2015-05-12 Robert Dewar <dewar@adacore.com>
[official-gcc.git] / gcc / ada / sem_ch8.adb
blob9c564dd98e44b919e1cb0907722e52b1bca0f100
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 8 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Debug; use Debug;
28 with Einfo; use Einfo;
29 with Elists; use Elists;
30 with Errout; use Errout;
31 with Exp_Disp; use Exp_Disp;
32 with Exp_Tss; use Exp_Tss;
33 with Exp_Util; use Exp_Util;
34 with Fname; use Fname;
35 with Freeze; use Freeze;
36 with Ghost; use Ghost;
37 with Impunit; use Impunit;
38 with Lib; use Lib;
39 with Lib.Load; use Lib.Load;
40 with Lib.Xref; use Lib.Xref;
41 with Namet; use Namet;
42 with Namet.Sp; use Namet.Sp;
43 with Nlists; use Nlists;
44 with Nmake; use Nmake;
45 with Opt; use Opt;
46 with Output; use Output;
47 with Restrict; use Restrict;
48 with Rident; use Rident;
49 with Rtsfind; use Rtsfind;
50 with Sem; use Sem;
51 with Sem_Aux; use Sem_Aux;
52 with Sem_Cat; use Sem_Cat;
53 with Sem_Ch3; use Sem_Ch3;
54 with Sem_Ch4; use Sem_Ch4;
55 with Sem_Ch6; use Sem_Ch6;
56 with Sem_Ch12; use Sem_Ch12;
57 with Sem_Ch13; use Sem_Ch13;
58 with Sem_Dim; use Sem_Dim;
59 with Sem_Disp; use Sem_Disp;
60 with Sem_Dist; use Sem_Dist;
61 with Sem_Eval; use Sem_Eval;
62 with Sem_Res; use Sem_Res;
63 with Sem_Util; use Sem_Util;
64 with Sem_Type; use Sem_Type;
65 with Stand; use Stand;
66 with Sinfo; use Sinfo;
67 with Sinfo.CN; use Sinfo.CN;
68 with Snames; use Snames;
69 with Style; use Style;
70 with Table;
71 with Targparm; use Targparm;
72 with Tbuild; use Tbuild;
73 with Uintp; use Uintp;
75 package body Sem_Ch8 is
77 ------------------------------------
78 -- Visibility and Name Resolution --
79 ------------------------------------
81 -- This package handles name resolution and the collection of possible
82 -- interpretations for overloaded names, prior to overload resolution.
84 -- Name resolution is the process that establishes a mapping between source
85 -- identifiers and the entities they denote at each point in the program.
86 -- Each entity is represented by a defining occurrence. Each identifier
87 -- that denotes an entity points to the corresponding defining occurrence.
88 -- This is the entity of the applied occurrence. Each occurrence holds
89 -- an index into the names table, where source identifiers are stored.
91 -- Each entry in the names table for an identifier or designator uses the
92 -- Info pointer to hold a link to the currently visible entity that has
93 -- this name (see subprograms Get_Name_Entity_Id and Set_Name_Entity_Id
94 -- in package Sem_Util). The visibility is initialized at the beginning of
95 -- semantic processing to make entities in package Standard immediately
96 -- visible. The visibility table is used in a more subtle way when
97 -- compiling subunits (see below).
99 -- Entities that have the same name (i.e. homonyms) are chained. In the
100 -- case of overloaded entities, this chain holds all the possible meanings
101 -- of a given identifier. The process of overload resolution uses type
102 -- information to select from this chain the unique meaning of a given
103 -- identifier.
105 -- Entities are also chained in their scope, through the Next_Entity link.
106 -- As a consequence, the name space is organized as a sparse matrix, where
107 -- each row corresponds to a scope, and each column to a source identifier.
108 -- Open scopes, that is to say scopes currently being compiled, have their
109 -- corresponding rows of entities in order, innermost scope first.
111 -- The scopes of packages that are mentioned in context clauses appear in
112 -- no particular order, interspersed among open scopes. This is because
113 -- in the course of analyzing the context of a compilation, a package
114 -- declaration is first an open scope, and subsequently an element of the
115 -- context. If subunits or child units are present, a parent unit may
116 -- appear under various guises at various times in the compilation.
118 -- When the compilation of the innermost scope is complete, the entities
119 -- defined therein are no longer visible. If the scope is not a package
120 -- declaration, these entities are never visible subsequently, and can be
121 -- removed from visibility chains. If the scope is a package declaration,
122 -- its visible declarations may still be accessible. Therefore the entities
123 -- defined in such a scope are left on the visibility chains, and only
124 -- their visibility (immediately visibility or potential use-visibility)
125 -- is affected.
127 -- The ordering of homonyms on their chain does not necessarily follow
128 -- the order of their corresponding scopes on the scope stack. For
129 -- example, if package P and the enclosing scope both contain entities
130 -- named E, then when compiling the package body the chain for E will
131 -- hold the global entity first, and the local one (corresponding to
132 -- the current inner scope) next. As a result, name resolution routines
133 -- do not assume any relative ordering of the homonym chains, either
134 -- for scope nesting or to order of appearance of context clauses.
136 -- When compiling a child unit, entities in the parent scope are always
137 -- immediately visible. When compiling the body of a child unit, private
138 -- entities in the parent must also be made immediately visible. There
139 -- are separate routines to make the visible and private declarations
140 -- visible at various times (see package Sem_Ch7).
142 -- +--------+ +-----+
143 -- | In use |-------->| EU1 |-------------------------->
144 -- +--------+ +-----+
145 -- | |
146 -- +--------+ +-----+ +-----+
147 -- | Stand. |---------------->| ES1 |--------------->| ES2 |--->
148 -- +--------+ +-----+ +-----+
149 -- | |
150 -- +---------+ | +-----+
151 -- | with'ed |------------------------------>| EW2 |--->
152 -- +---------+ | +-----+
153 -- | |
154 -- +--------+ +-----+ +-----+
155 -- | Scope2 |---------------->| E12 |--------------->| E22 |--->
156 -- +--------+ +-----+ +-----+
157 -- | |
158 -- +--------+ +-----+ +-----+
159 -- | Scope1 |---------------->| E11 |--------------->| E12 |--->
160 -- +--------+ +-----+ +-----+
161 -- ^ | |
162 -- | | |
163 -- | +---------+ | |
164 -- | | with'ed |----------------------------------------->
165 -- | +---------+ | |
166 -- | | |
167 -- Scope stack | |
168 -- (innermost first) | |
169 -- +----------------------------+
170 -- Names table => | Id1 | | | | Id2 |
171 -- +----------------------------+
173 -- Name resolution must deal with several syntactic forms: simple names,
174 -- qualified names, indexed names, and various forms of calls.
176 -- Each identifier points to an entry in the names table. The resolution
177 -- of a simple name consists in traversing the homonym chain, starting
178 -- from the names table. If an entry is immediately visible, it is the one
179 -- designated by the identifier. If only potentially use-visible entities
180 -- are on the chain, we must verify that they do not hide each other. If
181 -- the entity we find is overloadable, we collect all other overloadable
182 -- entities on the chain as long as they are not hidden.
184 -- To resolve expanded names, we must find the entity at the intersection
185 -- of the entity chain for the scope (the prefix) and the homonym chain
186 -- for the selector. In general, homonym chains will be much shorter than
187 -- entity chains, so it is preferable to start from the names table as
188 -- well. If the entity found is overloadable, we must collect all other
189 -- interpretations that are defined in the scope denoted by the prefix.
191 -- For records, protected types, and tasks, their local entities are
192 -- removed from visibility chains on exit from the corresponding scope.
193 -- From the outside, these entities are always accessed by selected
194 -- notation, and the entity chain for the record type, protected type,
195 -- etc. is traversed sequentially in order to find the designated entity.
197 -- The discriminants of a type and the operations of a protected type or
198 -- task are unchained on exit from the first view of the type, (such as
199 -- a private or incomplete type declaration, or a protected type speci-
200 -- fication) and re-chained when compiling the second view.
202 -- In the case of operators, we do not make operators on derived types
203 -- explicit. As a result, the notation P."+" may denote either a user-
204 -- defined function with name "+", or else an implicit declaration of the
205 -- operator "+" in package P. The resolution of expanded names always
206 -- tries to resolve an operator name as such an implicitly defined entity,
207 -- in addition to looking for explicit declarations.
209 -- All forms of names that denote entities (simple names, expanded names,
210 -- character literals in some cases) have a Entity attribute, which
211 -- identifies the entity denoted by the name.
213 ---------------------
214 -- The Scope Stack --
215 ---------------------
217 -- The Scope stack keeps track of the scopes currently been compiled.
218 -- Every entity that contains declarations (including records) is placed
219 -- on the scope stack while it is being processed, and removed at the end.
220 -- Whenever a non-package scope is exited, the entities defined therein
221 -- are removed from the visibility table, so that entities in outer scopes
222 -- become visible (see previous description). On entry to Sem, the scope
223 -- stack only contains the package Standard. As usual, subunits complicate
224 -- this picture ever so slightly.
226 -- The Rtsfind mechanism can force a call to Semantics while another
227 -- compilation is in progress. The unit retrieved by Rtsfind must be
228 -- compiled in its own context, and has no access to the visibility of
229 -- the unit currently being compiled. The procedures Save_Scope_Stack and
230 -- Restore_Scope_Stack make entities in current open scopes invisible
231 -- before compiling the retrieved unit, and restore the compilation
232 -- environment afterwards.
234 ------------------------
235 -- Compiling subunits --
236 ------------------------
238 -- Subunits must be compiled in the environment of the corresponding stub,
239 -- that is to say with the same visibility into the parent (and its
240 -- context) that is available at the point of the stub declaration, but
241 -- with the additional visibility provided by the context clause of the
242 -- subunit itself. As a result, compilation of a subunit forces compilation
243 -- of the parent (see description in lib-). At the point of the stub
244 -- declaration, Analyze is called recursively to compile the proper body of
245 -- the subunit, but without reinitializing the names table, nor the scope
246 -- stack (i.e. standard is not pushed on the stack). In this fashion the
247 -- context of the subunit is added to the context of the parent, and the
248 -- subunit is compiled in the correct environment. Note that in the course
249 -- of processing the context of a subunit, Standard will appear twice on
250 -- the scope stack: once for the parent of the subunit, and once for the
251 -- unit in the context clause being compiled. However, the two sets of
252 -- entities are not linked by homonym chains, so that the compilation of
253 -- any context unit happens in a fresh visibility environment.
255 -------------------------------
256 -- Processing of USE Clauses --
257 -------------------------------
259 -- Every defining occurrence has a flag indicating if it is potentially use
260 -- visible. Resolution of simple names examines this flag. The processing
261 -- of use clauses consists in setting this flag on all visible entities
262 -- defined in the corresponding package. On exit from the scope of the use
263 -- clause, the corresponding flag must be reset. However, a package may
264 -- appear in several nested use clauses (pathological but legal, alas)
265 -- which forces us to use a slightly more involved scheme:
267 -- a) The defining occurrence for a package holds a flag -In_Use- to
268 -- indicate that it is currently in the scope of a use clause. If a
269 -- redundant use clause is encountered, then the corresponding occurrence
270 -- of the package name is flagged -Redundant_Use-.
272 -- b) On exit from a scope, the use clauses in its declarative part are
273 -- scanned. The visibility flag is reset in all entities declared in
274 -- package named in a use clause, as long as the package is not flagged
275 -- as being in a redundant use clause (in which case the outer use
276 -- clause is still in effect, and the direct visibility of its entities
277 -- must be retained).
279 -- Note that entities are not removed from their homonym chains on exit
280 -- from the package specification. A subsequent use clause does not need
281 -- to rechain the visible entities, but only to establish their direct
282 -- visibility.
284 -----------------------------------
285 -- Handling private declarations --
286 -----------------------------------
288 -- The principle that each entity has a single defining occurrence clashes
289 -- with the presence of two separate definitions for private types: the
290 -- first is the private type declaration, and second is the full type
291 -- declaration. It is important that all references to the type point to
292 -- the same defining occurrence, namely the first one. To enforce the two
293 -- separate views of the entity, the corresponding information is swapped
294 -- between the two declarations. Outside of the package, the defining
295 -- occurrence only contains the private declaration information, while in
296 -- the private part and the body of the package the defining occurrence
297 -- contains the full declaration. To simplify the swap, the defining
298 -- occurrence that currently holds the private declaration points to the
299 -- full declaration. During semantic processing the defining occurrence
300 -- also points to a list of private dependents, that is to say access types
301 -- or composite types whose designated types or component types are
302 -- subtypes or derived types of the private type in question. After the
303 -- full declaration has been seen, the private dependents are updated to
304 -- indicate that they have full definitions.
306 ------------------------------------
307 -- Handling of Undefined Messages --
308 ------------------------------------
310 -- In normal mode, only the first use of an undefined identifier generates
311 -- a message. The table Urefs is used to record error messages that have
312 -- been issued so that second and subsequent ones do not generate further
313 -- messages. However, the second reference causes text to be added to the
314 -- original undefined message noting "(more references follow)". The
315 -- full error list option (-gnatf) forces messages to be generated for
316 -- every reference and disconnects the use of this table.
318 type Uref_Entry is record
319 Node : Node_Id;
320 -- Node for identifier for which original message was posted. The
321 -- Chars field of this identifier is used to detect later references
322 -- to the same identifier.
324 Err : Error_Msg_Id;
325 -- Records error message Id of original undefined message. Reset to
326 -- No_Error_Msg after the second occurrence, where it is used to add
327 -- text to the original message as described above.
329 Nvis : Boolean;
330 -- Set if the message is not visible rather than undefined
332 Loc : Source_Ptr;
333 -- Records location of error message. Used to make sure that we do
334 -- not consider a, b : undefined as two separate instances, which
335 -- would otherwise happen, since the parser converts this sequence
336 -- to a : undefined; b : undefined.
338 end record;
340 package Urefs is new Table.Table (
341 Table_Component_Type => Uref_Entry,
342 Table_Index_Type => Nat,
343 Table_Low_Bound => 1,
344 Table_Initial => 10,
345 Table_Increment => 100,
346 Table_Name => "Urefs");
348 Candidate_Renaming : Entity_Id;
349 -- Holds a candidate interpretation that appears in a subprogram renaming
350 -- declaration and does not match the given specification, but matches at
351 -- least on the first formal. Allows better error message when given
352 -- specification omits defaulted parameters, a common error.
354 -----------------------
355 -- Local Subprograms --
356 -----------------------
358 procedure Analyze_Generic_Renaming
359 (N : Node_Id;
360 K : Entity_Kind);
361 -- Common processing for all three kinds of generic renaming declarations.
362 -- Enter new name and indicate that it renames the generic unit.
364 procedure Analyze_Renamed_Character
365 (N : Node_Id;
366 New_S : Entity_Id;
367 Is_Body : Boolean);
368 -- Renamed entity is given by a character literal, which must belong
369 -- to the return type of the new entity. Is_Body indicates whether the
370 -- declaration is a renaming_as_body. If the original declaration has
371 -- already been frozen (because of an intervening body, e.g.) the body of
372 -- the function must be built now. The same applies to the following
373 -- various renaming procedures.
375 procedure Analyze_Renamed_Dereference
376 (N : Node_Id;
377 New_S : Entity_Id;
378 Is_Body : Boolean);
379 -- Renamed entity is given by an explicit dereference. Prefix must be a
380 -- conformant access_to_subprogram type.
382 procedure Analyze_Renamed_Entry
383 (N : Node_Id;
384 New_S : Entity_Id;
385 Is_Body : Boolean);
386 -- If the renamed entity in a subprogram renaming is an entry or protected
387 -- subprogram, build a body for the new entity whose only statement is a
388 -- call to the renamed entity.
390 procedure Analyze_Renamed_Family_Member
391 (N : Node_Id;
392 New_S : Entity_Id;
393 Is_Body : Boolean);
394 -- Used when the renamed entity is an indexed component. The prefix must
395 -- denote an entry family.
397 procedure Analyze_Renamed_Primitive_Operation
398 (N : Node_Id;
399 New_S : Entity_Id;
400 Is_Body : Boolean);
401 -- If the renamed entity in a subprogram renaming is a primitive operation
402 -- or a class-wide operation in prefix form, save the target object,
403 -- which must be added to the list of actuals in any subsequent call.
404 -- The renaming operation is intrinsic because the compiler must in
405 -- fact generate a wrapper for it (6.3.1 (10 1/2)).
407 function Applicable_Use (Pack_Name : Node_Id) return Boolean;
408 -- Common code to Use_One_Package and Set_Use, to determine whether use
409 -- clause must be processed. Pack_Name is an entity name that references
410 -- the package in question.
412 procedure Attribute_Renaming (N : Node_Id);
413 -- Analyze renaming of attribute as subprogram. The renaming declaration N
414 -- is rewritten as a subprogram body that returns the attribute reference
415 -- applied to the formals of the function.
417 procedure Set_Entity_Or_Discriminal (N : Node_Id; E : Entity_Id);
418 -- Set Entity, with style check if need be. For a discriminant reference,
419 -- replace by the corresponding discriminal, i.e. the parameter of the
420 -- initialization procedure that corresponds to the discriminant.
422 procedure Check_Frozen_Renaming (N : Node_Id; Subp : Entity_Id);
423 -- A renaming_as_body may occur after the entity of the original decla-
424 -- ration has been frozen. In that case, the body of the new entity must
425 -- be built now, because the usual mechanism of building the renamed
426 -- body at the point of freezing will not work. Subp is the subprogram
427 -- for which N provides the Renaming_As_Body.
429 procedure Check_In_Previous_With_Clause
430 (N : Node_Id;
431 Nam : Node_Id);
432 -- N is a use_package clause and Nam the package name, or N is a use_type
433 -- clause and Nam is the prefix of the type name. In either case, verify
434 -- that the package is visible at that point in the context: either it
435 -- appears in a previous with_clause, or because it is a fully qualified
436 -- name and the root ancestor appears in a previous with_clause.
438 procedure Check_Library_Unit_Renaming (N : Node_Id; Old_E : Entity_Id);
439 -- Verify that the entity in a renaming declaration that is a library unit
440 -- is itself a library unit and not a nested unit or subunit. Also check
441 -- that if the renaming is a child unit of a generic parent, then the
442 -- renamed unit must also be a child unit of that parent. Finally, verify
443 -- that a renamed generic unit is not an implicit child declared within
444 -- an instance of the parent.
446 procedure Chain_Use_Clause (N : Node_Id);
447 -- Chain use clause onto list of uses clauses headed by First_Use_Clause in
448 -- the proper scope table entry. This is usually the current scope, but it
449 -- will be an inner scope when installing the use clauses of the private
450 -- declarations of a parent unit prior to compiling the private part of a
451 -- child unit. This chain is traversed when installing/removing use clauses
452 -- when compiling a subunit or instantiating a generic body on the fly,
453 -- when it is necessary to save and restore full environments.
455 function Enclosing_Instance return Entity_Id;
456 -- In an instance nested within another one, several semantic checks are
457 -- unnecessary because the legality of the nested instance has been checked
458 -- in the enclosing generic unit. This applies in particular to legality
459 -- checks on actuals for formal subprograms of the inner instance, which
460 -- are checked as subprogram renamings, and may be complicated by confusion
461 -- in private/full views. This function returns the instance enclosing the
462 -- current one if there is such, else it returns Empty.
464 -- If the renaming determines the entity for the default of a formal
465 -- subprogram nested within another instance, choose the innermost
466 -- candidate. This is because if the formal has a box, and we are within
467 -- an enclosing instance where some candidate interpretations are local
468 -- to this enclosing instance, we know that the default was properly
469 -- resolved when analyzing the generic, so we prefer the local
470 -- candidates to those that are external. This is not always the case
471 -- but is a reasonable heuristic on the use of nested generics. The
472 -- proper solution requires a full renaming model.
474 function Has_Implicit_Character_Literal (N : Node_Id) return Boolean;
475 -- Find a type derived from Character or Wide_Character in the prefix of N.
476 -- Used to resolved qualified names whose selector is a character literal.
478 function Has_Private_With (E : Entity_Id) return Boolean;
479 -- Ada 2005 (AI-262): Determines if the current compilation unit has a
480 -- private with on E.
482 procedure Find_Expanded_Name (N : Node_Id);
483 -- The input is a selected component known to be an expanded name. Verify
484 -- legality of selector given the scope denoted by prefix, and change node
485 -- N into a expanded name with a properly set Entity field.
487 function Find_Renamed_Entity
488 (N : Node_Id;
489 Nam : Node_Id;
490 New_S : Entity_Id;
491 Is_Actual : Boolean := False) return Entity_Id;
492 -- Find the renamed entity that corresponds to the given parameter profile
493 -- in a subprogram renaming declaration. The renamed entity may be an
494 -- operator, a subprogram, an entry, or a protected operation. Is_Actual
495 -- indicates that the renaming is the one generated for an actual subpro-
496 -- gram in an instance, for which special visibility checks apply.
498 function Has_Implicit_Operator (N : Node_Id) return Boolean;
499 -- N is an expanded name whose selector is an operator name (e.g. P."+").
500 -- declarative part contains an implicit declaration of an operator if it
501 -- has a declaration of a type to which one of the predefined operators
502 -- apply. The existence of this routine is an implementation artifact. A
503 -- more straightforward but more space-consuming choice would be to make
504 -- all inherited operators explicit in the symbol table.
506 procedure Inherit_Renamed_Profile (New_S : Entity_Id; Old_S : Entity_Id);
507 -- A subprogram defined by a renaming declaration inherits the parameter
508 -- profile of the renamed entity. The subtypes given in the subprogram
509 -- specification are discarded and replaced with those of the renamed
510 -- subprogram, which are then used to recheck the default values.
512 function Is_Appropriate_For_Record (T : Entity_Id) return Boolean;
513 -- Prefix is appropriate for record if it is of a record type, or an access
514 -- to such.
516 function Is_Appropriate_For_Entry_Prefix (T : Entity_Id) return Boolean;
517 -- True if it is of a task type, a protected type, or else an access to one
518 -- of these types.
520 procedure Note_Redundant_Use (Clause : Node_Id);
521 -- Mark the name in a use clause as redundant if the corresponding entity
522 -- is already use-visible. Emit a warning if the use clause comes from
523 -- source and the proper warnings are enabled.
525 procedure Premature_Usage (N : Node_Id);
526 -- Diagnose usage of an entity before it is visible
528 procedure Use_One_Package (P : Entity_Id; N : Node_Id);
529 -- Make visible entities declared in package P potentially use-visible
530 -- in the current context. Also used in the analysis of subunits, when
531 -- re-installing use clauses of parent units. N is the use_clause that
532 -- names P (and possibly other packages).
534 procedure Use_One_Type (Id : Node_Id; Installed : Boolean := False);
535 -- Id is the subtype mark from a use type clause. This procedure makes
536 -- the primitive operators of the type potentially use-visible. The
537 -- boolean flag Installed indicates that the clause is being reinstalled
538 -- after previous analysis, and primitive operations are already chained
539 -- on the Used_Operations list of the clause.
541 procedure Write_Info;
542 -- Write debugging information on entities declared in current scope
544 --------------------------------
545 -- Analyze_Exception_Renaming --
546 --------------------------------
548 -- The language only allows a single identifier, but the tree holds an
549 -- identifier list. The parser has already issued an error message if
550 -- there is more than one element in the list.
552 procedure Analyze_Exception_Renaming (N : Node_Id) is
553 Id : constant Node_Id := Defining_Identifier (N);
554 Nam : constant Node_Id := Name (N);
556 begin
557 -- The exception renaming declaration may be subject to pragma Ghost
558 -- with policy Ignore. Set the mode now to ensure that any nodes
559 -- generated during analysis and expansion are properly flagged as
560 -- ignored Ghost.
562 Set_Ghost_Mode (N);
563 Check_SPARK_05_Restriction ("exception renaming is not allowed", N);
565 Enter_Name (Id);
566 Analyze (Nam);
568 Set_Ekind (Id, E_Exception);
569 Set_Etype (Id, Standard_Exception_Type);
570 Set_Is_Pure (Id, Is_Pure (Current_Scope));
572 if not Is_Entity_Name (Nam)
573 or else Ekind (Entity (Nam)) /= E_Exception
574 then
575 Error_Msg_N ("invalid exception name in renaming", Nam);
576 else
577 if Present (Renamed_Object (Entity (Nam))) then
578 Set_Renamed_Object (Id, Renamed_Object (Entity (Nam)));
579 else
580 Set_Renamed_Object (Id, Entity (Nam));
581 end if;
583 -- An exception renaming is Ghost if the renamed entity is Ghost or
584 -- the construct appears within a Ghost scope.
586 if Is_Ghost_Entity (Entity (Nam)) or else Ghost_Mode > None then
587 Set_Is_Ghost_Entity (Id);
588 end if;
589 end if;
591 -- Implementation-defined aspect specifications can appear in a renaming
592 -- declaration, but not language-defined ones. The call to procedure
593 -- Analyze_Aspect_Specifications will take care of this error check.
595 if Has_Aspects (N) then
596 Analyze_Aspect_Specifications (N, Id);
597 end if;
598 end Analyze_Exception_Renaming;
600 ---------------------------
601 -- Analyze_Expanded_Name --
602 ---------------------------
604 procedure Analyze_Expanded_Name (N : Node_Id) is
605 begin
606 -- If the entity pointer is already set, this is an internal node, or a
607 -- node that is analyzed more than once, after a tree modification. In
608 -- such a case there is no resolution to perform, just set the type. For
609 -- completeness, analyze prefix as well.
611 if Present (Entity (N)) then
612 if Is_Type (Entity (N)) then
613 Set_Etype (N, Entity (N));
614 else
615 Set_Etype (N, Etype (Entity (N)));
616 end if;
618 Analyze (Prefix (N));
619 return;
620 else
621 Find_Expanded_Name (N);
622 end if;
624 Analyze_Dimension (N);
625 end Analyze_Expanded_Name;
627 ---------------------------------------
628 -- Analyze_Generic_Function_Renaming --
629 ---------------------------------------
631 procedure Analyze_Generic_Function_Renaming (N : Node_Id) is
632 begin
633 Analyze_Generic_Renaming (N, E_Generic_Function);
634 end Analyze_Generic_Function_Renaming;
636 --------------------------------------
637 -- Analyze_Generic_Package_Renaming --
638 --------------------------------------
640 procedure Analyze_Generic_Package_Renaming (N : Node_Id) is
641 begin
642 -- Test for the Text_IO special unit case here, since we may be renaming
643 -- one of the subpackages of Text_IO, then join common routine.
645 Check_Text_IO_Special_Unit (Name (N));
647 Analyze_Generic_Renaming (N, E_Generic_Package);
648 end Analyze_Generic_Package_Renaming;
650 ----------------------------------------
651 -- Analyze_Generic_Procedure_Renaming --
652 ----------------------------------------
654 procedure Analyze_Generic_Procedure_Renaming (N : Node_Id) is
655 begin
656 Analyze_Generic_Renaming (N, E_Generic_Procedure);
657 end Analyze_Generic_Procedure_Renaming;
659 ------------------------------
660 -- Analyze_Generic_Renaming --
661 ------------------------------
663 procedure Analyze_Generic_Renaming
664 (N : Node_Id;
665 K : Entity_Kind)
667 New_P : constant Entity_Id := Defining_Entity (N);
668 Old_P : Entity_Id;
669 Inst : Boolean := False; -- prevent junk warning
671 begin
672 if Name (N) = Error then
673 return;
674 end if;
676 -- The generic renaming declaration may be subject to pragma Ghost with
677 -- policy Ignore. Set the mode now to ensure that any nodes generated
678 -- during analysis and expansion are properly flagged as ignored Ghost.
680 Set_Ghost_Mode (N);
681 Check_SPARK_05_Restriction ("generic renaming is not allowed", N);
683 Generate_Definition (New_P);
685 if Current_Scope /= Standard_Standard then
686 Set_Is_Pure (New_P, Is_Pure (Current_Scope));
687 end if;
689 if Nkind (Name (N)) = N_Selected_Component then
690 Check_Generic_Child_Unit (Name (N), Inst);
691 else
692 Analyze (Name (N));
693 end if;
695 if not Is_Entity_Name (Name (N)) then
696 Error_Msg_N ("expect entity name in renaming declaration", Name (N));
697 Old_P := Any_Id;
698 else
699 Old_P := Entity (Name (N));
700 end if;
702 Enter_Name (New_P);
703 Set_Ekind (New_P, K);
705 if Etype (Old_P) = Any_Type then
706 null;
708 elsif Ekind (Old_P) /= K then
709 Error_Msg_N ("invalid generic unit name", Name (N));
711 else
712 if Present (Renamed_Object (Old_P)) then
713 Set_Renamed_Object (New_P, Renamed_Object (Old_P));
714 else
715 Set_Renamed_Object (New_P, Old_P);
716 end if;
718 Set_Is_Pure (New_P, Is_Pure (Old_P));
719 Set_Is_Preelaborated (New_P, Is_Preelaborated (Old_P));
721 Set_Etype (New_P, Etype (Old_P));
722 Set_Has_Completion (New_P);
724 -- An generic renaming is Ghost if the renamed entity is Ghost or the
725 -- construct appears within a Ghost scope.
727 if Is_Ghost_Entity (Old_P) or else Ghost_Mode > None then
728 Set_Is_Ghost_Entity (New_P);
729 end if;
731 if In_Open_Scopes (Old_P) then
732 Error_Msg_N ("within its scope, generic denotes its instance", N);
733 end if;
735 -- For subprograms, propagate the Intrinsic flag, to allow, e.g.
736 -- renamings and subsequent instantiations of Unchecked_Conversion.
738 if Ekind_In (Old_P, E_Generic_Function, E_Generic_Procedure) then
739 Set_Is_Intrinsic_Subprogram
740 (New_P, Is_Intrinsic_Subprogram (Old_P));
741 end if;
743 Check_Library_Unit_Renaming (N, Old_P);
744 end if;
746 -- Implementation-defined aspect specifications can appear in a renaming
747 -- declaration, but not language-defined ones. The call to procedure
748 -- Analyze_Aspect_Specifications will take care of this error check.
750 if Has_Aspects (N) then
751 Analyze_Aspect_Specifications (N, New_P);
752 end if;
753 end Analyze_Generic_Renaming;
755 -----------------------------
756 -- Analyze_Object_Renaming --
757 -----------------------------
759 procedure Analyze_Object_Renaming (N : Node_Id) is
760 Loc : constant Source_Ptr := Sloc (N);
761 Id : constant Entity_Id := Defining_Identifier (N);
762 Dec : Node_Id;
763 Nam : constant Node_Id := Name (N);
764 T : Entity_Id;
765 T2 : Entity_Id;
767 procedure Check_Constrained_Object;
768 -- If the nominal type is unconstrained but the renamed object is
769 -- constrained, as can happen with renaming an explicit dereference or
770 -- a function return, build a constrained subtype from the object. If
771 -- the renaming is for a formal in an accept statement, the analysis
772 -- has already established its actual subtype. This is only relevant
773 -- if the renamed object is an explicit dereference.
775 function In_Generic_Scope (E : Entity_Id) return Boolean;
776 -- Determine whether entity E is inside a generic cope
778 ------------------------------
779 -- Check_Constrained_Object --
780 ------------------------------
782 procedure Check_Constrained_Object is
783 Typ : constant Entity_Id := Etype (Nam);
784 Subt : Entity_Id;
786 begin
787 if Nkind_In (Nam, N_Function_Call, N_Explicit_Dereference)
788 and then Is_Composite_Type (Etype (Nam))
789 and then not Is_Constrained (Etype (Nam))
790 and then not Has_Unknown_Discriminants (Etype (Nam))
791 and then Expander_Active
792 then
793 -- If Actual_Subtype is already set, nothing to do
795 if Ekind_In (Id, E_Variable, E_Constant)
796 and then Present (Actual_Subtype (Id))
797 then
798 null;
800 -- A renaming of an unchecked union has no actual subtype
802 elsif Is_Unchecked_Union (Typ) then
803 null;
805 -- If a record is limited its size is invariant. This is the case
806 -- in particular with record types with an access discirminant
807 -- that are used in iterators. This is an optimization, but it
808 -- also prevents typing anomalies when the prefix is further
809 -- expanded. Limited types with discriminants are included.
811 elsif Is_Limited_Record (Typ)
812 or else
813 (Ekind (Typ) = E_Limited_Private_Type
814 and then Has_Discriminants (Typ)
815 and then Is_Access_Type (Etype (First_Discriminant (Typ))))
816 then
817 null;
819 else
820 Subt := Make_Temporary (Loc, 'T');
821 Remove_Side_Effects (Nam);
822 Insert_Action (N,
823 Make_Subtype_Declaration (Loc,
824 Defining_Identifier => Subt,
825 Subtype_Indication =>
826 Make_Subtype_From_Expr (Nam, Typ)));
827 Rewrite (Subtype_Mark (N), New_Occurrence_Of (Subt, Loc));
828 Set_Etype (Nam, Subt);
830 -- Freeze subtype at once, to prevent order of elaboration
831 -- issues in the backend. The renamed object exists, so its
832 -- type is already frozen in any case.
834 Freeze_Before (N, Subt);
835 end if;
836 end if;
837 end Check_Constrained_Object;
839 ----------------------
840 -- In_Generic_Scope --
841 ----------------------
843 function In_Generic_Scope (E : Entity_Id) return Boolean is
844 S : Entity_Id;
846 begin
847 S := Scope (E);
848 while Present (S) and then S /= Standard_Standard loop
849 if Is_Generic_Unit (S) then
850 return True;
851 end if;
853 S := Scope (S);
854 end loop;
856 return False;
857 end In_Generic_Scope;
859 -- Start of processing for Analyze_Object_Renaming
861 begin
862 if Nam = Error then
863 return;
864 end if;
866 -- The object renaming declaration may be subject to pragma Ghost with
867 -- policy Ignore. Set the mode now to ensure that any nodes generated
868 -- during analysis and expansion are properly flagged as ignored Ghost.
870 Set_Ghost_Mode (N);
871 Check_SPARK_05_Restriction ("object renaming is not allowed", N);
873 Set_Is_Pure (Id, Is_Pure (Current_Scope));
874 Enter_Name (Id);
876 -- The renaming of a component that depends on a discriminant requires
877 -- an actual subtype, because in subsequent use of the object Gigi will
878 -- be unable to locate the actual bounds. This explicit step is required
879 -- when the renaming is generated in removing side effects of an
880 -- already-analyzed expression.
882 if Nkind (Nam) = N_Selected_Component and then Analyzed (Nam) then
883 T := Etype (Nam);
884 Dec := Build_Actual_Subtype_Of_Component (Etype (Nam), Nam);
886 if Present (Dec) then
887 Insert_Action (N, Dec);
888 T := Defining_Identifier (Dec);
889 Set_Etype (Nam, T);
890 end if;
892 -- Complete analysis of the subtype mark in any case, for ASIS use
894 if Present (Subtype_Mark (N)) then
895 Find_Type (Subtype_Mark (N));
896 end if;
898 elsif Present (Subtype_Mark (N)) then
899 Find_Type (Subtype_Mark (N));
900 T := Entity (Subtype_Mark (N));
901 Analyze (Nam);
903 -- Reject renamings of conversions unless the type is tagged, or
904 -- the conversion is implicit (which can occur for cases of anonymous
905 -- access types in Ada 2012).
907 if Nkind (Nam) = N_Type_Conversion
908 and then Comes_From_Source (Nam)
909 and then not Is_Tagged_Type (T)
910 then
911 Error_Msg_N
912 ("renaming of conversion only allowed for tagged types", Nam);
913 end if;
915 Resolve (Nam, T);
917 -- If the renamed object is a function call of a limited type,
918 -- the expansion of the renaming is complicated by the presence
919 -- of various temporaries and subtypes that capture constraints
920 -- of the renamed object. Rewrite node as an object declaration,
921 -- whose expansion is simpler. Given that the object is limited
922 -- there is no copy involved and no performance hit.
924 if Nkind (Nam) = N_Function_Call
925 and then Is_Limited_View (Etype (Nam))
926 and then not Is_Constrained (Etype (Nam))
927 and then Comes_From_Source (N)
928 then
929 Set_Etype (Id, T);
930 Set_Ekind (Id, E_Constant);
931 Rewrite (N,
932 Make_Object_Declaration (Loc,
933 Defining_Identifier => Id,
934 Constant_Present => True,
935 Object_Definition => New_Occurrence_Of (Etype (Nam), Loc),
936 Expression => Relocate_Node (Nam)));
937 return;
938 end if;
940 -- Ada 2012 (AI05-149): Reject renaming of an anonymous access object
941 -- when renaming declaration has a named access type. The Ada 2012
942 -- coverage rules allow an anonymous access type in the context of
943 -- an expected named general access type, but the renaming rules
944 -- require the types to be the same. (An exception is when the type
945 -- of the renaming is also an anonymous access type, which can only
946 -- happen due to a renaming created by the expander.)
948 if Nkind (Nam) = N_Type_Conversion
949 and then not Comes_From_Source (Nam)
950 and then Ekind (Etype (Expression (Nam))) = E_Anonymous_Access_Type
951 and then Ekind (T) /= E_Anonymous_Access_Type
952 then
953 Wrong_Type (Expression (Nam), T); -- Should we give better error???
954 end if;
956 -- Check that a class-wide object is not being renamed as an object
957 -- of a specific type. The test for access types is needed to exclude
958 -- cases where the renamed object is a dynamically tagged access
959 -- result, such as occurs in certain expansions.
961 if Is_Tagged_Type (T) then
962 Check_Dynamically_Tagged_Expression
963 (Expr => Nam,
964 Typ => T,
965 Related_Nod => N);
966 end if;
968 -- Ada 2005 (AI-230/AI-254): Access renaming
970 else pragma Assert (Present (Access_Definition (N)));
971 T := Access_Definition
972 (Related_Nod => N,
973 N => Access_Definition (N));
975 Analyze (Nam);
977 -- Ada 2005 AI05-105: if the declaration has an anonymous access
978 -- type, the renamed object must also have an anonymous type, and
979 -- this is a name resolution rule. This was implicit in the last part
980 -- of the first sentence in 8.5.1(3/2), and is made explicit by this
981 -- recent AI.
983 if not Is_Overloaded (Nam) then
984 if Ekind (Etype (Nam)) /= Ekind (T) then
985 Error_Msg_N
986 ("expect anonymous access type in object renaming", N);
987 end if;
989 else
990 declare
991 I : Interp_Index;
992 It : Interp;
993 Typ : Entity_Id := Empty;
994 Seen : Boolean := False;
996 begin
997 Get_First_Interp (Nam, I, It);
998 while Present (It.Typ) loop
1000 -- Renaming is ambiguous if more than one candidate
1001 -- interpretation is type-conformant with the context.
