2015-05-12 Robert Dewar <dewar@adacore.com>
[official-gcc.git] / gcc / ada / exp_util.adb
blobc487b729b69244e03e6566ab96f89d6e2a8448be
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ U T I L --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Casing; use Casing;
29 with Checks; use Checks;
30 with Debug; use Debug;
31 with Einfo; use Einfo;
32 with Elists; use Elists;
33 with Errout; use Errout;
34 with Exp_Aggr; use Exp_Aggr;
35 with Exp_Ch6; use Exp_Ch6;
36 with Exp_Ch7; use Exp_Ch7;
37 with Inline; use Inline;
38 with Itypes; use Itypes;
39 with Lib; use Lib;
40 with Nlists; use Nlists;
41 with Nmake; use Nmake;
42 with Opt; use Opt;
43 with Restrict; use Restrict;
44 with Rident; use Rident;
45 with Sem; use Sem;
46 with Sem_Aux; use Sem_Aux;
47 with Sem_Ch8; use Sem_Ch8;
48 with Sem_Eval; use Sem_Eval;
49 with Sem_Res; use Sem_Res;
50 with Sem_Type; use Sem_Type;
51 with Sem_Util; use Sem_Util;
52 with Snames; use Snames;
53 with Stand; use Stand;
54 with Stringt; use Stringt;
55 with Targparm; use Targparm;
56 with Tbuild; use Tbuild;
57 with Ttypes; use Ttypes;
58 with Urealp; use Urealp;
59 with Validsw; use Validsw;
61 package body Exp_Util is
63 -----------------------
64 -- Local Subprograms --
65 -----------------------
67 function Build_Task_Array_Image
68 (Loc : Source_Ptr;
69 Id_Ref : Node_Id;
70 A_Type : Entity_Id;
71 Dyn : Boolean := False) return Node_Id;
72 -- Build function to generate the image string for a task that is an array
73 -- component, concatenating the images of each index. To avoid storage
74 -- leaks, the string is built with successive slice assignments. The flag
75 -- Dyn indicates whether this is called for the initialization procedure of
76 -- an array of tasks, or for the name of a dynamically created task that is
77 -- assigned to an indexed component.
79 function Build_Task_Image_Function
80 (Loc : Source_Ptr;
81 Decls : List_Id;
82 Stats : List_Id;
83 Res : Entity_Id) return Node_Id;
84 -- Common processing for Task_Array_Image and Task_Record_Image. Build
85 -- function body that computes image.
87 procedure Build_Task_Image_Prefix
88 (Loc : Source_Ptr;
89 Len : out Entity_Id;
90 Res : out Entity_Id;
91 Pos : out Entity_Id;
92 Prefix : Entity_Id;
93 Sum : Node_Id;
94 Decls : List_Id;
95 Stats : List_Id);
96 -- Common processing for Task_Array_Image and Task_Record_Image. Create
97 -- local variables and assign prefix of name to result string.
99 function Build_Task_Record_Image
100 (Loc : Source_Ptr;
101 Id_Ref : Node_Id;
102 Dyn : Boolean := False) return Node_Id;
103 -- Build function to generate the image string for a task that is a record
104 -- component. Concatenate name of variable with that of selector. The flag
105 -- Dyn indicates whether this is called for the initialization procedure of
106 -- record with task components, or for a dynamically created task that is
107 -- assigned to a selected component.
109 procedure Evaluate_Slice_Bounds (Slice : Node_Id);
110 -- Force evaluation of bounds of a slice, which may be given by a range
111 -- or by a subtype indication with or without a constraint.
113 function Make_CW_Equivalent_Type
114 (T : Entity_Id;
115 E : Node_Id) return Entity_Id;
116 -- T is a class-wide type entity, E is the initial expression node that
117 -- constrains T in case such as: " X: T := E" or "new T'(E)". This function
118 -- returns the entity of the Equivalent type and inserts on the fly the
119 -- necessary declaration such as:
121 -- type anon is record
122 -- _parent : Root_Type (T); constrained with E discriminants (if any)
123 -- Extension : String (1 .. expr to match size of E);
124 -- end record;
126 -- This record is compatible with any object of the class of T thanks to
127 -- the first field and has the same size as E thanks to the second.
129 function Make_Literal_Range
130 (Loc : Source_Ptr;
131 Literal_Typ : Entity_Id) return Node_Id;
132 -- Produce a Range node whose bounds are:
133 -- Low_Bound (Literal_Type) ..
134 -- Low_Bound (Literal_Type) + (Length (Literal_Typ) - 1)
135 -- this is used for expanding declarations like X : String := "sdfgdfg";
137 -- If the index type of the target array is not integer, we generate:
138 -- Low_Bound (Literal_Type) ..
139 -- Literal_Type'Val
140 -- (Literal_Type'Pos (Low_Bound (Literal_Type))
141 -- + (Length (Literal_Typ) -1))
143 function Make_Non_Empty_Check
144 (Loc : Source_Ptr;
145 N : Node_Id) return Node_Id;
146 -- Produce a boolean expression checking that the unidimensional array
147 -- node N is not empty.
149 function New_Class_Wide_Subtype
150 (CW_Typ : Entity_Id;
151 N : Node_Id) return Entity_Id;
152 -- Create an implicit subtype of CW_Typ attached to node N
154 function Requires_Cleanup_Actions
155 (L : List_Id;
156 Lib_Level : Boolean;
157 Nested_Constructs : Boolean) return Boolean;
158 -- Given a list L, determine whether it contains one of the following:
160 -- 1) controlled objects
161 -- 2) library-level tagged types
163 -- Lib_Level is True when the list comes from a construct at the library
164 -- level, and False otherwise. Nested_Constructs is True when any nested
165 -- packages declared in L must be processed, and False otherwise.
167 -------------------------------------
168 -- Activate_Atomic_Synchronization --
169 -------------------------------------
171 procedure Activate_Atomic_Synchronization (N : Node_Id) is
172 Msg_Node : Node_Id;
174 begin
175 case Nkind (Parent (N)) is
177 -- Check for cases of appearing in the prefix of a construct where
178 -- we don't need atomic synchronization for this kind of usage.
180 when
181 -- Nothing to do if we are the prefix of an attribute, since we
182 -- do not want an atomic sync operation for things like 'Size.
184 N_Attribute_Reference |
186 -- The N_Reference node is like an attribute
188 N_Reference |
190 -- Nothing to do for a reference to a component (or components)
191 -- of a composite object. Only reads and updates of the object
192 -- as a whole require atomic synchronization (RM C.6 (15)).
194 N_Indexed_Component |
195 N_Selected_Component |
196 N_Slice =>
198 -- For all the above cases, nothing to do if we are the prefix
200 if Prefix (Parent (N)) = N then
201 return;
202 end if;
204 when others => null;
205 end case;
207 -- Go ahead and set the flag
209 Set_Atomic_Sync_Required (N);
211 -- Generate info message if requested
213 if Warn_On_Atomic_Synchronization then
214 case Nkind (N) is
215 when N_Identifier =>
216 Msg_Node := N;
218 when N_Selected_Component | N_Expanded_Name =>
219 Msg_Node := Selector_Name (N);
221 when N_Explicit_Dereference | N_Indexed_Component =>
222 Msg_Node := Empty;
224 when others =>
225 pragma Assert (False);
226 return;
227 end case;
229 if Present (Msg_Node) then
230 Error_Msg_N
231 ("info: atomic synchronization set for &?N?", Msg_Node);
232 else
233 Error_Msg_N
234 ("info: atomic synchronization set?N?", N);
235 end if;
236 end if;
237 end Activate_Atomic_Synchronization;
239 ----------------------
240 -- Adjust_Condition --
241 ----------------------
243 procedure Adjust_Condition (N : Node_Id) is
244 begin
245 if No (N) then
246 return;
247 end if;
249 declare
250 Loc : constant Source_Ptr := Sloc (N);
251 T : constant Entity_Id := Etype (N);
252 Ti : Entity_Id;
254 begin
255 -- Defend against a call where the argument has no type, or has a
256 -- type that is not Boolean. This can occur because of prior errors.
258 if No (T) or else not Is_Boolean_Type (T) then
259 return;
260 end if;
262 -- Apply validity checking if needed
264 if Validity_Checks_On and Validity_Check_Tests then
265 Ensure_Valid (N);
266 end if;
268 -- Immediate return if standard boolean, the most common case,
269 -- where nothing needs to be done.
271 if Base_Type (T) = Standard_Boolean then
272 return;
273 end if;
275 -- Case of zero/non-zero semantics or non-standard enumeration
276 -- representation. In each case, we rewrite the node as:
278 -- ityp!(N) /= False'Enum_Rep
280 -- where ityp is an integer type with large enough size to hold any
281 -- value of type T.
283 if Nonzero_Is_True (T) or else Has_Non_Standard_Rep (T) then
284 if Esize (T) <= Esize (Standard_Integer) then
285 Ti := Standard_Integer;
286 else
287 Ti := Standard_Long_Long_Integer;
288 end if;
290 Rewrite (N,
291 Make_Op_Ne (Loc,
292 Left_Opnd => Unchecked_Convert_To (Ti, N),
293 Right_Opnd =>
294 Make_Attribute_Reference (Loc,
295 Attribute_Name => Name_Enum_Rep,
296 Prefix =>
297 New_Occurrence_Of (First_Literal (T), Loc))));
298 Analyze_And_Resolve (N, Standard_Boolean);
300 else
301 Rewrite (N, Convert_To (Standard_Boolean, N));
302 Analyze_And_Resolve (N, Standard_Boolean);
303 end if;
304 end;
305 end Adjust_Condition;
307 ------------------------
308 -- Adjust_Result_Type --
309 ------------------------
311 procedure Adjust_Result_Type (N : Node_Id; T : Entity_Id) is
312 begin
313 -- Ignore call if current type is not Standard.Boolean
315 if Etype (N) /= Standard_Boolean then
316 return;
317 end if;
319 -- If result is already of correct type, nothing to do. Note that
320 -- this will get the most common case where everything has a type
321 -- of Standard.Boolean.
323 if Base_Type (T) = Standard_Boolean then
324 return;
326 else
327 declare
328 KP : constant Node_Kind := Nkind (Parent (N));
330 begin
331 -- If result is to be used as a Condition in the syntax, no need
332 -- to convert it back, since if it was changed to Standard.Boolean
333 -- using Adjust_Condition, that is just fine for this usage.
335 if KP in N_Raise_xxx_Error or else KP in N_Has_Condition then
336 return;
338 -- If result is an operand of another logical operation, no need
339 -- to reset its type, since Standard.Boolean is just fine, and
340 -- such operations always do Adjust_Condition on their operands.
342 elsif KP in N_Op_Boolean
343 or else KP in N_Short_Circuit
344 or else KP = N_Op_Not
345 then
346 return;
348 -- Otherwise we perform a conversion from the current type, which
349 -- must be Standard.Boolean, to the desired type.
351 else
352 Set_Analyzed (N);
353 Rewrite (N, Convert_To (T, N));
354 Analyze_And_Resolve (N, T);
355 end if;
356 end;
357 end if;
358 end Adjust_Result_Type;
360 --------------------------
361 -- Append_Freeze_Action --
362 --------------------------
364 procedure Append_Freeze_Action (T : Entity_Id; N : Node_Id) is
365 Fnode : Node_Id;
367 begin
368 Ensure_Freeze_Node (T);
369 Fnode := Freeze_Node (T);
371 if No (Actions (Fnode)) then
372 Set_Actions (Fnode, New_List (N));
373 else
374 Append (N, Actions (Fnode));
375 end if;
377 end Append_Freeze_Action;
379 ---------------------------
380 -- Append_Freeze_Actions --
381 ---------------------------
383 procedure Append_Freeze_Actions (T : Entity_Id; L : List_Id) is
384 Fnode : Node_Id;
386 begin
387 if No (L) then
388 return;
389 end if;
391 Ensure_Freeze_Node (T);
392 Fnode := Freeze_Node (T);
394 if No (Actions (Fnode)) then
395 Set_Actions (Fnode, L);
396 else
397 Append_List (L, Actions (Fnode));
398 end if;
399 end Append_Freeze_Actions;
401 ------------------------------------
402 -- Build_Allocate_Deallocate_Proc --
403 ------------------------------------
405 procedure Build_Allocate_Deallocate_Proc
406 (N : Node_Id;
407 Is_Allocate : Boolean)
409 Desig_Typ : Entity_Id;
410 Expr : Node_Id;
411 Pool_Id : Entity_Id;
412 Proc_To_Call : Node_Id := Empty;
413 Ptr_Typ : Entity_Id;
415 function Find_Object (E : Node_Id) return Node_Id;
416 -- Given an arbitrary expression of an allocator, try to find an object
417 -- reference in it, otherwise return the original expression.
419 function Is_Allocate_Deallocate_Proc (Subp : Entity_Id) return Boolean;
420 -- Determine whether subprogram Subp denotes a custom allocate or
421 -- deallocate.
423 -----------------
424 -- Find_Object --
425 -----------------
427 function Find_Object (E : Node_Id) return Node_Id is
428 Expr : Node_Id;
430 begin
431 pragma Assert (Is_Allocate);
433 Expr := E;
434 loop
435 if Nkind (Expr) = N_Explicit_Dereference then
436 Expr := Prefix (Expr);
438 elsif Nkind (Expr) = N_Qualified_Expression then
439 Expr := Expression (Expr);
441 elsif Nkind (Expr) = N_Unchecked_Type_Conversion then
443 -- When interface class-wide types are involved in allocation,
444 -- the expander introduces several levels of address arithmetic
445 -- to perform dispatch table displacement. In this scenario the
446 -- object appears as:
448 -- Tag_Ptr (Base_Address (<object>'Address))
450 -- Detect this case and utilize the whole expression as the
451 -- "object" since it now points to the proper dispatch table.
453 if Is_RTE (Etype (Expr), RE_Tag_Ptr) then
454 exit;
456 -- Continue to strip the object
458 else
459 Expr := Expression (Expr);
460 end if;
462 else
463 exit;
464 end if;
465 end loop;
467 return Expr;
468 end Find_Object;
470 ---------------------------------
471 -- Is_Allocate_Deallocate_Proc --
472 ---------------------------------
474 function Is_Allocate_Deallocate_Proc (Subp : Entity_Id) return Boolean is
475 begin
476 -- Look for a subprogram body with only one statement which is a
477 -- call to Allocate_Any_Controlled / Deallocate_Any_Controlled.
479 if Ekind (Subp) = E_Procedure
480 and then Nkind (Parent (Parent (Subp))) = N_Subprogram_Body
481 then
482 declare
483 HSS : constant Node_Id :=
484 Handled_Statement_Sequence (Parent (Parent (Subp)));
485 Proc : Entity_Id;
487 begin
488 if Present (Statements (HSS))
489 and then Nkind (First (Statements (HSS))) =
490 N_Procedure_Call_Statement
491 then
492 Proc := Entity (Name (First (Statements (HSS))));
494 return
495 Is_RTE (Proc, RE_Allocate_Any_Controlled)
496 or else Is_RTE (Proc, RE_Deallocate_Any_Controlled);
497 end if;
498 end;
499 end if;
501 return False;
502 end Is_Allocate_Deallocate_Proc;
504 -- Start of processing for Build_Allocate_Deallocate_Proc
506 begin
507 -- Obtain the attributes of the allocation / deallocation
509 if Nkind (N) = N_Free_Statement then
510 Expr := Expression (N);
511 Ptr_Typ := Base_Type (Etype (Expr));
512 Proc_To_Call := Procedure_To_Call (N);
514 else
515 if Nkind (N) = N_Object_Declaration then
516 Expr := Expression (N);
517 else
518 Expr := N;
519 end if;
521 -- In certain cases an allocator with a qualified expression may
522 -- be relocated and used as the initialization expression of a
523 -- temporary:
525 -- before:
526 -- Obj : Ptr_Typ := new Desig_Typ'(...);
528 -- after:
529 -- Tmp : Ptr_Typ := new Desig_Typ'(...);
530 -- Obj : Ptr_Typ := Tmp;
532 -- Since the allocator is always marked as analyzed to avoid infinite
533 -- expansion, it will never be processed by this routine given that
534 -- the designated type needs finalization actions. Detect this case
535 -- and complete the expansion of the allocator.
537 if Nkind (Expr) = N_Identifier
538 and then Nkind (Parent (Entity (Expr))) = N_Object_Declaration
539 and then Nkind (Expression (Parent (Entity (Expr)))) = N_Allocator
540 then
541 Build_Allocate_Deallocate_Proc (Parent (Entity (Expr)), True);
542 return;
543 end if;
545 -- The allocator may have been rewritten into something else in which
546 -- case the expansion performed by this routine does not apply.
548 if Nkind (Expr) /= N_Allocator then
549 return;
550 end if;
552 Ptr_Typ := Base_Type (Etype (Expr));
553 Proc_To_Call := Procedure_To_Call (Expr);
554 end if;
556 Pool_Id := Associated_Storage_Pool (Ptr_Typ);
557 Desig_Typ := Available_View (Designated_Type (Ptr_Typ));
559 -- Handle concurrent types
561 if Is_Concurrent_Type (Desig_Typ)
562 and then Present (Corresponding_Record_Type (Desig_Typ))
563 then
564 Desig_Typ := Corresponding_Record_Type (Desig_Typ);
565 end if;
567 -- Do not process allocations / deallocations without a pool
569 if No (Pool_Id) then
570 return;
572 -- Do not process allocations on / deallocations from the secondary
573 -- stack.
575 elsif Is_RTE (Pool_Id, RE_SS_Pool) then
576 return;
578 -- Do not replicate the machinery if the allocator / free has already
579 -- been expanded and has a custom Allocate / Deallocate.
581 elsif Present (Proc_To_Call)
582 and then Is_Allocate_Deallocate_Proc (Proc_To_Call)
583 then
584 return;
585 end if;
587 if Needs_Finalization (Desig_Typ) then
589 -- Certain run-time configurations and targets do not provide support
590 -- for controlled types.
592 if Restriction_Active (No_Finalization) then
593 return;
595 -- Do nothing if the access type may never allocate / deallocate
596 -- objects.
598 elsif No_Pool_Assigned (Ptr_Typ) then
599 return;
601 -- Access-to-controlled types are not supported on .NET/JVM since
602 -- these targets cannot support pools and address arithmetic.
604 elsif VM_Target /= No_VM then
605 return;
606 end if;
608 -- The allocation / deallocation of a controlled object must be
609 -- chained on / detached from a finalization master.
611 pragma Assert (Present (Finalization_Master (Ptr_Typ)));
613 -- The only other kind of allocation / deallocation supported by this
614 -- routine is on / from a subpool.
616 elsif Nkind (Expr) = N_Allocator
617 and then No (Subpool_Handle_Name (Expr))
618 then
619 return;
620 end if;
622 declare
623 Loc : constant Source_Ptr := Sloc (N);
624 Addr_Id : constant Entity_Id := Make_Temporary (Loc, 'A');
625 Alig_Id : constant Entity_Id := Make_Temporary (Loc, 'L');
626 Proc_Id : constant Entity_Id := Make_Temporary (Loc, 'P');
627 Size_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
629 Actuals : List_Id;
630 Fin_Addr_Id : Entity_Id;
631 Fin_Mas_Act : Node_Id;
632 Fin_Mas_Id : Entity_Id;
633 Proc_To_Call : Entity_Id;
634 Subpool : Node_Id := Empty;
636 begin
637 -- Step 1: Construct all the actuals for the call to library routine
638 -- Allocate_Any_Controlled / Deallocate_Any_Controlled.
640 -- a) Storage pool
642 Actuals := New_List (New_Occurrence_Of (Pool_Id, Loc));
644 if Is_Allocate then
646 -- b) Subpool
648 if Nkind (Expr) = N_Allocator then
649 Subpool := Subpool_Handle_Name (Expr);
650 end if;
652 -- If a subpool is present it can be an arbitrary name, so make
653 -- the actual by copying the tree.
655 if Present (Subpool) then
656 Append_To (Actuals, New_Copy_Tree (Subpool, New_Sloc => Loc));
657 else
658 Append_To (Actuals, Make_Null (Loc));
659 end if;
661 -- c) Finalization master
663 if Needs_Finalization (Desig_Typ) then
664 Fin_Mas_Id := Finalization_Master (Ptr_Typ);
665 Fin_Mas_Act := New_Occurrence_Of (Fin_Mas_Id, Loc);
667 -- Handle the case where the master is actually a pointer to a
668 -- master. This case arises in build-in-place functions.
670 if Is_Access_Type (Etype (Fin_Mas_Id)) then
671 Append_To (Actuals, Fin_Mas_Act);
672 else
673 Append_To (Actuals,
674 Make_Attribute_Reference (Loc,
675 Prefix => Fin_Mas_Act,
676 Attribute_Name => Name_Unrestricted_Access));
677 end if;
678 else
679 Append_To (Actuals, Make_Null (Loc));
680 end if;
682 -- d) Finalize_Address
684 -- Primitive Finalize_Address is never generated in CodePeer mode
685 -- since it contains an Unchecked_Conversion.
687 if Needs_Finalization (Desig_Typ) and then not CodePeer_Mode then
688 Fin_Addr_Id := Finalize_Address (Desig_Typ);
689 pragma Assert (Present (Fin_Addr_Id));
691 Append_To (Actuals,
692 Make_Attribute_Reference (Loc,
693 Prefix => New_Occurrence_Of (Fin_Addr_Id, Loc),
694 Attribute_Name => Name_Unrestricted_Access));
695 else
696 Append_To (Actuals, Make_Null (Loc));
697 end if;
698 end if;
700 -- e) Address
701 -- f) Storage_Size
702 -- g) Alignment
704 Append_To (Actuals, New_Occurrence_Of (Addr_Id, Loc));
705 Append_To (Actuals, New_Occurrence_Of (Size_Id, Loc));
707 if Is_Allocate or else not Is_Class_Wide_Type (Desig_Typ) then
708 Append_To (Actuals, New_Occurrence_Of (Alig_Id, Loc));
710 -- For deallocation of class-wide types we obtain the value of
711 -- alignment from the Type Specific Record of the deallocated object.
712 -- This is needed because the frontend expansion of class-wide types
713 -- into equivalent types confuses the backend.
715 else
716 -- Generate:
717 -- Obj.all'Alignment
719 -- ... because 'Alignment applied to class-wide types is expanded
720 -- into the code that reads the value of alignment from the TSD
721 -- (see Expand_N_Attribute_Reference)
723 Append_To (Actuals,
724 Unchecked_Convert_To (RTE (RE_Storage_Offset),
725 Make_Attribute_Reference (Loc,
726 Prefix =>
727 Make_Explicit_Dereference (Loc, Relocate_Node (Expr)),
728 Attribute_Name => Name_Alignment)));
729 end if;
731 -- h) Is_Controlled
733 if Needs_Finalization (Desig_Typ) then
734 declare
735 Flag_Id : constant Entity_Id := Make_Temporary (Loc, 'F');
736 Flag_Expr : Node_Id;
737 Param : Node_Id;
738 Temp : Node_Id;
740 begin
741 if Is_Allocate then
742 Temp := Find_Object (Expression (Expr));
743 else
744 Temp := Expr;
745 end if;
747 -- Processing for allocations where the expression is a subtype
748 -- indication.
750 if Is_Allocate
751 and then Is_Entity_Name (Temp)
752 and then Is_Type (Entity (Temp))
753 then
754 Flag_Expr :=
755 New_Occurrence_Of
756 (Boolean_Literals
757 (Needs_Finalization (Entity (Temp))), Loc);
759 -- The allocation / deallocation of a class-wide object relies
760 -- on a runtime check to determine whether the object is truly
761 -- controlled or not. Depending on this check, the finalization
762 -- machinery will request or reclaim extra storage reserved for
763 -- a list header.
765 elsif Is_Class_Wide_Type (Desig_Typ) then
767 -- Detect a special case where interface class-wide types
768 -- are involved as the object appears as:
770 -- Tag_Ptr (Base_Address (<object>'Address))
772 -- The expression already yields the proper tag, generate:
774 -- Temp.all
776 if Is_RTE (Etype (Temp), RE_Tag_Ptr) then
777 Param :=
778 Make_Explicit_Dereference (Loc,
779 Prefix => Relocate_Node (Temp));
781 -- In the default case, obtain the tag of the object about
782 -- to be allocated / deallocated. Generate:
784 -- Temp'Tag
786 else
787 Param :=
788 Make_Attribute_Reference (Loc,
789 Prefix => Relocate_Node (Temp),
790 Attribute_Name => Name_Tag);
791 end if;
793 -- Generate:
794 -- Needs_Finalization (<Param>)
796 Flag_Expr :=
797 Make_Function_Call (Loc,
798 Name =>
799 New_Occurrence_Of (RTE (RE_Needs_Finalization), Loc),
800 Parameter_Associations => New_List (Param));
802 -- Processing for generic actuals
804 elsif Is_Generic_Actual_Type (Desig_Typ) then
805 Flag_Expr :=
806 New_Occurrence_Of (Boolean_Literals
807 (Needs_Finalization (Base_Type (Desig_Typ))), Loc);
809 -- The object does not require any specialized checks, it is
810 -- known to be controlled.
812 else
813 Flag_Expr := New_Occurrence_Of (Standard_True, Loc);
814 end if;
816 -- Create the temporary which represents the finalization state
817 -- of the expression. Generate:
819 -- F : constant Boolean := <Flag_Expr>;
821 Insert_Action (N,
822 Make_Object_Declaration (Loc,
823 Defining_Identifier => Flag_Id,
824 Constant_Present => True,
825 Object_Definition =>
826 New_Occurrence_Of (Standard_Boolean, Loc),
827 Expression => Flag_Expr));
829 Append_To (Actuals, New_Occurrence_Of (Flag_Id, Loc));
830 end;
832 -- The object is not controlled
834 else
835 Append_To (Actuals, New_Occurrence_Of (Standard_False, Loc));
836 end if;
838 -- i) On_Subpool
840 if Is_Allocate then
841 Append_To (Actuals,
842 New_Occurrence_Of (Boolean_Literals (Present (Subpool)), Loc));
843 end if;
845 -- Step 2: Build a wrapper Allocate / Deallocate which internally
846 -- calls Allocate_Any_Controlled / Deallocate_Any_Controlled.
848 -- Select the proper routine to call
850 if Is_Allocate then
851 Proc_To_Call := RTE (RE_Allocate_Any_Controlled);
852 else
853 Proc_To_Call := RTE (RE_Deallocate_Any_Controlled);
854 end if;
856 -- Create a custom Allocate / Deallocate routine which has identical
857 -- profile to that of System.Storage_Pools.
859 Insert_Action (N,
860 Make_Subprogram_Body (Loc,
861 Specification =>
863 -- procedure Pnn
865 Make_Procedure_Specification (Loc,
866 Defining_Unit_Name => Proc_Id,
867 Parameter_Specifications => New_List (
869 -- P : Root_Storage_Pool
871 Make_Parameter_Specification (Loc,
872 Defining_Identifier => Make_Temporary (Loc, 'P'),
873 Parameter_Type =>
874 New_Occurrence_Of (RTE (RE_Root_Storage_Pool), Loc)),
876 -- A : [out] Address
878 Make_Parameter_Specification (Loc,
879 Defining_Identifier => Addr_Id,
880 Out_Present => Is_Allocate,
881 Parameter_Type =>
882 New_Occurrence_Of (RTE (RE_Address), Loc)),
884 -- S : Storage_Count
886 Make_Parameter_Specification (Loc,
887 Defining_Identifier => Size_Id,
888 Parameter_Type =>
889 New_Occurrence_Of (RTE (RE_Storage_Count), Loc)),
891 -- L : Storage_Count
893 Make_Parameter_Specification (Loc,
894 Defining_Identifier => Alig_Id,
895 Parameter_Type =>
896 New_Occurrence_Of (RTE (RE_Storage_Count), Loc)))),
898 Declarations => No_List,
900 Handled_Statement_Sequence =>
901 Make_Handled_Sequence_Of_Statements (Loc,
902 Statements => New_List (
903 Make_Procedure_Call_Statement (Loc,
904 Name => New_Occurrence_Of (Proc_To_Call, Loc),
905 Parameter_Associations => Actuals)))));
907 -- The newly generated Allocate / Deallocate becomes the default
908 -- procedure to call when the back end processes the allocation /
909 -- deallocation.
911 if Is_Allocate then
912 Set_Procedure_To_Call (Expr, Proc_Id);
913 else
914 Set_Procedure_To_Call (N, Proc_Id);
915 end if;
916 end;
917 end Build_Allocate_Deallocate_Proc;
919 ------------------------
920 -- Build_Runtime_Call --
921 ------------------------
923 function Build_Runtime_Call (Loc : Source_Ptr; RE : RE_Id) return Node_Id is
924 begin
925 -- If entity is not available, we can skip making the call (this avoids
926 -- junk duplicated error messages in a number of cases).
928 if not RTE_Available (RE) then
929 return Make_Null_Statement (Loc);
930 else
931 return
932 Make_Procedure_Call_Statement (Loc,
933 Name => New_Occurrence_Of (RTE (RE), Loc));
934 end if;
935 end Build_Runtime_Call;
937 ------------------------
938 -- Build_SS_Mark_Call --
939 ------------------------
941 function Build_SS_Mark_Call
942 (Loc : Source_Ptr;
943 Mark : Entity_Id) return Node_Id
945 begin
946 -- Generate:
947 -- Mark : constant Mark_Id := SS_Mark;
949 return
950 Make_Object_Declaration (Loc,
951 Defining_Identifier => Mark,
952 Constant_Present => True,
953 Object_Definition =>
954 New_Occurrence_Of (RTE (RE_Mark_Id), Loc),
955 Expression =>
956 Make_Function_Call (Loc,
957 Name => New_Occurrence_Of (RTE (RE_SS_Mark), Loc)));
958 end Build_SS_Mark_Call;
960 ---------------------------
961 -- Build_SS_Release_Call --
962 ---------------------------
964 function Build_SS_Release_Call
965 (Loc : Source_Ptr;
966 Mark : Entity_Id) return Node_Id
968 begin
969 -- Generate:
970 -- SS_Release (Mark);
972 return
973 Make_Procedure_Call_Statement (Loc,
974 Name =>
975 New_Occurrence_Of (RTE (RE_SS_Release), Loc),
976 Parameter_Associations => New_List (
977 New_Occurrence_Of (Mark, Loc)));
978 end Build_SS_Release_Call;
980 ----------------------------
981 -- Build_Task_Array_Image --
982 ----------------------------
984 -- This function generates the body for a function that constructs the
985 -- image string for a task that is an array component. The function is
986 -- local to the init proc for the array type, and is called for each one
987 -- of the components. The constructed image has the form of an indexed
988 -- component, whose prefix is the outer variable of the array type.
989 -- The n-dimensional array type has known indexes Index, Index2...
991 -- Id_Ref is an indexed component form created by the enclosing init proc.
992 -- Its successive indexes are Val1, Val2, ... which are the loop variables
993 -- in the loops that call the individual task init proc on each component.
995 -- The generated function has the following structure:
997 -- function F return String is
998 -- Pref : string renames Task_Name;
999 -- T1 : String := Index1'Image (Val1);
1000 -- ...
1001 -- Tn : String := indexn'image (Valn);
1002 -- Len : Integer := T1'Length + ... + Tn'Length + n + 1;
1003 -- -- Len includes commas and the end parentheses.
1004 -- Res : String (1..Len);
1005 -- Pos : Integer := Pref'Length;
1007 -- begin
1008 -- Res (1 .. Pos) := Pref;
1009 -- Pos := Pos + 1;
1010 -- Res (Pos) := '(';
1011 -- Pos := Pos + 1;
1012 -- Res (Pos .. Pos + T1'Length - 1) := T1;
1013 -- Pos := Pos + T1'Length;
1014 -- Res (Pos) := '.';
1015 -- Pos := Pos + 1;
1016 -- ...
1017 -- Res (Pos .. Pos + Tn'Length - 1) := Tn;
1018 -- Res (Len) := ')';
1020 -- return Res;
1021 -- end F;
1023 -- Needless to say, multidimensional arrays of tasks are rare enough that
1024 -- the bulkiness of this code is not really a concern.
1026 function Build_Task_Array_Image
1027 (Loc : Source_Ptr;
1028 Id_Ref : Node_Id;
1029 A_Type : Entity_Id;
1030 Dyn : Boolean := False) return Node_Id
1032 Dims : constant Nat := Number_Dimensions (A_Type);
1033 -- Number of dimensions for array of tasks
1035 Temps : array (1 .. Dims) of Entity_Id;
1036 -- Array of temporaries to hold string for each index
1038 Indx : Node_Id;
1039 -- Index expression
1041 Len : Entity_Id;
1042 -- Total length of generated name
1044 Pos : Entity_Id;
1045 -- Running index for substring assignments
1047 Pref : constant Entity_Id := Make_Temporary (Loc, 'P');
1048 -- Name of enclosing variable, prefix of resulting name
1050 Res : Entity_Id;
1051 -- String to hold result
1053 Val : Node_Id;
1054 -- Value of successive indexes
1056 Sum : Node_Id;
1057 -- Expression to compute total size of string
1059 T : Entity_Id;
1060 -- Entity for name at one index position
1062 Decls : constant List_Id := New_List;
1063 Stats : constant List_Id := New_List;
1065 begin
1066 -- For a dynamic task, the name comes from the target variable. For a
1067 -- static one it is a formal of the enclosing init proc.
1069 if Dyn then
1070 Get_Name_String (Chars (Entity (Prefix (Id_Ref))));
1071 Append_To (Decls,
1072 Make_Object_Declaration (Loc,
1073 Defining_Identifier => Pref,
1074 Object_Definition => New_Occurrence_Of (Standard_String, Loc),
1075 Expression =>
1076 Make_String_Literal (Loc,
1077 Strval => String_From_Name_Buffer)));
1079 else
1080 Append_To (Decls,
1081 Make_Object_Renaming_Declaration (Loc,
1082 Defining_Identifier => Pref,
1083 Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
1084 Name => Make_Identifier (Loc, Name_uTask_Name)));
1085 end if;
1087 Indx := First_Index (A_Type);
1088 Val := First (Expressions (Id_Ref));
1090 for J in 1 .. Dims loop
1091 T := Make_Temporary (Loc, 'T');
1092 Temps (J) := T;
1094 Append_To (Decls,
1095 Make_Object_Declaration (Loc,
1096 Defining_Identifier => T,
1097 Object_Definition => New_Occurrence_Of (Standard_String, Loc),
1098 Expression =>
1099 Make_Attribute_Reference (Loc,
1100 Attribute_Name => Name_Image,
1101 Prefix => New_Occurrence_Of (Etype (Indx), Loc),
1102 Expressions => New_List (New_Copy_Tree (Val)))));
1104 Next_Index (Indx);
1105 Next (Val);
1106 end loop;
1108 Sum := Make_Integer_Literal (Loc, Dims + 1);
1110 Sum :=
1111 Make_Op_Add (Loc,
1112 Left_Opnd => Sum,
1113 Right_Opnd =>
1114 Make_Attribute_Reference (Loc,
1115 Attribute_Name => Name_Length,
1116 Prefix => New_Occurrence_Of (Pref, Loc),
1117 Expressions => New_List (Make_Integer_Literal (Loc, 1))));
1119 for J in 1 .. Dims loop
1120 Sum :=
1121 Make_Op_Add (Loc,
1122 Left_Opnd => Sum,
1123 Right_Opnd =>
1124 Make_Attribute_Reference (Loc,
1125 Attribute_Name => Name_Length,
1126 Prefix =>
1127 New_Occurrence_Of (Temps (J), Loc),
1128 Expressions => New_List (Make_Integer_Literal (Loc, 1))));
1129 end loop;
1131 Build_Task_Image_Prefix (Loc, Len, Res, Pos, Pref, Sum, Decls, Stats);
1133 Set_Character_Literal_Name (Char_Code (Character'Pos ('(')));
1135 Append_To (Stats,
1136 Make_Assignment_Statement (Loc,
1137 Name =>
1138 Make_Indexed_Component (Loc,
1139 Prefix => New_Occurrence_Of (Res, Loc),
1140 Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
1141 Expression =>
1142 Make_Character_Literal (Loc,
1143 Chars => Name_Find,
1144 Char_Literal_Value => UI_From_Int (Character'Pos ('(')))));
1146 Append_To (Stats,
1147 Make_Assignment_Statement (Loc,
1148 Name => New_Occurrence_Of (Pos, Loc),
1149 Expression =>
1150 Make_Op_Add (Loc,
1151 Left_Opnd => New_Occurrence_Of (Pos, Loc),
1152 Right_Opnd => Make_Integer_Literal (Loc, 1))));
1154 for J in 1 .. Dims loop
1156 Append_To (Stats,
1157 Make_Assignment_Statement (Loc,
1158 Name =>
1159 Make_Slice (Loc,
1160 Prefix => New_Occurrence_Of (Res, Loc),
1161 Discrete_Range =>
1162 Make_Range (Loc,
1163 Low_Bound => New_Occurrence_Of (Pos, Loc),
1164 High_Bound =>
1165 Make_Op_Subtract (Loc,
1166 Left_Opnd =>
1167 Make_Op_Add (Loc,
1168 Left_Opnd => New_Occurrence_Of (Pos, Loc),
1169 Right_Opnd =>
1170 Make_Attribute_Reference (Loc,
1171 Attribute_Name => Name_Length,
1172 Prefix =>
1173 New_Occurrence_Of (Temps (J), Loc),
1174 Expressions =>
1175 New_List (Make_Integer_Literal (Loc, 1)))),
1176 Right_Opnd => Make_Integer_Literal (Loc, 1)))),
1178 Expression => New_Occurrence_Of (Temps (J), Loc)));
1180 if J < Dims then
1181 Append_To (Stats,
1182 Make_Assignment_Statement (Loc,
1183 Name => New_Occurrence_Of (Pos, Loc),
1184 Expression =>
1185 Make_Op_Add (Loc,
1186 Left_Opnd => New_Occurrence_Of (Pos, Loc),
1187 Right_Opnd =>
1188 Make_Attribute_Reference (Loc,
1189 Attribute_Name => Name_Length,
1190 Prefix => New_Occurrence_Of (Temps (J), Loc),
1191 Expressions =>
1192 New_List (Make_Integer_Literal (Loc, 1))))));
1194 Set_Character_Literal_Name (Char_Code (Character'Pos (',')));
1196 Append_To (Stats,
1197 Make_Assignment_Statement (Loc,
1198 Name => Make_Indexed_Component (Loc,
1199 Prefix => New_Occurrence_Of (Res, Loc),
1200 Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
1201 Expression =>
1202 Make_Character_Literal (Loc,
1203 Chars => Name_Find,
1204 Char_Literal_Value => UI_From_Int (Character'Pos (',')))));
1206 Append_To (Stats,
1207 Make_Assignment_Statement (Loc,
1208 Name => New_Occurrence_Of (Pos, Loc),
1209 Expression =>
1210 Make_Op_Add (Loc,
1211 Left_Opnd => New_Occurrence_Of (Pos, Loc),
1212 Right_Opnd => Make_Integer_Literal (Loc, 1))));
1213 end if;
1214 end loop;
1216 Set_Character_Literal_Name (Char_Code (Character'Pos (')')));
1218 Append_To (Stats,
1219 Make_Assignment_Statement (Loc,
1220 Name =>
1221 Make_Indexed_Component (Loc,
1222 Prefix => New_Occurrence_Of (Res, Loc),
1223 Expressions => New_List (New_Occurrence_Of (Len, Loc))),
1224 Expression =>
1225 Make_Character_Literal (Loc,
1226 Chars => Name_Find,
1227 Char_Literal_Value => UI_From_Int (Character'Pos (')')))));
1228 return Build_Task_Image_Function (Loc, Decls, Stats, Res);
1229 end Build_Task_Array_Image;
1231 ----------------------------
1232 -- Build_Task_Image_Decls --
1233 ----------------------------
1235 function Build_Task_Image_Decls
1236 (Loc : Source_Ptr;
1237 Id_Ref : Node_Id;
1238 A_Type : Entity_Id;
1239 In_Init_Proc : Boolean := False) return List_Id
1241 Decls : constant List_Id := New_List;
1242 T_Id : Entity_Id := Empty;
1243 Decl : Node_Id;
1244 Expr : Node_Id := Empty;
1245 Fun : Node_Id := Empty;
1246 Is_Dyn : constant Boolean :=
1247 Nkind (Parent (Id_Ref)) = N_Assignment_Statement
1248 and then
1249 Nkind (Expression (Parent (Id_Ref))) = N_Allocator;
1251 begin
1252 -- If Discard_Names or No_Implicit_Heap_Allocations are in effect,
1253 -- generate a dummy declaration only.
