2015-05-12 Robert Dewar <dewar@adacore.com>
[official-gcc.git] / gcc / ada / exp_ch5.adb
blobc45dcb98e81afe8a5288c0e01445adc0ba552411
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ C H 5 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Elists; use Elists;
32 with Errout; use Errout;
33 with Exp_Aggr; use Exp_Aggr;
34 with Exp_Ch6; use Exp_Ch6;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Ch11; use Exp_Ch11;
37 with Exp_Dbug; use Exp_Dbug;
38 with Exp_Pakd; use Exp_Pakd;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Inline; use Inline;
42 with Namet; use Namet;
43 with Nlists; use Nlists;
44 with Nmake; use Nmake;
45 with Opt; use Opt;
46 with Restrict; use Restrict;
47 with Rident; use Rident;
48 with Rtsfind; use Rtsfind;
49 with Sinfo; use Sinfo;
50 with Sem; use Sem;
51 with Sem_Aux; use Sem_Aux;
52 with Sem_Ch3; use Sem_Ch3;
53 with Sem_Ch8; use Sem_Ch8;
54 with Sem_Ch13; use Sem_Ch13;
55 with Sem_Eval; use Sem_Eval;
56 with Sem_Res; use Sem_Res;
57 with Sem_Util; use Sem_Util;
58 with Snames; use Snames;
59 with Stand; use Stand;
60 with Stringt; use Stringt;
61 with Targparm; use Targparm;
62 with Tbuild; use Tbuild;
63 with Uintp; use Uintp;
64 with Validsw; use Validsw;
66 package body Exp_Ch5 is
68 procedure Build_Formal_Container_Iteration
69 (N : Node_Id;
70 Container : Entity_Id;
71 Cursor : Entity_Id;
72 Init : out Node_Id;
73 Advance : out Node_Id;
74 New_Loop : out Node_Id);
75 -- Utility to create declarations and loop statement for both forms
76 -- of formal container iterators.
78 function Change_Of_Representation (N : Node_Id) return Boolean;
79 -- Determine if the right hand side of assignment N is a type conversion
80 -- which requires a change of representation. Called only for the array
81 -- and record cases.
83 procedure Expand_Assign_Array (N : Node_Id; Rhs : Node_Id);
84 -- N is an assignment which assigns an array value. This routine process
85 -- the various special cases and checks required for such assignments,
86 -- including change of representation. Rhs is normally simply the right
87 -- hand side of the assignment, except that if the right hand side is a
88 -- type conversion or a qualified expression, then the RHS is the actual
89 -- expression inside any such type conversions or qualifications.
91 function Expand_Assign_Array_Loop
92 (N : Node_Id;
93 Larray : Entity_Id;
94 Rarray : Entity_Id;
95 L_Type : Entity_Id;
96 R_Type : Entity_Id;
97 Ndim : Pos;
98 Rev : Boolean) return Node_Id;
99 -- N is an assignment statement which assigns an array value. This routine
100 -- expands the assignment into a loop (or nested loops for the case of a
101 -- multi-dimensional array) to do the assignment component by component.
102 -- Larray and Rarray are the entities of the actual arrays on the left
103 -- hand and right hand sides. L_Type and R_Type are the types of these
104 -- arrays (which may not be the same, due to either sliding, or to a
105 -- change of representation case). Ndim is the number of dimensions and
106 -- the parameter Rev indicates if the loops run normally (Rev = False),
107 -- or reversed (Rev = True). The value returned is the constructed
108 -- loop statement. Auxiliary declarations are inserted before node N
109 -- using the standard Insert_Actions mechanism.
111 procedure Expand_Assign_Record (N : Node_Id);
112 -- N is an assignment of an untagged record value. This routine handles
113 -- the case where the assignment must be made component by component,
114 -- either because the target is not byte aligned, or there is a change
115 -- of representation, or when we have a tagged type with a representation
116 -- clause (this last case is required because holes in the tagged type
117 -- might be filled with components from child types).
119 procedure Expand_Formal_Container_Loop (N : Node_Id);
120 -- Use the primitives specified in an Iterable aspect to expand a loop
121 -- over a so-called formal container, primarily for SPARK usage.
123 procedure Expand_Formal_Container_Element_Loop (N : Node_Id);
124 -- Same, for an iterator of the form " For E of C". In this case the
125 -- iterator provides the name of the element, and the cursor is generated
126 -- internally.
128 procedure Expand_Iterator_Loop (N : Node_Id);
129 -- Expand loop over arrays and containers that uses the form "for X of C"
130 -- with an optional subtype mark, or "for Y in C".
132 procedure Expand_Iterator_Loop_Over_Array (N : Node_Id);
133 -- Expand loop over arrays that uses the form "for X of C"
135 procedure Expand_Predicated_Loop (N : Node_Id);
136 -- Expand for loop over predicated subtype
138 function Make_Tag_Ctrl_Assignment (N : Node_Id) return List_Id;
139 -- Generate the necessary code for controlled and tagged assignment, that
140 -- is to say, finalization of the target before, adjustment of the target
141 -- after and save and restore of the tag and finalization pointers which
142 -- are not 'part of the value' and must not be changed upon assignment. N
143 -- is the original Assignment node.
145 --------------------------------------
146 -- Build_Formal_Container_iteration --
147 --------------------------------------
149 procedure Build_Formal_Container_Iteration
150 (N : Node_Id;
151 Container : Entity_Id;
152 Cursor : Entity_Id;
153 Init : out Node_Id;
154 Advance : out Node_Id;
155 New_Loop : out Node_Id)
157 Loc : constant Source_Ptr := Sloc (N);
158 Stats : constant List_Id := Statements (N);
159 Typ : constant Entity_Id := Base_Type (Etype (Container));
160 First_Op : constant Entity_Id :=
161 Get_Iterable_Type_Primitive (Typ, Name_First);
162 Next_Op : constant Entity_Id :=
163 Get_Iterable_Type_Primitive (Typ, Name_Next);
165 Has_Element_Op : constant Entity_Id :=
166 Get_Iterable_Type_Primitive (Typ, Name_Has_Element);
167 begin
168 -- Declaration for Cursor
170 Init :=
171 Make_Object_Declaration (Loc,
172 Defining_Identifier => Cursor,
173 Object_Definition => New_Occurrence_Of (Etype (First_Op), Loc),
174 Expression =>
175 Make_Function_Call (Loc,
176 Name => New_Occurrence_Of (First_Op, Loc),
177 Parameter_Associations => New_List (
178 New_Occurrence_Of (Container, Loc))));
180 -- Statement that advances cursor in loop
182 Advance :=
183 Make_Assignment_Statement (Loc,
184 Name => New_Occurrence_Of (Cursor, Loc),
185 Expression =>
186 Make_Function_Call (Loc,
187 Name => New_Occurrence_Of (Next_Op, Loc),
188 Parameter_Associations => New_List (
189 New_Occurrence_Of (Container, Loc),
190 New_Occurrence_Of (Cursor, Loc))));
192 -- Iterator is rewritten as a while_loop
194 New_Loop :=
195 Make_Loop_Statement (Loc,
196 Iteration_Scheme =>
197 Make_Iteration_Scheme (Loc,
198 Condition =>
199 Make_Function_Call (Loc,
200 Name => New_Occurrence_Of (Has_Element_Op, Loc),
201 Parameter_Associations => New_List (
202 New_Occurrence_Of (Container, Loc),
203 New_Occurrence_Of (Cursor, Loc)))),
204 Statements => Stats,
205 End_Label => Empty);
206 end Build_Formal_Container_Iteration;
208 ------------------------------
209 -- Change_Of_Representation --
210 ------------------------------
212 function Change_Of_Representation (N : Node_Id) return Boolean is
213 Rhs : constant Node_Id := Expression (N);
214 begin
215 return
216 Nkind (Rhs) = N_Type_Conversion
217 and then
218 not Same_Representation (Etype (Rhs), Etype (Expression (Rhs)));
219 end Change_Of_Representation;
221 -------------------------
222 -- Expand_Assign_Array --
223 -------------------------
225 -- There are two issues here. First, do we let Gigi do a block move, or
226 -- do we expand out into a loop? Second, we need to set the two flags
227 -- Forwards_OK and Backwards_OK which show whether the block move (or
228 -- corresponding loops) can be legitimately done in a forwards (low to
229 -- high) or backwards (high to low) manner.