1003 if Ekind (It.Typ) = Ekind (T) then
1004 if Ekind (T) = E_Anonymous_Access_Subprogram_Type
1005 and then
1006 Type_Conformant
1007 (Designated_Type (T), Designated_Type (It.Typ))
1008 then
1009 if not Seen then
1010 Seen := True;
1011 else
1012 Error_Msg_N
1013 ("ambiguous expression in renaming", Nam);
1014 end if;
1016 elsif Ekind (T) = E_Anonymous_Access_Type
1017 and then
1018 Covers (Designated_Type (T), Designated_Type (It.Typ))
1019 then
1020 if not Seen then
1021 Seen := True;
1022 else
1023 Error_Msg_N
1024 ("ambiguous expression in renaming", Nam);
1025 end if;
1026 end if;
1028 if Covers (T, It.Typ) then
1029 Typ := It.Typ;
1030 Set_Etype (Nam, Typ);
1031 Set_Is_Overloaded (Nam, False);
1032 end if;
1033 end if;
1035 Get_Next_Interp (I, It);
1036 end loop;
1037 end;
1038 end if;
1040 Resolve (Nam, T);
1042 -- Ada 2005 (AI-231): In the case where the type is defined by an
1043 -- access_definition, the renamed entity shall be of an access-to-
1044 -- constant type if and only if the access_definition defines an
1045 -- access-to-constant type. ARM 8.5.1(4)
1047 if Constant_Present (Access_Definition (N))
1048 and then not Is_Access_Constant (Etype (Nam))
1049 then
1050 Error_Msg_N ("(Ada 2005): the renamed object is not "
1051 & "access-to-constant (RM 8.5.1(6))", N);
1053 elsif not Constant_Present (Access_Definition (N))
1054 and then Is_Access_Constant (Etype (Nam))
1055 then
1056 Error_Msg_N ("(Ada 2005): the renamed object is not "
1057 & "access-to-variable (RM 8.5.1(6))", N);
1058 end if;
1060 if Is_Access_Subprogram_Type (Etype (Nam)) then
1061 Check_Subtype_Conformant
1062 (Designated_Type (T), Designated_Type (Etype (Nam)));
1064 elsif not Subtypes_Statically_Match
1065 (Designated_Type (T),
1066 Available_View (Designated_Type (Etype (Nam))))
1067 then
1068 Error_Msg_N
1069 ("subtype of renamed object does not statically match", N);
1070 end if;
1071 end if;
1073 -- Special processing for renaming function return object. Some errors
1074 -- and warnings are produced only for calls that come from source.
1076 if Nkind (Nam) = N_Function_Call then
1077 case Ada_Version is
1079 -- Usage is illegal in Ada 83, but renamings are also introduced
1080 -- during expansion, and error does not apply to those.
1082 when Ada_83 =>
1083 if Comes_From_Source (N) then
1084 Error_Msg_N
1085 ("(Ada 83) cannot rename function return object", Nam);
1086 end if;
1088 -- In Ada 95, warn for odd case of renaming parameterless function
1089 -- call if this is not a limited type (where this is useful).
1091 when others =>
1092 if Warn_On_Object_Renames_Function
1093 and then No (Parameter_Associations (Nam))
1094 and then not Is_Limited_Type (Etype (Nam))
1095 and then Comes_From_Source (Nam)
1096 then
1097 Error_Msg_N
1098 ("renaming function result object is suspicious?R?", Nam);
1099 Error_Msg_NE
1100 ("\function & will be called only once?R?", Nam,
1101 Entity (Name (Nam)));
1102 Error_Msg_N -- CODEFIX
1103 ("\suggest using an initialized constant "
1104 & "object instead?R?", Nam);
1105 end if;
1107 end case;
1108 end if;
1110 Check_Constrained_Object;
1112 -- An object renaming requires an exact match of the type. Class-wide
1113 -- matching is not allowed.
1115 if Is_Class_Wide_Type (T)
1116 and then Base_Type (Etype (Nam)) /= Base_Type (T)
1117 then
1118 Wrong_Type (Nam, T);
1119 end if;
1121 T2 := Etype (Nam);
1123 -- Ada 2005 (AI-326): Handle wrong use of incomplete type
1125 if Nkind (Nam) = N_Explicit_Dereference
1126 and then Ekind (Etype (T2)) = E_Incomplete_Type
1127 then
1128 Error_Msg_NE ("invalid use of incomplete type&", Id, T2);
1129 return;
1131 elsif Ekind (Etype (T)) = E_Incomplete_Type then
1132 Error_Msg_NE ("invalid use of incomplete type&", Id, T);
1133 return;
1134 end if;
1136 -- Ada 2005 (AI-327)
1138 if Ada_Version >= Ada_2005
1139 and then Nkind (Nam) = N_Attribute_Reference
1140 and then Attribute_Name (Nam) = Name_Priority
1141 then
1142 null;
1144 elsif Ada_Version >= Ada_2005 and then Nkind (Nam) in N_Has_Entity then
1145 declare
1146 Nam_Decl : Node_Id;
1147 Nam_Ent : Entity_Id;
1149 begin
1150 if Nkind (Nam) = N_Attribute_Reference then
1151 Nam_Ent := Entity (Prefix (Nam));
1152 else
1153 Nam_Ent := Entity (Nam);
1154 end if;
1156 Nam_Decl := Parent (Nam_Ent);
1158 if Has_Null_Exclusion (N)
1159 and then not Has_Null_Exclusion (Nam_Decl)
1160 then
1161 -- Ada 2005 (AI-423): If the object name denotes a generic
1162 -- formal object of a generic unit G, and the object renaming
1163 -- declaration occurs within the body of G or within the body
1164 -- of a generic unit declared within the declarative region
1165 -- of G, then the declaration of the formal object of G must
1166 -- have a null exclusion or a null-excluding subtype.
1168 if Is_Formal_Object (Nam_Ent)
1169 and then In_Generic_Scope (Id)
1170 then
1171 if not Can_Never_Be_Null (Etype (Nam_Ent)) then
1172 Error_Msg_N
1173 ("renamed formal does not exclude `NULL` "
1174 & "(RM 8.5.1(4.6/2))", N);
1176 elsif In_Package_Body (Scope (Id)) then
1177 Error_Msg_N
1178 ("formal object does not have a null exclusion"
1179 & "(RM 8.5.1(4.6/2))", N);
1180 end if;
1182 -- Ada 2005 (AI-423): Otherwise, the subtype of the object name
1183 -- shall exclude null.
1185 elsif not Can_Never_Be_Null (Etype (Nam_Ent)) then
1186 Error_Msg_N
1187 ("renamed object does not exclude `NULL` "
1188 & "(RM 8.5.1(4.6/2))", N);
1190 -- An instance is illegal if it contains a renaming that
1191 -- excludes null, and the actual does not. The renaming
1192 -- declaration has already indicated that the declaration
1193 -- of the renamed actual in the instance will raise
1194 -- constraint_error.
1196 elsif Nkind (Nam_Decl) = N_Object_Declaration
1197 and then In_Instance
1198 and then
1199 Present (Corresponding_Generic_Association (Nam_Decl))
1200 and then Nkind (Expression (Nam_Decl)) =
1201 N_Raise_Constraint_Error
1202 then
1203 Error_Msg_N
1204 ("renamed actual does not exclude `NULL` "
1205 & "(RM 8.5.1(4.6/2))", N);
1207 -- Finally, if there is a null exclusion, the subtype mark
1208 -- must not be null-excluding.
1210 elsif No (Access_Definition (N))
1211 and then Can_Never_Be_Null (T)
1212 then
1213 Error_Msg_NE
1214 ("`NOT NULL` not allowed (& already excludes null)",
1215 N, T);
1217 end if;
1219 elsif Can_Never_Be_Null (T)
1220 and then not Can_Never_Be_Null (Etype (Nam_Ent))
1221 then
1222 Error_Msg_N
1223 ("renamed object does not exclude `NULL` "
1224 & "(RM 8.5.1(4.6/2))", N);
1226 elsif Has_Null_Exclusion (N)
1227 and then No (Access_Definition (N))
1228 and then Can_Never_Be_Null (T)
1229 then
1230 Error_Msg_NE
1231 ("`NOT NULL` not allowed (& already excludes null)", N, T);
1232 end if;
1233 end;
1234 end if;
1236 -- Set the Ekind of the entity, unless it has been set already, as is
1237 -- the case for the iteration object over a container with no variable
1238 -- indexing. In that case it's been marked as a constant, and we do not
1239 -- want to change it to a variable.
1241 if Ekind (Id) /= E_Constant then
1242 Set_Ekind (Id, E_Variable);
1243 end if;
1245 -- Initialize the object size and alignment. Note that we used to call
1246 -- Init_Size_Align here, but that's wrong for objects which have only
1247 -- an Esize, not an RM_Size field.
1249 Init_Object_Size_Align (Id);
1251 if T = Any_Type or else Etype (Nam) = Any_Type then
1252 return;
1254 -- Verify that the renamed entity is an object or a function call. It
1255 -- may have been rewritten in several ways.
1257 elsif Is_Object_Reference (Nam) then
1258 if Comes_From_Source (N) then
1259 if Is_Dependent_Component_Of_Mutable_Object (Nam) then
1260 Error_Msg_N
1261 ("illegal renaming of discriminant-dependent component", Nam);
1262 end if;
1264 -- If the renaming comes from source and the renamed object is a
1265 -- dereference, then mark the prefix as needing debug information,
1266 -- since it might have been rewritten hence internally generated
1267 -- and Debug_Renaming_Declaration will link the renaming to it.
1269 if Nkind (Nam) = N_Explicit_Dereference
1270 and then Is_Entity_Name (Prefix (Nam))
1271 then
1272 Set_Debug_Info_Needed (Entity (Prefix (Nam)));
1273 end if;
1274 end if;
1276 -- A static function call may have been folded into a literal
1278 elsif Nkind (Original_Node (Nam)) = N_Function_Call
1280 -- When expansion is disabled, attribute reference is not rewritten
1281 -- as function call. Otherwise it may be rewritten as a conversion,
1282 -- so check original node.
1284 or else (Nkind (Original_Node (Nam)) = N_Attribute_Reference
1285 and then Is_Function_Attribute_Name
1286 (Attribute_Name (Original_Node (Nam))))
1288 -- Weird but legal, equivalent to renaming a function call. Illegal
1289 -- if the literal is the result of constant-folding an attribute
1290 -- reference that is not a function.
1292 or else (Is_Entity_Name (Nam)
1293 and then Ekind (Entity (Nam)) = E_Enumeration_Literal
1294 and then
1295 Nkind (Original_Node (Nam)) /= N_Attribute_Reference)
1297 or else (Nkind (Nam) = N_Type_Conversion
1298 and then Is_Tagged_Type (Entity (Subtype_Mark (Nam))))
1299 then
1300 null;
1302 elsif Nkind (Nam) = N_Type_Conversion then
1303 Error_Msg_N
1304 ("renaming of conversion only allowed for tagged types", Nam);
1306 -- Ada 2005 (AI-327)
1308 elsif Ada_Version >= Ada_2005
1309 and then Nkind (Nam) = N_Attribute_Reference
1310 and then Attribute_Name (Nam) = Name_Priority
1311 then
1312 null;
1314 -- Allow internally generated x'Reference expression
1316 elsif Nkind (Nam) = N_Reference then
1317 null;
1319 else
1320 Error_Msg_N ("expect object name in renaming", Nam);
1321 end if;
1323 Set_Etype (Id, T2);
1325 if not Is_Variable (Nam) then
1326 Set_Ekind (Id, E_Constant);
1327 Set_Never_Set_In_Source (Id, True);
1328 Set_Is_True_Constant (Id, True);
1329 end if;
1331 -- An object renaming is Ghost if the renamed entity is Ghost or the
1332 -- construct appears within a Ghost scope.
1334 if (Is_Entity_Name (Nam)
1335 and then Is_Ghost_Entity (Entity (Nam)))
1336 or else Ghost_Mode > None
1337 then
1338 Set_Is_Ghost_Entity (Id);
1339 end if;
1341 -- The entity of the renaming declaration needs to reflect whether the
1342 -- renamed object is volatile. Is_Volatile is set if the renamed object
1343 -- is volatile in the RM legality sense.
1345 Set_Is_Volatile (Id, Is_Volatile_Object (Nam));
1347 -- Treat as volatile if we just set the Volatile flag
1349 if Is_Volatile (Id)
1351 -- Or if we are renaming an entity which was marked this way
1353 -- Are there more cases, e.g. X(J) where X is Treat_As_Volatile ???
1355 or else (Is_Entity_Name (Nam)
1356 and then Treat_As_Volatile (Entity (Nam)))
1357 then
1358 Set_Treat_As_Volatile (Id, True);
1359 end if;
1361 -- Now make the link to the renamed object
1363 Set_Renamed_Object (Id, Nam);
1365 -- Implementation-defined aspect specifications can appear in a renaming
1366 -- declaration, but not language-defined ones. The call to procedure
1367 -- Analyze_Aspect_Specifications will take care of this error check.
1369 if Has_Aspects (N) then
1370 Analyze_Aspect_Specifications (N, Id);
1371 end if;
1373 -- Deal with dimensions
1375 Analyze_Dimension (N);
1376 end Analyze_Object_Renaming;
1378 ------------------------------
1379 -- Analyze_Package_Renaming --
1380 ------------------------------
1382 procedure Analyze_Package_Renaming (N : Node_Id) is
1383 New_P : constant Entity_Id := Defining_Entity (N);
1384 Old_P : Entity_Id;
1385 Spec : Node_Id;
1387 begin
1388 if Name (N) = Error then
1389 return;
1390 end if;
1392 -- The package renaming declaration may be subject to pragma Ghost with
1393 -- policy Ignore. Set the mode now to ensure that any nodes generated
1394 -- during analysis and expansion are properly flagged as ignored Ghost.
1396 Set_Ghost_Mode (N);
1398 -- Check for Text_IO special unit (we may be renaming a Text_IO child)
1400 Check_Text_IO_Special_Unit (Name (N));
1402 if Current_Scope /= Standard_Standard then
1403 Set_Is_Pure (New_P, Is_Pure (Current_Scope));
1404 end if;
1406 Enter_Name (New_P);
1407 Analyze (Name (N));
1409 if Is_Entity_Name (Name (N)) then
1410 Old_P := Entity (Name (N));
1411 else
1412 Old_P := Any_Id;
1413 end if;
1415 if Etype (Old_P) = Any_Type then
1416 Error_Msg_N ("expect package name in renaming", Name (N));
1418 elsif Ekind (Old_P) /= E_Package
1419 and then not (Ekind (Old_P) = E_Generic_Package
1420 and then In_Open_Scopes (Old_P))
1421 then
1422 if Ekind (Old_P) = E_Generic_Package then
1423 Error_Msg_N
1424 ("generic package cannot be renamed as a package", Name (N));
1425 else
1426 Error_Msg_Sloc := Sloc (Old_P);
1427 Error_Msg_NE
1428 ("expect package name in renaming, found& declared#",
1429 Name (N), Old_P);
1430 end if;
1432 -- Set basic attributes to minimize cascaded errors
1434 Set_Ekind (New_P, E_Package);
1435 Set_Etype (New_P, Standard_Void_Type);
1437 -- Here for OK package renaming
1439 else
1440 -- Entities in the old package are accessible through the renaming
1441 -- entity. The simplest implementation is to have both packages share
1442 -- the entity list.
1444 Set_Ekind (New_P, E_Package);
1445 Set_Etype (New_P, Standard_Void_Type);
1447 if Present (Renamed_Object (Old_P)) then
1448 Set_Renamed_Object (New_P, Renamed_Object (Old_P));
1449 else
1450 Set_Renamed_Object (New_P, Old_P);
1451 end if;
1453 Set_Has_Completion (New_P);
1455 Set_First_Entity (New_P, First_Entity (Old_P));
1456 Set_Last_Entity (New_P, Last_Entity (Old_P));
1457 Set_First_Private_Entity (New_P, First_Private_Entity (Old_P));
1458 Check_Library_Unit_Renaming (N, Old_P);
1459 Generate_Reference (Old_P, Name (N));
1461 -- A package renaming is Ghost if the renamed entity is Ghost or
1462 -- the construct appears within a Ghost scope.
1464 if Is_Ghost_Entity (Old_P) or else Ghost_Mode > None then
1465 Set_Is_Ghost_Entity (New_P);
1466 end if;
1468 -- If the renaming is in the visible part of a package, then we set
1469 -- Renamed_In_Spec for the renamed package, to prevent giving
1470 -- warnings about no entities referenced. Such a warning would be
1471 -- overenthusiastic, since clients can see entities in the renamed
1472 -- package via the visible package renaming.
1474 declare
1475 Ent : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
1476 begin
1477 if Ekind (Ent) = E_Package
1478 and then not In_Private_Part (Ent)
1479 and then In_Extended_Main_Source_Unit (N)
1480 and then Ekind (Old_P) = E_Package
1481 then
1482 Set_Renamed_In_Spec (Old_P);
1483 end if;
1484 end;
1486 -- If this is the renaming declaration of a package instantiation
1487 -- within itself, it is the declaration that ends the list of actuals
1488 -- for the instantiation. At this point, the subtypes that rename
1489 -- the actuals are flagged as generic, to avoid spurious ambiguities
1490 -- if the actuals for two distinct formals happen to coincide. If
1491 -- the actual is a private type, the subtype has a private completion
1492 -- that is flagged in the same fashion.
1494 -- Resolution is identical to what is was in the original generic.
1495 -- On exit from the generic instance, these are turned into regular
1496 -- subtypes again, so they are compatible with types in their class.
1498 if not Is_Generic_Instance (Old_P) then
1499 return;
1500 else
1501 Spec := Specification (Unit_Declaration_Node (Old_P));
1502 end if;
1504 if Nkind (Spec) = N_Package_Specification
1505 and then Present (Generic_Parent (Spec))
1506 and then Old_P = Current_Scope
1507 and then Chars (New_P) = Chars (Generic_Parent (Spec))
1508 then
1509 declare
1510 E : Entity_Id;
1512 begin
1513 E := First_Entity (Old_P);
1514 while Present (E) and then E /= New_P loop
1515 if Is_Type (E)
1516 and then Nkind (Parent (E)) = N_Subtype_Declaration
1517 then
1518 Set_Is_Generic_Actual_Type (E);
1520 if Is_Private_Type (E)
1521 and then Present (Full_View (E))
1522 then
1523 Set_Is_Generic_Actual_Type (Full_View (E));
1524 end if;
1525 end if;
1527 Next_Entity (E);
1528 end loop;
1529 end;
1530 end if;
1531 end if;
1533 -- Implementation-defined aspect specifications can appear in a renaming
1534 -- declaration, but not language-defined ones. The call to procedure
1535 -- Analyze_Aspect_Specifications will take care of this error check.
1537 if Has_Aspects (N) then
1538 Analyze_Aspect_Specifications (N, New_P);
1539 end if;
1540 end Analyze_Package_Renaming;
1542 -------------------------------
1543 -- Analyze_Renamed_Character --
1544 -------------------------------
1546 procedure Analyze_Renamed_Character
1547 (N : Node_Id;
1548 New_S : Entity_Id;
1549 Is_Body : Boolean)
1551 C : constant Node_Id := Name (N);
1553 begin
1554 if Ekind (New_S) = E_Function then
1555 Resolve (C, Etype (New_S));
1557 if Is_Body then
1558 Check_Frozen_Renaming (N, New_S);
1559 end if;
1561 else
1562 Error_Msg_N ("character literal can only be renamed as function", N);
1563 end if;
1564 end Analyze_Renamed_Character;
1566 ---------------------------------
1567 -- Analyze_Renamed_Dereference --
1568 ---------------------------------
1570 procedure Analyze_Renamed_Dereference
1571 (N : Node_Id;
1572 New_S : Entity_Id;
1573 Is_Body : Boolean)
1575 Nam : constant Node_Id := Name (N);
1576 P : constant Node_Id := Prefix (Nam);
1577 Typ : Entity_Id;
1578 Ind : Interp_Index;
1579 It : Interp;
1581 begin
1582 if not Is_Overloaded (P) then
1583 if Ekind (Etype (Nam)) /= E_Subprogram_Type
1584 or else not Type_Conformant (Etype (Nam), New_S)
1585 then
1586 Error_Msg_N ("designated type does not match specification", P);
1587 else
1588 Resolve (P);
1589 end if;
1591 return;
1593 else
1594 Typ := Any_Type;
1595 Get_First_Interp (Nam, Ind, It);
1597 while Present (It.Nam) loop
1599 if Ekind (It.Nam) = E_Subprogram_Type
1600 and then Type_Conformant (It.Nam, New_S)
1601 then
1602 if Typ /= Any_Id then
1603 Error_Msg_N ("ambiguous renaming", P);
1604 return;
1605 else
1606 Typ := It.Nam;
1607 end if;
1608 end if;
1610 Get_Next_Interp (Ind, It);
1611 end loop;
1613 if Typ = Any_Type then
1614 Error_Msg_N ("designated type does not match specification", P);
1615 else
1616 Resolve (N, Typ);
1618 if Is_Body then
1619 Check_Frozen_Renaming (N, New_S);
1620 end if;
1621 end if;
1622 end if;
1623 end Analyze_Renamed_Dereference;
1625 ---------------------------
1626 -- Analyze_Renamed_Entry --
1627 ---------------------------
1629 procedure Analyze_Renamed_Entry
1630 (N : Node_Id;
1631 New_S : Entity_Id;
1632 Is_Body : Boolean)
1634 Nam : constant Node_Id := Name (N);
1635 Sel : constant Node_Id := Selector_Name (Nam);
1636 Is_Actual : constant Boolean := Present (Corresponding_Formal_Spec (N));
1637 Old_S : Entity_Id;
1639 begin
1640 if Entity (Sel) = Any_Id then
1642 -- Selector is undefined on prefix. Error emitted already
1644 Set_Has_Completion (New_S);
1645 return;
1646 end if;
1648 -- Otherwise find renamed entity and build body of New_S as a call to it
1650 Old_S := Find_Renamed_Entity (N, Selector_Name (Nam), New_S);
1652 if Old_S = Any_Id then
1653 Error_Msg_N (" no subprogram or entry matches specification", N);
1654 else
1655 if Is_Body then
1656 Check_Subtype_Conformant (New_S, Old_S, N);
1657 Generate_Reference (New_S, Defining_Entity (N), 'b');
1658 Style.Check_Identifier (Defining_Entity (N), New_S);
1660 else
1661 -- Only mode conformance required for a renaming_as_declaration
1663 Check_Mode_Conformant (New_S, Old_S, N);
1664 end if;
1666 Inherit_Renamed_Profile (New_S, Old_S);
1668 -- The prefix can be an arbitrary expression that yields a task or
1669 -- protected object, so it must be resolved.
1671 Resolve (Prefix (Nam), Scope (Old_S));
1672 end if;
1674 Set_Convention (New_S, Convention (Old_S));
1675 Set_Has_Completion (New_S, Inside_A_Generic);
1677 -- AI05-0225: If the renamed entity is a procedure or entry of a
1678 -- protected object, the target object must be a variable.
1680 if Ekind (Scope (Old_S)) in Protected_Kind
1681 and then Ekind (New_S) = E_Procedure
1682 and then not Is_Variable (Prefix (Nam))
1683 then
1684 if Is_Actual then
1685 Error_Msg_N
1686 ("target object of protected operation used as actual for "
1687 & "formal procedure must be a variable", Nam);
1688 else
1689 Error_Msg_N
1690 ("target object of protected operation renamed as procedure, "
1691 & "must be a variable", Nam);
1692 end if;
1693 end if;
1695 if Is_Body then
1696 Check_Frozen_Renaming (N, New_S);
1697 end if;
1698 end Analyze_Renamed_Entry;
1700 -----------------------------------
1701 -- Analyze_Renamed_Family_Member --
1702 -----------------------------------
1704 procedure Analyze_Renamed_Family_Member
1705 (N : Node_Id;
1706 New_S : Entity_Id;
1707 Is_Body : Boolean)
1709 Nam : constant Node_Id := Name (N);
1710 P : constant Node_Id := Prefix (Nam);
1711 Old_S : Entity_Id;
1713 begin
1714 if (Is_Entity_Name (P) and then Ekind (Entity (P)) = E_Entry_Family)
1715 or else (Nkind (P) = N_Selected_Component
1716 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family)
1717 then
1718 if Is_Entity_Name (P) then
1719 Old_S := Entity (P);
1720 else
1721 Old_S := Entity (Selector_Name (P));
1722 end if;
1724 if not Entity_Matches_Spec (Old_S, New_S) then
1725 Error_Msg_N ("entry family does not match specification", N);
1727 elsif Is_Body then
1728 Check_Subtype_Conformant (New_S, Old_S, N);
1729 Generate_Reference (New_S, Defining_Entity (N), 'b');
1730 Style.Check_Identifier (Defining_Entity (N), New_S);
1731 end if;
1733 else
1734 Error_Msg_N ("no entry family matches specification", N);
1735 end if;
1737 Set_Has_Completion (New_S, Inside_A_Generic);
1739 if Is_Body then
1740 Check_Frozen_Renaming (N, New_S);
1741 end if;
1742 end Analyze_Renamed_Family_Member;
1744 -----------------------------------------
1745 -- Analyze_Renamed_Primitive_Operation --
1746 -----------------------------------------
1748 procedure Analyze_Renamed_Primitive_Operation
1749 (N : Node_Id;
1750 New_S : Entity_Id;
1751 Is_Body : Boolean)
1753 Old_S : Entity_Id;
1755 function Conforms
1756 (Subp : Entity_Id;
1757 Ctyp : Conformance_Type) return Boolean;
1758 -- Verify that the signatures of the renamed entity and the new entity
1759 -- match. The first formal of the renamed entity is skipped because it
1760 -- is the target object in any subsequent call.
1762 --------------
1763 -- Conforms --
1764 --------------
1766 function Conforms
1767 (Subp : Entity_Id;
1768 Ctyp : Conformance_Type) return Boolean
1770 Old_F : Entity_Id;
1771 New_F : Entity_Id;
1773 begin
1774 if Ekind (Subp) /= Ekind (New_S) then
1775 return False;
1776 end if;
1778 Old_F := Next_Formal (First_Formal (Subp));
1779 New_F := First_Formal (New_S);
1780 while Present (Old_F) and then Present (New_F) loop
1781 if not Conforming_Types (Etype (Old_F), Etype (New_F), Ctyp) then
1782 return False;
1783 end if;
1785 if Ctyp >= Mode_Conformant
1786 and then Ekind (Old_F) /= Ekind (New_F)
1787 then
1788 return False;
1789 end if;
1791 Next_Formal (New_F);
1792 Next_Formal (Old_F);
1793 end loop;
1795 return True;
1796 end Conforms;
1798 -- Start of processing for Analyze_Renamed_Primitive_Operation
1800 begin
1801 if not Is_Overloaded (Selector_Name (Name (N))) then
1802 Old_S := Entity (Selector_Name (Name (N)));
1804 if not Conforms (Old_S, Type_Conformant) then
1805 Old_S := Any_Id;
1806 end if;
1808 else
1809 -- Find the operation that matches the given signature
1811 declare
1812 It : Interp;
1813 Ind : Interp_Index;
1815 begin
1816 Old_S := Any_Id;
1817 Get_First_Interp (Selector_Name (Name (N)), Ind, It);
1819 while Present (It.Nam) loop
1820 if Conforms (It.Nam, Type_Conformant) then
1821 Old_S := It.Nam;
1822 end if;
1824 Get_Next_Interp (Ind, It);
1825 end loop;
1826 end;
1827 end if;
1829 if Old_S = Any_Id then
1830 Error_Msg_N (" no subprogram or entry matches specification", N);
1832 else
1833 if Is_Body then
1834 if not Conforms (Old_S, Subtype_Conformant) then
1835 Error_Msg_N ("subtype conformance error in renaming", N);
1836 end if;
1838 Generate_Reference (New_S, Defining_Entity (N), 'b');
1839 Style.Check_Identifier (Defining_Entity (N), New_S);
1841 else
1842 -- Only mode conformance required for a renaming_as_declaration
1844 if not Conforms (Old_S, Mode_Conformant) then
1845 Error_Msg_N ("mode conformance error in renaming", N);
1846 end if;
1848 -- Enforce the rule given in (RM 6.3.1 (10.1/2)): a prefixed
1849 -- view of a subprogram is intrinsic, because the compiler has
1850 -- to generate a wrapper for any call to it. If the name in a
1851 -- subprogram renaming is a prefixed view, the entity is thus
1852 -- intrinsic, and 'Access cannot be applied to it.
1854 Set_Convention (New_S, Convention_Intrinsic);
1855 end if;
1857 -- Inherit_Renamed_Profile (New_S, Old_S);
1859 -- The prefix can be an arbitrary expression that yields an
1860 -- object, so it must be resolved.
1862 Resolve (Prefix (Name (N)));
1863 end if;
1864 end Analyze_Renamed_Primitive_Operation;
1866 ---------------------------------
1867 -- Analyze_Subprogram_Renaming --
1868 ---------------------------------
1870 procedure Analyze_Subprogram_Renaming (N : Node_Id) is
1871 Formal_Spec : constant Entity_Id := Corresponding_Formal_Spec (N);
1872 Is_Actual : constant Boolean := Present (Formal_Spec);
1873 Nam : constant Node_Id := Name (N);
1874 Save_AV : constant Ada_Version_Type := Ada_Version;
1875 Save_AVP : constant Node_Id := Ada_Version_Pragma;
1876 Save_AV_Exp : constant Ada_Version_Type := Ada_Version_Explicit;
1877 Spec : constant Node_Id := Specification (N);
1879 Old_S : Entity_Id := Empty;
1880 Rename_Spec : Entity_Id;
1882 procedure Build_Class_Wide_Wrapper
1883 (Ren_Id : out Entity_Id;
1884 Wrap_Id : out Entity_Id);
1885 -- Ada 2012 (AI05-0071): A generic/instance scenario involving a formal
1886 -- type with unknown discriminants and a generic primitive operation of
1887 -- the said type with a box require special processing when the actual
1888 -- is a class-wide type:
1890 -- generic
1891 -- type Formal_Typ (<>) is private;
1892 -- with procedure Prim_Op (Param : Formal_Typ) is <>;
1893 -- package Gen is ...
1895 -- package Inst is new Gen (Actual_Typ'Class);
1897 -- In this case the general renaming mechanism used in the prologue of
1898 -- an instance no longer applies:
1900 -- procedure Prim_Op (Param : Formal_Typ) renames Prim_Op;
1902 -- The above is replaced the following wrapper/renaming combination:
1904 -- procedure Wrapper (Param : Formal_Typ) is -- wrapper
1905 -- begin
1906 -- Prim_Op (Param); -- primitive
1907 -- end Wrapper;
1909 -- procedure Prim_Op (Param : Formal_Typ) renames Wrapper;
1911 -- This transformation applies only if there is no explicit visible
1912 -- class-wide operation at the point of the instantiation. Ren_Id is
1913 -- the entity of the renaming declaration. Wrap_Id is the entity of
1914 -- the generated class-wide wrapper (or Any_Id).
1916 procedure Check_Null_Exclusion
1917 (Ren : Entity_Id;
1918 Sub : Entity_Id);
1919 -- Ada 2005 (AI-423): Given renaming Ren of subprogram Sub, check the
1920 -- following AI rules:
1922 -- If Ren is a renaming of a formal subprogram and one of its
1923 -- parameters has a null exclusion, then the corresponding formal
1924 -- in Sub must also have one. Otherwise the subtype of the Sub's
1925 -- formal parameter must exclude null.
1927 -- If Ren is a renaming of a formal function and its return
1928 -- profile has a null exclusion, then Sub's return profile must
1929 -- have one. Otherwise the subtype of Sub's return profile must
1930 -- exclude null.
1932 procedure Freeze_Actual_Profile;
1933 -- In Ada 2012, enforce the freezing rule concerning formal incomplete
1934 -- types: a callable entity freezes its profile, unless it has an
1935 -- incomplete untagged formal (RM 13.14(10.2/3)).
1937 function Has_Class_Wide_Actual return Boolean;
1938 -- Ada 2012 (AI05-071, AI05-0131): True if N is the renaming for a
1939 -- defaulted formal subprogram where the actual for the controlling
1940 -- formal type is class-wide.
1942 function Original_Subprogram (Subp : Entity_Id) return Entity_Id;
1943 -- Find renamed entity when the declaration is a renaming_as_body and
1944 -- the renamed entity may itself be a renaming_as_body. Used to enforce
1945 -- rule that a renaming_as_body is illegal if the declaration occurs
1946 -- before the subprogram it completes is frozen, and renaming indirectly
1947 -- renames the subprogram itself.(Defect Report 8652/0027).
1949 ------------------------------
1950 -- Build_Class_Wide_Wrapper --
1951 ------------------------------
1953 procedure Build_Class_Wide_Wrapper
1954 (Ren_Id : out Entity_Id;
1955 Wrap_Id : out Entity_Id)
1957 Loc : constant Source_Ptr := Sloc (N);
1959 function Build_Call
1960 (Subp_Id : Entity_Id;
1961 Params : List_Id) return Node_Id;
1962 -- Create a dispatching call to invoke routine Subp_Id with actuals
1963 -- built from the parameter specifications of list Params.
1965 function Build_Spec (Subp_Id : Entity_Id) return Node_Id;
1966 -- Create a subprogram specification based on the subprogram profile
1967 -- of Subp_Id.
1969 function Find_Primitive (Typ : Entity_Id) return Entity_Id;
1970 -- Find a primitive subprogram of type Typ which matches the profile
1971 -- of the renaming declaration.
1973 procedure Interpretation_Error (Subp_Id : Entity_Id);
1974 -- Emit a continuation error message suggesting subprogram Subp_Id as
1975 -- a possible interpretation.
1977 function Is_Intrinsic_Equality (Subp_Id : Entity_Id) return Boolean;
1978 -- Determine whether subprogram Subp_Id denotes the intrinsic "="
1979 -- operator.
1981 function Is_Suitable_Candidate (Subp_Id : Entity_Id) return Boolean;
1982 -- Determine whether subprogram Subp_Id is a suitable candidate for
1983 -- the role of a wrapped subprogram.
1985 ----------------
1986 -- Build_Call --
1987 ----------------
1989 function Build_Call
1990 (Subp_Id : Entity_Id;
1991 Params : List_Id) return Node_Id
1993 Actuals : constant List_Id := New_List;
1994 Call_Ref : constant Node_Id := New_Occurrence_Of (Subp_Id, Loc);
1995 Formal : Node_Id;
1997 begin
1998 -- Build the actual parameters of the call
2000 Formal := First (Params);
2001 while Present (Formal) loop
2002 Append_To (Actuals,
2003 Make_Identifier (Loc, Chars (Defining_Identifier (Formal))));
2004 Next (Formal);
2005 end loop;
2007 -- Generate:
2008 -- return Subp_Id (Actuals);
2010 if Ekind_In (Subp_Id, E_Function, E_Operator) then
2011 return
2012 Make_Simple_Return_Statement (Loc,
2013 Expression =>
2014 Make_Function_Call (Loc,
2015 Name => Call_Ref,
2016 Parameter_Associations => Actuals));
2018 -- Generate:
2019 -- Subp_Id (Actuals);
2021 else
2022 return
2023 Make_Procedure_Call_Statement (Loc,
2024 Name => Call_Ref,
2025 Parameter_Associations => Actuals);
2026 end if;
2027 end Build_Call;
2029 ----------------
2030 -- Build_Spec --
2031 ----------------
2033 function Build_Spec (Subp_Id : Entity_Id) return Node_Id is
2034 Params : constant List_Id := Copy_Parameter_List (Subp_Id);
2035 Spec_Id : constant Entity_Id :=
2036 Make_Defining_Identifier (Loc,
2037 Chars => New_External_Name (Chars (Subp_Id), 'R'));
2039 begin
2040 if Ekind (Formal_Spec) = E_Procedure then
2041 return
2042 Make_Procedure_Specification (Loc,
2043 Defining_Unit_Name => Spec_Id,
2044 Parameter_Specifications => Params);
2045 else
2046 return
2047 Make_Function_Specification (Loc,
2048 Defining_Unit_Name => Spec_Id,
2049 Parameter_Specifications => Params,
2050 Result_Definition =>
2051 New_Copy_Tree (Result_Definition (Spec)));
2052 end if;
2053 end Build_Spec;
2055 --------------------
2056 -- Find_Primitive --
2057 --------------------
2059 function Find_Primitive (Typ : Entity_Id) return Entity_Id is
2060 procedure Replace_Parameter_Types (Spec : Node_Id);
2061 -- Given a specification Spec, replace all class-wide parameter
2062 -- types with reference to type Typ.
2064 -----------------------------
2065 -- Replace_Parameter_Types --
2066 -----------------------------
2068 procedure Replace_Parameter_Types (Spec : Node_Id) is
2069 Formal : Node_Id;
2070 Formal_Id : Entity_Id;
2071 Formal_Typ : Node_Id;
2073 begin
2074 Formal := First (Parameter_Specifications (Spec));
2075 while Present (Formal) loop
2076 Formal_Id := Defining_Identifier (Formal);
2077 Formal_Typ := Parameter_Type (Formal);
2079 -- Create a new entity for each class-wide formal to prevent
2080 -- aliasing with the original renaming. Replace the type of
2081 -- such a parameter with the candidate type.
2083 if Nkind (Formal_Typ) = N_Identifier
2084 and then Is_Class_Wide_Type (Etype (Formal_Typ))
2085 then
2086 Set_Defining_Identifier (Formal,
2087 Make_Defining_Identifier (Loc, Chars (Formal_Id)));
2089 Set_Parameter_Type (Formal, New_Occurrence_Of (Typ, Loc));
2090 end if;
2092 Next (Formal);
2093 end loop;
2094 end Replace_Parameter_Types;
2096 -- Local variables
2098 Alt_Ren : constant Node_Id := New_Copy_Tree (N);
2099 Alt_Nam : constant Node_Id := Name (Alt_Ren);
2100 Alt_Spec : constant Node_Id := Specification (Alt_Ren);
2101 Subp_Id : Entity_Id;
2103 -- Start of processing for Find_Primitive
2105 begin
2106 -- Each attempt to find a suitable primitive of a particular type
2107 -- operates on its own copy of the original renaming. As a result
2108 -- the original renaming is kept decoration and side-effect free.
2110 -- Inherit the overloaded status of the renamed subprogram name
2112 if Is_Overloaded (Nam) then
2113 Set_Is_Overloaded (Alt_Nam);
2114 Save_Interps (Nam, Alt_Nam);
2115 end if;
2117 -- The copied renaming is hidden from visibility to prevent the
2118 -- pollution of the enclosing context.
2120 Set_Defining_Unit_Name (Alt_Spec, Make_Temporary (Loc, 'R'));
2122 -- The types of all class-wide parameters must be changed to the
2123 -- candidate type.
2125 Replace_Parameter_Types (Alt_Spec);
2127 -- Try to find a suitable primitive which matches the altered
2128 -- profile of the renaming specification.
2130 Subp_Id :=
2131 Find_Renamed_Entity
2132 (N => Alt_Ren,
2133 Nam => Name (Alt_Ren),
2134 New_S => Analyze_Subprogram_Specification (Alt_Spec),
2135 Is_Actual => Is_Actual);
2137 -- Do not return Any_Id if the resolion of the altered profile
2138 -- failed as this complicates further checks on the caller side,
2139 -- return Empty instead.