1255 if Restriction_Active (No_Implicit_Heap_Allocations)
1256 or else Global_Discard_Names
1257 then
1258 T_Id := Make_Temporary (Loc, 'J');
1259 Name_Len := 0;
1261 return
1262 New_List (
1263 Make_Object_Declaration (Loc,
1264 Defining_Identifier => T_Id,
1265 Object_Definition => New_Occurrence_Of (Standard_String, Loc),
1266 Expression =>
1267 Make_String_Literal (Loc,
1268 Strval => String_From_Name_Buffer)));
1270 else
1271 if Nkind (Id_Ref) = N_Identifier
1272 or else Nkind (Id_Ref) = N_Defining_Identifier
1273 then
1274 -- For a simple variable, the image of the task is built from
1275 -- the name of the variable. To avoid possible conflict with the
1276 -- anonymous type created for a single protected object, add a
1277 -- numeric suffix.
1279 T_Id :=
1280 Make_Defining_Identifier (Loc,
1281 New_External_Name (Chars (Id_Ref), 'T', 1));
1283 Get_Name_String (Chars (Id_Ref));
1285 Expr :=
1286 Make_String_Literal (Loc,
1287 Strval => String_From_Name_Buffer);
1289 elsif Nkind (Id_Ref) = N_Selected_Component then
1290 T_Id :=
1291 Make_Defining_Identifier (Loc,
1292 New_External_Name (Chars (Selector_Name (Id_Ref)), 'T'));
1293 Fun := Build_Task_Record_Image (Loc, Id_Ref, Is_Dyn);
1295 elsif Nkind (Id_Ref) = N_Indexed_Component then
1296 T_Id :=
1297 Make_Defining_Identifier (Loc,
1298 New_External_Name (Chars (A_Type), 'N'));
1300 Fun := Build_Task_Array_Image (Loc, Id_Ref, A_Type, Is_Dyn);
1301 end if;
1302 end if;
1304 if Present (Fun) then
1305 Append (Fun, Decls);
1306 Expr := Make_Function_Call (Loc,
1307 Name => New_Occurrence_Of (Defining_Entity (Fun), Loc));
1309 if not In_Init_Proc and then VM_Target = No_VM then
1310 Set_Uses_Sec_Stack (Defining_Entity (Fun));
1311 end if;
1312 end if;
1314 Decl := Make_Object_Declaration (Loc,
1315 Defining_Identifier => T_Id,
1316 Object_Definition => New_Occurrence_Of (Standard_String, Loc),
1317 Constant_Present => True,
1318 Expression => Expr);
1320 Append (Decl, Decls);
1321 return Decls;
1322 end Build_Task_Image_Decls;
1324 -------------------------------
1325 -- Build_Task_Image_Function --
1326 -------------------------------
1328 function Build_Task_Image_Function
1329 (Loc : Source_Ptr;
1330 Decls : List_Id;
1331 Stats : List_Id;
1332 Res : Entity_Id) return Node_Id
1334 Spec : Node_Id;
1336 begin
1337 Append_To (Stats,
1338 Make_Simple_Return_Statement (Loc,
1339 Expression => New_Occurrence_Of (Res, Loc)));
1341 Spec := Make_Function_Specification (Loc,
1342 Defining_Unit_Name => Make_Temporary (Loc, 'F'),
1343 Result_Definition => New_Occurrence_Of (Standard_String, Loc));
1345 -- Calls to 'Image use the secondary stack, which must be cleaned up
1346 -- after the task name is built.
1348 return Make_Subprogram_Body (Loc,
1349 Specification => Spec,
1350 Declarations => Decls,
1351 Handled_Statement_Sequence =>
1352 Make_Handled_Sequence_Of_Statements (Loc, Statements => Stats));
1353 end Build_Task_Image_Function;
1355 -----------------------------
1356 -- Build_Task_Image_Prefix --
1357 -----------------------------
1359 procedure Build_Task_Image_Prefix
1360 (Loc : Source_Ptr;
1361 Len : out Entity_Id;
1362 Res : out Entity_Id;
1363 Pos : out Entity_Id;
1364 Prefix : Entity_Id;
1365 Sum : Node_Id;
1366 Decls : List_Id;
1367 Stats : List_Id)
1369 begin
1370 Len := Make_Temporary (Loc, 'L', Sum);
1372 Append_To (Decls,
1373 Make_Object_Declaration (Loc,
1374 Defining_Identifier => Len,
1375 Object_Definition => New_Occurrence_Of (Standard_Integer, Loc),
1376 Expression => Sum));
1378 Res := Make_Temporary (Loc, 'R');
1380 Append_To (Decls,
1381 Make_Object_Declaration (Loc,
1382 Defining_Identifier => Res,
1383 Object_Definition =>
1384 Make_Subtype_Indication (Loc,
1385 Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
1386 Constraint =>
1387 Make_Index_Or_Discriminant_Constraint (Loc,
1388 Constraints =>
1389 New_List (
1390 Make_Range (Loc,
1391 Low_Bound => Make_Integer_Literal (Loc, 1),
1392 High_Bound => New_Occurrence_Of (Len, Loc)))))));
1394 -- Indicate that the result is an internal temporary, so it does not
1395 -- receive a bogus initialization when declaration is expanded. This
1396 -- is both efficient, and prevents anomalies in the handling of
1397 -- dynamic objects on the secondary stack.
1399 Set_Is_Internal (Res);
1400 Pos := Make_Temporary (Loc, 'P');
1402 Append_To (Decls,
1403 Make_Object_Declaration (Loc,
1404 Defining_Identifier => Pos,
1405 Object_Definition => New_Occurrence_Of (Standard_Integer, Loc)));
1407 -- Pos := Prefix'Length;
1409 Append_To (Stats,
1410 Make_Assignment_Statement (Loc,
1411 Name => New_Occurrence_Of (Pos, Loc),
1412 Expression =>
1413 Make_Attribute_Reference (Loc,
1414 Attribute_Name => Name_Length,
1415 Prefix => New_Occurrence_Of (Prefix, Loc),
1416 Expressions => New_List (Make_Integer_Literal (Loc, 1)))));
1418 -- Res (1 .. Pos) := Prefix;
1420 Append_To (Stats,
1421 Make_Assignment_Statement (Loc,
1422 Name =>
1423 Make_Slice (Loc,
1424 Prefix => New_Occurrence_Of (Res, Loc),
1425 Discrete_Range =>
1426 Make_Range (Loc,
1427 Low_Bound => Make_Integer_Literal (Loc, 1),
1428 High_Bound => New_Occurrence_Of (Pos, Loc))),
1430 Expression => New_Occurrence_Of (Prefix, Loc)));
1432 Append_To (Stats,
1433 Make_Assignment_Statement (Loc,
1434 Name => New_Occurrence_Of (Pos, Loc),
1435 Expression =>
1436 Make_Op_Add (Loc,
1437 Left_Opnd => New_Occurrence_Of (Pos, Loc),
1438 Right_Opnd => Make_Integer_Literal (Loc, 1))));
1439 end Build_Task_Image_Prefix;
1441 -----------------------------
1442 -- Build_Task_Record_Image --
1443 -----------------------------
1445 function Build_Task_Record_Image
1446 (Loc : Source_Ptr;
1447 Id_Ref : Node_Id;
1448 Dyn : Boolean := False) return Node_Id
1450 Len : Entity_Id;
1451 -- Total length of generated name
1453 Pos : Entity_Id;
1454 -- Index into result
1456 Res : Entity_Id;
1457 -- String to hold result
1459 Pref : constant Entity_Id := Make_Temporary (Loc, 'P');
1460 -- Name of enclosing variable, prefix of resulting name
1462 Sum : Node_Id;
1463 -- Expression to compute total size of string
1465 Sel : Entity_Id;
1466 -- Entity for selector name
1468 Decls : constant List_Id := New_List;
1469 Stats : constant List_Id := New_List;
1471 begin
1472 -- For a dynamic task, the name comes from the target variable. For a
1473 -- static one it is a formal of the enclosing init proc.
1475 if Dyn then
1476 Get_Name_String (Chars (Entity (Prefix (Id_Ref))));
1477 Append_To (Decls,
1478 Make_Object_Declaration (Loc,
1479 Defining_Identifier => Pref,
1480 Object_Definition => New_Occurrence_Of (Standard_String, Loc),
1481 Expression =>
1482 Make_String_Literal (Loc,
1483 Strval => String_From_Name_Buffer)));
1485 else
1486 Append_To (Decls,
1487 Make_Object_Renaming_Declaration (Loc,
1488 Defining_Identifier => Pref,
1489 Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
1490 Name => Make_Identifier (Loc, Name_uTask_Name)));
1491 end if;
1493 Sel := Make_Temporary (Loc, 'S');
1495 Get_Name_String (Chars (Selector_Name (Id_Ref)));
1497 Append_To (Decls,
1498 Make_Object_Declaration (Loc,
1499 Defining_Identifier => Sel,
1500 Object_Definition => New_Occurrence_Of (Standard_String, Loc),
1501 Expression =>
1502 Make_String_Literal (Loc,
1503 Strval => String_From_Name_Buffer)));
1505 Sum := Make_Integer_Literal (Loc, Nat (Name_Len + 1));
1507 Sum :=
1508 Make_Op_Add (Loc,
1509 Left_Opnd => Sum,
1510 Right_Opnd =>
1511 Make_Attribute_Reference (Loc,
1512 Attribute_Name => Name_Length,
1513 Prefix =>
1514 New_Occurrence_Of (Pref, Loc),
1515 Expressions => New_List (Make_Integer_Literal (Loc, 1))));
1517 Build_Task_Image_Prefix (Loc, Len, Res, Pos, Pref, Sum, Decls, Stats);
1519 Set_Character_Literal_Name (Char_Code (Character'Pos ('.')));
1521 -- Res (Pos) := '.';
1523 Append_To (Stats,
1524 Make_Assignment_Statement (Loc,
1525 Name => Make_Indexed_Component (Loc,
1526 Prefix => New_Occurrence_Of (Res, Loc),
1527 Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
1528 Expression =>
1529 Make_Character_Literal (Loc,
1530 Chars => Name_Find,
1531 Char_Literal_Value =>
1532 UI_From_Int (Character'Pos ('.')))));
1534 Append_To (Stats,
1535 Make_Assignment_Statement (Loc,
1536 Name => New_Occurrence_Of (Pos, Loc),
1537 Expression =>
1538 Make_Op_Add (Loc,
1539 Left_Opnd => New_Occurrence_Of (Pos, Loc),
1540 Right_Opnd => Make_Integer_Literal (Loc, 1))));
1542 -- Res (Pos .. Len) := Selector;
1544 Append_To (Stats,
1545 Make_Assignment_Statement (Loc,
1546 Name => Make_Slice (Loc,
1547 Prefix => New_Occurrence_Of (Res, Loc),
1548 Discrete_Range =>
1549 Make_Range (Loc,
1550 Low_Bound => New_Occurrence_Of (Pos, Loc),
1551 High_Bound => New_Occurrence_Of (Len, Loc))),
1552 Expression => New_Occurrence_Of (Sel, Loc)));
1554 return Build_Task_Image_Function (Loc, Decls, Stats, Res);
1555 end Build_Task_Record_Image;
1557 -----------------------------
1558 -- Check_Float_Op_Overflow --
1559 -----------------------------
1561 procedure Check_Float_Op_Overflow (N : Node_Id) is
1562 begin
1563 -- Return if no check needed
1565 if not Is_Floating_Point_Type (Etype (N))
1566 or else not (Do_Overflow_Check (N) and then Check_Float_Overflow)
1568 -- In CodePeer_Mode, rely on the overflow check flag being set instead
1569 -- and do not expand the code for float overflow checking.
1571 or else CodePeer_Mode
1572 then
1573 return;
1574 end if;
1576 -- Otherwise we replace the expression by
1578 -- do Tnn : constant ftype := expression;
1579 -- constraint_error when not Tnn'Valid;
1580 -- in Tnn;
1582 declare
1583 Loc : constant Source_Ptr := Sloc (N);
1584 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
1585 Typ : constant Entity_Id := Etype (N);
1587 begin
1588 -- Turn off the Do_Overflow_Check flag, since we are doing that work
1589 -- right here. We also set the node as analyzed to prevent infinite
1590 -- recursion from repeating the operation in the expansion.
1592 Set_Do_Overflow_Check (N, False);
1593 Set_Analyzed (N, True);
1595 -- Do the rewrite to include the check
1597 Rewrite (N,
1598 Make_Expression_With_Actions (Loc,
1599 Actions => New_List (
1600 Make_Object_Declaration (Loc,
1601 Defining_Identifier => Tnn,
1602 Object_Definition => New_Occurrence_Of (Typ, Loc),
1603 Constant_Present => True,
1604 Expression => Relocate_Node (N)),
1605 Make_Raise_Constraint_Error (Loc,
1606 Condition =>
1607 Make_Op_Not (Loc,
1608 Right_Opnd =>
1609 Make_Attribute_Reference (Loc,
1610 Prefix => New_Occurrence_Of (Tnn, Loc),
1611 Attribute_Name => Name_Valid)),
1612 Reason => CE_Overflow_Check_Failed)),
1613 Expression => New_Occurrence_Of (Tnn, Loc)));
1615 Analyze_And_Resolve (N, Typ);
1616 end;
1617 end Check_Float_Op_Overflow;
1619 ----------------------------------
1620 -- Component_May_Be_Bit_Aligned --
1621 ----------------------------------
1623 function Component_May_Be_Bit_Aligned (Comp : Entity_Id) return Boolean is
1624 UT : Entity_Id;
1626 begin
1627 -- If no component clause, then everything is fine, since the back end
1628 -- never bit-misaligns by default, even if there is a pragma Packed for
1629 -- the record.
1631 if No (Comp) or else No (Component_Clause (Comp)) then
1632 return False;
1633 end if;
1635 UT := Underlying_Type (Etype (Comp));
1637 -- It is only array and record types that cause trouble
1639 if not Is_Record_Type (UT) and then not Is_Array_Type (UT) then
1640 return False;
1642 -- If we know that we have a small (64 bits or less) record or small
1643 -- bit-packed array, then everything is fine, since the back end can
1644 -- handle these cases correctly.
1646 elsif Esize (Comp) <= 64
1647 and then (Is_Record_Type (UT) or else Is_Bit_Packed_Array (UT))
1648 then
1649 return False;
1651 -- Otherwise if the component is not byte aligned, we know we have the
1652 -- nasty unaligned case.
1654 elsif Normalized_First_Bit (Comp) /= Uint_0
1655 or else Esize (Comp) mod System_Storage_Unit /= Uint_0
1656 then
1657 return True;
1659 -- If we are large and byte aligned, then OK at this level
1661 else
1662 return False;
1663 end if;
1664 end Component_May_Be_Bit_Aligned;
1666 ----------------------------------------
1667 -- Containing_Package_With_Ext_Axioms --
1668 ----------------------------------------
1670 function Containing_Package_With_Ext_Axioms
1671 (E : Entity_Id) return Entity_Id
1673 Decl : Node_Id;
1675 begin
1676 if Ekind (E) = E_Package then
1677 if Nkind (Parent (E)) = N_Defining_Program_Unit_Name then
1678 Decl := Parent (Parent (E));
1679 else
1680 Decl := Parent (E);
1681 end if;
1682 end if;
1684 -- E is the package or generic package which is externally axiomatized
1686 if Ekind_In (E, E_Package, E_Generic_Package)
1687 and then Has_Annotate_Pragma_For_External_Axiomatization (E)
1688 then
1689 return E;
1690 end if;
1692 -- If E's scope is axiomatized, E is axiomatized.
1694 declare
1695 First_Ax_Parent_Scope : Entity_Id := Empty;
1697 begin
1698 if Present (Scope (E)) then
1699 First_Ax_Parent_Scope :=
1700 Containing_Package_With_Ext_Axioms (Scope (E));
1701 end if;
1703 if Present (First_Ax_Parent_Scope) then
1704 return First_Ax_Parent_Scope;
1705 end if;
1707 -- otherwise, if E is a package instance, it is axiomatized if the
1708 -- corresponding generic package is axiomatized.
1710 if Ekind (E) = E_Package
1711 and then Present (Generic_Parent (Decl))
1712 then
1713 return
1714 Containing_Package_With_Ext_Axioms (Generic_Parent (Decl));
1715 else
1716 return Empty;
1717 end if;
1718 end;
1719 end Containing_Package_With_Ext_Axioms;
1721 -------------------------------
1722 -- Convert_To_Actual_Subtype --
1723 -------------------------------
1725 procedure Convert_To_Actual_Subtype (Exp : Entity_Id) is
1726 Act_ST : Entity_Id;
1728 begin
1729 Act_ST := Get_Actual_Subtype (Exp);
1731 if Act_ST = Etype (Exp) then
1732 return;
1733 else
1734 Rewrite (Exp, Convert_To (Act_ST, Relocate_Node (Exp)));
1735 Analyze_And_Resolve (Exp, Act_ST);
1736 end if;
1737 end Convert_To_Actual_Subtype;
1739 -----------------------------------
1740 -- Corresponding_Runtime_Package --
1741 -----------------------------------
1743 function Corresponding_Runtime_Package (Typ : Entity_Id) return RTU_Id is
1744 Pkg_Id : RTU_Id := RTU_Null;
1746 begin
1747 pragma Assert (Is_Concurrent_Type (Typ));
1749 if Ekind (Typ) in Protected_Kind then
1750 if Has_Entries (Typ)
1752 -- A protected type without entries that covers an interface and
1753 -- overrides the abstract routines with protected procedures is
1754 -- considered equivalent to a protected type with entries in the
1755 -- context of dispatching select statements. It is sufficient to
1756 -- check for the presence of an interface list in the declaration
1757 -- node to recognize this case.
1759 or else Present (Interface_List (Parent (Typ)))
1761 -- Protected types with interrupt handlers (when not using a
1762 -- restricted profile) are also considered equivalent to
1763 -- protected types with entries. The types which are used
1764 -- (Static_Interrupt_Protection and Dynamic_Interrupt_Protection)
1765 -- are derived from Protection_Entries.
1767 or else (Has_Attach_Handler (Typ) and then not Restricted_Profile)
1768 or else Has_Interrupt_Handler (Typ)
1769 then
1770 if Abort_Allowed
1771 or else Restriction_Active (No_Entry_Queue) = False
1772 or else Restriction_Active (No_Select_Statements) = False
1773 or else Number_Entries (Typ) > 1
1774 or else (Has_Attach_Handler (Typ)
1775 and then not Restricted_Profile)
1776 then
1777 Pkg_Id := System_Tasking_Protected_Objects_Entries;
1778 else
1779 Pkg_Id := System_Tasking_Protected_Objects_Single_Entry;
1780 end if;
1782 else
1783 Pkg_Id := System_Tasking_Protected_Objects;
1784 end if;
1785 end if;
1787 return Pkg_Id;
1788 end Corresponding_Runtime_Package;
1790 -----------------------------------
1791 -- Current_Sem_Unit_Declarations --
1792 -----------------------------------
1794 function Current_Sem_Unit_Declarations return List_Id is
1795 U : Node_Id := Unit (Cunit (Current_Sem_Unit));
1796 Decls : List_Id;
1798 begin
1799 -- If the current unit is a package body, locate the visible
1800 -- declarations of the package spec.
1802 if Nkind (U) = N_Package_Body then
1803 U := Unit (Library_Unit (Cunit (Current_Sem_Unit)));
1804 end if;
1806 if Nkind (U) = N_Package_Declaration then
1807 U := Specification (U);
1808 Decls := Visible_Declarations (U);
1810 if No (Decls) then
1811 Decls := New_List;
1812 Set_Visible_Declarations (U, Decls);
1813 end if;
1815 else
1816 Decls := Declarations (U);
1818 if No (Decls) then
1819 Decls := New_List;
1820 Set_Declarations (U, Decls);
1821 end if;
1822 end if;
1824 return Decls;
1825 end Current_Sem_Unit_Declarations;
1827 -----------------------
1828 -- Duplicate_Subexpr --
1829 -----------------------
1831 function Duplicate_Subexpr
1832 (Exp : Node_Id;
1833 Name_Req : Boolean := False;
1834 Renaming_Req : Boolean := False) return Node_Id
1836 begin
1837 Remove_Side_Effects (Exp, Name_Req, Renaming_Req);
1838 return New_Copy_Tree (Exp);
1839 end Duplicate_Subexpr;
1841 ---------------------------------
1842 -- Duplicate_Subexpr_No_Checks --
1843 ---------------------------------
1845 function Duplicate_Subexpr_No_Checks
1846 (Exp : Node_Id;
1847 Name_Req : Boolean := False;
1848 Renaming_Req : Boolean := False;
1849 Related_Id : Entity_Id := Empty;
1850 Is_Low_Bound : Boolean := False;
1851 Is_High_Bound : Boolean := False) return Node_Id
1853 New_Exp : Node_Id;
1855 begin
1856 Remove_Side_Effects
1857 (Exp => Exp,
1858 Name_Req => Name_Req,
1859 Renaming_Req => Renaming_Req,
1860 Related_Id => Related_Id,
1861 Is_Low_Bound => Is_Low_Bound,
1862 Is_High_Bound => Is_High_Bound);
1864 New_Exp := New_Copy_Tree (Exp);
1865 Remove_Checks (New_Exp);
1866 return New_Exp;
1867 end Duplicate_Subexpr_No_Checks;
1869 -----------------------------------
1870 -- Duplicate_Subexpr_Move_Checks --
1871 -----------------------------------
1873 function Duplicate_Subexpr_Move_Checks
1874 (Exp : Node_Id;
1875 Name_Req : Boolean := False;
1876 Renaming_Req : Boolean := False) return Node_Id
1878 New_Exp : Node_Id;
1880 begin
1881 Remove_Side_Effects (Exp, Name_Req, Renaming_Req);
1882 New_Exp := New_Copy_Tree (Exp);
1883 Remove_Checks (Exp);
1884 return New_Exp;
1885 end Duplicate_Subexpr_Move_Checks;
1887 --------------------
1888 -- Ensure_Defined --
1889 --------------------
1891 procedure Ensure_Defined (Typ : Entity_Id; N : Node_Id) is
1892 IR : Node_Id;
1894 begin
1895 -- An itype reference must only be created if this is a local itype, so
1896 -- that gigi can elaborate it on the proper objstack.
1898 if Is_Itype (Typ) and then Scope (Typ) = Current_Scope then
1899 IR := Make_Itype_Reference (Sloc (N));
1900 Set_Itype (IR, Typ);
1901 Insert_Action (N, IR);
1902 end if;
1903 end Ensure_Defined;
1905 --------------------
1906 -- Entry_Names_OK --
1907 --------------------
1909 function Entry_Names_OK return Boolean is
1910 begin
1911 return
1912 not Restricted_Profile
1913 and then not Global_Discard_Names
1914 and then not Restriction_Active (No_Implicit_Heap_Allocations)
1915 and then not Restriction_Active (No_Local_Allocators);
1916 end Entry_Names_OK;
1918 -------------------
1919 -- Evaluate_Name --
1920 -------------------
1922 procedure Evaluate_Name (Nam : Node_Id) is
1923 K : constant Node_Kind := Nkind (Nam);
1925 begin
1926 -- For an explicit dereference, we simply force the evaluation of the
1927 -- name expression. The dereference provides a value that is the address
1928 -- for the renamed object, and it is precisely this value that we want
1929 -- to preserve.
1931 if K = N_Explicit_Dereference then
1932 Force_Evaluation (Prefix (Nam));
1934 -- For a selected component, we simply evaluate the prefix
1936 elsif K = N_Selected_Component then
1937 Evaluate_Name (Prefix (Nam));
1939 -- For an indexed component, or an attribute reference, we evaluate the
1940 -- prefix, which is itself a name, recursively, and then force the
1941 -- evaluation of all the subscripts (or attribute expressions).
1943 elsif Nkind_In (K, N_Indexed_Component, N_Attribute_Reference) then
1944 Evaluate_Name (Prefix (Nam));
1946 declare
1947 E : Node_Id;
1949 begin
1950 E := First (Expressions (Nam));
1951 while Present (E) loop
1952 Force_Evaluation (E);
1954 if Original_Node (E) /= E then
1955 Set_Do_Range_Check (E, Do_Range_Check (Original_Node (E)));
1956 end if;
1958 Next (E);
1959 end loop;
1960 end;
1962 -- For a slice, we evaluate the prefix, as for the indexed component
1963 -- case and then, if there is a range present, either directly or as the
1964 -- constraint of a discrete subtype indication, we evaluate the two
1965 -- bounds of this range.
1967 elsif K = N_Slice then
1968 Evaluate_Name (Prefix (Nam));
1969 Evaluate_Slice_Bounds (Nam);
1971 -- For a type conversion, the expression of the conversion must be the
1972 -- name of an object, and we simply need to evaluate this name.
1974 elsif K = N_Type_Conversion then
1975 Evaluate_Name (Expression (Nam));
1977 -- For a function call, we evaluate the call
1979 elsif K = N_Function_Call then
1980 Force_Evaluation (Nam);
1982 -- The remaining cases are direct name, operator symbol and character
1983 -- literal. In all these cases, we do nothing, since we want to
1984 -- reevaluate each time the renamed object is used.
1986 else
1987 return;
1988 end if;
1989 end Evaluate_Name;
1991 ---------------------------
1992 -- Evaluate_Slice_Bounds --
1993 ---------------------------
1995 procedure Evaluate_Slice_Bounds (Slice : Node_Id) is
1996 DR : constant Node_Id := Discrete_Range (Slice);
1997 Constr : Node_Id;
1998 Rexpr : Node_Id;
2000 begin
2001 if Nkind (DR) = N_Range then
2002 Force_Evaluation (Low_Bound (DR));
2003 Force_Evaluation (High_Bound (DR));
2005 elsif Nkind (DR) = N_Subtype_Indication then
2006 Constr := Constraint (DR);
2008 if Nkind (Constr) = N_Range_Constraint then
2009 Rexpr := Range_Expression (Constr);
2011 Force_Evaluation (Low_Bound (Rexpr));
2012 Force_Evaluation (High_Bound (Rexpr));
2013 end if;
2014 end if;
2015 end Evaluate_Slice_Bounds;
2017 ---------------------
2018 -- Evolve_And_Then --
2019 ---------------------
2021 procedure Evolve_And_Then (Cond : in out Node_Id; Cond1 : Node_Id) is
2022 begin
2023 if No (Cond) then
2024 Cond := Cond1;
2025 else
2026 Cond :=
2027 Make_And_Then (Sloc (Cond1),
2028 Left_Opnd => Cond,
2029 Right_Opnd => Cond1);
2030 end if;
2031 end Evolve_And_Then;
2033 --------------------
2034 -- Evolve_Or_Else --
2035 --------------------
2037 procedure Evolve_Or_Else (Cond : in out Node_Id; Cond1 : Node_Id) is
2038 begin
2039 if No (Cond) then
2040 Cond := Cond1;
2041 else
2042 Cond :=
2043 Make_Or_Else (Sloc (Cond1),
2044 Left_Opnd => Cond,
2045 Right_Opnd => Cond1);
2046 end if;
2047 end Evolve_Or_Else;
2049 -----------------------------------------
2050 -- Expand_Static_Predicates_In_Choices --
2051 -----------------------------------------
2053 procedure Expand_Static_Predicates_In_Choices (N : Node_Id) is
2054 pragma Assert (Nkind_In (N, N_Case_Statement_Alternative, N_Variant));
2056 Choices : constant List_Id := Discrete_Choices (N);
2058 Choice : Node_Id;
2059 Next_C : Node_Id;
2060 P : Node_Id;
2061 C : Node_Id;
2063 begin
2064 Choice := First (Choices);
2065 while Present (Choice) loop
2066 Next_C := Next (Choice);
2068 -- Check for name of subtype with static predicate
2070 if Is_Entity_Name (Choice)
2071 and then Is_Type (Entity (Choice))
2072 and then Has_Predicates (Entity (Choice))
2073 then
2074 -- Loop through entries in predicate list, converting to choices
2075 -- and inserting in the list before the current choice. Note that
2076 -- if the list is empty, corresponding to a False predicate, then
2077 -- no choices are inserted.
2079 P := First (Static_Discrete_Predicate (Entity (Choice)));
2080 while Present (P) loop
2082 -- If low bound and high bounds are equal, copy simple choice
2084 if Expr_Value (Low_Bound (P)) = Expr_Value (High_Bound (P)) then
2085 C := New_Copy (Low_Bound (P));
2087 -- Otherwise copy a range
2089 else
2090 C := New_Copy (P);
2091 end if;
2093 -- Change Sloc to referencing choice (rather than the Sloc of
2094 -- the predicate declaration element itself).
2096 Set_Sloc (C, Sloc (Choice));
2097 Insert_Before (Choice, C);
2098 Next (P);
2099 end loop;
2101 -- Delete the predicated entry
2103 Remove (Choice);
2104 end if;
2106 -- Move to next choice to check
2108 Choice := Next_C;
2109 end loop;
2110 end Expand_Static_Predicates_In_Choices;
2112 ------------------------------
2113 -- Expand_Subtype_From_Expr --
2114 ------------------------------
2116 -- This function is applicable for both static and dynamic allocation of
2117 -- objects which are constrained by an initial expression. Basically it
2118 -- transforms an unconstrained subtype indication into a constrained one.
2120 -- The expression may also be transformed in certain cases in order to
2121 -- avoid multiple evaluation. In the static allocation case, the general
2122 -- scheme is:
2124 -- Val : T := Expr;
2126 -- is transformed into
2128 -- Val : Constrained_Subtype_of_T := Maybe_Modified_Expr;
2130 -- Here are the main cases :
2132 -- <if Expr is a Slice>
2133 -- Val : T ([Index_Subtype (Expr)]) := Expr;
2135 -- <elsif Expr is a String Literal>
2136 -- Val : T (T'First .. T'First + Length (string literal) - 1) := Expr;
2138 -- <elsif Expr is Constrained>
2139 -- subtype T is Type_Of_Expr
2140 -- Val : T := Expr;
2142 -- <elsif Expr is an entity_name>
2143 -- Val : T (constraints taken from Expr) := Expr;
2145 -- <else>
2146 -- type Axxx is access all T;
2147 -- Rval : Axxx := Expr'ref;
2148 -- Val : T (constraints taken from Rval) := Rval.all;
2150 -- ??? note: when the Expression is allocated in the secondary stack
2151 -- we could use it directly instead of copying it by declaring
2152 -- Val : T (...) renames Rval.all
2154 procedure Expand_Subtype_From_Expr
2155 (N : Node_Id;
2156 Unc_Type : Entity_Id;
2157 Subtype_Indic : Node_Id;
2158 Exp : Node_Id)
2160 Loc : constant Source_Ptr := Sloc (N);
2161 Exp_Typ : constant Entity_Id := Etype (Exp);
2162 T : Entity_Id;
2164 begin
2165 -- In general we cannot build the subtype if expansion is disabled,
2166 -- because internal entities may not have been defined. However, to
2167 -- avoid some cascaded errors, we try to continue when the expression is
2168 -- an array (or string), because it is safe to compute the bounds. It is
2169 -- in fact required to do so even in a generic context, because there
2170 -- may be constants that depend on the bounds of a string literal, both
2171 -- standard string types and more generally arrays of characters.
2173 -- In GNATprove mode, these extra subtypes are not needed
2175 if GNATprove_Mode then
2176 return;
2177 end if;
2179 if not Expander_Active
2180 and then (No (Etype (Exp)) or else not Is_String_Type (Etype (Exp)))
2181 then
2182 return;
2183 end if;
2185 if Nkind (Exp) = N_Slice then
2186 declare
2187 Slice_Type : constant Entity_Id := Etype (First_Index (Exp_Typ));
2189 begin
2190 Rewrite (Subtype_Indic,
2191 Make_Subtype_Indication (Loc,
2192 Subtype_Mark => New_Occurrence_Of (Unc_Type, Loc),
2193 Constraint =>
2194 Make_Index_Or_Discriminant_Constraint (Loc,
2195 Constraints => New_List
2196 (New_Occurrence_Of (Slice_Type, Loc)))));
2198 -- This subtype indication may be used later for constraint checks
2199 -- we better make sure that if a variable was used as a bound of
2200 -- of the original slice, its value is frozen.
2202 Evaluate_Slice_Bounds (Exp);
2203 end;
2205 elsif Ekind (Exp_Typ) = E_String_Literal_Subtype then
2206 Rewrite (Subtype_Indic,
2207 Make_Subtype_Indication (Loc,
2208 Subtype_Mark => New_Occurrence_Of (Unc_Type, Loc),
2209 Constraint =>
2210 Make_Index_Or_Discriminant_Constraint (Loc,
2211 Constraints => New_List (
2212 Make_Literal_Range (Loc,
2213 Literal_Typ => Exp_Typ)))));
2215 -- If the type of the expression is an internally generated type it
2216 -- may not be necessary to create a new subtype. However there are two
2217 -- exceptions: references to the current instances, and aliased array
2218 -- object declarations for which the backend needs to create a template.
2220 elsif Is_Constrained (Exp_Typ)
2221 and then not Is_Class_Wide_Type (Unc_Type)
2222 and then
2223 (Nkind (N) /= N_Object_Declaration
2224 or else not Is_Entity_Name (Expression (N))
2225 or else not Comes_From_Source (Entity (Expression (N)))
2226 or else not Is_Array_Type (Exp_Typ)
2227 or else not Aliased_Present (N))
2228 then
2229 if Is_Itype (Exp_Typ) then
2231 -- Within an initialization procedure, a selected component
2232 -- denotes a component of the enclosing record, and it appears as
2233 -- an actual in a call to its own initialization procedure. If
2234 -- this component depends on the outer discriminant, we must
2235 -- generate the proper actual subtype for it.
2237 if Nkind (Exp) = N_Selected_Component
2238 and then Within_Init_Proc
2239 then
2240 declare
2241 Decl : constant Node_Id :=
2242 Build_Actual_Subtype_Of_Component (Exp_Typ, Exp);
2243 begin
2244 if Present (Decl) then
2245 Insert_Action (N, Decl);
2246 T := Defining_Identifier (Decl);
2247 else
2248 T := Exp_Typ;
2249 end if;
2250 end;
2252 -- No need to generate a new subtype
2254 else
2255 T := Exp_Typ;
2256 end if;
2258 else
2259 T := Make_Temporary (Loc, 'T');
2261 Insert_Action (N,
2262 Make_Subtype_Declaration (Loc,
2263 Defining_Identifier => T,
2264 Subtype_Indication => New_Occurrence_Of (Exp_Typ, Loc)));
2266 -- This type is marked as an itype even though it has an explicit
2267 -- declaration since otherwise Is_Generic_Actual_Type can get
2268 -- set, resulting in the generation of spurious errors. (See
2269 -- sem_ch8.Analyze_Package_Renaming and sem_type.covers)
2271 Set_Is_Itype (T);
2272 Set_Associated_Node_For_Itype (T, Exp);
2273 end if;
2275 Rewrite (Subtype_Indic, New_Occurrence_Of (T, Loc));
2277 -- Nothing needs to be done for private types with unknown discriminants
2278 -- if the underlying type is not an unconstrained composite type or it
2279 -- is an unchecked union.
2281 elsif Is_Private_Type (Unc_Type)
2282 and then Has_Unknown_Discriminants (Unc_Type)
2283 and then (not Is_Composite_Type (Underlying_Type (Unc_Type))
2284 or else Is_Constrained (Underlying_Type (Unc_Type))
2285 or else Is_Unchecked_Union (Underlying_Type (Unc_Type)))
2286 then
2287 null;
2289 -- Case of derived type with unknown discriminants where the parent type
2290 -- also has unknown discriminants.
2292 elsif Is_Record_Type (Unc_Type)
2293 and then not Is_Class_Wide_Type (Unc_Type)
2294 and then Has_Unknown_Discriminants (Unc_Type)
2295 and then Has_Unknown_Discriminants (Underlying_Type (Unc_Type))
2296 then
2297 -- Nothing to be done if no underlying record view available
2299 if No (Underlying_Record_View (Unc_Type)) then
2300 null;
2302 -- Otherwise use the Underlying_Record_View to create the proper
2303 -- constrained subtype for an object of a derived type with unknown
2304 -- discriminants.