231 procedure Expand_Assign_Array (N : Node_Id; Rhs : Node_Id) is
232 Loc : constant Source_Ptr := Sloc (N);
234 Lhs : constant Node_Id := Name (N);
236 Act_Lhs : constant Node_Id := Get_Referenced_Object (Lhs);
237 Act_Rhs : Node_Id := Get_Referenced_Object (Rhs);
239 L_Type : constant Entity_Id :=
240 Underlying_Type (Get_Actual_Subtype (Act_Lhs));
241 R_Type : Entity_Id :=
242 Underlying_Type (Get_Actual_Subtype (Act_Rhs));
244 L_Slice : constant Boolean := Nkind (Act_Lhs) = N_Slice;
245 R_Slice : constant Boolean := Nkind (Act_Rhs) = N_Slice;
247 Crep : constant Boolean := Change_Of_Representation (N);
249 Larray : Node_Id;
250 Rarray : Node_Id;
252 Ndim : constant Pos := Number_Dimensions (L_Type);
254 Loop_Required : Boolean := False;
255 -- This switch is set to True if the array move must be done using
256 -- an explicit front end generated loop.
258 procedure Apply_Dereference (Arg : Node_Id);
259 -- If the argument is an access to an array, and the assignment is
260 -- converted into a procedure call, apply explicit dereference.
262 function Has_Address_Clause (Exp : Node_Id) return Boolean;
263 -- Test if Exp is a reference to an array whose declaration has
264 -- an address clause, or it is a slice of such an array.
266 function Is_Formal_Array (Exp : Node_Id) return Boolean;
267 -- Test if Exp is a reference to an array which is either a formal
268 -- parameter or a slice of a formal parameter. These are the cases
269 -- where hidden aliasing can occur.
271 function Is_Non_Local_Array (Exp : Node_Id) return Boolean;
272 -- Determine if Exp is a reference to an array variable which is other
273 -- than an object defined in the current scope, or a slice of such
274 -- an object. Such objects can be aliased to parameters (unlike local
275 -- array references).
277 -----------------------
278 -- Apply_Dereference --
279 -----------------------
281 procedure Apply_Dereference (Arg : Node_Id) is
282 Typ : constant Entity_Id := Etype (Arg);
283 begin
284 if Is_Access_Type (Typ) then
285 Rewrite (Arg, Make_Explicit_Dereference (Loc,
286 Prefix => Relocate_Node (Arg)));
287 Analyze_And_Resolve (Arg, Designated_Type (Typ));
288 end if;
289 end Apply_Dereference;
291 ------------------------
292 -- Has_Address_Clause --
293 ------------------------
295 function Has_Address_Clause (Exp : Node_Id) return Boolean is
296 begin
297 return
298 (Is_Entity_Name (Exp) and then
299 Present (Address_Clause (Entity (Exp))))
300 or else
301 (Nkind (Exp) = N_Slice and then Has_Address_Clause (Prefix (Exp)));
302 end Has_Address_Clause;
304 ---------------------
305 -- Is_Formal_Array --
306 ---------------------
308 function Is_Formal_Array (Exp : Node_Id) return Boolean is
309 begin
310 return
311 (Is_Entity_Name (Exp) and then Is_Formal (Entity (Exp)))
312 or else
313 (Nkind (Exp) = N_Slice and then Is_Formal_Array (Prefix (Exp)));
314 end Is_Formal_Array;
316 ------------------------
317 -- Is_Non_Local_Array --
318 ------------------------
320 function Is_Non_Local_Array (Exp : Node_Id) return Boolean is
321 begin
322 return (Is_Entity_Name (Exp)
323 and then Scope (Entity (Exp)) /= Current_Scope)
324 or else (Nkind (Exp) = N_Slice
325 and then Is_Non_Local_Array (Prefix (Exp)));
326 end Is_Non_Local_Array;
328 -- Determine if Lhs, Rhs are formal arrays or nonlocal arrays
330 Lhs_Formal : constant Boolean := Is_Formal_Array (Act_Lhs);
331 Rhs_Formal : constant Boolean := Is_Formal_Array (Act_Rhs);
333 Lhs_Non_Local_Var : constant Boolean := Is_Non_Local_Array (Act_Lhs);
334 Rhs_Non_Local_Var : constant Boolean := Is_Non_Local_Array (Act_Rhs);
336 -- Start of processing for Expand_Assign_Array
338 begin
339 -- Deal with length check. Note that the length check is done with
340 -- respect to the right hand side as given, not a possible underlying
341 -- renamed object, since this would generate incorrect extra checks.
343 Apply_Length_Check (Rhs, L_Type);
345 -- We start by assuming that the move can be done in either direction,
346 -- i.e. that the two sides are completely disjoint.
348 Set_Forwards_OK (N, True);
349 Set_Backwards_OK (N, True);
351 -- Normally it is only the slice case that can lead to overlap, and
352 -- explicit checks for slices are made below. But there is one case
353 -- where the slice can be implicit and invisible to us: when we have a
354 -- one dimensional array, and either both operands are parameters, or
355 -- one is a parameter (which can be a slice passed by reference) and the
356 -- other is a non-local variable. In this case the parameter could be a
357 -- slice that overlaps with the other operand.
359 -- However, if the array subtype is a constrained first subtype in the
360 -- parameter case, then we don't have to worry about overlap, since
361 -- slice assignments aren't possible (other than for a slice denoting
362 -- the whole array).
364 -- Note: No overlap is possible if there is a change of representation,
365 -- so we can exclude this case.
367 if Ndim = 1
368 and then not Crep
369 and then
370 ((Lhs_Formal and Rhs_Formal)
371 or else
372 (Lhs_Formal and Rhs_Non_Local_Var)
373 or else
374 (Rhs_Formal and Lhs_Non_Local_Var))
375 and then
376 (not Is_Constrained (Etype (Lhs))
377 or else not Is_First_Subtype (Etype (Lhs)))
379 -- In the case of compiling for the Java or .NET Virtual Machine,
380 -- slices are always passed by making a copy, so we don't have to
381 -- worry about overlap. We also want to prevent generation of "<"
382 -- comparisons for array addresses, since that's a meaningless
383 -- operation on the VM.
385 and then VM_Target = No_VM
386 then
387 Set_Forwards_OK (N, False);
388 Set_Backwards_OK (N, False);
390 -- Note: the bit-packed case is not worrisome here, since if we have
391 -- a slice passed as a parameter, it is always aligned on a byte
392 -- boundary, and if there are no explicit slices, the assignment
393 -- can be performed directly.
394 end if;
396 -- If either operand has an address clause clear Backwards_OK and
397 -- Forwards_OK, since we cannot tell if the operands overlap. We
398 -- exclude this treatment when Rhs is an aggregate, since we know
399 -- that overlap can't occur.
401 if (Has_Address_Clause (Lhs) and then Nkind (Rhs) /= N_Aggregate)
402 or else Has_Address_Clause (Rhs)
403 then
404 Set_Forwards_OK (N, False);
405 Set_Backwards_OK (N, False);
406 end if;
408 -- We certainly must use a loop for change of representation and also
409 -- we use the operand of the conversion on the right hand side as the
410 -- effective right hand side (the component types must match in this
411 -- situation).
413 if Crep then
414 Act_Rhs := Get_Referenced_Object (Rhs);
415 R_Type := Get_Actual_Subtype (Act_Rhs);
416 Loop_Required := True;
418 -- We require a loop if the left side is possibly bit unaligned
420 elsif Possible_Bit_Aligned_Component (Lhs)
421 or else
422 Possible_Bit_Aligned_Component (Rhs)
423 then
424 Loop_Required := True;
426 -- Arrays with controlled components are expanded into a loop to force
427 -- calls to Adjust at the component level.
429 elsif Has_Controlled_Component (L_Type) then
430 Loop_Required := True;
432 -- If object is atomic, we cannot tolerate a loop
434 elsif Is_Atomic_Object (Act_Lhs)
435 or else
436 Is_Atomic_Object (Act_Rhs)
437 then
438 return;
440 -- Loop is required if we have atomic components since we have to
441 -- be sure to do any accesses on an element by element basis.
443 elsif Has_Atomic_Components (L_Type)
444 or else Has_Atomic_Components (R_Type)
445 or else Is_Atomic (Component_Type (L_Type))
446 or else Is_Atomic (Component_Type (R_Type))
447 then
448 Loop_Required := True;
450 -- Case where no slice is involved
452 elsif not L_Slice and not R_Slice then
454 -- The following code deals with the case of unconstrained bit packed
455 -- arrays. The problem is that the template for such arrays contains
456 -- the bounds of the actual source level array, but the copy of an
457 -- entire array requires the bounds of the underlying array. It would
458 -- be nice if the back end could take care of this, but right now it
459 -- does not know how, so if we have such a type, then we expand out
460 -- into a loop, which is inefficient but works correctly. If we don't
461 -- do this, we get the wrong length computed for the array to be
462 -- moved. The two cases we need to worry about are:
464 -- Explicit dereference of an unconstrained packed array type as in
465 -- the following example:
467 -- procedure C52 is
468 -- type BITS is array(INTEGER range <>) of BOOLEAN;
469 -- pragma PACK(BITS);
470 -- type A is access BITS;
471 -- P1,P2 : A;
472 -- begin
473 -- P1 := new BITS (1 .. 65_535);
474 -- P2 := new BITS (1 .. 65_535);
475 -- P2.ALL := P1.ALL;
476 -- end C52;
478 -- A formal parameter reference with an unconstrained bit array type
479 -- is the other case we need to worry about (here we assume the same
480 -- BITS type declared above):
482 -- procedure Write_All (File : out BITS; Contents : BITS);
483 -- begin
484 -- File.Storage := Contents;
485 -- end Write_All;
487 -- We expand to a loop in either of these two cases
489 -- Question for future thought. Another potentially more efficient
490 -- approach would be to create the actual subtype, and then do an
491 -- unchecked conversion to this actual subtype ???
