2015-05-12 Robert Dewar <dewar@adacore.com>
[official-gcc.git] / gcc / ada / sem_ch13.adb
blob6f68e9afbfbfd12437b92916e7b3fc720b589d64
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 1 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Elists; use Elists;
32 with Errout; use Errout;
33 with Exp_Disp; use Exp_Disp;
34 with Exp_Tss; use Exp_Tss;
35 with Exp_Util; use Exp_Util;
36 with Freeze; use Freeze;
37 with Lib; use Lib;
38 with Lib.Xref; use Lib.Xref;
39 with Namet; use Namet;
40 with Nlists; use Nlists;
41 with Nmake; use Nmake;
42 with Opt; use Opt;
43 with Restrict; use Restrict;
44 with Rident; use Rident;
45 with Rtsfind; use Rtsfind;
46 with Sem; use Sem;
47 with Sem_Aux; use Sem_Aux;
48 with Sem_Case; use Sem_Case;
49 with Sem_Ch3; use Sem_Ch3;
50 with Sem_Ch6; use Sem_Ch6;
51 with Sem_Ch8; use Sem_Ch8;
52 with Sem_Dim; use Sem_Dim;
53 with Sem_Disp; use Sem_Disp;
54 with Sem_Eval; use Sem_Eval;
55 with Sem_Prag; use Sem_Prag;
56 with Sem_Res; use Sem_Res;
57 with Sem_Type; use Sem_Type;
58 with Sem_Util; use Sem_Util;
59 with Sem_Warn; use Sem_Warn;
60 with Sinput; use Sinput;
61 with Snames; use Snames;
62 with Stand; use Stand;
63 with Sinfo; use Sinfo;
64 with Stringt; use Stringt;
65 with Targparm; use Targparm;
66 with Ttypes; use Ttypes;
67 with Tbuild; use Tbuild;
68 with Urealp; use Urealp;
69 with Warnsw; use Warnsw;
71 with GNAT.Heap_Sort_G;
73 package body Sem_Ch13 is
75 SSU : constant Pos := System_Storage_Unit;
76 -- Convenient short hand for commonly used constant
78 -----------------------
79 -- Local Subprograms --
80 -----------------------
82 procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint);
83 -- This routine is called after setting one of the sizes of type entity
84 -- Typ to Size. The purpose is to deal with the situation of a derived
85 -- type whose inherited alignment is no longer appropriate for the new
86 -- size value. In this case, we reset the Alignment to unknown.
88 procedure Build_Discrete_Static_Predicate
89 (Typ : Entity_Id;
90 Expr : Node_Id;
91 Nam : Name_Id);
92 -- Given a predicated type Typ, where Typ is a discrete static subtype,
93 -- whose predicate expression is Expr, tests if Expr is a static predicate,
94 -- and if so, builds the predicate range list. Nam is the name of the one
95 -- argument to the predicate function. Occurrences of the type name in the
96 -- predicate expression have been replaced by identifier references to this
97 -- name, which is unique, so any identifier with Chars matching Nam must be
98 -- a reference to the type. If the predicate is non-static, this procedure
99 -- returns doing nothing. If the predicate is static, then the predicate
100 -- list is stored in Static_Discrete_Predicate (Typ), and the Expr is
101 -- rewritten as a canonicalized membership operation.
103 procedure Build_Predicate_Functions (Typ : Entity_Id; N : Node_Id);
104 -- If Typ has predicates (indicated by Has_Predicates being set for Typ),
105 -- then either there are pragma Predicate entries on the rep chain for the
106 -- type (note that Predicate aspects are converted to pragma Predicate), or
107 -- there are inherited aspects from a parent type, or ancestor subtypes.
108 -- This procedure builds the spec and body for the Predicate function that
109 -- tests these predicates. N is the freeze node for the type. The spec of
110 -- the function is inserted before the freeze node, and the body of the
111 -- function is inserted after the freeze node. If the predicate expression
112 -- has at least one Raise_Expression, then this procedure also builds the
113 -- M version of the predicate function for use in membership tests.
115 procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id);
116 -- Called if both Storage_Pool and Storage_Size attribute definition
117 -- clauses (SP and SS) are present for entity Ent. Issue error message.
119 procedure Freeze_Entity_Checks (N : Node_Id);
120 -- Called from Analyze_Freeze_Entity and Analyze_Generic_Freeze Entity
121 -- to generate appropriate semantic checks that are delayed until this
122 -- point (they had to be delayed this long for cases of delayed aspects,
123 -- e.g. analysis of statically predicated subtypes in choices, for which
124 -- we have to be sure the subtypes in question are frozen before checking.
126 function Get_Alignment_Value (Expr : Node_Id) return Uint;
127 -- Given the expression for an alignment value, returns the corresponding
128 -- Uint value. If the value is inappropriate, then error messages are
129 -- posted as required, and a value of No_Uint is returned.
131 function Is_Operational_Item (N : Node_Id) return Boolean;
132 -- A specification for a stream attribute is allowed before the full type
133 -- is declared, as explained in AI-00137 and the corrigendum. Attributes
134 -- that do not specify a representation characteristic are operational
135 -- attributes.
137 function Is_Predicate_Static
138 (Expr : Node_Id;
139 Nam : Name_Id) return Boolean;
140 -- Given predicate expression Expr, tests if Expr is predicate-static in
141 -- the sense of the rules in (RM 3.2.4 (15-24)). Occurrences of the type
142 -- name in the predicate expression have been replaced by references to
143 -- an identifier whose Chars field is Nam. This name is unique, so any
144 -- identifier with Chars matching Nam must be a reference to the type.
145 -- Returns True if the expression is predicate-static and False otherwise,
146 -- but is not in the business of setting flags or issuing error messages.
148 -- Only scalar types can have static predicates, so False is always
149 -- returned for non-scalar types.
151 -- Note: the RM seems to suggest that string types can also have static
152 -- predicates. But that really makes lttle sense as very few useful
153 -- predicates can be constructed for strings. Remember that:
155 -- "ABC" < "DEF"
157 -- is not a static expression. So even though the clearly faulty RM wording
158 -- allows the following:
160 -- subtype S is String with Static_Predicate => S < "DEF"
162 -- We can't allow this, otherwise we have predicate-static applying to a
163 -- larger class than static expressions, which was never intended.
165 procedure New_Stream_Subprogram
166 (N : Node_Id;
167 Ent : Entity_Id;
168 Subp : Entity_Id;
169 Nam : TSS_Name_Type);
170 -- Create a subprogram renaming of a given stream attribute to the
171 -- designated subprogram and then in the tagged case, provide this as a
172 -- primitive operation, or in the untagged case make an appropriate TSS
173 -- entry. This is more properly an expansion activity than just semantics,
174 -- but the presence of user-defined stream functions for limited types
175 -- is a legality check, which is why this takes place here rather than in
176 -- exp_ch13, where it was previously. Nam indicates the name of the TSS
177 -- function to be generated.
179 -- To avoid elaboration anomalies with freeze nodes, for untagged types
180 -- we generate both a subprogram declaration and a subprogram renaming
181 -- declaration, so that the attribute specification is handled as a
182 -- renaming_as_body. For tagged types, the specification is one of the
183 -- primitive specs.
185 procedure Resolve_Iterable_Operation
186 (N : Node_Id;
187 Cursor : Entity_Id;
188 Typ : Entity_Id;
189 Nam : Name_Id);
190 -- If the name of a primitive operation for an Iterable aspect is
191 -- overloaded, resolve according to required signature.
193 procedure Set_Biased
194 (E : Entity_Id;
195 N : Node_Id;
196 Msg : String;
197 Biased : Boolean := True);
198 -- If Biased is True, sets Has_Biased_Representation flag for E, and
199 -- outputs a warning message at node N if Warn_On_Biased_Representation is
200 -- is True. This warning inserts the string Msg to describe the construct
201 -- causing biasing.
203 ----------------------------------------------
204 -- Table for Validate_Unchecked_Conversions --
205 ----------------------------------------------
207 -- The following table collects unchecked conversions for validation.
208 -- Entries are made by Validate_Unchecked_Conversion and then the call
209 -- to Validate_Unchecked_Conversions does the actual error checking and
210 -- posting of warnings. The reason for this delayed processing is to take
211 -- advantage of back-annotations of size and alignment values performed by
212 -- the back end.
214 -- Note: the reason we store a Source_Ptr value instead of a Node_Id is
215 -- that by the time Validate_Unchecked_Conversions is called, Sprint will
216 -- already have modified all Sloc values if the -gnatD option is set.
218 type UC_Entry is record
219 Eloc : Source_Ptr; -- node used for posting warnings
220 Source : Entity_Id; -- source type for unchecked conversion
221 Target : Entity_Id; -- target type for unchecked conversion
222 Act_Unit : Entity_Id; -- actual function instantiated
223 end record;
225 package Unchecked_Conversions is new Table.Table (
226 Table_Component_Type => UC_Entry,
227 Table_Index_Type => Int,
228 Table_Low_Bound => 1,
229 Table_Initial => 50,
230 Table_Increment => 200,
231 Table_Name => "Unchecked_Conversions");
233 ----------------------------------------
234 -- Table for Validate_Address_Clauses --
235 ----------------------------------------
237 -- If an address clause has the form
239 -- for X'Address use Expr
241 -- where Expr is of the form Y'Address or recursively is a reference to a
242 -- constant of either of these forms, and X and Y are entities of objects,
243 -- then if Y has a smaller alignment than X, that merits a warning about
244 -- possible bad alignment. The following table collects address clauses of
245 -- this kind. We put these in a table so that they can be checked after the
246 -- back end has completed annotation of the alignments of objects, since we
247 -- can catch more cases that way.
249 type Address_Clause_Check_Record is record
250 N : Node_Id;
251 -- The address clause
253 X : Entity_Id;
254 -- The entity of the object overlaying Y
256 Y : Entity_Id;
257 -- The entity of the object being overlaid
259 Off : Boolean;
260 -- Whether the address is offset within Y
261 end record;
263 package Address_Clause_Checks is new Table.Table (
264 Table_Component_Type => Address_Clause_Check_Record,
265 Table_Index_Type => Int,
266 Table_Low_Bound => 1,
267 Table_Initial => 20,
268 Table_Increment => 200,
269 Table_Name => "Address_Clause_Checks");
271 -----------------------------------------
272 -- Adjust_Record_For_Reverse_Bit_Order --
273 -----------------------------------------
275 procedure Adjust_Record_For_Reverse_Bit_Order (R : Entity_Id) is
276 Comp : Node_Id;
277 CC : Node_Id;
279 begin
280 -- Processing depends on version of Ada
282 -- For Ada 95, we just renumber bits within a storage unit. We do the
283 -- same for Ada 83 mode, since we recognize the Bit_Order attribute in
284 -- Ada 83, and are free to add this extension.
286 if Ada_Version < Ada_2005 then
287 Comp := First_Component_Or_Discriminant (R);
288 while Present (Comp) loop
289 CC := Component_Clause (Comp);
291 -- If component clause is present, then deal with the non-default
292 -- bit order case for Ada 95 mode.
294 -- We only do this processing for the base type, and in fact that
295 -- is important, since otherwise if there are record subtypes, we
296 -- could reverse the bits once for each subtype, which is wrong.
298 if Present (CC) and then Ekind (R) = E_Record_Type then
299 declare
300 CFB : constant Uint := Component_Bit_Offset (Comp);
301 CSZ : constant Uint := Esize (Comp);
302 CLC : constant Node_Id := Component_Clause (Comp);
303 Pos : constant Node_Id := Position (CLC);
304 FB : constant Node_Id := First_Bit (CLC);
306 Storage_Unit_Offset : constant Uint :=
307 CFB / System_Storage_Unit;
309 Start_Bit : constant Uint :=
310 CFB mod System_Storage_Unit;
312 begin
313 -- Cases where field goes over storage unit boundary
315 if Start_Bit + CSZ > System_Storage_Unit then
317 -- Allow multi-byte field but generate warning
319 if Start_Bit mod System_Storage_Unit = 0
320 and then CSZ mod System_Storage_Unit = 0
321 then
322 Error_Msg_N
323 ("info: multi-byte field specified with "
324 & "non-standard Bit_Order?V?", CLC);
326 if Bytes_Big_Endian then
327 Error_Msg_N
328 ("\bytes are not reversed "
329 & "(component is big-endian)?V?", CLC);
330 else
331 Error_Msg_N
332 ("\bytes are not reversed "
333 & "(component is little-endian)?V?", CLC);
334 end if;
336 -- Do not allow non-contiguous field
338 else
339 Error_Msg_N
340 ("attempt to specify non-contiguous field "
341 & "not permitted", CLC);
342 Error_Msg_N
343 ("\caused by non-standard Bit_Order "
344 & "specified", CLC);
345 Error_Msg_N
346 ("\consider possibility of using "
347 & "Ada 2005 mode here", CLC);
348 end if;
350 -- Case where field fits in one storage unit
352 else
353 -- Give warning if suspicious component clause
355 if Intval (FB) >= System_Storage_Unit
356 and then Warn_On_Reverse_Bit_Order
357 then
358 Error_Msg_N
359 ("info: Bit_Order clause does not affect " &
360 "byte ordering?V?", Pos);
361 Error_Msg_Uint_1 :=
362 Intval (Pos) + Intval (FB) /
363 System_Storage_Unit;
364 Error_Msg_N
365 ("info: position normalized to ^ before bit " &
366 "order interpreted?V?", Pos);
367 end if;
369 -- Here is where we fix up the Component_Bit_Offset value
370 -- to account for the reverse bit order. Some examples of
371 -- what needs to be done are:
373 -- First_Bit .. Last_Bit Component_Bit_Offset
374 -- old new old new
376 -- 0 .. 0 7 .. 7 0 7
377 -- 0 .. 1 6 .. 7 0 6
378 -- 0 .. 2 5 .. 7 0 5
379 -- 0 .. 7 0 .. 7 0 4
381 -- 1 .. 1 6 .. 6 1 6
382 -- 1 .. 4 3 .. 6 1 3
383 -- 4 .. 7 0 .. 3 4 0
385 -- The rule is that the first bit is is obtained by
386 -- subtracting the old ending bit from storage_unit - 1.
388 Set_Component_Bit_Offset
389 (Comp,
390 (Storage_Unit_Offset * System_Storage_Unit) +
391 (System_Storage_Unit - 1) -
392 (Start_Bit + CSZ - 1));
394 Set_Normalized_First_Bit
395 (Comp,
396 Component_Bit_Offset (Comp) mod
397 System_Storage_Unit);
398 end if;
399 end;
400 end if;
402 Next_Component_Or_Discriminant (Comp);
403 end loop;
405 -- For Ada 2005, we do machine scalar processing, as fully described In
406 -- AI-133. This involves gathering all components which start at the
407 -- same byte offset and processing them together. Same approach is still
408 -- valid in later versions including Ada 2012.
410 else
411 declare
412 Max_Machine_Scalar_Size : constant Uint :=
413 UI_From_Int
414 (Standard_Long_Long_Integer_Size);
415 -- We use this as the maximum machine scalar size
417 Num_CC : Natural;
418 SSU : constant Uint := UI_From_Int (System_Storage_Unit);
420 begin
421 -- This first loop through components does two things. First it
422 -- deals with the case of components with component clauses whose
423 -- length is greater than the maximum machine scalar size (either
424 -- accepting them or rejecting as needed). Second, it counts the
425 -- number of components with component clauses whose length does
426 -- not exceed this maximum for later processing.
428 Num_CC := 0;
429 Comp := First_Component_Or_Discriminant (R);
430 while Present (Comp) loop
431 CC := Component_Clause (Comp);
433 if Present (CC) then
434 declare
435 Fbit : constant Uint := Static_Integer (First_Bit (CC));
436 Lbit : constant Uint := Static_Integer (Last_Bit (CC));
438 begin
439 -- Case of component with last bit >= max machine scalar
441 if Lbit >= Max_Machine_Scalar_Size then
443 -- This is allowed only if first bit is zero, and
444 -- last bit + 1 is a multiple of storage unit size.
446 if Fbit = 0 and then (Lbit + 1) mod SSU = 0 then
448 -- This is the case to give a warning if enabled
450 if Warn_On_Reverse_Bit_Order then
451 Error_Msg_N
452 ("info: multi-byte field specified with "
453 & " non-standard Bit_Order?V?", CC);
455 if Bytes_Big_Endian then
456 Error_Msg_N
457 ("\bytes are not reversed "
458 & "(component is big-endian)?V?", CC);
459 else
460 Error_Msg_N
461 ("\bytes are not reversed "
462 & "(component is little-endian)?V?", CC);
463 end if;
464 end if;
466 -- Give error message for RM 13.5.1(10) violation
468 else
469 Error_Msg_FE
470 ("machine scalar rules not followed for&",
471 First_Bit (CC), Comp);
473 Error_Msg_Uint_1 := Lbit;
474 Error_Msg_Uint_2 := Max_Machine_Scalar_Size;
475 Error_Msg_F
476 ("\last bit (^) exceeds maximum machine "
477 & "scalar size (^)",
478 First_Bit (CC));
480 if (Lbit + 1) mod SSU /= 0 then
481 Error_Msg_Uint_1 := SSU;
482 Error_Msg_F
483 ("\and is not a multiple of Storage_Unit (^) "
484 & "(RM 13.4.1(10))",
485 First_Bit (CC));
487 else
488 Error_Msg_Uint_1 := Fbit;
489 Error_Msg_F
490 ("\and first bit (^) is non-zero "
491 & "(RM 13.4.1(10))",
492 First_Bit (CC));
493 end if;
494 end if;
496 -- OK case of machine scalar related component clause,
497 -- For now, just count them.
499 else
500 Num_CC := Num_CC + 1;
501 end if;
502 end;
503 end if;
505 Next_Component_Or_Discriminant (Comp);
506 end loop;
508 -- We need to sort the component clauses on the basis of the
509 -- Position values in the clause, so we can group clauses with
510 -- the same Position together to determine the relevant machine
511 -- scalar size.
513 Sort_CC : declare
514 Comps : array (0 .. Num_CC) of Entity_Id;
515 -- Array to collect component and discriminant entities. The
516 -- data starts at index 1, the 0'th entry is for the sort
517 -- routine.
519 function CP_Lt (Op1, Op2 : Natural) return Boolean;
520 -- Compare routine for Sort
522 procedure CP_Move (From : Natural; To : Natural);
523 -- Move routine for Sort
525 package Sorting is new GNAT.Heap_Sort_G (CP_Move, CP_Lt);
527 Start : Natural;
528 Stop : Natural;
529 -- Start and stop positions in the component list of the set of
530 -- components with the same starting position (that constitute
531 -- components in a single machine scalar).
533 MaxL : Uint;
534 -- Maximum last bit value of any component in this set
536 MSS : Uint;
537 -- Corresponding machine scalar size
539 -----------
540 -- CP_Lt --
541 -----------
543 function CP_Lt (Op1, Op2 : Natural) return Boolean is
544 begin
545 return Position (Component_Clause (Comps (Op1))) <
546 Position (Component_Clause (Comps (Op2)));
547 end CP_Lt;
549 -------------
550 -- CP_Move --
551 -------------
553 procedure CP_Move (From : Natural; To : Natural) is
554 begin
555 Comps (To) := Comps (From);
556 end CP_Move;
558 -- Start of processing for Sort_CC
560 begin
561 -- Collect the machine scalar relevant component clauses
563 Num_CC := 0;
564 Comp := First_Component_Or_Discriminant (R);
565 while Present (Comp) loop
566 declare
567 CC : constant Node_Id := Component_Clause (Comp);
569 begin
570 -- Collect only component clauses whose last bit is less
571 -- than machine scalar size. Any component clause whose
572 -- last bit exceeds this value does not take part in
573 -- machine scalar layout considerations. The test for
574 -- Error_Posted makes sure we exclude component clauses
575 -- for which we already posted an error.
577 if Present (CC)
578 and then not Error_Posted (Last_Bit (CC))
579 and then Static_Integer (Last_Bit (CC)) <
580 Max_Machine_Scalar_Size
581 then
582 Num_CC := Num_CC + 1;
583 Comps (Num_CC) := Comp;
584 end if;
585 end;
587 Next_Component_Or_Discriminant (Comp);
588 end loop;
590 -- Sort by ascending position number
592 Sorting.Sort (Num_CC);
594 -- We now have all the components whose size does not exceed
595 -- the max machine scalar value, sorted by starting position.
596 -- In this loop we gather groups of clauses starting at the
597 -- same position, to process them in accordance with AI-133.
599 Stop := 0;
600 while Stop < Num_CC loop
601 Start := Stop + 1;
602 Stop := Start;
603 MaxL :=
604 Static_Integer
605 (Last_Bit (Component_Clause (Comps (Start))));
606 while Stop < Num_CC loop
607 if Static_Integer
608 (Position (Component_Clause (Comps (Stop + 1)))) =
609 Static_Integer
610 (Position (Component_Clause (Comps (Stop))))
611 then
612 Stop := Stop + 1;
613 MaxL :=
614 UI_Max
615 (MaxL,
616 Static_Integer
617 (Last_Bit
618 (Component_Clause (Comps (Stop)))));
619 else
620 exit;
621 end if;
622 end loop;
624 -- Now we have a group of component clauses from Start to
625 -- Stop whose positions are identical, and MaxL is the
626 -- maximum last bit value of any of these components.
628 -- We need to determine the corresponding machine scalar
629 -- size. This loop assumes that machine scalar sizes are
630 -- even, and that each possible machine scalar has twice
631 -- as many bits as the next smaller one.
633 MSS := Max_Machine_Scalar_Size;
634 while MSS mod 2 = 0
635 and then (MSS / 2) >= SSU
636 and then (MSS / 2) > MaxL
637 loop
638 MSS := MSS / 2;
639 end loop;
641 -- Here is where we fix up the Component_Bit_Offset value
642 -- to account for the reverse bit order. Some examples of
643 -- what needs to be done for the case of a machine scalar
644 -- size of 8 are:
646 -- First_Bit .. Last_Bit Component_Bit_Offset
647 -- old new old new
649 -- 0 .. 0 7 .. 7 0 7
650 -- 0 .. 1 6 .. 7 0 6
651 -- 0 .. 2 5 .. 7 0 5
652 -- 0 .. 7 0 .. 7 0 4
654 -- 1 .. 1 6 .. 6 1 6
655 -- 1 .. 4 3 .. 6 1 3
656 -- 4 .. 7 0 .. 3 4 0
658 -- The rule is that the first bit is obtained by subtracting
659 -- the old ending bit from machine scalar size - 1.
661 for C in Start .. Stop loop
662 declare
663 Comp : constant Entity_Id := Comps (C);
664 CC : constant Node_Id := Component_Clause (Comp);
666 LB : constant Uint := Static_Integer (Last_Bit (CC));
667 NFB : constant Uint := MSS - Uint_1 - LB;
668 NLB : constant Uint := NFB + Esize (Comp) - 1;
669 Pos : constant Uint := Static_Integer (Position (CC));
671 begin
672 if Warn_On_Reverse_Bit_Order then
673 Error_Msg_Uint_1 := MSS;
674 Error_Msg_N
675 ("info: reverse bit order in machine " &
676 "scalar of length^?V?", First_Bit (CC));
677 Error_Msg_Uint_1 := NFB;
678 Error_Msg_Uint_2 := NLB;
680 if Bytes_Big_Endian then
681 Error_Msg_NE
682 ("\big-endian range for component "
683 & "& is ^ .. ^?V?", First_Bit (CC), Comp);
684 else
685 Error_Msg_NE
686 ("\little-endian range for component"
687 & "& is ^ .. ^?V?", First_Bit (CC), Comp);
688 end if;
689 end if;
691 Set_Component_Bit_Offset (Comp, Pos * SSU + NFB);
692 Set_Normalized_First_Bit (Comp, NFB mod SSU);
693 end;
694 end loop;
695 end loop;
696 end Sort_CC;
697 end;
698 end if;
699 end Adjust_Record_For_Reverse_Bit_Order;
701 -------------------------------------
702 -- Alignment_Check_For_Size_Change --
703 -------------------------------------
705 procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint) is
706 begin
707 -- If the alignment is known, and not set by a rep clause, and is
708 -- inconsistent with the size being set, then reset it to unknown,
709 -- we assume in this case that the size overrides the inherited
710 -- alignment, and that the alignment must be recomputed.
712 if Known_Alignment (Typ)
713 and then not Has_Alignment_Clause (Typ)
714 and then Size mod (Alignment (Typ) * SSU) /= 0
715 then
716 Init_Alignment (Typ);
717 end if;
718 end Alignment_Check_For_Size_Change;
720 -------------------------------------
721 -- Analyze_Aspects_At_Freeze_Point --
722 -------------------------------------
724 procedure Analyze_Aspects_At_Freeze_Point (E : Entity_Id) is
725 ASN : Node_Id;
726 A_Id : Aspect_Id;
727 Ritem : Node_Id;
729 procedure Analyze_Aspect_Default_Value (ASN : Node_Id);
730 -- This routine analyzes an Aspect_Default_[Component_]Value denoted by
731 -- the aspect specification node ASN.
733 procedure Inherit_Delayed_Rep_Aspects (ASN : Node_Id);
734 -- As discussed in the spec of Aspects (see Aspect_Delay declaration),
735 -- a derived type can inherit aspects from its parent which have been
736 -- specified at the time of the derivation using an aspect, as in:
738 -- type A is range 1 .. 10
739 -- with Size => Not_Defined_Yet;
740 -- ..
741 -- type B is new A;
742 -- ..
743 -- Not_Defined_Yet : constant := 64;
745 -- In this example, the Size of A is considered to be specified prior
746 -- to the derivation, and thus inherited, even though the value is not
747 -- known at the time of derivation. To deal with this, we use two entity
748 -- flags. The flag Has_Derived_Rep_Aspects is set in the parent type (A
749 -- here), and then the flag May_Inherit_Delayed_Rep_Aspects is set in
750 -- the derived type (B here). If this flag is set when the derived type
751 -- is frozen, then this procedure is called to ensure proper inheritance
752 -- of all delayed aspects from the parent type. The derived type is E,
753 -- the argument to Analyze_Aspects_At_Freeze_Point. ASN is the first
754 -- aspect specification node in the Rep_Item chain for the parent type.
756 procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id);
757 -- Given an aspect specification node ASN whose expression is an
758 -- optional Boolean, this routines creates the corresponding pragma
759 -- at the freezing point.
761 ----------------------------------
762 -- Analyze_Aspect_Default_Value --
763 ----------------------------------
765 procedure Analyze_Aspect_Default_Value (ASN : Node_Id) is
766 Ent : constant Entity_Id := Entity (ASN);
767 Expr : constant Node_Id := Expression (ASN);
768 Id : constant Node_Id := Identifier (ASN);
770 begin
771 Error_Msg_Name_1 := Chars (Id);
773 if not Is_Type (Ent) then
774 Error_Msg_N ("aspect% can only apply to a type", Id);
775 return;
777 elsif not Is_First_Subtype (Ent) then
778 Error_Msg_N ("aspect% cannot apply to subtype", Id);
779 return;
781 elsif A_Id = Aspect_Default_Value
782 and then not Is_Scalar_Type (Ent)
783 then
784 Error_Msg_N ("aspect% can only be applied to scalar type", Id);
785 return;
787 elsif A_Id = Aspect_Default_Component_Value then
788 if not Is_Array_Type (Ent) then
789 Error_Msg_N ("aspect% can only be applied to array type", Id);
790 return;
792 elsif not Is_Scalar_Type (Component_Type (Ent)) then
793 Error_Msg_N ("aspect% requires scalar components", Id);
794 return;
795 end if;
796 end if;
798 Set_Has_Default_Aspect (Base_Type (Ent));
800 if Is_Scalar_Type (Ent) then
801 Set_Default_Aspect_Value (Base_Type (Ent), Expr);
802 else
803 Set_Default_Aspect_Component_Value (Base_Type (Ent), Expr);
804 end if;
805 end Analyze_Aspect_Default_Value;
807 ---------------------------------
808 -- Inherit_Delayed_Rep_Aspects --
809 ---------------------------------
811 procedure Inherit_Delayed_Rep_Aspects (ASN : Node_Id) is
812 P : constant Entity_Id := Entity (ASN);
813 -- Entithy for parent type
815 N : Node_Id;
816 -- Item from Rep_Item chain
818 A : Aspect_Id;
820 begin
821 -- Loop through delayed aspects for the parent type
823 N := ASN;
824 while Present (N) loop
825 if Nkind (N) = N_Aspect_Specification then
826 exit when Entity (N) /= P;
828 if Is_Delayed_Aspect (N) then
829 A := Get_Aspect_Id (Chars (Identifier (N)));
831 -- Process delayed rep aspect. For Boolean attributes it is
832 -- not possible to cancel an attribute once set (the attempt
833 -- to use an aspect with xxx => False is an error) for a
834 -- derived type. So for those cases, we do not have to check
835 -- if a clause has been given for the derived type, since it
836 -- is harmless to set it again if it is already set.
838 case A is
840 -- Alignment
842 when Aspect_Alignment =>
843 if not Has_Alignment_Clause (E) then
844 Set_Alignment (E, Alignment (P));
845 end if;
847 -- Atomic
849 when Aspect_Atomic =>
850 if Is_Atomic (P) then
851 Set_Is_Atomic (E);
852 end if;
854 -- Atomic_Components
856 when Aspect_Atomic_Components =>
857 if Has_Atomic_Components (P) then
858 Set_Has_Atomic_Components (Base_Type (E));
859 end if;
861 -- Bit_Order
863 when Aspect_Bit_Order =>
864 if Is_Record_Type (E)
865 and then No (Get_Attribute_Definition_Clause
866 (E, Attribute_Bit_Order))
867 and then Reverse_Bit_Order (P)
868 then
869 Set_Reverse_Bit_Order (Base_Type (E));
870 end if;
872 -- Component_Size
874 when Aspect_Component_Size =>
875 if Is_Array_Type (E)
876 and then not Has_Component_Size_Clause (E)
877 then
878 Set_Component_Size
879 (Base_Type (E), Component_Size (P));
880 end if;
882 -- Machine_Radix
884 when Aspect_Machine_Radix =>
885 if Is_Decimal_Fixed_Point_Type (E)
886 and then not Has_Machine_Radix_Clause (E)
887 then
888 Set_Machine_Radix_10 (E, Machine_Radix_10 (P));
889 end if;
891 -- Object_Size (also Size which also sets Object_Size)
893 when Aspect_Object_Size | Aspect_Size =>
894 if not Has_Size_Clause (E)
895 and then
896 No (Get_Attribute_Definition_Clause
897 (E, Attribute_Object_Size))
898 then
899 Set_Esize (E, Esize (P));
900 end if;
902 -- Pack
904 when Aspect_Pack =>
905 if not Is_Packed (E) then
906 Set_Is_Packed (Base_Type (E));
908 if Is_Bit_Packed_Array (P) then
909 Set_Is_Bit_Packed_Array (Base_Type (E));
910 Set_Packed_Array_Impl_Type
911 (E, Packed_Array_Impl_Type (P));
912 end if;
913 end if;
915 -- Scalar_Storage_Order
917 when Aspect_Scalar_Storage_Order =>
918 if (Is_Record_Type (E) or else Is_Array_Type (E))
919 and then No (Get_Attribute_Definition_Clause
920 (E, Attribute_Scalar_Storage_Order))
921 and then Reverse_Storage_Order (P)
922 then
923 Set_Reverse_Storage_Order (Base_Type (E));
925 -- Clear default SSO indications, since the aspect
926 -- overrides the default.
928 Set_SSO_Set_Low_By_Default (Base_Type (E), False);
929 Set_SSO_Set_High_By_Default (Base_Type (E), False);
930 end if;
932 -- Small
934 when Aspect_Small =>
935 if Is_Fixed_Point_Type (E)
936 and then not Has_Small_Clause (E)
937 then
938 Set_Small_Value (E, Small_Value (P));
939 end if;
941 -- Storage_Size
943 when Aspect_Storage_Size =>
944 if (Is_Access_Type (E) or else Is_Task_Type (E))
945 and then not Has_Storage_Size_Clause (E)
946 then
947 Set_Storage_Size_Variable
948 (Base_Type (E), Storage_Size_Variable (P));
949 end if;
951 -- Value_Size
953 when Aspect_Value_Size =>
955 -- Value_Size is never inherited, it is either set by
956 -- default, or it is explicitly set for the derived
957 -- type. So nothing to do here.
959 null;
961 -- Volatile
963 when Aspect_Volatile =>
964 if Is_Volatile (P) then
965 Set_Is_Volatile (E);
966 end if;
968 -- Volatile_Components
970 when Aspect_Volatile_Components =>
971 if Has_Volatile_Components (P) then
972 Set_Has_Volatile_Components (Base_Type (E));
973 end if;
975 -- That should be all the Rep Aspects
977 when others =>
978 pragma Assert (Aspect_Delay (A_Id) /= Rep_Aspect);
979 null;
981 end case;
982 end if;
983 end if;
985 N := Next_Rep_Item (N);
986 end loop;
987 end Inherit_Delayed_Rep_Aspects;
989 -------------------------------------
990 -- Make_Pragma_From_Boolean_Aspect --
991 -------------------------------------
993 procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id) is
994 Ident : constant Node_Id := Identifier (ASN);
995 A_Name : constant Name_Id := Chars (Ident);
996 A_Id : constant Aspect_Id := Get_Aspect_Id (A_Name);
997 Ent : constant Entity_Id := Entity (ASN);
998 Expr : constant Node_Id := Expression (ASN);
999 Loc : constant Source_Ptr := Sloc (ASN);
1001 Prag : Node_Id;
1003 procedure Check_False_Aspect_For_Derived_Type;
1004 -- This procedure checks for the case of a false aspect for a derived
1005 -- type, which improperly tries to cancel an aspect inherited from
1006 -- the parent.
1008 -----------------------------------------
1009 -- Check_False_Aspect_For_Derived_Type --
1010 -----------------------------------------
1012 procedure Check_False_Aspect_For_Derived_Type is
1013 Par : Node_Id;
1015 begin
1016 -- We are only checking derived types
1018 if not Is_Derived_Type (E) then
1019 return;
1020 end if;
1022 Par := Nearest_Ancestor (E);
1024 case A_Id is
1025 when Aspect_Atomic | Aspect_Shared =>
1026 if not Is_Atomic (Par) then
1027 return;
1028 end if;
1030 when Aspect_Atomic_Components =>
1031 if not Has_Atomic_Components (Par) then
1032 return;
1033 end if;
1035 when Aspect_Discard_Names =>
1036 if not Discard_Names (Par) then
1037 return;
1038 end if;
1040 when Aspect_Pack =>
1041 if not Is_Packed (Par) then
1042 return;
1043 end if;
1045 when Aspect_Unchecked_Union =>
1046 if not Is_Unchecked_Union (Par) then
1047 return;
1048 end if;
1050 when Aspect_Volatile =>
1051 if not Is_Volatile (Par) then
1052 return;
1053 end if;
1055 when Aspect_Volatile_Components =>
1056 if not Has_Volatile_Components (Par) then
1057 return;
1058 end if;
1060 when others =>
1061 return;
1062 end case;
1064 -- Fall through means we are canceling an inherited aspect
1066 Error_Msg_Name_1 := A_Name;
1067 Error_Msg_NE
1068 ("derived type& inherits aspect%, cannot cancel", Expr, E);
1070 end Check_False_Aspect_For_Derived_Type;
1072 -- Start of processing for Make_Pragma_From_Boolean_Aspect
1074 begin
1075 -- Note that we know Expr is present, because for a missing Expr
1076 -- argument, we knew it was True and did not need to delay the
1077 -- evaluation to the freeze point.
1079 if Is_False (Static_Boolean (Expr)) then
1080 Check_False_Aspect_For_Derived_Type;
1082 else
1083 Prag :=
1084 Make_Pragma (Loc,
1085 Pragma_Argument_Associations => New_List (
1086 Make_Pragma_Argument_Association (Sloc (Ident),
1087 Expression => New_Occurrence_Of (Ent, Sloc (Ident)))),
1089 Pragma_Identifier =>
1090 Make_Identifier (Sloc (Ident), Chars (Ident)));
1092 Set_From_Aspect_Specification (Prag, True);
1093 Set_Corresponding_Aspect (Prag, ASN);
1094 Set_Aspect_Rep_Item (ASN, Prag);
1095 Set_Is_Delayed_Aspect (Prag);
1096 Set_Parent (Prag, ASN);
1097 end if;
1098 end Make_Pragma_From_Boolean_Aspect;
1100 -- Start of processing for Analyze_Aspects_At_Freeze_Point
1102 begin
1103 -- Must be visible in current scope
1105 if not Scope_Within_Or_Same (Current_Scope, Scope (E)) then
1106 return;
1107 end if;
1109 -- Look for aspect specification entries for this entity
1111 ASN := First_Rep_Item (E);
1112 while Present (ASN) loop
1113 if Nkind (ASN) = N_Aspect_Specification then
1114 exit when Entity (ASN) /= E;
1116 if Is_Delayed_Aspect (ASN) then
1117 A_Id := Get_Aspect_Id (ASN);
1119 case A_Id is
1121 -- For aspects whose expression is an optional Boolean, make
1122 -- the corresponding pragma at the freeze point.
1124 when Boolean_Aspects |
1125 Library_Unit_Aspects =>
1126 Make_Pragma_From_Boolean_Aspect (ASN);
1128 -- Special handling for aspects that don't correspond to
1129 -- pragmas/attributes.
1131 when Aspect_Default_Value |
1132 Aspect_Default_Component_Value =>
1133 Analyze_Aspect_Default_Value (ASN);
1135 -- Ditto for iterator aspects, because the corresponding
1136 -- attributes may not have been analyzed yet.
1138 when Aspect_Constant_Indexing |
1139 Aspect_Variable_Indexing |
1140 Aspect_Default_Iterator |
1141 Aspect_Iterator_Element =>
1142 Analyze (Expression (ASN));
1144 if Etype (Expression (ASN)) = Any_Type then
1145 Error_Msg_NE
1146 ("\aspect must be fully defined before & is frozen",
1147 ASN, E);
1148 end if;
1150 when Aspect_Iterable =>
1151 Validate_Iterable_Aspect (E, ASN);
1153 when others =>
1154 null;
1155 end case;
1157 Ritem := Aspect_Rep_Item (ASN);
1159 if Present (Ritem) then
1160 Analyze (Ritem);
1161 end if;
1162 end if;
1163 end if;
1165 Next_Rep_Item (ASN);
1166 end loop;
1168 -- This is where we inherit delayed rep aspects from our parent. Note
1169 -- that if we fell out of the above loop with ASN non-empty, it means
1170 -- we hit an aspect for an entity other than E, and it must be the
1171 -- type from which we were derived.
1173 if May_Inherit_Delayed_Rep_Aspects (E) then
1174 Inherit_Delayed_Rep_Aspects (ASN);
1175 end if;
1176 end Analyze_Aspects_At_Freeze_Point;
1178 -----------------------------------
1179 -- Analyze_Aspect_Specifications --
1180 -----------------------------------
1182 procedure Analyze_Aspect_Specifications (N : Node_Id; E : Entity_Id) is
1183 procedure Decorate (Asp : Node_Id; Prag : Node_Id);
1184 -- Establish linkages between an aspect and its corresponding
1185 -- pragma.
1187 procedure Insert_After_SPARK_Mode
1188 (Prag : Node_Id;
1189 Ins_Nod : Node_Id;
1190 Decls : List_Id);
1191 -- Subsidiary to the analysis of aspects Abstract_State, Ghost,
1192 -- Initializes, Initial_Condition and Refined_State. Insert node Prag
1193 -- before node Ins_Nod. If Ins_Nod is for pragma SPARK_Mode, then skip
1194 -- SPARK_Mode. Decls is the associated declarative list where Prag is to
1195 -- reside.
1197 procedure Insert_Pragma (Prag : Node_Id);
1198 -- Subsidiary to the analysis of aspects Attach_Handler, Contract_Cases,
1199 -- Depends, Global, Post, Pre, Refined_Depends and Refined_Global.
1200 -- Insert pragma Prag such that it mimics the placement of a source
1201 -- pragma of the same kind.
1203 -- procedure Proc (Formal : ...) with Global => ...;
1205 -- procedure Proc (Formal : ...);
1206 -- pragma Global (...);
1208 --------------
1209 -- Decorate --
1210 --------------
1212 procedure Decorate (Asp : Node_Id; Prag : Node_Id) is
1213 begin
1214 Set_Aspect_Rep_Item (Asp, Prag);
1215 Set_Corresponding_Aspect (Prag, Asp);
1216 Set_From_Aspect_Specification (Prag);
1217 Set_Parent (Prag, Asp);
1218 end Decorate;
1220 -----------------------------
1221 -- Insert_After_SPARK_Mode --
1222 -----------------------------
1224 procedure Insert_After_SPARK_Mode
1225 (Prag : Node_Id;
1226 Ins_Nod : Node_Id;
1227 Decls : List_Id)
1229 Decl : Node_Id := Ins_Nod;
1231 begin
1232 -- Skip SPARK_Mode
1234 if Present (Decl)
1235 and then Nkind (Decl) = N_Pragma
1236 and then Pragma_Name (Decl) = Name_SPARK_Mode
1237 then
1238 Decl := Next (Decl);
1239 end if;
1241 if Present (Decl) then
1242 Insert_Before (Decl, Prag);
1244 -- Aitem acts as the last declaration
1246 else
1247 Append_To (Decls, Prag);
1248 end if;
1249 end Insert_After_SPARK_Mode;
1251 -------------------
1252 -- Insert_Pragma --
1253 -------------------
1255 procedure Insert_Pragma (Prag : Node_Id) is
1256 Aux : Node_Id;
1257 Decl : Node_Id;
1259 begin
1260 if Nkind (N) = N_Subprogram_Body then
1261 if Present (Declarations (N)) then
1263 -- Skip other internally generated pragmas from aspects to find
1264 -- the proper insertion point. As a result the order of pragmas
1265 -- is the same as the order of aspects.
1267 -- As precondition pragmas generated from conjuncts in the
1268 -- precondition aspect are presented in reverse order to
1269 -- Insert_Pragma, insert them in the correct order here by not
1270 -- skipping previously inserted precondition pragmas when the
1271 -- current pragma is a precondition.
1273 Decl := First (Declarations (N));
1274 while Present (Decl) loop
1275 if Nkind (Decl) = N_Pragma
1276 and then From_Aspect_Specification (Decl)
1277 and then not (Get_Pragma_Id (Decl) = Pragma_Precondition
1278 and then
1279 Get_Pragma_Id (Prag) = Pragma_Precondition)
1280 then
1281 Next (Decl);
1282 else
1283 exit;
1284 end if;
1285 end loop;
1287 if Present (Decl) then
1288 Insert_Before (Decl, Prag);
1289 else
1290 Append (Prag, Declarations (N));
1291 end if;
1292 else
1293 Set_Declarations (N, New_List (Prag));
1294 end if;
1296 -- When the context is a library unit, the pragma is added to the
1297 -- Pragmas_After list.
1299 elsif Nkind (Parent (N)) = N_Compilation_Unit then
1300 Aux := Aux_Decls_Node (Parent (N));
1302 if No (Pragmas_After (Aux)) then
1303 Set_Pragmas_After (Aux, New_List);
1304 end if;
1306 Prepend (Prag, Pragmas_After (Aux));
1308 -- Default
1310 else
1311 Insert_After (N, Prag);
1312 end if;
1313 end Insert_Pragma;
1315 -- Local variables
1317 Aspect : Node_Id;
1318 Aitem : Node_Id;
1319 Ent : Node_Id;
1321 L : constant List_Id := Aspect_Specifications (N);
1323 Ins_Node : Node_Id := N;
1324 -- Insert pragmas/attribute definition clause after this node when no
1325 -- delayed analysis is required.
1327 -- Start of processing for Analyze_Aspect_Specifications
1329 -- The general processing involves building an attribute definition
1330 -- clause or a pragma node that corresponds to the aspect. Then in order
1331 -- to delay the evaluation of this aspect to the freeze point, we attach
1332 -- the corresponding pragma/attribute definition clause to the aspect
1333 -- specification node, which is then placed in the Rep Item chain. In
1334 -- this case we mark the entity by setting the flag Has_Delayed_Aspects
1335 -- and we evaluate the rep item at the freeze point. When the aspect
1336 -- doesn't have a corresponding pragma/attribute definition clause, then
1337 -- its analysis is simply delayed at the freeze point.
1339 -- Some special cases don't require delay analysis, thus the aspect is
1340 -- analyzed right now.
1342 -- Note that there is a special handling for Pre, Post, Test_Case,
1343 -- Contract_Cases aspects. In these cases, we do not have to worry
1344 -- about delay issues, since the pragmas themselves deal with delay
1345 -- of visibility for the expression analysis. Thus, we just insert
1346 -- the pragma after the node N.
1348 begin
1349 pragma Assert (Present (L));
1351 -- Loop through aspects
1353 Aspect := First (L);
1354 Aspect_Loop : while Present (Aspect) loop
1355 Analyze_One_Aspect : declare
1356 Expr : constant Node_Id := Expression (Aspect);
1357 Id : constant Node_Id := Identifier (Aspect);
1358 Loc : constant Source_Ptr := Sloc (Aspect);
1359 Nam : constant Name_Id := Chars (Id);
1360 A_Id : constant Aspect_Id := Get_Aspect_Id (Nam);
1361 Anod : Node_Id;
1363 Delay_Required : Boolean;
1364 -- Set False if delay is not required
1366 Eloc : Source_Ptr := No_Location;
1367 -- Source location of expression, modified when we split PPC's. It
1368 -- is set below when Expr is present.
1370 procedure Analyze_Aspect_External_Or_Link_Name;
1371 -- Perform analysis of the External_Name or Link_Name aspects
1373 procedure Analyze_Aspect_Implicit_Dereference;
1374 -- Perform analysis of the Implicit_Dereference aspects
1376 procedure Make_Aitem_Pragma
1377 (Pragma_Argument_Associations : List_Id;
1378 Pragma_Name : Name_Id);
1379 -- This is a wrapper for Make_Pragma used for converting aspects
1380 -- to pragmas. It takes care of Sloc (set from Loc) and building
1381 -- the pragma identifier from the given name. In addition the
1382 -- flags Class_Present and Split_PPC are set from the aspect
1383 -- node, as well as Is_Ignored. This routine also sets the
1384 -- From_Aspect_Specification in the resulting pragma node to
1385 -- True, and sets Corresponding_Aspect to point to the aspect.
1386 -- The resulting pragma is assigned to Aitem.
1388 ------------------------------------------
1389 -- Analyze_Aspect_External_Or_Link_Name --
1390 ------------------------------------------
1392 procedure Analyze_Aspect_External_Or_Link_Name is
1393 begin
1394 -- Verify that there is an Import/Export aspect defined for the
1395 -- entity. The processing of that aspect in turn checks that
1396 -- there is a Convention aspect declared. The pragma is
1397 -- constructed when processing the Convention aspect.
1399 declare
1400 A : Node_Id;
1402 begin
1403 A := First (L);
1404 while Present (A) loop
1405 exit when Nam_In (Chars (Identifier (A)), Name_Export,
1406 Name_Import);
1407 Next (A);
1408 end loop;
1410 if No (A) then
1411 Error_Msg_N
1412 ("missing Import/Export for Link/External name",
1413 Aspect);
1414 end if;
1415 end;
1416 end Analyze_Aspect_External_Or_Link_Name;
1418 -----------------------------------------
1419 -- Analyze_Aspect_Implicit_Dereference --
1420 -----------------------------------------
1422 procedure Analyze_Aspect_Implicit_Dereference is
1423 begin
1424 if not Is_Type (E) or else not Has_Discriminants (E) then
1425 Error_Msg_N
1426 ("aspect must apply to a type with discriminants", N);
1428 else
1429 declare
1430 Disc : Entity_Id;
1432 begin
1433 Disc := First_Discriminant (E);
1434 while Present (Disc) loop
1435 if Chars (Expr) = Chars (Disc)
1436 and then Ekind (Etype (Disc)) =
1437 E_Anonymous_Access_Type
1438 then
1439 Set_Has_Implicit_Dereference (E);
1440 Set_Has_Implicit_Dereference (Disc);
1441 return;
1442 end if;
1444 Next_Discriminant (Disc);
1445 end loop;
1447 -- Error if no proper access discriminant.
1449 Error_Msg_NE
1450 ("not an access discriminant of&", Expr, E);
1451 end;
1452 end if;
1453 end Analyze_Aspect_Implicit_Dereference;
1455 -----------------------
1456 -- Make_Aitem_Pragma --
1457 -----------------------
1459 procedure Make_Aitem_Pragma
1460 (Pragma_Argument_Associations : List_Id;
1461 Pragma_Name : Name_Id)
1463 Args : List_Id := Pragma_Argument_Associations;
1465 begin
1466 -- We should never get here if aspect was disabled
1468 pragma Assert (not Is_Disabled (Aspect));
1470 -- Certain aspects allow for an optional name or expression. Do
1471 -- not generate a pragma with empty argument association list.
1473 if No (Args) or else No (Expression (First (Args))) then
1474 Args := No_List;
1475 end if;
1477 -- Build the pragma
1479 Aitem :=
1480 Make_Pragma (Loc,
1481 Pragma_Argument_Associations => Args,
1482 Pragma_Identifier =>
1483 Make_Identifier (Sloc (Id), Pragma_Name),
1484 Class_Present => Class_Present (Aspect),
1485 Split_PPC => Split_PPC (Aspect));
1487 -- Set additional semantic fields
1489 if Is_Ignored (Aspect) then
1490 Set_Is_Ignored (Aitem);
1491 elsif Is_Checked (Aspect) then
1492 Set_Is_Checked (Aitem);
1493 end if;
1495 Set_Corresponding_Aspect (Aitem, Aspect);
1496 Set_From_Aspect_Specification (Aitem, True);
1497 end Make_Aitem_Pragma;
1499 -- Start of processing for Analyze_One_Aspect
1501 begin
1502 -- Skip aspect if already analyzed, to avoid looping in some cases
1504 if Analyzed (Aspect) then
1505 goto Continue;
1506 end if;
1508 -- Skip looking at aspect if it is totally disabled. Just mark it
1509 -- as such for later reference in the tree. This also sets the
1510 -- Is_Ignored and Is_Checked flags appropriately.
1512 Check_Applicable_Policy (Aspect);
1514 if Is_Disabled (Aspect) then
1515 goto Continue;
1516 end if;
1518 -- Set the source location of expression, used in the case of
1519 -- a failed precondition/postcondition or invariant. Note that
1520 -- the source location of the expression is not usually the best
1521 -- choice here. For example, it gets located on the last AND
1522 -- keyword in a chain of boolean expressiond AND'ed together.
1523 -- It is best to put the message on the first character of the
1524 -- assertion, which is the effect of the First_Node call here.
1526 if Present (Expr) then
1527 Eloc := Sloc (First_Node (Expr));
1528 end if;
1530 -- Check restriction No_Implementation_Aspect_Specifications
1532 if Implementation_Defined_Aspect (A_Id) then
1533 Check_Restriction
1534 (No_Implementation_Aspect_Specifications, Aspect);
1535 end if;
1537 -- Check restriction No_Specification_Of_Aspect
1539 Check_Restriction_No_Specification_Of_Aspect (Aspect);
1541 -- Mark aspect analyzed (actual analysis is delayed till later)
1543 Set_Analyzed (Aspect);
1544 Set_Entity (Aspect, E);
1545 Ent := New_Occurrence_Of (E, Sloc (Id));
1547 -- Check for duplicate aspect. Note that the Comes_From_Source
1548 -- test allows duplicate Pre/Post's that we generate internally
1549 -- to escape being flagged here.
1551 if No_Duplicates_Allowed (A_Id) then
1552 Anod := First (L);
1553 while Anod /= Aspect loop
1554 if Comes_From_Source (Aspect)
1555 and then Same_Aspect (A_Id, Get_Aspect_Id (Anod))
1556 then
1557 Error_Msg_Name_1 := Nam;
1558 Error_Msg_Sloc := Sloc (Anod);
1560 -- Case of same aspect specified twice
1562 if Class_Present (Anod) = Class_Present (Aspect) then
1563 if not Class_Present (Anod) then
1564 Error_Msg_NE
1565 ("aspect% for & previously given#",
1566 Id, E);
1567 else
1568 Error_Msg_NE
1569 ("aspect `%''Class` for & previously given#",
1570 Id, E);
1571 end if;
1572 end if;
1573 end if;
1575 Next (Anod);
1576 end loop;
1577 end if;
1579 -- Check some general restrictions on language defined aspects
1581 if not Implementation_Defined_Aspect (A_Id) then
1582 Error_Msg_Name_1 := Nam;
1584 -- Not allowed for renaming declarations
1586 if Nkind (N) in N_Renaming_Declaration then
1587 Error_Msg_N
1588 ("aspect % not allowed for renaming declaration",
1589 Aspect);
1590 end if;
1592 -- Not allowed for formal type declarations
1594 if Nkind (N) = N_Formal_Type_Declaration then
1595 Error_Msg_N
1596 ("aspect % not allowed for formal type declaration",
1597 Aspect);
1598 end if;
1599 end if;
1601 -- Copy expression for later processing by the procedures
1602 -- Check_Aspect_At_[Freeze_Point | End_Of_Declarations]
1604 Set_Entity (Id, New_Copy_Tree (Expr));
1606 -- Set Delay_Required as appropriate to aspect
1608 case Aspect_Delay (A_Id) is
1609 when Always_Delay =>
1610 Delay_Required := True;
1612 when Never_Delay =>
1613 Delay_Required := False;
1615 when Rep_Aspect =>
1617 -- If expression has the form of an integer literal, then
1618 -- do not delay, since we know the value cannot change.
1619 -- This optimization catches most rep clause cases.