2306 else
2307 Remove_Side_Effects (Exp);
2308 Rewrite (Subtype_Indic,
2309 Make_Subtype_From_Expr (Exp, Underlying_Record_View (Unc_Type)));
2310 end if;
2312 -- Renamings of class-wide interface types require no equivalent
2313 -- constrained type declarations because we only need to reference
2314 -- the tag component associated with the interface. The same is
2315 -- presumably true for class-wide types in general, so this test
2316 -- is broadened to include all class-wide renamings, which also
2317 -- avoids cases of unbounded recursion in Remove_Side_Effects.
2318 -- (Is this really correct, or are there some cases of class-wide
2319 -- renamings that require action in this procedure???)
2321 elsif Present (N)
2322 and then Nkind (N) = N_Object_Renaming_Declaration
2323 and then Is_Class_Wide_Type (Unc_Type)
2324 then
2325 null;
2327 -- In Ada 95 nothing to be done if the type of the expression is limited
2328 -- because in this case the expression cannot be copied, and its use can
2329 -- only be by reference.
2331 -- In Ada 2005 the context can be an object declaration whose expression
2332 -- is a function that returns in place. If the nominal subtype has
2333 -- unknown discriminants, the call still provides constraints on the
2334 -- object, and we have to create an actual subtype from it.
2336 -- If the type is class-wide, the expression is dynamically tagged and
2337 -- we do not create an actual subtype either. Ditto for an interface.
2338 -- For now this applies only if the type is immutably limited, and the
2339 -- function being called is build-in-place. This will have to be revised
2340 -- when build-in-place functions are generalized to other types.
2342 elsif Is_Limited_View (Exp_Typ)
2343 and then
2344 (Is_Class_Wide_Type (Exp_Typ)
2345 or else Is_Interface (Exp_Typ)
2346 or else not Has_Unknown_Discriminants (Exp_Typ)
2347 or else not Is_Composite_Type (Unc_Type))
2348 then
2349 null;
2351 -- For limited objects initialized with build in place function calls,
2352 -- nothing to be done; otherwise we prematurely introduce an N_Reference
2353 -- node in the expression initializing the object, which breaks the
2354 -- circuitry that detects and adds the additional arguments to the
2355 -- called function.
2357 elsif Is_Build_In_Place_Function_Call (Exp) then
2358 null;
2360 else
2361 Remove_Side_Effects (Exp);
2362 Rewrite (Subtype_Indic,
2363 Make_Subtype_From_Expr (Exp, Unc_Type));
2364 end if;
2365 end Expand_Subtype_From_Expr;
2367 ----------------------
2368 -- Finalize_Address --
2369 ----------------------
2371 function Finalize_Address (Typ : Entity_Id) return Entity_Id is
2372 Utyp : Entity_Id := Typ;
2374 begin
2375 -- Handle protected class-wide or task class-wide types
2377 if Is_Class_Wide_Type (Utyp) then
2378 if Is_Concurrent_Type (Root_Type (Utyp)) then
2379 Utyp := Root_Type (Utyp);
2381 elsif Is_Private_Type (Root_Type (Utyp))
2382 and then Present (Full_View (Root_Type (Utyp)))
2383 and then Is_Concurrent_Type (Full_View (Root_Type (Utyp)))
2384 then
2385 Utyp := Full_View (Root_Type (Utyp));
2386 end if;
2387 end if;
2389 -- Handle private types
2391 if Is_Private_Type (Utyp) and then Present (Full_View (Utyp)) then
2392 Utyp := Full_View (Utyp);
2393 end if;
2395 -- Handle protected and task types
2397 if Is_Concurrent_Type (Utyp)
2398 and then Present (Corresponding_Record_Type (Utyp))
2399 then
2400 Utyp := Corresponding_Record_Type (Utyp);
2401 end if;
2403 Utyp := Underlying_Type (Base_Type (Utyp));
2405 -- Deal with untagged derivation of private views. If the parent is
2406 -- now known to be protected, the finalization routine is the one
2407 -- defined on the corresponding record of the ancestor (corresponding
2408 -- records do not automatically inherit operations, but maybe they
2409 -- should???)
2411 if Is_Untagged_Derivation (Typ) then
2412 if Is_Protected_Type (Typ) then
2413 Utyp := Corresponding_Record_Type (Root_Type (Base_Type (Typ)));
2415 else
2416 Utyp := Underlying_Type (Root_Type (Base_Type (Typ)));
2418 if Is_Protected_Type (Utyp) then
2419 Utyp := Corresponding_Record_Type (Utyp);
2420 end if;
2421 end if;
2422 end if;
2424 -- If the underlying_type is a subtype, we are dealing with the
2425 -- completion of a private type. We need to access the base type and
2426 -- generate a conversion to it.
2428 if Utyp /= Base_Type (Utyp) then
2429 pragma Assert (Is_Private_Type (Typ));
2431 Utyp := Base_Type (Utyp);
2432 end if;
2434 -- When dealing with an internally built full view for a type with
2435 -- unknown discriminants, use the original record type.
2437 if Is_Underlying_Record_View (Utyp) then
2438 Utyp := Etype (Utyp);
2439 end if;
2441 return TSS (Utyp, TSS_Finalize_Address);
2442 end Finalize_Address;
2444 ------------------------
2445 -- Find_Interface_ADT --
2446 ------------------------
2448 function Find_Interface_ADT
2449 (T : Entity_Id;
2450 Iface : Entity_Id) return Elmt_Id
2452 ADT : Elmt_Id;
2453 Typ : Entity_Id := T;
2455 begin
2456 pragma Assert (Is_Interface (Iface));
2458 -- Handle private types
2460 if Has_Private_Declaration (Typ) and then Present (Full_View (Typ)) then
2461 Typ := Full_View (Typ);
2462 end if;
2464 -- Handle access types
2466 if Is_Access_Type (Typ) then
2467 Typ := Designated_Type (Typ);
2468 end if;
2470 -- Handle task and protected types implementing interfaces
2472 if Is_Concurrent_Type (Typ) then
2473 Typ := Corresponding_Record_Type (Typ);
2474 end if;
2476 pragma Assert
2477 (not Is_Class_Wide_Type (Typ)
2478 and then Ekind (Typ) /= E_Incomplete_Type);
2480 if Is_Ancestor (Iface, Typ, Use_Full_View => True) then
2481 return First_Elmt (Access_Disp_Table (Typ));
2483 else
2484 ADT := Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (Typ))));
2485 while Present (ADT)
2486 and then Present (Related_Type (Node (ADT)))
2487 and then Related_Type (Node (ADT)) /= Iface
2488 and then not Is_Ancestor (Iface, Related_Type (Node (ADT)),
2489 Use_Full_View => True)
2490 loop
2491 Next_Elmt (ADT);
2492 end loop;
2494 pragma Assert (Present (Related_Type (Node (ADT))));
2495 return ADT;
2496 end if;
2497 end Find_Interface_ADT;
2499 ------------------------
2500 -- Find_Interface_Tag --
2501 ------------------------
2503 function Find_Interface_Tag
2504 (T : Entity_Id;
2505 Iface : Entity_Id) return Entity_Id
2507 AI_Tag : Entity_Id;
2508 Found : Boolean := False;
2509 Typ : Entity_Id := T;
2511 procedure Find_Tag (Typ : Entity_Id);
2512 -- Internal subprogram used to recursively climb to the ancestors
2514 --------------
2515 -- Find_Tag --
2516 --------------
2518 procedure Find_Tag (Typ : Entity_Id) is
2519 AI_Elmt : Elmt_Id;
2520 AI : Node_Id;
2522 begin
2523 -- This routine does not handle the case in which the interface is an
2524 -- ancestor of Typ. That case is handled by the enclosing subprogram.
2526 pragma Assert (Typ /= Iface);
2528 -- Climb to the root type handling private types
2530 if Present (Full_View (Etype (Typ))) then
2531 if Full_View (Etype (Typ)) /= Typ then
2532 Find_Tag (Full_View (Etype (Typ)));
2533 end if;
2535 elsif Etype (Typ) /= Typ then
2536 Find_Tag (Etype (Typ));
2537 end if;
2539 -- Traverse the list of interfaces implemented by the type
2541 if not Found
2542 and then Present (Interfaces (Typ))
2543 and then not (Is_Empty_Elmt_List (Interfaces (Typ)))
2544 then
2545 -- Skip the tag associated with the primary table
2547 pragma Assert (Etype (First_Tag_Component (Typ)) = RTE (RE_Tag));
2548 AI_Tag := Next_Tag_Component (First_Tag_Component (Typ));
2549 pragma Assert (Present (AI_Tag));
2551 AI_Elmt := First_Elmt (Interfaces (Typ));
2552 while Present (AI_Elmt) loop
2553 AI := Node (AI_Elmt);
2555 if AI = Iface
2556 or else Is_Ancestor (Iface, AI, Use_Full_View => True)
2557 then
2558 Found := True;
2559 return;
2560 end if;
2562 AI_Tag := Next_Tag_Component (AI_Tag);
2563 Next_Elmt (AI_Elmt);
2564 end loop;
2565 end if;
2566 end Find_Tag;
2568 -- Start of processing for Find_Interface_Tag
2570 begin
2571 pragma Assert (Is_Interface (Iface));
2573 -- Handle access types
2575 if Is_Access_Type (Typ) then
2576 Typ := Designated_Type (Typ);
2577 end if;
2579 -- Handle class-wide types
2581 if Is_Class_Wide_Type (Typ) then
2582 Typ := Root_Type (Typ);
2583 end if;
2585 -- Handle private types
2587 if Has_Private_Declaration (Typ) and then Present (Full_View (Typ)) then
2588 Typ := Full_View (Typ);
2589 end if;
2591 -- Handle entities from the limited view
2593 if Ekind (Typ) = E_Incomplete_Type then
2594 pragma Assert (Present (Non_Limited_View (Typ)));
2595 Typ := Non_Limited_View (Typ);
2596 end if;
2598 -- Handle task and protected types implementing interfaces
2600 if Is_Concurrent_Type (Typ) then
2601 Typ := Corresponding_Record_Type (Typ);
2602 end if;
2604 -- If the interface is an ancestor of the type, then it shared the
2605 -- primary dispatch table.
2607 if Is_Ancestor (Iface, Typ, Use_Full_View => True) then
2608 pragma Assert (Etype (First_Tag_Component (Typ)) = RTE (RE_Tag));
2609 return First_Tag_Component (Typ);
2611 -- Otherwise we need to search for its associated tag component
2613 else
2614 Find_Tag (Typ);
2615 pragma Assert (Found);
2616 return AI_Tag;
2617 end if;
2618 end Find_Interface_Tag;
2620 ------------------
2621 -- Find_Prim_Op --
2622 ------------------
2624 function Find_Prim_Op (T : Entity_Id; Name : Name_Id) return Entity_Id is
2625 Prim : Elmt_Id;
2626 Typ : Entity_Id := T;
2627 Op : Entity_Id;
2629 begin
2630 if Is_Class_Wide_Type (Typ) then
2631 Typ := Root_Type (Typ);
2632 end if;
2634 Typ := Underlying_Type (Typ);
2636 -- Loop through primitive operations
2638 Prim := First_Elmt (Primitive_Operations (Typ));
2639 while Present (Prim) loop
2640 Op := Node (Prim);
2642 -- We can retrieve primitive operations by name if it is an internal
2643 -- name. For equality we must check that both of its operands have
2644 -- the same type, to avoid confusion with user-defined equalities
2645 -- than may have a non-symmetric signature.
2647 exit when Chars (Op) = Name
2648 and then
2649 (Name /= Name_Op_Eq
2650 or else Etype (First_Formal (Op)) = Etype (Last_Formal (Op)));
2652 Next_Elmt (Prim);
2654 -- Raise Program_Error if no primitive found
2656 if No (Prim) then
2657 raise Program_Error;
2658 end if;
2659 end loop;
2661 return Node (Prim);
2662 end Find_Prim_Op;
2664 ------------------
2665 -- Find_Prim_Op --
2666 ------------------
2668 function Find_Prim_Op
2669 (T : Entity_Id;
2670 Name : TSS_Name_Type) return Entity_Id
2672 Inher_Op : Entity_Id := Empty;
2673 Own_Op : Entity_Id := Empty;
2674 Prim_Elmt : Elmt_Id;
2675 Prim_Id : Entity_Id;
2676 Typ : Entity_Id := T;
2678 begin
2679 if Is_Class_Wide_Type (Typ) then
2680 Typ := Root_Type (Typ);
2681 end if;
2683 Typ := Underlying_Type (Typ);
2685 -- This search is based on the assertion that the dispatching version
2686 -- of the TSS routine always precedes the real primitive.
2688 Prim_Elmt := First_Elmt (Primitive_Operations (Typ));
2689 while Present (Prim_Elmt) loop
2690 Prim_Id := Node (Prim_Elmt);
2692 if Is_TSS (Prim_Id, Name) then
2693 if Present (Alias (Prim_Id)) then
2694 Inher_Op := Prim_Id;
2695 else
2696 Own_Op := Prim_Id;
2697 end if;
2698 end if;
2700 Next_Elmt (Prim_Elmt);
2701 end loop;
2703 if Present (Own_Op) then
2704 return Own_Op;
2705 elsif Present (Inher_Op) then
2706 return Inher_Op;
2707 else
2708 raise Program_Error;
2709 end if;
2710 end Find_Prim_Op;
2712 ----------------------------
2713 -- Find_Protection_Object --
2714 ----------------------------
2716 function Find_Protection_Object (Scop : Entity_Id) return Entity_Id is
2717 S : Entity_Id;
2719 begin
2720 S := Scop;
2721 while Present (S) loop
2722 if Ekind_In (S, E_Entry, E_Entry_Family, E_Function, E_Procedure)
2723 and then Present (Protection_Object (S))
2724 then
2725 return Protection_Object (S);
2726 end if;
2728 S := Scope (S);
2729 end loop;
2731 -- If we do not find a Protection object in the scope chain, then
2732 -- something has gone wrong, most likely the object was never created.
2734 raise Program_Error;
2735 end Find_Protection_Object;
2737 --------------------------
2738 -- Find_Protection_Type --
2739 --------------------------
2741 function Find_Protection_Type (Conc_Typ : Entity_Id) return Entity_Id is
2742 Comp : Entity_Id;
2743 Typ : Entity_Id := Conc_Typ;
2745 begin
2746 if Is_Concurrent_Type (Typ) then
2747 Typ := Corresponding_Record_Type (Typ);
2748 end if;
2750 -- Since restriction violations are not considered serious errors, the
2751 -- expander remains active, but may leave the corresponding record type
2752 -- malformed. In such cases, component _object is not available so do
2753 -- not look for it.
2755 if not Analyzed (Typ) then
2756 return Empty;
2757 end if;
2759 Comp := First_Component (Typ);
2760 while Present (Comp) loop
2761 if Chars (Comp) = Name_uObject then
2762 return Base_Type (Etype (Comp));
2763 end if;
2765 Next_Component (Comp);
2766 end loop;
2768 -- The corresponding record of a protected type should always have an
2769 -- _object field.
2771 raise Program_Error;
2772 end Find_Protection_Type;
2774 -----------------------
2775 -- Find_Hook_Context --
2776 -----------------------
2778 function Find_Hook_Context (N : Node_Id) return Node_Id is
2779 Par : Node_Id;
2780 Top : Node_Id;
2782 Wrapped_Node : Node_Id;
2783 -- Note: if we are in a transient scope, we want to reuse it as
2784 -- the context for actions insertion, if possible. But if N is itself
2785 -- part of the stored actions for the current transient scope,
2786 -- then we need to insert at the appropriate (inner) location in
2787 -- the not as an action on Node_To_Be_Wrapped.
2789 In_Cond_Expr : constant Boolean := Within_Case_Or_If_Expression (N);
2791 begin
2792 -- When the node is inside a case/if expression, the lifetime of any
2793 -- temporary controlled object is extended. Find a suitable insertion
2794 -- node by locating the topmost case or if expressions.
2796 if In_Cond_Expr then
2797 Par := N;
2798 Top := N;
2799 while Present (Par) loop
2800 if Nkind_In (Original_Node (Par), N_Case_Expression,
2801 N_If_Expression)
2802 then
2803 Top := Par;
2805 -- Prevent the search from going too far
2807 elsif Is_Body_Or_Package_Declaration (Par) then
2808 exit;
2809 end if;
2811 Par := Parent (Par);
2812 end loop;
2814 -- The topmost case or if expression is now recovered, but it may
2815 -- still not be the correct place to add generated code. Climb to
2816 -- find a parent that is part of a declarative or statement list,
2817 -- and is not a list of actuals in a call.
2819 Par := Top;
2820 while Present (Par) loop
2821 if Is_List_Member (Par)
2822 and then not Nkind_In (Par, N_Component_Association,
2823 N_Discriminant_Association,
2824 N_Parameter_Association,
2825 N_Pragma_Argument_Association)
2826 and then not Nkind_In
2827 (Parent (Par), N_Function_Call,
2828 N_Procedure_Call_Statement,
2829 N_Entry_Call_Statement)
2831 then
2832 return Par;
2834 -- Prevent the search from going too far
2836 elsif Is_Body_Or_Package_Declaration (Par) then
2837 exit;
2838 end if;
2840 Par := Parent (Par);
2841 end loop;
2843 return Par;
2845 else
2846 Par := N;
2847 while Present (Par) loop
2849 -- Keep climbing past various operators
2851 if Nkind (Parent (Par)) in N_Op
2852 or else Nkind_In (Parent (Par), N_And_Then, N_Or_Else)
2853 then
2854 Par := Parent (Par);
2855 else
2856 exit;
2857 end if;
2858 end loop;
2860 Top := Par;
2862 -- The node may be located in a pragma in which case return the
2863 -- pragma itself:
2865 -- pragma Precondition (... and then Ctrl_Func_Call ...);
2867 -- Similar case occurs when the node is related to an object
2868 -- declaration or assignment:
2870 -- Obj [: Some_Typ] := ... and then Ctrl_Func_Call ...;
2872 -- Another case to consider is when the node is part of a return
2873 -- statement:
2875 -- return ... and then Ctrl_Func_Call ...;
2877 -- Another case is when the node acts as a formal in a procedure
2878 -- call statement:
2880 -- Proc (... and then Ctrl_Func_Call ...);
2882 if Scope_Is_Transient then
2883 Wrapped_Node := Node_To_Be_Wrapped;
2884 else
2885 Wrapped_Node := Empty;
2886 end if;
2888 while Present (Par) loop
2889 if Par = Wrapped_Node
2890 or else Nkind_In (Par, N_Assignment_Statement,
2891 N_Object_Declaration,
2892 N_Pragma,
2893 N_Procedure_Call_Statement,
2894 N_Simple_Return_Statement)
2895 then
2896 return Par;
2898 -- Prevent the search from going too far
2900 elsif Is_Body_Or_Package_Declaration (Par) then
2901 exit;
2902 end if;
2904 Par := Parent (Par);
2905 end loop;
2907 -- Return the topmost short circuit operator
2909 return Top;
2910 end if;
2911 end Find_Hook_Context;
2913 ------------------------------
2914 -- Following_Address_Clause --
2915 ------------------------------
2917 function Following_Address_Clause (D : Node_Id) return Node_Id is
2918 Id : constant Entity_Id := Defining_Identifier (D);
2919 Result : Node_Id;
2920 Par : Node_Id;
2922 function Check_Decls (D : Node_Id) return Node_Id;
2923 -- This internal function differs from the main function in that it
2924 -- gets called to deal with a following package private part, and
2925 -- it checks declarations starting with D (the main function checks
2926 -- declarations following D). If D is Empty, then Empty is returned.
2928 -----------------
2929 -- Check_Decls --
2930 -----------------
2932 function Check_Decls (D : Node_Id) return Node_Id is
2933 Decl : Node_Id;
2935 begin
2936 Decl := D;
2937 while Present (Decl) loop
2938 if Nkind (Decl) = N_At_Clause
2939 and then Chars (Identifier (Decl)) = Chars (Id)
2940 then
2941 return Decl;
2943 elsif Nkind (Decl) = N_Attribute_Definition_Clause
2944 and then Chars (Decl) = Name_Address
2945 and then Chars (Name (Decl)) = Chars (Id)
2946 then
2947 return Decl;
2948 end if;
2950 Next (Decl);
2951 end loop;
2953 -- Otherwise not found, return Empty
2955 return Empty;
2956 end Check_Decls;
2958 -- Start of processing for Following_Address_Clause
2960 begin
2961 -- If parser detected no address clause for the identifier in question,
2962 -- then the answer is a quick NO, without the need for a search.
2964 if not Get_Name_Table_Boolean1 (Chars (Id)) then
2965 return Empty;
2966 end if;
2968 -- Otherwise search current declarative unit
2970 Result := Check_Decls (Next (D));
2972 if Present (Result) then
2973 return Result;
2974 end if;
2976 -- Check for possible package private part following
2978 Par := Parent (D);
2980 if Nkind (Par) = N_Package_Specification
2981 and then Visible_Declarations (Par) = List_Containing (D)
2982 and then Present (Private_Declarations (Par))
2983 then
2984 -- Private part present, check declarations there
2986 return Check_Decls (First (Private_Declarations (Par)));
2988 else
2989 -- No private part, clause not found, return Empty
2991 return Empty;
2992 end if;
2993 end Following_Address_Clause;
2995 ----------------------
2996 -- Force_Evaluation --
2997 ----------------------
2999 procedure Force_Evaluation
3000 (Exp : Node_Id;
3001 Name_Req : Boolean := False;
3002 Related_Id : Entity_Id := Empty;
3003 Is_Low_Bound : Boolean := False;
3004 Is_High_Bound : Boolean := False)
3006 begin
3007 Remove_Side_Effects
3008 (Exp => Exp,
3009 Name_Req => Name_Req,
3010 Variable_Ref => True,
3011 Renaming_Req => False,
3012 Related_Id => Related_Id,
3013 Is_Low_Bound => Is_Low_Bound,
3014 Is_High_Bound => Is_High_Bound);
3015 end Force_Evaluation;
3017 ---------------------------------
3018 -- Fully_Qualified_Name_String --
3019 ---------------------------------
3021 function Fully_Qualified_Name_String
3022 (E : Entity_Id;
3023 Append_NUL : Boolean := True) return String_Id
3025 procedure Internal_Full_Qualified_Name (E : Entity_Id);
3026 -- Compute recursively the qualified name without NUL at the end, adding
3027 -- it to the currently started string being generated
3029 ----------------------------------
3030 -- Internal_Full_Qualified_Name --
3031 ----------------------------------
3033 procedure Internal_Full_Qualified_Name (E : Entity_Id) is
3034 Ent : Entity_Id;
3036 begin
3037 -- Deal properly with child units
3039 if Nkind (E) = N_Defining_Program_Unit_Name then
3040 Ent := Defining_Identifier (E);
3041 else
3042 Ent := E;
3043 end if;
3045 -- Compute qualification recursively (only "Standard" has no scope)
3047 if Present (Scope (Scope (Ent))) then
3048 Internal_Full_Qualified_Name (Scope (Ent));
3049 Store_String_Char (Get_Char_Code ('.'));
3050 end if;
3052 -- Every entity should have a name except some expanded blocks
3053 -- don't bother about those.
3055 if Chars (Ent) = No_Name then
3056 return;
3057 end if;
3059 -- Generates the entity name in upper case
3061 Get_Decoded_Name_String (Chars (Ent));
3062 Set_All_Upper_Case;
3063 Store_String_Chars (Name_Buffer (1 .. Name_Len));
3064 return;
3065 end Internal_Full_Qualified_Name;
3067 -- Start of processing for Full_Qualified_Name
3069 begin
3070 Start_String;
3071 Internal_Full_Qualified_Name (E);
3073 if Append_NUL then
3074 Store_String_Char (Get_Char_Code (ASCII.NUL));
3075 end if;
3077 return End_String;
3078 end Fully_Qualified_Name_String;
3080 ------------------------
3081 -- Generate_Poll_Call --
3082 ------------------------
3084 procedure Generate_Poll_Call (N : Node_Id) is
3085 begin
3086 -- No poll call if polling not active
3088 if not Polling_Required then
3089 return;
3091 -- Otherwise generate require poll call
3093 else
3094 Insert_Before_And_Analyze (N,
3095 Make_Procedure_Call_Statement (Sloc (N),
3096 Name => New_Occurrence_Of (RTE (RE_Poll), Sloc (N))));
3097 end if;
3098 end Generate_Poll_Call;
3100 ---------------------------------
3101 -- Get_Current_Value_Condition --
3102 ---------------------------------
3104 -- Note: the implementation of this procedure is very closely tied to the
3105 -- implementation of Set_Current_Value_Condition. In the Get procedure, we
3106 -- interpret Current_Value fields set by the Set procedure, so the two
3107 -- procedures need to be closely coordinated.
3109 procedure Get_Current_Value_Condition
3110 (Var : Node_Id;
3111 Op : out Node_Kind;
3112 Val : out Node_Id)
3114 Loc : constant Source_Ptr := Sloc (Var);
3115 Ent : constant Entity_Id := Entity (Var);
3117 procedure Process_Current_Value_Condition
3118 (N : Node_Id;
3119 S : Boolean);
3120 -- N is an expression which holds either True (S = True) or False (S =
3121 -- False) in the condition. This procedure digs out the expression and
3122 -- if it refers to Ent, sets Op and Val appropriately.
3124 -------------------------------------
3125 -- Process_Current_Value_Condition --
3126 -------------------------------------
3128 procedure Process_Current_Value_Condition
3129 (N : Node_Id;
3130 S : Boolean)
3132 Cond : Node_Id;
3133 Prev_Cond : Node_Id;
3134 Sens : Boolean;
3136 begin
3137 Cond := N;
3138 Sens := S;
3140 loop
3141 Prev_Cond := Cond;
3143 -- Deal with NOT operators, inverting sense
3145 while Nkind (Cond) = N_Op_Not loop
3146 Cond := Right_Opnd (Cond);
3147 Sens := not Sens;
3148 end loop;
3150 -- Deal with conversions, qualifications, and expressions with
3151 -- actions.
3153 while Nkind_In (Cond,
3154 N_Type_Conversion,
3155 N_Qualified_Expression,
3156 N_Expression_With_Actions)
3157 loop
3158 Cond := Expression (Cond);
3159 end loop;
3161 exit when Cond = Prev_Cond;
3162 end loop;
3164 -- Deal with AND THEN and AND cases
3166 if Nkind_In (Cond, N_And_Then, N_Op_And) then
3168 -- Don't ever try to invert a condition that is of the form of an
3169 -- AND or AND THEN (since we are not doing sufficiently general
3170 -- processing to allow this).
3172 if Sens = False then
3173 Op := N_Empty;
3174 Val := Empty;
3175 return;
3176 end if;
3178 -- Recursively process AND and AND THEN branches
3180 Process_Current_Value_Condition (Left_Opnd (Cond), True);
3182 if Op /= N_Empty then
3183 return;
3184 end if;
3186 Process_Current_Value_Condition (Right_Opnd (Cond), True);
3187 return;
3189 -- Case of relational operator
3191 elsif Nkind (Cond) in N_Op_Compare then
3192 Op := Nkind (Cond);
3194 -- Invert sense of test if inverted test
3196 if Sens = False then
3197 case Op is
3198 when N_Op_Eq => Op := N_Op_Ne;
3199 when N_Op_Ne => Op := N_Op_Eq;
3200 when N_Op_Lt => Op := N_Op_Ge;
3201 when N_Op_Gt => Op := N_Op_Le;
3202 when N_Op_Le => Op := N_Op_Gt;
3203 when N_Op_Ge => Op := N_Op_Lt;
3204 when others => raise Program_Error;
3205 end case;
3206 end if;
3208 -- Case of entity op value
3210 if Is_Entity_Name (Left_Opnd (Cond))
3211 and then Ent = Entity (Left_Opnd (Cond))
3212 and then Compile_Time_Known_Value (Right_Opnd (Cond))
3213 then
3214 Val := Right_Opnd (Cond);
3216 -- Case of value op entity
3218 elsif Is_Entity_Name (Right_Opnd (Cond))
3219 and then Ent = Entity (Right_Opnd (Cond))
3220 and then Compile_Time_Known_Value (Left_Opnd (Cond))
3221 then
3222 Val := Left_Opnd (Cond);
3224 -- We are effectively swapping operands
3226 case Op is
3227 when N_Op_Eq => null;
3228 when N_Op_Ne => null;
3229 when N_Op_Lt => Op := N_Op_Gt;
3230 when N_Op_Gt => Op := N_Op_Lt;
3231 when N_Op_Le => Op := N_Op_Ge;
3232 when N_Op_Ge => Op := N_Op_Le;
3233 when others => raise Program_Error;
3234 end case;
3236 else
3237 Op := N_Empty;
3238 end if;
3240 return;
3242 elsif Nkind_In (Cond,
3243 N_Type_Conversion,
3244 N_Qualified_Expression,
3245 N_Expression_With_Actions)
3246 then
3247 Cond := Expression (Cond);
3249 -- Case of Boolean variable reference, return as though the
3250 -- reference had said var = True.
3252 else
3253 if Is_Entity_Name (Cond) and then Ent = Entity (Cond) then
3254 Val := New_Occurrence_Of (Standard_True, Sloc (Cond));
3256 if Sens = False then
3257 Op := N_Op_Ne;
3258 else
3259 Op := N_Op_Eq;
3260 end if;
3261 end if;
3262 end if;
3263 end Process_Current_Value_Condition;
3265 -- Start of processing for Get_Current_Value_Condition
3267 begin
3268 Op := N_Empty;
3269 Val := Empty;
3271 -- Immediate return, nothing doing, if this is not an object
3273 if Ekind (Ent) not in Object_Kind then
3274 return;
3275 end if;
3277 -- Otherwise examine current value
3279 declare
3280 CV : constant Node_Id := Current_Value (Ent);
3281 Sens : Boolean;
3282 Stm : Node_Id;
3284 begin
3285 -- If statement. Condition is known true in THEN section, known False
3286 -- in any ELSIF or ELSE part, and unknown outside the IF statement.
3288 if Nkind (CV) = N_If_Statement then
3290 -- Before start of IF statement
3292 if Loc < Sloc (CV) then
3293 return;
3295 -- After end of IF statement
3297 elsif Loc >= Sloc (CV) + Text_Ptr (UI_To_Int (End_Span (CV))) then
3298 return;
3299 end if;
3301 -- At this stage we know that we are within the IF statement, but
3302 -- unfortunately, the tree does not record the SLOC of the ELSE so
3303 -- we cannot use a simple SLOC comparison to distinguish between
3304 -- the then/else statements, so we have to climb the tree.
3306 declare
3307 N : Node_Id;
3309 begin
3310 N := Parent (Var);
3311 while Parent (N) /= CV loop
3312 N := Parent (N);
3314 -- If we fall off the top of the tree, then that's odd, but
3315 -- perhaps it could occur in some error situation, and the
3316 -- safest response is simply to assume that the outcome of
3317 -- the condition is unknown. No point in bombing during an
3318 -- attempt to optimize things.
3320 if No (N) then
3321 return;
3322 end if;
3323 end loop;
3325 -- Now we have N pointing to a node whose parent is the IF
3326 -- statement in question, so now we can tell if we are within
3327 -- the THEN statements.
3329 if Is_List_Member (N)
3330 and then List_Containing (N) = Then_Statements (CV)
3331 then
3332 Sens := True;
3334 -- If the variable reference does not come from source, we
3335 -- cannot reliably tell whether it appears in the else part.
3336 -- In particular, if it appears in generated code for a node
3337 -- that requires finalization, it may be attached to a list
3338 -- that has not been yet inserted into the code. For now,
3339 -- treat it as unknown.
3341 elsif not Comes_From_Source (N) then
3342 return;
3344 -- Otherwise we must be in ELSIF or ELSE part
3346 else
3347 Sens := False;
3348 end if;
3349 end;
3351 -- ELSIF part. Condition is known true within the referenced
3352 -- ELSIF, known False in any subsequent ELSIF or ELSE part,
3353 -- and unknown before the ELSE part or after the IF statement.
3355 elsif Nkind (CV) = N_Elsif_Part then
3357 -- if the Elsif_Part had condition_actions, the elsif has been
3358 -- rewritten as a nested if, and the original elsif_part is
3359 -- detached from the tree, so there is no way to obtain useful
3360 -- information on the current value of the variable.
3361 -- Can this be improved ???
3363 if No (Parent (CV)) then
3364 return;
3365 end if;
3367 Stm := Parent (CV);
3369 -- If the tree has been otherwise rewritten there is nothing
3370 -- else to be done either.
3372 if Nkind (Stm) /= N_If_Statement then
3373 return;
3374 end if;
3376 -- Before start of ELSIF part
3378 if Loc < Sloc (CV) then
3379 return;
3381 -- After end of IF statement
3383 elsif Loc >= Sloc (Stm) +
3384 Text_Ptr (UI_To_Int (End_Span (Stm)))
3385 then
3386 return;
3387 end if;
3389 -- Again we lack the SLOC of the ELSE, so we need to climb the
3390 -- tree to see if we are within the ELSIF part in question.
3392 declare
3393 N : Node_Id;
3395 begin
3396 N := Parent (Var);
3397 while Parent (N) /= Stm loop
3398 N := Parent (N);
3400 -- If we fall off the top of the tree, then that's odd, but
3401 -- perhaps it could occur in some error situation, and the
3402 -- safest response is simply to assume that the outcome of
3403 -- the condition is unknown. No point in bombing during an
3404 -- attempt to optimize things.
3406 if No (N) then
3407 return;
3408 end if;
3409 end loop;
3411 -- Now we have N pointing to a node whose parent is the IF
3412 -- statement in question, so see if is the ELSIF part we want.
3413 -- the THEN statements.
3415 if N = CV then
3416 Sens := True;
3418 -- Otherwise we must be in subsequent ELSIF or ELSE part
3420 else
3421 Sens := False;
3422 end if;
3423 end;
3425 -- Iteration scheme of while loop. The condition is known to be
3426 -- true within the body of the loop.
3428 elsif Nkind (CV) = N_Iteration_Scheme then
3429 declare
3430 Loop_Stmt : constant Node_Id := Parent (CV);
3432 begin
3433 -- Before start of body of loop
3435 if Loc < Sloc (Loop_Stmt) then
3436 return;
3438 -- After end of LOOP statement
3440 elsif Loc >= Sloc (End_Label (Loop_Stmt)) then
3441 return;
3443 -- We are within the body of the loop
3445 else
3446 Sens := True;
3447 end if;
3448 end;
3450 -- All other cases of Current_Value settings
3452 else
3453 return;
3454 end if;
3456 -- If we fall through here, then we have a reportable condition, Sens
3457 -- is True if the condition is true and False if it needs inverting.
3459 Process_Current_Value_Condition (Condition (CV), Sens);
3460 end;
3461 end Get_Current_Value_Condition;
3463 ---------------------
3464 -- Get_Stream_Size --
3465 ---------------------
3467 function Get_Stream_Size (E : Entity_Id) return Uint is
3468 begin
3469 -- If we have a Stream_Size clause for this type use it
3471 if Has_Stream_Size_Clause (E) then
3472 return Static_Integer (Expression (Stream_Size_Clause (E)));
3474 -- Otherwise the Stream_Size if the size of the type
3476 else
3477 return Esize (E);
3478 end if;
3479 end Get_Stream_Size;
3481 ---------------------------
3482 -- Has_Access_Constraint --
3483 ---------------------------
3485 function Has_Access_Constraint (E : Entity_Id) return Boolean is
3486 Disc : Entity_Id;
3487 T : constant Entity_Id := Etype (E);
3489 begin
3490 if Has_Per_Object_Constraint (E) and then Has_Discriminants (T) then
3491 Disc := First_Discriminant (T);
3492 while Present (Disc) loop
3493 if Is_Access_Type (Etype (Disc)) then
3494 return True;
3495 end if;
3497 Next_Discriminant (Disc);
3498 end loop;
3500 return False;
3501 else
3502 return False;
3503 end if;
3504 end Has_Access_Constraint;
3506 -----------------------------------------------------
3507 -- Has_Annotate_Pragma_For_External_Axiomatization --
3508 -----------------------------------------------------
3510 function Has_Annotate_Pragma_For_External_Axiomatization
3511 (E : Entity_Id) return Boolean
3513 function Is_Annotate_Pragma_For_External_Axiomatization
3514 (N : Node_Id) return Boolean;
3515 -- Returns whether N is
3516 -- pragma Annotate (GNATprove, External_Axiomatization);
3518 ----------------------------------------------------
3519 -- Is_Annotate_Pragma_For_External_Axiomatization --
3520 ----------------------------------------------------
3522 -- The general form of pragma Annotate is
3524 -- pragma Annotate (IDENTIFIER [, IDENTIFIER {, ARG}]);
3525 -- ARG ::= NAME | EXPRESSION
3527 -- The first two arguments are by convention intended to refer to an
3528 -- external tool and a tool-specific function. These arguments are
3529 -- not analyzed.
3531 -- The following is used to annotate a package specification which
3532 -- GNATprove should treat specially, because the axiomatization of
3533 -- this unit is given by the user instead of being automatically
3534 -- generated.
3536 -- pragma Annotate (GNATprove, External_Axiomatization);
3538 function Is_Annotate_Pragma_For_External_Axiomatization
3539 (N : Node_Id) return Boolean
3541 Name_GNATprove : constant String :=
3542 "gnatprove";
3543 Name_External_Axiomatization : constant String :=
3544 "external_axiomatization";
3545 -- Special names
3547 begin
3548 if Nkind (N) = N_Pragma
3549 and then Get_Pragma_Id (Pragma_Name (N)) = Pragma_Annotate
3550 and then List_Length (Pragma_Argument_Associations (N)) = 2
3551 then
3552 declare
3553 Arg1 : constant Node_Id :=
3554 First (Pragma_Argument_Associations (N));
3555 Arg2 : constant Node_Id := Next (Arg1);
3556 Nam1 : Name_Id;
3557 Nam2 : Name_Id;
3559 begin
3560 -- Fill in Name_Buffer with Name_GNATprove first, and then with
3561 -- Name_External_Axiomatization so that Name_Find returns the
3562 -- corresponding name. This takes care of all possible casings.
