1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
27 -- GNAT was originally developed by the GNAT team at New York University. --
28 -- Extensive contributions were provided by Ada Core Technologies Inc. --
30 ------------------------------------------------------------------------------
32 with Output
; use Output
;
33 with Tree_IO
; use Tree_IO
;
35 with GNAT
.HTable
; use GNAT
.HTable
;
39 ------------------------
40 -- Local Declarations --
41 ------------------------
43 Uint_Int_First
: Uint
:= Uint_0
;
44 -- Uint value containing Int'First value, set by Initialize. The initial
45 -- value of Uint_0 is used for an assertion check that ensures that this
46 -- value is not used before it is initialized. This value is used in the
47 -- UI_Is_In_Int_Range predicate, and it is right that this is a host value,
48 -- since the issue is host representation of integer values.
51 -- Uint value containing Int'Last value set by Initialize
53 UI_Power_2
: array (Int
range 0 .. 64) of Uint
;
54 -- This table is used to memoize exponentiations by powers of 2. The Nth
55 -- entry, if set, contains the Uint value 2 ** N. Initially UI_Power_2_Set
56 -- is zero and only the 0'th entry is set, the invariant being that all
57 -- entries in the range 0 .. UI_Power_2_Set are initialized.
60 -- Number of entries set in UI_Power_2;
62 UI_Power_10
: array (Int
range 0 .. 64) of Uint
;
63 -- This table is used to memoize exponentiations by powers of 10 in the
64 -- same manner as described above for UI_Power_2.
66 UI_Power_10_Set
: Nat
;
67 -- Number of entries set in UI_Power_10;
71 -- These values are used to make sure that the mark/release mechanism does
72 -- not destroy values saved in the U_Power tables or in the hash table used
73 -- by UI_From_Int. Whenever an entry is made in either of these tables,
74 -- Uints_Min and Udigits_Min are updated to protect the entry, and Release
75 -- never cuts back beyond these minimum values.
77 Int_0
: constant Int
:= 0;
78 Int_1
: constant Int
:= 1;
79 Int_2
: constant Int
:= 2;
80 -- These values are used in some cases where the use of numeric literals
81 -- would cause ambiguities (integer vs Uint).
83 ----------------------------
84 -- UI_From_Int Hash Table --
85 ----------------------------
87 -- UI_From_Int uses a hash table to avoid duplicating entries and wasting
88 -- storage. This is particularly important for complex cases of back
91 subtype Hnum
is Nat
range 0 .. 1022;
93 function Hash_Num
(F
: Int
) return Hnum
;
96 package UI_Ints
is new Simple_HTable
(
99 No_Element
=> No_Uint
,
104 -----------------------
105 -- Local Subprograms --
106 -----------------------
108 function Direct
(U
: Uint
) return Boolean;
109 pragma Inline
(Direct
);
110 -- Returns True if U is represented directly
112 function Direct_Val
(U
: Uint
) return Int
;
113 -- U is a Uint for is represented directly. The returned result is the
114 -- value represented.
116 function GCD
(Jin
, Kin
: Int
) return Int
;
117 -- Compute GCD of two integers. Assumes that Jin >= Kin >= 0
123 -- Common processing for UI_Image and UI_Write, To_Buffer is set True for
124 -- UI_Image, and false for UI_Write, and Format is copied from the Format
125 -- parameter to UI_Image or UI_Write.
127 procedure Init_Operand
(UI
: Uint
; Vec
: out UI_Vector
);
128 pragma Inline
(Init_Operand
);
129 -- This procedure puts the value of UI into the vector in canonical
130 -- multiple precision format. The parameter should be of the correct size
131 -- as determined by a previous call to N_Digits (UI). The first digit of
132 -- Vec contains the sign, all other digits are always non-negative. Note
133 -- that the input may be directly represented, and in this case Vec will
134 -- contain the corresponding one or two digit value. The low bound of Vec
137 function Least_Sig_Digit
(Arg
: Uint
) return Int
;
138 pragma Inline
(Least_Sig_Digit
);
139 -- Returns the Least Significant Digit of Arg quickly. When the given Uint
140 -- is less than 2**15, the value returned is the input value, in this case
141 -- the result may be negative. It is expected that any use will mask off
142 -- unnecessary bits. This is used for finding Arg mod B where B is a power
143 -- of two. Hence the actual base is irrelevant as long as it is a power of
146 procedure Most_Sig_2_Digits
150 Right_Hat
: out Int
);
151 -- Returns leading two significant digits from the given pair of Uint's.
152 -- Mathematically: returns Left / (Base ** K) and Right / (Base ** K) where
153 -- K is as small as possible S.T. Right_Hat < Base * Base. It is required
154 -- that Left > Right for the algorithm to work.
156 function N_Digits
(Input
: Uint
) return Int
;
157 pragma Inline
(N_Digits
);
158 -- Returns number of "digits" in a Uint
163 Remainder
: out Uint
;
164 Discard_Quotient
: Boolean := False;
165 Discard_Remainder
: Boolean := False);
166 -- Compute Euclidean division of Left by Right. If Discard_Quotient is
167 -- False then the quotient is returned in Quotient (otherwise Quotient is
168 -- set to No_Uint). If Discard_Remainder is False, then the remainder is
169 -- returned in Remainder (otherwise Remainder is set to No_Uint).
171 -- If Discard_Quotient is True, Quotient is set to No_Uint
172 -- If Discard_Remainder is True, Remainder is set to No_Uint
178 function Direct
(U
: Uint
) return Boolean is
180 return Int
(U
) <= Int
(Uint_Direct_Last
);
187 function Direct_Val
(U
: Uint
) return Int
is
189 pragma Assert
(Direct
(U
));
190 return Int
(U
) - Int
(Uint_Direct_Bias
);
197 function GCD
(Jin
, Kin
: Int
) return Int
is
201 pragma Assert
(Jin
>= Kin
);
202 pragma Assert
(Kin
>= Int_0
);
206 while K
/= Uint_0
loop
219 function Hash_Num
(F
: Int
) return Hnum
is
221 return Types
."mod" (F
, Hnum
'Range_Length);
233 Marks
: constant Uintp
.Save_Mark
:= Uintp
.Mark
;
237 Digs_Output
: Natural := 0;
238 -- Counts digits output. In hex mode, but not in decimal mode, we
239 -- put an underline after every four hex digits that are output.
241 Exponent
: Natural := 0;
242 -- If the number is too long to fit in the buffer, we switch to an
243 -- approximate output format with an exponent. This variable records
244 -- the exponent value.
246 function Better_In_Hex
return Boolean;
247 -- Determines if it is better to generate digits in base 16 (result
248 -- is true) or base 10 (result is false). The choice is purely a
249 -- matter of convenience and aesthetics, so it does not matter which
250 -- value is returned from a correctness point of view.