1621 -- For Boolean aspects, don't delay if no expression
1623 if A_Id in Boolean_Aspects and then No (Expr) then
1624 Delay_Required := False;
1626 -- For non-Boolean aspects, don't delay if integer literal
1628 elsif A_Id not in Boolean_Aspects
1629 and then Present (Expr)
1630 and then Nkind (Expr) = N_Integer_Literal
1631 then
1632 Delay_Required := False;
1634 -- All other cases are delayed
1636 else
1637 Delay_Required := True;
1638 Set_Has_Delayed_Rep_Aspects (E);
1639 end if;
1640 end case;
1642 -- Processing based on specific aspect
1644 case A_Id is
1645 when Aspect_Unimplemented =>
1646 null; -- ??? temp for now
1648 -- No_Aspect should be impossible
1650 when No_Aspect =>
1651 raise Program_Error;
1653 -- Case 1: Aspects corresponding to attribute definition
1654 -- clauses.
1656 when Aspect_Address |
1657 Aspect_Alignment |
1658 Aspect_Bit_Order |
1659 Aspect_Component_Size |
1660 Aspect_Constant_Indexing |
1661 Aspect_Default_Iterator |
1662 Aspect_Dispatching_Domain |
1663 Aspect_External_Tag |
1664 Aspect_Input |
1665 Aspect_Iterable |
1666 Aspect_Iterator_Element |
1667 Aspect_Machine_Radix |
1668 Aspect_Object_Size |
1669 Aspect_Output |
1670 Aspect_Read |
1671 Aspect_Scalar_Storage_Order |
1672 Aspect_Size |
1673 Aspect_Small |
1674 Aspect_Simple_Storage_Pool |
1675 Aspect_Storage_Pool |
1676 Aspect_Stream_Size |
1677 Aspect_Value_Size |
1678 Aspect_Variable_Indexing |
1679 Aspect_Write =>
1681 -- Indexing aspects apply only to tagged type
1683 if (A_Id = Aspect_Constant_Indexing
1684 or else
1685 A_Id = Aspect_Variable_Indexing)
1686 and then not (Is_Type (E)
1687 and then Is_Tagged_Type (E))
1688 then
1689 Error_Msg_N
1690 ("indexing aspect can only apply to a tagged type",
1691 Aspect);
1692 goto Continue;
1693 end if;
1695 -- For the case of aspect Address, we don't consider that we
1696 -- know the entity is never set in the source, since it is
1697 -- is likely aliasing is occurring.
1699 -- Note: one might think that the analysis of the resulting
1700 -- attribute definition clause would take care of that, but
1701 -- that's not the case since it won't be from source.
1703 if A_Id = Aspect_Address then
1704 Set_Never_Set_In_Source (E, False);
1705 end if;
1707 -- Correctness of the profile of a stream operation is
1708 -- verified at the freeze point, but we must detect the
1709 -- illegal specification of this aspect for a subtype now,
1710 -- to prevent malformed rep_item chains.
1712 if A_Id = Aspect_Input or else
1713 A_Id = Aspect_Output or else
1714 A_Id = Aspect_Read or else
1715 A_Id = Aspect_Write
1716 then
1717 if not Is_First_Subtype (E) then
1718 Error_Msg_N
1719 ("local name must be a first subtype", Aspect);
1720 goto Continue;
1722 -- If stream aspect applies to the class-wide type,
1723 -- the generated attribute definition applies to the
1724 -- class-wide type as well.
1726 elsif Class_Present (Aspect) then
1727 Ent :=
1728 Make_Attribute_Reference (Loc,
1729 Prefix => Ent,
1730 Attribute_Name => Name_Class);
1731 end if;
1732 end if;
1734 -- Construct the attribute definition clause
1736 Aitem :=
1737 Make_Attribute_Definition_Clause (Loc,
1738 Name => Ent,
1739 Chars => Chars (Id),
1740 Expression => Relocate_Node (Expr));
1742 -- If the address is specified, then we treat the entity as
1743 -- referenced, to avoid spurious warnings. This is analogous
1744 -- to what is done with an attribute definition clause, but
1745 -- here we don't want to generate a reference because this
1746 -- is the point of definition of the entity.
1748 if A_Id = Aspect_Address then
1749 Set_Referenced (E);
1750 end if;
1752 -- Case 2: Aspects corresponding to pragmas
1754 -- Case 2a: Aspects corresponding to pragmas with two
1755 -- arguments, where the first argument is a local name
1756 -- referring to the entity, and the second argument is the
1757 -- aspect definition expression.
1759 -- Linker_Section/Suppress/Unsuppress
1761 when Aspect_Linker_Section |
1762 Aspect_Suppress |
1763 Aspect_Unsuppress =>
1765 Make_Aitem_Pragma
1766 (Pragma_Argument_Associations => New_List (
1767 Make_Pragma_Argument_Association (Loc,
1768 Expression => New_Occurrence_Of (E, Loc)),
1769 Make_Pragma_Argument_Association (Sloc (Expr),
1770 Expression => Relocate_Node (Expr))),
1771 Pragma_Name => Chars (Id));
1773 -- Synchronization
1775 -- Corresponds to pragma Implemented, construct the pragma
1777 when Aspect_Synchronization =>
1778 Make_Aitem_Pragma
1779 (Pragma_Argument_Associations => New_List (
1780 Make_Pragma_Argument_Association (Loc,
1781 Expression => New_Occurrence_Of (E, Loc)),
1782 Make_Pragma_Argument_Association (Sloc (Expr),
1783 Expression => Relocate_Node (Expr))),
1784 Pragma_Name => Name_Implemented);
1786 -- Attach_Handler
1788 when Aspect_Attach_Handler =>
1789 Make_Aitem_Pragma
1790 (Pragma_Argument_Associations => New_List (
1791 Make_Pragma_Argument_Association (Sloc (Ent),
1792 Expression => Ent),
1793 Make_Pragma_Argument_Association (Sloc (Expr),
1794 Expression => Relocate_Node (Expr))),
1795 Pragma_Name => Name_Attach_Handler);
1797 -- We need to insert this pragma into the tree to get proper
1798 -- processing and to look valid from a placement viewpoint.
1800 Insert_Pragma (Aitem);
1801 goto Continue;
1803 -- Dynamic_Predicate, Predicate, Static_Predicate
1805 when Aspect_Dynamic_Predicate |
1806 Aspect_Predicate |
1807 Aspect_Static_Predicate =>
1809 -- These aspects apply only to subtypes
1811 if not Is_Type (E) then
1812 Error_Msg_N
1813 ("predicate can only be specified for a subtype",
1814 Aspect);
1815 goto Continue;
1817 elsif Is_Incomplete_Type (E) then
1818 Error_Msg_N
1819 ("predicate cannot apply to incomplete view", Aspect);
1820 goto Continue;
1821 end if;
1823 -- Construct the pragma (always a pragma Predicate, with
1824 -- flags recording whether it is static/dynamic). We also
1825 -- set flags recording this in the type itself.
1827 Make_Aitem_Pragma
1828 (Pragma_Argument_Associations => New_List (
1829 Make_Pragma_Argument_Association (Sloc (Ent),
1830 Expression => Ent),
1831 Make_Pragma_Argument_Association (Sloc (Expr),
1832 Expression => Relocate_Node (Expr))),
1833 Pragma_Name => Name_Predicate);
1835 -- Mark type has predicates, and remember what kind of
1836 -- aspect lead to this predicate (we need this to access
1837 -- the right set of check policies later on).
1839 Set_Has_Predicates (E);
1841 if A_Id = Aspect_Dynamic_Predicate then
1842 Set_Has_Dynamic_Predicate_Aspect (E);
1843 elsif A_Id = Aspect_Static_Predicate then
1844 Set_Has_Static_Predicate_Aspect (E);
1845 end if;
1847 -- If the type is private, indicate that its completion
1848 -- has a freeze node, because that is the one that will
1849 -- be visible at freeze time.
1851 if Is_Private_Type (E) and then Present (Full_View (E)) then
1852 Set_Has_Predicates (Full_View (E));
1854 if A_Id = Aspect_Dynamic_Predicate then
1855 Set_Has_Dynamic_Predicate_Aspect (Full_View (E));
1856 elsif A_Id = Aspect_Static_Predicate then
1857 Set_Has_Static_Predicate_Aspect (Full_View (E));
1858 end if;
1860 Set_Has_Delayed_Aspects (Full_View (E));
1861 Ensure_Freeze_Node (Full_View (E));
1862 end if;
1864 -- Case 2b: Aspects corresponding to pragmas with two
1865 -- arguments, where the second argument is a local name
1866 -- referring to the entity, and the first argument is the
1867 -- aspect definition expression.
1869 -- Convention
1871 when Aspect_Convention =>
1873 -- The aspect may be part of the specification of an import
1874 -- or export pragma. Scan the aspect list to gather the
1875 -- other components, if any. The name of the generated
1876 -- pragma is one of Convention/Import/Export.
1878 declare
1879 Args : constant List_Id := New_List (
1880 Make_Pragma_Argument_Association (Sloc (Expr),
1881 Expression => Relocate_Node (Expr)),
1882 Make_Pragma_Argument_Association (Sloc (Ent),
1883 Expression => Ent));
1885 Imp_Exp_Seen : Boolean := False;
1886 -- Flag set when aspect Import or Export has been seen
1888 Imp_Seen : Boolean := False;
1889 -- Flag set when aspect Import has been seen
1891 Asp : Node_Id;
1892 Asp_Nam : Name_Id;
1893 Extern_Arg : Node_Id;
1894 Link_Arg : Node_Id;
1895 Prag_Nam : Name_Id;
1897 begin
1898 Extern_Arg := Empty;
1899 Link_Arg := Empty;
1900 Prag_Nam := Chars (Id);
1902 Asp := First (L);
1903 while Present (Asp) loop
1904 Asp_Nam := Chars (Identifier (Asp));
1906 -- Aspects Import and Export take precedence over
1907 -- aspect Convention. As a result the generated pragma
1908 -- must carry the proper interfacing aspect's name.
1910 if Nam_In (Asp_Nam, Name_Import, Name_Export) then
1911 if Imp_Exp_Seen then
1912 Error_Msg_N ("conflicting", Asp);
1913 else
1914 Imp_Exp_Seen := True;
1916 if Asp_Nam = Name_Import then
1917 Imp_Seen := True;
1918 end if;
1919 end if;
1921 Prag_Nam := Asp_Nam;
1923 -- Aspect External_Name adds an extra argument to the
1924 -- generated pragma.
1926 elsif Asp_Nam = Name_External_Name then
1927 Extern_Arg :=
1928 Make_Pragma_Argument_Association (Loc,
1929 Chars => Asp_Nam,
1930 Expression => Relocate_Node (Expression (Asp)));
1932 -- Aspect Link_Name adds an extra argument to the
1933 -- generated pragma.
1935 elsif Asp_Nam = Name_Link_Name then
1936 Link_Arg :=
1937 Make_Pragma_Argument_Association (Loc,
1938 Chars => Asp_Nam,
1939 Expression => Relocate_Node (Expression (Asp)));
1940 end if;
1942 Next (Asp);
1943 end loop;
1945 -- Assemble the full argument list
1947 if Present (Extern_Arg) then
1948 Append_To (Args, Extern_Arg);
1949 end if;
1951 if Present (Link_Arg) then
1952 Append_To (Args, Link_Arg);
1953 end if;
1955 Make_Aitem_Pragma
1956 (Pragma_Argument_Associations => Args,
1957 Pragma_Name => Prag_Nam);
1959 -- Store the generated pragma Import in the related
1960 -- subprogram.
1962 if Imp_Seen and then Is_Subprogram (E) then
1963 Set_Import_Pragma (E, Aitem);
1964 end if;
1965 end;
1967 -- CPU, Interrupt_Priority, Priority
1969 -- These three aspects can be specified for a subprogram spec
1970 -- or body, in which case we analyze the expression and export
1971 -- the value of the aspect.
1973 -- Previously, we generated an equivalent pragma for bodies
1974 -- (note that the specs cannot contain these pragmas). The
1975 -- pragma was inserted ahead of local declarations, rather than
1976 -- after the body. This leads to a certain duplication between
1977 -- the processing performed for the aspect and the pragma, but
1978 -- given the straightforward handling required it is simpler
1979 -- to duplicate than to translate the aspect in the spec into
1980 -- a pragma in the declarative part of the body.
1982 when Aspect_CPU |
1983 Aspect_Interrupt_Priority |
1984 Aspect_Priority =>
1986 if Nkind_In (N, N_Subprogram_Body,
1987 N_Subprogram_Declaration)
1988 then
1989 -- Analyze the aspect expression
1991 Analyze_And_Resolve (Expr, Standard_Integer);
1993 -- Interrupt_Priority aspect not allowed for main
1994 -- subprograms. ARM D.1 does not forbid this explicitly,
1995 -- but ARM J.15.11 (6/3) does not permit pragma
1996 -- Interrupt_Priority for subprograms.
1998 if A_Id = Aspect_Interrupt_Priority then
1999 Error_Msg_N
2000 ("Interrupt_Priority aspect cannot apply to "
2001 & "subprogram", Expr);
2003 -- The expression must be static
2005 elsif not Is_OK_Static_Expression (Expr) then
2006 Flag_Non_Static_Expr
2007 ("aspect requires static expression!", Expr);
2009 -- Check whether this is the main subprogram. Issue a
2010 -- warning only if it is obviously not a main program
2011 -- (when it has parameters or when the subprogram is
2012 -- within a package).
2014 elsif Present (Parameter_Specifications
2015 (Specification (N)))
2016 or else not Is_Compilation_Unit (Defining_Entity (N))
2017 then
2018 -- See ARM D.1 (14/3) and D.16 (12/3)
2020 Error_Msg_N
2021 ("aspect applied to subprogram other than the "
2022 & "main subprogram has no effect??", Expr);
2024 -- Otherwise check in range and export the value
2026 -- For the CPU aspect
2028 elsif A_Id = Aspect_CPU then
2029 if Is_In_Range (Expr, RTE (RE_CPU_Range)) then
2031 -- Value is correct so we export the value to make
2032 -- it available at execution time.
2034 Set_Main_CPU
2035 (Main_Unit, UI_To_Int (Expr_Value (Expr)));
2037 else
2038 Error_Msg_N
2039 ("main subprogram CPU is out of range", Expr);
2040 end if;
2042 -- For the Priority aspect
2044 elsif A_Id = Aspect_Priority then
2045 if Is_In_Range (Expr, RTE (RE_Priority)) then
2047 -- Value is correct so we export the value to make
2048 -- it available at execution time.
2050 Set_Main_Priority
2051 (Main_Unit, UI_To_Int (Expr_Value (Expr)));
2053 -- Ignore pragma if Relaxed_RM_Semantics to support
2054 -- other targets/non GNAT compilers.
2056 elsif not Relaxed_RM_Semantics then
2057 Error_Msg_N
2058 ("main subprogram priority is out of range",
2059 Expr);
2060 end if;
2061 end if;
2063 -- Load an arbitrary entity from System.Tasking.Stages
2064 -- or System.Tasking.Restricted.Stages (depending on
2065 -- the supported profile) to make sure that one of these
2066 -- packages is implicitly with'ed, since we need to have
2067 -- the tasking run time active for the pragma Priority to
2068 -- have any effect. Previously we with'ed the package
2069 -- System.Tasking, but this package does not trigger the
2070 -- required initialization of the run-time library.
2072 declare
2073 Discard : Entity_Id;
2074 begin
2075 if Restricted_Profile then
2076 Discard := RTE (RE_Activate_Restricted_Tasks);
2077 else
2078 Discard := RTE (RE_Activate_Tasks);
2079 end if;
2080 end;
2082 -- Handling for these Aspects in subprograms is complete
2084 goto Continue;
2086 -- For tasks
2088 else
2089 -- Pass the aspect as an attribute
2091 Aitem :=
2092 Make_Attribute_Definition_Clause (Loc,
2093 Name => Ent,
2094 Chars => Chars (Id),
2095 Expression => Relocate_Node (Expr));
2096 end if;
2098 -- Warnings
2100 when Aspect_Warnings =>
2101 Make_Aitem_Pragma
2102 (Pragma_Argument_Associations => New_List (
2103 Make_Pragma_Argument_Association (Sloc (Expr),
2104 Expression => Relocate_Node (Expr)),
2105 Make_Pragma_Argument_Association (Loc,
2106 Expression => New_Occurrence_Of (E, Loc))),
2107 Pragma_Name => Chars (Id));
2109 -- Case 2c: Aspects corresponding to pragmas with three
2110 -- arguments.
2112 -- Invariant aspects have a first argument that references the
2113 -- entity, a second argument that is the expression and a third
2114 -- argument that is an appropriate message.
2116 -- Invariant, Type_Invariant
2118 when Aspect_Invariant |
2119 Aspect_Type_Invariant =>
2121 -- Analysis of the pragma will verify placement legality:
2122 -- an invariant must apply to a private type, or appear in
2123 -- the private part of a spec and apply to a completion.
2125 Make_Aitem_Pragma
2126 (Pragma_Argument_Associations => New_List (
2127 Make_Pragma_Argument_Association (Sloc (Ent),
2128 Expression => Ent),
2129 Make_Pragma_Argument_Association (Sloc (Expr),
2130 Expression => Relocate_Node (Expr))),
2131 Pragma_Name => Name_Invariant);
2133 -- Add message unless exception messages are suppressed
2135 if not Opt.Exception_Locations_Suppressed then
2136 Append_To (Pragma_Argument_Associations (Aitem),
2137 Make_Pragma_Argument_Association (Eloc,
2138 Chars => Name_Message,
2139 Expression =>
2140 Make_String_Literal (Eloc,
2141 Strval => "failed invariant from "
2142 & Build_Location_String (Eloc))));
2143 end if;
2145 -- For Invariant case, insert immediately after the entity
2146 -- declaration. We do not have to worry about delay issues
2147 -- since the pragma processing takes care of this.
2149 Delay_Required := False;
2151 -- Case 2d : Aspects that correspond to a pragma with one
2152 -- argument.
2154 -- Abstract_State
2156 -- Aspect Abstract_State introduces implicit declarations for
2157 -- all state abstraction entities it defines. To emulate this
2158 -- behavior, insert the pragma at the beginning of the visible
2159 -- declarations of the related package so that it is analyzed
2160 -- immediately.
2162 when Aspect_Abstract_State => Abstract_State : declare
2163 Context : Node_Id := N;
2164 Decl : Node_Id;
2165 Decls : List_Id;
2167 begin
2168 -- When aspect Abstract_State appears on a generic package,
2169 -- it is propageted to the package instance. The context in
2170 -- this case is the instance spec.
2172 if Nkind (Context) = N_Package_Instantiation then
2173 Context := Instance_Spec (Context);
2174 end if;
2176 if Nkind_In (Context, N_Generic_Package_Declaration,
2177 N_Package_Declaration)
2178 then
2179 Make_Aitem_Pragma
2180 (Pragma_Argument_Associations => New_List (
2181 Make_Pragma_Argument_Association (Loc,
2182 Expression => Relocate_Node (Expr))),
2183 Pragma_Name => Name_Abstract_State);
2184 Decorate (Aspect, Aitem);
2186 Decls := Visible_Declarations (Specification (Context));
2188 -- In general pragma Abstract_State must be at the top
2189 -- of the existing visible declarations to emulate its
2190 -- source counterpart. The only exception to this is a
2191 -- generic instance in which case the pragma must be
2192 -- inserted after the association renamings.
2194 if Present (Decls) then
2195 Decl := First (Decls);
2197 -- The visible declarations of a generic instance have
2198 -- the following structure:
2200 -- <renamings of generic formals>
2201 -- <renamings of internally-generated spec and body>
2202 -- <first source declaration>
2204 -- The pragma must be inserted before the first source
2205 -- declaration, skip the instance "header".
2207 if Is_Generic_Instance (Defining_Entity (Context)) then
2208 while Present (Decl)
2209 and then not Comes_From_Source (Decl)
2210 loop
2211 Decl := Next (Decl);
2212 end loop;
2213 end if;
2215 -- When aspects Abstract_State, Ghost,
2216 -- Initial_Condition and Initializes are out of order,
2217 -- ensure that pragma SPARK_Mode is always at the top
2218 -- of the declarations to properly enabled/suppress
2219 -- errors.
2221 Insert_After_SPARK_Mode
2222 (Prag => Aitem,
2223 Ins_Nod => Decl,
2224 Decls => Decls);
2226 -- Otherwise the pragma forms a new declarative list
2228 else
2229 Set_Visible_Declarations
2230 (Specification (Context), New_List (Aitem));
2231 end if;
2233 else
2234 Error_Msg_NE
2235 ("aspect & must apply to a package declaration",
2236 Aspect, Id);
2237 end if;
2239 goto Continue;
2240 end Abstract_State;
2242 -- Aspect Default_Internal_Condition is never delayed because
2243 -- it is equivalent to a source pragma which appears after the
2244 -- related private type. To deal with forward references, the
2245 -- generated pragma is stored in the rep chain of the related
2246 -- private type as types do not carry contracts. The pragma is
2247 -- wrapped inside of a procedure at the freeze point of the
2248 -- private type's full view.
2250 when Aspect_Default_Initial_Condition =>
2251 Make_Aitem_Pragma
2252 (Pragma_Argument_Associations => New_List (
2253 Make_Pragma_Argument_Association (Loc,
2254 Expression => Relocate_Node (Expr))),
2255 Pragma_Name =>
2256 Name_Default_Initial_Condition);
2258 Decorate (Aspect, Aitem);
2259 Insert_Pragma (Aitem);
2260 goto Continue;
2262 -- Default_Storage_Pool
2264 when Aspect_Default_Storage_Pool =>
2265 Make_Aitem_Pragma
2266 (Pragma_Argument_Associations => New_List (
2267 Make_Pragma_Argument_Association (Loc,
2268 Expression => Relocate_Node (Expr))),
2269 Pragma_Name =>
2270 Name_Default_Storage_Pool);
2272 Decorate (Aspect, Aitem);
2273 Insert_Pragma (Aitem);
2274 goto Continue;
2276 -- Depends
2278 -- Aspect Depends is never delayed because it is equivalent to
2279 -- a source pragma which appears after the related subprogram.
2280 -- To deal with forward references, the generated pragma is
2281 -- stored in the contract of the related subprogram and later
2282 -- analyzed at the end of the declarative region. See routine
2283 -- Analyze_Depends_In_Decl_Part for details.
2285 when Aspect_Depends =>
2286 Make_Aitem_Pragma
2287 (Pragma_Argument_Associations => New_List (
2288 Make_Pragma_Argument_Association (Loc,
2289 Expression => Relocate_Node (Expr))),
2290 Pragma_Name => Name_Depends);
2292 Decorate (Aspect, Aitem);
2293 Insert_Pragma (Aitem);
2294 goto Continue;
2296 -- Aspect Extensions_Visible is never delayed because it is
2297 -- equivalent to a source pragma which appears after the
2298 -- related subprogram.
2300 when Aspect_Extensions_Visible =>
2301 Make_Aitem_Pragma
2302 (Pragma_Argument_Associations => New_List (
2303 Make_Pragma_Argument_Association (Loc,
2304 Expression => Relocate_Node (Expr))),
2305 Pragma_Name => Name_Extensions_Visible);
2307 Decorate (Aspect, Aitem);
2308 Insert_Pragma (Aitem);
2309 goto Continue;
2311 -- Aspect Ghost is never delayed because it is equivalent to a
2312 -- source pragma which appears at the top of [generic] package
2313 -- declarations or after an object, a [generic] subprogram, or
2314 -- a type declaration.
2316 when Aspect_Ghost => Ghost : declare
2317 Decls : List_Id;
2319 begin
2320 Make_Aitem_Pragma
2321 (Pragma_Argument_Associations => New_List (
2322 Make_Pragma_Argument_Association (Loc,
2323 Expression => Relocate_Node (Expr))),
2324 Pragma_Name => Name_Ghost);
2326 Decorate (Aspect, Aitem);
2328 -- When the aspect applies to a [generic] package, insert
2329 -- the pragma at the top of the visible declarations. This
2330 -- emulates the placement of a source pragma.
2332 if Nkind_In (N, N_Generic_Package_Declaration,
2333 N_Package_Declaration)
2334 then
2335 Decls := Visible_Declarations (Specification (N));
2337 if No (Decls) then
2338 Decls := New_List;
2339 Set_Visible_Declarations (N, Decls);
2340 end if;
2342 -- When aspects Abstract_State, Ghost, Initial_Condition
2343 -- and Initializes are out of order, ensure that pragma
2344 -- SPARK_Mode is always at the top of the declarations to
2345 -- properly enabled/suppress errors.
2347 Insert_After_SPARK_Mode
2348 (Prag => Aitem,
2349 Ins_Nod => First (Decls),
2350 Decls => Decls);
2352 -- Otherwise the context is an object, [generic] subprogram
2353 -- or type declaration.
2355 else
2356 Insert_Pragma (Aitem);
2357 end if;
2359 goto Continue;
2360 end Ghost;
2362 -- Global
2364 -- Aspect Global is never delayed because it is equivalent to
2365 -- a source pragma which appears after the related subprogram.
2366 -- To deal with forward references, the generated pragma is
2367 -- stored in the contract of the related subprogram and later
2368 -- analyzed at the end of the declarative region. See routine
2369 -- Analyze_Global_In_Decl_Part for details.
2371 when Aspect_Global =>
2372 Make_Aitem_Pragma
2373 (Pragma_Argument_Associations => New_List (
2374 Make_Pragma_Argument_Association (Loc,
2375 Expression => Relocate_Node (Expr))),
2376 Pragma_Name => Name_Global);
2378 Decorate (Aspect, Aitem);
2379 Insert_Pragma (Aitem);
2380 goto Continue;
2382 -- Initial_Condition
2384 -- Aspect Initial_Condition is never delayed because it is
2385 -- equivalent to a source pragma which appears after the
2386 -- related package. To deal with forward references, the
2387 -- generated pragma is stored in the contract of the related
2388 -- package and later analyzed at the end of the declarative
2389 -- region. See routine Analyze_Initial_Condition_In_Decl_Part
2390 -- for details.
2392 when Aspect_Initial_Condition => Initial_Condition : declare
2393 Context : Node_Id := N;
2394 Decls : List_Id;
2396 begin
2397 -- When aspect Initial_Condition appears on a generic
2398 -- package, it is propageted to the package instance. The
2399 -- context in this case is the instance spec.
2401 if Nkind (Context) = N_Package_Instantiation then
2402 Context := Instance_Spec (Context);
2403 end if;
2405 if Nkind_In (Context, N_Generic_Package_Declaration,
2406 N_Package_Declaration)
2407 then
2408 Decls := Visible_Declarations (Specification (Context));
2410 Make_Aitem_Pragma
2411 (Pragma_Argument_Associations => New_List (
2412 Make_Pragma_Argument_Association (Loc,
2413 Expression => Relocate_Node (Expr))),
2414 Pragma_Name =>
2415 Name_Initial_Condition);
2416 Decorate (Aspect, Aitem);
2418 if No (Decls) then
2419 Decls := New_List;
2420 Set_Visible_Declarations (Context, Decls);
2421 end if;
2423 -- When aspects Abstract_State, Ghost, Initial_Condition
2424 -- and Initializes are out of order, ensure that pragma
2425 -- SPARK_Mode is always at the top of the declarations to
2426 -- properly enabled/suppress errors.
2428 Insert_After_SPARK_Mode
2429 (Prag => Aitem,
2430 Ins_Nod => First (Decls),
2431 Decls => Decls);
2433 else
2434 Error_Msg_NE
2435 ("aspect & must apply to a package declaration",
2436 Aspect, Id);
2437 end if;
2439 goto Continue;
2440 end Initial_Condition;
2442 -- Initializes
2444 -- Aspect Initializes is never delayed because it is equivalent
2445 -- to a source pragma appearing after the related package. To
2446 -- deal with forward references, the generated pragma is stored
2447 -- in the contract of the related package and later analyzed at
2448 -- the end of the declarative region. For details, see routine
2449 -- Analyze_Initializes_In_Decl_Part.
2451 when Aspect_Initializes => Initializes : declare
2452 Context : Node_Id := N;
2453 Decls : List_Id;
2455 begin
2456 -- When aspect Initializes appears on a generic package,
2457 -- it is propageted to the package instance. The context
2458 -- in this case is the instance spec.
2460 if Nkind (Context) = N_Package_Instantiation then
2461 Context := Instance_Spec (Context);
2462 end if;
2464 if Nkind_In (Context, N_Generic_Package_Declaration,
2465 N_Package_Declaration)
2466 then
2467 Decls := Visible_Declarations (Specification (Context));
2469 Make_Aitem_Pragma
2470 (Pragma_Argument_Associations => New_List (
2471 Make_Pragma_Argument_Association (Loc,
2472 Expression => Relocate_Node (Expr))),
2473 Pragma_Name => Name_Initializes);
2474 Decorate (Aspect, Aitem);
2476 if No (Decls) then
2477 Decls := New_List;
2478 Set_Visible_Declarations (Context, Decls);
2479 end if;
2481 -- When aspects Abstract_State, Ghost, Initial_Condition
2482 -- and Initializes are out of order, ensure that pragma
2483 -- SPARK_Mode is always at the top of the declarations to
2484 -- properly enabled/suppress errors.
2486 Insert_After_SPARK_Mode
2487 (Prag => Aitem,
2488 Ins_Nod => First (Decls),
2489 Decls => Decls);
2491 else
2492 Error_Msg_NE
2493 ("aspect & must apply to a package declaration",
2494 Aspect, Id);
2495 end if;
2497 goto Continue;
2498 end Initializes;
2500 -- Obsolescent
2502 when Aspect_Obsolescent => declare
2503 Args : List_Id;
2505 begin
2506 if No (Expr) then
2507 Args := No_List;
2508 else
2509 Args := New_List (
2510 Make_Pragma_Argument_Association (Sloc (Expr),
2511 Expression => Relocate_Node (Expr)));
2512 end if;
2514 Make_Aitem_Pragma
2515 (Pragma_Argument_Associations => Args,
2516 Pragma_Name => Chars (Id));
2517 end;
2519 -- Part_Of
2521 when Aspect_Part_Of =>
2522 if Nkind_In (N, N_Object_Declaration,
2523 N_Package_Instantiation)
2524 then
2525 Make_Aitem_Pragma
2526 (Pragma_Argument_Associations => New_List (
2527 Make_Pragma_Argument_Association (Loc,
2528 Expression => Relocate_Node (Expr))),
2529 Pragma_Name => Name_Part_Of);
2531 else
2532 Error_Msg_NE
2533 ("aspect & must apply to a variable or package "
2534 & "instantiation", Aspect, Id);
2535 end if;
2537 -- SPARK_Mode
2539 when Aspect_SPARK_Mode => SPARK_Mode : declare
2540 Decls : List_Id;
2542 begin
2543 Make_Aitem_Pragma
2544 (Pragma_Argument_Associations => New_List (
2545 Make_Pragma_Argument_Association (Loc,
2546 Expression => Relocate_Node (Expr))),
2547 Pragma_Name => Name_SPARK_Mode);
2549 -- When the aspect appears on a package or a subprogram
2550 -- body, insert the generated pragma at the top of the body
2551 -- declarations to emulate the behavior of a source pragma.
2553 if Nkind_In (N, N_Package_Body, N_Subprogram_Body) then
2554 Decorate (Aspect, Aitem);
2556 Decls := Declarations (N);
2558 if No (Decls) then
2559 Decls := New_List;
2560 Set_Declarations (N, Decls);
2561 end if;
2563 Prepend_To (Decls, Aitem);
2564 goto Continue;
2566 -- When the aspect is associated with a [generic] package
2567 -- declaration, insert the generated pragma at the top of
2568 -- the visible declarations to emulate the behavior of a
2569 -- source pragma.
2571 elsif Nkind_In (N, N_Generic_Package_Declaration,
2572 N_Package_Declaration)
2573 then
2574 Decorate (Aspect, Aitem);
2576 Decls := Visible_Declarations (Specification (N));
2578 if No (Decls) then
2579 Decls := New_List;
2580 Set_Visible_Declarations (Specification (N), Decls);
2581 end if;
2583 Prepend_To (Decls, Aitem);
2584 goto Continue;
2585 end if;
2586 end SPARK_Mode;
2588 -- Refined_Depends
2590 -- Aspect Refined_Depends is never delayed because it is
2591 -- equivalent to a source pragma which appears in the
2592 -- declarations of the related subprogram body. To deal with
2593 -- forward references, the generated pragma is stored in the
2594 -- contract of the related subprogram body and later analyzed
2595 -- at the end of the declarative region. For details, see
2596 -- routine Analyze_Refined_Depends_In_Decl_Part.
2598 when Aspect_Refined_Depends =>
2599 Make_Aitem_Pragma
2600 (Pragma_Argument_Associations => New_List (
2601 Make_Pragma_Argument_Association (Loc,
2602 Expression => Relocate_Node (Expr))),
2603 Pragma_Name => Name_Refined_Depends);
2605 Decorate (Aspect, Aitem);
2606 Insert_Pragma (Aitem);
2607 goto Continue;
2609 -- Refined_Global
2611 -- Aspect Refined_Global is never delayed because it is
2612 -- equivalent to a source pragma which appears in the
2613 -- declarations of the related subprogram body. To deal with
2614 -- forward references, the generated pragma is stored in the
2615 -- contract of the related subprogram body and later analyzed
2616 -- at the end of the declarative region. For details, see
2617 -- routine Analyze_Refined_Global_In_Decl_Part.
2619 when Aspect_Refined_Global =>
2620 Make_Aitem_Pragma
2621 (Pragma_Argument_Associations => New_List (
2622 Make_Pragma_Argument_Association (Loc,
2623 Expression => Relocate_Node (Expr))),
2624 Pragma_Name => Name_Refined_Global);
2626 Decorate (Aspect, Aitem);
2627 Insert_Pragma (Aitem);
2628 goto Continue;
2630 -- Refined_Post
2632 when Aspect_Refined_Post =>
2633 Make_Aitem_Pragma
2634 (Pragma_Argument_Associations => New_List (
2635 Make_Pragma_Argument_Association (Loc,
2636 Expression => Relocate_Node (Expr))),
2637 Pragma_Name => Name_Refined_Post);
2639 -- Refined_State
2641 when Aspect_Refined_State => Refined_State : declare
2642 Decls : List_Id;
2644 begin
2645 -- The corresponding pragma for Refined_State is inserted in
2646 -- the declarations of the related package body. This action
2647 -- synchronizes both the source and from-aspect versions of
2648 -- the pragma.
2650 if Nkind (N) = N_Package_Body then
2651 Decls := Declarations (N);
2653 Make_Aitem_Pragma
2654 (Pragma_Argument_Associations => New_List (
2655 Make_Pragma_Argument_Association (Loc,
2656 Expression => Relocate_Node (Expr))),
2657 Pragma_Name => Name_Refined_State);
2658 Decorate (Aspect, Aitem);
2660 if No (Decls) then
2661 Decls := New_List;
2662 Set_Declarations (N, Decls);
2663 end if;
2665 -- Pragma Refined_State must be inserted after pragma
2666 -- SPARK_Mode in the tree. This ensures that any error
2667 -- messages dependent on SPARK_Mode will be properly
2668 -- enabled/suppressed.
2670 Insert_After_SPARK_Mode
2671 (Prag => Aitem,
2672 Ins_Nod => First (Decls),
2673 Decls => Decls);
2675 else
2676 Error_Msg_NE
2677 ("aspect & must apply to a package body", Aspect, Id);
2678 end if;
2680 goto Continue;
2681 end Refined_State;
2683 -- Relative_Deadline
2685 when Aspect_Relative_Deadline =>
2686 Make_Aitem_Pragma
2687 (Pragma_Argument_Associations => New_List (
2688 Make_Pragma_Argument_Association (Loc,
2689 Expression => Relocate_Node (Expr))),
2690 Pragma_Name => Name_Relative_Deadline);
2692 -- If the aspect applies to a task, the corresponding pragma
2693 -- must appear within its declarations, not after.
2695 if Nkind (N) = N_Task_Type_Declaration then
2696 declare
2697 Def : Node_Id;
2698 V : List_Id;
2700 begin
2701 if No (Task_Definition (N)) then
2702 Set_Task_Definition (N,
2703 Make_Task_Definition (Loc,
2704 Visible_Declarations => New_List,
2705 End_Label => Empty));
2706 end if;
2708 Def := Task_Definition (N);
2709 V := Visible_Declarations (Def);
2710 if not Is_Empty_List (V) then
2711 Insert_Before (First (V), Aitem);
2713 else
2714 Set_Visible_Declarations (Def, New_List (Aitem));
2715 end if;
2717 goto Continue;
2718 end;
2719 end if;
2721 -- Case 2e: Annotate aspect
2723 when Aspect_Annotate =>
2724 declare
2725 Args : List_Id;
2726 Pargs : List_Id;
2727 Arg : Node_Id;
2729 begin
2730 -- The argument can be a single identifier
2732 if Nkind (Expr) = N_Identifier then
2734 -- One level of parens is allowed
2736 if Paren_Count (Expr) > 1 then
2737 Error_Msg_F ("extra parentheses ignored", Expr);
2738 end if;
2740 Set_Paren_Count (Expr, 0);
2742 -- Add the single item to the list
2744 Args := New_List (Expr);
2746 -- Otherwise we must have an aggregate
2748 elsif Nkind (Expr) = N_Aggregate then
2750 -- Must be positional
2752 if Present (Component_Associations (Expr)) then
2753 Error_Msg_F
2754 ("purely positional aggregate required", Expr);
2755 goto Continue;
2756 end if;
2758 -- Must not be parenthesized
2760 if Paren_Count (Expr) /= 0 then
2761 Error_Msg_F ("extra parentheses ignored", Expr);
2762 end if;
2764 -- List of arguments is list of aggregate expressions
2766 Args := Expressions (Expr);
2768 -- Anything else is illegal
2770 else
2771 Error_Msg_F ("wrong form for Annotate aspect", Expr);
2772 goto Continue;
2773 end if;
2775 -- Prepare pragma arguments
2777 Pargs := New_List;
2778 Arg := First (Args);
2779 while Present (Arg) loop
2780 Append_To (Pargs,
2781 Make_Pragma_Argument_Association (Sloc (Arg),
2782 Expression => Relocate_Node (Arg)));
2783 Next (Arg);
2784 end loop;
2786 Append_To (Pargs,
2787 Make_Pragma_Argument_Association (Sloc (Ent),
2788 Chars => Name_Entity,
2789 Expression => Ent));
2791 Make_Aitem_Pragma
2792 (Pragma_Argument_Associations => Pargs,
2793 Pragma_Name => Name_Annotate);
2794 end;
2796 -- Case 3 : Aspects that don't correspond to pragma/attribute
2797 -- definition clause.
2799 -- Case 3a: The aspects listed below don't correspond to
2800 -- pragmas/attributes but do require delayed analysis.
2802 -- Default_Value can only apply to a scalar type
2804 when Aspect_Default_Value =>
2805 if not Is_Scalar_Type (E) then
2806 Error_Msg_N
2807 ("aspect Default_Value must apply to a scalar type", N);
2808 end if;
2810 Aitem := Empty;
2812 -- Default_Component_Value can only apply to an array type
2813 -- with scalar components.
2815 when Aspect_Default_Component_Value =>
2816 if not (Is_Array_Type (E)
2817 and then Is_Scalar_Type (Component_Type (E)))
2818 then
2819 Error_Msg_N ("aspect Default_Component_Value can only "
2820 & "apply to an array of scalar components", N);
2821 end if;
2823 Aitem := Empty;
2825 -- Case 3b: The aspects listed below don't correspond to
2826 -- pragmas/attributes and don't need delayed analysis.
2828 -- Implicit_Dereference
2830 -- For Implicit_Dereference, External_Name and Link_Name, only
2831 -- the legality checks are done during the analysis, thus no
2832 -- delay is required.
2834 when Aspect_Implicit_Dereference =>
2835 Analyze_Aspect_Implicit_Dereference;
2836 goto Continue;
2838 -- External_Name, Link_Name
2840 when Aspect_External_Name |
2841 Aspect_Link_Name =>
2842 Analyze_Aspect_External_Or_Link_Name;
2843 goto Continue;
2845 -- Dimension
2847 when Aspect_Dimension =>
2848 Analyze_Aspect_Dimension (N, Id, Expr);
2849 goto Continue;
2851 -- Dimension_System
2853 when Aspect_Dimension_System =>
2854 Analyze_Aspect_Dimension_System (N, Id, Expr);
2855 goto Continue;
2857 -- Case 4: Aspects requiring special handling
2859 -- Pre/Post/Test_Case/Contract_Cases whose corresponding
2860 -- pragmas take care of the delay.
2862 -- Pre/Post
2864 -- Aspects Pre/Post generate Precondition/Postcondition pragmas
2865 -- with a first argument that is the expression, and a second
2866 -- argument that is an informative message if the test fails.
2867 -- This is inserted right after the declaration, to get the
2868 -- required pragma placement. The processing for the pragmas
2869 -- takes care of the required delay.
2871 when Pre_Post_Aspects => Pre_Post : declare
2872 Pname : Name_Id;
2874 begin
2875 if A_Id = Aspect_Pre or else A_Id = Aspect_Precondition then
2876 Pname := Name_Precondition;
2877 else
2878 Pname := Name_Postcondition;
2879 end if;
2881 -- If the expressions is of the form A and then B, then
2882 -- we generate separate Pre/Post aspects for the separate
2883 -- clauses. Since we allow multiple pragmas, there is no
2884 -- problem in allowing multiple Pre/Post aspects internally.
2885 -- These should be treated in reverse order (B first and
2886 -- A second) since they are later inserted just after N in
2887 -- the order they are treated. This way, the pragma for A
2888 -- ends up preceding the pragma for B, which may have an
2889 -- importance for the error raised (either constraint error
2890 -- or precondition error).
2892 -- We do not do this for Pre'Class, since we have to put
2893 -- these conditions together in a complex OR expression.
2895 -- We do not do this in ASIS mode, as ASIS relies on the
2896 -- original node representing the complete expression, when
2897 -- retrieving it through the source aspect table.
2899 if not ASIS_Mode
2900 and then (Pname = Name_Postcondition
2901 or else not Class_Present (Aspect))
2902 then
2903 while Nkind (Expr) = N_And_Then loop
2904 Insert_After (Aspect,
2905 Make_Aspect_Specification (Sloc (Left_Opnd (Expr)),
2906 Identifier => Identifier (Aspect),
2907 Expression => Relocate_Node (Left_Opnd (Expr)),
2908 Class_Present => Class_Present (Aspect),
2909 Split_PPC => True));
2910 Rewrite (Expr, Relocate_Node (Right_Opnd (Expr)));
2911 Eloc := Sloc (Expr);
2912 end loop;
2913 end if;
2915 -- Build the precondition/postcondition pragma
2917 -- Add note about why we do NOT need Copy_Tree here???
2919 Make_Aitem_Pragma
2920 (Pragma_Argument_Associations => New_List (
2921 Make_Pragma_Argument_Association (Eloc,
2922 Chars => Name_Check,
2923 Expression => Relocate_Node (Expr))),
2924 Pragma_Name => Pname);
2926 -- Add message unless exception messages are suppressed
2928 if not Opt.Exception_Locations_Suppressed then
2929 Append_To (Pragma_Argument_Associations (Aitem),
2930 Make_Pragma_Argument_Association (Eloc,
2931 Chars => Name_Message,
2932 Expression =>
2933 Make_String_Literal (Eloc,
2934 Strval => "failed "
2935 & Get_Name_String (Pname)
2936 & " from "
2937 & Build_Location_String (Eloc))));
2938 end if;
2940 Set_Is_Delayed_Aspect (Aspect);
2942 -- For Pre/Post cases, insert immediately after the entity
2943 -- declaration, since that is the required pragma placement.
2944 -- Note that for these aspects, we do not have to worry
2945 -- about delay issues, since the pragmas themselves deal
2946 -- with delay of visibility for the expression analysis.
2948 Insert_Pragma (Aitem);
2950 goto Continue;
2951 end Pre_Post;
2953 -- Test_Case
2955 when Aspect_Test_Case => Test_Case : declare
2956 Args : List_Id;
2957 Comp_Expr : Node_Id;
2958 Comp_Assn : Node_Id;
2959 New_Expr : Node_Id;
2961 begin
2962 Args := New_List;
2964 if Nkind (Parent (N)) = N_Compilation_Unit then
2965 Error_Msg_Name_1 := Nam;
2966 Error_Msg_N ("incorrect placement of aspect `%`", E);
2967 goto Continue;
2968 end if;
2970 if Nkind (Expr) /= N_Aggregate then
2971 Error_Msg_Name_1 := Nam;
2972 Error_Msg_NE
2973 ("wrong syntax for aspect `%` for &", Id, E);
2974 goto Continue;
2975 end if;
2977 -- Make pragma expressions refer to the original aspect
2978 -- expressions through the Original_Node link. This is used
2979 -- in semantic analysis for ASIS mode, so that the original
2980 -- expression also gets analyzed.
2982 Comp_Expr := First (Expressions (Expr));
2983 while Present (Comp_Expr) loop
2984 New_Expr := Relocate_Node (Comp_Expr);
2985 Append_To (Args,
2986 Make_Pragma_Argument_Association (Sloc (Comp_Expr),
2987 Expression => New_Expr));
2988 Next (Comp_Expr);
2989 end loop;
2991 Comp_Assn := First (Component_Associations (Expr));
2992 while Present (Comp_Assn) loop
2993 if List_Length (Choices (Comp_Assn)) /= 1
2994 or else
2995 Nkind (First (Choices (Comp_Assn))) /= N_Identifier
2996 then
2997 Error_Msg_Name_1 := Nam;
2998 Error_Msg_NE
2999 ("wrong syntax for aspect `%` for &", Id, E);
3000 goto Continue;
3001 end if;
3003 Append_To (Args,
3004 Make_Pragma_Argument_Association (Sloc (Comp_Assn),
3005 Chars => Chars (First (Choices (Comp_Assn))),
3006 Expression =>
3007 Relocate_Node (Expression (Comp_Assn))));
3008 Next (Comp_Assn);
3009 end loop;
3011 -- Build the test-case pragma
3013 Make_Aitem_Pragma
3014 (Pragma_Argument_Associations => Args,
3015 Pragma_Name => Nam);
3016 end Test_Case;
3018 -- Contract_Cases
3020 when Aspect_Contract_Cases =>
3021 Make_Aitem_Pragma
3022 (Pragma_Argument_Associations => New_List (
3023 Make_Pragma_Argument_Association (Loc,
3024 Expression => Relocate_Node (Expr))),
3025 Pragma_Name => Nam);
3027 Decorate (Aspect, Aitem);
3028 Insert_Pragma (Aitem);
3029 goto Continue;
3031 -- Case 5: Special handling for aspects with an optional
3032 -- boolean argument.
3034 -- In the general case, the corresponding pragma cannot be
3035 -- generated yet because the evaluation of the boolean needs
3036 -- to be delayed till the freeze point.
3038 when Boolean_Aspects |
3039 Library_Unit_Aspects =>
3041 Set_Is_Boolean_Aspect (Aspect);
3043 -- Lock_Free aspect only apply to protected objects
3045 if A_Id = Aspect_Lock_Free then
3046 if Ekind (E) /= E_Protected_Type then
3047 Error_Msg_Name_1 := Nam;
3048 Error_Msg_N
3049 ("aspect % only applies to a protected object",
3050 Aspect);
3052 else
3053 -- Set the Uses_Lock_Free flag to True if there is no
3054 -- expression or if the expression is True. The
3055 -- evaluation of this aspect should be delayed to the
3056 -- freeze point (why???)
3058 if No (Expr)
3059 or else Is_True (Static_Boolean (Expr))
3060 then
3061 Set_Uses_Lock_Free (E);
3062 end if;
3064 Record_Rep_Item (E, Aspect);
3065 end if;
3067 goto Continue;
3069 elsif A_Id = Aspect_Import or else A_Id = Aspect_Export then
3071 -- For the case of aspects Import and Export, we don't
3072 -- consider that we know the entity is never set in the
3073 -- source, since it is is likely modified outside the
3074 -- program.
3076 -- Note: one might think that the analysis of the
3077 -- resulting pragma would take care of that, but
3078 -- that's not the case since it won't be from source.
3080 if Ekind (E) = E_Variable then
3081 Set_Never_Set_In_Source (E, False);
3082 end if;
3084 -- In older versions of Ada the corresponding pragmas
3085 -- specified a Convention. In Ada 2012 the convention is
3086 -- specified as a separate aspect, and it is optional,
3087 -- given that it defaults to Convention_Ada. The code
3088 -- that verifed that there was a matching convention
3089 -- is now obsolete.
3091 -- Resolve the expression of an Import or Export here,
3092 -- and require it to be of type Boolean and static. This
3093 -- is not quite right, because in general this should be
3094 -- delayed, but that seems tricky for these, because
3095 -- normally Boolean aspects are replaced with pragmas at
3096 -- the freeze point (in Make_Pragma_From_Boolean_Aspect),
3097 -- but in the case of these aspects we can't generate
3098 -- a simple pragma with just the entity name. ???
3100 if not Present (Expr)
3101 or else Is_True (Static_Boolean (Expr))
3102 then
3103 if A_Id = Aspect_Import then
3104 Set_Is_Imported (E);
3106 -- An imported entity cannot have an explicit
3107 -- initialization.
3109 if Nkind (N) = N_Object_Declaration
3110 and then Present (Expression (N))
3111 then
3112 Error_Msg_N
3113 ("imported entities cannot be initialized "
3114 & "(RM B.1(24))", Expression (N));
3115 end if;
3117 elsif A_Id = Aspect_Export then
3118 Set_Is_Exported (E);
3119 end if;
3120 end if;
3122 goto Continue;
3123 end if;
3125 -- Library unit aspects require special handling in the case
3126 -- of a package declaration, the pragma needs to be inserted
3127 -- in the list of declarations for the associated package.
3128 -- There is no issue of visibility delay for these aspects.
3130 if A_Id in Library_Unit_Aspects
3131 and then
3132 Nkind_In (N, N_Package_Declaration,
3133 N_Generic_Package_Declaration)
3134 and then Nkind (Parent (N)) /= N_Compilation_Unit
3136 -- Aspect is legal on a local instantiation of a library-
3137 -- level generic unit.
3139 and then not Is_Generic_Instance (Defining_Entity (N))
3140 then
3141 Error_Msg_N
3142 ("incorrect context for library unit aspect&", Id);
3143 goto Continue;
3144 end if;
3146 -- External property aspects are Boolean by nature, but
3147 -- their pragmas must contain two arguments, the second
3148 -- being the optional Boolean expression.
3150 if A_Id = Aspect_Async_Readers or else
3151 A_Id = Aspect_Async_Writers or else
3152 A_Id = Aspect_Effective_Reads or else
3153 A_Id = Aspect_Effective_Writes
3154 then
3155 declare
3156 Args : List_Id;
3158 begin
3159 -- The first argument of the external property pragma
3160 -- is the related object.
3162 Args :=
3163 New_List (
3164 Make_Pragma_Argument_Association (Sloc (Ent),
3165 Expression => Ent));
3167 -- The second argument is the optional Boolean
3168 -- expression which must be propagated even if it
3169 -- evaluates to False as this has special semantic
3170 -- meaning.
3172 if Present (Expr) then
3173 Append_To (Args,
3174 Make_Pragma_Argument_Association (Loc,
3175 Expression => Relocate_Node (Expr)));
3176 end if;
3178 Make_Aitem_Pragma
3179 (Pragma_Argument_Associations => Args,
3180 Pragma_Name => Nam);
3181 end;
3183 -- Cases where we do not delay, includes all cases where the
3184 -- expression is missing other than the above cases.
3186 elsif not Delay_Required or else No (Expr) then
3187 Make_Aitem_Pragma
3188 (Pragma_Argument_Associations => New_List (
3189 Make_Pragma_Argument_Association (Sloc (Ent),
3190 Expression => Ent)),
3191 Pragma_Name => Chars (Id));
3192 Delay_Required := False;
3194 -- In general cases, the corresponding pragma/attribute
3195 -- definition clause will be inserted later at the freezing
3196 -- point, and we do not need to build it now.
3198 else
3199 Aitem := Empty;
3200 end if;
3202 -- Storage_Size
3204 -- This is special because for access types we need to generate
3205 -- an attribute definition clause. This also works for single
3206 -- task declarations, but it does not work for task type
3207 -- declarations, because we have the case where the expression
3208 -- references a discriminant of the task type. That can't use
3209 -- an attribute definition clause because we would not have
3210 -- visibility on the discriminant. For that case we must
3211 -- generate a pragma in the task definition.
3213 when Aspect_Storage_Size =>
3215 -- Task type case
3217 if Ekind (E) = E_Task_Type then
3218 declare
3219 Decl : constant Node_Id := Declaration_Node (E);
3221 begin
3222 pragma Assert (Nkind (Decl) = N_Task_Type_Declaration);
3224 -- If no task definition, create one
3226 if No (Task_Definition (Decl)) then
3227 Set_Task_Definition (Decl,
3228 Make_Task_Definition (Loc,
3229 Visible_Declarations => Empty_List,
3230 End_Label => Empty));
3231 end if;
3233 -- Create a pragma and put it at the start of the task
3234 -- definition for the task type declaration.
3236 Make_Aitem_Pragma
3237 (Pragma_Argument_Associations => New_List (
3238 Make_Pragma_Argument_Association (Loc,
3239 Expression => Relocate_Node (Expr))),
3240 Pragma_Name => Name_Storage_Size);
3242 Prepend
3243 (Aitem,
3244 Visible_Declarations (Task_Definition (Decl)));
3245 goto Continue;
3246 end;
3248 -- All other cases, generate attribute definition
3250 else
3251 Aitem :=
3252 Make_Attribute_Definition_Clause (Loc,
3253 Name => Ent,
3254 Chars => Chars (Id),
3255 Expression => Relocate_Node (Expr));
3256 end if;
3257 end case;
3259 -- Attach the corresponding pragma/attribute definition clause to
3260 -- the aspect specification node.
3262 if Present (Aitem) then
3263 Set_From_Aspect_Specification (Aitem);
3264 end if;
3266 -- In the context of a compilation unit, we directly put the
3267 -- pragma in the Pragmas_After list of the N_Compilation_Unit_Aux
3268 -- node (no delay is required here) except for aspects on a
3269 -- subprogram body (see below) and a generic package, for which we
3270 -- need to introduce the pragma before building the generic copy
3271 -- (see sem_ch12), and for package instantiations, where the
3272 -- library unit pragmas are better handled early.