3564 Name_Len := 0;
3565 Add_Str_To_Name_Buffer (Name_GNATprove);
3566 Nam1 := Name_Find;
3568 Name_Len := 0;
3569 Add_Str_To_Name_Buffer (Name_External_Axiomatization);
3570 Nam2 := Name_Find;
3572 return Chars (Get_Pragma_Arg (Arg1)) = Nam1
3573 and then
3574 Chars (Get_Pragma_Arg (Arg2)) = Nam2;
3575 end;
3577 else
3578 return False;
3579 end if;
3580 end Is_Annotate_Pragma_For_External_Axiomatization;
3582 -- Local variables
3584 Decl : Node_Id;
3585 Vis_Decls : List_Id;
3586 N : Node_Id;
3588 -- Start of processing for Has_Annotate_Pragma_For_External_Axiomatization
3590 begin
3591 if Nkind (Parent (E)) = N_Defining_Program_Unit_Name then
3592 Decl := Parent (Parent (E));
3593 else
3594 Decl := Parent (E);
3595 end if;
3597 Vis_Decls := Visible_Declarations (Decl);
3599 N := First (Vis_Decls);
3600 while Present (N) loop
3602 -- Skip declarations generated by the frontend. Skip all pragmas
3603 -- that are not the desired Annotate pragma. Stop the search on
3604 -- the first non-pragma source declaration.
3606 if Comes_From_Source (N) then
3607 if Nkind (N) = N_Pragma then
3608 if Is_Annotate_Pragma_For_External_Axiomatization (N) then
3609 return True;
3610 end if;
3611 else
3612 return False;
3613 end if;
3614 end if;
3616 Next (N);
3617 end loop;
3619 return False;
3620 end Has_Annotate_Pragma_For_External_Axiomatization;
3622 --------------------
3623 -- Homonym_Number --
3624 --------------------
3626 function Homonym_Number (Subp : Entity_Id) return Nat is
3627 Count : Nat;
3628 Hom : Entity_Id;
3630 begin
3631 Count := 1;
3632 Hom := Homonym (Subp);
3633 while Present (Hom) loop
3634 if Scope (Hom) = Scope (Subp) then
3635 Count := Count + 1;
3636 end if;
3638 Hom := Homonym (Hom);
3639 end loop;
3641 return Count;
3642 end Homonym_Number;
3644 -----------------------------------
3645 -- In_Library_Level_Package_Body --
3646 -----------------------------------
3648 function In_Library_Level_Package_Body (Id : Entity_Id) return Boolean is
3649 begin
3650 -- First determine whether the entity appears at the library level, then
3651 -- look at the containing unit.
3653 if Is_Library_Level_Entity (Id) then
3654 declare
3655 Container : constant Node_Id := Cunit (Get_Source_Unit (Id));
3657 begin
3658 return Nkind (Unit (Container)) = N_Package_Body;
3659 end;
3660 end if;
3662 return False;
3663 end In_Library_Level_Package_Body;
3665 ------------------------------
3666 -- In_Unconditional_Context --
3667 ------------------------------
3669 function In_Unconditional_Context (Node : Node_Id) return Boolean is
3670 P : Node_Id;
3672 begin
3673 P := Node;
3674 while Present (P) loop
3675 case Nkind (P) is
3676 when N_Subprogram_Body =>
3677 return True;
3679 when N_If_Statement =>
3680 return False;
3682 when N_Loop_Statement =>
3683 return False;
3685 when N_Case_Statement =>
3686 return False;
3688 when others =>
3689 P := Parent (P);
3690 end case;
3691 end loop;
3693 return False;
3694 end In_Unconditional_Context;
3696 -------------------
3697 -- Insert_Action --
3698 -------------------
3700 procedure Insert_Action (Assoc_Node : Node_Id; Ins_Action : Node_Id) is
3701 begin
3702 if Present (Ins_Action) then
3703 Insert_Actions (Assoc_Node, New_List (Ins_Action));
3704 end if;
3705 end Insert_Action;
3707 -- Version with check(s) suppressed
3709 procedure Insert_Action
3710 (Assoc_Node : Node_Id; Ins_Action : Node_Id; Suppress : Check_Id)
3712 begin
3713 Insert_Actions (Assoc_Node, New_List (Ins_Action), Suppress);
3714 end Insert_Action;
3716 -------------------------
3717 -- Insert_Action_After --
3718 -------------------------
3720 procedure Insert_Action_After
3721 (Assoc_Node : Node_Id;
3722 Ins_Action : Node_Id)
3724 begin
3725 Insert_Actions_After (Assoc_Node, New_List (Ins_Action));
3726 end Insert_Action_After;
3728 --------------------
3729 -- Insert_Actions --
3730 --------------------
3732 procedure Insert_Actions (Assoc_Node : Node_Id; Ins_Actions : List_Id) is
3733 N : Node_Id;
3734 P : Node_Id;
3736 Wrapped_Node : Node_Id := Empty;
3738 begin
3739 if No (Ins_Actions) or else Is_Empty_List (Ins_Actions) then
3740 return;
3741 end if;
3743 -- Ignore insert of actions from inside default expression (or other
3744 -- similar "spec expression") in the special spec-expression analyze
3745 -- mode. Any insertions at this point have no relevance, since we are
3746 -- only doing the analyze to freeze the types of any static expressions.
3747 -- See section "Handling of Default Expressions" in the spec of package
3748 -- Sem for further details.
3750 if In_Spec_Expression then
3751 return;
3752 end if;
3754 -- If the action derives from stuff inside a record, then the actions
3755 -- are attached to the current scope, to be inserted and analyzed on
3756 -- exit from the scope. The reason for this is that we may also be
3757 -- generating freeze actions at the same time, and they must eventually
3758 -- be elaborated in the correct order.
3760 if Is_Record_Type (Current_Scope)
3761 and then not Is_Frozen (Current_Scope)
3762 then
3763 if No (Scope_Stack.Table
3764 (Scope_Stack.Last).Pending_Freeze_Actions)
3765 then
3766 Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions :=
3767 Ins_Actions;
3768 else
3769 Append_List
3770 (Ins_Actions,
3771 Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions);
3772 end if;
3774 return;
3775 end if;
3777 -- We now intend to climb up the tree to find the right point to
3778 -- insert the actions. We start at Assoc_Node, unless this node is a
3779 -- subexpression in which case we start with its parent. We do this for
3780 -- two reasons. First it speeds things up. Second, if Assoc_Node is
3781 -- itself one of the special nodes like N_And_Then, then we assume that
3782 -- an initial request to insert actions for such a node does not expect
3783 -- the actions to get deposited in the node for later handling when the
3784 -- node is expanded, since clearly the node is being dealt with by the
3785 -- caller. Note that in the subexpression case, N is always the child we
3786 -- came from.
3788 -- N_Raise_xxx_Error is an annoying special case, it is a statement if
3789 -- it has type Standard_Void_Type, and a subexpression otherwise.
3790 -- otherwise. Procedure calls, and similarly procedure attribute
3791 -- references, are also statements.
3793 if Nkind (Assoc_Node) in N_Subexpr
3794 and then (Nkind (Assoc_Node) not in N_Raise_xxx_Error
3795 or else Etype (Assoc_Node) /= Standard_Void_Type)
3796 and then Nkind (Assoc_Node) /= N_Procedure_Call_Statement
3797 and then (Nkind (Assoc_Node) /= N_Attribute_Reference
3798 or else not Is_Procedure_Attribute_Name
3799 (Attribute_Name (Assoc_Node)))
3800 then
3801 N := Assoc_Node;
3802 P := Parent (Assoc_Node);
3804 -- Non-subexpression case. Note that N is initially Empty in this case
3805 -- (N is only guaranteed Non-Empty in the subexpr case).
3807 else
3808 N := Empty;
3809 P := Assoc_Node;
3810 end if;
3812 -- Capture root of the transient scope
3814 if Scope_Is_Transient then
3815 Wrapped_Node := Node_To_Be_Wrapped;
3816 end if;
3818 loop
3819 pragma Assert (Present (P));
3821 -- Make sure that inserted actions stay in the transient scope
3823 if Present (Wrapped_Node) and then N = Wrapped_Node then
3824 Store_Before_Actions_In_Scope (Ins_Actions);
3825 return;
3826 end if;
3828 case Nkind (P) is
3830 -- Case of right operand of AND THEN or OR ELSE. Put the actions
3831 -- in the Actions field of the right operand. They will be moved
3832 -- out further when the AND THEN or OR ELSE operator is expanded.
3833 -- Nothing special needs to be done for the left operand since
3834 -- in that case the actions are executed unconditionally.
3836 when N_Short_Circuit =>
3837 if N = Right_Opnd (P) then
3839 -- We are now going to either append the actions to the
3840 -- actions field of the short-circuit operation. We will
3841 -- also analyze the actions now.
3843 -- This analysis is really too early, the proper thing would
3844 -- be to just park them there now, and only analyze them if
3845 -- we find we really need them, and to it at the proper
3846 -- final insertion point. However attempting to this proved
3847 -- tricky, so for now we just kill current values before and
3848 -- after the analyze call to make sure we avoid peculiar
3849 -- optimizations from this out of order insertion.
3851 Kill_Current_Values;
3853 -- If P has already been expanded, we can't park new actions
3854 -- on it, so we need to expand them immediately, introducing
3855 -- an Expression_With_Actions. N can't be an expression
3856 -- with actions, or else then the actions would have been
3857 -- inserted at an inner level.
3859 if Analyzed (P) then
3860 pragma Assert (Nkind (N) /= N_Expression_With_Actions);
3861 Rewrite (N,
3862 Make_Expression_With_Actions (Sloc (N),
3863 Actions => Ins_Actions,
3864 Expression => Relocate_Node (N)));
3865 Analyze_And_Resolve (N);
3867 elsif Present (Actions (P)) then
3868 Insert_List_After_And_Analyze
3869 (Last (Actions (P)), Ins_Actions);
3870 else
3871 Set_Actions (P, Ins_Actions);
3872 Analyze_List (Actions (P));
3873 end if;
3875 Kill_Current_Values;
3877 return;
3878 end if;
3880 -- Then or Else dependent expression of an if expression. Add
3881 -- actions to Then_Actions or Else_Actions field as appropriate.
3882 -- The actions will be moved further out when the if is expanded.
3884 when N_If_Expression =>
3885 declare
3886 ThenX : constant Node_Id := Next (First (Expressions (P)));
3887 ElseX : constant Node_Id := Next (ThenX);
3889 begin
3890 -- If the enclosing expression is already analyzed, as
3891 -- is the case for nested elaboration checks, insert the
3892 -- conditional further out.
3894 if Analyzed (P) then
3895 null;
3897 -- Actions belong to the then expression, temporarily place
3898 -- them as Then_Actions of the if expression. They will be
3899 -- moved to the proper place later when the if expression
3900 -- is expanded.
3902 elsif N = ThenX then
3903 if Present (Then_Actions (P)) then
3904 Insert_List_After_And_Analyze
3905 (Last (Then_Actions (P)), Ins_Actions);
3906 else
3907 Set_Then_Actions (P, Ins_Actions);
3908 Analyze_List (Then_Actions (P));
3909 end if;
3911 return;
3913 -- Actions belong to the else expression, temporarily place
3914 -- them as Else_Actions of the if expression. They will be
3915 -- moved to the proper place later when the if expression
3916 -- is expanded.
3918 elsif N = ElseX then
3919 if Present (Else_Actions (P)) then
3920 Insert_List_After_And_Analyze
3921 (Last (Else_Actions (P)), Ins_Actions);
3922 else
3923 Set_Else_Actions (P, Ins_Actions);
3924 Analyze_List (Else_Actions (P));
3925 end if;
3927 return;
3929 -- Actions belong to the condition. In this case they are
3930 -- unconditionally executed, and so we can continue the
3931 -- search for the proper insert point.
3933 else
3934 null;
3935 end if;
3936 end;
3938 -- Alternative of case expression, we place the action in the
3939 -- Actions field of the case expression alternative, this will
3940 -- be handled when the case expression is expanded.
3942 when N_Case_Expression_Alternative =>
3943 if Present (Actions (P)) then
3944 Insert_List_After_And_Analyze
3945 (Last (Actions (P)), Ins_Actions);
3946 else
3947 Set_Actions (P, Ins_Actions);
3948 Analyze_List (Actions (P));
3949 end if;
3951 return;
3953 -- Case of appearing within an Expressions_With_Actions node. When
3954 -- the new actions come from the expression of the expression with
3955 -- actions, they must be added to the existing actions. The other
3956 -- alternative is when the new actions are related to one of the
3957 -- existing actions of the expression with actions, and should
3958 -- never reach here: if actions are inserted on a statement
3959 -- within the Actions of an expression with actions, or on some
3960 -- sub-expression of such a statement, then the outermost proper
3961 -- insertion point is right before the statement, and we should
3962 -- never climb up as far as the N_Expression_With_Actions itself.
3964 when N_Expression_With_Actions =>
3965 if N = Expression (P) then
3966 if Is_Empty_List (Actions (P)) then
3967 Append_List_To (Actions (P), Ins_Actions);
3968 Analyze_List (Actions (P));
3969 else
3970 Insert_List_After_And_Analyze
3971 (Last (Actions (P)), Ins_Actions);
3972 end if;
3974 return;
3976 else
3977 raise Program_Error;
3978 end if;
3980 -- Case of appearing in the condition of a while expression or
3981 -- elsif. We insert the actions into the Condition_Actions field.
3982 -- They will be moved further out when the while loop or elsif
3983 -- is analyzed.
3985 when N_Iteration_Scheme |
3986 N_Elsif_Part
3988 if N = Condition (P) then
3989 if Present (Condition_Actions (P)) then
3990 Insert_List_After_And_Analyze
3991 (Last (Condition_Actions (P)), Ins_Actions);
3992 else
3993 Set_Condition_Actions (P, Ins_Actions);
3995 -- Set the parent of the insert actions explicitly. This
3996 -- is not a syntactic field, but we need the parent field
3997 -- set, in particular so that freeze can understand that
3998 -- it is dealing with condition actions, and properly
3999 -- insert the freezing actions.
4001 Set_Parent (Ins_Actions, P);
4002 Analyze_List (Condition_Actions (P));
4003 end if;
4005 return;
4006 end if;
4008 -- Statements, declarations, pragmas, representation clauses
4010 when
4011 -- Statements
4013 N_Procedure_Call_Statement |
4014 N_Statement_Other_Than_Procedure_Call |
4016 -- Pragmas
4018 N_Pragma |
4020 -- Representation_Clause
4022 N_At_Clause |
4023 N_Attribute_Definition_Clause |
4024 N_Enumeration_Representation_Clause |
4025 N_Record_Representation_Clause |
4027 -- Declarations
4029 N_Abstract_Subprogram_Declaration |
4030 N_Entry_Body |
4031 N_Exception_Declaration |
4032 N_Exception_Renaming_Declaration |
4033 N_Expression_Function |
4034 N_Formal_Abstract_Subprogram_Declaration |
4035 N_Formal_Concrete_Subprogram_Declaration |
4036 N_Formal_Object_Declaration |
4037 N_Formal_Type_Declaration |
4038 N_Full_Type_Declaration |
4039 N_Function_Instantiation |
4040 N_Generic_Function_Renaming_Declaration |
4041 N_Generic_Package_Declaration |
4042 N_Generic_Package_Renaming_Declaration |
4043 N_Generic_Procedure_Renaming_Declaration |
4044 N_Generic_Subprogram_Declaration |
4045 N_Implicit_Label_Declaration |
4046 N_Incomplete_Type_Declaration |
4047 N_Number_Declaration |
4048 N_Object_Declaration |
4049 N_Object_Renaming_Declaration |
4050 N_Package_Body |
4051 N_Package_Body_Stub |
4052 N_Package_Declaration |
4053 N_Package_Instantiation |
4054 N_Package_Renaming_Declaration |
4055 N_Private_Extension_Declaration |
4056 N_Private_Type_Declaration |
4057 N_Procedure_Instantiation |
4058 N_Protected_Body |
4059 N_Protected_Body_Stub |
4060 N_Protected_Type_Declaration |
4061 N_Single_Task_Declaration |
4062 N_Subprogram_Body |
4063 N_Subprogram_Body_Stub |
4064 N_Subprogram_Declaration |
4065 N_Subprogram_Renaming_Declaration |
4066 N_Subtype_Declaration |
4067 N_Task_Body |
4068 N_Task_Body_Stub |
4069 N_Task_Type_Declaration |
4071 -- Use clauses can appear in lists of declarations
4073 N_Use_Package_Clause |
4074 N_Use_Type_Clause |
4076 -- Freeze entity behaves like a declaration or statement
4078 N_Freeze_Entity |
4079 N_Freeze_Generic_Entity
4081 -- Do not insert here if the item is not a list member (this
4082 -- happens for example with a triggering statement, and the
4083 -- proper approach is to insert before the entire select).
4085 if not Is_List_Member (P) then
4086 null;
4088 -- Do not insert if parent of P is an N_Component_Association
4089 -- node (i.e. we are in the context of an N_Aggregate or
4090 -- N_Extension_Aggregate node. In this case we want to insert
4091 -- before the entire aggregate.
4093 elsif Nkind (Parent (P)) = N_Component_Association then
4094 null;
4096 -- Do not insert if the parent of P is either an N_Variant node
4097 -- or an N_Record_Definition node, meaning in either case that
4098 -- P is a member of a component list, and that therefore the
4099 -- actions should be inserted outside the complete record
4100 -- declaration.
4102 elsif Nkind_In (Parent (P), N_Variant, N_Record_Definition) then
4103 null;
4105 -- Do not insert freeze nodes within the loop generated for
4106 -- an aggregate, because they may be elaborated too late for
4107 -- subsequent use in the back end: within a package spec the
4108 -- loop is part of the elaboration procedure and is only
4109 -- elaborated during the second pass.
4111 -- If the loop comes from source, or the entity is local to the
4112 -- loop itself it must remain within.
4114 elsif Nkind (Parent (P)) = N_Loop_Statement
4115 and then not Comes_From_Source (Parent (P))
4116 and then Nkind (First (Ins_Actions)) = N_Freeze_Entity
4117 and then
4118 Scope (Entity (First (Ins_Actions))) /= Current_Scope
4119 then
4120 null;
4122 -- Otherwise we can go ahead and do the insertion
4124 elsif P = Wrapped_Node then
4125 Store_Before_Actions_In_Scope (Ins_Actions);
4126 return;
4128 else
4129 Insert_List_Before_And_Analyze (P, Ins_Actions);
4130 return;
4131 end if;
4133 -- A special case, N_Raise_xxx_Error can act either as a statement
4134 -- or a subexpression. We tell the difference by looking at the
4135 -- Etype. It is set to Standard_Void_Type in the statement case.
4137 when
4138 N_Raise_xxx_Error =>
4139 if Etype (P) = Standard_Void_Type then
4140 if P = Wrapped_Node then
4141 Store_Before_Actions_In_Scope (Ins_Actions);
4142 else
4143 Insert_List_Before_And_Analyze (P, Ins_Actions);
4144 end if;
4146 return;
4148 -- In the subexpression case, keep climbing
4150 else
4151 null;
4152 end if;
4154 -- If a component association appears within a loop created for
4155 -- an array aggregate, attach the actions to the association so
4156 -- they can be subsequently inserted within the loop. For other
4157 -- component associations insert outside of the aggregate. For
4158 -- an association that will generate a loop, its Loop_Actions
4159 -- attribute is already initialized (see exp_aggr.adb).
4161 -- The list of loop_actions can in turn generate additional ones,
4162 -- that are inserted before the associated node. If the associated
4163 -- node is outside the aggregate, the new actions are collected
4164 -- at the end of the loop actions, to respect the order in which
4165 -- they are to be elaborated.
4167 when
4168 N_Component_Association =>
4169 if Nkind (Parent (P)) = N_Aggregate
4170 and then Present (Loop_Actions (P))
4171 then
4172 if Is_Empty_List (Loop_Actions (P)) then
4173 Set_Loop_Actions (P, Ins_Actions);
4174 Analyze_List (Ins_Actions);
4176 else
4177 declare
4178 Decl : Node_Id;
4180 begin
4181 -- Check whether these actions were generated by a
4182 -- declaration that is part of the loop_ actions
4183 -- for the component_association.
4185 Decl := Assoc_Node;
4186 while Present (Decl) loop
4187 exit when Parent (Decl) = P
4188 and then Is_List_Member (Decl)
4189 and then
4190 List_Containing (Decl) = Loop_Actions (P);
4191 Decl := Parent (Decl);
4192 end loop;
4194 if Present (Decl) then
4195 Insert_List_Before_And_Analyze
4196 (Decl, Ins_Actions);
4197 else
4198 Insert_List_After_And_Analyze
4199 (Last (Loop_Actions (P)), Ins_Actions);
4200 end if;
4201 end;
4202 end if;
4204 return;
4206 else
4207 null;
4208 end if;
4210 -- Another special case, an attribute denoting a procedure call
4212 when
4213 N_Attribute_Reference =>
4214 if Is_Procedure_Attribute_Name (Attribute_Name (P)) then
4215 if P = Wrapped_Node then
4216 Store_Before_Actions_In_Scope (Ins_Actions);
4217 else
4218 Insert_List_Before_And_Analyze (P, Ins_Actions);
4219 end if;
4221 return;
4223 -- In the subexpression case, keep climbing
4225 else
4226 null;
4227 end if;
4229 -- A contract node should not belong to the tree
4231 when N_Contract =>
4232 raise Program_Error;
4234 -- For all other node types, keep climbing tree
4236 when
4237 N_Abortable_Part |
4238 N_Accept_Alternative |
4239 N_Access_Definition |
4240 N_Access_Function_Definition |
4241 N_Access_Procedure_Definition |
4242 N_Access_To_Object_Definition |
4243 N_Aggregate |
4244 N_Allocator |
4245 N_Aspect_Specification |
4246 N_Case_Expression |
4247 N_Case_Statement_Alternative |
4248 N_Character_Literal |
4249 N_Compilation_Unit |
4250 N_Compilation_Unit_Aux |
4251 N_Component_Clause |
4252 N_Component_Declaration |
4253 N_Component_Definition |
4254 N_Component_List |
4255 N_Constrained_Array_Definition |
4256 N_Decimal_Fixed_Point_Definition |
4257 N_Defining_Character_Literal |
4258 N_Defining_Identifier |
4259 N_Defining_Operator_Symbol |
4260 N_Defining_Program_Unit_Name |
4261 N_Delay_Alternative |
4262 N_Delta_Constraint |
4263 N_Derived_Type_Definition |
4264 N_Designator |
4265 N_Digits_Constraint |
4266 N_Discriminant_Association |
4267 N_Discriminant_Specification |
4268 N_Empty |
4269 N_Entry_Body_Formal_Part |
4270 N_Entry_Call_Alternative |
4271 N_Entry_Declaration |
4272 N_Entry_Index_Specification |
4273 N_Enumeration_Type_Definition |
4274 N_Error |
4275 N_Exception_Handler |
4276 N_Expanded_Name |
4277 N_Explicit_Dereference |
4278 N_Extension_Aggregate |
4279 N_Floating_Point_Definition |
4280 N_Formal_Decimal_Fixed_Point_Definition |
4281 N_Formal_Derived_Type_Definition |
4282 N_Formal_Discrete_Type_Definition |
4283 N_Formal_Floating_Point_Definition |
4284 N_Formal_Modular_Type_Definition |
4285 N_Formal_Ordinary_Fixed_Point_Definition |
4286 N_Formal_Package_Declaration |
4287 N_Formal_Private_Type_Definition |
4288 N_Formal_Incomplete_Type_Definition |
4289 N_Formal_Signed_Integer_Type_Definition |
4290 N_Function_Call |
4291 N_Function_Specification |
4292 N_Generic_Association |
4293 N_Handled_Sequence_Of_Statements |
4294 N_Identifier |
4295 N_In |
4296 N_Index_Or_Discriminant_Constraint |
4297 N_Indexed_Component |
4298 N_Integer_Literal |
4299 N_Iterator_Specification |
4300 N_Itype_Reference |
4301 N_Label |
4302 N_Loop_Parameter_Specification |
4303 N_Mod_Clause |
4304 N_Modular_Type_Definition |
4305 N_Not_In |
4306 N_Null |
4307 N_Op_Abs |
4308 N_Op_Add |
4309 N_Op_And |
4310 N_Op_Concat |
4311 N_Op_Divide |
4312 N_Op_Eq |
4313 N_Op_Expon |
4314 N_Op_Ge |
4315 N_Op_Gt |
4316 N_Op_Le |
4317 N_Op_Lt |
4318 N_Op_Minus |
4319 N_Op_Mod |
4320 N_Op_Multiply |
4321 N_Op_Ne |
4322 N_Op_Not |
4323 N_Op_Or |
4324 N_Op_Plus |
4325 N_Op_Rem |
4326 N_Op_Rotate_Left |
4327 N_Op_Rotate_Right |
4328 N_Op_Shift_Left |
4329 N_Op_Shift_Right |
4330 N_Op_Shift_Right_Arithmetic |
4331 N_Op_Subtract |
4332 N_Op_Xor |
4333 N_Operator_Symbol |
4334 N_Ordinary_Fixed_Point_Definition |
4335 N_Others_Choice |
4336 N_Package_Specification |
4337 N_Parameter_Association |
4338 N_Parameter_Specification |
4339 N_Pop_Constraint_Error_Label |
4340 N_Pop_Program_Error_Label |
4341 N_Pop_Storage_Error_Label |
4342 N_Pragma_Argument_Association |
4343 N_Procedure_Specification |
4344 N_Protected_Definition |
4345 N_Push_Constraint_Error_Label |
4346 N_Push_Program_Error_Label |
4347 N_Push_Storage_Error_Label |
4348 N_Qualified_Expression |
4349 N_Quantified_Expression |
4350 N_Raise_Expression |
4351 N_Range |
4352 N_Range_Constraint |
4353 N_Real_Literal |
4354 N_Real_Range_Specification |
4355 N_Record_Definition |
4356 N_Reference |
4357 N_SCIL_Dispatch_Table_Tag_Init |
4358 N_SCIL_Dispatching_Call |
4359 N_SCIL_Membership_Test |
4360 N_Selected_Component |
4361 N_Signed_Integer_Type_Definition |
4362 N_Single_Protected_Declaration |
4363 N_Slice |
4364 N_String_Literal |
4365 N_Subtype_Indication |
4366 N_Subunit |
4367 N_Task_Definition |
4368 N_Terminate_Alternative |
4369 N_Triggering_Alternative |
4370 N_Type_Conversion |
4371 N_Unchecked_Expression |
4372 N_Unchecked_Type_Conversion |
4373 N_Unconstrained_Array_Definition |
4374 N_Unused_At_End |
4375 N_Unused_At_Start |
4376 N_Variant |
4377 N_Variant_Part |
4378 N_Validate_Unchecked_Conversion |
4379 N_With_Clause
4381 null;
4383 end case;
4385 -- If we fall through above tests, keep climbing tree
4387 N := P;
4389 if Nkind (Parent (N)) = N_Subunit then
4391 -- This is the proper body corresponding to a stub. Insertion must
4392 -- be done at the point of the stub, which is in the declarative
4393 -- part of the parent unit.
4395 P := Corresponding_Stub (Parent (N));
4397 else
4398 P := Parent (N);
4399 end if;
4400 end loop;
4401 end Insert_Actions;
4403 -- Version with check(s) suppressed
4405 procedure Insert_Actions
4406 (Assoc_Node : Node_Id;
4407 Ins_Actions : List_Id;
4408 Suppress : Check_Id)
4410 begin
4411 if Suppress = All_Checks then
4412 declare
4413 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
4414 begin
4415 Scope_Suppress.Suppress := (others => True);
4416 Insert_Actions (Assoc_Node, Ins_Actions);
4417 Scope_Suppress.Suppress := Sva;
4418 end;
4420 else
4421 declare
4422 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
4423 begin
4424 Scope_Suppress.Suppress (Suppress) := True;
4425 Insert_Actions (Assoc_Node, Ins_Actions);
4426 Scope_Suppress.Suppress (Suppress) := Svg;
4427 end;
4428 end if;
4429 end Insert_Actions;
4431 --------------------------
4432 -- Insert_Actions_After --
4433 --------------------------
4435 procedure Insert_Actions_After
4436 (Assoc_Node : Node_Id;
4437 Ins_Actions : List_Id)
4439 begin
4440 if Scope_Is_Transient and then Assoc_Node = Node_To_Be_Wrapped then
4441 Store_After_Actions_In_Scope (Ins_Actions);
4442 else
4443 Insert_List_After_And_Analyze (Assoc_Node, Ins_Actions);
4444 end if;
4445 end Insert_Actions_After;
4447 ------------------------
4448 -- Insert_Declaration --
4449 ------------------------
4451 procedure Insert_Declaration (N : Node_Id; Decl : Node_Id) is
4452 P : Node_Id;
4454 begin
4455 pragma Assert (Nkind (N) in N_Subexpr);
4457 -- Climb until we find a procedure or a package
4459 P := N;
4460 loop
4461 pragma Assert (Present (Parent (P)));
4462 P := Parent (P);
4464 if Is_List_Member (P) then
4465 exit when Nkind_In (Parent (P), N_Package_Specification,
4466 N_Subprogram_Body);
4468 -- Special handling for handled sequence of statements, we must
4469 -- insert in the statements not the exception handlers!
4471 if Nkind (Parent (P)) = N_Handled_Sequence_Of_Statements then
4472 P := First (Statements (Parent (P)));
4473 exit;
4474 end if;
4475 end if;
4476 end loop;
4478 -- Now do the insertion
4480 Insert_Before (P, Decl);
4481 Analyze (Decl);
4482 end Insert_Declaration;
4484 ---------------------------------
4485 -- Insert_Library_Level_Action --
4486 ---------------------------------
4488 procedure Insert_Library_Level_Action (N : Node_Id) is
4489 Aux : constant Node_Id := Aux_Decls_Node (Cunit (Main_Unit));
4491 begin
4492 Push_Scope (Cunit_Entity (Main_Unit));
4493 -- ??? should this be Current_Sem_Unit instead of Main_Unit?
4495 if No (Actions (Aux)) then
4496 Set_Actions (Aux, New_List (N));
4497 else
4498 Append (N, Actions (Aux));
4499 end if;
4501 Analyze (N);
4502 Pop_Scope;
4503 end Insert_Library_Level_Action;
4505 ----------------------------------
4506 -- Insert_Library_Level_Actions --
4507 ----------------------------------
4509 procedure Insert_Library_Level_Actions (L : List_Id) is
4510 Aux : constant Node_Id := Aux_Decls_Node (Cunit (Main_Unit));
4512 begin
4513 if Is_Non_Empty_List (L) then
4514 Push_Scope (Cunit_Entity (Main_Unit));
4515 -- ??? should this be Current_Sem_Unit instead of Main_Unit?
4517 if No (Actions (Aux)) then
4518 Set_Actions (Aux, L);
4519 Analyze_List (L);
4520 else
4521 Insert_List_After_And_Analyze (Last (Actions (Aux)), L);
4522 end if;
4524 Pop_Scope;
4525 end if;
4526 end Insert_Library_Level_Actions;
4528 ----------------------
4529 -- Inside_Init_Proc --
4530 ----------------------
4532 function Inside_Init_Proc return Boolean is
4533 S : Entity_Id;
4535 begin
4536 S := Current_Scope;
4537 while Present (S) and then S /= Standard_Standard loop
4538 if Is_Init_Proc (S) then
4539 return True;
4540 else
4541 S := Scope (S);
4542 end if;
4543 end loop;
4545 return False;
4546 end Inside_Init_Proc;
4548 ----------------------------
4549 -- Is_All_Null_Statements --
4550 ----------------------------
4552 function Is_All_Null_Statements (L : List_Id) return Boolean is
4553 Stm : Node_Id;
4555 begin
4556 Stm := First (L);
4557 while Present (Stm) loop
4558 if Nkind (Stm) /= N_Null_Statement then
4559 return False;
4560 end if;
4562 Next (Stm);
4563 end loop;
4565 return True;
4566 end Is_All_Null_Statements;
4568 --------------------------------------------------
4569 -- Is_Displacement_Of_Object_Or_Function_Result --
4570 --------------------------------------------------
4572 function Is_Displacement_Of_Object_Or_Function_Result
4573 (Obj_Id : Entity_Id) return Boolean
4575 function Is_Controlled_Function_Call (N : Node_Id) return Boolean;
4576 -- Determine if particular node denotes a controlled function call. The
4577 -- call may have been heavily expanded.
4579 function Is_Displace_Call (N : Node_Id) return Boolean;
4580 -- Determine whether a particular node is a call to Ada.Tags.Displace.
4581 -- The call might be nested within other actions such as conversions.
4583 function Is_Source_Object (N : Node_Id) return Boolean;
4584 -- Determine whether a particular node denotes a source object
4586 ---------------------------------
4587 -- Is_Controlled_Function_Call --
4588 ---------------------------------
4590 function Is_Controlled_Function_Call (N : Node_Id) return Boolean is
4591 Expr : Node_Id := Original_Node (N);
4593 begin
4594 if Nkind (Expr) = N_Function_Call then
4595 Expr := Name (Expr);
4597 -- When a function call appears in Object.Operation format, the
4598 -- original representation has two possible forms depending on the
4599 -- availability of actual parameters:
4601 -- Obj.Func_Call N_Selected_Component
4602 -- Obj.Func_Call (Param) N_Indexed_Component
4604 else
4605 if Nkind (Expr) = N_Indexed_Component then
4606 Expr := Prefix (Expr);
4607 end if;
4609 if Nkind (Expr) = N_Selected_Component then
4610 Expr := Selector_Name (Expr);
4611 end if;
4612 end if;
4614 return
4615 Nkind_In (Expr, N_Expanded_Name, N_Identifier)
4616 and then Ekind (Entity (Expr)) = E_Function
4617 and then Needs_Finalization (Etype (Entity (Expr)));
4618 end Is_Controlled_Function_Call;
4620 ----------------------
4621 -- Is_Displace_Call --
4622 ----------------------
4624 function Is_Displace_Call (N : Node_Id) return Boolean is
4625 Call : Node_Id := N;
4627 begin
4628 -- Strip various actions which may precede a call to Displace
4630 loop
4631 if Nkind (Call) = N_Explicit_Dereference then
4632 Call := Prefix (Call);
4634 elsif Nkind_In (Call, N_Type_Conversion,
4635 N_Unchecked_Type_Conversion)
4636 then
4637 Call := Expression (Call);
4639 else
4640 exit;
4641 end if;
4642 end loop;
4644 return
4645 Present (Call)
4646 and then Nkind (Call) = N_Function_Call
4647 and then Is_RTE (Entity (Name (Call)), RE_Displace);
4648 end Is_Displace_Call;
4650 ----------------------
4651 -- Is_Source_Object --
4652 ----------------------
4654 function Is_Source_Object (N : Node_Id) return Boolean is
4655 begin
4656 return
4657 Present (N)
4658 and then Nkind (N) in N_Has_Entity
4659 and then Is_Object (Entity (N))
4660 and then Comes_From_Source (N);
4661 end Is_Source_Object;
4663 -- Local variables
4665 Decl : constant Node_Id := Parent (Obj_Id);
4666 Obj_Typ : constant Entity_Id := Base_Type (Etype (Obj_Id));
4667 Orig_Decl : constant Node_Id := Original_Node (Decl);
4669 -- Start of processing for Is_Displacement_Of_Object_Or_Function_Result
4671 begin
4672 -- Case 1:
4674 -- Obj : CW_Type := Function_Call (...);
4676 -- rewritten into:
4678 -- Tmp : ... := Function_Call (...)'reference;
4679 -- Obj : CW_Type renames (... Ada.Tags.Displace (Tmp));
4681 -- where the return type of the function and the class-wide type require
4682 -- dispatch table pointer displacement.
4684 -- Case 2:
4686 -- Obj : CW_Type := Src_Obj;
4688 -- rewritten into:
4690 -- Obj : CW_Type renames (... Ada.Tags.Displace (Src_Obj));
4692 -- where the type of the source object and the class-wide type require
4693 -- dispatch table pointer displacement.
4695 return
4696 Nkind (Decl) = N_Object_Renaming_Declaration
4697 and then Nkind (Orig_Decl) = N_Object_Declaration
4698 and then Comes_From_Source (Orig_Decl)
4699 and then Is_Class_Wide_Type (Obj_Typ)
4700 and then Is_Displace_Call (Renamed_Object (Obj_Id))
4701 and then
4702 (Is_Controlled_Function_Call (Expression (Orig_Decl))
4703 or else Is_Source_Object (Expression (Orig_Decl)));
4704 end Is_Displacement_Of_Object_Or_Function_Result;
4706 ------------------------------
4707 -- Is_Finalizable_Transient --
4708 ------------------------------
4710 function Is_Finalizable_Transient
4711 (Decl : Node_Id;
4712 Rel_Node : Node_Id) return Boolean
4714 Obj_Id : constant Entity_Id := Defining_Identifier (Decl);
4715 Obj_Typ : constant Entity_Id := Base_Type (Etype (Obj_Id));
4716 Desig : Entity_Id := Obj_Typ;
4718 function Initialized_By_Access (Trans_Id : Entity_Id) return Boolean;
4719 -- Determine whether transient object Trans_Id is initialized either
4720 -- by a function call which returns an access type or simply renames
4721 -- another pointer.
4723 function Initialized_By_Aliased_BIP_Func_Call
4724 (Trans_Id : Entity_Id) return Boolean;
4725 -- Determine whether transient object Trans_Id is initialized by a
4726 -- build-in-place function call where the BIPalloc parameter is of
4727 -- value 1 and BIPaccess is not null. This case creates an aliasing
4728 -- between the returned value and the value denoted by BIPaccess.
4730 function Is_Aliased
4731 (Trans_Id : Entity_Id;
4732 First_Stmt : Node_Id) return Boolean;
4733 -- Determine whether transient object Trans_Id has been renamed or
4734 -- aliased through 'reference in the statement list starting from
4735 -- First_Stmt.
4737 function Is_Allocated (Trans_Id : Entity_Id) return Boolean;
4738 -- Determine whether transient object Trans_Id is allocated on the heap
4740 function Is_Iterated_Container
4741 (Trans_Id : Entity_Id;
4742 First_Stmt : Node_Id) return Boolean;
4743 -- Determine whether transient object Trans_Id denotes a container which
4744 -- is in the process of being iterated in the statement list starting
4745 -- from First_Stmt.