2141 if Subp_Id = Any_Id then
2142 return Empty;
2143 else
2144 return Subp_Id;
2145 end if;
2146 end Find_Primitive;
2148 --------------------------
2149 -- Interpretation_Error --
2150 --------------------------
2152 procedure Interpretation_Error (Subp_Id : Entity_Id) is
2153 begin
2154 Error_Msg_Sloc := Sloc (Subp_Id);
2156 if Is_Internal (Subp_Id) then
2157 Error_Msg_NE
2158 ("\\possible interpretation: predefined & #",
2159 Spec, Formal_Spec);
2160 else
2161 Error_Msg_NE
2162 ("\\possible interpretation: & defined #", Spec, Formal_Spec);
2163 end if;
2164 end Interpretation_Error;
2166 ---------------------------
2167 -- Is_Intrinsic_Equality --
2168 ---------------------------
2170 function Is_Intrinsic_Equality (Subp_Id : Entity_Id) return Boolean is
2171 begin
2172 return
2173 Ekind (Subp_Id) = E_Operator
2174 and then Chars (Subp_Id) = Name_Op_Eq
2175 and then Is_Intrinsic_Subprogram (Subp_Id);
2176 end Is_Intrinsic_Equality;
2178 ---------------------------
2179 -- Is_Suitable_Candidate --
2180 ---------------------------
2182 function Is_Suitable_Candidate (Subp_Id : Entity_Id) return Boolean is
2183 begin
2184 if No (Subp_Id) then
2185 return False;
2187 -- An intrinsic subprogram is never a good candidate. This is an
2188 -- indication of a missing primitive, either defined directly or
2189 -- inherited from a parent tagged type.
2191 elsif Is_Intrinsic_Subprogram (Subp_Id) then
2192 return False;
2194 else
2195 return True;
2196 end if;
2197 end Is_Suitable_Candidate;
2199 -- Local variables
2201 Actual_Typ : Entity_Id := Empty;
2202 -- The actual class-wide type for Formal_Typ
2204 CW_Prim_OK : Boolean;
2205 CW_Prim_Op : Entity_Id;
2206 -- The class-wide subprogram (if available) which corresponds to the
2207 -- renamed generic formal subprogram.
2209 Formal_Typ : Entity_Id := Empty;
2210 -- The generic formal type with unknown discriminants
2212 Root_Prim_OK : Boolean;
2213 Root_Prim_Op : Entity_Id;
2214 -- The root type primitive (if available) which corresponds to the
2215 -- renamed generic formal subprogram.
2217 Root_Typ : Entity_Id := Empty;
2218 -- The root type of Actual_Typ
2220 Body_Decl : Node_Id;
2221 Formal : Node_Id;
2222 Prim_Op : Entity_Id;
2223 Spec_Decl : Node_Id;
2225 -- Start of processing for Build_Class_Wide_Wrapper
2227 begin
2228 -- Analyze the specification of the renaming in case the generation
2229 -- of the class-wide wrapper fails.
2231 Ren_Id := Analyze_Subprogram_Specification (Spec);
2232 Wrap_Id := Any_Id;
2234 -- Do not attempt to build a wrapper if the renaming is in error
2236 if Error_Posted (Nam) then
2237 return;
2238 end if;
2240 -- Analyze the renamed name, but do not resolve it. The resolution is
2241 -- completed once a suitable subprogram is found.
2243 Analyze (Nam);
2245 -- When the renamed name denotes the intrinsic operator equals, the
2246 -- name must be treated as overloaded. This allows for a potential
2247 -- match against the root type's predefined equality function.
2249 if Is_Intrinsic_Equality (Entity (Nam)) then
2250 Set_Is_Overloaded (Nam);
2251 Collect_Interps (Nam);
2252 end if;
2254 -- Step 1: Find the generic formal type with unknown discriminants
2255 -- and its corresponding class-wide actual type from the renamed
2256 -- generic formal subprogram.
2258 Formal := First_Formal (Formal_Spec);
2259 while Present (Formal) loop
2260 if Has_Unknown_Discriminants (Etype (Formal))
2261 and then not Is_Class_Wide_Type (Etype (Formal))
2262 and then Is_Class_Wide_Type (Get_Instance_Of (Etype (Formal)))
2263 then
2264 Formal_Typ := Etype (Formal);
2265 Actual_Typ := Get_Instance_Of (Formal_Typ);
2266 Root_Typ := Etype (Actual_Typ);
2267 exit;
2268 end if;
2270 Next_Formal (Formal);
2271 end loop;
2273 -- The specification of the generic formal subprogram should always
2274 -- contain a formal type with unknown discriminants whose actual is
2275 -- a class-wide type, otherwise this indicates a failure in routine
2276 -- Has_Class_Wide_Actual.
2278 pragma Assert (Present (Formal_Typ));
2280 -- Step 2: Find the proper class-wide subprogram or primitive which
2281 -- corresponds to the renamed generic formal subprogram.
2283 CW_Prim_Op := Find_Primitive (Actual_Typ);
2284 CW_Prim_OK := Is_Suitable_Candidate (CW_Prim_Op);
2285 Root_Prim_Op := Find_Primitive (Root_Typ);
2286 Root_Prim_OK := Is_Suitable_Candidate (Root_Prim_Op);
2288 -- The class-wide actual type has two subprograms which correspond to
2289 -- the renamed generic formal subprogram:
2291 -- with procedure Prim_Op (Param : Formal_Typ);
2293 -- procedure Prim_Op (Param : Actual_Typ); -- may be inherited
2294 -- procedure Prim_Op (Param : Actual_Typ'Class);
2296 -- Even though the declaration of the two subprograms is legal, a
2297 -- call to either one is ambiguous and therefore illegal.
2299 if CW_Prim_OK and Root_Prim_OK then
2301 -- A user-defined primitive has precedence over a predefined one
2303 if Is_Internal (CW_Prim_Op)
2304 and then not Is_Internal (Root_Prim_Op)
2305 then
2306 Prim_Op := Root_Prim_Op;
2308 elsif Is_Internal (Root_Prim_Op)
2309 and then not Is_Internal (CW_Prim_Op)
2310 then
2311 Prim_Op := CW_Prim_Op;
2313 elsif CW_Prim_Op = Root_Prim_Op then
2314 Prim_Op := Root_Prim_Op;
2316 -- Otherwise both candidate subprograms are user-defined and
2317 -- ambiguous.
2319 else
2320 Error_Msg_NE
2321 ("ambiguous actual for generic subprogram &",
2322 Spec, Formal_Spec);
2323 Interpretation_Error (Root_Prim_Op);
2324 Interpretation_Error (CW_Prim_Op);
2325 return;
2326 end if;
2328 elsif CW_Prim_OK and not Root_Prim_OK then
2329 Prim_Op := CW_Prim_Op;
2331 elsif not CW_Prim_OK and Root_Prim_OK then
2332 Prim_Op := Root_Prim_Op;
2334 -- An intrinsic equality may act as a suitable candidate in the case
2335 -- of a null type extension where the parent's equality is hidden. A
2336 -- call to an intrinsic equality is expanded as dispatching.
2338 elsif Present (Root_Prim_Op)
2339 and then Is_Intrinsic_Equality (Root_Prim_Op)
2340 then
2341 Prim_Op := Root_Prim_Op;
2343 -- Otherwise there are no candidate subprograms. Let the caller
2344 -- diagnose the error.
2346 else
2347 return;
2348 end if;
2350 -- At this point resolution has taken place and the name is no longer
2351 -- overloaded. Mark the primitive as referenced.
2353 Set_Is_Overloaded (Name (N), False);
2354 Set_Referenced (Prim_Op);
2356 -- Step 3: Create the declaration and the body of the wrapper, insert
2357 -- all the pieces into the tree.
2359 Spec_Decl :=
2360 Make_Subprogram_Declaration (Loc,
2361 Specification => Build_Spec (Ren_Id));
2362 Insert_Before_And_Analyze (N, Spec_Decl);
2364 -- If the operator carries an Eliminated pragma, indicate that the
2365 -- wrapper is also to be eliminated, to prevent spurious error when
2366 -- using gnatelim on programs that include box-initialization of
2367 -- equality operators.
2369 Wrap_Id := Defining_Entity (Spec_Decl);
2370 Set_Is_Eliminated (Wrap_Id, Is_Eliminated (Prim_Op));
2372 Body_Decl :=
2373 Make_Subprogram_Body (Loc,
2374 Specification => Build_Spec (Ren_Id),
2375 Declarations => New_List,
2376 Handled_Statement_Sequence =>
2377 Make_Handled_Sequence_Of_Statements (Loc,
2378 Statements => New_List (
2379 Build_Call
2380 (Subp_Id => Prim_Op,
2381 Params =>
2382 Parameter_Specifications
2383 (Specification (Spec_Decl))))));
2385 -- The generated body does not freeze and must be analyzed when the
2386 -- class-wide wrapper is frozen. The body is only needed if expansion
2387 -- is enabled.
2389 if Expander_Active then
2390 Append_Freeze_Action (Wrap_Id, Body_Decl);
2391 end if;
2393 -- Step 4: The subprogram renaming aliases the wrapper
2395 Rewrite (Nam, New_Occurrence_Of (Wrap_Id, Loc));
2396 end Build_Class_Wide_Wrapper;
2398 --------------------------
2399 -- Check_Null_Exclusion --
2400 --------------------------
2402 procedure Check_Null_Exclusion
2403 (Ren : Entity_Id;
2404 Sub : Entity_Id)
2406 Ren_Formal : Entity_Id;
2407 Sub_Formal : Entity_Id;
2409 begin
2410 -- Parameter check
2412 Ren_Formal := First_Formal (Ren);
2413 Sub_Formal := First_Formal (Sub);
2414 while Present (Ren_Formal) and then Present (Sub_Formal) loop
2415 if Has_Null_Exclusion (Parent (Ren_Formal))
2416 and then
2417 not (Has_Null_Exclusion (Parent (Sub_Formal))
2418 or else Can_Never_Be_Null (Etype (Sub_Formal)))
2419 then
2420 Error_Msg_NE
2421 ("`NOT NULL` required for parameter &",
2422 Parent (Sub_Formal), Sub_Formal);
2423 end if;
2425 Next_Formal (Ren_Formal);
2426 Next_Formal (Sub_Formal);
2427 end loop;
2429 -- Return profile check
2431 if Nkind (Parent (Ren)) = N_Function_Specification
2432 and then Nkind (Parent (Sub)) = N_Function_Specification
2433 and then Has_Null_Exclusion (Parent (Ren))
2434 and then not (Has_Null_Exclusion (Parent (Sub))
2435 or else Can_Never_Be_Null (Etype (Sub)))
2436 then
2437 Error_Msg_N
2438 ("return must specify `NOT NULL`",
2439 Result_Definition (Parent (Sub)));
2440 end if;
2441 end Check_Null_Exclusion;
2443 ---------------------------
2444 -- Freeze_Actual_Profile --
2445 ---------------------------
2447 procedure Freeze_Actual_Profile is
2448 F : Entity_Id;
2449 Has_Untagged_Inc : Boolean;
2450 Instantiation_Node : constant Node_Id := Parent (N);
2452 begin
2453 if Ada_Version >= Ada_2012 then
2454 F := First_Formal (Formal_Spec);
2455 Has_Untagged_Inc := False;
2456 while Present (F) loop
2457 if Ekind (Etype (F)) = E_Incomplete_Type
2458 and then not Is_Tagged_Type (Etype (F))
2459 then
2460 Has_Untagged_Inc := True;
2461 exit;
2462 end if;
2464 F := Next_Formal (F);
2465 end loop;
2467 if Ekind (Formal_Spec) = E_Function
2468 and then Ekind (Etype (Formal_Spec)) = E_Incomplete_Type
2469 and then not Is_Tagged_Type (Etype (F))
2470 then
2471 Has_Untagged_Inc := True;
2472 end if;
2474 if not Has_Untagged_Inc then
2475 F := First_Formal (Old_S);
2476 while Present (F) loop
2477 Freeze_Before (Instantiation_Node, Etype (F));
2479 if Is_Incomplete_Or_Private_Type (Etype (F))
2480 and then No (Underlying_Type (Etype (F)))
2481 then
2482 -- Exclude generic types, or types derived from them.
2483 -- They will be frozen in the enclosing instance.
2485 if Is_Generic_Type (Etype (F))
2486 or else Is_Generic_Type (Root_Type (Etype (F)))
2487 then
2488 null;
2489 else
2490 Error_Msg_NE
2491 ("type& must be frozen before this point",
2492 Instantiation_Node, Etype (F));
2493 end if;
2494 end if;
2496 F := Next_Formal (F);
2497 end loop;
2498 end if;
2499 end if;
2500 end Freeze_Actual_Profile;
2502 ---------------------------
2503 -- Has_Class_Wide_Actual --
2504 ---------------------------
2506 function Has_Class_Wide_Actual return Boolean is
2507 Formal : Entity_Id;
2508 Formal_Typ : Entity_Id;
2510 begin
2511 if Is_Actual then
2512 Formal := First_Formal (Formal_Spec);
2513 while Present (Formal) loop
2514 Formal_Typ := Etype (Formal);
2516 if Has_Unknown_Discriminants (Formal_Typ)
2517 and then not Is_Class_Wide_Type (Formal_Typ)
2518 and then Is_Class_Wide_Type (Get_Instance_Of (Formal_Typ))
2519 then
2520 return True;
2521 end if;
2523 Next_Formal (Formal);
2524 end loop;
2525 end if;
2527 return False;
2528 end Has_Class_Wide_Actual;
2530 -------------------------
2531 -- Original_Subprogram --
2532 -------------------------
2534 function Original_Subprogram (Subp : Entity_Id) return Entity_Id is
2535 Orig_Decl : Node_Id;
2536 Orig_Subp : Entity_Id;
2538 begin
2539 -- First case: renamed entity is itself a renaming
2541 if Present (Alias (Subp)) then
2542 return Alias (Subp);
2544 elsif Nkind (Unit_Declaration_Node (Subp)) = N_Subprogram_Declaration
2545 and then Present (Corresponding_Body (Unit_Declaration_Node (Subp)))
2546 then
2547 -- Check if renamed entity is a renaming_as_body
2549 Orig_Decl :=
2550 Unit_Declaration_Node
2551 (Corresponding_Body (Unit_Declaration_Node (Subp)));
2553 if Nkind (Orig_Decl) = N_Subprogram_Renaming_Declaration then
2554 Orig_Subp := Entity (Name (Orig_Decl));
2556 if Orig_Subp = Rename_Spec then
2558 -- Circularity detected
2560 return Orig_Subp;
2562 else
2563 return (Original_Subprogram (Orig_Subp));
2564 end if;
2565 else
2566 return Subp;
2567 end if;
2568 else
2569 return Subp;
2570 end if;
2571 end Original_Subprogram;
2573 -- Local variables
2575 CW_Actual : constant Boolean := Has_Class_Wide_Actual;
2576 -- Ada 2012 (AI05-071, AI05-0131): True if the renaming is for a
2577 -- defaulted formal subprogram when the actual for a related formal
2578 -- type is class-wide.
2580 Inst_Node : Node_Id := Empty;
2581 New_S : Entity_Id;
2583 -- Start of processing for Analyze_Subprogram_Renaming
2585 begin
2586 -- The subprogram renaming declaration may be subject to pragma Ghost
2587 -- with policy Ignore. Set the mode now to ensure that any nodes
2588 -- generated during analysis and expansion are properly flagged as
2589 -- ignored Ghost.
2591 Set_Ghost_Mode (N);
2593 -- We must test for the attribute renaming case before the Analyze
2594 -- call because otherwise Sem_Attr will complain that the attribute
2595 -- is missing an argument when it is analyzed.
2597 if Nkind (Nam) = N_Attribute_Reference then
2599 -- In the case of an abstract formal subprogram association, rewrite
2600 -- an actual given by a stream attribute as the name of the
2601 -- corresponding stream primitive of the type.
2603 -- In a generic context the stream operations are not generated, and
2604 -- this must be treated as a normal attribute reference, to be
2605 -- expanded in subsequent instantiations.
2607 if Is_Actual
2608 and then Is_Abstract_Subprogram (Formal_Spec)
2609 and then Expander_Active
2610 then
2611 declare
2612 Stream_Prim : Entity_Id;
2613 Prefix_Type : constant Entity_Id := Entity (Prefix (Nam));
2615 begin
2616 -- The class-wide forms of the stream attributes are not
2617 -- primitive dispatching operations (even though they
2618 -- internally dispatch to a stream attribute).
2620 if Is_Class_Wide_Type (Prefix_Type) then
2621 Error_Msg_N
2622 ("attribute must be a primitive dispatching operation",
2623 Nam);
2624 return;
2625 end if;
2627 -- Retrieve the primitive subprogram associated with the
2628 -- attribute. This can only be a stream attribute, since those
2629 -- are the only ones that are dispatching (and the actual for
2630 -- an abstract formal subprogram must be dispatching
2631 -- operation).
2633 begin
2634 case Attribute_Name (Nam) is
2635 when Name_Input =>
2636 Stream_Prim :=
2637 Find_Prim_Op (Prefix_Type, TSS_Stream_Input);
2638 when Name_Output =>
2639 Stream_Prim :=
2640 Find_Prim_Op (Prefix_Type, TSS_Stream_Output);
2641 when Name_Read =>
2642 Stream_Prim :=
2643 Find_Prim_Op (Prefix_Type, TSS_Stream_Read);
2644 when Name_Write =>
2645 Stream_Prim :=
2646 Find_Prim_Op (Prefix_Type, TSS_Stream_Write);
2647 when others =>
2648 Error_Msg_N
2649 ("attribute must be a primitive"
2650 & " dispatching operation", Nam);
2651 return;
2652 end case;
2654 exception
2656 -- If no operation was found, and the type is limited,
2657 -- the user should have defined one.
2659 when Program_Error =>
2660 if Is_Limited_Type (Prefix_Type) then
2661 Error_Msg_NE
2662 ("stream operation not defined for type&",
2663 N, Prefix_Type);
2664 return;
2666 -- Otherwise, compiler should have generated default
2668 else
2669 raise;
2670 end if;
2671 end;
2673 -- Rewrite the attribute into the name of its corresponding
2674 -- primitive dispatching subprogram. We can then proceed with
2675 -- the usual processing for subprogram renamings.
2677 declare
2678 Prim_Name : constant Node_Id :=
2679 Make_Identifier (Sloc (Nam),
2680 Chars => Chars (Stream_Prim));
2681 begin
2682 Set_Entity (Prim_Name, Stream_Prim);
2683 Rewrite (Nam, Prim_Name);
2684 Analyze (Nam);
2685 end;
2686 end;
2688 -- Normal processing for a renaming of an attribute
2690 else
2691 Attribute_Renaming (N);
2692 return;
2693 end if;
2694 end if;
2696 -- Check whether this declaration corresponds to the instantiation
2697 -- of a formal subprogram.
2699 -- If this is an instantiation, the corresponding actual is frozen and
2700 -- error messages can be made more precise. If this is a default
2701 -- subprogram, the entity is already established in the generic, and is
2702 -- not retrieved by visibility. If it is a default with a box, the
2703 -- candidate interpretations, if any, have been collected when building
2704 -- the renaming declaration. If overloaded, the proper interpretation is
2705 -- determined in Find_Renamed_Entity. If the entity is an operator,
2706 -- Find_Renamed_Entity applies additional visibility checks.
2708 if Is_Actual then
2709 Inst_Node := Unit_Declaration_Node (Formal_Spec);
2711 -- Check whether the renaming is for a defaulted actual subprogram
2712 -- with a class-wide actual.
2714 -- The class-wide wrapper is not needed in GNATprove_Mode and there
2715 -- is an external axiomatization on the package.
2717 if CW_Actual
2718 and then Box_Present (Inst_Node)
2719 and then not
2720 (GNATprove_Mode
2721 and then
2722 Present (Containing_Package_With_Ext_Axioms (Formal_Spec)))
2723 then
2724 Build_Class_Wide_Wrapper (New_S, Old_S);
2726 elsif Is_Entity_Name (Nam)
2727 and then Present (Entity (Nam))
2728 and then not Comes_From_Source (Nam)
2729 and then not Is_Overloaded (Nam)
2730 then
2731 Old_S := Entity (Nam);
2732 New_S := Analyze_Subprogram_Specification (Spec);
2734 -- Operator case
2736 if Ekind (Entity (Nam)) = E_Operator then
2738 -- Box present
2740 if Box_Present (Inst_Node) then
2741 Old_S := Find_Renamed_Entity (N, Name (N), New_S, Is_Actual);
2743 -- If there is an immediately visible homonym of the operator
2744 -- and the declaration has a default, this is worth a warning
2745 -- because the user probably did not intend to get the pre-
2746 -- defined operator, visible in the generic declaration. To
2747 -- find if there is an intended candidate, analyze the renaming
2748 -- again in the current context.
2750 elsif Scope (Old_S) = Standard_Standard
2751 and then Present (Default_Name (Inst_Node))
2752 then
2753 declare
2754 Decl : constant Node_Id := New_Copy_Tree (N);
2755 Hidden : Entity_Id;
2757 begin
2758 Set_Entity (Name (Decl), Empty);
2759 Analyze (Name (Decl));
2760 Hidden :=
2761 Find_Renamed_Entity (Decl, Name (Decl), New_S, True);
2763 if Present (Hidden)
2764 and then In_Open_Scopes (Scope (Hidden))
2765 and then Is_Immediately_Visible (Hidden)
2766 and then Comes_From_Source (Hidden)
2767 and then Hidden /= Old_S
2768 then
2769 Error_Msg_Sloc := Sloc (Hidden);
2770 Error_Msg_N ("default subprogram is resolved " &
2771 "in the generic declaration " &
2772 "(RM 12.6(17))??", N);
2773 Error_Msg_NE ("\and will not use & #??", N, Hidden);
2774 end if;
2775 end;
2776 end if;
2777 end if;
2779 else
2780 Analyze (Nam);
2781 New_S := Analyze_Subprogram_Specification (Spec);
2782 end if;
2784 else
2785 -- Renamed entity must be analyzed first, to avoid being hidden by
2786 -- new name (which might be the same in a generic instance).
2788 Analyze (Nam);
2790 -- The renaming defines a new overloaded entity, which is analyzed
2791 -- like a subprogram declaration.
2793 New_S := Analyze_Subprogram_Specification (Spec);
2794 end if;
2796 if Current_Scope /= Standard_Standard then
2797 Set_Is_Pure (New_S, Is_Pure (Current_Scope));
2798 end if;
2800 -- Set SPARK mode from current context
2802 Set_SPARK_Pragma (New_S, SPARK_Mode_Pragma);
2803 Set_SPARK_Pragma_Inherited (New_S, True);
2805 Rename_Spec := Find_Corresponding_Spec (N);
2807 -- Case of Renaming_As_Body
2809 if Present (Rename_Spec) then
2811 -- Renaming declaration is the completion of the declaration of
2812 -- Rename_Spec. We build an actual body for it at the freezing point.
2814 Set_Corresponding_Spec (N, Rename_Spec);
2816 -- Deal with special case of stream functions of abstract types
2817 -- and interfaces.
2819 if Nkind (Unit_Declaration_Node (Rename_Spec)) =
2820 N_Abstract_Subprogram_Declaration
2821 then
2822 -- Input stream functions are abstract if the object type is
2823 -- abstract. Similarly, all default stream functions for an
2824 -- interface type are abstract. However, these subprograms may
2825 -- receive explicit declarations in representation clauses, making
2826 -- the attribute subprograms usable as defaults in subsequent
2827 -- type extensions.
2828 -- In this case we rewrite the declaration to make the subprogram
2829 -- non-abstract. We remove the previous declaration, and insert
2830 -- the new one at the point of the renaming, to prevent premature
2831 -- access to unfrozen types. The new declaration reuses the
2832 -- specification of the previous one, and must not be analyzed.
2834 pragma Assert
2835 (Is_Primitive (Entity (Nam))
2836 and then
2837 Is_Abstract_Type (Find_Dispatching_Type (Entity (Nam))));
2838 declare
2839 Old_Decl : constant Node_Id :=
2840 Unit_Declaration_Node (Rename_Spec);
2841 New_Decl : constant Node_Id :=
2842 Make_Subprogram_Declaration (Sloc (N),
2843 Specification =>
2844 Relocate_Node (Specification (Old_Decl)));
2845 begin
2846 Remove (Old_Decl);
2847 Insert_After (N, New_Decl);
2848 Set_Is_Abstract_Subprogram (Rename_Spec, False);
2849 Set_Analyzed (New_Decl);
2850 end;
2851 end if;
2853 Set_Corresponding_Body (Unit_Declaration_Node (Rename_Spec), New_S);
2855 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
2856 Error_Msg_N ("(Ada 83) renaming cannot serve as a body", N);
2857 end if;
2859 Set_Convention (New_S, Convention (Rename_Spec));
2860 Check_Fully_Conformant (New_S, Rename_Spec);
2861 Set_Public_Status (New_S);
2863 -- The specification does not introduce new formals, but only
2864 -- repeats the formals of the original subprogram declaration.
2865 -- For cross-reference purposes, and for refactoring tools, we
2866 -- treat the formals of the renaming declaration as body formals.
2868 Reference_Body_Formals (Rename_Spec, New_S);
2870 -- Indicate that the entity in the declaration functions like the
2871 -- corresponding body, and is not a new entity. The body will be
2872 -- constructed later at the freeze point, so indicate that the
2873 -- completion has not been seen yet.
2875 Set_Ekind (New_S, E_Subprogram_Body);
2876 New_S := Rename_Spec;
2877 Set_Has_Completion (Rename_Spec, False);
2879 -- Ada 2005: check overriding indicator
2881 if Present (Overridden_Operation (Rename_Spec)) then
2882 if Must_Not_Override (Specification (N)) then
2883 Error_Msg_NE
2884 ("subprogram& overrides inherited operation",
2885 N, Rename_Spec);
2886 elsif
2887 Style_Check and then not Must_Override (Specification (N))
2888 then
2889 Style.Missing_Overriding (N, Rename_Spec);
2890 end if;
2892 elsif Must_Override (Specification (N)) then
2893 Error_Msg_NE ("subprogram& is not overriding", N, Rename_Spec);
2894 end if;
2896 -- Normal subprogram renaming (not renaming as body)
2898 else
2899 Generate_Definition (New_S);
2900 New_Overloaded_Entity (New_S);
2902 if Is_Entity_Name (Nam)
2903 and then Is_Intrinsic_Subprogram (Entity (Nam))
2904 then
2905 null;
2906 else
2907 Check_Delayed_Subprogram (New_S);
2908 end if;
2909 end if;
2911 -- There is no need for elaboration checks on the new entity, which may
2912 -- be called before the next freezing point where the body will appear.
2913 -- Elaboration checks refer to the real entity, not the one created by
2914 -- the renaming declaration.
2916 Set_Kill_Elaboration_Checks (New_S, True);
2918 -- If we had a previous error, indicate a completely is present to stop
2919 -- junk cascaded messages, but don't take any further action.
2921 if Etype (Nam) = Any_Type then
2922 Set_Has_Completion (New_S);
2923 return;
2925 -- Case where name has the form of a selected component
2927 elsif Nkind (Nam) = N_Selected_Component then
2929 -- A name which has the form A.B can designate an entry of task A, a
2930 -- protected operation of protected object A, or finally a primitive
2931 -- operation of object A. In the later case, A is an object of some
2932 -- tagged type, or an access type that denotes one such. To further
2933 -- distinguish these cases, note that the scope of a task entry or
2934 -- protected operation is type of the prefix.
2936 -- The prefix could be an overloaded function call that returns both
2937 -- kinds of operations. This overloading pathology is left to the
2938 -- dedicated reader ???
2940 declare
2941 T : constant Entity_Id := Etype (Prefix (Nam));
2943 begin
2944 if Present (T)
2945 and then
2946 (Is_Tagged_Type (T)
2947 or else
2948 (Is_Access_Type (T)
2949 and then Is_Tagged_Type (Designated_Type (T))))
2950 and then Scope (Entity (Selector_Name (Nam))) /= T
2951 then
2952 Analyze_Renamed_Primitive_Operation
2953 (N, New_S, Present (Rename_Spec));
2954 return;
2956 else
2957 -- Renamed entity is an entry or protected operation. For those
2958 -- cases an explicit body is built (at the point of freezing of
2959 -- this entity) that contains a call to the renamed entity.
2961 -- This is not allowed for renaming as body if the renamed
2962 -- spec is already frozen (see RM 8.5.4(5) for details).
2964 if Present (Rename_Spec) and then Is_Frozen (Rename_Spec) then
2965 Error_Msg_N
2966 ("renaming-as-body cannot rename entry as subprogram", N);
2967 Error_Msg_NE
2968 ("\since & is already frozen (RM 8.5.4(5))",
2969 N, Rename_Spec);
2970 else
2971 Analyze_Renamed_Entry (N, New_S, Present (Rename_Spec));
2972 end if;
2974 return;
2975 end if;
2976 end;
2978 -- Case where name is an explicit dereference X.all
2980 elsif Nkind (Nam) = N_Explicit_Dereference then
2982 -- Renamed entity is designated by access_to_subprogram expression.
2983 -- Must build body to encapsulate call, as in the entry case.
2985 Analyze_Renamed_Dereference (N, New_S, Present (Rename_Spec));
2986 return;
2988 -- Indexed component
2990 elsif Nkind (Nam) = N_Indexed_Component then
2991 Analyze_Renamed_Family_Member (N, New_S, Present (Rename_Spec));
2992 return;
2994 -- Character literal
2996 elsif Nkind (Nam) = N_Character_Literal then
2997 Analyze_Renamed_Character (N, New_S, Present (Rename_Spec));
2998 return;
3000 -- Only remaining case is where we have a non-entity name, or a renaming
3001 -- of some other non-overloadable entity.
3003 elsif not Is_Entity_Name (Nam)
3004 or else not Is_Overloadable (Entity (Nam))
3005 then
3006 -- Do not mention the renaming if it comes from an instance
3008 if not Is_Actual then
3009 Error_Msg_N ("expect valid subprogram name in renaming", N);
3010 else
3011 Error_Msg_NE ("no visible subprogram for formal&", N, Nam);
3012 end if;
3014 return;
3015 end if;
3017 -- Find the renamed entity that matches the given specification. Disable
3018 -- Ada_83 because there is no requirement of full conformance between
3019 -- renamed entity and new entity, even though the same circuit is used.
3021 -- This is a bit of an odd case, which introduces a really irregular use
3022 -- of Ada_Version[_Explicit]. Would be nice to find cleaner way to do
3023 -- this. ???
3025 Ada_Version := Ada_Version_Type'Max (Ada_Version, Ada_95);
3026 Ada_Version_Pragma := Empty;
3027 Ada_Version_Explicit := Ada_Version;
3029 if No (Old_S) then
3030 Old_S := Find_Renamed_Entity (N, Name (N), New_S, Is_Actual);
3032 -- The visible operation may be an inherited abstract operation that
3033 -- was overridden in the private part, in which case a call will
3034 -- dispatch to the overriding operation. Use the overriding one in
3035 -- the renaming declaration, to prevent spurious errors below.
3037 if Is_Overloadable (Old_S)
3038 and then Is_Abstract_Subprogram (Old_S)
3039 and then No (DTC_Entity (Old_S))
3040 and then Present (Alias (Old_S))
3041 and then not Is_Abstract_Subprogram (Alias (Old_S))
3042 and then Present (Overridden_Operation (Alias (Old_S)))
3043 then
3044 Old_S := Alias (Old_S);
3045 end if;
3047 -- When the renamed subprogram is overloaded and used as an actual
3048 -- of a generic, its entity is set to the first available homonym.
3049 -- We must first disambiguate the name, then set the proper entity.
3051 if Is_Actual and then Is_Overloaded (Nam) then
3052 Set_Entity (Nam, Old_S);
3053 end if;
3054 end if;
3056 -- Most common case: subprogram renames subprogram. No body is generated
3057 -- in this case, so we must indicate the declaration is complete as is.
3058 -- and inherit various attributes of the renamed subprogram.
3060 if No (Rename_Spec) then
3061 Set_Has_Completion (New_S);
3062 Set_Is_Imported (New_S, Is_Imported (Entity (Nam)));
3063 Set_Is_Pure (New_S, Is_Pure (Entity (Nam)));
3064 Set_Is_Preelaborated (New_S, Is_Preelaborated (Entity (Nam)));
3066 -- A subprogram renaming is Ghost if the renamed entity is Ghost or
3067 -- the construct appears within a Ghost scope.
3069 if Is_Ghost_Entity (Entity (Nam)) or else Ghost_Mode > None then
3070 Set_Is_Ghost_Entity (New_S);
3071 end if;
3073 -- Ada 2005 (AI-423): Check the consistency of null exclusions
3074 -- between a subprogram and its correct renaming.
3076 -- Note: the Any_Id check is a guard that prevents compiler crashes
3077 -- when performing a null exclusion check between a renaming and a
3078 -- renamed subprogram that has been found to be illegal.
3080 if Ada_Version >= Ada_2005 and then Entity (Nam) /= Any_Id then
3081 Check_Null_Exclusion
3082 (Ren => New_S,
3083 Sub => Entity (Nam));
3084 end if;
3086 -- Enforce the Ada 2005 rule that the renamed entity cannot require
3087 -- overriding. The flag Requires_Overriding is set very selectively
3088 -- and misses some other illegal cases. The additional conditions
3089 -- checked below are sufficient but not necessary ???
3091 -- The rule does not apply to the renaming generated for an actual
3092 -- subprogram in an instance.
3094 if Is_Actual then
3095 null;
3097 -- Guard against previous errors, and omit renamings of predefined
3098 -- operators.
3100 elsif not Ekind_In (Old_S, E_Function, E_Procedure) then
3101 null;
3103 elsif Requires_Overriding (Old_S)
3104 or else
3105 (Is_Abstract_Subprogram (Old_S)
3106 and then Present (Find_Dispatching_Type (Old_S))
3107 and then
3108 not Is_Abstract_Type (Find_Dispatching_Type (Old_S)))
3109 then
3110 Error_Msg_N
3111 ("renamed entity cannot be "
3112 & "subprogram that requires overriding (RM 8.5.4 (5.1))", N);
3113 end if;
3114 end if;
3116 if Old_S /= Any_Id then
3117 if Is_Actual and then From_Default (N) then
3119 -- This is an implicit reference to the default actual
3121 Generate_Reference (Old_S, Nam, Typ => 'i', Force => True);
3123 else
3124 Generate_Reference (Old_S, Nam);
3125 end if;
3127 Check_Internal_Protected_Use (N, Old_S);
3129 -- For a renaming-as-body, require subtype conformance, but if the
3130 -- declaration being completed has not been frozen, then inherit the
3131 -- convention of the renamed subprogram prior to checking conformance
3132 -- (unless the renaming has an explicit convention established; the
3133 -- rule stated in the RM doesn't seem to address this ???).
3135 if Present (Rename_Spec) then
3136 Generate_Reference (Rename_Spec, Defining_Entity (Spec), 'b');
3137 Style.Check_Identifier (Defining_Entity (Spec), Rename_Spec);
3139 if not Is_Frozen (Rename_Spec) then
3140 if not Has_Convention_Pragma (Rename_Spec) then
3141 Set_Convention (New_S, Convention (Old_S));
3142 end if;
3144 if Ekind (Old_S) /= E_Operator then
3145 Check_Mode_Conformant (New_S, Old_S, Spec);
3146 end if;
3148 if Original_Subprogram (Old_S) = Rename_Spec then
3149 Error_Msg_N ("unfrozen subprogram cannot rename itself ", N);
3150 end if;
3151 else
3152 Check_Subtype_Conformant (New_S, Old_S, Spec);
3153 end if;
3155 Check_Frozen_Renaming (N, Rename_Spec);
3157 -- Check explicitly that renamed entity is not intrinsic, because
3158 -- in a generic the renamed body is not built. In this case,
3159 -- the renaming_as_body is a completion.
3161 if Inside_A_Generic then
3162 if Is_Frozen (Rename_Spec)
3163 and then Is_Intrinsic_Subprogram (Old_S)
3164 then
3165 Error_Msg_N
3166 ("subprogram in renaming_as_body cannot be intrinsic",
3167 Name (N));
3168 end if;
3170 Set_Has_Completion (Rename_Spec);
3171 end if;
3173 elsif Ekind (Old_S) /= E_Operator then
3175 -- If this a defaulted subprogram for a class-wide actual there is
3176 -- no check for mode conformance, given that the signatures don't
3177 -- match (the source mentions T but the actual mentions T'Class).
3179 if CW_Actual then
3180 null;
3181 elsif not Is_Actual or else No (Enclosing_Instance) then
3182 Check_Mode_Conformant (New_S, Old_S);
3183 end if;
3185 if Is_Actual and then Error_Posted (New_S) then
3186 Error_Msg_NE ("invalid actual subprogram: & #!", N, Old_S);
3187 end if;
3188 end if;
3190 if No (Rename_Spec) then
3192 -- The parameter profile of the new entity is that of the renamed
3193 -- entity: the subtypes given in the specification are irrelevant.
3195 Inherit_Renamed_Profile (New_S, Old_S);
3197 -- A call to the subprogram is transformed into a call to the
3198 -- renamed entity. This is transitive if the renamed entity is
3199 -- itself a renaming.
3201 if Present (Alias (Old_S)) then
3202 Set_Alias (New_S, Alias (Old_S));
3203 else
3204 Set_Alias (New_S, Old_S);
3205 end if;
3207 -- Note that we do not set Is_Intrinsic_Subprogram if we have a
3208 -- renaming as body, since the entity in this case is not an
3209 -- intrinsic (it calls an intrinsic, but we have a real body for
3210 -- this call, and it is in this body that the required intrinsic
3211 -- processing will take place).
3213 -- Also, if this is a renaming of inequality, the renamed operator
3214 -- is intrinsic, but what matters is the corresponding equality
3215 -- operator, which may be user-defined.
3217 Set_Is_Intrinsic_Subprogram
3218 (New_S,
3219 Is_Intrinsic_Subprogram (Old_S)
3220 and then
3221 (Chars (Old_S) /= Name_Op_Ne
3222 or else Ekind (Old_S) = E_Operator
3223 or else Is_Intrinsic_Subprogram
3224 (Corresponding_Equality (Old_S))));
3226 if Ekind (Alias (New_S)) = E_Operator then
3227 Set_Has_Delayed_Freeze (New_S, False);
3228 end if;
3230 -- If the renaming corresponds to an association for an abstract
3231 -- formal subprogram, then various attributes must be set to
3232 -- indicate that the renaming is an abstract dispatching operation
3233 -- with a controlling type.
3235 if Is_Actual and then Is_Abstract_Subprogram (Formal_Spec) then
3237 -- Mark the renaming as abstract here, so Find_Dispatching_Type
3238 -- see it as corresponding to a generic association for a
3239 -- formal abstract subprogram
3241 Set_Is_Abstract_Subprogram (New_S);
3243 declare
3244 New_S_Ctrl_Type : constant Entity_Id :=
3245 Find_Dispatching_Type (New_S);
3246 Old_S_Ctrl_Type : constant Entity_Id :=
3247 Find_Dispatching_Type (Old_S);
3249 begin
3250 if Old_S_Ctrl_Type /= New_S_Ctrl_Type then
3251 Error_Msg_NE
3252 ("actual must be dispatching subprogram for type&",
3253 Nam, New_S_Ctrl_Type);
3255 else
3256 Set_Is_Dispatching_Operation (New_S);
3257 Check_Controlling_Formals (New_S_Ctrl_Type, New_S);
3259 -- If the actual in the formal subprogram is itself a
3260 -- formal abstract subprogram association, there's no
3261 -- dispatch table component or position to inherit.
