22960 must point to the subsequent arguments of the function PACK_ARG belongs to.
22961 SUBR_DIE is the DIE of the function PACK_ARG belongs to.
22962 If NEXT_ARG is non NULL, *NEXT_ARG is set to the function argument
22963 following the last one for which a DIE was generated. */
22966 gen_formal_parameter_pack_die (tree parm_pack
,
22968 dw_die_ref subr_die
,
22972 dw_die_ref parm_pack_die
;
22974 gcc_assert (parm_pack
22975 && lang_hooks
.function_parameter_pack_p (parm_pack
)
22978 parm_pack_die
= new_die (DW_TAG_GNU_formal_parameter_pack
, subr_die
, parm_pack
);
22979 add_src_coords_attributes (parm_pack_die
, parm_pack
);
22981 for (arg
= pack_arg
; arg
; arg
= DECL_CHAIN (arg
))
22983 if (! lang_hooks
.decls
.function_parm_expanded_from_pack_p (arg
,
22986 gen_formal_parameter_die (arg
, NULL
,
22987 false /* Don't emit name attribute. */,
22992 return parm_pack_die
;
22995 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
22996 at the end of an (ANSI prototyped) formal parameters list. */
22999 gen_unspecified_parameters_die (tree decl_or_type
, dw_die_ref context_die
)
23001 new_die (DW_TAG_unspecified_parameters
, context_die
, decl_or_type
);
23004 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
23005 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
23006 parameters as specified in some function type specification (except for
23007 those which appear as part of a function *definition*). */
23010 gen_formal_types_die (tree function_or_method_type
, dw_die_ref context_die
)
23013 tree formal_type
= NULL
;
23014 tree first_parm_type
;
23017 if (TREE_CODE (function_or_method_type
) == FUNCTION_DECL
)
23019 arg
= DECL_ARGUMENTS (function_or_method_type
);
23020 function_or_method_type
= TREE_TYPE (function_or_method_type
);
23025 first_parm_type
= TYPE_ARG_TYPES (function_or_method_type
);
23027 /* Make our first pass over the list of formal parameter types and output a
23028 DW_TAG_formal_parameter DIE for each one. */
23029 for (link
= first_parm_type
; link
; )
23031 dw_die_ref parm_die
;
23033 formal_type
= TREE_VALUE (link
);
23034 if (formal_type
== void_type_node
)
23037 /* Output a (nameless) DIE to represent the formal parameter itself. */
23038 parm_die
= gen_formal_parameter_die (formal_type
, NULL
,
23039 true /* Emit name attribute. */,
23041 if (TREE_CODE (function_or_method_type
) == METHOD_TYPE
23042 && link
== first_parm_type
)
23044 add_AT_flag (parm_die
, DW_AT_artificial
, 1);
23045 if (dwarf_version
>= 3 || !dwarf_strict
)
23046 add_AT_die_ref (context_die
, DW_AT_object_pointer
, parm_die
);
23048 else if (arg
&& DECL_ARTIFICIAL (arg
))
23049 add_AT_flag (parm_die
, DW_AT_artificial
, 1);
23051 link
= TREE_CHAIN (link
);
23053 arg
= DECL_CHAIN (arg
);
23056 /* If this function type has an ellipsis, add a
23057 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
23058 if (formal_type
!= void_type_node
)
23059 gen_unspecified_parameters_die (function_or_method_type
, context_die
);
23061 /* Make our second (and final) pass over the list of formal parameter types
23062 and output DIEs to represent those types (as necessary). */
23063 for (link
= TYPE_ARG_TYPES (function_or_method_type
);
23064 link
&& TREE_VALUE (link
);
23065 link
= TREE_CHAIN (link
))
23066 gen_type_die (TREE_VALUE (link
), context_die
);
23069 /* We want to generate the DIE for TYPE so that we can generate the
23070 die for MEMBER, which has been defined; we will need to refer back
23071 to the member declaration nested within TYPE. If we're trying to
23072 generate minimal debug info for TYPE, processing TYPE won't do the
23073 trick; we need to attach the member declaration by hand. */
23076 gen_type_die_for_member (tree type
, tree member
, dw_die_ref context_die
)
23078 gen_type_die (type
, context_die
);
23080 /* If we're trying to avoid duplicate debug info, we may not have
23081 emitted the member decl for this function. Emit it now. */
23082 if (TYPE_STUB_DECL (type
)
23083 && TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type
))
23084 && ! lookup_decl_die (member
))
23086 dw_die_ref type_die
;
23087 gcc_assert (!decl_ultimate_origin (member
));
23089 type_die
= lookup_type_die_strip_naming_typedef (type
);
23090 if (TREE_CODE (member
) == FUNCTION_DECL
)
23091 gen_subprogram_die (member
, type_die
);
23092 else if (TREE_CODE (member
) == FIELD_DECL
)
23094 /* Ignore the nameless fields that are used to skip bits but handle
23095 C++ anonymous unions and structs. */
23096 if (DECL_NAME (member
) != NULL_TREE
23097 || TREE_CODE (TREE_TYPE (member
)) == UNION_TYPE
23098 || TREE_CODE (TREE_TYPE (member
)) == RECORD_TYPE
)
23100 struct vlr_context vlr_ctx
= {
23101 DECL_CONTEXT (member
), /* struct_type */
23102 NULL_TREE
/* variant_part_offset */
23104 gen_type_die (member_declared_type (member
), type_die
);
23105 gen_field_die (member
, &vlr_ctx
, type_die
);
23109 gen_variable_die (member
, NULL_TREE
, type_die
);
23113 /* Forward declare these functions, because they are mutually recursive
23114 with their set_block_* pairing functions. */
23115 static void set_decl_origin_self (tree
);
23117 /* Given a pointer to some BLOCK node, if the BLOCK_ABSTRACT_ORIGIN for the
23118 given BLOCK node is NULL, set the BLOCK_ABSTRACT_ORIGIN for the node so
23119 that it points to the node itself, thus indicating that the node is its
23120 own (abstract) origin. Additionally, if the BLOCK_ABSTRACT_ORIGIN for
23121 the given node is NULL, recursively descend the decl/block tree which
23122 it is the root of, and for each other ..._DECL or BLOCK node contained
23123 therein whose DECL_ABSTRACT_ORIGINs or BLOCK_ABSTRACT_ORIGINs are also
23124 still NULL, set *their* DECL_ABSTRACT_ORIGIN or BLOCK_ABSTRACT_ORIGIN
23125 values to point to themselves. */
23128 set_block_origin_self (tree stmt
)
23130 if (BLOCK_ABSTRACT_ORIGIN (stmt
) == NULL_TREE
)
23132 BLOCK_ABSTRACT_ORIGIN (stmt
) = stmt
;
23137 for (local_decl
= BLOCK_VARS (stmt
);
23138 local_decl
!= NULL_TREE
;
23139 local_decl
= DECL_CHAIN (local_decl
))
23140 /* Do not recurse on nested functions since the inlining status
23141 of parent and child can be different as per the DWARF spec. */
23142 if (TREE_CODE (local_decl
) != FUNCTION_DECL
23143 && !DECL_EXTERNAL (local_decl
))
23144 set_decl_origin_self (local_decl
);
23150 for (subblock
= BLOCK_SUBBLOCKS (stmt
);
23151 subblock
!= NULL_TREE
;
23152 subblock
= BLOCK_CHAIN (subblock
))
23153 set_block_origin_self (subblock
); /* Recurse. */
23158 /* Given a pointer to some ..._DECL node, if the DECL_ABSTRACT_ORIGIN for
23159 the given ..._DECL node is NULL, set the DECL_ABSTRACT_ORIGIN for the
23160 node to so that it points to the node itself, thus indicating that the
23161 node represents its own (abstract) origin. Additionally, if the
23162 DECL_ABSTRACT_ORIGIN for the given node is NULL, recursively descend
23163 the decl/block tree of which the given node is the root of, and for
23164 each other ..._DECL or BLOCK node contained therein whose
23165 DECL_ABSTRACT_ORIGINs or BLOCK_ABSTRACT_ORIGINs are also still NULL,
23166 set *their* DECL_ABSTRACT_ORIGIN or BLOCK_ABSTRACT_ORIGIN values to
23167 point to themselves. */
23170 set_decl_origin_self (tree decl
)
23172 if (DECL_ABSTRACT_ORIGIN (decl
) == NULL_TREE
)
23174 DECL_ABSTRACT_ORIGIN (decl
) = decl
;
23175 if (TREE_CODE (decl
) == FUNCTION_DECL
)
23179 for (arg
= DECL_ARGUMENTS (decl
); arg
; arg
= DECL_CHAIN (arg
))
23180 DECL_ABSTRACT_ORIGIN (arg
) = arg
;
23181 if (DECL_INITIAL (decl
) != NULL_TREE
23182 && DECL_INITIAL (decl
) != error_mark_node
)
23183 set_block_origin_self (DECL_INITIAL (decl
));
23188 /* Mark the early DIE for DECL as the abstract instance. */
23191 dwarf2out_abstract_function (tree decl
)
23193 dw_die_ref old_die
;
23195 /* Make sure we have the actual abstract inline, not a clone. */
23196 decl
= DECL_ORIGIN (decl
);
23198 if (DECL_IGNORED_P (decl
))
23201 /* In LTO we're all set. We already created abstract instances
23202 early and we want to avoid creating a concrete instance of that
23203 if we don't output it. */
23207 old_die
= lookup_decl_die (decl
);
23208 gcc_assert (old_die
!= NULL
);
23209 if (get_AT (old_die
, DW_AT_inline
))
23210 /* We've already generated the abstract instance. */
23213 /* Go ahead and put DW_AT_inline on the DIE. */
23214 if (DECL_DECLARED_INLINE_P (decl
))
23216 if (cgraph_function_possibly_inlined_p (decl
))
23217 add_AT_unsigned (old_die
, DW_AT_inline
, DW_INL_declared_inlined
);
23219 add_AT_unsigned (old_die
, DW_AT_inline
, DW_INL_declared_not_inlined
);
23223 if (cgraph_function_possibly_inlined_p (decl
))
23224 add_AT_unsigned (old_die
, DW_AT_inline
, DW_INL_inlined
);
23226 add_AT_unsigned (old_die
, DW_AT_inline
, DW_INL_not_inlined
);
23229 if (DECL_DECLARED_INLINE_P (decl
)
23230 && lookup_attribute ("artificial", DECL_ATTRIBUTES (decl
)))
23231 add_AT_flag (old_die
, DW_AT_artificial
, 1);
23233 set_decl_origin_self (decl
);
23236 /* Helper function of premark_used_types() which gets called through
23239 Marks the DIE of a given type in *SLOT as perennial, so it never gets
23240 marked as unused by prune_unused_types. */
23243 premark_used_types_helper (tree
const &type
, void *)
23247 die
= lookup_type_die (type
);
23249 die
->die_perennial_p
= 1;
23253 /* Helper function of premark_types_used_by_global_vars which gets called
23254 through htab_traverse.
23256 Marks the DIE of a given type in *SLOT as perennial, so it never gets
23257 marked as unused by prune_unused_types. The DIE of the type is marked
23258 only if the global variable using the type will actually be emitted. */
23261 premark_types_used_by_global_vars_helper (types_used_by_vars_entry
**slot
,
23264 struct types_used_by_vars_entry
*entry
;
23267 entry
= (struct types_used_by_vars_entry
*) *slot
;
23268 gcc_assert (entry
->type
!= NULL
23269 && entry
->var_decl
!= NULL
);
23270 die
= lookup_type_die (entry
->type
);
23273 /* Ask cgraph if the global variable really is to be emitted.
23274 If yes, then we'll keep the DIE of ENTRY->TYPE. */
23275 varpool_node
*node
= varpool_node::get (entry
->var_decl
);
23276 if (node
&& node
->definition
)
23278 die
->die_perennial_p
= 1;
23279 /* Keep the parent DIEs as well. */
23280 while ((die
= die
->die_parent
) && die
->die_perennial_p
== 0)
23281 die
->die_perennial_p
= 1;
23287 /* Mark all members of used_types_hash as perennial. */
23290 premark_used_types (struct function
*fun
)
23292 if (fun
&& fun
->used_types_hash
)
23293 fun
->used_types_hash
->traverse
<void *, premark_used_types_helper
> (NULL
);
23296 /* Mark all members of types_used_by_vars_entry as perennial. */
23299 premark_types_used_by_global_vars (void)
23301 if (types_used_by_vars_hash
)
23302 types_used_by_vars_hash
23303 ->traverse
<void *, premark_types_used_by_global_vars_helper
> (NULL
);
23306 /* Mark all variables used by the symtab as perennial. */
23309 premark_used_variables (void)
23311 /* Mark DIEs in the symtab as used. */
23313 FOR_EACH_VARIABLE (var
)
23315 dw_die_ref die
= lookup_decl_die (var
->decl
);
23317 die
->die_perennial_p
= 1;
23321 /* Generate a DW_TAG_call_site DIE in function DECL under SUBR_DIE
23322 for CA_LOC call arg loc node. */
23325 gen_call_site_die (tree decl
, dw_die_ref subr_die
,
23326 struct call_arg_loc_node
*ca_loc
)
23328 dw_die_ref stmt_die
= NULL
, die
;
23329 tree block
= ca_loc
->block
;
23332 && block
!= DECL_INITIAL (decl
)
23333 && TREE_CODE (block
) == BLOCK
)
23335 stmt_die
= lookup_block_die (block
);
23338 block
= BLOCK_SUPERCONTEXT (block
);
23340 if (stmt_die
== NULL
)
23341 stmt_die
= subr_die
;
23342 die
= new_die (dwarf_TAG (DW_TAG_call_site
), stmt_die
, NULL_TREE
);
23343 add_AT_lbl_id (die
, dwarf_AT (DW_AT_call_return_pc
), ca_loc
->label
);
23344 if (ca_loc
->tail_call_p
)
23345 add_AT_flag (die
, dwarf_AT (DW_AT_call_tail_call
), 1);
23346 if (ca_loc
->symbol_ref
)
23348 dw_die_ref tdie
= lookup_decl_die (SYMBOL_REF_DECL (ca_loc
->symbol_ref
));
23350 add_AT_die_ref (die
, dwarf_AT (DW_AT_call_origin
), tdie
);
23352 add_AT_addr (die
, dwarf_AT (DW_AT_call_origin
), ca_loc
->symbol_ref
,
23358 /* Generate a DIE to represent a declared function (either file-scope or
23362 gen_subprogram_die (tree decl
, dw_die_ref context_die
)
23364 tree origin
= decl_ultimate_origin (decl
);
23365 dw_die_ref subr_die
;
23366 dw_die_ref old_die
= lookup_decl_die (decl
);
23367 bool old_die_had_no_children
= false;
23369 /* This function gets called multiple times for different stages of
23370 the debug process. For example, for func() in this code:
23374 void func() { ... }
23377 ...we get called 4 times. Twice in early debug and twice in
23383 1. Once while generating func() within the namespace. This is
23384 the declaration. The declaration bit below is set, as the
23385 context is the namespace.
23387 A new DIE will be generated with DW_AT_declaration set.
23389 2. Once for func() itself. This is the specification. The
23390 declaration bit below is clear as the context is the CU.
23392 We will use the cached DIE from (1) to create a new DIE with
23393 DW_AT_specification pointing to the declaration in (1).
23395 Late debug via rest_of_handle_final()
23396 -------------------------------------
23398 3. Once generating func() within the namespace. This is also the
23399 declaration, as in (1), but this time we will early exit below
23400 as we have a cached DIE and a declaration needs no additional
23401 annotations (no locations), as the source declaration line
23404 4. Once for func() itself. As in (2), this is the specification,
23405 but this time we will re-use the cached DIE, and just annotate
23406 it with the location information that should now be available.
23408 For something without namespaces, but with abstract instances, we
23409 are also called a multiple times:
23414 Base (); // constructor declaration (1)
23417 Base::Base () { } // constructor specification (2)
23422 1. Once for the Base() constructor by virtue of it being a
23423 member of the Base class. This is done via
23424 rest_of_type_compilation.
23426 This is a declaration, so a new DIE will be created with
23429 2. Once for the Base() constructor definition, but this time
23430 while generating the abstract instance of the base
23431 constructor (__base_ctor) which is being generated via early
23432 debug of reachable functions.
23434 Even though we have a cached version of the declaration (1),
23435 we will create a DW_AT_specification of the declaration DIE
23438 3. Once for the __base_ctor itself, but this time, we generate
23439 an DW_AT_abstract_origin version of the DW_AT_specification in
23442 Late debug via rest_of_handle_final
23443 -----------------------------------
23445 4. One final time for the __base_ctor (which will have a cached
23446 DIE with DW_AT_abstract_origin created in (3). This time,
23447 we will just annotate the location information now
23450 int declaration
= (current_function_decl
!= decl
23451 || (!DECL_INITIAL (decl
) && !origin
)
23452 || class_or_namespace_scope_p (context_die
));
23454 /* A declaration that has been previously dumped needs no
23455 additional information. */
23456 if (old_die
&& declaration
)
23459 if (in_lto_p
&& old_die
&& old_die
->die_child
== NULL
)
23460 old_die_had_no_children
= true;
23462 /* Now that the C++ front end lazily declares artificial member fns, we
23463 might need to retrofit the declaration into its class. */
23464 if (!declaration
&& !origin
&& !old_die
23465 && DECL_CONTEXT (decl
) && TYPE_P (DECL_CONTEXT (decl
))
23466 && !class_or_namespace_scope_p (context_die
)
23467 && debug_info_level
> DINFO_LEVEL_TERSE
)
23468 old_die
= force_decl_die (decl
);
23470 /* A concrete instance, tag a new DIE with DW_AT_abstract_origin. */
23471 if (origin
!= NULL
)
23473 gcc_assert (!declaration
|| local_scope_p (context_die
));
23475 /* Fixup die_parent for the abstract instance of a nested
23476 inline function. */
23477 if (old_die
&& old_die
->die_parent
== NULL
)
23478 add_child_die (context_die
, old_die
);
23480 if (old_die
&& get_AT_ref (old_die
, DW_AT_abstract_origin
))
23482 /* If we have a DW_AT_abstract_origin we have a working
23484 subr_die
= old_die
;
23488 subr_die
= new_die (DW_TAG_subprogram
, context_die
, decl
);
23489 add_abstract_origin_attribute (subr_die
, origin
);
23490 /* This is where the actual code for a cloned function is.
23491 Let's emit linkage name attribute for it. This helps
23492 debuggers to e.g, set breakpoints into
23493 constructors/destructors when the user asks "break
23495 add_linkage_name (subr_die
, decl
);
23498 /* A cached copy, possibly from early dwarf generation. Reuse as
23499 much as possible. */
23502 if (!get_AT_flag (old_die
, DW_AT_declaration
)
23503 /* We can have a normal definition following an inline one in the
23504 case of redefinition of GNU C extern inlines.
23505 It seems reasonable to use AT_specification in this case. */
23506 && !get_AT (old_die
, DW_AT_inline
))
23508 /* Detect and ignore this case, where we are trying to output
23509 something we have already output. */
23510 if (get_AT (old_die
, DW_AT_low_pc
)
23511 || get_AT (old_die
, DW_AT_ranges
))
23514 /* If we have no location information, this must be a
23515 partially generated DIE from early dwarf generation.
23516 Fall through and generate it. */
23519 /* If the definition comes from the same place as the declaration,
23520 maybe use the old DIE. We always want the DIE for this function
23521 that has the *_pc attributes to be under comp_unit_die so the
23522 debugger can find it. We also need to do this for abstract
23523 instances of inlines, since the spec requires the out-of-line copy
23524 to have the same parent. For local class methods, this doesn't
23525 apply; we just use the old DIE. */
23526 expanded_location s
= expand_location (DECL_SOURCE_LOCATION (decl
));
23527 struct dwarf_file_data
* file_index
= lookup_filename (s
.file
);
23528 if (((is_unit_die (old_die
->die_parent
)
23529 /* This condition fixes the inconsistency/ICE with the
23530 following Fortran test (or some derivative thereof) while
23531 building libgfortran:
23535 logical function funky (FLAG)
23540 || (old_die
->die_parent
23541 && old_die
->die_parent
->die_tag
== DW_TAG_module
)
23542 || local_scope_p (old_die
->die_parent
)
23543 || context_die
== NULL
)
23544 && (DECL_ARTIFICIAL (decl
)
23545 || (get_AT_file (old_die
, DW_AT_decl_file
) == file_index
23546 && (get_AT_unsigned (old_die
, DW_AT_decl_line
)
23547 == (unsigned) s
.line
)
23548 && (!debug_column_info
23550 || (get_AT_unsigned (old_die
, DW_AT_decl_column
)
23551 == (unsigned) s
.column
)))))
23552 /* With LTO if there's an abstract instance for
23553 the old DIE, this is a concrete instance and
23554 thus re-use the DIE. */
23555 || get_AT (old_die
, DW_AT_abstract_origin
))
23557 subr_die
= old_die
;
23559 /* Clear out the declaration attribute, but leave the
23560 parameters so they can be augmented with location
23561 information later. Unless this was a declaration, in
23562 which case, wipe out the nameless parameters and recreate
23563 them further down. */
23564 if (remove_AT (subr_die
, DW_AT_declaration
))
23567 remove_AT (subr_die
, DW_AT_object_pointer
);
23568 remove_child_TAG (subr_die
, DW_TAG_formal_parameter
);
23571 /* Make a specification pointing to the previously built
23575 subr_die
= new_die (DW_TAG_subprogram
, context_die
, decl
);
23576 add_AT_specification (subr_die
, old_die
);
23577 add_pubname (decl
, subr_die
);
23578 if (get_AT_file (old_die
, DW_AT_decl_file
) != file_index
)
23579 add_AT_file (subr_die
, DW_AT_decl_file
, file_index
);
23580 if (get_AT_unsigned (old_die
, DW_AT_decl_line
) != (unsigned) s
.line
)
23581 add_AT_unsigned (subr_die
, DW_AT_decl_line
, s
.line
);
23582 if (debug_column_info
23584 && (get_AT_unsigned (old_die
, DW_AT_decl_column
)
23585 != (unsigned) s
.column
))
23586 add_AT_unsigned (subr_die
, DW_AT_decl_column
, s
.column
);
23588 /* If the prototype had an 'auto' or 'decltype(auto)' in
23589 the return type, emit the real type on the definition die. */
23590 if (is_cxx () && debug_info_level
> DINFO_LEVEL_TERSE
)
23592 dw_die_ref die
= get_AT_ref (old_die
, DW_AT_type
);
23594 && (die
->die_tag
== DW_TAG_reference_type
23595 || die
->die_tag
== DW_TAG_rvalue_reference_type
23596 || die
->die_tag
== DW_TAG_pointer_type
23597 || die
->die_tag
== DW_TAG_const_type
23598 || die
->die_tag
== DW_TAG_volatile_type
23599 || die
->die_tag
== DW_TAG_restrict_type
23600 || die
->die_tag
== DW_TAG_array_type
23601 || die
->die_tag
== DW_TAG_ptr_to_member_type
23602 || die
->die_tag
== DW_TAG_subroutine_type
))
23603 die
= get_AT_ref (die
, DW_AT_type
);
23604 if (die
== auto_die
|| die
== decltype_auto_die
)
23605 add_type_attribute (subr_die
, TREE_TYPE (TREE_TYPE (decl
)),
23606 TYPE_UNQUALIFIED
, false, context_die
);
23609 /* When we process the method declaration, we haven't seen
23610 the out-of-class defaulted definition yet, so we have to
23612 if ((dwarf_version
>= 5 || ! dwarf_strict
)
23613 && !get_AT (subr_die
, DW_AT_defaulted
))
23616 = lang_hooks
.decls
.decl_dwarf_attribute (decl
,
23618 if (defaulted
!= -1)
23620 /* Other values must have been handled before. */
23621 gcc_assert (defaulted
== DW_DEFAULTED_out_of_class
);
23622 add_AT_unsigned (subr_die
, DW_AT_defaulted
, defaulted
);
23627 /* Create a fresh DIE for anything else. */
23630 subr_die
= new_die (DW_TAG_subprogram
, context_die
, decl
);
23632 if (TREE_PUBLIC (decl
))
23633 add_AT_flag (subr_die
, DW_AT_external
, 1);
23635 add_name_and_src_coords_attributes (subr_die
, decl
);
23636 add_pubname (decl
, subr_die
);
23637 if (debug_info_level
> DINFO_LEVEL_TERSE
)
23639 add_prototyped_attribute (subr_die
, TREE_TYPE (decl
));
23640 add_type_attribute (subr_die
, TREE_TYPE (TREE_TYPE (decl
)),
23641 TYPE_UNQUALIFIED
, false, context_die
);
23644 add_pure_or_virtual_attribute (subr_die
, decl
);
23645 if (DECL_ARTIFICIAL (decl
))
23646 add_AT_flag (subr_die
, DW_AT_artificial
, 1);
23648 if (TREE_THIS_VOLATILE (decl
) && (dwarf_version
>= 5 || !dwarf_strict
))
23649 add_AT_flag (subr_die
, DW_AT_noreturn
, 1);
23651 add_alignment_attribute (subr_die
, decl
);
23653 add_accessibility_attribute (subr_die
, decl
);
23656 /* Unless we have an existing non-declaration DIE, equate the new
23658 if (!old_die
|| is_declaration_die (old_die
))
23659 equate_decl_number_to_die (decl
, subr_die
);
23663 if (!old_die
|| !get_AT (old_die
, DW_AT_inline
))
23665 add_AT_flag (subr_die
, DW_AT_declaration
, 1);
23667 /* If this is an explicit function declaration then generate
23668 a DW_AT_explicit attribute. */
23669 if ((dwarf_version
>= 3 || !dwarf_strict
)
23670 && lang_hooks
.decls
.decl_dwarf_attribute (decl
,
23671 DW_AT_explicit
) == 1)
23672 add_AT_flag (subr_die
, DW_AT_explicit
, 1);
23674 /* If this is a C++11 deleted special function member then generate
23675 a DW_AT_deleted attribute. */
23676 if ((dwarf_version
>= 5 || !dwarf_strict
)
23677 && lang_hooks
.decls
.decl_dwarf_attribute (decl
,
23678 DW_AT_deleted
) == 1)
23679 add_AT_flag (subr_die
, DW_AT_deleted
, 1);
23681 /* If this is a C++11 defaulted special function member then
23682 generate a DW_AT_defaulted attribute. */
23683 if (dwarf_version
>= 5 || !dwarf_strict
)
23686 = lang_hooks
.decls
.decl_dwarf_attribute (decl
,
23688 if (defaulted
!= -1)
23689 add_AT_unsigned (subr_die
, DW_AT_defaulted
, defaulted
);
23692 /* If this is a C++11 non-static member function with & ref-qualifier
23693 then generate a DW_AT_reference attribute. */
23694 if ((dwarf_version
>= 5 || !dwarf_strict
)
23695 && lang_hooks
.decls
.decl_dwarf_attribute (decl
,
23696 DW_AT_reference
) == 1)
23697 add_AT_flag (subr_die
, DW_AT_reference
, 1);
23699 /* If this is a C++11 non-static member function with &&
23700 ref-qualifier then generate a DW_AT_reference attribute. */
23701 if ((dwarf_version
>= 5 || !dwarf_strict
)
23702 && lang_hooks
.decls
.decl_dwarf_attribute (decl
,
23703 DW_AT_rvalue_reference
)
23705 add_AT_flag (subr_die
, DW_AT_rvalue_reference
, 1);
23708 /* For non DECL_EXTERNALs, if range information is available, fill
23709 the DIE with it. */
23710 else if (!DECL_EXTERNAL (decl
) && !early_dwarf
)
23712 HOST_WIDE_INT cfa_fb_offset
;
23714 struct function
*fun
= DECL_STRUCT_FUNCTION (decl
);
23716 if (!crtl
->has_bb_partition
)
23718 dw_fde_ref fde
= fun
->fde
;
23719 if (fde
->dw_fde_begin
)
23721 /* We have already generated the labels. */
23722 add_AT_low_high_pc (subr_die
, fde
->dw_fde_begin
,
23723 fde
->dw_fde_end
, false);
23727 /* Create start/end labels and add the range. */
23728 char label_id_low
[MAX_ARTIFICIAL_LABEL_BYTES
];
23729 char label_id_high
[MAX_ARTIFICIAL_LABEL_BYTES
];
23730 ASM_GENERATE_INTERNAL_LABEL (label_id_low
, FUNC_BEGIN_LABEL
,
23731 current_function_funcdef_no
);
23732 ASM_GENERATE_INTERNAL_LABEL (label_id_high
, FUNC_END_LABEL
,
23733 current_function_funcdef_no
);
23734 add_AT_low_high_pc (subr_die
, label_id_low
, label_id_high
,
23738 #if VMS_DEBUGGING_INFO
23739 /* HP OpenVMS Industry Standard 64: DWARF Extensions
23740 Section 2.3 Prologue and Epilogue Attributes:
23741 When a breakpoint is set on entry to a function, it is generally
23742 desirable for execution to be suspended, not on the very first
23743 instruction of the function, but rather at a point after the
23744 function's frame has been set up, after any language defined local
23745 declaration processing has been completed, and before execution of
23746 the first statement of the function begins. Debuggers generally
23747 cannot properly determine where this point is. Similarly for a
23748 breakpoint set on exit from a function. The prologue and epilogue
23749 attributes allow a compiler to communicate the location(s) to use. */
23752 if (fde
->dw_fde_vms_end_prologue
)
23753 add_AT_vms_delta (subr_die
, DW_AT_HP_prologue
,
23754 fde
->dw_fde_begin
, fde
->dw_fde_vms_end_prologue
);
23756 if (fde
->dw_fde_vms_begin_epilogue
)
23757 add_AT_vms_delta (subr_die
, DW_AT_HP_epilogue
,
23758 fde
->dw_fde_begin
, fde
->dw_fde_vms_begin_epilogue
);
23765 /* Generate pubnames entries for the split function code ranges. */
23766 dw_fde_ref fde
= fun
->fde
;
23768 if (fde
->dw_fde_second_begin
)
23770 if (dwarf_version
>= 3 || !dwarf_strict
)
23772 /* We should use ranges for non-contiguous code section
23773 addresses. Use the actual code range for the initial
23774 section, since the HOT/COLD labels might precede an
23775 alignment offset. */
23776 bool range_list_added
= false;
23777 add_ranges_by_labels (subr_die
, fde
->dw_fde_begin
,
23778 fde
->dw_fde_end
, &range_list_added
,
23780 add_ranges_by_labels (subr_die
, fde
->dw_fde_second_begin
,
23781 fde
->dw_fde_second_end
,
23782 &range_list_added
, false);
23783 if (range_list_added
)
23788 /* There is no real support in DW2 for this .. so we make
23789 a work-around. First, emit the pub name for the segment
23790 containing the function label. Then make and emit a
23791 simplified subprogram DIE for the second segment with the
23792 name pre-fixed by __hot/cold_sect_of_. We use the same
23793 linkage name for the second die so that gdb will find both
23794 sections when given "b foo". */
23795 const char *name
= NULL
;
23796 tree decl_name
= DECL_NAME (decl
);
23797 dw_die_ref seg_die
;
23799 /* Do the 'primary' section. */
23800 add_AT_low_high_pc (subr_die
, fde
->dw_fde_begin
,
23801 fde
->dw_fde_end
, false);
23803 /* Build a minimal DIE for the secondary section. */
23804 seg_die
= new_die (DW_TAG_subprogram
,
23805 subr_die
->die_parent
, decl
);
23807 if (TREE_PUBLIC (decl
))
23808 add_AT_flag (seg_die
, DW_AT_external
, 1);
23810 if (decl_name
!= NULL
23811 && IDENTIFIER_POINTER (decl_name
) != NULL
)
23813 name
= dwarf2_name (decl
, 1);
23814 if (! DECL_ARTIFICIAL (decl
))
23815 add_src_coords_attributes (seg_die
, decl
);
23817 add_linkage_name (seg_die
, decl
);
23819 gcc_assert (name
!= NULL
);
23820 add_pure_or_virtual_attribute (seg_die
, decl
);
23821 if (DECL_ARTIFICIAL (decl
))
23822 add_AT_flag (seg_die
, DW_AT_artificial
, 1);
23824 name
= concat ("__second_sect_of_", name
, NULL
);
23825 add_AT_low_high_pc (seg_die
, fde
->dw_fde_second_begin
,
23826 fde
->dw_fde_second_end
, false);
23827 add_name_attribute (seg_die
, name
);
23828 if (want_pubnames ())
23829 add_pubname_string (name
, seg_die
);
23833 add_AT_low_high_pc (subr_die
, fde
->dw_fde_begin
, fde
->dw_fde_end
,
23837 cfa_fb_offset
= CFA_FRAME_BASE_OFFSET (decl
);
23839 /* We define the "frame base" as the function's CFA. This is more
23840 convenient for several reasons: (1) It's stable across the prologue
23841 and epilogue, which makes it better than just a frame pointer,
23842 (2) With dwarf3, there exists a one-byte encoding that allows us
23843 to reference the .debug_frame data by proxy, but failing that,
23844 (3) We can at least reuse the code inspection and interpretation
23845 code that determines the CFA position at various points in the
23847 if (dwarf_version
>= 3 && targetm
.debug_unwind_info () == UI_DWARF2
)
23849 dw_loc_descr_ref op
= new_loc_descr (DW_OP_call_frame_cfa
, 0, 0);
23850 add_AT_loc (subr_die
, DW_AT_frame_base
, op
);
23854 dw_loc_list_ref list
= convert_cfa_to_fb_loc_list (cfa_fb_offset
);
23855 if (list
->dw_loc_next
)
23856 add_AT_loc_list (subr_die
, DW_AT_frame_base
, list
);
23858 add_AT_loc (subr_die
, DW_AT_frame_base
, list
->expr
);
23861 /* Compute a displacement from the "steady-state frame pointer" to
23862 the CFA. The former is what all stack slots and argument slots
23863 will reference in the rtl; the latter is what we've told the
23864 debugger about. We'll need to adjust all frame_base references
23865 by this displacement. */
23866 compute_frame_pointer_to_fb_displacement (cfa_fb_offset
);
23868 if (fun
->static_chain_decl
)
23870 /* DWARF requires here a location expression that computes the
23871 address of the enclosing subprogram's frame base. The machinery
23872 in tree-nested.cc is supposed to store this specific address in the
23873 last field of the FRAME record. */
23874 const tree frame_type
23875 = TREE_TYPE (TREE_TYPE (fun
->static_chain_decl
));
23876 const tree fb_decl
= tree_last (TYPE_FIELDS (frame_type
));
23879 = build1 (INDIRECT_REF
, frame_type
, fun
->static_chain_decl
);
23880 fb_expr
= build3 (COMPONENT_REF
, TREE_TYPE (fb_decl
),
23881 fb_expr
, fb_decl
, NULL_TREE
);
23883 add_AT_location_description (subr_die
, DW_AT_static_link
,
23884 loc_list_from_tree (fb_expr
, 0, NULL
));
23887 resolve_variable_values ();
23890 /* Generate child dies for template parameters. */
23891 if (early_dwarf
&& debug_info_level
> DINFO_LEVEL_TERSE
)
23892 gen_generic_params_dies (decl
);
23894 /* Now output descriptions of the arguments for this function. This gets
23895 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
23896 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
23897 `...' at the end of the formal parameter list. In order to find out if
23898 there was a trailing ellipsis or not, we must instead look at the type
23899 associated with the FUNCTION_DECL. This will be a node of type
23900 FUNCTION_TYPE. If the chain of type nodes hanging off of this
23901 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
23902 an ellipsis at the end. */
23904 /* In the case where we are describing a mere function declaration, all we
23905 need to do here (and all we *can* do here) is to describe the *types* of
23906 its formal parameters. */
23907 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
23909 else if (declaration
)
23910 gen_formal_types_die (decl
, subr_die
);
23913 /* Generate DIEs to represent all known formal parameters. */
23914 tree parm
= DECL_ARGUMENTS (decl
);
23915 tree generic_decl
= early_dwarf
23916 ? lang_hooks
.decls
.get_generic_function_decl (decl
) : NULL
;
23917 tree generic_decl_parm
= generic_decl
23918 ? DECL_ARGUMENTS (generic_decl
)
23921 /* Now we want to walk the list of parameters of the function and
23922 emit their relevant DIEs.
23924 We consider the case of DECL being an instance of a generic function
23925 as well as it being a normal function.
23927 If DECL is an instance of a generic function we walk the
23928 parameters of the generic function declaration _and_ the parameters of
23929 DECL itself. This is useful because we want to emit specific DIEs for
23930 function parameter packs and those are declared as part of the
23931 generic function declaration. In that particular case,
23932 the parameter pack yields a DW_TAG_GNU_formal_parameter_pack DIE.
23933 That DIE has children DIEs representing the set of arguments
23934 of the pack. Note that the set of pack arguments can be empty.
23935 In that case, the DW_TAG_GNU_formal_parameter_pack DIE will not have any
23938 Otherwise, we just consider the parameters of DECL. */
23939 while (generic_decl_parm
|| parm
)
23941 if (generic_decl_parm
23942 && lang_hooks
.function_parameter_pack_p (generic_decl_parm
))
23943 gen_formal_parameter_pack_die (generic_decl_parm
,
23948 dw_die_ref parm_die
= gen_decl_die (parm
, NULL
, NULL
, subr_die
);
23951 && parm
== DECL_ARGUMENTS (decl
)
23952 && TREE_CODE (TREE_TYPE (decl
)) == METHOD_TYPE
23954 && (dwarf_version
>= 3 || !dwarf_strict
))
23955 add_AT_die_ref (subr_die
, DW_AT_object_pointer
, parm_die
);
23957 parm
= DECL_CHAIN (parm
);
23960 if (generic_decl_parm
)
23961 generic_decl_parm
= DECL_CHAIN (generic_decl_parm
);
23964 /* Decide whether we need an unspecified_parameters DIE at the end.
23965 There are 2 more cases to do this for: 1) the ansi ... declaration -
23966 this is detectable when the end of the arg list is not a
23967 void_type_node 2) an unprototyped function declaration (not a
23968 definition). This just means that we have no info about the
23969 parameters at all. */
23972 if (prototype_p (TREE_TYPE (decl
)))
23974 /* This is the prototyped case, check for.... */
23975 if (stdarg_p (TREE_TYPE (decl
)))
23976 gen_unspecified_parameters_die (decl
, subr_die
);
23978 else if (DECL_INITIAL (decl
) == NULL_TREE
)
23979 gen_unspecified_parameters_die (decl
, subr_die
);
23981 else if ((subr_die
!= old_die
|| old_die_had_no_children
)
23982 && prototype_p (TREE_TYPE (decl
))
23983 && stdarg_p (TREE_TYPE (decl
)))
23984 gen_unspecified_parameters_die (decl
, subr_die
);
23987 if (subr_die
!= old_die
)
23988 /* Add the calling convention attribute if requested. */
23989 add_calling_convention_attribute (subr_die
, decl
);
23991 /* Output Dwarf info for all of the stuff within the body of the function
23992 (if it has one - it may be just a declaration).
23994 OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
23995 a function. This BLOCK actually represents the outermost binding contour
23996 for the function, i.e. the contour in which the function's formal
23997 parameters and labels get declared. Curiously, it appears that the front
23998 end doesn't actually put the PARM_DECL nodes for the current function onto
23999 the BLOCK_VARS list for this outer scope, but are strung off of the
24000 DECL_ARGUMENTS list for the function instead.
24002 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
24003 the LABEL_DECL nodes for the function however, and we output DWARF info
24004 for those in decls_for_scope. Just within the `outer_scope' there will be
24005 a BLOCK node representing the function's outermost pair of curly braces,
24006 and any blocks used for the base and member initializers of a C++
24007 constructor function. */
24008 tree outer_scope
= DECL_INITIAL (decl
);
24009 if (! declaration
&& outer_scope
&& TREE_CODE (outer_scope
) != ERROR_MARK
)
24011 int call_site_note_count
= 0;
24012 int tail_call_site_note_count
= 0;
24014 /* Emit a DW_TAG_variable DIE for a named return value. */
24015 if (DECL_NAME (DECL_RESULT (decl
)))
24016 gen_decl_die (DECL_RESULT (decl
), NULL
, NULL
, subr_die
);
24018 /* The first time through decls_for_scope we will generate the
24019 DIEs for the locals. The second time, we fill in the
24021 decls_for_scope (outer_scope
, subr_die
);
24023 if (call_arg_locations
&& (!dwarf_strict
|| dwarf_version
>= 5))
24025 struct call_arg_loc_node
*ca_loc
;
24026 for (ca_loc
= call_arg_locations
; ca_loc
; ca_loc
= ca_loc
->next
)
24028 dw_die_ref die
= NULL
;
24029 rtx tloc
= NULL_RTX
, tlocc
= NULL_RTX
;
24031 tree arg_decl
= NULL_TREE
;
24033 for (arg
= (ca_loc
->call_arg_loc_note
!= NULL_RTX
24034 ? XEXP (ca_loc
->call_arg_loc_note
, 0)
24036 arg
; arg
= next_arg
)
24038 dw_loc_descr_ref reg
, val
;
24039 machine_mode mode
= GET_MODE (XEXP (XEXP (arg
, 0), 1));
24040 dw_die_ref cdie
, tdie
= NULL
;
24042 next_arg
= XEXP (arg
, 1);
24043 if (REG_P (XEXP (XEXP (arg
, 0), 0))
24045 && MEM_P (XEXP (XEXP (next_arg
, 0), 0))
24046 && REG_P (XEXP (XEXP (XEXP (next_arg
, 0), 0), 0))
24047 && REGNO (XEXP (XEXP (arg
, 0), 0))
24048 == REGNO (XEXP (XEXP (XEXP (next_arg
, 0), 0), 0)))
24049 next_arg
= XEXP (next_arg
, 1);
24050 if (mode
== VOIDmode
)
24052 mode
= GET_MODE (XEXP (XEXP (arg
, 0), 0));
24053 if (mode
== VOIDmode
)
24054 mode
= GET_MODE (XEXP (arg
, 0));
24056 if (mode
== VOIDmode
|| mode
== BLKmode
)
24058 /* Get dynamic information about call target only if we
24059 have no static information: we cannot generate both
24060 DW_AT_call_origin and DW_AT_call_target
24062 if (ca_loc
->symbol_ref
== NULL_RTX
)
24064 if (XEXP (XEXP (arg
, 0), 0) == pc_rtx
)
24066 tloc
= XEXP (XEXP (arg
, 0), 1);
24069 else if (GET_CODE (XEXP (XEXP (arg
, 0), 0)) == CLOBBER
24070 && XEXP (XEXP (XEXP (arg
, 0), 0), 0) == pc_rtx
)
24072 tlocc
= XEXP (XEXP (arg
, 0), 1);
24077 if (REG_P (XEXP (XEXP (arg
, 0), 0)))
24078 reg
= reg_loc_descriptor (XEXP (XEXP (arg
, 0), 0),
24079 VAR_INIT_STATUS_INITIALIZED
);
24080 else if (MEM_P (XEXP (XEXP (arg
, 0), 0)))
24082 rtx mem
= XEXP (XEXP (arg
, 0), 0);
24083 reg
= mem_loc_descriptor (XEXP (mem
, 0),
24084 get_address_mode (mem
),
24086 VAR_INIT_STATUS_INITIALIZED
);
24088 else if (GET_CODE (XEXP (XEXP (arg
, 0), 0))
24089 == DEBUG_PARAMETER_REF
)
24092 = DEBUG_PARAMETER_REF_DECL (XEXP (XEXP (arg
, 0), 0));
24093 tdie
= lookup_decl_die (tdecl
);
24101 && GET_CODE (XEXP (XEXP (arg
, 0), 0))
24102 != DEBUG_PARAMETER_REF
)
24104 val
= mem_loc_descriptor (XEXP (XEXP (arg
, 0), 1), mode
,
24106 VAR_INIT_STATUS_INITIALIZED
);
24110 die
= gen_call_site_die (decl
, subr_die
, ca_loc
);
24111 cdie
= new_die (dwarf_TAG (DW_TAG_call_site_parameter
), die
,
24113 add_desc_attribute (cdie
, arg_decl
);
24115 add_AT_loc (cdie
, DW_AT_location
, reg
);
24116 else if (tdie
!= NULL
)
24117 add_AT_die_ref (cdie
, dwarf_AT (DW_AT_call_parameter
),
24119 add_AT_loc (cdie
, dwarf_AT (DW_AT_call_value
), val
);
24120 if (next_arg
!= XEXP (arg
, 1))
24122 mode
= GET_MODE (XEXP (XEXP (XEXP (arg
, 1), 0), 1));
24123 if (mode
== VOIDmode
)
24124 mode
= GET_MODE (XEXP (XEXP (XEXP (arg
, 1), 0), 0));
24125 val
= mem_loc_descriptor (XEXP (XEXP (XEXP (arg
, 1),
24128 VAR_INIT_STATUS_INITIALIZED
);
24130 add_AT_loc (cdie
, dwarf_AT (DW_AT_call_data_value
),
24135 && (ca_loc
->symbol_ref
|| tloc
))
24136 die
= gen_call_site_die (decl
, subr_die
, ca_loc
);
24137 if (die
!= NULL
&& (tloc
!= NULL_RTX
|| tlocc
!= NULL_RTX
))
24139 dw_loc_descr_ref tval
= NULL
;
24141 if (tloc
!= NULL_RTX
)
24142 tval
= mem_loc_descriptor (tloc
,
24143 GET_MODE (tloc
) == VOIDmode
24144 ? Pmode
: GET_MODE (tloc
),
24146 VAR_INIT_STATUS_INITIALIZED
);
24148 add_AT_loc (die
, dwarf_AT (DW_AT_call_target
), tval
);
24149 else if (tlocc
!= NULL_RTX
)
24151 tval
= mem_loc_descriptor (tlocc
,
24152 GET_MODE (tlocc
) == VOIDmode
24153 ? Pmode
: GET_MODE (tlocc
),
24155 VAR_INIT_STATUS_INITIALIZED
);
24158 dwarf_AT (DW_AT_call_target_clobbered
),
24164 call_site_note_count
++;
24165 if (ca_loc
->tail_call_p
)
24166 tail_call_site_note_count
++;
24170 call_arg_locations
= NULL
;
24171 call_arg_loc_last
= NULL
;
24172 if (tail_call_site_count
>= 0
24173 && tail_call_site_count
== tail_call_site_note_count
24174 && (!dwarf_strict
|| dwarf_version
>= 5))
24176 if (call_site_count
>= 0
24177 && call_site_count
== call_site_note_count
)
24178 add_AT_flag (subr_die
, dwarf_AT (DW_AT_call_all_calls
), 1);
24180 add_AT_flag (subr_die
, dwarf_AT (DW_AT_call_all_tail_calls
), 1);
24182 call_site_count
= -1;
24183 tail_call_site_count
= -1;
24186 /* Mark used types after we have created DIEs for the functions scopes. */
24187 premark_used_types (DECL_STRUCT_FUNCTION (decl
));
24190 /* Returns a hash value for X (which really is a die_struct). */
24193 block_die_hasher::hash (die_struct
*d
)
24195 return (hashval_t
) d
->decl_id
^ htab_hash_pointer (d
->die_parent
);
24198 /* Return nonzero if decl_id and die_parent of die_struct X is the same
24199 as decl_id and die_parent of die_struct Y. */
24202 block_die_hasher::equal (die_struct
*x
, die_struct
*y
)
24204 return x
->decl_id
== y
->decl_id
&& x
->die_parent
== y
->die_parent
;
24207 /* Hold information about markers for inlined entry points. */
24208 struct GTY ((for_user
)) inline_entry_data
24210 /* The block that's the inlined_function_outer_scope for an inlined
24214 /* The label at the inlined entry point. */
24215 const char *label_pfx
;
24216 unsigned int label_num
;
24218 /* The view number to be used as the inlined entry point. */
24222 struct inline_entry_data_hasher
: ggc_ptr_hash
<inline_entry_data
>
24224 typedef tree compare_type
;
24225 static inline hashval_t
hash (const inline_entry_data
*);
24226 static inline bool equal (const inline_entry_data
*, const_tree
);
24229 /* Hash table routines for inline_entry_data. */
24232 inline_entry_data_hasher::hash (const inline_entry_data
*data
)
24234 return htab_hash_pointer (data
->block
);
24238 inline_entry_data_hasher::equal (const inline_entry_data
*data
,
24241 return data
->block
== block
;
24244 /* Inlined entry points pending DIE creation in this compilation unit. */
24246 static GTY(()) hash_table
<inline_entry_data_hasher
> *inline_entry_data_table
;
24249 /* Return TRUE if DECL, which may have been previously generated as
24250 OLD_DIE, is a candidate for a DW_AT_specification. DECLARATION is
24251 true if decl (or its origin) is either an extern declaration or a
24252 class/namespace scoped declaration.