252 procedure Image_Char
(C
: Character);
253 -- Internal procedure to output one character
255 procedure Image_Exponent
(N
: Natural);
256 -- Output non-zero exponent. Note that we only use the exponent form in
257 -- the buffer case, so we know that To_Buffer is true.
259 procedure Image_Uint
(U
: Uint
);
260 -- Internal procedure to output characters of non-negative Uint
266 function Better_In_Hex
return Boolean is
267 T16
: constant Uint
:= Uint_2
** Int
'(16);
273 -- Small values up to 2**16 can always be in decimal
279 -- Otherwise, see if we are a power of 2 or one less than a power
280 -- of 2. For the moment these are the only cases printed in hex.
282 if A mod Uint_2 = Uint_1 then
287 if A mod T16 /= Uint_0 then
297 while A > Uint_2 loop
298 if A mod Uint_2 /= Uint_0 then
313 procedure Image_Char (C : Character) is
316 if UI_Image_Length + 6 > UI_Image_Max then
317 Exponent := Exponent + 1;
319 UI_Image_Length := UI_Image_Length + 1;
320 UI_Image_Buffer (UI_Image_Length) := C;
331 procedure Image_Exponent (N : Natural) is
334 Image_Exponent (N / 10);
337 UI_Image_Length := UI_Image_Length + 1;
338 UI_Image_Buffer (UI_Image_Length) :=
339 Character'Val (Character'Pos ('0') + N mod 10);
346 procedure Image_Uint (U : Uint) is
347 H : constant array (Int range 0 .. 15) of Character :=
352 UI_Div_Rem (U, Base, Q, R);
358 if Digs_Output = 4 and then Base = Uint_16 then
363 Image_Char (H (UI_To_Int (R)));
365 Digs_Output := Digs_Output + 1;
368 -- Start of processing for Image_Out
371 if Input = No_Uint then
376 UI_Image_Length := 0;
378 if Input < Uint_0 then
386 or else (Format = Auto and then Better_In_Hex)
400 if Exponent /= 0 then
401 UI_Image_Length := UI_Image_Length + 1;
402 UI_Image_Buffer (UI_Image_Length) := 'E
';
403 Image_Exponent (Exponent);
406 Uintp.Release (Marks);
413 procedure Init_Operand (UI : Uint; Vec : out UI_Vector) is
416 pragma Assert (Vec'First = Int'(1));
420 Vec
(1) := Direct_Val
(UI
);
422 if Vec
(1) >= Base
then
423 Vec
(2) := Vec
(1) rem Base
;
424 Vec
(1) := Vec
(1) / Base
;
428 Loc
:= Uints
.Table
(UI
).Loc
;
430 for J
in 1 .. Uints
.Table
(UI
).Length
loop
431 Vec
(J
) := Udigits
.Table
(Loc
+ J
- 1);
440 procedure Initialize
is
445 Uint_Int_First
:= UI_From_Int
(Int
'First);
446 Uint_Int_Last
:= UI_From_Int
(Int
'Last);
448 UI_Power_2
(0) := Uint_1
;
451 UI_Power_10
(0) := Uint_1
;
452 UI_Power_10_Set
:= 0;
454 Uints_Min
:= Uints
.Last
;
455 Udigits_Min
:= Udigits
.Last
;
460 ---------------------
461 -- Least_Sig_Digit --
462 ---------------------
464 function Least_Sig_Digit
(Arg
: Uint
) return Int
is
469 V
:= Direct_Val
(Arg
);
475 -- Note that this result may be negative
482 (Uints
.Table
(Arg
).Loc
+ Uints
.Table
(Arg
).Length
- 1);
490 function Mark
return Save_Mark
is
492 return (Save_Uint
=> Uints
.Last
, Save_Udigit
=> Udigits
.Last
);
495 -----------------------
496 -- Most_Sig_2_Digits --
497 -----------------------
499 procedure Most_Sig_2_Digits
506 pragma Assert
(Left
>= Right
);
508 if Direct
(Left
) then
509 Left_Hat
:= Direct_Val
(Left
);
510 Right_Hat
:= Direct_Val
(Right
);
516 Udigits
.Table
(Uints
.Table
(Left
).Loc
);
518 Udigits
.Table
(Uints
.Table
(Left
).Loc
+ 1);
521 -- It is not so clear what to return when Arg is negative???
523 Left_Hat
:= abs (L1
) * Base
+ L2
;
528 Length_L
: constant Int
:= Uints
.Table
(Left
).Length
;
535 if Direct
(Right
) then
536 T
:= Direct_Val
(Left
);
537 R1
:= abs (T
/ Base
);
542 R1
:= abs (Udigits
.Table
(Uints
.Table
(Right
).Loc
));
543 R2
:= Udigits
.Table
(Uints
.Table
(Right
).Loc
+ 1);
544 Length_R
:= Uints
.Table
(Right
).Length
;
547 if Length_L
= Length_R
then
548 Right_Hat
:= R1
* Base
+ R2
;
549 elsif Length_L
= Length_R
+ Int_1
then
555 end Most_Sig_2_Digits
;
561 -- Note: N_Digits returns 1 for No_Uint
563 function N_Digits
(Input
: Uint
) return Int
is
565 if Direct
(Input
) then
566 if Direct_Val
(Input
) >= Base
then
573 return Uints
.Table
(Input
).Length
;
581 function Num_Bits
(Input
: Uint
) return Nat
is
586 -- Largest negative number has to be handled specially, since it is in
587 -- Int_Range, but we cannot take the absolute value.
589 if Input
= Uint_Int_First
then
592 -- For any other number in Int_Range, get absolute value of number
594 elsif UI_Is_In_Int_Range
(Input
) then
595 Num
:= abs (UI_To_Int
(Input
));
598 -- If not in Int_Range then initialize bit count for all low order
599 -- words, and set number to high order digit.