3263 if Present (DTC_Entity (Old_S)) then
3264 Set_DTC_Entity (New_S, DTC_Entity (Old_S));
3265 Set_DT_Position_Value (New_S, DT_Position (Old_S));
3266 end if;
3267 end if;
3268 end;
3269 end if;
3270 end if;
3272 if Is_Actual then
3273 null;
3275 -- The following is illegal, because F hides whatever other F may
3276 -- be around:
3277 -- function F (...) renames F;
3279 elsif Old_S = New_S
3280 or else (Nkind (Nam) /= N_Expanded_Name
3281 and then Chars (Old_S) = Chars (New_S))
3282 then
3283 Error_Msg_N ("subprogram cannot rename itself", N);
3285 -- This is illegal even if we use a selector:
3286 -- function F (...) renames Pkg.F;
3287 -- because F is still hidden.
3289 elsif Nkind (Nam) = N_Expanded_Name
3290 and then Entity (Prefix (Nam)) = Current_Scope
3291 and then Chars (Selector_Name (Nam)) = Chars (New_S)
3292 then
3293 -- This is an error, but we overlook the error and accept the
3294 -- renaming if the special Overriding_Renamings mode is in effect.
3296 if not Overriding_Renamings then
3297 Error_Msg_NE
3298 ("implicit operation& is not visible (RM 8.3 (15))",
3299 Nam, Old_S);
3300 end if;
3301 end if;
3303 Set_Convention (New_S, Convention (Old_S));
3305 if Is_Abstract_Subprogram (Old_S) then
3306 if Present (Rename_Spec) then
3307 Error_Msg_N
3308 ("a renaming-as-body cannot rename an abstract subprogram",
3310 Set_Has_Completion (Rename_Spec);
3311 else
3312 Set_Is_Abstract_Subprogram (New_S);
3313 end if;
3314 end if;
3316 Check_Library_Unit_Renaming (N, Old_S);
3318 -- Pathological case: procedure renames entry in the scope of its
3319 -- task. Entry is given by simple name, but body must be built for
3320 -- procedure. Of course if called it will deadlock.
3322 if Ekind (Old_S) = E_Entry then
3323 Set_Has_Completion (New_S, False);
3324 Set_Alias (New_S, Empty);
3325 end if;
3327 if Is_Actual then
3328 Freeze_Before (N, Old_S);
3329 Freeze_Actual_Profile;
3330 Set_Has_Delayed_Freeze (New_S, False);
3331 Freeze_Before (N, New_S);
3333 -- An abstract subprogram is only allowed as an actual in the case
3334 -- where the formal subprogram is also abstract.
3336 if (Ekind (Old_S) = E_Procedure or else Ekind (Old_S) = E_Function)
3337 and then Is_Abstract_Subprogram (Old_S)
3338 and then not Is_Abstract_Subprogram (Formal_Spec)
3339 then
3340 Error_Msg_N
3341 ("abstract subprogram not allowed as generic actual", Nam);
3342 end if;
3343 end if;
3345 else
3346 -- A common error is to assume that implicit operators for types are
3347 -- defined in Standard, or in the scope of a subtype. In those cases
3348 -- where the renamed entity is given with an expanded name, it is
3349 -- worth mentioning that operators for the type are not declared in
3350 -- the scope given by the prefix.
3352 if Nkind (Nam) = N_Expanded_Name
3353 and then Nkind (Selector_Name (Nam)) = N_Operator_Symbol
3354 and then Scope (Entity (Nam)) = Standard_Standard
3355 then
3356 declare
3357 T : constant Entity_Id :=
3358 Base_Type (Etype (First_Formal (New_S)));
3359 begin
3360 Error_Msg_Node_2 := Prefix (Nam);
3361 Error_Msg_NE
3362 ("operator for type& is not declared in&", Prefix (Nam), T);
3363 end;
3365 else
3366 Error_Msg_NE
3367 ("no visible subprogram matches the specification for&",
3368 Spec, New_S);
3369 end if;
3371 if Present (Candidate_Renaming) then
3372 declare
3373 F1 : Entity_Id;
3374 F2 : Entity_Id;
3375 T1 : Entity_Id;
3377 begin
3378 F1 := First_Formal (Candidate_Renaming);
3379 F2 := First_Formal (New_S);
3380 T1 := First_Subtype (Etype (F1));
3381 while Present (F1) and then Present (F2) loop
3382 Next_Formal (F1);
3383 Next_Formal (F2);
3384 end loop;
3386 if Present (F1) and then Present (Default_Value (F1)) then
3387 if Present (Next_Formal (F1)) then
3388 Error_Msg_NE
3389 ("\missing specification for &" &
3390 " and other formals with defaults", Spec, F1);
3391 else
3392 Error_Msg_NE
3393 ("\missing specification for &", Spec, F1);
3394 end if;
3395 end if;
3397 if Nkind (Nam) = N_Operator_Symbol
3398 and then From_Default (N)
3399 then
3400 Error_Msg_Node_2 := T1;
3401 Error_Msg_NE
3402 ("default & on & is not directly visible",
3403 Nam, Nam);
3404 end if;
3405 end;
3406 end if;
3407 end if;
3409 -- Ada 2005 AI 404: if the new subprogram is dispatching, verify that
3410 -- controlling access parameters are known non-null for the renamed
3411 -- subprogram. Test also applies to a subprogram instantiation that
3412 -- is dispatching. Test is skipped if some previous error was detected
3413 -- that set Old_S to Any_Id.
3415 if Ada_Version >= Ada_2005
3416 and then Old_S /= Any_Id
3417 and then not Is_Dispatching_Operation (Old_S)
3418 and then Is_Dispatching_Operation (New_S)
3419 then
3420 declare
3421 Old_F : Entity_Id;
3422 New_F : Entity_Id;
3424 begin
3425 Old_F := First_Formal (Old_S);
3426 New_F := First_Formal (New_S);
3427 while Present (Old_F) loop
3428 if Ekind (Etype (Old_F)) = E_Anonymous_Access_Type
3429 and then Is_Controlling_Formal (New_F)
3430 and then not Can_Never_Be_Null (Old_F)
3431 then
3432 Error_Msg_N ("access parameter is controlling,", New_F);
3433 Error_Msg_NE
3434 ("\corresponding parameter of& "
3435 & "must be explicitly null excluding", New_F, Old_S);
3436 end if;
3438 Next_Formal (Old_F);
3439 Next_Formal (New_F);
3440 end loop;
3441 end;
3442 end if;
3444 -- A useful warning, suggested by Ada Bug Finder (Ada-Europe 2005)
3445 -- is to warn if an operator is being renamed as a different operator.
3446 -- If the operator is predefined, examine the kind of the entity, not
3447 -- the abbreviated declaration in Standard.
3449 if Comes_From_Source (N)
3450 and then Present (Old_S)
3451 and then (Nkind (Old_S) = N_Defining_Operator_Symbol
3452 or else Ekind (Old_S) = E_Operator)
3453 and then Nkind (New_S) = N_Defining_Operator_Symbol
3454 and then Chars (Old_S) /= Chars (New_S)
3455 then
3456 Error_Msg_NE
3457 ("& is being renamed as a different operator??", N, Old_S);
3458 end if;
3460 -- Check for renaming of obsolescent subprogram
3462 Check_Obsolescent_2005_Entity (Entity (Nam), Nam);
3464 -- Another warning or some utility: if the new subprogram as the same
3465 -- name as the old one, the old one is not hidden by an outer homograph,
3466 -- the new one is not a public symbol, and the old one is otherwise
3467 -- directly visible, the renaming is superfluous.
3469 if Chars (Old_S) = Chars (New_S)
3470 and then Comes_From_Source (N)
3471 and then Scope (Old_S) /= Standard_Standard
3472 and then Warn_On_Redundant_Constructs
3473 and then (Is_Immediately_Visible (Old_S)
3474 or else Is_Potentially_Use_Visible (Old_S))
3475 and then Is_Overloadable (Current_Scope)
3476 and then Chars (Current_Scope) /= Chars (Old_S)
3477 then
3478 Error_Msg_N
3479 ("redundant renaming, entity is directly visible?r?", Name (N));
3480 end if;
3482 -- Implementation-defined aspect specifications can appear in a renaming
3483 -- declaration, but not language-defined ones. The call to procedure
3484 -- Analyze_Aspect_Specifications will take care of this error check.
3486 if Has_Aspects (N) then
3487 Analyze_Aspect_Specifications (N, New_S);
3488 end if;
3490 Ada_Version := Save_AV;
3491 Ada_Version_Pragma := Save_AVP;
3492 Ada_Version_Explicit := Save_AV_Exp;
3494 -- In GNATprove mode, the renamings of actual subprograms are replaced
3495 -- with wrapper functions that make it easier to propagate axioms to the
3496 -- points of call within an instance. Wrappers are generated if formal
3497 -- subprogram is subject to axiomatization.
3499 -- The types in the wrapper profiles are obtained from (instances of)
3500 -- the types of the formal subprogram.
3502 if Is_Actual
3503 and then GNATprove_Mode
3504 and then Present (Containing_Package_With_Ext_Axioms (Formal_Spec))
3505 and then not Inside_A_Generic
3506 then
3507 if Ekind (Old_S) = E_Function then
3508 Rewrite (N, Build_Function_Wrapper (Formal_Spec, Old_S));
3509 Analyze (N);
3511 elsif Ekind (Old_S) = E_Operator then
3512 Rewrite (N, Build_Operator_Wrapper (Formal_Spec, Old_S));
3513 Analyze (N);
3514 end if;
3515 end if;
3516 end Analyze_Subprogram_Renaming;
3518 -------------------------
3519 -- Analyze_Use_Package --
3520 -------------------------
3522 -- Resolve the package names in the use clause, and make all the visible
3523 -- entities defined in the package potentially use-visible. If the package
3524 -- is already in use from a previous use clause, its visible entities are
3525 -- already use-visible. In that case, mark the occurrence as a redundant
3526 -- use. If the package is an open scope, i.e. if the use clause occurs
3527 -- within the package itself, ignore it.
3529 procedure Analyze_Use_Package (N : Node_Id) is
3530 Pack_Name : Node_Id;
3531 Pack : Entity_Id;
3533 -- Start of processing for Analyze_Use_Package
3535 begin
3536 Check_SPARK_05_Restriction ("use clause is not allowed", N);
3538 Set_Hidden_By_Use_Clause (N, No_Elist);
3540 -- Use clause not allowed in a spec of a predefined package declaration
3541 -- except that packages whose file name starts a-n are OK (these are
3542 -- children of Ada.Numerics, which are never loaded by Rtsfind).
3544 if Is_Predefined_File_Name (Unit_File_Name (Current_Sem_Unit))
3545 and then Name_Buffer (1 .. 3) /= "a-n"
3546 and then
3547 Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Declaration
3548 then
3549 Error_Msg_N ("use clause not allowed in predefined spec", N);
3550 end if;
3552 -- Chain clause to list of use clauses in current scope
3554 if Nkind (Parent (N)) /= N_Compilation_Unit then
3555 Chain_Use_Clause (N);
3556 end if;
3558 -- Loop through package names to identify referenced packages
3560 Pack_Name := First (Names (N));
3561 while Present (Pack_Name) loop
3562 Analyze (Pack_Name);
3564 if Nkind (Parent (N)) = N_Compilation_Unit
3565 and then Nkind (Pack_Name) = N_Expanded_Name
3566 then
3567 declare
3568 Pref : Node_Id;
3570 begin
3571 Pref := Prefix (Pack_Name);
3572 while Nkind (Pref) = N_Expanded_Name loop
3573 Pref := Prefix (Pref);
3574 end loop;
3576 if Entity (Pref) = Standard_Standard then
3577 Error_Msg_N
3578 ("predefined package Standard cannot appear"
3579 & " in a context clause", Pref);
3580 end if;
3581 end;
3582 end if;
3584 Next (Pack_Name);
3585 end loop;
3587 -- Loop through package names to mark all entities as potentially
3588 -- use visible.
3590 Pack_Name := First (Names (N));
3591 while Present (Pack_Name) loop
3592 if Is_Entity_Name (Pack_Name) then
3593 Pack := Entity (Pack_Name);
3595 if Ekind (Pack) /= E_Package and then Etype (Pack) /= Any_Type then
3596 if Ekind (Pack) = E_Generic_Package then
3597 Error_Msg_N -- CODEFIX
3598 ("a generic package is not allowed in a use clause",
3599 Pack_Name);
3601 elsif Ekind_In (Pack, E_Generic_Function, E_Generic_Package)
3602 then
3603 Error_Msg_N -- CODEFIX
3604 ("a generic subprogram is not allowed in a use clause",
3605 Pack_Name);
3607 elsif Ekind_In (Pack, E_Function, E_Procedure, E_Operator) then
3608 Error_Msg_N -- CODEFIX
3609 ("a subprogram is not allowed in a use clause",
3610 Pack_Name);
3612 else
3613 Error_Msg_N ("& is not allowed in a use clause", Pack_Name);
3614 end if;
3616 else
3617 if Nkind (Parent (N)) = N_Compilation_Unit then
3618 Check_In_Previous_With_Clause (N, Pack_Name);
3619 end if;
3621 if Applicable_Use (Pack_Name) then
3622 Use_One_Package (Pack, N);
3623 end if;
3624 end if;
3626 -- Report error because name denotes something other than a package
3628 else
3629 Error_Msg_N ("& is not a package", Pack_Name);
3630 end if;
3632 Next (Pack_Name);
3633 end loop;
3634 end Analyze_Use_Package;
3636 ----------------------
3637 -- Analyze_Use_Type --
3638 ----------------------
3640 procedure Analyze_Use_Type (N : Node_Id) is
3641 E : Entity_Id;
3642 Id : Node_Id;
3644 begin
3645 Set_Hidden_By_Use_Clause (N, No_Elist);
3647 -- Chain clause to list of use clauses in current scope
3649 if Nkind (Parent (N)) /= N_Compilation_Unit then
3650 Chain_Use_Clause (N);
3651 end if;
3653 -- If the Used_Operations list is already initialized, the clause has
3654 -- been analyzed previously, and it is begin reinstalled, for example
3655 -- when the clause appears in a package spec and we are compiling the
3656 -- corresponding package body. In that case, make the entities on the
3657 -- existing list use_visible, and mark the corresponding types In_Use.
3659 if Present (Used_Operations (N)) then
3660 declare
3661 Mark : Node_Id;
3662 Elmt : Elmt_Id;
3664 begin
3665 Mark := First (Subtype_Marks (N));
3666 while Present (Mark) loop
3667 Use_One_Type (Mark, Installed => True);
3668 Next (Mark);
3669 end loop;
3671 Elmt := First_Elmt (Used_Operations (N));
3672 while Present (Elmt) loop
3673 Set_Is_Potentially_Use_Visible (Node (Elmt));
3674 Next_Elmt (Elmt);
3675 end loop;
3676 end;
3678 return;
3679 end if;
3681 -- Otherwise, create new list and attach to it the operations that
3682 -- are made use-visible by the clause.
3684 Set_Used_Operations (N, New_Elmt_List);
3685 Id := First (Subtype_Marks (N));
3686 while Present (Id) loop
3687 Find_Type (Id);
3688 E := Entity (Id);
3690 if E /= Any_Type then
3691 Use_One_Type (Id);
3693 if Nkind (Parent (N)) = N_Compilation_Unit then
3694 if Nkind (Id) = N_Identifier then
3695 Error_Msg_N ("type is not directly visible", Id);
3697 elsif Is_Child_Unit (Scope (E))
3698 and then Scope (E) /= System_Aux_Id
3699 then
3700 Check_In_Previous_With_Clause (N, Prefix (Id));
3701 end if;
3702 end if;
3704 else
3705 -- If the use_type_clause appears in a compilation unit context,
3706 -- check whether it comes from a unit that may appear in a
3707 -- limited_with_clause, for a better error message.
3709 if Nkind (Parent (N)) = N_Compilation_Unit
3710 and then Nkind (Id) /= N_Identifier
3711 then
3712 declare
3713 Item : Node_Id;
3714 Pref : Node_Id;
3716 function Mentioned (Nam : Node_Id) return Boolean;
3717 -- Check whether the prefix of expanded name for the type
3718 -- appears in the prefix of some limited_with_clause.
3720 ---------------
3721 -- Mentioned --
3722 ---------------
3724 function Mentioned (Nam : Node_Id) return Boolean is
3725 begin
3726 return Nkind (Name (Item)) = N_Selected_Component
3727 and then Chars (Prefix (Name (Item))) = Chars (Nam);
3728 end Mentioned;
3730 begin
3731 Pref := Prefix (Id);
3732 Item := First (Context_Items (Parent (N)));
3733 while Present (Item) and then Item /= N loop
3734 if Nkind (Item) = N_With_Clause
3735 and then Limited_Present (Item)
3736 and then Mentioned (Pref)
3737 then
3738 Change_Error_Text
3739 (Get_Msg_Id, "premature usage of incomplete type");
3740 end if;
3742 Next (Item);
3743 end loop;
3744 end;
3745 end if;
3746 end if;
3748 Next (Id);
3749 end loop;
3750 end Analyze_Use_Type;
3752 --------------------
3753 -- Applicable_Use --
3754 --------------------
3756 function Applicable_Use (Pack_Name : Node_Id) return Boolean is
3757 Pack : constant Entity_Id := Entity (Pack_Name);
3759 begin
3760 if In_Open_Scopes (Pack) then
3761 if Warn_On_Redundant_Constructs and then Pack = Current_Scope then
3762 Error_Msg_NE -- CODEFIX
3763 ("& is already use-visible within itself?r?", Pack_Name, Pack);
3764 end if;
3766 return False;
3768 elsif In_Use (Pack) then
3769 Note_Redundant_Use (Pack_Name);
3770 return False;
3772 elsif Present (Renamed_Object (Pack))
3773 and then In_Use (Renamed_Object (Pack))
3774 then
3775 Note_Redundant_Use (Pack_Name);
3776 return False;
3778 else
3779 return True;
3780 end if;
3781 end Applicable_Use;
3783 ------------------------
3784 -- Attribute_Renaming --
3785 ------------------------
3787 procedure Attribute_Renaming (N : Node_Id) is
3788 Loc : constant Source_Ptr := Sloc (N);
3789 Nam : constant Node_Id := Name (N);
3790 Spec : constant Node_Id := Specification (N);
3791 New_S : constant Entity_Id := Defining_Unit_Name (Spec);
3792 Aname : constant Name_Id := Attribute_Name (Nam);
3794 Form_Num : Nat := 0;
3795 Expr_List : List_Id := No_List;
3797 Attr_Node : Node_Id;
3798 Body_Node : Node_Id;
3799 Param_Spec : Node_Id;
3801 begin
3802 Generate_Definition (New_S);
3804 -- This procedure is called in the context of subprogram renaming, and
3805 -- thus the attribute must be one that is a subprogram. All of those
3806 -- have at least one formal parameter, with the exceptions of the GNAT
3807 -- attribute 'Img, which GNAT treats as renameable.
3809 if not Is_Non_Empty_List (Parameter_Specifications (Spec)) then
3810 if Aname /= Name_Img then
3811 Error_Msg_N
3812 ("subprogram renaming an attribute must have formals", N);
3813 return;
3814 end if;
3816 else
3817 Param_Spec := First (Parameter_Specifications (Spec));
3818 while Present (Param_Spec) loop
3819 Form_Num := Form_Num + 1;
3821 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
3822 Find_Type (Parameter_Type (Param_Spec));
3824 -- The profile of the new entity denotes the base type (s) of
3825 -- the types given in the specification. For access parameters
3826 -- there are no subtypes involved.
3828 Rewrite (Parameter_Type (Param_Spec),
3829 New_Occurrence_Of
3830 (Base_Type (Entity (Parameter_Type (Param_Spec))), Loc));
3831 end if;
3833 if No (Expr_List) then
3834 Expr_List := New_List;
3835 end if;
3837 Append_To (Expr_List,
3838 Make_Identifier (Loc,
3839 Chars => Chars (Defining_Identifier (Param_Spec))));
3841 -- The expressions in the attribute reference are not freeze
3842 -- points. Neither is the attribute as a whole, see below.
3844 Set_Must_Not_Freeze (Last (Expr_List));
3845 Next (Param_Spec);
3846 end loop;
3847 end if;
3849 -- Immediate error if too many formals. Other mismatches in number or
3850 -- types of parameters are detected when we analyze the body of the
3851 -- subprogram that we construct.
3853 if Form_Num > 2 then
3854 Error_Msg_N ("too many formals for attribute", N);
3856 -- Error if the attribute reference has expressions that look like
3857 -- formal parameters.
3859 elsif Present (Expressions (Nam)) then
3860 Error_Msg_N ("illegal expressions in attribute reference", Nam);
3862 elsif
3863 Nam_In (Aname, Name_Compose, Name_Exponent, Name_Leading_Part,
3864 Name_Pos, Name_Round, Name_Scaling,
3865 Name_Val)
3866 then
3867 if Nkind (N) = N_Subprogram_Renaming_Declaration
3868 and then Present (Corresponding_Formal_Spec (N))
3869 then
3870 Error_Msg_N
3871 ("generic actual cannot be attribute involving universal type",
3872 Nam);
3873 else
3874 Error_Msg_N
3875 ("attribute involving a universal type cannot be renamed",
3876 Nam);
3877 end if;
3878 end if;
3880 -- Rewrite attribute node to have a list of expressions corresponding to
3881 -- the subprogram formals. A renaming declaration is not a freeze point,
3882 -- and the analysis of the attribute reference should not freeze the
3883 -- type of the prefix. We use the original node in the renaming so that
3884 -- its source location is preserved, and checks on stream attributes are
3885 -- properly applied.
3887 Attr_Node := Relocate_Node (Nam);
3888 Set_Expressions (Attr_Node, Expr_List);
3890 Set_Must_Not_Freeze (Attr_Node);
3891 Set_Must_Not_Freeze (Prefix (Nam));
3893 -- Case of renaming a function
3895 if Nkind (Spec) = N_Function_Specification then
3896 if Is_Procedure_Attribute_Name (Aname) then
3897 Error_Msg_N ("attribute can only be renamed as procedure", Nam);
3898 return;
3899 end if;
3901 Find_Type (Result_Definition (Spec));
3902 Rewrite (Result_Definition (Spec),
3903 New_Occurrence_Of
3904 (Base_Type (Entity (Result_Definition (Spec))), Loc));
3906 Body_Node :=
3907 Make_Subprogram_Body (Loc,
3908 Specification => Spec,
3909 Declarations => New_List,
3910 Handled_Statement_Sequence =>
3911 Make_Handled_Sequence_Of_Statements (Loc,
3912 Statements => New_List (
3913 Make_Simple_Return_Statement (Loc,
3914 Expression => Attr_Node))));
3916 -- Case of renaming a procedure
3918 else
3919 if not Is_Procedure_Attribute_Name (Aname) then
3920 Error_Msg_N ("attribute can only be renamed as function", Nam);
3921 return;
3922 end if;
3924 Body_Node :=
3925 Make_Subprogram_Body (Loc,
3926 Specification => Spec,
3927 Declarations => New_List,
3928 Handled_Statement_Sequence =>
3929 Make_Handled_Sequence_Of_Statements (Loc,
3930 Statements => New_List (Attr_Node)));
3931 end if;
3933 -- In case of tagged types we add the body of the generated function to
3934 -- the freezing actions of the type (because in the general case such
3935 -- type is still not frozen). We exclude from this processing generic
3936 -- formal subprograms found in instantiations.
3938 -- We must exclude VM targets and restricted run-time libraries because
3939 -- entity AST_Handler is defined in package System.Aux_Dec which is not
3940 -- available in those platforms. Note that we cannot use the function
3941 -- Restricted_Profile (instead of Configurable_Run_Time_Mode) because
3942 -- the ZFP run-time library is not defined as a profile, and we do not
3943 -- want to deal with AST_Handler in ZFP mode.
3945 if VM_Target = No_VM
3946 and then not Configurable_Run_Time_Mode
3947 and then not Present (Corresponding_Formal_Spec (N))
3948 and then Etype (Nam) /= RTE (RE_AST_Handler)
3949 then
3950 declare
3951 P : constant Node_Id := Prefix (Nam);
3953 begin
3954 -- The prefix of 'Img is an object that is evaluated for each call
3955 -- of the function that renames it.
3957 if Aname = Name_Img then
3958 Preanalyze_And_Resolve (P);
3960 -- For all other attribute renamings, the prefix is a subtype
3962 else
3963 Find_Type (P);
3964 end if;
3966 -- If the target type is not yet frozen, add the body to the
3967 -- actions to be elaborated at freeze time.
3969 if Is_Tagged_Type (Etype (P))
3970 and then In_Open_Scopes (Scope (Etype (P)))
3971 then
3972 Ensure_Freeze_Node (Etype (P));
3973 Append_Freeze_Action (Etype (P), Body_Node);
3974 else
3975 Rewrite (N, Body_Node);
3976 Analyze (N);
3977 Set_Etype (New_S, Base_Type (Etype (New_S)));
3978 end if;
3979 end;
3981 -- Generic formal subprograms or AST_Handler renaming
3983 else
3984 Rewrite (N, Body_Node);
3985 Analyze (N);
3986 Set_Etype (New_S, Base_Type (Etype (New_S)));
3987 end if;
3989 if Is_Compilation_Unit (New_S) then
3990 Error_Msg_N
3991 ("a library unit can only rename another library unit", N);
3992 end if;
3994 -- We suppress elaboration warnings for the resulting entity, since
3995 -- clearly they are not needed, and more particularly, in the case
3996 -- of a generic formal subprogram, the resulting entity can appear
3997 -- after the instantiation itself, and thus look like a bogus case
3998 -- of access before elaboration.
4000 Set_Suppress_Elaboration_Warnings (New_S);
4002 end Attribute_Renaming;
4004 ----------------------
4005 -- Chain_Use_Clause --
4006 ----------------------
4008 procedure Chain_Use_Clause (N : Node_Id) is
4009 Pack : Entity_Id;
4010 Level : Int := Scope_Stack.Last;
4012 begin
4013 if not Is_Compilation_Unit (Current_Scope)
4014 or else not Is_Child_Unit (Current_Scope)
4015 then
4016 null; -- Common case
4018 elsif Defining_Entity (Parent (N)) = Current_Scope then
4019 null; -- Common case for compilation unit
4021 else
4022 -- If declaration appears in some other scope, it must be in some
4023 -- parent unit when compiling a child.
4025 Pack := Defining_Entity (Parent (N));
4026 if not In_Open_Scopes (Pack) then
4027 null; -- default as well
4029 -- If the use clause appears in an ancestor and we are in the
4030 -- private part of the immediate parent, the use clauses are
4031 -- already installed.
4033 elsif Pack /= Scope (Current_Scope)
4034 and then In_Private_Part (Scope (Current_Scope))
4035 then
4036 null;
4038 else
4039 -- Find entry for parent unit in scope stack
4041 while Scope_Stack.Table (Level).Entity /= Pack loop
4042 Level := Level - 1;
4043 end loop;
4044 end if;
4045 end if;
4047 Set_Next_Use_Clause (N,
4048 Scope_Stack.Table (Level).First_Use_Clause);
4049 Scope_Stack.Table (Level).First_Use_Clause := N;
4050 end Chain_Use_Clause;
4052 ---------------------------
4053 -- Check_Frozen_Renaming --
4054 ---------------------------
4056 procedure Check_Frozen_Renaming (N : Node_Id; Subp : Entity_Id) is
4057 B_Node : Node_Id;
4058 Old_S : Entity_Id;
4060 begin
4061 if Is_Frozen (Subp) and then not Has_Completion (Subp) then
4062 B_Node :=
4063 Build_Renamed_Body
4064 (Parent (Declaration_Node (Subp)), Defining_Entity (N));
4066 if Is_Entity_Name (Name (N)) then
4067 Old_S := Entity (Name (N));
4069 if not Is_Frozen (Old_S)
4070 and then Operating_Mode /= Check_Semantics
4071 then
4072 Append_Freeze_Action (Old_S, B_Node);
4073 else
4074 Insert_After (N, B_Node);
4075 Analyze (B_Node);
4076 end if;
4078 if Is_Intrinsic_Subprogram (Old_S) and then not In_Instance then
4079 Error_Msg_N
4080 ("subprogram used in renaming_as_body cannot be intrinsic",
4081 Name (N));
4082 end if;
4084 else
4085 Insert_After (N, B_Node);
4086 Analyze (B_Node);
4087 end if;
4088 end if;
4089 end Check_Frozen_Renaming;
4091 -------------------------------
4092 -- Set_Entity_Or_Discriminal --
4093 -------------------------------
4095 procedure Set_Entity_Or_Discriminal (N : Node_Id; E : Entity_Id) is
4096 P : Node_Id;
4098 begin
4099 -- If the entity is not a discriminant, or else expansion is disabled,
4100 -- simply set the entity.
4102 if not In_Spec_Expression
4103 or else Ekind (E) /= E_Discriminant
4104 or else Inside_A_Generic
4105 then
4106 Set_Entity_With_Checks (N, E);
4108 -- The replacement of a discriminant by the corresponding discriminal
4109 -- is not done for a task discriminant that appears in a default
4110 -- expression of an entry parameter. See Exp_Ch2.Expand_Discriminant
4111 -- for details on their handling.
4113 elsif Is_Concurrent_Type (Scope (E)) then
4114 P := Parent (N);
4115 while Present (P)
4116 and then not Nkind_In (P, N_Parameter_Specification,
4117 N_Component_Declaration)
4118 loop
4119 P := Parent (P);
4120 end loop;
4122 if Present (P)
4123 and then Nkind (P) = N_Parameter_Specification
4124 then
4125 null;
4127 else
4128 Set_Entity (N, Discriminal (E));
4129 end if;
4131 -- Otherwise, this is a discriminant in a context in which
4132 -- it is a reference to the corresponding parameter of the
4133 -- init proc for the enclosing type.
4135 else
4136 Set_Entity (N, Discriminal (E));
4137 end if;
4138 end Set_Entity_Or_Discriminal;
4140 -----------------------------------
4141 -- Check_In_Previous_With_Clause --
4142 -----------------------------------
4144 procedure Check_In_Previous_With_Clause
4145 (N : Node_Id;
4146 Nam : Entity_Id)
4148 Pack : constant Entity_Id := Entity (Original_Node (Nam));
4149 Item : Node_Id;
4150 Par : Node_Id;
4152 begin
4153 Item := First (Context_Items (Parent (N)));
4154 while Present (Item) and then Item /= N loop
4155 if Nkind (Item) = N_With_Clause
4157 -- Protect the frontend against previous critical errors
4159 and then Nkind (Name (Item)) /= N_Selected_Component
4160 and then Entity (Name (Item)) = Pack
4161 then
4162 Par := Nam;
4164 -- Find root library unit in with_clause
4166 while Nkind (Par) = N_Expanded_Name loop
4167 Par := Prefix (Par);
4168 end loop;
4170 if Is_Child_Unit (Entity (Original_Node (Par))) then
4171 Error_Msg_NE ("& is not directly visible", Par, Entity (Par));
4172 else
4173 return;
4174 end if;
4175 end if;
4177 Next (Item);
4178 end loop;
4180 -- On exit, package is not mentioned in a previous with_clause.
4181 -- Check if its prefix is.
4183 if Nkind (Nam) = N_Expanded_Name then
4184 Check_In_Previous_With_Clause (N, Prefix (Nam));
4186 elsif Pack /= Any_Id then
4187 Error_Msg_NE ("& is not visible", Nam, Pack);
4188 end if;
4189 end Check_In_Previous_With_Clause;
4191 ---------------------------------
4192 -- Check_Library_Unit_Renaming --
4193 ---------------------------------
4195 procedure Check_Library_Unit_Renaming (N : Node_Id; Old_E : Entity_Id) is
4196 New_E : Entity_Id;
4198 begin
4199 if Nkind (Parent (N)) /= N_Compilation_Unit then
4200 return;
4202 -- Check for library unit. Note that we used to check for the scope
4203 -- being Standard here, but that was wrong for Standard itself.
4205 elsif not Is_Compilation_Unit (Old_E)
4206 and then not Is_Child_Unit (Old_E)
4207 then
4208 Error_Msg_N ("renamed unit must be a library unit", Name (N));
4210 -- Entities defined in Standard (operators and boolean literals) cannot
4211 -- be renamed as library units.
4213 elsif Scope (Old_E) = Standard_Standard
4214 and then Sloc (Old_E) = Standard_Location
4215 then
4216 Error_Msg_N ("renamed unit must be a library unit", Name (N));
4218 elsif Present (Parent_Spec (N))
4219 and then Nkind (Unit (Parent_Spec (N))) = N_Generic_Package_Declaration
4220 and then not Is_Child_Unit (Old_E)
4221 then
4222 Error_Msg_N
4223 ("renamed unit must be a child unit of generic parent", Name (N));
4225 elsif Nkind (N) in N_Generic_Renaming_Declaration
4226 and then Nkind (Name (N)) = N_Expanded_Name
4227 and then Is_Generic_Instance (Entity (Prefix (Name (N))))
4228 and then Is_Generic_Unit (Old_E)
4229 then
4230 Error_Msg_N
4231 ("renamed generic unit must be a library unit", Name (N));
4233 elsif Is_Package_Or_Generic_Package (Old_E) then
4235 -- Inherit categorization flags
4237 New_E := Defining_Entity (N);
4238 Set_Is_Pure (New_E, Is_Pure (Old_E));
4239 Set_Is_Preelaborated (New_E, Is_Preelaborated (Old_E));
4240 Set_Is_Remote_Call_Interface (New_E,
4241 Is_Remote_Call_Interface (Old_E));
4242 Set_Is_Remote_Types (New_E, Is_Remote_Types (Old_E));
4243 Set_Is_Shared_Passive (New_E, Is_Shared_Passive (Old_E));
4244 end if;
4245 end Check_Library_Unit_Renaming;
4247 ------------------------
4248 -- Enclosing_Instance --
4249 ------------------------
4251 function Enclosing_Instance return Entity_Id is
4252 S : Entity_Id;
4254 begin
4255 if not Is_Generic_Instance (Current_Scope) then
4256 return Empty;
4257 end if;
4259 S := Scope (Current_Scope);
4260 while S /= Standard_Standard loop
4261 if Is_Generic_Instance (S) then
4262 return S;
4263 end if;
4265 S := Scope (S);
4266 end loop;
4268 return Empty;
4269 end Enclosing_Instance;
4271 ---------------
4272 -- End_Scope --
4273 ---------------
4275 procedure End_Scope is
4276 Id : Entity_Id;
4277 Prev : Entity_Id;
4278 Outer : Entity_Id;
4280 begin
4281 Id := First_Entity (Current_Scope);
4282 while Present (Id) loop
4283 -- An entity in the current scope is not necessarily the first one
4284 -- on its homonym chain. Find its predecessor if any,
4285 -- If it is an internal entity, it will not be in the visibility
4286 -- chain altogether, and there is nothing to unchain.
4288 if Id /= Current_Entity (Id) then
4289 Prev := Current_Entity (Id);
4290 while Present (Prev)
4291 and then Present (Homonym (Prev))
4292 and then Homonym (Prev) /= Id
4293 loop
4294 Prev := Homonym (Prev);
4295 end loop;
4297 -- Skip to end of loop if Id is not in the visibility chain
4299 if No (Prev) or else Homonym (Prev) /= Id then
4300 goto Next_Ent;
4301 end if;
4303 else
4304 Prev := Empty;
4305 end if;
4307 Set_Is_Immediately_Visible (Id, False);
4309 Outer := Homonym (Id);
4310 while Present (Outer) and then Scope (Outer) = Current_Scope loop
4311 Outer := Homonym (Outer);
4312 end loop;
4314 -- Reset homonym link of other entities, but do not modify link
4315 -- between entities in current scope, so that the back-end can have
4316 -- a proper count of local overloadings.
4318 if No (Prev) then
4319 Set_Name_Entity_Id (Chars (Id), Outer);
4321 elsif Scope (Prev) /= Scope (Id) then
4322 Set_Homonym (Prev, Outer);
4323 end if;
4325 <<Next_Ent>>
4326 Next_Entity (Id);
4327 end loop;
4329 -- If the scope generated freeze actions, place them before the
4330 -- current declaration and analyze them. Type declarations and
4331 -- the bodies of initialization procedures can generate such nodes.
4332 -- We follow the parent chain until we reach a list node, which is
4333 -- the enclosing list of declarations. If the list appears within
4334 -- a protected definition, move freeze nodes outside the protected
4335 -- type altogether.
4337 if Present
4338 (Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions)
4339 then
4340 declare
4341 Decl : Node_Id;
4342 L : constant List_Id := Scope_Stack.Table
4343 (Scope_Stack.Last).Pending_Freeze_Actions;
4345 begin
4346 if Is_Itype (Current_Scope) then
4347 Decl := Associated_Node_For_Itype (Current_Scope);
4348 else
4349 Decl := Parent (Current_Scope);
4350 end if;
4352 Pop_Scope;
4354 while not (Is_List_Member (Decl))
4355 or else Nkind_In (Parent (Decl), N_Protected_Definition,
4356 N_Task_Definition)
4357 loop
4358 Decl := Parent (Decl);
4359 end loop;
4361 Insert_List_Before_And_Analyze (Decl, L);
4362 end;
4364 else
4365 Pop_Scope;
4366 end if;
4367 end End_Scope;
4369 ---------------------
4370 -- End_Use_Clauses --
4371 ---------------------
4373 procedure End_Use_Clauses (Clause : Node_Id) is
4374 U : Node_Id;
4376 begin
4377 -- Remove Use_Type clauses first, because they affect the
4378 -- visibility of operators in subsequent used packages.
4380 U := Clause;
4381 while Present (U) loop
4382 if Nkind (U) = N_Use_Type_Clause then
4383 End_Use_Type (U);
4384 end if;
4386 Next_Use_Clause (U);
4387 end loop;
4389 U := Clause;
4390 while Present (U) loop
4391 if Nkind (U) = N_Use_Package_Clause then
4392 End_Use_Package (U);
4393 end if;
4395 Next_Use_Clause (U);
4396 end loop;
4397 end End_Use_Clauses;
4399 ---------------------
4400 -- End_Use_Package --
4401 ---------------------
4403 procedure End_Use_Package (N : Node_Id) is
4404 Pack_Name : Node_Id;
4405 Pack : Entity_Id;
4406 Id : Entity_Id;
4407 Elmt : Elmt_Id;
4409 function Is_Primitive_Operator_In_Use
4410 (Op : Entity_Id;
4411 F : Entity_Id) return Boolean;
4412 -- Check whether Op is a primitive operator of a use-visible type
4414 ----------------------------------
4415 -- Is_Primitive_Operator_In_Use --
4416 ----------------------------------
4418 function Is_Primitive_Operator_In_Use
4419 (Op : Entity_Id;
4420 F : Entity_Id) return Boolean
4422 T : constant Entity_Id := Base_Type (Etype (F));
4423 begin
4424 return In_Use (T) and then Scope (T) = Scope (Op);
4425 end Is_Primitive_Operator_In_Use;
4427 -- Start of processing for End_Use_Package
4429 begin
4430 Pack_Name := First (Names (N));
4431 while Present (Pack_Name) loop
4433 -- Test that Pack_Name actually denotes a package before processing
4435 if Is_Entity_Name (Pack_Name)
4436 and then Ekind (Entity (Pack_Name)) = E_Package
4437 then
4438 Pack := Entity (Pack_Name);
4440 if In_Open_Scopes (Pack) then
4441 null;
4443 elsif not Redundant_Use (Pack_Name) then
4444 Set_In_Use (Pack, False);
4445 Set_Current_Use_Clause (Pack, Empty);
4447 Id := First_Entity (Pack);
4448 while Present (Id) loop
4450 -- Preserve use-visibility of operators that are primitive
4451 -- operators of a type that is use-visible through an active
4452 -- use_type clause.