24254 The declare_in_namespace support causes us to get two DIEs for one
24255 variable, both of which are declarations. We want to avoid
24256 considering one to be a specification, so we must test for
24257 DECLARATION and DW_AT_declaration. */
24259 decl_will_get_specification_p (dw_die_ref old_die
, tree decl
, bool declaration
)
24261 return (old_die
&& TREE_STATIC (decl
) && !declaration
24262 && get_AT_flag (old_die
, DW_AT_declaration
) == 1);
24265 /* Return true if DECL is a local static. */
24268 local_function_static (tree decl
)
24270 gcc_assert (VAR_P (decl
));
24271 return TREE_STATIC (decl
)
24272 && DECL_CONTEXT (decl
)
24273 && TREE_CODE (DECL_CONTEXT (decl
)) == FUNCTION_DECL
;
24276 /* Return true iff DECL overrides (presumably completes) the type of
24277 OLD_DIE within CONTEXT_DIE. */
24280 override_type_for_decl_p (tree decl
, dw_die_ref old_die
,
24281 dw_die_ref context_die
)
24283 tree type
= TREE_TYPE (decl
);
24286 if (decl_by_reference_p (decl
))
24288 type
= TREE_TYPE (type
);
24289 cv_quals
= TYPE_UNQUALIFIED
;
24292 cv_quals
= decl_quals (decl
);
24294 dw_die_ref type_die
= modified_type_die (type
,
24295 cv_quals
| TYPE_QUALS (type
),
24299 dw_die_ref old_type_die
= get_AT_ref (old_die
, DW_AT_type
);
24301 return type_die
!= old_type_die
;
24304 /* Generate a DIE to represent a declared data object.
24305 Either DECL or ORIGIN must be non-null. */
24308 gen_variable_die (tree decl
, tree origin
, dw_die_ref context_die
)
24310 HOST_WIDE_INT off
= 0;
24312 tree decl_or_origin
= decl
? decl
: origin
;
24313 tree ultimate_origin
;
24314 dw_die_ref var_die
;
24315 dw_die_ref old_die
= decl
? lookup_decl_die (decl
) : NULL
;
24316 bool declaration
= (DECL_EXTERNAL (decl_or_origin
)
24317 || class_or_namespace_scope_p (context_die
));
24318 bool specialization_p
= false;
24319 bool no_linkage_name
= false;
24321 /* While C++ inline static data members have definitions inside of the
24322 class, force the first DIE to be a declaration, then let gen_member_die
24323 reparent it to the class context and call gen_variable_die again
24324 to create the outside of the class DIE for the definition. */
24328 && DECL_CONTEXT (decl
)
24329 && TYPE_P (DECL_CONTEXT (decl
))
24330 && lang_hooks
.decls
.decl_dwarf_attribute (decl
, DW_AT_inline
) != -1)
24332 declaration
= true;
24333 if (dwarf_version
< 5)
24334 no_linkage_name
= true;
24337 ultimate_origin
= decl_ultimate_origin (decl_or_origin
);
24338 if (decl
|| ultimate_origin
)
24339 origin
= ultimate_origin
;
24340 com_decl
= fortran_common (decl_or_origin
, &off
);
24342 /* Symbol in common gets emitted as a child of the common block, in the form
24343 of a data member. */
24346 dw_die_ref com_die
;
24347 dw_loc_list_ref loc
= NULL
;
24348 die_node com_die_arg
;
24350 var_die
= lookup_decl_die (decl_or_origin
);
24353 if (! early_dwarf
&& get_AT (var_die
, DW_AT_location
) == NULL
)
24355 loc
= loc_list_from_tree (com_decl
, off
? 1 : 2, NULL
);
24360 /* Optimize the common case. */
24361 if (single_element_loc_list_p (loc
)
24362 && loc
->expr
->dw_loc_opc
== DW_OP_addr
24363 && loc
->expr
->dw_loc_next
== NULL
24364 && GET_CODE (loc
->expr
->dw_loc_oprnd1
.v
.val_addr
)
24367 rtx x
= loc
->expr
->dw_loc_oprnd1
.v
.val_addr
;
24368 loc
->expr
->dw_loc_oprnd1
.v
.val_addr
24369 = plus_constant (GET_MODE (x
), x
, off
);
24372 loc_list_plus_const (loc
, off
);
24374 add_AT_location_description (var_die
, DW_AT_location
, loc
);
24375 remove_AT (var_die
, DW_AT_declaration
);
24381 if (common_block_die_table
== NULL
)
24382 common_block_die_table
= hash_table
<block_die_hasher
>::create_ggc (10);
24384 com_die_arg
.decl_id
= DECL_UID (com_decl
);
24385 com_die_arg
.die_parent
= context_die
;
24386 com_die
= common_block_die_table
->find (&com_die_arg
);
24388 loc
= loc_list_from_tree (com_decl
, 2, NULL
);
24389 if (com_die
== NULL
)
24392 = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (com_decl
));
24395 com_die
= new_die (DW_TAG_common_block
, context_die
, decl
);
24396 add_name_and_src_coords_attributes (com_die
, com_decl
);
24399 add_AT_location_description (com_die
, DW_AT_location
, loc
);
24400 /* Avoid sharing the same loc descriptor between
24401 DW_TAG_common_block and DW_TAG_variable. */
24402 loc
= loc_list_from_tree (com_decl
, 2, NULL
);
24404 else if (DECL_EXTERNAL (decl_or_origin
))
24405 add_AT_flag (com_die
, DW_AT_declaration
, 1);
24406 if (want_pubnames ())
24407 add_pubname_string (cnam
, com_die
); /* ??? needed? */
24408 com_die
->decl_id
= DECL_UID (com_decl
);
24409 slot
= common_block_die_table
->find_slot (com_die
, INSERT
);
24412 else if (get_AT (com_die
, DW_AT_location
) == NULL
&& loc
)
24414 add_AT_location_description (com_die
, DW_AT_location
, loc
);
24415 loc
= loc_list_from_tree (com_decl
, 2, NULL
);
24416 remove_AT (com_die
, DW_AT_declaration
);
24418 var_die
= new_die (DW_TAG_variable
, com_die
, decl
);
24419 add_name_and_src_coords_attributes (var_die
, decl_or_origin
);
24420 add_type_attribute (var_die
, TREE_TYPE (decl_or_origin
),
24421 decl_quals (decl_or_origin
), false,
24423 add_alignment_attribute (var_die
, decl
);
24424 add_AT_flag (var_die
, DW_AT_external
, 1);
24429 /* Optimize the common case. */
24430 if (single_element_loc_list_p (loc
)
24431 && loc
->expr
->dw_loc_opc
== DW_OP_addr
24432 && loc
->expr
->dw_loc_next
== NULL
24433 && GET_CODE (loc
->expr
->dw_loc_oprnd1
.v
.val_addr
) == SYMBOL_REF
)
24435 rtx x
= loc
->expr
->dw_loc_oprnd1
.v
.val_addr
;
24436 loc
->expr
->dw_loc_oprnd1
.v
.val_addr
24437 = plus_constant (GET_MODE (x
), x
, off
);
24440 loc_list_plus_const (loc
, off
);
24442 add_AT_location_description (var_die
, DW_AT_location
, loc
);
24444 else if (DECL_EXTERNAL (decl_or_origin
))
24445 add_AT_flag (var_die
, DW_AT_declaration
, 1);
24447 equate_decl_number_to_die (decl
, var_die
);
24455 /* A declaration that has been previously dumped, needs no
24456 further annotations, since it doesn't need location on
24457 the second pass. */
24460 else if (decl_will_get_specification_p (old_die
, decl
, declaration
)
24461 && !get_AT (old_die
, DW_AT_specification
))
24463 /* Fall-thru so we can make a new variable die along with a
24464 DW_AT_specification. */
24466 else if (origin
&& old_die
->die_parent
!= context_die
)
24468 /* If we will be creating an inlined instance, we need a
24469 new DIE that will get annotated with
24470 DW_AT_abstract_origin. */
24471 gcc_assert (!DECL_ABSTRACT_P (decl
));
24475 /* If a DIE was dumped early, it still needs location info.
24476 Skip to where we fill the location bits. */
24479 /* ??? In LTRANS we cannot annotate early created variably
24480 modified type DIEs without copying them and adjusting all
24481 references to them. Thus we dumped them again. Also add a
24482 reference to them but beware of -g0 compile and -g link
24483 in which case the reference will be already present. */
24484 tree type
= TREE_TYPE (decl_or_origin
);
24486 && ! get_AT (var_die
, DW_AT_type
)
24487 && variably_modified_type_p
24488 (type
, decl_function_context (decl_or_origin
)))
24490 if (decl_by_reference_p (decl_or_origin
))
24491 add_type_attribute (var_die
, TREE_TYPE (type
),
24492 TYPE_UNQUALIFIED
, false, context_die
);
24494 add_type_attribute (var_die
, type
, decl_quals (decl_or_origin
),
24495 false, context_die
);
24498 goto gen_variable_die_location
;
24502 /* For static data members, the declaration in the class is supposed
24503 to have DW_TAG_member tag in DWARF{3,4} and we emit it for compatibility
24504 also in DWARF2; the specification should still be DW_TAG_variable
24505 referencing the DW_TAG_member DIE. */
24506 if (declaration
&& class_scope_p (context_die
) && dwarf_version
< 5)
24507 var_die
= new_die (DW_TAG_member
, context_die
, decl
);
24509 var_die
= new_die (DW_TAG_variable
, context_die
, decl
);
24511 if (origin
!= NULL
)
24512 add_abstract_origin_attribute (var_die
, origin
);
24514 /* Loop unrolling can create multiple blocks that refer to the same
24515 static variable, so we must test for the DW_AT_declaration flag.
24517 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
24518 copy decls and set the DECL_ABSTRACT_P flag on them instead of
24521 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
24522 else if (decl_will_get_specification_p (old_die
, decl
, declaration
))
24524 /* This is a definition of a C++ class level static. */
24525 add_AT_specification (var_die
, old_die
);
24526 specialization_p
= true;
24527 if (DECL_NAME (decl
))
24529 expanded_location s
= expand_location (DECL_SOURCE_LOCATION (decl
));
24530 struct dwarf_file_data
* file_index
= lookup_filename (s
.file
);
24532 if (get_AT_file (old_die
, DW_AT_decl_file
) != file_index
)
24533 add_AT_file (var_die
, DW_AT_decl_file
, file_index
);
24535 if (get_AT_unsigned (old_die
, DW_AT_decl_line
) != (unsigned) s
.line
)
24536 add_AT_unsigned (var_die
, DW_AT_decl_line
, s
.line
);
24538 if (debug_column_info
24540 && (get_AT_unsigned (old_die
, DW_AT_decl_column
)
24541 != (unsigned) s
.column
))
24542 add_AT_unsigned (var_die
, DW_AT_decl_column
, s
.column
);
24544 if (old_die
->die_tag
== DW_TAG_member
)
24545 add_linkage_name (var_die
, decl
);
24549 add_name_and_src_coords_attributes (var_die
, decl
, no_linkage_name
);
24551 if ((origin
== NULL
&& !specialization_p
)
24553 && !DECL_ABSTRACT_P (decl_or_origin
)
24554 && variably_modified_type_p (TREE_TYPE (decl_or_origin
),
24555 decl_function_context
24557 || (old_die
&& specialization_p
24558 && override_type_for_decl_p (decl_or_origin
, old_die
, context_die
)))
24560 tree type
= TREE_TYPE (decl_or_origin
);
24562 if (decl_by_reference_p (decl_or_origin
))
24563 add_type_attribute (var_die
, TREE_TYPE (type
), TYPE_UNQUALIFIED
, false,
24566 add_type_attribute (var_die
, type
, decl_quals (decl_or_origin
), false,
24570 if (origin
== NULL
&& !specialization_p
)
24572 if (TREE_PUBLIC (decl
))
24573 add_AT_flag (var_die
, DW_AT_external
, 1);
24575 if (DECL_ARTIFICIAL (decl
))
24576 add_AT_flag (var_die
, DW_AT_artificial
, 1);
24578 add_alignment_attribute (var_die
, decl
);
24580 add_accessibility_attribute (var_die
, decl
);
24584 add_AT_flag (var_die
, DW_AT_declaration
, 1);
24586 if (decl
&& (DECL_ABSTRACT_P (decl
)
24587 || !old_die
|| is_declaration_die (old_die
)))
24588 equate_decl_number_to_die (decl
, var_die
);
24590 gen_variable_die_location
:
24592 && (! DECL_ABSTRACT_P (decl_or_origin
)
24593 /* Local static vars are shared between all clones/inlines,
24594 so emit DW_AT_location on the abstract DIE if DECL_RTL is
24596 || (VAR_P (decl_or_origin
)
24597 && TREE_STATIC (decl_or_origin
)
24598 && DECL_RTL_SET_P (decl_or_origin
))))
24602 add_pubname (decl_or_origin
, var_die
);
24603 /* For global register variables, emit DW_AT_location if possible
24604 already during early_dwarf, as late_global_decl won't be usually
24606 if (DECL_HARD_REGISTER (decl_or_origin
)
24607 && TREE_STATIC (decl_or_origin
)
24608 && !decl_by_reference_p (decl_or_origin
)
24609 && !get_AT (var_die
, DW_AT_location
)
24610 && !get_AT (var_die
, DW_AT_const_value
)
24611 && DECL_RTL_SET_P (decl_or_origin
)
24612 && REG_P (DECL_RTL (decl_or_origin
)))
24614 dw_loc_descr_ref descr
24615 = reg_loc_descriptor (DECL_RTL (decl_or_origin
),
24616 VAR_INIT_STATUS_INITIALIZED
);
24618 add_AT_loc (var_die
, DW_AT_location
, descr
);
24622 add_location_or_const_value_attribute (var_die
, decl_or_origin
,
24626 tree_add_const_value_attribute_for_decl (var_die
, decl_or_origin
);
24628 if ((dwarf_version
>= 4 || !dwarf_strict
)
24629 && lang_hooks
.decls
.decl_dwarf_attribute (decl_or_origin
,
24630 DW_AT_const_expr
) == 1
24631 && !get_AT (var_die
, DW_AT_const_expr
)
24632 && !specialization_p
)
24633 add_AT_flag (var_die
, DW_AT_const_expr
, 1);
24637 int inl
= lang_hooks
.decls
.decl_dwarf_attribute (decl_or_origin
,
24640 && !get_AT (var_die
, DW_AT_inline
)
24641 && !specialization_p
)
24642 add_AT_unsigned (var_die
, DW_AT_inline
, inl
);
24646 /* Generate a DIE to represent a named constant. */
24649 gen_const_die (tree decl
, dw_die_ref context_die
)
24651 dw_die_ref const_die
;
24652 tree type
= TREE_TYPE (decl
);
24654 const_die
= lookup_decl_die (decl
);
24658 const_die
= new_die (DW_TAG_constant
, context_die
, decl
);
24659 equate_decl_number_to_die (decl
, const_die
);
24660 add_name_and_src_coords_attributes (const_die
, decl
);
24661 add_type_attribute (const_die
, type
, TYPE_QUAL_CONST
, false, context_die
);
24662 if (TREE_PUBLIC (decl
))
24663 add_AT_flag (const_die
, DW_AT_external
, 1);
24664 if (DECL_ARTIFICIAL (decl
))
24665 add_AT_flag (const_die
, DW_AT_artificial
, 1);
24666 tree_add_const_value_attribute_for_decl (const_die
, decl
);
24669 /* Generate a DIE to represent a label identifier. */
24672 gen_label_die (tree decl
, dw_die_ref context_die
)
24674 tree origin
= decl_ultimate_origin (decl
);
24675 dw_die_ref lbl_die
= lookup_decl_die (decl
);
24677 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
24681 lbl_die
= new_die (DW_TAG_label
, context_die
, decl
);
24682 equate_decl_number_to_die (decl
, lbl_die
);
24684 if (origin
!= NULL
)
24685 add_abstract_origin_attribute (lbl_die
, origin
);
24687 add_name_and_src_coords_attributes (lbl_die
, decl
);
24690 if (DECL_ABSTRACT_P (decl
))
24691 equate_decl_number_to_die (decl
, lbl_die
);
24692 else if (! early_dwarf
)
24694 insn
= DECL_RTL_IF_SET (decl
);
24696 /* Deleted labels are programmer specified labels which have been
24697 eliminated because of various optimizations. We still emit them
24698 here so that it is possible to put breakpoints on them. */
24702 && NOTE_KIND (insn
) == NOTE_INSN_DELETED_LABEL
))))
24704 /* When optimization is enabled (via -O) some parts of the compiler
24705 (e.g. jump.cc and cse.cc) may try to delete CODE_LABEL insns which
24706 represent source-level labels which were explicitly declared by
24707 the user. This really shouldn't be happening though, so catch
24708 it if it ever does happen. */
24709 gcc_assert (!as_a
<rtx_insn
*> (insn
)->deleted ());
24711 ASM_GENERATE_INTERNAL_LABEL (label
, "L", CODE_LABEL_NUMBER (insn
));
24712 add_AT_lbl_id (lbl_die
, DW_AT_low_pc
, label
);
24716 && NOTE_KIND (insn
) == NOTE_INSN_DELETED_DEBUG_LABEL
24717 && CODE_LABEL_NUMBER (insn
) != -1)
24719 ASM_GENERATE_INTERNAL_LABEL (label
, "LDL", CODE_LABEL_NUMBER (insn
));
24720 add_AT_lbl_id (lbl_die
, DW_AT_low_pc
, label
);
24725 /* A helper function for gen_inlined_subroutine_die. Add source coordinate
24726 attributes to the DIE for a block STMT, to describe where the inlined
24727 function was called from. This is similar to add_src_coords_attributes. */
24730 add_call_src_coords_attributes (tree stmt
, dw_die_ref die
)
24732 /* We can end up with BUILTINS_LOCATION here. */
24733 if (RESERVED_LOCATION_P (BLOCK_SOURCE_LOCATION (stmt
)))
24736 expanded_location s
= expand_location (BLOCK_SOURCE_LOCATION (stmt
));
24738 if (dwarf_version
>= 3 || !dwarf_strict
)
24740 add_AT_file (die
, DW_AT_call_file
, lookup_filename (s
.file
));
24741 add_AT_unsigned (die
, DW_AT_call_line
, s
.line
);
24742 if (debug_column_info
&& s
.column
)
24743 add_AT_unsigned (die
, DW_AT_call_column
, s
.column
);
24748 /* A helper function for gen_lexical_block_die and gen_inlined_subroutine_die.
24749 Add low_pc and high_pc attributes to the DIE for a block STMT. */
24752 add_high_low_attributes (tree stmt
, dw_die_ref die
)
24754 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
24756 if (inline_entry_data
**iedp
24757 = !inline_entry_data_table
? NULL
24758 : inline_entry_data_table
->find_slot_with_hash (stmt
,
24759 htab_hash_pointer (stmt
),
24762 inline_entry_data
*ied
= *iedp
;
24763 gcc_assert (MAY_HAVE_DEBUG_MARKER_INSNS
);
24764 gcc_assert (debug_inline_points
);
24765 gcc_assert (inlined_function_outer_scope_p (stmt
));
24767 ASM_GENERATE_INTERNAL_LABEL (label
, ied
->label_pfx
, ied
->label_num
);
24768 add_AT_lbl_id (die
, DW_AT_entry_pc
, label
);
24770 if (debug_variable_location_views
&& !ZERO_VIEW_P (ied
->view
)
24773 if (!output_asm_line_debug_info ())
24774 add_AT_unsigned (die
, DW_AT_GNU_entry_view
, ied
->view
);
24777 ASM_GENERATE_INTERNAL_LABEL (label
, "LVU", ied
->view
);
24778 /* FIXME: this will resolve to a small number. Could we
24779 possibly emit smaller data? Ideally we'd emit a
24780 uleb128, but that would make the size of DIEs
24781 impossible for the compiler to compute, since it's
24782 the assembler that computes the value of the view
24783 label in this case. Ideally, we'd have a single form
24784 encompassing both the address and the view, and
24785 indirecting them through a table might make things
24786 easier, but even that would be more wasteful,
24787 space-wise, than what we have now. */
24788 add_AT_symview (die
, DW_AT_GNU_entry_view
, label
);
24792 inline_entry_data_table
->clear_slot (iedp
);
24795 if (BLOCK_FRAGMENT_CHAIN (stmt
)
24796 && (dwarf_version
>= 3 || !dwarf_strict
))
24798 tree chain
, superblock
= NULL_TREE
;
24800 dw_attr_node
*attr
= NULL
;
24802 if (!debug_inline_points
&& inlined_function_outer_scope_p (stmt
))
24804 ASM_GENERATE_INTERNAL_LABEL (label
, BLOCK_BEGIN_LABEL
,
24805 BLOCK_NUMBER (stmt
));
24806 add_AT_lbl_id (die
, DW_AT_entry_pc
, label
);
24809 /* Optimize duplicate .debug_ranges lists or even tails of
24810 lists. If this BLOCK has same ranges as its supercontext,
24811 lookup DW_AT_ranges attribute in the supercontext (and
24812 recursively so), verify that the ranges_table contains the
24813 right values and use it instead of adding a new .debug_range. */
24814 for (chain
= stmt
, pdie
= die
;
24815 BLOCK_SAME_RANGE (chain
);
24816 chain
= BLOCK_SUPERCONTEXT (chain
))
24818 dw_attr_node
*new_attr
;
24820 pdie
= pdie
->die_parent
;
24823 if (BLOCK_SUPERCONTEXT (chain
) == NULL_TREE
)
24825 new_attr
= get_AT (pdie
, DW_AT_ranges
);
24826 if (new_attr
== NULL
24827 || new_attr
->dw_attr_val
.val_class
!= dw_val_class_range_list
)
24830 superblock
= BLOCK_SUPERCONTEXT (chain
);
24833 && ((*ranges_table
)[attr
->dw_attr_val
.v
.val_offset
].num
24834 == (int)BLOCK_NUMBER (superblock
))
24835 && BLOCK_FRAGMENT_CHAIN (superblock
))
24837 unsigned long off
= attr
->dw_attr_val
.v
.val_offset
;
24838 unsigned long supercnt
= 0, thiscnt
= 0;
24839 for (chain
= BLOCK_FRAGMENT_CHAIN (superblock
);
24840 chain
; chain
= BLOCK_FRAGMENT_CHAIN (chain
))
24843 gcc_checking_assert ((*ranges_table
)[off
+ supercnt
].num
24844 == (int)BLOCK_NUMBER (chain
));
24846 gcc_checking_assert ((*ranges_table
)[off
+ supercnt
+ 1].num
== 0);
24847 for (chain
= BLOCK_FRAGMENT_CHAIN (stmt
);
24848 chain
; chain
= BLOCK_FRAGMENT_CHAIN (chain
))
24850 gcc_assert (supercnt
>= thiscnt
);
24851 add_AT_range_list (die
, DW_AT_ranges
, off
+ supercnt
- thiscnt
,
24853 note_rnglist_head (off
+ supercnt
- thiscnt
);
24857 unsigned int offset
= add_ranges (stmt
, true);
24858 add_AT_range_list (die
, DW_AT_ranges
, offset
, false);
24859 note_rnglist_head (offset
);
24861 bool prev_in_cold
= BLOCK_IN_COLD_SECTION_P (stmt
);
24862 chain
= BLOCK_FRAGMENT_CHAIN (stmt
);
24865 add_ranges (chain
, prev_in_cold
!= BLOCK_IN_COLD_SECTION_P (chain
));
24866 prev_in_cold
= BLOCK_IN_COLD_SECTION_P (chain
);
24867 chain
= BLOCK_FRAGMENT_CHAIN (chain
);
24874 char label_high
[MAX_ARTIFICIAL_LABEL_BYTES
];
24875 ASM_GENERATE_INTERNAL_LABEL (label
, BLOCK_BEGIN_LABEL
,
24876 BLOCK_NUMBER (stmt
));
24877 ASM_GENERATE_INTERNAL_LABEL (label_high
, BLOCK_END_LABEL
,
24878 BLOCK_NUMBER (stmt
));
24879 add_AT_low_high_pc (die
, label
, label_high
, false);
24883 /* Generate a DIE for a lexical block. */
24886 gen_lexical_block_die (tree stmt
, dw_die_ref context_die
)
24888 dw_die_ref old_die
= lookup_block_die (stmt
);
24889 dw_die_ref stmt_die
= NULL
;
24892 stmt_die
= new_die (DW_TAG_lexical_block
, context_die
, stmt
);
24893 equate_block_to_die (stmt
, stmt_die
);
24896 if (BLOCK_ABSTRACT_ORIGIN (stmt
))
24898 /* If this is an inlined or conrecte instance, create a new lexical
24899 die for anything below to attach DW_AT_abstract_origin to. */
24901 stmt_die
= new_die (DW_TAG_lexical_block
, context_die
, stmt
);
24903 tree origin
= block_ultimate_origin (stmt
);
24904 if (origin
!= NULL_TREE
&& (origin
!= stmt
|| old_die
))
24905 add_abstract_origin_attribute (stmt_die
, origin
);
24911 stmt_die
= old_die
;
24913 /* A non abstract block whose blocks have already been reordered
24914 should have the instruction range for this block. If so, set the
24915 high/low attributes. */
24916 if (!early_dwarf
&& TREE_ASM_WRITTEN (stmt
))
24918 gcc_assert (stmt_die
);
24919 add_high_low_attributes (stmt
, stmt_die
);
24922 decls_for_scope (stmt
, stmt_die
);
24925 /* Generate a DIE for an inlined subprogram. */
24928 gen_inlined_subroutine_die (tree stmt
, dw_die_ref context_die
)
24930 tree decl
= block_ultimate_origin (stmt
);
24932 /* Make sure any inlined functions are known to be inlineable. */
24933 gcc_checking_assert (DECL_ABSTRACT_P (decl
)
24934 || cgraph_function_possibly_inlined_p (decl
));
24936 dw_die_ref subr_die
= new_die (DW_TAG_inlined_subroutine
, context_die
, stmt
);
24938 if (call_arg_locations
|| debug_inline_points
)
24939 equate_block_to_die (stmt
, subr_die
);
24940 add_abstract_origin_attribute (subr_die
, decl
);
24941 if (TREE_ASM_WRITTEN (stmt
))
24942 add_high_low_attributes (stmt
, subr_die
);
24943 add_call_src_coords_attributes (stmt
, subr_die
);
24945 /* The inliner creates an extra BLOCK for the parameter setup,
24946 we want to merge that with the actual outermost BLOCK of the
24947 inlined function to avoid duplicate locals in consumers.
24948 Do that by doing the recursion to subblocks on the single subblock
24950 bool unwrap_one
= false;
24951 if (BLOCK_SUBBLOCKS (stmt
) && !BLOCK_CHAIN (BLOCK_SUBBLOCKS (stmt
)))
24953 tree origin
= block_ultimate_origin (BLOCK_SUBBLOCKS (stmt
));
24955 && TREE_CODE (origin
) == BLOCK
24956 && BLOCK_SUPERCONTEXT (origin
) == decl
)
24959 decls_for_scope (stmt
, subr_die
, !unwrap_one
);
24961 decls_for_scope (BLOCK_SUBBLOCKS (stmt
), subr_die
);
24964 /* Generate a DIE for a field in a record, or structure. CTX is required: see
24965 the comment for VLR_CONTEXT. */
24968 gen_field_die (tree decl
, struct vlr_context
*ctx
, dw_die_ref context_die
)
24970 dw_die_ref decl_die
;
24972 if (TREE_TYPE (decl
) == error_mark_node
)
24975 decl_die
= new_die (DW_TAG_member
, context_die
, decl
);
24976 add_name_and_src_coords_attributes (decl_die
, decl
);
24977 add_type_attribute (decl_die
, member_declared_type (decl
), decl_quals (decl
),
24978 TYPE_REVERSE_STORAGE_ORDER (DECL_FIELD_CONTEXT (decl
)),
24981 if (DECL_BIT_FIELD_TYPE (decl
))
24983 add_byte_size_attribute (decl_die
, decl
);
24984 add_bit_size_attribute (decl_die
, decl
);
24985 add_bit_offset_attribute (decl_die
, decl
);
24988 add_alignment_attribute (decl_die
, decl
);
24990 if (TREE_CODE (DECL_FIELD_CONTEXT (decl
)) != UNION_TYPE
)
24991 add_data_member_location_attribute (decl_die
, decl
, ctx
);
24993 if (DECL_ARTIFICIAL (decl
))
24994 add_AT_flag (decl_die
, DW_AT_artificial
, 1);
24996 add_accessibility_attribute (decl_die
, decl
);
24998 /* Equate decl number to die, so that we can look up this decl later on. */
24999 equate_decl_number_to_die (decl
, decl_die
);
25002 /* Generate a DIE for a pointer to a member type. TYPE can be an
25003 OFFSET_TYPE, for a pointer to data member, or a RECORD_TYPE, for a
25004 pointer to member function. */
25007 gen_ptr_to_mbr_type_die (tree type
, dw_die_ref context_die
)
25009 if (lookup_type_die (type
))
25012 dw_die_ref ptr_die
= new_die (DW_TAG_ptr_to_member_type
,
25013 scope_die_for (type
, context_die
), type
);
25015 equate_type_number_to_die (type
, ptr_die
);
25016 add_AT_die_ref (ptr_die
, DW_AT_containing_type
,
25017 lookup_type_die (TYPE_OFFSET_BASETYPE (type
)));
25018 add_type_attribute (ptr_die
, TREE_TYPE (type
), TYPE_UNQUALIFIED
, false,
25020 add_alignment_attribute (ptr_die
, type
);
25022 if (TREE_CODE (TREE_TYPE (type
)) != FUNCTION_TYPE
25023 && TREE_CODE (TREE_TYPE (type
)) != METHOD_TYPE
)
25025 dw_loc_descr_ref op
= new_loc_descr (DW_OP_plus
, 0, 0);
25026 add_AT_loc (ptr_die
, DW_AT_use_location
, op
);
25030 static char *producer_string
;
25032 /* Given a C and/or C++ language/version string return the "highest".
25033 C++ is assumed to be "higher" than C in this case. Used for merging
25034 LTO translation unit languages. */
25035 static const char *
25036 highest_c_language (const char *lang1
, const char *lang2
)
25038 if (strcmp ("GNU C++23", lang1
) == 0 || strcmp ("GNU C++23", lang2
) == 0)
25039 return "GNU C++23";
25040 if (strcmp ("GNU C++20", lang1
) == 0 || strcmp ("GNU C++20", lang2
) == 0)
25041 return "GNU C++20";
25042 if (strcmp ("GNU C++17", lang1
) == 0 || strcmp ("GNU C++17", lang2
) == 0)
25043 return "GNU C++17";
25044 if (strcmp ("GNU C++14", lang1
) == 0 || strcmp ("GNU C++14", lang2
) == 0)
25045 return "GNU C++14";
25046 if (strcmp ("GNU C++11", lang1
) == 0 || strcmp ("GNU C++11", lang2
) == 0)
25047 return "GNU C++11";
25048 if (strcmp ("GNU C++98", lang1
) == 0 || strcmp ("GNU C++98", lang2
) == 0)
25049 return "GNU C++98";
25051 if (strcmp ("GNU C2X", lang1
) == 0 || strcmp ("GNU C2X", lang2
) == 0)
25053 if (strcmp ("GNU C17", lang1
) == 0 || strcmp ("GNU C17", lang2
) == 0)
25055 if (strcmp ("GNU C11", lang1
) == 0 || strcmp ("GNU C11", lang2
) == 0)
25057 if (strcmp ("GNU C99", lang1
) == 0 || strcmp ("GNU C99", lang2
) == 0)
25059 if (strcmp ("GNU C89", lang1
) == 0 || strcmp ("GNU C89", lang2
) == 0)
25062 gcc_unreachable ();
25066 /* Generate the DIE for the compilation unit. */
25069 gen_compile_unit_die (const char *filename
)
25072 const char *language_string
= lang_hooks
.name
;
25075 die
= new_die (DW_TAG_compile_unit
, NULL
, NULL
);
25079 add_filename_attribute (die
, filename
);
25080 /* Don't add cwd for <built-in>. */
25081 if (filename
[0] != '<')
25082 add_comp_dir_attribute (die
);
25085 add_AT_string (die
, DW_AT_producer
, producer_string
? producer_string
: "");
25087 /* If our producer is LTO try to figure out a common language to use
25088 from the global list of translation units. */
25089 if (strcmp (language_string
, "GNU GIMPLE") == 0)
25093 const char *common_lang
= NULL
;
25095 FOR_EACH_VEC_SAFE_ELT (all_translation_units
, i
, t
)
25097 if (!TRANSLATION_UNIT_LANGUAGE (t
))
25100 common_lang
= TRANSLATION_UNIT_LANGUAGE (t
);
25101 else if (strcmp (common_lang
, TRANSLATION_UNIT_LANGUAGE (t
)) == 0)
25103 else if (startswith (common_lang
, "GNU C")
25104 && startswith (TRANSLATION_UNIT_LANGUAGE (t
), "GNU C"))
25105 /* Mixing C and C++ is ok, use C++ in that case. */
25106 common_lang
= highest_c_language (common_lang
,
25107 TRANSLATION_UNIT_LANGUAGE (t
));
25110 /* Fall back to C. */
25111 common_lang
= NULL
;
25117 language_string
= common_lang
;
25120 language
= DW_LANG_C
;
25121 if (startswith (language_string
, "GNU C")
25122 && ISDIGIT (language_string
[5]))
25124 language
= DW_LANG_C89
;
25125 if (dwarf_version
>= 3 || !dwarf_strict
)
25127 if (strcmp (language_string
, "GNU C89") != 0)
25128 language
= DW_LANG_C99
;
25130 if (dwarf_version
>= 5 /* || !dwarf_strict */)
25131 if (strcmp (language_string
, "GNU C11") == 0
25132 || strcmp (language_string
, "GNU C17") == 0
25133 || strcmp (language_string
, "GNU C2X") == 0)
25134 language
= DW_LANG_C11
;
25137 else if (startswith (language_string
, "GNU C++"))
25139 language
= DW_LANG_C_plus_plus
;
25140 if (dwarf_version
>= 5 /* || !dwarf_strict */)
25142 if (strcmp (language_string
, "GNU C++11") == 0)
25143 language
= DW_LANG_C_plus_plus_11
;
25144 else if (strcmp (language_string
, "GNU C++14") == 0)
25145 language
= DW_LANG_C_plus_plus_14
;
25146 else if (strcmp (language_string
, "GNU C++17") == 0
25147 || strcmp (language_string
, "GNU C++20") == 0
25148 || strcmp (language_string
, "GNU C++23") == 0)
25150 language
= DW_LANG_C_plus_plus_14
;
25153 else if (strcmp (language_string
, "GNU F77") == 0)
25154 language
= DW_LANG_Fortran77
;
25155 else if (dwarf_version
>= 3 || !dwarf_strict
)
25157 if (strcmp (language_string
, "GNU Ada") == 0)
25158 language
= DW_LANG_Ada95
;
25159 else if (startswith (language_string
, "GNU Fortran"))
25161 language
= DW_LANG_Fortran95
;
25162 if (dwarf_version
>= 5 /* || !dwarf_strict */)
25164 if (strcmp (language_string
, "GNU Fortran2003") == 0)
25165 language
= DW_LANG_Fortran03
;
25166 else if (strcmp (language_string
, "GNU Fortran2008") == 0)
25167 language
= DW_LANG_Fortran08
;
25170 else if (strcmp (language_string
, "GNU Objective-C") == 0)
25171 language
= DW_LANG_ObjC
;
25172 else if (strcmp (language_string
, "GNU Objective-C++") == 0)
25173 language
= DW_LANG_ObjC_plus_plus
;
25174 else if (strcmp (language_string
, "GNU D") == 0)
25175 language
= DW_LANG_D
;
25176 else if (dwarf_version
>= 5 || !dwarf_strict
)
25178 if (strcmp (language_string
, "GNU Go") == 0)
25179 language
= DW_LANG_Go
;
25182 /* Use a degraded Fortran setting in strict DWARF2 so is_fortran works. */
25183 else if (startswith (language_string
, "GNU Fortran"))
25184 language
= DW_LANG_Fortran90
;
25185 /* Likewise for Ada. */
25186 else if (strcmp (language_string
, "GNU Ada") == 0)
25187 language
= DW_LANG_Ada83
;
25189 add_AT_unsigned (die
, DW_AT_language
, language
);
25193 case DW_LANG_Fortran77
:
25194 case DW_LANG_Fortran90
:
25195 case DW_LANG_Fortran95
:
25196 case DW_LANG_Fortran03
:
25197 case DW_LANG_Fortran08
:
25198 /* Fortran has case insensitive identifiers and the front-end
25199 lowercases everything. */
25200 add_AT_unsigned (die
, DW_AT_identifier_case
, DW_ID_down_case
);
25203 /* The default DW_ID_case_sensitive doesn't need to be specified. */
25209 /* Generate the DIE for a base class. */
25212 gen_inheritance_die (tree binfo
, tree access
, tree type
,
25213 dw_die_ref context_die
)
25215 dw_die_ref die
= new_die (DW_TAG_inheritance
, context_die
, binfo
);
25216 struct vlr_context ctx
= { type
, NULL
};
25218 add_type_attribute (die
, BINFO_TYPE (binfo
), TYPE_UNQUALIFIED
, false,
25220 add_data_member_location_attribute (die
, binfo
, &ctx
);
25222 if (BINFO_VIRTUAL_P (binfo
))
25223 add_AT_unsigned (die
, DW_AT_virtuality
, DW_VIRTUALITY_virtual
);
25225 /* In DWARF3+ the default is DW_ACCESS_private only in DW_TAG_class_type
25226 children, otherwise the default is DW_ACCESS_public. In DWARF2
25227 the default has always been DW_ACCESS_private. */
25228 if (access
== access_public_node
)
25230 if (dwarf_version
== 2
25231 || context_die
->die_tag
== DW_TAG_class_type
)
25232 add_AT_unsigned (die
, DW_AT_accessibility
, DW_ACCESS_public
);
25234 else if (access
== access_protected_node
)
25235 add_AT_unsigned (die
, DW_AT_accessibility
, DW_ACCESS_protected
);
25236 else if (dwarf_version
> 2
25237 && context_die
->die_tag
!= DW_TAG_class_type
)
25238 add_AT_unsigned (die
, DW_AT_accessibility
, DW_ACCESS_private
);
25241 /* Return whether DECL is a FIELD_DECL that represents the variant part of a
25245 is_variant_part (tree decl
)
25247 return (TREE_CODE (decl
) == FIELD_DECL
25248 && TREE_CODE (TREE_TYPE (decl
)) == QUAL_UNION_TYPE
);
25251 /* Check that OPERAND is a reference to a field in STRUCT_TYPE. If it is,
25252 return the FIELD_DECL. Return NULL_TREE otherwise. */
25255 analyze_discr_in_predicate (tree operand
, tree struct_type
)
25257 while (CONVERT_EXPR_P (operand
))
25258 operand
= TREE_OPERAND (operand
, 0);
25260 /* Match field access to members of struct_type only. */
25261 if (TREE_CODE (operand
) == COMPONENT_REF
25262 && TREE_CODE (TREE_OPERAND (operand
, 0)) == PLACEHOLDER_EXPR
25263 && TREE_TYPE (TREE_OPERAND (operand
, 0)) == struct_type
25264 && TREE_CODE (TREE_OPERAND (operand
, 1)) == FIELD_DECL
)
25265 return TREE_OPERAND (operand
, 1);
25270 /* Check that SRC is a constant integer that can be represented as a native
25271 integer constant (either signed or unsigned). If so, store it into DEST and
25272 return true. Return false otherwise. */
25275 get_discr_value (tree src
, dw_discr_value
*dest
)
25277 tree discr_type
= TREE_TYPE (src
);
25279 if (lang_hooks
.types
.get_debug_type
)
25281 tree debug_type
= lang_hooks
.types
.get_debug_type (discr_type
);
25282 if (debug_type
!= NULL
)
25283 discr_type
= debug_type
;
25286 if (TREE_CODE (src
) != INTEGER_CST
|| !INTEGRAL_TYPE_P (discr_type
))
25289 /* Signedness can vary between the original type and the debug type. This
25290 can happen for character types in Ada for instance: the character type
25291 used for code generation can be signed, to be compatible with the C one,
25292 but from a debugger point of view, it must be unsigned. */
25293 bool is_orig_unsigned
= TYPE_UNSIGNED (TREE_TYPE (src
));
25294 bool is_debug_unsigned
= TYPE_UNSIGNED (discr_type
);
25296 if (is_orig_unsigned
!= is_debug_unsigned
)
25297 src
= fold_convert (discr_type
, src
);
25299 if (!(is_debug_unsigned
? tree_fits_uhwi_p (src
) : tree_fits_shwi_p (src
)))
25302 dest
->pos
= is_debug_unsigned
;
25303 if (is_debug_unsigned
)
25304 dest
->v
.uval
= tree_to_uhwi (src
);
25306 dest
->v
.sval
= tree_to_shwi (src
);
25311 /* Try to extract synthetic properties out of VARIANT_PART_DECL, which is a
25312 FIELD_DECL in STRUCT_TYPE that represents a variant part. If unsuccessful,
25313 store NULL_TREE in DISCR_DECL. Otherwise:
25315 - store the discriminant field in STRUCT_TYPE that controls the variant
25316 part to *DISCR_DECL
25318 - put in *DISCR_LISTS_P an array where for each variant, the item
25319 represents the corresponding matching list of discriminant values.