493 Check_Unconstrained_Bit_Packed_Array : declare
495 function Is_UBPA_Reference (Opnd : Node_Id) return Boolean;
496 -- Function to perform required test for the first case, above
497 -- (dereference of an unconstrained bit packed array).
499 -----------------------
500 -- Is_UBPA_Reference --
501 -----------------------
503 function Is_UBPA_Reference (Opnd : Node_Id) return Boolean is
504 Typ : constant Entity_Id := Underlying_Type (Etype (Opnd));
505 P_Type : Entity_Id;
506 Des_Type : Entity_Id;
508 begin
509 if Present (Packed_Array_Impl_Type (Typ))
510 and then Is_Array_Type (Packed_Array_Impl_Type (Typ))
511 and then not Is_Constrained (Packed_Array_Impl_Type (Typ))
512 then
513 return True;
515 elsif Nkind (Opnd) = N_Explicit_Dereference then
516 P_Type := Underlying_Type (Etype (Prefix (Opnd)));
518 if not Is_Access_Type (P_Type) then
519 return False;
521 else
522 Des_Type := Designated_Type (P_Type);
523 return
524 Is_Bit_Packed_Array (Des_Type)
525 and then not Is_Constrained (Des_Type);
526 end if;
528 else
529 return False;
530 end if;
531 end Is_UBPA_Reference;
533 -- Start of processing for Check_Unconstrained_Bit_Packed_Array
535 begin
536 if Is_UBPA_Reference (Lhs)
537 or else
538 Is_UBPA_Reference (Rhs)
539 then
540 Loop_Required := True;
542 -- Here if we do not have the case of a reference to a bit packed
543 -- unconstrained array case. In this case gigi can most certainly
544 -- handle the assignment if a forwards move is allowed.
546 -- (could it handle the backwards case also???)
548 elsif Forwards_OK (N) then
549 return;
550 end if;
551 end Check_Unconstrained_Bit_Packed_Array;
553 -- The back end can always handle the assignment if the right side is a
554 -- string literal (note that overlap is definitely impossible in this
555 -- case). If the type is packed, a string literal is always converted
556 -- into an aggregate, except in the case of a null slice, for which no
557 -- aggregate can be written. In that case, rewrite the assignment as a
558 -- null statement, a length check has already been emitted to verify
559 -- that the range of the left-hand side is empty.
561 -- Note that this code is not executed if we have an assignment of a
562 -- string literal to a non-bit aligned component of a record, a case
563 -- which cannot be handled by the backend.
565 elsif Nkind (Rhs) = N_String_Literal then
566 if String_Length (Strval (Rhs)) = 0
567 and then Is_Bit_Packed_Array (L_Type)
568 then
569 Rewrite (N, Make_Null_Statement (Loc));
570 Analyze (N);
571 end if;
573 return;
575 -- If either operand is bit packed, then we need a loop, since we can't
576 -- be sure that the slice is byte aligned. Similarly, if either operand
577 -- is a possibly unaligned slice, then we need a loop (since the back
578 -- end cannot handle unaligned slices).
580 elsif Is_Bit_Packed_Array (L_Type)
581 or else Is_Bit_Packed_Array (R_Type)
582 or else Is_Possibly_Unaligned_Slice (Lhs)
583 or else Is_Possibly_Unaligned_Slice (Rhs)
584 then
585 Loop_Required := True;
587 -- If we are not bit-packed, and we have only one slice, then no overlap
588 -- is possible except in the parameter case, so we can let the back end
589 -- handle things.
591 elsif not (L_Slice and R_Slice) then
592 if Forwards_OK (N) then
593 return;
594 end if;
595 end if;
597 -- If the right-hand side is a string literal, introduce a temporary for
598 -- it, for use in the generated loop that will follow.
600 if Nkind (Rhs) = N_String_Literal then
601 declare
602 Temp : constant Entity_Id := Make_Temporary (Loc, 'T', Rhs);
603 Decl : Node_Id;
605 begin
606 Decl :=
607 Make_Object_Declaration (Loc,
608 Defining_Identifier => Temp,
609 Object_Definition => New_Occurrence_Of (L_Type, Loc),
610 Expression => Relocate_Node (Rhs));
612 Insert_Action (N, Decl);
613 Rewrite (Rhs, New_Occurrence_Of (Temp, Loc));
614 R_Type := Etype (Temp);
615 end;
616 end if;
618 -- Come here to complete the analysis
620 -- Loop_Required: Set to True if we know that a loop is required
621 -- regardless of overlap considerations.
623 -- Forwards_OK: Set to False if we already know that a forwards
624 -- move is not safe, else set to True.
626 -- Backwards_OK: Set to False if we already know that a backwards
627 -- move is not safe, else set to True
629 -- Our task at this stage is to complete the overlap analysis, which can
630 -- result in possibly setting Forwards_OK or Backwards_OK to False, and
631 -- then generating the final code, either by deciding that it is OK
632 -- after all to let Gigi handle it, or by generating appropriate code
633 -- in the front end.
635 declare
636 L_Index_Typ : constant Node_Id := Etype (First_Index (L_Type));
637 R_Index_Typ : constant Node_Id := Etype (First_Index (R_Type));
639 Left_Lo : constant Node_Id := Type_Low_Bound (L_Index_Typ);
640 Left_Hi : constant Node_Id := Type_High_Bound (L_Index_Typ);
641 Right_Lo : constant Node_Id := Type_Low_Bound (R_Index_Typ);
642 Right_Hi : constant Node_Id := Type_High_Bound (R_Index_Typ);
644 Act_L_Array : Node_Id;
645 Act_R_Array : Node_Id;
647 Cleft_Lo : Node_Id;
648 Cright_Lo : Node_Id;
649 Condition : Node_Id;
651 Cresult : Compare_Result;
653 begin
654 -- Get the expressions for the arrays. If we are dealing with a
655 -- private type, then convert to the underlying type. We can do
656 -- direct assignments to an array that is a private type, but we
657 -- cannot assign to elements of the array without this extra
658 -- unchecked conversion.
660 -- Note: We propagate Parent to the conversion nodes to generate
661 -- a well-formed subtree.
663 if Nkind (Act_Lhs) = N_Slice then
664 Larray := Prefix (Act_Lhs);
665 else
666 Larray := Act_Lhs;
668 if Is_Private_Type (Etype (Larray)) then
669 declare
670 Par : constant Node_Id := Parent (Larray);
671 begin
672 Larray :=
673 Unchecked_Convert_To
674 (Underlying_Type (Etype (Larray)), Larray);
675 Set_Parent (Larray, Par);
676 end;
677 end if;
678 end if;
680 if Nkind (Act_Rhs) = N_Slice then
681 Rarray := Prefix (Act_Rhs);
682 else
683 Rarray := Act_Rhs;
685 if Is_Private_Type (Etype (Rarray)) then
686 declare
687 Par : constant Node_Id := Parent (Rarray);
688 begin
689 Rarray :=
690 Unchecked_Convert_To
691 (Underlying_Type (Etype (Rarray)), Rarray);
692 Set_Parent (Rarray, Par);
693 end;
694 end if;
695 end if;
697 -- If both sides are slices, we must figure out whether it is safe
698 -- to do the move in one direction or the other. It is always safe
699 -- if there is a change of representation since obviously two arrays
700 -- with different representations cannot possibly overlap.
702 if (not Crep) and L_Slice and R_Slice then
703 Act_L_Array := Get_Referenced_Object (Prefix (Act_Lhs));
704 Act_R_Array := Get_Referenced_Object (Prefix (Act_Rhs));
706 -- If both left and right hand arrays are entity names, and refer
707 -- to different entities, then we know that the move is safe (the
708 -- two storage areas are completely disjoint).
710 if Is_Entity_Name (Act_L_Array)
711 and then Is_Entity_Name (Act_R_Array)
712 and then Entity (Act_L_Array) /= Entity (Act_R_Array)
713 then
714 null;
716 -- Otherwise, we assume the worst, which is that the two arrays
717 -- are the same array. There is no need to check if we know that
718 -- is the case, because if we don't know it, we still have to
719 -- assume it.
721 -- Generally if the same array is involved, then we have an
722 -- overlapping case. We will have to really assume the worst (i.e.