602 Bits
:= Base_Bits
* (Uints
.Table
(Input
).Length
- 1);
603 Num
:= abs (Udigits
.Table
(Uints
.Table
(Input
).Loc
));
606 -- Increase bit count for remaining value in Num
608 while Types
.">" (Num
, 0) loop
620 procedure pid
(Input
: Uint
) is
622 UI_Write
(Input
, Decimal
);
630 procedure pih
(Input
: Uint
) is
632 UI_Write
(Input
, Hex
);
640 procedure Release
(M
: Save_Mark
) is
642 Uints
.Set_Last
(Uint
'Max (M
.Save_Uint
, Uints_Min
));
643 Udigits
.Set_Last
(Int
'Max (M
.Save_Udigit
, Udigits_Min
));
646 ----------------------
647 -- Release_And_Save --
648 ----------------------
650 procedure Release_And_Save
(M
: Save_Mark
; UI
: in out Uint
) is
657 UE_Len
: constant Pos
:= Uints
.Table
(UI
).Length
;
658 UE_Loc
: constant Int
:= Uints
.Table
(UI
).Loc
;
660 UD
: constant Udigits
.Table_Type
(1 .. UE_Len
) :=
661 Udigits
.Table
(UE_Loc
.. UE_Loc
+ UE_Len
- 1);
666 Uints
.Append
((Length
=> UE_Len
, Loc
=> Udigits
.Last
+ 1));
669 for J
in 1 .. UE_Len
loop
670 Udigits
.Append
(UD
(J
));
674 end Release_And_Save
;
676 procedure Release_And_Save
(M
: Save_Mark
; UI1
, UI2
: in out Uint
) is
679 Release_And_Save
(M
, UI2
);
681 elsif Direct
(UI2
) then
682 Release_And_Save
(M
, UI1
);
686 UE1_Len
: constant Pos
:= Uints
.Table
(UI1
).Length
;
687 UE1_Loc
: constant Int
:= Uints
.Table
(UI1
).Loc
;
689 UD1
: constant Udigits
.Table_Type
(1 .. UE1_Len
) :=
690 Udigits
.Table
(UE1_Loc
.. UE1_Loc
+ UE1_Len
- 1);
692 UE2_Len
: constant Pos
:= Uints
.Table
(UI2
).Length
;
693 UE2_Loc
: constant Int
:= Uints
.Table
(UI2
).Loc
;
695 UD2
: constant Udigits
.Table_Type
(1 .. UE2_Len
) :=
696 Udigits
.Table
(UE2_Loc
.. UE2_Loc
+ UE2_Len
- 1);
701 Uints
.Append
((Length
=> UE1_Len
, Loc
=> Udigits
.Last
+ 1));
704 for J
in 1 .. UE1_Len
loop
705 Udigits
.Append
(UD1
(J
));
708 Uints
.Append
((Length
=> UE2_Len
, Loc
=> Udigits
.Last
+ 1));
711 for J
in 1 .. UE2_Len
loop
712 Udigits
.Append
(UD2
(J
));
716 end Release_And_Save
;
722 procedure Tree_Read
is
727 Tree_Read_Int
(Int
(Uint_Int_First
));
728 Tree_Read_Int
(Int
(Uint_Int_Last
));
729 Tree_Read_Int
(UI_Power_2_Set
);
730 Tree_Read_Int
(UI_Power_10_Set
);
731 Tree_Read_Int
(Int
(Uints_Min
));
732 Tree_Read_Int
(Udigits_Min
);
734 for J
in 0 .. UI_Power_2_Set
loop
735 Tree_Read_Int
(Int
(UI_Power_2
(J
)));
738 for J
in 0 .. UI_Power_10_Set
loop
739 Tree_Read_Int
(Int
(UI_Power_10
(J
)));
748 procedure Tree_Write
is
753 Tree_Write_Int
(Int
(Uint_Int_First
));
754 Tree_Write_Int
(Int
(Uint_Int_Last
));
755 Tree_Write_Int
(UI_Power_2_Set
);
756 Tree_Write_Int
(UI_Power_10_Set
);
757 Tree_Write_Int
(Int
(Uints_Min
));
758 Tree_Write_Int
(Udigits_Min
);
760 for J
in 0 .. UI_Power_2_Set
loop
761 Tree_Write_Int
(Int
(UI_Power_2
(J
)));
764 for J
in 0 .. UI_Power_10_Set
loop
765 Tree_Write_Int
(Int
(UI_Power_10
(J
)));
774 function UI_Abs
(Right
: Uint
) return Uint
is
776 if Right
< Uint_0
then
787 function UI_Add
(Left
: Int
; Right
: Uint
) return Uint
is
789 return UI_Add
(UI_From_Int
(Left
), Right
);
792 function UI_Add
(Left
: Uint
; Right
: Int
) return Uint
is
794 return UI_Add
(Left
, UI_From_Int
(Right
));
797 function UI_Add
(Left
: Uint
; Right
: Uint
) return Uint
is
799 -- Simple cases of direct operands and addition of zero
801 if Direct
(Left
) then
802 if Direct
(Right
) then
803 return UI_From_Int
(Direct_Val
(Left
) + Direct_Val
(Right
));
805 elsif Int
(Left
) = Int
(Uint_0
) then
809 elsif Direct
(Right
) and then Int
(Right
) = Int
(Uint_0
) then
813 -- Otherwise full circuit is needed
816 L_Length
: constant Int
:= N_Digits
(Left
);
817 R_Length
: constant Int
:= N_Digits
(Right
);
818 L_Vec
: UI_Vector
(1 .. L_Length
);
819 R_Vec
: UI_Vector
(1 .. R_Length
);
824 X_Bigger
: Boolean := False;
825 Y_Bigger
: Boolean := False;
826 Result_Neg
: Boolean := False;
829 Init_Operand
(Left
, L_Vec
);
830 Init_Operand
(Right
, R_Vec
);
832 -- At least one of the two operands is in multi-digit form.
833 -- Calculate the number of digits sufficient to hold result.
835 if L_Length
> R_Length
then
836 Sum_Length
:= L_Length
+ 1;
839 Sum_Length
:= R_Length
+ 1;
841 if R_Length
> L_Length
then
846 -- Make copies of the absolute values of L_Vec and R_Vec into X and Y
847 -- both with lengths equal to the maximum possibly needed. This makes
848 -- looping over the digits much simpler.
851 X
: UI_Vector
(1 .. Sum_Length
);
852 Y
: UI_Vector
(1 .. Sum_Length
);
853 Tmp_UI
: UI_Vector
(1 .. Sum_Length
);
856 for J
in 1 .. Sum_Length
- L_Length
loop
860 X
(Sum_Length
- L_Length
+ 1) := abs L_Vec
(1);
862 for J
in 2 .. L_Length
loop
863 X
(J
+ (Sum_Length
- L_Length
)) := L_Vec
(J
);
866 for J
in 1 .. Sum_Length
- R_Length
loop
870 Y
(Sum_Length
- R_Length
+ 1) := abs R_Vec
(1);
872 for J
in 2 .. R_Length
loop
873 Y
(J
+ (Sum_Length
- R_Length
)) := R_Vec
(J
);
876 if (L_Vec
(1) < Int_0
) = (R_Vec
(1) < Int_0
) then
878 -- Same sign so just add
881 for J
in reverse 1 .. Sum_Length
loop
882 Tmp_Int
:= X
(J
) + Y
(J
) + Carry
;
884 if Tmp_Int
>= Base
then
885 Tmp_Int
:= Tmp_Int
- Base
;
894 return Vector_To_Uint
(X
, L_Vec
(1) < Int_0
);
897 -- Find which one has bigger magnitude
899 if not (X_Bigger
or Y_Bigger
) then
900 for J
in L_Vec
'Range loop
901 if abs L_Vec
(J
) > abs R_Vec
(J
) then
904 elsif abs R_Vec
(J
) > abs L_Vec
(J
) then
911 -- If they have identical magnitude, just return 0, else swap
912 -- if necessary so that X had the bigger magnitude. Determine
913 -- if result is negative at this time.