4454 if Nkind (Id) = N_Defining_Operator_Symbol
4455 and then
4456 (Is_Primitive_Operator_In_Use (Id, First_Formal (Id))
4457 or else
4458 (Present (Next_Formal (First_Formal (Id)))
4459 and then
4460 Is_Primitive_Operator_In_Use
4461 (Id, Next_Formal (First_Formal (Id)))))
4462 then
4463 null;
4464 else
4465 Set_Is_Potentially_Use_Visible (Id, False);
4466 end if;
4468 if Is_Private_Type (Id)
4469 and then Present (Full_View (Id))
4470 then
4471 Set_Is_Potentially_Use_Visible (Full_View (Id), False);
4472 end if;
4474 Next_Entity (Id);
4475 end loop;
4477 if Present (Renamed_Object (Pack)) then
4478 Set_In_Use (Renamed_Object (Pack), False);
4479 Set_Current_Use_Clause (Renamed_Object (Pack), Empty);
4480 end if;
4482 if Chars (Pack) = Name_System
4483 and then Scope (Pack) = Standard_Standard
4484 and then Present_System_Aux
4485 then
4486 Id := First_Entity (System_Aux_Id);
4487 while Present (Id) loop
4488 Set_Is_Potentially_Use_Visible (Id, False);
4490 if Is_Private_Type (Id)
4491 and then Present (Full_View (Id))
4492 then
4493 Set_Is_Potentially_Use_Visible (Full_View (Id), False);
4494 end if;
4496 Next_Entity (Id);
4497 end loop;
4499 Set_In_Use (System_Aux_Id, False);
4500 end if;
4502 else
4503 Set_Redundant_Use (Pack_Name, False);
4504 end if;
4505 end if;
4507 Next (Pack_Name);
4508 end loop;
4510 if Present (Hidden_By_Use_Clause (N)) then
4511 Elmt := First_Elmt (Hidden_By_Use_Clause (N));
4512 while Present (Elmt) loop
4513 declare
4514 E : constant Entity_Id := Node (Elmt);
4516 begin
4517 -- Reset either Use_Visibility or Direct_Visibility, depending
4518 -- on how the entity was hidden by the use clause.
4520 if In_Use (Scope (E))
4521 and then Used_As_Generic_Actual (Scope (E))
4522 then
4523 Set_Is_Potentially_Use_Visible (Node (Elmt));
4524 else
4525 Set_Is_Immediately_Visible (Node (Elmt));
4526 end if;
4528 Next_Elmt (Elmt);
4529 end;
4530 end loop;
4532 Set_Hidden_By_Use_Clause (N, No_Elist);
4533 end if;
4534 end End_Use_Package;
4536 ------------------
4537 -- End_Use_Type --
4538 ------------------
4540 procedure End_Use_Type (N : Node_Id) is
4541 Elmt : Elmt_Id;
4542 Id : Entity_Id;
4543 T : Entity_Id;
4545 -- Start of processing for End_Use_Type
4547 begin
4548 Id := First (Subtype_Marks (N));
4549 while Present (Id) loop
4551 -- A call to Rtsfind may occur while analyzing a use_type clause,
4552 -- in which case the type marks are not resolved yet, and there is
4553 -- nothing to remove.
4555 if not Is_Entity_Name (Id) or else No (Entity (Id)) then
4556 goto Continue;
4557 end if;
4559 T := Entity (Id);
4561 if T = Any_Type or else From_Limited_With (T) then
4562 null;
4564 -- Note that the use_type clause may mention a subtype of the type
4565 -- whose primitive operations have been made visible. Here as
4566 -- elsewhere, it is the base type that matters for visibility.
4568 elsif In_Open_Scopes (Scope (Base_Type (T))) then
4569 null;
4571 elsif not Redundant_Use (Id) then
4572 Set_In_Use (T, False);
4573 Set_In_Use (Base_Type (T), False);
4574 Set_Current_Use_Clause (T, Empty);
4575 Set_Current_Use_Clause (Base_Type (T), Empty);
4576 end if;
4578 <<Continue>>
4579 Next (Id);
4580 end loop;
4582 if Is_Empty_Elmt_List (Used_Operations (N)) then
4583 return;
4585 else
4586 Elmt := First_Elmt (Used_Operations (N));
4587 while Present (Elmt) loop
4588 Set_Is_Potentially_Use_Visible (Node (Elmt), False);
4589 Next_Elmt (Elmt);
4590 end loop;
4591 end if;
4592 end End_Use_Type;
4594 ----------------------
4595 -- Find_Direct_Name --
4596 ----------------------
4598 procedure Find_Direct_Name (N : Node_Id) is
4599 E : Entity_Id;
4600 E2 : Entity_Id;
4601 Msg : Boolean;
4603 Inst : Entity_Id := Empty;
4604 -- Enclosing instance, if any
4606 Homonyms : Entity_Id;
4607 -- Saves start of homonym chain
4609 Nvis_Entity : Boolean;
4610 -- Set True to indicate that there is at least one entity on the homonym
4611 -- chain which, while not visible, is visible enough from the user point
4612 -- of view to warrant an error message of "not visible" rather than
4613 -- undefined.
4615 Nvis_Is_Private_Subprg : Boolean := False;
4616 -- Ada 2005 (AI-262): Set True to indicate that a form of Beaujolais
4617 -- effect concerning library subprograms has been detected. Used to
4618 -- generate the precise error message.
4620 function From_Actual_Package (E : Entity_Id) return Boolean;
4621 -- Returns true if the entity is an actual for a package that is itself
4622 -- an actual for a formal package of the current instance. Such an
4623 -- entity requires special handling because it may be use-visible but
4624 -- hides directly visible entities defined outside the instance, because
4625 -- the corresponding formal did so in the generic.
4627 function Is_Actual_Parameter return Boolean;
4628 -- This function checks if the node N is an identifier that is an actual
4629 -- parameter of a procedure call. If so it returns True, otherwise it
4630 -- return False. The reason for this check is that at this stage we do
4631 -- not know what procedure is being called if the procedure might be
4632 -- overloaded, so it is premature to go setting referenced flags or
4633 -- making calls to Generate_Reference. We will wait till Resolve_Actuals
4634 -- for that processing
4636 function Known_But_Invisible (E : Entity_Id) return Boolean;
4637 -- This function determines whether a reference to the entity E, which
4638 -- is not visible, can reasonably be considered to be known to the
4639 -- writer of the reference. This is a heuristic test, used only for
4640 -- the purposes of figuring out whether we prefer to complain that an
4641 -- entity is undefined or invisible (and identify the declaration of
4642 -- the invisible entity in the latter case). The point here is that we
4643 -- don't want to complain that something is invisible and then point to
4644 -- something entirely mysterious to the writer.
4646 procedure Nvis_Messages;
4647 -- Called if there are no visible entries for N, but there is at least
4648 -- one non-directly visible, or hidden declaration. This procedure
4649 -- outputs an appropriate set of error messages.
4651 procedure Undefined (Nvis : Boolean);
4652 -- This function is called if the current node has no corresponding
4653 -- visible entity or entities. The value set in Msg indicates whether
4654 -- an error message was generated (multiple error messages for the
4655 -- same variable are generally suppressed, see body for details).
4656 -- Msg is True if an error message was generated, False if not. This
4657 -- value is used by the caller to determine whether or not to output
4658 -- additional messages where appropriate. The parameter is set False
4659 -- to get the message "X is undefined", and True to get the message
4660 -- "X is not visible".
4662 -------------------------
4663 -- From_Actual_Package --
4664 -------------------------
4666 function From_Actual_Package (E : Entity_Id) return Boolean is
4667 Scop : constant Entity_Id := Scope (E);
4668 -- Declared scope of candidate entity
4670 Act : Entity_Id;
4672 function Declared_In_Actual (Pack : Entity_Id) return Boolean;
4673 -- Recursive function that does the work and examines actuals of
4674 -- actual packages of current instance.
4676 ------------------------
4677 -- Declared_In_Actual --
4678 ------------------------
4680 function Declared_In_Actual (Pack : Entity_Id) return Boolean is
4681 Act : Entity_Id;
4683 begin
4684 if No (Associated_Formal_Package (Pack)) then
4685 return False;
4687 else
4688 Act := First_Entity (Pack);
4689 while Present (Act) loop
4690 if Renamed_Object (Pack) = Scop then
4691 return True;
4693 -- Check for end of list of actuals.
4695 elsif Ekind (Act) = E_Package
4696 and then Renamed_Object (Act) = Pack
4697 then
4698 return False;
4700 elsif Ekind (Act) = E_Package
4701 and then Declared_In_Actual (Act)
4702 then
4703 return True;
4704 end if;
4706 Next_Entity (Act);
4707 end loop;
4709 return False;
4710 end if;
4711 end Declared_In_Actual;
4713 -- Start of processing for From_Actual_Package
4715 begin
4716 if not In_Instance then
4717 return False;
4719 else
4720 Inst := Current_Scope;
4721 while Present (Inst)
4722 and then Ekind (Inst) /= E_Package
4723 and then not Is_Generic_Instance (Inst)
4724 loop
4725 Inst := Scope (Inst);
4726 end loop;
4728 if No (Inst) then
4729 return False;
4730 end if;
4732 Act := First_Entity (Inst);
4733 while Present (Act) loop
4734 if Ekind (Act) = E_Package
4735 and then Declared_In_Actual (Act)
4736 then
4737 return True;
4738 end if;
4740 Next_Entity (Act);
4741 end loop;
4743 return False;
4744 end if;
4745 end From_Actual_Package;
4747 -------------------------
4748 -- Is_Actual_Parameter --
4749 -------------------------
4751 function Is_Actual_Parameter return Boolean is
4752 begin
4753 return
4754 Nkind (N) = N_Identifier
4755 and then
4756 (Nkind (Parent (N)) = N_Procedure_Call_Statement
4757 or else
4758 (Nkind (Parent (N)) = N_Parameter_Association
4759 and then N = Explicit_Actual_Parameter (Parent (N))
4760 and then Nkind (Parent (Parent (N))) =
4761 N_Procedure_Call_Statement));
4762 end Is_Actual_Parameter;
4764 -------------------------
4765 -- Known_But_Invisible --
4766 -------------------------
4768 function Known_But_Invisible (E : Entity_Id) return Boolean is
4769 Fname : File_Name_Type;
4771 begin
4772 -- Entities in Standard are always considered to be known
4774 if Sloc (E) <= Standard_Location then
4775 return True;
4777 -- An entity that does not come from source is always considered
4778 -- to be unknown, since it is an artifact of code expansion.
4780 elsif not Comes_From_Source (E) then
4781 return False;
4783 -- In gnat internal mode, we consider all entities known. The
4784 -- historical reason behind this discrepancy is not known??? But the
4785 -- only effect is to modify the error message given, so it is not
4786 -- critical. Since it only affects the exact wording of error
4787 -- messages in illegal programs, we do not mention this as an
4788 -- effect of -gnatg, since it is not a language modification.
4790 elsif GNAT_Mode then
4791 return True;
4792 end if;
4794 -- Here we have an entity that is not from package Standard, and
4795 -- which comes from Source. See if it comes from an internal file.
4797 Fname := Unit_File_Name (Get_Source_Unit (E));
4799 -- Case of from internal file
4801 if Is_Internal_File_Name (Fname) then
4803 -- Private part entities in internal files are never considered
4804 -- to be known to the writer of normal application code.
4806 if Is_Hidden (E) then
4807 return False;
4808 end if;
4810 -- Entities from System packages other than System and
4811 -- System.Storage_Elements are not considered to be known.
4812 -- System.Auxxxx files are also considered known to the user.
4814 -- Should refine this at some point to generally distinguish
4815 -- between known and unknown internal files ???
4817 Get_Name_String (Fname);
4819 return
4820 Name_Len < 2
4821 or else
4822 Name_Buffer (1 .. 2) /= "s-"
4823 or else
4824 Name_Buffer (3 .. 8) = "stoele"
4825 or else
4826 Name_Buffer (3 .. 5) = "aux";
4828 -- If not an internal file, then entity is definitely known,
4829 -- even if it is in a private part (the message generated will
4830 -- note that it is in a private part)
4832 else
4833 return True;
4834 end if;
4835 end Known_But_Invisible;
4837 -------------------
4838 -- Nvis_Messages --
4839 -------------------
4841 procedure Nvis_Messages is
4842 Comp_Unit : Node_Id;
4843 Ent : Entity_Id;
4844 Found : Boolean := False;
4845 Hidden : Boolean := False;
4846 Item : Node_Id;
4848 begin
4849 -- Ada 2005 (AI-262): Generate a precise error concerning the
4850 -- Beaujolais effect that was previously detected
4852 if Nvis_Is_Private_Subprg then
4854 pragma Assert (Nkind (E2) = N_Defining_Identifier
4855 and then Ekind (E2) = E_Function
4856 and then Scope (E2) = Standard_Standard
4857 and then Has_Private_With (E2));
4859 -- Find the sloc corresponding to the private with'ed unit
4861 Comp_Unit := Cunit (Current_Sem_Unit);
4862 Error_Msg_Sloc := No_Location;
4864 Item := First (Context_Items (Comp_Unit));
4865 while Present (Item) loop
4866 if Nkind (Item) = N_With_Clause
4867 and then Private_Present (Item)
4868 and then Entity (Name (Item)) = E2
4869 then
4870 Error_Msg_Sloc := Sloc (Item);
4871 exit;
4872 end if;
4874 Next (Item);
4875 end loop;
4877 pragma Assert (Error_Msg_Sloc /= No_Location);
4879 Error_Msg_N ("(Ada 2005): hidden by private with clause #", N);
4880 return;
4881 end if;
4883 Undefined (Nvis => True);
4885 if Msg then
4887 -- First loop does hidden declarations
4889 Ent := Homonyms;
4890 while Present (Ent) loop
4891 if Is_Potentially_Use_Visible (Ent) then
4892 if not Hidden then
4893 Error_Msg_N -- CODEFIX
4894 ("multiple use clauses cause hiding!", N);
4895 Hidden := True;
4896 end if;
4898 Error_Msg_Sloc := Sloc (Ent);
4899 Error_Msg_N -- CODEFIX
4900 ("hidden declaration#!", N);
4901 end if;
4903 Ent := Homonym (Ent);
4904 end loop;
4906 -- If we found hidden declarations, then that's enough, don't
4907 -- bother looking for non-visible declarations as well.
4909 if Hidden then
4910 return;
4911 end if;
4913 -- Second loop does non-directly visible declarations
4915 Ent := Homonyms;
4916 while Present (Ent) loop
4917 if not Is_Potentially_Use_Visible (Ent) then
4919 -- Do not bother the user with unknown entities
4921 if not Known_But_Invisible (Ent) then
4922 goto Continue;
4923 end if;
4925 Error_Msg_Sloc := Sloc (Ent);
4927 -- Output message noting that there is a non-visible
4928 -- declaration, distinguishing the private part case.
4930 if Is_Hidden (Ent) then
4931 Error_Msg_N ("non-visible (private) declaration#!", N);
4933 -- If the entity is declared in a generic package, it
4934 -- cannot be visible, so there is no point in adding it
4935 -- to the list of candidates if another homograph from a
4936 -- non-generic package has been seen.
4938 elsif Ekind (Scope (Ent)) = E_Generic_Package
4939 and then Found
4940 then
4941 null;
4943 else
4944 Error_Msg_N -- CODEFIX
4945 ("non-visible declaration#!", N);
4947 if Ekind (Scope (Ent)) /= E_Generic_Package then
4948 Found := True;
4949 end if;
4951 if Is_Compilation_Unit (Ent)
4952 and then
4953 Nkind (Parent (Parent (N))) = N_Use_Package_Clause
4954 then
4955 Error_Msg_Qual_Level := 99;
4956 Error_Msg_NE -- CODEFIX
4957 ("\\missing `WITH &;`", N, Ent);
4958 Error_Msg_Qual_Level := 0;
4959 end if;
4961 if Ekind (Ent) = E_Discriminant
4962 and then Present (Corresponding_Discriminant (Ent))
4963 and then Scope (Corresponding_Discriminant (Ent)) =
4964 Etype (Scope (Ent))
4965 then
4966 Error_Msg_N
4967 ("inherited discriminant not allowed here" &
4968 " (RM 3.8 (12), 3.8.1 (6))!", N);
4969 end if;
4970 end if;
4972 -- Set entity and its containing package as referenced. We
4973 -- can't be sure of this, but this seems a better choice
4974 -- to avoid unused entity messages.
4976 if Comes_From_Source (Ent) then
4977 Set_Referenced (Ent);
4978 Set_Referenced (Cunit_Entity (Get_Source_Unit (Ent)));
4979 end if;
4980 end if;
4982 <<Continue>>
4983 Ent := Homonym (Ent);
4984 end loop;
4985 end if;
4986 end Nvis_Messages;
4988 ---------------
4989 -- Undefined --
4990 ---------------
4992 procedure Undefined (Nvis : Boolean) is
4993 Emsg : Error_Msg_Id;
4995 begin
4996 -- We should never find an undefined internal name. If we do, then
4997 -- see if we have previous errors. If so, ignore on the grounds that
4998 -- it is probably a cascaded message (e.g. a block label from a badly
4999 -- formed block). If no previous errors, then we have a real internal
5000 -- error of some kind so raise an exception.
5002 if Is_Internal_Name (Chars (N)) then
5003 if Total_Errors_Detected /= 0 then
5004 return;
5005 else
5006 raise Program_Error;
5007 end if;
5008 end if;
5010 -- A very specialized error check, if the undefined variable is
5011 -- a case tag, and the case type is an enumeration type, check
5012 -- for a possible misspelling, and if so, modify the identifier
5014 -- Named aggregate should also be handled similarly ???
5016 if Nkind (N) = N_Identifier
5017 and then Nkind (Parent (N)) = N_Case_Statement_Alternative
5018 then
5019 declare
5020 Case_Stm : constant Node_Id := Parent (Parent (N));
5021 Case_Typ : constant Entity_Id := Etype (Expression (Case_Stm));
5023 Lit : Node_Id;
5025 begin
5026 if Is_Enumeration_Type (Case_Typ)
5027 and then not Is_Standard_Character_Type (Case_Typ)
5028 then
5029 Lit := First_Literal (Case_Typ);
5030 Get_Name_String (Chars (Lit));
5032 if Chars (Lit) /= Chars (N)
5033 and then Is_Bad_Spelling_Of (Chars (N), Chars (Lit))
5034 then
5035 Error_Msg_Node_2 := Lit;
5036 Error_Msg_N -- CODEFIX
5037 ("& is undefined, assume misspelling of &", N);
5038 Rewrite (N, New_Occurrence_Of (Lit, Sloc (N)));
5039 return;
5040 end if;
5042 Lit := Next_Literal (Lit);
5043 end if;
5044 end;
5045 end if;
5047 -- Normal processing
5049 Set_Entity (N, Any_Id);
5050 Set_Etype (N, Any_Type);
5052 -- We use the table Urefs to keep track of entities for which we
5053 -- have issued errors for undefined references. Multiple errors
5054 -- for a single name are normally suppressed, however we modify
5055 -- the error message to alert the programmer to this effect.
5057 for J in Urefs.First .. Urefs.Last loop
5058 if Chars (N) = Chars (Urefs.Table (J).Node) then
5059 if Urefs.Table (J).Err /= No_Error_Msg
5060 and then Sloc (N) /= Urefs.Table (J).Loc
5061 then
5062 Error_Msg_Node_1 := Urefs.Table (J).Node;
5064 if Urefs.Table (J).Nvis then
5065 Change_Error_Text (Urefs.Table (J).Err,
5066 "& is not visible (more references follow)");
5067 else
5068 Change_Error_Text (Urefs.Table (J).Err,
5069 "& is undefined (more references follow)");
5070 end if;
5072 Urefs.Table (J).Err := No_Error_Msg;
5073 end if;
5075 -- Although we will set Msg False, and thus suppress the
5076 -- message, we also set Error_Posted True, to avoid any
5077 -- cascaded messages resulting from the undefined reference.
5079 Msg := False;
5080 Set_Error_Posted (N, True);
5081 return;
5082 end if;
5083 end loop;
5085 -- If entry not found, this is first undefined occurrence
5087 if Nvis then
5088 Error_Msg_N ("& is not visible!", N);
5089 Emsg := Get_Msg_Id;
5091 else
5092 Error_Msg_N ("& is undefined!", N);
5093 Emsg := Get_Msg_Id;
5095 -- A very bizarre special check, if the undefined identifier
5096 -- is put or put_line, then add a special error message (since
5097 -- this is a very common error for beginners to make).
5099 if Nam_In (Chars (N), Name_Put, Name_Put_Line) then
5100 Error_Msg_N -- CODEFIX
5101 ("\\possible missing `WITH Ada.Text_'I'O; " &
5102 "USE Ada.Text_'I'O`!", N);
5104 -- Another special check if N is the prefix of a selected
5105 -- component which is a known unit, add message complaining
5106 -- about missing with for this unit.
5108 elsif Nkind (Parent (N)) = N_Selected_Component
5109 and then N = Prefix (Parent (N))
5110 and then Is_Known_Unit (Parent (N))
5111 then
5112 Error_Msg_Node_2 := Selector_Name (Parent (N));
5113 Error_Msg_N -- CODEFIX
5114 ("\\missing `WITH &.&;`", Prefix (Parent (N)));
5115 end if;
5117 -- Now check for possible misspellings
5119 declare
5120 E : Entity_Id;
5121 Ematch : Entity_Id := Empty;
5123 Last_Name_Id : constant Name_Id :=
5124 Name_Id (Nat (First_Name_Id) +
5125 Name_Entries_Count - 1);
5127 begin
5128 for Nam in First_Name_Id .. Last_Name_Id loop
5129 E := Get_Name_Entity_Id (Nam);
5131 if Present (E)
5132 and then (Is_Immediately_Visible (E)
5133 or else
5134 Is_Potentially_Use_Visible (E))
5135 then
5136 if Is_Bad_Spelling_Of (Chars (N), Nam) then
5137 Ematch := E;
5138 exit;
5139 end if;
5140 end if;
5141 end loop;
5143 if Present (Ematch) then
5144 Error_Msg_NE -- CODEFIX
5145 ("\possible misspelling of&", N, Ematch);
5146 end if;
5147 end;
5148 end if;
5150 -- Make entry in undefined references table unless the full errors
5151 -- switch is set, in which case by refraining from generating the
5152 -- table entry, we guarantee that we get an error message for every
5153 -- undefined reference.
5155 if not All_Errors_Mode then
5156 Urefs.Append (
5157 (Node => N,
5158 Err => Emsg,
5159 Nvis => Nvis,
5160 Loc => Sloc (N)));
5161 end if;
5163 Msg := True;
5164 end Undefined;
5166 -- Start of processing for Find_Direct_Name
5168 begin
5169 -- If the entity pointer is already set, this is an internal node, or
5170 -- a node that is analyzed more than once, after a tree modification.
5171 -- In such a case there is no resolution to perform, just set the type.
5173 if Present (Entity (N)) then
5174 if Is_Type (Entity (N)) then
5175 Set_Etype (N, Entity (N));
5177 else
5178 declare
5179 Entyp : constant Entity_Id := Etype (Entity (N));
5181 begin
5182 -- One special case here. If the Etype field is already set,
5183 -- and references the packed array type corresponding to the
5184 -- etype of the referenced entity, then leave it alone. This
5185 -- happens for trees generated from Exp_Pakd, where expressions
5186 -- can be deliberately "mis-typed" to the packed array type.
5188 if Is_Array_Type (Entyp)
5189 and then Is_Packed (Entyp)
5190 and then Present (Etype (N))
5191 and then Etype (N) = Packed_Array_Impl_Type (Entyp)
5192 then
5193 null;
5195 -- If not that special case, then just reset the Etype
5197 else
5198 Set_Etype (N, Etype (Entity (N)));
5199 end if;
5200 end;
5201 end if;
5203 return;
5204 end if;
5206 -- Here if Entity pointer was not set, we need full visibility analysis
5207 -- First we generate debugging output if the debug E flag is set.
5209 if Debug_Flag_E then
5210 Write_Str ("Looking for ");
5211 Write_Name (Chars (N));
5212 Write_Eol;
5213 end if;
5215 Homonyms := Current_Entity (N);
5216 Nvis_Entity := False;
5218 E := Homonyms;
5219 while Present (E) loop
5221 -- If entity is immediately visible or potentially use visible, then
5222 -- process the entity and we are done.
5224 if Is_Immediately_Visible (E) then
5225 goto Immediately_Visible_Entity;
5227 elsif Is_Potentially_Use_Visible (E) then
5228 goto Potentially_Use_Visible_Entity;
5230 -- Note if a known but invisible entity encountered
5232 elsif Known_But_Invisible (E) then
5233 Nvis_Entity := True;
5234 end if;
5236 -- Move to next entity in chain and continue search
5238 E := Homonym (E);
5239 end loop;
5241 -- If no entries on homonym chain that were potentially visible,
5242 -- and no entities reasonably considered as non-visible, then
5243 -- we have a plain undefined reference, with no additional
5244 -- explanation required.
5246 if not Nvis_Entity then
5247 Undefined (Nvis => False);
5249 -- Otherwise there is at least one entry on the homonym chain that
5250 -- is reasonably considered as being known and non-visible.
5252 else
5253 Nvis_Messages;
5254 end if;
5256 goto Done;
5258 -- Processing for a potentially use visible entry found. We must search
5259 -- the rest of the homonym chain for two reasons. First, if there is a
5260 -- directly visible entry, then none of the potentially use-visible
5261 -- entities are directly visible (RM 8.4(10)). Second, we need to check
5262 -- for the case of multiple potentially use-visible entries hiding one
5263 -- another and as a result being non-directly visible (RM 8.4(11)).
5265 <<Potentially_Use_Visible_Entity>> declare
5266 Only_One_Visible : Boolean := True;
5267 All_Overloadable : Boolean := Is_Overloadable (E);
5269 begin
5270 E2 := Homonym (E);
5271 while Present (E2) loop
5272 if Is_Immediately_Visible (E2) then
5274 -- If the use-visible entity comes from the actual for a
5275 -- formal package, it hides a directly visible entity from
5276 -- outside the instance.
5278 if From_Actual_Package (E)
5279 and then Scope_Depth (E2) < Scope_Depth (Inst)
5280 then
5281 goto Found;
5282 else
5283 E := E2;
5284 goto Immediately_Visible_Entity;
5285 end if;
5287 elsif Is_Potentially_Use_Visible (E2) then
5288 Only_One_Visible := False;
5289 All_Overloadable := All_Overloadable and Is_Overloadable (E2);
5291 -- Ada 2005 (AI-262): Protect against a form of Beaujolais effect
5292 -- that can occur in private_with clauses. Example:
5294 -- with A;
5295 -- private with B; package A is
5296 -- package C is function B return Integer;
5297 -- use A; end A;
5298 -- V1 : Integer := B;
5299 -- private function B return Integer;
5300 -- V2 : Integer := B;
5301 -- end C;
5303 -- V1 resolves to A.B, but V2 resolves to library unit B
5305 elsif Ekind (E2) = E_Function
5306 and then Scope (E2) = Standard_Standard
5307 and then Has_Private_With (E2)
5308 then
5309 Only_One_Visible := False;
5310 All_Overloadable := False;
5311 Nvis_Is_Private_Subprg := True;
5312 exit;
5313 end if;
5315 E2 := Homonym (E2);
5316 end loop;
5318 -- On falling through this loop, we have checked that there are no
5319 -- immediately visible entities. Only_One_Visible is set if exactly
5320 -- one potentially use visible entity exists. All_Overloadable is
5321 -- set if all the potentially use visible entities are overloadable.
5322 -- The condition for legality is that either there is one potentially
5323 -- use visible entity, or if there is more than one, then all of them
5324 -- are overloadable.
5326 if Only_One_Visible or All_Overloadable then
5327 goto Found;
5329 -- If there is more than one potentially use-visible entity and at
5330 -- least one of them non-overloadable, we have an error (RM 8.4(11)).
5331 -- Note that E points to the first such entity on the homonym list.
5332 -- Special case: if one of the entities is declared in an actual
5333 -- package, it was visible in the generic, and takes precedence over
5334 -- other entities that are potentially use-visible. Same if it is
5335 -- declared in a local instantiation of the current instance.
5337 else
5338 if In_Instance then
5340 -- Find current instance
5342 Inst := Current_Scope;
5343 while Present (Inst) and then Inst /= Standard_Standard loop
5344 if Is_Generic_Instance (Inst) then
5345 exit;
5346 end if;
5348 Inst := Scope (Inst);
5349 end loop;
5351 E2 := E;
5352 while Present (E2) loop
5353 if From_Actual_Package (E2)
5354 or else
5355 (Is_Generic_Instance (Scope (E2))
5356 and then Scope_Depth (Scope (E2)) > Scope_Depth (Inst))
5357 then
5358 E := E2;
5359 goto Found;
5360 end if;
5362 E2 := Homonym (E2);
5363 end loop;
5365 Nvis_Messages;
5366 goto Done;
5368 elsif
5369 Is_Predefined_File_Name (Unit_File_Name (Current_Sem_Unit))
5370 then
5371 -- A use-clause in the body of a system file creates conflict
5372 -- with some entity in a user scope, while rtsfind is active.
5373 -- Keep only the entity coming from another predefined unit.
5375 E2 := E;
5376 while Present (E2) loop
5377 if Is_Predefined_File_Name
5378 (Unit_File_Name (Get_Source_Unit (Sloc (E2))))
5379 then
5380 E := E2;
5381 goto Found;
5382 end if;
5384 E2 := Homonym (E2);
5385 end loop;
5387 -- Entity must exist because predefined unit is correct
5389 raise Program_Error;
5391 else
5392 Nvis_Messages;
5393 goto Done;
5394 end if;
5395 end if;
5396 end;
5398 -- Come here with E set to the first immediately visible entity on
5399 -- the homonym chain. This is the one we want unless there is another
5400 -- immediately visible entity further on in the chain for an inner
5401 -- scope (RM 8.3(8)).
5403 <<Immediately_Visible_Entity>> declare
5404 Level : Int;
5405 Scop : Entity_Id;
5407 begin
5408 -- Find scope level of initial entity. When compiling through
5409 -- Rtsfind, the previous context is not completely invisible, and
5410 -- an outer entity may appear on the chain, whose scope is below
5411 -- the entry for Standard that delimits the current scope stack.
5412 -- Indicate that the level for this spurious entry is outside of
5413 -- the current scope stack.
5415 Level := Scope_Stack.Last;
5416 loop
5417 Scop := Scope_Stack.Table (Level).Entity;
5418 exit when Scop = Scope (E);
5419 Level := Level - 1;
5420 exit when Scop = Standard_Standard;
5421 end loop;
5423 -- Now search remainder of homonym chain for more inner entry
5424 -- If the entity is Standard itself, it has no scope, and we
5425 -- compare it with the stack entry directly.
5427 E2 := Homonym (E);
5428 while Present (E2) loop
5429 if Is_Immediately_Visible (E2) then
5431 -- If a generic package contains a local declaration that
5432 -- has the same name as the generic, there may be a visibility
5433 -- conflict in an instance, where the local declaration must
5434 -- also hide the name of the corresponding package renaming.
5435 -- We check explicitly for a package declared by a renaming,
5436 -- whose renamed entity is an instance that is on the scope
5437 -- stack, and that contains a homonym in the same scope. Once
5438 -- we have found it, we know that the package renaming is not
5439 -- immediately visible, and that the identifier denotes the
5440 -- other entity (and its homonyms if overloaded).
5442 if Scope (E) = Scope (E2)
5443 and then Ekind (E) = E_Package
5444 and then Present (Renamed_Object (E))
5445 and then Is_Generic_Instance (Renamed_Object (E))
5446 and then In_Open_Scopes (Renamed_Object (E))
5447 and then Comes_From_Source (N)
5448 then
5449 Set_Is_Immediately_Visible (E, False);
5450 E := E2;
5452 else
5453 for J in Level + 1 .. Scope_Stack.Last loop
5454 if Scope_Stack.Table (J).Entity = Scope (E2)
5455 or else Scope_Stack.Table (J).Entity = E2
5456 then
5457 Level := J;
5458 E := E2;
5459 exit;
5460 end if;
5461 end loop;
5462 end if;
5463 end if;
5465 E2 := Homonym (E2);
5466 end loop;
5468 -- At the end of that loop, E is the innermost immediately
5469 -- visible entity, so we are all set.
5470 end;
5472 -- Come here with entity found, and stored in E
5474 <<Found>> begin
5476 -- Check violation of No_Wide_Characters restriction
5478 Check_Wide_Character_Restriction (E, N);
5480 -- When distribution features are available (Get_PCS_Name /=
5481 -- Name_No_DSA), a remote access-to-subprogram type is converted
5482 -- into a record type holding whatever information is needed to
5483 -- perform a remote call on an RCI subprogram. In that case we
5484 -- rewrite any occurrence of the RAS type into the equivalent record
5485 -- type here. 'Access attribute references and RAS dereferences are
5486 -- then implemented using specific TSSs. However when distribution is
5487 -- not available (case of Get_PCS_Name = Name_No_DSA), we bypass the
5488 -- generation of these TSSs, and we must keep the RAS type in its
5489 -- original access-to-subprogram form (since all calls through a
5490 -- value of such type will be local anyway in the absence of a PCS).
5492 if Comes_From_Source (N)
5493 and then Is_Remote_Access_To_Subprogram_Type (E)
5494 and then Ekind (E) = E_Access_Subprogram_Type
5495 and then Expander_Active
5496 and then Get_PCS_Name /= Name_No_DSA
5497 then
5498 Rewrite (N, New_Occurrence_Of (Equivalent_Type (E), Sloc (N)));
5499 goto Done;
5500 end if;
5502 -- Set the entity. Note that the reason we call Set_Entity for the
5503 -- overloadable case, as opposed to Set_Entity_With_Checks is
5504 -- that in the overloaded case, the initial call can set the wrong
5505 -- homonym. The call that sets the right homonym is in Sem_Res and
5506 -- that call does use Set_Entity_With_Checks, so we don't miss
5507 -- a style check.
5509 if Is_Overloadable (E) then
5510 Set_Entity (N, E);
5511 else
5512 Set_Entity_With_Checks (N, E);
5513 end if;
5515 if Is_Type (E) then
5516 Set_Etype (N, E);
5517 else
5518 Set_Etype (N, Get_Full_View (Etype (E)));
5519 end if;
5521 if Debug_Flag_E then
5522 Write_Str (" found ");
5523 Write_Entity_Info (E, " ");
5524 end if;
5526 -- If the Ekind of the entity is Void, it means that all homonyms
5527 -- are hidden from all visibility (RM 8.3(5,14-20)). However, this
5528 -- test is skipped if the current scope is a record and the name is
5529 -- a pragma argument expression (case of Atomic and Volatile pragmas
5530 -- and possibly other similar pragmas added later, which are allowed
5531 -- to reference components in the current record).
5533 if Ekind (E) = E_Void
5534 and then
5535 (not Is_Record_Type (Current_Scope)
5536 or else Nkind (Parent (N)) /= N_Pragma_Argument_Association)
5537 then
5538 Premature_Usage (N);
5540 -- If the entity is overloadable, collect all interpretations of the
5541 -- name for subsequent overload resolution. We optimize a bit here to
5542 -- do this only if we have an overloadable entity that is not on its
5543 -- own on the homonym chain.
5545 elsif Is_Overloadable (E)
5546 and then (Present (Homonym (E)) or else Current_Entity (N) /= E)
5547 then
5548 Collect_Interps (N);
5550 -- If no homonyms were visible, the entity is unambiguous
5552 if not Is_Overloaded (N) then
5553 if not Is_Actual_Parameter then
5554 Generate_Reference (E, N);
5555 end if;
5556 end if;
5558 -- Case of non-overloadable entity, set the entity providing that
5559 -- we do not have the case of a discriminant reference within a
5560 -- default expression. Such references are replaced with the
5561 -- corresponding discriminal, which is the formal corresponding to
5562 -- to the discriminant in the initialization procedure.
5564 else
5565 -- Entity is unambiguous, indicate that it is referenced here
5567 -- For a renaming of an object, always generate simple reference,
5568 -- we don't try to keep track of assignments in this case, except
5569 -- in SPARK mode where renamings are traversed for generating
5570 -- local effects of subprograms.
5572 if Is_Object (E)
5573 and then Present (Renamed_Object (E))
5574 and then not GNATprove_Mode
5575 then
5576 Generate_Reference (E, N);
5578 -- If the renamed entity is a private protected component,
5579 -- reference the original component as well. This needs to be
5580 -- done because the private renamings are installed before any
5581 -- analysis has occurred. Reference to a private component will
5582 -- resolve to the renaming and the original component will be
5583 -- left unreferenced, hence the following.
5585 if Is_Prival (E) then
5586 Generate_Reference (Prival_Link (E), N);
5587 end if;
5589 -- One odd case is that we do not want to set the Referenced flag
5590 -- if the entity is a label, and the identifier is the label in
5591 -- the source, since this is not a reference from the point of
5592 -- view of the user.
5594 elsif Nkind (Parent (N)) = N_Label then
5595 declare
5596 R : constant Boolean := Referenced (E);
5598 begin
5599 -- Generate reference unless this is an actual parameter
5600 -- (see comment below)
5602 if Is_Actual_Parameter then
5603 Generate_Reference (E, N);
5604 Set_Referenced (E, R);
5605 end if;
5606 end;
5608 -- Normal case, not a label: generate reference
5610 else
5611 if not Is_Actual_Parameter then
5613 -- Package or generic package is always a simple reference
5615 if Ekind_In (E, E_Package, E_Generic_Package) then
5616 Generate_Reference (E, N, 'r');
5618 -- Else see if we have a left hand side
5620 else
5621 case Is_LHS (N) is
5622 when Yes =>
5623 Generate_Reference (E, N, 'm');
5625 when No =>
5626 Generate_Reference (E, N, 'r');
5628 -- If we don't know now, generate reference later
5630 when Unknown =>
5631 Deferred_References.Append ((E, N));
5632 end case;
5633 end if;
5634 end if;
5636 Check_Nested_Access (E);
5637 end if;
5639 Set_Entity_Or_Discriminal (N, E);
5641 -- The name may designate a generalized reference, in which case
5642 -- the dereference interpretation will be included.
5644 if Ada_Version >= Ada_2012
5645 and then
5646 (Nkind (Parent (N)) in N_Subexpr
5647 or else Nkind_In (Parent (N), N_Object_Declaration,
5648 N_Assignment_Statement))
5649 then
5650 Check_Implicit_Dereference (N, Etype (E));
5651 end if;
5652 end if;
5653 end;
5655 -- Come here with entity set
5657 <<Done>>
5658 Check_Restriction_No_Use_Of_Entity (N);
5659 end Find_Direct_Name;
5661 ------------------------
5662 -- Find_Expanded_Name --
5663 ------------------------
5665 -- This routine searches the homonym chain of the entity until it finds
5666 -- an entity declared in the scope denoted by the prefix. If the entity
5667 -- is private, it may nevertheless be immediately visible, if we are in
5668 -- the scope of its declaration.