723 -- set neither of the OK flags) unless we can determine the lower
724 -- or upper bounds at compile time and compare them.
726 else
727 Cresult :=
728 Compile_Time_Compare
729 (Left_Lo, Right_Lo, Assume_Valid => True);
731 if Cresult = Unknown then
732 Cresult :=
733 Compile_Time_Compare
734 (Left_Hi, Right_Hi, Assume_Valid => True);
735 end if;
737 case Cresult is
738 when LT | LE | EQ => Set_Backwards_OK (N, False);
739 when GT | GE => Set_Forwards_OK (N, False);
740 when NE | Unknown => Set_Backwards_OK (N, False);
741 Set_Forwards_OK (N, False);
742 end case;
743 end if;
744 end if;
746 -- If after that analysis Loop_Required is False, meaning that we
747 -- have not discovered some non-overlap reason for requiring a loop,
748 -- then the outcome depends on the capabilities of the back end.
750 if not Loop_Required then
752 -- The GCC back end can deal with all cases of overlap by falling
753 -- back to memmove if it cannot use a more efficient approach.
755 if VM_Target = No_VM and not AAMP_On_Target then
756 return;
758 -- Assume other back ends can handle it if Forwards_OK is set
760 elsif Forwards_OK (N) then
761 return;
763 -- If Forwards_OK is not set, the back end will need something
764 -- like memmove to handle the move. For now, this processing is
765 -- activated using the .s debug flag (-gnatd.s).
767 elsif Debug_Flag_Dot_S then
768 return;
769 end if;
770 end if;
772 -- At this stage we have to generate an explicit loop, and we have
773 -- the following cases:
775 -- Forwards_OK = True
777 -- Rnn : right_index := right_index'First;
778 -- for Lnn in left-index loop
779 -- left (Lnn) := right (Rnn);
780 -- Rnn := right_index'Succ (Rnn);
781 -- end loop;
783 -- Note: the above code MUST be analyzed with checks off, because
784 -- otherwise the Succ could overflow. But in any case this is more
785 -- efficient.
787 -- Forwards_OK = False, Backwards_OK = True
789 -- Rnn : right_index := right_index'Last;
790 -- for Lnn in reverse left-index loop
791 -- left (Lnn) := right (Rnn);
792 -- Rnn := right_index'Pred (Rnn);
793 -- end loop;
795 -- Note: the above code MUST be analyzed with checks off, because
796 -- otherwise the Pred could overflow. But in any case this is more
797 -- efficient.
799 -- Forwards_OK = Backwards_OK = False
801 -- This only happens if we have the same array on each side. It is
802 -- possible to create situations using overlays that violate this,
803 -- but we simply do not promise to get this "right" in this case.
805 -- There are two possible subcases. If the No_Implicit_Conditionals
806 -- restriction is set, then we generate the following code:
808 -- declare
809 -- T : constant <operand-type> := rhs;
810 -- begin
811 -- lhs := T;
812 -- end;
814 -- If implicit conditionals are permitted, then we generate:
816 -- if Left_Lo <= Right_Lo then
817 -- <code for Forwards_OK = True above>
818 -- else
819 -- <code for Backwards_OK = True above>
820 -- end if;
822 -- In order to detect possible aliasing, we examine the renamed
823 -- expression when the source or target is a renaming. However,
824 -- the renaming may be intended to capture an address that may be
825 -- affected by subsequent code, and therefore we must recover
826 -- the actual entity for the expansion that follows, not the
827 -- object it renames. In particular, if source or target designate
828 -- a portion of a dynamically allocated object, the pointer to it
829 -- may be reassigned but the renaming preserves the proper location.
831 if Is_Entity_Name (Rhs)
832 and then
833 Nkind (Parent (Entity (Rhs))) = N_Object_Renaming_Declaration
834 and then Nkind (Act_Rhs) = N_Slice
835 then
836 Rarray := Rhs;
837 end if;
839 if Is_Entity_Name (Lhs)
840 and then
841 Nkind (Parent (Entity (Lhs))) = N_Object_Renaming_Declaration
842 and then Nkind (Act_Lhs) = N_Slice
843 then
844 Larray := Lhs;
845 end if;
847 -- Cases where either Forwards_OK or Backwards_OK is true
849 if Forwards_OK (N) or else Backwards_OK (N) then
850 if Needs_Finalization (Component_Type (L_Type))
851 and then Base_Type (L_Type) = Base_Type (R_Type)
852 and then Ndim = 1
853 and then not No_Ctrl_Actions (N)
854 then
855 declare
856 Proc : constant Entity_Id :=
857 TSS (Base_Type (L_Type), TSS_Slice_Assign);
858 Actuals : List_Id;
860 begin
861 Apply_Dereference (Larray);
862 Apply_Dereference (Rarray);
863 Actuals := New_List (
864 Duplicate_Subexpr (Larray, Name_Req => True),
865 Duplicate_Subexpr (Rarray, Name_Req => True),
866 Duplicate_Subexpr (Left_Lo, Name_Req => True),
867 Duplicate_Subexpr (Left_Hi, Name_Req => True),
868 Duplicate_Subexpr (Right_Lo, Name_Req => True),
869 Duplicate_Subexpr (Right_Hi, Name_Req => True));
871 Append_To (Actuals,
872 New_Occurrence_Of (
873 Boolean_Literals (not Forwards_OK (N)), Loc));
875 Rewrite (N,
876 Make_Procedure_Call_Statement (Loc,
877 Name => New_Occurrence_Of (Proc, Loc),
878 Parameter_Associations => Actuals));
879 end;
881 else
882 Rewrite (N,
883 Expand_Assign_Array_Loop
884 (N, Larray, Rarray, L_Type, R_Type, Ndim,
885 Rev => not Forwards_OK (N)));
886 end if;
888 -- Case of both are false with No_Implicit_Conditionals
890 elsif Restriction_Active (No_Implicit_Conditionals) then
891 declare
892 T : constant Entity_Id :=
893 Make_Defining_Identifier (Loc, Chars => Name_T);
895 begin
896 Rewrite (N,
897 Make_Block_Statement (Loc,
898 Declarations => New_List (
899 Make_Object_Declaration (Loc,
900 Defining_Identifier => T,
901 Constant_Present => True,
902 Object_Definition =>
903 New_Occurrence_Of (Etype (Rhs), Loc),
904 Expression => Relocate_Node (Rhs))),
906 Handled_Statement_Sequence =>
907 Make_Handled_Sequence_Of_Statements (Loc,
908 Statements => New_List (
909 Make_Assignment_Statement (Loc,
910 Name => Relocate_Node (Lhs),
911 Expression => New_Occurrence_Of (T, Loc))))));
912 end;
914 -- Case of both are false with implicit conditionals allowed
916 else
917 -- Before we generate this code, we must ensure that the left and
918 -- right side array types are defined. They may be itypes, and we
919 -- cannot let them be defined inside the if, since the first use
920 -- in the then may not be executed.
922 Ensure_Defined (L_Type, N);
923 Ensure_Defined (R_Type, N);
925 -- We normally compare addresses to find out which way round to
926 -- do the loop, since this is reliable, and handles the cases of
927 -- parameters, conversions etc. But we can't do that in the bit
928 -- packed case or the VM case, because addresses don't work there.
930 if not Is_Bit_Packed_Array (L_Type) and then VM_Target = No_VM then
931 Condition :=
932 Make_Op_Le (Loc,
933 Left_Opnd =>
934 Unchecked_Convert_To (RTE (RE_Integer_Address),
935 Make_Attribute_Reference (Loc,
936 Prefix =>
937 Make_Indexed_Component (Loc,
938 Prefix =>
939 Duplicate_Subexpr_Move_Checks (Larray, True),
940 Expressions => New_List (
941 Make_Attribute_Reference (Loc,
942 Prefix =>
943 New_Occurrence_Of
944 (L_Index_Typ, Loc),
945 Attribute_Name => Name_First))),
946 Attribute_Name => Name_Address)),
948 Right_Opnd =>
949 Unchecked_Convert_To (RTE (RE_Integer_Address),
950 Make_Attribute_Reference (Loc,
951 Prefix =>
952 Make_Indexed_Component (Loc,
953 Prefix =>
954 Duplicate_Subexpr_Move_Checks (Rarray, True),
955 Expressions => New_List (
956 Make_Attribute_Reference (Loc,
957 Prefix =>
958 New_Occurrence_Of
959 (R_Index_Typ, Loc),
960 Attribute_Name => Name_First))),
961 Attribute_Name => Name_Address)));
963 -- For the bit packed and VM cases we use the bounds. That's OK,
964 -- because we don't have to worry about parameters, since they
965 -- cannot cause overlap. Perhaps we should worry about weird slice
966 -- conversions ???