917 if not (X_Bigger
or Y_Bigger
) then
921 if R_Vec
(1) < Int_0
then
930 if L_Vec
(1) < Int_0
then
935 -- Subtract Y from the bigger X
939 for J
in reverse 1 .. Sum_Length
loop
940 Tmp_Int
:= X
(J
) - Y
(J
) + Borrow
;
942 if Tmp_Int
< Int_0
then
943 Tmp_Int
:= Tmp_Int
+ Base
;
952 return Vector_To_Uint
(X
, Result_Neg
);
959 --------------------------
960 -- UI_Decimal_Digits_Hi --
961 --------------------------
963 function UI_Decimal_Digits_Hi
(U
: Uint
) return Nat
is
965 -- The maximum value of a "digit" is 32767, which is 5 decimal digits,
966 -- so an N_Digit number could take up to 5 times this number of digits.
967 -- This is certainly too high for large numbers but it is not worth
970 return 5 * N_Digits
(U
);
971 end UI_Decimal_Digits_Hi
;
973 --------------------------
974 -- UI_Decimal_Digits_Lo --
975 --------------------------
977 function UI_Decimal_Digits_Lo
(U
: Uint
) return Nat
is
979 -- The maximum value of a "digit" is 32767, which is more than four
980 -- decimal digits, but not a full five digits. The easily computed
981 -- minimum number of decimal digits is thus 1 + 4 * the number of
982 -- digits. This is certainly too low for large numbers but it is not
983 -- worth worrying about.
985 return 1 + 4 * (N_Digits
(U
) - 1);
986 end UI_Decimal_Digits_Lo
;
992 function UI_Div
(Left
: Int
; Right
: Uint
) return Uint
is
994 return UI_Div
(UI_From_Int
(Left
), Right
);
997 function UI_Div
(Left
: Uint
; Right
: Int
) return Uint
is
999 return UI_Div
(Left
, UI_From_Int
(Right
));
1002 function UI_Div
(Left
, Right
: Uint
) return Uint
is
1005 pragma Warnings
(Off
, Remainder
);
1009 Quotient
, Remainder
,
1010 Discard_Remainder
=> True);
1018 procedure UI_Div_Rem
1019 (Left
, Right
: Uint
;
1020 Quotient
: out Uint
;
1021 Remainder
: out Uint
;
1022 Discard_Quotient
: Boolean := False;
1023 Discard_Remainder
: Boolean := False)
1026 pragma Assert
(Right
/= Uint_0
);
1028 Quotient
:= No_Uint
;
1029 Remainder
:= No_Uint
;
1031 -- Cases where both operands are represented directly
1033 if Direct
(Left
) and then Direct
(Right
) then
1035 DV_Left
: constant Int
:= Direct_Val
(Left
);
1036 DV_Right
: constant Int
:= Direct_Val
(Right
);
1039 if not Discard_Quotient
then
1040 Quotient
:= UI_From_Int
(DV_Left
/ DV_Right
);
1043 if not Discard_Remainder
then
1044 Remainder
:= UI_From_Int
(DV_Left
rem DV_Right
);
1052 L_Length
: constant Int
:= N_Digits
(Left
);
1053 R_Length
: constant Int
:= N_Digits
(Right
);
1054 Q_Length
: constant Int
:= L_Length
- R_Length
+ 1;
1055 L_Vec
: UI_Vector
(1 .. L_Length
);
1056 R_Vec
: UI_Vector
(1 .. R_Length
);
1064 procedure UI_Div_Vector
1067 Quotient
: out UI_Vector
;
1068 Remainder
: out Int
);
1069 pragma Inline
(UI_Div_Vector
);
1070 -- Specialised variant for case where the divisor is a single digit
1072 procedure UI_Div_Vector
1075 Quotient
: out UI_Vector
;
1076 Remainder
: out Int
)
1082 for J
in L_Vec
'Range loop
1083 Tmp_Int
:= Remainder
* Base
+ abs L_Vec
(J
);
1084 Quotient
(Quotient
'First + J
- L_Vec
'First) := Tmp_Int
/ R_Int
;
1085 Remainder
:= Tmp_Int
rem R_Int
;
1088 if L_Vec
(L_Vec
'First) < Int_0
then
1089 Remainder
:= -Remainder
;
1093 -- Start of processing for UI_Div_Rem
1096 -- Result is zero if left operand is shorter than right
1098 if L_Length
< R_Length
then
1099 if not Discard_Quotient
then
1103 if not Discard_Remainder
then
1110 Init_Operand
(Left
, L_Vec
);
1111 Init_Operand
(Right
, R_Vec
);
1113 -- Case of right operand is single digit. Here we can simply divide
1114 -- each digit of the left operand by the divisor, from most to least
1115 -- significant, carrying the remainder to the next digit (just like
1116 -- ordinary long division by hand).
1118 if R_Length
= Int_1
then
1119 Tmp_Divisor
:= abs R_Vec
(1);
1122 Quotient_V
: UI_Vector
(1 .. L_Length
);
1125 UI_Div_Vector
(L_Vec
, Tmp_Divisor
, Quotient_V
, Remainder_I
);
1127 if not Discard_Quotient
then
1130 (Quotient_V
, (L_Vec
(1) < Int_0
xor R_Vec
(1) < Int_0
));
1133 if not Discard_Remainder
then
1134 Remainder
:= UI_From_Int
(Remainder_I
);
1141 -- The possible simple cases have been exhausted. Now turn to the
1142 -- algorithm D from the section of Knuth mentioned at the top of
1145 Algorithm_D
: declare
1146 Dividend
: UI_Vector
(1 .. L_Length
+ 1);
1147 Divisor
: UI_Vector
(1 .. R_Length
);
1148 Quotient_V
: UI_Vector
(1 .. Q_Length
);
1155 -- [ NORMALIZE ] (step D1 in the algorithm). First calculate the
1156 -- scale d, and then multiply Left and Right (u and v in the book)
1157 -- by d to get the dividend and divisor to work with.
1159 D
:= Base
/ (abs R_Vec
(1) + 1);
1162 Dividend
(2) := abs L_Vec
(1);
1164 for J
in 3 .. L_Length
+ Int_1
loop
1165 Dividend
(J
) := L_Vec
(J
- 1);
1168 Divisor
(1) := abs R_Vec
(1);
1170 for J
in Int_2
.. R_Length
loop
1171 Divisor
(J
) := R_Vec
(J
);
1176 -- Multiply Dividend by d
1179 for J
in reverse Dividend
'Range loop
1180 Tmp_Int
:= Dividend
(J
) * D
+ Carry
;
1181 Dividend
(J
) := Tmp_Int
rem Base
;
1182 Carry
:= Tmp_Int
/ Base
;
1185 -- Multiply Divisor by d
1188 for J
in reverse Divisor
'Range loop
1189 Tmp_Int
:= Divisor
(J
) * D
+ Carry
;
1190 Divisor
(J
) := Tmp_Int
rem Base
;
1191 Carry
:= Tmp_Int
/ Base
;
1195 -- Main loop of long division algorithm
1197 Divisor_Dig1
:= Divisor
(1);
1198 Divisor_Dig2
:= Divisor
(2);
1200 for J
in Quotient_V
'Range loop
1202 -- [ CALCULATE Q (hat) ] (step D3 in the algorithm)
1204 -- Note: this version of step D3 is from the original published
1205 -- algorithm, which is known to have a bug causing overflows.