3274 if Nkind (Parent (N)) = N_Compilation_Unit
3275 and then (Present (Aitem) or else Is_Boolean_Aspect (Aspect))
3276 then
3277 declare
3278 Aux : constant Node_Id := Aux_Decls_Node (Parent (N));
3280 begin
3281 pragma Assert (Nkind (Aux) = N_Compilation_Unit_Aux);
3283 -- For a Boolean aspect, create the corresponding pragma if
3284 -- no expression or if the value is True.
3286 if Is_Boolean_Aspect (Aspect) and then No (Aitem) then
3287 if Is_True (Static_Boolean (Expr)) then
3288 Make_Aitem_Pragma
3289 (Pragma_Argument_Associations => New_List (
3290 Make_Pragma_Argument_Association (Sloc (Ent),
3291 Expression => Ent)),
3292 Pragma_Name => Chars (Id));
3294 Set_From_Aspect_Specification (Aitem, True);
3295 Set_Corresponding_Aspect (Aitem, Aspect);
3297 else
3298 goto Continue;
3299 end if;
3300 end if;
3302 -- If the aspect is on a subprogram body (relevant aspect
3303 -- is Inline), add the pragma in front of the declarations.
3305 if Nkind (N) = N_Subprogram_Body then
3306 if No (Declarations (N)) then
3307 Set_Declarations (N, New_List);
3308 end if;
3310 Prepend (Aitem, Declarations (N));
3312 elsif Nkind (N) = N_Generic_Package_Declaration then
3313 if No (Visible_Declarations (Specification (N))) then
3314 Set_Visible_Declarations (Specification (N), New_List);
3315 end if;
3317 Prepend (Aitem,
3318 Visible_Declarations (Specification (N)));
3320 elsif Nkind (N) = N_Package_Instantiation then
3321 declare
3322 Spec : constant Node_Id :=
3323 Specification (Instance_Spec (N));
3324 begin
3325 if No (Visible_Declarations (Spec)) then
3326 Set_Visible_Declarations (Spec, New_List);
3327 end if;
3329 Prepend (Aitem, Visible_Declarations (Spec));
3330 end;
3332 else
3333 if No (Pragmas_After (Aux)) then
3334 Set_Pragmas_After (Aux, New_List);
3335 end if;
3337 Append (Aitem, Pragmas_After (Aux));
3338 end if;
3340 goto Continue;
3341 end;
3342 end if;
3344 -- The evaluation of the aspect is delayed to the freezing point.
3345 -- The pragma or attribute clause if there is one is then attached
3346 -- to the aspect specification which is put in the rep item list.
3348 if Delay_Required then
3349 if Present (Aitem) then
3350 Set_Is_Delayed_Aspect (Aitem);
3351 Set_Aspect_Rep_Item (Aspect, Aitem);
3352 Set_Parent (Aitem, Aspect);
3353 end if;
3355 Set_Is_Delayed_Aspect (Aspect);
3357 -- In the case of Default_Value, link the aspect to base type
3358 -- as well, even though it appears on a first subtype. This is
3359 -- mandated by the semantics of the aspect. Do not establish
3360 -- the link when processing the base type itself as this leads
3361 -- to a rep item circularity. Verify that we are dealing with
3362 -- a scalar type to prevent cascaded errors.
3364 if A_Id = Aspect_Default_Value
3365 and then Is_Scalar_Type (E)
3366 and then Base_Type (E) /= E
3367 then
3368 Set_Has_Delayed_Aspects (Base_Type (E));
3369 Record_Rep_Item (Base_Type (E), Aspect);
3370 end if;
3372 Set_Has_Delayed_Aspects (E);
3373 Record_Rep_Item (E, Aspect);
3375 -- When delay is not required and the context is a package or a
3376 -- subprogram body, insert the pragma in the body declarations.
3378 elsif Nkind_In (N, N_Package_Body, N_Subprogram_Body) then
3379 if No (Declarations (N)) then
3380 Set_Declarations (N, New_List);
3381 end if;
3383 -- The pragma is added before source declarations
3385 Prepend_To (Declarations (N), Aitem);
3387 -- When delay is not required and the context is not a compilation
3388 -- unit, we simply insert the pragma/attribute definition clause
3389 -- in sequence.
3391 else
3392 Insert_After (Ins_Node, Aitem);
3393 Ins_Node := Aitem;
3394 end if;
3395 end Analyze_One_Aspect;
3397 <<Continue>>
3398 Next (Aspect);
3399 end loop Aspect_Loop;
3401 if Has_Delayed_Aspects (E) then
3402 Ensure_Freeze_Node (E);
3403 end if;
3404 end Analyze_Aspect_Specifications;
3406 -----------------------
3407 -- Analyze_At_Clause --
3408 -----------------------
3410 -- An at clause is replaced by the corresponding Address attribute
3411 -- definition clause that is the preferred approach in Ada 95.
3413 procedure Analyze_At_Clause (N : Node_Id) is
3414 CS : constant Boolean := Comes_From_Source (N);
3416 begin
3417 -- This is an obsolescent feature
3419 Check_Restriction (No_Obsolescent_Features, N);
3421 if Warn_On_Obsolescent_Feature then
3422 Error_Msg_N
3423 ("?j?at clause is an obsolescent feature (RM J.7(2))", N);
3424 Error_Msg_N
3425 ("\?j?use address attribute definition clause instead", N);
3426 end if;
3428 -- Rewrite as address clause
3430 Rewrite (N,
3431 Make_Attribute_Definition_Clause (Sloc (N),
3432 Name => Identifier (N),
3433 Chars => Name_Address,
3434 Expression => Expression (N)));
3436 -- We preserve Comes_From_Source, since logically the clause still comes
3437 -- from the source program even though it is changed in form.
3439 Set_Comes_From_Source (N, CS);
3441 -- Analyze rewritten clause
3443 Analyze_Attribute_Definition_Clause (N);
3444 end Analyze_At_Clause;
3446 -----------------------------------------
3447 -- Analyze_Attribute_Definition_Clause --
3448 -----------------------------------------
3450 procedure Analyze_Attribute_Definition_Clause (N : Node_Id) is
3451 Loc : constant Source_Ptr := Sloc (N);
3452 Nam : constant Node_Id := Name (N);
3453 Attr : constant Name_Id := Chars (N);
3454 Expr : constant Node_Id := Expression (N);
3455 Id : constant Attribute_Id := Get_Attribute_Id (Attr);
3457 Ent : Entity_Id;
3458 -- The entity of Nam after it is analyzed. In the case of an incomplete
3459 -- type, this is the underlying type.
3461 U_Ent : Entity_Id;
3462 -- The underlying entity to which the attribute applies. Generally this
3463 -- is the Underlying_Type of Ent, except in the case where the clause
3464 -- applies to full view of incomplete type or private type in which case
3465 -- U_Ent is just a copy of Ent.
3467 FOnly : Boolean := False;
3468 -- Reset to True for subtype specific attribute (Alignment, Size)
3469 -- and for stream attributes, i.e. those cases where in the call to
3470 -- Rep_Item_Too_Late, FOnly is set True so that only the freezing rules
3471 -- are checked. Note that the case of stream attributes is not clear
3472 -- from the RM, but see AI95-00137. Also, the RM seems to disallow
3473 -- Storage_Size for derived task types, but that is also clearly
3474 -- unintentional.
3476 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type);
3477 -- Common processing for 'Read, 'Write, 'Input and 'Output attribute
3478 -- definition clauses.
3480 function Duplicate_Clause return Boolean;
3481 -- This routine checks if the aspect for U_Ent being given by attribute
3482 -- definition clause N is for an aspect that has already been specified,
3483 -- and if so gives an error message. If there is a duplicate, True is
3484 -- returned, otherwise if there is no error, False is returned.
3486 procedure Check_Indexing_Functions;
3487 -- Check that the function in Constant_Indexing or Variable_Indexing
3488 -- attribute has the proper type structure. If the name is overloaded,
3489 -- check that some interpretation is legal.
3491 procedure Check_Iterator_Functions;
3492 -- Check that there is a single function in Default_Iterator attribute
3493 -- has the proper type structure.
3495 function Check_Primitive_Function (Subp : Entity_Id) return Boolean;
3496 -- Common legality check for the previous two
3498 -----------------------------------
3499 -- Analyze_Stream_TSS_Definition --
3500 -----------------------------------
3502 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type) is
3503 Subp : Entity_Id := Empty;
3504 I : Interp_Index;
3505 It : Interp;
3506 Pnam : Entity_Id;
3508 Is_Read : constant Boolean := (TSS_Nam = TSS_Stream_Read);
3509 -- True for Read attribute, false for other attributes
3511 function Has_Good_Profile (Subp : Entity_Id) return Boolean;
3512 -- Return true if the entity is a subprogram with an appropriate
3513 -- profile for the attribute being defined.
3515 ----------------------
3516 -- Has_Good_Profile --
3517 ----------------------
3519 function Has_Good_Profile (Subp : Entity_Id) return Boolean is
3520 F : Entity_Id;
3521 Is_Function : constant Boolean := (TSS_Nam = TSS_Stream_Input);
3522 Expected_Ekind : constant array (Boolean) of Entity_Kind :=
3523 (False => E_Procedure, True => E_Function);
3524 Typ : Entity_Id;
3526 begin
3527 if Ekind (Subp) /= Expected_Ekind (Is_Function) then
3528 return False;
3529 end if;
3531 F := First_Formal (Subp);
3533 if No (F)
3534 or else Ekind (Etype (F)) /= E_Anonymous_Access_Type
3535 or else Designated_Type (Etype (F)) /=
3536 Class_Wide_Type (RTE (RE_Root_Stream_Type))
3537 then
3538 return False;
3539 end if;
3541 if not Is_Function then
3542 Next_Formal (F);
3544 declare
3545 Expected_Mode : constant array (Boolean) of Entity_Kind :=
3546 (False => E_In_Parameter,
3547 True => E_Out_Parameter);
3548 begin
3549 if Parameter_Mode (F) /= Expected_Mode (Is_Read) then
3550 return False;
3551 end if;
3552 end;
3554 Typ := Etype (F);
3556 -- If the attribute specification comes from an aspect
3557 -- specification for a class-wide stream, the parameter must be
3558 -- a class-wide type of the entity to which the aspect applies.
3560 if From_Aspect_Specification (N)
3561 and then Class_Present (Parent (N))
3562 and then Is_Class_Wide_Type (Typ)
3563 then
3564 Typ := Etype (Typ);
3565 end if;
3567 else
3568 Typ := Etype (Subp);
3569 end if;
3571 -- Verify that the prefix of the attribute and the local name for
3572 -- the type of the formal match, or one is the class-wide of the
3573 -- other, in the case of a class-wide stream operation.
3575 if Base_Type (Typ) = Base_Type (Ent)
3576 or else (Is_Class_Wide_Type (Typ)
3577 and then Typ = Class_Wide_Type (Base_Type (Ent)))
3578 or else (Is_Class_Wide_Type (Ent)
3579 and then Ent = Class_Wide_Type (Base_Type (Typ)))
3580 then
3581 null;
3582 else
3583 return False;
3584 end if;
3586 if Present ((Next_Formal (F)))
3587 then
3588 return False;
3590 elsif not Is_Scalar_Type (Typ)
3591 and then not Is_First_Subtype (Typ)
3592 and then not Is_Class_Wide_Type (Typ)
3593 then
3594 return False;
3596 else
3597 return True;
3598 end if;
3599 end Has_Good_Profile;
3601 -- Start of processing for Analyze_Stream_TSS_Definition
3603 begin
3604 FOnly := True;
3606 if not Is_Type (U_Ent) then
3607 Error_Msg_N ("local name must be a subtype", Nam);
3608 return;
3610 elsif not Is_First_Subtype (U_Ent) then
3611 Error_Msg_N ("local name must be a first subtype", Nam);
3612 return;
3613 end if;
3615 Pnam := TSS (Base_Type (U_Ent), TSS_Nam);
3617 -- If Pnam is present, it can be either inherited from an ancestor
3618 -- type (in which case it is legal to redefine it for this type), or
3619 -- be a previous definition of the attribute for the same type (in
3620 -- which case it is illegal).
3622 -- In the first case, it will have been analyzed already, and we
3623 -- can check that its profile does not match the expected profile
3624 -- for a stream attribute of U_Ent. In the second case, either Pnam
3625 -- has been analyzed (and has the expected profile), or it has not
3626 -- been analyzed yet (case of a type that has not been frozen yet
3627 -- and for which the stream attribute has been set using Set_TSS).
3629 if Present (Pnam)
3630 and then (No (First_Entity (Pnam)) or else Has_Good_Profile (Pnam))
3631 then
3632 Error_Msg_Sloc := Sloc (Pnam);
3633 Error_Msg_Name_1 := Attr;
3634 Error_Msg_N ("% attribute already defined #", Nam);
3635 return;
3636 end if;
3638 Analyze (Expr);
3640 if Is_Entity_Name (Expr) then
3641 if not Is_Overloaded (Expr) then
3642 if Has_Good_Profile (Entity (Expr)) then
3643 Subp := Entity (Expr);
3644 end if;
3646 else
3647 Get_First_Interp (Expr, I, It);
3648 while Present (It.Nam) loop
3649 if Has_Good_Profile (It.Nam) then
3650 Subp := It.Nam;
3651 exit;
3652 end if;
3654 Get_Next_Interp (I, It);
3655 end loop;
3656 end if;
3657 end if;
3659 if Present (Subp) then
3660 if Is_Abstract_Subprogram (Subp) then
3661 Error_Msg_N ("stream subprogram must not be abstract", Expr);
3662 return;
3664 -- A stream subprogram for an interface type must be a null
3665 -- procedure (RM 13.13.2 (38/3)).
3667 elsif Is_Interface (U_Ent)
3668 and then not Is_Class_Wide_Type (U_Ent)
3669 and then not Inside_A_Generic
3670 and then
3671 (Ekind (Subp) = E_Function
3672 or else
3673 not Null_Present
3674 (Specification
3675 (Unit_Declaration_Node (Ultimate_Alias (Subp)))))
3676 then
3677 Error_Msg_N
3678 ("stream subprogram for interface type "
3679 & "must be null procedure", Expr);
3680 end if;
3682 Set_Entity (Expr, Subp);
3683 Set_Etype (Expr, Etype (Subp));
3685 New_Stream_Subprogram (N, U_Ent, Subp, TSS_Nam);
3687 else
3688 Error_Msg_Name_1 := Attr;
3689 Error_Msg_N ("incorrect expression for% attribute", Expr);
3690 end if;
3691 end Analyze_Stream_TSS_Definition;
3693 ------------------------------
3694 -- Check_Indexing_Functions --
3695 ------------------------------
3697 procedure Check_Indexing_Functions is
3698 Indexing_Found : Boolean := False;
3700 procedure Check_One_Function (Subp : Entity_Id);
3701 -- Check one possible interpretation. Sets Indexing_Found True if a
3702 -- legal indexing function is found.
3704 procedure Illegal_Indexing (Msg : String);
3705 -- Diagnose illegal indexing function if not overloaded. In the
3706 -- overloaded case indicate that no legal interpretation exists.
3708 ------------------------
3709 -- Check_One_Function --
3710 ------------------------
3712 procedure Check_One_Function (Subp : Entity_Id) is
3713 Default_Element : Node_Id;
3714 Ret_Type : constant Entity_Id := Etype (Subp);
3716 begin
3717 if not Is_Overloadable (Subp) then
3718 Illegal_Indexing ("illegal indexing function for type&");
3719 return;
3721 elsif Scope (Subp) /= Scope (Ent) then
3722 if Nkind (Expr) = N_Expanded_Name then
3724 -- Indexing function can't be declared elsewhere
3726 Illegal_Indexing
3727 ("indexing function must be declared in scope of type&");
3728 end if;
3730 return;
3732 elsif No (First_Formal (Subp)) then
3733 Illegal_Indexing
3734 ("Indexing requires a function that applies to type&");
3735 return;
3737 elsif No (Next_Formal (First_Formal (Subp))) then
3738 Illegal_Indexing
3739 ("indexing function must have at least two parameters");
3740 return;
3742 elsif Is_Derived_Type (Ent) then
3743 if (Attr = Name_Constant_Indexing
3744 and then Present
3745 (Find_Aspect (Etype (Ent), Aspect_Constant_Indexing)))
3746 or else
3747 (Attr = Name_Variable_Indexing
3748 and then Present
3749 (Find_Aspect (Etype (Ent), Aspect_Variable_Indexing)))
3750 then
3751 if Debug_Flag_Dot_XX then
3752 null;
3754 else
3755 Illegal_Indexing
3756 ("indexing function already inherited "
3757 & "from parent type");
3758 return;
3759 end if;
3760 end if;
3761 end if;
3763 if not Check_Primitive_Function (Subp) then
3764 Illegal_Indexing
3765 ("Indexing aspect requires a function that applies to type&");
3766 return;
3767 end if;
3769 -- If partial declaration exists, verify that it is not tagged.
3771 if Ekind (Current_Scope) = E_Package
3772 and then Has_Private_Declaration (Ent)
3773 and then From_Aspect_Specification (N)
3774 and then
3775 List_Containing (Parent (Ent)) =
3776 Private_Declarations
3777 (Specification (Unit_Declaration_Node (Current_Scope)))
3778 and then Nkind (N) = N_Attribute_Definition_Clause
3779 then
3780 declare
3781 Decl : Node_Id;
3783 begin
3784 Decl :=
3785 First (Visible_Declarations
3786 (Specification
3787 (Unit_Declaration_Node (Current_Scope))));
3789 while Present (Decl) loop
3790 if Nkind (Decl) = N_Private_Type_Declaration
3791 and then Ent = Full_View (Defining_Identifier (Decl))
3792 and then Tagged_Present (Decl)
3793 and then No (Aspect_Specifications (Decl))
3794 then
3795 Illegal_Indexing
3796 ("Indexing aspect cannot be specified on full view "
3797 & "if partial view is tagged");
3798 return;
3799 end if;
3801 Next (Decl);
3802 end loop;
3803 end;
3804 end if;
3806 -- An indexing function must return either the default element of
3807 -- the container, or a reference type. For variable indexing it
3808 -- must be the latter.
3810 Default_Element :=
3811 Find_Value_Of_Aspect
3812 (Etype (First_Formal (Subp)), Aspect_Iterator_Element);
3814 if Present (Default_Element) then
3815 Analyze (Default_Element);
3817 if Is_Entity_Name (Default_Element)
3818 and then not Covers (Entity (Default_Element), Ret_Type)
3819 and then False
3820 then
3821 Illegal_Indexing
3822 ("wrong return type for indexing function");
3823 return;
3824 end if;
3825 end if;
3827 -- For variable_indexing the return type must be a reference type
3829 if Attr = Name_Variable_Indexing then
3830 if not Has_Implicit_Dereference (Ret_Type) then
3831 Illegal_Indexing
3832 ("variable indexing must return a reference type");
3833 return;
3835 elsif Is_Access_Constant
3836 (Etype (First_Discriminant (Ret_Type)))
3837 then
3838 Illegal_Indexing
3839 ("variable indexing must return an access to variable");
3840 return;
3841 end if;
3843 else
3844 if Has_Implicit_Dereference (Ret_Type)
3845 and then not
3846 Is_Access_Constant (Etype (First_Discriminant (Ret_Type)))
3847 then
3848 Illegal_Indexing
3849 ("constant indexing must return an access to constant");
3850 return;
3852 elsif Is_Access_Type (Etype (First_Formal (Subp)))
3853 and then not Is_Access_Constant (Etype (First_Formal (Subp)))
3854 then
3855 Illegal_Indexing
3856 ("constant indexing must apply to an access to constant");
3857 return;
3858 end if;
3859 end if;
3861 -- All checks succeeded.
3863 Indexing_Found := True;
3864 end Check_One_Function;
3866 -----------------------
3867 -- Illegal_Indexing --
3868 -----------------------
3870 procedure Illegal_Indexing (Msg : String) is
3871 begin
3872 Error_Msg_NE (Msg, N, Ent);
3873 end Illegal_Indexing;
3875 -- Start of processing for Check_Indexing_Functions
3877 begin
3878 if In_Instance then
3879 return;
3880 end if;
3882 Analyze (Expr);
3884 if not Is_Overloaded (Expr) then
3885 Check_One_Function (Entity (Expr));
3887 else
3888 declare
3889 I : Interp_Index;
3890 It : Interp;
3892 begin
3893 Indexing_Found := False;
3894 Get_First_Interp (Expr, I, It);
3895 while Present (It.Nam) loop
3897 -- Note that analysis will have added the interpretation
3898 -- that corresponds to the dereference. We only check the
3899 -- subprogram itself.
3901 if Is_Overloadable (It.Nam) then
3902 Check_One_Function (It.Nam);
3903 end if;
3905 Get_Next_Interp (I, It);
3906 end loop;
3907 end;
3908 end if;
3910 if not Indexing_Found and then not Error_Posted (N) then
3911 Error_Msg_NE
3912 ("aspect Indexing requires a local function that "
3913 & "applies to type&", Expr, Ent);
3914 end if;
3915 end Check_Indexing_Functions;
3917 ------------------------------
3918 -- Check_Iterator_Functions --
3919 ------------------------------
3921 procedure Check_Iterator_Functions is
3922 Default : Entity_Id;
3924 function Valid_Default_Iterator (Subp : Entity_Id) return Boolean;
3925 -- Check one possible interpretation for validity
3927 ----------------------------
3928 -- Valid_Default_Iterator --
3929 ----------------------------
3931 function Valid_Default_Iterator (Subp : Entity_Id) return Boolean is
3932 Formal : Entity_Id;
3934 begin
3935 if not Check_Primitive_Function (Subp) then
3936 return False;
3937 else
3938 Formal := First_Formal (Subp);
3939 end if;
3941 -- False if any subsequent formal has no default expression
3943 Formal := Next_Formal (Formal);
3944 while Present (Formal) loop
3945 if No (Expression (Parent (Formal))) then
3946 return False;
3947 end if;
3949 Next_Formal (Formal);
3950 end loop;
3952 -- True if all subsequent formals have default expressions
3954 return True;
3955 end Valid_Default_Iterator;
3957 -- Start of processing for Check_Iterator_Functions
3959 begin
3960 Analyze (Expr);
3962 if not Is_Entity_Name (Expr) then
3963 Error_Msg_N ("aspect Iterator must be a function name", Expr);
3964 end if;
3966 if not Is_Overloaded (Expr) then
3967 if not Check_Primitive_Function (Entity (Expr)) then
3968 Error_Msg_NE
3969 ("aspect Indexing requires a function that applies to type&",
3970 Entity (Expr), Ent);
3971 end if;
3973 if not Valid_Default_Iterator (Entity (Expr)) then
3974 Error_Msg_N ("improper function for default iterator", Expr);
3975 end if;
3977 else
3978 Default := Empty;
3979 declare
3980 I : Interp_Index;
3981 It : Interp;
3983 begin
3984 Get_First_Interp (Expr, I, It);
3985 while Present (It.Nam) loop
3986 if not Check_Primitive_Function (It.Nam)
3987 or else not Valid_Default_Iterator (It.Nam)
3988 then
3989 Remove_Interp (I);
3991 elsif Present (Default) then
3992 Error_Msg_N ("default iterator must be unique", Expr);
3994 else
3995 Default := It.Nam;
3996 end if;
3998 Get_Next_Interp (I, It);
3999 end loop;
4000 end;
4002 if Present (Default) then
4003 Set_Entity (Expr, Default);
4004 Set_Is_Overloaded (Expr, False);
4005 end if;
4006 end if;
4007 end Check_Iterator_Functions;
4009 -------------------------------
4010 -- Check_Primitive_Function --
4011 -------------------------------
4013 function Check_Primitive_Function (Subp : Entity_Id) return Boolean is
4014 Ctrl : Entity_Id;
4016 begin
4017 if Ekind (Subp) /= E_Function then
4018 return False;
4019 end if;
4021 if No (First_Formal (Subp)) then
4022 return False;
4023 else
4024 Ctrl := Etype (First_Formal (Subp));
4025 end if;
4027 -- Type of formal may be the class-wide type, an access to such,
4028 -- or an incomplete view.
4030 if Ctrl = Ent
4031 or else Ctrl = Class_Wide_Type (Ent)
4032 or else
4033 (Ekind (Ctrl) = E_Anonymous_Access_Type
4034 and then (Designated_Type (Ctrl) = Ent
4035 or else
4036 Designated_Type (Ctrl) = Class_Wide_Type (Ent)))
4037 or else
4038 (Ekind (Ctrl) = E_Incomplete_Type
4039 and then Full_View (Ctrl) = Ent)
4040 then
4041 null;
4042 else
4043 return False;
4044 end if;
4046 return True;
4047 end Check_Primitive_Function;
4049 ----------------------
4050 -- Duplicate_Clause --
4051 ----------------------
4053 function Duplicate_Clause return Boolean is
4054 A : Node_Id;
4056 begin
4057 -- Nothing to do if this attribute definition clause comes from
4058 -- an aspect specification, since we could not be duplicating an
4059 -- explicit clause, and we dealt with the case of duplicated aspects
4060 -- in Analyze_Aspect_Specifications.
4062 if From_Aspect_Specification (N) then
4063 return False;
4064 end if;
4066 -- Otherwise current clause may duplicate previous clause, or a
4067 -- previously given pragma or aspect specification for the same
4068 -- aspect.
4070 A := Get_Rep_Item (U_Ent, Chars (N), Check_Parents => False);
4072 if Present (A) then
4073 Error_Msg_Name_1 := Chars (N);
4074 Error_Msg_Sloc := Sloc (A);
4076 Error_Msg_NE ("aspect% for & previously given#", N, U_Ent);
4077 return True;
4078 end if;
4080 return False;
4081 end Duplicate_Clause;
4083 -- Start of processing for Analyze_Attribute_Definition_Clause
4085 begin
4086 -- The following code is a defense against recursion. Not clear that
4087 -- this can happen legitimately, but perhaps some error situations can
4088 -- cause it, and we did see this recursion during testing.
4090 if Analyzed (N) then
4091 return;
4092 else
4093 Set_Analyzed (N, True);
4094 end if;
4096 -- Ignore some selected attributes in CodePeer mode since they are not
4097 -- relevant in this context.
4099 if CodePeer_Mode then
4100 case Id is
4102 -- Ignore Component_Size in CodePeer mode, to avoid changing the
4103 -- internal representation of types by implicitly packing them.
4105 when Attribute_Component_Size =>
4106 Rewrite (N, Make_Null_Statement (Sloc (N)));
4107 return;
4109 when others =>
4110 null;
4111 end case;
4112 end if;
4114 -- Process Ignore_Rep_Clauses option
4116 if Ignore_Rep_Clauses then
4117 case Id is
4119 -- The following should be ignored. They do not affect legality
4120 -- and may be target dependent. The basic idea of -gnatI is to
4121 -- ignore any rep clauses that may be target dependent but do not
4122 -- affect legality (except possibly to be rejected because they
4123 -- are incompatible with the compilation target).
4125 when Attribute_Alignment |
4126 Attribute_Bit_Order |
4127 Attribute_Component_Size |
4128 Attribute_Machine_Radix |
4129 Attribute_Object_Size |
4130 Attribute_Size |
4131 Attribute_Small |
4132 Attribute_Stream_Size |
4133 Attribute_Value_Size =>
4134 Kill_Rep_Clause (N);
4135 return;
4137 -- The following should not be ignored, because in the first place
4138 -- they are reasonably portable, and should not cause problems
4139 -- in compiling code from another target, and also they do affect
4140 -- legality, e.g. failing to provide a stream attribute for a type
4141 -- may make a program illegal.
4143 when Attribute_External_Tag |
4144 Attribute_Input |
4145 Attribute_Output |
4146 Attribute_Read |
4147 Attribute_Simple_Storage_Pool |
4148 Attribute_Storage_Pool |
4149 Attribute_Storage_Size |
4150 Attribute_Write =>
4151 null;
4153 -- We do not do anything here with address clauses, they will be
4154 -- removed by Freeze later on, but for now, it works better to
4155 -- keep then in the tree.
4157 when Attribute_Address =>
4158 null;
4160 -- Other cases are errors ("attribute& cannot be set with
4161 -- definition clause"), which will be caught below.
4163 when others =>
4164 null;
4165 end case;
4166 end if;
4168 Analyze (Nam);
4169 Ent := Entity (Nam);
4171 if Rep_Item_Too_Early (Ent, N) then
4172 return;
4173 end if;
4175 -- Rep clause applies to full view of incomplete type or private type if
4176 -- we have one (if not, this is a premature use of the type). However,
4177 -- certain semantic checks need to be done on the specified entity (i.e.
4178 -- the private view), so we save it in Ent.
4180 if Is_Private_Type (Ent)
4181 and then Is_Derived_Type (Ent)
4182 and then not Is_Tagged_Type (Ent)
4183 and then No (Full_View (Ent))
4184 then
4185 -- If this is a private type whose completion is a derivation from
4186 -- another private type, there is no full view, and the attribute
4187 -- belongs to the type itself, not its underlying parent.
4189 U_Ent := Ent;
4191 elsif Ekind (Ent) = E_Incomplete_Type then
4193 -- The attribute applies to the full view, set the entity of the
4194 -- attribute definition accordingly.
4196 Ent := Underlying_Type (Ent);
4197 U_Ent := Ent;
4198 Set_Entity (Nam, Ent);
4200 else
4201 U_Ent := Underlying_Type (Ent);
4202 end if;
4204 -- Avoid cascaded error
4206 if Etype (Nam) = Any_Type then
4207 return;
4209 -- Must be declared in current scope or in case of an aspect
4210 -- specification, must be visible in current scope.
4212 elsif Scope (Ent) /= Current_Scope
4213 and then
4214 not (From_Aspect_Specification (N)
4215 and then Scope_Within_Or_Same (Current_Scope, Scope (Ent)))
4216 then
4217 Error_Msg_N ("entity must be declared in this scope", Nam);
4218 return;
4220 -- Must not be a source renaming (we do have some cases where the
4221 -- expander generates a renaming, and those cases are OK, in such
4222 -- cases any attribute applies to the renamed object as well).
4224 elsif Is_Object (Ent)
4225 and then Present (Renamed_Object (Ent))
4226 then
4227 -- Case of renamed object from source, this is an error
4229 if Comes_From_Source (Renamed_Object (Ent)) then
4230 Get_Name_String (Chars (N));
4231 Error_Msg_Strlen := Name_Len;
4232 Error_Msg_String (1 .. Name_Len) := Name_Buffer (1 .. Name_Len);
4233 Error_Msg_N
4234 ("~ clause not allowed for a renaming declaration "
4235 & "(RM 13.1(6))", Nam);
4236 return;
4238 -- For the case of a compiler generated renaming, the attribute
4239 -- definition clause applies to the renamed object created by the
4240 -- expander. The easiest general way to handle this is to create a
4241 -- copy of the attribute definition clause for this object.
4243 elsif Is_Entity_Name (Renamed_Object (Ent)) then
4244 Insert_Action (N,
4245 Make_Attribute_Definition_Clause (Loc,
4246 Name =>
4247 New_Occurrence_Of (Entity (Renamed_Object (Ent)), Loc),
4248 Chars => Chars (N),
4249 Expression => Duplicate_Subexpr (Expression (N))));
4251 -- If the renamed object is not an entity, it must be a dereference
4252 -- of an unconstrained function call, and we must introduce a new
4253 -- declaration to capture the expression. This is needed in the case
4254 -- of 'Alignment, where the original declaration must be rewritten.
4256 else
4257 pragma Assert
4258 (Nkind (Renamed_Object (Ent)) = N_Explicit_Dereference);
4259 null;
4260 end if;
4262 -- If no underlying entity, use entity itself, applies to some
4263 -- previously detected error cases ???
4265 elsif No (U_Ent) then
4266 U_Ent := Ent;
4268 -- Cannot specify for a subtype (exception Object/Value_Size)
4270 elsif Is_Type (U_Ent)
4271 and then not Is_First_Subtype (U_Ent)
4272 and then Id /= Attribute_Object_Size
4273 and then Id /= Attribute_Value_Size
4274 and then not From_At_Mod (N)
4275 then
4276 Error_Msg_N ("cannot specify attribute for subtype", Nam);
4277 return;
4278 end if;
4280 Set_Entity (N, U_Ent);
4281 Check_Restriction_No_Use_Of_Attribute (N);
4283 -- Switch on particular attribute
4285 case Id is
4287 -------------
4288 -- Address --
4289 -------------
4291 -- Address attribute definition clause
4293 when Attribute_Address => Address : begin
4295 -- A little error check, catch for X'Address use X'Address;
4297 if Nkind (Nam) = N_Identifier
4298 and then Nkind (Expr) = N_Attribute_Reference
4299 and then Attribute_Name (Expr) = Name_Address
4300 and then Nkind (Prefix (Expr)) = N_Identifier
4301 and then Chars (Nam) = Chars (Prefix (Expr))
4302 then
4303 Error_Msg_NE
4304 ("address for & is self-referencing", Prefix (Expr), Ent);
4305 return;
4306 end if;
4308 -- Not that special case, carry on with analysis of expression
4310 Analyze_And_Resolve (Expr, RTE (RE_Address));
4312 -- Even when ignoring rep clauses we need to indicate that the
4313 -- entity has an address clause and thus it is legal to declare
4314 -- it imported. Freeze will get rid of the address clause later.
4316 if Ignore_Rep_Clauses then
4317 if Ekind_In (U_Ent, E_Variable, E_Constant) then
4318 Record_Rep_Item (U_Ent, N);
4319 end if;
4321 return;
4322 end if;
4324 if Duplicate_Clause then
4325 null;
4327 -- Case of address clause for subprogram
4329 elsif Is_Subprogram (U_Ent) then
4330 if Has_Homonym (U_Ent) then
4331 Error_Msg_N
4332 ("address clause cannot be given " &
4333 "for overloaded subprogram",
4334 Nam);
4335 return;
4336 end if;
4338 -- For subprograms, all address clauses are permitted, and we
4339 -- mark the subprogram as having a deferred freeze so that Gigi
4340 -- will not elaborate it too soon.
4342 -- Above needs more comments, what is too soon about???
4344 Set_Has_Delayed_Freeze (U_Ent);
4346 -- Case of address clause for entry
4348 elsif Ekind (U_Ent) = E_Entry then
4349 if Nkind (Parent (N)) = N_Task_Body then
4350 Error_Msg_N
4351 ("entry address must be specified in task spec", Nam);
4352 return;
4353 end if;
4355 -- For entries, we require a constant address
4357 Check_Constant_Address_Clause (Expr, U_Ent);
4359 -- Special checks for task types
4361 if Is_Task_Type (Scope (U_Ent))
4362 and then Comes_From_Source (Scope (U_Ent))
4363 then
4364 Error_Msg_N
4365 ("??entry address declared for entry in task type", N);
4366 Error_Msg_N
4367 ("\??only one task can be declared of this type", N);
4368 end if;
4370 -- Entry address clauses are obsolescent
4372 Check_Restriction (No_Obsolescent_Features, N);
4374 if Warn_On_Obsolescent_Feature then
4375 Error_Msg_N
4376 ("?j?attaching interrupt to task entry is an " &
4377 "obsolescent feature (RM J.7.1)", N);
4378 Error_Msg_N
4379 ("\?j?use interrupt procedure instead", N);
4380 end if;
4382 -- Case of an address clause for a controlled object which we
4383 -- consider to be erroneous.
4385 elsif Is_Controlled (Etype (U_Ent))
4386 or else Has_Controlled_Component (Etype (U_Ent))
4387 then
4388 Error_Msg_NE
4389 ("??controlled object& must not be overlaid", Nam, U_Ent);
4390 Error_Msg_N
4391 ("\??Program_Error will be raised at run time", Nam);
4392 Insert_Action (Declaration_Node (U_Ent),
4393 Make_Raise_Program_Error (Loc,
4394 Reason => PE_Overlaid_Controlled_Object));
4395 return;
4397 -- Case of address clause for a (non-controlled) object
4399 elsif Ekind_In (U_Ent, E_Variable, E_Constant) then
4400 declare
4401 Expr : constant Node_Id := Expression (N);
4402 O_Ent : Entity_Id;
4403 Off : Boolean;
4405 begin
4406 -- Exported variables cannot have an address clause, because
4407 -- this cancels the effect of the pragma Export.
4409 if Is_Exported (U_Ent) then
4410 Error_Msg_N
4411 ("cannot export object with address clause", Nam);
4412 return;
4413 end if;
4415 Find_Overlaid_Entity (N, O_Ent, Off);
4417 -- Overlaying controlled objects is erroneous
4419 if Present (O_Ent)
4420 and then (Has_Controlled_Component (Etype (O_Ent))
4421 or else Is_Controlled (Etype (O_Ent)))
4422 then
4423 Error_Msg_N
4424 ("??cannot overlay with controlled object", Expr);
4425 Error_Msg_N
4426 ("\??Program_Error will be raised at run time", Expr);
4427 Insert_Action (Declaration_Node (U_Ent),
4428 Make_Raise_Program_Error (Loc,
4429 Reason => PE_Overlaid_Controlled_Object));
4430 return;
4432 elsif Present (O_Ent)
4433 and then Ekind (U_Ent) = E_Constant
4434 and then not Is_Constant_Object (O_Ent)
4435 then
4436 Error_Msg_N ("??constant overlays a variable", Expr);
4438 -- Imported variables can have an address clause, but then
4439 -- the import is pretty meaningless except to suppress
4440 -- initializations, so we do not need such variables to
4441 -- be statically allocated (and in fact it causes trouble
4442 -- if the address clause is a local value).
4444 elsif Is_Imported (U_Ent) then
4445 Set_Is_Statically_Allocated (U_Ent, False);
4446 end if;
4448 -- We mark a possible modification of a variable with an
4449 -- address clause, since it is likely aliasing is occurring.
4451 Note_Possible_Modification (Nam, Sure => False);
4453 -- Here we are checking for explicit overlap of one variable
4454 -- by another, and if we find this then mark the overlapped
4455 -- variable as also being volatile to prevent unwanted
4456 -- optimizations. This is a significant pessimization so
4457 -- avoid it when there is an offset, i.e. when the object
4458 -- is composite; they cannot be optimized easily anyway.
4460 if Present (O_Ent)
4461 and then Is_Object (O_Ent)
4462 and then not Off
4464 -- The following test is an expedient solution to what
4465 -- is really a problem in CodePeer. Suppressing the
4466 -- Set_Treat_As_Volatile call here prevents later
4467 -- generation (in some cases) of trees that CodePeer
4468 -- should, but currently does not, handle correctly.
4469 -- This test should probably be removed when CodePeer
4470 -- is improved, just because we want the tree CodePeer
4471 -- analyzes to match the tree for which we generate code
4472 -- as closely as is practical. ???
4474 and then not CodePeer_Mode
4475 then
4476 -- ??? O_Ent might not be in current unit
4478 Set_Treat_As_Volatile (O_Ent);
4479 end if;
4481 -- Legality checks on the address clause for initialized
4482 -- objects is deferred until the freeze point, because
4483 -- a subsequent pragma might indicate that the object
4484 -- is imported and thus not initialized. Also, the address
4485 -- clause might involve entities that have yet to be
4486 -- elaborated.
4488 Set_Has_Delayed_Freeze (U_Ent);
4490 -- If an initialization call has been generated for this
4491 -- object, it needs to be deferred to after the freeze node
4492 -- we have just now added, otherwise GIGI will see a
4493 -- reference to the variable (as actual to the IP call)
4494 -- before its definition.
4496 declare
4497 Init_Call : constant Node_Id :=
4498 Remove_Init_Call (U_Ent, N);
4500 begin
4501 if Present (Init_Call) then
4502 Append_Freeze_Action (U_Ent, Init_Call);
4504 -- Reset Initialization_Statements pointer so that
4505 -- if there is a pragma Import further down, it can
4506 -- clear any default initialization.
4508 Set_Initialization_Statements (U_Ent, Init_Call);
4509 end if;
4510 end;
4512 if Is_Exported (U_Ent) then
4513 Error_Msg_N
4514 ("& cannot be exported if an address clause is given",
4515 Nam);
4516 Error_Msg_N
4517 ("\define and export a variable "
4518 & "that holds its address instead", Nam);
4519 end if;
4521 -- Entity has delayed freeze, so we will generate an
4522 -- alignment check at the freeze point unless suppressed.
4524 if not Range_Checks_Suppressed (U_Ent)
4525 and then not Alignment_Checks_Suppressed (U_Ent)
4526 then
4527 Set_Check_Address_Alignment (N);
4528 end if;
4530 -- Kill the size check code, since we are not allocating
4531 -- the variable, it is somewhere else.
4533 Kill_Size_Check_Code (U_Ent);
4535 -- If the address clause is of the form:
4537 -- for Y'Address use X'Address
4539 -- or
4541 -- Const : constant Address := X'Address;
4542 -- ...
4543 -- for Y'Address use Const;
4545 -- then we make an entry in the table for checking the size
4546 -- and alignment of the overlaying variable. We defer this
4547 -- check till after code generation to take full advantage
4548 -- of the annotation done by the back end.
4550 -- If the entity has a generic type, the check will be
4551 -- performed in the instance if the actual type justifies
4552 -- it, and we do not insert the clause in the table to
4553 -- prevent spurious warnings.
4555 -- Note: we used to test Comes_From_Source and only give
4556 -- this warning for source entities, but we have removed
4557 -- this test. It really seems bogus to generate overlays
4558 -- that would trigger this warning in generated code.
4559 -- Furthermore, by removing the test, we handle the
4560 -- aspect case properly.
4562 if Address_Clause_Overlay_Warnings
4563 and then Present (O_Ent)
4564 and then Is_Object (O_Ent)
4565 then
4566 if not Is_Generic_Type (Etype (U_Ent)) then
4567 Address_Clause_Checks.Append ((N, U_Ent, O_Ent, Off));
4568 end if;
4570 -- If variable overlays a constant view, and we are
4571 -- warning on overlays, then mark the variable as
4572 -- overlaying a constant (we will give warnings later
4573 -- if this variable is assigned).
4575 if Is_Constant_Object (O_Ent)
4576 and then Ekind (U_Ent) = E_Variable
4577 then
4578 Set_Overlays_Constant (U_Ent);
4579 end if;
4580 end if;
4581 end;
4583 -- Not a valid entity for an address clause
4585 else
4586 Error_Msg_N ("address cannot be given for &", Nam);
4587 end if;
4588 end Address;
4590 ---------------
4591 -- Alignment --
4592 ---------------
4594 -- Alignment attribute definition clause
4596 when Attribute_Alignment => Alignment : declare
4597 Align : constant Uint := Get_Alignment_Value (Expr);
4598 Max_Align : constant Uint := UI_From_Int (Maximum_Alignment);
4600 begin
4601 FOnly := True;
4603 if not Is_Type (U_Ent)
4604 and then Ekind (U_Ent) /= E_Variable
4605 and then Ekind (U_Ent) /= E_Constant
4606 then
4607 Error_Msg_N ("alignment cannot be given for &", Nam);
4609 elsif Duplicate_Clause then
4610 null;
4612 elsif Align /= No_Uint then
4613 Set_Has_Alignment_Clause (U_Ent);
4615 -- Tagged type case, check for attempt to set alignment to a
4616 -- value greater than Max_Align, and reset if so.
4618 if Is_Tagged_Type (U_Ent) and then Align > Max_Align then
4619 Error_Msg_N
4620 ("alignment for & set to Maximum_Aligment??", Nam);
4621 Set_Alignment (U_Ent, Max_Align);
4623 -- All other cases
4625 else
4626 Set_Alignment (U_Ent, Align);
4627 end if;
4629 -- For an array type, U_Ent is the first subtype. In that case,
4630 -- also set the alignment of the anonymous base type so that
4631 -- other subtypes (such as the itypes for aggregates of the
4632 -- type) also receive the expected alignment.
4634 if Is_Array_Type (U_Ent) then
4635 Set_Alignment (Base_Type (U_Ent), Align);
4636 end if;
4637 end if;
4638 end Alignment;
4640 ---------------
4641 -- Bit_Order --
4642 ---------------
4644 -- Bit_Order attribute definition clause
4646 when Attribute_Bit_Order => Bit_Order : declare
4647 begin
4648 if not Is_Record_Type (U_Ent) then
4649 Error_Msg_N
4650 ("Bit_Order can only be defined for record type", Nam);
4652 elsif Duplicate_Clause then
4653 null;
4655 else
4656 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
4658 if Etype (Expr) = Any_Type then
4659 return;
4661 elsif not Is_OK_Static_Expression (Expr) then
4662 Flag_Non_Static_Expr
4663 ("Bit_Order requires static expression!", Expr);
4665 else
4666 if (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
4667 Set_Reverse_Bit_Order (Base_Type (U_Ent), True);
4668 end if;
4669 end if;
4670 end if;
4671 end Bit_Order;
4673 --------------------
4674 -- Component_Size --
4675 --------------------
4677 -- Component_Size attribute definition clause
4679 when Attribute_Component_Size => Component_Size_Case : declare
4680 Csize : constant Uint := Static_Integer (Expr);
4681 Ctyp : Entity_Id;
4682 Btype : Entity_Id;
4683 Biased : Boolean;
4684 New_Ctyp : Entity_Id;
4685 Decl : Node_Id;
4687 begin
4688 if not Is_Array_Type (U_Ent) then
4689 Error_Msg_N ("component size requires array type", Nam);
4690 return;
4691 end if;
4693 Btype := Base_Type (U_Ent);
4694 Ctyp := Component_Type (Btype);
4696 if Duplicate_Clause then
4697 null;
4699 elsif Rep_Item_Too_Early (Btype, N) then
4700 null;
4702 elsif Csize /= No_Uint then
4703 Check_Size (Expr, Ctyp, Csize, Biased);
4705 -- For the biased case, build a declaration for a subtype that
4706 -- will be used to represent the biased subtype that reflects
4707 -- the biased representation of components. We need the subtype
4708 -- to get proper conversions on referencing elements of the
4709 -- array. Note: component size clauses are ignored in VM mode.
4711 if VM_Target = No_VM then
4712 if Biased then
4713 New_Ctyp :=
4714 Make_Defining_Identifier (Loc,
4715 Chars =>
4716 New_External_Name (Chars (U_Ent), 'C', 0, 'T'));
4718 Decl :=
4719 Make_Subtype_Declaration (Loc,
4720 Defining_Identifier => New_Ctyp,
4721 Subtype_Indication =>
4722 New_Occurrence_Of (Component_Type (Btype), Loc));
4724 Set_Parent (Decl, N);
4725 Analyze (Decl, Suppress => All_Checks);
4727 Set_Has_Delayed_Freeze (New_Ctyp, False);
4728 Set_Esize (New_Ctyp, Csize);
4729 Set_RM_Size (New_Ctyp, Csize);
4730 Init_Alignment (New_Ctyp);
4731 Set_Is_Itype (New_Ctyp, True);
4732 Set_Associated_Node_For_Itype (New_Ctyp, U_Ent);
4734 Set_Component_Type (Btype, New_Ctyp);
4735 Set_Biased (New_Ctyp, N, "component size clause");
4736 end if;
4738 Set_Component_Size (Btype, Csize);
4740 -- For VM case, we ignore component size clauses
4742 else
4743 -- Give a warning unless we are in GNAT mode, in which case
4744 -- the warning is suppressed since it is not useful.
4746 if not GNAT_Mode then
4747 Error_Msg_N
4748 ("component size ignored in this configuration??", N);
4749 end if;
4750 end if;
4752 -- Deal with warning on overridden size
4754 if Warn_On_Overridden_Size
4755 and then Has_Size_Clause (Ctyp)
4756 and then RM_Size (Ctyp) /= Csize
4757 then
4758 Error_Msg_NE
4759 ("component size overrides size clause for&?S?", N, Ctyp);
4760 end if;
4762 Set_Has_Component_Size_Clause (Btype, True);
4763 Set_Has_Non_Standard_Rep (Btype, True);
4764 end if;
4765 end Component_Size_Case;
4767 -----------------------
4768 -- Constant_Indexing --
4769 -----------------------
4771 when Attribute_Constant_Indexing =>
4772 Check_Indexing_Functions;
4774 ---------
4775 -- CPU --
4776 ---------
4778 when Attribute_CPU => CPU :
4779 begin
4780 -- CPU attribute definition clause not allowed except from aspect
4781 -- specification.
4783 if From_Aspect_Specification (N) then
4784 if not Is_Task_Type (U_Ent) then
4785 Error_Msg_N ("CPU can only be defined for task", Nam);
4787 elsif Duplicate_Clause then
4788 null;
4790 else
4791 -- The expression must be analyzed in the special manner
4792 -- described in "Handling of Default and Per-Object
4793 -- Expressions" in sem.ads.
4795 -- The visibility to the discriminants must be restored
4797 Push_Scope_And_Install_Discriminants (U_Ent);
4798 Preanalyze_Spec_Expression (Expr, RTE (RE_CPU_Range));
4799 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
4801 if not Is_OK_Static_Expression (Expr) then
4802 Check_Restriction (Static_Priorities, Expr);
4803 end if;
4804 end if;
4806 else
4807 Error_Msg_N
4808 ("attribute& cannot be set with definition clause", N);
4809 end if;
4810 end CPU;
4812 ----------------------
4813 -- Default_Iterator --
4814 ----------------------
4816 when Attribute_Default_Iterator => Default_Iterator : declare
4817 Func : Entity_Id;
4818 Typ : Entity_Id;
4820 begin
4821 if not Is_Tagged_Type (U_Ent) then
4822 Error_Msg_N
4823 ("aspect Default_Iterator applies to tagged type", Nam);
4824 end if;
4826 Check_Iterator_Functions;
4828 Analyze (Expr);
4830 if not Is_Entity_Name (Expr)
4831 or else Ekind (Entity (Expr)) /= E_Function
4832 then
4833 Error_Msg_N ("aspect Iterator must be a function", Expr);
4834 else
4835 Func := Entity (Expr);
4836 end if;
4838 -- The type of the first parameter must be T, T'class, or a
4839 -- corresponding access type (5.5.1 (8/3)
4841 if No (First_Formal (Func)) then
4842 Typ := Empty;
4843 else
4844 Typ := Etype (First_Formal (Func));
4845 end if;
4847 if Typ = U_Ent
4848 or else Typ = Class_Wide_Type (U_Ent)
4849 or else (Is_Access_Type (Typ)
4850 and then Designated_Type (Typ) = U_Ent)
4851 or else (Is_Access_Type (Typ)
4852 and then Designated_Type (Typ) =
4853 Class_Wide_Type (U_Ent))
4854 then
4855 null;
4857 else
4858 Error_Msg_NE
4859 ("Default Iterator must be a primitive of&", Func, U_Ent);
4860 end if;
4861 end Default_Iterator;
4863 ------------------------
4864 -- Dispatching_Domain --
4865 ------------------------
4867 when Attribute_Dispatching_Domain => Dispatching_Domain :
4868 begin
4869 -- Dispatching_Domain attribute definition clause not allowed
4870 -- except from aspect specification.
4872 if From_Aspect_Specification (N) then
4873 if not Is_Task_Type (U_Ent) then
4874 Error_Msg_N
4875 ("Dispatching_Domain can only be defined for task", Nam);
4877 elsif Duplicate_Clause then
4878 null;
4880 else
4881 -- The expression must be analyzed in the special manner
4882 -- described in "Handling of Default and Per-Object
4883 -- Expressions" in sem.ads.
4885 -- The visibility to the discriminants must be restored
4887 Push_Scope_And_Install_Discriminants (U_Ent);
4889 Preanalyze_Spec_Expression
4890 (Expr, RTE (RE_Dispatching_Domain));
4892 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
4893 end if;
4895 else
4896 Error_Msg_N
4897 ("attribute& cannot be set with definition clause", N);
4898 end if;
4899 end Dispatching_Domain;
4901 ------------------
4902 -- External_Tag --
4903 ------------------
4905 when Attribute_External_Tag => External_Tag :
4906 begin
4907 if not Is_Tagged_Type (U_Ent) then
4908 Error_Msg_N ("should be a tagged type", Nam);
4909 end if;
4911 if Duplicate_Clause then
4912 null;
4914 else
4915 Analyze_And_Resolve (Expr, Standard_String);
4917 if not Is_OK_Static_Expression (Expr) then
4918 Flag_Non_Static_Expr
4919 ("static string required for tag name!", Nam);
4920 end if;
4922 if VM_Target /= No_VM then
4923 Error_Msg_Name_1 := Attr;
4924 Error_Msg_N
4925 ("% attribute unsupported in this configuration", Nam);
4926 end if;
4928 if not Is_Library_Level_Entity (U_Ent) then
4929 Error_Msg_NE
4930 ("??non-unique external tag supplied for &", N, U_Ent);
4931 Error_Msg_N
4932 ("\??same external tag applies to all "
4933 & "subprogram calls", N);
4934 Error_Msg_N
4935 ("\??corresponding internal tag cannot be obtained", N);
4936 end if;
4937 end if;
4938 end External_Tag;
4940 --------------------------
4941 -- Implicit_Dereference --
4942 --------------------------
4944 when Attribute_Implicit_Dereference =>
4946 -- Legality checks already performed at the point of the type
4947 -- declaration, aspect is not delayed.
4949 null;
4951 -----------
4952 -- Input --
4953 -----------
4955 when Attribute_Input =>
4956 Analyze_Stream_TSS_Definition (TSS_Stream_Input);
4957 Set_Has_Specified_Stream_Input (Ent);
4959 ------------------------
4960 -- Interrupt_Priority --
4961 ------------------------
4963 when Attribute_Interrupt_Priority => Interrupt_Priority :
4964 begin
4965 -- Interrupt_Priority attribute definition clause not allowed
4966 -- except from aspect specification.
4968 if From_Aspect_Specification (N) then
4969 if not Is_Concurrent_Type (U_Ent) then
4970 Error_Msg_N
4971 ("Interrupt_Priority can only be defined for task "
4972 & "and protected object", Nam);
4974 elsif Duplicate_Clause then
4975 null;
4977 else
4978 -- The expression must be analyzed in the special manner
4979 -- described in "Handling of Default and Per-Object
4980 -- Expressions" in sem.ads.