968 else
969 -- Copy the bounds
971 Cleft_Lo := New_Copy_Tree (Left_Lo);
972 Cright_Lo := New_Copy_Tree (Right_Lo);
974 -- If the types do not match we add an implicit conversion
975 -- here to ensure proper match
977 if Etype (Left_Lo) /= Etype (Right_Lo) then
978 Cright_Lo :=
979 Unchecked_Convert_To (Etype (Left_Lo), Cright_Lo);
980 end if;
982 -- Reset the Analyzed flag, because the bounds of the index
983 -- type itself may be universal, and must must be reanalyzed
984 -- to acquire the proper type for the back end.
986 Set_Analyzed (Cleft_Lo, False);
987 Set_Analyzed (Cright_Lo, False);
989 Condition :=
990 Make_Op_Le (Loc,
991 Left_Opnd => Cleft_Lo,
992 Right_Opnd => Cright_Lo);
993 end if;
995 if Needs_Finalization (Component_Type (L_Type))
996 and then Base_Type (L_Type) = Base_Type (R_Type)
997 and then Ndim = 1
998 and then not No_Ctrl_Actions (N)
999 then
1001 -- Call TSS procedure for array assignment, passing the
1002 -- explicit bounds of right and left hand sides.
1004 declare
1005 Proc : constant Entity_Id :=
1006 TSS (Base_Type (L_Type), TSS_Slice_Assign);
1007 Actuals : List_Id;
1009 begin
1010 Apply_Dereference (Larray);
1011 Apply_Dereference (Rarray);
1012 Actuals := New_List (
1013 Duplicate_Subexpr (Larray, Name_Req => True),
1014 Duplicate_Subexpr (Rarray, Name_Req => True),
1015 Duplicate_Subexpr (Left_Lo, Name_Req => True),
1016 Duplicate_Subexpr (Left_Hi, Name_Req => True),
1017 Duplicate_Subexpr (Right_Lo, Name_Req => True),
1018 Duplicate_Subexpr (Right_Hi, Name_Req => True));
1020 Append_To (Actuals,
1021 Make_Op_Not (Loc,
1022 Right_Opnd => Condition));
1024 Rewrite (N,
1025 Make_Procedure_Call_Statement (Loc,
1026 Name => New_Occurrence_Of (Proc, Loc),
1027 Parameter_Associations => Actuals));
1028 end;
1030 else
1031 Rewrite (N,
1032 Make_Implicit_If_Statement (N,
1033 Condition => Condition,
1035 Then_Statements => New_List (
1036 Expand_Assign_Array_Loop
1037 (N, Larray, Rarray, L_Type, R_Type, Ndim,
1038 Rev => False)),
1040 Else_Statements => New_List (
1041 Expand_Assign_Array_Loop
1042 (N, Larray, Rarray, L_Type, R_Type, Ndim,
1043 Rev => True))));
1044 end if;
1045 end if;
1047 Analyze (N, Suppress => All_Checks);
1048 end;
1050 exception
1051 when RE_Not_Available =>
1052 return;
1053 end Expand_Assign_Array;
1055 ------------------------------
1056 -- Expand_Assign_Array_Loop --
1057 ------------------------------
1059 -- The following is an example of the loop generated for the case of a
1060 -- two-dimensional array:
1062 -- declare
1063 -- R2b : Tm1X1 := 1;
1064 -- begin
1065 -- for L1b in 1 .. 100 loop
1066 -- declare
1067 -- R4b : Tm1X2 := 1;
1068 -- begin
1069 -- for L3b in 1 .. 100 loop
1070 -- vm1 (L1b, L3b) := vm2 (R2b, R4b);
1071 -- R4b := Tm1X2'succ(R4b);
1072 -- end loop;
1073 -- end;
1074 -- R2b := Tm1X1'succ(R2b);
1075 -- end loop;
1076 -- end;
1078 -- Here Rev is False, and Tm1Xn are the subscript types for the right hand
1079 -- side. The declarations of R2b and R4b are inserted before the original
1080 -- assignment statement.
1082 function Expand_Assign_Array_Loop
1083 (N : Node_Id;
1084 Larray : Entity_Id;
1085 Rarray : Entity_Id;
1086 L_Type : Entity_Id;
1087 R_Type : Entity_Id;
1088 Ndim : Pos;
1089 Rev : Boolean) return Node_Id
1091 Loc : constant Source_Ptr := Sloc (N);
1093 Lnn : array (1 .. Ndim) of Entity_Id;
1094 Rnn : array (1 .. Ndim) of Entity_Id;
1095 -- Entities used as subscripts on left and right sides
1097 L_Index_Type : array (1 .. Ndim) of Entity_Id;
1098 R_Index_Type : array (1 .. Ndim) of Entity_Id;
1099 -- Left and right index types
1101 Assign : Node_Id;
1103 F_Or_L : Name_Id;
1104 S_Or_P : Name_Id;
1106 function Build_Step (J : Nat) return Node_Id;
1107 -- The increment step for the index of the right-hand side is written
1108 -- as an attribute reference (Succ or Pred). This function returns
1109 -- the corresponding node, which is placed at the end of the loop body.
1111 ----------------
1112 -- Build_Step --
1113 ----------------
1115 function Build_Step (J : Nat) return Node_Id is
1116 Step : Node_Id;
1117 Lim : Name_Id;
1119 begin
1120 if Rev then
1121 Lim := Name_First;
1122 else
1123 Lim := Name_Last;
1124 end if;
1126 Step :=
1127 Make_Assignment_Statement (Loc,
1128 Name => New_Occurrence_Of (Rnn (J), Loc),
1129 Expression =>
1130 Make_Attribute_Reference (Loc,
1131 Prefix =>
1132 New_Occurrence_Of (R_Index_Type (J), Loc),
1133 Attribute_Name => S_Or_P,
1134 Expressions => New_List (
1135 New_Occurrence_Of (Rnn (J), Loc))));
1137 -- Note that on the last iteration of the loop, the index is increased
1138 -- (or decreased) past the corresponding bound. This is consistent with
1139 -- the C semantics of the back-end, where such an off-by-one value on a
1140 -- dead index variable is OK. However, in CodePeer mode this leads to
1141 -- spurious warnings, and thus we place a guard around the attribute
1142 -- reference. For obvious reasons we only do this for CodePeer.
1144 if CodePeer_Mode then
1145 Step :=
1146 Make_If_Statement (Loc,
1147 Condition =>
1148 Make_Op_Ne (Loc,
1149 Left_Opnd => New_Occurrence_Of (Lnn (J), Loc),
1150 Right_Opnd =>
1151 Make_Attribute_Reference (Loc,
1152 Prefix => New_Occurrence_Of (L_Index_Type (J), Loc),
1153 Attribute_Name => Lim)),
1154 Then_Statements => New_List (Step));
1155 end if;
1157 return Step;
1158 end Build_Step;
1160 -- Start of processing for Expand_Assign_Array_Loop
1162 begin
1163 if Rev then
1164 F_Or_L := Name_Last;
1165 S_Or_P := Name_Pred;
1166 else
1167 F_Or_L := Name_First;
1168 S_Or_P := Name_Succ;
1169 end if;
1171 -- Setup index types and subscript entities
1173 declare
1174 L_Index : Node_Id;
1175 R_Index : Node_Id;
1177 begin
1178 L_Index := First_Index (L_Type);
1179 R_Index := First_Index (R_Type);
1181 for J in 1 .. Ndim loop
1182 Lnn (J) := Make_Temporary (Loc, 'L');
1183 Rnn (J) := Make_Temporary (Loc, 'R');
1185 L_Index_Type (J) := Etype (L_Index);
1186 R_Index_Type (J) := Etype (R_Index);
1188 Next_Index (L_Index);
1189 Next_Index (R_Index);
1190 end loop;
1191 end;
1193 -- Now construct the assignment statement
1195 declare
1196 ExprL : constant List_Id := New_List;
1197 ExprR : constant List_Id := New_List;
1199 begin
1200 for J in 1 .. Ndim loop
1201 Append_To (ExprL, New_Occurrence_Of (Lnn (J), Loc));
1202 Append_To (ExprR, New_Occurrence_Of (Rnn (J), Loc));
1203 end loop;
1205 Assign :=
1206 Make_Assignment_Statement (Loc,
1207 Name =>
1208 Make_Indexed_Component (Loc,
1209 Prefix => Duplicate_Subexpr (Larray, Name_Req => True),
1210 Expressions => ExprL),
1211 Expression =>
1212 Make_Indexed_Component (Loc,
1213 Prefix => Duplicate_Subexpr (Rarray, Name_Req => True),
1214 Expressions => ExprR));
1216 -- We set assignment OK, since there are some cases, e.g. in object
1217 -- declarations, where we are actually assigning into a constant.
1218 -- If there really is an illegality, it was caught long before now,
1219 -- and was flagged when the original assignment was analyzed.