1206 -- See: http://www-cs-faculty.stanford.edu/~uno/err2-2e.ps.gz
1207 -- and http://www-cs-faculty.stanford.edu/~uno/all2-pre.ps.gz.
1208 -- The code below is the fixed version of this step.
1210 Tmp_Int
:= Dividend
(J
) * Base
+ Dividend
(J
+ 1);
1214 Q_Guess
:= Tmp_Int
/ Divisor_Dig1
;
1215 R_Guess
:= Tmp_Int
rem Divisor_Dig1
;
1219 while Q_Guess
>= Base
1220 or else Divisor_Dig2
* Q_Guess
>
1221 R_Guess
* Base
+ Dividend
(J
+ 2)
1223 Q_Guess
:= Q_Guess
- 1;
1224 R_Guess
:= R_Guess
+ Divisor_Dig1
;
1225 exit when R_Guess
>= Base
;
1228 -- [ MULTIPLY & SUBTRACT ] (step D4). Q_Guess * Divisor is
1229 -- subtracted from the remaining dividend.
1232 for K
in reverse Divisor
'Range loop
1233 Tmp_Int
:= Dividend
(J
+ K
) - Q_Guess
* Divisor
(K
) + Carry
;
1234 Tmp_Dig
:= Tmp_Int
rem Base
;
1235 Carry
:= Tmp_Int
/ Base
;
1237 if Tmp_Dig
< Int_0
then
1238 Tmp_Dig
:= Tmp_Dig
+ Base
;
1242 Dividend
(J
+ K
) := Tmp_Dig
;
1245 Dividend
(J
) := Dividend
(J
) + Carry
;
1247 -- [ TEST REMAINDER ] & [ ADD BACK ] (steps D5 and D6)
1249 -- Here there is a slight difference from the book: the last
1250 -- carry is always added in above and below (cancelling each
1251 -- other). In fact the dividend going negative is used as
1254 -- If the Dividend went negative, then Q_Guess was off by
1255 -- one, so it is decremented, and the divisor is added back
1256 -- into the relevant portion of the dividend.
1258 if Dividend
(J
) < Int_0
then
1259 Q_Guess
:= Q_Guess
- 1;
1262 for K
in reverse Divisor
'Range loop
1263 Tmp_Int
:= Dividend
(J
+ K
) + Divisor
(K
) + Carry
;
1265 if Tmp_Int
>= Base
then
1266 Tmp_Int
:= Tmp_Int
- Base
;
1272 Dividend
(J
+ K
) := Tmp_Int
;
1275 Dividend
(J
) := Dividend
(J
) + Carry
;
1278 -- Finally we can get the next quotient digit
1280 Quotient_V
(J
) := Q_Guess
;
1283 -- [ UNNORMALIZE ] (step D8)
1285 if not Discard_Quotient
then
1286 Quotient
:= Vector_To_Uint
1287 (Quotient_V
, (L_Vec
(1) < Int_0
xor R_Vec
(1) < Int_0
));
1290 if not Discard_Remainder
then
1292 Remainder_V
: UI_Vector
(1 .. R_Length
);
1294 pragma Warnings
(Off
, Discard_Int
);
1297 (Dividend
(Dividend
'Last - R_Length
+ 1 .. Dividend
'Last),
1299 Remainder_V
, Discard_Int
);
1300 Remainder
:= Vector_To_Uint
(Remainder_V
, L_Vec
(1) < Int_0
);
1311 function UI_Eq
(Left
: Int
; Right
: Uint
) return Boolean is
1313 return not UI_Ne
(UI_From_Int
(Left
), Right
);
1316 function UI_Eq
(Left
: Uint
; Right
: Int
) return Boolean is
1318 return not UI_Ne
(Left
, UI_From_Int
(Right
));
1321 function UI_Eq
(Left
: Uint
; Right
: Uint
) return Boolean is
1323 return not UI_Ne
(Left
, Right
);
1330 function UI_Expon
(Left
: Int
; Right
: Uint
) return Uint
is
1332 return UI_Expon
(UI_From_Int
(Left
), Right
);
1335 function UI_Expon
(Left
: Uint
; Right
: Int
) return Uint
is
1337 return UI_Expon
(Left
, UI_From_Int
(Right
));
1340 function UI_Expon
(Left
: Int
; Right
: Int
) return Uint
is
1342 return UI_Expon
(UI_From_Int
(Left
), UI_From_Int
(Right
));
1345 function UI_Expon
(Left
: Uint
; Right
: Uint
) return Uint
is
1347 pragma Assert
(Right
>= Uint_0
);
1349 -- Any value raised to power of 0 is 1
1351 if Right
= Uint_0
then
1354 -- 0 to any positive power is 0
1356 elsif Left
= Uint_0
then
1359 -- 1 to any power is 1
1361 elsif Left
= Uint_1
then
1364 -- Any value raised to power of 1 is that value
1366 elsif Right
= Uint_1
then
1369 -- Cases which can be done by table lookup
1371 elsif Right
<= Uint_64
then
1373 -- 2 ** N for N in 2 .. 64
1375 if Left
= Uint_2
then
1377 Right_Int
: constant Int
:= Direct_Val
(Right
);
1380 if Right_Int
> UI_Power_2_Set
then
1381 for J
in UI_Power_2_Set
+ Int_1
.. Right_Int
loop
1382 UI_Power_2
(J
) := UI_Power_2
(J
- Int_1
) * Int_2
;
1383 Uints_Min
:= Uints
.Last
;
1384 Udigits_Min
:= Udigits
.Last
;
1387 UI_Power_2_Set
:= Right_Int
;
1390 return UI_Power_2
(Right_Int
);
1393 -- 10 ** N for N in 2 .. 64
1395 elsif Left
= Uint_10
then
1397 Right_Int
: constant Int
:= Direct_Val
(Right
);
1400 if Right_Int
> UI_Power_10_Set
then
1401 for J
in UI_Power_10_Set
+ Int_1
.. Right_Int
loop
1402 UI_Power_10
(J
) := UI_Power_10
(J
- Int_1
) * Int
(10);
1403 Uints_Min
:= Uints
.Last
;
1404 Udigits_Min
:= Udigits
.Last
;
1407 UI_Power_10_Set
:= Right_Int
;
1410 return UI_Power_10
(Right_Int
);
1415 -- If we fall through, then we have the general case (see Knuth 4.6.3)
1419 Squares
: Uint
:= Left
;
1420 Result
: Uint
:= Uint_1
;
1421 M
: constant Uintp
.Save_Mark
:= Uintp
.Mark
;
1425 if (Least_Sig_Digit
(N
) mod Int_2
) = Int_1
then
1426 Result
:= Result
* Squares
;
1430 exit when N
= Uint_0
;
1431 Squares
:= Squares
* Squares
;
1434 Uintp
.Release_And_Save
(M
, Result
);
1443 function UI_From_CC
(Input
: Char_Code
) return Uint
is
1445 return UI_From_Int
(Int
(Input
));
1452 function UI_From_Int
(Input
: Int
) return Uint
is
1456 if Min_Direct
<= Input
and then Input
<= Max_Direct
then
1457 return Uint
(Int
(Uint_Direct_Bias
) + Input
);
1460 -- If already in the hash table, return entry
1462 U
:= UI_Ints
.Get
(Input
);
1464 if U
/= No_Uint
then
1468 -- For values of larger magnitude, compute digits into a vector and call
1472 Max_For_Int
: constant := 3;
1473 -- Base is defined so that 3 Uint digits is sufficient to hold the
1474 -- largest possible Int value.