25321 - put in *DISCR_LISTS_LENGTH the number of variants, which is the size of
25324 Note that when the array is allocated (i.e. when the analysis is
25325 successful), it is up to the caller to free the array. */
25328 analyze_variants_discr (tree variant_part_decl
,
25331 dw_discr_list_ref
**discr_lists_p
,
25332 unsigned *discr_lists_length
)
25334 tree variant_part_type
= TREE_TYPE (variant_part_decl
);
25336 dw_discr_list_ref
*discr_lists
;
25339 /* Compute how many variants there are in this variant part. */
25340 *discr_lists_length
= 0;
25341 for (variant
= TYPE_FIELDS (variant_part_type
);
25342 variant
!= NULL_TREE
;
25343 variant
= DECL_CHAIN (variant
))
25344 ++*discr_lists_length
;
25346 *discr_decl
= NULL_TREE
;
25348 = (dw_discr_list_ref
*) xcalloc (*discr_lists_length
,
25349 sizeof (**discr_lists_p
));
25350 discr_lists
= *discr_lists_p
;
25352 /* And then analyze all variants to extract discriminant information for all
25353 of them. This analysis is conservative: as soon as we detect something we
25354 do not support, abort everything and pretend we found nothing. */
25355 for (variant
= TYPE_FIELDS (variant_part_type
), i
= 0;
25356 variant
!= NULL_TREE
;
25357 variant
= DECL_CHAIN (variant
), ++i
)
25359 tree match_expr
= DECL_QUALIFIER (variant
);
25361 /* Now, try to analyze the predicate and deduce a discriminant for
25363 if (match_expr
== boolean_true_node
)
25364 /* Typically happens for the default variant: it matches all cases that
25365 previous variants rejected. Don't output any matching value for
25369 /* The following loop tries to iterate over each discriminant
25370 possibility: single values or ranges. */
25371 while (match_expr
!= NULL_TREE
)
25373 tree next_round_match_expr
;
25374 tree candidate_discr
= NULL_TREE
;
25375 dw_discr_list_ref new_node
= NULL
;
25377 /* Possibilities are matched one after the other by nested
25378 TRUTH_ORIF_EXPR expressions. Process the current possibility and
25379 continue with the rest at next iteration. */
25380 if (TREE_CODE (match_expr
) == TRUTH_ORIF_EXPR
)
25382 next_round_match_expr
= TREE_OPERAND (match_expr
, 0);
25383 match_expr
= TREE_OPERAND (match_expr
, 1);
25386 next_round_match_expr
= NULL_TREE
;
25388 if (match_expr
== boolean_false_node
)
25389 /* This sub-expression matches nothing: just wait for the next
25393 else if (TREE_CODE (match_expr
) == EQ_EXPR
)
25395 /* We are matching: <discr_field> == <integer_cst>
25396 This sub-expression matches a single value. */
25397 tree integer_cst
= TREE_OPERAND (match_expr
, 1);
25400 = analyze_discr_in_predicate (TREE_OPERAND (match_expr
, 0),
25403 new_node
= ggc_cleared_alloc
<dw_discr_list_node
> ();
25404 if (!get_discr_value (integer_cst
,
25405 &new_node
->dw_discr_lower_bound
))
25407 new_node
->dw_discr_range
= false;
25410 else if (TREE_CODE (match_expr
) == TRUTH_ANDIF_EXPR
)
25412 /* We are matching:
25413 <discr_field> > <integer_cst>
25414 && <discr_field> < <integer_cst>.
25415 This sub-expression matches the range of values between the
25416 two matched integer constants. Note that comparisons can be
25417 inclusive or exclusive. */
25418 tree candidate_discr_1
, candidate_discr_2
;
25419 tree lower_cst
, upper_cst
;
25420 bool lower_cst_included
, upper_cst_included
;
25421 tree lower_op
= TREE_OPERAND (match_expr
, 0);
25422 tree upper_op
= TREE_OPERAND (match_expr
, 1);
25424 /* When the comparison is exclusive, the integer constant is not
25425 the discriminant range bound we are looking for: we will have
25426 to increment or decrement it. */
25427 if (TREE_CODE (lower_op
) == GE_EXPR
)
25428 lower_cst_included
= true;
25429 else if (TREE_CODE (lower_op
) == GT_EXPR
)
25430 lower_cst_included
= false;
25434 if (TREE_CODE (upper_op
) == LE_EXPR
)
25435 upper_cst_included
= true;
25436 else if (TREE_CODE (upper_op
) == LT_EXPR
)
25437 upper_cst_included
= false;
25441 /* Extract the discriminant from the first operand and check it
25442 is consistant with the same analysis in the second
25445 = analyze_discr_in_predicate (TREE_OPERAND (lower_op
, 0),
25448 = analyze_discr_in_predicate (TREE_OPERAND (upper_op
, 0),
25450 if (candidate_discr_1
== candidate_discr_2
)
25451 candidate_discr
= candidate_discr_1
;
25455 /* Extract bounds from both. */
25456 new_node
= ggc_cleared_alloc
<dw_discr_list_node
> ();
25457 lower_cst
= TREE_OPERAND (lower_op
, 1);
25458 upper_cst
= TREE_OPERAND (upper_op
, 1);
25460 if (!lower_cst_included
)
25462 = fold_build2 (PLUS_EXPR
, TREE_TYPE (lower_cst
), lower_cst
,
25463 build_int_cst (TREE_TYPE (lower_cst
), 1));
25464 if (!upper_cst_included
)
25466 = fold_build2 (MINUS_EXPR
, TREE_TYPE (upper_cst
), upper_cst
,
25467 build_int_cst (TREE_TYPE (upper_cst
), 1));
25469 if (!get_discr_value (lower_cst
,
25470 &new_node
->dw_discr_lower_bound
)
25471 || !get_discr_value (upper_cst
,
25472 &new_node
->dw_discr_upper_bound
))
25475 new_node
->dw_discr_range
= true;
25478 else if ((candidate_discr
25479 = analyze_discr_in_predicate (match_expr
, struct_type
))
25480 && (TREE_TYPE (candidate_discr
) == boolean_type_node
25481 || TREE_TYPE (TREE_TYPE (candidate_discr
))
25482 == boolean_type_node
))
25484 /* We are matching: <discr_field> for a boolean discriminant.
25485 This sub-expression matches boolean_true_node. */
25486 new_node
= ggc_cleared_alloc
<dw_discr_list_node
> ();
25487 if (!get_discr_value (boolean_true_node
,
25488 &new_node
->dw_discr_lower_bound
))
25490 new_node
->dw_discr_range
= false;
25494 /* Unsupported sub-expression: we cannot determine the set of
25495 matching discriminant values. Abort everything. */
25498 /* If the discriminant info is not consistant with what we saw so
25499 far, consider the analysis failed and abort everything. */
25500 if (candidate_discr
== NULL_TREE
25501 || (*discr_decl
!= NULL_TREE
&& candidate_discr
!= *discr_decl
))
25504 *discr_decl
= candidate_discr
;
25506 if (new_node
!= NULL
)
25508 new_node
->dw_discr_next
= discr_lists
[i
];
25509 discr_lists
[i
] = new_node
;
25511 match_expr
= next_round_match_expr
;
25515 /* If we reach this point, we could match everything we were interested
25520 /* Clean all data structure and return no result. */
25521 free (*discr_lists_p
);
25522 *discr_lists_p
= NULL
;
25523 *discr_decl
= NULL_TREE
;
25526 /* Generate a DIE to represent VARIANT_PART_DECL, a variant part that is part
25527 of STRUCT_TYPE, a record type. This new DIE is emitted as the next child
25530 Variant parts are supposed to be implemented as a FIELD_DECL whose type is a
25531 QUAL_UNION_TYPE: this is the VARIANT_PART_DECL parameter. The members for
25532 this type, which are record types, represent the available variants and each
25533 has a DECL_QUALIFIER attribute. The discriminant and the discriminant
25534 values are inferred from these attributes.
25536 In trees, the offsets for the fields inside these sub-records are relative
25537 to the variant part itself, whereas the corresponding DIEs should have
25538 offset attributes that are relative to the embedding record base address.
25539 This is why the caller must provide a VARIANT_PART_OFFSET expression: it
25540 must be an expression that computes the offset of the variant part to
25541 describe in DWARF. */
25544 gen_variant_part (tree variant_part_decl
, struct vlr_context
*vlr_ctx
,
25545 dw_die_ref context_die
)
25547 const tree variant_part_type
= TREE_TYPE (variant_part_decl
);
25548 tree variant_part_offset
= vlr_ctx
->variant_part_offset
;
25550 /* The FIELD_DECL node in STRUCT_TYPE that acts as the discriminant, or
25551 NULL_TREE if there is no such field. */
25552 tree discr_decl
= NULL_TREE
;
25553 dw_discr_list_ref
*discr_lists
;
25554 unsigned discr_lists_length
= 0;
25557 dw_die_ref dwarf_proc_die
= NULL
;
25558 dw_die_ref variant_part_die
25559 = new_die (DW_TAG_variant_part
, context_die
, variant_part_type
);
25561 equate_decl_number_to_die (variant_part_decl
, variant_part_die
);
25563 analyze_variants_discr (variant_part_decl
, vlr_ctx
->struct_type
,
25564 &discr_decl
, &discr_lists
, &discr_lists_length
);
25566 if (discr_decl
!= NULL_TREE
)
25568 dw_die_ref discr_die
= lookup_decl_die (discr_decl
);
25571 add_AT_die_ref (variant_part_die
, DW_AT_discr
, discr_die
);
25573 /* We have no DIE for the discriminant, so just discard all
25574 discrimimant information in the output. */
25575 discr_decl
= NULL_TREE
;
25578 /* If the offset for this variant part is more complex than a constant,
25579 create a DWARF procedure for it so that we will not have to generate
25580 DWARF expressions for it for each member. */
25581 if (TREE_CODE (variant_part_offset
) != INTEGER_CST
25582 && (dwarf_version
>= 3 || !dwarf_strict
))
25584 struct loc_descr_context ctx
= {
25585 vlr_ctx
->struct_type
, /* context_type */
25586 NULL_TREE
, /* base_decl */
25588 false, /* placeholder_arg */
25589 false, /* placeholder_seen */
25590 false /* strict_signedness */
25592 const tree dwarf_proc_fndecl
25593 = build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
, NULL_TREE
,
25594 build_function_type (TREE_TYPE (variant_part_offset
),
25596 const tree dwarf_proc_call
= build_call_expr (dwarf_proc_fndecl
, 0);
25597 const dw_loc_descr_ref dwarf_proc_body
25598 = loc_descriptor_from_tree (variant_part_offset
, 0, &ctx
);
25600 dwarf_proc_die
= new_dwarf_proc_die (dwarf_proc_body
,
25601 dwarf_proc_fndecl
, context_die
);
25602 if (dwarf_proc_die
!= NULL
)
25603 variant_part_offset
= dwarf_proc_call
;
25606 /* Output DIEs for all variants. */
25608 for (tree variant
= TYPE_FIELDS (variant_part_type
);
25609 variant
!= NULL_TREE
;
25610 variant
= DECL_CHAIN (variant
), ++i
)
25612 tree variant_type
= TREE_TYPE (variant
);
25613 dw_die_ref variant_die
;
25615 /* All variants (i.e. members of a variant part) are supposed to be
25616 encoded as structures. Sub-variant parts are QUAL_UNION_TYPE fields
25617 under these records. */
25618 gcc_assert (TREE_CODE (variant_type
) == RECORD_TYPE
);
25620 variant_die
= new_die (DW_TAG_variant
, variant_part_die
, variant_type
);
25621 equate_decl_number_to_die (variant
, variant_die
);
25623 /* Output discriminant values this variant matches, if any. */
25624 if (discr_decl
== NULL
|| discr_lists
[i
] == NULL
)
25625 /* In the case we have discriminant information at all, this is
25626 probably the default variant: as the standard says, don't
25627 output any discriminant value/list attribute. */
25629 else if (discr_lists
[i
]->dw_discr_next
== NULL
25630 && !discr_lists
[i
]->dw_discr_range
)
25631 /* If there is only one accepted value, don't bother outputting a
25633 add_discr_value (variant_die
, &discr_lists
[i
]->dw_discr_lower_bound
);
25635 add_discr_list (variant_die
, discr_lists
[i
]);
25637 for (tree member
= TYPE_FIELDS (variant_type
);
25638 member
!= NULL_TREE
;
25639 member
= DECL_CHAIN (member
))
25641 struct vlr_context vlr_sub_ctx
= {
25642 vlr_ctx
->struct_type
, /* struct_type */
25643 NULL
/* variant_part_offset */
25645 if (is_variant_part (member
))
25647 /* All offsets for fields inside variant parts are relative to
25648 the top-level embedding RECORD_TYPE's base address. On the
25649 other hand, offsets in GCC's types are relative to the
25650 nested-most variant part. So we have to sum offsets each time
25653 vlr_sub_ctx
.variant_part_offset
25654 = fold_build2 (PLUS_EXPR
, TREE_TYPE (variant_part_offset
),
25655 variant_part_offset
, byte_position (member
));
25656 gen_variant_part (member
, &vlr_sub_ctx
, variant_die
);
25660 vlr_sub_ctx
.variant_part_offset
= variant_part_offset
;
25661 gen_decl_die (member
, NULL
, &vlr_sub_ctx
, variant_die
);
25666 free (discr_lists
);
25669 /* Generate a DIE for a class member. */
25672 gen_member_die (tree type
, dw_die_ref context_die
)
25675 tree binfo
= TYPE_BINFO (type
);
25677 gcc_assert (TYPE_MAIN_VARIANT (type
) == type
);
25679 /* If this is not an incomplete type, output descriptions of each of its
25680 members. Note that as we output the DIEs necessary to represent the
25681 members of this record or union type, we will also be trying to output
25682 DIEs to represent the *types* of those members. However the `type'
25683 function (above) will specifically avoid generating type DIEs for member
25684 types *within* the list of member DIEs for this (containing) type except
25685 for those types (of members) which are explicitly marked as also being
25686 members of this (containing) type themselves. The g++ front- end can
25687 force any given type to be treated as a member of some other (containing)
25688 type by setting the TYPE_CONTEXT of the given (member) type to point to
25689 the TREE node representing the appropriate (containing) type. */
25691 /* First output info about the base classes. */
25692 if (binfo
&& early_dwarf
)
25694 vec
<tree
, va_gc
> *accesses
= BINFO_BASE_ACCESSES (binfo
);
25698 for (i
= 0; BINFO_BASE_ITERATE (binfo
, i
, base
); i
++)
25699 gen_inheritance_die (base
,
25700 (accesses
? (*accesses
)[i
] : access_public_node
),
25705 /* Now output info about the members. */
25706 for (member
= TYPE_FIELDS (type
); member
; member
= DECL_CHAIN (member
))
25708 /* Ignore clones. */
25709 if (DECL_ABSTRACT_ORIGIN (member
))
25712 struct vlr_context vlr_ctx
= { type
, NULL_TREE
};
25713 bool static_inline_p
25715 && TREE_STATIC (member
)
25716 && (lang_hooks
.decls
.decl_dwarf_attribute (member
, DW_AT_inline
)
25719 /* If we thought we were generating minimal debug info for TYPE
25720 and then changed our minds, some of the member declarations
25721 may have already been defined. Don't define them again, but
25722 do put them in the right order. */
25724 if (dw_die_ref child
= lookup_decl_die (member
))
25726 /* Handle inline static data members, which only have in-class
25728 bool splice
= true;
25730 dw_die_ref ref
= NULL
;
25731 if (child
->die_tag
== DW_TAG_variable
25732 && child
->die_parent
== comp_unit_die ())
25734 ref
= get_AT_ref (child
, DW_AT_specification
);
25736 /* For C++17 inline static data members followed by redundant
25737 out of class redeclaration, we might get here with
25738 child being the DIE created for the out of class
25739 redeclaration and with its DW_AT_specification being
25740 the DIE created for in-class definition. We want to
25741 reparent the latter, and don't want to create another
25742 DIE with DW_AT_specification in that case, because
25743 we already have one. */
25746 && ref
->die_tag
== DW_TAG_variable
25747 && ref
->die_parent
== comp_unit_die ()
25748 && get_AT (ref
, DW_AT_specification
) == NULL
)
25752 static_inline_p
= false;
25757 reparent_child (child
, context_die
);
25758 if (dwarf_version
< 5)
25759 child
->die_tag
= DW_TAG_member
;
25763 else if (child
->die_tag
== DW_TAG_enumerator
)
25764 /* Enumerators remain under their enumeration even if
25765 their names are introduced in the enclosing scope. */
25769 splice_child_die (context_die
, child
);
25772 /* Do not generate DWARF for variant parts if we are generating the
25773 corresponding GNAT encodings: DIEs generated for the two schemes
25774 would conflict in our mappings. */
25775 else if (is_variant_part (member
)
25776 && gnat_encodings
!= DWARF_GNAT_ENCODINGS_ALL
)
25778 vlr_ctx
.variant_part_offset
= byte_position (member
);
25779 gen_variant_part (member
, &vlr_ctx
, context_die
);
25783 vlr_ctx
.variant_part_offset
= NULL_TREE
;
25784 gen_decl_die (member
, NULL
, &vlr_ctx
, context_die
);
25787 /* For C++ inline static data members emit immediately a DW_TAG_variable
25788 DIE that will refer to that DW_TAG_member/DW_TAG_variable through
25789 DW_AT_specification. */
25790 if (static_inline_p
)
25792 int old_extern
= DECL_EXTERNAL (member
);
25793 DECL_EXTERNAL (member
) = 0;
25794 gen_decl_die (member
, NULL
, NULL
, comp_unit_die ());
25795 DECL_EXTERNAL (member
) = old_extern
;
25800 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
25801 is set, we pretend that the type was never defined, so we only get the
25802 member DIEs needed by later specification DIEs. */
25805 gen_struct_or_union_type_die (tree type
, dw_die_ref context_die
,
25806 enum debug_info_usage usage
)
25808 if (TREE_ASM_WRITTEN (type
))
25810 /* Fill in the bound of variable-length fields in late dwarf if
25811 still incomplete. */
25812 if (!early_dwarf
&& variably_modified_type_p (type
, NULL
))
25813 for (tree member
= TYPE_FIELDS (type
);
25815 member
= DECL_CHAIN (member
))
25816 fill_variable_array_bounds (TREE_TYPE (member
));
25820 dw_die_ref type_die
= lookup_type_die (type
);
25821 dw_die_ref scope_die
= 0;
25823 int complete
= (TYPE_SIZE (type
)
25824 && (! TYPE_STUB_DECL (type
)
25825 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type
))));
25826 int ns_decl
= (context_die
&& context_die
->die_tag
== DW_TAG_namespace
);
25827 complete
= complete
&& should_emit_struct_debug (type
, usage
);
25829 if (type_die
&& ! complete
)
25832 if (TYPE_CONTEXT (type
) != NULL_TREE
25833 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type
))
25834 || TREE_CODE (TYPE_CONTEXT (type
)) == NAMESPACE_DECL
))
25837 scope_die
= scope_die_for (type
, context_die
);
25839 /* Generate child dies for template parameters. */
25840 if (!type_die
&& debug_info_level
> DINFO_LEVEL_TERSE
)
25841 schedule_generic_params_dies_gen (type
);
25843 if (! type_die
|| (nested
&& is_cu_die (scope_die
)))
25844 /* First occurrence of type or toplevel definition of nested class. */
25846 dw_die_ref old_die
= type_die
;
25848 type_die
= new_die (TREE_CODE (type
) == RECORD_TYPE
25849 ? record_type_tag (type
) : DW_TAG_union_type
,
25851 equate_type_number_to_die (type
, type_die
);
25853 add_AT_specification (type_die
, old_die
);
25855 add_name_attribute (type_die
, type_tag (type
));
25858 remove_AT (type_die
, DW_AT_declaration
);
25860 /* If this type has been completed, then give it a byte_size attribute and
25861 then give a list of members. */
25862 if (complete
&& !ns_decl
)
25864 /* Prevent infinite recursion in cases where the type of some member of
25865 this type is expressed in terms of this type itself. */
25866 TREE_ASM_WRITTEN (type
) = 1;
25867 add_byte_size_attribute (type_die
, type
);
25868 add_alignment_attribute (type_die
, type
);
25869 if (TYPE_STUB_DECL (type
) != NULL_TREE
)
25871 add_src_coords_attributes (type_die
, TYPE_STUB_DECL (type
));
25872 add_accessibility_attribute (type_die
, TYPE_STUB_DECL (type
));
25875 /* If the first reference to this type was as the return type of an
25876 inline function, then it may not have a parent. Fix this now. */
25877 if (type_die
->die_parent
== NULL
)
25878 add_child_die (scope_die
, type_die
);
25880 gen_member_die (type
, type_die
);
25882 add_gnat_descriptive_type_attribute (type_die
, type
, context_die
);
25883 if (TYPE_ARTIFICIAL (type
))
25884 add_AT_flag (type_die
, DW_AT_artificial
, 1);
25886 /* GNU extension: Record what type our vtable lives in. */
25887 if (TYPE_VFIELD (type
))
25889 tree vtype
= DECL_FCONTEXT (TYPE_VFIELD (type
));
25891 gen_type_die (vtype
, context_die
);
25892 add_AT_die_ref (type_die
, DW_AT_containing_type
,
25893 lookup_type_die (vtype
));
25898 add_AT_flag (type_die
, DW_AT_declaration
, 1);
25900 /* We don't need to do this for function-local types. */
25901 if (TYPE_STUB_DECL (type
)
25902 && ! decl_function_context (TYPE_STUB_DECL (type
)))
25903 vec_safe_push (incomplete_types
, type
);
25906 if (get_AT (type_die
, DW_AT_name
))
25907 add_pubtype (type
, type_die
);
25910 /* Generate a DIE for a subroutine _type_. */
25913 gen_subroutine_type_die (tree type
, dw_die_ref context_die
)
25915 tree return_type
= TREE_TYPE (type
);
25916 dw_die_ref subr_die
25917 = new_die (DW_TAG_subroutine_type
,
25918 scope_die_for (type
, context_die
), type
);
25920 equate_type_number_to_die (type
, subr_die
);
25921 add_prototyped_attribute (subr_die
, type
);
25922 add_type_attribute (subr_die
, return_type
, TYPE_UNQUALIFIED
, false,
25924 add_alignment_attribute (subr_die
, type
);
25925 gen_formal_types_die (type
, subr_die
);
25927 if (get_AT (subr_die
, DW_AT_name
))
25928 add_pubtype (type
, subr_die
);
25929 if ((dwarf_version
>= 5 || !dwarf_strict
)
25930 && lang_hooks
.types
.type_dwarf_attribute (type
, DW_AT_reference
) != -1)
25931 add_AT_flag (subr_die
, DW_AT_reference
, 1);
25932 if ((dwarf_version
>= 5 || !dwarf_strict
)
25933 && lang_hooks
.types
.type_dwarf_attribute (type
,
25934 DW_AT_rvalue_reference
) != -1)
25935 add_AT_flag (subr_die
, DW_AT_rvalue_reference
, 1);
25938 /* Generate a DIE for a type definition. */
25941 gen_typedef_die (tree decl
, dw_die_ref context_die
)
25943 dw_die_ref type_die
;
25946 if (TREE_ASM_WRITTEN (decl
))
25948 if (DECL_ORIGINAL_TYPE (decl
))
25949 fill_variable_array_bounds (DECL_ORIGINAL_TYPE (decl
));
25953 /* As we avoid creating DIEs for local typedefs (see decl_ultimate_origin
25954 checks in process_scope_var and modified_type_die), this should be called
25955 only for original types. */
25956 gcc_assert (decl_ultimate_origin (decl
) == NULL
25957 || decl_ultimate_origin (decl
) == decl
);
25959 TREE_ASM_WRITTEN (decl
) = 1;
25960 type_die
= new_die (DW_TAG_typedef
, context_die
, decl
);
25962 add_name_and_src_coords_attributes (type_die
, decl
);
25963 if (DECL_ORIGINAL_TYPE (decl
))
25965 type
= DECL_ORIGINAL_TYPE (decl
);
25966 if (type
== error_mark_node
)
25969 gcc_assert (type
!= TREE_TYPE (decl
));
25970 equate_type_number_to_die (TREE_TYPE (decl
), type_die
);
25974 type
= TREE_TYPE (decl
);
25975 if (type
== error_mark_node
)
25978 if (is_naming_typedef_decl (TYPE_NAME (type
)))
25980 /* Here, we are in the case of decl being a typedef naming
25981 an anonymous type, e.g:
25982 typedef struct {...} foo;
25983 In that case TREE_TYPE (decl) is not a typedef variant
25984 type and TYPE_NAME of the anonymous type is set to the
25985 TYPE_DECL of the typedef. This construct is emitted by
25988 TYPE is the anonymous struct named by the typedef
25989 DECL. As we need the DW_AT_type attribute of the
25990 DW_TAG_typedef to point to the DIE of TYPE, let's
25991 generate that DIE right away. add_type_attribute
25992 called below will then pick (via lookup_type_die) that
25993 anonymous struct DIE. */
25994 if (!TREE_ASM_WRITTEN (type
))
25995 gen_tagged_type_die (type
, context_die
, DINFO_USAGE_DIR_USE
);
25997 /* This is a GNU Extension. We are adding a
25998 DW_AT_linkage_name attribute to the DIE of the
25999 anonymous struct TYPE. The value of that attribute
26000 is the name of the typedef decl naming the anonymous
26001 struct. This greatly eases the work of consumers of
26002 this debug info. */
26003 add_linkage_name_raw (lookup_type_die (type
), decl
);
26007 add_type_attribute (type_die
, type
, decl_quals (decl
), false,
26010 if (is_naming_typedef_decl (decl
))
26011 /* We want that all subsequent calls to lookup_type_die with
26012 TYPE in argument yield the DW_TAG_typedef we have just
26014 equate_type_number_to_die (type
, type_die
);
26016 add_alignment_attribute (type_die
, TREE_TYPE (decl
));
26018 add_accessibility_attribute (type_die
, decl
);
26020 if (DECL_ABSTRACT_P (decl
))
26021 equate_decl_number_to_die (decl
, type_die
);
26023 if (get_AT (type_die
, DW_AT_name
))
26024 add_pubtype (decl
, type_die
);
26027 /* Generate a DIE for a struct, class, enum or union type. */
26030 gen_tagged_type_die (tree type
,
26031 dw_die_ref context_die
,
26032 enum debug_info_usage usage
)
26034 if (type
== NULL_TREE
26035 || !is_tagged_type (type
))
26038 if (TREE_ASM_WRITTEN (type
))
26040 /* If this is a nested type whose containing class hasn't been written
26041 out yet, writing it out will cover this one, too. This does not apply
26042 to instantiations of member class templates; they need to be added to
26043 the containing class as they are generated. FIXME: This hurts the
26044 idea of combining type decls from multiple TUs, since we can't predict
26045 what set of template instantiations we'll get. */
26046 else if (TYPE_CONTEXT (type
)
26047 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type
))
26048 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type
)))
26050 gen_type_die_with_usage (TYPE_CONTEXT (type
), context_die
, usage
);
26052 if (TREE_ASM_WRITTEN (type
))
26055 /* If that failed, attach ourselves to the stub. */
26056 context_die
= lookup_type_die (TYPE_CONTEXT (type
));
26058 else if (TYPE_CONTEXT (type
) != NULL_TREE
26059 && (TREE_CODE (TYPE_CONTEXT (type
)) == FUNCTION_DECL
))
26061 /* If this type is local to a function that hasn't been written
26062 out yet, use a NULL context for now; it will be fixed up in
26063 decls_for_scope. */
26064 context_die
= lookup_decl_die (TYPE_CONTEXT (type
));
26065 /* A declaration DIE doesn't count; nested types need to go in the
26067 if (context_die
&& is_declaration_die (context_die
))
26068 context_die
= NULL
;
26071 context_die
= declare_in_namespace (type
, context_die
);
26073 if (TREE_CODE (type
) == ENUMERAL_TYPE
)
26075 /* This might have been written out by the call to
26076 declare_in_namespace. */
26077 if (!TREE_ASM_WRITTEN (type
))
26078 gen_enumeration_type_die (type
, context_die
);
26081 gen_struct_or_union_type_die (type
, context_die
, usage
);
26083 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
26084 it up if it is ever completed. gen_*_type_die will set it for us
26085 when appropriate. */
26088 /* Generate a type description DIE. */
26091 gen_type_die_with_usage (tree type
, dw_die_ref context_die
,
26092 enum debug_info_usage usage
)
26094 struct array_descr_info info
;
26096 if (type
== NULL_TREE
|| type
== error_mark_node
)
26099 if (flag_checking
&& type
)
26100 verify_type (type
);
26102 if (TYPE_NAME (type
) != NULL_TREE
26103 && TREE_CODE (TYPE_NAME (type
)) == TYPE_DECL
26104 && is_redundant_typedef (TYPE_NAME (type
))
26105 && DECL_ORIGINAL_TYPE (TYPE_NAME (type
)))
26106 /* The DECL of this type is a typedef we don't want to emit debug
26107 info for but we want debug info for its underlying typedef.
26108 This can happen for e.g, the injected-class-name of a C++
26110 type
= DECL_ORIGINAL_TYPE (TYPE_NAME (type
));
26112 /* If TYPE is a typedef type variant, let's generate debug info
26113 for the parent typedef which TYPE is a type of. */
26114 if (typedef_variant_p (type
))
26116 if (TREE_ASM_WRITTEN (type
))
26119 tree name
= TYPE_NAME (type
);
26120 tree origin
= decl_ultimate_origin (name
);
26121 if (origin
!= NULL
&& origin
!= name
)
26123 gen_decl_die (origin
, NULL
, NULL
, context_die
);
26127 /* Prevent broken recursion; we can't hand off to the same type. */
26128 gcc_assert (DECL_ORIGINAL_TYPE (name
) != type
);
26130 /* Give typedefs the right scope. */
26131 context_die
= scope_die_for (type
, context_die
);
26133 TREE_ASM_WRITTEN (type
) = 1;
26135 gen_decl_die (name
, NULL
, NULL
, context_die
);
26139 /* If type is an anonymous tagged type named by a typedef, let's
26140 generate debug info for the typedef. */
26141 if (is_naming_typedef_decl (TYPE_NAME (type
)))
26143 /* Give typedefs the right scope. */
26144 context_die
= scope_die_for (type
, context_die
);
26146 gen_decl_die (TYPE_NAME (type
), NULL
, NULL
, context_die
);
26150 if (lang_hooks
.types
.get_debug_type
)
26152 tree debug_type
= lang_hooks
.types
.get_debug_type (type
);
26154 if (debug_type
!= NULL_TREE
&& debug_type
!= type
)
26156 gen_type_die_with_usage (debug_type
, context_die
, usage
);
26161 /* We are going to output a DIE to represent the unqualified version
26162 of this type (i.e. without any const or volatile qualifiers) so
26163 get the main variant (i.e. the unqualified version) of this type
26164 now. (Vectors and arrays are special because the debugging info is in the
26165 cloned type itself. Similarly function/method types can contain extra
26166 ref-qualification). */
26167 if (TREE_CODE (type
) == FUNCTION_TYPE
26168 || TREE_CODE (type
) == METHOD_TYPE
)
26170 /* For function/method types, can't use type_main_variant here,
26171 because that can have different ref-qualifiers for C++,
26172 but try to canonicalize. */
26173 tree main
= TYPE_MAIN_VARIANT (type
);
26174 for (tree t
= main
; t
; t
= TYPE_NEXT_VARIANT (t
))
26175 if (TYPE_QUALS_NO_ADDR_SPACE (t
) == 0
26176 && check_base_type (t
, main
)
26177 && check_lang_type (t
, type
))
26183 else if (TREE_CODE (type
) != VECTOR_TYPE
26184 && TREE_CODE (type
) != ARRAY_TYPE
)
26185 type
= type_main_variant (type
);
26187 /* If this is an array type with hidden descriptor, handle it first. */
26188 if (!TREE_ASM_WRITTEN (type
)
26189 && lang_hooks
.types
.get_array_descr_info
)
26191 memset (&info
, 0, sizeof (info
));
26192 if (lang_hooks
.types
.get_array_descr_info (type
, &info
))
26194 /* Fortran sometimes emits array types with no dimension. */
26195 gcc_assert (info
.ndimensions
>= 0
26196 && (info
.ndimensions
26197 <= DWARF2OUT_ARRAY_DESCR_INFO_MAX_DIMEN
));
26198 gen_descr_array_type_die (type
, &info
, context_die
);
26199 TREE_ASM_WRITTEN (type
) = 1;
26204 if (TREE_ASM_WRITTEN (type
))
26206 /* Variable-length types may be incomplete even if
26207 TREE_ASM_WRITTEN. For such types, fall through to
26208 gen_array_type_die() and possibly fill in
26209 DW_AT_{upper,lower}_bound attributes. */
26210 if ((TREE_CODE (type
) != ARRAY_TYPE
26211 && TREE_CODE (type
) != RECORD_TYPE
26212 && TREE_CODE (type
) != UNION_TYPE
26213 && TREE_CODE (type
) != QUAL_UNION_TYPE
)
26214 || !variably_modified_type_p (type
, NULL
))
26218 switch (TREE_CODE (type
))
26224 case REFERENCE_TYPE
:
26225 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
26226 ensures that the gen_type_die recursion will terminate even if the
26227 type is recursive. Recursive types are possible in Ada. */
26228 /* ??? We could perhaps do this for all types before the switch
26230 TREE_ASM_WRITTEN (type
) = 1;
26232 /* For these types, all that is required is that we output a DIE (or a
26233 set of DIEs) to represent the "basis" type. */
26234 gen_type_die_with_usage (TREE_TYPE (type
), context_die
,
26235 DINFO_USAGE_IND_USE
);
26239 /* This code is used for C++ pointer-to-data-member types.
26240 Output a description of the relevant class type. */
26241 gen_type_die_with_usage (TYPE_OFFSET_BASETYPE (type
), context_die
,
26242 DINFO_USAGE_IND_USE
);
26244 /* Output a description of the type of the object pointed to. */
26245 gen_type_die_with_usage (TREE_TYPE (type
), context_die
,
26246 DINFO_USAGE_IND_USE
);
26248 /* Now output a DIE to represent this pointer-to-data-member type
26250 gen_ptr_to_mbr_type_die (type
, context_die
);
26253 case FUNCTION_TYPE
:
26254 /* Force out return type (in case it wasn't forced out already). */
26255 gen_type_die_with_usage (TREE_TYPE (type
), context_die
,
26256 DINFO_USAGE_DIR_USE
);
26257 gen_subroutine_type_die (type
, context_die
);
26261 /* Force out return type (in case it wasn't forced out already). */
26262 gen_type_die_with_usage (TREE_TYPE (type
), context_die
,
26263 DINFO_USAGE_DIR_USE
);
26264 gen_subroutine_type_die (type
, context_die
);
26269 gen_array_type_die (type
, context_die
);
26272 case ENUMERAL_TYPE
:
26275 case QUAL_UNION_TYPE
:
26276 gen_tagged_type_die (type
, context_die
, usage
);
26283 case FIXED_POINT_TYPE
:
26286 /* No DIEs needed for fundamental types. */
26291 /* Just use DW_TAG_unspecified_type. */
26293 dw_die_ref type_die
= lookup_type_die (type
);
26294 if (type_die
== NULL
)
26296 tree name
= TYPE_IDENTIFIER (type
);
26297 type_die
= new_die (DW_TAG_unspecified_type
, comp_unit_die (),
26299 add_name_attribute (type_die
, IDENTIFIER_POINTER (name
));
26300 equate_type_number_to_die (type
, type_die
);
26306 if (is_cxx_auto (type
))
26308 tree name
= TYPE_IDENTIFIER (type
);
26309 dw_die_ref
*die
= (name
== get_identifier ("auto")
26310 ? &auto_die
: &decltype_auto_die
);
26313 *die
= new_die (DW_TAG_unspecified_type
,
26314 comp_unit_die (), NULL_TREE
);
26315 add_name_attribute (*die
, IDENTIFIER_POINTER (name
));
26317 equate_type_number_to_die (type
, *die
);
26320 gcc_unreachable ();
26323 TREE_ASM_WRITTEN (type
) = 1;
26327 gen_type_die (tree type
, dw_die_ref context_die
)
26329 if (type
!= error_mark_node
)
26331 gen_type_die_with_usage (type
, context_die
, DINFO_USAGE_DIR_USE
);
26334 dw_die_ref die
= lookup_type_die (type
);
26341 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
26342 things which are local to the given block. */
26345 gen_block_die (tree stmt
, dw_die_ref context_die
)
26347 int must_output_die
= 0;
26350 /* Ignore blocks that are NULL. */
26351 if (stmt
== NULL_TREE
)
26354 inlined_func
= inlined_function_outer_scope_p (stmt
);
26356 /* If the block is one fragment of a non-contiguous block, do not
26357 process the variables, since they will have been done by the
26358 origin block. Do process subblocks. */
26359 if (BLOCK_FRAGMENT_ORIGIN (stmt
))
26363 for (sub
= BLOCK_SUBBLOCKS (stmt
); sub
; sub
= BLOCK_CHAIN (sub
))
26364 gen_block_die (sub
, context_die
);
26369 /* Determine if we need to output any Dwarf DIEs at all to represent this
26372 /* The outer scopes for inlinings *must* always be represented. We
26373 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
26374 must_output_die
= 1;
26375 else if (lookup_block_die (stmt
))
26376 /* If we already have a DIE then it was filled early. Meanwhile
26377 we might have pruned all BLOCK_VARS as optimized out but we
26378 still want to generate high/low PC attributes so output it. */
26379 must_output_die
= 1;
26380 else if (TREE_USED (stmt
)
26381 || TREE_ASM_WRITTEN (stmt
))
26383 /* Determine if this block directly contains any "significant"
26384 local declarations which we will need to output DIEs for. */
26385 if (debug_info_level
> DINFO_LEVEL_TERSE
)
26387 /* We are not in terse mode so any local declaration that
26388 is not ignored for debug purposes counts as being a
26389 "significant" one. */
26390 if (BLOCK_NUM_NONLOCALIZED_VARS (stmt
))
26391 must_output_die
= 1;
26393 for (tree var
= BLOCK_VARS (stmt
); var
; var
= DECL_CHAIN (var
))
26394 if (!DECL_IGNORED_P (var
))
26396 must_output_die
= 1;
26400 else if (!dwarf2out_ignore_block (stmt
))
26401 must_output_die
= 1;
26404 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
26405 DIE for any block which contains no significant local declarations at
26406 all. Rather, in such cases we just call `decls_for_scope' so that any
26407 needed Dwarf info for any sub-blocks will get properly generated. Note
26408 that in terse mode, our definition of what constitutes a "significant"
26409 local declaration gets restricted to include only inlined function
26410 instances and local (nested) function definitions. */
26411 if (must_output_die
)
26414 gen_inlined_subroutine_die (stmt
, context_die
);
26416 gen_lexical_block_die (stmt
, context_die
);
26419 decls_for_scope (stmt
, context_die
);
26422 /* Process variable DECL (or variable with origin ORIGIN) within
26423 block STMT and add it to CONTEXT_DIE. */
26425 process_scope_var (tree stmt
, tree decl
, tree origin
, dw_die_ref context_die
)
26428 tree decl_or_origin
= decl
? decl
: origin
;
26430 if (TREE_CODE (decl_or_origin
) == FUNCTION_DECL
)
26431 die
= lookup_decl_die (decl_or_origin
);
26432 else if (TREE_CODE (decl_or_origin
) == TYPE_DECL
)
26434 if (TYPE_DECL_IS_STUB (decl_or_origin
))
26435 die
= lookup_type_die (TREE_TYPE (decl_or_origin
));
26437 die
= lookup_decl_die (decl_or_origin
);
26438 /* Avoid re-creating the DIE late if it was optimized as unused early. */
26439 if (! die
&& ! early_dwarf
)
26445 /* Avoid creating DIEs for local typedefs and concrete static variables that
26446 will only be pruned later. */
26447 if ((origin
|| decl_ultimate_origin (decl
))
26448 && (TREE_CODE (decl_or_origin
) == TYPE_DECL
26449 || (VAR_P (decl_or_origin
) && TREE_STATIC (decl_or_origin
))))
26451 origin
= decl_ultimate_origin (decl_or_origin
);
26452 if (decl
&& VAR_P (decl
) && die
!= NULL
)
26454 die
= lookup_decl_die (origin
);
26456 equate_decl_number_to_die (decl
, die
);
26461 if (die
!= NULL
&& die
->die_parent
== NULL
)
26462 add_child_die (context_die
, die
);
26463 else if (TREE_CODE (decl_or_origin
) == IMPORTED_DECL
)
26466 dwarf2out_imported_module_or_decl_1 (decl_or_origin
, DECL_NAME (decl_or_origin
),
26467 stmt
, context_die
);
26471 if (decl
&& DECL_P (decl
))
26473 die
= lookup_decl_die (decl
);
26475 /* Early created DIEs do not have a parent as the decls refer
26476 to the function as DECL_CONTEXT rather than the BLOCK. */
26477 if (die
&& die
->die_parent
== NULL
)
26479 gcc_assert (in_lto_p
);
26480 add_child_die (context_die
, die
);
26484 gen_decl_die (decl
, origin
, NULL
, context_die
);
26488 /* Generate all of the decls declared within a given scope and (recursively)
26489 all of its sub-blocks. */
26492 decls_for_scope (tree stmt
, dw_die_ref context_die
, bool recurse
)
26498 /* Ignore NULL blocks. */
26499 if (stmt
== NULL_TREE
)
26502 /* Output the DIEs to represent all of the data objects and typedefs
26503 declared directly within this block but not within any nested
26504 sub-blocks. Also, nested function and tag DIEs have been
26505 generated with a parent of NULL; fix that up now. We don't
26506 have to do this if we're at -g1. */
26507 if (debug_info_level
> DINFO_LEVEL_TERSE
)
26509 for (decl
= BLOCK_VARS (stmt
); decl
!= NULL
; decl
= DECL_CHAIN (decl
))
26510 process_scope_var (stmt
, decl
, NULL_TREE
, context_die
);
26511 /* BLOCK_NONLOCALIZED_VARs simply generate DIE stubs with abstract
26512 origin - avoid doing this twice as we have no good way to see
26513 if we've done it once already. */
26515 for (i
= 0; i
< BLOCK_NUM_NONLOCALIZED_VARS (stmt
); i
++)
26517 decl
= BLOCK_NONLOCALIZED_VAR (stmt
, i
);
26518 if (decl
== current_function_decl
)
26519 /* Ignore declarations of the current function, while they
26520 are declarations, gen_subprogram_die would treat them
26521 as definitions again, because they are equal to
26522 current_function_decl and endlessly recurse. */;
26523 else if (TREE_CODE (decl
) == FUNCTION_DECL
)
26524 process_scope_var (stmt
, decl
, NULL_TREE
, context_die
);
26526 process_scope_var (stmt
, NULL_TREE
, decl
, context_die
);
26530 /* Even if we're at -g1, we need to process the subblocks in order to get
26531 inlined call information. */
26533 /* Output the DIEs to represent all sub-blocks (and the items declared
26534 therein) of this block. */
26536 for (subblocks
= BLOCK_SUBBLOCKS (stmt
);
26538 subblocks
= BLOCK_CHAIN (subblocks
))
26539 gen_block_die (subblocks
, context_die
);
26542 /* Is this a typedef we can avoid emitting? */
26545 is_redundant_typedef (const_tree decl
)
26547 if (TYPE_DECL_IS_STUB (decl
))
26550 if (DECL_ARTIFICIAL (decl
)
26551 && DECL_CONTEXT (decl
)
26552 && is_tagged_type (DECL_CONTEXT (decl
))
26553 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl
))) == TYPE_DECL
26554 && DECL_NAME (decl
) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl
))))
26555 /* Also ignore the artificial member typedef for the class name. */
26561 /* Return TRUE if TYPE is a typedef that names a type for linkage
26562 purposes. This kind of typedefs is produced by the C++ FE for
26565 typedef struct {...} foo;
26567 In that case, there is no typedef variant type produced for foo.
26568 Rather, the TREE_TYPE of the TYPE_DECL of foo is the anonymous
26572 is_naming_typedef_decl (const_tree decl
)
26574 if (decl
== NULL_TREE
26575 || TREE_CODE (decl
) != TYPE_DECL
26576 || DECL_NAMELESS (decl
)
26577 || !is_tagged_type (TREE_TYPE (decl
))
26578 || DECL_IS_UNDECLARED_BUILTIN (decl
)
26579 || is_redundant_typedef (decl
)
26580 /* It looks like Ada produces TYPE_DECLs that are very similar
26581 to C++ naming typedefs but that have different
26582 semantics. Let's be specific to c++ for now. */
26586 return (DECL_ORIGINAL_TYPE (decl
) == NULL_TREE
26587 && TYPE_NAME (TREE_TYPE (decl
)) == decl
26588 && (TYPE_STUB_DECL (TREE_TYPE (decl
))
26589 != TYPE_NAME (TREE_TYPE (decl
))));
26592 /* Looks up the DIE for a context. */
26594 static inline dw_die_ref
26595 lookup_context_die (tree context
)
26599 /* Find die that represents this context. */
26600 if (TYPE_P (context
))
26602 context
= TYPE_MAIN_VARIANT (context
);
26603 dw_die_ref ctx
= lookup_type_die (context
);
26606 return strip_naming_typedef (context
, ctx
);
26609 return lookup_decl_die (context
);
26611 return comp_unit_die ();
26614 /* Returns the DIE for a context. */
26616 static inline dw_die_ref
26617 get_context_die (tree context
)
26621 /* Find die that represents this context. */
26622 if (TYPE_P (context
))
26624 context
= TYPE_MAIN_VARIANT (context
);
26625 return strip_naming_typedef (context
, force_type_die (context
));
26628 return force_decl_die (context
);
26630 return comp_unit_die ();
26633 /* Returns the DIE for decl. A DIE will always be returned. */
26636 force_decl_die (tree decl
)
26638 dw_die_ref decl_die
;
26639 unsigned saved_external_flag
;
26640 tree save_fn
= NULL_TREE
;
26641 decl_die
= lookup_decl_die (decl
);
26644 dw_die_ref context_die
= get_context_die (DECL_CONTEXT (decl
));
26646 decl_die
= lookup_decl_die (decl
);
26650 switch (TREE_CODE (decl
))
26652 case FUNCTION_DECL
:
26653 /* Clear current_function_decl, so that gen_subprogram_die thinks
26654 that this is a declaration. At this point, we just want to force
26655 declaration die. */
26656 save_fn
= current_function_decl
;
26657 current_function_decl
= NULL_TREE
;
26658 gen_subprogram_die (decl
, context_die
);
26659 current_function_decl
= save_fn
;
26663 /* Set external flag to force declaration die. Restore it after
26664 gen_decl_die() call. */
26665 saved_external_flag
= DECL_EXTERNAL (decl
);
26666 DECL_EXTERNAL (decl
) = 1;
26667 gen_decl_die (decl
, NULL
, NULL
, context_die
);
26668 DECL_EXTERNAL (decl
) = saved_external_flag
;
26671 case NAMESPACE_DECL
:
26672 if (dwarf_version
>= 3 || !dwarf_strict
)
26673 dwarf2out_decl (decl
);
26675 /* DWARF2 has neither DW_TAG_module, nor DW_TAG_namespace. */
26676 decl_die
= comp_unit_die ();
26680 /* Enumerators shouldn't need force_decl_die. */
26681 gcc_assert (DECL_CONTEXT (decl
) == NULL_TREE
26682 || TREE_CODE (DECL_CONTEXT (decl
)) != ENUMERAL_TYPE
);
26683 gen_decl_die (decl
, NULL
, NULL
, context_die
);
26686 case TRANSLATION_UNIT_DECL
:
26687 decl_die
= comp_unit_die ();
26691 gcc_unreachable ();
26694 /* We should be able to find the DIE now. */
26696 decl_die
= lookup_decl_die (decl
);
26697 gcc_assert (decl_die
);
26703 /* Returns the DIE for TYPE, that must not be a base type. A DIE is
26704 always returned. */
26707 force_type_die (tree type
)
26709 dw_die_ref type_die
;
26711 type_die
= lookup_type_die (type
);
26714 dw_die_ref context_die
= get_context_die (TYPE_CONTEXT (type
));
26716 type_die
= modified_type_die (type
, TYPE_QUALS_NO_ADDR_SPACE (type
),
26717 false, context_die
);
26718 gcc_assert (type_die
);
26723 /* Force out any required namespaces to be able to output DECL,
26724 and return the new context_die for it, if it's changed. */
26727 setup_namespace_context (tree thing
, dw_die_ref context_die
)
26729 tree context
= (DECL_P (thing
)
26730 ? DECL_CONTEXT (thing
) : TYPE_CONTEXT (thing
));
26731 if (context
&& TREE_CODE (context
) == NAMESPACE_DECL
)
26732 /* Force out the namespace. */
26733 context_die
= force_decl_die (context
);
26735 return context_die
;
26738 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
26739 type) within its namespace, if appropriate.