4982 -- The visibility to the discriminants must be restored
4984 Push_Scope_And_Install_Discriminants (U_Ent);
4986 Preanalyze_Spec_Expression
4987 (Expr, RTE (RE_Interrupt_Priority));
4989 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
4990 end if;
4992 else
4993 Error_Msg_N
4994 ("attribute& cannot be set with definition clause", N);
4995 end if;
4996 end Interrupt_Priority;
4998 --------------
4999 -- Iterable --
5000 --------------
5002 when Attribute_Iterable =>
5003 Analyze (Expr);
5005 if Nkind (Expr) /= N_Aggregate then
5006 Error_Msg_N ("aspect Iterable must be an aggregate", Expr);
5007 end if;
5009 declare
5010 Assoc : Node_Id;
5012 begin
5013 Assoc := First (Component_Associations (Expr));
5014 while Present (Assoc) loop
5015 if not Is_Entity_Name (Expression (Assoc)) then
5016 Error_Msg_N ("value must be a function", Assoc);
5017 end if;
5019 Next (Assoc);
5020 end loop;
5021 end;
5023 ----------------------
5024 -- Iterator_Element --
5025 ----------------------
5027 when Attribute_Iterator_Element =>
5028 Analyze (Expr);
5030 if not Is_Entity_Name (Expr)
5031 or else not Is_Type (Entity (Expr))
5032 then
5033 Error_Msg_N ("aspect Iterator_Element must be a type", Expr);
5034 end if;
5036 -------------------
5037 -- Machine_Radix --
5038 -------------------
5040 -- Machine radix attribute definition clause
5042 when Attribute_Machine_Radix => Machine_Radix : declare
5043 Radix : constant Uint := Static_Integer (Expr);
5045 begin
5046 if not Is_Decimal_Fixed_Point_Type (U_Ent) then
5047 Error_Msg_N ("decimal fixed-point type expected for &", Nam);
5049 elsif Duplicate_Clause then
5050 null;
5052 elsif Radix /= No_Uint then
5053 Set_Has_Machine_Radix_Clause (U_Ent);
5054 Set_Has_Non_Standard_Rep (Base_Type (U_Ent));
5056 if Radix = 2 then
5057 null;
5058 elsif Radix = 10 then
5059 Set_Machine_Radix_10 (U_Ent);
5060 else
5061 Error_Msg_N ("machine radix value must be 2 or 10", Expr);
5062 end if;
5063 end if;
5064 end Machine_Radix;
5066 -----------------
5067 -- Object_Size --
5068 -----------------
5070 -- Object_Size attribute definition clause
5072 when Attribute_Object_Size => Object_Size : declare
5073 Size : constant Uint := Static_Integer (Expr);
5075 Biased : Boolean;
5076 pragma Warnings (Off, Biased);
5078 begin
5079 if not Is_Type (U_Ent) then
5080 Error_Msg_N ("Object_Size cannot be given for &", Nam);
5082 elsif Duplicate_Clause then
5083 null;
5085 else
5086 Check_Size (Expr, U_Ent, Size, Biased);
5088 if Is_Scalar_Type (U_Ent) then
5089 if Size /= 8 and then Size /= 16 and then Size /= 32
5090 and then UI_Mod (Size, 64) /= 0
5091 then
5092 Error_Msg_N
5093 ("Object_Size must be 8, 16, 32, or multiple of 64",
5094 Expr);
5095 end if;
5097 elsif Size mod 8 /= 0 then
5098 Error_Msg_N ("Object_Size must be a multiple of 8", Expr);
5099 end if;
5101 Set_Esize (U_Ent, Size);
5102 Set_Has_Object_Size_Clause (U_Ent);
5103 Alignment_Check_For_Size_Change (U_Ent, Size);
5104 end if;
5105 end Object_Size;
5107 ------------
5108 -- Output --
5109 ------------
5111 when Attribute_Output =>
5112 Analyze_Stream_TSS_Definition (TSS_Stream_Output);
5113 Set_Has_Specified_Stream_Output (Ent);
5115 --------------
5116 -- Priority --
5117 --------------
5119 when Attribute_Priority => Priority :
5120 begin
5121 -- Priority attribute definition clause not allowed except from
5122 -- aspect specification.
5124 if From_Aspect_Specification (N) then
5125 if not (Is_Concurrent_Type (U_Ent)
5126 or else Ekind (U_Ent) = E_Procedure)
5127 then
5128 Error_Msg_N
5129 ("Priority can only be defined for task and protected "
5130 & "object", Nam);
5132 elsif Duplicate_Clause then
5133 null;
5135 else
5136 -- The expression must be analyzed in the special manner
5137 -- described in "Handling of Default and Per-Object
5138 -- Expressions" in sem.ads.
5140 -- The visibility to the discriminants must be restored
5142 Push_Scope_And_Install_Discriminants (U_Ent);
5143 Preanalyze_Spec_Expression (Expr, Standard_Integer);
5144 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5146 if not Is_OK_Static_Expression (Expr) then
5147 Check_Restriction (Static_Priorities, Expr);
5148 end if;
5149 end if;
5151 else
5152 Error_Msg_N
5153 ("attribute& cannot be set with definition clause", N);
5154 end if;
5155 end Priority;
5157 ----------
5158 -- Read --
5159 ----------
5161 when Attribute_Read =>
5162 Analyze_Stream_TSS_Definition (TSS_Stream_Read);
5163 Set_Has_Specified_Stream_Read (Ent);
5165 --------------------------
5166 -- Scalar_Storage_Order --
5167 --------------------------
5169 -- Scalar_Storage_Order attribute definition clause
5171 when Attribute_Scalar_Storage_Order => Scalar_Storage_Order : declare
5172 begin
5173 if not (Is_Record_Type (U_Ent) or else Is_Array_Type (U_Ent)) then
5174 Error_Msg_N
5175 ("Scalar_Storage_Order can only be defined for "
5176 & "record or array type", Nam);
5178 elsif Duplicate_Clause then
5179 null;
5181 else
5182 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
5184 if Etype (Expr) = Any_Type then
5185 return;
5187 elsif not Is_OK_Static_Expression (Expr) then
5188 Flag_Non_Static_Expr
5189 ("Scalar_Storage_Order requires static expression!", Expr);
5191 elsif (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
5193 -- Here for the case of a non-default (i.e. non-confirming)
5194 -- Scalar_Storage_Order attribute definition.
5196 if Support_Nondefault_SSO_On_Target then
5197 Set_Reverse_Storage_Order (Base_Type (U_Ent), True);
5198 else
5199 Error_Msg_N
5200 ("non-default Scalar_Storage_Order "
5201 & "not supported on target", Expr);
5202 end if;
5203 end if;
5205 -- Clear SSO default indications since explicit setting of the
5206 -- order overrides the defaults.
5208 Set_SSO_Set_Low_By_Default (Base_Type (U_Ent), False);
5209 Set_SSO_Set_High_By_Default (Base_Type (U_Ent), False);
5210 end if;
5211 end Scalar_Storage_Order;
5213 ----------
5214 -- Size --
5215 ----------
5217 -- Size attribute definition clause
5219 when Attribute_Size => Size : declare
5220 Size : constant Uint := Static_Integer (Expr);
5221 Etyp : Entity_Id;
5222 Biased : Boolean;
5224 begin
5225 FOnly := True;
5227 if Duplicate_Clause then
5228 null;
5230 elsif not Is_Type (U_Ent)
5231 and then Ekind (U_Ent) /= E_Variable
5232 and then Ekind (U_Ent) /= E_Constant
5233 then
5234 Error_Msg_N ("size cannot be given for &", Nam);
5236 elsif Is_Array_Type (U_Ent)
5237 and then not Is_Constrained (U_Ent)
5238 then
5239 Error_Msg_N
5240 ("size cannot be given for unconstrained array", Nam);
5242 elsif Size /= No_Uint then
5243 if VM_Target /= No_VM and then not GNAT_Mode then
5245 -- Size clause is not handled properly on VM targets.
5246 -- Display a warning unless we are in GNAT mode, in which
5247 -- case this is useless.
5249 Error_Msg_N
5250 ("size clauses are ignored in this configuration??", N);
5251 end if;
5253 if Is_Type (U_Ent) then
5254 Etyp := U_Ent;
5255 else
5256 Etyp := Etype (U_Ent);
5257 end if;
5259 -- Check size, note that Gigi is in charge of checking that the
5260 -- size of an array or record type is OK. Also we do not check
5261 -- the size in the ordinary fixed-point case, since it is too
5262 -- early to do so (there may be subsequent small clause that
5263 -- affects the size). We can check the size if a small clause
5264 -- has already been given.
5266 if not Is_Ordinary_Fixed_Point_Type (U_Ent)
5267 or else Has_Small_Clause (U_Ent)
5268 then
5269 Check_Size (Expr, Etyp, Size, Biased);
5270 Set_Biased (U_Ent, N, "size clause", Biased);
5271 end if;
5273 -- For types set RM_Size and Esize if possible
5275 if Is_Type (U_Ent) then
5276 Set_RM_Size (U_Ent, Size);
5278 -- For elementary types, increase Object_Size to power of 2,
5279 -- but not less than a storage unit in any case (normally
5280 -- this means it will be byte addressable).
5282 -- For all other types, nothing else to do, we leave Esize
5283 -- (object size) unset, the back end will set it from the
5284 -- size and alignment in an appropriate manner.
5286 -- In both cases, we check whether the alignment must be
5287 -- reset in the wake of the size change.
5289 if Is_Elementary_Type (U_Ent) then
5290 if Size <= System_Storage_Unit then
5291 Init_Esize (U_Ent, System_Storage_Unit);
5292 elsif Size <= 16 then
5293 Init_Esize (U_Ent, 16);
5294 elsif Size <= 32 then
5295 Init_Esize (U_Ent, 32);
5296 else
5297 Set_Esize (U_Ent, (Size + 63) / 64 * 64);
5298 end if;
5300 Alignment_Check_For_Size_Change (U_Ent, Esize (U_Ent));
5301 else
5302 Alignment_Check_For_Size_Change (U_Ent, Size);
5303 end if;
5305 -- For objects, set Esize only
5307 else
5308 if Is_Elementary_Type (Etyp) then
5309 if Size /= System_Storage_Unit
5310 and then
5311 Size /= System_Storage_Unit * 2
5312 and then
5313 Size /= System_Storage_Unit * 4
5314 and then
5315 Size /= System_Storage_Unit * 8
5316 then
5317 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
5318 Error_Msg_Uint_2 := Error_Msg_Uint_1 * 8;
5319 Error_Msg_N
5320 ("size for primitive object must be a power of 2"
5321 & " in the range ^-^", N);
5322 end if;
5323 end if;
5325 Set_Esize (U_Ent, Size);
5326 end if;
5328 Set_Has_Size_Clause (U_Ent);
5329 end if;
5330 end Size;
5332 -----------
5333 -- Small --
5334 -----------
5336 -- Small attribute definition clause
5338 when Attribute_Small => Small : declare
5339 Implicit_Base : constant Entity_Id := Base_Type (U_Ent);
5340 Small : Ureal;
5342 begin
5343 Analyze_And_Resolve (Expr, Any_Real);
5345 if Etype (Expr) = Any_Type then
5346 return;
5348 elsif not Is_OK_Static_Expression (Expr) then
5349 Flag_Non_Static_Expr
5350 ("small requires static expression!", Expr);
5351 return;
5353 else
5354 Small := Expr_Value_R (Expr);
5356 if Small <= Ureal_0 then
5357 Error_Msg_N ("small value must be greater than zero", Expr);
5358 return;
5359 end if;
5361 end if;
5363 if not Is_Ordinary_Fixed_Point_Type (U_Ent) then
5364 Error_Msg_N
5365 ("small requires an ordinary fixed point type", Nam);
5367 elsif Has_Small_Clause (U_Ent) then
5368 Error_Msg_N ("small already given for &", Nam);
5370 elsif Small > Delta_Value (U_Ent) then
5371 Error_Msg_N
5372 ("small value must not be greater than delta value", Nam);
5374 else
5375 Set_Small_Value (U_Ent, Small);
5376 Set_Small_Value (Implicit_Base, Small);
5377 Set_Has_Small_Clause (U_Ent);
5378 Set_Has_Small_Clause (Implicit_Base);
5379 Set_Has_Non_Standard_Rep (Implicit_Base);
5380 end if;
5381 end Small;
5383 ------------------
5384 -- Storage_Pool --
5385 ------------------
5387 -- Storage_Pool attribute definition clause
5389 when Attribute_Storage_Pool | Attribute_Simple_Storage_Pool => declare
5390 Pool : Entity_Id;
5391 T : Entity_Id;
5393 begin
5394 if Ekind (U_Ent) = E_Access_Subprogram_Type then
5395 Error_Msg_N
5396 ("storage pool cannot be given for access-to-subprogram type",
5397 Nam);
5398 return;
5400 elsif not
5401 Ekind_In (U_Ent, E_Access_Type, E_General_Access_Type)
5402 then
5403 Error_Msg_N
5404 ("storage pool can only be given for access types", Nam);
5405 return;
5407 elsif Is_Derived_Type (U_Ent) then
5408 Error_Msg_N
5409 ("storage pool cannot be given for a derived access type",
5410 Nam);
5412 elsif Duplicate_Clause then
5413 return;
5415 elsif Present (Associated_Storage_Pool (U_Ent)) then
5416 Error_Msg_N ("storage pool already given for &", Nam);
5417 return;
5418 end if;
5420 -- Check for Storage_Size previously given
5422 declare
5423 SS : constant Node_Id :=
5424 Get_Attribute_Definition_Clause
5425 (U_Ent, Attribute_Storage_Size);
5426 begin
5427 if Present (SS) then
5428 Check_Pool_Size_Clash (U_Ent, N, SS);
5429 end if;
5430 end;
5432 -- Storage_Pool case
5434 if Id = Attribute_Storage_Pool then
5435 Analyze_And_Resolve
5436 (Expr, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
5438 -- In the Simple_Storage_Pool case, we allow a variable of any
5439 -- simple storage pool type, so we Resolve without imposing an
5440 -- expected type.
5442 else
5443 Analyze_And_Resolve (Expr);
5445 if not Present (Get_Rep_Pragma
5446 (Etype (Expr), Name_Simple_Storage_Pool_Type))
5447 then
5448 Error_Msg_N
5449 ("expression must be of a simple storage pool type", Expr);
5450 end if;
5451 end if;
5453 if not Denotes_Variable (Expr) then
5454 Error_Msg_N ("storage pool must be a variable", Expr);
5455 return;
5456 end if;
5458 if Nkind (Expr) = N_Type_Conversion then
5459 T := Etype (Expression (Expr));
5460 else
5461 T := Etype (Expr);
5462 end if;
5464 -- The Stack_Bounded_Pool is used internally for implementing
5465 -- access types with a Storage_Size. Since it only work properly
5466 -- when used on one specific type, we need to check that it is not
5467 -- hijacked improperly:
5469 -- type T is access Integer;
5470 -- for T'Storage_Size use n;
5471 -- type Q is access Float;
5472 -- for Q'Storage_Size use T'Storage_Size; -- incorrect
5474 if RTE_Available (RE_Stack_Bounded_Pool)
5475 and then Base_Type (T) = RTE (RE_Stack_Bounded_Pool)
5476 then
5477 Error_Msg_N ("non-shareable internal Pool", Expr);
5478 return;
5479 end if;
5481 -- If the argument is a name that is not an entity name, then
5482 -- we construct a renaming operation to define an entity of
5483 -- type storage pool.
5485 if not Is_Entity_Name (Expr)
5486 and then Is_Object_Reference (Expr)
5487 then
5488 Pool := Make_Temporary (Loc, 'P', Expr);
5490 declare
5491 Rnode : constant Node_Id :=
5492 Make_Object_Renaming_Declaration (Loc,
5493 Defining_Identifier => Pool,
5494 Subtype_Mark =>
5495 New_Occurrence_Of (Etype (Expr), Loc),
5496 Name => Expr);
5498 begin
5499 -- If the attribute definition clause comes from an aspect
5500 -- clause, then insert the renaming before the associated
5501 -- entity's declaration, since the attribute clause has
5502 -- not yet been appended to the declaration list.
5504 if From_Aspect_Specification (N) then
5505 Insert_Before (Parent (Entity (N)), Rnode);
5506 else
5507 Insert_Before (N, Rnode);
5508 end if;
5510 Analyze (Rnode);
5511 Set_Associated_Storage_Pool (U_Ent, Pool);
5512 end;
5514 elsif Is_Entity_Name (Expr) then
5515 Pool := Entity (Expr);
5517 -- If pool is a renamed object, get original one. This can
5518 -- happen with an explicit renaming, and within instances.
5520 while Present (Renamed_Object (Pool))
5521 and then Is_Entity_Name (Renamed_Object (Pool))
5522 loop
5523 Pool := Entity (Renamed_Object (Pool));
5524 end loop;
5526 if Present (Renamed_Object (Pool))
5527 and then Nkind (Renamed_Object (Pool)) = N_Type_Conversion
5528 and then Is_Entity_Name (Expression (Renamed_Object (Pool)))
5529 then
5530 Pool := Entity (Expression (Renamed_Object (Pool)));
5531 end if;
5533 Set_Associated_Storage_Pool (U_Ent, Pool);
5535 elsif Nkind (Expr) = N_Type_Conversion
5536 and then Is_Entity_Name (Expression (Expr))
5537 and then Nkind (Original_Node (Expr)) = N_Attribute_Reference
5538 then
5539 Pool := Entity (Expression (Expr));
5540 Set_Associated_Storage_Pool (U_Ent, Pool);
5542 else
5543 Error_Msg_N ("incorrect reference to a Storage Pool", Expr);
5544 return;
5545 end if;
5546 end;
5548 ------------------
5549 -- Storage_Size --
5550 ------------------
5552 -- Storage_Size attribute definition clause
5554 when Attribute_Storage_Size => Storage_Size : declare
5555 Btype : constant Entity_Id := Base_Type (U_Ent);
5557 begin
5558 if Is_Task_Type (U_Ent) then
5560 -- Check obsolescent (but never obsolescent if from aspect)
5562 if not From_Aspect_Specification (N) then
5563 Check_Restriction (No_Obsolescent_Features, N);
5565 if Warn_On_Obsolescent_Feature then
5566 Error_Msg_N
5567 ("?j?storage size clause for task is an " &
5568 "obsolescent feature (RM J.9)", N);
5569 Error_Msg_N ("\?j?use Storage_Size pragma instead", N);
5570 end if;
5571 end if;
5573 FOnly := True;
5574 end if;
5576 if not Is_Access_Type (U_Ent)
5577 and then Ekind (U_Ent) /= E_Task_Type
5578 then
5579 Error_Msg_N ("storage size cannot be given for &", Nam);
5581 elsif Is_Access_Type (U_Ent) and Is_Derived_Type (U_Ent) then
5582 Error_Msg_N
5583 ("storage size cannot be given for a derived access type",
5584 Nam);
5586 elsif Duplicate_Clause then
5587 null;
5589 else
5590 Analyze_And_Resolve (Expr, Any_Integer);
5592 if Is_Access_Type (U_Ent) then
5594 -- Check for Storage_Pool previously given
5596 declare
5597 SP : constant Node_Id :=
5598 Get_Attribute_Definition_Clause
5599 (U_Ent, Attribute_Storage_Pool);
5601 begin
5602 if Present (SP) then
5603 Check_Pool_Size_Clash (U_Ent, SP, N);
5604 end if;
5605 end;
5607 -- Special case of for x'Storage_Size use 0
5609 if Is_OK_Static_Expression (Expr)
5610 and then Expr_Value (Expr) = 0
5611 then
5612 Set_No_Pool_Assigned (Btype);
5613 end if;
5614 end if;
5616 Set_Has_Storage_Size_Clause (Btype);
5617 end if;
5618 end Storage_Size;
5620 -----------------
5621 -- Stream_Size --
5622 -----------------
5624 when Attribute_Stream_Size => Stream_Size : declare
5625 Size : constant Uint := Static_Integer (Expr);
5627 begin
5628 if Ada_Version <= Ada_95 then
5629 Check_Restriction (No_Implementation_Attributes, N);
5630 end if;
5632 if Duplicate_Clause then
5633 null;
5635 elsif Is_Elementary_Type (U_Ent) then
5636 if Size /= System_Storage_Unit
5637 and then
5638 Size /= System_Storage_Unit * 2
5639 and then
5640 Size /= System_Storage_Unit * 4
5641 and then
5642 Size /= System_Storage_Unit * 8
5643 then
5644 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
5645 Error_Msg_N
5646 ("stream size for elementary type must be a"
5647 & " power of 2 and at least ^", N);
5649 elsif RM_Size (U_Ent) > Size then
5650 Error_Msg_Uint_1 := RM_Size (U_Ent);
5651 Error_Msg_N
5652 ("stream size for elementary type must be a"
5653 & " power of 2 and at least ^", N);
5654 end if;
5656 Set_Has_Stream_Size_Clause (U_Ent);
5658 else
5659 Error_Msg_N ("Stream_Size cannot be given for &", Nam);
5660 end if;
5661 end Stream_Size;
5663 ----------------
5664 -- Value_Size --
5665 ----------------
5667 -- Value_Size attribute definition clause
5669 when Attribute_Value_Size => Value_Size : declare
5670 Size : constant Uint := Static_Integer (Expr);
5671 Biased : Boolean;
5673 begin
5674 if not Is_Type (U_Ent) then
5675 Error_Msg_N ("Value_Size cannot be given for &", Nam);
5677 elsif Duplicate_Clause then
5678 null;
5680 elsif Is_Array_Type (U_Ent)
5681 and then not Is_Constrained (U_Ent)
5682 then
5683 Error_Msg_N
5684 ("Value_Size cannot be given for unconstrained array", Nam);
5686 else
5687 if Is_Elementary_Type (U_Ent) then
5688 Check_Size (Expr, U_Ent, Size, Biased);
5689 Set_Biased (U_Ent, N, "value size clause", Biased);
5690 end if;
5692 Set_RM_Size (U_Ent, Size);
5693 end if;
5694 end Value_Size;
5696 -----------------------
5697 -- Variable_Indexing --
5698 -----------------------
5700 when Attribute_Variable_Indexing =>
5701 Check_Indexing_Functions;
5703 -----------
5704 -- Write --
5705 -----------
5707 when Attribute_Write =>
5708 Analyze_Stream_TSS_Definition (TSS_Stream_Write);
5709 Set_Has_Specified_Stream_Write (Ent);
5711 -- All other attributes cannot be set
5713 when others =>
5714 Error_Msg_N
5715 ("attribute& cannot be set with definition clause", N);
5716 end case;
5718 -- The test for the type being frozen must be performed after any
5719 -- expression the clause has been analyzed since the expression itself
5720 -- might cause freezing that makes the clause illegal.
5722 if Rep_Item_Too_Late (U_Ent, N, FOnly) then
5723 return;
5724 end if;
5725 end Analyze_Attribute_Definition_Clause;
5727 ----------------------------
5728 -- Analyze_Code_Statement --
5729 ----------------------------
5731 procedure Analyze_Code_Statement (N : Node_Id) is
5732 HSS : constant Node_Id := Parent (N);
5733 SBody : constant Node_Id := Parent (HSS);
5734 Subp : constant Entity_Id := Current_Scope;
5735 Stmt : Node_Id;
5736 Decl : Node_Id;
5737 StmtO : Node_Id;
5738 DeclO : Node_Id;
5740 begin
5741 -- Analyze and check we get right type, note that this implements the
5742 -- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that
5743 -- is the only way that Asm_Insn could possibly be visible.
5745 Analyze_And_Resolve (Expression (N));
5747 if Etype (Expression (N)) = Any_Type then
5748 return;
5749 elsif Etype (Expression (N)) /= RTE (RE_Asm_Insn) then
5750 Error_Msg_N ("incorrect type for code statement", N);
5751 return;
5752 end if;
5754 Check_Code_Statement (N);
5756 -- Make sure we appear in the handled statement sequence of a
5757 -- subprogram (RM 13.8(3)).
5759 if Nkind (HSS) /= N_Handled_Sequence_Of_Statements
5760 or else Nkind (SBody) /= N_Subprogram_Body
5761 then
5762 Error_Msg_N
5763 ("code statement can only appear in body of subprogram", N);
5764 return;
5765 end if;
5767 -- Do remaining checks (RM 13.8(3)) if not already done
5769 if not Is_Machine_Code_Subprogram (Subp) then
5770 Set_Is_Machine_Code_Subprogram (Subp);
5772 -- No exception handlers allowed
5774 if Present (Exception_Handlers (HSS)) then
5775 Error_Msg_N
5776 ("exception handlers not permitted in machine code subprogram",
5777 First (Exception_Handlers (HSS)));
5778 end if;
5780 -- No declarations other than use clauses and pragmas (we allow
5781 -- certain internally generated declarations as well).
5783 Decl := First (Declarations (SBody));
5784 while Present (Decl) loop
5785 DeclO := Original_Node (Decl);
5786 if Comes_From_Source (DeclO)
5787 and not Nkind_In (DeclO, N_Pragma,
5788 N_Use_Package_Clause,
5789 N_Use_Type_Clause,
5790 N_Implicit_Label_Declaration)
5791 then
5792 Error_Msg_N
5793 ("this declaration not allowed in machine code subprogram",
5794 DeclO);
5795 end if;
5797 Next (Decl);
5798 end loop;
5800 -- No statements other than code statements, pragmas, and labels.
5801 -- Again we allow certain internally generated statements.
5803 -- In Ada 2012, qualified expressions are names, and the code
5804 -- statement is initially parsed as a procedure call.
5806 Stmt := First (Statements (HSS));
5807 while Present (Stmt) loop
5808 StmtO := Original_Node (Stmt);
5810 -- A procedure call transformed into a code statement is OK.
5812 if Ada_Version >= Ada_2012
5813 and then Nkind (StmtO) = N_Procedure_Call_Statement
5814 and then Nkind (Name (StmtO)) = N_Qualified_Expression
5815 then
5816 null;
5818 elsif Comes_From_Source (StmtO)
5819 and then not Nkind_In (StmtO, N_Pragma,
5820 N_Label,
5821 N_Code_Statement)
5822 then
5823 Error_Msg_N
5824 ("this statement is not allowed in machine code subprogram",
5825 StmtO);
5826 end if;
5828 Next (Stmt);
5829 end loop;
5830 end if;
5831 end Analyze_Code_Statement;
5833 -----------------------------------------------
5834 -- Analyze_Enumeration_Representation_Clause --
5835 -----------------------------------------------
5837 procedure Analyze_Enumeration_Representation_Clause (N : Node_Id) is
5838 Ident : constant Node_Id := Identifier (N);
5839 Aggr : constant Node_Id := Array_Aggregate (N);
5840 Enumtype : Entity_Id;
5841 Elit : Entity_Id;
5842 Expr : Node_Id;
5843 Assoc : Node_Id;
5844 Choice : Node_Id;
5845 Val : Uint;
5847 Err : Boolean := False;
5848 -- Set True to avoid cascade errors and crashes on incorrect source code
5850 Lo : constant Uint := Expr_Value (Type_Low_Bound (Universal_Integer));
5851 Hi : constant Uint := Expr_Value (Type_High_Bound (Universal_Integer));
5852 -- Allowed range of universal integer (= allowed range of enum lit vals)
5854 Min : Uint;
5855 Max : Uint;
5856 -- Minimum and maximum values of entries
5858 Max_Node : Node_Id;
5859 -- Pointer to node for literal providing max value
5861 begin
5862 if Ignore_Rep_Clauses then
5863 Kill_Rep_Clause (N);
5864 return;
5865 end if;
5867 -- Ignore enumeration rep clauses by default in CodePeer mode,
5868 -- unless -gnatd.I is specified, as a work around for potential false
5869 -- positive messages.
5871 if CodePeer_Mode and not Debug_Flag_Dot_II then
5872 return;
5873 end if;
5875 -- First some basic error checks
5877 Find_Type (Ident);
5878 Enumtype := Entity (Ident);
5880 if Enumtype = Any_Type
5881 or else Rep_Item_Too_Early (Enumtype, N)
5882 then
5883 return;
5884 else
5885 Enumtype := Underlying_Type (Enumtype);
5886 end if;
5888 if not Is_Enumeration_Type (Enumtype) then
5889 Error_Msg_NE
5890 ("enumeration type required, found}",
5891 Ident, First_Subtype (Enumtype));
5892 return;
5893 end if;
5895 -- Ignore rep clause on generic actual type. This will already have
5896 -- been flagged on the template as an error, and this is the safest
5897 -- way to ensure we don't get a junk cascaded message in the instance.
5899 if Is_Generic_Actual_Type (Enumtype) then
5900 return;
5902 -- Type must be in current scope
5904 elsif Scope (Enumtype) /= Current_Scope then
5905 Error_Msg_N ("type must be declared in this scope", Ident);
5906 return;
5908 -- Type must be a first subtype
5910 elsif not Is_First_Subtype (Enumtype) then
5911 Error_Msg_N ("cannot give enumeration rep clause for subtype", N);
5912 return;
5914 -- Ignore duplicate rep clause
5916 elsif Has_Enumeration_Rep_Clause (Enumtype) then
5917 Error_Msg_N ("duplicate enumeration rep clause ignored", N);
5918 return;
5920 -- Don't allow rep clause for standard [wide_[wide_]]character
5922 elsif Is_Standard_Character_Type (Enumtype) then
5923 Error_Msg_N ("enumeration rep clause not allowed for this type", N);
5924 return;
5926 -- Check that the expression is a proper aggregate (no parentheses)
5928 elsif Paren_Count (Aggr) /= 0 then
5929 Error_Msg
5930 ("extra parentheses surrounding aggregate not allowed",
5931 First_Sloc (Aggr));
5932 return;
5934 -- All tests passed, so set rep clause in place
5936 else
5937 Set_Has_Enumeration_Rep_Clause (Enumtype);
5938 Set_Has_Enumeration_Rep_Clause (Base_Type (Enumtype));
5939 end if;
5941 -- Now we process the aggregate. Note that we don't use the normal
5942 -- aggregate code for this purpose, because we don't want any of the
5943 -- normal expansion activities, and a number of special semantic
5944 -- rules apply (including the component type being any integer type)
5946 Elit := First_Literal (Enumtype);
5948 -- First the positional entries if any
5950 if Present (Expressions (Aggr)) then
5951 Expr := First (Expressions (Aggr));
5952 while Present (Expr) loop
5953 if No (Elit) then
5954 Error_Msg_N ("too many entries in aggregate", Expr);
5955 return;
5956 end if;
5958 Val := Static_Integer (Expr);
5960 -- Err signals that we found some incorrect entries processing
5961 -- the list. The final checks for completeness and ordering are
5962 -- skipped in this case.
5964 if Val = No_Uint then
5965 Err := True;
5967 elsif Val < Lo or else Hi < Val then
5968 Error_Msg_N ("value outside permitted range", Expr);
5969 Err := True;
5970 end if;
5972 Set_Enumeration_Rep (Elit, Val);
5973 Set_Enumeration_Rep_Expr (Elit, Expr);
5974 Next (Expr);
5975 Next (Elit);
5976 end loop;
5977 end if;
5979 -- Now process the named entries if present
5981 if Present (Component_Associations (Aggr)) then
5982 Assoc := First (Component_Associations (Aggr));
5983 while Present (Assoc) loop
5984 Choice := First (Choices (Assoc));
5986 if Present (Next (Choice)) then
5987 Error_Msg_N
5988 ("multiple choice not allowed here", Next (Choice));
5989 Err := True;
5990 end if;
5992 if Nkind (Choice) = N_Others_Choice then
5993 Error_Msg_N ("others choice not allowed here", Choice);
5994 Err := True;
5996 elsif Nkind (Choice) = N_Range then
5998 -- ??? should allow zero/one element range here
6000 Error_Msg_N ("range not allowed here", Choice);
6001 Err := True;
6003 else
6004 Analyze_And_Resolve (Choice, Enumtype);
6006 if Error_Posted (Choice) then
6007 Err := True;
6008 end if;
6010 if not Err then
6011 if Is_Entity_Name (Choice)
6012 and then Is_Type (Entity (Choice))
6013 then
6014 Error_Msg_N ("subtype name not allowed here", Choice);
6015 Err := True;
6017 -- ??? should allow static subtype with zero/one entry
6019 elsif Etype (Choice) = Base_Type (Enumtype) then
6020 if not Is_OK_Static_Expression (Choice) then
6021 Flag_Non_Static_Expr
6022 ("non-static expression used for choice!", Choice);
6023 Err := True;
6025 else
6026 Elit := Expr_Value_E (Choice);
6028 if Present (Enumeration_Rep_Expr (Elit)) then
6029 Error_Msg_Sloc :=
6030 Sloc (Enumeration_Rep_Expr (Elit));
6031 Error_Msg_NE
6032 ("representation for& previously given#",
6033 Choice, Elit);
6034 Err := True;
6035 end if;
6037 Set_Enumeration_Rep_Expr (Elit, Expression (Assoc));
6039 Expr := Expression (Assoc);
6040 Val := Static_Integer (Expr);
6042 if Val = No_Uint then
6043 Err := True;
6045 elsif Val < Lo or else Hi < Val then
6046 Error_Msg_N ("value outside permitted range", Expr);
6047 Err := True;
6048 end if;
6050 Set_Enumeration_Rep (Elit, Val);
6051 end if;
6052 end if;
6053 end if;
6054 end if;
6056 Next (Assoc);
6057 end loop;
6058 end if;
6060 -- Aggregate is fully processed. Now we check that a full set of
6061 -- representations was given, and that they are in range and in order.
6062 -- These checks are only done if no other errors occurred.
6064 if not Err then
6065 Min := No_Uint;
6066 Max := No_Uint;
6068 Elit := First_Literal (Enumtype);
6069 while Present (Elit) loop
6070 if No (Enumeration_Rep_Expr (Elit)) then
6071 Error_Msg_NE ("missing representation for&!", N, Elit);
6073 else
6074 Val := Enumeration_Rep (Elit);
6076 if Min = No_Uint then
6077 Min := Val;
6078 end if;
6080 if Val /= No_Uint then
6081 if Max /= No_Uint and then Val <= Max then
6082 Error_Msg_NE
6083 ("enumeration value for& not ordered!",
6084 Enumeration_Rep_Expr (Elit), Elit);
6085 end if;
6087 Max_Node := Enumeration_Rep_Expr (Elit);
6088 Max := Val;
6089 end if;
6091 -- If there is at least one literal whose representation is not
6092 -- equal to the Pos value, then note that this enumeration type
6093 -- has a non-standard representation.
6095 if Val /= Enumeration_Pos (Elit) then
6096 Set_Has_Non_Standard_Rep (Base_Type (Enumtype));
6097 end if;
6098 end if;
6100 Next (Elit);
6101 end loop;
6103 -- Now set proper size information
6105 declare
6106 Minsize : Uint := UI_From_Int (Minimum_Size (Enumtype));
6108 begin
6109 if Has_Size_Clause (Enumtype) then
6111 -- All OK, if size is OK now
6113 if RM_Size (Enumtype) >= Minsize then
6114 null;
6116 else
6117 -- Try if we can get by with biasing
6119 Minsize :=
6120 UI_From_Int (Minimum_Size (Enumtype, Biased => True));
6122 -- Error message if even biasing does not work
6124 if RM_Size (Enumtype) < Minsize then
6125 Error_Msg_Uint_1 := RM_Size (Enumtype);
6126 Error_Msg_Uint_2 := Max;
6127 Error_Msg_N
6128 ("previously given size (^) is too small "
6129 & "for this value (^)", Max_Node);
6131 -- If biasing worked, indicate that we now have biased rep
6133 else
6134 Set_Biased
6135 (Enumtype, Size_Clause (Enumtype), "size clause");
6136 end if;
6137 end if;
6139 else
6140 Set_RM_Size (Enumtype, Minsize);
6141 Set_Enum_Esize (Enumtype);
6142 end if;
6144 Set_RM_Size (Base_Type (Enumtype), RM_Size (Enumtype));
6145 Set_Esize (Base_Type (Enumtype), Esize (Enumtype));
6146 Set_Alignment (Base_Type (Enumtype), Alignment (Enumtype));
6147 end;
6148 end if;
6150 -- We repeat the too late test in case it froze itself
6152 if Rep_Item_Too_Late (Enumtype, N) then
6153 null;
6154 end if;
6155 end Analyze_Enumeration_Representation_Clause;
6157 ----------------------------
6158 -- Analyze_Free_Statement --
6159 ----------------------------
6161 procedure Analyze_Free_Statement (N : Node_Id) is
6162 begin
6163 Analyze (Expression (N));
6164 end Analyze_Free_Statement;
6166 ---------------------------
6167 -- Analyze_Freeze_Entity --
6168 ---------------------------
6170 procedure Analyze_Freeze_Entity (N : Node_Id) is
6171 begin
6172 Freeze_Entity_Checks (N);
6173 end Analyze_Freeze_Entity;
6175 -----------------------------------
6176 -- Analyze_Freeze_Generic_Entity --
6177 -----------------------------------
6179 procedure Analyze_Freeze_Generic_Entity (N : Node_Id) is
6180 begin
6181 Freeze_Entity_Checks (N);
6182 end Analyze_Freeze_Generic_Entity;
6184 ------------------------------------------
6185 -- Analyze_Record_Representation_Clause --
6186 ------------------------------------------
6188 -- Note: we check as much as we can here, but we can't do any checks
6189 -- based on the position values (e.g. overlap checks) until freeze time
6190 -- because especially in Ada 2005 (machine scalar mode), the processing
6191 -- for non-standard bit order can substantially change the positions.
6192 -- See procedure Check_Record_Representation_Clause (called from Freeze)
6193 -- for the remainder of this processing.
6195 procedure Analyze_Record_Representation_Clause (N : Node_Id) is
6196 Ident : constant Node_Id := Identifier (N);
6197 Biased : Boolean;
6198 CC : Node_Id;
6199 Comp : Entity_Id;
6200 Fbit : Uint;
6201 Hbit : Uint := Uint_0;
6202 Lbit : Uint;
6203 Ocomp : Entity_Id;
6204 Posit : Uint;
6205 Rectype : Entity_Id;
6206 Recdef : Node_Id;
6208 function Is_Inherited (Comp : Entity_Id) return Boolean;
6209 -- True if Comp is an inherited component in a record extension
6211 ------------------
6212 -- Is_Inherited --
6213 ------------------
6215 function Is_Inherited (Comp : Entity_Id) return Boolean is
6216 Comp_Base : Entity_Id;
6218 begin
6219 if Ekind (Rectype) = E_Record_Subtype then
6220 Comp_Base := Original_Record_Component (Comp);
6221 else
6222 Comp_Base := Comp;
6223 end if;
6225 return Comp_Base /= Original_Record_Component (Comp_Base);
6226 end Is_Inherited;
6228 -- Local variables
6230 Is_Record_Extension : Boolean;
6231 -- True if Rectype is a record extension
6233 CR_Pragma : Node_Id := Empty;
6234 -- Points to N_Pragma node if Complete_Representation pragma present
6236 -- Start of processing for Analyze_Record_Representation_Clause
6238 begin
6239 if Ignore_Rep_Clauses then
6240 Kill_Rep_Clause (N);
6241 return;
6242 end if;
6244 Find_Type (Ident);
6245 Rectype := Entity (Ident);
6247 if Rectype = Any_Type or else Rep_Item_Too_Early (Rectype, N) then
6248 return;
6249 else
6250 Rectype := Underlying_Type (Rectype);
6251 end if;
6253 -- First some basic error checks
6255 if not Is_Record_Type (Rectype) then
6256 Error_Msg_NE
6257 ("record type required, found}", Ident, First_Subtype (Rectype));
6258 return;
6260 elsif Scope (Rectype) /= Current_Scope then
6261 Error_Msg_N ("type must be declared in this scope", N);
6262 return;
6264 elsif not Is_First_Subtype (Rectype) then
6265 Error_Msg_N ("cannot give record rep clause for subtype", N);
6266 return;
6268 elsif Has_Record_Rep_Clause (Rectype) then
6269 Error_Msg_N ("duplicate record rep clause ignored", N);
6270 return;
6272 elsif Rep_Item_Too_Late (Rectype, N) then
6273 return;
6274 end if;
6276 -- We know we have a first subtype, now possibly go the the anonymous
6277 -- base type to determine whether Rectype is a record extension.
6279 Recdef := Type_Definition (Declaration_Node (Base_Type (Rectype)));
6280 Is_Record_Extension :=
6281 Nkind (Recdef) = N_Derived_Type_Definition
6282 and then Present (Record_Extension_Part (Recdef));
6284 if Present (Mod_Clause (N)) then
6285 declare
6286 Loc : constant Source_Ptr := Sloc (N);
6287 M : constant Node_Id := Mod_Clause (N);
6288 P : constant List_Id := Pragmas_Before (M);
6289 AtM_Nod : Node_Id;
6291 Mod_Val : Uint;
6292 pragma Warnings (Off, Mod_Val);
6294 begin
6295 Check_Restriction (No_Obsolescent_Features, Mod_Clause (N));
6297 if Warn_On_Obsolescent_Feature then
6298 Error_Msg_N
6299 ("?j?mod clause is an obsolescent feature (RM J.8)", N);
6300 Error_Msg_N
6301 ("\?j?use alignment attribute definition clause instead", N);
6302 end if;
6304 if Present (P) then
6305 Analyze_List (P);
6306 end if;
6308 -- In ASIS_Mode mode, expansion is disabled, but we must convert
6309 -- the Mod clause into an alignment clause anyway, so that the
6310 -- back-end can compute and back-annotate properly the size and
6311 -- alignment of types that may include this record.
6313 -- This seems dubious, this destroys the source tree in a manner
6314 -- not detectable by ASIS ???
6316 if Operating_Mode = Check_Semantics and then ASIS_Mode then
6317 AtM_Nod :=
6318 Make_Attribute_Definition_Clause (Loc,
6319 Name => New_Occurrence_Of (Base_Type (Rectype), Loc),
6320 Chars => Name_Alignment,
6321 Expression => Relocate_Node (Expression (M)));
6323 Set_From_At_Mod (AtM_Nod);
6324 Insert_After (N, AtM_Nod);
6325 Mod_Val := Get_Alignment_Value (Expression (AtM_Nod));
6326 Set_Mod_Clause (N, Empty);
6328 else
6329 -- Get the alignment value to perform error checking
6331 Mod_Val := Get_Alignment_Value (Expression (M));
6332 end if;
6333 end;
6334 end if;
6336 -- For untagged types, clear any existing component clauses for the
6337 -- type. If the type is derived, this is what allows us to override
6338 -- a rep clause for the parent. For type extensions, the representation
6339 -- of the inherited components is inherited, so we want to keep previous
6340 -- component clauses for completeness.
6342 if not Is_Tagged_Type (Rectype) then
6343 Comp := First_Component_Or_Discriminant (Rectype);
6344 while Present (Comp) loop
6345 Set_Component_Clause (Comp, Empty);
6346 Next_Component_Or_Discriminant (Comp);
6347 end loop;
6348 end if;
6350 -- All done if no component clauses
6352 CC := First (Component_Clauses (N));
6354 if No (CC) then
6355 return;
6356 end if;
6358 -- A representation like this applies to the base type
6360 Set_Has_Record_Rep_Clause (Base_Type (Rectype));
6361 Set_Has_Non_Standard_Rep (Base_Type (Rectype));
6362 Set_Has_Specified_Layout (Base_Type (Rectype));
6364 -- Process the component clauses
6366 while Present (CC) loop
6368 -- Pragma
6370 if Nkind (CC) = N_Pragma then
6371 Analyze (CC);
6373 -- The only pragma of interest is Complete_Representation
6375 if Pragma_Name (CC) = Name_Complete_Representation then
6376 CR_Pragma := CC;
6377 end if;
6379 -- Processing for real component clause
6381 else
6382 Posit := Static_Integer (Position (CC));
6383 Fbit := Static_Integer (First_Bit (CC));
6384 Lbit := Static_Integer (Last_Bit (CC));
6386 if Posit /= No_Uint
6387 and then Fbit /= No_Uint
6388 and then Lbit /= No_Uint
6389 then
6390 if Posit < 0 then
6391 Error_Msg_N
6392 ("position cannot be negative", Position (CC));
6394 elsif Fbit < 0 then
6395 Error_Msg_N
6396 ("first bit cannot be negative", First_Bit (CC));
6398 -- The Last_Bit specified in a component clause must not be
6399 -- less than the First_Bit minus one (RM-13.5.1(10)).
6401 elsif Lbit < Fbit - 1 then
6402 Error_Msg_N
6403 ("last bit cannot be less than first bit minus one",
6404 Last_Bit (CC));
6406 -- Values look OK, so find the corresponding record component
6407 -- Even though the syntax allows an attribute reference for
6408 -- implementation-defined components, GNAT does not allow the
6409 -- tag to get an explicit position.
6411 elsif Nkind (Component_Name (CC)) = N_Attribute_Reference then
6412 if Attribute_Name (Component_Name (CC)) = Name_Tag then
6413 Error_Msg_N ("position of tag cannot be specified", CC);
6414 else
6415 Error_Msg_N ("illegal component name", CC);
6416 end if;
6418 else
6419 Comp := First_Entity (Rectype);
6420 while Present (Comp) loop
6421 exit when Chars (Comp) = Chars (Component_Name (CC));
6422 Next_Entity (Comp);
6423 end loop;
6425 if No (Comp) then
6427 -- Maybe component of base type that is absent from
6428 -- statically constrained first subtype.
6430 Comp := First_Entity (Base_Type (Rectype));
6431 while Present (Comp) loop
6432 exit when Chars (Comp) = Chars (Component_Name (CC));
6433 Next_Entity (Comp);
6434 end loop;
6435 end if;
6437 if No (Comp) then
6438 Error_Msg_N
6439 ("component clause is for non-existent field", CC);
6441 -- Ada 2012 (AI05-0026): Any name that denotes a
6442 -- discriminant of an object of an unchecked union type
6443 -- shall not occur within a record_representation_clause.
6445 -- The general restriction of using record rep clauses on
6446 -- Unchecked_Union types has now been lifted. Since it is
6447 -- possible to introduce a record rep clause which mentions
6448 -- the discriminant of an Unchecked_Union in non-Ada 2012
6449 -- code, this check is applied to all versions of the
6450 -- language.
6452 elsif Ekind (Comp) = E_Discriminant
6453 and then Is_Unchecked_Union (Rectype)
6454 then
6455 Error_Msg_N
6456 ("cannot reference discriminant of unchecked union",
6457 Component_Name (CC));
6459 elsif Is_Record_Extension and then Is_Inherited (Comp) then
6460 Error_Msg_NE
6461 ("component clause not allowed for inherited "
6462 & "component&", CC, Comp);
6464 elsif Present (Component_Clause (Comp)) then
6466 -- Diagnose duplicate rep clause, or check consistency
6467 -- if this is an inherited component. In a double fault,
6468 -- there may be a duplicate inconsistent clause for an
6469 -- inherited component.
6471 if Scope (Original_Record_Component (Comp)) = Rectype
6472 or else Parent (Component_Clause (Comp)) = N
6473 then
6474 Error_Msg_Sloc := Sloc (Component_Clause (Comp));
6475 Error_Msg_N ("component clause previously given#", CC);
6477 else
6478 declare
6479 Rep1 : constant Node_Id := Component_Clause (Comp);
6480 begin
6481 if Intval (Position (Rep1)) /=
6482 Intval (Position (CC))
6483 or else Intval (First_Bit (Rep1)) /=
6484 Intval (First_Bit (CC))
6485 or else Intval (Last_Bit (Rep1)) /=
6486 Intval (Last_Bit (CC))
6487 then
6488 Error_Msg_N
6489 ("component clause inconsistent "
6490 & "with representation of ancestor", CC);
6492 elsif Warn_On_Redundant_Constructs then
6493 Error_Msg_N
6494 ("?r?redundant confirming component clause "
6495 & "for component!", CC);
6496 end if;
6497 end;
6498 end if;
6500 -- Normal case where this is the first component clause we
6501 -- have seen for this entity, so set it up properly.
6503 else
6504 -- Make reference for field in record rep clause and set
6505 -- appropriate entity field in the field identifier.
6507 Generate_Reference
6508 (Comp, Component_Name (CC), Set_Ref => False);
6509 Set_Entity (Component_Name (CC), Comp);
6511 -- Update Fbit and Lbit to the actual bit number
6513 Fbit := Fbit + UI_From_Int (SSU) * Posit;
6514 Lbit := Lbit + UI_From_Int (SSU) * Posit;
6516 if Has_Size_Clause (Rectype)
6517 and then RM_Size (Rectype) <= Lbit
6518 then
6519 Error_Msg_N
6520 ("bit number out of range of specified size",
6521 Last_Bit (CC));
6522 else
6523 Set_Component_Clause (Comp, CC);
6524 Set_Component_Bit_Offset (Comp, Fbit);
6525 Set_Esize (Comp, 1 + (Lbit - Fbit));
6526 Set_Normalized_First_Bit (Comp, Fbit mod SSU);
6527 Set_Normalized_Position (Comp, Fbit / SSU);
6529 if Warn_On_Overridden_Size
6530 and then Has_Size_Clause (Etype (Comp))
6531 and then RM_Size (Etype (Comp)) /= Esize (Comp)
6532 then
6533 Error_Msg_NE
6534 ("?S?component size overrides size clause for&",
6535 Component_Name (CC), Etype (Comp));
6536 end if;
6538 -- This information is also set in the corresponding
6539 -- component of the base type, found by accessing the
6540 -- Original_Record_Component link if it is present.
6542 Ocomp := Original_Record_Component (Comp);
6544 if Hbit < Lbit then
6545 Hbit := Lbit;
6546 end if;
6548 Check_Size
6549 (Component_Name (CC),
6550 Etype (Comp),
6551 Esize (Comp),
6552 Biased);
6554 Set_Biased
6555 (Comp, First_Node (CC), "component clause", Biased);
6557 if Present (Ocomp) then
6558 Set_Component_Clause (Ocomp, CC);
6559 Set_Component_Bit_Offset (Ocomp, Fbit);
6560 Set_Normalized_First_Bit (Ocomp, Fbit mod SSU);
6561 Set_Normalized_Position (Ocomp, Fbit / SSU);
6562 Set_Esize (Ocomp, 1 + (Lbit - Fbit));
6564 Set_Normalized_Position_Max
6565 (Ocomp, Normalized_Position (Ocomp));
6567 -- Note: we don't use Set_Biased here, because we
6568 -- already gave a warning above if needed, and we
6569 -- would get a duplicate for the same name here.
6571 Set_Has_Biased_Representation
6572 (Ocomp, Has_Biased_Representation (Comp));
6573 end if;
6575 if Esize (Comp) < 0 then
6576 Error_Msg_N ("component size is negative", CC);
6577 end if;
6578 end if;
6579 end if;
6580 end if;
6581 end if;
6582 end if;
6584 Next (CC);
6585 end loop;
6587 -- Check missing components if Complete_Representation pragma appeared
6589 if Present (CR_Pragma) then
6590 Comp := First_Component_Or_Discriminant (Rectype);
6591 while Present (Comp) loop
6592 if No (Component_Clause (Comp)) then
6593 Error_Msg_NE
6594 ("missing component clause for &", CR_Pragma, Comp);
6595 end if;
6597 Next_Component_Or_Discriminant (Comp);
6598 end loop;
6600 -- Give missing components warning if required
6602 elsif Warn_On_Unrepped_Components then
6603 declare
6604 Num_Repped_Components : Nat := 0;
6605 Num_Unrepped_Components : Nat := 0;
6607 begin
6608 -- First count number of repped and unrepped components
6610 Comp := First_Component_Or_Discriminant (Rectype);
6611 while Present (Comp) loop
6612 if Present (Component_Clause (Comp)) then
6613 Num_Repped_Components := Num_Repped_Components + 1;
6614 else
6615 Num_Unrepped_Components := Num_Unrepped_Components + 1;
6616 end if;
6618 Next_Component_Or_Discriminant (Comp);
6619 end loop;
6621 -- We are only interested in the case where there is at least one
6622 -- unrepped component, and at least half the components have rep
6623 -- clauses. We figure that if less than half have them, then the
6624 -- partial rep clause is really intentional. If the component
6625 -- type has no underlying type set at this point (as for a generic
6626 -- formal type), we don't know enough to give a warning on the
6627 -- component.
6629 if Num_Unrepped_Components > 0
6630 and then Num_Unrepped_Components < Num_Repped_Components
6631 then
6632 Comp := First_Component_Or_Discriminant (Rectype);
6633 while Present (Comp) loop
6634 if No (Component_Clause (Comp))
6635 and then Comes_From_Source (Comp)
6636 and then Present (Underlying_Type (Etype (Comp)))
6637 and then (Is_Scalar_Type (Underlying_Type (Etype (Comp)))
6638 or else Size_Known_At_Compile_Time
6639 (Underlying_Type (Etype (Comp))))
6640 and then not Has_Warnings_Off (Rectype)
6642 -- Ignore discriminant in unchecked union, since it is
6643 -- not there, and cannot have a component clause.
6645 and then (not Is_Unchecked_Union (Rectype)
6646 or else Ekind (Comp) /= E_Discriminant)
6647 then
6648 Error_Msg_Sloc := Sloc (Comp);
6649 Error_Msg_NE
6650 ("?C?no component clause given for & declared #",
6651 N, Comp);
6652 end if;
6654 Next_Component_Or_Discriminant (Comp);
6655 end loop;
6656 end if;
6657 end;
6658 end if;
6659 end Analyze_Record_Representation_Clause;
6661 -------------------------------------
6662 -- Build_Discrete_Static_Predicate --
6663 -------------------------------------
6665 procedure Build_Discrete_Static_Predicate
6666 (Typ : Entity_Id;
6667 Expr : Node_Id;
6668 Nam : Name_Id)
6670 Loc : constant Source_Ptr := Sloc (Expr);
6672 Non_Static : exception;
6673 -- Raised if something non-static is found
6675 Btyp : constant Entity_Id := Base_Type (Typ);
6677 BLo : constant Uint := Expr_Value (Type_Low_Bound (Btyp));
6678 BHi : constant Uint := Expr_Value (Type_High_Bound (Btyp));
6679 -- Low bound and high bound value of base type of Typ
6681 TLo : Uint;
6682 THi : Uint;
6683 -- Bounds for constructing the static predicate. We use the bound of the
6684 -- subtype if it is static, otherwise the corresponding base type bound.