4747 ---------------------------
4748 -- Initialized_By_Access --
4749 ---------------------------
4751 function Initialized_By_Access (Trans_Id : Entity_Id) return Boolean is
4752 Expr : constant Node_Id := Expression (Parent (Trans_Id));
4754 begin
4755 return
4756 Present (Expr)
4757 and then Nkind (Expr) /= N_Reference
4758 and then Is_Access_Type (Etype (Expr));
4759 end Initialized_By_Access;
4761 ------------------------------------------
4762 -- Initialized_By_Aliased_BIP_Func_Call --
4763 ------------------------------------------
4765 function Initialized_By_Aliased_BIP_Func_Call
4766 (Trans_Id : Entity_Id) return Boolean
4768 Call : Node_Id := Expression (Parent (Trans_Id));
4770 begin
4771 -- Build-in-place calls usually appear in 'reference format
4773 if Nkind (Call) = N_Reference then
4774 Call := Prefix (Call);
4775 end if;
4777 if Is_Build_In_Place_Function_Call (Call) then
4778 declare
4779 Access_Nam : Name_Id := No_Name;
4780 Access_OK : Boolean := False;
4781 Actual : Node_Id;
4782 Alloc_Nam : Name_Id := No_Name;
4783 Alloc_OK : Boolean := False;
4784 Formal : Node_Id;
4785 Func_Id : Entity_Id;
4786 Param : Node_Id;
4788 begin
4789 -- Examine all parameter associations of the function call
4791 Param := First (Parameter_Associations (Call));
4792 while Present (Param) loop
4793 if Nkind (Param) = N_Parameter_Association
4794 and then Nkind (Selector_Name (Param)) = N_Identifier
4795 then
4796 Actual := Explicit_Actual_Parameter (Param);
4797 Formal := Selector_Name (Param);
4799 -- Construct the names of formals BIPaccess and BIPalloc
4800 -- using the function name retrieved from an arbitrary
4801 -- formal.
4803 if Access_Nam = No_Name
4804 and then Alloc_Nam = No_Name
4805 and then Present (Entity (Formal))
4806 then
4807 Func_Id := Scope (Entity (Formal));
4809 Access_Nam :=
4810 New_External_Name (Chars (Func_Id),
4811 BIP_Formal_Suffix (BIP_Object_Access));
4813 Alloc_Nam :=
4814 New_External_Name (Chars (Func_Id),
4815 BIP_Formal_Suffix (BIP_Alloc_Form));
4816 end if;
4818 -- A match for BIPaccess => Temp has been found
4820 if Chars (Formal) = Access_Nam
4821 and then Nkind (Actual) /= N_Null
4822 then
4823 Access_OK := True;
4824 end if;
4826 -- A match for BIPalloc => 1 has been found
4828 if Chars (Formal) = Alloc_Nam
4829 and then Nkind (Actual) = N_Integer_Literal
4830 and then Intval (Actual) = Uint_1
4831 then
4832 Alloc_OK := True;
4833 end if;
4834 end if;
4836 Next (Param);
4837 end loop;
4839 return Access_OK and Alloc_OK;
4840 end;
4841 end if;
4843 return False;
4844 end Initialized_By_Aliased_BIP_Func_Call;
4846 ----------------
4847 -- Is_Aliased --
4848 ----------------
4850 function Is_Aliased
4851 (Trans_Id : Entity_Id;
4852 First_Stmt : Node_Id) return Boolean
4854 function Find_Renamed_Object (Ren_Decl : Node_Id) return Entity_Id;
4855 -- Given an object renaming declaration, retrieve the entity of the
4856 -- renamed name. Return Empty if the renamed name is anything other
4857 -- than a variable or a constant.
4859 -------------------------
4860 -- Find_Renamed_Object --
4861 -------------------------
4863 function Find_Renamed_Object (Ren_Decl : Node_Id) return Entity_Id is
4864 Ren_Obj : Node_Id := Empty;
4866 function Find_Object (N : Node_Id) return Traverse_Result;
4867 -- Try to detect an object which is either a constant or a
4868 -- variable.
4870 -----------------
4871 -- Find_Object --
4872 -----------------
4874 function Find_Object (N : Node_Id) return Traverse_Result is
4875 begin
4876 -- Stop the search once a constant or a variable has been
4877 -- detected.
4879 if Nkind (N) = N_Identifier
4880 and then Present (Entity (N))
4881 and then Ekind_In (Entity (N), E_Constant, E_Variable)
4882 then
4883 Ren_Obj := Entity (N);
4884 return Abandon;
4885 end if;
4887 return OK;
4888 end Find_Object;
4890 procedure Search is new Traverse_Proc (Find_Object);
4892 -- Local variables
4894 Typ : constant Entity_Id := Etype (Defining_Identifier (Ren_Decl));
4896 -- Start of processing for Find_Renamed_Object
4898 begin
4899 -- Actions related to dispatching calls may appear as renamings of
4900 -- tags. Do not process this type of renaming because it does not
4901 -- use the actual value of the object.
4903 if not Is_RTE (Typ, RE_Tag_Ptr) then
4904 Search (Name (Ren_Decl));
4905 end if;
4907 return Ren_Obj;
4908 end Find_Renamed_Object;
4910 -- Local variables
4912 Expr : Node_Id;
4913 Ren_Obj : Entity_Id;
4914 Stmt : Node_Id;
4916 -- Start of processing for Is_Aliased
4918 begin
4919 Stmt := First_Stmt;
4920 while Present (Stmt) loop
4921 if Nkind (Stmt) = N_Object_Declaration then
4922 Expr := Expression (Stmt);
4924 if Present (Expr)
4925 and then Nkind (Expr) = N_Reference
4926 and then Nkind (Prefix (Expr)) = N_Identifier
4927 and then Entity (Prefix (Expr)) = Trans_Id
4928 then
4929 return True;
4930 end if;
4932 elsif Nkind (Stmt) = N_Object_Renaming_Declaration then
4933 Ren_Obj := Find_Renamed_Object (Stmt);
4935 if Present (Ren_Obj) and then Ren_Obj = Trans_Id then
4936 return True;
4937 end if;
4938 end if;
4940 Next (Stmt);
4941 end loop;
4943 return False;
4944 end Is_Aliased;
4946 ------------------
4947 -- Is_Allocated --
4948 ------------------
4950 function Is_Allocated (Trans_Id : Entity_Id) return Boolean is
4951 Expr : constant Node_Id := Expression (Parent (Trans_Id));
4952 begin
4953 return
4954 Is_Access_Type (Etype (Trans_Id))
4955 and then Present (Expr)
4956 and then Nkind (Expr) = N_Allocator;
4957 end Is_Allocated;
4959 ---------------------------
4960 -- Is_Iterated_Container --
4961 ---------------------------
4963 function Is_Iterated_Container
4964 (Trans_Id : Entity_Id;
4965 First_Stmt : Node_Id) return Boolean
4967 Aspect : Node_Id;
4968 Call : Node_Id;
4969 Iter : Entity_Id;
4970 Param : Node_Id;
4971 Stmt : Node_Id;
4972 Typ : Entity_Id;
4974 begin
4975 -- It is not possible to iterate over containers in non-Ada 2012 code
4977 if Ada_Version < Ada_2012 then
4978 return False;
4979 end if;
4981 Typ := Etype (Trans_Id);
4983 -- Handle access type created for secondary stack use
4985 if Is_Access_Type (Typ) then
4986 Typ := Designated_Type (Typ);
4987 end if;
4989 -- Look for aspect Default_Iterator. It may be part of a type
4990 -- declaration for a container, or inherited from a base type
4991 -- or parent type.
4993 Aspect := Find_Value_Of_Aspect (Typ, Aspect_Default_Iterator);
4995 if Present (Aspect) then
4996 Iter := Entity (Aspect);
4998 -- Examine the statements following the container object and
4999 -- look for a call to the default iterate routine where the
5000 -- first parameter is the transient. Such a call appears as:
5002 -- It : Access_To_CW_Iterator :=
5003 -- Iterate (Tran_Id.all, ...)'reference;
5005 Stmt := First_Stmt;
5006 while Present (Stmt) loop
5008 -- Detect an object declaration which is initialized by a
5009 -- secondary stack function call.
5011 if Nkind (Stmt) = N_Object_Declaration
5012 and then Present (Expression (Stmt))
5013 and then Nkind (Expression (Stmt)) = N_Reference
5014 and then Nkind (Prefix (Expression (Stmt))) = N_Function_Call
5015 then
5016 Call := Prefix (Expression (Stmt));
5018 -- The call must invoke the default iterate routine of
5019 -- the container and the transient object must appear as
5020 -- the first actual parameter. Skip any calls whose names
5021 -- are not entities.
5023 if Is_Entity_Name (Name (Call))
5024 and then Entity (Name (Call)) = Iter
5025 and then Present (Parameter_Associations (Call))
5026 then
5027 Param := First (Parameter_Associations (Call));
5029 if Nkind (Param) = N_Explicit_Dereference
5030 and then Entity (Prefix (Param)) = Trans_Id
5031 then
5032 return True;
5033 end if;
5034 end if;
5035 end if;
5037 Next (Stmt);
5038 end loop;
5039 end if;
5041 return False;
5042 end Is_Iterated_Container;
5044 -- Start of processing for Is_Finalizable_Transient
5046 begin
5047 -- Handle access types
5049 if Is_Access_Type (Desig) then
5050 Desig := Available_View (Designated_Type (Desig));
5051 end if;
5053 return
5054 Ekind_In (Obj_Id, E_Constant, E_Variable)
5055 and then Needs_Finalization (Desig)
5056 and then Requires_Transient_Scope (Desig)
5057 and then Nkind (Rel_Node) /= N_Simple_Return_Statement
5059 -- Do not consider renamed or 'reference-d transient objects because
5060 -- the act of renaming extends the object's lifetime.
5062 and then not Is_Aliased (Obj_Id, Decl)
5064 -- Do not consider transient objects allocated on the heap since
5065 -- they are attached to a finalization master.
5067 and then not Is_Allocated (Obj_Id)
5069 -- If the transient object is a pointer, check that it is not
5070 -- initialized by a function which returns a pointer or acts as a
5071 -- renaming of another pointer.
5073 and then
5074 (not Is_Access_Type (Obj_Typ)
5075 or else not Initialized_By_Access (Obj_Id))
5077 -- Do not consider transient objects which act as indirect aliases
5078 -- of build-in-place function results.
5080 and then not Initialized_By_Aliased_BIP_Func_Call (Obj_Id)
5082 -- Do not consider conversions of tags to class-wide types
5084 and then not Is_Tag_To_Class_Wide_Conversion (Obj_Id)
5086 -- Do not consider containers in the context of iterator loops. Such
5087 -- transient objects must exist for as long as the loop is around,
5088 -- otherwise any operation carried out by the iterator will fail.
5090 and then not Is_Iterated_Container (Obj_Id, Decl);
5091 end Is_Finalizable_Transient;
5093 ---------------------------------
5094 -- Is_Fully_Repped_Tagged_Type --
5095 ---------------------------------
5097 function Is_Fully_Repped_Tagged_Type (T : Entity_Id) return Boolean is
5098 U : constant Entity_Id := Underlying_Type (T);
5099 Comp : Entity_Id;
5101 begin
5102 if No (U) or else not Is_Tagged_Type (U) then
5103 return False;
5104 elsif Has_Discriminants (U) then
5105 return False;
5106 elsif not Has_Specified_Layout (U) then
5107 return False;
5108 end if;
5110 -- Here we have a tagged type, see if it has any unlayed out fields
5111 -- other than a possible tag and parent fields. If so, we return False.
5113 Comp := First_Component (U);
5114 while Present (Comp) loop
5115 if not Is_Tag (Comp)
5116 and then Chars (Comp) /= Name_uParent
5117 and then No (Component_Clause (Comp))
5118 then
5119 return False;
5120 else
5121 Next_Component (Comp);
5122 end if;
5123 end loop;
5125 -- All components are layed out
5127 return True;
5128 end Is_Fully_Repped_Tagged_Type;
5130 ----------------------------------
5131 -- Is_Library_Level_Tagged_Type --
5132 ----------------------------------
5134 function Is_Library_Level_Tagged_Type (Typ : Entity_Id) return Boolean is
5135 begin
5136 return Is_Tagged_Type (Typ) and then Is_Library_Level_Entity (Typ);
5137 end Is_Library_Level_Tagged_Type;
5139 --------------------------
5140 -- Is_Non_BIP_Func_Call --
5141 --------------------------
5143 function Is_Non_BIP_Func_Call (Expr : Node_Id) return Boolean is
5144 begin
5145 -- The expected call is of the format
5147 -- Func_Call'reference
5149 return
5150 Nkind (Expr) = N_Reference
5151 and then Nkind (Prefix (Expr)) = N_Function_Call
5152 and then not Is_Build_In_Place_Function_Call (Prefix (Expr));
5153 end Is_Non_BIP_Func_Call;
5155 ------------------------------------
5156 -- Is_Object_Access_BIP_Func_Call --
5157 ------------------------------------
5159 function Is_Object_Access_BIP_Func_Call
5160 (Expr : Node_Id;
5161 Obj_Id : Entity_Id) return Boolean
5163 Access_Nam : Name_Id := No_Name;
5164 Actual : Node_Id;
5165 Call : Node_Id;
5166 Formal : Node_Id;
5167 Param : Node_Id;
5169 begin
5170 -- Build-in-place calls usually appear in 'reference format. Note that
5171 -- the accessibility check machinery may add an extra 'reference due to
5172 -- side effect removal.
5174 Call := Expr;
5175 while Nkind (Call) = N_Reference loop
5176 Call := Prefix (Call);
5177 end loop;
5179 if Nkind_In (Call, N_Qualified_Expression,
5180 N_Unchecked_Type_Conversion)
5181 then
5182 Call := Expression (Call);
5183 end if;
5185 if Is_Build_In_Place_Function_Call (Call) then
5187 -- Examine all parameter associations of the function call
5189 Param := First (Parameter_Associations (Call));
5190 while Present (Param) loop
5191 if Nkind (Param) = N_Parameter_Association
5192 and then Nkind (Selector_Name (Param)) = N_Identifier
5193 then
5194 Formal := Selector_Name (Param);
5195 Actual := Explicit_Actual_Parameter (Param);
5197 -- Construct the name of formal BIPaccess. It is much easier to
5198 -- extract the name of the function using an arbitrary formal's
5199 -- scope rather than the Name field of Call.
5201 if Access_Nam = No_Name and then Present (Entity (Formal)) then
5202 Access_Nam :=
5203 New_External_Name
5204 (Chars (Scope (Entity (Formal))),
5205 BIP_Formal_Suffix (BIP_Object_Access));
5206 end if;
5208 -- A match for BIPaccess => Obj_Id'Unrestricted_Access has been
5209 -- found.
5211 if Chars (Formal) = Access_Nam
5212 and then Nkind (Actual) = N_Attribute_Reference
5213 and then Attribute_Name (Actual) = Name_Unrestricted_Access
5214 and then Nkind (Prefix (Actual)) = N_Identifier
5215 and then Entity (Prefix (Actual)) = Obj_Id
5216 then
5217 return True;
5218 end if;
5219 end if;
5221 Next (Param);
5222 end loop;
5223 end if;
5225 return False;
5226 end Is_Object_Access_BIP_Func_Call;
5228 ----------------------------------
5229 -- Is_Possibly_Unaligned_Object --
5230 ----------------------------------
5232 function Is_Possibly_Unaligned_Object (N : Node_Id) return Boolean is
5233 T : constant Entity_Id := Etype (N);
5235 begin
5236 -- Objects are never unaligned on VMs
5238 if VM_Target /= No_VM then
5239 return False;
5240 end if;
5242 -- If renamed object, apply test to underlying object
5244 if Is_Entity_Name (N)
5245 and then Is_Object (Entity (N))
5246 and then Present (Renamed_Object (Entity (N)))
5247 then
5248 return Is_Possibly_Unaligned_Object (Renamed_Object (Entity (N)));
5249 end if;
5251 -- Tagged and controlled types and aliased types are always aligned, as
5252 -- are concurrent types.
5254 if Is_Aliased (T)
5255 or else Has_Controlled_Component (T)
5256 or else Is_Concurrent_Type (T)
5257 or else Is_Tagged_Type (T)
5258 or else Is_Controlled (T)
5259 then
5260 return False;
5261 end if;
5263 -- If this is an element of a packed array, may be unaligned
5265 if Is_Ref_To_Bit_Packed_Array (N) then
5266 return True;
5267 end if;
5269 -- Case of indexed component reference: test whether prefix is unaligned
5271 if Nkind (N) = N_Indexed_Component then
5272 return Is_Possibly_Unaligned_Object (Prefix (N));
5274 -- Case of selected component reference
5276 elsif Nkind (N) = N_Selected_Component then
5277 declare
5278 P : constant Node_Id := Prefix (N);
5279 C : constant Entity_Id := Entity (Selector_Name (N));
5280 M : Nat;
5281 S : Nat;
5283 begin
5284 -- If component reference is for an array with non-static bounds,
5285 -- then it is always aligned: we can only process unaligned arrays
5286 -- with static bounds (more precisely compile time known bounds).
5288 if Is_Array_Type (T)
5289 and then not Compile_Time_Known_Bounds (T)
5290 then
5291 return False;
5292 end if;
5294 -- If component is aliased, it is definitely properly aligned
5296 if Is_Aliased (C) then
5297 return False;
5298 end if;
5300 -- If component is for a type implemented as a scalar, and the
5301 -- record is packed, and the component is other than the first
5302 -- component of the record, then the component may be unaligned.
5304 if Is_Packed (Etype (P))
5305 and then Represented_As_Scalar (Etype (C))
5306 and then First_Entity (Scope (C)) /= C
5307 then
5308 return True;
5309 end if;
5311 -- Compute maximum possible alignment for T
5313 -- If alignment is known, then that settles things
5315 if Known_Alignment (T) then
5316 M := UI_To_Int (Alignment (T));
5318 -- If alignment is not known, tentatively set max alignment
5320 else
5321 M := Ttypes.Maximum_Alignment;
5323 -- We can reduce this if the Esize is known since the default
5324 -- alignment will never be more than the smallest power of 2
5325 -- that does not exceed this Esize value.
5327 if Known_Esize (T) then
5328 S := UI_To_Int (Esize (T));
5330 while (M / 2) >= S loop
5331 M := M / 2;
5332 end loop;
5333 end if;
5334 end if;
5336 -- The following code is historical, it used to be present but it
5337 -- is too cautious, because the front-end does not know the proper
5338 -- default alignments for the target. Also, if the alignment is
5339 -- not known, the front end can't know in any case. If a copy is
5340 -- needed, the back-end will take care of it. This whole section
5341 -- including this comment can be removed later ???
5343 -- If the component reference is for a record that has a specified
5344 -- alignment, and we either know it is too small, or cannot tell,
5345 -- then the component may be unaligned.
5347 -- What is the following commented out code ???
5349 -- if Known_Alignment (Etype (P))
5350 -- and then Alignment (Etype (P)) < Ttypes.Maximum_Alignment
5351 -- and then M > Alignment (Etype (P))
5352 -- then
5353 -- return True;
5354 -- end if;
5356 -- Case of component clause present which may specify an
5357 -- unaligned position.
5359 if Present (Component_Clause (C)) then
5361 -- Otherwise we can do a test to make sure that the actual
5362 -- start position in the record, and the length, are both
5363 -- consistent with the required alignment. If not, we know
5364 -- that we are unaligned.
5366 declare
5367 Align_In_Bits : constant Nat := M * System_Storage_Unit;
5368 begin
5369 if Component_Bit_Offset (C) mod Align_In_Bits /= 0
5370 or else Esize (C) mod Align_In_Bits /= 0
5371 then
5372 return True;
5373 end if;
5374 end;
5375 end if;
5377 -- Otherwise, for a component reference, test prefix
5379 return Is_Possibly_Unaligned_Object (P);
5380 end;
5382 -- If not a component reference, must be aligned
5384 else
5385 return False;
5386 end if;
5387 end Is_Possibly_Unaligned_Object;
5389 ---------------------------------
5390 -- Is_Possibly_Unaligned_Slice --
5391 ---------------------------------
5393 function Is_Possibly_Unaligned_Slice (N : Node_Id) return Boolean is
5394 begin
5395 -- Go to renamed object
5397 if Is_Entity_Name (N)
5398 and then Is_Object (Entity (N))
5399 and then Present (Renamed_Object (Entity (N)))
5400 then
5401 return Is_Possibly_Unaligned_Slice (Renamed_Object (Entity (N)));
5402 end if;
5404 -- The reference must be a slice
5406 if Nkind (N) /= N_Slice then
5407 return False;
5408 end if;
5410 -- We only need to worry if the target has strict alignment
5412 if not Target_Strict_Alignment then
5413 return False;
5414 end if;
5416 -- If it is a slice, then look at the array type being sliced
5418 declare
5419 Sarr : constant Node_Id := Prefix (N);
5420 -- Prefix of the slice, i.e. the array being sliced
5422 Styp : constant Entity_Id := Etype (Prefix (N));
5423 -- Type of the array being sliced
5425 Pref : Node_Id;
5426 Ptyp : Entity_Id;
5428 begin
5429 -- The problems arise if the array object that is being sliced
5430 -- is a component of a record or array, and we cannot guarantee
5431 -- the alignment of the array within its containing object.
5433 -- To investigate this, we look at successive prefixes to see
5434 -- if we have a worrisome indexed or selected component.
5436 Pref := Sarr;
5437 loop
5438 -- Case of array is part of an indexed component reference
5440 if Nkind (Pref) = N_Indexed_Component then
5441 Ptyp := Etype (Prefix (Pref));
5443 -- The only problematic case is when the array is packed, in
5444 -- which case we really know nothing about the alignment of
5445 -- individual components.
5447 if Is_Bit_Packed_Array (Ptyp) then
5448 return True;
5449 end if;
5451 -- Case of array is part of a selected component reference
5453 elsif Nkind (Pref) = N_Selected_Component then
5454 Ptyp := Etype (Prefix (Pref));
5456 -- We are definitely in trouble if the record in question
5457 -- has an alignment, and either we know this alignment is
5458 -- inconsistent with the alignment of the slice, or we don't
5459 -- know what the alignment of the slice should be.
5461 if Known_Alignment (Ptyp)
5462 and then (Unknown_Alignment (Styp)
5463 or else Alignment (Styp) > Alignment (Ptyp))
5464 then
5465 return True;
5466 end if;
5468 -- We are in potential trouble if the record type is packed.
5469 -- We could special case when we know that the array is the
5470 -- first component, but that's not such a simple case ???
5472 if Is_Packed (Ptyp) then
5473 return True;
5474 end if;
5476 -- We are in trouble if there is a component clause, and
5477 -- either we do not know the alignment of the slice, or
5478 -- the alignment of the slice is inconsistent with the
5479 -- bit position specified by the component clause.
5481 declare
5482 Field : constant Entity_Id := Entity (Selector_Name (Pref));
5483 begin
5484 if Present (Component_Clause (Field))
5485 and then
5486 (Unknown_Alignment (Styp)
5487 or else
5488 (Component_Bit_Offset (Field) mod
5489 (System_Storage_Unit * Alignment (Styp))) /= 0)
5490 then
5491 return True;
5492 end if;
5493 end;
5495 -- For cases other than selected or indexed components we know we
5496 -- are OK, since no issues arise over alignment.
5498 else
5499 return False;
5500 end if;
5502 -- We processed an indexed component or selected component
5503 -- reference that looked safe, so keep checking prefixes.
5505 Pref := Prefix (Pref);
5506 end loop;
5507 end;
5508 end Is_Possibly_Unaligned_Slice;
5510 -------------------------------
5511 -- Is_Related_To_Func_Return --
5512 -------------------------------
5514 function Is_Related_To_Func_Return (Id : Entity_Id) return Boolean is
5515 Expr : constant Node_Id := Related_Expression (Id);
5516 begin
5517 return
5518 Present (Expr)
5519 and then Nkind (Expr) = N_Explicit_Dereference
5520 and then Nkind (Parent (Expr)) = N_Simple_Return_Statement;
5521 end Is_Related_To_Func_Return;
5523 --------------------------------
5524 -- Is_Ref_To_Bit_Packed_Array --
5525 --------------------------------
5527 function Is_Ref_To_Bit_Packed_Array (N : Node_Id) return Boolean is
5528 Result : Boolean;
5529 Expr : Node_Id;
5531 begin
5532 if Is_Entity_Name (N)
5533 and then Is_Object (Entity (N))
5534 and then Present (Renamed_Object (Entity (N)))
5535 then
5536 return Is_Ref_To_Bit_Packed_Array (Renamed_Object (Entity (N)));
5537 end if;
5539 if Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
5540 if Is_Bit_Packed_Array (Etype (Prefix (N))) then
5541 Result := True;
5542 else
5543 Result := Is_Ref_To_Bit_Packed_Array (Prefix (N));
5544 end if;
5546 if Result and then Nkind (N) = N_Indexed_Component then
5547 Expr := First (Expressions (N));
5548 while Present (Expr) loop
5549 Force_Evaluation (Expr);
5550 Next (Expr);
5551 end loop;
5552 end if;
5554 return Result;
5556 else
5557 return False;
5558 end if;
5559 end Is_Ref_To_Bit_Packed_Array;
5561 --------------------------------
5562 -- Is_Ref_To_Bit_Packed_Slice --
5563 --------------------------------
5565 function Is_Ref_To_Bit_Packed_Slice (N : Node_Id) return Boolean is
5566 begin
5567 if Nkind (N) = N_Type_Conversion then
5568 return Is_Ref_To_Bit_Packed_Slice (Expression (N));
5570 elsif Is_Entity_Name (N)
5571 and then Is_Object (Entity (N))
5572 and then Present (Renamed_Object (Entity (N)))
5573 then
5574 return Is_Ref_To_Bit_Packed_Slice (Renamed_Object (Entity (N)));
5576 elsif Nkind (N) = N_Slice
5577 and then Is_Bit_Packed_Array (Etype (Prefix (N)))
5578 then
5579 return True;
5581 elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
5582 return Is_Ref_To_Bit_Packed_Slice (Prefix (N));
5584 else
5585 return False;
5586 end if;
5587 end Is_Ref_To_Bit_Packed_Slice;
5589 -----------------------
5590 -- Is_Renamed_Object --
5591 -----------------------
5593 function Is_Renamed_Object (N : Node_Id) return Boolean is
5594 Pnod : constant Node_Id := Parent (N);
5595 Kind : constant Node_Kind := Nkind (Pnod);
5596 begin
5597 if Kind = N_Object_Renaming_Declaration then
5598 return True;
5599 elsif Nkind_In (Kind, N_Indexed_Component, N_Selected_Component) then
5600 return Is_Renamed_Object (Pnod);
5601 else
5602 return False;
5603 end if;
5604 end Is_Renamed_Object;
5606 --------------------------------------
5607 -- Is_Secondary_Stack_BIP_Func_Call --
5608 --------------------------------------
5610 function Is_Secondary_Stack_BIP_Func_Call (Expr : Node_Id) return Boolean is
5611 Alloc_Nam : Name_Id := No_Name;
5612 Actual : Node_Id;
5613 Call : Node_Id := Expr;
5614 Formal : Node_Id;
5615 Param : Node_Id;
5617 begin
5618 -- Build-in-place calls usually appear in 'reference format. Note that
5619 -- the accessibility check machinery may add an extra 'reference due to
5620 -- side effect removal.
5622 while Nkind (Call) = N_Reference loop
5623 Call := Prefix (Call);
5624 end loop;
5626 if Nkind_In (Call, N_Qualified_Expression,
5627 N_Unchecked_Type_Conversion)
5628 then
5629 Call := Expression (Call);
5630 end if;
5632 if Is_Build_In_Place_Function_Call (Call) then
5634 -- Examine all parameter associations of the function call
5636 Param := First (Parameter_Associations (Call));
5637 while Present (Param) loop
5638 if Nkind (Param) = N_Parameter_Association
5639 and then Nkind (Selector_Name (Param)) = N_Identifier
5640 then
5641 Formal := Selector_Name (Param);
5642 Actual := Explicit_Actual_Parameter (Param);
5644 -- Construct the name of formal BIPalloc. It is much easier to
5645 -- extract the name of the function using an arbitrary formal's
5646 -- scope rather than the Name field of Call.
5648 if Alloc_Nam = No_Name and then Present (Entity (Formal)) then
5649 Alloc_Nam :=
5650 New_External_Name
5651 (Chars (Scope (Entity (Formal))),
5652 BIP_Formal_Suffix (BIP_Alloc_Form));
5653 end if;
5655 -- A match for BIPalloc => 2 has been found
5657 if Chars (Formal) = Alloc_Nam
5658 and then Nkind (Actual) = N_Integer_Literal
5659 and then Intval (Actual) = Uint_2
5660 then
5661 return True;
5662 end if;
5663 end if;
5665 Next (Param);
5666 end loop;
5667 end if;
5669 return False;
5670 end Is_Secondary_Stack_BIP_Func_Call;
5672 -------------------------------------
5673 -- Is_Tag_To_Class_Wide_Conversion --
5674 -------------------------------------
5676 function Is_Tag_To_Class_Wide_Conversion
5677 (Obj_Id : Entity_Id) return Boolean
5679 Expr : constant Node_Id := Expression (Parent (Obj_Id));
5681 begin
5682 return
5683 Is_Class_Wide_Type (Etype (Obj_Id))
5684 and then Present (Expr)
5685 and then Nkind (Expr) = N_Unchecked_Type_Conversion
5686 and then Etype (Expression (Expr)) = RTE (RE_Tag);
5687 end Is_Tag_To_Class_Wide_Conversion;
5689 ----------------------------
5690 -- Is_Untagged_Derivation --
5691 ----------------------------
5693 function Is_Untagged_Derivation (T : Entity_Id) return Boolean is
5694 begin
5695 return (not Is_Tagged_Type (T) and then Is_Derived_Type (T))
5696 or else
5697 (Is_Private_Type (T) and then Present (Full_View (T))
5698 and then not Is_Tagged_Type (Full_View (T))
5699 and then Is_Derived_Type (Full_View (T))
5700 and then Etype (Full_View (T)) /= T);
5701 end Is_Untagged_Derivation;
5703 ---------------------------
5704 -- Is_Volatile_Reference --
5705 ---------------------------
5707 function Is_Volatile_Reference (N : Node_Id) return Boolean is
5708 begin
5709 -- Only source references are to be treated as volatile, internally
5710 -- generated stuff cannot have volatile external effects.
5712 if not Comes_From_Source (N) then
5713 return False;
5715 -- Never true for reference to a type
5717 elsif Is_Entity_Name (N) and then Is_Type (Entity (N)) then
5718 return False;
5720 -- Never true for a compile time known constant
5722 elsif Compile_Time_Known_Value (N) then
5723 return False;
5725 -- True if object reference with volatile type
5727 elsif Is_Volatile_Object (N) then
5728 return True;
5730 -- True if reference to volatile entity
5732 elsif Is_Entity_Name (N) then
5733 return Treat_As_Volatile (Entity (N));
5735 -- True for slice of volatile array
5737 elsif Nkind (N) = N_Slice then
5738 return Is_Volatile_Reference (Prefix (N));
5740 -- True if volatile component
5742 elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
5743 if (Is_Entity_Name (Prefix (N))
5744 and then Has_Volatile_Components (Entity (Prefix (N))))
5745 or else (Present (Etype (Prefix (N)))
5746 and then Has_Volatile_Components (Etype (Prefix (N))))
5747 then
5748 return True;
5749 else
5750 return Is_Volatile_Reference (Prefix (N));
5751 end if;
5753 -- Otherwise false
5755 else
5756 return False;
5757 end if;
5758 end Is_Volatile_Reference;
5760 --------------------------
5761 -- Is_VM_By_Copy_Actual --
5762 --------------------------
5764 function Is_VM_By_Copy_Actual (N : Node_Id) return Boolean is
5765 begin
5766 return VM_Target /= No_VM
5767 and then (Nkind (N) = N_Slice
5768 or else
5769 (Nkind (N) = N_Identifier
5770 and then Present (Renamed_Object (Entity (N)))
5771 and then Nkind (Renamed_Object (Entity (N))) =
5772 N_Slice));
5773 end Is_VM_By_Copy_Actual;
5775 --------------------
5776 -- Kill_Dead_Code --
5777 --------------------
5779 procedure Kill_Dead_Code (N : Node_Id; Warn : Boolean := False) is
5780 W : Boolean := Warn;
5781 -- Set False if warnings suppressed
5783 begin
5784 if Present (N) then
5785 Remove_Warning_Messages (N);
5787 -- Generate warning if appropriate
5789 if W then
5791 -- We suppress the warning if this code is under control of an
5792 -- if statement, whose condition is a simple identifier, and
5793 -- either we are in an instance, or warnings off is set for this
5794 -- identifier. The reason for killing it in the instance case is
5795 -- that it is common and reasonable for code to be deleted in
5796 -- instances for various reasons.
5798 -- Could we use Is_Statically_Unevaluated here???
5800 if Nkind (Parent (N)) = N_If_Statement then
5801 declare
5802 C : constant Node_Id := Condition (Parent (N));
5803 begin
5804 if Nkind (C) = N_Identifier
5805 and then
5806 (In_Instance
5807 or else (Present (Entity (C))
5808 and then Has_Warnings_Off (Entity (C))))
5809 then
5810 W := False;
5811 end if;
5812 end;
5813 end if;
5815 -- Generate warning if not suppressed
5817 if W then
5818 Error_Msg_F
5819 ("?t?this code can never be executed and has been deleted!",
5821 end if;
5822 end if;
5824 -- Recurse into block statements and bodies to process declarations
5825 -- and statements.
5827 if Nkind (N) = N_Block_Statement
5828 or else Nkind (N) = N_Subprogram_Body
5829 or else Nkind (N) = N_Package_Body
5830 then
5831 Kill_Dead_Code (Declarations (N), False);
5832 Kill_Dead_Code (Statements (Handled_Statement_Sequence (N)));
5834 if Nkind (N) = N_Subprogram_Body then
5835 Set_Is_Eliminated (Defining_Entity (N));
5836 end if;
5838 elsif Nkind (N) = N_Package_Declaration then
5839 Kill_Dead_Code (Visible_Declarations (Specification (N)));
5840 Kill_Dead_Code (Private_Declarations (Specification (N)));
5842 -- ??? After this point, Delete_Tree has been called on all
5843 -- declarations in Specification (N), so references to entities
5844 -- therein look suspicious.
5846 declare
5847 E : Entity_Id := First_Entity (Defining_Entity (N));
5849 begin
5850 while Present (E) loop
5851 if Ekind (E) = E_Operator then
5852 Set_Is_Eliminated (E);
5853 end if;
5855 Next_Entity (E);
5856 end loop;
5857 end;
5859 -- Recurse into composite statement to kill individual statements in
5860 -- particular instantiations.
5862 elsif Nkind (N) = N_If_Statement then
5863 Kill_Dead_Code (Then_Statements (N));
5864 Kill_Dead_Code (Elsif_Parts (N));
5865 Kill_Dead_Code (Else_Statements (N));
5867 elsif Nkind (N) = N_Loop_Statement then
5868 Kill_Dead_Code (Statements (N));
5870 elsif Nkind (N) = N_Case_Statement then
5871 declare
5872 Alt : Node_Id;
5873 begin
5874 Alt := First (Alternatives (N));
5875 while Present (Alt) loop
5876 Kill_Dead_Code (Statements (Alt));
5877 Next (Alt);
5878 end loop;
5879 end;
5881 elsif Nkind (N) = N_Case_Statement_Alternative then
5882 Kill_Dead_Code (Statements (N));
5884 -- Deal with dead instances caused by deleting instantiations
5886 elsif Nkind (N) in N_Generic_Instantiation then
5887 Remove_Dead_Instance (N);
5888 end if;
5889 end if;
5890 end Kill_Dead_Code;
5892 -- Case where argument is a list of nodes to be killed
5894 procedure Kill_Dead_Code (L : List_Id; Warn : Boolean := False) is
5895 N : Node_Id;
5896 W : Boolean;
5898 begin
5899 W := Warn;
5901 if Is_Non_Empty_List (L) then
5902 N := First (L);
5903 while Present (N) loop
5904 Kill_Dead_Code (N, W);
5905 W := False;
5906 Next (N);
5907 end loop;
5908 end if;
5909 end Kill_Dead_Code;
5911 ------------------------
5912 -- Known_Non_Negative --
5913 ------------------------
5915 function Known_Non_Negative (Opnd : Node_Id) return Boolean is
5916 begin
5917 if Is_OK_Static_Expression (Opnd) and then Expr_Value (Opnd) >= 0 then
5918 return True;
5920 else
5921 declare
5922 Lo : constant Node_Id := Type_Low_Bound (Etype (Opnd));
5923 begin
5924 return
5925 Is_OK_Static_Expression (Lo) and then Expr_Value (Lo) >= 0;
5926 end;
5927 end if;
5928 end Known_Non_Negative;
5930 --------------------
5931 -- Known_Non_Null --
5932 --------------------
5934 function Known_Non_Null (N : Node_Id) return Boolean is
5935 begin
5936 -- Checks for case where N is an entity reference
5938 if Is_Entity_Name (N) and then Present (Entity (N)) then
5939 declare
5940 E : constant Entity_Id := Entity (N);
5941 Op : Node_Kind;
5942 Val : Node_Id;
5944 begin
5945 -- First check if we are in decisive conditional
5947 Get_Current_Value_Condition (N, Op, Val);
5949 if Known_Null (Val) then
5950 if Op = N_Op_Eq then
5951 return False;
5952 elsif Op = N_Op_Ne then
5953 return True;
5954 end if;
5955 end if;
5957 -- If OK to do replacement, test Is_Known_Non_Null flag
5959 if OK_To_Do_Constant_Replacement (E) then
5960 return Is_Known_Non_Null (E);
5962 -- Otherwise if not safe to do replacement, then say so
5964 else
5965 return False;
5966 end if;
5967 end;
5969 -- True if access attribute
5971 elsif Nkind (N) = N_Attribute_Reference
5972 and then Nam_In (Attribute_Name (N), Name_Access,
5973 Name_Unchecked_Access,
5974 Name_Unrestricted_Access)
5975 then
5976 return True;
5978 -- True if allocator
5980 elsif Nkind (N) = N_Allocator then
5981 return True;
5983 -- For a conversion, true if expression is known non-null
5985 elsif Nkind (N) = N_Type_Conversion then
5986 return Known_Non_Null (Expression (N));
5988 -- Above are all cases where the value could be determined to be
5989 -- non-null. In all other cases, we don't know, so return False.