1476 V
: UI_Vector
(1 .. Max_For_Int
);
1478 Temp_Integer
: Int
:= Input
;
1481 for J
in reverse V
'Range loop
1482 V
(J
) := abs (Temp_Integer
rem Base
);
1483 Temp_Integer
:= Temp_Integer
/ Base
;
1486 U
:= Vector_To_Uint
(V
, Input
< Int_0
);
1487 UI_Ints
.Set
(Input
, U
);
1488 Uints_Min
:= Uints
.Last
;
1489 Udigits_Min
:= Udigits
.Last
;
1498 -- Lehmer's algorithm for GCD
1500 -- The idea is to avoid using multiple precision arithmetic wherever
1501 -- possible, substituting Int arithmetic instead. See Knuth volume II,
1502 -- Algorithm L (page 329).
1504 -- We use the same notation as Knuth (U_Hat standing for the obvious)
1506 function UI_GCD
(Uin
, Vin
: Uint
) return Uint
is
1508 -- Copies of Uin and Vin
1511 -- The most Significant digits of U,V
1513 A
, B
, C
, D
, T
, Q
, Den1
, Den2
: Int
;
1516 Marks
: constant Uintp
.Save_Mark
:= Uintp
.Mark
;
1517 Iterations
: Integer := 0;
1520 pragma Assert
(Uin
>= Vin
);
1521 pragma Assert
(Vin
>= Uint_0
);
1527 Iterations
:= Iterations
+ 1;
1534 UI_From_Int
(GCD
(Direct_Val
(V
), UI_To_Int
(U
rem V
)));
1538 Most_Sig_2_Digits
(U
, V
, U_Hat
, V_Hat
);
1545 -- We might overflow and get division by zero here. This just
1546 -- means we cannot take the single precision step
1550 exit when Den1
= Int_0
or else Den2
= Int_0
;
1552 -- Compute Q, the trial quotient
1554 Q
:= (U_Hat
+ A
) / Den1
;
1556 exit when Q
/= ((U_Hat
+ B
) / Den2
);
1558 -- A single precision step Euclid step will give same answer as a
1559 -- multiprecision one.
1569 T
:= U_Hat
- (Q
* V_Hat
);
1575 -- Take a multiprecision Euclid step
1579 -- No single precision steps take a regular Euclid step
1586 -- Use prior single precision steps to compute this Euclid step
1588 -- For constructs such as:
1589 -- sqrt_2: constant := 1.41421_35623_73095_04880_16887_24209_698;
1590 -- sqrt_eps: constant long_float := long_float( 1.0 / sqrt_2)
1591 -- ** long_float'machine_mantissa;
1593 -- we spend 80% of our time working on this step. Perhaps we need
1594 -- a special case Int / Uint dot product to speed things up. ???
1596 -- Alternatively we could increase the single precision iterations
1597 -- to handle Uint's of some small size ( <5 digits?). Then we
1598 -- would have more iterations on small Uint. On the code above, we
1599 -- only get 5 (on average) single precision iterations per large
1602 Tmp_UI
:= (UI_From_Int
(A
) * U
) + (UI_From_Int
(B
) * V
);
1603 V
:= (UI_From_Int
(C
) * U
) + (UI_From_Int
(D
) * V
);
1607 -- If the operands are very different in magnitude, the loop will
1608 -- generate large amounts of short-lived data, which it is worth
1609 -- removing periodically.
1611 if Iterations
> 100 then
1612 Release_And_Save
(Marks
, U
, V
);
1622 function UI_Ge
(Left
: Int
; Right
: Uint
) return Boolean is
1624 return not UI_Lt
(UI_From_Int
(Left
), Right
);
1627 function UI_Ge
(Left
: Uint
; Right
: Int
) return Boolean is
1629 return not UI_Lt
(Left
, UI_From_Int
(Right
));
1632 function UI_Ge
(Left
: Uint
; Right
: Uint
) return Boolean is
1634 return not UI_Lt
(Left
, Right
);
1641 function UI_Gt
(Left
: Int
; Right
: Uint
) return Boolean is
1643 return UI_Lt
(Right
, UI_From_Int
(Left
));
1646 function UI_Gt
(Left
: Uint
; Right
: Int
) return Boolean is
1648 return UI_Lt
(UI_From_Int
(Right
), Left
);
1651 function UI_Gt
(Left
: Uint
; Right
: Uint
) return Boolean is
1653 return UI_Lt
(Left
=> Right
, Right
=> Left
);
1660 procedure UI_Image
(Input
: Uint
; Format
: UI_Format
:= Auto
) is
1662 Image_Out
(Input
, True, Format
);
1667 Format
: UI_Format
:= Auto
) return String
1670 Image_Out
(Input
, True, Format
);
1671 return UI_Image_Buffer
(1 .. UI_Image_Length
);
1674 -------------------------
1675 -- UI_Is_In_Int_Range --
1676 -------------------------
1678 function UI_Is_In_Int_Range
(Input
: Uint
) return Boolean is
1680 -- Make sure we don't get called before Initialize
1682 pragma Assert
(Uint_Int_First
/= Uint_0
);
1684 if Direct
(Input
) then
1687 return Input
>= Uint_Int_First
1688 and then Input
<= Uint_Int_Last
;
1690 end UI_Is_In_Int_Range
;
1696 function UI_Le
(Left
: Int
; Right
: Uint
) return Boolean is
1698 return not UI_Lt
(Right
, UI_From_Int
(Left
));
1701 function UI_Le
(Left
: Uint
; Right
: Int
) return Boolean is
1703 return not UI_Lt
(UI_From_Int
(Right
), Left
);
1706 function UI_Le
(Left
: Uint
; Right
: Uint
) return Boolean is
1708 return not UI_Lt
(Left
=> Right
, Right
=> Left
);
1715 function UI_Lt
(Left
: Int
; Right
: Uint
) return Boolean is
1717 return UI_Lt
(UI_From_Int
(Left
), Right
);
1720 function UI_Lt
(Left
: Uint
; Right
: Int
) return Boolean is
1722 return UI_Lt
(Left
, UI_From_Int
(Right
));
1725 function UI_Lt
(Left
: Uint
; Right
: Uint
) return Boolean is
1727 -- Quick processing for identical arguments
1729 if Int
(Left
) = Int
(Right
) then
1732 -- Quick processing for both arguments directly represented
1734 elsif Direct