5670 procedure Find_Expanded_Name (N : Node_Id) is
5671 function In_Pragmas_Depends_Or_Global (N : Node_Id) return Boolean;
5672 -- Determine whether an arbitrary node N appears in pragmas [Refined_]
5673 -- Depends or [Refined_]Global.
5675 ----------------------------------
5676 -- In_Pragmas_Depends_Or_Global --
5677 ----------------------------------
5679 function In_Pragmas_Depends_Or_Global (N : Node_Id) return Boolean is
5680 Par : Node_Id;
5682 begin
5683 -- Climb the parent chain looking for a pragma
5685 Par := N;
5686 while Present (Par) loop
5687 if Nkind (Par) = N_Pragma
5688 and then Nam_In (Pragma_Name (Par), Name_Depends,
5689 Name_Global,
5690 Name_Refined_Depends,
5691 Name_Refined_Global)
5692 then
5693 return True;
5695 -- Prevent the search from going too far
5697 elsif Is_Body_Or_Package_Declaration (Par) then
5698 return False;
5699 end if;
5701 Par := Parent (Par);
5702 end loop;
5704 return False;
5705 end In_Pragmas_Depends_Or_Global;
5707 -- Local variables
5709 Selector : constant Node_Id := Selector_Name (N);
5710 Candidate : Entity_Id := Empty;
5711 P_Name : Entity_Id;
5712 Id : Entity_Id;
5714 -- Start of processing for Find_Expanded_Name
5716 begin
5717 P_Name := Entity (Prefix (N));
5719 -- If the prefix is a renamed package, look for the entity in the
5720 -- original package.
5722 if Ekind (P_Name) = E_Package
5723 and then Present (Renamed_Object (P_Name))
5724 then
5725 P_Name := Renamed_Object (P_Name);
5727 -- Rewrite node with entity field pointing to renamed object
5729 Rewrite (Prefix (N), New_Copy (Prefix (N)));
5730 Set_Entity (Prefix (N), P_Name);
5732 -- If the prefix is an object of a concurrent type, look for
5733 -- the entity in the associated task or protected type.
5735 elsif Is_Concurrent_Type (Etype (P_Name)) then
5736 P_Name := Etype (P_Name);
5737 end if;
5739 Id := Current_Entity (Selector);
5741 declare
5742 Is_New_Candidate : Boolean;
5744 begin
5745 while Present (Id) loop
5746 if Scope (Id) = P_Name then
5747 Candidate := Id;
5748 Is_New_Candidate := True;
5750 -- Handle abstract views of states and variables. These are
5751 -- acceptable only when the reference to the view appears in
5752 -- pragmas [Refined_]Depends and [Refined_]Global.
5754 if Ekind (Id) = E_Abstract_State
5755 and then From_Limited_With (Id)
5756 and then Present (Non_Limited_View (Id))
5757 then
5758 if In_Pragmas_Depends_Or_Global (N) then
5759 Candidate := Non_Limited_View (Id);
5760 Is_New_Candidate := True;
5762 -- Hide candidate because it is not used in a proper context
5764 else
5765 Candidate := Empty;
5766 Is_New_Candidate := False;
5767 end if;
5768 end if;
5770 -- Ada 2005 (AI-217): Handle shadow entities associated with
5771 -- types declared in limited-withed nested packages. We don't need
5772 -- to handle E_Incomplete_Subtype entities because the entities
5773 -- in the limited view are always E_Incomplete_Type and
5774 -- E_Class_Wide_Type entities (see Build_Limited_Views).
5776 -- Regarding the expression used to evaluate the scope, it
5777 -- is important to note that the limited view also has shadow
5778 -- entities associated nested packages. For this reason the
5779 -- correct scope of the entity is the scope of the real entity.
5780 -- The non-limited view may itself be incomplete, in which case
5781 -- get the full view if available.
5783 elsif Ekind_In (Id, E_Incomplete_Type, E_Class_Wide_Type)
5784 and then From_Limited_With (Id)
5785 and then Present (Non_Limited_View (Id))
5786 and then Scope (Non_Limited_View (Id)) = P_Name
5787 then
5788 Candidate := Get_Full_View (Non_Limited_View (Id));
5789 Is_New_Candidate := True;
5791 else
5792 Is_New_Candidate := False;
5793 end if;
5795 if Is_New_Candidate then
5797 -- If entity is a child unit, either it is a visible child of
5798 -- the prefix, or we are in the body of a generic prefix, as
5799 -- will happen when a child unit is instantiated in the body
5800 -- of a generic parent. This is because the instance body does
5801 -- not restore the full compilation context, given that all
5802 -- non-local references have been captured.
5804 if Is_Child_Unit (Id) or else P_Name = Standard_Standard then
5805 exit when Is_Visible_Lib_Unit (Id)
5806 or else (Is_Child_Unit (Id)
5807 and then In_Open_Scopes (Scope (Id))
5808 and then In_Instance_Body);
5809 else
5810 exit when not Is_Hidden (Id);
5811 end if;
5813 exit when Is_Immediately_Visible (Id);
5814 end if;
5816 Id := Homonym (Id);
5817 end loop;
5818 end;
5820 if No (Id)
5821 and then Ekind_In (P_Name, E_Procedure, E_Function)
5822 and then Is_Generic_Instance (P_Name)
5823 then
5824 -- Expanded name denotes entity in (instance of) generic subprogram.
5825 -- The entity may be in the subprogram instance, or may denote one of
5826 -- the formals, which is declared in the enclosing wrapper package.
5828 P_Name := Scope (P_Name);
5830 Id := Current_Entity (Selector);
5831 while Present (Id) loop
5832 exit when Scope (Id) = P_Name;
5833 Id := Homonym (Id);
5834 end loop;
5835 end if;
5837 if No (Id) or else Chars (Id) /= Chars (Selector) then
5838 Set_Etype (N, Any_Type);
5840 -- If we are looking for an entity defined in System, try to find it
5841 -- in the child package that may have been provided as an extension
5842 -- to System. The Extend_System pragma will have supplied the name of
5843 -- the extension, which may have to be loaded.
5845 if Chars (P_Name) = Name_System
5846 and then Scope (P_Name) = Standard_Standard
5847 and then Present (System_Extend_Unit)
5848 and then Present_System_Aux (N)
5849 then
5850 Set_Entity (Prefix (N), System_Aux_Id);
5851 Find_Expanded_Name (N);
5852 return;
5854 elsif Nkind (Selector) = N_Operator_Symbol
5855 and then Has_Implicit_Operator (N)
5856 then
5857 -- There is an implicit instance of the predefined operator in
5858 -- the given scope. The operator entity is defined in Standard.
5859 -- Has_Implicit_Operator makes the node into an Expanded_Name.
5861 return;
5863 elsif Nkind (Selector) = N_Character_Literal
5864 and then Has_Implicit_Character_Literal (N)
5865 then
5866 -- If there is no literal defined in the scope denoted by the
5867 -- prefix, the literal may belong to (a type derived from)
5868 -- Standard_Character, for which we have no explicit literals.
5870 return;
5872 else
5873 -- If the prefix is a single concurrent object, use its name in
5874 -- the error message, rather than that of the anonymous type.
5876 if Is_Concurrent_Type (P_Name)
5877 and then Is_Internal_Name (Chars (P_Name))
5878 then
5879 Error_Msg_Node_2 := Entity (Prefix (N));
5880 else
5881 Error_Msg_Node_2 := P_Name;
5882 end if;
5884 if P_Name = System_Aux_Id then
5885 P_Name := Scope (P_Name);
5886 Set_Entity (Prefix (N), P_Name);
5887 end if;
5889 if Present (Candidate) then
5891 -- If we know that the unit is a child unit we can give a more
5892 -- accurate error message.
5894 if Is_Child_Unit (Candidate) then
5896 -- If the candidate is a private child unit and we are in
5897 -- the visible part of a public unit, specialize the error
5898 -- message. There might be a private with_clause for it,
5899 -- but it is not currently active.
5901 if Is_Private_Descendant (Candidate)
5902 and then Ekind (Current_Scope) = E_Package
5903 and then not In_Private_Part (Current_Scope)
5904 and then not Is_Private_Descendant (Current_Scope)
5905 then
5906 Error_Msg_N ("private child unit& is not visible here",
5907 Selector);
5909 -- Normal case where we have a missing with for a child unit
5911 else
5912 Error_Msg_Qual_Level := 99;
5913 Error_Msg_NE -- CODEFIX
5914 ("missing `WITH &;`", Selector, Candidate);
5915 Error_Msg_Qual_Level := 0;
5916 end if;
5918 -- Here we don't know that this is a child unit
5920 else
5921 Error_Msg_NE ("& is not a visible entity of&", N, Selector);
5922 end if;
5924 else
5925 -- Within the instantiation of a child unit, the prefix may
5926 -- denote the parent instance, but the selector has the name
5927 -- of the original child. That is to say, when A.B appears
5928 -- within an instantiation of generic child unit B, the scope
5929 -- stack includes an instance of A (P_Name) and an instance
5930 -- of B under some other name. We scan the scope to find this
5931 -- child instance, which is the desired entity.
5932 -- Note that the parent may itself be a child instance, if
5933 -- the reference is of the form A.B.C, in which case A.B has
5934 -- already been rewritten with the proper entity.
5936 if In_Open_Scopes (P_Name)
5937 and then Is_Generic_Instance (P_Name)
5938 then
5939 declare
5940 Gen_Par : constant Entity_Id :=
5941 Generic_Parent (Specification
5942 (Unit_Declaration_Node (P_Name)));
5943 S : Entity_Id := Current_Scope;
5944 P : Entity_Id;
5946 begin
5947 for J in reverse 0 .. Scope_Stack.Last loop
5948 S := Scope_Stack.Table (J).Entity;
5950 exit when S = Standard_Standard;
5952 if Ekind_In (S, E_Function,
5953 E_Package,
5954 E_Procedure)
5955 then
5956 P := Generic_Parent (Specification
5957 (Unit_Declaration_Node (S)));
5959 -- Check that P is a generic child of the generic
5960 -- parent of the prefix.
5962 if Present (P)
5963 and then Chars (P) = Chars (Selector)
5964 and then Scope (P) = Gen_Par
5965 then
5966 Id := S;
5967 goto Found;
5968 end if;
5969 end if;
5971 end loop;
5972 end;
5973 end if;
5975 -- If this is a selection from Ada, System or Interfaces, then
5976 -- we assume a missing with for the corresponding package.
5978 if Is_Known_Unit (N) then
5979 if not Error_Posted (N) then
5980 Error_Msg_Node_2 := Selector;
5981 Error_Msg_N -- CODEFIX
5982 ("missing `WITH &.&;`", Prefix (N));
5983 end if;
5985 -- If this is a selection from a dummy package, then suppress
5986 -- the error message, of course the entity is missing if the
5987 -- package is missing.
5989 elsif Sloc (Error_Msg_Node_2) = No_Location then
5990 null;
5992 -- Here we have the case of an undefined component
5994 else
5996 -- The prefix may hide a homonym in the context that
5997 -- declares the desired entity. This error can use a
5998 -- specialized message.
6000 if In_Open_Scopes (P_Name) then
6001 declare
6002 H : constant Entity_Id := Homonym (P_Name);
6004 begin
6005 if Present (H)
6006 and then Is_Compilation_Unit (H)
6007 and then
6008 (Is_Immediately_Visible (H)
6009 or else Is_Visible_Lib_Unit (H))
6010 then
6011 Id := First_Entity (H);
6012 while Present (Id) loop
6013 if Chars (Id) = Chars (Selector) then
6014 Error_Msg_Qual_Level := 99;
6015 Error_Msg_Name_1 := Chars (Selector);
6016 Error_Msg_NE
6017 ("% not declared in&", N, P_Name);
6018 Error_Msg_NE
6019 ("\use fully qualified name starting with "
6020 & "Standard to make& visible", N, H);
6021 Error_Msg_Qual_Level := 0;
6022 goto Done;
6023 end if;
6025 Next_Entity (Id);
6026 end loop;
6027 end if;
6029 -- If not found, standard error message
6031 Error_Msg_NE ("& not declared in&", N, Selector);
6033 <<Done>> null;
6034 end;
6036 else
6037 Error_Msg_NE ("& not declared in&", N, Selector);
6038 end if;
6040 -- Check for misspelling of some entity in prefix
6042 Id := First_Entity (P_Name);
6043 while Present (Id) loop
6044 if Is_Bad_Spelling_Of (Chars (Id), Chars (Selector))
6045 and then not Is_Internal_Name (Chars (Id))
6046 then
6047 Error_Msg_NE -- CODEFIX
6048 ("possible misspelling of&", Selector, Id);
6049 exit;
6050 end if;
6052 Next_Entity (Id);
6053 end loop;
6055 -- Specialize the message if this may be an instantiation
6056 -- of a child unit that was not mentioned in the context.
6058 if Nkind (Parent (N)) = N_Package_Instantiation
6059 and then Is_Generic_Instance (Entity (Prefix (N)))
6060 and then Is_Compilation_Unit
6061 (Generic_Parent (Parent (Entity (Prefix (N)))))
6062 then
6063 Error_Msg_Node_2 := Selector;
6064 Error_Msg_N -- CODEFIX
6065 ("\missing `WITH &.&;`", Prefix (N));
6066 end if;
6067 end if;
6068 end if;
6070 Id := Any_Id;
6071 end if;
6072 end if;
6074 <<Found>>
6075 if Comes_From_Source (N)
6076 and then Is_Remote_Access_To_Subprogram_Type (Id)
6077 and then Ekind (Id) = E_Access_Subprogram_Type
6078 and then Present (Equivalent_Type (Id))
6079 then
6080 -- If we are not actually generating distribution code (i.e. the
6081 -- current PCS is the dummy non-distributed version), then the
6082 -- Equivalent_Type will be missing, and Id should be treated as
6083 -- a regular access-to-subprogram type.
6085 Id := Equivalent_Type (Id);
6086 Set_Chars (Selector, Chars (Id));
6087 end if;
6089 -- Ada 2005 (AI-50217): Check usage of entities in limited withed units
6091 if Ekind (P_Name) = E_Package and then From_Limited_With (P_Name) then
6092 if From_Limited_With (Id)
6093 or else Is_Type (Id)
6094 or else Ekind (Id) = E_Package
6095 then
6096 null;
6097 else
6098 Error_Msg_N
6099 ("limited withed package can only be used to access "
6100 & "incomplete types", N);
6101 end if;
6102 end if;
6104 if Is_Task_Type (P_Name)
6105 and then ((Ekind (Id) = E_Entry
6106 and then Nkind (Parent (N)) /= N_Attribute_Reference)
6107 or else
6108 (Ekind (Id) = E_Entry_Family
6109 and then
6110 Nkind (Parent (Parent (N))) /= N_Attribute_Reference))
6111 then
6112 -- If both the task type and the entry are in scope, this may still
6113 -- be the expanded name of an entry formal.
6115 if In_Open_Scopes (Id)
6116 and then Nkind (Parent (N)) = N_Selected_Component
6117 then
6118 null;
6120 else
6121 -- It is an entry call after all, either to the current task
6122 -- (which will deadlock) or to an enclosing task.
6124 Analyze_Selected_Component (N);
6125 return;
6126 end if;
6127 end if;
6129 Change_Selected_Component_To_Expanded_Name (N);
6131 -- Set appropriate type
6133 if Is_Type (Id) then
6134 Set_Etype (N, Id);
6135 else
6136 Set_Etype (N, Get_Full_View (Etype (Id)));
6137 end if;
6139 -- Do style check and generate reference, but skip both steps if this
6140 -- entity has homonyms, since we may not have the right homonym set yet.
6141 -- The proper homonym will be set during the resolve phase.
6143 if Has_Homonym (Id) then
6144 Set_Entity (N, Id);
6146 else
6147 Set_Entity_Or_Discriminal (N, Id);
6149 case Is_LHS (N) is
6150 when Yes =>
6151 Generate_Reference (Id, N, 'm');
6152 when No =>
6153 Generate_Reference (Id, N, 'r');
6154 when Unknown =>
6155 Deferred_References.Append ((Id, N));
6156 end case;
6157 end if;
6159 -- Check for violation of No_Wide_Characters
6161 Check_Wide_Character_Restriction (Id, N);
6163 -- If the Ekind of the entity is Void, it means that all homonyms are
6164 -- hidden from all visibility (RM 8.3(5,14-20)).
6166 if Ekind (Id) = E_Void then
6167 Premature_Usage (N);
6169 elsif Is_Overloadable (Id) and then Present (Homonym (Id)) then
6170 declare
6171 H : Entity_Id := Homonym (Id);
6173 begin
6174 while Present (H) loop
6175 if Scope (H) = Scope (Id)
6176 and then (not Is_Hidden (H)
6177 or else Is_Immediately_Visible (H))
6178 then
6179 Collect_Interps (N);
6180 exit;
6181 end if;
6183 H := Homonym (H);
6184 end loop;
6186 -- If an extension of System is present, collect possible explicit
6187 -- overloadings declared in the extension.
6189 if Chars (P_Name) = Name_System
6190 and then Scope (P_Name) = Standard_Standard
6191 and then Present (System_Extend_Unit)
6192 and then Present_System_Aux (N)
6193 then
6194 H := Current_Entity (Id);
6196 while Present (H) loop
6197 if Scope (H) = System_Aux_Id then
6198 Add_One_Interp (N, H, Etype (H));
6199 end if;
6201 H := Homonym (H);
6202 end loop;
6203 end if;
6204 end;
6205 end if;
6207 if Nkind (Selector_Name (N)) = N_Operator_Symbol
6208 and then Scope (Id) /= Standard_Standard
6209 then
6210 -- In addition to user-defined operators in the given scope, there
6211 -- may be an implicit instance of the predefined operator. The
6212 -- operator (defined in Standard) is found in Has_Implicit_Operator,
6213 -- and added to the interpretations. Procedure Add_One_Interp will
6214 -- determine which hides which.
6216 if Has_Implicit_Operator (N) then
6217 null;
6218 end if;
6219 end if;
6221 -- If there is a single interpretation for N we can generate a
6222 -- reference to the unique entity found.
6224 if Is_Overloadable (Id) and then not Is_Overloaded (N) then
6225 Generate_Reference (Id, N);
6226 end if;
6227 end Find_Expanded_Name;
6229 -------------------------
6230 -- Find_Renamed_Entity --
6231 -------------------------
6233 function Find_Renamed_Entity
6234 (N : Node_Id;
6235 Nam : Node_Id;
6236 New_S : Entity_Id;
6237 Is_Actual : Boolean := False) return Entity_Id
6239 Ind : Interp_Index;
6240 I1 : Interp_Index := 0; -- Suppress junk warnings
6241 It : Interp;
6242 It1 : Interp;
6243 Old_S : Entity_Id;
6244 Inst : Entity_Id;
6246 function Is_Visible_Operation (Op : Entity_Id) return Boolean;
6247 -- If the renamed entity is an implicit operator, check whether it is
6248 -- visible because its operand type is properly visible. This check
6249 -- applies to explicit renamed entities that appear in the source in a
6250 -- renaming declaration or a formal subprogram instance, but not to
6251 -- default generic actuals with a name.
6253 function Report_Overload return Entity_Id;
6254 -- List possible interpretations, and specialize message in the
6255 -- case of a generic actual.
6257 function Within (Inner, Outer : Entity_Id) return Boolean;
6258 -- Determine whether a candidate subprogram is defined within the
6259 -- enclosing instance. If yes, it has precedence over outer candidates.
6261 --------------------------
6262 -- Is_Visible_Operation --
6263 --------------------------
6265 function Is_Visible_Operation (Op : Entity_Id) return Boolean is
6266 Scop : Entity_Id;
6267 Typ : Entity_Id;
6268 Btyp : Entity_Id;
6270 begin
6271 if Ekind (Op) /= E_Operator
6272 or else Scope (Op) /= Standard_Standard
6273 or else (In_Instance
6274 and then (not Is_Actual
6275 or else Present (Enclosing_Instance)))
6276 then
6277 return True;
6279 else
6280 -- For a fixed point type operator, check the resulting type,
6281 -- because it may be a mixed mode integer * fixed operation.
6283 if Present (Next_Formal (First_Formal (New_S)))
6284 and then Is_Fixed_Point_Type (Etype (New_S))
6285 then
6286 Typ := Etype (New_S);
6287 else
6288 Typ := Etype (First_Formal (New_S));
6289 end if;
6291 Btyp := Base_Type (Typ);
6293 if Nkind (Nam) /= N_Expanded_Name then
6294 return (In_Open_Scopes (Scope (Btyp))
6295 or else Is_Potentially_Use_Visible (Btyp)
6296 or else In_Use (Btyp)
6297 or else In_Use (Scope (Btyp)));
6299 else
6300 Scop := Entity (Prefix (Nam));
6302 if Ekind (Scop) = E_Package
6303 and then Present (Renamed_Object (Scop))
6304 then
6305 Scop := Renamed_Object (Scop);
6306 end if;
6308 -- Operator is visible if prefix of expanded name denotes
6309 -- scope of type, or else type is defined in System_Aux
6310 -- and the prefix denotes System.
6312 return Scope (Btyp) = Scop
6313 or else (Scope (Btyp) = System_Aux_Id
6314 and then Scope (Scope (Btyp)) = Scop);
6315 end if;
6316 end if;
6317 end Is_Visible_Operation;
6319 ------------
6320 -- Within --
6321 ------------
6323 function Within (Inner, Outer : Entity_Id) return Boolean is
6324 Sc : Entity_Id;
6326 begin
6327 Sc := Scope (Inner);
6328 while Sc /= Standard_Standard loop
6329 if Sc = Outer then
6330 return True;
6331 else
6332 Sc := Scope (Sc);
6333 end if;
6334 end loop;
6336 return False;
6337 end Within;
6339 ---------------------
6340 -- Report_Overload --
6341 ---------------------
6343 function Report_Overload return Entity_Id is
6344 begin
6345 if Is_Actual then
6346 Error_Msg_NE -- CODEFIX
6347 ("ambiguous actual subprogram&, " &
6348 "possible interpretations:", N, Nam);
6349 else
6350 Error_Msg_N -- CODEFIX
6351 ("ambiguous subprogram, " &
6352 "possible interpretations:", N);
6353 end if;
6355 List_Interps (Nam, N);
6356 return Old_S;
6357 end Report_Overload;
6359 -- Start of processing for Find_Renamed_Entity
6361 begin
6362 Old_S := Any_Id;
6363 Candidate_Renaming := Empty;
6365 if Is_Overloaded (Nam) then
6366 Get_First_Interp (Nam, Ind, It);
6367 while Present (It.Nam) loop
6368 if Entity_Matches_Spec (It.Nam, New_S)
6369 and then Is_Visible_Operation (It.Nam)
6370 then
6371 if Old_S /= Any_Id then
6373 -- Note: The call to Disambiguate only happens if a
6374 -- previous interpretation was found, in which case I1
6375 -- has received a value.
6377 It1 := Disambiguate (Nam, I1, Ind, Etype (Old_S));
6379 if It1 = No_Interp then
6380 Inst := Enclosing_Instance;
6382 if Present (Inst) then
6383 if Within (It.Nam, Inst) then
6384 if Within (Old_S, Inst) then
6386 -- Choose the innermost subprogram, which would
6387 -- have hidden the outer one in the generic.
6389 if Scope_Depth (It.Nam) <
6390 Scope_Depth (Old_S)
6391 then
6392 return Old_S;
6393 else
6394 return It.Nam;
6395 end if;
6396 end if;
6398 elsif Within (Old_S, Inst) then
6399 return (Old_S);
6401 else
6402 return Report_Overload;
6403 end if;
6405 -- If not within an instance, ambiguity is real
6407 else
6408 return Report_Overload;
6409 end if;
6411 else
6412 Old_S := It1.Nam;
6413 exit;
6414 end if;
6416 else
6417 I1 := Ind;
6418 Old_S := It.Nam;
6419 end if;
6421 elsif
6422 Present (First_Formal (It.Nam))
6423 and then Present (First_Formal (New_S))
6424 and then (Base_Type (Etype (First_Formal (It.Nam))) =
6425 Base_Type (Etype (First_Formal (New_S))))
6426 then
6427 Candidate_Renaming := It.Nam;
6428 end if;
6430 Get_Next_Interp (Ind, It);
6431 end loop;
6433 Set_Entity (Nam, Old_S);
6435 if Old_S /= Any_Id then
6436 Set_Is_Overloaded (Nam, False);
6437 end if;
6439 -- Non-overloaded case
6441 else
6442 if Is_Actual and then Present (Enclosing_Instance) then
6443 Old_S := Entity (Nam);
6445 elsif Entity_Matches_Spec (Entity (Nam), New_S) then
6446 Candidate_Renaming := New_S;
6448 if Is_Visible_Operation (Entity (Nam)) then
6449 Old_S := Entity (Nam);
6450 end if;
6452 elsif Present (First_Formal (Entity (Nam)))
6453 and then Present (First_Formal (New_S))
6454 and then (Base_Type (Etype (First_Formal (Entity (Nam)))) =
6455 Base_Type (Etype (First_Formal (New_S))))
6456 then
6457 Candidate_Renaming := Entity (Nam);
6458 end if;
6459 end if;
6461 return Old_S;
6462 end Find_Renamed_Entity;
6464 -----------------------------
6465 -- Find_Selected_Component --
6466 -----------------------------
6468 procedure Find_Selected_Component (N : Node_Id) is
6469 P : constant Node_Id := Prefix (N);
6471 P_Name : Entity_Id;
6472 -- Entity denoted by prefix
6474 P_Type : Entity_Id;
6475 -- and its type
6477 Nam : Node_Id;
6479 function Available_Subtype return Boolean;
6480 -- A small optimization: if the prefix is constrained and the component
6481 -- is an array type we may already have a usable subtype for it, so we
6482 -- can use it rather than generating a new one, because the bounds
6483 -- will be the values of the discriminants and not discriminant refs.
6484 -- This simplifies value tracing in GNATProve. For consistency, both
6485 -- the entity name and the subtype come from the constrained component.
6487 function Is_Reference_In_Subunit return Boolean;
6488 -- In a subunit, the scope depth is not a proper measure of hiding,
6489 -- because the context of the proper body may itself hide entities in
6490 -- parent units. This rare case requires inspecting the tree directly
6491 -- because the proper body is inserted in the main unit and its context
6492 -- is simply added to that of the parent.
6494 -----------------------
6495 -- Available_Subtype --
6496 -----------------------
6498 function Available_Subtype return Boolean is
6499 Comp : Entity_Id;
6501 begin
6502 Comp := First_Entity (Etype (P));
6503 while Present (Comp) loop
6504 if Chars (Comp) = Chars (Selector_Name (N)) then
6505 Set_Etype (N, Etype (Comp));
6506 Set_Entity (Selector_Name (N), Comp);
6507 Set_Etype (Selector_Name (N), Etype (Comp));
6508 return True;
6509 end if;
6511 Next_Component (Comp);
6512 end loop;
6514 return False;
6515 end Available_Subtype;
6517 -----------------------------
6518 -- Is_Reference_In_Subunit --
6519 -----------------------------
6521 function Is_Reference_In_Subunit return Boolean is
6522 Clause : Node_Id;
6523 Comp_Unit : Node_Id;
6525 begin
6526 Comp_Unit := N;
6527 while Present (Comp_Unit)
6528 and then Nkind (Comp_Unit) /= N_Compilation_Unit
6529 loop
6530 Comp_Unit := Parent (Comp_Unit);
6531 end loop;
6533 if No (Comp_Unit) or else Nkind (Unit (Comp_Unit)) /= N_Subunit then
6534 return False;
6535 end if;
6537 -- Now check whether the package is in the context of the subunit
6539 Clause := First (Context_Items (Comp_Unit));
6540 while Present (Clause) loop
6541 if Nkind (Clause) = N_With_Clause
6542 and then Entity (Name (Clause)) = P_Name
6543 then
6544 return True;
6545 end if;
6547 Clause := Next (Clause);
6548 end loop;
6550 return False;
6551 end Is_Reference_In_Subunit;
6553 -- Start of processing for Find_Selected_Component
6555 begin
6556 Analyze (P);
6558 if Nkind (P) = N_Error then
6559 return;
6560 end if;
6562 -- Selector name cannot be a character literal or an operator symbol in
6563 -- SPARK, except for the operator symbol in a renaming.
6565 if Restriction_Check_Required (SPARK_05) then
6566 if Nkind (Selector_Name (N)) = N_Character_Literal then
6567 Check_SPARK_05_Restriction
6568 ("character literal cannot be prefixed", N);
6569 elsif Nkind (Selector_Name (N)) = N_Operator_Symbol
6570 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
6571 then
6572 Check_SPARK_05_Restriction
6573 ("operator symbol cannot be prefixed", N);
6574 end if;
6575 end if;
6577 -- If the selector already has an entity, the node has been constructed
6578 -- in the course of expansion, and is known to be valid. Do not verify
6579 -- that it is defined for the type (it may be a private component used
6580 -- in the expansion of record equality).
6582 if Present (Entity (Selector_Name (N))) then
6583 if No (Etype (N)) or else Etype (N) = Any_Type then
6584 declare
6585 Sel_Name : constant Node_Id := Selector_Name (N);
6586 Selector : constant Entity_Id := Entity (Sel_Name);
6587 C_Etype : Node_Id;
6589 begin
6590 Set_Etype (Sel_Name, Etype (Selector));
6592 if not Is_Entity_Name (P) then
6593 Resolve (P);
6594 end if;
6596 -- Build an actual subtype except for the first parameter
6597 -- of an init proc, where this actual subtype is by
6598 -- definition incorrect, since the object is uninitialized
6599 -- (and does not even have defined discriminants etc.)
6601 if Is_Entity_Name (P)
6602 and then Ekind (Entity (P)) = E_Function
6603 then
6604 Nam := New_Copy (P);
6606 if Is_Overloaded (P) then
6607 Save_Interps (P, Nam);
6608 end if;
6610 Rewrite (P, Make_Function_Call (Sloc (P), Name => Nam));
6611 Analyze_Call (P);
6612 Analyze_Selected_Component (N);
6613 return;
6615 elsif Ekind (Selector) = E_Component
6616 and then (not Is_Entity_Name (P)
6617 or else Chars (Entity (P)) /= Name_uInit)
6618 then
6619 -- Check if we already have an available subtype we can use
6621 if Ekind (Etype (P)) = E_Record_Subtype
6622 and then Nkind (Parent (Etype (P))) = N_Subtype_Declaration
6623 and then Is_Array_Type (Etype (Selector))
6624 and then not Is_Packed (Etype (Selector))
6625 and then Available_Subtype
6626 then
6627 return;
6629 -- Do not build the subtype when referencing components of
6630 -- dispatch table wrappers. Required to avoid generating
6631 -- elaboration code with HI runtimes. JVM and .NET use a
6632 -- modified version of Ada.Tags which does not contain RE_
6633 -- Dispatch_Table_Wrapper and RE_No_Dispatch_Table_Wrapper.
6634 -- Avoid raising RE_Not_Available exception in those cases.
6636 elsif VM_Target = No_VM
6637 and then RTU_Loaded (Ada_Tags)
6638 and then
6639 ((RTE_Available (RE_Dispatch_Table_Wrapper)
6640 and then Scope (Selector) =
6641 RTE (RE_Dispatch_Table_Wrapper))
6642 or else
6643 (RTE_Available (RE_No_Dispatch_Table_Wrapper)
6644 and then Scope (Selector) =
6645 RTE (RE_No_Dispatch_Table_Wrapper)))
6646 then
6647 C_Etype := Empty;
6648 else
6649 C_Etype :=
6650 Build_Actual_Subtype_Of_Component
6651 (Etype (Selector), N);
6652 end if;
6654 else
6655 C_Etype := Empty;
6656 end if;
6658 if No (C_Etype) then
6659 C_Etype := Etype (Selector);
6660 else
6661 Insert_Action (N, C_Etype);
6662 C_Etype := Defining_Identifier (C_Etype);
6663 end if;
6665 Set_Etype (N, C_Etype);
6666 end;
6668 -- If this is the name of an entry or protected operation, and
6669 -- the prefix is an access type, insert an explicit dereference,
6670 -- so that entry calls are treated uniformly.
6672 if Is_Access_Type (Etype (P))
6673 and then Is_Concurrent_Type (Designated_Type (Etype (P)))
6674 then
6675 declare
6676 New_P : constant Node_Id :=
6677 Make_Explicit_Dereference (Sloc (P),
6678 Prefix => Relocate_Node (P));
6679 begin
6680 Rewrite (P, New_P);
6681 Set_Etype (P, Designated_Type (Etype (Prefix (P))));
6682 end;
6683 end if;
6685 -- If the selected component appears within a default expression
6686 -- and it has an actual subtype, the pre-analysis has not yet
6687 -- completed its analysis, because Insert_Actions is disabled in
6688 -- that context. Within the init proc of the enclosing type we
6689 -- must complete this analysis, if an actual subtype was created.
6691 elsif Inside_Init_Proc then
6692 declare
6693 Typ : constant Entity_Id := Etype (N);
6694 Decl : constant Node_Id := Declaration_Node (Typ);
6695 begin
6696 if Nkind (Decl) = N_Subtype_Declaration
6697 and then not Analyzed (Decl)
6698 and then Is_List_Member (Decl)
6699 and then No (Parent (Decl))
6700 then
6701 Remove (Decl);
6702 Insert_Action (N, Decl);
6703 end if;
6704 end;
6705 end if;
6707 return;
6709 elsif Is_Entity_Name (P) then
6710 P_Name := Entity (P);
6712 -- The prefix may denote an enclosing type which is the completion
6713 -- of an incomplete type declaration.
6715 if Is_Type (P_Name) then
6716 Set_Entity (P, Get_Full_View (P_Name));
6717 Set_Etype (P, Entity (P));
6718 P_Name := Entity (P);
6719 end if;
6721 P_Type := Base_Type (Etype (P));
6723 if Debug_Flag_E then
6724 Write_Str ("Found prefix type to be ");
6725 Write_Entity_Info (P_Type, " "); Write_Eol;
6726 end if;
6728 -- The designated type may be a limited view with no components.
6729 -- Check whether the non-limited view is available, because in some
6730 -- cases this will not be set when installing the context.
6732 if Is_Access_Type (P_Type) then
6733 declare
6734 D : constant Entity_Id := Directly_Designated_Type (P_Type);
6735 begin
6736 if Is_Incomplete_Type (D)
6737 and then From_Limited_With (D)
6738 and then Present (Non_Limited_View (D))
6739 then
6740 Set_Directly_Designated_Type (P_Type, Non_Limited_View (D));
6741 end if;
6742 end;
6743 end if;
6745 -- First check for components of a record object (not the
6746 -- result of a call, which is handled below).
6748 if Is_Appropriate_For_Record (P_Type)
6749 and then not Is_Overloadable (P_Name)
6750 and then not Is_Type (P_Name)
6751 then
6752 -- Selected component of record. Type checking will validate
6753 -- name of selector.
6755 -- ??? Could we rewrite an implicit dereference into an explicit
6756 -- one here?
6758 Analyze_Selected_Component (N);
6760 -- Reference to type name in predicate/invariant expression
6762 elsif Is_Appropriate_For_Entry_Prefix (P_Type)
6763 and then not In_Open_Scopes (P_Name)
6764 and then (not Is_Concurrent_Type (Etype (P_Name))
6765 or else not In_Open_Scopes (Etype (P_Name)))
6766 then
6767 -- Call to protected operation or entry. Type checking is
6768 -- needed on the prefix.
6770 Analyze_Selected_Component (N);
6772 elsif (In_Open_Scopes (P_Name)
6773 and then Ekind (P_Name) /= E_Void
6774 and then not Is_Overloadable (P_Name))
6775 or else (Is_Concurrent_Type (Etype (P_Name))
6776 and then In_Open_Scopes (Etype (P_Name)))
6777 then
6778 -- Prefix denotes an enclosing loop, block, or task, i.e. an
6779 -- enclosing construct that is not a subprogram or accept.
6781 Find_Expanded_Name (N);
6783 elsif Ekind (P_Name) = E_Package then
6784 Find_Expanded_Name (N);
6786 elsif Is_Overloadable (P_Name) then
6788 -- The subprogram may be a renaming (of an enclosing scope) as
6789 -- in the case of the name of the generic within an instantiation.
6791 if Ekind_In (P_Name, E_Procedure, E_Function)
6792 and then Present (Alias (P_Name))
6793 and then Is_Generic_Instance (Alias (P_Name))
6794 then
6795 P_Name := Alias (P_Name);
6796 end if;
6798 if Is_Overloaded (P) then
6800 -- The prefix must resolve to a unique enclosing construct
6802 declare
6803 Found : Boolean := False;
6804 Ind : Interp_Index;
6805 It : Interp;
6807 begin
6808 Get_First_Interp (P, Ind, It);
6809 while Present (It.Nam) loop
6810 if In_Open_Scopes (It.Nam) then
6811 if Found then
6812 Error_Msg_N (
6813 "prefix must be unique enclosing scope", N);
6814 Set_Entity (N, Any_Id);
6815 Set_Etype (N, Any_Type);
6816 return;
6818 else
6819 Found := True;
6820 P_Name := It.Nam;
6821 end if;
6822 end if;
6824 Get_Next_Interp (Ind, It);
6825 end loop;
6826 end;
6827 end if;
6829 if In_Open_Scopes (P_Name) then
6830 Set_Entity (P, P_Name);
6831 Set_Is_Overloaded (P, False);
6832 Find_Expanded_Name (N);
6834 else
6835 -- If no interpretation as an expanded name is possible, it
6836 -- must be a selected component of a record returned by a
6837 -- function call. Reformat prefix as a function call, the rest
6838 -- is done by type resolution.
6840 -- Error if the prefix is procedure or entry, as is P.X
6842 if Ekind (P_Name) /= E_Function
6843 and then
6844 (not Is_Overloaded (P)
6845 or else Nkind (Parent (N)) = N_Procedure_Call_Statement)
6846 then
6847 -- Prefix may mention a package that is hidden by a local
6848 -- declaration: let the user know. Scan the full homonym
6849 -- chain, the candidate package may be anywhere on it.
6851 if Present (Homonym (Current_Entity (P_Name))) then
6852 P_Name := Current_Entity (P_Name);
6854 while Present (P_Name) loop
6855 exit when Ekind (P_Name) = E_Package;
6856 P_Name := Homonym (P_Name);
6857 end loop;
6859 if Present (P_Name) then
6860 if not Is_Reference_In_Subunit then
6861 Error_Msg_Sloc := Sloc (Entity (Prefix (N)));
6862 Error_Msg_NE
6863 ("package& is hidden by declaration#", N, P_Name);
6864 end if;
6866 Set_Entity (Prefix (N), P_Name);
6867 Find_Expanded_Name (N);
6868 return;
6870 else
6871 P_Name := Entity (Prefix (N));
6872 end if;
6873 end if;
6875 Error_Msg_NE
6876 ("invalid prefix in selected component&", N, P_Name);
6877 Change_Selected_Component_To_Expanded_Name (N);
6878 Set_Entity (N, Any_Id);
6879 Set_Etype (N, Any_Type);
6881 -- Here we have a function call, so do the reformatting
6883 else
6884 Nam := New_Copy (P);
6885 Save_Interps (P, Nam);
6887 -- We use Replace here because this is one of those cases
6888 -- where the parser has missclassified the node, and we
6889 -- fix things up and then do the semantic analysis on the
6890 -- fixed up node. Normally we do this using one of the
6891 -- Sinfo.CN routines, but this is too tricky for that.