6685 -- Note: a non-static subtype can have a static predicate.
6687 type REnt is record
6688 Lo, Hi : Uint;
6689 end record;
6690 -- One entry in a Rlist value, a single REnt (range entry) value denotes
6691 -- one range from Lo to Hi. To represent a single value range Lo = Hi =
6692 -- value.
6694 type RList is array (Nat range <>) of REnt;
6695 -- A list of ranges. The ranges are sorted in increasing order, and are
6696 -- disjoint (there is a gap of at least one value between each range in
6697 -- the table). A value is in the set of ranges in Rlist if it lies
6698 -- within one of these ranges.
6700 False_Range : constant RList :=
6701 RList'(1 .. 0 => REnt'(No_Uint, No_Uint));
6702 -- An empty set of ranges represents a range list that can never be
6703 -- satisfied, since there are no ranges in which the value could lie,
6704 -- so it does not lie in any of them. False_Range is a canonical value
6705 -- for this empty set, but general processing should test for an Rlist
6706 -- with length zero (see Is_False predicate), since other null ranges
6707 -- may appear which must be treated as False.
6709 True_Range : constant RList := RList'(1 => REnt'(BLo, BHi));
6710 -- Range representing True, value must be in the base range
6712 function "and" (Left : RList; Right : RList) return RList;
6713 -- And's together two range lists, returning a range list. This is a set
6714 -- intersection operation.
6716 function "or" (Left : RList; Right : RList) return RList;
6717 -- Or's together two range lists, returning a range list. This is a set
6718 -- union operation.
6720 function "not" (Right : RList) return RList;
6721 -- Returns complement of a given range list, i.e. a range list
6722 -- representing all the values in TLo .. THi that are not in the input
6723 -- operand Right.
6725 function Build_Val (V : Uint) return Node_Id;
6726 -- Return an analyzed N_Identifier node referencing this value, suitable
6727 -- for use as an entry in the Static_Discrte_Predicate list. This node
6728 -- is typed with the base type.
6730 function Build_Range (Lo : Uint; Hi : Uint) return Node_Id;
6731 -- Return an analyzed N_Range node referencing this range, suitable for
6732 -- use as an entry in the Static_Discrete_Predicate list. This node is
6733 -- typed with the base type.
6735 function Get_RList (Exp : Node_Id) return RList;
6736 -- This is a recursive routine that converts the given expression into a
6737 -- list of ranges, suitable for use in building the static predicate.
6739 function Is_False (R : RList) return Boolean;
6740 pragma Inline (Is_False);
6741 -- Returns True if the given range list is empty, and thus represents a
6742 -- False list of ranges that can never be satisfied.
6744 function Is_True (R : RList) return Boolean;
6745 -- Returns True if R trivially represents the True predicate by having a
6746 -- single range from BLo to BHi.
6748 function Is_Type_Ref (N : Node_Id) return Boolean;
6749 pragma Inline (Is_Type_Ref);
6750 -- Returns if True if N is a reference to the type for the predicate in
6751 -- the expression (i.e. if it is an identifier whose Chars field matches
6752 -- the Nam given in the call). N must not be parenthesized, if the type
6753 -- name appears in parens, this routine will return False.
6755 function Lo_Val (N : Node_Id) return Uint;
6756 -- Given an entry from a Static_Discrete_Predicate list that is either
6757 -- a static expression or static range, gets either the expression value
6758 -- or the low bound of the range.
6760 function Hi_Val (N : Node_Id) return Uint;
6761 -- Given an entry from a Static_Discrete_Predicate list that is either
6762 -- a static expression or static range, gets either the expression value
6763 -- or the high bound of the range.
6765 function Membership_Entry (N : Node_Id) return RList;
6766 -- Given a single membership entry (range, value, or subtype), returns
6767 -- the corresponding range list. Raises Static_Error if not static.
6769 function Membership_Entries (N : Node_Id) return RList;
6770 -- Given an element on an alternatives list of a membership operation,
6771 -- returns the range list corresponding to this entry and all following
6772 -- entries (i.e. returns the "or" of this list of values).
6774 function Stat_Pred (Typ : Entity_Id) return RList;
6775 -- Given a type, if it has a static predicate, then return the predicate
6776 -- as a range list, otherwise raise Non_Static.
6778 -----------
6779 -- "and" --
6780 -----------
6782 function "and" (Left : RList; Right : RList) return RList is
6783 FEnt : REnt;
6784 -- First range of result
6786 SLeft : Nat := Left'First;
6787 -- Start of rest of left entries
6789 SRight : Nat := Right'First;
6790 -- Start of rest of right entries
6792 begin
6793 -- If either range is True, return the other
6795 if Is_True (Left) then
6796 return Right;
6797 elsif Is_True (Right) then
6798 return Left;
6799 end if;
6801 -- If either range is False, return False
6803 if Is_False (Left) or else Is_False (Right) then
6804 return False_Range;
6805 end if;
6807 -- Loop to remove entries at start that are disjoint, and thus just
6808 -- get discarded from the result entirely.
6810 loop
6811 -- If no operands left in either operand, result is false
6813 if SLeft > Left'Last or else SRight > Right'Last then
6814 return False_Range;
6816 -- Discard first left operand entry if disjoint with right
6818 elsif Left (SLeft).Hi < Right (SRight).Lo then
6819 SLeft := SLeft + 1;
6821 -- Discard first right operand entry if disjoint with left
6823 elsif Right (SRight).Hi < Left (SLeft).Lo then
6824 SRight := SRight + 1;
6826 -- Otherwise we have an overlapping entry
6828 else
6829 exit;
6830 end if;
6831 end loop;
6833 -- Now we have two non-null operands, and first entries overlap. The
6834 -- first entry in the result will be the overlapping part of these
6835 -- two entries.
6837 FEnt := REnt'(Lo => UI_Max (Left (SLeft).Lo, Right (SRight).Lo),
6838 Hi => UI_Min (Left (SLeft).Hi, Right (SRight).Hi));
6840 -- Now we can remove the entry that ended at a lower value, since its
6841 -- contribution is entirely contained in Fent.
6843 if Left (SLeft).Hi <= Right (SRight).Hi then
6844 SLeft := SLeft + 1;
6845 else
6846 SRight := SRight + 1;
6847 end if;
6849 -- Compute result by concatenating this first entry with the "and" of
6850 -- the remaining parts of the left and right operands. Note that if
6851 -- either of these is empty, "and" will yield empty, so that we will
6852 -- end up with just Fent, which is what we want in that case.
6854 return
6855 FEnt & (Left (SLeft .. Left'Last) and Right (SRight .. Right'Last));
6856 end "and";
6858 -----------
6859 -- "not" --
6860 -----------
6862 function "not" (Right : RList) return RList is
6863 begin
6864 -- Return True if False range
6866 if Is_False (Right) then
6867 return True_Range;
6868 end if;
6870 -- Return False if True range
6872 if Is_True (Right) then
6873 return False_Range;
6874 end if;
6876 -- Here if not trivial case
6878 declare
6879 Result : RList (1 .. Right'Length + 1);
6880 -- May need one more entry for gap at beginning and end
6882 Count : Nat := 0;
6883 -- Number of entries stored in Result
6885 begin
6886 -- Gap at start
6888 if Right (Right'First).Lo > TLo then
6889 Count := Count + 1;
6890 Result (Count) := REnt'(TLo, Right (Right'First).Lo - 1);
6891 end if;
6893 -- Gaps between ranges
6895 for J in Right'First .. Right'Last - 1 loop
6896 Count := Count + 1;
6897 Result (Count) := REnt'(Right (J).Hi + 1, Right (J + 1).Lo - 1);
6898 end loop;
6900 -- Gap at end
6902 if Right (Right'Last).Hi < THi then
6903 Count := Count + 1;
6904 Result (Count) := REnt'(Right (Right'Last).Hi + 1, THi);
6905 end if;
6907 return Result (1 .. Count);
6908 end;
6909 end "not";
6911 ----------
6912 -- "or" --
6913 ----------
6915 function "or" (Left : RList; Right : RList) return RList is
6916 FEnt : REnt;
6917 -- First range of result
6919 SLeft : Nat := Left'First;
6920 -- Start of rest of left entries
6922 SRight : Nat := Right'First;
6923 -- Start of rest of right entries
6925 begin
6926 -- If either range is True, return True
6928 if Is_True (Left) or else Is_True (Right) then
6929 return True_Range;
6930 end if;
6932 -- If either range is False (empty), return the other
6934 if Is_False (Left) then
6935 return Right;
6936 elsif Is_False (Right) then
6937 return Left;
6938 end if;
6940 -- Initialize result first entry from left or right operand depending
6941 -- on which starts with the lower range.
6943 if Left (SLeft).Lo < Right (SRight).Lo then
6944 FEnt := Left (SLeft);
6945 SLeft := SLeft + 1;
6946 else
6947 FEnt := Right (SRight);
6948 SRight := SRight + 1;
6949 end if;
6951 -- This loop eats ranges from left and right operands that are
6952 -- contiguous with the first range we are gathering.
6954 loop
6955 -- Eat first entry in left operand if contiguous or overlapped by
6956 -- gathered first operand of result.
6958 if SLeft <= Left'Last
6959 and then Left (SLeft).Lo <= FEnt.Hi + 1
6960 then
6961 FEnt.Hi := UI_Max (FEnt.Hi, Left (SLeft).Hi);
6962 SLeft := SLeft + 1;
6964 -- Eat first entry in right operand if contiguous or overlapped by
6965 -- gathered right operand of result.
6967 elsif SRight <= Right'Last
6968 and then Right (SRight).Lo <= FEnt.Hi + 1
6969 then
6970 FEnt.Hi := UI_Max (FEnt.Hi, Right (SRight).Hi);
6971 SRight := SRight + 1;
6973 -- All done if no more entries to eat
6975 else
6976 exit;
6977 end if;
6978 end loop;
6980 -- Obtain result as the first entry we just computed, concatenated
6981 -- to the "or" of the remaining results (if one operand is empty,
6982 -- this will just concatenate with the other
6984 return
6985 FEnt & (Left (SLeft .. Left'Last) or Right (SRight .. Right'Last));
6986 end "or";
6988 -----------------
6989 -- Build_Range --
6990 -----------------
6992 function Build_Range (Lo : Uint; Hi : Uint) return Node_Id is
6993 Result : Node_Id;
6994 begin
6995 Result :=
6996 Make_Range (Loc,
6997 Low_Bound => Build_Val (Lo),
6998 High_Bound => Build_Val (Hi));
6999 Set_Etype (Result, Btyp);
7000 Set_Analyzed (Result);
7001 return Result;
7002 end Build_Range;
7004 ---------------
7005 -- Build_Val --
7006 ---------------
7008 function Build_Val (V : Uint) return Node_Id is
7009 Result : Node_Id;
7011 begin
7012 if Is_Enumeration_Type (Typ) then
7013 Result := Get_Enum_Lit_From_Pos (Typ, V, Loc);
7014 else
7015 Result := Make_Integer_Literal (Loc, V);
7016 end if;
7018 Set_Etype (Result, Btyp);
7019 Set_Is_Static_Expression (Result);
7020 Set_Analyzed (Result);
7021 return Result;
7022 end Build_Val;
7024 ---------------
7025 -- Get_RList --
7026 ---------------
7028 function Get_RList (Exp : Node_Id) return RList is
7029 Op : Node_Kind;
7030 Val : Uint;
7032 begin
7033 -- Static expression can only be true or false
7035 if Is_OK_Static_Expression (Exp) then
7036 if Expr_Value (Exp) = 0 then
7037 return False_Range;
7038 else
7039 return True_Range;
7040 end if;
7041 end if;
7043 -- Otherwise test node type
7045 Op := Nkind (Exp);
7047 case Op is
7049 -- And
7051 when N_Op_And | N_And_Then =>
7052 return Get_RList (Left_Opnd (Exp))
7054 Get_RList (Right_Opnd (Exp));
7056 -- Or
7058 when N_Op_Or | N_Or_Else =>
7059 return Get_RList (Left_Opnd (Exp))
7061 Get_RList (Right_Opnd (Exp));
7063 -- Not
7065 when N_Op_Not =>
7066 return not Get_RList (Right_Opnd (Exp));
7068 -- Comparisons of type with static value
7070 when N_Op_Compare =>
7072 -- Type is left operand
7074 if Is_Type_Ref (Left_Opnd (Exp))
7075 and then Is_OK_Static_Expression (Right_Opnd (Exp))
7076 then
7077 Val := Expr_Value (Right_Opnd (Exp));
7079 -- Typ is right operand
7081 elsif Is_Type_Ref (Right_Opnd (Exp))
7082 and then Is_OK_Static_Expression (Left_Opnd (Exp))
7083 then
7084 Val := Expr_Value (Left_Opnd (Exp));
7086 -- Invert sense of comparison
7088 case Op is
7089 when N_Op_Gt => Op := N_Op_Lt;
7090 when N_Op_Lt => Op := N_Op_Gt;
7091 when N_Op_Ge => Op := N_Op_Le;
7092 when N_Op_Le => Op := N_Op_Ge;
7093 when others => null;
7094 end case;
7096 -- Other cases are non-static
7098 else
7099 raise Non_Static;
7100 end if;
7102 -- Construct range according to comparison operation
7104 case Op is
7105 when N_Op_Eq =>
7106 return RList'(1 => REnt'(Val, Val));
7108 when N_Op_Ge =>
7109 return RList'(1 => REnt'(Val, BHi));
7111 when N_Op_Gt =>
7112 return RList'(1 => REnt'(Val + 1, BHi));
7114 when N_Op_Le =>
7115 return RList'(1 => REnt'(BLo, Val));
7117 when N_Op_Lt =>
7118 return RList'(1 => REnt'(BLo, Val - 1));
7120 when N_Op_Ne =>
7121 return RList'(REnt'(BLo, Val - 1), REnt'(Val + 1, BHi));
7123 when others =>
7124 raise Program_Error;
7125 end case;
7127 -- Membership (IN)
7129 when N_In =>
7130 if not Is_Type_Ref (Left_Opnd (Exp)) then
7131 raise Non_Static;
7132 end if;
7134 if Present (Right_Opnd (Exp)) then
7135 return Membership_Entry (Right_Opnd (Exp));
7136 else
7137 return Membership_Entries (First (Alternatives (Exp)));
7138 end if;
7140 -- Negative membership (NOT IN)
7142 when N_Not_In =>
7143 if not Is_Type_Ref (Left_Opnd (Exp)) then
7144 raise Non_Static;
7145 end if;
7147 if Present (Right_Opnd (Exp)) then
7148 return not Membership_Entry (Right_Opnd (Exp));
7149 else
7150 return not Membership_Entries (First (Alternatives (Exp)));
7151 end if;
7153 -- Function call, may be call to static predicate
7155 when N_Function_Call =>
7156 if Is_Entity_Name (Name (Exp)) then
7157 declare
7158 Ent : constant Entity_Id := Entity (Name (Exp));
7159 begin
7160 if Is_Predicate_Function (Ent)
7161 or else
7162 Is_Predicate_Function_M (Ent)
7163 then
7164 return Stat_Pred (Etype (First_Formal (Ent)));
7165 end if;
7166 end;
7167 end if;
7169 -- Other function call cases are non-static
7171 raise Non_Static;
7173 -- Qualified expression, dig out the expression
7175 when N_Qualified_Expression =>
7176 return Get_RList (Expression (Exp));
7178 when N_Case_Expression =>
7179 declare
7180 Alt : Node_Id;
7181 Choices : List_Id;
7182 Dep : Node_Id;
7184 begin
7185 if not Is_Entity_Name (Expression (Expr))
7186 or else Etype (Expression (Expr)) /= Typ
7187 then
7188 Error_Msg_N
7189 ("expression must denaote subtype", Expression (Expr));
7190 return False_Range;
7191 end if;
7193 -- Collect discrete choices in all True alternatives
7195 Choices := New_List;
7196 Alt := First (Alternatives (Exp));
7197 while Present (Alt) loop
7198 Dep := Expression (Alt);
7200 if not Is_OK_Static_Expression (Dep) then
7201 raise Non_Static;
7203 elsif Is_True (Expr_Value (Dep)) then
7204 Append_List_To (Choices,
7205 New_Copy_List (Discrete_Choices (Alt)));
7206 end if;
7208 Next (Alt);
7209 end loop;
7211 return Membership_Entries (First (Choices));
7212 end;
7214 -- Expression with actions: if no actions, dig out expression
7216 when N_Expression_With_Actions =>
7217 if Is_Empty_List (Actions (Exp)) then
7218 return Get_RList (Expression (Exp));
7219 else
7220 raise Non_Static;
7221 end if;
7223 -- Xor operator
7225 when N_Op_Xor =>
7226 return (Get_RList (Left_Opnd (Exp))
7227 and not Get_RList (Right_Opnd (Exp)))
7228 or (Get_RList (Right_Opnd (Exp))
7229 and not Get_RList (Left_Opnd (Exp)));
7231 -- Any other node type is non-static
7233 when others =>
7234 raise Non_Static;
7235 end case;
7236 end Get_RList;
7238 ------------
7239 -- Hi_Val --
7240 ------------
7242 function Hi_Val (N : Node_Id) return Uint is
7243 begin
7244 if Is_OK_Static_Expression (N) then
7245 return Expr_Value (N);
7246 else
7247 pragma Assert (Nkind (N) = N_Range);
7248 return Expr_Value (High_Bound (N));
7249 end if;
7250 end Hi_Val;
7252 --------------
7253 -- Is_False --
7254 --------------
7256 function Is_False (R : RList) return Boolean is
7257 begin
7258 return R'Length = 0;
7259 end Is_False;
7261 -------------
7262 -- Is_True --
7263 -------------
7265 function Is_True (R : RList) return Boolean is
7266 begin
7267 return R'Length = 1
7268 and then R (R'First).Lo = BLo
7269 and then R (R'First).Hi = BHi;
7270 end Is_True;
7272 -----------------
7273 -- Is_Type_Ref --
7274 -----------------
7276 function Is_Type_Ref (N : Node_Id) return Boolean is
7277 begin
7278 return Nkind (N) = N_Identifier
7279 and then Chars (N) = Nam
7280 and then Paren_Count (N) = 0;
7281 end Is_Type_Ref;
7283 ------------
7284 -- Lo_Val --
7285 ------------
7287 function Lo_Val (N : Node_Id) return Uint is
7288 begin
7289 if Is_OK_Static_Expression (N) then
7290 return Expr_Value (N);
7291 else
7292 pragma Assert (Nkind (N) = N_Range);
7293 return Expr_Value (Low_Bound (N));
7294 end if;
7295 end Lo_Val;
7297 ------------------------
7298 -- Membership_Entries --
7299 ------------------------
7301 function Membership_Entries (N : Node_Id) return RList is
7302 begin
7303 if No (Next (N)) then
7304 return Membership_Entry (N);
7305 else
7306 return Membership_Entry (N) or Membership_Entries (Next (N));
7307 end if;
7308 end Membership_Entries;
7310 ----------------------
7311 -- Membership_Entry --
7312 ----------------------
7314 function Membership_Entry (N : Node_Id) return RList is
7315 Val : Uint;
7316 SLo : Uint;
7317 SHi : Uint;
7319 begin
7320 -- Range case
7322 if Nkind (N) = N_Range then
7323 if not Is_OK_Static_Expression (Low_Bound (N))
7324 or else
7325 not Is_OK_Static_Expression (High_Bound (N))
7326 then
7327 raise Non_Static;
7328 else
7329 SLo := Expr_Value (Low_Bound (N));
7330 SHi := Expr_Value (High_Bound (N));
7331 return RList'(1 => REnt'(SLo, SHi));
7332 end if;
7334 -- Static expression case
7336 elsif Is_OK_Static_Expression (N) then
7337 Val := Expr_Value (N);
7338 return RList'(1 => REnt'(Val, Val));
7340 -- Identifier (other than static expression) case
7342 else pragma Assert (Nkind (N) = N_Identifier);
7344 -- Type case
7346 if Is_Type (Entity (N)) then
7348 -- If type has predicates, process them
7350 if Has_Predicates (Entity (N)) then
7351 return Stat_Pred (Entity (N));
7353 -- For static subtype without predicates, get range
7355 elsif Is_OK_Static_Subtype (Entity (N)) then
7356 SLo := Expr_Value (Type_Low_Bound (Entity (N)));
7357 SHi := Expr_Value (Type_High_Bound (Entity (N)));
7358 return RList'(1 => REnt'(SLo, SHi));
7360 -- Any other type makes us non-static
7362 else
7363 raise Non_Static;
7364 end if;
7366 -- Any other kind of identifier in predicate (e.g. a non-static
7367 -- expression value) means this is not a static predicate.
7369 else
7370 raise Non_Static;
7371 end if;
7372 end if;
7373 end Membership_Entry;
7375 ---------------
7376 -- Stat_Pred --
7377 ---------------
7379 function Stat_Pred (Typ : Entity_Id) return RList is
7380 begin
7381 -- Not static if type does not have static predicates
7383 if not Has_Static_Predicate (Typ) then
7384 raise Non_Static;
7385 end if;
7387 -- Otherwise we convert the predicate list to a range list
7389 declare
7390 Spred : constant List_Id := Static_Discrete_Predicate (Typ);
7391 Result : RList (1 .. List_Length (Spred));
7392 P : Node_Id;
7394 begin
7395 P := First (Static_Discrete_Predicate (Typ));
7396 for J in Result'Range loop
7397 Result (J) := REnt'(Lo_Val (P), Hi_Val (P));
7398 Next (P);
7399 end loop;
7401 return Result;
7402 end;
7403 end Stat_Pred;
7405 -- Start of processing for Build_Discrete_Static_Predicate
7407 begin
7408 -- Establish bounds for the predicate
7410 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
7411 TLo := Expr_Value (Type_Low_Bound (Typ));
7412 else
7413 TLo := BLo;
7414 end if;
7416 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
7417 THi := Expr_Value (Type_High_Bound (Typ));
7418 else
7419 THi := BHi;
7420 end if;
7422 -- Analyze the expression to see if it is a static predicate
7424 declare
7425 Ranges : constant RList := Get_RList (Expr);
7426 -- Range list from expression if it is static
7428 Plist : List_Id;
7430 begin
7431 -- Convert range list into a form for the static predicate. In the
7432 -- Ranges array, we just have raw ranges, these must be converted
7433 -- to properly typed and analyzed static expressions or range nodes.
7435 -- Note: here we limit ranges to the ranges of the subtype, so that
7436 -- a predicate is always false for values outside the subtype. That
7437 -- seems fine, such values are invalid anyway, and considering them
7438 -- to fail the predicate seems allowed and friendly, and furthermore
7439 -- simplifies processing for case statements and loops.
7441 Plist := New_List;
7443 for J in Ranges'Range loop
7444 declare
7445 Lo : Uint := Ranges (J).Lo;
7446 Hi : Uint := Ranges (J).Hi;
7448 begin
7449 -- Ignore completely out of range entry
7451 if Hi < TLo or else Lo > THi then
7452 null;
7454 -- Otherwise process entry
7456 else
7457 -- Adjust out of range value to subtype range
7459 if Lo < TLo then
7460 Lo := TLo;
7461 end if;
7463 if Hi > THi then
7464 Hi := THi;
7465 end if;
7467 -- Convert range into required form
7469 Append_To (Plist, Build_Range (Lo, Hi));
7470 end if;
7471 end;
7472 end loop;
7474 -- Processing was successful and all entries were static, so now we
7475 -- can store the result as the predicate list.
7477 Set_Static_Discrete_Predicate (Typ, Plist);
7479 -- The processing for static predicates put the expression into
7480 -- canonical form as a series of ranges. It also eliminated
7481 -- duplicates and collapsed and combined ranges. We might as well
7482 -- replace the alternatives list of the right operand of the
7483 -- membership test with the static predicate list, which will
7484 -- usually be more efficient.
7486 declare
7487 New_Alts : constant List_Id := New_List;
7488 Old_Node : Node_Id;
7489 New_Node : Node_Id;
7491 begin
7492 Old_Node := First (Plist);
7493 while Present (Old_Node) loop
7494 New_Node := New_Copy (Old_Node);
7496 if Nkind (New_Node) = N_Range then
7497 Set_Low_Bound (New_Node, New_Copy (Low_Bound (Old_Node)));
7498 Set_High_Bound (New_Node, New_Copy (High_Bound (Old_Node)));
7499 end if;
7501 Append_To (New_Alts, New_Node);
7502 Next (Old_Node);
7503 end loop;
7505 -- If empty list, replace by False
7507 if Is_Empty_List (New_Alts) then
7508 Rewrite (Expr, New_Occurrence_Of (Standard_False, Loc));
7510 -- Else replace by set membership test
7512 else
7513 Rewrite (Expr,
7514 Make_In (Loc,
7515 Left_Opnd => Make_Identifier (Loc, Nam),
7516 Right_Opnd => Empty,
7517 Alternatives => New_Alts));
7519 -- Resolve new expression in function context
7521 Install_Formals (Predicate_Function (Typ));
7522 Push_Scope (Predicate_Function (Typ));
7523 Analyze_And_Resolve (Expr, Standard_Boolean);
7524 Pop_Scope;
7525 end if;
7526 end;
7527 end;
7529 -- If non-static, return doing nothing
7531 exception
7532 when Non_Static =>
7533 return;
7534 end Build_Discrete_Static_Predicate;
7536 -------------------------------------------
7537 -- Build_Invariant_Procedure_Declaration --
7538 -------------------------------------------
7540 function Build_Invariant_Procedure_Declaration
7541 (Typ : Entity_Id) return Node_Id
7543 Loc : constant Source_Ptr := Sloc (Typ);
7544 Object_Entity : constant Entity_Id :=
7545 Make_Defining_Identifier (Loc, New_Internal_Name ('I'));
7546 Spec : Node_Id;
7547 SId : Entity_Id;
7549 begin
7550 Set_Etype (Object_Entity, Typ);
7552 -- Check for duplicate definiations.
7554 if Has_Invariants (Typ) and then Present (Invariant_Procedure (Typ)) then
7555 return Empty;
7556 end if;
7558 SId :=
7559 Make_Defining_Identifier (Loc,
7560 Chars => New_External_Name (Chars (Typ), "Invariant"));
7561 Set_Has_Invariants (Typ);
7562 Set_Ekind (SId, E_Procedure);
7563 Set_Etype (SId, Standard_Void_Type);
7564 Set_Is_Invariant_Procedure (SId);
7565 Set_Invariant_Procedure (Typ, SId);
7567 Spec :=
7568 Make_Procedure_Specification (Loc,
7569 Defining_Unit_Name => SId,
7570 Parameter_Specifications => New_List (
7571 Make_Parameter_Specification (Loc,
7572 Defining_Identifier => Object_Entity,
7573 Parameter_Type => New_Occurrence_Of (Typ, Loc))));
7575 return Make_Subprogram_Declaration (Loc, Specification => Spec);
7576 end Build_Invariant_Procedure_Declaration;
7578 -------------------------------
7579 -- Build_Invariant_Procedure --
7580 -------------------------------
7582 -- The procedure that is constructed here has the form
7584 -- procedure typInvariant (Ixxx : typ) is
7585 -- begin
7586 -- pragma Check (Invariant, exp, "failed invariant from xxx");
7587 -- pragma Check (Invariant, exp, "failed invariant from xxx");
7588 -- ...
7589 -- pragma Check (Invariant, exp, "failed inherited invariant from xxx");
7590 -- ...
7591 -- end typInvariant;
7593 procedure Build_Invariant_Procedure (Typ : Entity_Id; N : Node_Id) is
7594 Loc : constant Source_Ptr := Sloc (Typ);
7595 Stmts : List_Id;
7596 Spec : Node_Id;
7597 SId : Entity_Id;
7598 PDecl : Node_Id;
7599 PBody : Node_Id;
7601 Nam : Name_Id;
7602 -- Name for Check pragma, usually Invariant, but might be Type_Invariant
7603 -- if we come from a Type_Invariant aspect, we make sure to build the
7604 -- Check pragma with the right name, so that Check_Policy works right.
7606 Visible_Decls : constant List_Id := Visible_Declarations (N);
7607 Private_Decls : constant List_Id := Private_Declarations (N);
7609 procedure Add_Invariants (T : Entity_Id; Inherit : Boolean);
7610 -- Appends statements to Stmts for any invariants in the rep item chain
7611 -- of the given type. If Inherit is False, then we only process entries
7612 -- on the chain for the type Typ. If Inherit is True, then we ignore any
7613 -- Invariant aspects, but we process all Invariant'Class aspects, adding
7614 -- "inherited" to the exception message and generating an informational
7615 -- message about the inheritance of an invariant.
7617 Object_Name : Name_Id;
7618 -- Name for argument of invariant procedure
7620 Object_Entity : Node_Id;
7621 -- The entity of the formal for the procedure
7623 --------------------
7624 -- Add_Invariants --
7625 --------------------
7627 procedure Add_Invariants (T : Entity_Id; Inherit : Boolean) is
7628 Ritem : Node_Id;
7629 Arg1 : Node_Id;
7630 Arg2 : Node_Id;
7631 Arg3 : Node_Id;
7632 Exp : Node_Id;
7633 Loc : Source_Ptr;
7634 Assoc : List_Id;
7635 Str : String_Id;
7637 procedure Replace_Type_Reference (N : Node_Id);
7638 -- Replace a single occurrence N of the subtype name with a reference
7639 -- to the formal of the predicate function. N can be an identifier
7640 -- referencing the subtype, or a selected component, representing an
7641 -- appropriately qualified occurrence of the subtype name.
7643 procedure Replace_Type_References is
7644 new Replace_Type_References_Generic (Replace_Type_Reference);
7645 -- Traverse an expression replacing all occurrences of the subtype
7646 -- name with appropriate references to the object that is the formal
7647 -- parameter of the predicate function. Note that we must ensure
7648 -- that the type and entity information is properly set in the
7649 -- replacement node, since we will do a Preanalyze call of this
7650 -- expression without proper visibility of the procedure argument.
7652 ----------------------------
7653 -- Replace_Type_Reference --
7654 ----------------------------
7656 -- Note: See comments in Add_Predicates.Replace_Type_Reference
7657 -- regarding handling of Sloc and Comes_From_Source.
7659 procedure Replace_Type_Reference (N : Node_Id) is
7660 begin
7662 -- Add semantic information to node to be rewritten, for ASIS
7663 -- navigation needs.
7665 if Nkind (N) = N_Identifier then
7666 Set_Entity (N, T);
7667 Set_Etype (N, T);
7669 elsif Nkind (N) = N_Selected_Component then
7670 Analyze (Prefix (N));
7671 Set_Entity (Selector_Name (N), T);
7672 Set_Etype (Selector_Name (N), T);
7673 end if;
7675 -- Invariant'Class, replace with T'Class (obj)
7676 -- In ASIS mode, an inherited item is analyzed already, and the
7677 -- replacement has been done, so do not repeat transformation
7678 -- to prevent ill-formed tree.
7680 if Class_Present (Ritem) then
7681 if ASIS_Mode
7682 and then Nkind (Parent (N)) = N_Attribute_Reference
7683 and then Attribute_Name (Parent (N)) = Name_Class
7684 then
7685 null;
7687 else
7688 Rewrite (N,
7689 Make_Type_Conversion (Sloc (N),
7690 Subtype_Mark =>
7691 Make_Attribute_Reference (Sloc (N),
7692 Prefix => New_Occurrence_Of (T, Sloc (N)),
7693 Attribute_Name => Name_Class),
7694 Expression =>
7695 Make_Identifier (Sloc (N), Object_Name)));
7697 Set_Entity (Expression (N), Object_Entity);
7698 Set_Etype (Expression (N), Typ);
7699 end if;
7701 -- Invariant, replace with obj
7703 else
7704 Rewrite (N, Make_Identifier (Sloc (N), Object_Name));
7705 Set_Entity (N, Object_Entity);
7706 Set_Etype (N, Typ);
7707 end if;
7709 Set_Comes_From_Source (N, True);
7710 end Replace_Type_Reference;
7712 -- Start of processing for Add_Invariants
7714 begin
7715 Ritem := First_Rep_Item (T);
7716 while Present (Ritem) loop
7717 if Nkind (Ritem) = N_Pragma
7718 and then Pragma_Name (Ritem) = Name_Invariant
7719 then
7720 Arg1 := First (Pragma_Argument_Associations (Ritem));
7721 Arg2 := Next (Arg1);
7722 Arg3 := Next (Arg2);
7724 Arg1 := Get_Pragma_Arg (Arg1);
7725 Arg2 := Get_Pragma_Arg (Arg2);
7727 -- For Inherit case, ignore Invariant, process only Class case
7729 if Inherit then
7730 if not Class_Present (Ritem) then
7731 goto Continue;
7732 end if;
7734 -- For Inherit false, process only item for right type
7736 else
7737 if Entity (Arg1) /= Typ then
7738 goto Continue;
7739 end if;
7740 end if;
7742 if No (Stmts) then
7743 Stmts := Empty_List;
7744 end if;
7746 Exp := New_Copy_Tree (Arg2);
7748 -- Preserve sloc of original pragma Invariant
7750 Loc := Sloc (Ritem);
7752 -- We need to replace any occurrences of the name of the type
7753 -- with references to the object, converted to type'Class in
7754 -- the case of Invariant'Class aspects.
7756 Replace_Type_References (Exp, T);
7758 -- If this invariant comes from an aspect, find the aspect
7759 -- specification, and replace the saved expression because
7760 -- we need the subtype references replaced for the calls to
7761 -- Preanalyze_Spec_Expressin in Check_Aspect_At_Freeze_Point
7762 -- and Check_Aspect_At_End_Of_Declarations.
7764 if From_Aspect_Specification (Ritem) then
7765 declare
7766 Aitem : Node_Id;
7768 begin
7769 -- Loop to find corresponding aspect, note that this
7770 -- must be present given the pragma is marked delayed.
7772 -- Note: in practice Next_Rep_Item (Ritem) is Empty so
7773 -- this loop does nothing. Furthermore, why isn't this
7774 -- simply Corresponding_Aspect ???
7776 Aitem := Next_Rep_Item (Ritem);
7777 while Present (Aitem) loop
7778 if Nkind (Aitem) = N_Aspect_Specification
7779 and then Aspect_Rep_Item (Aitem) = Ritem
7780 then
7781 Set_Entity
7782 (Identifier (Aitem), New_Copy_Tree (Exp));
7783 exit;
7784 end if;
7786 Aitem := Next_Rep_Item (Aitem);
7787 end loop;
7788 end;
7789 end if;
7791 -- Now we need to preanalyze the expression to properly capture
7792 -- the visibility in the visible part. The expression will not
7793 -- be analyzed for real until the body is analyzed, but that is
7794 -- at the end of the private part and has the wrong visibility.
7796 Set_Parent (Exp, N);
7797 Preanalyze_Assert_Expression (Exp, Any_Boolean);
7799 -- A class-wide invariant may be inherited in a separate unit,
7800 -- where the corresponding expression cannot be resolved by
7801 -- visibility, because it refers to a local function. Propagate
7802 -- semantic information to the original representation item, to
7803 -- be used when an invariant procedure for a derived type is
7804 -- constructed.
7806 -- Unclear how to handle class-wide invariants that are not
7807 -- function calls ???
7809 if not Inherit
7810 and then Class_Present (Ritem)
7811 and then Nkind (Exp) = N_Function_Call
7812 and then Nkind (Arg2) = N_Indexed_Component
7813 then
7814 Rewrite (Arg2,
7815 Make_Function_Call (Loc,
7816 Name =>
7817 New_Occurrence_Of (Entity (Name (Exp)), Loc),
7818 Parameter_Associations =>
7819 New_Copy_List (Expressions (Arg2))));
7820 end if;
7822 -- In ASIS mode, even if assertions are not enabled, we must
7823 -- analyze the original expression in the aspect specification
7824 -- because it is part of the original tree.
7826 if ASIS_Mode and then From_Aspect_Specification (Ritem) then
7827 declare
7828 Inv : constant Node_Id :=
7829 Expression (Corresponding_Aspect (Ritem));
7830 begin
7831 Replace_Type_References (Inv, T);
7832 Preanalyze_Assert_Expression (Inv, Standard_Boolean);
7833 end;
7834 end if;
7836 -- Get name to be used for Check pragma
7838 if not From_Aspect_Specification (Ritem) then
7839 Nam := Name_Invariant;
7840 else
7841 Nam := Chars (Identifier (Corresponding_Aspect (Ritem)));
7842 end if;
7844 -- Build first two arguments for Check pragma
7846 Assoc :=
7847 New_List (
7848 Make_Pragma_Argument_Association (Loc,
7849 Expression => Make_Identifier (Loc, Chars => Nam)),
7850 Make_Pragma_Argument_Association (Loc,
7851 Expression => Exp));
7853 -- Add message if present in Invariant pragma
7855 if Present (Arg3) then
7856 Str := Strval (Get_Pragma_Arg (Arg3));
7858 -- If inherited case, and message starts "failed invariant",
7859 -- change it to be "failed inherited invariant".
7861 if Inherit then
7862 String_To_Name_Buffer (Str);
7864 if Name_Buffer (1 .. 16) = "failed invariant" then
7865 Insert_Str_In_Name_Buffer ("inherited ", 8);
7866 Str := String_From_Name_Buffer;
7867 end if;
7868 end if;
7870 Append_To (Assoc,
7871 Make_Pragma_Argument_Association (Loc,
7872 Expression => Make_String_Literal (Loc, Str)));
7873 end if;
7875 -- Add Check pragma to list of statements
7877 Append_To (Stmts,
7878 Make_Pragma (Loc,
7879 Pragma_Identifier =>
7880 Make_Identifier (Loc, Name_Check),
7881 Pragma_Argument_Associations => Assoc));
7883 -- If Inherited case and option enabled, output info msg. Note
7884 -- that we know this is a case of Invariant'Class.
7886 if Inherit and Opt.List_Inherited_Aspects then
7887 Error_Msg_Sloc := Sloc (Ritem);
7888 Error_Msg_N
7889 ("info: & inherits `Invariant''Class` aspect from #?L?",
7890 Typ);
7891 end if;
7892 end if;
7894 <<Continue>>
7895 Next_Rep_Item (Ritem);
7896 end loop;
7897 end Add_Invariants;
7899 -- Start of processing for Build_Invariant_Procedure
7901 begin
7902 Stmts := No_List;
7903 PDecl := Empty;
7904 PBody := Empty;
7905 SId := Empty;
7907 -- If the aspect specification exists for some view of the type, the
7908 -- declaration for the procedure has been created.
7910 if Has_Invariants (Typ) then
7911 SId := Invariant_Procedure (Typ);
7912 end if;
7914 -- If the body is already present, nothing to do. This will occur when
7915 -- the type is already frozen, which is the case when the invariant
7916 -- appears in a private part, and the freezing takes place before the
7917 -- final pass over full declarations.
7919 -- See Exp_Ch3.Insert_Component_Invariant_Checks for details.
7921 if Present (SId) then
7922 PDecl := Unit_Declaration_Node (SId);
7924 if Present (PDecl)
7925 and then Nkind (PDecl) = N_Subprogram_Declaration
7926 and then Present (Corresponding_Body (PDecl))
7927 then
7928 return;
7929 end if;
7931 else
7932 PDecl := Build_Invariant_Procedure_Declaration (Typ);
7933 end if;
7935 -- Recover formal of procedure, for use in the calls to invariant
7936 -- functions (including inherited ones).
7938 Object_Entity :=
7939 Defining_Identifier
7940 (First (Parameter_Specifications (Specification (PDecl))));
7941 Object_Name := Chars (Object_Entity);
7943 -- Add invariants for the current type
7945 Add_Invariants (Typ, Inherit => False);
7947 -- Add invariants for parent types
7949 declare
7950 Current_Typ : Entity_Id;
7951 Parent_Typ : Entity_Id;
7953 begin
7954 Current_Typ := Typ;
7955 loop
7956 Parent_Typ := Etype (Current_Typ);
7958 if Is_Private_Type (Parent_Typ)
7959 and then Present (Full_View (Base_Type (Parent_Typ)))
7960 then
7961 Parent_Typ := Full_View (Base_Type (Parent_Typ));
7962 end if;
7964 exit when Parent_Typ = Current_Typ;
7966 Current_Typ := Parent_Typ;
7967 Add_Invariants (Current_Typ, Inherit => True);
7968 end loop;
7969 end;
7971 -- Add invariants of progenitors
7973 if Is_Tagged_Type (Typ) and then not Is_Interface (Typ) then
7974 declare
7975 Ifaces_List : Elist_Id;
7976 AI : Elmt_Id;
7977 Iface : Entity_Id;
7979 begin
7980 Collect_Interfaces (Typ, Ifaces_List);
7982 AI := First_Elmt (Ifaces_List);
7983 while Present (AI) loop
7984 Iface := Node (AI);
7986 if not Is_Ancestor (Iface, Typ, Use_Full_View => True) then
7987 Add_Invariants (Iface, Inherit => True);
7988 end if;
7990 Next_Elmt (AI);
7991 end loop;
7992 end;
7993 end if;
7995 -- Build the procedure if we generated at least one Check pragma
7997 if Stmts /= No_List then
7998 Spec := Copy_Separate_Tree (Specification (PDecl));
8000 PBody :=
8001 Make_Subprogram_Body (Loc,
8002 Specification => Spec,
8003 Declarations => Empty_List,
8004 Handled_Statement_Sequence =>
8005 Make_Handled_Sequence_Of_Statements (Loc,
8006 Statements => Stmts));
8008 -- Insert procedure declaration and spec at the appropriate points.
8009 -- If declaration is already analyzed, it was processed by the
8010 -- generated pragma.
8012 if Present (Private_Decls) then
8014 -- The spec goes at the end of visible declarations, but they have
8015 -- already been analyzed, so we need to explicitly do the analyze.
8017 if not Analyzed (PDecl) then
8018 Append_To (Visible_Decls, PDecl);
8019 Analyze (PDecl);
8020 end if;
8022 -- The body goes at the end of the private declarations, which we
8023 -- have not analyzed yet, so we do not need to perform an explicit
8024 -- analyze call. We skip this if there are no private declarations
8025 -- (this is an error that will be caught elsewhere);
8027 Append_To (Private_Decls, PBody);
8029 -- If the invariant appears on the full view of a type, the
8030 -- analysis of the private part is complete, and we must
8031 -- analyze the new body explicitly.
8033 if In_Private_Part (Current_Scope) then
8034 Analyze (PBody);
8035 end if;
8037 -- If there are no private declarations this may be an error that
8038 -- will be diagnosed elsewhere. However, if this is a non-private
8039 -- type that inherits invariants, it needs no completion and there
8040 -- may be no private part. In this case insert invariant procedure
8041 -- at end of current declarative list, and analyze at once, given
8042 -- that the type is about to be frozen.
8044 elsif not Is_Private_Type (Typ) then
8045 Append_To (Visible_Decls, PDecl);
8046 Append_To (Visible_Decls, PBody);
8047 Analyze (PDecl);
8048 Analyze (PBody);
8049 end if;
8050 end if;
8051 end Build_Invariant_Procedure;
8053 -------------------------------
8054 -- Build_Predicate_Functions --
8055 -------------------------------
8057 -- The procedures that are constructed here have the form:
8059 -- function typPredicate (Ixxx : typ) return Boolean is
8060 -- begin
8061 -- return
8062 -- exp1 and then exp2 and then ...
8063 -- and then typ1Predicate (typ1 (Ixxx))
8064 -- and then typ2Predicate (typ2 (Ixxx))
8065 -- and then ...;
8066 -- end typPredicate;
8068 -- Here exp1, and exp2 are expressions from Predicate pragmas. Note that
8069 -- this is the point at which these expressions get analyzed, providing the
8070 -- required delay, and typ1, typ2, are entities from which predicates are
8071 -- inherited. Note that we do NOT generate Check pragmas, that's because we
8072 -- use this function even if checks are off, e.g. for membership tests.
8074 -- If the expression has at least one Raise_Expression, then we also build
8075 -- the typPredicateM version of the function, in which any occurrence of a
8076 -- Raise_Expression is converted to "return False".
8078 procedure Build_Predicate_Functions (Typ : Entity_Id; N : Node_Id) is
8079 Loc : constant Source_Ptr := Sloc (Typ);
8081 Expr : Node_Id;
8082 -- This is the expression for the result of the function. It is
8083 -- is build by connecting the component predicates with AND THEN.
8085 Expr_M : Node_Id;
8086 -- This is the corresponding return expression for the Predicate_M
8087 -- function. It differs in that raise expressions are marked for
8088 -- special expansion (see Process_REs).
8090 Object_Name : constant Name_Id := New_Internal_Name ('I');
8091 -- Name for argument of Predicate procedure. Note that we use the same
8092 -- name for both predicate functions. That way the reference within the
8093 -- predicate expression is the same in both functions.
8095 Object_Entity : constant Entity_Id :=
8096 Make_Defining_Identifier (Loc, Chars => Object_Name);
8097 -- Entity for argument of Predicate procedure
8099 Object_Entity_M : constant Entity_Id :=
8100 Make_Defining_Identifier (Loc, Chars => Object_Name);
8101 -- Entity for argument of Predicate_M procedure
8103 Raise_Expression_Present : Boolean := False;
8104 -- Set True if Expr has at least one Raise_Expression
8106 procedure Add_Call (T : Entity_Id);
8107 -- Includes a call to the predicate function for type T in Expr if T
8108 -- has predicates and Predicate_Function (T) is non-empty.
8110 procedure Add_Predicates;
8111 -- Appends expressions for any Predicate pragmas in the rep item chain
8112 -- Typ to Expr. Note that we look only at items for this exact entity.
8113 -- Inheritance of predicates for the parent type is done by calling the
8114 -- Predicate_Function of the parent type, using Add_Call above.
8116 function Test_RE (N : Node_Id) return Traverse_Result;
8117 -- Used in Test_REs, tests one node for being a raise expression, and if
8118 -- so sets Raise_Expression_Present True.
8120 procedure Test_REs is new Traverse_Proc (Test_RE);
8121 -- Tests to see if Expr contains any raise expressions
8123 function Process_RE (N : Node_Id) return Traverse_Result;
8124 -- Used in Process REs, tests if node N is a raise expression, and if
8125 -- so, marks it to be converted to return False.
8127 procedure Process_REs is new Traverse_Proc (Process_RE);
8128 -- Marks any raise expressions in Expr_M to return False
8130 --------------
8131 -- Add_Call --
8132 --------------
8134 procedure Add_Call (T : Entity_Id) is
8135 Exp : Node_Id;
8137 begin
8138 if Present (T) and then Present (Predicate_Function (T)) then
8139 Set_Has_Predicates (Typ);
8141 -- Build the call to the predicate function of T
8143 Exp :=
8144 Make_Predicate_Call
8145 (T, Convert_To (T, Make_Identifier (Loc, Object_Name)));
8147 -- Add call to evolving expression, using AND THEN if needed
8149 if No (Expr) then
8150 Expr := Exp;
8152 else
8153 Expr :=
8154 Make_And_Then (Sloc (Expr),
8155 Left_Opnd => Relocate_Node (Expr),
8156 Right_Opnd => Exp);
8157 end if;
8159 -- Output info message on inheritance if required. Note we do not
8160 -- give this information for generic actual types, since it is
8161 -- unwelcome noise in that case in instantiations. We also
8162 -- generally suppress the message in instantiations, and also
8163 -- if it involves internal names.
8165 if Opt.List_Inherited_Aspects
8166 and then not Is_Generic_Actual_Type (Typ)
8167 and then Instantiation_Depth (Sloc (Typ)) = 0
8168 and then not Is_Internal_Name (Chars (T))
8169 and then not Is_Internal_Name (Chars (Typ))
8170 then
8171 Error_Msg_Sloc := Sloc (Predicate_Function (T));
8172 Error_Msg_Node_2 := T;
8173 Error_Msg_N ("info: & inherits predicate from & #?L?", Typ);
8174 end if;
8175 end if;
8176 end Add_Call;
8178 --------------------
8179 -- Add_Predicates --
8180 --------------------
8182 procedure Add_Predicates is
8183 Ritem : Node_Id;
8184 Arg1 : Node_Id;
8185 Arg2 : Node_Id;
8187 procedure Replace_Type_Reference (N : Node_Id);
8188 -- Replace a single occurrence N of the subtype name with a reference
8189 -- to the formal of the predicate function. N can be an identifier
8190 -- referencing the subtype, or a selected component, representing an
8191 -- appropriately qualified occurrence of the subtype name.
8193 procedure Replace_Type_References is
8194 new Replace_Type_References_Generic (Replace_Type_Reference);
8195 -- Traverse an expression changing every occurrence of an identifier
8196 -- whose name matches the name of the subtype with a reference to
8197 -- the formal parameter of the predicate function.
8199 ----------------------------
8200 -- Replace_Type_Reference --
8201 ----------------------------
8203 procedure Replace_Type_Reference (N : Node_Id) is
8204 begin
8205 Rewrite (N, Make_Identifier (Sloc (N), Object_Name));
8206 -- Use the Sloc of the usage name, not the defining name
8208 Set_Etype (N, Typ);
8209 Set_Entity (N, Object_Entity);
8211 -- We want to treat the node as if it comes from source, so that
8212 -- ASIS will not ignore it
8214 Set_Comes_From_Source (N, True);
8215 end Replace_Type_Reference;
8217 -- Start of processing for Add_Predicates
8219 begin
8220 Ritem := First_Rep_Item (Typ);
8221 while Present (Ritem) loop
8222 if Nkind (Ritem) = N_Pragma
8223 and then Pragma_Name (Ritem) = Name_Predicate
8224 then
8225 -- Acquire arguments
8227 Arg1 := First (Pragma_Argument_Associations (Ritem));
8228 Arg2 := Next (Arg1);
8230 Arg1 := Get_Pragma_Arg (Arg1);
8231 Arg2 := Get_Pragma_Arg (Arg2);
8233 -- See if this predicate pragma is for the current type or for
8234 -- its full view. A predicate on a private completion is placed
8235 -- on the partial view beause this is the visible entity that
8236 -- is frozen.
8238 if Entity (Arg1) = Typ
8239 or else Full_View (Entity (Arg1)) = Typ
8240 then
8241 -- We have a match, this entry is for our subtype
8243 -- We need to replace any occurrences of the name of the
8244 -- type with references to the object.
8246 Replace_Type_References (Arg2, Typ);
8248 -- If this predicate comes from an aspect, find the aspect
8249 -- specification, and replace the saved expression because
8250 -- we need the subtype references replaced for the calls to
8251 -- Preanalyze_Spec_Expressin in Check_Aspect_At_Freeze_Point
8252 -- and Check_Aspect_At_End_Of_Declarations.
8254 if From_Aspect_Specification (Ritem) then
8255 declare
8256 Aitem : Node_Id;
8258 begin
8259 -- Loop to find corresponding aspect, note that this
8260 -- must be present given the pragma is marked delayed.
8262 Aitem := Next_Rep_Item (Ritem);
8263 loop
8264 if Nkind (Aitem) = N_Aspect_Specification
8265 and then Aspect_Rep_Item (Aitem) = Ritem
8266 then
8267 Set_Entity
8268 (Identifier (Aitem), New_Copy_Tree (Arg2));
8269 exit;
8270 end if;
8272 Aitem := Next_Rep_Item (Aitem);
8273 end loop;
8274 end;
8275 end if;
8277 -- Now we can add the expression
8279 if No (Expr) then
8280 Expr := Relocate_Node (Arg2);
8282 -- There already was a predicate, so add to it
8284 else
8285 Expr :=
8286 Make_And_Then (Loc,
8287 Left_Opnd => Relocate_Node (Expr),
8288 Right_Opnd => Relocate_Node (Arg2));
8289 end if;
8290 end if;
8291 end if;
8293 Next_Rep_Item (Ritem);
8294 end loop;
8295 end Add_Predicates;
8297 ----------------
8298 -- Process_RE --
8299 ----------------
8301 function Process_RE (N : Node_Id) return Traverse_Result is
8302 begin
8303 if Nkind (N) = N_Raise_Expression then
8304 Set_Convert_To_Return_False (N);
8305 return Skip;
8306 else
8307 return OK;
8308 end if;
8309 end Process_RE;
8311 -------------
8312 -- Test_RE --
8313 -------------
8315 function Test_RE (N : Node_Id) return Traverse_Result is
8316 begin
8317 if Nkind (N) = N_Raise_Expression then
8318 Raise_Expression_Present := True;
8319 return Abandon;
8320 else
8321 return OK;
8322 end if;
8323 end Test_RE;
8325 -- Start of processing for Build_Predicate_Functions
8327 begin
8328 -- Return if already built or if type does not have predicates
8330 if not Has_Predicates (Typ)
8331 or else Present (Predicate_Function (Typ))
8332 then
8333 return;
8334 end if;
8336 -- Prepare to construct predicate expression
8338 Expr := Empty;
8340 -- Add Predicates for the current type
8342 Add_Predicates;
8344 -- Add predicates for ancestor if present
8346 declare
8347 Atyp : constant Entity_Id := Nearest_Ancestor (Typ);
8348 begin
8349 if Present (Atyp) then
8350 Add_Call (Atyp);
8351 end if;
8352 end;
8354 -- Case where predicates are present
8356 if Present (Expr) then
8358 -- Test for raise expression present
8360 Test_REs (Expr);
8362 -- If raise expression is present, capture a copy of Expr for use
8363 -- in building the predicateM function version later on. For this
8364 -- copy we replace references to Object_Entity by Object_Entity_M.
8366 if Raise_Expression_Present then
8367 declare
8368 Map : constant Elist_Id := New_Elmt_List;
8369 New_V : Entity_Id := Empty;
8371 -- The unanalyzed expression will be copied and appear in
8372 -- both functions. Normally expressions do not declare new
8373 -- entities, but quantified expressions do, so we need to
8374 -- create new entities for their bound variables, to prevent
8375 -- multiple definitions in gigi.