26741 For compatibility with older debuggers, namespace DIEs only contain
26742 declarations; all definitions are emitted at CU scope, with
26743 DW_AT_specification pointing to the declaration (like with class
26747 declare_in_namespace (tree thing
, dw_die_ref context_die
)
26749 dw_die_ref ns_context
;
26751 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
26752 return context_die
;
26754 /* External declarations in the local scope only need to be emitted
26755 once, not once in the namespace and once in the scope.
26757 This avoids declaring the `extern' below in the
26758 namespace DIE as well as in the innermost scope:
26771 if (DECL_P (thing
) && DECL_EXTERNAL (thing
) && local_scope_p (context_die
))
26772 return context_die
;
26774 /* If this decl is from an inlined function, then don't try to emit it in its
26775 namespace, as we will get confused. It would have already been emitted
26776 when the abstract instance of the inline function was emitted anyways. */
26777 if (DECL_P (thing
) && DECL_ABSTRACT_ORIGIN (thing
))
26778 return context_die
;
26780 ns_context
= setup_namespace_context (thing
, context_die
);
26782 if (ns_context
!= context_die
)
26784 if (is_fortran () || is_dlang ())
26786 if (DECL_P (thing
))
26787 gen_decl_die (thing
, NULL
, NULL
, ns_context
);
26789 gen_type_die (thing
, ns_context
);
26791 return context_die
;
26794 /* Generate a DIE for a namespace or namespace alias. */
26797 gen_namespace_die (tree decl
, dw_die_ref context_die
)
26799 dw_die_ref namespace_die
;
26801 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
26802 they are an alias of. */
26803 if (DECL_ABSTRACT_ORIGIN (decl
) == NULL
)
26805 /* Output a real namespace or module. */
26806 context_die
= setup_namespace_context (decl
, comp_unit_die ());
26807 namespace_die
= new_die (is_fortran () || is_dlang ()
26808 ? DW_TAG_module
: DW_TAG_namespace
,
26809 context_die
, decl
);
26810 /* For Fortran modules defined in different CU don't add src coords. */
26811 if (namespace_die
->die_tag
== DW_TAG_module
&& DECL_EXTERNAL (decl
))
26813 const char *name
= dwarf2_name (decl
, 0);
26815 add_name_attribute (namespace_die
, name
);
26818 add_name_and_src_coords_attributes (namespace_die
, decl
);
26819 if (DECL_EXTERNAL (decl
))
26820 add_AT_flag (namespace_die
, DW_AT_declaration
, 1);
26821 equate_decl_number_to_die (decl
, namespace_die
);
26825 /* Output a namespace alias. */
26827 /* Force out the namespace we are an alias of, if necessary. */
26828 dw_die_ref origin_die
26829 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl
));
26831 if (DECL_FILE_SCOPE_P (decl
)
26832 || TREE_CODE (DECL_CONTEXT (decl
)) == NAMESPACE_DECL
)
26833 context_die
= setup_namespace_context (decl
, comp_unit_die ());
26834 /* Now create the namespace alias DIE. */
26835 namespace_die
= new_die (DW_TAG_imported_declaration
, context_die
, decl
);
26836 add_name_and_src_coords_attributes (namespace_die
, decl
);
26837 add_AT_die_ref (namespace_die
, DW_AT_import
, origin_die
);
26838 equate_decl_number_to_die (decl
, namespace_die
);
26840 if ((dwarf_version
>= 5 || !dwarf_strict
)
26841 && lang_hooks
.decls
.decl_dwarf_attribute (decl
,
26842 DW_AT_export_symbols
) == 1)
26843 add_AT_flag (namespace_die
, DW_AT_export_symbols
, 1);
26845 /* Bypass dwarf2_name's check for DECL_NAMELESS. */
26846 if (want_pubnames ())
26847 add_pubname_string (lang_hooks
.dwarf_name (decl
, 1), namespace_die
);
26850 /* Generate Dwarf debug information for a decl described by DECL.
26851 The return value is currently only meaningful for PARM_DECLs,
26852 for all other decls it returns NULL.
26854 If DECL is a FIELD_DECL, CTX is required: see the comment for VLR_CONTEXT.
26855 It can be NULL otherwise. */
26858 gen_decl_die (tree decl
, tree origin
, struct vlr_context
*ctx
,
26859 dw_die_ref context_die
)
26861 tree decl_or_origin
= decl
? decl
: origin
;
26862 tree class_origin
= NULL
, ultimate_origin
;
26864 if (DECL_P (decl_or_origin
) && DECL_IGNORED_P (decl_or_origin
))
26867 switch (TREE_CODE (decl_or_origin
))
26873 if (!is_fortran () && !is_ada () && !is_dlang ())
26875 /* The individual enumerators of an enum type get output when we output
26876 the Dwarf representation of the relevant enum type itself. */
26880 /* Emit its type. */
26881 gen_type_die (TREE_TYPE (decl
), context_die
);
26883 /* And its containing namespace. */
26884 context_die
= declare_in_namespace (decl
, context_die
);
26886 gen_const_die (decl
, context_die
);
26889 case FUNCTION_DECL
:
26892 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
26893 on local redeclarations of global functions. That seems broken. */
26894 if (current_function_decl
!= decl
)
26895 /* This is only a declaration. */;
26898 /* We should have abstract copies already and should not generate
26899 stray type DIEs in late LTO dumping. */
26903 /* If we're emitting a clone, emit info for the abstract instance. */
26904 else if (origin
|| DECL_ORIGIN (decl
) != decl
)
26905 dwarf2out_abstract_function (origin
26906 ? DECL_ORIGIN (origin
)
26907 : DECL_ABSTRACT_ORIGIN (decl
));
26909 /* If we're emitting a possibly inlined function emit it as
26910 abstract instance. */
26911 else if (cgraph_function_possibly_inlined_p (decl
)
26912 && ! DECL_ABSTRACT_P (decl
)
26913 && ! class_or_namespace_scope_p (context_die
)
26914 /* dwarf2out_abstract_function won't emit a die if this is just
26915 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
26916 that case, because that works only if we have a die. */
26917 && DECL_INITIAL (decl
) != NULL_TREE
)
26918 dwarf2out_abstract_function (decl
);
26920 /* Otherwise we're emitting the primary DIE for this decl. */
26921 else if (debug_info_level
> DINFO_LEVEL_TERSE
)
26923 /* Before we describe the FUNCTION_DECL itself, make sure that we
26924 have its containing type. */
26926 origin
= decl_class_context (decl
);
26927 if (origin
!= NULL_TREE
)
26928 gen_type_die (origin
, context_die
);
26930 /* And its return type. */
26931 gen_type_die (TREE_TYPE (TREE_TYPE (decl
)), context_die
);
26933 /* And its virtual context. */
26934 if (DECL_VINDEX (decl
) != NULL_TREE
)
26935 gen_type_die (DECL_CONTEXT (decl
), context_die
);
26937 /* Make sure we have a member DIE for decl. */
26938 if (origin
!= NULL_TREE
)
26939 gen_type_die_for_member (origin
, decl
, context_die
);
26941 /* And its containing namespace. */
26942 context_die
= declare_in_namespace (decl
, context_die
);
26945 /* Now output a DIE to represent the function itself. */
26947 gen_subprogram_die (decl
, context_die
);
26951 /* If we are in terse mode, don't generate any DIEs to represent any
26952 actual typedefs. */
26953 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
26956 /* In the special case of a TYPE_DECL node representing the declaration
26957 of some type tag, if the given TYPE_DECL is marked as having been
26958 instantiated from some other (original) TYPE_DECL node (e.g. one which
26959 was generated within the original definition of an inline function) we
26960 used to generate a special (abbreviated) DW_TAG_structure_type,
26961 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. But nothing
26962 should be actually referencing those DIEs, as variable DIEs with that
26963 type would be emitted already in the abstract origin, so it was always
26964 removed during unused type prunning. Don't add anything in this
26966 if (TYPE_DECL_IS_STUB (decl
) && decl_ultimate_origin (decl
) != NULL_TREE
)
26969 if (is_redundant_typedef (decl
))
26970 gen_type_die (TREE_TYPE (decl
), context_die
);
26972 /* Output a DIE to represent the typedef itself. */
26973 gen_typedef_die (decl
, context_die
);
26977 if (debug_info_level
>= DINFO_LEVEL_NORMAL
)
26978 gen_label_die (decl
, context_die
);
26983 /* If we are in terse mode, don't generate any DIEs to represent any
26984 variable declarations or definitions unless it is external. */
26985 if (debug_info_level
< DINFO_LEVEL_TERSE
26986 || (debug_info_level
== DINFO_LEVEL_TERSE
26987 && !TREE_PUBLIC (decl_or_origin
)))
26990 if (debug_info_level
> DINFO_LEVEL_TERSE
)
26992 /* Avoid generating stray type DIEs during late dwarf dumping.
26993 All types have been dumped early. */
26995 /* ??? But in LTRANS we cannot annotate early created variably
26996 modified type DIEs without copying them and adjusting all
26997 references to them. Dump them again as happens for inlining
26998 which copies both the decl and the types. */
26999 /* ??? And even non-LTO needs to re-visit type DIEs to fill
27000 in VLA bound information for example. */
27001 || (decl
&& variably_modified_type_p (TREE_TYPE (decl
),
27002 current_function_decl
)))
27004 /* Output any DIEs that are needed to specify the type of this data
27006 if (decl_by_reference_p (decl_or_origin
))
27007 gen_type_die (TREE_TYPE (TREE_TYPE (decl_or_origin
)), context_die
);
27009 gen_type_die (TREE_TYPE (decl_or_origin
), context_die
);
27014 /* And its containing type. */
27015 class_origin
= decl_class_context (decl_or_origin
);
27016 if (class_origin
!= NULL_TREE
)
27017 gen_type_die_for_member (class_origin
, decl_or_origin
, context_die
);
27019 /* And its containing namespace. */
27020 context_die
= declare_in_namespace (decl_or_origin
, context_die
);
27024 /* Now output the DIE to represent the data object itself. This gets
27025 complicated because of the possibility that the VAR_DECL really
27026 represents an inlined instance of a formal parameter for an inline
27028 ultimate_origin
= decl_ultimate_origin (decl_or_origin
);
27029 if (ultimate_origin
!= NULL_TREE
27030 && TREE_CODE (ultimate_origin
) == PARM_DECL
)
27031 gen_formal_parameter_die (decl
, origin
,
27032 true /* Emit name attribute. */,
27035 gen_variable_die (decl
, origin
, context_die
);
27039 gcc_assert (ctx
!= NULL
&& ctx
->struct_type
!= NULL
);
27040 /* Ignore the nameless fields that are used to skip bits but handle C++
27041 anonymous unions and structs. */
27042 if (DECL_NAME (decl
) != NULL_TREE
27043 || TREE_CODE (TREE_TYPE (decl
)) == UNION_TYPE
27044 || TREE_CODE (TREE_TYPE (decl
)) == RECORD_TYPE
)
27046 gen_type_die (member_declared_type (decl
), context_die
);
27047 gen_field_die (decl
, ctx
, context_die
);
27052 /* Avoid generating stray type DIEs during late dwarf dumping.
27053 All types have been dumped early. */
27055 /* ??? But in LTRANS we cannot annotate early created variably
27056 modified type DIEs without copying them and adjusting all
27057 references to them. Dump them again as happens for inlining
27058 which copies both the decl and the types. */
27059 /* ??? And even non-LTO needs to re-visit type DIEs to fill
27060 in VLA bound information for example. */
27061 || (decl
&& variably_modified_type_p (TREE_TYPE (decl
),
27062 current_function_decl
)))
27064 if (DECL_BY_REFERENCE (decl_or_origin
))
27065 gen_type_die (TREE_TYPE (TREE_TYPE (decl_or_origin
)), context_die
);
27067 gen_type_die (TREE_TYPE (decl_or_origin
), context_die
);
27069 return gen_formal_parameter_die (decl
, origin
,
27070 true /* Emit name attribute. */,
27073 case NAMESPACE_DECL
:
27074 if (dwarf_version
>= 3 || !dwarf_strict
)
27075 gen_namespace_die (decl
, context_die
);
27078 case IMPORTED_DECL
:
27079 dwarf2out_imported_module_or_decl_1 (decl
, DECL_NAME (decl
),
27080 DECL_CONTEXT (decl
), context_die
);
27083 case NAMELIST_DECL
:
27084 gen_namelist_decl (DECL_NAME (decl
), context_die
,
27085 NAMELIST_DECL_ASSOCIATED_DECL (decl
));
27089 /* Probably some frontend-internal decl. Assume we don't care. */
27090 gcc_assert ((int)TREE_CODE (decl
) > NUM_TREE_CODES
);
27097 /* Output initial debug information for global DECL. Called at the
27098 end of the parsing process.
27100 This is the initial debug generation process. As such, the DIEs
27101 generated may be incomplete. A later debug generation pass
27102 (dwarf2out_late_global_decl) will augment the information generated
27103 in this pass (e.g., with complete location info). */
27106 dwarf2out_early_global_decl (tree decl
)
27110 /* gen_decl_die() will set DECL_ABSTRACT because
27111 cgraph_function_possibly_inlined_p() returns true. This is in
27112 turn will cause DW_AT_inline attributes to be set.
27114 This happens because at early dwarf generation, there is no
27115 cgraph information, causing cgraph_function_possibly_inlined_p()
27116 to return true. Trick cgraph_function_possibly_inlined_p()
27117 while we generate dwarf early. */
27118 bool save
= symtab
->global_info_ready
;
27119 symtab
->global_info_ready
= true;
27121 /* We don't handle TYPE_DECLs. If required, they'll be reached via
27122 other DECLs and they can point to template types or other things
27123 that dwarf2out can't handle when done via dwarf2out_decl. */
27124 if (TREE_CODE (decl
) != TYPE_DECL
27125 && TREE_CODE (decl
) != PARM_DECL
)
27127 if (TREE_CODE (decl
) == FUNCTION_DECL
)
27129 tree save_fndecl
= current_function_decl
;
27131 /* For nested functions, make sure we have DIEs for the parents first
27132 so that all nested DIEs are generated at the proper scope in the
27134 tree context
= decl_function_context (decl
);
27135 if (context
!= NULL
)
27137 dw_die_ref context_die
= lookup_decl_die (context
);
27138 current_function_decl
= context
;
27140 /* Avoid emitting DIEs multiple times, but still process CONTEXT
27141 enough so that it lands in its own context. This avoids type
27142 pruning issues later on. */
27143 if (context_die
== NULL
|| is_declaration_die (context_die
))
27144 dwarf2out_early_global_decl (context
);
27147 /* Emit an abstract origin of a function first. This happens
27148 with C++ constructor clones for example and makes
27149 dwarf2out_abstract_function happy which requires the early
27150 DIE of the abstract instance to be present. */
27151 tree origin
= DECL_ABSTRACT_ORIGIN (decl
);
27152 dw_die_ref origin_die
;
27154 /* Do not emit the DIE multiple times but make sure to
27155 process it fully here in case we just saw a declaration. */
27156 && ((origin_die
= lookup_decl_die (origin
)) == NULL
27157 || is_declaration_die (origin_die
)))
27159 current_function_decl
= origin
;
27160 dwarf2out_decl (origin
);
27163 /* Emit the DIE for decl but avoid doing that multiple times. */
27164 dw_die_ref old_die
;
27165 if ((old_die
= lookup_decl_die (decl
)) == NULL
27166 || is_declaration_die (old_die
))
27168 current_function_decl
= decl
;
27169 dwarf2out_decl (decl
);
27172 current_function_decl
= save_fndecl
;
27175 dwarf2out_decl (decl
);
27177 symtab
->global_info_ready
= save
;
27180 /* Return whether EXPR is an expression with the following pattern:
27181 INDIRECT_REF (NOP_EXPR (INTEGER_CST)). */
27184 is_trivial_indirect_ref (tree expr
)
27186 if (expr
== NULL_TREE
|| TREE_CODE (expr
) != INDIRECT_REF
)
27189 tree nop
= TREE_OPERAND (expr
, 0);
27190 if (nop
== NULL_TREE
|| TREE_CODE (nop
) != NOP_EXPR
)
27193 tree int_cst
= TREE_OPERAND (nop
, 0);
27194 return int_cst
!= NULL_TREE
&& TREE_CODE (int_cst
) == INTEGER_CST
;
27197 /* Output debug information for global decl DECL. Called from
27198 toplev.cc after compilation proper has finished. */
27201 dwarf2out_late_global_decl (tree decl
)
27203 /* Fill-in any location information we were unable to determine
27204 on the first pass. */
27207 dw_die_ref die
= lookup_decl_die (decl
);
27209 /* We may have to generate full debug late for LTO in case debug
27210 was not enabled at compile-time or the target doesn't support
27211 the LTO early debug scheme. */
27212 if (! die
&& in_lto_p
)
27213 dwarf2out_decl (decl
);
27216 /* We get called via the symtab code invoking late_global_decl
27217 for symbols that are optimized out.
27219 Do not add locations for those, except if they have a
27220 DECL_VALUE_EXPR, in which case they are relevant for debuggers.
27221 Still don't add a location if the DECL_VALUE_EXPR is not a trivial
27222 INDIRECT_REF expression, as this could generate relocations to
27223 text symbols in LTO object files, which is invalid. */
27224 varpool_node
*node
= varpool_node::get (decl
);
27225 if ((! node
|| ! node
->definition
)
27226 && ! (DECL_HAS_VALUE_EXPR_P (decl
)
27227 && is_trivial_indirect_ref (DECL_VALUE_EXPR (decl
))))
27228 tree_add_const_value_attribute_for_decl (die
, decl
);
27230 add_location_or_const_value_attribute (die
, decl
, false);
27235 /* Output debug information for type decl DECL. Called from toplev.cc
27236 and from language front ends (to record built-in types). */
27238 dwarf2out_type_decl (tree decl
, int local
)
27243 dwarf2out_decl (decl
);
27247 /* Output debug information for imported module or decl DECL.
27248 NAME is non-NULL name in the lexical block if the decl has been renamed.
27249 LEXICAL_BLOCK is the lexical block (which TREE_CODE is a BLOCK)
27250 that DECL belongs to.
27251 LEXICAL_BLOCK_DIE is the DIE of LEXICAL_BLOCK. */
27253 dwarf2out_imported_module_or_decl_1 (tree decl
,
27255 tree lexical_block
,
27256 dw_die_ref lexical_block_die
)
27258 expanded_location xloc
;
27259 dw_die_ref imported_die
= NULL
;
27260 dw_die_ref at_import_die
;
27262 if (TREE_CODE (decl
) == IMPORTED_DECL
)
27264 xloc
= expand_location (DECL_SOURCE_LOCATION (decl
));
27265 decl
= IMPORTED_DECL_ASSOCIATED_DECL (decl
);
27269 xloc
= expand_location (input_location
);
27271 if (TREE_CODE (decl
) == TYPE_DECL
)
27273 at_import_die
= force_type_die (TREE_TYPE (decl
));
27274 /* For namespace N { typedef void T; } using N::T; base_type_die
27275 returns NULL, but DW_TAG_imported_declaration requires
27276 the DW_AT_import tag. Force creation of DW_TAG_typedef. */
27277 if (!at_import_die
)
27279 gcc_assert (TREE_CODE (decl
) == TYPE_DECL
);
27280 gen_typedef_die (decl
, get_context_die (DECL_CONTEXT (decl
)));
27281 at_import_die
= lookup_type_die (TREE_TYPE (decl
));
27282 gcc_assert (at_import_die
);
27287 at_import_die
= lookup_decl_die (decl
);
27288 if (!at_import_die
)
27290 /* If we're trying to avoid duplicate debug info, we may not have
27291 emitted the member decl for this field. Emit it now. */
27292 if (TREE_CODE (decl
) == FIELD_DECL
)
27294 tree type
= DECL_CONTEXT (decl
);
27296 if (TYPE_CONTEXT (type
)
27297 && TYPE_P (TYPE_CONTEXT (type
))
27298 && !should_emit_struct_debug (TYPE_CONTEXT (type
),
27299 DINFO_USAGE_DIR_USE
))
27301 gen_type_die_for_member (type
, decl
,
27302 get_context_die (TYPE_CONTEXT (type
)));
27304 if (TREE_CODE (decl
) == CONST_DECL
)
27306 /* Individual enumerators of an enum type do not get output here
27307 (see gen_decl_die), so we cannot call force_decl_die. */
27308 if (!is_fortran () && !is_ada () && !is_dlang ())
27311 if (TREE_CODE (decl
) == NAMELIST_DECL
)
27312 at_import_die
= gen_namelist_decl (DECL_NAME (decl
),
27313 get_context_die (DECL_CONTEXT (decl
)),
27316 at_import_die
= force_decl_die (decl
);
27320 if (TREE_CODE (decl
) == NAMESPACE_DECL
)
27322 if (dwarf_version
>= 3 || !dwarf_strict
)
27323 imported_die
= new_die (DW_TAG_imported_module
,
27330 imported_die
= new_die (DW_TAG_imported_declaration
,
27334 add_AT_file (imported_die
, DW_AT_decl_file
, lookup_filename (xloc
.file
));
27335 add_AT_unsigned (imported_die
, DW_AT_decl_line
, xloc
.line
);
27336 if (debug_column_info
&& xloc
.column
)
27337 add_AT_unsigned (imported_die
, DW_AT_decl_column
, xloc
.column
);
27339 add_AT_string (imported_die
, DW_AT_name
,
27340 IDENTIFIER_POINTER (name
));
27341 add_AT_die_ref (imported_die
, DW_AT_import
, at_import_die
);
27344 /* Output debug information for imported module or decl DECL.
27345 NAME is non-NULL name in context if the decl has been renamed.
27346 CHILD is true if decl is one of the renamed decls as part of
27347 importing whole module.
27348 IMPLICIT is set if this hook is called for an implicit import
27349 such as inline namespace. */
27352 dwarf2out_imported_module_or_decl (tree decl
, tree name
, tree context
,
27353 bool child
, bool implicit
)
27355 /* dw_die_ref at_import_die; */
27356 dw_die_ref scope_die
;
27358 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
27363 /* For DWARF5, just DW_AT_export_symbols on the DW_TAG_namespace
27364 should be enough, for DWARF4 and older even if we emit as extension
27365 DW_AT_export_symbols add the implicit DW_TAG_imported_module anyway
27366 for the benefit of consumers unaware of DW_AT_export_symbols. */
27368 && dwarf_version
>= 5
27369 && lang_hooks
.decls
.decl_dwarf_attribute (decl
,
27370 DW_AT_export_symbols
) == 1)
27375 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
27376 We need decl DIE for reference and scope die. First, get DIE for the decl
27379 /* Get the scope die for decl context. Use comp_unit_die for global module
27380 or decl. If die is not found for non globals, force new die. */
27382 && TYPE_P (context
)
27383 && !should_emit_struct_debug (context
, DINFO_USAGE_DIR_USE
))
27386 scope_die
= get_context_die (context
);
27390 /* DW_TAG_imported_module was introduced in the DWARFv3 specification, so
27391 there is nothing we can do, here. */
27392 if (dwarf_version
< 3 && dwarf_strict
)
27395 gcc_assert (scope_die
->die_child
);
27396 gcc_assert (scope_die
->die_child
->die_tag
== DW_TAG_imported_module
);
27397 gcc_assert (TREE_CODE (decl
) != NAMESPACE_DECL
);
27398 scope_die
= scope_die
->die_child
;
27401 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
27402 dwarf2out_imported_module_or_decl_1 (decl
, name
, context
, scope_die
);
27405 /* Output debug information for namelists. */
27408 gen_namelist_decl (tree name
, dw_die_ref scope_die
, tree item_decls
)
27410 dw_die_ref nml_die
, nml_item_die
, nml_item_ref_die
;
27414 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
27417 gcc_assert (scope_die
!= NULL
);
27418 nml_die
= new_die (DW_TAG_namelist
, scope_die
, NULL
);
27419 add_AT_string (nml_die
, DW_AT_name
, IDENTIFIER_POINTER (name
));
27421 /* If there are no item_decls, we have a nondefining namelist, e.g.
27422 with USE association; hence, set DW_AT_declaration. */
27423 if (item_decls
== NULL_TREE
)
27425 add_AT_flag (nml_die
, DW_AT_declaration
, 1);
27429 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (item_decls
), i
, value
)
27431 nml_item_ref_die
= lookup_decl_die (value
);
27432 if (!nml_item_ref_die
)
27433 nml_item_ref_die
= force_decl_die (value
);
27435 nml_item_die
= new_die (DW_TAG_namelist_item
, nml_die
, NULL
);
27436 add_AT_die_ref (nml_item_die
, DW_AT_namelist_items
, nml_item_ref_die
);
27442 /* Write the debugging output for DECL and return the DIE. */
27445 dwarf2out_decl (tree decl
)
27447 dw_die_ref context_die
= comp_unit_die ();
27449 switch (TREE_CODE (decl
))
27454 case FUNCTION_DECL
:
27455 /* If we're a nested function, initially use a parent of NULL; if we're
27456 a plain function, this will be fixed up in decls_for_scope. If
27457 we're a method, it will be ignored, since we already have a DIE.
27458 Avoid doing this late though since clones of class methods may
27459 otherwise end up in limbo and create type DIEs late. */
27461 && decl_function_context (decl
)
27462 /* But if we're in terse mode, we don't care about scope. */
27463 && debug_info_level
> DINFO_LEVEL_TERSE
)
27464 context_die
= NULL
;
27468 /* For local statics lookup proper context die. */
27469 if (local_function_static (decl
))
27470 context_die
= lookup_decl_die (DECL_CONTEXT (decl
));
27472 /* If we are in terse mode, don't generate any DIEs to represent any
27473 variable declarations or definitions unless it is external. */
27474 if (debug_info_level
< DINFO_LEVEL_TERSE
27475 || (debug_info_level
== DINFO_LEVEL_TERSE
27476 && !TREE_PUBLIC (decl
)))
27481 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
27483 if (!is_fortran () && !is_ada () && !is_dlang ())
27485 if (TREE_STATIC (decl
) && decl_function_context (decl
))
27486 context_die
= lookup_decl_die (DECL_CONTEXT (decl
));
27489 case NAMESPACE_DECL
:
27490 case IMPORTED_DECL
:
27491 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
27493 if (lookup_decl_die (decl
) != NULL
)
27498 /* Don't emit stubs for types unless they are needed by other DIEs. */
27499 if (TYPE_DECL_SUPPRESS_DEBUG (decl
))
27502 /* Don't bother trying to generate any DIEs to represent any of the
27503 normal built-in types for the language we are compiling. */
27504 if (DECL_IS_UNDECLARED_BUILTIN (decl
))
27507 /* If we are in terse mode, don't generate any DIEs for types. */
27508 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
27511 /* If we're a function-scope tag, initially use a parent of NULL;
27512 this will be fixed up in decls_for_scope. */
27513 if (decl_function_context (decl
))
27514 context_die
= NULL
;
27518 case NAMELIST_DECL
:
27525 gen_decl_die (decl
, NULL
, NULL
, context_die
);
27529 dw_die_ref die
= lookup_decl_die (decl
);
27535 /* Write the debugging output for DECL. */
27538 dwarf2out_function_decl (tree decl
)
27540 dwarf2out_decl (decl
);
27541 call_arg_locations
= NULL
;
27542 call_arg_loc_last
= NULL
;
27543 call_site_count
= -1;
27544 tail_call_site_count
= -1;
27545 decl_loc_table
->empty ();
27546 cached_dw_loc_list_table
->empty ();
27549 /* Output a marker (i.e. a label) for the beginning of the generated code for
27550 a lexical block. */
27553 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED
,
27554 unsigned int blocknum
)
27556 switch_to_section (current_function_section ());
27557 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, BLOCK_BEGIN_LABEL
, blocknum
);
27560 /* Output a marker (i.e. a label) for the end of the generated code for a
27564 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED
, unsigned int blocknum
)
27566 switch_to_section (current_function_section ());
27567 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, BLOCK_END_LABEL
, blocknum
);
27570 /* Returns nonzero if it is appropriate not to emit any debugging
27571 information for BLOCK, because it doesn't contain any instructions.
27573 Don't allow this for blocks with nested functions or local classes
27574 as we would end up with orphans, and in the presence of scheduling
27575 we may end up calling them anyway. */
27578 dwarf2out_ignore_block (const_tree block
)
27583 for (decl
= BLOCK_VARS (block
); decl
; decl
= DECL_CHAIN (decl
))
27584 if (TREE_CODE (decl
) == FUNCTION_DECL
27585 || (TREE_CODE (decl
) == TYPE_DECL
&& TYPE_DECL_IS_STUB (decl
)))
27587 for (i
= 0; i
< BLOCK_NUM_NONLOCALIZED_VARS (block
); i
++)
27589 decl
= BLOCK_NONLOCALIZED_VAR (block
, i
);
27590 if (TREE_CODE (decl
) == FUNCTION_DECL
27591 || (TREE_CODE (decl
) == TYPE_DECL
&& TYPE_DECL_IS_STUB (decl
)))
27598 /* Hash table routines for file_hash. */
27601 dwarf_file_hasher::equal (dwarf_file_data
*p1
, const char *p2
)
27603 return filename_cmp (p1
->key
, p2
) == 0;
27607 dwarf_file_hasher::hash (dwarf_file_data
*p
)
27609 return htab_hash_string (p
->key
);
27612 /* Lookup FILE_NAME (in the list of filenames that we know about here in
27613 dwarf2out.cc) and return its "index". The index of each (known) filename is
27614 just a unique number which is associated with only that one filename. We
27615 need such numbers for the sake of generating labels (in the .debug_sfnames
27616 section) and references to those files numbers (in the .debug_srcinfo
27617 and .debug_macinfo sections). If the filename given as an argument is not
27618 found in our current list, add it to the list and assign it the next
27619 available unique index number. */
27621 static struct dwarf_file_data
*
27622 lookup_filename (const char *file_name
)
27624 struct dwarf_file_data
* created
;
27630 file_name
= "<stdin>";
27632 dwarf_file_data
**slot
27633 = file_table
->find_slot_with_hash (file_name
, htab_hash_string (file_name
),
27638 created
= ggc_alloc
<dwarf_file_data
> ();
27639 created
->key
= file_name
;
27640 created
->filename
= remap_debug_filename (file_name
);
27641 created
->emitted_number
= 0;
27646 /* If the assembler will construct the file table, then translate the compiler
27647 internal file table number into the assembler file table number, and emit
27648 a .file directive if we haven't already emitted one yet. The file table
27649 numbers are different because we prune debug info for unused variables and
27650 types, which may include filenames. */
27653 maybe_emit_file (struct dwarf_file_data
* fd
)
27655 if (! fd
->emitted_number
)
27657 if (last_emitted_file
)
27658 fd
->emitted_number
= last_emitted_file
->emitted_number
+ 1;
27660 fd
->emitted_number
= 1;
27661 last_emitted_file
= fd
;
27663 if (output_asm_line_debug_info ())
27665 fprintf (asm_out_file
, "\t.file %u ", fd
->emitted_number
);
27666 output_quoted_string (asm_out_file
, fd
->filename
);
27667 fputc ('\n', asm_out_file
);
27671 return fd
->emitted_number
;
27674 /* Schedule generation of a DW_AT_const_value attribute to DIE.
27675 That generation should happen after function debug info has been
27676 generated. The value of the attribute is the constant value of ARG. */
27679 append_entry_to_tmpl_value_parm_die_table (dw_die_ref die
, tree arg
)
27681 die_arg_entry entry
;
27686 gcc_assert (early_dwarf
);
27688 if (!tmpl_value_parm_die_table
)
27689 vec_alloc (tmpl_value_parm_die_table
, 32);
27693 vec_safe_push (tmpl_value_parm_die_table
, entry
);
27696 /* Return TRUE if T is an instance of generic type, FALSE
27700 generic_type_p (tree t
)
27702 if (t
== NULL_TREE
|| !TYPE_P (t
))
27704 return lang_hooks
.get_innermost_generic_parms (t
) != NULL_TREE
;
27707 /* Schedule the generation of the generic parameter dies for the
27708 instance of generic type T. The proper generation itself is later
27709 done by gen_scheduled_generic_parms_dies. */
27712 schedule_generic_params_dies_gen (tree t
)
27714 if (!generic_type_p (t
))
27717 gcc_assert (early_dwarf
);
27719 if (!generic_type_instances
)
27720 vec_alloc (generic_type_instances
, 256);
27722 vec_safe_push (generic_type_instances
, t
);
27725 /* Add a DW_AT_const_value attribute to DIEs that were scheduled
27726 by append_entry_to_tmpl_value_parm_die_table. This function must
27727 be called after function DIEs have been generated. */
27730 gen_remaining_tmpl_value_param_die_attribute (void)
27732 if (tmpl_value_parm_die_table
)
27737 /* We do this in two phases - first get the cases we can
27738 handle during early-finish, preserving those we cannot
27739 (containing symbolic constants where we don't yet know
27740 whether we are going to output the referenced symbols).