5991 else
5992 return False;
5993 end if;
5994 end Known_Non_Null;
5996 ----------------
5997 -- Known_Null --
5998 ----------------
6000 function Known_Null (N : Node_Id) return Boolean is
6001 begin
6002 -- Checks for case where N is an entity reference
6004 if Is_Entity_Name (N) and then Present (Entity (N)) then
6005 declare
6006 E : constant Entity_Id := Entity (N);
6007 Op : Node_Kind;
6008 Val : Node_Id;
6010 begin
6011 -- Constant null value is for sure null
6013 if Ekind (E) = E_Constant
6014 and then Known_Null (Constant_Value (E))
6015 then
6016 return True;
6017 end if;
6019 -- First check if we are in decisive conditional
6021 Get_Current_Value_Condition (N, Op, Val);
6023 if Known_Null (Val) then
6024 if Op = N_Op_Eq then
6025 return True;
6026 elsif Op = N_Op_Ne then
6027 return False;
6028 end if;
6029 end if;
6031 -- If OK to do replacement, test Is_Known_Null flag
6033 if OK_To_Do_Constant_Replacement (E) then
6034 return Is_Known_Null (E);
6036 -- Otherwise if not safe to do replacement, then say so
6038 else
6039 return False;
6040 end if;
6041 end;
6043 -- True if explicit reference to null
6045 elsif Nkind (N) = N_Null then
6046 return True;
6048 -- For a conversion, true if expression is known null
6050 elsif Nkind (N) = N_Type_Conversion then
6051 return Known_Null (Expression (N));
6053 -- Above are all cases where the value could be determined to be null.
6054 -- In all other cases, we don't know, so return False.
6056 else
6057 return False;
6058 end if;
6059 end Known_Null;
6061 -----------------------------
6062 -- Make_CW_Equivalent_Type --
6063 -----------------------------
6065 -- Create a record type used as an equivalent of any member of the class
6066 -- which takes its size from exp.
6068 -- Generate the following code:
6070 -- type Equiv_T is record
6071 -- _parent : T (List of discriminant constraints taken from Exp);
6072 -- Ext__50 : Storage_Array (1 .. (Exp'size - Typ'object_size)/8);
6073 -- end Equiv_T;
6075 -- ??? Note that this type does not guarantee same alignment as all
6076 -- derived types
6078 function Make_CW_Equivalent_Type
6079 (T : Entity_Id;
6080 E : Node_Id) return Entity_Id
6082 Loc : constant Source_Ptr := Sloc (E);
6083 Root_Typ : constant Entity_Id := Root_Type (T);
6084 List_Def : constant List_Id := Empty_List;
6085 Comp_List : constant List_Id := New_List;
6086 Equiv_Type : Entity_Id;
6087 Range_Type : Entity_Id;
6088 Str_Type : Entity_Id;
6089 Constr_Root : Entity_Id;
6090 Sizexpr : Node_Id;
6092 begin
6093 -- If the root type is already constrained, there are no discriminants
6094 -- in the expression.
6096 if not Has_Discriminants (Root_Typ)
6097 or else Is_Constrained (Root_Typ)
6098 then
6099 Constr_Root := Root_Typ;
6101 -- At this point in the expansion, non-limited view of the type
6102 -- must be available, otherwise the error will be reported later.
6104 if From_Limited_With (Constr_Root)
6105 and then Present (Non_Limited_View (Constr_Root))
6106 then
6107 Constr_Root := Non_Limited_View (Constr_Root);
6108 end if;
6110 else
6111 Constr_Root := Make_Temporary (Loc, 'R');
6113 -- subtype cstr__n is T (List of discr constraints taken from Exp)
6115 Append_To (List_Def,
6116 Make_Subtype_Declaration (Loc,
6117 Defining_Identifier => Constr_Root,
6118 Subtype_Indication => Make_Subtype_From_Expr (E, Root_Typ)));
6119 end if;
6121 -- Generate the range subtype declaration
6123 Range_Type := Make_Temporary (Loc, 'G');
6125 if not Is_Interface (Root_Typ) then
6127 -- subtype rg__xx is
6128 -- Storage_Offset range 1 .. (Expr'size - typ'size) / Storage_Unit
6130 Sizexpr :=
6131 Make_Op_Subtract (Loc,
6132 Left_Opnd =>
6133 Make_Attribute_Reference (Loc,
6134 Prefix =>
6135 OK_Convert_To (T, Duplicate_Subexpr_No_Checks (E)),
6136 Attribute_Name => Name_Size),
6137 Right_Opnd =>
6138 Make_Attribute_Reference (Loc,
6139 Prefix => New_Occurrence_Of (Constr_Root, Loc),
6140 Attribute_Name => Name_Object_Size));
6141 else
6142 -- subtype rg__xx is
6143 -- Storage_Offset range 1 .. Expr'size / Storage_Unit
6145 Sizexpr :=
6146 Make_Attribute_Reference (Loc,
6147 Prefix =>
6148 OK_Convert_To (T, Duplicate_Subexpr_No_Checks (E)),
6149 Attribute_Name => Name_Size);
6150 end if;
6152 Set_Paren_Count (Sizexpr, 1);
6154 Append_To (List_Def,
6155 Make_Subtype_Declaration (Loc,
6156 Defining_Identifier => Range_Type,
6157 Subtype_Indication =>
6158 Make_Subtype_Indication (Loc,
6159 Subtype_Mark => New_Occurrence_Of (RTE (RE_Storage_Offset), Loc),
6160 Constraint => Make_Range_Constraint (Loc,
6161 Range_Expression =>
6162 Make_Range (Loc,
6163 Low_Bound => Make_Integer_Literal (Loc, 1),
6164 High_Bound =>
6165 Make_Op_Divide (Loc,
6166 Left_Opnd => Sizexpr,
6167 Right_Opnd => Make_Integer_Literal (Loc,
6168 Intval => System_Storage_Unit)))))));
6170 -- subtype str__nn is Storage_Array (rg__x);
6172 Str_Type := Make_Temporary (Loc, 'S');
6173 Append_To (List_Def,
6174 Make_Subtype_Declaration (Loc,
6175 Defining_Identifier => Str_Type,
6176 Subtype_Indication =>
6177 Make_Subtype_Indication (Loc,
6178 Subtype_Mark => New_Occurrence_Of (RTE (RE_Storage_Array), Loc),
6179 Constraint =>
6180 Make_Index_Or_Discriminant_Constraint (Loc,
6181 Constraints =>
6182 New_List (New_Occurrence_Of (Range_Type, Loc))))));
6184 -- type Equiv_T is record
6185 -- [ _parent : Tnn; ]
6186 -- E : Str_Type;
6187 -- end Equiv_T;
6189 Equiv_Type := Make_Temporary (Loc, 'T');
6190 Set_Ekind (Equiv_Type, E_Record_Type);
6191 Set_Parent_Subtype (Equiv_Type, Constr_Root);
6193 -- Set Is_Class_Wide_Equivalent_Type very early to trigger the special
6194 -- treatment for this type. In particular, even though _parent's type
6195 -- is a controlled type or contains controlled components, we do not
6196 -- want to set Has_Controlled_Component on it to avoid making it gain
6197 -- an unwanted _controller component.
6199 Set_Is_Class_Wide_Equivalent_Type (Equiv_Type);
6201 -- A class-wide equivalent type does not require initialization
6203 Set_Suppress_Initialization (Equiv_Type);
6205 if not Is_Interface (Root_Typ) then
6206 Append_To (Comp_List,
6207 Make_Component_Declaration (Loc,
6208 Defining_Identifier =>
6209 Make_Defining_Identifier (Loc, Name_uParent),
6210 Component_Definition =>
6211 Make_Component_Definition (Loc,
6212 Aliased_Present => False,
6213 Subtype_Indication => New_Occurrence_Of (Constr_Root, Loc))));
6214 end if;
6216 Append_To (Comp_List,
6217 Make_Component_Declaration (Loc,
6218 Defining_Identifier => Make_Temporary (Loc, 'C'),
6219 Component_Definition =>
6220 Make_Component_Definition (Loc,
6221 Aliased_Present => False,
6222 Subtype_Indication => New_Occurrence_Of (Str_Type, Loc))));
6224 Append_To (List_Def,
6225 Make_Full_Type_Declaration (Loc,
6226 Defining_Identifier => Equiv_Type,
6227 Type_Definition =>
6228 Make_Record_Definition (Loc,
6229 Component_List =>
6230 Make_Component_List (Loc,
6231 Component_Items => Comp_List,
6232 Variant_Part => Empty))));
6234 -- Suppress all checks during the analysis of the expanded code to avoid
6235 -- the generation of spurious warnings under ZFP run-time.
6237 Insert_Actions (E, List_Def, Suppress => All_Checks);
6238 return Equiv_Type;
6239 end Make_CW_Equivalent_Type;
6241 -------------------------
6242 -- Make_Invariant_Call --
6243 -------------------------
6245 function Make_Invariant_Call (Expr : Node_Id) return Node_Id is
6246 Loc : constant Source_Ptr := Sloc (Expr);
6247 Typ : Entity_Id;
6249 begin
6250 Typ := Etype (Expr);
6252 -- Subtypes may be subject to invariants coming from their respective
6253 -- base types. The subtype may be fully or partially private.
6255 if Ekind_In (Typ, E_Array_Subtype,
6256 E_Private_Subtype,
6257 E_Record_Subtype,
6258 E_Record_Subtype_With_Private)
6259 then
6260 Typ := Base_Type (Typ);
6261 end if;
6263 pragma Assert
6264 (Has_Invariants (Typ) and then Present (Invariant_Procedure (Typ)));
6266 return
6267 Make_Procedure_Call_Statement (Loc,
6268 Name =>
6269 New_Occurrence_Of (Invariant_Procedure (Typ), Loc),
6270 Parameter_Associations => New_List (Relocate_Node (Expr)));
6271 end Make_Invariant_Call;
6273 ------------------------
6274 -- Make_Literal_Range --
6275 ------------------------
6277 function Make_Literal_Range
6278 (Loc : Source_Ptr;
6279 Literal_Typ : Entity_Id) return Node_Id
6281 Lo : constant Node_Id :=
6282 New_Copy_Tree (String_Literal_Low_Bound (Literal_Typ));
6283 Index : constant Entity_Id := Etype (Lo);
6285 Hi : Node_Id;
6286 Length_Expr : constant Node_Id :=
6287 Make_Op_Subtract (Loc,
6288 Left_Opnd =>
6289 Make_Integer_Literal (Loc,
6290 Intval => String_Literal_Length (Literal_Typ)),
6291 Right_Opnd =>
6292 Make_Integer_Literal (Loc, 1));
6294 begin
6295 Set_Analyzed (Lo, False);
6297 if Is_Integer_Type (Index) then
6298 Hi :=
6299 Make_Op_Add (Loc,
6300 Left_Opnd => New_Copy_Tree (Lo),
6301 Right_Opnd => Length_Expr);
6302 else
6303 Hi :=
6304 Make_Attribute_Reference (Loc,
6305 Attribute_Name => Name_Val,
6306 Prefix => New_Occurrence_Of (Index, Loc),
6307 Expressions => New_List (
6308 Make_Op_Add (Loc,
6309 Left_Opnd =>
6310 Make_Attribute_Reference (Loc,
6311 Attribute_Name => Name_Pos,
6312 Prefix => New_Occurrence_Of (Index, Loc),
6313 Expressions => New_List (New_Copy_Tree (Lo))),
6314 Right_Opnd => Length_Expr)));
6315 end if;
6317 return
6318 Make_Range (Loc,
6319 Low_Bound => Lo,
6320 High_Bound => Hi);
6321 end Make_Literal_Range;
6323 --------------------------
6324 -- Make_Non_Empty_Check --
6325 --------------------------
6327 function Make_Non_Empty_Check
6328 (Loc : Source_Ptr;
6329 N : Node_Id) return Node_Id
6331 begin
6332 return
6333 Make_Op_Ne (Loc,
6334 Left_Opnd =>
6335 Make_Attribute_Reference (Loc,
6336 Attribute_Name => Name_Length,
6337 Prefix => Duplicate_Subexpr_No_Checks (N, Name_Req => True)),
6338 Right_Opnd =>
6339 Make_Integer_Literal (Loc, 0));
6340 end Make_Non_Empty_Check;
6342 -------------------------
6343 -- Make_Predicate_Call --
6344 -------------------------
6346 function Make_Predicate_Call
6347 (Typ : Entity_Id;
6348 Expr : Node_Id;
6349 Mem : Boolean := False) return Node_Id
6351 Loc : constant Source_Ptr := Sloc (Expr);
6353 begin
6354 pragma Assert (Present (Predicate_Function (Typ)));
6356 -- Call special membership version if requested and available
6358 if Mem then
6359 declare
6360 PFM : constant Entity_Id := Predicate_Function_M (Typ);
6361 begin
6362 if Present (PFM) then
6363 return
6364 Make_Function_Call (Loc,
6365 Name => New_Occurrence_Of (PFM, Loc),
6366 Parameter_Associations => New_List (Relocate_Node (Expr)));
6367 end if;
6368 end;
6369 end if;
6371 -- Case of calling normal predicate function
6373 return
6374 Make_Function_Call (Loc,
6375 Name =>
6376 New_Occurrence_Of (Predicate_Function (Typ), Loc),
6377 Parameter_Associations => New_List (Relocate_Node (Expr)));
6378 end Make_Predicate_Call;
6380 --------------------------
6381 -- Make_Predicate_Check --
6382 --------------------------
6384 function Make_Predicate_Check
6385 (Typ : Entity_Id;
6386 Expr : Node_Id) return Node_Id
6388 Loc : constant Source_Ptr := Sloc (Expr);
6389 Nam : Name_Id;
6391 begin
6392 -- If predicate checks are suppressed, then return a null statement.
6393 -- For this call, we check only the scope setting. If the caller wants
6394 -- to check a specific entity's setting, they must do it manually.
6396 if Predicate_Checks_Suppressed (Empty) then
6397 return Make_Null_Statement (Loc);
6398 end if;
6400 -- Do not generate a check within an internal subprogram (stream
6401 -- functions and the like, including including predicate functions).
6403 if Within_Internal_Subprogram then
6404 return Make_Null_Statement (Loc);
6405 end if;
6407 -- Compute proper name to use, we need to get this right so that the
6408 -- right set of check policies apply to the Check pragma we are making.
6410 if Has_Dynamic_Predicate_Aspect (Typ) then
6411 Nam := Name_Dynamic_Predicate;
6412 elsif Has_Static_Predicate_Aspect (Typ) then
6413 Nam := Name_Static_Predicate;
6414 else
6415 Nam := Name_Predicate;
6416 end if;
6418 return
6419 Make_Pragma (Loc,
6420 Pragma_Identifier => Make_Identifier (Loc, Name_Check),
6421 Pragma_Argument_Associations => New_List (
6422 Make_Pragma_Argument_Association (Loc,
6423 Expression => Make_Identifier (Loc, Nam)),
6424 Make_Pragma_Argument_Association (Loc,
6425 Expression => Make_Predicate_Call (Typ, Expr))));
6426 end Make_Predicate_Check;
6428 ----------------------------
6429 -- Make_Subtype_From_Expr --
6430 ----------------------------
6432 -- 1. If Expr is an unconstrained array expression, creates
6433 -- Unc_Type(Expr'first(1)..Expr'last(1),..., Expr'first(n)..Expr'last(n))
6435 -- 2. If Expr is a unconstrained discriminated type expression, creates
6436 -- Unc_Type(Expr.Discr1, ... , Expr.Discr_n)
6438 -- 3. If Expr is class-wide, creates an implicit class-wide subtype
6440 function Make_Subtype_From_Expr
6441 (E : Node_Id;
6442 Unc_Typ : Entity_Id) return Node_Id
6444 List_Constr : constant List_Id := New_List;
6445 Loc : constant Source_Ptr := Sloc (E);
6446 D : Entity_Id;
6447 Full_Exp : Node_Id;
6448 Full_Subtyp : Entity_Id;
6449 High_Bound : Entity_Id;
6450 Index_Typ : Entity_Id;
6451 Low_Bound : Entity_Id;
6452 Priv_Subtyp : Entity_Id;
6453 Utyp : Entity_Id;
6455 begin
6456 if Is_Private_Type (Unc_Typ)
6457 and then Has_Unknown_Discriminants (Unc_Typ)
6458 then
6459 -- Prepare the subtype completion. Use the base type to find the
6460 -- underlying type because the type may be a generic actual or an
6461 -- explicit subtype.
6463 Utyp := Underlying_Type (Base_Type (Unc_Typ));
6464 Full_Subtyp := Make_Temporary (Loc, 'C');
6465 Full_Exp :=
6466 Unchecked_Convert_To (Utyp, Duplicate_Subexpr_No_Checks (E));
6467 Set_Parent (Full_Exp, Parent (E));
6469 Priv_Subtyp := Make_Temporary (Loc, 'P');
6471 Insert_Action (E,
6472 Make_Subtype_Declaration (Loc,
6473 Defining_Identifier => Full_Subtyp,
6474 Subtype_Indication => Make_Subtype_From_Expr (Full_Exp, Utyp)));
6476 -- Define the dummy private subtype
6478 Set_Ekind (Priv_Subtyp, Subtype_Kind (Ekind (Unc_Typ)));
6479 Set_Etype (Priv_Subtyp, Base_Type (Unc_Typ));
6480 Set_Scope (Priv_Subtyp, Full_Subtyp);
6481 Set_Is_Constrained (Priv_Subtyp);
6482 Set_Is_Tagged_Type (Priv_Subtyp, Is_Tagged_Type (Unc_Typ));
6483 Set_Is_Itype (Priv_Subtyp);
6484 Set_Associated_Node_For_Itype (Priv_Subtyp, E);
6486 if Is_Tagged_Type (Priv_Subtyp) then
6487 Set_Class_Wide_Type
6488 (Base_Type (Priv_Subtyp), Class_Wide_Type (Unc_Typ));
6489 Set_Direct_Primitive_Operations (Priv_Subtyp,
6490 Direct_Primitive_Operations (Unc_Typ));
6491 end if;
6493 Set_Full_View (Priv_Subtyp, Full_Subtyp);
6495 return New_Occurrence_Of (Priv_Subtyp, Loc);
6497 elsif Is_Array_Type (Unc_Typ) then
6498 Index_Typ := First_Index (Unc_Typ);
6499 for J in 1 .. Number_Dimensions (Unc_Typ) loop
6501 -- Capture the bounds of each index constraint in case the context
6502 -- is an object declaration of an unconstrained type initialized
6503 -- by a function call:
6505 -- Obj : Unconstr_Typ := Func_Call;
6507 -- This scenario requires secondary scope management and the index
6508 -- constraint cannot depend on the temporary used to capture the
6509 -- result of the function call.
6511 -- SS_Mark;
6512 -- Temp : Unconstr_Typ_Ptr := Func_Call'reference;
6513 -- subtype S is Unconstr_Typ (Temp.all'First .. Temp.all'Last);
6514 -- Obj : S := Temp.all;
6515 -- SS_Release; -- Temp is gone at this point, bounds of S are
6516 -- -- non existent.
6518 -- Generate:
6519 -- Low_Bound : constant Base_Type (Index_Typ) := E'First (J);
6521 Low_Bound := Make_Temporary (Loc, 'B');
6522 Insert_Action (E,
6523 Make_Object_Declaration (Loc,
6524 Defining_Identifier => Low_Bound,
6525 Object_Definition =>
6526 New_Occurrence_Of (Base_Type (Etype (Index_Typ)), Loc),
6527 Constant_Present => True,
6528 Expression =>
6529 Make_Attribute_Reference (Loc,
6530 Prefix => Duplicate_Subexpr_No_Checks (E),
6531 Attribute_Name => Name_First,
6532 Expressions => New_List (
6533 Make_Integer_Literal (Loc, J)))));
6535 -- Generate:
6536 -- High_Bound : constant Base_Type (Index_Typ) := E'Last (J);
6538 High_Bound := Make_Temporary (Loc, 'B');
6539 Insert_Action (E,
6540 Make_Object_Declaration (Loc,
6541 Defining_Identifier => High_Bound,
6542 Object_Definition =>
6543 New_Occurrence_Of (Base_Type (Etype (Index_Typ)), Loc),
6544 Constant_Present => True,
6545 Expression =>
6546 Make_Attribute_Reference (Loc,
6547 Prefix => Duplicate_Subexpr_No_Checks (E),
6548 Attribute_Name => Name_Last,
6549 Expressions => New_List (
6550 Make_Integer_Literal (Loc, J)))));
6552 Append_To (List_Constr,
6553 Make_Range (Loc,
6554 Low_Bound => New_Occurrence_Of (Low_Bound, Loc),
6555 High_Bound => New_Occurrence_Of (High_Bound, Loc)));
6557 Index_Typ := Next_Index (Index_Typ);
6558 end loop;
6560 elsif Is_Class_Wide_Type (Unc_Typ) then
6561 declare
6562 CW_Subtype : Entity_Id;
6563 EQ_Typ : Entity_Id := Empty;
6565 begin
6566 -- A class-wide equivalent type is not needed when VM_Target
6567 -- because the VM back-ends handle the class-wide object
6568 -- initialization itself (and doesn't need or want the
6569 -- additional intermediate type to handle the assignment).
6571 if Expander_Active and then Tagged_Type_Expansion then
6573 -- If this is the class-wide type of a completion that is a
6574 -- record subtype, set the type of the class-wide type to be
6575 -- the full base type, for use in the expanded code for the
6576 -- equivalent type. Should this be done earlier when the
6577 -- completion is analyzed ???
6579 if Is_Private_Type (Etype (Unc_Typ))
6580 and then
6581 Ekind (Full_View (Etype (Unc_Typ))) = E_Record_Subtype
6582 then
6583 Set_Etype (Unc_Typ, Base_Type (Full_View (Etype (Unc_Typ))));
6584 end if;
6586 EQ_Typ := Make_CW_Equivalent_Type (Unc_Typ, E);
6587 end if;
6589 CW_Subtype := New_Class_Wide_Subtype (Unc_Typ, E);
6590 Set_Equivalent_Type (CW_Subtype, EQ_Typ);
6591 Set_Cloned_Subtype (CW_Subtype, Base_Type (Unc_Typ));
6593 return New_Occurrence_Of (CW_Subtype, Loc);
6594 end;
6596 -- Indefinite record type with discriminants
6598 else
6599 D := First_Discriminant (Unc_Typ);
6600 while Present (D) loop
6601 Append_To (List_Constr,
6602 Make_Selected_Component (Loc,
6603 Prefix => Duplicate_Subexpr_No_Checks (E),
6604 Selector_Name => New_Occurrence_Of (D, Loc)));
6606 Next_Discriminant (D);
6607 end loop;
6608 end if;
6610 return
6611 Make_Subtype_Indication (Loc,
6612 Subtype_Mark => New_Occurrence_Of (Unc_Typ, Loc),
6613 Constraint =>
6614 Make_Index_Or_Discriminant_Constraint (Loc,
6615 Constraints => List_Constr));
6616 end Make_Subtype_From_Expr;
6618 ----------------------------
6619 -- Matching_Standard_Type --
6620 ----------------------------
6622 function Matching_Standard_Type (Typ : Entity_Id) return Entity_Id is
6623 pragma Assert (Is_Scalar_Type (Typ));
6624 Siz : constant Uint := Esize (Typ);
6626 begin
6627 -- Floating-point cases
6629 if Is_Floating_Point_Type (Typ) then
6630 if Siz <= Esize (Standard_Short_Float) then
6631 return Standard_Short_Float;
6632 elsif Siz <= Esize (Standard_Float) then
6633 return Standard_Float;
6634 elsif Siz <= Esize (Standard_Long_Float) then
6635 return Standard_Long_Float;
6636 elsif Siz <= Esize (Standard_Long_Long_Float) then
6637 return Standard_Long_Long_Float;
6638 else
6639 raise Program_Error;
6640 end if;
6642 -- Integer cases (includes fixed-point types)
6644 -- Unsigned integer cases (includes normal enumeration types)
6646 elsif Is_Unsigned_Type (Typ) then
6647 if Siz <= Esize (Standard_Short_Short_Unsigned) then
6648 return Standard_Short_Short_Unsigned;
6649 elsif Siz <= Esize (Standard_Short_Unsigned) then
6650 return Standard_Short_Unsigned;
6651 elsif Siz <= Esize (Standard_Unsigned) then
6652 return Standard_Unsigned;
6653 elsif Siz <= Esize (Standard_Long_Unsigned) then
6654 return Standard_Long_Unsigned;
6655 elsif Siz <= Esize (Standard_Long_Long_Unsigned) then
6656 return Standard_Long_Long_Unsigned;
6657 else
6658 raise Program_Error;
6659 end if;
6661 -- Signed integer cases
6663 else
6664 if Siz <= Esize (Standard_Short_Short_Integer) then
6665 return Standard_Short_Short_Integer;
6666 elsif Siz <= Esize (Standard_Short_Integer) then
6667 return Standard_Short_Integer;
6668 elsif Siz <= Esize (Standard_Integer) then
6669 return Standard_Integer;
6670 elsif Siz <= Esize (Standard_Long_Integer) then
6671 return Standard_Long_Integer;
6672 elsif Siz <= Esize (Standard_Long_Long_Integer) then
6673 return Standard_Long_Long_Integer;
6674 else
6675 raise Program_Error;
6676 end if;
6677 end if;
6678 end Matching_Standard_Type;
6680 -----------------------------
6681 -- May_Generate_Large_Temp --
6682 -----------------------------
6684 -- At the current time, the only types that we return False for (i.e. where
6685 -- we decide we know they cannot generate large temps) are ones where we
6686 -- know the size is 256 bits or less at compile time, and we are still not
6687 -- doing a thorough job on arrays and records ???
6689 function May_Generate_Large_Temp (Typ : Entity_Id) return Boolean is
6690 begin
6691 if not Size_Known_At_Compile_Time (Typ) then
6692 return False;
6694 elsif Esize (Typ) /= 0 and then Esize (Typ) <= 256 then
6695 return False;
6697 elsif Is_Array_Type (Typ)
6698 and then Present (Packed_Array_Impl_Type (Typ))
6699 then
6700 return May_Generate_Large_Temp (Packed_Array_Impl_Type (Typ));
6702 -- We could do more here to find other small types ???
6704 else
6705 return True;
6706 end if;
6707 end May_Generate_Large_Temp;
6709 ------------------------
6710 -- Needs_Finalization --
6711 ------------------------
6713 function Needs_Finalization (T : Entity_Id) return Boolean is
6714 function Has_Some_Controlled_Component (Rec : Entity_Id) return Boolean;
6715 -- If type is not frozen yet, check explicitly among its components,
6716 -- because the Has_Controlled_Component flag is not necessarily set.
6718 -----------------------------------
6719 -- Has_Some_Controlled_Component --
6720 -----------------------------------
6722 function Has_Some_Controlled_Component
6723 (Rec : Entity_Id) return Boolean
6725 Comp : Entity_Id;
6727 begin
6728 if Has_Controlled_Component (Rec) then
6729 return True;
6731 elsif not Is_Frozen (Rec) then
6732 if Is_Record_Type (Rec) then
6733 Comp := First_Entity (Rec);
6735 while Present (Comp) loop
6736 if not Is_Type (Comp)
6737 and then Needs_Finalization (Etype (Comp))
6738 then
6739 return True;
6740 end if;
6742 Next_Entity (Comp);
6743 end loop;
6745 return False;
6747 elsif Is_Array_Type (Rec) then
6748 return Needs_Finalization (Component_Type (Rec));
6750 else
6751 return Has_Controlled_Component (Rec);
6752 end if;
6753 else
6754 return False;
6755 end if;
6756 end Has_Some_Controlled_Component;
6758 -- Start of processing for Needs_Finalization
6760 begin
6761 -- Certain run-time configurations and targets do not provide support
6762 -- for controlled types.
6764 if Restriction_Active (No_Finalization) then
6765 return False;
6767 -- C++, CIL and Java types are not considered controlled. It is assumed
6768 -- that the non-Ada side will handle their clean up.
6770 elsif Convention (T) = Convention_CIL
6771 or else Convention (T) = Convention_CPP
6772 or else Convention (T) = Convention_Java
6773 then
6774 return False;
6776 else
6777 -- Class-wide types are treated as controlled because derivations
6778 -- from the root type can introduce controlled components.
6780 return
6781 Is_Class_Wide_Type (T)
6782 or else Is_Controlled (T)
6783 or else Has_Controlled_Component (T)
6784 or else Has_Some_Controlled_Component (T)
6785 or else
6786 (Is_Concurrent_Type (T)
6787 and then Present (Corresponding_Record_Type (T))
6788 and then Needs_Finalization (Corresponding_Record_Type (T)));
6789 end if;
6790 end Needs_Finalization;
6792 ----------------------------
6793 -- Needs_Constant_Address --
6794 ----------------------------
6796 function Needs_Constant_Address
6797 (Decl : Node_Id;
6798 Typ : Entity_Id) return Boolean
6800 begin
6802 -- If we have no initialization of any kind, then we don't need to place
6803 -- any restrictions on the address clause, because the object will be
6804 -- elaborated after the address clause is evaluated. This happens if the
6805 -- declaration has no initial expression, or the type has no implicit
6806 -- initialization, or the object is imported.
6808 -- The same holds for all initialized scalar types and all access types.
6809 -- Packed bit arrays of size up to 64 are represented using a modular
6810 -- type with an initialization (to zero) and can be processed like other
6811 -- initialized scalar types.
6813 -- If the type is controlled, code to attach the object to a
6814 -- finalization chain is generated at the point of declaration, and
6815 -- therefore the elaboration of the object cannot be delayed: the
6816 -- address expression must be a constant.
6818 if No (Expression (Decl))
6819 and then not Needs_Finalization (Typ)
6820 and then
6821 (not Has_Non_Null_Base_Init_Proc (Typ)
6822 or else Is_Imported (Defining_Identifier (Decl)))
6823 then
6824 return False;
6826 elsif (Present (Expression (Decl)) and then Is_Scalar_Type (Typ))
6827 or else Is_Access_Type (Typ)
6828 or else
6829 (Is_Bit_Packed_Array (Typ)
6830 and then Is_Modular_Integer_Type (Packed_Array_Impl_Type (Typ)))
6831 then
6832 return False;
6834 else
6836 -- Otherwise, we require the address clause to be constant because
6837 -- the call to the initialization procedure (or the attach code) has
6838 -- to happen at the point of the declaration.
6840 -- Actually the IP call has been moved to the freeze actions anyway,
6841 -- so maybe we can relax this restriction???
6843 return True;
6844 end if;
6845 end Needs_Constant_Address;
6847 ----------------------------
6848 -- New_Class_Wide_Subtype --
6849 ----------------------------
6851 function New_Class_Wide_Subtype
6852 (CW_Typ : Entity_Id;
6853 N : Node_Id) return Entity_Id
6855 Res : constant Entity_Id := Create_Itype (E_Void, N);
6856 Res_Name : constant Name_Id := Chars (Res);
6857 Res_Scope : constant Entity_Id := Scope (Res);
6859 begin
6860 Copy_Node (CW_Typ, Res);
6861 Set_Comes_From_Source (Res, False);
6862 Set_Sloc (Res, Sloc (N));
6863 Set_Is_Itype (Res);
6864 Set_Associated_Node_For_Itype (Res, N);
6865 Set_Is_Public (Res, False); -- By default, may be changed below.
6866 Set_Public_Status (Res);
6867 Set_Chars (Res, Res_Name);
6868 Set_Scope (Res, Res_Scope);
6869 Set_Ekind (Res, E_Class_Wide_Subtype);
6870 Set_Next_Entity (Res, Empty);
6871 Set_Etype (Res, Base_Type (CW_Typ));
6872 Set_Is_Frozen (Res, False);
6873 Set_Freeze_Node (Res, Empty);
6874 return (Res);
6875 end New_Class_Wide_Subtype;
6877 --------------------------------
6878 -- Non_Limited_Designated_Type --
6879 ---------------------------------
6881 function Non_Limited_Designated_Type (T : Entity_Id) return Entity_Id is
6882 Desig : constant Entity_Id := Designated_Type (T);
6883 begin
6884 if Has_Non_Limited_View (Desig) then
6885 return Non_Limited_View (Desig);
6886 else
6887 return Desig;
6888 end if;
6889 end Non_Limited_Designated_Type;
6891 -----------------------------------
6892 -- OK_To_Do_Constant_Replacement --
6893 -----------------------------------
6895 function OK_To_Do_Constant_Replacement (E : Entity_Id) return Boolean is
6896 ES : constant Entity_Id := Scope (E);
6897 CS : Entity_Id;
6899 begin
6900 -- Do not replace statically allocated objects, because they may be
6901 -- modified outside the current scope.
6903 if Is_Statically_Allocated (E) then
6904 return False;
6906 -- Do not replace aliased or volatile objects, since we don't know what
6907 -- else might change the value.
6909 elsif Is_Aliased (E) or else Treat_As_Volatile (E) then
6910 return False;
6912 -- Debug flag -gnatdM disconnects this optimization
6914 elsif Debug_Flag_MM then
6915 return False;
6917 -- Otherwise check scopes
6919 else
6920 CS := Current_Scope;
6922 loop
6923 -- If we are in right scope, replacement is safe
6925 if CS = ES then
6926 return True;
6928 -- Packages do not affect the determination of safety
6930 elsif Ekind (CS) = E_Package then
6931 exit when CS = Standard_Standard;
6932 CS := Scope (CS);
6934 -- Blocks do not affect the determination of safety
6936 elsif Ekind (CS) = E_Block then
6937 CS := Scope (CS);
6939 -- Loops do not affect the determination of safety. Note that we
6940 -- kill all current values on entry to a loop, so we are just
6941 -- talking about processing within a loop here.
6943 elsif Ekind (CS) = E_Loop then
6944 CS := Scope (CS);
6946 -- Otherwise, the reference is dubious, and we cannot be sure that
6947 -- it is safe to do the replacement.
6949 else
6950 exit;
6951 end if;
6952 end loop;
6954 return False;
6955 end if;
6956 end OK_To_Do_Constant_Replacement;
6958 ------------------------------------
6959 -- Possible_Bit_Aligned_Component --
6960 ------------------------------------
6962 function Possible_Bit_Aligned_Component (N : Node_Id) return Boolean is
6963 begin
6964 -- Do not process an unanalyzed node because it is not yet decorated and
6965 -- most checks performed below will fail.
6967 if not Analyzed (N) then
6968 return False;
6969 end if;
6971 case Nkind (N) is
6973 -- Case of indexed component
6975 when N_Indexed_Component =>
6976 declare
6977 P : constant Node_Id := Prefix (N);
6978 Ptyp : constant Entity_Id := Etype (P);
6980 begin
6981 -- If we know the component size and it is less than 64, then
6982 -- we are definitely OK. The back end always does assignment of
6983 -- misaligned small objects correctly.
6985 if Known_Static_Component_Size (Ptyp)
6986 and then Component_Size (Ptyp) <= 64
6987 then
6988 return False;
6990 -- Otherwise, we need to test the prefix, to see if we are
6991 -- indexing from a possibly unaligned component.
6993 else
6994 return Possible_Bit_Aligned_Component (P);
6995 end if;
6996 end;
6998 -- Case of selected component
7000 when N_Selected_Component =>
7001 declare
7002 P : constant Node_Id := Prefix (N);
7003 Comp : constant Entity_Id := Entity (Selector_Name (N));
7005 begin
7006 -- If there is no component clause, then we are in the clear
7007 -- since the back end will never misalign a large component
7008 -- unless it is forced to do so. In the clear means we need
7009 -- only the recursive test on the prefix.
7011 if Component_May_Be_Bit_Aligned (Comp) then
7012 return True;
7013 else
7014 return Possible_Bit_Aligned_Component (P);
7015 end if;
7016 end;
7018 -- For a slice, test the prefix, if that is possibly misaligned,
7019 -- then for sure the slice is.
7021 when N_Slice =>
7022 return Possible_Bit_Aligned_Component (Prefix (N));
7024 -- For an unchecked conversion, check whether the expression may
7025 -- be bit-aligned.
7027 when N_Unchecked_Type_Conversion =>
7028 return Possible_Bit_Aligned_Component (Expression (N));
7030 -- If we have none of the above, it means that we have fallen off the
7031 -- top testing prefixes recursively, and we now have a stand alone
7032 -- object, where we don't have a problem, unless this is a renaming,
7033 -- in which case we need to look into the renamed object.
7035 when others =>
7036 if Is_Entity_Name (N)
7037 and then Present (Renamed_Object (Entity (N)))
7038 then
7039 return
7040 Possible_Bit_Aligned_Component (Renamed_Object (Entity (N)));
7041 else
7042 return False;
7043 end if;
7045 end case;
7046 end Possible_Bit_Aligned_Component;
7048 -----------------------------------------------
7049 -- Process_Statements_For_Controlled_Objects --
7050 -----------------------------------------------
7052 procedure Process_Statements_For_Controlled_Objects (N : Node_Id) is
7053 Loc : constant Source_Ptr := Sloc (N);
7055 function Are_Wrapped (L : List_Id) return Boolean;
7056 -- Determine whether list L contains only one statement which is a block
7058 function Wrap_Statements_In_Block
7059 (L : List_Id;
7060 Scop : Entity_Id := Current_Scope) return Node_Id;
7061 -- Given a list of statements L, wrap it in a block statement and return
7062 -- the generated node. Scop is either the current scope or the scope of
7063 -- the context (if applicable).
7065 -----------------
7066 -- Are_Wrapped --
7067 -----------------
7069 function Are_Wrapped (L : List_Id) return Boolean is
7070 Stmt : constant Node_Id := First (L);
7071 begin
7072 return
7073 Present (Stmt)
7074 and then No (Next (Stmt))
7075 and then Nkind (Stmt) = N_Block_Statement;
7076 end Are_Wrapped;
7078 ------------------------------
7079 -- Wrap_Statements_In_Block --
7080 ------------------------------
7082 function Wrap_Statements_In_Block
7083 (L : List_Id;
7084 Scop : Entity_Id := Current_Scope) return Node_Id
7086 Block_Id : Entity_Id;
7087 Block_Nod : Node_Id;
7088 Iter_Loop : Entity_Id;
7090 begin
7091 Block_Nod :=
7092 Make_Block_Statement (Loc,
7093 Declarations => No_List,
7094 Handled_Statement_Sequence =>
7095 Make_Handled_Sequence_Of_Statements (Loc,
7096 Statements => L));
7098 -- Create a label for the block in case the block needs to manage the
7099 -- secondary stack. A label allows for flag Uses_Sec_Stack to be set.
7101 Add_Block_Identifier (Block_Nod, Block_Id);
7103 -- When wrapping the statements of an iterator loop, check whether
7104 -- the loop requires secondary stack management and if so, propagate
7105 -- the appropriate flags to the block. This ensures that the cursor
7106 -- is properly cleaned up at each iteration of the loop.