(Left
) and then Direct
(Right
) then
1735 return Int
(Left
) < Int
(Right
);
1737 -- At least one argument is more than one digit long
1741 L_Length
: constant Int
:= N_Digits
(Left
);
1742 R_Length
: constant Int
:= N_Digits
(Right
);
1744 L_Vec
: UI_Vector
(1 .. L_Length
);
1745 R_Vec
: UI_Vector
(1 .. R_Length
);
1748 Init_Operand
(Left
, L_Vec
);
1749 Init_Operand
(Right
, R_Vec
);
1751 if L_Vec
(1) < Int_0
then
1753 -- First argument negative, second argument non-negative
1755 if R_Vec
(1) >= Int_0
then
1758 -- Both arguments negative
1761 if L_Length
/= R_Length
then
1762 return L_Length
> R_Length
;
1764 elsif L_Vec
(1) /= R_Vec
(1) then
1765 return L_Vec
(1) < R_Vec
(1);
1768 for J
in 2 .. L_Vec
'Last loop
1769 if L_Vec
(J
) /= R_Vec
(J
) then
1770 return L_Vec
(J
) > R_Vec
(J
);
1779 -- First argument non-negative, second argument negative
1781 if R_Vec
(1) < Int_0
then
1784 -- Both arguments non-negative
1787 if L_Length
/= R_Length
then
1788 return L_Length
< R_Length
;
1790 for J
in L_Vec
'Range loop
1791 if L_Vec
(J
) /= R_Vec
(J
) then
1792 return L_Vec
(J
) < R_Vec
(J
);
1808 function UI_Max
(Left
: Int
; Right
: Uint
) return Uint
is
1810 return UI_Max
(UI_From_Int
(Left
), Right
);
1813 function UI_Max
(Left
: Uint
; Right
: Int
) return Uint
is
1815 return UI_Max
(Left
, UI_From_Int
(Right
));
1818 function UI_Max
(Left
: Uint
; Right
: Uint
) return Uint
is
1820 if Left
>= Right
then
1831 function UI_Min
(Left
: Int
; Right
: Uint
) return Uint
is
1833 return UI_Min
(UI_From_Int
(Left
), Right
);
1836 function UI_Min
(Left
: Uint
; Right
: Int
) return Uint
is
1838 return UI_Min
(Left
, UI_From_Int
(Right
));
1841 function UI_Min
(Left
: Uint
; Right
: Uint
) return Uint
is
1843 if Left
<= Right
then
1854 function UI_Mod
(Left
: Int
; Right
: Uint
) return Uint
is
1856 return UI_Mod
(UI_From_Int
(Left
), Right
);
1859 function UI_Mod
(Left
: Uint
; Right
: Int
) return Uint
is
1861 return UI_Mod
(Left
, UI_From_Int
(Right
));
1864 function UI_Mod
(Left
: Uint
; Right
: Uint
) return Uint
is
1865 Urem
: constant Uint
:= Left
rem Right
;
1868 if (Left
< Uint_0
) = (Right
< Uint_0
)
1869 or else Urem
= Uint_0
1873 return Right
+ Urem
;
1877 -------------------------------
1878 -- UI_Modular_Exponentiation --
1879 -------------------------------
1881 function UI_Modular_Exponentiation
1884 Modulo
: Uint
) return Uint
1886 M
: constant Save_Mark
:= Mark
;
1888 Result
: Uint
:= Uint_1
;
1890 Exponent
: Uint
:= E
;
1893 while Exponent
/= Uint_0
loop
1894 if Least_Sig_Digit
(Exponent
) rem Int
'(2) = Int'(1) then
1895 Result
:= (Result
* Base
) rem Modulo
;
1898 Exponent
:= Exponent
/ Uint_2
;
1899 Base
:= (Base
* Base
) rem Modulo
;
1902 Release_And_Save
(M
, Result
);
1904 end UI_Modular_Exponentiation
;
1906 ------------------------
1907 -- UI_Modular_Inverse --
1908 ------------------------
1910 function UI_Modular_Inverse
(N
: Uint
; Modulo
: Uint
) return Uint
is
1911 M
: constant Save_Mark
:= Mark
;
1929 UI_Div_Rem
(U
, V
, Quotient
=> Q
, Remainder
=> R
);
1939 exit when R
= Uint_1
;
1942 if S
= Int
'(-1) then
1946 Release_And_Save (M, X);
1948 end UI_Modular_Inverse;
1954 function UI_Mul (Left : Int; Right : Uint) return Uint is
1956 return UI_Mul (UI_From_Int (Left), Right);
1959 function UI_Mul (Left : Uint; Right : Int) return Uint is
1961 return UI_Mul (Left, UI_From_Int (Right));
1964 function UI_Mul (Left : Uint; Right : Uint) return Uint is
1966 -- Case where product fits in the range of a 32-bit integer
1968 if Int (Left) <= Int (Uint_Max_Simple_Mul)
1970 Int (Right) <= Int (Uint_Max_Simple_Mul)
1972 return UI_From_Int (Direct_Val (Left) * Direct_Val (Right));
1975 -- Otherwise we have the general case (Algorithm M in Knuth)
1978 L_Length : constant Int := N_Digits (Left);
1979 R_Length : constant Int := N_Digits (Right);
1980 L_Vec : UI_Vector (1 .. L_Length);
1981 R_Vec : UI_Vector (1 .. R_Length);
1985 Init_Operand (Left, L_Vec);
1986 Init_Operand (Right, R_Vec);
1987 Neg := (L_Vec (1) < Int_0) xor (R_Vec (1) < Int_0);
1988 L_Vec (1) := abs (L_Vec (1));
1989 R_Vec (1) := abs (R_Vec (1));
1991 Algorithm_M : declare
1992 Product : UI_Vector (1 .. L_Length + R_Length);
1997 for J in Product'Range loop
2001 for J in reverse R_Vec'Range loop
2003 for K in reverse L_Vec'Range loop
2005 L_Vec (K) * R_Vec (J) + Product (J + K) + Carry;
2006 Product (J + K) := Tmp_Sum rem Base;
2007 Carry := Tmp_Sum / Base;
2010 Product (J) := Carry;
2013 return Vector_To_Uint (Product, Neg);
2022 function UI_Ne (Left : Int; Right : Uint) return Boolean is
2024 return UI_Ne (UI_From_Int (Left), Right);
2027 function UI_Ne (Left : Uint; Right : Int) return Boolean is
2029 return UI_Ne (Left, UI_From_Int (Right));
2032 function UI_Ne (Left : Uint; Right : Uint) return Boolean is
2034 -- Quick processing for identical arguments. Note that this takes
2035 -- care of the case of two No_Uint arguments.