27741 For those we try again at late-finish. */
27743 FOR_EACH_VEC_ELT (*tmpl_value_parm_die_table
, i
, e
)
27745 if (!e
->die
->removed
27746 && !tree_add_const_value_attribute (e
->die
, e
->arg
))
27748 dw_loc_descr_ref loc
= NULL
;
27750 && (dwarf_version
>= 5 || !dwarf_strict
))
27751 loc
= loc_descriptor_from_tree (e
->arg
, 2, NULL
);
27753 add_AT_loc (e
->die
, DW_AT_location
, loc
);
27755 (*tmpl_value_parm_die_table
)[j
++] = *e
;
27758 tmpl_value_parm_die_table
->truncate (j
);
27762 /* Generate generic parameters DIEs for instances of generic types
27763 that have been previously scheduled by
27764 schedule_generic_params_dies_gen. This function must be called
27765 after all the types of the CU have been laid out. */
27768 gen_scheduled_generic_parms_dies (void)
27773 if (!generic_type_instances
)
27776 FOR_EACH_VEC_ELT (*generic_type_instances
, i
, t
)
27777 if (COMPLETE_TYPE_P (t
))
27778 gen_generic_params_dies (t
);
27780 generic_type_instances
= NULL
;
27784 /* Replace DW_AT_name for the decl with name. */
27787 dwarf2out_set_name (tree decl
, tree name
)
27790 dw_attr_node
*attr
;
27793 die
= TYPE_SYMTAB_DIE (decl
);
27797 dname
= dwarf2_name (name
, 0);
27801 attr
= get_AT (die
, DW_AT_name
);
27804 struct indirect_string_node
*node
;
27806 node
= find_AT_string (dname
);
27807 /* replace the string. */
27808 attr
->dw_attr_val
.v
.val_str
= node
;
27812 add_name_attribute (die
, dname
);
27815 /* True if before or during processing of the first function being emitted. */
27816 static bool in_first_function_p
= true;
27817 /* True if loc_note during dwarf2out_var_location call might still be
27818 before first real instruction at address equal to .Ltext0. */
27819 static bool maybe_at_text_label_p
= true;
27820 /* One above highest N where .LVLN label might be equal to .Ltext0 label. */
27821 static unsigned int first_loclabel_num_not_at_text_label
;
27823 /* Look ahead for a real insn. */
27826 dwarf2out_next_real_insn (rtx_insn
*loc_note
)
27828 rtx_insn
*next_real
= NEXT_INSN (loc_note
);
27831 if (INSN_P (next_real
))
27834 next_real
= NEXT_INSN (next_real
);
27839 /* Called by the final INSN scan whenever we see a var location. We
27840 use it to drop labels in the right places, and throw the location in
27841 our lookup table. */
27844 dwarf2out_var_location (rtx_insn
*loc_note
)
27846 char loclabel
[MAX_ARTIFICIAL_LABEL_BYTES
+ 2];
27847 struct var_loc_node
*newloc
;
27848 rtx_insn
*next_real
;
27849 rtx_insn
*call_insn
= NULL
;
27850 static const char *last_label
;
27851 static const char *last_postcall_label
;
27852 static bool last_in_cold_section_p
;
27853 static rtx_insn
*expected_next_loc_note
;
27856 var_loc_view view
= 0;
27858 if (!NOTE_P (loc_note
))
27860 if (CALL_P (loc_note
))
27862 maybe_reset_location_view (loc_note
, cur_line_info_table
);
27864 if (SIBLING_CALL_P (loc_note
))
27865 tail_call_site_count
++;
27866 if (find_reg_note (loc_note
, REG_CALL_ARG_LOCATION
, NULL_RTX
))
27868 call_insn
= loc_note
;
27872 next_real
= dwarf2out_next_real_insn (call_insn
);
27873 cached_next_real_insn
= NULL
;
27876 if (optimize
== 0 && !flag_var_tracking
)
27878 /* When the var-tracking pass is not running, there is no note
27879 for indirect calls whose target is compile-time known. In this
27880 case, process such calls specifically so that we generate call
27881 sites for them anyway. */
27882 rtx x
= PATTERN (loc_note
);
27883 if (GET_CODE (x
) == PARALLEL
)
27884 x
= XVECEXP (x
, 0, 0);
27885 if (GET_CODE (x
) == SET
)
27887 if (GET_CODE (x
) == CALL
)
27890 || GET_CODE (XEXP (x
, 0)) != SYMBOL_REF
27891 || !SYMBOL_REF_DECL (XEXP (x
, 0))
27892 || (TREE_CODE (SYMBOL_REF_DECL (XEXP (x
, 0)))
27895 call_insn
= loc_note
;
27899 next_real
= dwarf2out_next_real_insn (call_insn
);
27900 cached_next_real_insn
= NULL
;
27905 else if (!debug_variable_location_views
)
27906 gcc_unreachable ();
27908 maybe_reset_location_view (loc_note
, cur_line_info_table
);
27913 var_loc_p
= NOTE_KIND (loc_note
) == NOTE_INSN_VAR_LOCATION
;
27914 if (var_loc_p
&& !DECL_P (NOTE_VAR_LOCATION_DECL (loc_note
)))
27917 /* Optimize processing a large consecutive sequence of location
27918 notes so we don't spend too much time in next_real_insn. If the
27919 next insn is another location note, remember the next_real_insn
27920 calculation for next time. */
27921 next_real
= cached_next_real_insn
;
27924 if (expected_next_loc_note
!= loc_note
)
27929 next_real
= dwarf2out_next_real_insn (loc_note
);
27933 rtx_insn
*next_note
= NEXT_INSN (loc_note
);
27934 while (next_note
!= next_real
)
27936 if (! next_note
->deleted ()
27937 && NOTE_P (next_note
)
27938 && NOTE_KIND (next_note
) == NOTE_INSN_VAR_LOCATION
)
27940 next_note
= NEXT_INSN (next_note
);
27943 if (next_note
== next_real
)
27944 cached_next_real_insn
= NULL
;
27947 expected_next_loc_note
= next_note
;
27948 cached_next_real_insn
= next_real
;
27952 cached_next_real_insn
= NULL
;
27954 /* If there are no instructions which would be affected by this note,
27955 don't do anything. */
27957 && next_real
== NULL_RTX
27958 && !NOTE_DURING_CALL_P (loc_note
))
27963 if (next_real
== NULL_RTX
)
27964 next_real
= get_last_insn ();
27966 /* If there were any real insns between note we processed last time
27967 and this note (or if it is the first note), clear
27968 last_{,postcall_}label so that they are not reused this time. */
27969 if (last_var_location_insn
== NULL_RTX
27970 || last_var_location_insn
!= next_real
27971 || last_in_cold_section_p
!= in_cold_section_p
)
27974 last_postcall_label
= NULL
;
27980 = NOTE_DURING_CALL_P (loc_note
) ? last_postcall_label
: last_label
;
27981 view
= cur_line_info_table
->view
;
27982 decl
= NOTE_VAR_LOCATION_DECL (loc_note
);
27983 newloc
= add_var_loc_to_decl (decl
, loc_note
, label
, view
);
27984 if (newloc
== NULL
)
27993 /* If there were no real insns between note we processed last time
27994 and this note, use the label we emitted last time. Otherwise
27995 create a new label and emit it. */
27996 if (last_label
== NULL
)
27998 ASM_GENERATE_INTERNAL_LABEL (loclabel
, "LVL", loclabel_num
);
27999 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LVL", loclabel_num
);
28001 last_label
= ggc_strdup (loclabel
);
28002 /* See if loclabel might be equal to .Ltext0. If yes,
28003 bump first_loclabel_num_not_at_text_label. */
28004 if (!have_multiple_function_sections
28005 && in_first_function_p
28006 && maybe_at_text_label_p
)
28008 static rtx_insn
*last_start
;
28010 for (insn
= loc_note
; insn
; insn
= previous_insn (insn
))
28011 if (insn
== last_start
)
28013 else if (!NONDEBUG_INSN_P (insn
))
28017 rtx body
= PATTERN (insn
);
28018 if (GET_CODE (body
) == USE
|| GET_CODE (body
) == CLOBBER
)
28020 /* Inline asm could occupy zero bytes. */
28021 else if (GET_CODE (body
) == ASM_INPUT
28022 || asm_noperands (body
) >= 0)
28024 #ifdef HAVE_ATTR_length /* ??? We don't include insn-attr.h. */
28025 else if (HAVE_ATTR_length
&& get_attr_min_length (insn
) == 0)
28030 /* Assume insn has non-zero length. */
28031 maybe_at_text_label_p
= false;
28035 if (maybe_at_text_label_p
)
28037 last_start
= loc_note
;
28038 first_loclabel_num_not_at_text_label
= loclabel_num
;
28043 gcc_assert ((loc_note
== NULL_RTX
&& call_insn
!= NULL_RTX
)
28044 || (loc_note
!= NULL_RTX
&& call_insn
== NULL_RTX
));
28048 struct call_arg_loc_node
*ca_loc
28049 = ggc_cleared_alloc
<call_arg_loc_node
> ();
28050 rtx_insn
*prev
= call_insn
;
28052 ca_loc
->call_arg_loc_note
28053 = find_reg_note (call_insn
, REG_CALL_ARG_LOCATION
, NULL_RTX
);
28054 ca_loc
->next
= NULL
;
28055 ca_loc
->label
= last_label
;
28058 || (NONJUMP_INSN_P (prev
)
28059 && GET_CODE (PATTERN (prev
)) == SEQUENCE
28060 && CALL_P (XVECEXP (PATTERN (prev
), 0, 0)))));
28061 if (!CALL_P (prev
))
28062 prev
= as_a
<rtx_sequence
*> (PATTERN (prev
))->insn (0);
28063 ca_loc
->tail_call_p
= SIBLING_CALL_P (prev
);
28065 /* Look for a SYMBOL_REF in the "prev" instruction. */
28066 rtx x
= get_call_rtx_from (prev
);
28069 /* Try to get the call symbol, if any. */
28070 if (MEM_P (XEXP (x
, 0)))
28072 /* First, look for a memory access to a symbol_ref. */
28073 if (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
28074 && SYMBOL_REF_DECL (XEXP (x
, 0))
28075 && TREE_CODE (SYMBOL_REF_DECL (XEXP (x
, 0))) == FUNCTION_DECL
)
28076 ca_loc
->symbol_ref
= XEXP (x
, 0);
28077 /* Otherwise, look at a compile-time known user-level function
28081 && TREE_CODE (MEM_EXPR (x
)) == FUNCTION_DECL
)
28082 ca_loc
->symbol_ref
= XEXP (DECL_RTL (MEM_EXPR (x
)), 0);
28085 ca_loc
->block
= insn_scope (prev
);
28086 if (call_arg_locations
)
28087 call_arg_loc_last
->next
= ca_loc
;
28089 call_arg_locations
= ca_loc
;
28090 call_arg_loc_last
= ca_loc
;
28092 else if (loc_note
!= NULL_RTX
&& !NOTE_DURING_CALL_P (loc_note
))
28094 newloc
->label
= last_label
;
28095 newloc
->view
= view
;
28099 if (!last_postcall_label
)
28101 sprintf (loclabel
, "%s-1", last_label
);
28102 last_postcall_label
= ggc_strdup (loclabel
);
28104 newloc
->label
= last_postcall_label
;
28105 /* ??? This view is at last_label, not last_label-1, but we
28106 could only assume view at last_label-1 is zero if we could
28107 assume calls always have length greater than one. This is
28108 probably true in general, though there might be a rare
28109 exception to this rule, e.g. if a call insn is optimized out
28110 by target magic. Then, even the -1 in the label will be
28111 wrong, which might invalidate the range. Anyway, using view,
28112 though technically possibly incorrect, will work as far as
28113 ranges go: since L-1 is in the middle of the call insn,
28114 (L-1).0 and (L-1).V shouldn't make any difference, and having
28115 the loclist entry refer to the .loc entry might be useful, so
28116 leave it like this. */
28117 newloc
->view
= view
;
28120 if (var_loc_p
&& flag_debug_asm
)
28122 const char *name
, *sep
, *patstr
;
28123 if (decl
&& DECL_NAME (decl
))
28124 name
= IDENTIFIER_POINTER (DECL_NAME (decl
));
28127 if (NOTE_VAR_LOCATION_LOC (loc_note
))
28130 patstr
= str_pattern_slim (NOTE_VAR_LOCATION_LOC (loc_note
));
28137 fprintf (asm_out_file
, "\t%s DEBUG %s%s%s\n", ASM_COMMENT_START
,
28138 name
, sep
, patstr
);
28141 last_var_location_insn
= next_real
;
28142 last_in_cold_section_p
= in_cold_section_p
;
28145 /* Check whether BLOCK, a lexical block, is nested within OUTER, or is
28146 OUTER itself. If BOTHWAYS, check not only that BLOCK can reach
28147 OUTER through BLOCK_SUPERCONTEXT links, but also that there is a
28148 path from OUTER to BLOCK through BLOCK_SUBBLOCKs and
28149 BLOCK_FRAGMENT_ORIGIN links. */
28151 block_within_block_p (tree block
, tree outer
, bool bothways
)
28153 if (block
== outer
)
28156 /* Quickly check that OUTER is up BLOCK's supercontext chain. */
28157 for (tree context
= BLOCK_SUPERCONTEXT (block
);
28159 context
= BLOCK_SUPERCONTEXT (context
))
28160 if (!context
|| TREE_CODE (context
) != BLOCK
)
28166 /* Now check that each block is actually referenced by its
28168 for (tree context
= BLOCK_SUPERCONTEXT (block
); ;
28169 context
= BLOCK_SUPERCONTEXT (context
))
28171 if (BLOCK_FRAGMENT_ORIGIN (context
))
28173 gcc_assert (!BLOCK_SUBBLOCKS (context
));
28174 context
= BLOCK_FRAGMENT_ORIGIN (context
);
28176 for (tree sub
= BLOCK_SUBBLOCKS (context
);
28178 sub
= BLOCK_CHAIN (sub
))
28181 if (context
== outer
)
28188 /* Called during final while assembling the marker of the entry point
28189 for an inlined function. */
28192 dwarf2out_inline_entry (tree block
)
28194 gcc_assert (debug_inline_points
);
28196 /* If we can't represent it, don't bother. */
28197 if (!(dwarf_version
>= 3 || !dwarf_strict
))
28200 gcc_assert (DECL_P (block_ultimate_origin (block
)));
28202 /* Sanity check the block tree. This would catch a case in which
28203 BLOCK got removed from the tree reachable from the outermost
28204 lexical block, but got retained in markers. It would still link
28205 back to its parents, but some ancestor would be missing a link
28206 down the path to the sub BLOCK. If the block got removed, its
28207 BLOCK_NUMBER will not be a usable value. */
28209 gcc_assert (block_within_block_p (block
,
28210 DECL_INITIAL (current_function_decl
),
28213 gcc_assert (inlined_function_outer_scope_p (block
));
28214 gcc_assert (!lookup_block_die (block
));
28216 if (BLOCK_FRAGMENT_ORIGIN (block
))
28217 block
= BLOCK_FRAGMENT_ORIGIN (block
);
28218 /* Can the entry point ever not be at the beginning of an
28219 unfragmented lexical block? */
28220 else if (!(BLOCK_FRAGMENT_CHAIN (block
)
28221 || (cur_line_info_table
28222 && !ZERO_VIEW_P (cur_line_info_table
->view
))))
28225 if (!inline_entry_data_table
)
28226 inline_entry_data_table
28227 = hash_table
<inline_entry_data_hasher
>::create_ggc (10);
28230 inline_entry_data
**iedp
28231 = inline_entry_data_table
->find_slot_with_hash (block
,
28232 htab_hash_pointer (block
),
28235 /* ??? Ideally, we'd record all entry points for the same inlined
28236 function (some may have been duplicated by e.g. unrolling), but
28237 we have no way to represent that ATM. */
28240 inline_entry_data
*ied
= *iedp
= ggc_cleared_alloc
<inline_entry_data
> ();
28241 ied
->block
= block
;
28242 ied
->label_pfx
= BLOCK_INLINE_ENTRY_LABEL
;
28243 ied
->label_num
= BLOCK_NUMBER (block
);
28244 if (cur_line_info_table
)
28245 ied
->view
= cur_line_info_table
->view
;
28247 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, BLOCK_INLINE_ENTRY_LABEL
,
28248 BLOCK_NUMBER (block
));
28251 /* Called from finalize_size_functions for size functions so that their body
28252 can be encoded in the debug info to describe the layout of variable-length
28256 dwarf2out_size_function (tree decl
)
28259 function_to_dwarf_procedure (decl
);
28262 /* Note in one location list that text section has changed. */
28265 var_location_switch_text_section_1 (var_loc_list
**slot
, void *)
28267 var_loc_list
*list
= *slot
;
28269 list
->last_before_switch
28270 = list
->last
->next
? list
->last
->next
: list
->last
;
28274 /* Note in all location lists that text section has changed. */
28277 var_location_switch_text_section (void)
28279 if (decl_loc_table
== NULL
)
28282 decl_loc_table
->traverse
<void *, var_location_switch_text_section_1
> (NULL
);
28285 /* Create a new line number table. */
28287 static dw_line_info_table
*
28288 new_line_info_table (void)
28290 dw_line_info_table
*table
;
28292 table
= ggc_cleared_alloc
<dw_line_info_table
> ();
28293 table
->file_num
= 1;
28294 table
->line_num
= 1;
28295 table
->is_stmt
= DWARF_LINE_DEFAULT_IS_STMT_START
;
28296 FORCE_RESET_NEXT_VIEW (table
->view
);
28297 table
->symviews_since_reset
= 0;
28302 /* Lookup the "current" table into which we emit line info, so
28303 that we don't have to do it for every source line. */
28306 set_cur_line_info_table (section
*sec
)
28308 dw_line_info_table
*table
;
28310 if (sec
== text_section
)
28311 table
= text_section_line_info
;
28312 else if (sec
== cold_text_section
)
28314 table
= cold_text_section_line_info
;
28317 cold_text_section_line_info
= table
= new_line_info_table ();
28318 table
->end_label
= cold_end_label
;
28323 const char *end_label
;
28325 if (crtl
->has_bb_partition
)
28327 if (in_cold_section_p
)
28328 end_label
= crtl
->subsections
.cold_section_end_label
;
28330 end_label
= crtl
->subsections
.hot_section_end_label
;
28334 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
28335 ASM_GENERATE_INTERNAL_LABEL (label
, FUNC_END_LABEL
,
28336 current_function_funcdef_no
);
28337 end_label
= ggc_strdup (label
);
28340 table
= new_line_info_table ();
28341 table
->end_label
= end_label
;
28343 vec_safe_push (separate_line_info
, table
);
28346 if (output_asm_line_debug_info ())
28347 table
->is_stmt
= (cur_line_info_table
28348 ? cur_line_info_table
->is_stmt
28349 : DWARF_LINE_DEFAULT_IS_STMT_START
);
28350 cur_line_info_table
= table
;
28354 /* We need to reset the locations at the beginning of each
28355 function. We can't do this in the end_function hook, because the
28356 declarations that use the locations won't have been output when
28357 that hook is called. Also compute have_multiple_function_sections here. */
28360 dwarf2out_begin_function (tree fun
)
28362 section
*sec
= function_section (fun
);
28364 if (sec
!= text_section
)
28365 have_multiple_function_sections
= true;
28367 if (crtl
->has_bb_partition
&& !cold_text_section
)
28369 gcc_assert (current_function_decl
== fun
);
28370 cold_text_section
= unlikely_text_section ();
28371 switch_to_section (cold_text_section
);
28372 ASM_OUTPUT_LABEL (asm_out_file
, cold_text_section_label
);
28373 switch_to_section (sec
);
28376 call_site_count
= 0;
28377 tail_call_site_count
= 0;
28379 set_cur_line_info_table (sec
);
28380 FORCE_RESET_NEXT_VIEW (cur_line_info_table
->view
);
28383 /* Helper function of dwarf2out_end_function, called only after emitting
28384 the very first function into assembly. Check if some .debug_loc range
28385 might end with a .LVL* label that could be equal to .Ltext0.
28386 In that case we must force using absolute addresses in .debug_loc ranges,
28387 because this range could be .LVLN-.Ltext0 .. .LVLM-.Ltext0 for
28388 .LVLN == .LVLM == .Ltext0, thus 0 .. 0, which is a .debug_loc
28390 Set have_multiple_function_sections to true in that case and
28391 terminate htab traversal. */
28394 find_empty_loc_ranges_at_text_label (var_loc_list
**slot
, int)
28396 var_loc_list
*entry
= *slot
;
28397 struct var_loc_node
*node
;
28399 node
= entry
->first
;
28400 if (node
&& node
->next
&& node
->next
->label
)
28403 const char *label
= node
->next
->label
;
28404 char loclabel
[MAX_ARTIFICIAL_LABEL_BYTES
];
28406 for (i
= 0; i
< first_loclabel_num_not_at_text_label
; i
++)
28408 ASM_GENERATE_INTERNAL_LABEL (loclabel
, "LVL", i
);
28409 if (strcmp (label
, loclabel
) == 0)
28411 have_multiple_function_sections
= true;
28419 /* Hook called after emitting a function into assembly.
28420 This does something only for the very first function emitted. */
28423 dwarf2out_end_function (unsigned int)
28425 if (in_first_function_p
28426 && !have_multiple_function_sections
28427 && first_loclabel_num_not_at_text_label
28429 decl_loc_table
->traverse
<int, find_empty_loc_ranges_at_text_label
> (0);
28430 in_first_function_p
= false;
28431 maybe_at_text_label_p
= false;
28434 /* Temporary holder for dwarf2out_register_main_translation_unit. Used to let
28435 front-ends register a translation unit even before dwarf2out_init is
28437 static tree main_translation_unit
= NULL_TREE
;
28439 /* Hook called by front-ends after they built their main translation unit.
28440 Associate comp_unit_die to UNIT. */
28443 dwarf2out_register_main_translation_unit (tree unit
)
28445 gcc_assert (TREE_CODE (unit
) == TRANSLATION_UNIT_DECL
28446 && main_translation_unit
== NULL_TREE
);
28447 main_translation_unit
= unit
;
28448 /* If dwarf2out_init has not been called yet, it will perform the association
28449 itself looking at main_translation_unit. */
28450 if (decl_die_table
!= NULL
)
28451 equate_decl_number_to_die (unit
, comp_unit_die ());
28454 /* Add OPCODE+VAL as an entry at the end of the opcode array in TABLE. */
28457 push_dw_line_info_entry (dw_line_info_table
*table
,
28458 enum dw_line_info_opcode opcode
, unsigned int val
)
28460 dw_line_info_entry e
;
28463 vec_safe_push (table
->entries
, e
);
28466 /* Output a label to mark the beginning of a source code line entry
28467 and record information relating to this source line, in
28468 'line_info_table' for later output of the .debug_line section. */
28469 /* ??? The discriminator parameter ought to be unsigned. */
28472 dwarf2out_source_line (unsigned int line
, unsigned int column
,
28473 const char *filename
,
28474 int discriminator
, bool is_stmt
)
28476 unsigned int file_num
;
28477 dw_line_info_table
*table
;
28478 static var_loc_view lvugid
;
28480 /* 'line_info_table' information gathering is not needed when the debug
28481 info level is set to the lowest value. Also, the current DWARF-based
28482 debug formats do not use this info. */
28483 if (debug_info_level
< DINFO_LEVEL_TERSE
|| !dwarf_debuginfo_p ())
28486 table
= cur_line_info_table
;
28490 if (debug_variable_location_views
28491 && output_asm_line_debug_info ()
28492 && table
&& !RESETTING_VIEW_P (table
->view
))
28494 /* If we're using the assembler to compute view numbers, we
28495 can't issue a .loc directive for line zero, so we can't
28496 get a view number at this point. We might attempt to
28497 compute it from the previous view, or equate it to a
28498 subsequent view (though it might not be there!), but
28499 since we're omitting the line number entry, we might as
28500 well omit the view number as well. That means pretending
28501 it's a view number zero, which might very well turn out
28502 to be correct. ??? Extend the assembler so that the
28503 compiler could emit e.g. ".locview .LVU#", to output a
28504 view without changing line number information. We'd then
28505 have to count it in symviews_since_reset; when it's omitted,
28506 it doesn't count. */
28508 zero_view_p
= BITMAP_GGC_ALLOC ();
28509 bitmap_set_bit (zero_view_p
, table
->view
);
28510 if (flag_debug_asm
)
28512 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
28513 ASM_GENERATE_INTERNAL_LABEL (label
, "LVU", table
->view
);
28514 fprintf (asm_out_file
, "\t%s line 0, omitted view ",
28515 ASM_COMMENT_START
);
28516 assemble_name (asm_out_file
, label
);
28517 putc ('\n', asm_out_file
);
28519 table
->view
= ++lvugid
;
28524 /* The discriminator column was added in dwarf4. Simplify the below
28525 by simply removing it if we're not supposed to output it. */
28526 if (dwarf_version
< 4 && dwarf_strict
)
28529 if (!debug_column_info
)
28532 file_num
= maybe_emit_file (lookup_filename (filename
));
28534 /* ??? TODO: Elide duplicate line number entries. Traditionally,
28535 the debugger has used the second (possibly duplicate) line number
28536 at the beginning of the function to mark the end of the prologue.
28537 We could eliminate any other duplicates within the function. For
28538 Dwarf3, we ought to include the DW_LNS_set_prologue_end mark in
28539 that second line number entry. */
28540 /* Recall that this end-of-prologue indication is *not* the same thing
28541 as the end_prologue debug hook. The NOTE_INSN_PROLOGUE_END note,
28542 to which the hook corresponds, follows the last insn that was
28543 emitted by gen_prologue. What we need is to precede the first insn
28544 that had been emitted after NOTE_INSN_FUNCTION_BEG, i.e. the first
28545 insn that corresponds to something the user wrote. These may be
28546 very different locations once scheduling is enabled. */
28548 if (0 && file_num
== table
->file_num
28549 && line
== table
->line_num
28550 && column
== table
->column_num
28551 && discriminator
== table
->discrim_num
28552 && is_stmt
== table
->is_stmt
)
28555 switch_to_section (current_function_section ());
28557 /* If requested, emit something human-readable. */
28558 if (flag_debug_asm
)
28560 if (debug_column_info
)
28561 fprintf (asm_out_file
, "\t%s %s:%d:%d\n", ASM_COMMENT_START
,
28562 filename
, line
, column
);
28564 fprintf (asm_out_file
, "\t%s %s:%d\n", ASM_COMMENT_START
,
28568 if (output_asm_line_debug_info ())
28570 /* Emit the .loc directive understood by GNU as. */
28571 /* "\t.loc %u %u 0 is_stmt %u discriminator %u",
28572 file_num, line, is_stmt, discriminator */
28573 fputs ("\t.loc ", asm_out_file
);
28574 fprint_ul (asm_out_file
, file_num
);
28575 putc (' ', asm_out_file
);
28576 fprint_ul (asm_out_file
, line
);
28577 putc (' ', asm_out_file
);
28578 fprint_ul (asm_out_file
, column
);
28580 if (is_stmt
!= table
->is_stmt
)
28582 #if HAVE_GAS_LOC_STMT
28583 fputs (" is_stmt ", asm_out_file
);
28584 putc (is_stmt
? '1' : '0', asm_out_file
);
28587 if (SUPPORTS_DISCRIMINATOR
&& discriminator
!= 0)
28589 gcc_assert (discriminator
> 0);
28590 fputs (" discriminator ", asm_out_file
);
28591 fprint_ul (asm_out_file
, (unsigned long) discriminator
);
28593 if (debug_variable_location_views
)
28595 if (!RESETTING_VIEW_P (table
->view
))
28597 table
->symviews_since_reset
++;
28598 if (table
->symviews_since_reset
> symview_upper_bound
)
28599 symview_upper_bound
= table
->symviews_since_reset
;
28600 /* When we're using the assembler to compute view
28601 numbers, we output symbolic labels after "view" in
28602 .loc directives, and the assembler will set them for
28603 us, so that we can refer to the view numbers in
28604 location lists. The only exceptions are when we know
28605 a view will be zero: "-0" is a forced reset, used
28606 e.g. in the beginning of functions, whereas "0" tells
28607 the assembler to check that there was a PC change
28608 since the previous view, in a way that implicitly
28609 resets the next view. */
28610 fputs (" view ", asm_out_file
);
28611 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
28612 ASM_GENERATE_INTERNAL_LABEL (label
, "LVU", table
->view
);
28613 assemble_name (asm_out_file
, label
);
28614 table
->view
= ++lvugid
;
28618 table
->symviews_since_reset
= 0;
28619 if (FORCE_RESETTING_VIEW_P (table
->view
))
28620 fputs (" view -0", asm_out_file
);
28622 fputs (" view 0", asm_out_file
);
28623 /* Mark the present view as a zero view. Earlier debug
28624 binds may have already added its id to loclists to be
28625 emitted later, so we can't reuse the id for something
28626 else. However, it's good to know whether a view is
28627 known to be zero, because then we may be able to
28628 optimize out locviews that are all zeros, so take
28629 note of it in zero_view_p. */
28631 zero_view_p
= BITMAP_GGC_ALLOC ();
28632 bitmap_set_bit (zero_view_p
, lvugid
);
28633 table
->view
= ++lvugid
;
28636 putc ('\n', asm_out_file
);
28640 unsigned int label_num
= ++line_info_label_num
;
28642 targetm
.asm_out
.internal_label (asm_out_file
, LINE_CODE_LABEL
, label_num
);
28644 if (debug_variable_location_views
&& !RESETTING_VIEW_P (table
->view
))
28645 push_dw_line_info_entry (table
, LI_adv_address
, label_num
);
28647 push_dw_line_info_entry (table
, LI_set_address
, label_num
);
28648 if (debug_variable_location_views
)
28650 bool resetting
= FORCE_RESETTING_VIEW_P (table
->view
);
28654 if (flag_debug_asm
)
28655 fprintf (asm_out_file
, "\t%s view %s%d\n",
28657 resetting
? "-" : "",
28662 if (file_num
!= table
->file_num
)
28663 push_dw_line_info_entry (table
, LI_set_file
, file_num
);
28664 if (discriminator
!= table
->discrim_num
)
28665 push_dw_line_info_entry (table
, LI_set_discriminator
, discriminator
);
28666 if (is_stmt
!= table
->is_stmt
)
28667 push_dw_line_info_entry (table
, LI_negate_stmt
, 0);
28668 push_dw_line_info_entry (table
, LI_set_line
, line
);
28669 if (debug_column_info
)
28670 push_dw_line_info_entry (table
, LI_set_column
, column
);
28673 table
->file_num
= file_num
;
28674 table
->line_num
= line
;
28675 table
->column_num
= column
;
28676 table
->discrim_num
= discriminator
;
28677 table
->is_stmt
= is_stmt
;
28678 table
->in_use
= true;
28681 /* Record a source file location for a DECL_IGNORED_P function. */
28684 dwarf2out_set_ignored_loc (unsigned int line
, unsigned int column
,
28685 const char *filename
)
28687 dw_fde_ref fde
= cfun
->fde
;
28689 fde
->ignored_debug
= false;
28690 set_cur_line_info_table (function_section (fde
->decl
));
28692 dwarf2out_source_line (line
, column
, filename
, 0, true);
28695 /* Record the beginning of a new source file. */
28698 dwarf2out_start_source_file (unsigned int lineno
, const char *filename
)
28700 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
28703 e
.code
= DW_MACINFO_start_file
;
28705 e
.info
= ggc_strdup (filename
);
28706 vec_safe_push (macinfo_table
, e
);
28710 /* Record the end of a source file. */
28713 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED
)
28715 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
28718 e
.code
= DW_MACINFO_end_file
;
28721 vec_safe_push (macinfo_table
, e
);
28725 /* Called from debug_define in toplev.cc. The `buffer' parameter contains
28726 the tail part of the directive line, i.e. the part which is past the
28727 initial whitespace, #, whitespace, directive-name, whitespace part. */
28730 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED
,
28731 const char *buffer ATTRIBUTE_UNUSED
)
28733 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
28736 /* Insert a dummy first entry to be able to optimize the whole
28737 predefined macro block using DW_MACRO_import. */
28738 if (macinfo_table
->is_empty () && lineno
<= 1)
28743 vec_safe_push (macinfo_table
, e
);
28745 e
.code
= DW_MACINFO_define
;
28747 e
.info
= ggc_strdup (buffer
);
28748 vec_safe_push (macinfo_table
, e
);
28752 /* Called from debug_undef in toplev.cc. The `buffer' parameter contains
28753 the tail part of the directive line, i.e. the part which is past the
28754 initial whitespace, #, whitespace, directive-name, whitespace part. */
28757 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED
,
28758 const char *buffer ATTRIBUTE_UNUSED
)
28760 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
28763 /* Insert a dummy first entry to be able to optimize the whole
28764 predefined macro block using DW_MACRO_import. */
28765 if (macinfo_table
->is_empty () && lineno
<= 1)
28770 vec_safe_push (macinfo_table
, e
);
28772 e
.code
= DW_MACINFO_undef
;
28774 e
.info
= ggc_strdup (buffer
);
28775 vec_safe_push (macinfo_table
, e
);
28779 /* Helpers to manipulate hash table of CUs. */
28781 struct macinfo_entry_hasher
: nofree_ptr_hash
<macinfo_entry
>
28783 static inline hashval_t
hash (const macinfo_entry
*);
28784 static inline bool equal (const macinfo_entry
*, const macinfo_entry
*);
28788 macinfo_entry_hasher::hash (const macinfo_entry
*entry
)
28790 return htab_hash_string (entry
->info
);
28794 macinfo_entry_hasher::equal (const macinfo_entry
*entry1
,
28795 const macinfo_entry
*entry2
)
28797 return !strcmp (entry1
->info
, entry2
->info
);
28800 typedef hash_table
<macinfo_entry_hasher
> macinfo_hash_type
;
28802 /* Output a single .debug_macinfo entry. */
28805 output_macinfo_op (macinfo_entry
*ref
)
28809 struct indirect_string_node
*node
;
28810 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
28811 struct dwarf_file_data
*fd
;
28815 case DW_MACINFO_start_file
:
28816 fd
= lookup_filename (ref
->info
);
28817 file_num
= maybe_emit_file (fd
);
28818 dw2_asm_output_data (1, DW_MACINFO_start_file
, "Start new file");
28819 dw2_asm_output_data_uleb128 (ref
->lineno
,
28820 "Included from line number %lu",
28821 (unsigned long) ref
->lineno
);
28822 dw2_asm_output_data_uleb128 (file_num
, "file %s", ref
->info
);
28824 case DW_MACINFO_end_file
:
28825 dw2_asm_output_data (1, DW_MACINFO_end_file
, "End file");
28827 case DW_MACINFO_define
:
28828 case DW_MACINFO_undef
:
28829 len
= strlen (ref
->info
) + 1;
28830 if ((!dwarf_strict
|| dwarf_version
>= 5)
28831 && len
> (size_t) dwarf_offset_size
28832 && !DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET
28833 && (debug_str_section
->common
.flags
& SECTION_MERGE
) != 0)
28835 if (dwarf_split_debug_info
&& dwarf_version
>= 5)
28836 ref
->code
= ref
->code
== DW_MACINFO_define
28837 ? DW_MACRO_define_strx
: DW_MACRO_undef_strx
;
28839 ref
->code
= ref
->code
== DW_MACINFO_define
28840 ? DW_MACRO_define_strp
: DW_MACRO_undef_strp
;
28841 output_macinfo_op (ref
);
28844 dw2_asm_output_data (1, ref
->code
,
28845 ref
->code
== DW_MACINFO_define
28846 ? "Define macro" : "Undefine macro");
28847 dw2_asm_output_data_uleb128 (ref
->lineno
, "At line number %lu",
28848 (unsigned long) ref
->lineno
);
28849 dw2_asm_output_nstring (ref
->info
, -1, "The macro");
28851 case DW_MACRO_define_strp
:
28852 dw2_asm_output_data (1, ref
->code
, "Define macro strp");
28853 goto do_DW_MACRO_define_strpx
;
28854 case DW_MACRO_undef_strp
:
28855 dw2_asm_output_data (1, ref
->code
, "Undefine macro strp");
28856 goto do_DW_MACRO_define_strpx
;
28857 case DW_MACRO_define_strx
:
28858 dw2_asm_output_data (1, ref
->code
, "Define macro strx");
28859 goto do_DW_MACRO_define_strpx
;
28860 case DW_MACRO_undef_strx
:
28861 dw2_asm_output_data (1, ref
->code
, "Undefine macro strx");
28863 do_DW_MACRO_define_strpx
:
28864 /* NB: dwarf2out_finish performs:
28865 1. save_macinfo_strings
28866 2. hash table traverse of index_string
28867 3. output_macinfo -> output_macinfo_op
28868 4. output_indirect_strings
28869 -> hash table traverse of output_index_string
28871 When output_macinfo_op is called, all index strings have been
28872 added to hash table by save_macinfo_strings and we can't pass
28873 INSERT to find_slot_with_hash which may expand hash table, even
28874 if no insertion is needed, and change hash table traverse order
28875 between index_string and output_index_string. */
28876 node
= find_AT_string (ref
->info
, NO_INSERT
);
28878 && (node
->form
== DW_FORM_strp
28879 || node
->form
== dwarf_FORM (DW_FORM_strx
)));
28880 dw2_asm_output_data_uleb128 (ref
->lineno
, "At line number %lu",
28881 (unsigned long) ref
->lineno
);
28882 if (node
->form
== DW_FORM_strp
)
28883 dw2_asm_output_offset (dwarf_offset_size
, node
->label
,
28884 debug_str_section
, "The macro: \"%s\"",
28887 dw2_asm_output_data_uleb128 (node
->index
, "The macro: \"%s\"",
28890 case DW_MACRO_import
:
28891 dw2_asm_output_data (1, ref
->code
, "Import");
28892 ASM_GENERATE_INTERNAL_LABEL (label
,
28893 DEBUG_MACRO_SECTION_LABEL
,
28894 ref
->lineno
+ macinfo_label_base
);
28895 dw2_asm_output_offset (dwarf_offset_size
, label
, NULL
, NULL
);
28898 fprintf (asm_out_file
, "%s unrecognized macinfo code %lu\n",
28899 ASM_COMMENT_START
, (unsigned long) ref
->code
);
28904 /* Attempt to make a sequence of define/undef macinfo ops shareable with
28905 other compilation unit .debug_macinfo sections. IDX is the first
28906 index of a define/undef, return the number of ops that should be
28907 emitted in a comdat .debug_macinfo section and emit
28908 a DW_MACRO_import entry referencing it.
28909 If the define/undef entry should be emitted normally, return 0. */
28912 optimize_macinfo_range (unsigned int idx
, vec
<macinfo_entry
, va_gc
> *files
,
28913 macinfo_hash_type
**macinfo_htab
)
28915 macinfo_entry
*first
, *second
, *cur
, *inc
;
28916 char linebuf
[sizeof (HOST_WIDE_INT
) * 3 + 1];
28917 unsigned char checksum
[16];
28918 struct md5_ctx ctx
;
28919 char *grp_name
, *tail
;
28921 unsigned int i
, count
, encoded_filename_len
, linebuf_len
;
28922 macinfo_entry
**slot
;
28924 first
= &(*macinfo_table
)[idx
];
28925 second
= &(*macinfo_table
)[idx
+ 1];
28927 /* Optimize only if there are at least two consecutive define/undef ops,
28928 and either all of them are before first DW_MACINFO_start_file
28929 with lineno {0,1} (i.e. predefined macro block), or all of them are
28930 in some included header file. */
28931 if (second
->code
!= DW_MACINFO_define
&& second
->code
!= DW_MACINFO_undef
)
28933 if (vec_safe_is_empty (files
))
28935 if (first
->lineno
> 1 || second
->lineno
> 1)
28938 else if (first
->lineno
== 0)
28941 /* Find the last define/undef entry that can be grouped together
28942 with first and at the same time compute md5 checksum of their
28943 codes, linenumbers and strings. */
28944 md5_init_ctx (&ctx
);
28945 for (i
= idx
; macinfo_table
->iterate (i
, &cur
); i
++)
28946 if (cur
->code
!= DW_MACINFO_define
&& cur
->code
!= DW_MACINFO_undef
)
28948 else if (vec_safe_is_empty (files
) && cur
->lineno
> 1)
28952 unsigned char code
= cur
->code
;
28953 md5_process_bytes (&code
, 1, &ctx
);
28954 checksum_uleb128 (cur
->lineno
, &ctx
);
28955 md5_process_bytes (cur
->info
, strlen (cur
->info
) + 1, &ctx
);
28957 md5_finish_ctx (&ctx
, checksum
);
28960 /* From the containing include filename (if any) pick up just
28961 usable characters from its basename. */
28962 if (vec_safe_is_empty (files
))
28965 base
= lbasename (files
->last ().info
);
28966 for (encoded_filename_len
= 0, i
= 0; base
[i
]; i
++)
28967 if (ISIDNUM (base
[i
]) || base
[i
] == '.')
28968 encoded_filename_len
++;
28969 /* Count . at the end. */
28970 if (encoded_filename_len
)
28971 encoded_filename_len
++;
28973 sprintf (linebuf
, HOST_WIDE_INT_PRINT_UNSIGNED
, first
->lineno
);
28974 linebuf_len
= strlen (linebuf
);
28976 /* The group name format is: wmN.[<encoded filename>.]<lineno>.<md5sum> */
28977 grp_name
= XALLOCAVEC (char, 4 + encoded_filename_len
+ linebuf_len
+ 1
28979 memcpy (grp_name
, dwarf_offset_size
== 4 ? "wm4." : "wm8.", 4);
28980 tail
= grp_name
+ 4;
28981 if (encoded_filename_len
)
28983 for (i
= 0; base
[i
]; i
++)
28984 if (ISIDNUM (base
[i
]) || base
[i
] == '.')
28988 memcpy (tail
, linebuf
, linebuf_len
);
28989 tail
+= linebuf_len
;
28991 for (i
= 0; i
< 16; i
++)
28992 sprintf (tail
+ i
* 2, "%02x", checksum
[i
] & 0xff);
28994 /* Construct a macinfo_entry for DW_MACRO_import
28995 in the empty vector entry before the first define/undef. */
28996 inc
= &(*macinfo_table
)[idx
- 1];
28997 inc
->code
= DW_MACRO_import
;
28999 inc
->info
= ggc_strdup (grp_name
);
29000 if (!*macinfo_htab
)
29001 *macinfo_htab
= new macinfo_hash_type (10);
29002 /* Avoid emitting duplicates. */
29003 slot
= (*macinfo_htab
)->find_slot (inc
, INSERT
);
29008 /* If such an entry has been used before, just emit
29009 a DW_MACRO_import op. */
29011 output_macinfo_op (inc
);
29012 /* And clear all macinfo_entry in the range to avoid emitting them
29013 in the second pass. */
29014 for (i
= idx
; macinfo_table
->iterate (i
, &cur
) && i
< idx
+ count
; i
++)
29023 inc
->lineno
= (*macinfo_htab
)->elements ();
29024 output_macinfo_op (inc
);
29029 /* Save any strings needed by the macinfo table in the debug str
29030 table. All strings must be collected into the table by the time
29031 index_string is called. */
29034 save_macinfo_strings (void)
29038 macinfo_entry
*ref
;
29040 for (i
= 0; macinfo_table
&& macinfo_table
->iterate (i
, &ref
); i
++)
29044 /* Match the logic in output_macinfo_op to decide on
29045 indirect strings. */
29046 case DW_MACINFO_define
:
29047 case DW_MACINFO_undef
:
29048 len
= strlen (ref
->info
) + 1;
29049 if ((!dwarf_strict
|| dwarf_version
>= 5)
29050 && len
> (unsigned) dwarf_offset_size
29051 && !DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET
29052 && (debug_str_section
->common
.flags
& SECTION_MERGE
) != 0)
29053 set_indirect_string (find_AT_string (ref
->info
));
29055 case DW_MACINFO_start_file
:
29056 /* -gsplit-dwarf -g3 will also output filename as indirect
29058 if (!dwarf_split_debug_info
)
29060 /* Fall through. */
29061 case DW_MACRO_define_strp
:
29062 case DW_MACRO_undef_strp
:
29063 case DW_MACRO_define_strx
:
29064 case DW_MACRO_undef_strx
:
29065 set_indirect_string (find_AT_string (ref
->info
));
29073 /* Output macinfo section(s). */
29076 output_macinfo (const char *debug_line_label
, bool early_lto_debug
)
29079 unsigned long length
= vec_safe_length (macinfo_table
);
29080 macinfo_entry
*ref
;
29081 vec
<macinfo_entry
, va_gc
> *files
= NULL
;
29082 macinfo_hash_type
*macinfo_htab
= NULL
;
29083 char dl_section_ref
[MAX_ARTIFICIAL_LABEL_BYTES
];
29088 /* output_macinfo* uses these interchangeably. */
29089 gcc_assert ((int) DW_MACINFO_define
== (int) DW_MACRO_define
29090 && (int) DW_MACINFO_undef
== (int) DW_MACRO_undef
29091 && (int) DW_MACINFO_start_file
== (int) DW_MACRO_start_file
29092 && (int) DW_MACINFO_end_file
== (int) DW_MACRO_end_file
);
29094 /* AIX Assembler inserts the length, so adjust the reference to match the
29095 offset expected by debuggers. */
29096 strcpy (dl_section_ref
, debug_line_label
);
29097 if (XCOFF_DEBUGGING_INFO
)
29098 strcat (dl_section_ref
, DWARF_INITIAL_LENGTH_SIZE_STR
);
29100 /* For .debug_macro emit the section header. */
29101 if (!dwarf_strict
|| dwarf_version
>= 5)
29103 dw2_asm_output_data (2, dwarf_version
>= 5 ? 5 : 4,
29104 "DWARF macro version number");
29105 if (dwarf_offset_size
== 8)
29106 dw2_asm_output_data (1, 3, "Flags: 64-bit, lineptr present");
29108 dw2_asm_output_data (1, 2, "Flags: 32-bit, lineptr present");
29109 dw2_asm_output_offset (dwarf_offset_size
, debug_line_label
,
29110 debug_line_section
, NULL
);
29113 /* In the first loop, it emits the primary .debug_macinfo section
29114 and after each emitted op the macinfo_entry is cleared.
29115 If a longer range of define/undef ops can be optimized using
29116 DW_MACRO_import, the DW_MACRO_import op is emitted and kept in
29117 the vector before the first define/undef in the range and the
29118 whole range of define/undef ops is not emitted and kept. */
29119 for (i
= 0; macinfo_table
->iterate (i
, &ref
); i
++)
29123 case DW_MACINFO_start_file
:
29124 vec_safe_push (files
, *ref
);
29126 case DW_MACINFO_end_file
:
29127 if (!vec_safe_is_empty (files
))
29130 case DW_MACINFO_define
:
29131 case DW_MACINFO_undef
:
29132 if ((!dwarf_strict
|| dwarf_version
>= 5)
29133 && HAVE_COMDAT_GROUP
29134 && vec_safe_length (files
) != 1
29137 && (*macinfo_table
)[i
- 1].code
== 0)
29139 unsigned count
= optimize_macinfo_range (i
, files
, &macinfo_htab
);
29148 /* A dummy entry may be inserted at the beginning to be able
29149 to optimize the whole block of predefined macros. */
29155 output_macinfo_op (ref
);
29163 /* Save the number of transparent includes so we can adjust the
29164 label number for the fat LTO object DWARF. */
29165 unsigned macinfo_label_base_adj
= macinfo_htab
->elements ();
29167 delete macinfo_htab
;
29168 macinfo_htab
= NULL
;
29170 /* If any DW_MACRO_import were used, on those DW_MACRO_import entries
29171 terminate the current chain and switch to a new comdat .debug_macinfo
29172 section and emit the define/undef entries within it. */
29173 for (i
= 0; macinfo_table
->iterate (i
, &ref
); i
++)
29178 case DW_MACRO_import
:
29180 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
29181 tree comdat_key
= get_identifier (ref
->info
);
29182 /* Terminate the previous .debug_macinfo section. */
29183 dw2_asm_output_data (1, 0, "End compilation unit");
29184 targetm
.asm_out
.named_section (debug_macinfo_section_name
,
29188 ? SECTION_EXCLUDE
: 0),
29190 ASM_GENERATE_INTERNAL_LABEL (label
,
29191 DEBUG_MACRO_SECTION_LABEL
,
29192 ref
->lineno
+ macinfo_label_base
);
29193 ASM_OUTPUT_LABEL (asm_out_file
, label
);
29196 dw2_asm_output_data (2, dwarf_version
>= 5 ? 5 : 4,
29197 "DWARF macro version number");
29198 if (dwarf_offset_size
== 8)
29199 dw2_asm_output_data (1, 1, "Flags: 64-bit");
29201 dw2_asm_output_data (1, 0, "Flags: 32-bit");
29204 case DW_MACINFO_define
:
29205 case DW_MACINFO_undef
:
29206 output_macinfo_op (ref
);
29211 gcc_unreachable ();
29214 macinfo_label_base
+= macinfo_label_base_adj
;
29217 /* As init_sections_and_labels may get called multiple times, have a
29218 generation count for labels. */
29219 static unsigned init_sections_and_labels_generation
;
29221 /* Initialize the various sections and labels for dwarf output and prefix
29222 them with PREFIX if non-NULL. Returns the generation (zero based
29223 number of times function was called). */
29226 init_sections_and_labels (bool early_lto_debug
)
29228 if (early_lto_debug
)
29230 if (!dwarf_split_debug_info
)
29232 debug_info_section
= get_section (DEBUG_LTO_INFO_SECTION
,
29233 SECTION_DEBUG
| SECTION_EXCLUDE
,
29235 debug_abbrev_section
= get_section (DEBUG_LTO_ABBREV_SECTION
,
29236 SECTION_DEBUG
| SECTION_EXCLUDE
,
29238 debug_macinfo_section_name
29239 = ((dwarf_strict
&& dwarf_version
< 5)
29240 ? DEBUG_LTO_MACINFO_SECTION
: DEBUG_LTO_MACRO_SECTION
);
29241 debug_macinfo_section
= get_section (debug_macinfo_section_name
,
29243 | SECTION_EXCLUDE
, NULL
);
29247 /* ??? Which of the following do we need early? */
29248 debug_info_section
= get_section (DEBUG_LTO_DWO_INFO_SECTION
,
29249 SECTION_DEBUG
| SECTION_EXCLUDE
,
29251 debug_abbrev_section
= get_section (DEBUG_LTO_DWO_ABBREV_SECTION
,
29252 SECTION_DEBUG
| SECTION_EXCLUDE
,
29254 debug_skeleton_info_section
= get_section (DEBUG_LTO_INFO_SECTION
,
29256 | SECTION_EXCLUDE
, NULL
);
29257 debug_skeleton_abbrev_section
29258 = get_section (DEBUG_LTO_ABBREV_SECTION
,
29259 SECTION_DEBUG
| SECTION_EXCLUDE
, NULL
);
29260 ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_abbrev_section_label
,
29261 DEBUG_SKELETON_ABBREV_SECTION_LABEL
,
29262 init_sections_and_labels_generation
);
29264 /* Somewhat confusing detail: The skeleton_[abbrev|info] sections
29265 stay in the main .o, but the skeleton_line goes into the split
29267 debug_skeleton_line_section
29268 = get_section (DEBUG_LTO_LINE_SECTION
,
29269 SECTION_DEBUG
| SECTION_EXCLUDE
, NULL
);
29270 ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_line_section_label
,
29271 DEBUG_SKELETON_LINE_SECTION_LABEL
,
29272 init_sections_and_labels_generation
);
29273 debug_str_offsets_section
29274 = get_section (DEBUG_LTO_DWO_STR_OFFSETS_SECTION
,
29275 SECTION_DEBUG
| SECTION_EXCLUDE
,
29277 ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_info_section_label
,
29278 DEBUG_SKELETON_INFO_SECTION_LABEL
,
29279 init_sections_and_labels_generation
);
29280 debug_str_dwo_section
= get_section (DEBUG_LTO_STR_DWO_SECTION
,
29281 DEBUG_STR_DWO_SECTION_FLAGS
,
29283 debug_macinfo_section_name
29284 = ((dwarf_strict
&& dwarf_version
< 5)
29285 ? DEBUG_LTO_DWO_MACINFO_SECTION
: DEBUG_LTO_DWO_MACRO_SECTION
);
29286 debug_macinfo_section
= get_section (debug_macinfo_section_name
,
29287 SECTION_DEBUG
| SECTION_EXCLUDE
,
29290 /* For macro info and the file table we have to refer to a
29291 debug_line section. */
29292 debug_line_section
= get_section (DEBUG_LTO_LINE_SECTION
,
29293 SECTION_DEBUG
| SECTION_EXCLUDE
, NULL
);
29294 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label
,
29295 DEBUG_LINE_SECTION_LABEL
,
29296 init_sections_and_labels_generation
);
29298 debug_str_section
= get_section (DEBUG_LTO_STR_SECTION
,
29299 DEBUG_STR_SECTION_FLAGS
29300 | SECTION_EXCLUDE
, NULL
);
29301 if (!dwarf_split_debug_info
)
29302 debug_line_str_section
29303 = get_section (DEBUG_LTO_LINE_STR_SECTION
,
29304 DEBUG_STR_SECTION_FLAGS
| SECTION_EXCLUDE
, NULL
);
29308 if (!dwarf_split_debug_info
)
29310 debug_info_section
= get_section (DEBUG_INFO_SECTION
,
29311 SECTION_DEBUG
, NULL
);
29312 debug_abbrev_section
= get_section (DEBUG_ABBREV_SECTION
,
29313 SECTION_DEBUG
, NULL
);
29314 debug_loc_section
= get_section (dwarf_version
>= 5
29315 ? DEBUG_LOCLISTS_SECTION
29316 : DEBUG_LOC_SECTION
,
29317 SECTION_DEBUG
, NULL
);
29318 debug_macinfo_section_name
29319 = ((dwarf_strict
&& dwarf_version
< 5)
29320 ? DEBUG_MACINFO_SECTION
: DEBUG_MACRO_SECTION
);
29321 debug_macinfo_section
= get_section (debug_macinfo_section_name
,
29322 SECTION_DEBUG
, NULL
);
29326 debug_info_section
= get_section (DEBUG_DWO_INFO_SECTION
,
29327 SECTION_DEBUG
| SECTION_EXCLUDE
,
29329 debug_abbrev_section
= get_section (DEBUG_DWO_ABBREV_SECTION
,
29330 SECTION_DEBUG
| SECTION_EXCLUDE
,
29332 debug_addr_section
= get_section (DEBUG_ADDR_SECTION
,
29333 SECTION_DEBUG
, NULL
);
29334 debug_skeleton_info_section
= get_section (DEBUG_INFO_SECTION
,
29335 SECTION_DEBUG
, NULL
);
29336 debug_skeleton_abbrev_section
= get_section (DEBUG_ABBREV_SECTION
,
29337 SECTION_DEBUG
, NULL
);
29338 ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_abbrev_section_label
,
29339 DEBUG_SKELETON_ABBREV_SECTION_LABEL
,
29340 init_sections_and_labels_generation
);
29342 /* Somewhat confusing detail: The skeleton_[abbrev|info] sections
29343 stay in the main .o, but the skeleton_line goes into the
29345 debug_skeleton_line_section
29346 = get_section (DEBUG_DWO_LINE_SECTION
,
29347 SECTION_DEBUG
| SECTION_EXCLUDE
, NULL
);
29348 ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_line_section_label
,
29349 DEBUG_SKELETON_LINE_SECTION_LABEL
,
29350 init_sections_and_labels_generation
);
29351 debug_str_offsets_section
29352 = get_section (DEBUG_DWO_STR_OFFSETS_SECTION
,
29353 SECTION_DEBUG
| SECTION_EXCLUDE
, NULL
);
29354 ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_info_section_label
,
29355 DEBUG_SKELETON_INFO_SECTION_LABEL
,
29356 init_sections_and_labels_generation
);
29357 debug_loc_section
= get_section (dwarf_version
>= 5
29358 ? DEBUG_DWO_LOCLISTS_SECTION
29359 : DEBUG_DWO_LOC_SECTION
,
29360 SECTION_DEBUG
| SECTION_EXCLUDE
,
29362 debug_str_dwo_section
= get_section (DEBUG_STR_DWO_SECTION
,
29363 DEBUG_STR_DWO_SECTION_FLAGS
,
29365 debug_macinfo_section_name
29366 = ((dwarf_strict
&& dwarf_version
< 5)
29367 ? DEBUG_DWO_MACINFO_SECTION
: DEBUG_DWO_MACRO_SECTION
);
29368 debug_macinfo_section
= get_section (debug_macinfo_section_name
,
29369 SECTION_DEBUG
| SECTION_EXCLUDE
,
29371 if (dwarf_version
>= 5)
29372 debug_ranges_dwo_section
29373 = get_section (DEBUG_DWO_RNGLISTS_SECTION
,
29374 SECTION_DEBUG
| SECTION_EXCLUDE
, NULL
);
29376 debug_aranges_section
= get_section (DEBUG_ARANGES_SECTION
,
29377 SECTION_DEBUG
, NULL
);
29378 debug_line_section
= get_section (DEBUG_LINE_SECTION
,
29379 SECTION_DEBUG
, NULL
);
29380 debug_pubnames_section
= get_section (DEBUG_PUBNAMES_SECTION
,
29381 SECTION_DEBUG
, NULL
);
29382 debug_pubtypes_section
= get_section (DEBUG_PUBTYPES_SECTION
,
29383 SECTION_DEBUG
, NULL
);
29384 debug_str_section
= get_section (DEBUG_STR_SECTION
,
29385 DEBUG_STR_SECTION_FLAGS
, NULL
);
29386 if ((!dwarf_split_debug_info
&& !output_asm_line_debug_info ())
29387 || asm_outputs_debug_line_str ())
29388 debug_line_str_section
= get_section (DEBUG_LINE_STR_SECTION
,
29389 DEBUG_STR_SECTION_FLAGS
, NULL
);
29391 debug_ranges_section
= get_section (dwarf_version
>= 5
29392 ? DEBUG_RNGLISTS_SECTION
29393 : DEBUG_RANGES_SECTION
,
29394 SECTION_DEBUG
, NULL
);
29395 debug_frame_section
= get_section (DEBUG_FRAME_SECTION
,
29396 SECTION_DEBUG
, NULL
);
29399 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label
,
29400 DEBUG_ABBREV_SECTION_LABEL
,
29401 init_sections_and_labels_generation
);
29402 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label
,
29403 DEBUG_INFO_SECTION_LABEL
,
29404 init_sections_and_labels_generation
);
29405 info_section_emitted
= false;
29406 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label
,
29407 DEBUG_LINE_SECTION_LABEL
,
29408 init_sections_and_labels_generation
);
29409 /* There are up to 6 unique ranges labels per generation.