7108 Iter_Loop := Find_Enclosing_Iterator_Loop (Scop);
7110 if Present (Iter_Loop) then
7111 Set_Uses_Sec_Stack (Block_Id, Uses_Sec_Stack (Iter_Loop));
7113 -- Secondary stack reclamation is suppressed when the associated
7114 -- iterator loop contains a return statement which uses the stack.
7116 Set_Sec_Stack_Needed_For_Return
7117 (Block_Id, Sec_Stack_Needed_For_Return (Iter_Loop));
7118 end if;
7120 return Block_Nod;
7121 end Wrap_Statements_In_Block;
7123 -- Local variables
7125 Block : Node_Id;
7127 -- Start of processing for Process_Statements_For_Controlled_Objects
7129 begin
7130 -- Whenever a non-handled statement list is wrapped in a block, the
7131 -- block must be explicitly analyzed to redecorate all entities in the
7132 -- list and ensure that a finalizer is properly built.
7134 case Nkind (N) is
7135 when N_Elsif_Part |
7136 N_If_Statement |
7137 N_Conditional_Entry_Call |
7138 N_Selective_Accept =>
7140 -- Check the "then statements" for elsif parts and if statements
7142 if Nkind_In (N, N_Elsif_Part, N_If_Statement)
7143 and then not Is_Empty_List (Then_Statements (N))
7144 and then not Are_Wrapped (Then_Statements (N))
7145 and then Requires_Cleanup_Actions
7146 (Then_Statements (N), False, False)
7147 then
7148 Block := Wrap_Statements_In_Block (Then_Statements (N));
7149 Set_Then_Statements (N, New_List (Block));
7151 Analyze (Block);
7152 end if;
7154 -- Check the "else statements" for conditional entry calls, if
7155 -- statements and selective accepts.
7157 if Nkind_In (N, N_Conditional_Entry_Call,
7158 N_If_Statement,
7159 N_Selective_Accept)
7160 and then not Is_Empty_List (Else_Statements (N))
7161 and then not Are_Wrapped (Else_Statements (N))
7162 and then Requires_Cleanup_Actions
7163 (Else_Statements (N), False, False)
7164 then
7165 Block := Wrap_Statements_In_Block (Else_Statements (N));
7166 Set_Else_Statements (N, New_List (Block));
7168 Analyze (Block);
7169 end if;
7171 when N_Abortable_Part |
7172 N_Accept_Alternative |
7173 N_Case_Statement_Alternative |
7174 N_Delay_Alternative |
7175 N_Entry_Call_Alternative |
7176 N_Exception_Handler |
7177 N_Loop_Statement |
7178 N_Triggering_Alternative =>
7180 if not Is_Empty_List (Statements (N))
7181 and then not Are_Wrapped (Statements (N))
7182 and then Requires_Cleanup_Actions (Statements (N), False, False)
7183 then
7184 if Nkind (N) = N_Loop_Statement
7185 and then Present (Identifier (N))
7186 then
7187 Block :=
7188 Wrap_Statements_In_Block
7189 (L => Statements (N),
7190 Scop => Entity (Identifier (N)));
7191 else
7192 Block := Wrap_Statements_In_Block (Statements (N));
7193 end if;
7195 Set_Statements (N, New_List (Block));
7196 Analyze (Block);
7197 end if;
7199 when others =>
7200 null;
7201 end case;
7202 end Process_Statements_For_Controlled_Objects;
7204 ------------------
7205 -- Power_Of_Two --
7206 ------------------
7208 function Power_Of_Two (N : Node_Id) return Nat is
7209 Typ : constant Entity_Id := Etype (N);
7210 pragma Assert (Is_Integer_Type (Typ));
7212 Siz : constant Nat := UI_To_Int (Esize (Typ));
7213 Val : Uint;
7215 begin
7216 if not Compile_Time_Known_Value (N) then
7217 return 0;
7219 else
7220 Val := Expr_Value (N);
7221 for J in 1 .. Siz - 1 loop
7222 if Val = Uint_2 ** J then
7223 return J;
7224 end if;
7225 end loop;
7227 return 0;
7228 end if;
7229 end Power_Of_Two;
7231 ----------------------
7232 -- Remove_Init_Call --
7233 ----------------------
7235 function Remove_Init_Call
7236 (Var : Entity_Id;
7237 Rep_Clause : Node_Id) return Node_Id
7239 Par : constant Node_Id := Parent (Var);
7240 Typ : constant Entity_Id := Etype (Var);
7242 Init_Proc : Entity_Id;
7243 -- Initialization procedure for Typ
7245 function Find_Init_Call_In_List (From : Node_Id) return Node_Id;
7246 -- Look for init call for Var starting at From and scanning the
7247 -- enclosing list until Rep_Clause or the end of the list is reached.
7249 ----------------------------
7250 -- Find_Init_Call_In_List --
7251 ----------------------------
7253 function Find_Init_Call_In_List (From : Node_Id) return Node_Id is
7254 Init_Call : Node_Id;
7256 begin
7257 Init_Call := From;
7258 while Present (Init_Call) and then Init_Call /= Rep_Clause loop
7259 if Nkind (Init_Call) = N_Procedure_Call_Statement
7260 and then Is_Entity_Name (Name (Init_Call))
7261 and then Entity (Name (Init_Call)) = Init_Proc
7262 then
7263 return Init_Call;
7264 end if;
7266 Next (Init_Call);
7267 end loop;
7269 return Empty;
7270 end Find_Init_Call_In_List;
7272 Init_Call : Node_Id;
7274 -- Start of processing for Find_Init_Call
7276 begin
7277 if Present (Initialization_Statements (Var)) then
7278 Init_Call := Initialization_Statements (Var);
7279 Set_Initialization_Statements (Var, Empty);
7281 elsif not Has_Non_Null_Base_Init_Proc (Typ) then
7283 -- No init proc for the type, so obviously no call to be found
7285 return Empty;
7287 else
7288 -- We might be able to handle other cases below by just properly
7289 -- setting Initialization_Statements at the point where the init proc
7290 -- call is generated???
7292 Init_Proc := Base_Init_Proc (Typ);
7294 -- First scan the list containing the declaration of Var
7296 Init_Call := Find_Init_Call_In_List (From => Next (Par));
7298 -- If not found, also look on Var's freeze actions list, if any,
7299 -- since the init call may have been moved there (case of an address
7300 -- clause applying to Var).
7302 if No (Init_Call) and then Present (Freeze_Node (Var)) then
7303 Init_Call :=
7304 Find_Init_Call_In_List (First (Actions (Freeze_Node (Var))));
7305 end if;
7307 -- If the initialization call has actuals that use the secondary
7308 -- stack, the call may have been wrapped into a temporary block, in
7309 -- which case the block itself has to be removed.
7311 if No (Init_Call) and then Nkind (Next (Par)) = N_Block_Statement then
7312 declare
7313 Blk : constant Node_Id := Next (Par);
7314 begin
7315 if Present
7316 (Find_Init_Call_In_List
7317 (First (Statements (Handled_Statement_Sequence (Blk)))))
7318 then
7319 Init_Call := Blk;
7320 end if;
7321 end;
7322 end if;
7323 end if;
7325 if Present (Init_Call) then
7326 Remove (Init_Call);
7327 end if;
7328 return Init_Call;
7329 end Remove_Init_Call;
7331 -------------------------
7332 -- Remove_Side_Effects --
7333 -------------------------
7335 procedure Remove_Side_Effects
7336 (Exp : Node_Id;
7337 Name_Req : Boolean := False;
7338 Renaming_Req : Boolean := False;
7339 Variable_Ref : Boolean := False;
7340 Related_Id : Entity_Id := Empty;
7341 Is_Low_Bound : Boolean := False;
7342 Is_High_Bound : Boolean := False)
7344 function Build_Temporary
7345 (Loc : Source_Ptr;
7346 Id : Character;
7347 Related_Nod : Node_Id := Empty) return Entity_Id;
7348 -- Create an external symbol of the form xxx_FIRST/_LAST if Related_Nod
7349 -- is present (xxx is taken from the Chars field of Related_Nod),
7350 -- otherwise it generates an internal temporary.
7352 ---------------------
7353 -- Build_Temporary --
7354 ---------------------
7356 function Build_Temporary
7357 (Loc : Source_Ptr;
7358 Id : Character;
7359 Related_Nod : Node_Id := Empty) return Entity_Id
7361 Temp_Nam : Name_Id;
7363 begin
7364 -- The context requires an external symbol
7366 if Present (Related_Id) then
7367 if Is_Low_Bound then
7368 Temp_Nam := New_External_Name (Chars (Related_Id), "_FIRST");
7369 else pragma Assert (Is_High_Bound);
7370 Temp_Nam := New_External_Name (Chars (Related_Id), "_LAST");
7371 end if;
7373 return Make_Defining_Identifier (Loc, Temp_Nam);
7375 -- Otherwise generate an internal temporary
7377 else
7378 return Make_Temporary (Loc, Id, Related_Nod);
7379 end if;
7380 end Build_Temporary;
7382 -- Local variables
7384 Loc : constant Source_Ptr := Sloc (Exp);
7385 Exp_Type : constant Entity_Id := Etype (Exp);
7386 Svg_Suppress : constant Suppress_Record := Scope_Suppress;
7387 Def_Id : Entity_Id;
7388 E : Node_Id;
7389 New_Exp : Node_Id;
7390 Ptr_Typ_Decl : Node_Id;
7391 Ref_Type : Entity_Id;
7392 Res : Node_Id;
7394 -- Start of processing for Remove_Side_Effects
7396 begin
7397 -- Handle cases in which there is nothing to do. In GNATprove mode,
7398 -- removal of side effects is useful for the light expansion of
7399 -- renamings. This removal should only occur when not inside a
7400 -- generic and not doing a pre-analysis.
7402 if not Expander_Active
7403 and (Inside_A_Generic or not Full_Analysis or not GNATprove_Mode)
7404 then
7405 return;
7406 end if;
7408 -- Cannot generate temporaries if the invocation to remove side effects
7409 -- was issued too early and the type of the expression is not resolved
7410 -- (this happens because routines Duplicate_Subexpr_XX implicitly invoke
7411 -- Remove_Side_Effects).
7413 if No (Exp_Type) or else Ekind (Exp_Type) = E_Access_Attribute_Type then
7414 return;
7416 -- No action needed for side-effect free expressions
7418 elsif Side_Effect_Free (Exp, Name_Req, Variable_Ref) then
7419 return;
7420 end if;
7422 -- The remaining procesaing is done with all checks suppressed
7424 -- Note: from now on, don't use return statements, instead do a goto
7425 -- Leave, to ensure that we properly restore Scope_Suppress.Suppress.
7427 Scope_Suppress.Suppress := (others => True);
7429 -- If it is a scalar type and we need to capture the value, just make
7430 -- a copy. Likewise for a function call, an attribute reference, a
7431 -- conditional expression, an allocator, or an operator. And if we have
7432 -- a volatile reference and Name_Req is not set (see comments for
7433 -- Side_Effect_Free).
7435 if Is_Elementary_Type (Exp_Type)
7437 -- Note: this test is rather mysterious??? Why can't we just test ONLY
7438 -- Is_Elementary_Type and be done with it. If we try that approach, we
7439 -- get some failures (infinite recursions) from the Duplicate_Subexpr
7440 -- call at the end of Checks.Apply_Predicate_Check. To be
7441 -- investigated ???
7443 and then (Variable_Ref
7444 or else Nkind_In (Exp, N_Attribute_Reference,
7445 N_Allocator,
7446 N_Case_Expression,
7447 N_If_Expression,
7448 N_Function_Call)
7449 or else Nkind (Exp) in N_Op
7450 or else (not Name_Req
7451 and then Is_Volatile_Reference (Exp)))
7452 then
7453 Def_Id := Build_Temporary (Loc, 'R', Exp);
7454 Set_Etype (Def_Id, Exp_Type);
7455 Res := New_Occurrence_Of (Def_Id, Loc);
7457 -- If the expression is a packed reference, it must be reanalyzed and
7458 -- expanded, depending on context. This is the case for actuals where
7459 -- a constraint check may capture the actual before expansion of the
7460 -- call is complete.
7462 if Nkind (Exp) = N_Indexed_Component
7463 and then Is_Packed (Etype (Prefix (Exp)))
7464 then
7465 Set_Analyzed (Exp, False);
7466 Set_Analyzed (Prefix (Exp), False);
7467 end if;
7469 -- Generate:
7470 -- Rnn : Exp_Type renames Expr;
7472 if Renaming_Req then
7473 E :=
7474 Make_Object_Renaming_Declaration (Loc,
7475 Defining_Identifier => Def_Id,
7476 Subtype_Mark => New_Occurrence_Of (Exp_Type, Loc),
7477 Name => Relocate_Node (Exp));
7479 -- Generate:
7480 -- Rnn : constant Exp_Type := Expr;
7482 else
7483 E :=
7484 Make_Object_Declaration (Loc,
7485 Defining_Identifier => Def_Id,
7486 Object_Definition => New_Occurrence_Of (Exp_Type, Loc),
7487 Constant_Present => True,
7488 Expression => Relocate_Node (Exp));
7490 Set_Assignment_OK (E);
7491 end if;
7493 Insert_Action (Exp, E);
7495 -- If the expression has the form v.all then we can just capture the
7496 -- pointer, and then do an explicit dereference on the result, but
7497 -- this is not right if this is a volatile reference.
7499 elsif Nkind (Exp) = N_Explicit_Dereference
7500 and then not Is_Volatile_Reference (Exp)
7501 then
7502 Def_Id := Build_Temporary (Loc, 'R', Exp);
7503 Res :=
7504 Make_Explicit_Dereference (Loc, New_Occurrence_Of (Def_Id, Loc));
7506 Insert_Action (Exp,
7507 Make_Object_Declaration (Loc,
7508 Defining_Identifier => Def_Id,
7509 Object_Definition =>
7510 New_Occurrence_Of (Etype (Prefix (Exp)), Loc),
7511 Constant_Present => True,
7512 Expression => Relocate_Node (Prefix (Exp))));
7514 -- Similar processing for an unchecked conversion of an expression of
7515 -- the form v.all, where we want the same kind of treatment.
7517 elsif Nkind (Exp) = N_Unchecked_Type_Conversion
7518 and then Nkind (Expression (Exp)) = N_Explicit_Dereference
7519 then
7520 Remove_Side_Effects (Expression (Exp), Name_Req, Variable_Ref);
7521 goto Leave;
7523 -- If this is a type conversion, leave the type conversion and remove
7524 -- the side effects in the expression. This is important in several
7525 -- circumstances: for change of representations, and also when this is a
7526 -- view conversion to a smaller object, where gigi can end up creating
7527 -- its own temporary of the wrong size.
7529 elsif Nkind (Exp) = N_Type_Conversion then
7530 Remove_Side_Effects (Expression (Exp), Name_Req, Variable_Ref);
7531 goto Leave;
7533 -- If this is an unchecked conversion that Gigi can't handle, make
7534 -- a copy or a use a renaming to capture the value.
7536 elsif Nkind (Exp) = N_Unchecked_Type_Conversion
7537 and then not Safe_Unchecked_Type_Conversion (Exp)
7538 then
7539 if CW_Or_Has_Controlled_Part (Exp_Type) then
7541 -- Use a renaming to capture the expression, rather than create
7542 -- a controlled temporary.
7544 Def_Id := Build_Temporary (Loc, 'R', Exp);
7545 Res := New_Occurrence_Of (Def_Id, Loc);
7547 Insert_Action (Exp,
7548 Make_Object_Renaming_Declaration (Loc,
7549 Defining_Identifier => Def_Id,
7550 Subtype_Mark => New_Occurrence_Of (Exp_Type, Loc),
7551 Name => Relocate_Node (Exp)));
7553 else
7554 Def_Id := Build_Temporary (Loc, 'R', Exp);
7555 Set_Etype (Def_Id, Exp_Type);
7556 Res := New_Occurrence_Of (Def_Id, Loc);
7558 E :=
7559 Make_Object_Declaration (Loc,
7560 Defining_Identifier => Def_Id,
7561 Object_Definition => New_Occurrence_Of (Exp_Type, Loc),
7562 Constant_Present => not Is_Variable (Exp),
7563 Expression => Relocate_Node (Exp));
7565 Set_Assignment_OK (E);
7566 Insert_Action (Exp, E);
7567 end if;
7569 -- For expressions that denote objects, we can use a renaming scheme.
7570 -- This is needed for correctness in the case of a volatile object of
7571 -- a non-volatile type because the Make_Reference call of the "default"
7572 -- approach would generate an illegal access value (an access value
7573 -- cannot designate such an object - see Analyze_Reference).
7575 elsif Is_Object_Reference (Exp)
7576 and then Nkind (Exp) /= N_Function_Call
7578 -- In Ada 2012 a qualified expression is an object, but for purposes
7579 -- of removing side effects it still need to be transformed into a
7580 -- separate declaration, particularly in the case of an aggregate.
7582 and then Nkind (Exp) /= N_Qualified_Expression
7584 -- We skip using this scheme if we have an object of a volatile
7585 -- type and we do not have Name_Req set true (see comments for
7586 -- Side_Effect_Free).
7588 and then (Name_Req or else not Treat_As_Volatile (Exp_Type))
7589 then
7590 Def_Id := Build_Temporary (Loc, 'R', Exp);
7592 if Nkind (Exp) = N_Selected_Component
7593 and then Nkind (Prefix (Exp)) = N_Function_Call
7594 and then Is_Array_Type (Exp_Type)
7595 then
7596 -- Avoid generating a variable-sized temporary, by generating
7597 -- the renaming declaration just for the function call. The
7598 -- transformation could be refined to apply only when the array
7599 -- component is constrained by a discriminant???
7601 Res :=
7602 Make_Selected_Component (Loc,
7603 Prefix => New_Occurrence_Of (Def_Id, Loc),
7604 Selector_Name => Selector_Name (Exp));
7606 Insert_Action (Exp,
7607 Make_Object_Renaming_Declaration (Loc,
7608 Defining_Identifier => Def_Id,
7609 Subtype_Mark =>
7610 New_Occurrence_Of (Base_Type (Etype (Prefix (Exp))), Loc),
7611 Name => Relocate_Node (Prefix (Exp))));
7613 else
7614 Res := New_Occurrence_Of (Def_Id, Loc);
7616 Insert_Action (Exp,
7617 Make_Object_Renaming_Declaration (Loc,
7618 Defining_Identifier => Def_Id,
7619 Subtype_Mark => New_Occurrence_Of (Exp_Type, Loc),
7620 Name => Relocate_Node (Exp)));
7621 end if;
7623 -- If this is a packed reference, or a selected component with
7624 -- a non-standard representation, a reference to the temporary
7625 -- will be replaced by a copy of the original expression (see
7626 -- Exp_Ch2.Expand_Renaming). Otherwise the temporary must be
7627 -- elaborated by gigi, and is of course not to be replaced in-line
7628 -- by the expression it renames, which would defeat the purpose of
7629 -- removing the side-effect.
7631 if Nkind_In (Exp, N_Selected_Component, N_Indexed_Component)
7632 and then Has_Non_Standard_Rep (Etype (Prefix (Exp)))
7633 then
7634 null;
7635 else
7636 Set_Is_Renaming_Of_Object (Def_Id, False);
7637 end if;
7639 -- Otherwise we generate a reference to the value
7641 else
7642 -- An expression which is in SPARK mode is considered side effect
7643 -- free if the resulting value is captured by a variable or a
7644 -- constant.
7646 if GNATprove_Mode
7647 and then Nkind (Parent (Exp)) = N_Object_Declaration
7648 then
7649 goto Leave;
7650 end if;
7652 -- Special processing for function calls that return a limited type.
7653 -- We need to build a declaration that will enable build-in-place
7654 -- expansion of the call. This is not done if the context is already
7655 -- an object declaration, to prevent infinite recursion.
7657 -- This is relevant only in Ada 2005 mode. In Ada 95 programs we have
7658 -- to accommodate functions returning limited objects by reference.
7660 if Ada_Version >= Ada_2005
7661 and then Nkind (Exp) = N_Function_Call
7662 and then Is_Limited_View (Etype (Exp))
7663 and then Nkind (Parent (Exp)) /= N_Object_Declaration
7664 then
7665 declare
7666 Obj : constant Entity_Id := Make_Temporary (Loc, 'F', Exp);
7667 Decl : Node_Id;
7669 begin
7670 Decl :=
7671 Make_Object_Declaration (Loc,
7672 Defining_Identifier => Obj,
7673 Object_Definition => New_Occurrence_Of (Exp_Type, Loc),
7674 Expression => Relocate_Node (Exp));
7676 Insert_Action (Exp, Decl);
7677 Set_Etype (Obj, Exp_Type);
7678 Rewrite (Exp, New_Occurrence_Of (Obj, Loc));
7679 goto Leave;
7680 end;
7681 end if;
7683 Def_Id := Build_Temporary (Loc, 'R', Exp);
7685 -- The regular expansion of functions with side effects involves the
7686 -- generation of an access type to capture the return value found on
7687 -- the secondary stack. Since SPARK (and why) cannot process access
7688 -- types, use a different approach which ignores the secondary stack
7689 -- and "copies" the returned object.
7691 if GNATprove_Mode then
7692 Res := New_Occurrence_Of (Def_Id, Loc);
7693 Ref_Type := Exp_Type;
7695 -- Regular expansion utilizing an access type and 'reference
7697 else
7698 Res :=
7699 Make_Explicit_Dereference (Loc,
7700 Prefix => New_Occurrence_Of (Def_Id, Loc));
7702 -- Generate:
7703 -- type Ann is access all <Exp_Type>;
7705 Ref_Type := Make_Temporary (Loc, 'A');
7707 Ptr_Typ_Decl :=
7708 Make_Full_Type_Declaration (Loc,
7709 Defining_Identifier => Ref_Type,
7710 Type_Definition =>
7711 Make_Access_To_Object_Definition (Loc,
7712 All_Present => True,
7713 Subtype_Indication =>
7714 New_Occurrence_Of (Exp_Type, Loc)));
7716 Insert_Action (Exp, Ptr_Typ_Decl);
7717 end if;
7719 E := Exp;
7720 if Nkind (E) = N_Explicit_Dereference then
7721 New_Exp := Relocate_Node (Prefix (E));
7723 else
7724 E := Relocate_Node (E);
7726 -- Do not generate a 'reference in SPARK mode since the access
7727 -- type is not created in the first place.
7729 if GNATprove_Mode then
7730 New_Exp := E;
7732 -- Otherwise generate reference, marking the value as non-null
7733 -- since we know it cannot be null and we don't want a check.
7735 else
7736 New_Exp := Make_Reference (Loc, E);
7737 Set_Is_Known_Non_Null (Def_Id);
7738 end if;
7739 end if;
7741 if Is_Delayed_Aggregate (E) then
7743 -- The expansion of nested aggregates is delayed until the
7744 -- enclosing aggregate is expanded. As aggregates are often
7745 -- qualified, the predicate applies to qualified expressions as
7746 -- well, indicating that the enclosing aggregate has not been
7747 -- expanded yet. At this point the aggregate is part of a
7748 -- stand-alone declaration, and must be fully expanded.
7750 if Nkind (E) = N_Qualified_Expression then
7751 Set_Expansion_Delayed (Expression (E), False);
7752 Set_Analyzed (Expression (E), False);
7753 else
7754 Set_Expansion_Delayed (E, False);
7755 end if;
7757 Set_Analyzed (E, False);
7758 end if;
7760 Insert_Action (Exp,
7761 Make_Object_Declaration (Loc,
7762 Defining_Identifier => Def_Id,
7763 Object_Definition => New_Occurrence_Of (Ref_Type, Loc),
7764 Constant_Present => True,
7765 Expression => New_Exp));
7766 end if;
7768 -- Preserve the Assignment_OK flag in all copies, since at least one
7769 -- copy may be used in a context where this flag must be set (otherwise
7770 -- why would the flag be set in the first place).
7772 Set_Assignment_OK (Res, Assignment_OK (Exp));
7774 -- Finally rewrite the original expression and we are done
7776 Rewrite (Exp, Res);
7777 Analyze_And_Resolve (Exp, Exp_Type);
7779 <<Leave>>
7780 Scope_Suppress := Svg_Suppress;
7781 end Remove_Side_Effects;
7783 ---------------------------
7784 -- Represented_As_Scalar --
7785 ---------------------------
7787 function Represented_As_Scalar (T : Entity_Id) return Boolean is
7788 UT : constant Entity_Id := Underlying_Type (T);
7789 begin
7790 return Is_Scalar_Type (UT)
7791 or else (Is_Bit_Packed_Array (UT)
7792 and then Is_Scalar_Type (Packed_Array_Impl_Type (UT)));
7793 end Represented_As_Scalar;
7795 ------------------------------
7796 -- Requires_Cleanup_Actions --
7797 ------------------------------
7799 function Requires_Cleanup_Actions
7800 (N : Node_Id;
7801 Lib_Level : Boolean) return Boolean
7803 At_Lib_Level : constant Boolean :=
7804 Lib_Level
7805 and then Nkind_In (N, N_Package_Body,
7806 N_Package_Specification);
7807 -- N is at the library level if the top-most context is a package and
7808 -- the path taken to reach N does not inlcude non-package constructs.
7810 begin
7811 case Nkind (N) is
7812 when N_Accept_Statement |
7813 N_Block_Statement |
7814 N_Entry_Body |
7815 N_Package_Body |
7816 N_Protected_Body |
7817 N_Subprogram_Body |
7818 N_Task_Body =>
7819 return
7820 Requires_Cleanup_Actions (Declarations (N), At_Lib_Level, True)
7821 or else
7822 (Present (Handled_Statement_Sequence (N))
7823 and then
7824 Requires_Cleanup_Actions
7825 (Statements (Handled_Statement_Sequence (N)),
7826 At_Lib_Level, True));
7828 when N_Package_Specification =>
7829 return
7830 Requires_Cleanup_Actions
7831 (Visible_Declarations (N), At_Lib_Level, True)
7832 or else
7833 Requires_Cleanup_Actions
7834 (Private_Declarations (N), At_Lib_Level, True);
7836 when others =>
7837 return False;
7838 end case;
7839 end Requires_Cleanup_Actions;
7841 ------------------------------
7842 -- Requires_Cleanup_Actions --
7843 ------------------------------
7845 function Requires_Cleanup_Actions
7846 (L : List_Id;
7847 Lib_Level : Boolean;
7848 Nested_Constructs : Boolean) return Boolean
7850 Decl : Node_Id;
7851 Expr : Node_Id;
7852 Obj_Id : Entity_Id;
7853 Obj_Typ : Entity_Id;
7854 Pack_Id : Entity_Id;
7855 Typ : Entity_Id;
7857 begin
7858 if No (L)
7859 or else Is_Empty_List (L)
7860 then
7861 return False;
7862 end if;
7864 Decl := First (L);
7865 while Present (Decl) loop
7867 -- Library-level tagged types
7869 if Nkind (Decl) = N_Full_Type_Declaration then
7870 Typ := Defining_Identifier (Decl);
7872 -- Ignored Ghost types do not need any cleanup actions because
7873 -- they will not appear in the final tree.
7875 if Is_Ignored_Ghost_Entity (Typ) then
7876 null;
7878 elsif Is_Tagged_Type (Typ)
7879 and then Is_Library_Level_Entity (Typ)
7880 and then Convention (Typ) = Convention_Ada
7881 and then Present (Access_Disp_Table (Typ))
7882 and then RTE_Available (RE_Unregister_Tag)
7883 and then not Is_Abstract_Type (Typ)
7884 and then not No_Run_Time_Mode
7885 then
7886 return True;
7887 end if;
7889 -- Regular object declarations
7891 elsif Nkind (Decl) = N_Object_Declaration then
7892 Obj_Id := Defining_Identifier (Decl);
7893 Obj_Typ := Base_Type (Etype (Obj_Id));
7894 Expr := Expression (Decl);
7896 -- Bypass any form of processing for objects which have their
7897 -- finalization disabled. This applies only to objects at the
7898 -- library level.
7900 if Lib_Level and then Finalize_Storage_Only (Obj_Typ) then
7901 null;
7903 -- Transient variables are treated separately in order to minimize
7904 -- the size of the generated code. See Exp_Ch7.Process_Transient_
7905 -- Objects.
7907 elsif Is_Processed_Transient (Obj_Id) then
7908 null;
7910 -- Ignored Ghost objects do not need any cleanup actions because
7911 -- they will not appear in the final tree.
7913 elsif Is_Ignored_Ghost_Entity (Obj_Id) then
7914 null;
7916 -- The object is of the form:
7917 -- Obj : Typ [:= Expr];
7919 -- Do not process the incomplete view of a deferred constant. Do
7920 -- not consider tag-to-class-wide conversions.
7922 elsif not Is_Imported (Obj_Id)
7923 and then Needs_Finalization (Obj_Typ)
7924 and then not (Ekind (Obj_Id) = E_Constant
7925 and then not Has_Completion (Obj_Id))
7926 and then not Is_Tag_To_Class_Wide_Conversion (Obj_Id)
7927 then
7928 return True;
7930 -- The object is of the form:
7931 -- Obj : Access_Typ := Non_BIP_Function_Call'reference;
7933 -- Obj : Access_Typ :=
7934 -- BIP_Function_Call (BIPalloc => 2, ...)'reference;
7936 elsif Is_Access_Type (Obj_Typ)
7937 and then Needs_Finalization
7938 (Available_View (Designated_Type (Obj_Typ)))
7939 and then Present (Expr)
7940 and then
7941 (Is_Secondary_Stack_BIP_Func_Call (Expr)
7942 or else
7943 (Is_Non_BIP_Func_Call (Expr)
7944 and then not Is_Related_To_Func_Return (Obj_Id)))
7945 then
7946 return True;
7948 -- Processing for "hook" objects generated for controlled
7949 -- transients declared inside an Expression_With_Actions.
7951 elsif Is_Access_Type (Obj_Typ)
7952 and then Present (Status_Flag_Or_Transient_Decl (Obj_Id))
7953 and then Nkind (Status_Flag_Or_Transient_Decl (Obj_Id)) =
7954 N_Object_Declaration
7955 then
7956 return True;
7958 -- Processing for intermediate results of if expressions where
7959 -- one of the alternatives uses a controlled function call.
7961 elsif Is_Access_Type (Obj_Typ)
7962 and then Present (Status_Flag_Or_Transient_Decl (Obj_Id))
7963 and then Nkind (Status_Flag_Or_Transient_Decl (Obj_Id)) =
7964 N_Defining_Identifier
7965 and then Present (Expr)
7966 and then Nkind (Expr) = N_Null
7967 then
7968 return True;
7970 -- Simple protected objects which use type System.Tasking.
7971 -- Protected_Objects.Protection to manage their locks should be
7972 -- treated as controlled since they require manual cleanup.
7974 elsif Ekind (Obj_Id) = E_Variable
7975 and then (Is_Simple_Protected_Type (Obj_Typ)
7976 or else Has_Simple_Protected_Object (Obj_Typ))
7977 then
7978 return True;
7979 end if;
7981 -- Specific cases of object renamings
7983 elsif Nkind (Decl) = N_Object_Renaming_Declaration then
7984 Obj_Id := Defining_Identifier (Decl);
7985 Obj_Typ := Base_Type (Etype (Obj_Id));
7987 -- Bypass any form of processing for objects which have their
7988 -- finalization disabled. This applies only to objects at the
7989 -- library level.
7991 if Lib_Level and then Finalize_Storage_Only (Obj_Typ) then
7992 null;
7994 -- Ignored Ghost object renamings do not need any cleanup actions
7995 -- because they will not appear in the final tree.
7997 elsif Is_Ignored_Ghost_Entity (Obj_Id) then
7998 null;
8000 -- Return object of a build-in-place function. This case is
8001 -- recognized and marked by the expansion of an extended return
8002 -- statement (see Expand_N_Extended_Return_Statement).
8004 elsif Needs_Finalization (Obj_Typ)
8005 and then Is_Return_Object (Obj_Id)
8006 and then Present (Status_Flag_Or_Transient_Decl (Obj_Id))
8007 then
8008 return True;
8010 -- Detect a case where a source object has been initialized by
8011 -- a controlled function call or another object which was later
8012 -- rewritten as a class-wide conversion of Ada.Tags.Displace.
8014 -- Obj1 : CW_Type := Src_Obj;
8015 -- Obj2 : CW_Type := Function_Call (...);
8017 -- Obj1 : CW_Type renames (... Ada.Tags.Displace (Src_Obj));
8018 -- Tmp : ... := Function_Call (...)'reference;
8019 -- Obj2 : CW_Type renames (... Ada.Tags.Displace (Tmp));
8021 elsif Is_Displacement_Of_Object_Or_Function_Result (Obj_Id) then
8022 return True;
8023 end if;
8025 -- Inspect the freeze node of an access-to-controlled type and look
8026 -- for a delayed finalization master. This case arises when the
8027 -- freeze actions are inserted at a later time than the expansion of
8028 -- the context. Since Build_Finalizer is never called on a single
8029 -- construct twice, the master will be ultimately left out and never
8030 -- finalized. This is also needed for freeze actions of designated
8031 -- types themselves, since in some cases the finalization master is
8032 -- associated with a designated type's freeze node rather than that
8033 -- of the access type (see handling for freeze actions in
8034 -- Build_Finalization_Master).
8036 elsif Nkind (Decl) = N_Freeze_Entity
8037 and then Present (Actions (Decl))
8038 then
8039 Typ := Entity (Decl);
8041 -- Freeze nodes for ignored Ghost types do not need cleanup
8042 -- actions because they will never appear in the final tree.
8044 if Is_Ignored_Ghost_Entity (Typ) then
8045 null;
8047 elsif ((Is_Access_Type (Typ)
8048 and then not Is_Access_Subprogram_Type (Typ)
8049 and then Needs_Finalization
8050 (Available_View (Designated_Type (Typ))))
8051 or else (Is_Type (Typ) and then Needs_Finalization (Typ)))
8052 and then Requires_Cleanup_Actions
8053 (Actions (Decl), Lib_Level, Nested_Constructs)
8054 then
8055 return True;
8056 end if;
8058 -- Nested package declarations
8060 elsif Nested_Constructs
8061 and then Nkind (Decl) = N_Package_Declaration
8062 then
8063 Pack_Id := Defining_Entity (Decl);
8065 -- Do not inspect an ignored Ghost package because all code found
8066 -- within will not appear in the final tree.
8068 if Is_Ignored_Ghost_Entity (Pack_Id) then
8069 null;
8071 elsif Ekind (Pack_Id) /= E_Generic_Package
8072 and then Requires_Cleanup_Actions
8073 (Specification (Decl), Lib_Level)
8074 then
8075 return True;
8076 end if;
8078 -- Nested package bodies
8080 elsif Nested_Constructs and then Nkind (Decl) = N_Package_Body then
8082 -- Do not inspect an ignored Ghost package body because all code
8083 -- found within will not appear in the final tree.
8085 if Is_Ignored_Ghost_Entity (Defining_Entity (Decl)) then
8086 null;
8088 elsif Ekind (Corresponding_Spec (Decl)) /= E_Generic_Package
8089 and then Requires_Cleanup_Actions (Decl, Lib_Level)
8090 then
8091 return True;
8092 end if;
8094 elsif Nkind (Decl) = N_Block_Statement
8095 and then
8097 -- Handle a rare case caused by a controlled transient variable
8098 -- created as part of a record init proc. The variable is wrapped
8099 -- in a block, but the block is not associated with a transient
8100 -- scope.
8102 (Inside_Init_Proc
8104 -- Handle the case where the original context has been wrapped in
8105 -- a block to avoid interference between exception handlers and
8106 -- At_End handlers. Treat the block as transparent and process its
8107 -- contents.
8109 or else Is_Finalization_Wrapper (Decl))
8110 then
8111 if Requires_Cleanup_Actions (Decl, Lib_Level) then
8112 return True;
8113 end if;
8114 end if;
8116 Next (Decl);
8117 end loop;
8119 return False;
8120 end Requires_Cleanup_Actions;
8122 ------------------------------------
8123 -- Safe_Unchecked_Type_Conversion --
8124 ------------------------------------
8126 -- Note: this function knows quite a bit about the exact requirements of
8127 -- Gigi with respect to unchecked type conversions, and its code must be
8128 -- coordinated with any changes in Gigi in this area.
8130 -- The above requirements should be documented in Sinfo ???
8132 function Safe_Unchecked_Type_Conversion (Exp : Node_Id) return Boolean is
8133 Otyp : Entity_Id;
8134 Ityp : Entity_Id;
8135 Oalign : Uint;
8136 Ialign : Uint;
8137 Pexp : constant Node_Id := Parent (Exp);
8139 begin
8140 -- If the expression is the RHS of an assignment or object declaration
8141 -- we are always OK because there will always be a target.
8143 -- Object renaming declarations, (generated for view conversions of
8144 -- actuals in inlined calls), like object declarations, provide an
8145 -- explicit type, and are safe as well.
8147 if (Nkind (Pexp) = N_Assignment_Statement
8148 and then Expression (Pexp) = Exp)
8149 or else Nkind_In (Pexp, N_Object_Declaration,
8150 N_Object_Renaming_Declaration)
8151 then
8152 return True;
8154 -- If the expression is the prefix of an N_Selected_Component we should
8155 -- also be OK because GCC knows to look inside the conversion except if
8156 -- the type is discriminated. We assume that we are OK anyway if the
8157 -- type is not set yet or if it is controlled since we can't afford to
8158 -- introduce a temporary in this case.
8160 elsif Nkind (Pexp) = N_Selected_Component
8161 and then Prefix (Pexp) = Exp
8162 then
8163 if No (Etype (Pexp)) then
8164 return True;
8165 else
8166 return
8167 not Has_Discriminants (Etype (Pexp))
8168 or else Is_Constrained (Etype (Pexp));
8169 end if;
8170 end if;
8172 -- Set the output type, this comes from Etype if it is set, otherwise we
8173 -- take it from the subtype mark, which we assume was already fully
8174 -- analyzed.
8176 if Present (Etype (Exp)) then
8177 Otyp := Etype (Exp);
8178 else
8179 Otyp := Entity (Subtype_Mark (Exp));
8180 end if;
8182 -- The input type always comes from the expression, and we assume this
8183 -- is indeed always analyzed, so we can simply get the Etype.
8185 Ityp := Etype (Expression (Exp));
8187 -- Initialize alignments to unknown so far
8189 Oalign := No_Uint;
8190 Ialign := No_Uint;
8192 -- Replace a concurrent type by its corresponding record type and each
8193 -- type by its underlying type and do the tests on those. The original
8194 -- type may be a private type whose completion is a concurrent type, so
8195 -- find the underlying type first.