8377 function Reset_Loop_Variable (N : Node_Id)
8378 return Traverse_Result;
8380 procedure Collect_Loop_Variables is
8381 new Traverse_Proc (Reset_Loop_Variable);
8383 ------------------------
8384 -- Reset_Loop_Variable --
8385 ------------------------
8387 function Reset_Loop_Variable (N : Node_Id)
8388 return Traverse_Result
8390 begin
8391 if Nkind (N) = N_Iterator_Specification then
8392 New_V := Make_Defining_Identifier
8393 (Sloc (N), Chars (Defining_Identifier (N)));
8395 Set_Defining_Identifier (N, New_V);
8396 end if;
8398 return OK;
8399 end Reset_Loop_Variable;
8401 begin
8402 Append_Elmt (Object_Entity, Map);
8403 Append_Elmt (Object_Entity_M, Map);
8404 Expr_M := New_Copy_Tree (Expr, Map => Map);
8405 Collect_Loop_Variables (Expr_M);
8406 end;
8407 end if;
8409 -- Build the main predicate function
8411 declare
8412 SId : constant Entity_Id :=
8413 Make_Defining_Identifier (Loc,
8414 Chars => New_External_Name (Chars (Typ), "Predicate"));
8415 -- The entity for the the function spec
8417 SIdB : constant Entity_Id :=
8418 Make_Defining_Identifier (Loc,
8419 Chars => New_External_Name (Chars (Typ), "Predicate"));
8420 -- The entity for the function body
8422 Spec : Node_Id;
8423 FDecl : Node_Id;
8424 FBody : Node_Id;
8426 begin
8427 -- Build function declaration
8429 Set_Ekind (SId, E_Function);
8430 Set_Is_Internal (SId);
8431 Set_Is_Predicate_Function (SId);
8432 Set_Predicate_Function (Typ, SId);
8434 -- The predicate function is shared between views of a type
8436 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
8437 Set_Predicate_Function (Full_View (Typ), SId);
8438 end if;
8440 Spec :=
8441 Make_Function_Specification (Loc,
8442 Defining_Unit_Name => SId,
8443 Parameter_Specifications => New_List (
8444 Make_Parameter_Specification (Loc,
8445 Defining_Identifier => Object_Entity,
8446 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
8447 Result_Definition =>
8448 New_Occurrence_Of (Standard_Boolean, Loc));
8450 FDecl :=
8451 Make_Subprogram_Declaration (Loc,
8452 Specification => Spec);
8454 -- Build function body
8456 Spec :=
8457 Make_Function_Specification (Loc,
8458 Defining_Unit_Name => SIdB,
8459 Parameter_Specifications => New_List (
8460 Make_Parameter_Specification (Loc,
8461 Defining_Identifier =>
8462 Make_Defining_Identifier (Loc, Object_Name),
8463 Parameter_Type =>
8464 New_Occurrence_Of (Typ, Loc))),
8465 Result_Definition =>
8466 New_Occurrence_Of (Standard_Boolean, Loc));
8468 FBody :=
8469 Make_Subprogram_Body (Loc,
8470 Specification => Spec,
8471 Declarations => Empty_List,
8472 Handled_Statement_Sequence =>
8473 Make_Handled_Sequence_Of_Statements (Loc,
8474 Statements => New_List (
8475 Make_Simple_Return_Statement (Loc,
8476 Expression => Expr))));
8478 -- Insert declaration before freeze node and body after
8480 Insert_Before_And_Analyze (N, FDecl);
8481 Insert_After_And_Analyze (N, FBody);
8482 end;
8484 -- Test for raise expressions present and if so build M version
8486 if Raise_Expression_Present then
8487 declare
8488 SId : constant Entity_Id :=
8489 Make_Defining_Identifier (Loc,
8490 Chars => New_External_Name (Chars (Typ), "PredicateM"));
8491 -- The entity for the the function spec
8493 SIdB : constant Entity_Id :=
8494 Make_Defining_Identifier (Loc,
8495 Chars => New_External_Name (Chars (Typ), "PredicateM"));
8496 -- The entity for the function body
8498 Spec : Node_Id;
8499 FDecl : Node_Id;
8500 FBody : Node_Id;
8501 BTemp : Entity_Id;
8503 begin
8504 -- Mark any raise expressions for special expansion
8506 Process_REs (Expr_M);
8508 -- Build function declaration
8510 Set_Ekind (SId, E_Function);
8511 Set_Is_Predicate_Function_M (SId);
8512 Set_Predicate_Function_M (Typ, SId);
8514 -- The predicate function is shared between views of a type
8516 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
8517 Set_Predicate_Function_M (Full_View (Typ), SId);
8518 end if;
8520 Spec :=
8521 Make_Function_Specification (Loc,
8522 Defining_Unit_Name => SId,
8523 Parameter_Specifications => New_List (
8524 Make_Parameter_Specification (Loc,
8525 Defining_Identifier => Object_Entity_M,
8526 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
8527 Result_Definition =>
8528 New_Occurrence_Of (Standard_Boolean, Loc));
8530 FDecl :=
8531 Make_Subprogram_Declaration (Loc,
8532 Specification => Spec);
8534 -- Build function body
8536 Spec :=
8537 Make_Function_Specification (Loc,
8538 Defining_Unit_Name => SIdB,
8539 Parameter_Specifications => New_List (
8540 Make_Parameter_Specification (Loc,
8541 Defining_Identifier =>
8542 Make_Defining_Identifier (Loc, Object_Name),
8543 Parameter_Type =>
8544 New_Occurrence_Of (Typ, Loc))),
8545 Result_Definition =>
8546 New_Occurrence_Of (Standard_Boolean, Loc));
8548 -- Build the body, we declare the boolean expression before
8549 -- doing the return, because we are not really confident of
8550 -- what happens if a return appears within a return.
8552 BTemp :=
8553 Make_Defining_Identifier (Loc,
8554 Chars => New_Internal_Name ('B'));
8556 FBody :=
8557 Make_Subprogram_Body (Loc,
8558 Specification => Spec,
8560 Declarations => New_List (
8561 Make_Object_Declaration (Loc,
8562 Defining_Identifier => BTemp,
8563 Constant_Present => True,
8564 Object_Definition =>
8565 New_Occurrence_Of (Standard_Boolean, Loc),
8566 Expression => Expr_M)),
8568 Handled_Statement_Sequence =>
8569 Make_Handled_Sequence_Of_Statements (Loc,
8570 Statements => New_List (
8571 Make_Simple_Return_Statement (Loc,
8572 Expression => New_Occurrence_Of (BTemp, Loc)))));
8574 -- Insert declaration before freeze node and body after
8576 Insert_Before_And_Analyze (N, FDecl);
8577 Insert_After_And_Analyze (N, FBody);
8578 end;
8579 end if;
8581 -- See if we have a static predicate. Note that the answer may be
8582 -- yes even if we have an explicit Dynamic_Predicate present.
8584 declare
8585 PS : Boolean;
8586 EN : Node_Id;
8588 begin
8589 if not Is_Scalar_Type (Typ) and then not Is_String_Type (Typ) then
8590 PS := False;
8591 else
8592 PS := Is_Predicate_Static (Expr, Object_Name);
8593 end if;
8595 -- Case where we have a predicate-static aspect
8597 if PS then
8599 -- We don't set Has_Static_Predicate_Aspect, since we can have
8600 -- any of the three cases (Predicate, Dynamic_Predicate, or
8601 -- Static_Predicate) generating a predicate with an expression
8602 -- that is predicate-static. We just indicate that we have a
8603 -- predicate that can be treated as static.
8605 Set_Has_Static_Predicate (Typ);
8607 -- For discrete subtype, build the static predicate list
8609 if Is_Discrete_Type (Typ) then
8610 Build_Discrete_Static_Predicate (Typ, Expr, Object_Name);
8612 -- If we don't get a static predicate list, it means that we
8613 -- have a case where this is not possible, most typically in
8614 -- the case where we inherit a dynamic predicate. We do not
8615 -- consider this an error, we just leave the predicate as
8616 -- dynamic. But if we do succeed in building the list, then
8617 -- we mark the predicate as static.
8619 if No (Static_Discrete_Predicate (Typ)) then
8620 Set_Has_Static_Predicate (Typ, False);
8621 end if;
8623 -- For real or string subtype, save predicate expression
8625 elsif Is_Real_Type (Typ) or else Is_String_Type (Typ) then
8626 Set_Static_Real_Or_String_Predicate (Typ, Expr);
8627 end if;
8629 -- Case of dynamic predicate (expression is not predicate-static)
8631 else
8632 -- Again, we don't set Has_Dynamic_Predicate_Aspect, since that
8633 -- is only set if we have an explicit Dynamic_Predicate aspect
8634 -- given. Here we may simply have a Predicate aspect where the
8635 -- expression happens not to be predicate-static.
8637 -- Emit an error when the predicate is categorized as static
8638 -- but its expression is not predicate-static.
8640 -- First a little fiddling to get a nice location for the
8641 -- message. If the expression is of the form (A and then B),
8642 -- then use the left operand for the Sloc. This avoids getting
8643 -- confused by a call to a higher-level predicate with a less
8644 -- convenient source location.
8646 EN := Expr;
8647 while Nkind (EN) = N_And_Then loop
8648 EN := Left_Opnd (EN);
8649 end loop;
8651 -- Now post appropriate message
8653 if Has_Static_Predicate_Aspect (Typ) then
8654 if Is_Scalar_Type (Typ) or else Is_String_Type (Typ) then
8655 Error_Msg_F
8656 ("expression is not predicate-static (RM 3.2.4(16-22))",
8657 EN);
8658 else
8659 Error_Msg_F
8660 ("static predicate requires scalar or string type", EN);
8661 end if;
8662 end if;
8663 end if;
8664 end;
8665 end if;
8666 end Build_Predicate_Functions;
8668 -----------------------------------------
8669 -- Check_Aspect_At_End_Of_Declarations --
8670 -----------------------------------------
8672 procedure Check_Aspect_At_End_Of_Declarations (ASN : Node_Id) is
8673 Ent : constant Entity_Id := Entity (ASN);
8674 Ident : constant Node_Id := Identifier (ASN);
8675 A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
8677 End_Decl_Expr : constant Node_Id := Entity (Ident);
8678 -- Expression to be analyzed at end of declarations
8680 Freeze_Expr : constant Node_Id := Expression (ASN);
8681 -- Expression from call to Check_Aspect_At_Freeze_Point
8683 T : constant Entity_Id := Etype (Freeze_Expr);
8684 -- Type required for preanalyze call
8686 Err : Boolean;
8687 -- Set False if error
8689 -- On entry to this procedure, Entity (Ident) contains a copy of the
8690 -- original expression from the aspect, saved for this purpose, and
8691 -- but Expression (Ident) is a preanalyzed copy of the expression,
8692 -- preanalyzed just after the freeze point.
8694 procedure Check_Overloaded_Name;
8695 -- For aspects whose expression is simply a name, this routine checks if
8696 -- the name is overloaded or not. If so, it verifies there is an
8697 -- interpretation that matches the entity obtained at the freeze point,
8698 -- otherwise the compiler complains.
8700 ---------------------------
8701 -- Check_Overloaded_Name --
8702 ---------------------------
8704 procedure Check_Overloaded_Name is
8705 begin
8706 if not Is_Overloaded (End_Decl_Expr) then
8707 Err := not Is_Entity_Name (End_Decl_Expr)
8708 or else Entity (End_Decl_Expr) /= Entity (Freeze_Expr);
8710 else
8711 Err := True;
8713 declare
8714 Index : Interp_Index;
8715 It : Interp;
8717 begin
8718 Get_First_Interp (End_Decl_Expr, Index, It);
8719 while Present (It.Typ) loop
8720 if It.Nam = Entity (Freeze_Expr) then
8721 Err := False;
8722 exit;
8723 end if;
8725 Get_Next_Interp (Index, It);
8726 end loop;
8727 end;
8728 end if;
8729 end Check_Overloaded_Name;
8731 -- Start of processing for Check_Aspect_At_End_Of_Declarations
8733 begin
8734 -- Case of aspects Dimension, Dimension_System and Synchronization
8736 if A_Id = Aspect_Synchronization then
8737 return;
8739 -- Case of stream attributes, just have to compare entities. However,
8740 -- the expression is just a name (possibly overloaded), and there may
8741 -- be stream operations declared for unrelated types, so we just need
8742 -- to verify that one of these interpretations is the one available at
8743 -- at the freeze point.
8745 elsif A_Id = Aspect_Input or else
8746 A_Id = Aspect_Output or else
8747 A_Id = Aspect_Read or else
8748 A_Id = Aspect_Write
8749 then
8750 Analyze (End_Decl_Expr);
8751 Check_Overloaded_Name;
8753 elsif A_Id = Aspect_Variable_Indexing or else
8754 A_Id = Aspect_Constant_Indexing or else
8755 A_Id = Aspect_Default_Iterator or else
8756 A_Id = Aspect_Iterator_Element
8757 then
8758 -- Make type unfrozen before analysis, to prevent spurious errors
8759 -- about late attributes.
8761 Set_Is_Frozen (Ent, False);
8762 Analyze (End_Decl_Expr);
8763 Set_Is_Frozen (Ent, True);
8765 -- If the end of declarations comes before any other freeze
8766 -- point, the Freeze_Expr is not analyzed: no check needed.
8768 if Analyzed (Freeze_Expr) and then not In_Instance then
8769 Check_Overloaded_Name;
8770 else
8771 Err := False;
8772 end if;
8774 -- All other cases
8776 else
8777 -- Indicate that the expression comes from an aspect specification,
8778 -- which is used in subsequent analysis even if expansion is off.
8780 Set_Parent (End_Decl_Expr, ASN);
8782 -- In a generic context the aspect expressions have not been
8783 -- preanalyzed, so do it now. There are no conformance checks
8784 -- to perform in this case.
8786 if No (T) then
8787 Check_Aspect_At_Freeze_Point (ASN);
8788 return;
8790 -- The default values attributes may be defined in the private part,
8791 -- and the analysis of the expression may take place when only the
8792 -- partial view is visible. The expression must be scalar, so use
8793 -- the full view to resolve.
8795 elsif (A_Id = Aspect_Default_Value
8796 or else
8797 A_Id = Aspect_Default_Component_Value)
8798 and then Is_Private_Type (T)
8799 then
8800 Preanalyze_Spec_Expression (End_Decl_Expr, Full_View (T));
8802 else
8803 Preanalyze_Spec_Expression (End_Decl_Expr, T);
8804 end if;
8806 Err := not Fully_Conformant_Expressions (End_Decl_Expr, Freeze_Expr);
8807 end if;
8809 -- Output error message if error. Force error on aspect specification
8810 -- even if there is an error on the expression itself.
8812 if Err then
8813 Error_Msg_NE
8814 ("!visibility of aspect for& changes after freeze point",
8815 ASN, Ent);
8816 Error_Msg_NE
8817 ("info: & is frozen here, aspects evaluated at this point??",
8818 Freeze_Node (Ent), Ent);
8819 end if;
8820 end Check_Aspect_At_End_Of_Declarations;
8822 ----------------------------------
8823 -- Check_Aspect_At_Freeze_Point --
8824 ----------------------------------
8826 procedure Check_Aspect_At_Freeze_Point (ASN : Node_Id) is
8827 Ident : constant Node_Id := Identifier (ASN);
8828 -- Identifier (use Entity field to save expression)
8830 A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
8832 T : Entity_Id := Empty;
8833 -- Type required for preanalyze call
8835 begin
8836 -- On entry to this procedure, Entity (Ident) contains a copy of the
8837 -- original expression from the aspect, saved for this purpose.
8839 -- On exit from this procedure Entity (Ident) is unchanged, still
8840 -- containing that copy, but Expression (Ident) is a preanalyzed copy
8841 -- of the expression, preanalyzed just after the freeze point.
8843 -- Make a copy of the expression to be preanalyzed
8845 Set_Expression (ASN, New_Copy_Tree (Entity (Ident)));
8847 -- Find type for preanalyze call
8849 case A_Id is
8851 -- No_Aspect should be impossible
8853 when No_Aspect =>
8854 raise Program_Error;
8856 -- Aspects taking an optional boolean argument
8858 when Boolean_Aspects |
8859 Library_Unit_Aspects =>
8861 T := Standard_Boolean;
8863 -- Aspects corresponding to attribute definition clauses
8865 when Aspect_Address =>
8866 T := RTE (RE_Address);
8868 when Aspect_Attach_Handler =>
8869 T := RTE (RE_Interrupt_ID);
8871 when Aspect_Bit_Order | Aspect_Scalar_Storage_Order =>
8872 T := RTE (RE_Bit_Order);
8874 when Aspect_Convention =>
8875 return;
8877 when Aspect_CPU =>
8878 T := RTE (RE_CPU_Range);
8880 -- Default_Component_Value is resolved with the component type
8882 when Aspect_Default_Component_Value =>
8883 T := Component_Type (Entity (ASN));
8885 when Aspect_Default_Storage_Pool =>
8886 T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
8888 -- Default_Value is resolved with the type entity in question
8890 when Aspect_Default_Value =>
8891 T := Entity (ASN);
8893 when Aspect_Dispatching_Domain =>
8894 T := RTE (RE_Dispatching_Domain);
8896 when Aspect_External_Tag =>
8897 T := Standard_String;
8899 when Aspect_External_Name =>
8900 T := Standard_String;
8902 when Aspect_Link_Name =>
8903 T := Standard_String;
8905 when Aspect_Priority | Aspect_Interrupt_Priority =>
8906 T := Standard_Integer;
8908 when Aspect_Relative_Deadline =>
8909 T := RTE (RE_Time_Span);
8911 when Aspect_Small =>
8912 T := Universal_Real;
8914 -- For a simple storage pool, we have to retrieve the type of the
8915 -- pool object associated with the aspect's corresponding attribute
8916 -- definition clause.
8918 when Aspect_Simple_Storage_Pool =>
8919 T := Etype (Expression (Aspect_Rep_Item (ASN)));
8921 when Aspect_Storage_Pool =>
8922 T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
8924 when Aspect_Alignment |
8925 Aspect_Component_Size |
8926 Aspect_Machine_Radix |
8927 Aspect_Object_Size |
8928 Aspect_Size |
8929 Aspect_Storage_Size |
8930 Aspect_Stream_Size |
8931 Aspect_Value_Size =>
8932 T := Any_Integer;
8934 when Aspect_Linker_Section =>
8935 T := Standard_String;
8937 when Aspect_Synchronization =>
8938 return;
8940 -- Special case, the expression of these aspects is just an entity
8941 -- that does not need any resolution, so just analyze.
8943 when Aspect_Input |
8944 Aspect_Output |
8945 Aspect_Read |
8946 Aspect_Suppress |
8947 Aspect_Unsuppress |
8948 Aspect_Warnings |
8949 Aspect_Write =>
8950 Analyze (Expression (ASN));
8951 return;
8953 -- Same for Iterator aspects, where the expression is a function
8954 -- name. Legality rules are checked separately.
8956 when Aspect_Constant_Indexing |
8957 Aspect_Default_Iterator |
8958 Aspect_Iterator_Element |
8959 Aspect_Variable_Indexing =>
8960 Analyze (Expression (ASN));
8961 return;
8963 -- Ditto for Iterable, legality checks in Validate_Iterable_Aspect.
8965 when Aspect_Iterable =>
8966 T := Entity (ASN);
8968 declare
8969 Cursor : constant Entity_Id := Get_Cursor_Type (ASN, T);
8970 Assoc : Node_Id;
8971 Expr : Node_Id;
8973 begin
8974 if Cursor = Any_Type then
8975 return;
8976 end if;
8978 Assoc := First (Component_Associations (Expression (ASN)));
8979 while Present (Assoc) loop
8980 Expr := Expression (Assoc);
8981 Analyze (Expr);
8983 if not Error_Posted (Expr) then
8984 Resolve_Iterable_Operation
8985 (Expr, Cursor, T, Chars (First (Choices (Assoc))));
8986 end if;
8988 Next (Assoc);
8989 end loop;
8990 end;
8992 return;
8994 -- Invariant/Predicate take boolean expressions
8996 when Aspect_Dynamic_Predicate |
8997 Aspect_Invariant |
8998 Aspect_Predicate |
8999 Aspect_Static_Predicate |
9000 Aspect_Type_Invariant =>
9001 T := Standard_Boolean;
9003 -- Here is the list of aspects that don't require delay analysis
9005 when Aspect_Abstract_State |
9006 Aspect_Annotate |
9007 Aspect_Contract_Cases |
9008 Aspect_Default_Initial_Condition |
9009 Aspect_Depends |
9010 Aspect_Dimension |
9011 Aspect_Dimension_System |
9012 Aspect_Extensions_Visible |
9013 Aspect_Ghost |
9014 Aspect_Global |
9015 Aspect_Implicit_Dereference |
9016 Aspect_Initial_Condition |
9017 Aspect_Initializes |
9018 Aspect_Obsolescent |
9019 Aspect_Part_Of |
9020 Aspect_Post |
9021 Aspect_Postcondition |
9022 Aspect_Pre |
9023 Aspect_Precondition |
9024 Aspect_Refined_Depends |
9025 Aspect_Refined_Global |
9026 Aspect_Refined_Post |
9027 Aspect_Refined_State |
9028 Aspect_SPARK_Mode |
9029 Aspect_Test_Case |
9030 Aspect_Unimplemented =>
9031 raise Program_Error;
9033 end case;
9035 -- Do the preanalyze call
9037 Preanalyze_Spec_Expression (Expression (ASN), T);
9038 end Check_Aspect_At_Freeze_Point;
9040 -----------------------------------
9041 -- Check_Constant_Address_Clause --
9042 -----------------------------------
9044 procedure Check_Constant_Address_Clause
9045 (Expr : Node_Id;
9046 U_Ent : Entity_Id)
9048 procedure Check_At_Constant_Address (Nod : Node_Id);
9049 -- Checks that the given node N represents a name whose 'Address is
9050 -- constant (in the same sense as OK_Constant_Address_Clause, i.e. the
9051 -- address value is the same at the point of declaration of U_Ent and at
9052 -- the time of elaboration of the address clause.
9054 procedure Check_Expr_Constants (Nod : Node_Id);
9055 -- Checks that Nod meets the requirements for a constant address clause
9056 -- in the sense of the enclosing procedure.
9058 procedure Check_List_Constants (Lst : List_Id);
9059 -- Check that all elements of list Lst meet the requirements for a
9060 -- constant address clause in the sense of the enclosing procedure.
9062 -------------------------------
9063 -- Check_At_Constant_Address --
9064 -------------------------------
9066 procedure Check_At_Constant_Address (Nod : Node_Id) is
9067 begin
9068 if Is_Entity_Name (Nod) then
9069 if Present (Address_Clause (Entity ((Nod)))) then
9070 Error_Msg_NE
9071 ("invalid address clause for initialized object &!",
9072 Nod, U_Ent);
9073 Error_Msg_NE
9074 ("address for& cannot" &
9075 " depend on another address clause! (RM 13.1(22))!",
9076 Nod, U_Ent);
9078 elsif In_Same_Source_Unit (Entity (Nod), U_Ent)
9079 and then Sloc (U_Ent) < Sloc (Entity (Nod))
9080 then
9081 Error_Msg_NE
9082 ("invalid address clause for initialized object &!",
9083 Nod, U_Ent);
9084 Error_Msg_Node_2 := U_Ent;
9085 Error_Msg_NE
9086 ("\& must be defined before & (RM 13.1(22))!",
9087 Nod, Entity (Nod));
9088 end if;
9090 elsif Nkind (Nod) = N_Selected_Component then
9091 declare
9092 T : constant Entity_Id := Etype (Prefix (Nod));
9094 begin
9095 if (Is_Record_Type (T)
9096 and then Has_Discriminants (T))
9097 or else
9098 (Is_Access_Type (T)
9099 and then Is_Record_Type (Designated_Type (T))
9100 and then Has_Discriminants (Designated_Type (T)))
9101 then
9102 Error_Msg_NE
9103 ("invalid address clause for initialized object &!",
9104 Nod, U_Ent);
9105 Error_Msg_N
9106 ("\address cannot depend on component" &
9107 " of discriminated record (RM 13.1(22))!",
9108 Nod);
9109 else
9110 Check_At_Constant_Address (Prefix (Nod));
9111 end if;
9112 end;
9114 elsif Nkind (Nod) = N_Indexed_Component then
9115 Check_At_Constant_Address (Prefix (Nod));
9116 Check_List_Constants (Expressions (Nod));
9118 else
9119 Check_Expr_Constants (Nod);
9120 end if;
9121 end Check_At_Constant_Address;
9123 --------------------------
9124 -- Check_Expr_Constants --
9125 --------------------------
9127 procedure Check_Expr_Constants (Nod : Node_Id) is
9128 Loc_U_Ent : constant Source_Ptr := Sloc (U_Ent);
9129 Ent : Entity_Id := Empty;
9131 begin
9132 if Nkind (Nod) in N_Has_Etype
9133 and then Etype (Nod) = Any_Type
9134 then
9135 return;
9136 end if;
9138 case Nkind (Nod) is
9139 when N_Empty | N_Error =>
9140 return;
9142 when N_Identifier | N_Expanded_Name =>
9143 Ent := Entity (Nod);
9145 -- We need to look at the original node if it is different
9146 -- from the node, since we may have rewritten things and
9147 -- substituted an identifier representing the rewrite.
9149 if Original_Node (Nod) /= Nod then
9150 Check_Expr_Constants (Original_Node (Nod));
9152 -- If the node is an object declaration without initial
9153 -- value, some code has been expanded, and the expression
9154 -- is not constant, even if the constituents might be
9155 -- acceptable, as in A'Address + offset.
9157 if Ekind (Ent) = E_Variable
9158 and then
9159 Nkind (Declaration_Node (Ent)) = N_Object_Declaration
9160 and then
9161 No (Expression (Declaration_Node (Ent)))
9162 then
9163 Error_Msg_NE
9164 ("invalid address clause for initialized object &!",
9165 Nod, U_Ent);
9167 -- If entity is constant, it may be the result of expanding
9168 -- a check. We must verify that its declaration appears
9169 -- before the object in question, else we also reject the
9170 -- address clause.
9172 elsif Ekind (Ent) = E_Constant
9173 and then In_Same_Source_Unit (Ent, U_Ent)
9174 and then Sloc (Ent) > Loc_U_Ent
9175 then
9176 Error_Msg_NE
9177 ("invalid address clause for initialized object &!",
9178 Nod, U_Ent);
9179 end if;
9181 return;
9182 end if;
9184 -- Otherwise look at the identifier and see if it is OK
9186 if Ekind_In (Ent, E_Named_Integer, E_Named_Real)
9187 or else Is_Type (Ent)
9188 then
9189 return;
9191 elsif Ekind_In (Ent, E_Constant, E_In_Parameter) then
9193 -- This is the case where we must have Ent defined before
9194 -- U_Ent. Clearly if they are in different units this
9195 -- requirement is met since the unit containing Ent is
9196 -- already processed.
9198 if not In_Same_Source_Unit (Ent, U_Ent) then
9199 return;
9201 -- Otherwise location of Ent must be before the location
9202 -- of U_Ent, that's what prior defined means.
9204 elsif Sloc (Ent) < Loc_U_Ent then
9205 return;
9207 else
9208 Error_Msg_NE
9209 ("invalid address clause for initialized object &!",
9210 Nod, U_Ent);
9211 Error_Msg_Node_2 := U_Ent;
9212 Error_Msg_NE
9213 ("\& must be defined before & (RM 13.1(22))!",
9214 Nod, Ent);
9215 end if;
9217 elsif Nkind (Original_Node (Nod)) = N_Function_Call then
9218 Check_Expr_Constants (Original_Node (Nod));
9220 else
9221 Error_Msg_NE
9222 ("invalid address clause for initialized object &!",
9223 Nod, U_Ent);
9225 if Comes_From_Source (Ent) then
9226 Error_Msg_NE
9227 ("\reference to variable& not allowed"
9228 & " (RM 13.1(22))!", Nod, Ent);
9229 else
9230 Error_Msg_N
9231 ("non-static expression not allowed"
9232 & " (RM 13.1(22))!", Nod);
9233 end if;
9234 end if;
9236 when N_Integer_Literal =>
9238 -- If this is a rewritten unchecked conversion, in a system
9239 -- where Address is an integer type, always use the base type
9240 -- for a literal value. This is user-friendly and prevents
9241 -- order-of-elaboration issues with instances of unchecked
9242 -- conversion.
9244 if Nkind (Original_Node (Nod)) = N_Function_Call then
9245 Set_Etype (Nod, Base_Type (Etype (Nod)));
9246 end if;
9248 when N_Real_Literal |
9249 N_String_Literal |
9250 N_Character_Literal =>
9251 return;
9253 when N_Range =>
9254 Check_Expr_Constants (Low_Bound (Nod));
9255 Check_Expr_Constants (High_Bound (Nod));
9257 when N_Explicit_Dereference =>
9258 Check_Expr_Constants (Prefix (Nod));
9260 when N_Indexed_Component =>
9261 Check_Expr_Constants (Prefix (Nod));
9262 Check_List_Constants (Expressions (Nod));
9264 when N_Slice =>
9265 Check_Expr_Constants (Prefix (Nod));
9266 Check_Expr_Constants (Discrete_Range (Nod));
9268 when N_Selected_Component =>
9269 Check_Expr_Constants (Prefix (Nod));
9271 when N_Attribute_Reference =>
9272 if Nam_In (Attribute_Name (Nod), Name_Address,
9273 Name_Access,
9274 Name_Unchecked_Access,
9275 Name_Unrestricted_Access)
9276 then
9277 Check_At_Constant_Address (Prefix (Nod));
9279 else
9280 Check_Expr_Constants (Prefix (Nod));
9281 Check_List_Constants (Expressions (Nod));
9282 end if;
9284 when N_Aggregate =>
9285 Check_List_Constants (Component_Associations (Nod));
9286 Check_List_Constants (Expressions (Nod));
9288 when N_Component_Association =>
9289 Check_Expr_Constants (Expression (Nod));
9291 when N_Extension_Aggregate =>
9292 Check_Expr_Constants (Ancestor_Part (Nod));
9293 Check_List_Constants (Component_Associations (Nod));
9294 Check_List_Constants (Expressions (Nod));
9296 when N_Null =>
9297 return;
9299 when N_Binary_Op | N_Short_Circuit | N_Membership_Test =>
9300 Check_Expr_Constants (Left_Opnd (Nod));
9301 Check_Expr_Constants (Right_Opnd (Nod));
9303 when N_Unary_Op =>
9304 Check_Expr_Constants (Right_Opnd (Nod));
9306 when N_Type_Conversion |
9307 N_Qualified_Expression |
9308 N_Allocator |
9309 N_Unchecked_Type_Conversion =>
9310 Check_Expr_Constants (Expression (Nod));
9312 when N_Function_Call =>
9313 if not Is_Pure (Entity (Name (Nod))) then
9314 Error_Msg_NE
9315 ("invalid address clause for initialized object &!",
9316 Nod, U_Ent);
9318 Error_Msg_NE
9319 ("\function & is not pure (RM 13.1(22))!",
9320 Nod, Entity (Name (Nod)));
9322 else
9323 Check_List_Constants (Parameter_Associations (Nod));
9324 end if;
9326 when N_Parameter_Association =>
9327 Check_Expr_Constants (Explicit_Actual_Parameter (Nod));
9329 when others =>
9330 Error_Msg_NE
9331 ("invalid address clause for initialized object &!",
9332 Nod, U_Ent);
9333 Error_Msg_NE
9334 ("\must be constant defined before& (RM 13.1(22))!",
9335 Nod, U_Ent);
9336 end case;
9337 end Check_Expr_Constants;
9339 --------------------------
9340 -- Check_List_Constants --
9341 --------------------------
9343 procedure Check_List_Constants (Lst : List_Id) is
9344 Nod1 : Node_Id;
9346 begin
9347 if Present (Lst) then
9348 Nod1 := First (Lst);
9349 while Present (Nod1) loop
9350 Check_Expr_Constants (Nod1);
9351 Next (Nod1);
9352 end loop;
9353 end if;
9354 end Check_List_Constants;
9356 -- Start of processing for Check_Constant_Address_Clause
9358 begin
9359 -- If rep_clauses are to be ignored, no need for legality checks. In
9360 -- particular, no need to pester user about rep clauses that violate the
9361 -- rule on constant addresses, given that these clauses will be removed
9362 -- by Freeze before they reach the back end. Similarly in CodePeer mode,
9363 -- we want to relax these checks.
9365 if not Ignore_Rep_Clauses and not CodePeer_Mode then
9366 Check_Expr_Constants (Expr);
9367 end if;
9368 end Check_Constant_Address_Clause;
9370 ---------------------------
9371 -- Check_Pool_Size_Clash --
9372 ---------------------------
9374 procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id) is
9375 Post : Node_Id;
9377 begin
9378 -- We need to find out which one came first. Note that in the case of
9379 -- aspects mixed with pragmas there are cases where the processing order
9380 -- is reversed, which is why we do the check here.
9382 if Sloc (SP) < Sloc (SS) then
9383 Error_Msg_Sloc := Sloc (SP);
9384 Post := SS;
9385 Error_Msg_NE ("Storage_Pool previously given for&#", Post, Ent);
9387 else
9388 Error_Msg_Sloc := Sloc (SS);
9389 Post := SP;
9390 Error_Msg_NE ("Storage_Size previously given for&#", Post, Ent);
9391 end if;
9393 Error_Msg_N
9394 ("\cannot have Storage_Size and Storage_Pool (RM 13.11(3))", Post);
9395 end Check_Pool_Size_Clash;
9397 ----------------------------------------
9398 -- Check_Record_Representation_Clause --
9399 ----------------------------------------
9401 procedure Check_Record_Representation_Clause (N : Node_Id) is
9402 Loc : constant Source_Ptr := Sloc (N);
9403 Ident : constant Node_Id := Identifier (N);
9404 Rectype : Entity_Id;
9405 Fent : Entity_Id;
9406 CC : Node_Id;
9407 Fbit : Uint;
9408 Lbit : Uint;
9409 Hbit : Uint := Uint_0;
9410 Comp : Entity_Id;
9411 Pcomp : Entity_Id;
9413 Max_Bit_So_Far : Uint;
9414 -- Records the maximum bit position so far. If all field positions
9415 -- are monotonically increasing, then we can skip the circuit for
9416 -- checking for overlap, since no overlap is possible.
9418 Tagged_Parent : Entity_Id := Empty;
9419 -- This is set in the case of a derived tagged type for which we have
9420 -- Is_Fully_Repped_Tagged_Type True (indicating that all components are
9421 -- positioned by record representation clauses). In this case we must
9422 -- check for overlap between components of this tagged type, and the
9423 -- components of its parent. Tagged_Parent will point to this parent
9424 -- type. For all other cases Tagged_Parent is left set to Empty.
9426 Parent_Last_Bit : Uint;
9427 -- Relevant only if Tagged_Parent is set, Parent_Last_Bit indicates the
9428 -- last bit position for any field in the parent type. We only need to
9429 -- check overlap for fields starting below this point.
9431 Overlap_Check_Required : Boolean;
9432 -- Used to keep track of whether or not an overlap check is required
9434 Overlap_Detected : Boolean := False;
9435 -- Set True if an overlap is detected
9437 Ccount : Natural := 0;
9438 -- Number of component clauses in record rep clause
9440 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id);
9441 -- Given two entities for record components or discriminants, checks
9442 -- if they have overlapping component clauses and issues errors if so.
9444 procedure Find_Component;
9445 -- Finds component entity corresponding to current component clause (in
9446 -- CC), and sets Comp to the entity, and Fbit/Lbit to the zero origin
9447 -- start/stop bits for the field. If there is no matching component or
9448 -- if the matching component does not have a component clause, then
9449 -- that's an error and Comp is set to Empty, but no error message is
9450 -- issued, since the message was already given. Comp is also set to
9451 -- Empty if the current "component clause" is in fact a pragma.
9453 -----------------------------
9454 -- Check_Component_Overlap --
9455 -----------------------------
9457 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id) is
9458 CC1 : constant Node_Id := Component_Clause (C1_Ent);
9459 CC2 : constant Node_Id := Component_Clause (C2_Ent);
9461 begin
9462 if Present (CC1) and then Present (CC2) then
9464 -- Exclude odd case where we have two tag components in the same
9465 -- record, both at location zero. This seems a bit strange, but
9466 -- it seems to happen in some circumstances, perhaps on an error.
9468 if Nam_In (Chars (C1_Ent), Name_uTag, Name_uTag) then
9469 return;
9470 end if;
9472 -- Here we check if the two fields overlap
9474 declare
9475 S1 : constant Uint := Component_Bit_Offset (C1_Ent);
9476 S2 : constant Uint := Component_Bit_Offset (C2_Ent);
9477 E1 : constant Uint := S1 + Esize (C1_Ent);
9478 E2 : constant Uint := S2 + Esize (C2_Ent);
9480 begin
9481 if E2 <= S1 or else E1 <= S2 then
9482 null;
9483 else
9484 Error_Msg_Node_2 := Component_Name (CC2);
9485 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
9486 Error_Msg_Node_1 := Component_Name (CC1);
9487 Error_Msg_N
9488 ("component& overlaps & #", Component_Name (CC1));
9489 Overlap_Detected := True;
9490 end if;
9491 end;
9492 end if;
9493 end Check_Component_Overlap;
9495 --------------------
9496 -- Find_Component --
9497 --------------------
9499 procedure Find_Component is
9501 procedure Search_Component (R : Entity_Id);
9502 -- Search components of R for a match. If found, Comp is set
9504 ----------------------
9505 -- Search_Component --
9506 ----------------------
9508 procedure Search_Component (R : Entity_Id) is
9509 begin
9510 Comp := First_Component_Or_Discriminant (R);
9511 while Present (Comp) loop
9513 -- Ignore error of attribute name for component name (we
9514 -- already gave an error message for this, so no need to
9515 -- complain here)
9517 if Nkind (Component_Name (CC)) = N_Attribute_Reference then
9518 null;
9519 else
9520 exit when Chars (Comp) = Chars (Component_Name (CC));
9521 end if;
9523 Next_Component_Or_Discriminant (Comp);
9524 end loop;
9525 end Search_Component;
9527 -- Start of processing for Find_Component
9529 begin
9530 -- Return with Comp set to Empty if we have a pragma
9532 if Nkind (CC) = N_Pragma then
9533 Comp := Empty;
9534 return;
9535 end if;
9537 -- Search current record for matching component
9539 Search_Component (Rectype);
9541 -- If not found, maybe component of base type discriminant that is
9542 -- absent from statically constrained first subtype.
9544 if No (Comp) then
9545 Search_Component (Base_Type (Rectype));
9546 end if;
9548 -- If no component, or the component does not reference the component
9549 -- clause in question, then there was some previous error for which
9550 -- we already gave a message, so just return with Comp Empty.
9552 if No (Comp) or else Component_Clause (Comp) /= CC then
9553 Check_Error_Detected;
9554 Comp := Empty;
9556 -- Normal case where we have a component clause
9558 else
9559 Fbit := Component_Bit_Offset (Comp);
9560 Lbit := Fbit + Esize (Comp) - 1;
9561 end if;
9562 end Find_Component;
9564 -- Start of processing for Check_Record_Representation_Clause
9566 begin
9567 Find_Type (Ident);
9568 Rectype := Entity (Ident);
9570 if Rectype = Any_Type then
9571 return;
9572 else
9573 Rectype := Underlying_Type (Rectype);
9574 end if;
9576 -- See if we have a fully repped derived tagged type
9578 declare
9579 PS : constant Entity_Id := Parent_Subtype (Rectype);
9581 begin
9582 if Present (PS) and then Is_Fully_Repped_Tagged_Type (PS) then
9583 Tagged_Parent := PS;
9585 -- Find maximum bit of any component of the parent type
9587 Parent_Last_Bit := UI_From_Int (System_Address_Size - 1);
9588 Pcomp := First_Entity (Tagged_Parent);
9589 while Present (Pcomp) loop
9590 if Ekind_In (Pcomp, E_Discriminant, E_Component) then
9591 if Component_Bit_Offset (Pcomp) /= No_Uint
9592 and then Known_Static_Esize (Pcomp)
9593 then
9594 Parent_Last_Bit :=
9595 UI_Max
9596 (Parent_Last_Bit,
9597 Component_Bit_Offset (Pcomp) + Esize (Pcomp) - 1);
9598 end if;
9600 Next_Entity (Pcomp);
9601 end if;
9602 end loop;
9603 end if;
9604 end;
9606 -- All done if no component clauses
9608 CC := First (Component_Clauses (N));
9610 if No (CC) then
9611 return;
9612 end if;
9614 -- If a tag is present, then create a component clause that places it
9615 -- at the start of the record (otherwise gigi may place it after other
9616 -- fields that have rep clauses).
9618 Fent := First_Entity (Rectype);
9620 if Nkind (Fent) = N_Defining_Identifier
9621 and then Chars (Fent) = Name_uTag
9622 then
9623 Set_Component_Bit_Offset (Fent, Uint_0);
9624 Set_Normalized_Position (Fent, Uint_0);
9625 Set_Normalized_First_Bit (Fent, Uint_0);
9626 Set_Normalized_Position_Max (Fent, Uint_0);
9627 Init_Esize (Fent, System_Address_Size);
9629 Set_Component_Clause (Fent,
9630 Make_Component_Clause (Loc,
9631 Component_Name => Make_Identifier (Loc, Name_uTag),
9633 Position => Make_Integer_Literal (Loc, Uint_0),
9634 First_Bit => Make_Integer_Literal (Loc, Uint_0),
9635 Last_Bit =>
9636 Make_Integer_Literal (Loc,
9637 UI_From_Int (System_Address_Size))));
9639 Ccount := Ccount + 1;
9640 end if;
9642 Max_Bit_So_Far := Uint_Minus_1;
9643 Overlap_Check_Required := False;
9645 -- Process the component clauses
9647 while Present (CC) loop
9648 Find_Component;
9650 if Present (Comp) then
9651 Ccount := Ccount + 1;
9653 -- We need a full overlap check if record positions non-monotonic
9655 if Fbit <= Max_Bit_So_Far then
9656 Overlap_Check_Required := True;
9657 end if;
9659 Max_Bit_So_Far := Lbit;
9661 -- Check bit position out of range of specified size
9663 if Has_Size_Clause (Rectype)
9664 and then RM_Size (Rectype) <= Lbit
9665 then
9666 Error_Msg_N
9667 ("bit number out of range of specified size",
9668 Last_Bit (CC));
9670 -- Check for overlap with tag component
9672 else
9673 if Is_Tagged_Type (Rectype)
9674 and then Fbit < System_Address_Size
9675 then
9676 Error_Msg_NE
9677 ("component overlaps tag field of&",
9678 Component_Name (CC), Rectype);
9679 Overlap_Detected := True;
9680 end if;
9682 if Hbit < Lbit then
9683 Hbit := Lbit;
9684 end if;
9685 end if;
9687 -- Check parent overlap if component might overlap parent field
9689 if Present (Tagged_Parent) and then Fbit <= Parent_Last_Bit then
9690 Pcomp := First_Component_Or_Discriminant (Tagged_Parent);
9691 while Present (Pcomp) loop
9692 if not Is_Tag (Pcomp)
9693 and then Chars (Pcomp) /= Name_uParent
9694 then
9695 Check_Component_Overlap (Comp, Pcomp);
9696 end if;
9698 Next_Component_Or_Discriminant (Pcomp);
9699 end loop;
9700 end if;
9701 end if;
9703 Next (CC);
9704 end loop;
9706 -- Now that we have processed all the component clauses, check for
9707 -- overlap. We have to leave this till last, since the components can
9708 -- appear in any arbitrary order in the representation clause.
9710 -- We do not need this check if all specified ranges were monotonic,
9711 -- as recorded by Overlap_Check_Required being False at this stage.
9713 -- This first section checks if there are any overlapping entries at
9714 -- all. It does this by sorting all entries and then seeing if there are
9715 -- any overlaps. If there are none, then that is decisive, but if there
9716 -- are overlaps, they may still be OK (they may result from fields in
9717 -- different variants).
9719 if Overlap_Check_Required then
9720 Overlap_Check1 : declare
9722 OC_Fbit : array (0 .. Ccount) of Uint;
9723 -- First-bit values for component clauses, the value is the offset
9724 -- of the first bit of the field from start of record. The zero
9725 -- entry is for use in sorting.
9727 OC_Lbit : array (0 .. Ccount) of Uint;
9728 -- Last-bit values for component clauses, the value is the offset
9729 -- of the last bit of the field from start of record. The zero
9730 -- entry is for use in sorting.
9732 OC_Count : Natural := 0;
9733 -- Count of entries in OC_Fbit and OC_Lbit
9735 function OC_Lt (Op1, Op2 : Natural) return Boolean;
9736 -- Compare routine for Sort
9738 procedure OC_Move (From : Natural; To : Natural);
9739 -- Move routine for Sort
9741 package Sorting is new GNAT.Heap_Sort_G (OC_Move, OC_Lt);
9743 -----------
9744 -- OC_Lt --
9745 -----------
9747 function OC_Lt (Op1, Op2 : Natural) return Boolean is
9748 begin
9749 return OC_Fbit (Op1) < OC_Fbit (Op2);
9750 end OC_Lt;
9752 -------------
9753 -- OC_Move --
9754 -------------
9756 procedure OC_Move (From : Natural; To : Natural) is
9757 begin
9758 OC_Fbit (To) := OC_Fbit (From);
9759 OC_Lbit (To) := OC_Lbit (From);
9760 end OC_Move;
9762 -- Start of processing for Overlap_Check
9764 begin
9765 CC := First (Component_Clauses (N));
9766 while Present (CC) loop
9768 -- Exclude component clause already marked in error
9770 if not Error_Posted (CC) then
9771 Find_Component;
9773 if Present (Comp) then
9774 OC_Count := OC_Count + 1;
9775 OC_Fbit (OC_Count) := Fbit;
9776 OC_Lbit (OC_Count) := Lbit;
9777 end if;
9778 end if;
9780 Next (CC);
9781 end loop;
9783 Sorting.Sort (OC_Count);
9785 Overlap_Check_Required := False;
9786 for J in 1 .. OC_Count - 1 loop
9787 if OC_Lbit (J) >= OC_Fbit (J + 1) then
9788 Overlap_Check_Required := True;
9789 exit;
9790 end if;
9791 end loop;
9792 end Overlap_Check1;
9793 end if;
9795 -- If Overlap_Check_Required is still True, then we have to do the full
9796 -- scale overlap check, since we have at least two fields that do
9797 -- overlap, and we need to know if that is OK since they are in
9798 -- different variant, or whether we have a definite problem.
9800 if Overlap_Check_Required then
9801 Overlap_Check2 : declare
9802 C1_Ent, C2_Ent : Entity_Id;
9803 -- Entities of components being checked for overlap
9805 Clist : Node_Id;
9806 -- Component_List node whose Component_Items are being checked
9808 Citem : Node_Id;
9809 -- Component declaration for component being checked
9811 begin
9812 C1_Ent := First_Entity (Base_Type (Rectype));
9814 -- Loop through all components in record. For each component check
9815 -- for overlap with any of the preceding elements on the component
9816 -- list containing the component and also, if the component is in
9817 -- a variant, check against components outside the case structure.
9818 -- This latter test is repeated recursively up the variant tree.
9820 Main_Component_Loop : while Present (C1_Ent) loop
9821 if not Ekind_In (C1_Ent, E_Component, E_Discriminant) then
9822 goto Continue_Main_Component_Loop;
9823 end if;
9825 -- Skip overlap check if entity has no declaration node. This
9826 -- happens with discriminants in constrained derived types.
9827 -- Possibly we are missing some checks as a result, but that
9828 -- does not seem terribly serious.
9830 if No (Declaration_Node (C1_Ent)) then
9831 goto Continue_Main_Component_Loop;
9832 end if;
9834 Clist := Parent (List_Containing (Declaration_Node (C1_Ent)));
9836 -- Loop through component lists that need checking. Check the
9837 -- current component list and all lists in variants above us.
9839 Component_List_Loop : loop
9841 -- If derived type definition, go to full declaration
9842 -- If at outer level, check discriminants if there are any.
9844 if Nkind (Clist) = N_Derived_Type_Definition then
9845 Clist := Parent (Clist);
9846 end if;
9848 -- Outer level of record definition, check discriminants
9850 if Nkind_In (Clist, N_Full_Type_Declaration,
9851 N_Private_Type_Declaration)
9852 then
9853 if Has_Discriminants (Defining_Identifier (Clist)) then
9854 C2_Ent :=
9855 First_Discriminant (Defining_Identifier (Clist));
9856 while Present (C2_Ent) loop
9857 exit when C1_Ent = C2_Ent;
9858 Check_Component_Overlap (C1_Ent, C2_Ent);
9859 Next_Discriminant (C2_Ent);
9860 end loop;
9861 end if;
9863 -- Record extension case
9865 elsif Nkind (Clist) = N_Derived_Type_Definition then
9866 Clist := Empty;
9868 -- Otherwise check one component list
9870 else
9871 Citem := First (Component_Items (Clist));
9872 while Present (Citem) loop
9873 if Nkind (Citem) = N_Component_Declaration then
9874 C2_Ent := Defining_Identifier (Citem);
9875 exit when C1_Ent = C2_Ent;
9876 Check_Component_Overlap (C1_Ent, C2_Ent);
9877 end if;
9879 Next (Citem);
9880 end loop;
9881 end if;
9883 -- Check for variants above us (the parent of the Clist can
9884 -- be a variant, in which case its parent is a variant part,
9885 -- and the parent of the variant part is a component list
9886 -- whose components must all be checked against the current
9887 -- component for overlap).
9889 if Nkind (Parent (Clist)) = N_Variant then
9890 Clist := Parent (Parent (Parent (Clist)));
9892 -- Check for possible discriminant part in record, this
9893 -- is treated essentially as another level in the
9894 -- recursion. For this case the parent of the component
9895 -- list is the record definition, and its parent is the
9896 -- full type declaration containing the discriminant
9897 -- specifications.
9899 elsif Nkind (Parent (Clist)) = N_Record_Definition then
9900 Clist := Parent (Parent ((Clist)));
9902 -- If neither of these two cases, we are at the top of
9903 -- the tree.
9905 else
9906 exit Component_List_Loop;
9907 end if;
9908 end loop Component_List_Loop;
9910 <<Continue_Main_Component_Loop>>
9911 Next_Entity (C1_Ent);
9913 end loop Main_Component_Loop;
9914 end Overlap_Check2;
9915 end if;
9917 -- The following circuit deals with warning on record holes (gaps). We
9918 -- skip this check if overlap was detected, since it makes sense for the
9919 -- programmer to fix this illegality before worrying about warnings.
9921 if not Overlap_Detected and Warn_On_Record_Holes then
9922 Record_Hole_Check : declare
9923 Decl : constant Node_Id := Declaration_Node (Base_Type (Rectype));
9924 -- Full declaration of record type
9926 procedure Check_Component_List
9927 (CL : Node_Id;
9928 Sbit : Uint;
9929 DS : List_Id);
9930 -- Check component list CL for holes. The starting bit should be
9931 -- Sbit. which is zero for the main record component list and set
9932 -- appropriately for recursive calls for variants. DS is set to
9933 -- a list of discriminant specifications to be included in the
9934 -- consideration of components. It is No_List if none to consider.
9936 --------------------------
9937 -- Check_Component_List --
9938 --------------------------
9940 procedure Check_Component_List
9941 (CL : Node_Id;
9942 Sbit : Uint;
9943 DS : List_Id)
9945 Compl : Integer;
9947 begin
9948 Compl := Integer (List_Length (Component_Items (CL)));
9950 if DS /= No_List then
9951 Compl := Compl + Integer (List_Length (DS));
9952 end if;
9954 declare
9955 Comps : array (Natural range 0 .. Compl) of Entity_Id;
9956 -- Gather components (zero entry is for sort routine)
9958 Ncomps : Natural := 0;
9959 -- Number of entries stored in Comps (starting at Comps (1))
9961 Citem : Node_Id;
9962 -- One component item or discriminant specification
9964 Nbit : Uint;
9965 -- Starting bit for next component
9967 CEnt : Entity_Id;
9968 -- Component entity
9970 Variant : Node_Id;
9971 -- One variant
9973 function Lt (Op1, Op2 : Natural) return Boolean;
9974 -- Compare routine for Sort
9976 procedure Move (From : Natural; To : Natural);
9977 -- Move routine for Sort
9979 package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
9981 --------
9982 -- Lt --
9983 --------
9985 function Lt (Op1, Op2 : Natural) return Boolean is
9986 begin
9987 return Component_Bit_Offset (Comps (Op1))
9989 Component_Bit_Offset (Comps (Op2));
9990 end Lt;
9992 ----------
9993 -- Move --
9994 ----------
9996 procedure Move (From : Natural; To : Natural) is
9997 begin
9998 Comps (To) := Comps (From);
9999 end Move;
10001 begin
10002 -- Gather discriminants into Comp
10004 if DS /= No_List then
10005 Citem := First (DS);
10006 while Present (Citem) loop
10007 if Nkind (Citem) = N_Discriminant_Specification then
10008 declare
10009 Ent : constant Entity_Id :=
10010 Defining_Identifier (Citem);
10011 begin
10012 if Ekind (Ent) = E_Discriminant then
10013 Ncomps := Ncomps + 1;
10014 Comps (Ncomps) := Ent;
10015 end if;
10016 end;
10017 end if;
10019 Next (Citem);
10020 end loop;
10021 end if;
10023 -- Gather component entities into Comp
10025 Citem := First (Component_Items (CL));
10026 while Present (Citem) loop
10027 if Nkind (Citem) = N_Component_Declaration then
10028 Ncomps := Ncomps + 1;
10029 Comps (Ncomps) := Defining_Identifier (Citem);
10030 end if;
10032 Next (Citem);
10033 end loop;
10035 -- Now sort the component entities based on the first bit.
10036 -- Note we already know there are no overlapping components.