29410 See also output_rnglists. */
29411 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label
,
29412 DEBUG_RANGES_SECTION_LABEL
,
29413 init_sections_and_labels_generation
* 6);
29414 if (dwarf_version
>= 5 && dwarf_split_debug_info
)
29415 ASM_GENERATE_INTERNAL_LABEL (ranges_base_label
,
29416 DEBUG_RANGES_SECTION_LABEL
,
29417 1 + init_sections_and_labels_generation
* 6);
29418 ASM_GENERATE_INTERNAL_LABEL (debug_addr_section_label
,
29419 DEBUG_ADDR_SECTION_LABEL
,
29420 init_sections_and_labels_generation
);
29421 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label
,
29422 (dwarf_strict
&& dwarf_version
< 5)
29423 ? DEBUG_MACINFO_SECTION_LABEL
29424 : DEBUG_MACRO_SECTION_LABEL
,
29425 init_sections_and_labels_generation
);
29426 ASM_GENERATE_INTERNAL_LABEL (loc_section_label
, DEBUG_LOC_SECTION_LABEL
,
29427 init_sections_and_labels_generation
);
29429 ++init_sections_and_labels_generation
;
29430 return init_sections_and_labels_generation
- 1;
29433 /* Set up for Dwarf output at the start of compilation. */
29436 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED
)
29438 /* Allocate the file_table. */
29439 file_table
= hash_table
<dwarf_file_hasher
>::create_ggc (50);
29441 #ifndef DWARF2_LINENO_DEBUGGING_INFO
29442 /* Allocate the decl_die_table. */
29443 decl_die_table
= hash_table
<decl_die_hasher
>::create_ggc (10);
29445 /* Allocate the decl_loc_table. */
29446 decl_loc_table
= hash_table
<decl_loc_hasher
>::create_ggc (10);
29448 /* Allocate the cached_dw_loc_list_table. */
29449 cached_dw_loc_list_table
= hash_table
<dw_loc_list_hasher
>::create_ggc (10);
29451 /* Allocate the initial hunk of the abbrev_die_table. */
29452 vec_alloc (abbrev_die_table
, 256);
29453 /* Zero-th entry is allocated, but unused. */
29454 abbrev_die_table
->quick_push (NULL
);
29456 /* Allocate the dwarf_proc_stack_usage_map. */
29457 dwarf_proc_stack_usage_map
= new hash_map
<dw_die_ref
, int>;
29459 /* Allocate the pubtypes and pubnames vectors. */
29460 vec_alloc (pubname_table
, 32);
29461 vec_alloc (pubtype_table
, 32);
29463 vec_alloc (incomplete_types
, 64);
29465 vec_alloc (used_rtx_array
, 32);
29467 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
29468 vec_alloc (macinfo_table
, 64);
29471 /* If front-ends already registered a main translation unit but we were not
29472 ready to perform the association, do this now. */
29473 if (main_translation_unit
!= NULL_TREE
)
29474 equate_decl_number_to_die (main_translation_unit
, comp_unit_die ());
29477 /* Called before compile () starts outputtting functions, variables
29478 and toplevel asms into assembly. */
29481 dwarf2out_assembly_start (void)
29483 if (text_section_line_info
)
29486 #ifndef DWARF2_LINENO_DEBUGGING_INFO
29487 ASM_GENERATE_INTERNAL_LABEL (text_section_label
, TEXT_SECTION_LABEL
, 0);
29488 ASM_GENERATE_INTERNAL_LABEL (text_end_label
, TEXT_END_LABEL
, 0);
29489 ASM_GENERATE_INTERNAL_LABEL (cold_text_section_label
,
29490 COLD_TEXT_SECTION_LABEL
, 0);
29491 ASM_GENERATE_INTERNAL_LABEL (cold_end_label
, COLD_END_LABEL
, 0);
29493 switch_to_section (text_section
);
29494 ASM_OUTPUT_LABEL (asm_out_file
, text_section_label
);
29497 /* Make sure the line number table for .text always exists. */
29498 text_section_line_info
= new_line_info_table ();
29499 text_section_line_info
->end_label
= text_end_label
;
29501 #ifdef DWARF2_LINENO_DEBUGGING_INFO
29502 cur_line_info_table
= text_section_line_info
;
29505 if (HAVE_GAS_CFI_SECTIONS_DIRECTIVE
29506 && dwarf2out_do_cfi_asm ()
29507 && !dwarf2out_do_eh_frame ())
29508 fprintf (asm_out_file
, "\t.cfi_sections\t.debug_frame\n");
29510 #if defined(HAVE_AS_GDWARF_5_DEBUG_FLAG) && defined(HAVE_AS_WORKING_DWARF_N_FLAG)
29511 if (output_asm_line_debug_info () && dwarf_version
>= 5)
29513 /* When gas outputs DWARF5 .debug_line[_str] then we have to
29514 tell it the comp_dir and main file name for the zero entry
29516 const char *comp_dir
, *filename0
;
29518 comp_dir
= comp_dir_string ();
29519 if (comp_dir
== NULL
)
29522 filename0
= get_AT_string (comp_unit_die (), DW_AT_name
);
29523 if (filename0
== NULL
)
29526 fprintf (asm_out_file
, "\t.file 0 ");
29527 output_quoted_string (asm_out_file
, remap_debug_filename (comp_dir
));
29528 fputc (' ', asm_out_file
);
29529 output_quoted_string (asm_out_file
, remap_debug_filename (filename0
));
29530 fputc ('\n', asm_out_file
);
29534 /* Work around for PR101575: output a dummy .file directive. */
29535 if (!last_emitted_file
&& dwarf_debuginfo_p ()
29536 && debug_info_level
>= DINFO_LEVEL_TERSE
)
29538 const char *filename0
= get_AT_string (comp_unit_die (), DW_AT_name
);
29540 if (filename0
== NULL
)
29541 filename0
= "<dummy>";
29542 maybe_emit_file (lookup_filename (filename0
));
29546 /* A helper function for dwarf2out_finish called through
29547 htab_traverse. Assign a string its index. All strings must be
29548 collected into the table by the time index_string is called,
29549 because the indexing code relies on htab_traverse to traverse nodes
29550 in the same order for each run. */
29553 index_string (indirect_string_node
**h
, unsigned int *index
)
29555 indirect_string_node
*node
= *h
;
29557 find_string_form (node
);
29558 if (node
->form
== dwarf_FORM (DW_FORM_strx
) && node
->refcount
> 0)
29560 gcc_assert (node
->index
== NO_INDEX_ASSIGNED
);
29561 node
->index
= *index
;
29567 /* A helper function for output_indirect_strings called through
29568 htab_traverse. Output the offset to a string and update the
29572 output_index_string_offset (indirect_string_node
**h
, unsigned int *offset
)
29574 indirect_string_node
*node
= *h
;
29576 if (node
->form
== dwarf_FORM (DW_FORM_strx
) && node
->refcount
> 0)
29578 /* Assert that this node has been assigned an index. */
29579 gcc_assert (node
->index
!= NO_INDEX_ASSIGNED
29580 && node
->index
!= NOT_INDEXED
);
29581 dw2_asm_output_data (dwarf_offset_size
, *offset
,
29582 "indexed string 0x%x: %s", node
->index
, node
->str
);
29583 *offset
+= strlen (node
->str
) + 1;
29588 /* A helper function for dwarf2out_finish called through
29589 htab_traverse. Output the indexed string. */
29592 output_index_string (indirect_string_node
**h
, unsigned int *cur_idx
)
29594 struct indirect_string_node
*node
= *h
;
29596 if (node
->form
== dwarf_FORM (DW_FORM_strx
) && node
->refcount
> 0)
29598 /* Assert that the strings are output in the same order as their
29599 indexes were assigned. */
29600 gcc_assert (*cur_idx
== node
->index
);
29601 assemble_string (node
->str
, strlen (node
->str
) + 1);
29607 /* A helper function for output_indirect_strings. Counts the number
29608 of index strings offsets. Must match the logic of the functions
29609 output_index_string[_offsets] above. */
29611 count_index_strings (indirect_string_node
**h
, unsigned int *last_idx
)
29613 struct indirect_string_node
*node
= *h
;
29615 if (node
->form
== dwarf_FORM (DW_FORM_strx
) && node
->refcount
> 0)
29620 /* A helper function for dwarf2out_finish called through
29621 htab_traverse. Emit one queued .debug_str string. */
29624 output_indirect_string (indirect_string_node
**h
, enum dwarf_form form
)
29626 struct indirect_string_node
*node
= *h
;
29628 node
->form
= find_string_form (node
);
29629 if (node
->form
== form
&& node
->refcount
> 0)
29631 ASM_OUTPUT_LABEL (asm_out_file
, node
->label
);
29632 assemble_string (node
->str
, strlen (node
->str
) + 1);
29638 /* Output the indexed string table. */
29641 output_indirect_strings (void)
29643 switch_to_section (debug_str_section
);
29644 if (!dwarf_split_debug_info
)
29645 debug_str_hash
->traverse
<enum dwarf_form
,
29646 output_indirect_string
> (DW_FORM_strp
);
29649 unsigned int offset
= 0;
29650 unsigned int cur_idx
= 0;
29652 if (skeleton_debug_str_hash
)
29653 skeleton_debug_str_hash
->traverse
<enum dwarf_form
,
29654 output_indirect_string
> (DW_FORM_strp
);
29656 switch_to_section (debug_str_offsets_section
);
29657 /* For DWARF5 the .debug_str_offsets[.dwo] section needs a unit
29658 header. Note that we don't need to generate a label to the
29659 actual index table following the header here, because this is
29660 for the split dwarf case only. In an .dwo file there is only
29661 one string offsets table (and one debug info section). But
29662 if we would start using string offset tables for the main (or
29663 skeleton) unit, then we have to add a DW_AT_str_offsets_base
29664 pointing to the actual index after the header. Split dwarf
29665 units will never have a string offsets base attribute. When
29666 a split unit is moved into a .dwp file the string offsets can
29667 be found through the .debug_cu_index section table. */
29668 if (dwarf_version
>= 5)
29670 unsigned int last_idx
= 0;
29671 unsigned long str_offsets_length
;
29673 debug_str_hash
->traverse_noresize
29674 <unsigned int *, count_index_strings
> (&last_idx
);
29675 str_offsets_length
= last_idx
* dwarf_offset_size
+ 4;
29676 if (DWARF_INITIAL_LENGTH_SIZE
- dwarf_offset_size
== 4)
29677 dw2_asm_output_data (4, 0xffffffff,
29678 "Escape value for 64-bit DWARF extension");
29679 dw2_asm_output_data (dwarf_offset_size
, str_offsets_length
,
29680 "Length of string offsets unit");
29681 dw2_asm_output_data (2, 5, "DWARF string offsets version");
29682 dw2_asm_output_data (2, 0, "Header zero padding");
29684 debug_str_hash
->traverse_noresize
29685 <unsigned int *, output_index_string_offset
> (&offset
);
29686 switch_to_section (debug_str_dwo_section
);
29687 debug_str_hash
->traverse_noresize
<unsigned int *, output_index_string
>
29692 /* Callback for htab_traverse to assign an index to an entry in the
29693 table, and to write that entry to the .debug_addr section. */
29696 output_addr_table_entry (addr_table_entry
**slot
, unsigned int *cur_index
)
29698 addr_table_entry
*entry
= *slot
;
29700 if (entry
->refcount
== 0)
29702 gcc_assert (entry
->index
== NO_INDEX_ASSIGNED
29703 || entry
->index
== NOT_INDEXED
);
29707 gcc_assert (entry
->index
== *cur_index
);
29710 switch (entry
->kind
)
29713 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE
, entry
->addr
.rtl
,
29714 "0x%x", entry
->index
);
29716 case ate_kind_rtx_dtprel
:
29717 gcc_assert (targetm
.asm_out
.output_dwarf_dtprel
);
29718 targetm
.asm_out
.output_dwarf_dtprel (asm_out_file
,
29721 fputc ('\n', asm_out_file
);
29723 case ate_kind_label
:
29724 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, entry
->addr
.label
,
29725 "0x%x", entry
->index
);
29728 gcc_unreachable ();
29733 /* A helper function for dwarf2out_finish. Counts the number
29734 of indexed addresses. Must match the logic of the functions
29735 output_addr_table_entry above. */
29737 count_index_addrs (addr_table_entry
**slot
, unsigned int *last_idx
)
29739 addr_table_entry
*entry
= *slot
;
29741 if (entry
->refcount
> 0)
29746 /* Produce the .debug_addr section. */
29749 output_addr_table (void)
29751 unsigned int index
= 0;
29752 if (addr_index_table
== NULL
|| addr_index_table
->size () == 0)
29755 switch_to_section (debug_addr_section
);
29756 /* GNU DebugFission https://gcc.gnu.org/wiki/DebugFission
29757 which GCC uses to implement -gsplit-dwarf as DWARF GNU extension
29758 before DWARF5, didn't have a header for .debug_addr units.
29759 DWARF5 specifies a small header when address tables are used. */
29760 if (dwarf_version
>= 5)
29762 unsigned int last_idx
= 0;
29763 unsigned long addrs_length
;
29765 addr_index_table
->traverse_noresize
29766 <unsigned int *, count_index_addrs
> (&last_idx
);
29767 addrs_length
= last_idx
* DWARF2_ADDR_SIZE
+ 4;
29769 if (DWARF_INITIAL_LENGTH_SIZE
- dwarf_offset_size
== 4)
29770 dw2_asm_output_data (4, 0xffffffff,
29771 "Escape value for 64-bit DWARF extension");
29772 dw2_asm_output_data (dwarf_offset_size
, addrs_length
,
29773 "Length of Address Unit");
29774 dw2_asm_output_data (2, 5, "DWARF addr version");
29775 dw2_asm_output_data (1, DWARF2_ADDR_SIZE
, "Size of Address");
29776 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
29778 ASM_OUTPUT_LABEL (asm_out_file
, debug_addr_section_label
);
29781 ->traverse_noresize
<unsigned int *, output_addr_table_entry
> (&index
);
29784 #if ENABLE_ASSERT_CHECKING
29785 /* Verify that all marks are clear. */
29788 verify_marks_clear (dw_die_ref die
)
29792 gcc_assert (! die
->die_mark
);
29793 FOR_EACH_CHILD (die
, c
, verify_marks_clear (c
));
29795 #endif /* ENABLE_ASSERT_CHECKING */
29797 /* Clear the marks for a die and its children.
29798 Be cool if the mark isn't set. */
29801 prune_unmark_dies (dw_die_ref die
)
29807 FOR_EACH_CHILD (die
, c
, prune_unmark_dies (c
));
29810 /* Given LOC that is referenced by a DIE we're marking as used, find all
29811 referenced DWARF procedures it references and mark them as used. */
29814 prune_unused_types_walk_loc_descr (dw_loc_descr_ref loc
)
29816 for (; loc
!= NULL
; loc
= loc
->dw_loc_next
)
29817 switch (loc
->dw_loc_opc
)
29819 case DW_OP_implicit_pointer
:
29820 case DW_OP_convert
:
29821 case DW_OP_reinterpret
:
29822 case DW_OP_GNU_implicit_pointer
:
29823 case DW_OP_GNU_convert
:
29824 case DW_OP_GNU_reinterpret
:
29825 if (loc
->dw_loc_oprnd1
.val_class
== dw_val_class_die_ref
)
29826 prune_unused_types_mark (loc
->dw_loc_oprnd1
.v
.val_die_ref
.die
, 1);
29828 case DW_OP_GNU_variable_value
:
29829 if (loc
->dw_loc_oprnd1
.val_class
== dw_val_class_decl_ref
)
29832 = lookup_decl_die (loc
->dw_loc_oprnd1
.v
.val_decl_ref
);
29835 loc
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
29836 loc
->dw_loc_oprnd1
.v
.val_die_ref
.die
= ref
;
29837 loc
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
29842 case DW_OP_call_ref
:
29843 case DW_OP_const_type
:
29844 case DW_OP_GNU_const_type
:
29845 case DW_OP_GNU_parameter_ref
:
29846 gcc_assert (loc
->dw_loc_oprnd1
.val_class
== dw_val_class_die_ref
);
29847 prune_unused_types_mark (loc
->dw_loc_oprnd1
.v
.val_die_ref
.die
, 1);
29849 case DW_OP_regval_type
:
29850 case DW_OP_deref_type
:
29851 case DW_OP_GNU_regval_type
:
29852 case DW_OP_GNU_deref_type
:
29853 gcc_assert (loc
->dw_loc_oprnd2
.val_class
== dw_val_class_die_ref
);
29854 prune_unused_types_mark (loc
->dw_loc_oprnd2
.v
.val_die_ref
.die
, 1);
29856 case DW_OP_entry_value
:
29857 case DW_OP_GNU_entry_value
:
29858 gcc_assert (loc
->dw_loc_oprnd1
.val_class
== dw_val_class_loc
);
29859 prune_unused_types_walk_loc_descr (loc
->dw_loc_oprnd1
.v
.val_loc
);
29866 /* Given DIE that we're marking as used, find any other dies
29867 it references as attributes and mark them as used. */
29870 prune_unused_types_walk_attribs (dw_die_ref die
)
29875 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
29877 switch (AT_class (a
))
29879 /* Make sure DWARF procedures referenced by location descriptions will
29881 case dw_val_class_loc
:
29882 prune_unused_types_walk_loc_descr (AT_loc (a
));
29884 case dw_val_class_loc_list
:
29885 for (dw_loc_list_ref list
= AT_loc_list (a
);
29887 list
= list
->dw_loc_next
)
29888 prune_unused_types_walk_loc_descr (list
->expr
);
29891 case dw_val_class_view_list
:
29892 /* This points to a loc_list in another attribute, so it's
29893 already covered. */
29896 case dw_val_class_die_ref
:
29897 /* A reference to another DIE.
29898 Make sure that it will get emitted.
29899 If it was broken out into a comdat group, don't follow it. */
29900 if (! AT_ref (a
)->comdat_type_p
29901 || a
->dw_attr
== DW_AT_specification
)
29902 prune_unused_types_mark (a
->dw_attr_val
.v
.val_die_ref
.die
, 1);
29905 case dw_val_class_str
:
29906 /* Set the string's refcount to 0 so that prune_unused_types_mark
29907 accounts properly for it. */
29908 a
->dw_attr_val
.v
.val_str
->refcount
= 0;
29917 /* Mark the generic parameters and arguments children DIEs of DIE. */
29920 prune_unused_types_mark_generic_parms_dies (dw_die_ref die
)
29924 if (die
== NULL
|| die
->die_child
== NULL
)
29926 c
= die
->die_child
;
29929 if (is_template_parameter (c
))
29930 prune_unused_types_mark (c
, 1);
29932 } while (c
&& c
!= die
->die_child
);
29935 /* Mark DIE as being used. If DOKIDS is true, then walk down
29936 to DIE's children. */
29939 prune_unused_types_mark (dw_die_ref die
, int dokids
)
29943 if (die
->die_mark
== 0)
29945 /* We haven't done this node yet. Mark it as used. */
29947 /* If this is the DIE of a generic type instantiation,
29948 mark the children DIEs that describe its generic parms and
29950 prune_unused_types_mark_generic_parms_dies (die
);
29952 /* We also have to mark its parents as used.
29953 (But we don't want to mark our parent's kids due to this,
29954 unless it is a class.) */
29955 if (die
->die_parent
)
29956 prune_unused_types_mark (die
->die_parent
,
29957 class_scope_p (die
->die_parent
));
29959 /* Mark any referenced nodes. */
29960 prune_unused_types_walk_attribs (die
);
29962 /* If this node is a specification,
29963 also mark the definition, if it exists. */
29964 if (get_AT_flag (die
, DW_AT_declaration
) && die
->die_definition
)
29965 prune_unused_types_mark (die
->die_definition
, 1);
29968 if (dokids
&& die
->die_mark
!= 2)
29970 /* We need to walk the children, but haven't done so yet.
29971 Remember that we've walked the kids. */
29974 /* If this is an array type, we need to make sure our
29975 kids get marked, even if they're types. If we're
29976 breaking out types into comdat sections, do this
29977 for all type definitions. */
29978 if (die
->die_tag
== DW_TAG_array_type
29979 || (use_debug_types
29980 && is_type_die (die
) && ! is_declaration_die (die
)))
29981 FOR_EACH_CHILD (die
, c
, prune_unused_types_mark (c
, 1));
29983 FOR_EACH_CHILD (die
, c
, prune_unused_types_walk (c
));
29987 /* For local classes, look if any static member functions were emitted
29988 and if so, mark them. */
29991 prune_unused_types_walk_local_classes (dw_die_ref die
)
29995 if (die
->die_mark
== 2)
29998 switch (die
->die_tag
)
30000 case DW_TAG_structure_type
:
30001 case DW_TAG_union_type
:
30002 case DW_TAG_class_type
:
30003 case DW_TAG_interface_type
:
30006 case DW_TAG_subprogram
:
30007 if (!get_AT_flag (die
, DW_AT_declaration
)
30008 || die
->die_definition
!= NULL
)
30009 prune_unused_types_mark (die
, 1);
30016 /* Mark children. */
30017 FOR_EACH_CHILD (die
, c
, prune_unused_types_walk_local_classes (c
));
30020 /* Walk the tree DIE and mark types that we actually use. */
30023 prune_unused_types_walk (dw_die_ref die
)
30027 /* Don't do anything if this node is already marked and
30028 children have been marked as well. */
30029 if (die
->die_mark
== 2)
30032 switch (die
->die_tag
)
30034 case DW_TAG_structure_type
:
30035 case DW_TAG_union_type
:
30036 case DW_TAG_class_type
:
30037 case DW_TAG_interface_type
:
30038 if (die
->die_perennial_p
)
30041 for (c
= die
->die_parent
; c
; c
= c
->die_parent
)
30042 if (c
->die_tag
== DW_TAG_subprogram
)
30045 /* Finding used static member functions inside of classes
30046 is needed just for local classes, because for other classes
30047 static member function DIEs with DW_AT_specification
30048 are emitted outside of the DW_TAG_*_type. If we ever change
30049 it, we'd need to call this even for non-local classes. */
30051 prune_unused_types_walk_local_classes (die
);
30053 /* It's a type node --- don't mark it. */
30056 case DW_TAG_const_type
:
30057 case DW_TAG_packed_type
:
30058 case DW_TAG_pointer_type
:
30059 case DW_TAG_reference_type
:
30060 case DW_TAG_rvalue_reference_type
:
30061 case DW_TAG_volatile_type
:
30062 case DW_TAG_typedef
:
30063 case DW_TAG_array_type
:
30064 case DW_TAG_friend
:
30065 case DW_TAG_enumeration_type
:
30066 case DW_TAG_subroutine_type
:
30067 case DW_TAG_string_type
:
30068 case DW_TAG_set_type
:
30069 case DW_TAG_subrange_type
:
30070 case DW_TAG_ptr_to_member_type
:
30071 case DW_TAG_file_type
:
30072 /* Type nodes are useful only when other DIEs reference them --- don't
30076 case DW_TAG_dwarf_procedure
:
30077 /* Likewise for DWARF procedures. */
30079 if (die
->die_perennial_p
)
30084 case DW_TAG_variable
:
30085 if (flag_debug_only_used_symbols
)
30087 if (die
->die_perennial_p
)
30090 /* For static data members, the declaration in the class is supposed
30091 to have DW_TAG_member tag in DWARF{3,4} but DW_TAG_variable in
30092 DWARF5. DW_TAG_member will be marked, so mark even such
30093 DW_TAG_variables in DWARF5, as long as it has DW_AT_const_value
30095 if (dwarf_version
>= 5
30096 && class_scope_p (die
->die_parent
)
30097 && get_AT (die
, DW_AT_const_value
))
30100 /* premark_used_variables marks external variables --- don't mark
30101 them here. But function-local externals are always considered
30103 if (get_AT (die
, DW_AT_external
))
30105 for (c
= die
->die_parent
; c
; c
= c
->die_parent
)
30106 if (c
->die_tag
== DW_TAG_subprogram
)
30115 /* Mark everything else. */
30119 if (die
->die_mark
== 0)
30123 /* Now, mark any dies referenced from here. */
30124 prune_unused_types_walk_attribs (die
);
30129 /* Mark children. */
30130 FOR_EACH_CHILD (die
, c
, prune_unused_types_walk (c
));
30133 /* Increment the string counts on strings referred to from DIE's
30137 prune_unused_types_update_strings (dw_die_ref die
)
30142 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
30143 if (AT_class (a
) == dw_val_class_str
)
30145 struct indirect_string_node
*s
= a
->dw_attr_val
.v
.val_str
;
30147 /* Avoid unnecessarily putting strings that are used less than
30148 twice in the hash table. */
30149 if (s
->form
!= DW_FORM_line_strp
30151 == ((DEBUG_STR_SECTION_FLAGS
& SECTION_MERGE
) ? 1 : 2)))
30153 indirect_string_node
**slot
30154 = debug_str_hash
->find_slot_with_hash (s
->str
,
30155 htab_hash_string (s
->str
),
30157 gcc_assert (*slot
== NULL
);
30163 /* Mark DIE and its children as removed. */
30166 mark_removed (dw_die_ref die
)
30169 die
->removed
= true;
30170 FOR_EACH_CHILD (die
, c
, mark_removed (c
));
30173 /* Remove from the tree DIE any dies that aren't marked. */
30176 prune_unused_types_prune (dw_die_ref die
)
30180 gcc_assert (die
->die_mark
);
30181 prune_unused_types_update_strings (die
);
30183 if (! die
->die_child
)
30186 c
= die
->die_child
;
30188 dw_die_ref prev
= c
, next
;
30189 for (c
= c
->die_sib
; ! c
->die_mark
; c
= next
)
30190 if (c
== die
->die_child
)
30192 /* No marked children between 'prev' and the end of the list. */
30194 /* No marked children at all. */
30195 die
->die_child
= NULL
;
30198 prev
->die_sib
= c
->die_sib
;
30199 die
->die_child
= prev
;
30212 if (c
!= prev
->die_sib
)
30214 prune_unused_types_prune (c
);
30215 } while (c
!= die
->die_child
);
30218 /* Remove dies representing declarations that we never use. */
30221 prune_unused_types (void)
30224 limbo_die_node
*node
;
30225 comdat_type_node
*ctnode
;
30226 pubname_entry
*pub
;
30227 dw_die_ref base_type
;
30229 #if ENABLE_ASSERT_CHECKING
30230 /* All the marks should already be clear. */
30231 verify_marks_clear (comp_unit_die ());
30232 for (node
= limbo_die_list
; node
; node
= node
->next
)
30233 verify_marks_clear (node
->die
);
30234 for (ctnode
= comdat_type_list
; ctnode
; ctnode
= ctnode
->next
)
30235 verify_marks_clear (ctnode
->root_die
);
30236 #endif /* ENABLE_ASSERT_CHECKING */
30238 /* Mark types that are used in global variables. */
30239 premark_types_used_by_global_vars ();
30241 /* Mark variables used in the symtab. */
30242 if (flag_debug_only_used_symbols
)
30243 premark_used_variables ();
30245 /* Set the mark on nodes that are actually used. */
30246 prune_unused_types_walk (comp_unit_die ());
30247 for (node
= limbo_die_list
; node
; node
= node
->next
)
30248 prune_unused_types_walk (node
->die
);
30249 for (ctnode
= comdat_type_list
; ctnode
; ctnode
= ctnode
->next
)
30251 prune_unused_types_walk (ctnode
->root_die
);
30252 prune_unused_types_mark (ctnode
->type_die
, 1);
30255 /* Also set the mark on nodes referenced from the pubname_table. Enumerators
30256 are unusual in that they are pubnames that are the children of pubtypes.
30257 They should only be marked via their parent DW_TAG_enumeration_type die,
30258 not as roots in themselves. */
30259 FOR_EACH_VEC_ELT (*pubname_table
, i
, pub
)
30260 if (pub
->die
->die_tag
!= DW_TAG_enumerator
)
30261 prune_unused_types_mark (pub
->die
, 1);
30262 for (i
= 0; base_types
.iterate (i
, &base_type
); i
++)
30263 prune_unused_types_mark (base_type
, 1);
30265 /* Also set the mark on nodes that could be referenced by
30266 DW_TAG_call_site DW_AT_call_origin (i.e. direct call callees) or
30267 by DW_TAG_inlined_subroutine origins. */
30268 cgraph_node
*cnode
;
30269 FOR_EACH_FUNCTION (cnode
)
30270 if (cnode
->referred_to_p (false))
30272 dw_die_ref die
= lookup_decl_die (cnode
->decl
);
30273 if (die
== NULL
|| die
->die_mark
)
30275 for (cgraph_edge
*e
= cnode
->callers
; e
; e
= e
->next_caller
)
30276 if (e
->caller
!= cnode
)
30278 prune_unused_types_mark (die
, 1);
30283 if (debug_str_hash
)
30284 debug_str_hash
->empty ();
30285 if (skeleton_debug_str_hash
)
30286 skeleton_debug_str_hash
->empty ();
30287 prune_unused_types_prune (comp_unit_die ());
30288 for (limbo_die_node
**pnode
= &limbo_die_list
; *pnode
; )
30291 if (!node
->die
->die_mark
)
30292 *pnode
= node
->next
;
30295 prune_unused_types_prune (node
->die
);
30296 pnode
= &node
->next
;
30299 for (ctnode
= comdat_type_list
; ctnode
; ctnode
= ctnode
->next
)
30300 prune_unused_types_prune (ctnode
->root_die
);
30302 /* Leave the marks clear. */
30303 prune_unmark_dies (comp_unit_die ());
30304 for (node
= limbo_die_list
; node
; node
= node
->next
)
30305 prune_unmark_dies (node
->die
);
30306 for (ctnode
= comdat_type_list
; ctnode
; ctnode
= ctnode
->next
)
30307 prune_unmark_dies (ctnode
->root_die
);
30310 /* Helpers to manipulate hash table of comdat type units. */
30312 struct comdat_type_hasher
: nofree_ptr_hash
<comdat_type_node
>
30314 static inline hashval_t
hash (const comdat_type_node
*);
30315 static inline bool equal (const comdat_type_node
*, const comdat_type_node
*);
30319 comdat_type_hasher::hash (const comdat_type_node
*type_node
)
30322 memcpy (&h
, type_node
->signature
, sizeof (h
));
30327 comdat_type_hasher::equal (const comdat_type_node
*type_node_1
,
30328 const comdat_type_node
*type_node_2
)
30330 return (! memcmp (type_node_1
->signature
, type_node_2
->signature
,
30331 DWARF_TYPE_SIGNATURE_SIZE
));
30334 /* Move a DW_AT_{,MIPS_}linkage_name attribute just added to dw_die_ref
30335 to the location it would have been added, should we know its
30336 DECL_ASSEMBLER_NAME when we added other attributes. This will
30337 probably improve compactness of debug info, removing equivalent
30338 abbrevs, and hide any differences caused by deferring the
30339 computation of the assembler name, triggered by e.g. PCH. */
30342 move_linkage_attr (dw_die_ref die
)
30344 unsigned ix
= vec_safe_length (die
->die_attr
);
30345 dw_attr_node linkage
= (*die
->die_attr
)[ix
- 1];
30347 gcc_assert (linkage
.dw_attr
== DW_AT_linkage_name
30348 || linkage
.dw_attr
== DW_AT_MIPS_linkage_name
);
30352 dw_attr_node
*prev
= &(*die
->die_attr
)[ix
- 1];
30354 if (prev
->dw_attr
== DW_AT_decl_line
30355 || prev
->dw_attr
== DW_AT_decl_column
30356 || prev
->dw_attr
== DW_AT_name
)
30360 if (ix
!= vec_safe_length (die
->die_attr
) - 1)
30362 die
->die_attr
->pop ();
30363 die
->die_attr
->quick_insert (ix
, linkage
);
30367 /* Helper function for resolve_addr, mark DW_TAG_base_type nodes
30368 referenced from typed stack ops and count how often they are used. */
30371 mark_base_types (dw_loc_descr_ref loc
)
30373 dw_die_ref base_type
= NULL
;
30375 for (; loc
; loc
= loc
->dw_loc_next
)
30377 switch (loc
->dw_loc_opc
)
30379 case DW_OP_regval_type
:
30380 case DW_OP_deref_type
:
30381 case DW_OP_GNU_regval_type
:
30382 case DW_OP_GNU_deref_type
:
30383 base_type
= loc
->dw_loc_oprnd2
.v
.val_die_ref
.die
;
30385 case DW_OP_convert
:
30386 case DW_OP_reinterpret
:
30387 case DW_OP_GNU_convert
:
30388 case DW_OP_GNU_reinterpret
:
30389 if (loc
->dw_loc_oprnd1
.val_class
== dw_val_class_unsigned_const
)
30392 case DW_OP_const_type
:
30393 case DW_OP_GNU_const_type
:
30394 base_type
= loc
->dw_loc_oprnd1
.v
.val_die_ref
.die
;
30396 case DW_OP_entry_value
:
30397 case DW_OP_GNU_entry_value
:
30398 mark_base_types (loc
->dw_loc_oprnd1
.v
.val_loc
);
30403 gcc_assert (base_type
->die_parent
== comp_unit_die ());
30404 if (base_type
->die_mark
)
30405 base_type
->die_mark
++;
30408 base_types
.safe_push (base_type
);
30409 base_type
->die_mark
= 1;
30414 /* Stripped-down variant of resolve_addr, mark DW_TAG_base_type nodes
30415 referenced from typed stack ops and count how often they are used. */
30418 mark_base_types (dw_die_ref die
)
30422 dw_loc_list_ref
*curr
;
30425 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
30426 switch (AT_class (a
))
30428 case dw_val_class_loc_list
:
30429 curr
= AT_loc_list_ptr (a
);
30432 mark_base_types ((*curr
)->expr
);
30433 curr
= &(*curr
)->dw_loc_next
;
30437 case dw_val_class_loc
:
30438 mark_base_types (AT_loc (a
));
30445 FOR_EACH_CHILD (die
, c
, mark_base_types (c
));
30448 /* Comparison function for sorting marked base types. */
30451 base_type_cmp (const void *x
, const void *y
)
30453 dw_die_ref dx
= *(const dw_die_ref
*) x
;
30454 dw_die_ref dy
= *(const dw_die_ref
*) y
;
30455 unsigned int byte_size1
, byte_size2
;
30456 unsigned int encoding1
, encoding2
;
30457 unsigned int align1
, align2
;
30458 if (dx
->die_mark
> dy
->die_mark
)
30460 if (dx
->die_mark
< dy
->die_mark
)
30462 byte_size1
= get_AT_unsigned (dx
, DW_AT_byte_size
);
30463 byte_size2
= get_AT_unsigned (dy
, DW_AT_byte_size
);
30464 if (byte_size1
< byte_size2
)
30466 if (byte_size1
> byte_size2
)
30468 encoding1
= get_AT_unsigned (dx
, DW_AT_encoding
);
30469 encoding2
= get_AT_unsigned (dy
, DW_AT_encoding
);
30470 if (encoding1
< encoding2
)
30472 if (encoding1
> encoding2
)
30474 align1
= get_AT_unsigned (dx
, DW_AT_alignment
);
30475 align2
= get_AT_unsigned (dy
, DW_AT_alignment
);
30476 if (align1
< align2
)
30478 if (align1
> align2
)
30483 /* Move base types marked by mark_base_types as early as possible
30484 in the CU, sorted by decreasing usage count both to make the
30485 uleb128 references as small as possible and to make sure they
30486 will have die_offset already computed by calc_die_sizes when
30487 sizes of typed stack loc ops is computed. */
30490 move_marked_base_types (void)
30493 dw_die_ref base_type
, die
, c
;
30495 if (base_types
.is_empty ())
30498 /* Sort by decreasing usage count, they will be added again in that
30500 base_types
.qsort (base_type_cmp
);
30501 die
= comp_unit_die ();
30502 c
= die
->die_child
;
30505 dw_die_ref prev
= c
;
30507 while (c
->die_mark
)
30509 remove_child_with_prev (c
, prev
);
30510 /* As base types got marked, there must be at least
30511 one node other than DW_TAG_base_type. */
30512 gcc_assert (die
->die_child
!= NULL
);
30516 while (c
!= die
->die_child
);
30517 gcc_assert (die
->die_child
);
30518 c
= die
->die_child
;
30519 for (i
= 0; base_types
.iterate (i
, &base_type
); i
++)
30521 base_type
->die_mark
= 0;
30522 base_type
->die_sib
= c
->die_sib
;
30523 c
->die_sib
= base_type
;
30528 /* Helper function for resolve_addr, attempt to resolve
30529 one CONST_STRING, return true if successful. Similarly verify that
30530 SYMBOL_REFs refer to variables emitted in the current CU. */
30533 resolve_one_addr (rtx
*addr
)
30537 if (GET_CODE (rtl
) == CONST_STRING
)
30539 size_t len
= strlen (XSTR (rtl
, 0)) + 1;
30540 tree t
= build_string (len
, XSTR (rtl
, 0));
30541 tree tlen
= size_int (len
- 1);
30543 = build_array_type (char_type_node
, build_index_type (tlen
));
30544 rtl
= lookup_constant_def (t
);
30545 if (!rtl
|| !MEM_P (rtl
))
30547 rtl
= XEXP (rtl
, 0);
30548 if (GET_CODE (rtl
) == SYMBOL_REF
30549 && SYMBOL_REF_DECL (rtl
)
30550 && !TREE_ASM_WRITTEN (SYMBOL_REF_DECL (rtl
)))
30552 vec_safe_push (used_rtx_array
, rtl
);
30557 if (GET_CODE (rtl
) == SYMBOL_REF
30558 && SYMBOL_REF_DECL (rtl
))
30560 if (TREE_CONSTANT_POOL_ADDRESS_P (rtl
))
30562 if (!TREE_ASM_WRITTEN (DECL_INITIAL (SYMBOL_REF_DECL (rtl
))))
30565 else if (!TREE_ASM_WRITTEN (SYMBOL_REF_DECL (rtl
)))
30569 if (GET_CODE (rtl
) == CONST
)
30571 subrtx_ptr_iterator::array_type array
;
30572 FOR_EACH_SUBRTX_PTR (iter
, array
, &XEXP (rtl
, 0), ALL
)
30573 if (!resolve_one_addr (*iter
))
30580 /* For STRING_CST, return SYMBOL_REF of its constant pool entry,
30581 if possible, and create DW_TAG_dwarf_procedure that can be referenced
30582 from DW_OP_implicit_pointer if the string hasn't been seen yet. */
30585 string_cst_pool_decl (tree t
)
30587 rtx rtl
= output_constant_def (t
, 1);
30588 unsigned char *array
;
30589 dw_loc_descr_ref l
;
30594 if (!rtl
|| !MEM_P (rtl
))
30596 rtl
= XEXP (rtl
, 0);
30597 if (GET_CODE (rtl
) != SYMBOL_REF
30598 || SYMBOL_REF_DECL (rtl
) == NULL_TREE
)
30601 decl
= SYMBOL_REF_DECL (rtl
);
30602 if (!lookup_decl_die (decl
))
30604 len
= TREE_STRING_LENGTH (t
);
30605 vec_safe_push (used_rtx_array
, rtl
);
30606 ref
= new_die (DW_TAG_dwarf_procedure
, comp_unit_die (), decl
);
30607 array
= ggc_vec_alloc
<unsigned char> (len
);
30608 memcpy (array
, TREE_STRING_POINTER (t
), len
);
30609 l
= new_loc_descr (DW_OP_implicit_value
, len
, 0);
30610 l
->dw_loc_oprnd2
.val_class
= dw_val_class_vec
;
30611 l
->dw_loc_oprnd2
.v
.val_vec
.length
= len
;
30612 l
->dw_loc_oprnd2
.v
.val_vec
.elt_size
= 1;
30613 l
->dw_loc_oprnd2
.v
.val_vec
.array
= array
;
30614 add_AT_loc (ref
, DW_AT_location
, l
);
30615 equate_decl_number_to_die (decl
, ref
);
30620 /* Helper function of resolve_addr_in_expr. LOC is
30621 a DW_OP_addr followed by DW_OP_stack_value, either at the start
30622 of exprloc or after DW_OP_{,bit_}piece, and val_addr can't be
30623 resolved. Replace it (both DW_OP_addr and DW_OP_stack_value)
30624 with DW_OP_implicit_pointer if possible
30625 and return true, if unsuccessful, return false. */
30628 optimize_one_addr_into_implicit_ptr (dw_loc_descr_ref loc
)
30630 rtx rtl
= loc
->dw_loc_oprnd1
.v
.val_addr
;
30631 HOST_WIDE_INT offset
= 0;
30632 dw_die_ref ref
= NULL
;
30635 if (GET_CODE (rtl
) == CONST
30636 && GET_CODE (XEXP (rtl
, 0)) == PLUS
30637 && CONST_INT_P (XEXP (XEXP (rtl
, 0), 1)))
30639 offset
= INTVAL (XEXP (XEXP (rtl
, 0), 1));
30640 rtl
= XEXP (XEXP (rtl
, 0), 0);
30642 if (GET_CODE (rtl
) == CONST_STRING
)
30644 size_t len
= strlen (XSTR (rtl
, 0)) + 1;
30645 tree t
= build_string (len
, XSTR (rtl
, 0));
30646 tree tlen
= size_int (len
- 1);
30649 = build_array_type (char_type_node
, build_index_type (tlen
));
30650 rtl
= string_cst_pool_decl (t
);
30654 if (GET_CODE (rtl
) == SYMBOL_REF
&& SYMBOL_REF_DECL (rtl
))
30656 decl
= SYMBOL_REF_DECL (rtl
);
30657 if (VAR_P (decl
) && !DECL_EXTERNAL (decl
))
30659 ref
= lookup_decl_die (decl
);
30660 if (ref
&& (get_AT (ref
, DW_AT_location
)
30661 || get_AT (ref
, DW_AT_const_value
)))
30663 loc
->dw_loc_opc
= dwarf_OP (DW_OP_implicit_pointer
);
30664 loc
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
30665 loc
->dw_loc_oprnd1
.val_entry
= NULL
;
30666 loc
->dw_loc_oprnd1
.v
.val_die_ref
.die
= ref
;
30667 loc
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
30668 loc
->dw_loc_next
= loc
->dw_loc_next
->dw_loc_next
;
30669 loc
->dw_loc_oprnd2
.v
.val_int
= offset
;
30677 /* Helper function for resolve_addr, handle one location
30678 expression, return false if at least one CONST_STRING or SYMBOL_REF in
30679 the location list couldn't be resolved. */
30682 resolve_addr_in_expr (dw_attr_node
*a
, dw_loc_descr_ref loc
)
30684 dw_loc_descr_ref keep
= NULL
;
30685 for (dw_loc_descr_ref prev
= NULL
; loc
; prev
= loc
, loc
= loc
->dw_loc_next
)
30686 switch (loc
->dw_loc_opc
)
30689 if (!resolve_one_addr (&loc
->dw_loc_oprnd1
.v
.val_addr
))
30692 || prev
->dw_loc_opc
== DW_OP_piece
30693 || prev
->dw_loc_opc
== DW_OP_bit_piece
)
30694 && loc
->dw_loc_next
30695 && loc
->dw_loc_next
->dw_loc_opc
== DW_OP_stack_value
30696 && (!dwarf_strict
|| dwarf_version
>= 5)
30697 && optimize_one_addr_into_implicit_ptr (loc
))
30702 case DW_OP_GNU_addr_index
:
30704 case DW_OP_GNU_const_index
:
30706 if ((loc
->dw_loc_opc
== DW_OP_GNU_addr_index
30707 || loc
->dw_loc_opc
== DW_OP_addrx
)
30708 || ((loc
->dw_loc_opc
== DW_OP_GNU_const_index
30709 || loc
->dw_loc_opc
== DW_OP_constx
)
30712 rtx rtl
= loc
->dw_loc_oprnd1
.val_entry
->addr
.rtl
;
30713 if (!resolve_one_addr (&rtl
))
30715 remove_addr_table_entry (loc
->dw_loc_oprnd1
.val_entry
);
30716 loc
->dw_loc_oprnd1
.val_entry
30717 = add_addr_table_entry (rtl
, ate_kind_rtx
);
30720 case DW_OP_const4u
:
30721 case DW_OP_const8u
:
30723 && !resolve_one_addr (&loc
->dw_loc_oprnd1
.v
.val_addr
))
30726 case DW_OP_plus_uconst
:
30727 if (size_of_loc_descr (loc
)
30728 > size_of_int_loc_descriptor (loc
->dw_loc_oprnd1
.v
.val_unsigned
)
30730 && loc
->dw_loc_oprnd1
.v
.val_unsigned
> 0)
30732 dw_loc_descr_ref repl
30733 = int_loc_descriptor (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
30734 add_loc_descr (&repl
, new_loc_descr (DW_OP_plus
, 0, 0));
30735 add_loc_descr (&repl
, loc
->dw_loc_next
);
30739 case DW_OP_implicit_value
:
30740 if (loc
->dw_loc_oprnd2
.val_class
== dw_val_class_addr
30741 && !resolve_one_addr (&loc
->dw_loc_oprnd2
.v
.val_addr
))
30744 case DW_OP_implicit_pointer
:
30745 case DW_OP_GNU_implicit_pointer
:
30746 case DW_OP_GNU_parameter_ref
:
30747 case DW_OP_GNU_variable_value
:
30748 if (loc
->dw_loc_oprnd1
.val_class
== dw_val_class_decl_ref
)
30751 = lookup_decl_die (loc
->dw_loc_oprnd1
.v
.val_decl_ref
);
30754 loc
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
30755 loc
->dw_loc_oprnd1
.v
.val_die_ref
.die
= ref
;
30756 loc
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
30758 if (loc
->dw_loc_opc
== DW_OP_GNU_variable_value
)
30761 && loc
->dw_loc_next
== NULL
30762 && AT_class (a
) == dw_val_class_loc
)
30763 switch (a
->dw_attr
)
30765 /* Following attributes allow both exprloc and reference,
30766 so if the whole expression is DW_OP_GNU_variable_value
30767 alone we could transform it into reference. */
30768 case DW_AT_byte_size
:
30769 case DW_AT_bit_size
:
30770 case DW_AT_lower_bound
:
30771 case DW_AT_upper_bound
:
30772 case DW_AT_bit_stride
:
30774 case DW_AT_allocated
:
30775 case DW_AT_associated
:
30776 case DW_AT_byte_stride
:
30777 a
->dw_attr_val
.val_class
= dw_val_class_die_ref
;
30778 a
->dw_attr_val
.val_entry
= NULL
;
30779 a
->dw_attr_val
.v
.val_die_ref
.die
30780 = loc
->dw_loc_oprnd1
.v
.val_die_ref
.die
;
30781 a
->dw_attr_val
.v
.val_die_ref
.external
= 0;
30790 case DW_OP_const_type
:
30791 case DW_OP_regval_type
:
30792 case DW_OP_deref_type
:
30793 case DW_OP_convert
:
30794 case DW_OP_reinterpret
:
30795 case DW_OP_GNU_const_type
:
30796 case DW_OP_GNU_regval_type
:
30797 case DW_OP_GNU_deref_type
:
30798 case DW_OP_GNU_convert
:
30799 case DW_OP_GNU_reinterpret
:
30800 while (loc
->dw_loc_next
30801 && (loc
->dw_loc_next
->dw_loc_opc
== DW_OP_convert
30802 || loc
->dw_loc_next
->dw_loc_opc
== DW_OP_GNU_convert
))
30804 dw_die_ref base1
, base2
;
30805 unsigned enc1
, enc2
, size1
, size2
;
30806 if (loc
->dw_loc_opc
== DW_OP_regval_type
30807 || loc
->dw_loc_opc
== DW_OP_deref_type
30808 || loc
->dw_loc_opc
== DW_OP_GNU_regval_type
30809 || loc
->dw_loc_opc
== DW_OP_GNU_deref_type
)
30810 base1
= loc
->dw_loc_oprnd2
.v
.val_die_ref
.die
;
30811 else if (loc
->dw_loc_oprnd1
.val_class
30812 == dw_val_class_unsigned_const
)
30815 base1
= loc
->dw_loc_oprnd1
.v
.val_die_ref
.die
;
30816 if (loc
->dw_loc_next
->dw_loc_oprnd1
.val_class
30817 == dw_val_class_unsigned_const
)
30819 base2
= loc
->dw_loc_next
->dw_loc_oprnd1
.v
.val_die_ref
.die
;
30820 gcc_assert (base1
->die_tag
== DW_TAG_base_type
30821 && base2
->die_tag
== DW_TAG_base_type
);
30822 enc1
= get_AT_unsigned (base1
, DW_AT_encoding
);
30823 enc2
= get_AT_unsigned (base2
, DW_AT_encoding
);
30824 size1
= get_AT_unsigned (base1
, DW_AT_byte_size
);
30825 size2
= get_AT_unsigned (base2
, DW_AT_byte_size
);
30827 && (((enc1
== DW_ATE_unsigned
|| enc1
== DW_ATE_signed
)
30828 && (enc2
== DW_ATE_unsigned
|| enc2
== DW_ATE_signed
)
30832 /* Optimize away next DW_OP_convert after
30833 adjusting LOC's base type die reference. */
30834 if (loc
->dw_loc_opc
== DW_OP_regval_type
30835 || loc
->dw_loc_opc
== DW_OP_deref_type
30836 || loc
->dw_loc_opc
== DW_OP_GNU_regval_type
30837 || loc
->dw_loc_opc
== DW_OP_GNU_deref_type
)
30838 loc
->dw_loc_oprnd2
.v
.val_die_ref
.die
= base2
;
30840 loc
->dw_loc_oprnd1
.v
.val_die_ref
.die
= base2
;
30841 loc
->dw_loc_next
= loc
->dw_loc_next
->dw_loc_next
;
30844 /* Don't change integer DW_OP_convert after e.g. floating
30845 point typed stack entry. */
30846 else if (enc1
!= DW_ATE_unsigned
&& enc1
!= DW_ATE_signed
)
30847 keep
= loc
->dw_loc_next
;
30857 /* Helper function of resolve_addr. DIE had DW_AT_location of
30858 DW_OP_addr alone, which referred to DECL in DW_OP_addr's operand
30859 and DW_OP_addr couldn't be resolved. resolve_addr has already
30860 removed the DW_AT_location attribute. This function attempts to
30861 add a new DW_AT_location attribute with DW_OP_implicit_pointer
30862 to it or DW_AT_const_value attribute, if possible. */
30865 optimize_location_into_implicit_ptr (dw_die_ref die
, tree decl
)
30868 || lookup_decl_die (decl
) != die
30869 || DECL_EXTERNAL (decl
)
30870 || !TREE_STATIC (decl
)
30871 || DECL_INITIAL (decl
) == NULL_TREE
30872 || DECL_P (DECL_INITIAL (decl
))
30873 || get_AT (die
, DW_AT_const_value
))
30876 tree init
= DECL_INITIAL (decl
);
30877 HOST_WIDE_INT offset
= 0;
30878 /* For variables that have been optimized away and thus
30879 don't have a memory location, see if we can emit
30880 DW_AT_const_value instead. */
30881 if (tree_add_const_value_attribute (die
, init
))
30883 if (dwarf_strict
&& dwarf_version
< 5)
30885 /* If init is ADDR_EXPR or POINTER_PLUS_EXPR of ADDR_EXPR,
30886 and ADDR_EXPR refers to a decl that has DW_AT_location or
30887 DW_AT_const_value (but isn't addressable, otherwise
30888 resolving the original DW_OP_addr wouldn't fail), see if
30889 we can add DW_OP_implicit_pointer. */
30891 if (TREE_CODE (init
) == POINTER_PLUS_EXPR
30892 && tree_fits_shwi_p (TREE_OPERAND (init
, 1)))
30894 offset
= tree_to_shwi (TREE_OPERAND (init
, 1));
30895 init
= TREE_OPERAND (init
, 0);
30898 if (TREE_CODE (init
) != ADDR_EXPR
)
30900 if ((TREE_CODE (TREE_OPERAND (init
, 0)) == STRING_CST
30901 && !TREE_ASM_WRITTEN (TREE_OPERAND (init
, 0)))
30902 || (TREE_CODE (TREE_OPERAND (init
, 0)) == VAR_DECL
30903 && !DECL_EXTERNAL (TREE_OPERAND (init
, 0))
30904 && TREE_OPERAND (init
, 0) != decl
))
30907 dw_loc_descr_ref l
;
30909 if (TREE_CODE (TREE_OPERAND (init
, 0)) == STRING_CST
)
30911 rtx rtl
= string_cst_pool_decl (TREE_OPERAND (init
, 0));
30914 decl
= SYMBOL_REF_DECL (rtl
);
30917 decl
= TREE_OPERAND (init
, 0);
30918 ref
= lookup_decl_die (decl
);
30920 || (!get_AT (ref
, DW_AT_location
)
30921 && !get_AT (ref
, DW_AT_const_value
)))
30923 l
= new_loc_descr (dwarf_OP (DW_OP_implicit_pointer
), 0, offset
);
30924 l
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
30925 l
->dw_loc_oprnd1
.v
.val_die_ref
.die
= ref
;
30926 l
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
30927 add_AT_loc (die
, DW_AT_location
, l
);
30931 /* Return NULL if l is a DWARF expression, or first op that is not
30932 valid DWARF expression. */
30934 static dw_loc_descr_ref
30935 non_dwarf_expression (dw_loc_descr_ref l
)
30939 if (l
->dw_loc_opc
>= DW_OP_reg0
&& l
->dw_loc_opc
<= DW_OP_reg31
)
30941 switch (l
->dw_loc_opc
)
30944 case DW_OP_implicit_value
:
30945 case DW_OP_stack_value
:
30946 case DW_OP_implicit_pointer
:
30947 case DW_OP_GNU_implicit_pointer
:
30948 case DW_OP_GNU_parameter_ref
:
30950 case DW_OP_bit_piece
:
30955 l
= l
->dw_loc_next
;
30960 /* Return adjusted copy of EXPR:
30961 If it is empty DWARF expression, return it.
30962 If it is valid non-empty DWARF expression,
30963 return copy of EXPR with DW_OP_deref appended to it.
30964 If it is DWARF expression followed by DW_OP_reg{N,x}, return
30965 copy of the DWARF expression with DW_OP_breg{N,x} <0> appended.
30966 If it is DWARF expression followed by DW_OP_stack_value, return
30967 copy of the DWARF expression without anything appended.
30968 Otherwise, return NULL. */
30970 static dw_loc_descr_ref
30971 copy_deref_exprloc (dw_loc_descr_ref expr
)
30973 dw_loc_descr_ref tail
= NULL
;
30978 dw_loc_descr_ref l
= non_dwarf_expression (expr
);
30979 if (l
&& l
->dw_loc_next
)
30984 if (l
->dw_loc_opc
>= DW_OP_reg0
&& l
->dw_loc_opc
<= DW_OP_reg31
)
30985 tail
= new_loc_descr ((enum dwarf_location_atom
)
30986 (DW_OP_breg0
+ (l
->dw_loc_opc
- DW_OP_reg0
)),
30989 switch (l
->dw_loc_opc
)
30992 tail
= new_loc_descr (DW_OP_bregx
,
30993 l
->dw_loc_oprnd1
.v
.val_unsigned
, 0);
30995 case DW_OP_stack_value
:
31002 tail
= new_loc_descr (DW_OP_deref
, 0, 0);
31004 dw_loc_descr_ref ret
= NULL
, *p
= &ret
;
31007 *p
= new_loc_descr (expr
->dw_loc_opc
, 0, 0);
31008 (*p
)->dw_loc_oprnd1
= expr
->dw_loc_oprnd1
;
31009 (*p
)->dw_loc_oprnd2
= expr
->dw_loc_oprnd2
;
31010 p
= &(*p
)->dw_loc_next
;
31011 expr
= expr
->dw_loc_next
;
31017 /* For DW_AT_string_length attribute with DW_OP_GNU_variable_value
31018 reference to a variable or argument, adjust it if needed and return:
31019 -1 if the DW_AT_string_length attribute and DW_AT_{string_length_,}byte_size
31020 attribute if present should be removed
31021 0 keep the attribute perhaps with minor modifications, no need to rescan
31022 1 if the attribute has been successfully adjusted. */
31025 optimize_string_length (dw_attr_node
*a
)
31027 dw_loc_descr_ref l
= AT_loc (a
), lv
;
31029 if (l
->dw_loc_oprnd1
.val_class
== dw_val_class_decl_ref
)
31031 tree decl
= l
->dw_loc_oprnd1
.v
.val_decl_ref
;
31032 die
= lookup_decl_die (decl
);
31035 l
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
31036 l
->dw_loc_oprnd1
.v
.val_die_ref
.die
= die
;
31037 l
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
31043 die
= l
->dw_loc_oprnd1
.v
.val_die_ref
.die
;
31045 /* DWARF5 allows reference class, so we can then reference the DIE.
31046 Only do this for DW_OP_GNU_variable_value DW_OP_stack_value. */
31047 if (l
->dw_loc_next
!= NULL
&& dwarf_version
>= 5)
31049 a
->dw_attr_val
.val_class
= dw_val_class_die_ref
;
31050 a
->dw_attr_val
.val_entry
= NULL
;
31051 a
->dw_attr_val
.v
.val_die_ref
.die
= die
;
31052 a
->dw_attr_val
.v
.val_die_ref
.external
= 0;
31056 dw_attr_node
*av
= get_AT (die
, DW_AT_location
);
31058 bool non_dwarf_expr
= false;
31061 return dwarf_strict
? -1 : 0;
31062 switch (AT_class (av
))
31064 case dw_val_class_loc_list
:
31065 for (d
= AT_loc_list (av
); d
!= NULL
; d
= d
->dw_loc_next
)
31066 if (d
->expr
&& non_dwarf_expression (d
->expr
))
31067 non_dwarf_expr
= true;
31069 case dw_val_class_view_list
:
31070 gcc_unreachable ();
31071 case dw_val_class_loc
:
31074 return dwarf_strict
? -1 : 0;
31075 if (non_dwarf_expression (lv
))
31076 non_dwarf_expr
= true;
31079 return dwarf_strict
? -1 : 0;
31082 /* If it is safe to transform DW_OP_GNU_variable_value DW_OP_stack_value
31083 into DW_OP_call4 or DW_OP_GNU_variable_value into
31084 DW_OP_call4 DW_OP_deref, do so. */
31085 if (!non_dwarf_expr
31086 && (l
->dw_loc_next
!= NULL
|| AT_class (av
) == dw_val_class_loc
))
31088 l
->dw_loc_opc
= DW_OP_call4
;
31089 if (l
->dw_loc_next
)
31090 l
->dw_loc_next
= NULL
;
31092 l
->dw_loc_next
= new_loc_descr (DW_OP_deref
, 0, 0);
31096 /* For DW_OP_GNU_variable_value DW_OP_stack_value, we can just
31097 copy over the DW_AT_location attribute from die to a. */
31098 if (l
->dw_loc_next
!= NULL
)
31100 a
->dw_attr_val
= av
->dw_attr_val
;
31104 dw_loc_list_ref list
, *p
;
31105 switch (AT_class (av
))
31107 case dw_val_class_loc_list
:
31110 for (d
= AT_loc_list (av
); d
!= NULL
; d
= d
->dw_loc_next
)
31112 lv
= copy_deref_exprloc (d
->expr
);
31115 *p
= new_loc_list (lv
, d
->begin
, d
->vbegin
, d
->end
, d
->vend
, d
->section
);
31116 p
= &(*p
)->dw_loc_next
;
31118 else if (!dwarf_strict
&& d
->expr
)
31122 return dwarf_strict
? -1 : 0;
31123 a
->dw_attr_val
.val_class
= dw_val_class_loc_list
;
31125 *AT_loc_list_ptr (a
) = list
;
31127 case dw_val_class_loc
:
31128 lv
= copy_deref_exprloc (AT_loc (av
));
31130 return dwarf_strict
? -1 : 0;
31131 a
->dw_attr_val
.v
.val_loc
= lv
;
31134 gcc_unreachable ();
31138 /* Resolve DW_OP_addr and DW_AT_const_value CONST_STRING arguments to
31139 an address in .rodata section if the string literal is emitted there,
31140 or remove the containing location list or replace DW_AT_const_value
31141 with DW_AT_location and empty location expression, if it isn't found
31142 in .rodata. Similarly for SYMBOL_REFs, keep only those that refer
31143 to something that has been emitted in the current CU. */
31146 resolve_addr (dw_die_ref die
)
31150 dw_loc_list_ref
*curr
, *start
, loc
;
31152 bool remove_AT_byte_size
= false;
31154 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
31155 switch (AT_class (a
))
31157 case dw_val_class_loc_list
:
31158 start
= curr
= AT_loc_list_ptr (a
);
31161 /* The same list can be referenced more than once. See if we have
31162 already recorded the result from a previous pass. */
31164 *curr
= loc
->dw_loc_next
;
31165 else if (!loc
->resolved_addr
)
31167 /* As things stand, we do not expect or allow one die to
31168 reference a suffix of another die's location list chain.
31169 References must be identical or completely separate.
31170 There is therefore no need to cache the result of this
31171 pass on any list other than the first; doing so
31172 would lead to unnecessary writes. */
31175 gcc_assert (!(*curr
)->replaced
&& !(*curr
)->resolved_addr
);
31176 if (!resolve_addr_in_expr (a
, (*curr
)->expr
))
31178 dw_loc_list_ref next
= (*curr
)->dw_loc_next
;
31179 dw_loc_descr_ref l
= (*curr
)->expr
;
31181 if (next
&& (*curr
)->ll_symbol
)
31183 gcc_assert (!next
->ll_symbol
);
31184 next
->ll_symbol
= (*curr
)->ll_symbol
;
31185 next
->vl_symbol
= (*curr
)->vl_symbol
;
31187 if (dwarf_split_debug_info
)
31188 remove_loc_list_addr_table_entries (l
);
31193 mark_base_types ((*curr
)->expr
);
31194 curr
= &(*curr
)->dw_loc_next
;
31198 loc
->resolved_addr
= 1;
31202 loc
->dw_loc_next
= *start
;
31207 remove_AT (die
, a
->dw_attr
);
31211 case dw_val_class_view_list
:
31213 gcc_checking_assert (a
->dw_attr
== DW_AT_GNU_locviews
);
31214 gcc_checking_assert (dwarf2out_locviews_in_attribute ());
31215 dw_val_node
*llnode
31216 = view_list_to_loc_list_val_node (&a
->dw_attr_val
);
31217 /* If we no longer have a loclist, or it no longer needs
31218 views, drop this attribute. */
31219 if (!llnode
|| !llnode
->v
.val_loc_list
->vl_symbol
)
31221 remove_AT (die
, a
->dw_attr
);
31226 case dw_val_class_loc
:
31228 dw_loc_descr_ref l
= AT_loc (a
);
31229 /* DW_OP_GNU_variable_value DW_OP_stack_value or
31230 DW_OP_GNU_variable_value in DW_AT_string_length can be converted
31231 into DW_OP_call4 or DW_OP_call4 DW_OP_deref, which is standard
31232 DWARF4 unlike DW_OP_GNU_variable_value. Or for DWARF5
31233 DW_OP_GNU_variable_value DW_OP_stack_value can be replaced
31234 with DW_FORM_ref referencing the same DIE as
31235 DW_OP_GNU_variable_value used to reference. */
31236 if (a
->dw_attr
== DW_AT_string_length
31238 && l
->dw_loc_opc
== DW_OP_GNU_variable_value
31239 && (l
->dw_loc_next
== NULL
31240 || (l
->dw_loc_next
->dw_loc_next
== NULL
31241 && l
->dw_loc_next
->dw_loc_opc
== DW_OP_stack_value
)))
31243 switch (optimize_string_length (a
))
31246 remove_AT (die
, a
->dw_attr
);
31248 /* If we drop DW_AT_string_length, we need to drop also
31249 DW_AT_{string_length_,}byte_size. */
31250 remove_AT_byte_size
= true;
31255 /* Even if we keep the optimized DW_AT_string_length,
31256 it might have changed AT_class, so process it again. */
31261 /* For -gdwarf-2 don't attempt to optimize
31262 DW_AT_data_member_location containing
31263 DW_OP_plus_uconst - older consumers might
31264 rely on it being that op instead of a more complex,
31265 but shorter, location description. */
31266 if ((dwarf_version
> 2
31267 || a
->dw_attr
!= DW_AT_data_member_location
31269 || l
->dw_loc_opc
!= DW_OP_plus_uconst
31270 || l
->dw_loc_next
!= NULL
)
31271 && !resolve_addr_in_expr (a
, l
))
31273 if (dwarf_split_debug_info
)
31274 remove_loc_list_addr_table_entries (l
);
31276 && l
->dw_loc_next
== NULL
31277 && l
->dw_loc_opc
== DW_OP_addr
31278 && GET_CODE (l
->dw_loc_oprnd1
.v
.val_addr
) == SYMBOL_REF
31279 && SYMBOL_REF_DECL (l
->dw_loc_oprnd1
.v
.val_addr
)
31280 && a
->dw_attr
== DW_AT_location
)
31282 tree decl
= SYMBOL_REF_DECL (l
->dw_loc_oprnd1
.v
.val_addr
);
31283 remove_AT (die
, a
->dw_attr
);
31285 optimize_location_into_implicit_ptr (die
, decl
);
31288 if (a
->dw_attr
== DW_AT_string_length
)
31289 /* If we drop DW_AT_string_length, we need to drop also
31290 DW_AT_{string_length_,}byte_size. */
31291 remove_AT_byte_size
= true;
31292 remove_AT (die
, a
->dw_attr
);
31296 mark_base_types (l
);
31299 case dw_val_class_addr
:
31300 if (a
->dw_attr
== DW_AT_const_value
31301 && !resolve_one_addr (&a
->dw_attr_val
.v
.val_addr
))
31303 if (AT_index (a
) != NOT_INDEXED
)
31304 remove_addr_table_entry (a
->dw_attr_val
.val_entry
);
31305 remove_AT (die
, a
->dw_attr
);
31308 if ((die
->die_tag
== DW_TAG_call_site
31309 && a
->dw_attr
== DW_AT_call_origin
)
31310 || (die
->die_tag
== DW_TAG_GNU_call_site
31311 && a
->dw_attr
== DW_AT_abstract_origin
))
31313 tree tdecl
= SYMBOL_REF_DECL (a
->dw_attr_val
.v
.val_addr
);
31314 dw_die_ref tdie
= lookup_decl_die (tdecl
);
31317 && DECL_EXTERNAL (tdecl
)
31318 && DECL_ABSTRACT_ORIGIN (tdecl
) == NULL_TREE
31319 && (cdie
= lookup_context_die (DECL_CONTEXT (tdecl
))))
31321 dw_die_ref pdie
= cdie
;
31322 /* Make sure we don't add these DIEs into type units.
31323 We could emit skeleton DIEs for context (namespaces,
31324 outer structs/classes) and a skeleton DIE for the
31325 innermost context with DW_AT_signature pointing to the
31326 type unit. See PR78835. */
31327 while (pdie
&& pdie
->die_tag
!= DW_TAG_type_unit
)
31328 pdie
= pdie
->die_parent
;
31331 /* Creating a full DIE for tdecl is overly expensive and
31332 at this point even wrong when in the LTO phase
31333 as it can end up generating new type DIEs we didn't
31334 output and thus optimize_external_refs will crash. */
31335 tdie
= new_die (DW_TAG_subprogram
, cdie
, NULL_TREE
);
31336 add_AT_flag (tdie
, DW_AT_external
, 1);
31337 add_AT_flag (tdie
, DW_AT_declaration
, 1);
31338 add_linkage_attr (tdie
, tdecl
);
31339 add_name_and_src_coords_attributes (tdie
, tdecl
, true);
31340 equate_decl_number_to_die (tdecl
, tdie
);
31345 a
->dw_attr_val
.val_class
= dw_val_class_die_ref
;
31346 a
->dw_attr_val
.v
.val_die_ref
.die
= tdie
;
31347 a
->dw_attr_val
.v
.val_die_ref
.external
= 0;
31351 if (AT_index (a
) != NOT_INDEXED
)
31352 remove_addr_table_entry (a
->dw_attr_val
.val_entry
);
31353 remove_AT (die
, a
->dw_attr
);
31362 if (remove_AT_byte_size
)
31363 remove_AT (die
, dwarf_version
>= 5
31364 ? DW_AT_string_length_byte_size
31365 : DW_AT_byte_size
);
31367 FOR_EACH_CHILD (die
, c
, resolve_addr (c
));
31370 /* Helper routines for optimize_location_lists.
31371 This pass tries to share identical local lists in .debug_loc
31374 /* Iteratively hash operands of LOC opcode into HSTATE. */
31377 hash_loc_operands (dw_loc_descr_ref loc
, inchash::hash
&hstate
)
31379 dw_val_ref val1
= &loc
->dw_loc_oprnd1
;
31380 dw_val_ref val2
= &loc
->dw_loc_oprnd2
;
31382 switch (loc
->dw_loc_opc
)
31384 case DW_OP_const4u
:
31385 case DW_OP_const8u
:
31389 case DW_OP_const1u
:
31390 case DW_OP_const1s
:
31391 case DW_OP_const2u
:
31392 case DW_OP_const2s
:
31393 case DW_OP_const4s
:
31394 case DW_OP_const8s
:
31398 case DW_OP_plus_uconst
:
31434 case DW_OP_deref_size
:
31435 case DW_OP_xderef_size
:
31436 hstate
.add_object (val1
->v
.val_int
);
31443 gcc_assert (val1
->val_class
== dw_val_class_loc
);
31444 offset
= val1
->v
.val_loc
->dw_loc_addr
- (loc
->dw_loc_addr
+ 3);
31445 hstate
.add_object (offset
);
31448 case DW_OP_implicit_value
:
31449 hstate
.add_object (val1
->v
.val_unsigned
);
31450 switch (val2
->val_class
)
31452 case dw_val_class_const
:
31453 hstate
.add_object (val2
->v
.val_int
);
31455 case dw_val_class_vec
:
31457 unsigned int elt_size
= val2
->v
.val_vec
.elt_size
;
31458 unsigned int len
= val2
->v
.val_vec
.length
;
31460 hstate
.add_int (elt_size
);
31461 hstate
.add_int (len
);
31462 hstate
.add (val2
->v
.val_vec
.array
, len
* elt_size
);
31465 case dw_val_class_const_double
:
31466 hstate
.add_object (val2
->v
.val_double
.low
);
31467 hstate
.add_object (val2
->v
.val_double
.high
);
31469 case dw_val_class_wide_int
:
31470 hstate
.add (val2
->v
.val_wide
->get_val (),
31471 get_full_len (*val2
->v
.val_wide
)
31472 * HOST_BITS_PER_WIDE_INT
/ HOST_BITS_PER_CHAR
);
31474 case dw_val_class_addr
:
31475 inchash::add_rtx (val2
->v
.val_addr
, hstate
);
31478 gcc_unreachable ();
31482 case DW_OP_bit_piece
:
31483 hstate
.add_object (val1
->v
.val_int
);
31484 hstate
.add_object (val2
->v
.val_int
);
31490 unsigned char dtprel
= 0xd1;
31491 hstate
.add_object (dtprel
);
31493 inchash::add_rtx (val1
->v
.val_addr
, hstate
);
31495 case DW_OP_GNU_addr_index
:
31497 case DW_OP_GNU_const_index
:
31502 unsigned char dtprel
= 0xd1;
31503 hstate
.add_object (dtprel
);
31505 inchash::add_rtx (val1
->val_entry
->addr
.rtl
, hstate
);
31508 case DW_OP_implicit_pointer
:
31509 case DW_OP_GNU_implicit_pointer
:
31510 hstate
.add_int (val2
->v
.val_int
);
31512 case DW_OP_entry_value
:
31513 case DW_OP_GNU_entry_value
:
31514 hstate
.add_object (val1
->v
.val_loc
);
31516 case DW_OP_regval_type
:
31517 case DW_OP_deref_type
:
31518 case DW_OP_GNU_regval_type
:
31519 case DW_OP_GNU_deref_type
:
31521 unsigned int byte_size
31522 = get_AT_unsigned (val2
->v
.val_die_ref
.die
, DW_AT_byte_size
);
31523 unsigned int encoding
31524 = get_AT_unsigned (val2
->v
.val_die_ref
.die
, DW_AT_encoding
);
31525 hstate
.add_object (val1
->v
.val_int
);
31526 hstate
.add_object (byte_size
);
31527 hstate
.add_object (encoding
);
31530 case DW_OP_convert
:
31531 case DW_OP_reinterpret
:
31532 case DW_OP_GNU_convert
:
31533 case DW_OP_GNU_reinterpret
:
31534 if (val1
->val_class
== dw_val_class_unsigned_const
)
31536 hstate
.add_object (val1
->v
.val_unsigned
);
31540 case DW_OP_const_type
:
31541 case DW_OP_GNU_const_type
:
31543 unsigned int byte_size
31544 = get_AT_unsigned (val1
->v
.val_die_ref
.die
, DW_AT_byte_size
);
31545 unsigned int encoding
31546 = get_AT_unsigned (val1
->v
.val_die_ref
.die
, DW_AT_encoding
);
31547 hstate
.add_object (byte_size
);
31548 hstate
.add_object (encoding
);
31549 if (loc
->dw_loc_opc
!= DW_OP_const_type
31550 && loc
->dw_loc_opc
!= DW_OP_GNU_const_type
)
31552 hstate
.add_object (val2
->val_class
);
31553 switch (val2
->val_class
)
31555 case dw_val_class_const
:
31556 hstate
.add_object (val2
->v
.val_int
);
31558 case dw_val_class_vec
:
31560 unsigned int elt_size
= val2
->v
.val_vec
.elt_size
;
31561 unsigned int len
= val2
->v
.val_vec
.length
;
31563 hstate
.add_object (elt_size
);
31564 hstate
.add_object (len
);
31565 hstate
.add (val2
->v
.val_vec
.array
, len
* elt_size
);
31568 case dw_val_class_const_double
:
31569 hstate
.add_object (val2
->v
.val_double
.low
);
31570 hstate
.add_object (val2
->v
.val_double
.high
);
31572 case dw_val_class_wide_int
:
31573 hstate
.add (val2
->v
.val_wide
->get_val (),
31574 get_full_len (*val2
->v
.val_wide
)
31575 * HOST_BITS_PER_WIDE_INT
/ HOST_BITS_PER_CHAR
);
31578 gcc_unreachable ();
31584 /* Other codes have no operands. */
31589 /* Iteratively hash the whole DWARF location expression LOC into HSTATE. */
31592 hash_locs (dw_loc_descr_ref loc
, inchash::hash
&hstate
)
31594 dw_loc_descr_ref l
;
31595 bool sizes_computed
= false;
31596 /* Compute sizes, so that DW_OP_skip/DW_OP_bra can be checksummed. */
31597 size_of_locs (loc
);
31599 for (l
= loc
; l
!= NULL
; l
= l
->dw_loc_next
)
31601 enum dwarf_location_atom opc
= l
->dw_loc_opc
;
31602 hstate
.add_object (opc
);
31603 if ((opc
== DW_OP_skip
|| opc
== DW_OP_bra
) && !sizes_computed
)
31605 size_of_locs (loc
);
31606 sizes_computed
= true;
31608 hash_loc_operands (l
, hstate
);
31612 /* Compute hash of the whole location list LIST_HEAD. */
31615 hash_loc_list (dw_loc_list_ref list_head
)
31617 dw_loc_list_ref curr
= list_head
;
31618 inchash::hash hstate
;
31620 for (curr
= list_head
; curr
!= NULL
; curr
= curr
->dw_loc_next
)
31622 hstate
.add (curr
->begin
, strlen (curr
->begin
) + 1);
31623 hstate
.add (curr
->end
, strlen (curr
->end
) + 1);
31624 hstate
.add_object (curr
->vbegin
);
31625 hstate
.add_object (curr
->vend
);
31627 hstate
.add (curr
->section
, strlen (curr
->section
) + 1);
31628 hash_locs (curr
->expr
, hstate
);
31630 list_head
->hash
= hstate
.end ();
31633 /* Return true if X and Y opcodes have the same operands. */
31636 compare_loc_operands (dw_loc_descr_ref x
, dw_loc_descr_ref y
)
31638 dw_val_ref valx1
= &x
->dw_loc_oprnd1
;
31639 dw_val_ref valx2
= &x
->dw_loc_oprnd2
;
31640 dw_val_ref valy1
= &y
->dw_loc_oprnd1
;
31641 dw_val_ref valy2
= &y
->dw_loc_oprnd2
;
31643 switch (x
->dw_loc_opc
)
31645 case DW_OP_const4u
:
31646 case DW_OP_const8u
:
31650 case DW_OP_const1u
:
31651 case DW_OP_const1s
:
31652 case DW_OP_const2u
:
31653 case DW_OP_const2s
:
31654 case DW_OP_const4s
:
31655 case DW_OP_const8s
:
31659 case DW_OP_plus_uconst
:
31695 case DW_OP_deref_size
:
31696 case DW_OP_xderef_size
:
31697 return valx1
->v
.val_int
== valy1
->v
.val_int
;
31700 /* If splitting debug info, the use of DW_OP_GNU_addr_index
31701 can cause irrelevant differences in dw_loc_addr. */
31702 gcc_assert (valx1
->val_class
== dw_val_class_loc
31703 && valy1
->val_class
== dw_val_class_loc
31704 && (dwarf_split_debug_info
31705 || x
->dw_loc_addr
== y
->dw_loc_addr
));
31706 return valx1
->v
.val_loc
->dw_loc_addr
== valy1
->v
.val_loc
->dw_loc_addr
;
31707 case DW_OP_implicit_value
:
31708 if (valx1
->v
.val_unsigned
!= valy1
->v
.val_unsigned
31709 || valx2
->val_class
!= valy2
->val_class
)
31711 switch (valx2
->val_class
)
31713 case dw_val_class_const
:
31714 return valx2
->v
.val_int
== valy2
->v
.val_int
;
31715 case dw_val_class_vec
:
31716 return valx2
->v
.val_vec
.elt_size
== valy2
->v
.val_vec
.elt_size
31717 && valx2
->v
.val_vec
.length
== valy2
->v
.val_vec
.length
31718 && memcmp (valx2
->v
.val_vec
.array
, valy2
->v
.val_vec
.array
,
31719 valx2
->v
.val_vec
.elt_size
31720 * valx2
->v
.val_vec
.length
) == 0;
31721 case dw_val_class_const_double
:
31722 return valx2
->v
.val_double
.low
== valy2
->v
.val_double
.low
31723 && valx2
->v
.val_double
.high
== valy2
->v
.val_double
.high
;
31724 case dw_val_class_wide_int
:
31725 return *valx2
->v
.val_wide
== *valy2
->v
.val_wide
;
31726 case dw_val_class_addr
:
31727 return rtx_equal_p (valx2
->v
.val_addr
, valy2
->v
.val_addr
);
31729 gcc_unreachable ();
31732 case DW_OP_bit_piece
:
31733 return valx1
->v
.val_int
== valy1
->v
.val_int
31734 && valx2
->v
.val_int
== valy2
->v
.val_int
;
31737 return rtx_equal_p (valx1
->v
.val_addr
, valy1
->v
.val_addr
);
31738 case DW_OP_GNU_addr_index
:
31740 case DW_OP_GNU_const_index
:
31743 rtx ax1
= valx1
->val_entry
->addr
.rtl
;
31744 rtx ay1
= valy1
->val_entry
->addr
.rtl
;
31745 return rtx_equal_p (ax1
, ay1
);
31747 case DW_OP_implicit_pointer
:
31748 case DW_OP_GNU_implicit_pointer
:
31749 return valx1
->val_class
== dw_val_class_die_ref
31750 && valx1
->val_class
== valy1
->val_class
31751 && valx1
->v
.val_die_ref
.die
== valy1
->v
.val_die_ref
.die
31752 && valx2
->v
.val_int
== valy2
->v
.val_int
;
31753 case DW_OP_entry_value
:
31754 case DW_OP_GNU_entry_value
:
31755 return compare_loc_operands (valx1
->v
.val_loc
, valy1
->v
.val_loc
);
31756 case DW_OP_const_type
:
31757 case DW_OP_GNU_const_type
:
31758 if (valx1
->v
.val_die_ref
.die
!= valy1
->v
.val_die_ref
.die
31759 || valx2
->val_class
!= valy2
->val_class
)
31761 switch (valx2
->val_class
)
31763 case dw_val_class_const
:
31764 return valx2
->v
.val_int
== valy2
->v
.val_int
;
31765 case dw_val_class_vec
:
31766 return valx2
->v
.val_vec
.elt_size
== valy2
->v
.val_vec
.elt_size
31767 && valx2
->v
.val_vec
.length
== valy2
->v
.val_vec
.length
31768 && memcmp (valx2
->v
.val_vec
.array
, valy2
->v
.val_vec
.array
,
31769 valx2
->v
.val_vec
.elt_size
31770 * valx2
->v
.val_vec
.length
) == 0;
31771 case dw_val_class_const_double
:
31772 return valx2
->v
.val_double
.low
== valy2
->v
.val_double
.low
31773 && valx2
->v
.val_double
.high
== valy2
->v
.val_double
.high
;
31774 case dw_val_class_wide_int
:
31775 return *valx2
->v
.val_wide
== *valy2
->v
.val_wide
;
31777 gcc_unreachable ();
31779 case DW_OP_regval_type
:
31780 case DW_OP_deref_type
:
31781 case DW_OP_GNU_regval_type
:
31782 case DW_OP_GNU_deref_type
:
31783 return valx1
->v
.val_int
== valy1
->v
.val_int
31784 && valx2
->v
.val_die_ref
.die
== valy2
->v
.val_die_ref
.die
;
31785 case DW_OP_convert
:
31786 case DW_OP_reinterpret
:
31787 case DW_OP_GNU_convert
:
31788 case DW_OP_GNU_reinterpret
:
31789 if (valx1
->val_class
!= valy1
->val_class
)
31791 if (valx1
->val_class
== dw_val_class_unsigned_const
)
31792 return valx1
->v
.val_unsigned
== valy1
->v
.val_unsigned
;
31793 return valx1
->v
.val_die_ref
.die
== valy1
->v
.val_die_ref
.die
;
31794 case DW_OP_GNU_parameter_ref
:
31795 return valx1
->val_class
== dw_val_class_die_ref
31796 && valx1
->val_class
== valy1
->val_class
31797 && valx1
->v
.val_die_ref
.die
== valy1
->v
.val_die_ref
.die
;
31799 /* Other codes have no operands. */
31804 /* Return true if DWARF location expressions X and Y are the same. */
31807 compare_locs (dw_loc_descr_ref x
, dw_loc_descr_ref y
)
31809 for (; x
!= NULL
&& y
!= NULL
; x
= x
->dw_loc_next
, y
= y
->dw_loc_next
)
31810 if (x
->dw_loc_opc
!= y
->dw_loc_opc
31811 || x
->dtprel
!= y
->dtprel
31812 || !compare_loc_operands (x
, y
))
31814 return x
== NULL
&& y
== NULL
;
31817 /* Hashtable helpers. */
31819 struct loc_list_hasher
: nofree_ptr_hash
<dw_loc_list_struct
>
31821 static inline hashval_t
hash (const dw_loc_list_struct
*);
31822 static inline bool equal (const dw_loc_list_struct
*,
31823 const dw_loc_list_struct
*);
31826 /* Return precomputed hash of location list X. */
31829 loc_list_hasher::hash (const dw_loc_list_struct
*x
)
31834 /* Return true if location lists A and B are the same. */
31837 loc_list_hasher::equal (const dw_loc_list_struct
*a
,
31838 const dw_loc_list_struct
*b
)
31842 if (a
->hash
!= b
->hash
)
31844 for (; a
!= NULL
&& b
!= NULL
; a
= a
->dw_loc_next
, b
= b
->dw_loc_next
)
31845 if (strcmp (a
->begin
, b
->begin
) != 0
31846 || strcmp (a
->end
, b
->end
) != 0
31847 || (a
->section
== NULL
) != (b
->section
== NULL
)
31848 || (a
->section
&& strcmp (a
->section
, b
->section
) != 0)
31849 || a
->vbegin
!= b
->vbegin
|| a
->vend
!= b
->vend
31850 || !compare_locs (a
->expr
, b
->expr
))
31852 return a
== NULL
&& b
== NULL
;
31855 typedef hash_table
<loc_list_hasher
> loc_list_hash_type
;
31858 /* Recursively optimize location lists referenced from DIE
31859 children and share them whenever possible. */
31862 optimize_location_lists_1 (dw_die_ref die
, loc_list_hash_type
*htab
)
31867 dw_loc_list_struct
**slot
;
31868 bool drop_locviews
= false;
31869 bool has_locviews
= false;
31871 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
31872 if (AT_class (a
) == dw_val_class_loc_list
)
31874 dw_loc_list_ref list
= AT_loc_list (a
);
31875 /* TODO: perform some optimizations here, before hashing
31876 it and storing into the hash table. */
31877 hash_loc_list (list
);
31878 slot
= htab
->find_slot_with_hash (list
, list
->hash
, INSERT
);
31882 if (loc_list_has_views (list
))
31883 gcc_assert (list
->vl_symbol
);
31884 else if (list
->vl_symbol
)
31886 drop_locviews
= true;
31887 list
->vl_symbol
= NULL
;
31892 if (list
->vl_symbol
&& !(*slot
)->vl_symbol
)
31893 drop_locviews
= true;
31894 a
->dw_attr_val
.v
.val_loc_list
= *slot
;
31897 else if (AT_class (a
) == dw_val_class_view_list
)
31899 gcc_checking_assert (a
->dw_attr
== DW_AT_GNU_locviews
);
31900 has_locviews
= true;
31904 if (drop_locviews
&& has_locviews
)
31905 remove_AT (die
, DW_AT_GNU_locviews
);
31907 FOR_EACH_CHILD (die
, c
, optimize_location_lists_1 (c
, htab
));
31911 /* Recursively assign each location list a unique index into the debug_addr
31915 index_location_lists (dw_die_ref die
)
31921 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
31922 if (AT_class (a
) == dw_val_class_loc_list
)
31924 dw_loc_list_ref list
= AT_loc_list (a
);
31925 dw_loc_list_ref curr
;
31926 for (curr
= list
; curr
!= NULL
; curr
= curr
->dw_loc_next
)
31928 /* Don't index an entry that has already been indexed
31929 or won't be output. Make sure skip_loc_list_entry doesn't
31930 call size_of_locs, because that might cause circular dependency,
31931 index_location_lists requiring address table indexes to be
31932 computed, but adding new indexes through add_addr_table_entry
31933 and address table index computation requiring no new additions
31934 to the hash table. In the rare case of DWARF[234] >= 64KB
31935 location expression, we'll just waste unused address table entry
31937 if (curr
->begin_entry
!= NULL
|| skip_loc_list_entry (curr
))
31941 = add_addr_table_entry (xstrdup (curr
->begin
), ate_kind_label
);
31942 if (dwarf_version
>= 5 && !HAVE_AS_LEB128
)
31944 = add_addr_table_entry (xstrdup (curr
->end
), ate_kind_label
);
31948 FOR_EACH_CHILD (die
, c
, index_location_lists (c
));
31951 /* Optimize location lists referenced from DIE
31952 children and share them whenever possible. */
31955 optimize_location_lists (dw_die_ref die
)
31957 loc_list_hash_type
htab (500);
31958 optimize_location_lists_1 (die
, &htab
);
31961 /* Traverse the limbo die list, and add parent/child links. The only
31962 dies without parents that should be here are concrete instances of
31963 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
31964 For concrete instances, we can get the parent die from the abstract
31968 flush_limbo_die_list (void)
31970 limbo_die_node
*node
;
31972 /* get_context_die calls force_decl_die, which can put new DIEs on the
31973 limbo list in LTO mode when nested functions are put in a different
31974 partition than that of their parent function. */
31975 while ((node
= limbo_die_list
))
31977 dw_die_ref die
= node
->die
;
31978 limbo_die_list
= node
->next
;
31980 if (die
->die_parent
== NULL
)
31982 dw_die_ref origin
= get_AT_ref (die
, DW_AT_abstract_origin
);
31984 if (origin
&& origin
->die_parent
)
31985 add_child_die (origin
->die_parent
, die
);
31986 else if (is_cu_die (die
))
31988 else if (seen_error ())
31989 /* It's OK to be confused by errors in the input. */
31990 add_child_die (comp_unit_die (), die
);
31993 /* In certain situations, the lexical block containing a
31994 nested function can be optimized away, which results
31995 in the nested function die being orphaned. Likewise
31996 with the return type of that nested function. Force
31997 this to be a child of the containing function.