6893 -- Note that using Rewrite would be wrong, because we
6894 -- would have a tree where the original node is unanalyzed,
6895 -- and this violates the required interface for ASIS.
6897 Replace (P,
6898 Make_Function_Call (Sloc (P), Name => Nam));
6900 -- Now analyze the reformatted node
6902 Analyze_Call (P);
6903 Analyze_Selected_Component (N);
6904 end if;
6905 end if;
6907 -- Remaining cases generate various error messages
6909 else
6910 -- Format node as expanded name, to avoid cascaded errors
6912 Change_Selected_Component_To_Expanded_Name (N);
6913 Set_Entity (N, Any_Id);
6914 Set_Etype (N, Any_Type);
6916 -- Issue error message, but avoid this if error issued already.
6917 -- Use identifier of prefix if one is available.
6919 if P_Name = Any_Id then
6920 null;
6922 elsif Ekind (P_Name) = E_Void then
6923 Premature_Usage (P);
6925 elsif Nkind (P) /= N_Attribute_Reference then
6927 -- This may have been meant as a prefixed call to a primitive
6928 -- of an untagged type.
6930 declare
6931 F : constant Entity_Id :=
6932 Current_Entity (Selector_Name (N));
6933 begin
6934 if Present (F)
6935 and then Is_Overloadable (F)
6936 and then Present (First_Entity (F))
6937 and then Etype (First_Entity (F)) = Etype (P)
6938 and then not Is_Tagged_Type (Etype (P))
6939 then
6940 Error_Msg_N
6941 ("prefixed call is only allowed for objects "
6942 & "of a tagged type", N);
6943 end if;
6944 end;
6946 Error_Msg_N ("invalid prefix in selected component&", P);
6948 if Is_Access_Type (P_Type)
6949 and then Ekind (Designated_Type (P_Type)) = E_Incomplete_Type
6950 then
6951 Error_Msg_N
6952 ("\dereference must not be of an incomplete type "
6953 & "(RM 3.10.1)", P);
6954 end if;
6956 else
6957 Error_Msg_N ("invalid prefix in selected component", P);
6958 end if;
6959 end if;
6961 -- Selector name is restricted in SPARK
6963 if Nkind (N) = N_Expanded_Name
6964 and then Restriction_Check_Required (SPARK_05)
6965 then
6966 if Is_Subprogram (P_Name) then
6967 Check_SPARK_05_Restriction
6968 ("prefix of expanded name cannot be a subprogram", P);
6969 elsif Ekind (P_Name) = E_Loop then
6970 Check_SPARK_05_Restriction
6971 ("prefix of expanded name cannot be a loop statement", P);
6972 end if;
6973 end if;
6975 else
6976 -- If prefix is not the name of an entity, it must be an expression,
6977 -- whose type is appropriate for a record. This is determined by
6978 -- type resolution.
6980 Analyze_Selected_Component (N);
6981 end if;
6983 Analyze_Dimension (N);
6984 end Find_Selected_Component;
6986 ---------------
6987 -- Find_Type --
6988 ---------------
6990 procedure Find_Type (N : Node_Id) is
6991 C : Entity_Id;
6992 Typ : Entity_Id;
6993 T : Entity_Id;
6994 T_Name : Entity_Id;
6996 begin
6997 if N = Error then
6998 return;
7000 elsif Nkind (N) = N_Attribute_Reference then
7002 -- Class attribute. This is not valid in Ada 83 mode, but we do not
7003 -- need to enforce that at this point, since the declaration of the
7004 -- tagged type in the prefix would have been flagged already.
7006 if Attribute_Name (N) = Name_Class then
7007 Check_Restriction (No_Dispatch, N);
7008 Find_Type (Prefix (N));
7010 -- Propagate error from bad prefix
7012 if Etype (Prefix (N)) = Any_Type then
7013 Set_Entity (N, Any_Type);
7014 Set_Etype (N, Any_Type);
7015 return;
7016 end if;
7018 T := Base_Type (Entity (Prefix (N)));
7020 -- Case where type is not known to be tagged. Its appearance in
7021 -- the prefix of the 'Class attribute indicates that the full view
7022 -- will be tagged.
7024 if not Is_Tagged_Type (T) then
7025 if Ekind (T) = E_Incomplete_Type then
7027 -- It is legal to denote the class type of an incomplete
7028 -- type. The full type will have to be tagged, of course.
7029 -- In Ada 2005 this usage is declared obsolescent, so we
7030 -- warn accordingly. This usage is only legal if the type
7031 -- is completed in the current scope, and not for a limited
7032 -- view of a type.
7034 if Ada_Version >= Ada_2005 then
7036 -- Test whether the Available_View of a limited type view
7037 -- is tagged, since the limited view may not be marked as
7038 -- tagged if the type itself has an untagged incomplete
7039 -- type view in its package.
7041 if From_Limited_With (T)
7042 and then not Is_Tagged_Type (Available_View (T))
7043 then
7044 Error_Msg_N
7045 ("prefix of Class attribute must be tagged", N);
7046 Set_Etype (N, Any_Type);
7047 Set_Entity (N, Any_Type);
7048 return;
7050 -- ??? This test is temporarily disabled (always
7051 -- False) because it causes an unwanted warning on
7052 -- GNAT sources (built with -gnatg, which includes
7053 -- Warn_On_Obsolescent_ Feature). Once this issue
7054 -- is cleared in the sources, it can be enabled.
7056 elsif Warn_On_Obsolescent_Feature and then False then
7057 Error_Msg_N
7058 ("applying 'Class to an untagged incomplete type"
7059 & " is an obsolescent feature (RM J.11)?r?", N);
7060 end if;
7061 end if;
7063 Set_Is_Tagged_Type (T);
7064 Set_Direct_Primitive_Operations (T, New_Elmt_List);
7065 Make_Class_Wide_Type (T);
7066 Set_Entity (N, Class_Wide_Type (T));
7067 Set_Etype (N, Class_Wide_Type (T));
7069 elsif Ekind (T) = E_Private_Type
7070 and then not Is_Generic_Type (T)
7071 and then In_Private_Part (Scope (T))
7072 then
7073 -- The Class attribute can be applied to an untagged private
7074 -- type fulfilled by a tagged type prior to the full type
7075 -- declaration (but only within the parent package's private
7076 -- part). Create the class-wide type now and check that the
7077 -- full type is tagged later during its analysis. Note that
7078 -- we do not mark the private type as tagged, unlike the
7079 -- case of incomplete types, because the type must still
7080 -- appear untagged to outside units.
7082 if No (Class_Wide_Type (T)) then
7083 Make_Class_Wide_Type (T);
7084 end if;
7086 Set_Entity (N, Class_Wide_Type (T));
7087 Set_Etype (N, Class_Wide_Type (T));
7089 else
7090 -- Should we introduce a type Any_Tagged and use Wrong_Type
7091 -- here, it would be a bit more consistent???
7093 Error_Msg_NE
7094 ("tagged type required, found}",
7095 Prefix (N), First_Subtype (T));
7096 Set_Entity (N, Any_Type);
7097 return;
7098 end if;
7100 -- Case of tagged type
7102 else
7103 if Is_Concurrent_Type (T) then
7104 if No (Corresponding_Record_Type (Entity (Prefix (N)))) then
7106 -- Previous error. Use current type, which at least
7107 -- provides some operations.
7109 C := Entity (Prefix (N));
7111 else
7112 C := Class_Wide_Type
7113 (Corresponding_Record_Type (Entity (Prefix (N))));
7114 end if;
7116 else
7117 C := Class_Wide_Type (Entity (Prefix (N)));
7118 end if;
7120 Set_Entity_With_Checks (N, C);
7121 Generate_Reference (C, N);
7122 Set_Etype (N, C);
7123 end if;
7125 -- Base attribute, not allowed in Ada 83
7127 elsif Attribute_Name (N) = Name_Base then
7128 Error_Msg_Name_1 := Name_Base;
7129 Check_SPARK_05_Restriction
7130 ("attribute% is only allowed as prefix of another attribute", N);
7132 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
7133 Error_Msg_N
7134 ("(Ada 83) Base attribute not allowed in subtype mark", N);
7136 else
7137 Find_Type (Prefix (N));
7138 Typ := Entity (Prefix (N));
7140 if Ada_Version >= Ada_95
7141 and then not Is_Scalar_Type (Typ)
7142 and then not Is_Generic_Type (Typ)
7143 then
7144 Error_Msg_N
7145 ("prefix of Base attribute must be scalar type",
7146 Prefix (N));
7148 elsif Warn_On_Redundant_Constructs
7149 and then Base_Type (Typ) = Typ
7150 then
7151 Error_Msg_NE -- CODEFIX
7152 ("redundant attribute, & is its own base type?r?", N, Typ);
7153 end if;
7155 T := Base_Type (Typ);
7157 -- Rewrite attribute reference with type itself (see similar
7158 -- processing in Analyze_Attribute, case Base). Preserve prefix
7159 -- if present, for other legality checks.
7161 if Nkind (Prefix (N)) = N_Expanded_Name then
7162 Rewrite (N,
7163 Make_Expanded_Name (Sloc (N),
7164 Chars => Chars (T),
7165 Prefix => New_Copy (Prefix (Prefix (N))),
7166 Selector_Name => New_Occurrence_Of (T, Sloc (N))));
7168 else
7169 Rewrite (N, New_Occurrence_Of (T, Sloc (N)));
7170 end if;
7172 Set_Entity (N, T);
7173 Set_Etype (N, T);
7174 end if;
7176 elsif Attribute_Name (N) = Name_Stub_Type then
7178 -- This is handled in Analyze_Attribute
7180 Analyze (N);
7182 -- All other attributes are invalid in a subtype mark
7184 else
7185 Error_Msg_N ("invalid attribute in subtype mark", N);
7186 end if;
7188 else
7189 Analyze (N);
7191 if Is_Entity_Name (N) then
7192 T_Name := Entity (N);
7193 else
7194 Error_Msg_N ("subtype mark required in this context", N);
7195 Set_Etype (N, Any_Type);
7196 return;
7197 end if;
7199 if T_Name = Any_Id or else Etype (N) = Any_Type then
7201 -- Undefined id. Make it into a valid type
7203 Set_Entity (N, Any_Type);
7205 elsif not Is_Type (T_Name)
7206 and then T_Name /= Standard_Void_Type
7207 then
7208 Error_Msg_Sloc := Sloc (T_Name);
7209 Error_Msg_N ("subtype mark required in this context", N);
7210 Error_Msg_NE ("\\found & declared#", N, T_Name);
7211 Set_Entity (N, Any_Type);
7213 else
7214 -- If the type is an incomplete type created to handle
7215 -- anonymous access components of a record type, then the
7216 -- incomplete type is the visible entity and subsequent
7217 -- references will point to it. Mark the original full
7218 -- type as referenced, to prevent spurious warnings.
7220 if Is_Incomplete_Type (T_Name)
7221 and then Present (Full_View (T_Name))
7222 and then not Comes_From_Source (T_Name)
7223 then
7224 Set_Referenced (Full_View (T_Name));
7225 end if;
7227 T_Name := Get_Full_View (T_Name);
7229 -- Ada 2005 (AI-251, AI-50217): Handle interfaces visible through
7230 -- limited-with clauses
7232 if From_Limited_With (T_Name)
7233 and then Ekind (T_Name) in Incomplete_Kind
7234 and then Present (Non_Limited_View (T_Name))
7235 and then Is_Interface (Non_Limited_View (T_Name))
7236 then
7237 T_Name := Non_Limited_View (T_Name);
7238 end if;
7240 if In_Open_Scopes (T_Name) then
7241 if Ekind (Base_Type (T_Name)) = E_Task_Type then
7243 -- In Ada 2005, a task name can be used in an access
7244 -- definition within its own body. It cannot be used
7245 -- in the discriminant part of the task declaration,
7246 -- nor anywhere else in the declaration because entries
7247 -- cannot have access parameters.
7249 if Ada_Version >= Ada_2005
7250 and then Nkind (Parent (N)) = N_Access_Definition
7251 then
7252 Set_Entity (N, T_Name);
7253 Set_Etype (N, T_Name);
7255 if Has_Completion (T_Name) then
7256 return;
7258 else
7259 Error_Msg_N
7260 ("task type cannot be used as type mark " &
7261 "within its own declaration", N);
7262 end if;
7264 else
7265 Error_Msg_N
7266 ("task type cannot be used as type mark " &
7267 "within its own spec or body", N);
7268 end if;
7270 elsif Ekind (Base_Type (T_Name)) = E_Protected_Type then
7272 -- In Ada 2005, a protected name can be used in an access
7273 -- definition within its own body.
7275 if Ada_Version >= Ada_2005
7276 and then Nkind (Parent (N)) = N_Access_Definition
7277 then
7278 Set_Entity (N, T_Name);
7279 Set_Etype (N, T_Name);
7280 return;
7282 else
7283 Error_Msg_N
7284 ("protected type cannot be used as type mark " &
7285 "within its own spec or body", N);
7286 end if;
7288 else
7289 Error_Msg_N ("type declaration cannot refer to itself", N);
7290 end if;
7292 Set_Etype (N, Any_Type);
7293 Set_Entity (N, Any_Type);
7294 Set_Error_Posted (T_Name);
7295 return;
7296 end if;
7298 Set_Entity (N, T_Name);
7299 Set_Etype (N, T_Name);
7300 end if;
7301 end if;
7303 if Present (Etype (N)) and then Comes_From_Source (N) then
7304 if Is_Fixed_Point_Type (Etype (N)) then
7305 Check_Restriction (No_Fixed_Point, N);
7306 elsif Is_Floating_Point_Type (Etype (N)) then
7307 Check_Restriction (No_Floating_Point, N);
7308 end if;
7310 -- A Ghost type must appear in a specific context
7312 if Is_Ghost_Entity (Etype (N)) then
7313 Check_Ghost_Context (Etype (N), N);
7314 end if;
7315 end if;
7316 end Find_Type;
7318 ------------------------------------
7319 -- Has_Implicit_Character_Literal --
7320 ------------------------------------
7322 function Has_Implicit_Character_Literal (N : Node_Id) return Boolean is
7323 Id : Entity_Id;
7324 Found : Boolean := False;
7325 P : constant Entity_Id := Entity (Prefix (N));
7326 Priv_Id : Entity_Id := Empty;
7328 begin
7329 if Ekind (P) = E_Package and then not In_Open_Scopes (P) then
7330 Priv_Id := First_Private_Entity (P);
7331 end if;
7333 if P = Standard_Standard then
7334 Change_Selected_Component_To_Expanded_Name (N);
7335 Rewrite (N, Selector_Name (N));
7336 Analyze (N);
7337 Set_Etype (Original_Node (N), Standard_Character);
7338 return True;
7339 end if;
7341 Id := First_Entity (P);
7342 while Present (Id) and then Id /= Priv_Id loop
7343 if Is_Standard_Character_Type (Id) and then Is_Base_Type (Id) then
7345 -- We replace the node with the literal itself, resolve as a
7346 -- character, and set the type correctly.
7348 if not Found then
7349 Change_Selected_Component_To_Expanded_Name (N);
7350 Rewrite (N, Selector_Name (N));
7351 Analyze (N);
7352 Set_Etype (N, Id);
7353 Set_Etype (Original_Node (N), Id);
7354 Found := True;
7356 else
7357 -- More than one type derived from Character in given scope.
7358 -- Collect all possible interpretations.
7360 Add_One_Interp (N, Id, Id);
7361 end if;
7362 end if;
7364 Next_Entity (Id);
7365 end loop;
7367 return Found;
7368 end Has_Implicit_Character_Literal;
7370 ----------------------
7371 -- Has_Private_With --
7372 ----------------------
7374 function Has_Private_With (E : Entity_Id) return Boolean is
7375 Comp_Unit : constant Node_Id := Cunit (Current_Sem_Unit);
7376 Item : Node_Id;
7378 begin
7379 Item := First (Context_Items (Comp_Unit));
7380 while Present (Item) loop
7381 if Nkind (Item) = N_With_Clause
7382 and then Private_Present (Item)
7383 and then Entity (Name (Item)) = E
7384 then
7385 return True;
7386 end if;
7388 Next (Item);
7389 end loop;
7391 return False;
7392 end Has_Private_With;
7394 ---------------------------
7395 -- Has_Implicit_Operator --
7396 ---------------------------
7398 function Has_Implicit_Operator (N : Node_Id) return Boolean is
7399 Op_Id : constant Name_Id := Chars (Selector_Name (N));
7400 P : constant Entity_Id := Entity (Prefix (N));
7401 Id : Entity_Id;
7402 Priv_Id : Entity_Id := Empty;
7404 procedure Add_Implicit_Operator
7405 (T : Entity_Id;
7406 Op_Type : Entity_Id := Empty);
7407 -- Add implicit interpretation to node N, using the type for which a
7408 -- predefined operator exists. If the operator yields a boolean type,
7409 -- the Operand_Type is implicitly referenced by the operator, and a
7410 -- reference to it must be generated.
7412 ---------------------------
7413 -- Add_Implicit_Operator --
7414 ---------------------------
7416 procedure Add_Implicit_Operator
7417 (T : Entity_Id;
7418 Op_Type : Entity_Id := Empty)
7420 Predef_Op : Entity_Id;
7422 begin
7423 Predef_Op := Current_Entity (Selector_Name (N));
7424 while Present (Predef_Op)
7425 and then Scope (Predef_Op) /= Standard_Standard
7426 loop
7427 Predef_Op := Homonym (Predef_Op);
7428 end loop;
7430 if Nkind (N) = N_Selected_Component then
7431 Change_Selected_Component_To_Expanded_Name (N);
7432 end if;
7434 -- If the context is an unanalyzed function call, determine whether
7435 -- a binary or unary interpretation is required.
7437 if Nkind (Parent (N)) = N_Indexed_Component then
7438 declare
7439 Is_Binary_Call : constant Boolean :=
7440 Present
7441 (Next (First (Expressions (Parent (N)))));
7442 Is_Binary_Op : constant Boolean :=
7443 First_Entity
7444 (Predef_Op) /= Last_Entity (Predef_Op);
7445 Predef_Op2 : constant Entity_Id := Homonym (Predef_Op);
7447 begin
7448 if Is_Binary_Call then
7449 if Is_Binary_Op then
7450 Add_One_Interp (N, Predef_Op, T);
7451 else
7452 Add_One_Interp (N, Predef_Op2, T);
7453 end if;
7455 else
7456 if not Is_Binary_Op then
7457 Add_One_Interp (N, Predef_Op, T);
7458 else
7459 Add_One_Interp (N, Predef_Op2, T);
7460 end if;
7461 end if;
7462 end;
7464 else
7465 Add_One_Interp (N, Predef_Op, T);
7467 -- For operators with unary and binary interpretations, if
7468 -- context is not a call, add both
7470 if Present (Homonym (Predef_Op)) then
7471 Add_One_Interp (N, Homonym (Predef_Op), T);
7472 end if;
7473 end if;
7475 -- The node is a reference to a predefined operator, and
7476 -- an implicit reference to the type of its operands.
7478 if Present (Op_Type) then
7479 Generate_Operator_Reference (N, Op_Type);
7480 else
7481 Generate_Operator_Reference (N, T);
7482 end if;
7483 end Add_Implicit_Operator;
7485 -- Start of processing for Has_Implicit_Operator
7487 begin
7488 if Ekind (P) = E_Package and then not In_Open_Scopes (P) then
7489 Priv_Id := First_Private_Entity (P);
7490 end if;
7492 Id := First_Entity (P);
7494 case Op_Id is
7496 -- Boolean operators: an implicit declaration exists if the scope
7497 -- contains a declaration for a derived Boolean type, or for an
7498 -- array of Boolean type.
7500 when Name_Op_And | Name_Op_Not | Name_Op_Or | Name_Op_Xor =>
7501 while Id /= Priv_Id loop
7502 if Valid_Boolean_Arg (Id) and then Is_Base_Type (Id) then
7503 Add_Implicit_Operator (Id);
7504 return True;
7505 end if;
7507 Next_Entity (Id);
7508 end loop;
7510 -- Equality: look for any non-limited type (result is Boolean)
7512 when Name_Op_Eq | Name_Op_Ne =>
7513 while Id /= Priv_Id loop
7514 if Is_Type (Id)
7515 and then not Is_Limited_Type (Id)
7516 and then Is_Base_Type (Id)
7517 then
7518 Add_Implicit_Operator (Standard_Boolean, Id);
7519 return True;
7520 end if;
7522 Next_Entity (Id);
7523 end loop;
7525 -- Comparison operators: scalar type, or array of scalar
7527 when Name_Op_Lt | Name_Op_Le | Name_Op_Gt | Name_Op_Ge =>
7528 while Id /= Priv_Id loop
7529 if (Is_Scalar_Type (Id)
7530 or else (Is_Array_Type (Id)
7531 and then Is_Scalar_Type (Component_Type (Id))))
7532 and then Is_Base_Type (Id)
7533 then
7534 Add_Implicit_Operator (Standard_Boolean, Id);
7535 return True;
7536 end if;
7538 Next_Entity (Id);
7539 end loop;
7541 -- Arithmetic operators: any numeric type
7543 when Name_Op_Abs |
7544 Name_Op_Add |
7545 Name_Op_Mod |
7546 Name_Op_Rem |
7547 Name_Op_Subtract |
7548 Name_Op_Multiply |
7549 Name_Op_Divide |
7550 Name_Op_Expon =>
7551 while Id /= Priv_Id loop
7552 if Is_Numeric_Type (Id) and then Is_Base_Type (Id) then
7553 Add_Implicit_Operator (Id);
7554 return True;
7555 end if;
7557 Next_Entity (Id);
7558 end loop;
7560 -- Concatenation: any one-dimensional array type
7562 when Name_Op_Concat =>
7563 while Id /= Priv_Id loop
7564 if Is_Array_Type (Id)
7565 and then Number_Dimensions (Id) = 1
7566 and then Is_Base_Type (Id)
7567 then
7568 Add_Implicit_Operator (Id);
7569 return True;
7570 end if;
7572 Next_Entity (Id);
7573 end loop;
7575 -- What is the others condition here? Should we be using a
7576 -- subtype of Name_Id that would restrict to operators ???
7578 when others => null;
7579 end case;
7581 -- If we fall through, then we do not have an implicit operator
7583 return False;
7585 end Has_Implicit_Operator;
7587 -----------------------------------
7588 -- Has_Loop_In_Inner_Open_Scopes --
7589 -----------------------------------
7591 function Has_Loop_In_Inner_Open_Scopes (S : Entity_Id) return Boolean is
7592 begin
7593 -- Several scope stacks are maintained by Scope_Stack. The base of the
7594 -- currently active scope stack is denoted by the Is_Active_Stack_Base
7595 -- flag in the scope stack entry. Note that the scope stacks used to
7596 -- simply be delimited implicitly by the presence of Standard_Standard
7597 -- at their base, but there now are cases where this is not sufficient
7598 -- because Standard_Standard actually may appear in the middle of the
7599 -- active set of scopes.
7601 for J in reverse 0 .. Scope_Stack.Last loop
7603 -- S was reached without seing a loop scope first
7605 if Scope_Stack.Table (J).Entity = S then
7606 return False;
7608 -- S was not yet reached, so it contains at least one inner loop
7610 elsif Ekind (Scope_Stack.Table (J).Entity) = E_Loop then
7611 return True;
7612 end if;
7614 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
7615 -- cases where Standard_Standard appears in the middle of the active
7616 -- set of scopes. This affects the declaration and overriding of
7617 -- private inherited operations in instantiations of generic child
7618 -- units.
7620 pragma Assert (not Scope_Stack.Table (J).Is_Active_Stack_Base);
7621 end loop;
7623 raise Program_Error; -- unreachable
7624 end Has_Loop_In_Inner_Open_Scopes;
7626 --------------------
7627 -- In_Open_Scopes --
7628 --------------------
7630 function In_Open_Scopes (S : Entity_Id) return Boolean is
7631 begin
7632 -- Several scope stacks are maintained by Scope_Stack. The base of the
7633 -- currently active scope stack is denoted by the Is_Active_Stack_Base
7634 -- flag in the scope stack entry. Note that the scope stacks used to
7635 -- simply be delimited implicitly by the presence of Standard_Standard
7636 -- at their base, but there now are cases where this is not sufficient
7637 -- because Standard_Standard actually may appear in the middle of the
7638 -- active set of scopes.
7640 for J in reverse 0 .. Scope_Stack.Last loop
7641 if Scope_Stack.Table (J).Entity = S then
7642 return True;
7643 end if;
7645 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
7646 -- cases where Standard_Standard appears in the middle of the active
7647 -- set of scopes. This affects the declaration and overriding of
7648 -- private inherited operations in instantiations of generic child
7649 -- units.
7651 exit when Scope_Stack.Table (J).Is_Active_Stack_Base;
7652 end loop;
7654 return False;
7655 end In_Open_Scopes;
7657 -----------------------------
7658 -- Inherit_Renamed_Profile --
7659 -----------------------------
7661 procedure Inherit_Renamed_Profile (New_S : Entity_Id; Old_S : Entity_Id) is
7662 New_F : Entity_Id;
7663 Old_F : Entity_Id;
7664 Old_T : Entity_Id;
7665 New_T : Entity_Id;
7667 begin
7668 if Ekind (Old_S) = E_Operator then
7669 New_F := First_Formal (New_S);
7671 while Present (New_F) loop
7672 Set_Etype (New_F, Base_Type (Etype (New_F)));
7673 Next_Formal (New_F);
7674 end loop;
7676 Set_Etype (New_S, Base_Type (Etype (New_S)));
7678 else
7679 New_F := First_Formal (New_S);
7680 Old_F := First_Formal (Old_S);
7682 while Present (New_F) loop
7683 New_T := Etype (New_F);
7684 Old_T := Etype (Old_F);
7686 -- If the new type is a renaming of the old one, as is the
7687 -- case for actuals in instances, retain its name, to simplify
7688 -- later disambiguation.
7690 if Nkind (Parent (New_T)) = N_Subtype_Declaration
7691 and then Is_Entity_Name (Subtype_Indication (Parent (New_T)))
7692 and then Entity (Subtype_Indication (Parent (New_T))) = Old_T
7693 then
7694 null;
7695 else
7696 Set_Etype (New_F, Old_T);
7697 end if;
7699 Next_Formal (New_F);
7700 Next_Formal (Old_F);
7701 end loop;
7703 if Ekind_In (Old_S, E_Function, E_Enumeration_Literal) then
7704 Set_Etype (New_S, Etype (Old_S));
7705 end if;
7706 end if;
7707 end Inherit_Renamed_Profile;
7709 ----------------
7710 -- Initialize --
7711 ----------------
7713 procedure Initialize is
7714 begin
7715 Urefs.Init;
7716 end Initialize;
7718 -------------------------
7719 -- Install_Use_Clauses --
7720 -------------------------
7722 procedure Install_Use_Clauses
7723 (Clause : Node_Id;
7724 Force_Installation : Boolean := False)
7726 U : Node_Id;
7727 P : Node_Id;
7728 Id : Entity_Id;
7730 begin
7731 U := Clause;
7732 while Present (U) loop
7734 -- Case of USE package
7736 if Nkind (U) = N_Use_Package_Clause then
7737 P := First (Names (U));
7738 while Present (P) loop
7739 Id := Entity (P);
7741 if Ekind (Id) = E_Package then
7742 if In_Use (Id) then
7743 Note_Redundant_Use (P);
7745 elsif Present (Renamed_Object (Id))
7746 and then In_Use (Renamed_Object (Id))
7747 then
7748 Note_Redundant_Use (P);
7750 elsif Force_Installation or else Applicable_Use (P) then
7751 Use_One_Package (Id, U);
7753 end if;
7754 end if;
7756 Next (P);
7757 end loop;
7759 -- Case of USE TYPE
7761 else
7762 P := First (Subtype_Marks (U));
7763 while Present (P) loop
7764 if not Is_Entity_Name (P)
7765 or else No (Entity (P))
7766 then
7767 null;
7769 elsif Entity (P) /= Any_Type then
7770 Use_One_Type (P);
7771 end if;
7773 Next (P);
7774 end loop;
7775 end if;
7777 Next_Use_Clause (U);
7778 end loop;
7779 end Install_Use_Clauses;
7781 -------------------------------------
7782 -- Is_Appropriate_For_Entry_Prefix --
7783 -------------------------------------
7785 function Is_Appropriate_For_Entry_Prefix (T : Entity_Id) return Boolean is
7786 P_Type : Entity_Id := T;
7788 begin
7789 if Is_Access_Type (P_Type) then
7790 P_Type := Designated_Type (P_Type);
7791 end if;
7793 return Is_Task_Type (P_Type) or else Is_Protected_Type (P_Type);
7794 end Is_Appropriate_For_Entry_Prefix;
7796 -------------------------------
7797 -- Is_Appropriate_For_Record --
7798 -------------------------------
7800 function Is_Appropriate_For_Record (T : Entity_Id) return Boolean is
7802 function Has_Components (T1 : Entity_Id) return Boolean;
7803 -- Determine if given type has components (i.e. is either a record
7804 -- type or a type that has discriminants).
7806 --------------------
7807 -- Has_Components --
7808 --------------------
7810 function Has_Components (T1 : Entity_Id) return Boolean is
7811 begin
7812 return Is_Record_Type (T1)
7813 or else (Is_Private_Type (T1) and then Has_Discriminants (T1))
7814 or else (Is_Task_Type (T1) and then Has_Discriminants (T1))
7815 or else (Is_Incomplete_Type (T1)
7816 and then From_Limited_With (T1)
7817 and then Present (Non_Limited_View (T1))
7818 and then Is_Record_Type
7819 (Get_Full_View (Non_Limited_View (T1))));
7820 end Has_Components;
7822 -- Start of processing for Is_Appropriate_For_Record
7824 begin
7825 return
7826 Present (T)
7827 and then (Has_Components (T)
7828 or else (Is_Access_Type (T)
7829 and then Has_Components (Designated_Type (T))));
7830 end Is_Appropriate_For_Record;
7832 ------------------------
7833 -- Note_Redundant_Use --
7834 ------------------------
7836 procedure Note_Redundant_Use (Clause : Node_Id) is
7837 Pack_Name : constant Entity_Id := Entity (Clause);
7838 Cur_Use : constant Node_Id := Current_Use_Clause (Pack_Name);
7839 Decl : constant Node_Id := Parent (Clause);
7841 Prev_Use : Node_Id := Empty;
7842 Redundant : Node_Id := Empty;
7843 -- The Use_Clause which is actually redundant. In the simplest case it
7844 -- is Pack itself, but when we compile a body we install its context
7845 -- before that of its spec, in which case it is the use_clause in the
7846 -- spec that will appear to be redundant, and we want the warning to be
7847 -- placed on the body. Similar complications appear when the redundancy
7848 -- is between a child unit and one of its ancestors.
7850 begin
7851 Set_Redundant_Use (Clause, True);
7853 if not Comes_From_Source (Clause)
7854 or else In_Instance
7855 or else not Warn_On_Redundant_Constructs
7856 then
7857 return;
7858 end if;
7860 if not Is_Compilation_Unit (Current_Scope) then
7862 -- If the use_clause is in an inner scope, it is made redundant by
7863 -- some clause in the current context, with one exception: If we're
7864 -- compiling a nested package body, and the use_clause comes from the
7865 -- corresponding spec, the clause is not necessarily fully redundant,
7866 -- so we should not warn. If a warning was warranted, it would have
7867 -- been given when the spec was processed.
7869 if Nkind (Parent (Decl)) = N_Package_Specification then
7870 declare
7871 Package_Spec_Entity : constant Entity_Id :=
7872 Defining_Unit_Name (Parent (Decl));
7873 begin
7874 if In_Package_Body (Package_Spec_Entity) then
7875 return;
7876 end if;
7877 end;
7878 end if;
7880 Redundant := Clause;
7881 Prev_Use := Cur_Use;
7883 elsif Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
7884 declare
7885 Cur_Unit : constant Unit_Number_Type := Get_Source_Unit (Cur_Use);
7886 New_Unit : constant Unit_Number_Type := Get_Source_Unit (Clause);
7887 Scop : Entity_Id;
7889 begin
7890 if Cur_Unit = New_Unit then
7892 -- Redundant clause in same body
7894 Redundant := Clause;
7895 Prev_Use := Cur_Use;
7897 elsif Cur_Unit = Current_Sem_Unit then
7899 -- If the new clause is not in the current unit it has been
7900 -- analyzed first, and it makes the other one redundant.
7901 -- However, if the new clause appears in a subunit, Cur_Unit
7902 -- is still the parent, and in that case the redundant one
7903 -- is the one appearing in the subunit.
7905 if Nkind (Unit (Cunit (New_Unit))) = N_Subunit then
7906 Redundant := Clause;
7907 Prev_Use := Cur_Use;
7909 -- Most common case: redundant clause in body,
7910 -- original clause in spec. Current scope is spec entity.
7912 elsif
7913 Current_Scope =
7914 Defining_Entity (
7915 Unit (Library_Unit (Cunit (Current_Sem_Unit))))
7916 then
7917 Redundant := Cur_Use;
7918 Prev_Use := Clause;
7920 else
7921 -- The new clause may appear in an unrelated unit, when
7922 -- the parents of a generic are being installed prior to
7923 -- instantiation. In this case there must be no warning.
7924 -- We detect this case by checking whether the current top
7925 -- of the stack is related to the current compilation.
7927 Scop := Current_Scope;
7928 while Present (Scop) and then Scop /= Standard_Standard loop
7929 if Is_Compilation_Unit (Scop)
7930 and then not Is_Child_Unit (Scop)
7931 then
7932 return;
7934 elsif Scop = Cunit_Entity (Current_Sem_Unit) then
7935 exit;
7936 end if;
7938 Scop := Scope (Scop);
7939 end loop;
7941 Redundant := Cur_Use;
7942 Prev_Use := Clause;
7943 end if;
7945 elsif New_Unit = Current_Sem_Unit then
7946 Redundant := Clause;
7947 Prev_Use := Cur_Use;
7949 else
7950 -- Neither is the current unit, so they appear in parent or
7951 -- sibling units. Warning will be emitted elsewhere.
7953 return;
7954 end if;
7955 end;
7957 elsif Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Declaration
7958 and then Present (Parent_Spec (Unit (Cunit (Current_Sem_Unit))))
7959 then
7960 -- Use_clause is in child unit of current unit, and the child unit
7961 -- appears in the context of the body of the parent, so it has been
7962 -- installed first, even though it is the redundant one. Depending on
7963 -- their placement in the context, the visible or the private parts
7964 -- of the two units, either might appear as redundant, but the
7965 -- message has to be on the current unit.
7967 if Get_Source_Unit (Cur_Use) = Current_Sem_Unit then
7968 Redundant := Cur_Use;
7969 Prev_Use := Clause;
7970 else
7971 Redundant := Clause;
7972 Prev_Use := Cur_Use;
7973 end if;
7975 -- If the new use clause appears in the private part of a parent unit
7976 -- it may appear to be redundant w.r.t. a use clause in a child unit,
7977 -- but the previous use clause was needed in the visible part of the
7978 -- child, and no warning should be emitted.
7980 if Nkind (Parent (Decl)) = N_Package_Specification
7981 and then
7982 List_Containing (Decl) = Private_Declarations (Parent (Decl))
7983 then
7984 declare
7985 Par : constant Entity_Id := Defining_Entity (Parent (Decl));
7986 Spec : constant Node_Id :=
7987 Specification (Unit (Cunit (Current_Sem_Unit)));
7989 begin
7990 if Is_Compilation_Unit (Par)
7991 and then Par /= Cunit_Entity (Current_Sem_Unit)
7992 and then Parent (Cur_Use) = Spec
7993 and then
7994 List_Containing (Cur_Use) = Visible_Declarations (Spec)
7995 then
7996 return;
7997 end if;
7998 end;
7999 end if;
8001 -- Finally, if the current use clause is in the context then
8002 -- the clause is redundant when it is nested within the unit.
8004 elsif Nkind (Parent (Cur_Use)) = N_Compilation_Unit
8005 and then Nkind (Parent (Parent (Clause))) /= N_Compilation_Unit
8006 and then Get_Source_Unit (Cur_Use) = Get_Source_Unit (Clause)
8007 then
8008 Redundant := Clause;
8009 Prev_Use := Cur_Use;
8011 else
8012 null;
8013 end if;
8015 if Present (Redundant) then
8016 Error_Msg_Sloc := Sloc (Prev_Use);
8017 Error_Msg_NE -- CODEFIX
8018 ("& is already use-visible through previous use clause #??",
8019 Redundant, Pack_Name);
8020 end if;
8021 end Note_Redundant_Use;
8023 ---------------
8024 -- Pop_Scope --
8025 ---------------
8027 procedure Pop_Scope is
8028 SST : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
8029 S : constant Entity_Id := SST.Entity;
8031 begin
8032 if Debug_Flag_E then
8033 Write_Info;
8034 end if;
8036 -- Set Default_Storage_Pool field of the library unit if necessary
8038 if Ekind_In (S, E_Package, E_Generic_Package)
8039 and then
8040 Nkind (Parent (Unit_Declaration_Node (S))) = N_Compilation_Unit
8041 then
8042 declare
8043 Aux : constant Node_Id :=
8044 Aux_Decls_Node (Parent (Unit_Declaration_Node (S)));
8045 begin
8046 if No (Default_Storage_Pool (Aux)) then
8047 Set_Default_Storage_Pool (Aux, Default_Pool);
8048 end if;
8049 end;
8050 end if;
8052 Scope_Suppress := SST.Save_Scope_Suppress;
8053 Local_Suppress_Stack_Top := SST.Save_Local_Suppress_Stack_Top;
8054 Check_Policy_List := SST.Save_Check_Policy_List;
8055 Default_Pool := SST.Save_Default_Storage_Pool;
8056 No_Tagged_Streams := SST.Save_No_Tagged_Streams;
8057 SPARK_Mode := SST.Save_SPARK_Mode;
8058 SPARK_Mode_Pragma := SST.Save_SPARK_Mode_Pragma;
8059 Default_SSO := SST.Save_Default_SSO;
8060 Uneval_Old := SST.Save_Uneval_Old;
8062 if Debug_Flag_W then
8063 Write_Str ("<-- exiting scope: ");
8064 Write_Name (Chars (Current_Scope));
8065 Write_Str (", Depth=");
8066 Write_Int (Int (Scope_Stack.Last));
8067 Write_Eol;
8068 end if;
8070 End_Use_Clauses (SST.First_Use_Clause);
8072 -- If the actions to be wrapped are still there they will get lost
8073 -- causing incomplete code to be generated. It is better to abort in
8074 -- this case (and we do the abort even with assertions off since the
8075 -- penalty is incorrect code generation).
8077 if SST.Actions_To_Be_Wrapped /= Scope_Actions'(others => No_List) then
8078 raise Program_Error;
8079 end if;
8081 -- Free last subprogram name if allocated, and pop scope
8083 Free (SST.Last_Subprogram_Name);
8084 Scope_Stack.Decrement_Last;
8085 end Pop_Scope;
8087 ---------------
8088 -- Push_Scope --
8089 ---------------
8091 procedure Push_Scope (S : Entity_Id) is
8092 E : constant Entity_Id := Scope (S);
8094 begin
8095 if Ekind (S) = E_Void then
8096 null;
8098 -- Set scope depth if not a non-concurrent type, and we have not yet set
8099 -- the scope depth. This means that we have the first occurrence of the
8100 -- scope, and this is where the depth is set.