1221 Set_Assignment_OK (Name (Assign));
1223 -- Propagate the No_Ctrl_Actions flag to individual assignments
1225 Set_No_Ctrl_Actions (Assign, No_Ctrl_Actions (N));
1226 end;
1228 -- Now construct the loop from the inside out, with the last subscript
1229 -- varying most rapidly. Note that Assign is first the raw assignment
1230 -- statement, and then subsequently the loop that wraps it up.
1232 for J in reverse 1 .. Ndim loop
1233 Assign :=
1234 Make_Block_Statement (Loc,
1235 Declarations => New_List (
1236 Make_Object_Declaration (Loc,
1237 Defining_Identifier => Rnn (J),
1238 Object_Definition =>
1239 New_Occurrence_Of (R_Index_Type (J), Loc),
1240 Expression =>
1241 Make_Attribute_Reference (Loc,
1242 Prefix => New_Occurrence_Of (R_Index_Type (J), Loc),
1243 Attribute_Name => F_Or_L))),
1245 Handled_Statement_Sequence =>
1246 Make_Handled_Sequence_Of_Statements (Loc,
1247 Statements => New_List (
1248 Make_Implicit_Loop_Statement (N,
1249 Iteration_Scheme =>
1250 Make_Iteration_Scheme (Loc,
1251 Loop_Parameter_Specification =>
1252 Make_Loop_Parameter_Specification (Loc,
1253 Defining_Identifier => Lnn (J),
1254 Reverse_Present => Rev,
1255 Discrete_Subtype_Definition =>
1256 New_Occurrence_Of (L_Index_Type (J), Loc))),
1258 Statements => New_List (Assign, Build_Step (J))))));
1259 end loop;
1261 return Assign;
1262 end Expand_Assign_Array_Loop;
1264 --------------------------
1265 -- Expand_Assign_Record --
1266 --------------------------
1268 procedure Expand_Assign_Record (N : Node_Id) is
1269 Lhs : constant Node_Id := Name (N);
1270 Rhs : Node_Id := Expression (N);
1271 L_Typ : constant Entity_Id := Base_Type (Etype (Lhs));
1273 begin
1274 -- If change of representation, then extract the real right hand side
1275 -- from the type conversion, and proceed with component-wise assignment,
1276 -- since the two types are not the same as far as the back end is
1277 -- concerned.
1279 if Change_Of_Representation (N) then
1280 Rhs := Expression (Rhs);
1282 -- If this may be a case of a large bit aligned component, then proceed
1283 -- with component-wise assignment, to avoid possible clobbering of other
1284 -- components sharing bits in the first or last byte of the component to
1285 -- be assigned.
1287 elsif Possible_Bit_Aligned_Component (Lhs)
1289 Possible_Bit_Aligned_Component (Rhs)
1290 then
1291 null;
1293 -- If we have a tagged type that has a complete record representation
1294 -- clause, we must do we must do component-wise assignments, since child
1295 -- types may have used gaps for their components, and we might be
1296 -- dealing with a view conversion.
1298 elsif Is_Fully_Repped_Tagged_Type (L_Typ) then
1299 null;
1301 -- If neither condition met, then nothing special to do, the back end
1302 -- can handle assignment of the entire component as a single entity.
1304 else
1305 return;
1306 end if;
1308 -- At this stage we know that we must do a component wise assignment
1310 declare
1311 Loc : constant Source_Ptr := Sloc (N);
1312 R_Typ : constant Entity_Id := Base_Type (Etype (Rhs));
1313 Decl : constant Node_Id := Declaration_Node (R_Typ);
1314 RDef : Node_Id;
1315 F : Entity_Id;
1317 function Find_Component
1318 (Typ : Entity_Id;
1319 Comp : Entity_Id) return Entity_Id;
1320 -- Find the component with the given name in the underlying record
1321 -- declaration for Typ. We need to use the actual entity because the
1322 -- type may be private and resolution by identifier alone would fail.
1324 function Make_Component_List_Assign
1325 (CL : Node_Id;
1326 U_U : Boolean := False) return List_Id;
1327 -- Returns a sequence of statements to assign the components that
1328 -- are referenced in the given component list. The flag U_U is
1329 -- used to force the usage of the inferred value of the variant
1330 -- part expression as the switch for the generated case statement.
1332 function Make_Field_Assign
1333 (C : Entity_Id;
1334 U_U : Boolean := False) return Node_Id;
1335 -- Given C, the entity for a discriminant or component, build an
1336 -- assignment for the corresponding field values. The flag U_U
1337 -- signals the presence of an Unchecked_Union and forces the usage
1338 -- of the inferred discriminant value of C as the right hand side
1339 -- of the assignment.
1341 function Make_Field_Assigns (CI : List_Id) return List_Id;
1342 -- Given CI, a component items list, construct series of statements
1343 -- for fieldwise assignment of the corresponding components.
1345 --------------------
1346 -- Find_Component --
1347 --------------------
1349 function Find_Component
1350 (Typ : Entity_Id;
1351 Comp : Entity_Id) return Entity_Id
1353 Utyp : constant Entity_Id := Underlying_Type (Typ);
1354 C : Entity_Id;
1356 begin
1357 C := First_Entity (Utyp);
1358 while Present (C) loop
1359 if Chars (C) = Chars (Comp) then
1360 return C;
1361 end if;
1363 Next_Entity (C);
1364 end loop;
1366 raise Program_Error;
1367 end Find_Component;
1369 --------------------------------
1370 -- Make_Component_List_Assign --
1371 --------------------------------
1373 function Make_Component_List_Assign
1374 (CL : Node_Id;
1375 U_U : Boolean := False) return List_Id
1377 CI : constant List_Id := Component_Items (CL);
1378 VP : constant Node_Id := Variant_Part (CL);
1380 Alts : List_Id;
1381 DC : Node_Id;
1382 DCH : List_Id;
1383 Expr : Node_Id;
1384 Result : List_Id;
1385 V : Node_Id;
1387 begin
1388 Result := Make_Field_Assigns (CI);
1390 if Present (VP) then
1391 V := First_Non_Pragma (Variants (VP));
1392 Alts := New_List;
1393 while Present (V) loop
1394 DCH := New_List;
1395 DC := First (Discrete_Choices (V));
1396 while Present (DC) loop
1397 Append_To (DCH, New_Copy_Tree (DC));
1398 Next (DC);
1399 end loop;
1401 Append_To (Alts,
1402 Make_Case_Statement_Alternative (Loc,
1403 Discrete_Choices => DCH,
1404 Statements =>
1405 Make_Component_List_Assign (Component_List (V))));
1406 Next_Non_Pragma (V);
1407 end loop;
1409 -- If we have an Unchecked_Union, use the value of the inferred
1410 -- discriminant of the variant part expression as the switch
1411 -- for the case statement. The case statement may later be
1412 -- folded.
1414 if U_U then
1415 Expr :=
1416 New_Copy (Get_Discriminant_Value (
1417 Entity (Name (VP)),
1418 Etype (Rhs),
1419 Discriminant_Constraint (Etype (Rhs))));
1420 else
1421 Expr :=
1422 Make_Selected_Component (Loc,
1423 Prefix => Duplicate_Subexpr (Rhs),
1424 Selector_Name =>
1425 Make_Identifier (Loc, Chars (Name (VP))));
1426 end if;
1428 Append_To (Result,
1429 Make_Case_Statement (Loc,
1430 Expression => Expr,
1431 Alternatives => Alts));
1432 end if;
1434 return Result;
1435 end Make_Component_List_Assign;
1437 -----------------------
1438 -- Make_Field_Assign --
1439 -----------------------
1441 function Make_Field_Assign
1442 (C : Entity_Id;
1443 U_U : Boolean := False) return Node_Id
1445 A : Node_Id;
1446 Expr : Node_Id;
1448 begin
1449 -- In the case of an Unchecked_Union, use the discriminant
1450 -- constraint value as on the right hand side of the assignment.
1452 if U_U then
1453 Expr :=
1454 New_Copy (Get_Discriminant_Value (C,
1455 Etype (Rhs),
1456 Discriminant_Constraint (Etype (Rhs))));
1457 else
1458 Expr :=
1459 Make_Selected_Component (Loc,
1460 Prefix => Duplicate_Subexpr (Rhs),
1461 Selector_Name => New_Occurrence_Of (C, Loc));
1462 end if;
1464 A :=
1465 Make_Assignment_Statement (Loc,
1466 Name =>
1467 Make_Selected_Component (Loc,
1468 Prefix => Duplicate_Subexpr (Lhs),
1469 Selector_Name =>
1470 New_Occurrence_Of (Find_Component (L_Typ, C), Loc)),
1471 Expression => Expr);
1473 -- Set Assignment_OK, so discriminants can be assigned
1475 Set_Assignment_OK (Name (A), True);
1477 if Componentwise_Assignment (N)
1478 and then Nkind (Name (A)) = N_Selected_Component
1479 and then Chars (Selector_Name (Name (A))) = Name_uParent
1480 then
1481 Set_Componentwise_Assignment (A);
1482 end if;
1484 return A;
1485 end Make_Field_Assign;
1487 ------------------------
1488 -- Make_Field_Assigns --
1489 ------------------------
1491 function Make_Field_Assigns (CI : List_Id) return List_Id is
1492 Item : Node_Id;
1493 Result : List_Id;
1495 begin
1496 Item := First (CI);
1497 Result := New_List;
1499 while Present (Item) loop
1501 -- Look for components, but exclude _tag field assignment if
1502 -- the special Componentwise_Assignment flag is set.