10038 Sorting.Sort (Ncomps);
10040 -- Loop through entries checking for holes
10042 Nbit := Sbit;
10043 for J in 1 .. Ncomps loop
10044 CEnt := Comps (J);
10045 Error_Msg_Uint_1 := Component_Bit_Offset (CEnt) - Nbit;
10047 if Error_Msg_Uint_1 > 0 then
10048 Error_Msg_NE
10049 ("?H?^-bit gap before component&",
10050 Component_Name (Component_Clause (CEnt)), CEnt);
10051 end if;
10053 Nbit := Component_Bit_Offset (CEnt) + Esize (CEnt);
10054 end loop;
10056 -- Process variant parts recursively if present
10058 if Present (Variant_Part (CL)) then
10059 Variant := First (Variants (Variant_Part (CL)));
10060 while Present (Variant) loop
10061 Check_Component_List
10062 (Component_List (Variant), Nbit, No_List);
10063 Next (Variant);
10064 end loop;
10065 end if;
10066 end;
10067 end Check_Component_List;
10069 -- Start of processing for Record_Hole_Check
10071 begin
10072 declare
10073 Sbit : Uint;
10075 begin
10076 if Is_Tagged_Type (Rectype) then
10077 Sbit := UI_From_Int (System_Address_Size);
10078 else
10079 Sbit := Uint_0;
10080 end if;
10082 if Nkind (Decl) = N_Full_Type_Declaration
10083 and then Nkind (Type_Definition (Decl)) = N_Record_Definition
10084 then
10085 Check_Component_List
10086 (Component_List (Type_Definition (Decl)),
10087 Sbit,
10088 Discriminant_Specifications (Decl));
10089 end if;
10090 end;
10091 end Record_Hole_Check;
10092 end if;
10094 -- For records that have component clauses for all components, and whose
10095 -- size is less than or equal to 32, we need to know the size in the
10096 -- front end to activate possible packed array processing where the
10097 -- component type is a record.
10099 -- At this stage Hbit + 1 represents the first unused bit from all the
10100 -- component clauses processed, so if the component clauses are
10101 -- complete, then this is the length of the record.
10103 -- For records longer than System.Storage_Unit, and for those where not
10104 -- all components have component clauses, the back end determines the
10105 -- length (it may for example be appropriate to round up the size
10106 -- to some convenient boundary, based on alignment considerations, etc).
10108 if Unknown_RM_Size (Rectype) and then Hbit + 1 <= 32 then
10110 -- Nothing to do if at least one component has no component clause
10112 Comp := First_Component_Or_Discriminant (Rectype);
10113 while Present (Comp) loop
10114 exit when No (Component_Clause (Comp));
10115 Next_Component_Or_Discriminant (Comp);
10116 end loop;
10118 -- If we fall out of loop, all components have component clauses
10119 -- and so we can set the size to the maximum value.
10121 if No (Comp) then
10122 Set_RM_Size (Rectype, Hbit + 1);
10123 end if;
10124 end if;
10125 end Check_Record_Representation_Clause;
10127 ----------------
10128 -- Check_Size --
10129 ----------------
10131 procedure Check_Size
10132 (N : Node_Id;
10133 T : Entity_Id;
10134 Siz : Uint;
10135 Biased : out Boolean)
10137 UT : constant Entity_Id := Underlying_Type (T);
10138 M : Uint;
10140 begin
10141 Biased := False;
10143 -- Reject patently improper size values.
10145 if Is_Elementary_Type (T)
10146 and then Siz > UI_From_Int (Int'Last)
10147 then
10148 Error_Msg_N ("Size value too large for elementary type", N);
10150 if Nkind (Original_Node (N)) = N_Op_Expon then
10151 Error_Msg_N
10152 ("\maybe '* was meant, rather than '*'*", Original_Node (N));
10153 end if;
10154 end if;
10156 -- Dismiss generic types
10158 if Is_Generic_Type (T)
10159 or else
10160 Is_Generic_Type (UT)
10161 or else
10162 Is_Generic_Type (Root_Type (UT))
10163 then
10164 return;
10166 -- Guard against previous errors
10168 elsif No (UT) or else UT = Any_Type then
10169 Check_Error_Detected;
10170 return;
10172 -- Check case of bit packed array
10174 elsif Is_Array_Type (UT)
10175 and then Known_Static_Component_Size (UT)
10176 and then Is_Bit_Packed_Array (UT)
10177 then
10178 declare
10179 Asiz : Uint;
10180 Indx : Node_Id;
10181 Ityp : Entity_Id;
10183 begin
10184 Asiz := Component_Size (UT);
10185 Indx := First_Index (UT);
10186 loop
10187 Ityp := Etype (Indx);
10189 -- If non-static bound, then we are not in the business of
10190 -- trying to check the length, and indeed an error will be
10191 -- issued elsewhere, since sizes of non-static array types
10192 -- cannot be set implicitly or explicitly.
10194 if not Is_OK_Static_Subtype (Ityp) then
10195 return;
10196 end if;
10198 -- Otherwise accumulate next dimension
10200 Asiz := Asiz * (Expr_Value (Type_High_Bound (Ityp)) -
10201 Expr_Value (Type_Low_Bound (Ityp)) +
10202 Uint_1);
10204 Next_Index (Indx);
10205 exit when No (Indx);
10206 end loop;
10208 if Asiz <= Siz then
10209 return;
10211 else
10212 Error_Msg_Uint_1 := Asiz;
10213 Error_Msg_NE
10214 ("size for& too small, minimum allowed is ^", N, T);
10215 Set_Esize (T, Asiz);
10216 Set_RM_Size (T, Asiz);
10217 end if;
10218 end;
10220 -- All other composite types are ignored
10222 elsif Is_Composite_Type (UT) then
10223 return;
10225 -- For fixed-point types, don't check minimum if type is not frozen,
10226 -- since we don't know all the characteristics of the type that can
10227 -- affect the size (e.g. a specified small) till freeze time.
10229 elsif Is_Fixed_Point_Type (UT)
10230 and then not Is_Frozen (UT)
10231 then
10232 null;
10234 -- Cases for which a minimum check is required
10236 else
10237 -- Ignore if specified size is correct for the type
10239 if Known_Esize (UT) and then Siz = Esize (UT) then
10240 return;
10241 end if;
10243 -- Otherwise get minimum size
10245 M := UI_From_Int (Minimum_Size (UT));
10247 if Siz < M then
10249 -- Size is less than minimum size, but one possibility remains
10250 -- that we can manage with the new size if we bias the type.
10252 M := UI_From_Int (Minimum_Size (UT, Biased => True));
10254 if Siz < M then
10255 Error_Msg_Uint_1 := M;
10256 Error_Msg_NE
10257 ("size for& too small, minimum allowed is ^", N, T);
10258 Set_Esize (T, M);
10259 Set_RM_Size (T, M);
10260 else
10261 Biased := True;
10262 end if;
10263 end if;
10264 end if;
10265 end Check_Size;
10267 --------------------------
10268 -- Freeze_Entity_Checks --
10269 --------------------------
10271 procedure Freeze_Entity_Checks (N : Node_Id) is
10272 procedure Hide_Non_Overridden_Subprograms (Typ : Entity_Id);
10273 -- Inspect the primitive operations of type Typ and hide all pairs of
10274 -- implicitly declared non-overridden non-fully conformant homographs
10275 -- (Ada RM 8.3 12.3/2).
10277 -------------------------------------
10278 -- Hide_Non_Overridden_Subprograms --
10279 -------------------------------------
10281 procedure Hide_Non_Overridden_Subprograms (Typ : Entity_Id) is
10282 procedure Hide_Matching_Homographs
10283 (Subp_Id : Entity_Id;
10284 Start_Elmt : Elmt_Id);
10285 -- Inspect a list of primitive operations starting with Start_Elmt
10286 -- and find matching implicitly declared non-overridden non-fully
10287 -- conformant homographs of Subp_Id. If found, all matches along
10288 -- with Subp_Id are hidden from all visibility.
10290 function Is_Non_Overridden_Or_Null_Procedure
10291 (Subp_Id : Entity_Id) return Boolean;
10292 -- Determine whether subprogram Subp_Id is implicitly declared non-
10293 -- overridden subprogram or an implicitly declared null procedure.
10295 ------------------------------
10296 -- Hide_Matching_Homographs --
10297 ------------------------------
10299 procedure Hide_Matching_Homographs
10300 (Subp_Id : Entity_Id;
10301 Start_Elmt : Elmt_Id)
10303 Prim : Entity_Id;
10304 Prim_Elmt : Elmt_Id;
10306 begin
10307 Prim_Elmt := Start_Elmt;
10308 while Present (Prim_Elmt) loop
10309 Prim := Node (Prim_Elmt);
10311 -- The current primitive is implicitly declared non-overridden
10312 -- non-fully conformant homograph of Subp_Id. Both subprograms
10313 -- must be hidden from visibility.
10315 if Chars (Prim) = Chars (Subp_Id)
10316 and then Is_Non_Overridden_Or_Null_Procedure (Prim)
10317 and then not Fully_Conformant (Prim, Subp_Id)
10318 then
10319 Set_Is_Hidden_Non_Overridden_Subpgm (Prim);
10320 Set_Is_Immediately_Visible (Prim, False);
10321 Set_Is_Potentially_Use_Visible (Prim, False);
10323 Set_Is_Hidden_Non_Overridden_Subpgm (Subp_Id);
10324 Set_Is_Immediately_Visible (Subp_Id, False);
10325 Set_Is_Potentially_Use_Visible (Subp_Id, False);
10326 end if;
10328 Next_Elmt (Prim_Elmt);
10329 end loop;
10330 end Hide_Matching_Homographs;
10332 -----------------------------------------
10333 -- Is_Non_Overridden_Or_Null_Procedure --
10334 -----------------------------------------
10336 function Is_Non_Overridden_Or_Null_Procedure
10337 (Subp_Id : Entity_Id) return Boolean
10339 Alias_Id : Entity_Id;
10341 begin
10342 -- The subprogram is inherited (implicitly declared), it does not
10343 -- override and does not cover a primitive of an interface.
10345 if Ekind_In (Subp_Id, E_Function, E_Procedure)
10346 and then Present (Alias (Subp_Id))
10347 and then No (Interface_Alias (Subp_Id))
10348 and then No (Overridden_Operation (Subp_Id))
10349 then
10350 Alias_Id := Alias (Subp_Id);
10352 if Requires_Overriding (Alias_Id) then
10353 return True;
10355 elsif Nkind (Parent (Alias_Id)) = N_Procedure_Specification
10356 and then Null_Present (Parent (Alias_Id))
10357 then
10358 return True;
10359 end if;
10360 end if;
10362 return False;
10363 end Is_Non_Overridden_Or_Null_Procedure;
10365 -- Local variables
10367 Prim_Ops : constant Elist_Id := Direct_Primitive_Operations (Typ);
10368 Prim : Entity_Id;
10369 Prim_Elmt : Elmt_Id;
10371 -- Start of processing for Hide_Non_Overridden_Subprograms
10373 begin
10374 -- Inspect the list of primitives looking for non-overridden
10375 -- subprograms.
10377 if Present (Prim_Ops) then
10378 Prim_Elmt := First_Elmt (Prim_Ops);
10379 while Present (Prim_Elmt) loop
10380 Prim := Node (Prim_Elmt);
10381 Next_Elmt (Prim_Elmt);
10383 if Is_Non_Overridden_Or_Null_Procedure (Prim) then
10384 Hide_Matching_Homographs
10385 (Subp_Id => Prim,
10386 Start_Elmt => Prim_Elmt);
10387 end if;
10388 end loop;
10389 end if;
10390 end Hide_Non_Overridden_Subprograms;
10392 ---------------------
10393 -- Local variables --
10394 ---------------------
10396 E : constant Entity_Id := Entity (N);
10398 Non_Generic_Case : constant Boolean := Nkind (N) = N_Freeze_Entity;
10399 -- True in non-generic case. Some of the processing here is skipped
10400 -- for the generic case since it is not needed. Basically in the
10401 -- generic case, we only need to do stuff that might generate error
10402 -- messages or warnings.
10404 -- Start of processing for Freeze_Entity_Checks
10406 begin
10407 -- Remember that we are processing a freezing entity. Required to
10408 -- ensure correct decoration of internal entities associated with
10409 -- interfaces (see New_Overloaded_Entity).
10411 Inside_Freezing_Actions := Inside_Freezing_Actions + 1;
10413 -- For tagged types covering interfaces add internal entities that link
10414 -- the primitives of the interfaces with the primitives that cover them.
10415 -- Note: These entities were originally generated only when generating
10416 -- code because their main purpose was to provide support to initialize
10417 -- the secondary dispatch tables. They are now generated also when
10418 -- compiling with no code generation to provide ASIS the relationship
10419 -- between interface primitives and tagged type primitives. They are
10420 -- also used to locate primitives covering interfaces when processing
10421 -- generics (see Derive_Subprograms).
10423 -- This is not needed in the generic case
10425 if Ada_Version >= Ada_2005
10426 and then Non_Generic_Case
10427 and then Ekind (E) = E_Record_Type
10428 and then Is_Tagged_Type (E)
10429 and then not Is_Interface (E)
10430 and then Has_Interfaces (E)
10431 then
10432 -- This would be a good common place to call the routine that checks
10433 -- overriding of interface primitives (and thus factorize calls to
10434 -- Check_Abstract_Overriding located at different contexts in the
10435 -- compiler). However, this is not possible because it causes
10436 -- spurious errors in case of late overriding.
10438 Add_Internal_Interface_Entities (E);
10439 end if;
10441 -- After all forms of overriding have been resolved, a tagged type may
10442 -- be left with a set of implicitly declared and possibly erroneous
10443 -- abstract subprograms, null procedures and subprograms that require
10444 -- overriding. If this set contains fully conformat homographs, then one
10445 -- is chosen arbitrarily (already done during resolution), otherwise all
10446 -- remaining non-fully conformant homographs are hidden from visibility
10447 -- (Ada RM 8.3 12.3/2).
10449 if Is_Tagged_Type (E) then
10450 Hide_Non_Overridden_Subprograms (E);
10451 end if;
10453 -- Check CPP types
10455 if Ekind (E) = E_Record_Type
10456 and then Is_CPP_Class (E)
10457 and then Is_Tagged_Type (E)
10458 and then Tagged_Type_Expansion
10459 then
10460 if CPP_Num_Prims (E) = 0 then
10462 -- If the CPP type has user defined components then it must import
10463 -- primitives from C++. This is required because if the C++ class
10464 -- has no primitives then the C++ compiler does not added the _tag
10465 -- component to the type.
10467 if First_Entity (E) /= Last_Entity (E) then
10468 Error_Msg_N
10469 ("'C'P'P type must import at least one primitive from C++??",
10471 end if;
10472 end if;
10474 -- Check that all its primitives are abstract or imported from C++.
10475 -- Check also availability of the C++ constructor.
10477 declare
10478 Has_Constructors : constant Boolean := Has_CPP_Constructors (E);
10479 Elmt : Elmt_Id;
10480 Error_Reported : Boolean := False;
10481 Prim : Node_Id;
10483 begin
10484 Elmt := First_Elmt (Primitive_Operations (E));
10485 while Present (Elmt) loop
10486 Prim := Node (Elmt);
10488 if Comes_From_Source (Prim) then
10489 if Is_Abstract_Subprogram (Prim) then
10490 null;
10492 elsif not Is_Imported (Prim)
10493 or else Convention (Prim) /= Convention_CPP
10494 then
10495 Error_Msg_N
10496 ("primitives of 'C'P'P types must be imported from C++ "
10497 & "or abstract??", Prim);
10499 elsif not Has_Constructors
10500 and then not Error_Reported
10501 then
10502 Error_Msg_Name_1 := Chars (E);
10503 Error_Msg_N
10504 ("??'C'P'P constructor required for type %", Prim);
10505 Error_Reported := True;
10506 end if;
10507 end if;
10509 Next_Elmt (Elmt);
10510 end loop;
10511 end;
10512 end if;
10514 -- Check Ada derivation of CPP type
10516 if Expander_Active -- why? losing errors in -gnatc mode???
10517 and then Present (Etype (E)) -- defend against errors
10518 and then Tagged_Type_Expansion
10519 and then Ekind (E) = E_Record_Type
10520 and then Etype (E) /= E
10521 and then Is_CPP_Class (Etype (E))
10522 and then CPP_Num_Prims (Etype (E)) > 0
10523 and then not Is_CPP_Class (E)
10524 and then not Has_CPP_Constructors (Etype (E))
10525 then
10526 -- If the parent has C++ primitives but it has no constructor then
10527 -- check that all the primitives are overridden in this derivation;
10528 -- otherwise the constructor of the parent is needed to build the
10529 -- dispatch table.
10531 declare
10532 Elmt : Elmt_Id;
10533 Prim : Node_Id;
10535 begin
10536 Elmt := First_Elmt (Primitive_Operations (E));
10537 while Present (Elmt) loop
10538 Prim := Node (Elmt);
10540 if not Is_Abstract_Subprogram (Prim)
10541 and then No (Interface_Alias (Prim))
10542 and then Find_Dispatching_Type (Ultimate_Alias (Prim)) /= E
10543 then
10544 Error_Msg_Name_1 := Chars (Etype (E));
10545 Error_Msg_N
10546 ("'C'P'P constructor required for parent type %", E);
10547 exit;
10548 end if;
10550 Next_Elmt (Elmt);
10551 end loop;
10552 end;
10553 end if;
10555 Inside_Freezing_Actions := Inside_Freezing_Actions - 1;
10557 -- If we have a type with predicates, build predicate function. This
10558 -- is not needed in the generic case, and is not needed within TSS
10559 -- subprograms and other predefined primitives.
10561 if Non_Generic_Case
10562 and then Is_Type (E)
10563 and then Has_Predicates (E)
10564 and then not Within_Internal_Subprogram
10565 then
10566 Build_Predicate_Functions (E, N);
10567 end if;
10569 -- If type has delayed aspects, this is where we do the preanalysis at
10570 -- the freeze point, as part of the consistent visibility check. Note
10571 -- that this must be done after calling Build_Predicate_Functions or
10572 -- Build_Invariant_Procedure since these subprograms fix occurrences of
10573 -- the subtype name in the saved expression so that they will not cause
10574 -- trouble in the preanalysis.
10576 -- This is also not needed in the generic case
10578 if Non_Generic_Case
10579 and then Has_Delayed_Aspects (E)
10580 and then Scope (E) = Current_Scope
10581 then
10582 -- Retrieve the visibility to the discriminants in order to properly
10583 -- analyze the aspects.
10585 Push_Scope_And_Install_Discriminants (E);
10587 declare
10588 Ritem : Node_Id;
10590 begin
10591 -- Look for aspect specification entries for this entity
10593 Ritem := First_Rep_Item (E);
10594 while Present (Ritem) loop
10595 if Nkind (Ritem) = N_Aspect_Specification
10596 and then Entity (Ritem) = E
10597 and then Is_Delayed_Aspect (Ritem)
10598 then
10599 Check_Aspect_At_Freeze_Point (Ritem);
10600 end if;
10602 Next_Rep_Item (Ritem);
10603 end loop;
10604 end;
10606 Uninstall_Discriminants_And_Pop_Scope (E);
10607 end if;
10609 -- For a record type, deal with variant parts. This has to be delayed
10610 -- to this point, because of the issue of statically predicated
10611 -- subtypes, which we have to ensure are frozen before checking
10612 -- choices, since we need to have the static choice list set.
10614 if Is_Record_Type (E) then
10615 Check_Variant_Part : declare
10616 D : constant Node_Id := Declaration_Node (E);
10617 T : Node_Id;
10618 C : Node_Id;
10619 VP : Node_Id;
10621 Others_Present : Boolean;
10622 pragma Warnings (Off, Others_Present);
10623 -- Indicates others present, not used in this case
10625 procedure Non_Static_Choice_Error (Choice : Node_Id);
10626 -- Error routine invoked by the generic instantiation below when
10627 -- the variant part has a non static choice.
10629 procedure Process_Declarations (Variant : Node_Id);
10630 -- Processes declarations associated with a variant. We analyzed
10631 -- the declarations earlier (in Sem_Ch3.Analyze_Variant_Part),
10632 -- but we still need the recursive call to Check_Choices for any
10633 -- nested variant to get its choices properly processed. This is
10634 -- also where we expand out the choices if expansion is active.
10636 package Variant_Choices_Processing is new
10637 Generic_Check_Choices
10638 (Process_Empty_Choice => No_OP,
10639 Process_Non_Static_Choice => Non_Static_Choice_Error,
10640 Process_Associated_Node => Process_Declarations);
10641 use Variant_Choices_Processing;
10643 -----------------------------
10644 -- Non_Static_Choice_Error --
10645 -----------------------------
10647 procedure Non_Static_Choice_Error (Choice : Node_Id) is
10648 begin
10649 Flag_Non_Static_Expr
10650 ("choice given in variant part is not static!", Choice);
10651 end Non_Static_Choice_Error;
10653 --------------------------
10654 -- Process_Declarations --
10655 --------------------------
10657 procedure Process_Declarations (Variant : Node_Id) is
10658 CL : constant Node_Id := Component_List (Variant);
10659 VP : Node_Id;
10661 begin
10662 -- Check for static predicate present in this variant
10664 if Has_SP_Choice (Variant) then
10666 -- Here we expand. You might expect to find this call in
10667 -- Expand_N_Variant_Part, but that is called when we first
10668 -- see the variant part, and we cannot do this expansion
10669 -- earlier than the freeze point, since for statically
10670 -- predicated subtypes, the predicate is not known till
10671 -- the freeze point.
10673 -- Furthermore, we do this expansion even if the expander
10674 -- is not active, because other semantic processing, e.g.
10675 -- for aggregates, requires the expanded list of choices.
10677 -- If the expander is not active, then we can't just clobber
10678 -- the list since it would invalidate the ASIS -gnatct tree.
10679 -- So we have to rewrite the variant part with a Rewrite
10680 -- call that replaces it with a copy and clobber the copy.
10682 if not Expander_Active then
10683 declare
10684 NewV : constant Node_Id := New_Copy (Variant);
10685 begin
10686 Set_Discrete_Choices
10687 (NewV, New_Copy_List (Discrete_Choices (Variant)));
10688 Rewrite (Variant, NewV);
10689 end;
10690 end if;
10692 Expand_Static_Predicates_In_Choices (Variant);
10693 end if;
10695 -- We don't need to worry about the declarations in the variant
10696 -- (since they were analyzed by Analyze_Choices when we first
10697 -- encountered the variant), but we do need to take care of
10698 -- expansion of any nested variants.
10700 if not Null_Present (CL) then
10701 VP := Variant_Part (CL);
10703 if Present (VP) then
10704 Check_Choices
10705 (VP, Variants (VP), Etype (Name (VP)), Others_Present);
10706 end if;
10707 end if;
10708 end Process_Declarations;
10710 -- Start of processing for Check_Variant_Part
10712 begin
10713 -- Find component list
10715 C := Empty;
10717 if Nkind (D) = N_Full_Type_Declaration then
10718 T := Type_Definition (D);
10720 if Nkind (T) = N_Record_Definition then
10721 C := Component_List (T);
10723 elsif Nkind (T) = N_Derived_Type_Definition
10724 and then Present (Record_Extension_Part (T))
10725 then
10726 C := Component_List (Record_Extension_Part (T));
10727 end if;
10728 end if;
10730 -- Case of variant part present
10732 if Present (C) and then Present (Variant_Part (C)) then
10733 VP := Variant_Part (C);
10735 -- Check choices
10737 Check_Choices
10738 (VP, Variants (VP), Etype (Name (VP)), Others_Present);
10740 -- If the last variant does not contain the Others choice,
10741 -- replace it with an N_Others_Choice node since Gigi always
10742 -- wants an Others. Note that we do not bother to call Analyze
10743 -- on the modified variant part, since its only effect would be
10744 -- to compute the Others_Discrete_Choices node laboriously, and
10745 -- of course we already know the list of choices corresponding
10746 -- to the others choice (it's the list we're replacing).
10748 -- We only want to do this if the expander is active, since
10749 -- we do not want to clobber the ASIS tree.
10751 if Expander_Active then
10752 declare
10753 Last_Var : constant Node_Id :=
10754 Last_Non_Pragma (Variants (VP));
10756 Others_Node : Node_Id;
10758 begin
10759 if Nkind (First (Discrete_Choices (Last_Var))) /=
10760 N_Others_Choice
10761 then
10762 Others_Node := Make_Others_Choice (Sloc (Last_Var));
10763 Set_Others_Discrete_Choices
10764 (Others_Node, Discrete_Choices (Last_Var));
10765 Set_Discrete_Choices
10766 (Last_Var, New_List (Others_Node));
10767 end if;
10768 end;
10769 end if;
10770 end if;
10771 end Check_Variant_Part;
10772 end if;
10773 end Freeze_Entity_Checks;
10775 -------------------------
10776 -- Get_Alignment_Value --
10777 -------------------------
10779 function Get_Alignment_Value (Expr : Node_Id) return Uint is
10780 Align : constant Uint := Static_Integer (Expr);
10782 begin
10783 if Align = No_Uint then
10784 return No_Uint;
10786 elsif Align <= 0 then
10787 Error_Msg_N ("alignment value must be positive", Expr);
10788 return No_Uint;
10790 else
10791 for J in Int range 0 .. 64 loop
10792 declare
10793 M : constant Uint := Uint_2 ** J;
10795 begin
10796 exit when M = Align;
10798 if M > Align then
10799 Error_Msg_N
10800 ("alignment value must be power of 2", Expr);
10801 return No_Uint;
10802 end if;
10803 end;
10804 end loop;
10806 return Align;
10807 end if;
10808 end Get_Alignment_Value;
10810 -------------------------------------
10811 -- Inherit_Aspects_At_Freeze_Point --
10812 -------------------------------------
10814 procedure Inherit_Aspects_At_Freeze_Point (Typ : Entity_Id) is
10815 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10816 (Rep_Item : Node_Id) return Boolean;
10817 -- This routine checks if Rep_Item is either a pragma or an aspect
10818 -- specification node whose correponding pragma (if any) is present in
10819 -- the Rep Item chain of the entity it has been specified to.
10821 --------------------------------------------------
10822 -- Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item --
10823 --------------------------------------------------
10825 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10826 (Rep_Item : Node_Id) return Boolean
10828 begin
10829 return
10830 Nkind (Rep_Item) = N_Pragma
10831 or else Present_In_Rep_Item
10832 (Entity (Rep_Item), Aspect_Rep_Item (Rep_Item));
10833 end Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item;
10835 -- Start of processing for Inherit_Aspects_At_Freeze_Point
10837 begin
10838 -- A representation item is either subtype-specific (Size and Alignment
10839 -- clauses) or type-related (all others). Subtype-specific aspects may
10840 -- differ for different subtypes of the same type (RM 13.1.8).
10842 -- A derived type inherits each type-related representation aspect of
10843 -- its parent type that was directly specified before the declaration of
10844 -- the derived type (RM 13.1.15).
10846 -- A derived subtype inherits each subtype-specific representation
10847 -- aspect of its parent subtype that was directly specified before the
10848 -- declaration of the derived type (RM 13.1.15).
10850 -- The general processing involves inheriting a representation aspect
10851 -- from a parent type whenever the first rep item (aspect specification,
10852 -- attribute definition clause, pragma) corresponding to the given
10853 -- representation aspect in the rep item chain of Typ, if any, isn't
10854 -- directly specified to Typ but to one of its parents.
10856 -- ??? Note that, for now, just a limited number of representation
10857 -- aspects have been inherited here so far. Many of them are
10858 -- still inherited in Sem_Ch3. This will be fixed soon. Here is
10859 -- a non- exhaustive list of aspects that likely also need to
10860 -- be moved to this routine: Alignment, Component_Alignment,
10861 -- Component_Size, Machine_Radix, Object_Size, Pack, Predicates,
10862 -- Preelaborable_Initialization, RM_Size and Small.
10864 -- In addition, Convention must be propagated from base type to subtype,
10865 -- because the subtype may have been declared on an incomplete view.
10867 if Nkind (Parent (Typ)) = N_Private_Extension_Declaration then
10868 return;
10869 end if;
10871 -- Ada_05/Ada_2005
10873 if not Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005, False)
10874 and then Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005)
10875 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10876 (Get_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005))
10877 then
10878 Set_Is_Ada_2005_Only (Typ);
10879 end if;
10881 -- Ada_12/Ada_2012
10883 if not Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012, False)
10884 and then Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012)
10885 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10886 (Get_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012))
10887 then
10888 Set_Is_Ada_2012_Only (Typ);
10889 end if;
10891 -- Atomic/Shared
10893 if not Has_Rep_Item (Typ, Name_Atomic, Name_Shared, False)
10894 and then Has_Rep_Pragma (Typ, Name_Atomic, Name_Shared)
10895 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10896 (Get_Rep_Item (Typ, Name_Atomic, Name_Shared))
10897 then
10898 Set_Is_Atomic (Typ);
10899 Set_Treat_As_Volatile (Typ);
10900 Set_Is_Volatile (Typ);
10901 end if;
10903 -- Convention
10905 if Is_Record_Type (Typ)
10906 and then Typ /= Base_Type (Typ) and then Is_Frozen (Base_Type (Typ))
10907 then
10908 Set_Convention (Typ, Convention (Base_Type (Typ)));
10909 end if;
10911 -- Default_Component_Value
10913 if Is_Array_Type (Typ)
10914 and then Is_Base_Type (Typ)
10915 and then Has_Rep_Item (Typ, Name_Default_Component_Value, False)
10916 and then Has_Rep_Item (Typ, Name_Default_Component_Value)
10917 then
10918 Set_Default_Aspect_Component_Value (Typ,
10919 Default_Aspect_Component_Value
10920 (Entity (Get_Rep_Item (Typ, Name_Default_Component_Value))));
10921 end if;
10923 -- Default_Value
10925 if Is_Scalar_Type (Typ)
10926 and then Is_Base_Type (Typ)
10927 and then Has_Rep_Item (Typ, Name_Default_Value, False)
10928 and then Has_Rep_Item (Typ, Name_Default_Value)
10929 then
10930 Set_Default_Aspect_Value (Typ,
10931 Default_Aspect_Value
10932 (Entity (Get_Rep_Item (Typ, Name_Default_Value))));
10933 end if;
10935 -- Discard_Names
10937 if not Has_Rep_Item (Typ, Name_Discard_Names, False)
10938 and then Has_Rep_Item (Typ, Name_Discard_Names)
10939 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10940 (Get_Rep_Item (Typ, Name_Discard_Names))
10941 then
10942 Set_Discard_Names (Typ);
10943 end if;
10945 -- Invariants
10947 if not Has_Rep_Item (Typ, Name_Invariant, False)
10948 and then Has_Rep_Item (Typ, Name_Invariant)
10949 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10950 (Get_Rep_Item (Typ, Name_Invariant))
10951 then
10952 Set_Has_Invariants (Typ);
10954 if Class_Present (Get_Rep_Item (Typ, Name_Invariant)) then
10955 Set_Has_Inheritable_Invariants (Typ);
10956 end if;
10958 -- If we have a subtype with invariants, whose base type does not have
10959 -- invariants, copy these invariants to the base type. This happens for
10960 -- the case of implicit base types created for scalar and array types.
10962 elsif Has_Invariants (Typ)
10963 and then not Has_Invariants (Base_Type (Typ))
10964 then
10965 Set_Has_Invariants (Base_Type (Typ));
10966 Set_Invariant_Procedure (Base_Type (Typ), Invariant_Procedure (Typ));
10967 end if;
10969 -- Volatile
10971 if not Has_Rep_Item (Typ, Name_Volatile, False)
10972 and then Has_Rep_Item (Typ, Name_Volatile)
10973 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10974 (Get_Rep_Item (Typ, Name_Volatile))
10975 then
10976 Set_Treat_As_Volatile (Typ);
10977 Set_Is_Volatile (Typ);
10978 end if;
10980 -- Inheritance for derived types only
10982 if Is_Derived_Type (Typ) then
10983 declare
10984 Bas_Typ : constant Entity_Id := Base_Type (Typ);
10985 Imp_Bas_Typ : constant Entity_Id := Implementation_Base_Type (Typ);
10987 begin
10988 -- Atomic_Components
10990 if not Has_Rep_Item (Typ, Name_Atomic_Components, False)
10991 and then Has_Rep_Item (Typ, Name_Atomic_Components)
10992 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10993 (Get_Rep_Item (Typ, Name_Atomic_Components))
10994 then
10995 Set_Has_Atomic_Components (Imp_Bas_Typ);
10996 end if;
10998 -- Volatile_Components
11000 if not Has_Rep_Item (Typ, Name_Volatile_Components, False)
11001 and then Has_Rep_Item (Typ, Name_Volatile_Components)
11002 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11003 (Get_Rep_Item (Typ, Name_Volatile_Components))
11004 then
11005 Set_Has_Volatile_Components (Imp_Bas_Typ);
11006 end if;
11008 -- Finalize_Storage_Only
11010 if not Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only, False)
11011 and then Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only)
11012 then
11013 Set_Finalize_Storage_Only (Bas_Typ);
11014 end if;
11016 -- Universal_Aliasing
11018 if not Has_Rep_Item (Typ, Name_Universal_Aliasing, False)
11019 and then Has_Rep_Item (Typ, Name_Universal_Aliasing)
11020 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11021 (Get_Rep_Item (Typ, Name_Universal_Aliasing))
11022 then
11023 Set_Universal_Aliasing (Imp_Bas_Typ);
11024 end if;
11026 -- Bit_Order
11028 if Is_Record_Type (Typ) then
11029 if not Has_Rep_Item (Typ, Name_Bit_Order, False)
11030 and then Has_Rep_Item (Typ, Name_Bit_Order)
11031 then
11032 Set_Reverse_Bit_Order (Bas_Typ,
11033 Reverse_Bit_Order (Entity (Name
11034 (Get_Rep_Item (Typ, Name_Bit_Order)))));
11035 end if;
11036 end if;
11038 -- Scalar_Storage_Order
11040 -- Note: the aspect is specified on a first subtype, but recorded
11041 -- in a flag of the base type!
11043 if (Is_Record_Type (Typ) or else Is_Array_Type (Typ))
11044 and then Typ = Bas_Typ
11045 then
11046 -- For a type extension, always inherit from parent; otherwise
11047 -- inherit if no default applies. Note: we do not check for
11048 -- an explicit rep item on the parent type when inheriting,
11049 -- because the parent SSO may itself have been set by default.
11051 if not Has_Rep_Item (First_Subtype (Typ),
11052 Name_Scalar_Storage_Order, False)
11053 and then (Is_Tagged_Type (Bas_Typ)
11054 or else not (SSO_Set_Low_By_Default (Bas_Typ)
11055 or else
11056 SSO_Set_High_By_Default (Bas_Typ)))
11057 then
11058 Set_Reverse_Storage_Order (Bas_Typ,
11059 Reverse_Storage_Order
11060 (Implementation_Base_Type (Etype (Bas_Typ))));
11062 -- Clear default SSO indications, since the inherited aspect
11063 -- which was set explicitly overrides the default.
11065 Set_SSO_Set_Low_By_Default (Bas_Typ, False);
11066 Set_SSO_Set_High_By_Default (Bas_Typ, False);
11067 end if;
11068 end if;
11069 end;
11070 end if;
11071 end Inherit_Aspects_At_Freeze_Point;
11073 ----------------
11074 -- Initialize --
11075 ----------------
11077 procedure Initialize is
11078 begin
11079 Address_Clause_Checks.Init;
11080 Unchecked_Conversions.Init;
11082 if VM_Target /= No_VM or else AAMP_On_Target then
11083 Independence_Checks.Init;
11084 end if;
11085 end Initialize;
11087 ---------------------------
11088 -- Install_Discriminants --
11089 ---------------------------
11091 procedure Install_Discriminants (E : Entity_Id) is
11092 Disc : Entity_Id;
11093 Prev : Entity_Id;
11094 begin
11095 Disc := First_Discriminant (E);
11096 while Present (Disc) loop
11097 Prev := Current_Entity (Disc);
11098 Set_Current_Entity (Disc);
11099 Set_Is_Immediately_Visible (Disc);
11100 Set_Homonym (Disc, Prev);
11101 Next_Discriminant (Disc);
11102 end loop;
11103 end Install_Discriminants;
11105 -------------------------
11106 -- Is_Operational_Item --
11107 -------------------------
11109 function Is_Operational_Item (N : Node_Id) return Boolean is
11110 begin
11111 if Nkind (N) /= N_Attribute_Definition_Clause then
11112 return False;
11114 else
11115 declare
11116 Id : constant Attribute_Id := Get_Attribute_Id (Chars (N));
11117 begin
11118 return Id = Attribute_Input
11119 or else Id = Attribute_Output
11120 or else Id = Attribute_Read
11121 or else Id = Attribute_Write
11122 or else Id = Attribute_External_Tag;
11123 end;
11124 end if;
11125 end Is_Operational_Item;
11127 -------------------------
11128 -- Is_Predicate_Static --
11129 -------------------------
11131 -- Note: the basic legality of the expression has already been checked, so
11132 -- we don't need to worry about cases or ranges on strings for example.
11134 function Is_Predicate_Static
11135 (Expr : Node_Id;
11136 Nam : Name_Id) return Boolean
11138 function All_Static_Case_Alternatives (L : List_Id) return Boolean;
11139 -- Given a list of case expression alternatives, returns True if all
11140 -- the alternatives are static (have all static choices, and a static
11141 -- expression).
11143 function All_Static_Choices (L : List_Id) return Boolean;
11144 -- Returns true if all elements of the list are OK static choices
11145 -- as defined below for Is_Static_Choice. Used for case expression
11146 -- alternatives and for the right operand of a membership test. An
11147 -- others_choice is static if the corresponding expression is static.
11148 -- The staticness of the bounds is checked separately.
11150 function Is_Static_Choice (N : Node_Id) return Boolean;
11151 -- Returns True if N represents a static choice (static subtype, or
11152 -- static subtype indication, or static expression, or static range).
11154 -- Note that this is a bit more inclusive than we actually need
11155 -- (in particular membership tests do not allow the use of subtype
11156 -- indications). But that doesn't matter, we have already checked
11157 -- that the construct is legal to get this far.
11159 function Is_Type_Ref (N : Node_Id) return Boolean;
11160 pragma Inline (Is_Type_Ref);
11161 -- Returns True if N is a reference to the type for the predicate in the
11162 -- expression (i.e. if it is an identifier whose Chars field matches the
11163 -- Nam given in the call). N must not be parenthesized, if the type name
11164 -- appears in parens, this routine will return False.
11166 ----------------------------------
11167 -- All_Static_Case_Alternatives --
11168 ----------------------------------
11170 function All_Static_Case_Alternatives (L : List_Id) return Boolean is
11171 N : Node_Id;
11173 begin
11174 N := First (L);
11175 while Present (N) loop
11176 if not (All_Static_Choices (Discrete_Choices (N))
11177 and then Is_OK_Static_Expression (Expression (N)))
11178 then
11179 return False;
11180 end if;
11182 Next (N);
11183 end loop;
11185 return True;
11186 end All_Static_Case_Alternatives;
11188 ------------------------
11189 -- All_Static_Choices --
11190 ------------------------
11192 function All_Static_Choices (L : List_Id) return Boolean is
11193 N : Node_Id;
11195 begin
11196 N := First (L);
11197 while Present (N) loop
11198 if not Is_Static_Choice (N) then
11199 return False;
11200 end if;
11202 Next (N);
11203 end loop;
11205 return True;
11206 end All_Static_Choices;
11208 ----------------------
11209 -- Is_Static_Choice --
11210 ----------------------
11212 function Is_Static_Choice (N : Node_Id) return Boolean is
11213 begin
11214 return Nkind (N) = N_Others_Choice
11215 or else Is_OK_Static_Expression (N)
11216 or else (Is_Entity_Name (N) and then Is_Type (Entity (N))
11217 and then Is_OK_Static_Subtype (Entity (N)))
11218 or else (Nkind (N) = N_Subtype_Indication
11219 and then Is_OK_Static_Subtype (Entity (N)))
11220 or else (Nkind (N) = N_Range and then Is_OK_Static_Range (N));
11221 end Is_Static_Choice;
11223 -----------------
11224 -- Is_Type_Ref --
11225 -----------------
11227 function Is_Type_Ref (N : Node_Id) return Boolean is
11228 begin
11229 return Nkind (N) = N_Identifier
11230 and then Chars (N) = Nam
11231 and then Paren_Count (N) = 0;
11232 end Is_Type_Ref;
11234 -- Start of processing for Is_Predicate_Static
11236 begin
11237 -- Predicate_Static means one of the following holds. Numbers are the
11238 -- corresponding paragraph numbers in (RM 3.2.4(16-22)).
11240 -- 16: A static expression
11242 if Is_OK_Static_Expression (Expr) then
11243 return True;
11245 -- 17: A membership test whose simple_expression is the current
11246 -- instance, and whose membership_choice_list meets the requirements
11247 -- for a static membership test.
11249 elsif Nkind (Expr) in N_Membership_Test
11250 and then ((Present (Right_Opnd (Expr))
11251 and then Is_Static_Choice (Right_Opnd (Expr)))
11252 or else
11253 (Present (Alternatives (Expr))
11254 and then All_Static_Choices (Alternatives (Expr))))
11255 then
11256 return True;
11258 -- 18. A case_expression whose selecting_expression is the current
11259 -- instance, and whose dependent expressions are static expressions.
11261 elsif Nkind (Expr) = N_Case_Expression
11262 and then Is_Type_Ref (Expression (Expr))
11263 and then All_Static_Case_Alternatives (Alternatives (Expr))
11264 then
11265 return True;
11267 -- 19. A call to a predefined equality or ordering operator, where one
11268 -- operand is the current instance, and the other is a static
11269 -- expression.
11271 -- Note: the RM is clearly wrong here in not excluding string types.
11272 -- Without this exclusion, we would allow expressions like X > "ABC"
11273 -- to be considered as predicate-static, which is clearly not intended,
11274 -- since the idea is for predicate-static to be a subset of normal
11275 -- static expressions (and "DEF" > "ABC" is not a static expression).
11277 -- However, we do allow internally generated (not from source) equality
11278 -- and inequality operations to be valid on strings (this helps deal
11279 -- with cases where we transform A in "ABC" to A = "ABC).
11281 elsif Nkind (Expr) in N_Op_Compare
11282 and then ((not Is_String_Type (Etype (Left_Opnd (Expr))))
11283 or else (Nkind_In (Expr, N_Op_Eq, N_Op_Ne)
11284 and then not Comes_From_Source (Expr)))
11285 and then ((Is_Type_Ref (Left_Opnd (Expr))
11286 and then Is_OK_Static_Expression (Right_Opnd (Expr)))
11287 or else
11288 (Is_Type_Ref (Right_Opnd (Expr))
11289 and then Is_OK_Static_Expression (Left_Opnd (Expr))))
11290 then
11291 return True;
11293 -- 20. A call to a predefined boolean logical operator, where each
11294 -- operand is predicate-static.
11296 elsif (Nkind_In (Expr, N_Op_And, N_Op_Or, N_Op_Xor)
11297 and then Is_Predicate_Static (Left_Opnd (Expr), Nam)
11298 and then Is_Predicate_Static (Right_Opnd (Expr), Nam))
11299 or else
11300 (Nkind (Expr) = N_Op_Not
11301 and then Is_Predicate_Static (Right_Opnd (Expr), Nam))
11302 then
11303 return True;
11305 -- 21. A short-circuit control form where both operands are
11306 -- predicate-static.
11308 elsif Nkind (Expr) in N_Short_Circuit
11309 and then Is_Predicate_Static (Left_Opnd (Expr), Nam)
11310 and then Is_Predicate_Static (Right_Opnd (Expr), Nam)
11311 then
11312 return True;
11314 -- 22. A parenthesized predicate-static expression. This does not
11315 -- require any special test, since we just ignore paren levels in
11316 -- all the cases above.
11318 -- One more test that is an implementation artifact caused by the fact
11319 -- that we are analyzing not the original expression, but the generated
11320 -- expression in the body of the predicate function. This can include
11321 -- references to inherited predicates, so that the expression we are
11322 -- processing looks like:
11324 -- expression and then xxPredicate (typ (Inns))
11326 -- Where the call is to a Predicate function for an inherited predicate.
11327 -- We simply ignore such a call, which could be to either a dynamic or
11328 -- a static predicate. Note that if the parent predicate is dynamic then
11329 -- eventually this type will be marked as dynamic, but you are allowed
11330 -- to specify a static predicate for a subtype which is inheriting a
11331 -- dynamic predicate, so the static predicate validation here ignores
11332 -- the inherited predicate even if it is dynamic.
11334 elsif Nkind (Expr) = N_Function_Call
11335 and then Is_Predicate_Function (Entity (Name (Expr)))
11336 then
11337 return True;
11339 -- That's an exhaustive list of tests, all other cases are not
11340 -- predicate-static, so we return False.
11342 else
11343 return False;
11344 end if;
11345 end Is_Predicate_Static;
11347 ---------------------
11348 -- Kill_Rep_Clause --
11349 ---------------------
11351 procedure Kill_Rep_Clause (N : Node_Id) is
11352 begin
11353 pragma Assert (Ignore_Rep_Clauses);
11355 -- Note: we use Replace rather than Rewrite, because we don't want
11356 -- ASIS to be able to use Original_Node to dig out the (undecorated)
11357 -- rep clause that is being replaced.
11359 Replace (N, Make_Null_Statement (Sloc (N)));
11361 -- The null statement must be marked as not coming from source. This is
11362 -- so that ASIS ignores it, and also the back end does not expect bogus
11363 -- "from source" null statements in weird places (e.g. in declarative
11364 -- regions where such null statements are not allowed).
11366 Set_Comes_From_Source (N, False);
11367 end Kill_Rep_Clause;
11369 ------------------
11370 -- Minimum_Size --
11371 ------------------
11373 function Minimum_Size
11374 (T : Entity_Id;
11375 Biased : Boolean := False) return Nat
11377 Lo : Uint := No_Uint;
11378 Hi : Uint := No_Uint;
11379 LoR : Ureal := No_Ureal;
11380 HiR : Ureal := No_Ureal;
11381 LoSet : Boolean := False;
11382 HiSet : Boolean := False;
11383 B : Uint;
11384 S : Nat;
11385 Ancest : Entity_Id;
11386 R_Typ : constant Entity_Id := Root_Type (T);
11388 begin
11389 -- If bad type, return 0
11391 if T = Any_Type then
11392 return 0;
11394 -- For generic types, just return zero. There cannot be any legitimate
11395 -- need to know such a size, but this routine may be called with a
11396 -- generic type as part of normal processing.
11398 elsif Is_Generic_Type (R_Typ) or else R_Typ = Any_Type then
11399 return 0;
11401 -- Access types (cannot have size smaller than System.Address)
11403 elsif Is_Access_Type (T) then
11404 return System_Address_Size;
11406 -- Floating-point types
11408 elsif Is_Floating_Point_Type (T) then
11409 return UI_To_Int (Esize (R_Typ));
11411 -- Discrete types
11413 elsif Is_Discrete_Type (T) then
11415 -- The following loop is looking for the nearest compile time known
11416 -- bounds following the ancestor subtype chain. The idea is to find
11417 -- the most restrictive known bounds information.
11419 Ancest := T;
11420 loop
11421 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
11422 return 0;
11423 end if;
11425 if not LoSet then
11426 if Compile_Time_Known_Value (Type_Low_Bound (Ancest)) then
11427 Lo := Expr_Rep_Value (Type_Low_Bound (Ancest));
11428 LoSet := True;
11429 exit when HiSet;
11430 end if;
11431 end if;
11433 if not HiSet then
11434 if Compile_Time_Known_Value (Type_High_Bound (Ancest)) then
11435 Hi := Expr_Rep_Value (Type_High_Bound (Ancest));
11436 HiSet := True;
11437 exit when LoSet;
11438 end if;
11439 end if;
11441 Ancest := Ancestor_Subtype (Ancest);
11443 if No (Ancest) then
11444 Ancest := Base_Type (T);
11446 if Is_Generic_Type (Ancest) then
11447 return 0;
11448 end if;
11449 end if;
11450 end loop;
11452 -- Fixed-point types. We can't simply use Expr_Value to get the
11453 -- Corresponding_Integer_Value values of the bounds, since these do not
11454 -- get set till the type is frozen, and this routine can be called
11455 -- before the type is frozen. Similarly the test for bounds being static
11456 -- needs to include the case where we have unanalyzed real literals for
11457 -- the same reason.
11459 elsif Is_Fixed_Point_Type (T) then
11461 -- The following loop is looking for the nearest compile time known
11462 -- bounds following the ancestor subtype chain. The idea is to find
11463 -- the most restrictive known bounds information.
11465 Ancest := T;
11466 loop
11467 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
11468 return 0;
11469 end if;
11471 -- Note: In the following two tests for LoSet and HiSet, it may
11472 -- seem redundant to test for N_Real_Literal here since normally
11473 -- one would assume that the test for the value being known at
11474 -- compile time includes this case. However, there is a glitch.
11475 -- If the real literal comes from folding a non-static expression,
11476 -- then we don't consider any non- static expression to be known
11477 -- at compile time if we are in configurable run time mode (needed
11478 -- in some cases to give a clearer definition of what is and what
11479 -- is not accepted). So the test is indeed needed. Without it, we
11480 -- would set neither Lo_Set nor Hi_Set and get an infinite loop.
11482 if not LoSet then
11483 if Nkind (Type_Low_Bound (Ancest)) = N_Real_Literal
11484 or else Compile_Time_Known_Value (Type_Low_Bound (Ancest))
11485 then
11486 LoR := Expr_Value_R (Type_Low_Bound (Ancest));
11487 LoSet := True;
11488 exit when HiSet;
11489 end if;
11490 end if;
11492 if not HiSet then
11493 if Nkind (Type_High_Bound (Ancest)) = N_Real_Literal
11494 or else Compile_Time_Known_Value (Type_High_Bound (Ancest))
11495 then
11496 HiR := Expr_Value_R (Type_High_Bound (Ancest));
11497 HiSet := True;
11498 exit when LoSet;
11499 end if;
11500 end if;
11502 Ancest := Ancestor_Subtype (Ancest);
11504 if No (Ancest) then
11505 Ancest := Base_Type (T);
11507 if Is_Generic_Type (Ancest) then
11508 return 0;
11509 end if;
11510 end if;
11511 end loop;
11513 Lo := UR_To_Uint (LoR / Small_Value (T));
11514 Hi := UR_To_Uint (HiR / Small_Value (T));
11516 -- No other types allowed
11518 else
11519 raise Program_Error;
11520 end if;
11522 -- Fall through with Hi and Lo set. Deal with biased case
11524 if (Biased
11525 and then not Is_Fixed_Point_Type (T)
11526 and then not (Is_Enumeration_Type (T)
11527 and then Has_Non_Standard_Rep (T)))
11528 or else Has_Biased_Representation (T)
11529 then
11530 Hi := Hi - Lo;
11531 Lo := Uint_0;
11532 end if;
11534 -- Signed case. Note that we consider types like range 1 .. -1 to be
11535 -- signed for the purpose of computing the size, since the bounds have
11536 -- to be accommodated in the base type.
11538 if Lo < 0 or else Hi < 0 then
11539 S := 1;
11540 B := Uint_1;
11542 -- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
11543 -- Note that we accommodate the case where the bounds cross. This
11544 -- can happen either because of the way the bounds are declared
11545 -- or because of the algorithm in Freeze_Fixed_Point_Type.
11547 while Lo < -B
11548 or else Hi < -B
11549 or else Lo >= B
11550 or else Hi >= B
11551 loop
11552 B := Uint_2 ** S;
11553 S := S + 1;
11554 end loop;
11556 -- Unsigned case
11558 else
11559 -- If both bounds are positive, make sure that both are represen-
11560 -- table in the case where the bounds are crossed. This can happen
11561 -- either because of the way the bounds are declared, or because of
11562 -- the algorithm in Freeze_Fixed_Point_Type.
11564 if Lo > Hi then
11565 Hi := Lo;
11566 end if;
11568 -- S = size, (can accommodate 0 .. (2**size - 1))
11570 S := 0;
11571 while Hi >= Uint_2 ** S loop
11572 S := S + 1;
11573 end loop;
11574 end if;
11576 return S;
11577 end Minimum_Size;
11579 ---------------------------
11580 -- New_Stream_Subprogram --
11581 ---------------------------
11583 procedure New_Stream_Subprogram
11584 (N : Node_Id;
11585 Ent : Entity_Id;
11586 Subp : Entity_Id;
11587 Nam : TSS_Name_Type)
11589 Loc : constant Source_Ptr := Sloc (N);
11590 Sname : constant Name_Id := Make_TSS_Name (Base_Type (Ent), Nam);
11591 Subp_Id : Entity_Id;
11592 Subp_Decl : Node_Id;
11593 F : Entity_Id;
11594 Etyp : Entity_Id;
11596 Defer_Declaration : constant Boolean :=
11597 Is_Tagged_Type (Ent) or else Is_Private_Type (Ent);
11598 -- For a tagged type, there is a declaration for each stream attribute
11599 -- at the freeze point, and we must generate only a completion of this
11600 -- declaration. We do the same for private types, because the full view
11601 -- might be tagged. Otherwise we generate a declaration at the point of
11602 -- the attribute definition clause.
11604 function Build_Spec return Node_Id;
11605 -- Used for declaration and renaming declaration, so that this is
11606 -- treated as a renaming_as_body.