8102 elsif (not Is_Type (S) or else Is_Concurrent_Type (S))
8103 and then not Scope_Depth_Set (S)
8104 then
8105 if S = Standard_Standard then
8106 Set_Scope_Depth_Value (S, Uint_0);
8108 elsif Is_Child_Unit (S) then
8109 Set_Scope_Depth_Value (S, Uint_1);
8111 elsif not Is_Record_Type (Current_Scope) then
8112 if Ekind (S) = E_Loop then
8113 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope));
8114 else
8115 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope) + 1);
8116 end if;
8117 end if;
8118 end if;
8120 Scope_Stack.Increment_Last;
8122 declare
8123 SST : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
8125 begin
8126 SST.Entity := S;
8127 SST.Save_Scope_Suppress := Scope_Suppress;
8128 SST.Save_Local_Suppress_Stack_Top := Local_Suppress_Stack_Top;
8129 SST.Save_Check_Policy_List := Check_Policy_List;
8130 SST.Save_Default_Storage_Pool := Default_Pool;
8131 SST.Save_No_Tagged_Streams := No_Tagged_Streams;
8132 SST.Save_SPARK_Mode := SPARK_Mode;
8133 SST.Save_SPARK_Mode_Pragma := SPARK_Mode_Pragma;
8134 SST.Save_Default_SSO := Default_SSO;
8135 SST.Save_Uneval_Old := Uneval_Old;
8137 if Scope_Stack.Last > Scope_Stack.First then
8138 SST.Component_Alignment_Default := Scope_Stack.Table
8139 (Scope_Stack.Last - 1).
8140 Component_Alignment_Default;
8141 end if;
8143 SST.Last_Subprogram_Name := null;
8144 SST.Is_Transient := False;
8145 SST.Node_To_Be_Wrapped := Empty;
8146 SST.Pending_Freeze_Actions := No_List;
8147 SST.Actions_To_Be_Wrapped := (others => No_List);
8148 SST.First_Use_Clause := Empty;
8149 SST.Is_Active_Stack_Base := False;
8150 SST.Previous_Visibility := False;
8151 SST.Locked_Shared_Objects := No_Elist;
8152 end;
8154 if Debug_Flag_W then
8155 Write_Str ("--> new scope: ");
8156 Write_Name (Chars (Current_Scope));
8157 Write_Str (", Id=");
8158 Write_Int (Int (Current_Scope));
8159 Write_Str (", Depth=");
8160 Write_Int (Int (Scope_Stack.Last));
8161 Write_Eol;
8162 end if;
8164 -- Deal with copying flags from the previous scope to this one. This is
8165 -- not necessary if either scope is standard, or if the new scope is a
8166 -- child unit.
8168 if S /= Standard_Standard
8169 and then Scope (S) /= Standard_Standard
8170 and then not Is_Child_Unit (S)
8171 then
8172 if Nkind (E) not in N_Entity then
8173 return;
8174 end if;
8176 -- Copy categorization flags from Scope (S) to S, this is not done
8177 -- when Scope (S) is Standard_Standard since propagation is from
8178 -- library unit entity inwards. Copy other relevant attributes as
8179 -- well (Discard_Names in particular).
8181 -- We only propagate inwards for library level entities,
8182 -- inner level subprograms do not inherit the categorization.
8184 if Is_Library_Level_Entity (S) then
8185 Set_Is_Preelaborated (S, Is_Preelaborated (E));
8186 Set_Is_Shared_Passive (S, Is_Shared_Passive (E));
8187 Set_Discard_Names (S, Discard_Names (E));
8188 Set_Suppress_Value_Tracking_On_Call
8189 (S, Suppress_Value_Tracking_On_Call (E));
8190 Set_Categorization_From_Scope (E => S, Scop => E);
8191 end if;
8192 end if;
8194 if Is_Child_Unit (S)
8195 and then Present (E)
8196 and then Ekind_In (E, E_Package, E_Generic_Package)
8197 and then
8198 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
8199 then
8200 declare
8201 Aux : constant Node_Id :=
8202 Aux_Decls_Node (Parent (Unit_Declaration_Node (E)));
8203 begin
8204 if Present (Default_Storage_Pool (Aux)) then
8205 Default_Pool := Default_Storage_Pool (Aux);
8206 end if;
8207 end;
8208 end if;
8209 end Push_Scope;
8211 ---------------------
8212 -- Premature_Usage --
8213 ---------------------
8215 procedure Premature_Usage (N : Node_Id) is
8216 Kind : constant Node_Kind := Nkind (Parent (Entity (N)));
8217 E : Entity_Id := Entity (N);
8219 begin
8220 -- Within an instance, the analysis of the actual for a formal object
8221 -- does not see the name of the object itself. This is significant only
8222 -- if the object is an aggregate, where its analysis does not do any
8223 -- name resolution on component associations. (see 4717-008). In such a
8224 -- case, look for the visible homonym on the chain.
8226 if In_Instance and then Present (Homonym (E)) then
8227 E := Homonym (E);
8228 while Present (E) and then not In_Open_Scopes (Scope (E)) loop
8229 E := Homonym (E);
8230 end loop;
8232 if Present (E) then
8233 Set_Entity (N, E);
8234 Set_Etype (N, Etype (E));
8235 return;
8236 end if;
8237 end if;
8239 if Kind = N_Component_Declaration then
8240 Error_Msg_N
8241 ("component&! cannot be used before end of record declaration", N);
8243 elsif Kind = N_Parameter_Specification then
8244 Error_Msg_N
8245 ("formal parameter&! cannot be used before end of specification",
8248 elsif Kind = N_Discriminant_Specification then
8249 Error_Msg_N
8250 ("discriminant&! cannot be used before end of discriminant part",
8253 elsif Kind = N_Procedure_Specification
8254 or else Kind = N_Function_Specification
8255 then
8256 Error_Msg_N
8257 ("subprogram&! cannot be used before end of its declaration",
8260 elsif Kind = N_Full_Type_Declaration then
8261 Error_Msg_N
8262 ("type& cannot be used before end of its declaration!", N);
8264 else
8265 Error_Msg_N
8266 ("object& cannot be used before end of its declaration!", N);
8267 end if;
8268 end Premature_Usage;
8270 ------------------------
8271 -- Present_System_Aux --
8272 ------------------------
8274 function Present_System_Aux (N : Node_Id := Empty) return Boolean is
8275 Loc : Source_Ptr;
8276 Aux_Name : Unit_Name_Type;
8277 Unum : Unit_Number_Type;
8278 Withn : Node_Id;
8279 With_Sys : Node_Id;
8280 The_Unit : Node_Id;
8282 function Find_System (C_Unit : Node_Id) return Entity_Id;
8283 -- Scan context clause of compilation unit to find with_clause
8284 -- for System.
8286 -----------------
8287 -- Find_System --
8288 -----------------
8290 function Find_System (C_Unit : Node_Id) return Entity_Id is
8291 With_Clause : Node_Id;
8293 begin
8294 With_Clause := First (Context_Items (C_Unit));
8295 while Present (With_Clause) loop
8296 if (Nkind (With_Clause) = N_With_Clause
8297 and then Chars (Name (With_Clause)) = Name_System)
8298 and then Comes_From_Source (With_Clause)
8299 then
8300 return With_Clause;
8301 end if;
8303 Next (With_Clause);
8304 end loop;
8306 return Empty;
8307 end Find_System;
8309 -- Start of processing for Present_System_Aux
8311 begin
8312 -- The child unit may have been loaded and analyzed already
8314 if Present (System_Aux_Id) then
8315 return True;
8317 -- If no previous pragma for System.Aux, nothing to load
8319 elsif No (System_Extend_Unit) then
8320 return False;
8322 -- Use the unit name given in the pragma to retrieve the unit.
8323 -- Verify that System itself appears in the context clause of the
8324 -- current compilation. If System is not present, an error will
8325 -- have been reported already.
8327 else
8328 With_Sys := Find_System (Cunit (Current_Sem_Unit));
8330 The_Unit := Unit (Cunit (Current_Sem_Unit));
8332 if No (With_Sys)
8333 and then
8334 (Nkind (The_Unit) = N_Package_Body
8335 or else (Nkind (The_Unit) = N_Subprogram_Body
8336 and then not Acts_As_Spec (Cunit (Current_Sem_Unit))))
8337 then
8338 With_Sys := Find_System (Library_Unit (Cunit (Current_Sem_Unit)));
8339 end if;
8341 if No (With_Sys) and then Present (N) then
8343 -- If we are compiling a subunit, we need to examine its
8344 -- context as well (Current_Sem_Unit is the parent unit);
8346 The_Unit := Parent (N);
8347 while Nkind (The_Unit) /= N_Compilation_Unit loop
8348 The_Unit := Parent (The_Unit);
8349 end loop;
8351 if Nkind (Unit (The_Unit)) = N_Subunit then
8352 With_Sys := Find_System (The_Unit);
8353 end if;
8354 end if;
8356 if No (With_Sys) then
8357 return False;
8358 end if;
8360 Loc := Sloc (With_Sys);
8361 Get_Name_String (Chars (Expression (System_Extend_Unit)));
8362 Name_Buffer (8 .. Name_Len + 7) := Name_Buffer (1 .. Name_Len);
8363 Name_Buffer (1 .. 7) := "system.";
8364 Name_Buffer (Name_Len + 8) := '%';
8365 Name_Buffer (Name_Len + 9) := 's';
8366 Name_Len := Name_Len + 9;
8367 Aux_Name := Name_Find;
8369 Unum :=
8370 Load_Unit
8371 (Load_Name => Aux_Name,
8372 Required => False,
8373 Subunit => False,
8374 Error_Node => With_Sys);
8376 if Unum /= No_Unit then
8377 Semantics (Cunit (Unum));
8378 System_Aux_Id :=
8379 Defining_Entity (Specification (Unit (Cunit (Unum))));
8381 Withn :=
8382 Make_With_Clause (Loc,
8383 Name =>
8384 Make_Expanded_Name (Loc,
8385 Chars => Chars (System_Aux_Id),
8386 Prefix => New_Occurrence_Of (Scope (System_Aux_Id), Loc),
8387 Selector_Name => New_Occurrence_Of (System_Aux_Id, Loc)));
8389 Set_Entity (Name (Withn), System_Aux_Id);
8391 Set_Library_Unit (Withn, Cunit (Unum));
8392 Set_Corresponding_Spec (Withn, System_Aux_Id);
8393 Set_First_Name (Withn, True);
8394 Set_Implicit_With (Withn, True);
8396 Insert_After (With_Sys, Withn);
8397 Mark_Rewrite_Insertion (Withn);
8398 Set_Context_Installed (Withn);
8400 return True;
8402 -- Here if unit load failed
8404 else
8405 Error_Msg_Name_1 := Name_System;
8406 Error_Msg_Name_2 := Chars (Expression (System_Extend_Unit));
8407 Error_Msg_N
8408 ("extension package `%.%` does not exist",
8409 Opt.System_Extend_Unit);
8410 return False;
8411 end if;
8412 end if;
8413 end Present_System_Aux;
8415 -------------------------
8416 -- Restore_Scope_Stack --
8417 -------------------------
8419 procedure Restore_Scope_Stack
8420 (List : Elist_Id;
8421 Handle_Use : Boolean := True)
8423 SS_Last : constant Int := Scope_Stack.Last;
8424 Elmt : Elmt_Id;
8426 begin
8427 -- Restore visibility of previous scope stack, if any, using the list
8428 -- we saved (we use Remove, since this list will not be used again).
8430 loop
8431 Elmt := Last_Elmt (List);
8432 exit when Elmt = No_Elmt;
8433 Set_Is_Immediately_Visible (Node (Elmt));
8434 Remove_Last_Elmt (List);
8435 end loop;
8437 -- Restore use clauses
8439 if SS_Last >= Scope_Stack.First
8440 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
8441 and then Handle_Use
8442 then
8443 Install_Use_Clauses (Scope_Stack.Table (SS_Last).First_Use_Clause);
8444 end if;
8445 end Restore_Scope_Stack;
8447 ----------------------
8448 -- Save_Scope_Stack --
8449 ----------------------
8451 -- Save_Scope_Stack/Restore_Scope_Stack were originally designed to avoid
8452 -- consuming any memory. That is, Save_Scope_Stack took care of removing
8453 -- from immediate visibility entities and Restore_Scope_Stack took care
8454 -- of restoring their visibility analyzing the context of each entity. The
8455 -- problem of such approach is that it was fragile and caused unexpected
8456 -- visibility problems, and indeed one test was found where there was a
8457 -- real problem.
8459 -- Furthermore, the following experiment was carried out:
8461 -- - Save_Scope_Stack was modified to store in an Elist1 all those
8462 -- entities whose attribute Is_Immediately_Visible is modified
8463 -- from True to False.
8465 -- - Restore_Scope_Stack was modified to store in another Elist2
8466 -- all the entities whose attribute Is_Immediately_Visible is
8467 -- modified from False to True.
8469 -- - Extra code was added to verify that all the elements of Elist1
8470 -- are found in Elist2
8472 -- This test shows that there may be more occurrences of this problem which
8473 -- have not yet been detected. As a result, we replaced that approach by
8474 -- the current one in which Save_Scope_Stack returns the list of entities
8475 -- whose visibility is changed, and that list is passed to Restore_Scope_
8476 -- Stack to undo that change. This approach is simpler and safer, although
8477 -- it consumes more memory.
8479 function Save_Scope_Stack (Handle_Use : Boolean := True) return Elist_Id is
8480 Result : constant Elist_Id := New_Elmt_List;
8481 E : Entity_Id;
8482 S : Entity_Id;
8483 SS_Last : constant Int := Scope_Stack.Last;
8485 procedure Remove_From_Visibility (E : Entity_Id);
8486 -- If E is immediately visible then append it to the result and remove
8487 -- it temporarily from visibility.
8489 ----------------------------
8490 -- Remove_From_Visibility --
8491 ----------------------------
8493 procedure Remove_From_Visibility (E : Entity_Id) is
8494 begin
8495 if Is_Immediately_Visible (E) then
8496 Append_Elmt (E, Result);
8497 Set_Is_Immediately_Visible (E, False);
8498 end if;
8499 end Remove_From_Visibility;
8501 -- Start of processing for Save_Scope_Stack
8503 begin
8504 if SS_Last >= Scope_Stack.First
8505 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
8506 then
8507 if Handle_Use then
8508 End_Use_Clauses (Scope_Stack.Table (SS_Last).First_Use_Clause);
8509 end if;
8511 -- If the call is from within a compilation unit, as when called from
8512 -- Rtsfind, make current entries in scope stack invisible while we
8513 -- analyze the new unit.
8515 for J in reverse 0 .. SS_Last loop
8516 exit when Scope_Stack.Table (J).Entity = Standard_Standard
8517 or else No (Scope_Stack.Table (J).Entity);
8519 S := Scope_Stack.Table (J).Entity;
8521 Remove_From_Visibility (S);
8523 E := First_Entity (S);
8524 while Present (E) loop
8525 Remove_From_Visibility (E);
8526 Next_Entity (E);
8527 end loop;
8528 end loop;
8530 end if;
8532 return Result;
8533 end Save_Scope_Stack;
8535 -------------
8536 -- Set_Use --
8537 -------------
8539 procedure Set_Use (L : List_Id) is
8540 Decl : Node_Id;
8541 Pack_Name : Node_Id;
8542 Pack : Entity_Id;
8543 Id : Entity_Id;
8545 begin
8546 if Present (L) then
8547 Decl := First (L);
8548 while Present (Decl) loop
8549 if Nkind (Decl) = N_Use_Package_Clause then
8550 Chain_Use_Clause (Decl);
8552 Pack_Name := First (Names (Decl));
8553 while Present (Pack_Name) loop
8554 Pack := Entity (Pack_Name);
8556 if Ekind (Pack) = E_Package
8557 and then Applicable_Use (Pack_Name)
8558 then
8559 Use_One_Package (Pack, Decl);
8560 end if;
8562 Next (Pack_Name);
8563 end loop;
8565 elsif Nkind (Decl) = N_Use_Type_Clause then
8566 Chain_Use_Clause (Decl);
8568 Id := First (Subtype_Marks (Decl));
8569 while Present (Id) loop
8570 if Entity (Id) /= Any_Type then
8571 Use_One_Type (Id);
8572 end if;
8574 Next (Id);
8575 end loop;
8576 end if;
8578 Next (Decl);
8579 end loop;
8580 end if;
8581 end Set_Use;
8583 ---------------------
8584 -- Use_One_Package --
8585 ---------------------
8587 procedure Use_One_Package (P : Entity_Id; N : Node_Id) is
8588 Id : Entity_Id;
8589 Prev : Entity_Id;
8590 Current_Instance : Entity_Id := Empty;
8591 Real_P : Entity_Id;
8592 Private_With_OK : Boolean := False;
8594 begin
8595 if Ekind (P) /= E_Package then
8596 return;
8597 end if;
8599 Set_In_Use (P);
8600 Set_Current_Use_Clause (P, N);
8602 -- Ada 2005 (AI-50217): Check restriction
8604 if From_Limited_With (P) then
8605 Error_Msg_N ("limited withed package cannot appear in use clause", N);
8606 end if;
8608 -- Find enclosing instance, if any
8610 if In_Instance then
8611 Current_Instance := Current_Scope;
8612 while not Is_Generic_Instance (Current_Instance) loop
8613 Current_Instance := Scope (Current_Instance);
8614 end loop;
8616 if No (Hidden_By_Use_Clause (N)) then
8617 Set_Hidden_By_Use_Clause (N, New_Elmt_List);
8618 end if;
8619 end if;
8621 -- If unit is a package renaming, indicate that the renamed
8622 -- package is also in use (the flags on both entities must
8623 -- remain consistent, and a subsequent use of either of them
8624 -- should be recognized as redundant).
8626 if Present (Renamed_Object (P)) then
8627 Set_In_Use (Renamed_Object (P));
8628 Set_Current_Use_Clause (Renamed_Object (P), N);
8629 Real_P := Renamed_Object (P);
8630 else
8631 Real_P := P;
8632 end if;
8634 -- Ada 2005 (AI-262): Check the use_clause of a private withed package
8635 -- found in the private part of a package specification
8637 if In_Private_Part (Current_Scope)
8638 and then Has_Private_With (P)
8639 and then Is_Child_Unit (Current_Scope)
8640 and then Is_Child_Unit (P)
8641 and then Is_Ancestor_Package (Scope (Current_Scope), P)
8642 then
8643 Private_With_OK := True;
8644 end if;
8646 -- Loop through entities in one package making them potentially
8647 -- use-visible.
8649 Id := First_Entity (P);
8650 while Present (Id)
8651 and then (Id /= First_Private_Entity (P)
8652 or else Private_With_OK) -- Ada 2005 (AI-262)
8653 loop
8654 Prev := Current_Entity (Id);
8655 while Present (Prev) loop
8656 if Is_Immediately_Visible (Prev)
8657 and then (not Is_Overloadable (Prev)
8658 or else not Is_Overloadable (Id)
8659 or else (Type_Conformant (Id, Prev)))
8660 then
8661 if No (Current_Instance) then
8663 -- Potentially use-visible entity remains hidden
8665 goto Next_Usable_Entity;
8667 -- A use clause within an instance hides outer global entities,
8668 -- which are not used to resolve local entities in the
8669 -- instance. Note that the predefined entities in Standard
8670 -- could not have been hidden in the generic by a use clause,
8671 -- and therefore remain visible. Other compilation units whose
8672 -- entities appear in Standard must be hidden in an instance.
8674 -- To determine whether an entity is external to the instance
8675 -- we compare the scope depth of its scope with that of the
8676 -- current instance. However, a generic actual of a subprogram
8677 -- instance is declared in the wrapper package but will not be
8678 -- hidden by a use-visible entity. similarly, an entity that is
8679 -- declared in an enclosing instance will not be hidden by an
8680 -- an entity declared in a generic actual, which can only have
8681 -- been use-visible in the generic and will not have hidden the
8682 -- entity in the generic parent.
8684 -- If Id is called Standard, the predefined package with the
8685 -- same name is in the homonym chain. It has to be ignored
8686 -- because it has no defined scope (being the only entity in
8687 -- the system with this mandated behavior).
8689 elsif not Is_Hidden (Id)
8690 and then Present (Scope (Prev))
8691 and then not Is_Wrapper_Package (Scope (Prev))
8692 and then Scope_Depth (Scope (Prev)) <
8693 Scope_Depth (Current_Instance)
8694 and then (Scope (Prev) /= Standard_Standard
8695 or else Sloc (Prev) > Standard_Location)
8696 then
8697 if In_Open_Scopes (Scope (Prev))
8698 and then Is_Generic_Instance (Scope (Prev))
8699 and then Present (Associated_Formal_Package (P))
8700 then
8701 null;
8703 else
8704 Set_Is_Potentially_Use_Visible (Id);
8705 Set_Is_Immediately_Visible (Prev, False);
8706 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
8707 end if;
8708 end if;
8710 -- A user-defined operator is not use-visible if the predefined
8711 -- operator for the type is immediately visible, which is the case
8712 -- if the type of the operand is in an open scope. This does not
8713 -- apply to user-defined operators that have operands of different
8714 -- types, because the predefined mixed mode operations (multiply
8715 -- and divide) apply to universal types and do not hide anything.
8717 elsif Ekind (Prev) = E_Operator
8718 and then Operator_Matches_Spec (Prev, Id)
8719 and then In_Open_Scopes
8720 (Scope (Base_Type (Etype (First_Formal (Id)))))
8721 and then (No (Next_Formal (First_Formal (Id)))
8722 or else Etype (First_Formal (Id)) =
8723 Etype (Next_Formal (First_Formal (Id)))
8724 or else Chars (Prev) = Name_Op_Expon)
8725 then
8726 goto Next_Usable_Entity;
8728 -- In an instance, two homonyms may become use_visible through the
8729 -- actuals of distinct formal packages. In the generic, only the
8730 -- current one would have been visible, so make the other one
8731 -- not use_visible.
8733 elsif Present (Current_Instance)
8734 and then Is_Potentially_Use_Visible (Prev)
8735 and then not Is_Overloadable (Prev)
8736 and then Scope (Id) /= Scope (Prev)
8737 and then Used_As_Generic_Actual (Scope (Prev))
8738 and then Used_As_Generic_Actual (Scope (Id))
8739 and then not In_Same_List (Current_Use_Clause (Scope (Prev)),
8740 Current_Use_Clause (Scope (Id)))
8741 then
8742 Set_Is_Potentially_Use_Visible (Prev, False);
8743 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
8744 end if;
8746 Prev := Homonym (Prev);
8747 end loop;
8749 -- On exit, we know entity is not hidden, unless it is private
8751 if not Is_Hidden (Id)
8752 and then ((not Is_Child_Unit (Id)) or else Is_Visible_Lib_Unit (Id))
8753 then
8754 Set_Is_Potentially_Use_Visible (Id);
8756 if Is_Private_Type (Id) and then Present (Full_View (Id)) then
8757 Set_Is_Potentially_Use_Visible (Full_View (Id));
8758 end if;
8759 end if;
8761 <<Next_Usable_Entity>>
8762 Next_Entity (Id);
8763 end loop;
8765 -- Child units are also made use-visible by a use clause, but they may
8766 -- appear after all visible declarations in the parent entity list.
8768 while Present (Id) loop
8769 if Is_Child_Unit (Id) and then Is_Visible_Lib_Unit (Id) then
8770 Set_Is_Potentially_Use_Visible (Id);
8771 end if;
8773 Next_Entity (Id);
8774 end loop;
8776 if Chars (Real_P) = Name_System
8777 and then Scope (Real_P) = Standard_Standard
8778 and then Present_System_Aux (N)
8779 then
8780 Use_One_Package (System_Aux_Id, N);
8781 end if;
8783 end Use_One_Package;
8785 ------------------
8786 -- Use_One_Type --
8787 ------------------
8789 procedure Use_One_Type (Id : Node_Id; Installed : Boolean := False) is
8790 Elmt : Elmt_Id;
8791 Is_Known_Used : Boolean;
8792 Op_List : Elist_Id;
8793 T : Entity_Id;
8795 function Spec_Reloaded_For_Body return Boolean;
8796 -- Determine whether the compilation unit is a package body and the use
8797 -- type clause is in the spec of the same package. Even though the spec
8798 -- was analyzed first, its context is reloaded when analysing the body.
8800 procedure Use_Class_Wide_Operations (Typ : Entity_Id);
8801 -- AI05-150: if the use_type_clause carries the "all" qualifier,
8802 -- class-wide operations of ancestor types are use-visible if the
8803 -- ancestor type is visible.
8805 ----------------------------
8806 -- Spec_Reloaded_For_Body --
8807 ----------------------------
8809 function Spec_Reloaded_For_Body return Boolean is
8810 begin
8811 if Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
8812 declare
8813 Spec : constant Node_Id :=
8814 Parent (List_Containing (Parent (Id)));
8816 begin
8817 -- Check whether type is declared in a package specification,
8818 -- and current unit is the corresponding package body. The
8819 -- use clauses themselves may be within a nested package.
8821 return
8822 Nkind (Spec) = N_Package_Specification
8823 and then
8824 In_Same_Source_Unit (Corresponding_Body (Parent (Spec)),
8825 Cunit_Entity (Current_Sem_Unit));
8826 end;
8827 end if;
8829 return False;
8830 end Spec_Reloaded_For_Body;
8832 -------------------------------
8833 -- Use_Class_Wide_Operations --
8834 -------------------------------
8836 procedure Use_Class_Wide_Operations (Typ : Entity_Id) is
8837 Scop : Entity_Id;
8838 Ent : Entity_Id;
8840 function Is_Class_Wide_Operation_Of
8841 (Op : Entity_Id;
8842 T : Entity_Id) return Boolean;
8843 -- Determine whether a subprogram has a class-wide parameter or
8844 -- result that is T'Class.
8846 ---------------------------------
8847 -- Is_Class_Wide_Operation_Of --
8848 ---------------------------------
8850 function Is_Class_Wide_Operation_Of
8851 (Op : Entity_Id;
8852 T : Entity_Id) return Boolean
8854 Formal : Entity_Id;
8856 begin
8857 Formal := First_Formal (Op);
8858 while Present (Formal) loop
8859 if Etype (Formal) = Class_Wide_Type (T) then
8860 return True;
8861 end if;
8862 Next_Formal (Formal);
8863 end loop;
8865 if Etype (Op) = Class_Wide_Type (T) then
8866 return True;
8867 end if;
8869 return False;
8870 end Is_Class_Wide_Operation_Of;
8872 -- Start of processing for Use_Class_Wide_Operations
8874 begin
8875 Scop := Scope (Typ);
8876 if not Is_Hidden (Scop) then
8877 Ent := First_Entity (Scop);
8878 while Present (Ent) loop
8879 if Is_Overloadable (Ent)
8880 and then Is_Class_Wide_Operation_Of (Ent, Typ)
8881 and then not Is_Potentially_Use_Visible (Ent)
8882 then
8883 Set_Is_Potentially_Use_Visible (Ent);
8884 Append_Elmt (Ent, Used_Operations (Parent (Id)));
8885 end if;
8887 Next_Entity (Ent);
8888 end loop;
8889 end if;
8891 if Is_Derived_Type (Typ) then
8892 Use_Class_Wide_Operations (Etype (Base_Type (Typ)));
8893 end if;
8894 end Use_Class_Wide_Operations;
8896 -- Start of processing for Use_One_Type
8898 begin
8899 -- It is the type determined by the subtype mark (8.4(8)) whose
8900 -- operations become potentially use-visible.
8902 T := Base_Type (Entity (Id));
8904 -- Either the type itself is used, the package where it is declared
8905 -- is in use or the entity is declared in the current package, thus
8906 -- use-visible.
8908 Is_Known_Used :=
8909 In_Use (T)
8910 or else In_Use (Scope (T))
8911 or else Scope (T) = Current_Scope;
8913 Set_Redundant_Use (Id,
8914 Is_Known_Used or else Is_Potentially_Use_Visible (T));
8916 if Ekind (T) = E_Incomplete_Type then
8917 Error_Msg_N ("premature usage of incomplete type", Id);
8919 elsif In_Open_Scopes (Scope (T)) then
8920 null;
8922 -- A limited view cannot appear in a use_type clause. However, an access
8923 -- type whose designated type is limited has the flag but is not itself
8924 -- a limited view unless we only have a limited view of its enclosing
8925 -- package.
8927 elsif From_Limited_With (T) and then From_Limited_With (Scope (T)) then
8928 Error_Msg_N
8929 ("incomplete type from limited view "
8930 & "cannot appear in use clause", Id);
8932 -- If the subtype mark designates a subtype in a different package,
8933 -- we have to check that the parent type is visible, otherwise the
8934 -- use type clause is a noop. Not clear how to do that???
8936 elsif not Redundant_Use (Id) then
8937 Set_In_Use (T);
8939 -- If T is tagged, primitive operators on class-wide operands
8940 -- are also available.
8942 if Is_Tagged_Type (T) then
8943 Set_In_Use (Class_Wide_Type (T));
8944 end if;
8946 Set_Current_Use_Clause (T, Parent (Id));
8948 -- Iterate over primitive operations of the type. If an operation is
8949 -- already use_visible, it is the result of a previous use_clause,
8950 -- and already appears on the corresponding entity chain. If the
8951 -- clause is being reinstalled, operations are already use-visible.
8953 if Installed then
8954 null;
8956 else
8957 Op_List := Collect_Primitive_Operations (T);
8958 Elmt := First_Elmt (Op_List);
8959 while Present (Elmt) loop
8960 if (Nkind (Node (Elmt)) = N_Defining_Operator_Symbol
8961 or else Chars (Node (Elmt)) in Any_Operator_Name)
8962 and then not Is_Hidden (Node (Elmt))
8963 and then not Is_Potentially_Use_Visible (Node (Elmt))
8964 then
8965 Set_Is_Potentially_Use_Visible (Node (Elmt));
8966 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
8968 elsif Ada_Version >= Ada_2012
8969 and then All_Present (Parent (Id))
8970 and then not Is_Hidden (Node (Elmt))
8971 and then not Is_Potentially_Use_Visible (Node (Elmt))
8972 then
8973 Set_Is_Potentially_Use_Visible (Node (Elmt));
8974 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
8975 end if;
8977 Next_Elmt (Elmt);
8978 end loop;
8979 end if;
8981 if Ada_Version >= Ada_2012
8982 and then All_Present (Parent (Id))
8983 and then Is_Tagged_Type (T)
8984 then
8985 Use_Class_Wide_Operations (T);
8986 end if;
8987 end if;
8989 -- If warning on redundant constructs, check for unnecessary WITH
8991 if Warn_On_Redundant_Constructs
8992 and then Is_Known_Used
8994 -- with P; with P; use P;
8995 -- package P is package X is package body X is
8996 -- type T ... use P.T;
8998 -- The compilation unit is the body of X. GNAT first compiles the
8999 -- spec of X, then proceeds to the body. At that point P is marked
9000 -- as use visible. The analysis then reinstalls the spec along with
9001 -- its context. The use clause P.T is now recognized as redundant,
9002 -- but in the wrong context. Do not emit a warning in such cases.
9003 -- Do not emit a warning either if we are in an instance, there is
9004 -- no redundancy between an outer use_clause and one that appears
9005 -- within the generic.
9007 and then not Spec_Reloaded_For_Body
9008 and then not In_Instance
9009 then
9010 -- The type already has a use clause
9012 if In_Use (T) then
9014 -- Case where we know the current use clause for the type
9016 if Present (Current_Use_Clause (T)) then
9017 Use_Clause_Known : declare
9018 Clause1 : constant Node_Id := Parent (Id);
9019 Clause2 : constant Node_Id := Current_Use_Clause (T);
9020 Ent1 : Entity_Id;
9021 Ent2 : Entity_Id;
9022 Err_No : Node_Id;
9023 Unit1 : Node_Id;
9024 Unit2 : Node_Id;
9026 function Entity_Of_Unit (U : Node_Id) return Entity_Id;
9027 -- Return the appropriate entity for determining which unit
9028 -- has a deeper scope: the defining entity for U, unless U
9029 -- is a package instance, in which case we retrieve the
9030 -- entity of the instance spec.
9032 --------------------
9033 -- Entity_Of_Unit --
9034 --------------------
9036 function Entity_Of_Unit (U : Node_Id) return Entity_Id is
9037 begin
9038 if Nkind (U) = N_Package_Instantiation
9039 and then Analyzed (U)
9040 then
9041 return Defining_Entity (Instance_Spec (U));
9042 else
9043 return Defining_Entity (U);
9044 end if;
9045 end Entity_Of_Unit;
9047 -- Start of processing for Use_Clause_Known
9049 begin
9050 -- If both current use type clause and the use type clause
9051 -- for the type are at the compilation unit level, one of
9052 -- the units must be an ancestor of the other, and the
9053 -- warning belongs on the descendant.
9055 if Nkind (Parent (Clause1)) = N_Compilation_Unit
9056 and then
9057 Nkind (Parent (Clause2)) = N_Compilation_Unit
9058 then
9059 -- If the unit is a subprogram body that acts as spec,
9060 -- the context clause is shared with the constructed
9061 -- subprogram spec. Clearly there is no redundancy.
9063 if Clause1 = Clause2 then
9064 return;
9065 end if;
9067 Unit1 := Unit (Parent (Clause1));
9068 Unit2 := Unit (Parent (Clause2));
9070 -- If both clauses are on same unit, or one is the body
9071 -- of the other, or one of them is in a subunit, report
9072 -- redundancy on the later one.
9074 if Unit1 = Unit2 then
9075 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
9076 Error_Msg_NE -- CODEFIX
9077 ("& is already use-visible through previous "
9078 & "use_type_clause #??", Clause1, T);
9079 return;
9081 elsif Nkind (Unit1) = N_Subunit then
9082 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
9083 Error_Msg_NE -- CODEFIX
9084 ("& is already use-visible through previous "
9085 & "use_type_clause #??", Clause1, T);
9086 return;
9088 elsif Nkind_In (Unit2, N_Package_Body, N_Subprogram_Body)
9089 and then Nkind (Unit1) /= Nkind (Unit2)
9090 and then Nkind (Unit1) /= N_Subunit
9091 then
9092 Error_Msg_Sloc := Sloc (Clause1);
9093 Error_Msg_NE -- CODEFIX
9094 ("& is already use-visible through previous "
9095 & "use_type_clause #??", Current_Use_Clause (T), T);
9096 return;
9097 end if;
9099 -- There is a redundant use type clause in a child unit.
9100 -- Determine which of the units is more deeply nested.
9101 -- If a unit is a package instance, retrieve the entity
9102 -- and its scope from the instance spec.
9104 Ent1 := Entity_Of_Unit (Unit1);
9105 Ent2 := Entity_Of_Unit (Unit2);
9107 if Scope (Ent2) = Standard_Standard then
9108 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
9109 Err_No := Clause1;
9111 elsif Scope (Ent1) = Standard_Standard then
9112 Error_Msg_Sloc := Sloc (Id);
9113 Err_No := Clause2;
9115 -- If both units are child units, we determine which one
9116 -- is the descendant by the scope distance to the
9117 -- ultimate parent unit.
9119 else
9120 declare
9121 S1, S2 : Entity_Id;
9123 begin
9124 S1 := Scope (Ent1);
9125 S2 := Scope (Ent2);
9126 while Present (S1)
9127 and then Present (S2)
9128 and then S1 /= Standard_Standard
9129 and then S2 /= Standard_Standard
9130 loop
9131 S1 := Scope (S1);
9132 S2 := Scope (S2);
9133 end loop;
9135 if S1 = Standard_Standard then
9136 Error_Msg_Sloc := Sloc (Id);
9137 Err_No := Clause2;
9138 else
9139 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
9140 Err_No := Clause1;
9141 end if;
9142 end;
9143 end if;
9145 Error_Msg_NE -- CODEFIX
9146 ("& is already use-visible through previous "
9147 & "use_type_clause #??", Err_No, Id);
9149 -- Case where current use type clause and the use type
9150 -- clause for the type are not both at the compilation unit
9151 -- level. In this case we don't have location information.
9153 else
9154 Error_Msg_NE -- CODEFIX
9155 ("& is already use-visible through previous "
9156 & "use type clause??", Id, T);
9157 end if;
9158 end Use_Clause_Known;
9160 -- Here if Current_Use_Clause is not set for T, another case
9161 -- where we do not have the location information available.
9163 else
9164 Error_Msg_NE -- CODEFIX
9165 ("& is already use-visible through previous "
9166 & "use type clause??", Id, T);
9167 end if;
9169 -- The package where T is declared is already used
9171 elsif In_Use (Scope (T)) then
9172 Error_Msg_Sloc := Sloc (Current_Use_Clause (Scope (T)));
9173 Error_Msg_NE -- CODEFIX
9174 ("& is already use-visible through package use clause #??",
9175 Id, T);
9177 -- The current scope is the package where T is declared
9179 else
9180 Error_Msg_Node_2 := Scope (T);
9181 Error_Msg_NE -- CODEFIX
9182 ("& is already use-visible inside package &??", Id, T);
9183 end if;
9184 end if;
9185 end Use_One_Type;
9187 ----------------
9188 -- Write_Info --
9189 ----------------
9191 procedure Write_Info is
9192 Id : Entity_Id := First_Entity (Current_Scope);
9194 begin
9195 -- No point in dumping standard entities
9197 if Current_Scope = Standard_Standard then
9198 return;
9199 end if;
9201 Write_Str ("========================================================");
9202 Write_Eol;
9203 Write_Str (" Defined Entities in ");
9204 Write_Name (Chars (Current_Scope));
9205 Write_Eol;
9206 Write_Str ("========================================================");
9207 Write_Eol;
9209 if No (Id) then
9210 Write_Str ("-- none --");
9211 Write_Eol;
9213 else
9214 while Present (Id) loop
9215 Write_Entity_Info (Id, " ");
9216 Next_Entity (Id);
9217 end loop;
9218 end if;
9220 if Scope (Current_Scope) = Standard_Standard then
9222 -- Print information on the current unit itself
9224 Write_Entity_Info (Current_Scope, " ");
9225 end if;
9227 Write_Eol;
9228 end Write_Info;
9230 --------
9231 -- ws --
9232 --------
9234 procedure ws is
9235 S : Entity_Id;
9236 begin
9237 for J in reverse 1 .. Scope_Stack.Last loop
9238 S := Scope_Stack.Table (J).Entity;
9239 Write_Int (Int (S));
9240 Write_Str (" === ");
9241 Write_Name (Chars (S));
9242 Write_Eol;
9243 end loop;
9244 end ws;
9246 --------
9247 -- we --
9248 --------
9250 procedure we (S : Entity_Id) is
9251 E : Entity_Id;
9252 begin
9253 E := First_Entity (S);
9254 while Present (E) loop
9255 Write_Int (Int (E));
9256 Write_Str (" === ");
9257 Write_Name (Chars (E));
9258 Write_Eol;
9259 Next_Entity (E);
9260 end loop;
9261 end we;
9262 end Sem_Ch8;