1504 if Nkind (Item) = N_Component_Declaration
1505 and then not (Is_Tag (Defining_Identifier (Item))
1506 and then Componentwise_Assignment (N))
1507 then
1508 Append_To
1509 (Result, Make_Field_Assign (Defining_Identifier (Item)));
1510 end if;
1512 Next (Item);
1513 end loop;
1515 return Result;
1516 end Make_Field_Assigns;
1518 -- Start of processing for Expand_Assign_Record
1520 begin
1521 -- Note that we use the base types for this processing. This results
1522 -- in some extra work in the constrained case, but the change of
1523 -- representation case is so unusual that it is not worth the effort.
1525 -- First copy the discriminants. This is done unconditionally. It
1526 -- is required in the unconstrained left side case, and also in the
1527 -- case where this assignment was constructed during the expansion
1528 -- of a type conversion (since initialization of discriminants is
1529 -- suppressed in this case). It is unnecessary but harmless in
1530 -- other cases.
1532 if Has_Discriminants (L_Typ) then
1533 F := First_Discriminant (R_Typ);
1534 while Present (F) loop
1536 -- If we are expanding the initialization of a derived record
1537 -- that constrains or renames discriminants of the parent, we
1538 -- must use the corresponding discriminant in the parent.
1540 declare
1541 CF : Entity_Id;
1543 begin
1544 if Inside_Init_Proc
1545 and then Present (Corresponding_Discriminant (F))
1546 then
1547 CF := Corresponding_Discriminant (F);
1548 else
1549 CF := F;
1550 end if;
1552 if Is_Unchecked_Union (Base_Type (R_Typ)) then
1554 -- Within an initialization procedure this is the
1555 -- assignment to an unchecked union component, in which
1556 -- case there is no discriminant to initialize.
1558 if Inside_Init_Proc then
1559 null;
1561 else
1562 -- The assignment is part of a conversion from a
1563 -- derived unchecked union type with an inferable
1564 -- discriminant, to a parent type.
1566 Insert_Action (N, Make_Field_Assign (CF, True));
1567 end if;
1569 else
1570 Insert_Action (N, Make_Field_Assign (CF));
1571 end if;
1573 Next_Discriminant (F);
1574 end;
1575 end loop;
1576 end if;
1578 -- We know the underlying type is a record, but its current view
1579 -- may be private. We must retrieve the usable record declaration.
1581 if Nkind_In (Decl, N_Private_Type_Declaration,
1582 N_Private_Extension_Declaration)
1583 and then Present (Full_View (R_Typ))
1584 then
1585 RDef := Type_Definition (Declaration_Node (Full_View (R_Typ)));
1586 else
1587 RDef := Type_Definition (Decl);
1588 end if;
1590 if Nkind (RDef) = N_Derived_Type_Definition then
1591 RDef := Record_Extension_Part (RDef);
1592 end if;
1594 if Nkind (RDef) = N_Record_Definition
1595 and then Present (Component_List (RDef))
1596 then
1597 if Is_Unchecked_Union (R_Typ) then
1598 Insert_Actions (N,
1599 Make_Component_List_Assign (Component_List (RDef), True));
1600 else
1601 Insert_Actions
1602 (N, Make_Component_List_Assign (Component_List (RDef)));
1603 end if;
1605 Rewrite (N, Make_Null_Statement (Loc));
1606 end if;
1607 end;
1608 end Expand_Assign_Record;
1610 -----------------------------------
1611 -- Expand_N_Assignment_Statement --
1612 -----------------------------------
1614 -- This procedure implements various cases where an assignment statement
1615 -- cannot just be passed on to the back end in untransformed state.
1617 procedure Expand_N_Assignment_Statement (N : Node_Id) is
1618 Loc : constant Source_Ptr := Sloc (N);
1619 Crep : constant Boolean := Change_Of_Representation (N);
1620 Lhs : constant Node_Id := Name (N);
1621 Rhs : constant Node_Id := Expression (N);
1622 Typ : constant Entity_Id := Underlying_Type (Etype (Lhs));
1623 Exp : Node_Id;
1625 begin
1626 -- Special case to check right away, if the Componentwise_Assignment
1627 -- flag is set, this is a reanalysis from the expansion of the primitive
1628 -- assignment procedure for a tagged type, and all we need to do is to
1629 -- expand to assignment of components, because otherwise, we would get
1630 -- infinite recursion (since this looks like a tagged assignment which
1631 -- would normally try to *call* the primitive assignment procedure).
1633 if Componentwise_Assignment (N) then
1634 Expand_Assign_Record (N);
1635 return;
1636 end if;
1638 -- Defend against invalid subscripts on left side if we are in standard
1639 -- validity checking mode. No need to do this if we are checking all
1640 -- subscripts.
1642 -- Note that we do this right away, because there are some early return
1643 -- paths in this procedure, and this is required on all paths.
1645 if Validity_Checks_On
1646 and then Validity_Check_Default
1647 and then not Validity_Check_Subscripts
1648 then
1649 Check_Valid_Lvalue_Subscripts (Lhs);
1650 end if;
1652 -- Ada 2005 (AI-327): Handle assignment to priority of protected object
1654 -- Rewrite an assignment to X'Priority into a run-time call
1656 -- For example: X'Priority := New_Prio_Expr;
1657 -- ...is expanded into Set_Ceiling (X._Object, New_Prio_Expr);
1659 -- Note that although X'Priority is notionally an object, it is quite
1660 -- deliberately not defined as an aliased object in the RM. This means
1661 -- that it works fine to rewrite it as a call, without having to worry
1662 -- about complications that would other arise from X'Priority'Access,
1663 -- which is illegal, because of the lack of aliasing.
1665 if Ada_Version >= Ada_2005 then
1666 declare
1667 Call : Node_Id;
1668 Conctyp : Entity_Id;
1669 Ent : Entity_Id;
1670 Subprg : Entity_Id;
1671 RT_Subprg_Name : Node_Id;
1673 begin
1674 -- Handle chains of renamings
1676 Ent := Name (N);
1677 while Nkind (Ent) in N_Has_Entity
1678 and then Present (Entity (Ent))
1679 and then Present (Renamed_Object (Entity (Ent)))
1680 loop
1681 Ent := Renamed_Object (Entity (Ent));
1682 end loop;
1684 -- The attribute Priority applied to protected objects has been
1685 -- previously expanded into a call to the Get_Ceiling run-time
1686 -- subprogram.
1688 if Nkind (Ent) = N_Function_Call
1689 and then (Entity (Name (Ent)) = RTE (RE_Get_Ceiling)
1690 or else
1691 Entity (Name (Ent)) = RTE (RO_PE_Get_Ceiling))
1692 then
1693 -- Look for the enclosing concurrent type
1695 Conctyp := Current_Scope;
1696 while not Is_Concurrent_Type (Conctyp) loop
1697 Conctyp := Scope (Conctyp);
1698 end loop;
1700 pragma Assert (Is_Protected_Type (Conctyp));
1702 -- Generate the first actual of the call
1704 Subprg := Current_Scope;
1705 while not Present (Protected_Body_Subprogram (Subprg)) loop
1706 Subprg := Scope (Subprg);
1707 end loop;
1709 -- Select the appropriate run-time call
1711 if Number_Entries (Conctyp) = 0 then
1712 RT_Subprg_Name :=
1713 New_Occurrence_Of (RTE (RE_Set_Ceiling), Loc);
1714 else
1715 RT_Subprg_Name :=
1716 New_Occurrence_Of (RTE (RO_PE_Set_Ceiling), Loc);
1717 end if;
1719 Call :=
1720 Make_Procedure_Call_Statement (Loc,
1721 Name => RT_Subprg_Name,
1722 Parameter_Associations => New_List (
1723 New_Copy_Tree (First (Parameter_Associations (Ent))),
1724 Relocate_Node (Expression (N))));
1726 Rewrite (N, Call);
1727 Analyze (N);
1728 return;
1729 end if;
1730 end;
1731 end if;
1733 -- Deal with assignment checks unless suppressed
1735 if not Suppress_Assignment_Checks (N) then
1737 -- First deal with generation of range check if required
1739 if Do_Range_Check (Rhs) then
1740 Generate_Range_Check (Rhs, Typ, CE_Range_Check_Failed);
1741 end if;
1743 -- Then generate predicate check if required
1745 Apply_Predicate_Check (Rhs, Typ);
1746 end if;
1748 -- Check for a special case where a high level transformation is
1749 -- required. If we have either of:
1751 -- P.field := rhs;
1752 -- P (sub) := rhs;
1754 -- where P is a reference to a bit packed array, then we have to unwind
1755 -- the assignment. The exact meaning of being a reference to a bit
1756 -- packed array is as follows:
1758 -- An indexed component whose prefix is a bit packed array is a
1759 -- reference to a bit packed array.