2037 if Int (Left) = Int (Right) then
2041 -- See if left operand directly represented
2043 if Direct (Left) then
2045 -- If right operand directly represented then compare
2047 if Direct (Right) then
2048 return Int (Left) /= Int (Right);
2050 -- Left operand directly represented, right not, must be unequal
2056 -- Right operand directly represented, left not, must be unequal
2058 elsif Direct (Right) then
2062 -- Otherwise both multi-word, do comparison
2065 Size : constant Int := N_Digits (Left);
2070 if Size /= N_Digits (Right) then
2074 Left_Loc := Uints.Table (Left).Loc;
2075 Right_Loc := Uints.Table (Right).Loc;
2077 for J in Int_0 .. Size - Int_1 loop
2078 if Udigits.Table (Left_Loc + J) /=
2079 Udigits.Table (Right_Loc + J)
2093 function UI_Negate (Right : Uint) return Uint is
2095 -- Case where input is directly represented. Note that since the range
2096 -- of Direct values is non-symmetrical, the result may not be directly
2097 -- represented, this is taken care of in UI_From_Int.
2099 if Direct (Right) then
2100 return UI_From_Int (-Direct_Val (Right));
2102 -- Full processing for multi-digit case. Note that we cannot just copy
2103 -- the value to the end of the table negating the first digit, since the
2104 -- range of Direct values is non-symmetrical, so we can have a negative
2105 -- value that is not Direct whose negation can be represented directly.
2109 R_Length : constant Int := N_Digits (Right);
2110 R_Vec : UI_Vector (1 .. R_Length);
2114 Init_Operand (Right, R_Vec);
2115 Neg := R_Vec (1) > Int_0;
2116 R_Vec (1) := abs R_Vec (1);
2117 return Vector_To_Uint (R_Vec, Neg);
2126 function UI_Rem (Left : Int; Right : Uint) return Uint is
2128 return UI_Rem (UI_From_Int (Left), Right);
2131 function UI_Rem (Left : Uint; Right : Int) return Uint is
2133 return UI_Rem (Left, UI_From_Int (Right));
2136 function UI_Rem (Left, Right : Uint) return Uint is
2139 pragma Warnings (Off, Quotient);
2142 pragma Assert (Right /= Uint_0);
2144 if Direct (Right) and then Direct (Left) then
2145 return UI_From_Int (Direct_Val (Left) rem Direct_Val (Right));
2149 (Left, Right, Quotient, Remainder, Discard_Quotient => True);
2158 function UI_Sub (Left : Int; Right : Uint) return Uint is
2160 return UI_Add (Left, -Right);
2163 function UI_Sub (Left : Uint; Right : Int) return Uint is
2165 return UI_Add (Left, -Right);
2168 function UI_Sub (Left : Uint; Right : Uint) return Uint is
2170 if Direct (Left) and then Direct (Right) then
2171 return UI_From_Int (Direct_Val (Left) - Direct_Val (Right));
2173 return UI_Add (Left, -Right);
2181 function UI_To_CC (Input : Uint) return Char_Code is
2183 if Direct (Input) then
2184 return Char_Code (Direct_Val (Input));
2186 -- Case of input is more than one digit
2190 In_Length : constant Int := N_Digits (Input);
2191 In_Vec : UI_Vector (1 .. In_Length);
2195 Init_Operand (Input, In_Vec);
2197 -- We assume value is positive
2200 for Idx in In_Vec'Range loop
2201 Ret_CC := Ret_CC * Char_Code (Base) +
2202 Char_Code (abs In_Vec (Idx));
2214 function UI_To_Int (Input : Uint) return Int is
2215 pragma Assert (Input /= No_Uint);
2218 if Direct (Input) then
2219 return Direct_Val (Input);
2221 -- Case of input is more than one digit
2225 In_Length : constant Int := N_Digits (Input);
2226 In_Vec : UI_Vector (1 .. In_Length);
2230 -- Uints of more than one digit could be outside the range for
2231 -- Ints. Caller should have checked for this if not certain.
2232 -- Fatal error to attempt to convert from value outside Int'Range.
2234 pragma Assert (UI_Is_In_Int_Range (Input));
2236 -- Otherwise, proceed ahead, we are OK
2238 Init_Operand (Input, In_Vec);
2241 -- Calculate -|Input| and then negates if value is positive. This
2242 -- handles our current definition of Int (based on 2s complement).
2243 -- Is it secure enough???
2245 for Idx in In_Vec'Range loop
2246 Ret_Int := Ret_Int * Base - abs In_Vec (Idx);
2249 if In_Vec (1) < Int_0 then
2262 procedure UI_Write (Input : Uint; Format : UI_Format := Auto) is
2264 Image_Out (Input, False, Format);
2267 ---------------------
2268 -- Vector_To_Uint --
2269 ---------------------
2271 function Vector_To_Uint
2272 (In_Vec : UI_Vector;
2280 -- The vector can contain leading zeros. These are not stored in the
2281 -- table, so loop through the vector looking for first non-zero digit
2283 for J in In_Vec'Range loop
2284 if In_Vec (J) /= Int_0 then
2286 -- The length of the value is the length of the rest of the vector
2288 Size := In_Vec'Last - J + 1;
2290 -- One digit value can always be represented directly
2292 if Size = Int_1 then
2294 return Uint (Int (Uint_Direct_Bias) - In_Vec (J));
2296 return Uint (Int (Uint_Direct_Bias) + In_Vec (J));
2299 -- Positive two digit values may be in direct representation range
2301 elsif Size = Int_2 and then not Negative then
2302 Val := In_Vec (J) * Base + In_Vec (J + 1);
2304 if Val <= Max_Direct then
2305 return Uint (Int (Uint_Direct_Bias) + Val);
2309 -- The value is outside the direct representation range and must
2310 -- therefore be stored in the table. Expand the table to contain
2311 -- the count and digits. The index of the new table entry will be
2312 -- returned as the result.
2314 Uints.Append ((Length => Size, Loc => Udigits.Last + 1));
2322 Udigits.Append (Val);
2324 for K in 2 .. Size loop
2325 Udigits.Append (In_Vec (J + K - 1));
2332 -- Dropped through loop only if vector contained all zeros