11608 ----------------
11609 -- Build_Spec --
11610 ----------------
11612 function Build_Spec return Node_Id is
11613 Out_P : constant Boolean := (Nam = TSS_Stream_Read);
11614 Formals : List_Id;
11615 Spec : Node_Id;
11616 T_Ref : constant Node_Id := New_Occurrence_Of (Etyp, Loc);
11618 begin
11619 Subp_Id := Make_Defining_Identifier (Loc, Sname);
11621 -- S : access Root_Stream_Type'Class
11623 Formals := New_List (
11624 Make_Parameter_Specification (Loc,
11625 Defining_Identifier =>
11626 Make_Defining_Identifier (Loc, Name_S),
11627 Parameter_Type =>
11628 Make_Access_Definition (Loc,
11629 Subtype_Mark =>
11630 New_Occurrence_Of (
11631 Designated_Type (Etype (F)), Loc))));
11633 if Nam = TSS_Stream_Input then
11634 Spec :=
11635 Make_Function_Specification (Loc,
11636 Defining_Unit_Name => Subp_Id,
11637 Parameter_Specifications => Formals,
11638 Result_Definition => T_Ref);
11639 else
11640 -- V : [out] T
11642 Append_To (Formals,
11643 Make_Parameter_Specification (Loc,
11644 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
11645 Out_Present => Out_P,
11646 Parameter_Type => T_Ref));
11648 Spec :=
11649 Make_Procedure_Specification (Loc,
11650 Defining_Unit_Name => Subp_Id,
11651 Parameter_Specifications => Formals);
11652 end if;
11654 return Spec;
11655 end Build_Spec;
11657 -- Start of processing for New_Stream_Subprogram
11659 begin
11660 F := First_Formal (Subp);
11662 if Ekind (Subp) = E_Procedure then
11663 Etyp := Etype (Next_Formal (F));
11664 else
11665 Etyp := Etype (Subp);
11666 end if;
11668 -- Prepare subprogram declaration and insert it as an action on the
11669 -- clause node. The visibility for this entity is used to test for
11670 -- visibility of the attribute definition clause (in the sense of
11671 -- 8.3(23) as amended by AI-195).
11673 if not Defer_Declaration then
11674 Subp_Decl :=
11675 Make_Subprogram_Declaration (Loc,
11676 Specification => Build_Spec);
11678 -- For a tagged type, there is always a visible declaration for each
11679 -- stream TSS (it is a predefined primitive operation), and the
11680 -- completion of this declaration occurs at the freeze point, which is
11681 -- not always visible at places where the attribute definition clause is
11682 -- visible. So, we create a dummy entity here for the purpose of
11683 -- tracking the visibility of the attribute definition clause itself.
11685 else
11686 Subp_Id :=
11687 Make_Defining_Identifier (Loc, New_External_Name (Sname, 'V'));
11688 Subp_Decl :=
11689 Make_Object_Declaration (Loc,
11690 Defining_Identifier => Subp_Id,
11691 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc));
11692 end if;
11694 Insert_Action (N, Subp_Decl);
11695 Set_Entity (N, Subp_Id);
11697 Subp_Decl :=
11698 Make_Subprogram_Renaming_Declaration (Loc,
11699 Specification => Build_Spec,
11700 Name => New_Occurrence_Of (Subp, Loc));
11702 if Defer_Declaration then
11703 Set_TSS (Base_Type (Ent), Subp_Id);
11704 else
11705 Insert_Action (N, Subp_Decl);
11706 Copy_TSS (Subp_Id, Base_Type (Ent));
11707 end if;
11708 end New_Stream_Subprogram;
11710 ------------------------------------------
11711 -- Push_Scope_And_Install_Discriminants --
11712 ------------------------------------------
11714 procedure Push_Scope_And_Install_Discriminants (E : Entity_Id) is
11715 begin
11716 if Has_Discriminants (E) then
11717 Push_Scope (E);
11719 -- Make discriminants visible for type declarations and protected
11720 -- type declarations, not for subtype declarations (RM 13.1.1 (12/3))
11722 if Nkind (Parent (E)) /= N_Subtype_Declaration then
11723 Install_Discriminants (E);
11724 end if;
11725 end if;
11726 end Push_Scope_And_Install_Discriminants;
11728 ------------------------
11729 -- Rep_Item_Too_Early --
11730 ------------------------
11732 function Rep_Item_Too_Early (T : Entity_Id; N : Node_Id) return Boolean is
11733 begin
11734 -- Cannot apply non-operational rep items to generic types
11736 if Is_Operational_Item (N) then
11737 return False;
11739 elsif Is_Type (T)
11740 and then Is_Generic_Type (Root_Type (T))
11741 and then (Nkind (N) /= N_Pragma
11742 or else Get_Pragma_Id (N) /= Pragma_Convention)
11743 then
11744 Error_Msg_N ("representation item not allowed for generic type", N);
11745 return True;
11746 end if;
11748 -- Otherwise check for incomplete type
11750 if Is_Incomplete_Or_Private_Type (T)
11751 and then No (Underlying_Type (T))
11752 and then
11753 (Nkind (N) /= N_Pragma
11754 or else Get_Pragma_Id (N) /= Pragma_Import)
11755 then
11756 Error_Msg_N
11757 ("representation item must be after full type declaration", N);
11758 return True;
11760 -- If the type has incomplete components, a representation clause is
11761 -- illegal but stream attributes and Convention pragmas are correct.
11763 elsif Has_Private_Component (T) then
11764 if Nkind (N) = N_Pragma then
11765 return False;
11767 else
11768 Error_Msg_N
11769 ("representation item must appear after type is fully defined",
11771 return True;
11772 end if;
11773 else
11774 return False;
11775 end if;
11776 end Rep_Item_Too_Early;
11778 -----------------------
11779 -- Rep_Item_Too_Late --
11780 -----------------------
11782 function Rep_Item_Too_Late
11783 (T : Entity_Id;
11784 N : Node_Id;
11785 FOnly : Boolean := False) return Boolean
11787 S : Entity_Id;
11788 Parent_Type : Entity_Id;
11790 procedure No_Type_Rep_Item;
11791 -- Output message indicating that no type-related aspects can be
11792 -- specified due to some property of the parent type.
11794 procedure Too_Late;
11795 -- Output message for an aspect being specified too late
11797 -- Note that neither of the above errors is considered a serious one,
11798 -- since the effect is simply that we ignore the representation clause
11799 -- in these cases.
11800 -- Is this really true? In any case if we make this change we must
11801 -- document the requirement in the spec of Rep_Item_Too_Late that
11802 -- if True is returned, then the rep item must be completely ignored???
11804 ----------------------
11805 -- No_Type_Rep_Item --
11806 ----------------------
11808 procedure No_Type_Rep_Item is
11809 begin
11810 Error_Msg_N ("|type-related representation item not permitted!", N);
11811 end No_Type_Rep_Item;
11813 --------------
11814 -- Too_Late --
11815 --------------
11817 procedure Too_Late is
11818 begin
11819 -- Other compilers seem more relaxed about rep items appearing too
11820 -- late. Since analysis tools typically don't care about rep items
11821 -- anyway, no reason to be too strict about this.
11823 if not Relaxed_RM_Semantics then
11824 Error_Msg_N ("|representation item appears too late!", N);
11825 end if;
11826 end Too_Late;
11828 -- Start of processing for Rep_Item_Too_Late
11830 begin
11831 -- First make sure entity is not frozen (RM 13.1(9))
11833 if Is_Frozen (T)
11835 -- Exclude imported types, which may be frozen if they appear in a
11836 -- representation clause for a local type.
11838 and then not From_Limited_With (T)
11840 -- Exclude generated entities (not coming from source). The common
11841 -- case is when we generate a renaming which prematurely freezes the
11842 -- renamed internal entity, but we still want to be able to set copies
11843 -- of attribute values such as Size/Alignment.
11845 and then Comes_From_Source (T)
11846 then
11847 Too_Late;
11848 S := First_Subtype (T);
11850 if Present (Freeze_Node (S)) then
11851 if not Relaxed_RM_Semantics then
11852 Error_Msg_NE
11853 ("??no more representation items for }", Freeze_Node (S), S);
11854 end if;
11855 end if;
11857 return True;
11859 -- Check for case of untagged derived type whose parent either has
11860 -- primitive operations, or is a by reference type (RM 13.1(10)). In
11861 -- this case we do not output a Too_Late message, since there is no
11862 -- earlier point where the rep item could be placed to make it legal.
11864 elsif Is_Type (T)
11865 and then not FOnly
11866 and then Is_Derived_Type (T)
11867 and then not Is_Tagged_Type (T)
11868 then
11869 Parent_Type := Etype (Base_Type (T));
11871 if Has_Primitive_Operations (Parent_Type) then
11872 No_Type_Rep_Item;
11874 if not Relaxed_RM_Semantics then
11875 Error_Msg_NE
11876 ("\parent type & has primitive operations!", N, Parent_Type);
11877 end if;
11879 return True;
11881 elsif Is_By_Reference_Type (Parent_Type) then
11882 No_Type_Rep_Item;
11884 if not Relaxed_RM_Semantics then
11885 Error_Msg_NE
11886 ("\parent type & is a by reference type!", N, Parent_Type);
11887 end if;
11889 return True;
11890 end if;
11891 end if;
11893 -- No error, but one more warning to consider. The RM (surprisingly)
11894 -- allows this pattern:
11896 -- type S is ...
11897 -- primitive operations for S
11898 -- type R is new S;
11899 -- rep clause for S
11901 -- Meaning that calls on the primitive operations of S for values of
11902 -- type R may require possibly expensive implicit conversion operations.
11903 -- This is not an error, but is worth a warning.
11905 if not Relaxed_RM_Semantics and then Is_Type (T) then
11906 declare
11907 DTL : constant Entity_Id := Derived_Type_Link (Base_Type (T));
11909 begin
11910 if Present (DTL)
11911 and then Has_Primitive_Operations (Base_Type (T))
11913 -- For now, do not generate this warning for the case of aspect
11914 -- specification using Ada 2012 syntax, since we get wrong
11915 -- messages we do not understand. The whole business of derived
11916 -- types and rep items seems a bit confused when aspects are
11917 -- used, since the aspects are not evaluated till freeze time.
11919 and then not From_Aspect_Specification (N)
11920 then
11921 Error_Msg_Sloc := Sloc (DTL);
11922 Error_Msg_N
11923 ("representation item for& appears after derived type "
11924 & "declaration#??", N);
11925 Error_Msg_NE
11926 ("\may result in implicit conversions for primitive "
11927 & "operations of&??", N, T);
11928 Error_Msg_NE
11929 ("\to change representations when called with arguments "
11930 & "of type&??", N, DTL);
11931 end if;
11932 end;
11933 end if;
11935 -- No error, link item into head of chain of rep items for the entity,
11936 -- but avoid chaining if we have an overloadable entity, and the pragma
11937 -- is one that can apply to multiple overloaded entities.
11939 if Is_Overloadable (T) and then Nkind (N) = N_Pragma then
11940 declare
11941 Pname : constant Name_Id := Pragma_Name (N);
11942 begin
11943 if Nam_In (Pname, Name_Convention, Name_Import, Name_Export,
11944 Name_External, Name_Interface)
11945 then
11946 return False;
11947 end if;
11948 end;
11949 end if;
11951 Record_Rep_Item (T, N);
11952 return False;
11953 end Rep_Item_Too_Late;
11955 -------------------------------------
11956 -- Replace_Type_References_Generic --
11957 -------------------------------------
11959 procedure Replace_Type_References_Generic (N : Node_Id; T : Entity_Id) is
11960 TName : constant Name_Id := Chars (T);
11962 function Replace_Node (N : Node_Id) return Traverse_Result;
11963 -- Processes a single node in the traversal procedure below, checking
11964 -- if node N should be replaced, and if so, doing the replacement.
11966 procedure Replace_Type_Refs is new Traverse_Proc (Replace_Node);
11967 -- This instantiation provides the body of Replace_Type_References
11969 ------------------
11970 -- Replace_Node --
11971 ------------------
11973 function Replace_Node (N : Node_Id) return Traverse_Result is
11974 S : Entity_Id;
11975 P : Node_Id;
11977 begin
11978 -- Case of identifier
11980 if Nkind (N) = N_Identifier then
11982 -- If not the type name, check whether it is a reference to
11983 -- some other type, which must be frozen before the predicate
11984 -- function is analyzed, i.e. before the freeze node of the
11985 -- type to which the predicate applies.
11987 if Chars (N) /= TName then
11988 if Present (Current_Entity (N))
11989 and then Is_Type (Current_Entity (N))
11990 then
11991 Freeze_Before (Freeze_Node (T), Current_Entity (N));
11992 end if;
11994 return Skip;
11996 -- Otherwise do the replacement and we are done with this node
11998 else
11999 Replace_Type_Reference (N);
12000 return Skip;
12001 end if;
12003 -- Case of selected component (which is what a qualification
12004 -- looks like in the unanalyzed tree, which is what we have.
12006 elsif Nkind (N) = N_Selected_Component then
12008 -- If selector name is not our type, keeping going (we might
12009 -- still have an occurrence of the type in the prefix).
12011 if Nkind (Selector_Name (N)) /= N_Identifier
12012 or else Chars (Selector_Name (N)) /= TName
12013 then
12014 return OK;
12016 -- Selector name is our type, check qualification
12018 else
12019 -- Loop through scopes and prefixes, doing comparison
12021 S := Current_Scope;
12022 P := Prefix (N);
12023 loop
12024 -- Continue if no more scopes or scope with no name
12026 if No (S) or else Nkind (S) not in N_Has_Chars then
12027 return OK;
12028 end if;
12030 -- Do replace if prefix is an identifier matching the
12031 -- scope that we are currently looking at.
12033 if Nkind (P) = N_Identifier
12034 and then Chars (P) = Chars (S)
12035 then
12036 Replace_Type_Reference (N);
12037 return Skip;
12038 end if;
12040 -- Go check scope above us if prefix is itself of the
12041 -- form of a selected component, whose selector matches
12042 -- the scope we are currently looking at.
12044 if Nkind (P) = N_Selected_Component
12045 and then Nkind (Selector_Name (P)) = N_Identifier
12046 and then Chars (Selector_Name (P)) = Chars (S)
12047 then
12048 S := Scope (S);
12049 P := Prefix (P);
12051 -- For anything else, we don't have a match, so keep on
12052 -- going, there are still some weird cases where we may
12053 -- still have a replacement within the prefix.
12055 else
12056 return OK;
12057 end if;
12058 end loop;
12059 end if;
12061 -- Continue for any other node kind
12063 else
12064 return OK;
12065 end if;
12066 end Replace_Node;
12068 begin
12069 Replace_Type_Refs (N);
12070 end Replace_Type_References_Generic;
12072 -------------------------
12073 -- Same_Representation --
12074 -------------------------
12076 function Same_Representation (Typ1, Typ2 : Entity_Id) return Boolean is
12077 T1 : constant Entity_Id := Underlying_Type (Typ1);
12078 T2 : constant Entity_Id := Underlying_Type (Typ2);
12080 begin
12081 -- A quick check, if base types are the same, then we definitely have
12082 -- the same representation, because the subtype specific representation
12083 -- attributes (Size and Alignment) do not affect representation from
12084 -- the point of view of this test.
12086 if Base_Type (T1) = Base_Type (T2) then
12087 return True;
12089 elsif Is_Private_Type (Base_Type (T2))
12090 and then Base_Type (T1) = Full_View (Base_Type (T2))
12091 then
12092 return True;
12093 end if;
12095 -- Tagged types never have differing representations
12097 if Is_Tagged_Type (T1) then
12098 return True;
12099 end if;
12101 -- Representations are definitely different if conventions differ
12103 if Convention (T1) /= Convention (T2) then
12104 return False;
12105 end if;
12107 -- Representations are different if component alignments or scalar
12108 -- storage orders differ.
12110 if (Is_Record_Type (T1) or else Is_Array_Type (T1))
12111 and then
12112 (Is_Record_Type (T2) or else Is_Array_Type (T2))
12113 and then
12114 (Component_Alignment (T1) /= Component_Alignment (T2)
12115 or else Reverse_Storage_Order (T1) /= Reverse_Storage_Order (T2))
12116 then
12117 return False;
12118 end if;
12120 -- For arrays, the only real issue is component size. If we know the
12121 -- component size for both arrays, and it is the same, then that's
12122 -- good enough to know we don't have a change of representation.
12124 if Is_Array_Type (T1) then
12125 if Known_Component_Size (T1)
12126 and then Known_Component_Size (T2)
12127 and then Component_Size (T1) = Component_Size (T2)
12128 then
12129 if VM_Target = No_VM then
12130 return True;
12132 -- In VM targets the representation of arrays with aliased
12133 -- components differs from arrays with non-aliased components
12135 else
12136 return Has_Aliased_Components (Base_Type (T1))
12138 Has_Aliased_Components (Base_Type (T2));
12139 end if;
12140 end if;
12141 end if;
12143 -- Types definitely have same representation if neither has non-standard
12144 -- representation since default representations are always consistent.
12145 -- If only one has non-standard representation, and the other does not,
12146 -- then we consider that they do not have the same representation. They
12147 -- might, but there is no way of telling early enough.
12149 if Has_Non_Standard_Rep (T1) then
12150 if not Has_Non_Standard_Rep (T2) then
12151 return False;
12152 end if;
12153 else
12154 return not Has_Non_Standard_Rep (T2);
12155 end if;
12157 -- Here the two types both have non-standard representation, and we need
12158 -- to determine if they have the same non-standard representation.
12160 -- For arrays, we simply need to test if the component sizes are the
12161 -- same. Pragma Pack is reflected in modified component sizes, so this
12162 -- check also deals with pragma Pack.
12164 if Is_Array_Type (T1) then
12165 return Component_Size (T1) = Component_Size (T2);
12167 -- Tagged types always have the same representation, because it is not
12168 -- possible to specify different representations for common fields.
12170 elsif Is_Tagged_Type (T1) then
12171 return True;
12173 -- Case of record types
12175 elsif Is_Record_Type (T1) then
12177 -- Packed status must conform
12179 if Is_Packed (T1) /= Is_Packed (T2) then
12180 return False;
12182 -- Otherwise we must check components. Typ2 maybe a constrained
12183 -- subtype with fewer components, so we compare the components
12184 -- of the base types.
12186 else
12187 Record_Case : declare
12188 CD1, CD2 : Entity_Id;
12190 function Same_Rep return Boolean;
12191 -- CD1 and CD2 are either components or discriminants. This
12192 -- function tests whether they have the same representation.
12194 --------------
12195 -- Same_Rep --
12196 --------------
12198 function Same_Rep return Boolean is
12199 begin
12200 if No (Component_Clause (CD1)) then
12201 return No (Component_Clause (CD2));
12202 else
12203 -- Note: at this point, component clauses have been
12204 -- normalized to the default bit order, so that the
12205 -- comparison of Component_Bit_Offsets is meaningful.
12207 return
12208 Present (Component_Clause (CD2))
12209 and then
12210 Component_Bit_Offset (CD1) = Component_Bit_Offset (CD2)
12211 and then
12212 Esize (CD1) = Esize (CD2);
12213 end if;
12214 end Same_Rep;
12216 -- Start of processing for Record_Case
12218 begin
12219 if Has_Discriminants (T1) then
12221 -- The number of discriminants may be different if the
12222 -- derived type has fewer (constrained by values). The
12223 -- invisible discriminants retain the representation of
12224 -- the original, so the discrepancy does not per se
12225 -- indicate a different representation.
12227 CD1 := First_Discriminant (T1);
12228 CD2 := First_Discriminant (T2);
12229 while Present (CD1) and then Present (CD2) loop
12230 if not Same_Rep then
12231 return False;
12232 else
12233 Next_Discriminant (CD1);
12234 Next_Discriminant (CD2);
12235 end if;
12236 end loop;
12237 end if;
12239 CD1 := First_Component (Underlying_Type (Base_Type (T1)));
12240 CD2 := First_Component (Underlying_Type (Base_Type (T2)));
12241 while Present (CD1) loop
12242 if not Same_Rep then
12243 return False;
12244 else
12245 Next_Component (CD1);
12246 Next_Component (CD2);
12247 end if;
12248 end loop;
12250 return True;
12251 end Record_Case;
12252 end if;
12254 -- For enumeration types, we must check each literal to see if the
12255 -- representation is the same. Note that we do not permit enumeration
12256 -- representation clauses for Character and Wide_Character, so these
12257 -- cases were already dealt with.
12259 elsif Is_Enumeration_Type (T1) then
12260 Enumeration_Case : declare
12261 L1, L2 : Entity_Id;
12263 begin
12264 L1 := First_Literal (T1);
12265 L2 := First_Literal (T2);
12266 while Present (L1) loop
12267 if Enumeration_Rep (L1) /= Enumeration_Rep (L2) then
12268 return False;
12269 else
12270 Next_Literal (L1);
12271 Next_Literal (L2);
12272 end if;
12273 end loop;
12275 return True;
12276 end Enumeration_Case;
12278 -- Any other types have the same representation for these purposes
12280 else
12281 return True;
12282 end if;
12283 end Same_Representation;
12285 --------------------------------
12286 -- Resolve_Iterable_Operation --
12287 --------------------------------
12289 procedure Resolve_Iterable_Operation
12290 (N : Node_Id;
12291 Cursor : Entity_Id;
12292 Typ : Entity_Id;
12293 Nam : Name_Id)
12295 Ent : Entity_Id;
12296 F1 : Entity_Id;
12297 F2 : Entity_Id;
12299 begin
12300 if not Is_Overloaded (N) then
12301 if not Is_Entity_Name (N)
12302 or else Ekind (Entity (N)) /= E_Function
12303 or else Scope (Entity (N)) /= Scope (Typ)
12304 or else No (First_Formal (Entity (N)))
12305 or else Etype (First_Formal (Entity (N))) /= Typ
12306 then
12307 Error_Msg_N ("iterable primitive must be local function name "
12308 & "whose first formal is an iterable type", N);
12309 return;
12310 end if;
12312 Ent := Entity (N);
12313 F1 := First_Formal (Ent);
12314 if Nam = Name_First then
12316 -- First (Container) => Cursor
12318 if Etype (Ent) /= Cursor then
12319 Error_Msg_N ("primitive for First must yield a curosr", N);
12320 end if;
12322 elsif Nam = Name_Next then
12324 -- Next (Container, Cursor) => Cursor
12326 F2 := Next_Formal (F1);
12328 if Etype (F2) /= Cursor
12329 or else Etype (Ent) /= Cursor
12330 or else Present (Next_Formal (F2))
12331 then
12332 Error_Msg_N ("no match for Next iterable primitive", N);
12333 end if;
12335 elsif Nam = Name_Has_Element then
12337 -- Has_Element (Container, Cursor) => Boolean
12339 F2 := Next_Formal (F1);
12340 if Etype (F2) /= Cursor
12341 or else Etype (Ent) /= Standard_Boolean
12342 or else Present (Next_Formal (F2))
12343 then
12344 Error_Msg_N ("no match for Has_Element iterable primitive", N);
12345 end if;
12347 elsif Nam = Name_Element then
12348 F2 := Next_Formal (F1);
12350 if No (F2)
12351 or else Etype (F2) /= Cursor
12352 or else Present (Next_Formal (F2))
12353 then
12354 Error_Msg_N ("no match for Element iterable primitive", N);
12355 end if;
12356 null;
12358 else
12359 raise Program_Error;
12360 end if;
12362 else
12363 -- Overloaded case: find subprogram with proper signature.
12364 -- Caller will report error if no match is found.
12366 declare
12367 I : Interp_Index;
12368 It : Interp;
12370 begin
12371 Get_First_Interp (N, I, It);
12372 while Present (It.Typ) loop
12373 if Ekind (It.Nam) = E_Function
12374 and then Scope (It.Nam) = Scope (Typ)
12375 and then Etype (First_Formal (It.Nam)) = Typ
12376 then
12377 F1 := First_Formal (It.Nam);
12379 if Nam = Name_First then
12380 if Etype (It.Nam) = Cursor
12381 and then No (Next_Formal (F1))
12382 then
12383 Set_Entity (N, It.Nam);
12384 exit;
12385 end if;
12387 elsif Nam = Name_Next then
12388 F2 := Next_Formal (F1);
12390 if Present (F2)
12391 and then No (Next_Formal (F2))
12392 and then Etype (F2) = Cursor
12393 and then Etype (It.Nam) = Cursor
12394 then
12395 Set_Entity (N, It.Nam);
12396 exit;
12397 end if;
12399 elsif Nam = Name_Has_Element then
12400 F2 := Next_Formal (F1);
12402 if Present (F2)
12403 and then No (Next_Formal (F2))
12404 and then Etype (F2) = Cursor
12405 and then Etype (It.Nam) = Standard_Boolean
12406 then
12407 Set_Entity (N, It.Nam);
12408 F2 := Next_Formal (F1);
12409 exit;
12410 end if;
12412 elsif Nam = Name_Element then
12413 F2 := Next_Formal (F1);
12415 if Present (F2)
12416 and then No (Next_Formal (F2))
12417 and then Etype (F2) = Cursor
12418 then
12419 Set_Entity (N, It.Nam);
12420 exit;
12421 end if;
12422 end if;
12423 end if;
12425 Get_Next_Interp (I, It);
12426 end loop;
12427 end;
12428 end if;
12429 end Resolve_Iterable_Operation;
12431 ----------------
12432 -- Set_Biased --
12433 ----------------
12435 procedure Set_Biased
12436 (E : Entity_Id;
12437 N : Node_Id;
12438 Msg : String;
12439 Biased : Boolean := True)
12441 begin
12442 if Biased then
12443 Set_Has_Biased_Representation (E);
12445 if Warn_On_Biased_Representation then
12446 Error_Msg_NE
12447 ("?B?" & Msg & " forces biased representation for&", N, E);
12448 end if;
12449 end if;
12450 end Set_Biased;
12452 --------------------
12453 -- Set_Enum_Esize --
12454 --------------------
12456 procedure Set_Enum_Esize (T : Entity_Id) is
12457 Lo : Uint;
12458 Hi : Uint;
12459 Sz : Nat;
12461 begin
12462 Init_Alignment (T);
12464 -- Find the minimum standard size (8,16,32,64) that fits
12466 Lo := Enumeration_Rep (Entity (Type_Low_Bound (T)));
12467 Hi := Enumeration_Rep (Entity (Type_High_Bound (T)));
12469 if Lo < 0 then
12470 if Lo >= -Uint_2**07 and then Hi < Uint_2**07 then
12471 Sz := Standard_Character_Size; -- May be > 8 on some targets
12473 elsif Lo >= -Uint_2**15 and then Hi < Uint_2**15 then
12474 Sz := 16;
12476 elsif Lo >= -Uint_2**31 and then Hi < Uint_2**31 then
12477 Sz := 32;
12479 else pragma Assert (Lo >= -Uint_2**63 and then Hi < Uint_2**63);
12480 Sz := 64;
12481 end if;
12483 else
12484 if Hi < Uint_2**08 then
12485 Sz := Standard_Character_Size; -- May be > 8 on some targets
12487 elsif Hi < Uint_2**16 then
12488 Sz := 16;
12490 elsif Hi < Uint_2**32 then
12491 Sz := 32;
12493 else pragma Assert (Hi < Uint_2**63);
12494 Sz := 64;
12495 end if;
12496 end if;
12498 -- That minimum is the proper size unless we have a foreign convention
12499 -- and the size required is 32 or less, in which case we bump the size
12500 -- up to 32. This is required for C and C++ and seems reasonable for
12501 -- all other foreign conventions.
12503 if Has_Foreign_Convention (T)
12504 and then Esize (T) < Standard_Integer_Size
12506 -- Don't do this if Short_Enums on target
12508 and then not Target_Short_Enums
12509 then
12510 Init_Esize (T, Standard_Integer_Size);
12511 else
12512 Init_Esize (T, Sz);
12513 end if;
12514 end Set_Enum_Esize;
12516 -----------------------------
12517 -- Uninstall_Discriminants --
12518 -----------------------------
12520 procedure Uninstall_Discriminants (E : Entity_Id) is
12521 Disc : Entity_Id;
12522 Prev : Entity_Id;
12523 Outer : Entity_Id;
12525 begin
12526 -- Discriminants have been made visible for type declarations and
12527 -- protected type declarations, not for subtype declarations.
12529 if Nkind (Parent (E)) /= N_Subtype_Declaration then
12530 Disc := First_Discriminant (E);
12531 while Present (Disc) loop
12532 if Disc /= Current_Entity (Disc) then
12533 Prev := Current_Entity (Disc);
12534 while Present (Prev)
12535 and then Present (Homonym (Prev))
12536 and then Homonym (Prev) /= Disc
12537 loop
12538 Prev := Homonym (Prev);
12539 end loop;
12540 else
12541 Prev := Empty;
12542 end if;
12544 Set_Is_Immediately_Visible (Disc, False);
12546 Outer := Homonym (Disc);
12547 while Present (Outer) and then Scope (Outer) = E loop
12548 Outer := Homonym (Outer);
12549 end loop;
12551 -- Reset homonym link of other entities, but do not modify link
12552 -- between entities in current scope, so that the back-end can
12553 -- have a proper count of local overloadings.
12555 if No (Prev) then
12556 Set_Name_Entity_Id (Chars (Disc), Outer);
12558 elsif Scope (Prev) /= Scope (Disc) then
12559 Set_Homonym (Prev, Outer);
12560 end if;
12562 Next_Discriminant (Disc);
12563 end loop;
12564 end if;
12565 end Uninstall_Discriminants;
12567 -------------------------------------------
12568 -- Uninstall_Discriminants_And_Pop_Scope --
12569 -------------------------------------------
12571 procedure Uninstall_Discriminants_And_Pop_Scope (E : Entity_Id) is
12572 begin
12573 if Has_Discriminants (E) then
12574 Uninstall_Discriminants (E);
12575 Pop_Scope;
12576 end if;
12577 end Uninstall_Discriminants_And_Pop_Scope;
12579 ------------------------------
12580 -- Validate_Address_Clauses --
12581 ------------------------------
12583 procedure Validate_Address_Clauses is
12584 begin
12585 for J in Address_Clause_Checks.First .. Address_Clause_Checks.Last loop
12586 declare
12587 ACCR : Address_Clause_Check_Record
12588 renames Address_Clause_Checks.Table (J);
12590 Expr : Node_Id;
12592 X_Alignment : Uint;
12593 Y_Alignment : Uint;
12595 X_Size : Uint;
12596 Y_Size : Uint;
12598 begin
12599 -- Skip processing of this entry if warning already posted
12601 if not Address_Warning_Posted (ACCR.N) then
12602 Expr := Original_Node (Expression (ACCR.N));
12604 -- Get alignments
12606 X_Alignment := Alignment (ACCR.X);
12607 Y_Alignment := Alignment (ACCR.Y);
12609 -- Similarly obtain sizes
12611 X_Size := Esize (ACCR.X);
12612 Y_Size := Esize (ACCR.Y);
12614 -- Check for large object overlaying smaller one
12616 if Y_Size > Uint_0
12617 and then X_Size > Uint_0
12618 and then X_Size > Y_Size
12619 then
12620 Error_Msg_NE
12621 ("??& overlays smaller object", ACCR.N, ACCR.X);
12622 Error_Msg_N
12623 ("\??program execution may be erroneous", ACCR.N);
12624 Error_Msg_Uint_1 := X_Size;
12625 Error_Msg_NE
12626 ("\??size of & is ^", ACCR.N, ACCR.X);
12627 Error_Msg_Uint_1 := Y_Size;
12628 Error_Msg_NE
12629 ("\??size of & is ^", ACCR.N, ACCR.Y);
12631 -- Check for inadequate alignment, both of the base object
12632 -- and of the offset, if any.
12634 -- Note: we do not check the alignment if we gave a size
12635 -- warning, since it would likely be redundant.
12637 elsif Y_Alignment /= Uint_0
12638 and then (Y_Alignment < X_Alignment
12639 or else (ACCR.Off
12640 and then
12641 Nkind (Expr) = N_Attribute_Reference
12642 and then
12643 Attribute_Name (Expr) = Name_Address
12644 and then
12645 Has_Compatible_Alignment
12646 (ACCR.X, Prefix (Expr))
12647 /= Known_Compatible))
12648 then
12649 Error_Msg_NE
12650 ("??specified address for& may be inconsistent "
12651 & "with alignment", ACCR.N, ACCR.X);
12652 Error_Msg_N
12653 ("\??program execution may be erroneous (RM 13.3(27))",
12654 ACCR.N);
12655 Error_Msg_Uint_1 := X_Alignment;
12656 Error_Msg_NE
12657 ("\??alignment of & is ^", ACCR.N, ACCR.X);
12658 Error_Msg_Uint_1 := Y_Alignment;
12659 Error_Msg_NE
12660 ("\??alignment of & is ^", ACCR.N, ACCR.Y);
12661 if Y_Alignment >= X_Alignment then
12662 Error_Msg_N
12663 ("\??but offset is not multiple of alignment", ACCR.N);
12664 end if;
12665 end if;
12666 end if;
12667 end;
12668 end loop;
12669 end Validate_Address_Clauses;
12671 ---------------------------
12672 -- Validate_Independence --
12673 ---------------------------
12675 procedure Validate_Independence is
12676 SU : constant Uint := UI_From_Int (System_Storage_Unit);
12677 N : Node_Id;
12678 E : Entity_Id;
12679 IC : Boolean;
12680 Comp : Entity_Id;
12681 Addr : Node_Id;
12682 P : Node_Id;
12684 procedure Check_Array_Type (Atyp : Entity_Id);
12685 -- Checks if the array type Atyp has independent components, and
12686 -- if not, outputs an appropriate set of error messages.
12688 procedure No_Independence;
12689 -- Output message that independence cannot be guaranteed
12691 function OK_Component (C : Entity_Id) return Boolean;
12692 -- Checks one component to see if it is independently accessible, and
12693 -- if so yields True, otherwise yields False if independent access
12694 -- cannot be guaranteed. This is a conservative routine, it only
12695 -- returns True if it knows for sure, it returns False if it knows
12696 -- there is a problem, or it cannot be sure there is no problem.
12698 procedure Reason_Bad_Component (C : Entity_Id);
12699 -- Outputs continuation message if a reason can be determined for
12700 -- the component C being bad.
12702 ----------------------
12703 -- Check_Array_Type --
12704 ----------------------
12706 procedure Check_Array_Type (Atyp : Entity_Id) is
12707 Ctyp : constant Entity_Id := Component_Type (Atyp);
12709 begin
12710 -- OK if no alignment clause, no pack, and no component size
12712 if not Has_Component_Size_Clause (Atyp)
12713 and then not Has_Alignment_Clause (Atyp)
12714 and then not Is_Packed (Atyp)
12715 then
12716 return;
12717 end if;
12719 -- Case of component size is greater than or equal to 64 and the
12720 -- alignment of the array is at least as large as the alignment
12721 -- of the component. We are definitely OK in this situation.
12723 if Known_Component_Size (Atyp)
12724 and then Component_Size (Atyp) >= 64
12725 and then Known_Alignment (Atyp)
12726 and then Known_Alignment (Ctyp)
12727 and then Alignment (Atyp) >= Alignment (Ctyp)
12728 then
12729 return;
12730 end if;
12732 -- Check actual component size
12734 if not Known_Component_Size (Atyp)
12735 or else not (Addressable (Component_Size (Atyp))
12736 and then Component_Size (Atyp) < 64)
12737 or else Component_Size (Atyp) mod Esize (Ctyp) /= 0
12738 then
12739 No_Independence;
12741 -- Bad component size, check reason
12743 if Has_Component_Size_Clause (Atyp) then
12744 P := Get_Attribute_Definition_Clause
12745 (Atyp, Attribute_Component_Size);
12747 if Present (P) then
12748 Error_Msg_Sloc := Sloc (P);
12749 Error_Msg_N ("\because of Component_Size clause#", N);
12750 return;
12751 end if;
12752 end if;
12754 if Is_Packed (Atyp) then
12755 P := Get_Rep_Pragma (Atyp, Name_Pack);
12757 if Present (P) then
12758 Error_Msg_Sloc := Sloc (P);
12759 Error_Msg_N ("\because of pragma Pack#", N);
12760 return;
12761 end if;
12762 end if;
12764 -- No reason found, just return
12766 return;
12767 end if;
12769 -- Array type is OK independence-wise
12771 return;
12772 end Check_Array_Type;
12774 ---------------------
12775 -- No_Independence --
12776 ---------------------
12778 procedure No_Independence is
12779 begin
12780 if Pragma_Name (N) = Name_Independent then
12781 Error_Msg_NE ("independence cannot be guaranteed for&", N, E);
12782 else
12783 Error_Msg_NE
12784 ("independent components cannot be guaranteed for&", N, E);
12785 end if;
12786 end No_Independence;
12788 ------------------
12789 -- OK_Component --
12790 ------------------
12792 function OK_Component (C : Entity_Id) return Boolean is
12793 Rec : constant Entity_Id := Scope (C);
12794 Ctyp : constant Entity_Id := Etype (C);
12796 begin
12797 -- OK if no component clause, no Pack, and no alignment clause
12799 if No (Component_Clause (C))
12800 and then not Is_Packed (Rec)
12801 and then not Has_Alignment_Clause (Rec)
12802 then
12803 return True;
12804 end if;
12806 -- Here we look at the actual component layout. A component is
12807 -- addressable if its size is a multiple of the Esize of the
12808 -- component type, and its starting position in the record has
12809 -- appropriate alignment, and the record itself has appropriate
12810 -- alignment to guarantee the component alignment.
12812 -- Make sure sizes are static, always assume the worst for any
12813 -- cases where we cannot check static values.
12815 if not (Known_Static_Esize (C)
12816 and then
12817 Known_Static_Esize (Ctyp))
12818 then
12819 return False;
12820 end if;
12822 -- Size of component must be addressable or greater than 64 bits
12823 -- and a multiple of bytes.
12825 if not Addressable (Esize (C)) and then Esize (C) < Uint_64 then
12826 return False;
12827 end if;
12829 -- Check size is proper multiple
12831 if Esize (C) mod Esize (Ctyp) /= 0 then
12832 return False;
12833 end if;
12835 -- Check alignment of component is OK
12837 if not Known_Component_Bit_Offset (C)
12838 or else Component_Bit_Offset (C) < Uint_0
12839 or else Component_Bit_Offset (C) mod Esize (Ctyp) /= 0
12840 then
12841 return False;
12842 end if;
12844 -- Check alignment of record type is OK
12846 if not Known_Alignment (Rec)
12847 or else (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
12848 then
12849 return False;
12850 end if;
12852 -- All tests passed, component is addressable
12854 return True;
12855 end OK_Component;
12857 --------------------------
12858 -- Reason_Bad_Component --
12859 --------------------------
12861 procedure Reason_Bad_Component (C : Entity_Id) is
12862 Rec : constant Entity_Id := Scope (C);
12863 Ctyp : constant Entity_Id := Etype (C);
12865 begin
12866 -- If component clause present assume that's the problem
12868 if Present (Component_Clause (C)) then
12869 Error_Msg_Sloc := Sloc (Component_Clause (C));
12870 Error_Msg_N ("\because of Component_Clause#", N);
12871 return;
12872 end if;
12874 -- If pragma Pack clause present, assume that's the problem
12876 if Is_Packed (Rec) then
12877 P := Get_Rep_Pragma (Rec, Name_Pack);
12879 if Present (P) then
12880 Error_Msg_Sloc := Sloc (P);
12881 Error_Msg_N ("\because of pragma Pack#", N);
12882 return;
12883 end if;
12884 end if;
12886 -- See if record has bad alignment clause
12888 if Has_Alignment_Clause (Rec)
12889 and then Known_Alignment (Rec)
12890 and then (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
12891 then
12892 P := Get_Attribute_Definition_Clause (Rec, Attribute_Alignment);
12894 if Present (P) then
12895 Error_Msg_Sloc := Sloc (P);
12896 Error_Msg_N ("\because of Alignment clause#", N);
12897 end if;
12898 end if;
12900 -- Couldn't find a reason, so return without a message
12902 return;
12903 end Reason_Bad_Component;
12905 -- Start of processing for Validate_Independence
12907 begin
12908 for J in Independence_Checks.First .. Independence_Checks.Last loop
12909 N := Independence_Checks.Table (J).N;
12910 E := Independence_Checks.Table (J).E;
12911 IC := Pragma_Name (N) = Name_Independent_Components;
12913 -- Deal with component case
12915 if Ekind (E) = E_Discriminant or else Ekind (E) = E_Component then
12916 if not OK_Component (E) then
12917 No_Independence;
12918 Reason_Bad_Component (E);
12919 goto Continue;
12920 end if;
12921 end if;
12923 -- Deal with record with Independent_Components
12925 if IC and then Is_Record_Type (E) then
12926 Comp := First_Component_Or_Discriminant (E);
12927 while Present (Comp) loop
12928 if not OK_Component (Comp) then
12929 No_Independence;
12930 Reason_Bad_Component (Comp);
12931 goto Continue;
12932 end if;
12934 Next_Component_Or_Discriminant (Comp);
12935 end loop;
12936 end if;
12938 -- Deal with address clause case
12940 if Is_Object (E) then
12941 Addr := Address_Clause (E);
12943 if Present (Addr) then
12944 No_Independence;
12945 Error_Msg_Sloc := Sloc (Addr);
12946 Error_Msg_N ("\because of Address clause#", N);
12947 goto Continue;
12948 end if;
12949 end if;
12951 -- Deal with independent components for array type
12953 if IC and then Is_Array_Type (E) then
12954 Check_Array_Type (E);
12955 end if;
12957 -- Deal with independent components for array object
12959 if IC and then Is_Object (E) and then Is_Array_Type (Etype (E)) then
12960 Check_Array_Type (Etype (E));
12961 end if;
12963 <<Continue>> null;
12964 end loop;
12965 end Validate_Independence;
12967 ------------------------------
12968 -- Validate_Iterable_Aspect --
12969 ------------------------------
12971 procedure Validate_Iterable_Aspect (Typ : Entity_Id; ASN : Node_Id) is
12972 Assoc : Node_Id;
12973 Expr : Node_Id;
12975 Prim : Node_Id;
12976 Cursor : constant Entity_Id := Get_Cursor_Type (ASN, Typ);
12978 First_Id : Entity_Id;
12979 Next_Id : Entity_Id;
12980 Has_Element_Id : Entity_Id;
12981 Element_Id : Entity_Id;
12983 begin
12984 -- If previous error aspect is unusable
12986 if Cursor = Any_Type then
12987 return;
12988 end if;
12990 First_Id := Empty;
12991 Next_Id := Empty;
12992 Has_Element_Id := Empty;
12993 Element_Id := Empty;
12995 -- Each expression must resolve to a function with the proper signature
12997 Assoc := First (Component_Associations (Expression (ASN)));
12998 while Present (Assoc) loop
12999 Expr := Expression (Assoc);
13000 Analyze (Expr);
13002 Prim := First (Choices (Assoc));
13004 if Nkind (Prim) /= N_Identifier or else Present (Next (Prim)) then
13005 Error_Msg_N ("illegal name in association", Prim);
13007 elsif Chars (Prim) = Name_First then
13008 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_First);
13009 First_Id := Entity (Expr);
13011 elsif Chars (Prim) = Name_Next then
13012 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Next);
13013 Next_Id := Entity (Expr);
13015 elsif Chars (Prim) = Name_Has_Element then
13016 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Has_Element);
13017 Has_Element_Id := Entity (Expr);
13019 elsif Chars (Prim) = Name_Element then
13020 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Element);
13021 Element_Id := Entity (Expr);
13023 else
13024 Error_Msg_N ("invalid name for iterable function", Prim);
13025 end if;
13027 Next (Assoc);
13028 end loop;
13030 if No (First_Id) then
13031 Error_Msg_N ("match for First primitive not found", ASN);
13033 elsif No (Next_Id) then
13034 Error_Msg_N ("match for Next primitive not found", ASN);
13036 elsif No (Has_Element_Id) then
13037 Error_Msg_N ("match for Has_Element primitive not found", ASN);
13039 elsif No (Element_Id) then
13040 null; -- Optional.
13041 end if;
13042 end Validate_Iterable_Aspect;
13044 -----------------------------------
13045 -- Validate_Unchecked_Conversion --
13046 -----------------------------------
13048 procedure Validate_Unchecked_Conversion
13049 (N : Node_Id;
13050 Act_Unit : Entity_Id)
13052 Source : Entity_Id;
13053 Target : Entity_Id;
13054 Vnode : Node_Id;
13056 begin
13057 -- Obtain source and target types. Note that we call Ancestor_Subtype
13058 -- here because the processing for generic instantiation always makes
13059 -- subtypes, and we want the original frozen actual types.
13061 -- If we are dealing with private types, then do the check on their
13062 -- fully declared counterparts if the full declarations have been
13063 -- encountered (they don't have to be visible, but they must exist).
13065 Source := Ancestor_Subtype (Etype (First_Formal (Act_Unit)));
13067 if Is_Private_Type (Source)
13068 and then Present (Underlying_Type (Source))
13069 then
13070 Source := Underlying_Type (Source);
13071 end if;
13073 Target := Ancestor_Subtype (Etype (Act_Unit));
13075 -- If either type is generic, the instantiation happens within a generic
13076 -- unit, and there is nothing to check. The proper check will happen
13077 -- when the enclosing generic is instantiated.
13079 if Is_Generic_Type (Source) or else Is_Generic_Type (Target) then
13080 return;
13081 end if;
13083 if Is_Private_Type (Target)
13084 and then Present (Underlying_Type (Target))
13085 then
13086 Target := Underlying_Type (Target);
13087 end if;
13089 -- Source may be unconstrained array, but not target
13091 if Is_Array_Type (Target) and then not Is_Constrained (Target) then
13092 Error_Msg_N
13093 ("unchecked conversion to unconstrained array not allowed", N);
13094 return;
13095 end if;
13097 -- Warn if conversion between two different convention pointers
13099 if Is_Access_Type (Target)
13100 and then Is_Access_Type (Source)
13101 and then Convention (Target) /= Convention (Source)
13102 and then Warn_On_Unchecked_Conversion
13103 then
13104 -- Give warnings for subprogram pointers only on most targets
13106 if Is_Access_Subprogram_Type (Target)
13107 or else Is_Access_Subprogram_Type (Source)
13108 then
13109 Error_Msg_N
13110 ("?z?conversion between pointers with different conventions!",
13112 end if;
13113 end if;
13115 -- Warn if one of the operands is Ada.Calendar.Time. Do not emit a
13116 -- warning when compiling GNAT-related sources.
13118 if Warn_On_Unchecked_Conversion
13119 and then not In_Predefined_Unit (N)
13120 and then RTU_Loaded (Ada_Calendar)
13121 and then (Chars (Source) = Name_Time
13122 or else
13123 Chars (Target) = Name_Time)
13124 then
13125 -- If Ada.Calendar is loaded and the name of one of the operands is
13126 -- Time, there is a good chance that this is Ada.Calendar.Time.
13128 declare
13129 Calendar_Time : constant Entity_Id := Full_View (RTE (RO_CA_Time));
13130 begin
13131 pragma Assert (Present (Calendar_Time));
13133 if Source = Calendar_Time or else Target = Calendar_Time then
13134 Error_Msg_N
13135 ("?z?representation of 'Time values may change between "
13136 & "'G'N'A'T versions", N);
13137 end if;
13138 end;
13139 end if;
13141 -- Make entry in unchecked conversion table for later processing by
13142 -- Validate_Unchecked_Conversions, which will check sizes and alignments
13143 -- (using values set by the back-end where possible). This is only done
13144 -- if the appropriate warning is active.
13146 if Warn_On_Unchecked_Conversion then
13147 Unchecked_Conversions.Append
13148 (New_Val => UC_Entry'(Eloc => Sloc (N),
13149 Source => Source,
13150 Target => Target,
13151 Act_Unit => Act_Unit));
13153 -- If both sizes are known statically now, then back end annotation
13154 -- is not required to do a proper check but if either size is not
13155 -- known statically, then we need the annotation.
13157 if Known_Static_RM_Size (Source)
13158 and then
13159 Known_Static_RM_Size (Target)
13160 then
13161 null;
13162 else
13163 Back_Annotate_Rep_Info := True;
13164 end if;
13165 end if;
13167 -- If unchecked conversion to access type, and access type is declared
13168 -- in the same unit as the unchecked conversion, then set the flag
13169 -- No_Strict_Aliasing (no strict aliasing is implicit here)
13171 if Is_Access_Type (Target) and then
13172 In_Same_Source_Unit (Target, N)
13173 then
13174 Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
13175 end if;
13177 -- Generate N_Validate_Unchecked_Conversion node for back end in case
13178 -- the back end needs to perform special validation checks.
13180 -- Shouldn't this be in Exp_Ch13, since the check only gets done if we
13181 -- have full expansion and the back end is called ???
13183 Vnode :=
13184 Make_Validate_Unchecked_Conversion (Sloc (N));
13185 Set_Source_Type (Vnode, Source);
13186 Set_Target_Type (Vnode, Target);
13188 -- If the unchecked conversion node is in a list, just insert before it.
13189 -- If not we have some strange case, not worth bothering about.
13191 if Is_List_Member (N) then
13192 Insert_After (N, Vnode);
13193 end if;
13194 end Validate_Unchecked_Conversion;
13196 ------------------------------------
13197 -- Validate_Unchecked_Conversions --
13198 ------------------------------------
13200 procedure Validate_Unchecked_Conversions is
13201 begin
13202 for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
13203 declare
13204 T : UC_Entry renames Unchecked_Conversions.Table (N);
13206 Eloc : constant Source_Ptr := T.Eloc;
13207 Source : constant Entity_Id := T.Source;
13208 Target : constant Entity_Id := T.Target;
13209 Act_Unit : constant Entity_Id := T.Act_Unit;
13211 Source_Siz : Uint;
13212 Target_Siz : Uint;
13214 begin
13215 -- Skip if function marked as warnings off
13217 if Warnings_Off (Act_Unit) then
13218 goto Continue;
13219 end if;
13221 -- This validation check, which warns if we have unequal sizes for
13222 -- unchecked conversion, and thus potentially implementation
13223 -- dependent semantics, is one of the few occasions on which we
13224 -- use the official RM size instead of Esize. See description in
13225 -- Einfo "Handling of Type'Size Values" for details.
13227 if Serious_Errors_Detected = 0
13228 and then Known_Static_RM_Size (Source)
13229 and then Known_Static_RM_Size (Target)
13231 -- Don't do the check if warnings off for either type, note the
13232 -- deliberate use of OR here instead of OR ELSE to get the flag
13233 -- Warnings_Off_Used set for both types if appropriate.
13235 and then not (Has_Warnings_Off (Source)
13237 Has_Warnings_Off (Target))
13238 then
13239 Source_Siz := RM_Size (Source);
13240 Target_Siz := RM_Size (Target);
13242 if Source_Siz /= Target_Siz then
13243 Error_Msg
13244 ("?z?types for unchecked conversion have different sizes!",
13245 Eloc);
13247 if All_Errors_Mode then
13248 Error_Msg_Name_1 := Chars (Source);
13249 Error_Msg_Uint_1 := Source_Siz;
13250 Error_Msg_Name_2 := Chars (Target);
13251 Error_Msg_Uint_2 := Target_Siz;
13252 Error_Msg ("\size of % is ^, size of % is ^?z?", Eloc);
13254 Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
13256 if Is_Discrete_Type (Source)
13257 and then
13258 Is_Discrete_Type (Target)
13259 then
13260 if Source_Siz > Target_Siz then
13261 Error_Msg
13262 ("\?z?^ high order bits of source will "
13263 & "be ignored!", Eloc);
13265 elsif Is_Unsigned_Type (Source) then
13266 Error_Msg
13267 ("\?z?source will be extended with ^ high order "
13268 & "zero bits!", Eloc);
13270 else
13271 Error_Msg
13272 ("\?z?source will be extended with ^ high order "
13273 & "sign bits!", Eloc);
13274 end if;
13276 elsif Source_Siz < Target_Siz then
13277 if Is_Discrete_Type (Target) then
13278 if Bytes_Big_Endian then
13279 Error_Msg
13280 ("\?z?target value will include ^ undefined "
13281 & "low order bits!", Eloc);
13282 else
13283 Error_Msg
13284 ("\?z?target value will include ^ undefined "
13285 & "high order bits!", Eloc);
13286 end if;
13288 else
13289 Error_Msg
13290 ("\?z?^ trailing bits of target value will be "
13291 & "undefined!", Eloc);
13292 end if;
13294 else pragma Assert (Source_Siz > Target_Siz);
13295 Error_Msg
13296 ("\?z?^ trailing bits of source will be ignored!",
13297 Eloc);
13298 end if;
13299 end if;
13300 end if;
13301 end if;
13303 -- If both types are access types, we need to check the alignment.
13304 -- If the alignment of both is specified, we can do it here.
13306 if Serious_Errors_Detected = 0
13307 and then Is_Access_Type (Source)
13308 and then Is_Access_Type (Target)
13309 and then Target_Strict_Alignment
13310 and then Present (Designated_Type (Source))
13311 and then Present (Designated_Type (Target))
13312 then
13313 declare
13314 D_Source : constant Entity_Id := Designated_Type (Source);
13315 D_Target : constant Entity_Id := Designated_Type (Target);
13317 begin
13318 if Known_Alignment (D_Source)
13319 and then
13320 Known_Alignment (D_Target)
13321 then
13322 declare
13323 Source_Align : constant Uint := Alignment (D_Source);
13324 Target_Align : constant Uint := Alignment (D_Target);
13326 begin
13327 if Source_Align < Target_Align
13328 and then not Is_Tagged_Type (D_Source)
13330 -- Suppress warning if warnings suppressed on either
13331 -- type or either designated type. Note the use of
13332 -- OR here instead of OR ELSE. That is intentional,
13333 -- we would like to set flag Warnings_Off_Used in
13334 -- all types for which warnings are suppressed.
13336 and then not (Has_Warnings_Off (D_Source)
13338 Has_Warnings_Off (D_Target)
13340 Has_Warnings_Off (Source)
13342 Has_Warnings_Off (Target))
13343 then
13344 Error_Msg_Uint_1 := Target_Align;
13345 Error_Msg_Uint_2 := Source_Align;
13346 Error_Msg_Node_1 := D_Target;
13347 Error_Msg_Node_2 := D_Source;
13348 Error_Msg
13349 ("?z?alignment of & (^) is stricter than "
13350 & "alignment of & (^)!", Eloc);
13351 Error_Msg
13352 ("\?z?resulting access value may have invalid "
13353 & "alignment!", Eloc);
13354 end if;
13355 end;
13356 end if;
13357 end;
13358 end if;
13359 end;
13361 <<Continue>>
13362 null;
13363 end loop;
13364 end Validate_Unchecked_Conversions;
13366 end Sem_Ch13;