8197 if Present (Underlying_Type (Otyp)) then
8198 Otyp := Underlying_Type (Otyp);
8199 end if;
8201 if Present (Underlying_Type (Ityp)) then
8202 Ityp := Underlying_Type (Ityp);
8203 end if;
8205 if Is_Concurrent_Type (Otyp) then
8206 Otyp := Corresponding_Record_Type (Otyp);
8207 end if;
8209 if Is_Concurrent_Type (Ityp) then
8210 Ityp := Corresponding_Record_Type (Ityp);
8211 end if;
8213 -- If the base types are the same, we know there is no problem since
8214 -- this conversion will be a noop.
8216 if Implementation_Base_Type (Otyp) = Implementation_Base_Type (Ityp) then
8217 return True;
8219 -- Same if this is an upwards conversion of an untagged type, and there
8220 -- are no constraints involved (could be more general???)
8222 elsif Etype (Ityp) = Otyp
8223 and then not Is_Tagged_Type (Ityp)
8224 and then not Has_Discriminants (Ityp)
8225 and then No (First_Rep_Item (Base_Type (Ityp)))
8226 then
8227 return True;
8229 -- If the expression has an access type (object or subprogram) we assume
8230 -- that the conversion is safe, because the size of the target is safe,
8231 -- even if it is a record (which might be treated as having unknown size
8232 -- at this point).
8234 elsif Is_Access_Type (Ityp) then
8235 return True;
8237 -- If the size of output type is known at compile time, there is never
8238 -- a problem. Note that unconstrained records are considered to be of
8239 -- known size, but we can't consider them that way here, because we are
8240 -- talking about the actual size of the object.
8242 -- We also make sure that in addition to the size being known, we do not
8243 -- have a case which might generate an embarrassingly large temp in
8244 -- stack checking mode.
8246 elsif Size_Known_At_Compile_Time (Otyp)
8247 and then
8248 (not Stack_Checking_Enabled
8249 or else not May_Generate_Large_Temp (Otyp))
8250 and then not (Is_Record_Type (Otyp) and then not Is_Constrained (Otyp))
8251 then
8252 return True;
8254 -- If either type is tagged, then we know the alignment is OK so Gigi
8255 -- will be able to use pointer punning.
8257 elsif Is_Tagged_Type (Otyp) or else Is_Tagged_Type (Ityp) then
8258 return True;
8260 -- If either type is a limited record type, we cannot do a copy, so say
8261 -- safe since there's nothing else we can do.
8263 elsif Is_Limited_Record (Otyp) or else Is_Limited_Record (Ityp) then
8264 return True;
8266 -- Conversions to and from packed array types are always ignored and
8267 -- hence are safe.
8269 elsif Is_Packed_Array_Impl_Type (Otyp)
8270 or else Is_Packed_Array_Impl_Type (Ityp)
8271 then
8272 return True;
8273 end if;
8275 -- The only other cases known to be safe is if the input type's
8276 -- alignment is known to be at least the maximum alignment for the
8277 -- target or if both alignments are known and the output type's
8278 -- alignment is no stricter than the input's. We can use the component
8279 -- type alignement for an array if a type is an unpacked array type.
8281 if Present (Alignment_Clause (Otyp)) then
8282 Oalign := Expr_Value (Expression (Alignment_Clause (Otyp)));
8284 elsif Is_Array_Type (Otyp)
8285 and then Present (Alignment_Clause (Component_Type (Otyp)))
8286 then
8287 Oalign := Expr_Value (Expression (Alignment_Clause
8288 (Component_Type (Otyp))));
8289 end if;
8291 if Present (Alignment_Clause (Ityp)) then
8292 Ialign := Expr_Value (Expression (Alignment_Clause (Ityp)));
8294 elsif Is_Array_Type (Ityp)
8295 and then Present (Alignment_Clause (Component_Type (Ityp)))
8296 then
8297 Ialign := Expr_Value (Expression (Alignment_Clause
8298 (Component_Type (Ityp))));
8299 end if;
8301 if Ialign /= No_Uint and then Ialign > Maximum_Alignment then
8302 return True;
8304 elsif Ialign /= No_Uint
8305 and then Oalign /= No_Uint
8306 and then Ialign <= Oalign
8307 then
8308 return True;
8310 -- Otherwise, Gigi cannot handle this and we must make a temporary
8312 else
8313 return False;
8314 end if;
8315 end Safe_Unchecked_Type_Conversion;
8317 ---------------------------------
8318 -- Set_Current_Value_Condition --
8319 ---------------------------------
8321 -- Note: the implementation of this procedure is very closely tied to the
8322 -- implementation of Get_Current_Value_Condition. Here we set required
8323 -- Current_Value fields, and in Get_Current_Value_Condition, we interpret
8324 -- them, so they must have a consistent view.
8326 procedure Set_Current_Value_Condition (Cnode : Node_Id) is
8328 procedure Set_Entity_Current_Value (N : Node_Id);
8329 -- If N is an entity reference, where the entity is of an appropriate
8330 -- kind, then set the current value of this entity to Cnode, unless
8331 -- there is already a definite value set there.
8333 procedure Set_Expression_Current_Value (N : Node_Id);
8334 -- If N is of an appropriate form, sets an appropriate entry in current
8335 -- value fields of relevant entities. Multiple entities can be affected
8336 -- in the case of an AND or AND THEN.
8338 ------------------------------
8339 -- Set_Entity_Current_Value --
8340 ------------------------------
8342 procedure Set_Entity_Current_Value (N : Node_Id) is
8343 begin
8344 if Is_Entity_Name (N) then
8345 declare
8346 Ent : constant Entity_Id := Entity (N);
8348 begin
8349 -- Don't capture if not safe to do so
8351 if not Safe_To_Capture_Value (N, Ent, Cond => True) then
8352 return;
8353 end if;
8355 -- Here we have a case where the Current_Value field may need
8356 -- to be set. We set it if it is not already set to a compile
8357 -- time expression value.
8359 -- Note that this represents a decision that one condition
8360 -- blots out another previous one. That's certainly right if
8361 -- they occur at the same level. If the second one is nested,
8362 -- then the decision is neither right nor wrong (it would be
8363 -- equally OK to leave the outer one in place, or take the new
8364 -- inner one. Really we should record both, but our data
8365 -- structures are not that elaborate.
8367 if Nkind (Current_Value (Ent)) not in N_Subexpr then
8368 Set_Current_Value (Ent, Cnode);
8369 end if;
8370 end;
8371 end if;
8372 end Set_Entity_Current_Value;
8374 ----------------------------------
8375 -- Set_Expression_Current_Value --
8376 ----------------------------------
8378 procedure Set_Expression_Current_Value (N : Node_Id) is
8379 Cond : Node_Id;
8381 begin
8382 Cond := N;
8384 -- Loop to deal with (ignore for now) any NOT operators present. The
8385 -- presence of NOT operators will be handled properly when we call
8386 -- Get_Current_Value_Condition.
8388 while Nkind (Cond) = N_Op_Not loop
8389 Cond := Right_Opnd (Cond);
8390 end loop;
8392 -- For an AND or AND THEN, recursively process operands
8394 if Nkind (Cond) = N_Op_And or else Nkind (Cond) = N_And_Then then
8395 Set_Expression_Current_Value (Left_Opnd (Cond));
8396 Set_Expression_Current_Value (Right_Opnd (Cond));
8397 return;
8398 end if;
8400 -- Check possible relational operator
8402 if Nkind (Cond) in N_Op_Compare then
8403 if Compile_Time_Known_Value (Right_Opnd (Cond)) then
8404 Set_Entity_Current_Value (Left_Opnd (Cond));
8405 elsif Compile_Time_Known_Value (Left_Opnd (Cond)) then
8406 Set_Entity_Current_Value (Right_Opnd (Cond));
8407 end if;
8409 elsif Nkind_In (Cond,
8410 N_Type_Conversion,
8411 N_Qualified_Expression,
8412 N_Expression_With_Actions)
8413 then
8414 Set_Expression_Current_Value (Expression (Cond));
8416 -- Check possible boolean variable reference
8418 else
8419 Set_Entity_Current_Value (Cond);
8420 end if;
8421 end Set_Expression_Current_Value;
8423 -- Start of processing for Set_Current_Value_Condition
8425 begin
8426 Set_Expression_Current_Value (Condition (Cnode));
8427 end Set_Current_Value_Condition;
8429 --------------------------
8430 -- Set_Elaboration_Flag --
8431 --------------------------
8433 procedure Set_Elaboration_Flag (N : Node_Id; Spec_Id : Entity_Id) is
8434 Loc : constant Source_Ptr := Sloc (N);
8435 Ent : constant Entity_Id := Elaboration_Entity (Spec_Id);
8436 Asn : Node_Id;
8438 begin
8439 if Present (Ent) then
8441 -- Nothing to do if at the compilation unit level, because in this
8442 -- case the flag is set by the binder generated elaboration routine.
8444 if Nkind (Parent (N)) = N_Compilation_Unit then
8445 null;
8447 -- Here we do need to generate an assignment statement
8449 else
8450 Check_Restriction (No_Elaboration_Code, N);
8451 Asn :=
8452 Make_Assignment_Statement (Loc,
8453 Name => New_Occurrence_Of (Ent, Loc),
8454 Expression => Make_Integer_Literal (Loc, Uint_1));
8456 if Nkind (Parent (N)) = N_Subunit then
8457 Insert_After (Corresponding_Stub (Parent (N)), Asn);
8458 else
8459 Insert_After (N, Asn);
8460 end if;
8462 Analyze (Asn);
8464 -- Kill current value indication. This is necessary because the
8465 -- tests of this flag are inserted out of sequence and must not
8466 -- pick up bogus indications of the wrong constant value.
8468 Set_Current_Value (Ent, Empty);
8470 -- If the subprogram is in the current declarative part and
8471 -- 'access has been applied to it, generate an elaboration
8472 -- check at the beginning of the declarations of the body.
8474 if Nkind (N) = N_Subprogram_Body
8475 and then Address_Taken (Spec_Id)
8476 and then
8477 Ekind_In (Scope (Spec_Id), E_Block, E_Procedure, E_Function)
8478 then
8479 declare
8480 Loc : constant Source_Ptr := Sloc (N);
8481 Decls : constant List_Id := Declarations (N);
8482 Chk : Node_Id;
8484 begin
8485 -- No need to generate this check if first entry in the
8486 -- declaration list is a raise of Program_Error now.
8488 if Present (Decls)
8489 and then Nkind (First (Decls)) = N_Raise_Program_Error
8490 then
8491 return;
8492 end if;
8494 -- Otherwise generate the check
8496 Chk :=
8497 Make_Raise_Program_Error (Loc,
8498 Condition =>
8499 Make_Op_Eq (Loc,
8500 Left_Opnd => New_Occurrence_Of (Ent, Loc),
8501 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
8502 Reason => PE_Access_Before_Elaboration);
8504 if No (Decls) then
8505 Set_Declarations (N, New_List (Chk));
8506 else
8507 Prepend (Chk, Decls);
8508 end if;
8510 Analyze (Chk);
8511 end;
8512 end if;
8513 end if;
8514 end if;
8515 end Set_Elaboration_Flag;
8517 ----------------------------
8518 -- Set_Renamed_Subprogram --
8519 ----------------------------
8521 procedure Set_Renamed_Subprogram (N : Node_Id; E : Entity_Id) is
8522 begin
8523 -- If input node is an identifier, we can just reset it
8525 if Nkind (N) = N_Identifier then
8526 Set_Chars (N, Chars (E));
8527 Set_Entity (N, E);
8529 -- Otherwise we have to do a rewrite, preserving Comes_From_Source
8531 else
8532 declare
8533 CS : constant Boolean := Comes_From_Source (N);
8534 begin
8535 Rewrite (N, Make_Identifier (Sloc (N), Chars (E)));
8536 Set_Entity (N, E);
8537 Set_Comes_From_Source (N, CS);
8538 Set_Analyzed (N, True);
8539 end;
8540 end if;
8541 end Set_Renamed_Subprogram;
8543 ----------------------
8544 -- Side_Effect_Free --
8545 ----------------------
8547 function Side_Effect_Free
8548 (N : Node_Id;
8549 Name_Req : Boolean := False;
8550 Variable_Ref : Boolean := False) return Boolean
8552 Typ : constant Entity_Id := Etype (N);
8553 -- Result type of the expression
8555 function Safe_Prefixed_Reference (N : Node_Id) return Boolean;
8556 -- The argument N is a construct where the Prefix is dereferenced if it
8557 -- is an access type and the result is a variable. The call returns True
8558 -- if the construct is side effect free (not considering side effects in
8559 -- other than the prefix which are to be tested by the caller).
8561 function Within_In_Parameter (N : Node_Id) return Boolean;
8562 -- Determines if N is a subcomponent of a composite in-parameter. If so,
8563 -- N is not side-effect free when the actual is global and modifiable
8564 -- indirectly from within a subprogram, because it may be passed by
8565 -- reference. The front-end must be conservative here and assume that
8566 -- this may happen with any array or record type. On the other hand, we
8567 -- cannot create temporaries for all expressions for which this
8568 -- condition is true, for various reasons that might require clearing up
8569 -- ??? For example, discriminant references that appear out of place, or
8570 -- spurious type errors with class-wide expressions. As a result, we
8571 -- limit the transformation to loop bounds, which is so far the only
8572 -- case that requires it.
8574 -----------------------------
8575 -- Safe_Prefixed_Reference --
8576 -----------------------------
8578 function Safe_Prefixed_Reference (N : Node_Id) return Boolean is
8579 begin
8580 -- If prefix is not side effect free, definitely not safe
8582 if not Side_Effect_Free (Prefix (N), Name_Req, Variable_Ref) then
8583 return False;
8585 -- If the prefix is of an access type that is not access-to-constant,
8586 -- then this construct is a variable reference, which means it is to
8587 -- be considered to have side effects if Variable_Ref is set True.
8589 elsif Is_Access_Type (Etype (Prefix (N)))
8590 and then not Is_Access_Constant (Etype (Prefix (N)))
8591 and then Variable_Ref
8592 then
8593 -- Exception is a prefix that is the result of a previous removal
8594 -- of side-effects.
8596 return Is_Entity_Name (Prefix (N))
8597 and then not Comes_From_Source (Prefix (N))
8598 and then Ekind (Entity (Prefix (N))) = E_Constant
8599 and then Is_Internal_Name (Chars (Entity (Prefix (N))));
8601 -- If the prefix is an explicit dereference then this construct is a
8602 -- variable reference, which means it is to be considered to have
8603 -- side effects if Variable_Ref is True.
8605 -- We do NOT exclude dereferences of access-to-constant types because
8606 -- we handle them as constant view of variables.
8608 elsif Nkind (Prefix (N)) = N_Explicit_Dereference
8609 and then Variable_Ref
8610 then
8611 return False;
8613 -- Note: The following test is the simplest way of solving a complex
8614 -- problem uncovered by the following test (Side effect on loop bound
8615 -- that is a subcomponent of a global variable:
8617 -- with Text_Io; use Text_Io;
8618 -- procedure Tloop is
8619 -- type X is
8620 -- record
8621 -- V : Natural := 4;
8622 -- S : String (1..5) := (others => 'a');
8623 -- end record;
8624 -- X1 : X;
8626 -- procedure Modi;
8628 -- generic
8629 -- with procedure Action;
8630 -- procedure Loop_G (Arg : X; Msg : String)
8632 -- procedure Loop_G (Arg : X; Msg : String) is
8633 -- begin
8634 -- Put_Line ("begin loop_g " & Msg & " will loop till: "
8635 -- & Natural'Image (Arg.V));
8636 -- for Index in 1 .. Arg.V loop
8637 -- Text_Io.Put_Line
8638 -- (Natural'Image (Index) & " " & Arg.S (Index));
8639 -- if Index > 2 then
8640 -- Modi;
8641 -- end if;
8642 -- end loop;
8643 -- Put_Line ("end loop_g " & Msg);
8644 -- end;
8646 -- procedure Loop1 is new Loop_G (Modi);
8647 -- procedure Modi is
8648 -- begin
8649 -- X1.V := 1;
8650 -- Loop1 (X1, "from modi");
8651 -- end;
8653 -- begin
8654 -- Loop1 (X1, "initial");
8655 -- end;
8657 -- The output of the above program should be:
8659 -- begin loop_g initial will loop till: 4
8660 -- 1 a
8661 -- 2 a
8662 -- 3 a
8663 -- begin loop_g from modi will loop till: 1
8664 -- 1 a
8665 -- end loop_g from modi
8666 -- 4 a
8667 -- begin loop_g from modi will loop till: 1
8668 -- 1 a
8669 -- end loop_g from modi
8670 -- end loop_g initial
8672 -- If a loop bound is a subcomponent of a global variable, a
8673 -- modification of that variable within the loop may incorrectly
8674 -- affect the execution of the loop.
8676 elsif Nkind (Parent (Parent (N))) = N_Loop_Parameter_Specification
8677 and then Within_In_Parameter (Prefix (N))
8678 and then Variable_Ref
8679 then
8680 return False;
8682 -- All other cases are side effect free
8684 else
8685 return True;
8686 end if;
8687 end Safe_Prefixed_Reference;
8689 -------------------------
8690 -- Within_In_Parameter --
8691 -------------------------
8693 function Within_In_Parameter (N : Node_Id) return Boolean is
8694 begin
8695 if not Comes_From_Source (N) then
8696 return False;
8698 elsif Is_Entity_Name (N) then
8699 return Ekind (Entity (N)) = E_In_Parameter;
8701 elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
8702 return Within_In_Parameter (Prefix (N));
8704 else
8705 return False;
8706 end if;
8707 end Within_In_Parameter;
8709 -- Start of processing for Side_Effect_Free
8711 begin
8712 -- If volatile reference, always consider it to have side effects
8714 if Is_Volatile_Reference (N) then
8715 return False;
8716 end if;
8718 -- Note on checks that could raise Constraint_Error. Strictly, if we
8719 -- take advantage of 11.6, these checks do not count as side effects.
8720 -- However, we would prefer to consider that they are side effects,
8721 -- since the backend CSE does not work very well on expressions which
8722 -- can raise Constraint_Error. On the other hand if we don't consider
8723 -- them to be side effect free, then we get some awkward expansions
8724 -- in -gnato mode, resulting in code insertions at a point where we
8725 -- do not have a clear model for performing the insertions.
8727 -- Special handling for entity names
8729 if Is_Entity_Name (N) then
8731 -- A type reference is always side effect free
8733 if Is_Type (Entity (N)) then
8734 return True;
8736 -- Variables are considered to be a side effect if Variable_Ref
8737 -- is set or if we have a volatile reference and Name_Req is off.
8738 -- If Name_Req is True then we can't help returning a name which
8739 -- effectively allows multiple references in any case.
8741 elsif Is_Variable (N, Use_Original_Node => False) then
8742 return not Variable_Ref
8743 and then (not Is_Volatile_Reference (N) or else Name_Req);
8745 -- Any other entity (e.g. a subtype name) is definitely side
8746 -- effect free.
8748 else
8749 return True;
8750 end if;
8752 -- A value known at compile time is always side effect free
8754 elsif Compile_Time_Known_Value (N) then
8755 return True;
8757 -- A variable renaming is not side-effect free, because the renaming
8758 -- will function like a macro in the front-end in some cases, and an
8759 -- assignment can modify the component designated by N, so we need to
8760 -- create a temporary for it.
8762 -- The guard testing for Entity being present is needed at least in
8763 -- the case of rewritten predicate expressions, and may well also be
8764 -- appropriate elsewhere. Obviously we can't go testing the entity
8765 -- field if it does not exist, so it's reasonable to say that this is
8766 -- not the renaming case if it does not exist.
8768 elsif Is_Entity_Name (Original_Node (N))
8769 and then Present (Entity (Original_Node (N)))
8770 and then Is_Renaming_Of_Object (Entity (Original_Node (N)))
8771 and then Ekind (Entity (Original_Node (N))) /= E_Constant
8772 then
8773 declare
8774 RO : constant Node_Id :=
8775 Renamed_Object (Entity (Original_Node (N)));
8777 begin
8778 -- If the renamed object is an indexed component, or an
8779 -- explicit dereference, then the designated object could
8780 -- be modified by an assignment.
8782 if Nkind_In (RO, N_Indexed_Component,
8783 N_Explicit_Dereference)
8784 then
8785 return False;
8787 -- A selected component must have a safe prefix
8789 elsif Nkind (RO) = N_Selected_Component then
8790 return Safe_Prefixed_Reference (RO);
8792 -- In all other cases, designated object cannot be changed so
8793 -- we are side effect free.
8795 else
8796 return True;
8797 end if;
8798 end;
8800 -- Remove_Side_Effects generates an object renaming declaration to
8801 -- capture the expression of a class-wide expression. In VM targets
8802 -- the frontend performs no expansion for dispatching calls to
8803 -- class- wide types since they are handled by the VM. Hence, we must
8804 -- locate here if this node corresponds to a previous invocation of
8805 -- Remove_Side_Effects to avoid a never ending loop in the frontend.
8807 elsif VM_Target /= No_VM
8808 and then not Comes_From_Source (N)
8809 and then Nkind (Parent (N)) = N_Object_Renaming_Declaration
8810 and then Is_Class_Wide_Type (Typ)
8811 then
8812 return True;
8813 end if;
8815 -- For other than entity names and compile time known values,
8816 -- check the node kind for special processing.
8818 case Nkind (N) is
8820 -- An attribute reference is side effect free if its expressions
8821 -- are side effect free and its prefix is side effect free or
8822 -- is an entity reference.
8824 -- Is this right? what about x'first where x is a variable???
8826 when N_Attribute_Reference =>
8827 return Side_Effect_Free (Expressions (N), Name_Req, Variable_Ref)
8828 and then Attribute_Name (N) /= Name_Input
8829 and then (Is_Entity_Name (Prefix (N))
8830 or else Side_Effect_Free
8831 (Prefix (N), Name_Req, Variable_Ref));
8833 -- A binary operator is side effect free if and both operands are
8834 -- side effect free. For this purpose binary operators include
8835 -- membership tests and short circuit forms.
8837 when N_Binary_Op | N_Membership_Test | N_Short_Circuit =>
8838 return Side_Effect_Free (Left_Opnd (N), Name_Req, Variable_Ref)
8839 and then
8840 Side_Effect_Free (Right_Opnd (N), Name_Req, Variable_Ref);
8842 -- An explicit dereference is side effect free only if it is
8843 -- a side effect free prefixed reference.
8845 when N_Explicit_Dereference =>
8846 return Safe_Prefixed_Reference (N);
8848 -- An expression with action is side effect free if its expression
8849 -- is side effect free and it has no actions.
8851 when N_Expression_With_Actions =>
8852 return Is_Empty_List (Actions (N))
8853 and then
8854 Side_Effect_Free (Expression (N), Name_Req, Variable_Ref);
8856 -- A call to _rep_to_pos is side effect free, since we generate
8857 -- this pure function call ourselves. Moreover it is critically
8858 -- important to make this exception, since otherwise we can have
8859 -- discriminants in array components which don't look side effect
8860 -- free in the case of an array whose index type is an enumeration
8861 -- type with an enumeration rep clause.
8863 -- All other function calls are not side effect free
8865 when N_Function_Call =>
8866 return Nkind (Name (N)) = N_Identifier
8867 and then Is_TSS (Name (N), TSS_Rep_To_Pos)
8868 and then
8869 Side_Effect_Free
8870 (First (Parameter_Associations (N)), Name_Req, Variable_Ref);
8872 -- An IF expression is side effect free if it's of a scalar type, and
8873 -- all its components are all side effect free (conditions and then
8874 -- actions and else actions). We restrict to scalar types, since it
8875 -- is annoying to deal with things like (if A then B else C)'First
8876 -- where the type involved is a string type.
8878 when N_If_Expression =>
8879 return Is_Scalar_Type (Typ)
8880 and then
8881 Side_Effect_Free (Expressions (N), Name_Req, Variable_Ref);
8883 -- An indexed component is side effect free if it is a side
8884 -- effect free prefixed reference and all the indexing
8885 -- expressions are side effect free.
8887 when N_Indexed_Component =>
8888 return Side_Effect_Free (Expressions (N), Name_Req, Variable_Ref)
8889 and then Safe_Prefixed_Reference (N);
8891 -- A type qualification is side effect free if the expression
8892 -- is side effect free.
8894 when N_Qualified_Expression =>
8895 return Side_Effect_Free (Expression (N), Name_Req, Variable_Ref);
8897 -- A selected component is side effect free only if it is a side
8898 -- effect free prefixed reference. If it designates a component
8899 -- with a rep. clause it must be treated has having a potential
8900 -- side effect, because it may be modified through a renaming, and
8901 -- a subsequent use of the renaming as a macro will yield the
8902 -- wrong value. This complex interaction between renaming and
8903 -- removing side effects is a reminder that the latter has become
8904 -- a headache to maintain, and that it should be removed in favor
8905 -- of the gcc mechanism to capture values ???
8907 when N_Selected_Component =>
8908 if Nkind (Parent (N)) = N_Explicit_Dereference
8909 and then Has_Non_Standard_Rep (Designated_Type (Typ))
8910 then
8911 return False;
8912 else
8913 return Safe_Prefixed_Reference (N);
8914 end if;
8916 -- A range is side effect free if the bounds are side effect free
8918 when N_Range =>
8919 return Side_Effect_Free (Low_Bound (N), Name_Req, Variable_Ref)
8920 and then
8921 Side_Effect_Free (High_Bound (N), Name_Req, Variable_Ref);
8923 -- A slice is side effect free if it is a side effect free
8924 -- prefixed reference and the bounds are side effect free.
8926 when N_Slice =>
8927 return Side_Effect_Free
8928 (Discrete_Range (N), Name_Req, Variable_Ref)
8929 and then Safe_Prefixed_Reference (N);
8931 -- A type conversion is side effect free if the expression to be
8932 -- converted is side effect free.
8934 when N_Type_Conversion =>
8935 return Side_Effect_Free (Expression (N), Name_Req, Variable_Ref);
8937 -- A unary operator is side effect free if the operand
8938 -- is side effect free.
8940 when N_Unary_Op =>
8941 return Side_Effect_Free (Right_Opnd (N), Name_Req, Variable_Ref);
8943 -- An unchecked type conversion is side effect free only if it
8944 -- is safe and its argument is side effect free.
8946 when N_Unchecked_Type_Conversion =>
8947 return Safe_Unchecked_Type_Conversion (N)
8948 and then
8949 Side_Effect_Free (Expression (N), Name_Req, Variable_Ref);
8951 -- An unchecked expression is side effect free if its expression
8952 -- is side effect free.
8954 when N_Unchecked_Expression =>
8955 return Side_Effect_Free (Expression (N), Name_Req, Variable_Ref);
8957 -- A literal is side effect free
8959 when N_Character_Literal |
8960 N_Integer_Literal |
8961 N_Real_Literal |
8962 N_String_Literal =>
8963 return True;
8965 -- We consider that anything else has side effects. This is a bit
8966 -- crude, but we are pretty close for most common cases, and we
8967 -- are certainly correct (i.e. we never return True when the
8968 -- answer should be False).
8970 when others =>
8971 return False;
8972 end case;
8973 end Side_Effect_Free;
8975 -- A list is side effect free if all elements of the list are side
8976 -- effect free.
8978 function Side_Effect_Free
8979 (L : List_Id;
8980 Name_Req : Boolean := False;
8981 Variable_Ref : Boolean := False) return Boolean
8983 N : Node_Id;
8985 begin
8986 if L = No_List or else L = Error_List then
8987 return True;
8989 else
8990 N := First (L);
8991 while Present (N) loop
8992 if not Side_Effect_Free (N, Name_Req, Variable_Ref) then
8993 return False;
8994 else
8995 Next (N);
8996 end if;
8997 end loop;
8999 return True;
9000 end if;
9001 end Side_Effect_Free;
9003 ----------------------------------
9004 -- Silly_Boolean_Array_Not_Test --
9005 ----------------------------------
9007 -- This procedure implements an odd and silly test. We explicitly check
9008 -- for the case where the 'First of the component type is equal to the
9009 -- 'Last of this component type, and if this is the case, we make sure
9010 -- that constraint error is raised. The reason is that the NOT is bound
9011 -- to cause CE in this case, and we will not otherwise catch it.
9013 -- No such check is required for AND and OR, since for both these cases
9014 -- False op False = False, and True op True = True. For the XOR case,
9015 -- see Silly_Boolean_Array_Xor_Test.
9017 -- Believe it or not, this was reported as a bug. Note that nearly always,
9018 -- the test will evaluate statically to False, so the code will be
9019 -- statically removed, and no extra overhead caused.
9021 procedure Silly_Boolean_Array_Not_Test (N : Node_Id; T : Entity_Id) is
9022 Loc : constant Source_Ptr := Sloc (N);
9023 CT : constant Entity_Id := Component_Type (T);
9025 begin
9026 -- The check we install is
9028 -- constraint_error when
9029 -- component_type'first = component_type'last
9030 -- and then array_type'Length /= 0)
9032 -- We need the last guard because we don't want to raise CE for empty
9033 -- arrays since no out of range values result. (Empty arrays with a
9034 -- component type of True .. True -- very useful -- even the ACATS
9035 -- does not test that marginal case).
9037 Insert_Action (N,
9038 Make_Raise_Constraint_Error (Loc,
9039 Condition =>
9040 Make_And_Then (Loc,
9041 Left_Opnd =>
9042 Make_Op_Eq (Loc,
9043 Left_Opnd =>
9044 Make_Attribute_Reference (Loc,
9045 Prefix => New_Occurrence_Of (CT, Loc),
9046 Attribute_Name => Name_First),
9048 Right_Opnd =>
9049 Make_Attribute_Reference (Loc,
9050 Prefix => New_Occurrence_Of (CT, Loc),
9051 Attribute_Name => Name_Last)),
9053 Right_Opnd => Make_Non_Empty_Check (Loc, Right_Opnd (N))),
9054 Reason => CE_Range_Check_Failed));
9055 end Silly_Boolean_Array_Not_Test;
9057 ----------------------------------
9058 -- Silly_Boolean_Array_Xor_Test --
9059 ----------------------------------
9061 -- This procedure implements an odd and silly test. We explicitly check
9062 -- for the XOR case where the component type is True .. True, since this
9063 -- will raise constraint error. A special check is required since CE
9064 -- will not be generated otherwise (cf Expand_Packed_Not).
9066 -- No such check is required for AND and OR, since for both these cases
9067 -- False op False = False, and True op True = True, and no check is
9068 -- required for the case of False .. False, since False xor False = False.
9069 -- See also Silly_Boolean_Array_Not_Test
9071 procedure Silly_Boolean_Array_Xor_Test (N : Node_Id; T : Entity_Id) is
9072 Loc : constant Source_Ptr := Sloc (N);
9073 CT : constant Entity_Id := Component_Type (T);
9075 begin
9076 -- The check we install is
9078 -- constraint_error when
9079 -- Boolean (component_type'First)
9080 -- and then Boolean (component_type'Last)
9081 -- and then array_type'Length /= 0)
9083 -- We need the last guard because we don't want to raise CE for empty
9084 -- arrays since no out of range values result (Empty arrays with a
9085 -- component type of True .. True -- very useful -- even the ACATS
9086 -- does not test that marginal case).
9088 Insert_Action (N,
9089 Make_Raise_Constraint_Error (Loc,
9090 Condition =>
9091 Make_And_Then (Loc,
9092 Left_Opnd =>
9093 Make_And_Then (Loc,
9094 Left_Opnd =>
9095 Convert_To (Standard_Boolean,
9096 Make_Attribute_Reference (Loc,
9097 Prefix => New_Occurrence_Of (CT, Loc),
9098 Attribute_Name => Name_First)),
9100 Right_Opnd =>
9101 Convert_To (Standard_Boolean,
9102 Make_Attribute_Reference (Loc,
9103 Prefix => New_Occurrence_Of (CT, Loc),
9104 Attribute_Name => Name_Last))),
9106 Right_Opnd => Make_Non_Empty_Check (Loc, Right_Opnd (N))),
9107 Reason => CE_Range_Check_Failed));
9108 end Silly_Boolean_Array_Xor_Test;
9110 --------------------------
9111 -- Target_Has_Fixed_Ops --
9112 --------------------------
9114 Integer_Sized_Small : Ureal;
9115 -- Set to 2.0 ** -(Integer'Size - 1) the first time that this function is
9116 -- called (we don't want to compute it more than once).
9118 Long_Integer_Sized_Small : Ureal;
9119 -- Set to 2.0 ** -(Long_Integer'Size - 1) the first time that this function
9120 -- is called (we don't want to compute it more than once)
9122 First_Time_For_THFO : Boolean := True;
9123 -- Set to False after first call (if Fractional_Fixed_Ops_On_Target)
9125 function Target_Has_Fixed_Ops
9126 (Left_Typ : Entity_Id;
9127 Right_Typ : Entity_Id;
9128 Result_Typ : Entity_Id) return Boolean
9130 function Is_Fractional_Type (Typ : Entity_Id) return Boolean;
9131 -- Return True if the given type is a fixed-point type with a small
9132 -- value equal to 2 ** (-(T'Object_Size - 1)) and whose values have
9133 -- an absolute value less than 1.0. This is currently limited to
9134 -- fixed-point types that map to Integer or Long_Integer.
9136 ------------------------
9137 -- Is_Fractional_Type --
9138 ------------------------
9140 function Is_Fractional_Type (Typ : Entity_Id) return Boolean is
9141 begin
9142 if Esize (Typ) = Standard_Integer_Size then
9143 return Small_Value (Typ) = Integer_Sized_Small;
9145 elsif Esize (Typ) = Standard_Long_Integer_Size then
9146 return Small_Value (Typ) = Long_Integer_Sized_Small;
9148 else
9149 return False;
9150 end if;
9151 end Is_Fractional_Type;
9153 -- Start of processing for Target_Has_Fixed_Ops
9155 begin
9156 -- Return False if Fractional_Fixed_Ops_On_Target is false
9158 if not Fractional_Fixed_Ops_On_Target then
9159 return False;
9160 end if;
9162 -- Here the target has Fractional_Fixed_Ops, if first time, compute
9163 -- standard constants used by Is_Fractional_Type.
9165 if First_Time_For_THFO then
9166 First_Time_For_THFO := False;
9168 Integer_Sized_Small :=
9169 UR_From_Components
9170 (Num => Uint_1,
9171 Den => UI_From_Int (Standard_Integer_Size - 1),
9172 Rbase => 2);
9174 Long_Integer_Sized_Small :=
9175 UR_From_Components
9176 (Num => Uint_1,
9177 Den => UI_From_Int (Standard_Long_Integer_Size - 1),
9178 Rbase => 2);
9179 end if;
9181 -- Return True if target supports fixed-by-fixed multiply/divide for
9182 -- fractional fixed-point types (see Is_Fractional_Type) and the operand
9183 -- and result types are equivalent fractional types.
9185 return Is_Fractional_Type (Base_Type (Left_Typ))
9186 and then Is_Fractional_Type (Base_Type (Right_Typ))
9187 and then Is_Fractional_Type (Base_Type (Result_Typ))
9188 and then Esize (Left_Typ) = Esize (Right_Typ)
9189 and then Esize (Left_Typ) = Esize (Result_Typ);
9190 end Target_Has_Fixed_Ops;
9192 ------------------------------------------
9193 -- Type_May_Have_Bit_Aligned_Components --
9194 ------------------------------------------
9196 function Type_May_Have_Bit_Aligned_Components
9197 (Typ : Entity_Id) return Boolean
9199 begin
9200 -- Array type, check component type
9202 if Is_Array_Type (Typ) then
9203 return
9204 Type_May_Have_Bit_Aligned_Components (Component_Type (Typ));
9206 -- Record type, check components
9208 elsif Is_Record_Type (Typ) then
9209 declare
9210 E : Entity_Id;
9212 begin
9213 E := First_Component_Or_Discriminant (Typ);
9214 while Present (E) loop
9215 if Component_May_Be_Bit_Aligned (E)
9216 or else Type_May_Have_Bit_Aligned_Components (Etype (E))
9217 then
9218 return True;
9219 end if;
9221 Next_Component_Or_Discriminant (E);
9222 end loop;
9224 return False;
9225 end;
9227 -- Type other than array or record is always OK
9229 else
9230 return False;
9231 end if;
9232 end Type_May_Have_Bit_Aligned_Components;
9234 ----------------------------------
9235 -- Within_Case_Or_If_Expression --
9236 ----------------------------------
9238 function Within_Case_Or_If_Expression (N : Node_Id) return Boolean is
9239 Par : Node_Id;
9241 begin
9242 -- Locate an enclosing case or if expression. Note that these constructs
9243 -- can be expanded into Expression_With_Actions, hence the test of the
9244 -- original node.
9246 Par := Parent (N);
9247 while Present (Par) loop
9248 if Nkind_In (Original_Node (Par), N_Case_Expression,
9249 N_If_Expression)
9250 then
9251 return True;
9253 -- Prevent the search from going too far
9255 elsif Is_Body_Or_Package_Declaration (Par) then
9256 return False;
9257 end if;
9259 Par := Parent (Par);
9260 end loop;
9262 return False;
9263 end Within_Case_Or_If_Expression;
9265 --------------------------------
9266 -- Within_Internal_Subprogram --
9267 --------------------------------
9269 function Within_Internal_Subprogram return Boolean is
9270 S : Entity_Id;
9272 begin
9273 S := Current_Scope;
9274 while Present (S) and then not Is_Subprogram (S) loop
9275 S := Scope (S);
9276 end loop;
9278 return Present (S)
9279 and then Get_TSS_Name (S) /= TSS_Null
9280 and then not Is_Predicate_Function (S);
9281 end Within_Internal_Subprogram;
9283 ----------------------------
9284 -- Wrap_Cleanup_Procedure --
9285 ----------------------------
9287 procedure Wrap_Cleanup_Procedure (N : Node_Id) is
9288 Loc : constant Source_Ptr := Sloc (N);
9289 Stseq : constant Node_Id := Handled_Statement_Sequence (N);
9290 Stmts : constant List_Id := Statements (Stseq);
9291 begin
9292 if Abort_Allowed then
9293 Prepend_To (Stmts, Build_Runtime_Call (Loc, RE_Abort_Defer));
9294 Append_To (Stmts, Build_Runtime_Call (Loc, RE_Abort_Undefer));
9295 end if;
9296 end Wrap_Cleanup_Procedure;
9298 end Exp_Util;