31999 It may happen that even the containing function got fully
32000 inlined and optimized out. In that case we are lost and
32001 assign the empty child. This should not be big issue as
32002 the function is likely unreachable too. */
32003 gcc_assert (node
->created_for
);
32005 if (DECL_P (node
->created_for
))
32006 origin
= get_context_die (DECL_CONTEXT (node
->created_for
));
32007 else if (TYPE_P (node
->created_for
))
32008 origin
= scope_die_for (node
->created_for
, comp_unit_die ());
32010 origin
= comp_unit_die ();
32012 add_child_die (origin
, die
);
32018 /* Reset DIEs so we can output them again. */
32021 reset_dies (dw_die_ref die
)
32025 /* Remove stuff we re-generate. */
32027 die
->die_offset
= 0;
32028 die
->die_abbrev
= 0;
32029 remove_AT (die
, DW_AT_sibling
);
32031 FOR_EACH_CHILD (die
, c
, reset_dies (c
));
32034 /* reset_indirect_string removed the references coming from DW_AT_name
32035 and DW_AT_comp_dir attributes on compilation unit DIEs. Readd them as
32036 .debug_line_str strings again. */
32039 adjust_name_comp_dir (dw_die_ref die
)
32041 for (int i
= 0; i
< 2; i
++)
32043 dwarf_attribute attr_kind
= i
? DW_AT_comp_dir
: DW_AT_name
;
32044 dw_attr_node
*a
= get_AT (die
, attr_kind
);
32045 if (a
== NULL
|| a
->dw_attr_val
.val_class
!= dw_val_class_str
)
32048 if (!debug_line_str_hash
)
32049 debug_line_str_hash
32050 = hash_table
<indirect_string_hasher
>::create_ggc (10);
32052 struct indirect_string_node
*node
32053 = find_AT_string_in_table (a
->dw_attr_val
.v
.val_str
->str
,
32054 debug_line_str_hash
);
32055 set_indirect_string (node
);
32056 node
->form
= DW_FORM_line_strp
;
32057 a
->dw_attr_val
.v
.val_str
= node
;
32061 /* Output stuff that dwarf requires at the end of every file,
32062 and generate the DWARF-2 debugging info. */
32065 dwarf2out_finish (const char *filename
)
32067 comdat_type_node
*ctnode
;
32068 dw_die_ref main_comp_unit_die
;
32069 unsigned char checksum
[16];
32070 char dl_section_ref
[MAX_ARTIFICIAL_LABEL_BYTES
];
32072 /* Generate CTF/BTF debug info. */
32073 if ((ctf_debug_info_level
> CTFINFO_LEVEL_NONE
32074 || btf_debuginfo_p ()) && lang_GNU_C ())
32075 ctf_debug_finish (filename
);
32077 /* Skip emitting DWARF if not required. */
32078 if (!dwarf_debuginfo_p ())
32081 /* Flush out any latecomers to the limbo party. */
32082 flush_limbo_die_list ();
32084 if (inline_entry_data_table
)
32085 gcc_assert (inline_entry_data_table
->is_empty ());
32089 verify_die (comp_unit_die ());
32090 for (limbo_die_node
*node
= cu_die_list
; node
; node
= node
->next
)
32091 verify_die (node
->die
);
32094 /* We shouldn't have any symbols with delayed asm names for
32095 DIEs generated after early finish. */
32096 gcc_assert (deferred_asm_name
== NULL
);
32098 gen_remaining_tmpl_value_param_die_attribute ();
32100 if (flag_generate_lto
|| flag_generate_offload
)
32102 gcc_assert (flag_fat_lto_objects
|| flag_generate_offload
);
32104 /* Prune stuff so that dwarf2out_finish runs successfully
32105 for the fat part of the object. */
32106 reset_dies (comp_unit_die ());
32107 for (limbo_die_node
*node
= cu_die_list
; node
; node
= node
->next
)
32108 reset_dies (node
->die
);
32110 hash_table
<comdat_type_hasher
> comdat_type_table (100);
32111 for (ctnode
= comdat_type_list
; ctnode
!= NULL
; ctnode
= ctnode
->next
)
32113 comdat_type_node
**slot
32114 = comdat_type_table
.find_slot (ctnode
, INSERT
);
32116 /* Don't reset types twice. */
32117 if (*slot
!= HTAB_EMPTY_ENTRY
)
32120 /* Remove the pointer to the line table. */
32121 remove_AT (ctnode
->root_die
, DW_AT_stmt_list
);
32123 if (debug_info_level
>= DINFO_LEVEL_TERSE
)
32124 reset_dies (ctnode
->root_die
);
32129 /* Reset die CU symbol so we don't output it twice. */
32130 comp_unit_die ()->die_id
.die_symbol
= NULL
;
32132 /* Remove DW_AT_macro and DW_AT_stmt_list from the early output. */
32133 remove_AT (comp_unit_die (), DW_AT_stmt_list
);
32135 remove_AT (comp_unit_die (), DEBUG_MACRO_ATTRIBUTE
);
32137 /* Remove indirect string decisions. */
32138 debug_str_hash
->traverse
<void *, reset_indirect_string
> (NULL
);
32139 if (debug_line_str_hash
)
32141 debug_line_str_hash
->traverse
<void *, reset_indirect_string
> (NULL
);
32142 debug_line_str_hash
= NULL
;
32143 if (asm_outputs_debug_line_str ())
32145 adjust_name_comp_dir (comp_unit_die ());
32146 for (limbo_die_node
*node
= cu_die_list
; node
; node
= node
->next
)
32147 adjust_name_comp_dir (node
->die
);
32152 #if ENABLE_ASSERT_CHECKING
32154 dw_die_ref die
= comp_unit_die (), c
;
32155 FOR_EACH_CHILD (die
, c
, gcc_assert (! c
->die_mark
));
32158 base_types
.truncate (0);
32159 for (ctnode
= comdat_type_list
; ctnode
!= NULL
; ctnode
= ctnode
->next
)
32160 resolve_addr (ctnode
->root_die
);
32161 resolve_addr (comp_unit_die ());
32162 move_marked_base_types ();
32166 fprintf (dump_file
, "DWARF for %s\n", filename
);
32167 print_die (comp_unit_die (), dump_file
);
32170 /* Initialize sections and labels used for actual assembler output. */
32171 unsigned generation
= init_sections_and_labels (false);
32173 /* Traverse the DIE's and add sibling attributes to those DIE's that
32175 add_sibling_attributes (comp_unit_die ());
32176 limbo_die_node
*node
;
32177 for (node
= cu_die_list
; node
; node
= node
->next
)
32178 add_sibling_attributes (node
->die
);
32179 for (ctnode
= comdat_type_list
; ctnode
!= NULL
; ctnode
= ctnode
->next
)
32180 add_sibling_attributes (ctnode
->root_die
);
32182 /* When splitting DWARF info, we put some attributes in the
32183 skeleton compile_unit DIE that remains in the .o, while
32184 most attributes go in the DWO compile_unit_die. */
32185 if (dwarf_split_debug_info
)
32187 limbo_die_node
*cu
;
32188 main_comp_unit_die
= gen_compile_unit_die (NULL
);
32189 if (dwarf_version
>= 5)
32190 main_comp_unit_die
->die_tag
= DW_TAG_skeleton_unit
;
32191 cu
= limbo_die_list
;
32192 gcc_assert (cu
->die
== main_comp_unit_die
);
32193 limbo_die_list
= limbo_die_list
->next
;
32194 cu
->next
= cu_die_list
;
32198 main_comp_unit_die
= comp_unit_die ();
32200 /* Output a terminator label for the .text section. */
32201 switch_to_section (text_section
);
32202 targetm
.asm_out
.internal_label (asm_out_file
, TEXT_END_LABEL
, 0);
32203 if (cold_text_section
)
32205 switch_to_section (cold_text_section
);
32206 targetm
.asm_out
.internal_label (asm_out_file
, COLD_END_LABEL
, 0);
32209 /* We can only use the low/high_pc attributes if all of the code was
32211 if ((!have_multiple_function_sections
32212 && vec_safe_length (switch_text_ranges
) < 2)
32213 || (dwarf_version
< 3 && dwarf_strict
))
32215 const char *end_label
= text_end_label
;
32216 if (vec_safe_length (switch_text_ranges
) == 1)
32217 end_label
= (*switch_text_ranges
)[0];
32218 /* Don't add if the CU has no associated code. */
32219 if (switch_text_ranges
)
32220 add_AT_low_high_pc (main_comp_unit_die
, text_section_label
,
32227 bool range_list_added
= false;
32228 if (switch_text_ranges
)
32230 const char *prev_loc
= text_section_label
;
32234 FOR_EACH_VEC_ELT (*switch_text_ranges
, idx
, loc
)
32237 add_ranges_by_labels (main_comp_unit_die
, prev_loc
,
32238 loc
, &range_list_added
, true);
32245 add_ranges_by_labels (main_comp_unit_die
, prev_loc
,
32246 text_end_label
, &range_list_added
, true);
32249 if (switch_cold_ranges
)
32251 const char *prev_loc
= cold_text_section_label
;
32255 FOR_EACH_VEC_ELT (*switch_cold_ranges
, idx
, loc
)
32258 add_ranges_by_labels (main_comp_unit_die
, prev_loc
,
32259 loc
, &range_list_added
, true);
32266 add_ranges_by_labels (main_comp_unit_die
, prev_loc
,
32267 cold_end_label
, &range_list_added
, true);
32270 FOR_EACH_VEC_ELT (*fde_vec
, fde_idx
, fde
)
32272 if (fde
->ignored_debug
)
32274 if (!fde
->in_std_section
)
32275 add_ranges_by_labels (main_comp_unit_die
, fde
->dw_fde_begin
,
32276 fde
->dw_fde_end
, &range_list_added
,
32278 if (fde
->dw_fde_second_begin
&& !fde
->second_in_std_section
)
32279 add_ranges_by_labels (main_comp_unit_die
, fde
->dw_fde_second_begin
,
32280 fde
->dw_fde_second_end
, &range_list_added
,
32284 if (range_list_added
)
32286 /* We need to give .debug_loc and .debug_ranges an appropriate
32287 "base address". Use zero so that these addresses become
32288 absolute. Historically, we've emitted the unexpected
32289 DW_AT_entry_pc instead of DW_AT_low_pc for this purpose.
32290 Emit both to give time for other tools to adapt. */
32291 add_AT_addr (main_comp_unit_die
, DW_AT_low_pc
, const0_rtx
, true);
32292 if (! dwarf_strict
&& dwarf_version
< 4)
32293 add_AT_addr (main_comp_unit_die
, DW_AT_entry_pc
, const0_rtx
, true);
32296 have_multiple_function_sections
= true;
32300 /* AIX Assembler inserts the length, so adjust the reference to match the
32301 offset expected by debuggers. */
32302 strcpy (dl_section_ref
, debug_line_section_label
);
32303 if (XCOFF_DEBUGGING_INFO
)
32304 strcat (dl_section_ref
, DWARF_INITIAL_LENGTH_SIZE_STR
);
32306 if (debug_info_level
>= DINFO_LEVEL_TERSE
)
32307 add_AT_lineptr (main_comp_unit_die
, DW_AT_stmt_list
,
32311 add_AT_macptr (comp_unit_die (), DEBUG_MACRO_ATTRIBUTE
,
32312 macinfo_section_label
);
32314 if (dwarf_split_debug_info
)
32316 if (have_location_lists
)
32318 /* Since we generate the loclists in the split DWARF .dwo
32319 file itself, we don't need to generate a loclists_base
32320 attribute for the split compile unit DIE. That attribute
32321 (and using relocatable sec_offset FORMs) isn't allowed
32322 for a split compile unit. Only if the .debug_loclists
32323 section was in the main file, would we need to generate a
32324 loclists_base attribute here (for the full or skeleton
32327 /* optimize_location_lists calculates the size of the lists,
32328 so index them first, and assign indices to the entries.
32329 Although optimize_location_lists will remove entries from
32330 the table, it only does so for duplicates, and therefore
32331 only reduces ref_counts to 1. */
32332 index_location_lists (comp_unit_die ());
32335 if (dwarf_version
>= 5 && !vec_safe_is_empty (ranges_table
))
32338 if (addr_index_table
!= NULL
)
32340 unsigned int index
= 0;
32342 ->traverse_noresize
<unsigned int *, index_addr_table_entry
>
32348 if (have_location_lists
)
32350 optimize_location_lists (comp_unit_die ());
32351 /* And finally assign indexes to the entries for -gsplit-dwarf. */
32352 if (dwarf_version
>= 5 && dwarf_split_debug_info
)
32353 assign_location_list_indexes (comp_unit_die ());
32356 save_macinfo_strings ();
32358 if (dwarf_split_debug_info
)
32360 unsigned int index
= 0;
32362 /* Add attributes common to skeleton compile_units and
32363 type_units. Because these attributes include strings, it
32364 must be done before freezing the string table. Top-level
32365 skeleton die attrs are added when the skeleton type unit is
32366 created, so ensure it is created by this point. */
32367 add_top_level_skeleton_die_attrs (main_comp_unit_die
);
32368 debug_str_hash
->traverse_noresize
<unsigned int *, index_string
> (&index
);
32371 /* Output all of the compilation units. We put the main one last so that
32372 the offsets are available to output_pubnames. */
32373 for (node
= cu_die_list
; node
; node
= node
->next
)
32374 output_comp_unit (node
->die
, 0, NULL
);
32376 hash_table
<comdat_type_hasher
> comdat_type_table (100);
32377 for (ctnode
= comdat_type_list
; ctnode
!= NULL
; ctnode
= ctnode
->next
)
32379 comdat_type_node
**slot
= comdat_type_table
.find_slot (ctnode
, INSERT
);
32381 /* Don't output duplicate types. */
32382 if (*slot
!= HTAB_EMPTY_ENTRY
)
32385 /* Add a pointer to the line table for the main compilation unit
32386 so that the debugger can make sense of DW_AT_decl_file
32388 if (debug_info_level
>= DINFO_LEVEL_TERSE
)
32389 add_AT_lineptr (ctnode
->root_die
, DW_AT_stmt_list
,
32390 (!dwarf_split_debug_info
32392 : debug_skeleton_line_section_label
));
32394 output_comdat_type_unit (ctnode
, false);
32398 if (dwarf_split_debug_info
)
32401 struct md5_ctx ctx
;
32403 /* Compute a checksum of the comp_unit to use as the dwo_id. */
32404 md5_init_ctx (&ctx
);
32406 die_checksum (comp_unit_die (), &ctx
, &mark
);
32407 unmark_all_dies (comp_unit_die ());
32408 md5_finish_ctx (&ctx
, checksum
);
32410 if (dwarf_version
< 5)
32412 /* Use the first 8 bytes of the checksum as the dwo_id,
32413 and add it to both comp-unit DIEs. */
32414 add_AT_data8 (main_comp_unit_die
, DW_AT_GNU_dwo_id
, checksum
);
32415 add_AT_data8 (comp_unit_die (), DW_AT_GNU_dwo_id
, checksum
);
32418 /* Add the base offset of the ranges table to the skeleton
32420 if (!vec_safe_is_empty (ranges_table
))
32422 if (dwarf_version
< 5)
32423 add_AT_lineptr (main_comp_unit_die
, DW_AT_GNU_ranges_base
,
32424 ranges_section_label
);
32427 output_addr_table ();
32430 /* Output the main compilation unit if non-empty or if .debug_macinfo
32431 or .debug_macro will be emitted. */
32432 output_comp_unit (comp_unit_die (), have_macinfo
,
32433 dwarf_split_debug_info
? checksum
: NULL
);
32435 if (dwarf_split_debug_info
&& info_section_emitted
)
32436 output_skeleton_debug_sections (main_comp_unit_die
, checksum
);
32438 /* Output the abbreviation table. */
32439 if (vec_safe_length (abbrev_die_table
) != 1)
32441 switch_to_section (debug_abbrev_section
);
32442 ASM_OUTPUT_LABEL (asm_out_file
, abbrev_section_label
);
32443 output_abbrev_section ();
32446 /* Output location list section if necessary. */
32447 if (have_location_lists
)
32449 char l1
[MAX_ARTIFICIAL_LABEL_BYTES
];
32450 char l2
[MAX_ARTIFICIAL_LABEL_BYTES
];
32451 /* Output the location lists info. */
32452 switch_to_section (debug_loc_section
);
32453 if (dwarf_version
>= 5)
32455 ASM_GENERATE_INTERNAL_LABEL (l1
, DEBUG_LOC_SECTION_LABEL
, 2);
32456 ASM_GENERATE_INTERNAL_LABEL (l2
, DEBUG_LOC_SECTION_LABEL
, 3);
32457 if (DWARF_INITIAL_LENGTH_SIZE
- dwarf_offset_size
== 4)
32458 dw2_asm_output_data (4, 0xffffffff,
32459 "Initial length escape value indicating "
32460 "64-bit DWARF extension");
32461 dw2_asm_output_delta (dwarf_offset_size
, l2
, l1
,
32462 "Length of Location Lists");
32463 ASM_OUTPUT_LABEL (asm_out_file
, l1
);
32464 output_dwarf_version ();
32465 dw2_asm_output_data (1, DWARF2_ADDR_SIZE
, "Address Size");
32466 dw2_asm_output_data (1, 0, "Segment Size");
32467 dw2_asm_output_data (4, dwarf_split_debug_info
? loc_list_idx
: 0,
32468 "Offset Entry Count");
32470 ASM_OUTPUT_LABEL (asm_out_file
, loc_section_label
);
32471 if (dwarf_version
>= 5 && dwarf_split_debug_info
)
32473 unsigned int save_loc_list_idx
= loc_list_idx
;
32475 output_loclists_offsets (comp_unit_die ());
32476 gcc_assert (save_loc_list_idx
== loc_list_idx
);
32478 output_location_lists (comp_unit_die ());
32479 if (dwarf_version
>= 5)
32480 ASM_OUTPUT_LABEL (asm_out_file
, l2
);
32483 output_pubtables ();
32485 /* Output the address range information if a CU (.debug_info section)
32486 was emitted. We output an empty table even if we had no functions
32487 to put in it. This because the consumer has no way to tell the
32488 difference between an empty table that we omitted and failure to
32489 generate a table that would have contained data. */
32490 if (info_section_emitted
)
32492 switch_to_section (debug_aranges_section
);
32496 /* Output ranges section if necessary. */
32497 if (!vec_safe_is_empty (ranges_table
))
32499 if (dwarf_version
>= 5)
32501 if (dwarf_split_debug_info
)
32503 /* We don't know right now whether there are any
32504 ranges for .debug_rnglists and any for .debug_rnglists.dwo.
32505 Depending on into which of those two belongs the first
32506 ranges_table entry, emit that section first and that
32507 output_rnglists call will return true if the other kind of
32508 ranges needs to be emitted as well. */
32509 bool dwo
= (*ranges_table
)[0].idx
!= DW_RANGES_IDX_SKELETON
;
32510 if (output_rnglists (generation
, dwo
))
32511 output_rnglists (generation
, !dwo
);
32514 output_rnglists (generation
, false);
32520 /* Have to end the macro section. */
32523 switch_to_section (debug_macinfo_section
);
32524 ASM_OUTPUT_LABEL (asm_out_file
, macinfo_section_label
);
32525 output_macinfo (!dwarf_split_debug_info
? debug_line_section_label
32526 : debug_skeleton_line_section_label
, false);
32527 dw2_asm_output_data (1, 0, "End compilation unit");
32530 /* Output the source line correspondence table. We must do this
32531 even if there is no line information. Otherwise, on an empty
32532 translation unit, we will generate a present, but empty,
32533 .debug_info section. IRIX 6.5 `nm' will then complain when
32534 examining the file. This is done late so that any filenames
32535 used by the debug_info section are marked as 'used'. */
32536 switch_to_section (debug_line_section
);
32537 ASM_OUTPUT_LABEL (asm_out_file
, debug_line_section_label
);
32538 if (! output_asm_line_debug_info ())
32539 output_line_info (false);
32541 if (dwarf_split_debug_info
&& info_section_emitted
)
32543 switch_to_section (debug_skeleton_line_section
);
32544 ASM_OUTPUT_LABEL (asm_out_file
, debug_skeleton_line_section_label
);
32545 output_line_info (true);
32548 /* If we emitted any indirect strings, output the string table too. */
32549 if (debug_str_hash
|| skeleton_debug_str_hash
)
32550 output_indirect_strings ();
32551 if (debug_line_str_hash
)
32553 switch_to_section (debug_line_str_section
);
32554 const enum dwarf_form form
= DW_FORM_line_strp
;
32555 debug_line_str_hash
->traverse
<enum dwarf_form
,
32556 output_indirect_string
> (form
);
32559 /* ??? Move lvugid out of dwarf2out_source_line and reset it too? */
32560 symview_upper_bound
= 0;
32562 bitmap_clear (zero_view_p
);
32565 /* Returns a hash value for X (which really is a variable_value_struct). */
32568 variable_value_hasher::hash (variable_value_struct
*x
)
32570 return (hashval_t
) x
->decl_id
;
32573 /* Return nonzero if decl_id of variable_value_struct X is the same as
32577 variable_value_hasher::equal (variable_value_struct
*x
, tree y
)
32579 return x
->decl_id
== DECL_UID (y
);
32582 /* Helper function for resolve_variable_value, handle
32583 DW_OP_GNU_variable_value in one location expression.
32584 Return true if exprloc has been changed into loclist. */
32587 resolve_variable_value_in_expr (dw_attr_node
*a
, dw_loc_descr_ref loc
)
32589 dw_loc_descr_ref next
;
32590 for (dw_loc_descr_ref prev
= NULL
; loc
; prev
= loc
, loc
= next
)
32592 next
= loc
->dw_loc_next
;
32593 if (loc
->dw_loc_opc
!= DW_OP_GNU_variable_value
32594 || loc
->dw_loc_oprnd1
.val_class
!= dw_val_class_decl_ref
)
32597 tree decl
= loc
->dw_loc_oprnd1
.v
.val_decl_ref
;
32598 if (DECL_CONTEXT (decl
) != current_function_decl
)
32601 dw_die_ref ref
= lookup_decl_die (decl
);
32604 loc
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
32605 loc
->dw_loc_oprnd1
.v
.val_die_ref
.die
= ref
;
32606 loc
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
32609 dw_loc_list_ref l
= loc_list_from_tree (decl
, 0, NULL
);
32612 if (l
->dw_loc_next
)
32614 if (AT_class (a
) != dw_val_class_loc
)
32616 switch (a
->dw_attr
)
32618 /* Following attributes allow both exprloc and loclist
32619 classes, so we can change them into a loclist. */
32620 case DW_AT_location
:
32621 case DW_AT_string_length
:
32622 case DW_AT_return_addr
:
32623 case DW_AT_data_member_location
:
32624 case DW_AT_frame_base
:
32625 case DW_AT_segment
:
32626 case DW_AT_static_link
:
32627 case DW_AT_use_location
:
32628 case DW_AT_vtable_elem_location
:
32631 prev
->dw_loc_next
= NULL
;
32632 prepend_loc_descr_to_each (l
, AT_loc (a
));
32635 add_loc_descr_to_each (l
, next
);
32636 a
->dw_attr_val
.val_class
= dw_val_class_loc_list
;
32637 a
->dw_attr_val
.val_entry
= NULL
;
32638 a
->dw_attr_val
.v
.val_loc_list
= l
;
32639 have_location_lists
= true;
32641 /* Following attributes allow both exprloc and reference,
32642 so if the whole expression is DW_OP_GNU_variable_value alone
32643 we could transform it into reference. */
32644 case DW_AT_byte_size
:
32645 case DW_AT_bit_size
:
32646 case DW_AT_lower_bound
:
32647 case DW_AT_upper_bound
:
32648 case DW_AT_bit_stride
:
32650 case DW_AT_allocated
:
32651 case DW_AT_associated
:
32652 case DW_AT_byte_stride
:
32653 if (prev
== NULL
&& next
== NULL
)
32661 /* Create DW_TAG_variable that we can refer to. */
32662 gen_decl_die (decl
, NULL_TREE
, NULL
,
32663 lookup_decl_die (current_function_decl
));
32664 ref
= lookup_decl_die (decl
);
32667 loc
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
32668 loc
->dw_loc_oprnd1
.v
.val_die_ref
.die
= ref
;
32669 loc
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
32675 prev
->dw_loc_next
= l
->expr
;
32676 add_loc_descr (&prev
->dw_loc_next
, next
);
32677 free_loc_descr (loc
, NULL
);
32678 next
= prev
->dw_loc_next
;
32682 memcpy (loc
, l
->expr
, sizeof (dw_loc_descr_node
));
32683 add_loc_descr (&loc
, next
);
32691 /* Attempt to resolve DW_OP_GNU_variable_value using loc_list_from_tree. */
32694 resolve_variable_value (dw_die_ref die
)
32697 dw_loc_list_ref loc
;
32700 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
32701 switch (AT_class (a
))
32703 case dw_val_class_loc
:
32704 if (!resolve_variable_value_in_expr (a
, AT_loc (a
)))
32707 case dw_val_class_loc_list
:
32708 loc
= AT_loc_list (a
);
32710 for (; loc
; loc
= loc
->dw_loc_next
)
32711 resolve_variable_value_in_expr (a
, loc
->expr
);
32718 /* Attempt to optimize DW_OP_GNU_variable_value refering to
32719 temporaries in the current function. */
32722 resolve_variable_values (void)
32724 if (!variable_value_hash
|| !current_function_decl
)
32727 struct variable_value_struct
*node
32728 = variable_value_hash
->find_with_hash (current_function_decl
,
32729 DECL_UID (current_function_decl
));
32736 FOR_EACH_VEC_SAFE_ELT (node
->dies
, i
, die
)
32737 resolve_variable_value (die
);
32740 /* Helper function for note_variable_value, handle one location
32744 note_variable_value_in_expr (dw_die_ref die
, dw_loc_descr_ref loc
)
32746 for (; loc
; loc
= loc
->dw_loc_next
)
32747 if (loc
->dw_loc_opc
== DW_OP_GNU_variable_value
32748 && loc
->dw_loc_oprnd1
.val_class
== dw_val_class_decl_ref
)
32750 tree decl
= loc
->dw_loc_oprnd1
.v
.val_decl_ref
;
32751 dw_die_ref ref
= lookup_decl_die (decl
);
32752 if (! ref
&& (flag_generate_lto
|| flag_generate_offload
))
32754 /* ??? This is somewhat a hack because we do not create DIEs
32755 for variables not in BLOCK trees early but when generating
32756 early LTO output we need the dw_val_class_decl_ref to be
32757 fully resolved. For fat LTO objects we'd also like to
32758 undo this after LTO dwarf output. */
32759 gcc_assert (DECL_CONTEXT (decl
));
32760 dw_die_ref ctx
= lookup_decl_die (DECL_CONTEXT (decl
));
32761 gcc_assert (ctx
!= NULL
);
32762 gen_decl_die (decl
, NULL_TREE
, NULL
, ctx
);
32763 ref
= lookup_decl_die (decl
);
32764 gcc_assert (ref
!= NULL
);
32768 loc
->dw_loc_oprnd1
.val_class
= dw_val_class_die_ref
;
32769 loc
->dw_loc_oprnd1
.v
.val_die_ref
.die
= ref
;
32770 loc
->dw_loc_oprnd1
.v
.val_die_ref
.external
= 0;
32774 && DECL_CONTEXT (decl
)
32775 && TREE_CODE (DECL_CONTEXT (decl
)) == FUNCTION_DECL
32776 && lookup_decl_die (DECL_CONTEXT (decl
)))
32778 if (!variable_value_hash
)
32779 variable_value_hash
32780 = hash_table
<variable_value_hasher
>::create_ggc (10);
32782 tree fndecl
= DECL_CONTEXT (decl
);
32783 struct variable_value_struct
*node
;
32784 struct variable_value_struct
**slot
32785 = variable_value_hash
->find_slot_with_hash (fndecl
,
32790 node
= ggc_cleared_alloc
<variable_value_struct
> ();
32791 node
->decl_id
= DECL_UID (fndecl
);
32797 vec_safe_push (node
->dies
, die
);
32802 /* Walk the tree DIE and note DIEs with DW_OP_GNU_variable_value still
32803 with dw_val_class_decl_ref operand. */
32806 note_variable_value (dw_die_ref die
)
32810 dw_loc_list_ref loc
;
32813 FOR_EACH_VEC_SAFE_ELT (die
->die_attr
, ix
, a
)
32814 switch (AT_class (a
))
32816 case dw_val_class_loc_list
:
32817 loc
= AT_loc_list (a
);
32819 if (!loc
->noted_variable_value
)
32821 loc
->noted_variable_value
= 1;
32822 for (; loc
; loc
= loc
->dw_loc_next
)
32823 note_variable_value_in_expr (die
, loc
->expr
);
32826 case dw_val_class_loc
:
32827 note_variable_value_in_expr (die
, AT_loc (a
));
32833 /* Mark children. */
32834 FOR_EACH_CHILD (die
, c
, note_variable_value (c
));
32837 /* Process DWARF dies for CTF generation. */
32840 ctf_debug_do_cu (dw_die_ref die
)
32844 if (!ctf_do_die (die
))
32847 FOR_EACH_CHILD (die
, c
, ctf_do_die (c
));
32850 /* Perform any cleanups needed after the early debug generation pass
32854 dwarf2out_early_finish (const char *filename
)
32856 comdat_type_node
*ctnode
;
32858 char dl_section_ref
[MAX_ARTIFICIAL_LABEL_BYTES
];
32860 /* PCH might result in DW_AT_producer string being restored from the
32861 header compilation, so always fill it with empty string initially
32862 and overwrite only here. */
32863 dw_attr_node
*producer
= get_AT (comp_unit_die (), DW_AT_producer
);
32865 if (dwarf_record_gcc_switches
)
32866 producer_string
= gen_producer_string (lang_hooks
.name
,
32867 save_decoded_options
,
32868 save_decoded_options_count
);
32870 producer_string
= concat (lang_hooks
.name
, " ", version_string
, NULL
);
32872 producer
->dw_attr_val
.v
.val_str
->refcount
--;
32873 producer
->dw_attr_val
.v
.val_str
= find_AT_string (producer_string
);
32875 /* Add the name for the main input file now. We delayed this from
32876 dwarf2out_init to avoid complications with PCH. */
32877 add_filename_attribute (comp_unit_die (), remap_debug_filename (filename
));
32878 add_comp_dir_attribute (comp_unit_die ());
32880 /* With LTO early dwarf was really finished at compile-time, so make
32881 sure to adjust the phase after annotating the LTRANS CU DIE. */
32884 early_dwarf_finished
= true;
32887 fprintf (dump_file
, "LTO EARLY DWARF for %s\n", filename
);
32888 print_die (comp_unit_die (), dump_file
);
32893 /* Walk through the list of incomplete types again, trying once more to
32894 emit full debugging info for them. */
32895 retry_incomplete_types ();
32897 gen_scheduled_generic_parms_dies ();
32898 gen_remaining_tmpl_value_param_die_attribute ();
32900 /* The point here is to flush out the limbo list so that it is empty
32901 and we don't need to stream it for LTO. */
32902 flush_limbo_die_list ();
32904 /* Add DW_AT_linkage_name for all deferred DIEs. */
32905 for (limbo_die_node
*node
= deferred_asm_name
; node
; node
= node
->next
)
32907 tree decl
= node
->created_for
;
32908 if (DECL_ASSEMBLER_NAME (decl
) != DECL_NAME (decl
)
32909 /* A missing DECL_ASSEMBLER_NAME can be a constant DIE that
32910 ended up in deferred_asm_name before we knew it was
32911 constant and never written to disk. */
32912 && DECL_ASSEMBLER_NAME (decl
))
32914 add_linkage_attr (node
->die
, decl
);
32915 move_linkage_attr (node
->die
);
32918 deferred_asm_name
= NULL
;
32920 if (flag_eliminate_unused_debug_types
)
32921 prune_unused_types ();
32923 /* Generate separate COMDAT sections for type DIEs. */
32924 if (use_debug_types
)
32926 break_out_comdat_types (comp_unit_die ());
32928 /* Each new type_unit DIE was added to the limbo die list when created.
32929 Since these have all been added to comdat_type_list, clear the
32931 limbo_die_list
= NULL
;
32933 /* For each new comdat type unit, copy declarations for incomplete
32934 types to make the new unit self-contained (i.e., no direct
32935 references to the main compile unit). */
32936 for (ctnode
= comdat_type_list
; ctnode
!= NULL
; ctnode
= ctnode
->next
)
32937 copy_decls_for_unworthy_types (ctnode
->root_die
);
32938 copy_decls_for_unworthy_types (comp_unit_die ());
32940 /* In the process of copying declarations from one unit to another,
32941 we may have left some declarations behind that are no longer
32942 referenced. Prune them. */
32943 prune_unused_types ();
32946 /* Traverse the DIE's and note DIEs with DW_OP_GNU_variable_value still
32947 with dw_val_class_decl_ref operand. */
32948 note_variable_value (comp_unit_die ());
32949 for (limbo_die_node
*node
= cu_die_list
; node
; node
= node
->next
)
32950 note_variable_value (node
->die
);
32951 for (ctnode
= comdat_type_list
; ctnode
!= NULL
; ctnode
= ctnode
->next
)
32952 note_variable_value (ctnode
->root_die
);
32953 for (limbo_die_node
*node
= limbo_die_list
; node
; node
= node
->next
)
32954 note_variable_value (node
->die
);
32956 /* The AT_pubnames attribute needs to go in all skeleton dies, including
32957 both the main_cu and all skeleton TUs. Making this call unconditional
32958 would end up either adding a second copy of the AT_pubnames attribute, or
32959 requiring a special case in add_top_level_skeleton_die_attrs. */
32960 if (!dwarf_split_debug_info
)
32961 add_AT_pubnames (comp_unit_die ());
32963 /* The early debug phase is now finished. */
32964 early_dwarf_finished
= true;
32967 fprintf (dump_file
, "EARLY DWARF for %s\n", filename
);
32968 print_die (comp_unit_die (), dump_file
);
32971 /* Generate CTF/BTF debug info. */
32972 if ((ctf_debug_info_level
> CTFINFO_LEVEL_NONE
32973 || btf_debuginfo_p ()) && lang_GNU_C ())
32976 ctf_debug_do_cu (comp_unit_die ());
32977 for (limbo_die_node
*node
= limbo_die_list
; node
; node
= node
->next
)
32978 ctf_debug_do_cu (node
->die
);
32979 /* Post process the debug data in the CTF container if necessary. */
32980 ctf_debug_init_postprocess (btf_debuginfo_p ());
32982 ctf_debug_early_finish (filename
);
32985 /* Do not generate DWARF assembler now when not producing LTO bytecode. */
32986 if ((!flag_generate_lto
&& !flag_generate_offload
)
32987 /* FIXME: Disable debug info generation for (PE-)COFF targets since the
32988 copy_lto_debug_sections operation of the simple object support in
32989 libiberty is not implemented for them yet. */
32990 || TARGET_PECOFF
|| TARGET_COFF
)
32993 /* Now as we are going to output for LTO initialize sections and labels
32994 to the LTO variants. We don't need a random-seed postfix as other
32995 LTO sections as linking the LTO debug sections into one in a partial
32997 init_sections_and_labels (true);
32999 /* The output below is modeled after dwarf2out_finish with all
33000 location related output removed and some LTO specific changes.
33001 Some refactoring might make both smaller and easier to match up. */
33003 base_types
.truncate (0);
33004 for (ctnode
= comdat_type_list
; ctnode
!= NULL
; ctnode
= ctnode
->next
)
33005 mark_base_types (ctnode
->root_die
);
33006 mark_base_types (comp_unit_die ());
33007 move_marked_base_types ();
33009 /* Traverse the DIE's and add sibling attributes to those DIE's
33010 that have children. */
33011 add_sibling_attributes (comp_unit_die ());
33012 for (limbo_die_node
*node
= limbo_die_list
; node
; node
= node
->next
)
33013 add_sibling_attributes (node
->die
);
33014 for (ctnode
= comdat_type_list
; ctnode
!= NULL
; ctnode
= ctnode
->next
)
33015 add_sibling_attributes (ctnode
->root_die
);
33017 /* AIX Assembler inserts the length, so adjust the reference to match the
33018 offset expected by debuggers. */
33019 strcpy (dl_section_ref
, debug_line_section_label
);
33020 if (XCOFF_DEBUGGING_INFO
)
33021 strcat (dl_section_ref
, DWARF_INITIAL_LENGTH_SIZE_STR
);
33023 if (debug_info_level
>= DINFO_LEVEL_TERSE
)
33024 add_AT_lineptr (comp_unit_die (), DW_AT_stmt_list
, dl_section_ref
);
33027 add_AT_macptr (comp_unit_die (), DEBUG_MACRO_ATTRIBUTE
,
33028 macinfo_section_label
);
33030 save_macinfo_strings ();
33032 if (dwarf_split_debug_info
)
33034 unsigned int index
= 0;
33035 debug_str_hash
->traverse_noresize
<unsigned int *, index_string
> (&index
);
33038 /* Output all of the compilation units. We put the main one last so that
33039 the offsets are available to output_pubnames. */
33040 for (limbo_die_node
*node
= limbo_die_list
; node
; node
= node
->next
)
33041 output_comp_unit (node
->die
, 0, NULL
);
33043 hash_table
<comdat_type_hasher
> comdat_type_table (100);
33044 for (ctnode
= comdat_type_list
; ctnode
!= NULL
; ctnode
= ctnode
->next
)
33046 comdat_type_node
**slot
= comdat_type_table
.find_slot (ctnode
, INSERT
);
33048 /* Don't output duplicate types. */
33049 if (*slot
!= HTAB_EMPTY_ENTRY
)
33052 /* Add a pointer to the line table for the main compilation unit
33053 so that the debugger can make sense of DW_AT_decl_file
33055 if (debug_info_level
>= DINFO_LEVEL_TERSE
)
33056 add_AT_lineptr (ctnode
->root_die
, DW_AT_stmt_list
,
33057 (!dwarf_split_debug_info
33058 ? debug_line_section_label
33059 : debug_skeleton_line_section_label
));
33061 output_comdat_type_unit (ctnode
, true);
33065 /* Stick a unique symbol to the main debuginfo section. */
33066 compute_comp_unit_symbol (comp_unit_die ());
33068 /* Output the main compilation unit. We always need it if only for
33070 output_comp_unit (comp_unit_die (), true, NULL
);
33072 /* Output the abbreviation table. */
33073 if (vec_safe_length (abbrev_die_table
) != 1)
33075 switch_to_section (debug_abbrev_section
);
33076 ASM_OUTPUT_LABEL (asm_out_file
, abbrev_section_label
);
33077 output_abbrev_section ();
33080 /* Have to end the macro section. */
33083 /* We have to save macinfo state if we need to output it again
33084 for the FAT part of the object. */
33085 vec
<macinfo_entry
, va_gc
> *saved_macinfo_table
= macinfo_table
;
33086 if (flag_fat_lto_objects
)
33087 macinfo_table
= macinfo_table
->copy ();
33089 switch_to_section (debug_macinfo_section
);
33090 ASM_OUTPUT_LABEL (asm_out_file
, macinfo_section_label
);
33091 output_macinfo (debug_line_section_label
, true);
33092 dw2_asm_output_data (1, 0, "End compilation unit");
33094 if (flag_fat_lto_objects
)
33096 vec_free (macinfo_table
);
33097 macinfo_table
= saved_macinfo_table
;
33101 /* Emit a skeleton debug_line section. */
33102 switch_to_section (debug_line_section
);
33103 ASM_OUTPUT_LABEL (asm_out_file
, debug_line_section_label
);
33104 output_line_info (true);
33106 /* If we emitted any indirect strings, output the string table too. */
33107 if (debug_str_hash
|| skeleton_debug_str_hash
)
33108 output_indirect_strings ();
33109 if (debug_line_str_hash
)
33111 switch_to_section (debug_line_str_section
);
33112 const enum dwarf_form form
= DW_FORM_line_strp
;
33113 debug_line_str_hash
->traverse
<enum dwarf_form
,
33114 output_indirect_string
> (form
);
33117 /* Switch back to the text section. */
33118 switch_to_section (text_section
);
33121 /* Reset all state within dwarf2out.cc so that we can rerun the compiler
33122 within the same process. For use by toplev::finalize. */
33125 dwarf2out_cc_finalize (void)
33127 last_var_location_insn
= NULL
;
33128 cached_next_real_insn
= NULL
;
33129 used_rtx_array
= NULL
;
33130 incomplete_types
= NULL
;
33131 debug_info_section
= NULL
;
33132 debug_skeleton_info_section
= NULL
;
33133 debug_abbrev_section
= NULL
;
33134 debug_skeleton_abbrev_section
= NULL
;
33135 debug_aranges_section
= NULL
;
33136 debug_addr_section
= NULL
;
33137 debug_macinfo_section
= NULL
;
33138 debug_line_section
= NULL
;
33139 debug_skeleton_line_section
= NULL
;
33140 debug_loc_section
= NULL
;
33141 debug_pubnames_section
= NULL
;
33142 debug_pubtypes_section
= NULL
;
33143 debug_str_section
= NULL
;
33144 debug_line_str_section
= NULL
;
33145 debug_str_dwo_section
= NULL
;
33146 debug_str_offsets_section
= NULL
;
33147 debug_ranges_section
= NULL
;
33148 debug_ranges_dwo_section
= NULL
;
33149 debug_frame_section
= NULL
;
33151 debug_str_hash
= NULL
;
33152 debug_line_str_hash
= NULL
;
33153 skeleton_debug_str_hash
= NULL
;
33154 dw2_string_counter
= 0;
33155 have_multiple_function_sections
= false;
33156 in_text_section_p
= false;
33157 cold_text_section
= NULL
;
33158 last_text_label
= NULL
;
33159 last_cold_label
= NULL
;
33160 switch_text_ranges
= NULL
;
33161 switch_cold_ranges
= NULL
;
33162 current_unit_personality
= NULL
;
33164 early_dwarf
= false;
33165 early_dwarf_finished
= false;
33167 next_die_offset
= 0;
33168 single_comp_unit_die
= NULL
;
33169 comdat_type_list
= NULL
;
33170 limbo_die_list
= NULL
;
33172 decl_die_table
= NULL
;
33173 common_block_die_table
= NULL
;
33174 decl_loc_table
= NULL
;
33175 call_arg_locations
= NULL
;
33176 call_arg_loc_last
= NULL
;
33177 call_site_count
= -1;
33178 tail_call_site_count
= -1;
33179 cached_dw_loc_list_table
= NULL
;
33180 abbrev_die_table
= NULL
;
33181 delete dwarf_proc_stack_usage_map
;
33182 dwarf_proc_stack_usage_map
= NULL
;
33183 line_info_label_num
= 0;
33184 cur_line_info_table
= NULL
;
33185 text_section_line_info
= NULL
;
33186 cold_text_section_line_info
= NULL
;
33187 separate_line_info
= NULL
;
33188 info_section_emitted
= false;
33189 pubname_table
= NULL
;
33190 pubtype_table
= NULL
;
33191 macinfo_table
= NULL
;
33192 ranges_table
= NULL
;
33193 ranges_by_label
= NULL
;
33195 have_location_lists
= false;
33198 last_emitted_file
= NULL
;
33200 tmpl_value_parm_die_table
= NULL
;
33201 generic_type_instances
= NULL
;
33202 frame_pointer_fb_offset
= 0;
33203 frame_pointer_fb_offset_valid
= false;
33204 base_types
.release ();
33205 XDELETEVEC (producer_string
);
33206 producer_string
= NULL
;
33207 output_line_info_generation
= 0;
33208 init_sections_and_labels_generation
= 0;
33211 #include "gt-dwarf2out.h"