1761 -- An indexed component or selected component whose prefix is a
1762 -- reference to a bit packed array is itself a reference ot a
1763 -- bit packed array.
1765 -- The required transformation is
1767 -- Tnn : prefix_type := P;
1768 -- Tnn.field := rhs;
1769 -- P := Tnn;
1771 -- or
1773 -- Tnn : prefix_type := P;
1774 -- Tnn (subscr) := rhs;
1775 -- P := Tnn;
1777 -- Since P is going to be evaluated more than once, any subscripts
1778 -- in P must have their evaluation forced.
1780 if Nkind_In (Lhs, N_Indexed_Component, N_Selected_Component)
1781 and then Is_Ref_To_Bit_Packed_Array (Prefix (Lhs))
1782 then
1783 declare
1784 BPAR_Expr : constant Node_Id := Relocate_Node (Prefix (Lhs));
1785 BPAR_Typ : constant Entity_Id := Etype (BPAR_Expr);
1786 Tnn : constant Entity_Id :=
1787 Make_Temporary (Loc, 'T', BPAR_Expr);
1789 begin
1790 -- Insert the post assignment first, because we want to copy the
1791 -- BPAR_Expr tree before it gets analyzed in the context of the
1792 -- pre assignment. Note that we do not analyze the post assignment
1793 -- yet (we cannot till we have completed the analysis of the pre
1794 -- assignment). As usual, the analysis of this post assignment
1795 -- will happen on its own when we "run into" it after finishing
1796 -- the current assignment.
1798 Insert_After (N,
1799 Make_Assignment_Statement (Loc,
1800 Name => New_Copy_Tree (BPAR_Expr),
1801 Expression => New_Occurrence_Of (Tnn, Loc)));
1803 -- At this stage BPAR_Expr is a reference to a bit packed array
1804 -- where the reference was not expanded in the original tree,
1805 -- since it was on the left side of an assignment. But in the
1806 -- pre-assignment statement (the object definition), BPAR_Expr
1807 -- will end up on the right hand side, and must be reexpanded. To
1808 -- achieve this, we reset the analyzed flag of all selected and
1809 -- indexed components down to the actual indexed component for
1810 -- the packed array.
1812 Exp := BPAR_Expr;
1813 loop
1814 Set_Analyzed (Exp, False);
1816 if Nkind_In
1817 (Exp, N_Selected_Component, N_Indexed_Component)
1818 then
1819 Exp := Prefix (Exp);
1820 else
1821 exit;
1822 end if;
1823 end loop;
1825 -- Now we can insert and analyze the pre-assignment
1827 -- If the right-hand side requires a transient scope, it has
1828 -- already been placed on the stack. However, the declaration is
1829 -- inserted in the tree outside of this scope, and must reflect
1830 -- the proper scope for its variable. This awkward bit is forced
1831 -- by the stricter scope discipline imposed by GCC 2.97.
1833 declare
1834 Uses_Transient_Scope : constant Boolean :=
1835 Scope_Is_Transient
1836 and then N = Node_To_Be_Wrapped;
1838 begin
1839 if Uses_Transient_Scope then
1840 Push_Scope (Scope (Current_Scope));
1841 end if;
1843 Insert_Before_And_Analyze (N,
1844 Make_Object_Declaration (Loc,
1845 Defining_Identifier => Tnn,
1846 Object_Definition => New_Occurrence_Of (BPAR_Typ, Loc),
1847 Expression => BPAR_Expr));
1849 if Uses_Transient_Scope then
1850 Pop_Scope;
1851 end if;
1852 end;
1854 -- Now fix up the original assignment and continue processing
1856 Rewrite (Prefix (Lhs),
1857 New_Occurrence_Of (Tnn, Loc));
1859 -- We do not need to reanalyze that assignment, and we do not need
1860 -- to worry about references to the temporary, but we do need to
1861 -- make sure that the temporary is not marked as a true constant
1862 -- since we now have a generated assignment to it.
1864 Set_Is_True_Constant (Tnn, False);
1865 end;
1866 end if;
1868 -- When we have the appropriate type of aggregate in the expression (it
1869 -- has been determined during analysis of the aggregate by setting the
1870 -- delay flag), let's perform in place assignment and thus avoid
1871 -- creating a temporary.
1873 if Is_Delayed_Aggregate (Rhs) then
1874 Convert_Aggr_In_Assignment (N);
1875 Rewrite (N, Make_Null_Statement (Loc));
1876 Analyze (N);
1877 return;
1878 end if;
1880 -- Apply discriminant check if required. If Lhs is an access type to a
1881 -- designated type with discriminants, we must always check. If the
1882 -- type has unknown discriminants, more elaborate processing below.
1884 if Has_Discriminants (Etype (Lhs))
1885 and then not Has_Unknown_Discriminants (Etype (Lhs))
1886 then
1887 -- Skip discriminant check if change of representation. Will be
1888 -- done when the change of representation is expanded out.
1890 if not Crep then
1891 Apply_Discriminant_Check (Rhs, Etype (Lhs), Lhs);
1892 end if;
1894 -- If the type is private without discriminants, and the full type
1895 -- has discriminants (necessarily with defaults) a check may still be
1896 -- necessary if the Lhs is aliased. The private discriminants must be
1897 -- visible to build the discriminant constraints.
1899 -- Only an explicit dereference that comes from source indicates
1900 -- aliasing. Access to formals of protected operations and entries
1901 -- create dereferences but are not semantic aliasings.
1903 elsif Is_Private_Type (Etype (Lhs))
1904 and then Has_Discriminants (Typ)
1905 and then Nkind (Lhs) = N_Explicit_Dereference
1906 and then Comes_From_Source (Lhs)
1907 then
1908 declare
1909 Lt : constant Entity_Id := Etype (Lhs);
1910 Ubt : Entity_Id := Base_Type (Typ);
1912 begin
1913 -- In the case of an expander-generated record subtype whose base
1914 -- type still appears private, Typ will have been set to that
1915 -- private type rather than the underlying record type (because
1916 -- Underlying type will have returned the record subtype), so it's
1917 -- necessary to apply Underlying_Type again to the base type to
1918 -- get the record type we need for the discriminant check. Such
1919 -- subtypes can be created for assignments in certain cases, such
1920 -- as within an instantiation passed this kind of private type.
1921 -- It would be good to avoid this special test, but making changes
1922 -- to prevent this odd form of record subtype seems difficult. ???
1924 if Is_Private_Type (Ubt) then
1925 Ubt := Underlying_Type (Ubt);
1926 end if;
1928 Set_Etype (Lhs, Ubt);
1929 Rewrite (Rhs, OK_Convert_To (Base_Type (Ubt), Rhs));
1930 Apply_Discriminant_Check (Rhs, Ubt, Lhs);
1931 Set_Etype (Lhs, Lt);
1932 end;
1934 -- If the Lhs has a private type with unknown discriminants, it may
1935 -- have a full view with discriminants, but those are nameable only
1936 -- in the underlying type, so convert the Rhs to it before potential
1937 -- checking. Convert Lhs as well, otherwise the actual subtype might
1938 -- not be constructible.
1940 elsif Has_Unknown_Discriminants (Base_Type (Etype (Lhs)))
1941 and then Has_Discriminants (Typ)
1942 then
1943 Rewrite (Rhs, OK_Convert_To (Base_Type (Typ), Rhs));
1944 Rewrite (Lhs, OK_Convert_To (Base_Type (Typ), Lhs));
1945 Apply_Discriminant_Check (Rhs, Typ, Lhs);
1947 -- In the access type case, we need the same discriminant check, and
1948 -- also range checks if we have an access to constrained array.
1950 elsif Is_Access_Type (Etype (Lhs))
1951 and then Is_Constrained (Designated_Type (Etype (Lhs)))
1952 then
1953 if Has_Discriminants (Designated_Type (Etype (Lhs))) then
1955 -- Skip discriminant check if change of representation. Will be
1956 -- done when the change of representation is expanded out.
1958 if not Crep then
1959 Apply_Discriminant_Check (Rhs, Etype (Lhs));
1960 end if;
1962 elsif Is_Array_Type (Designated_Type (Etype (Lhs))) then
1963 Apply_Range_Check (Rhs, Etype (Lhs));
1965 if Is_Constrained (Etype (Lhs)) then
1966 Apply_Length_Check (Rhs, Etype (Lhs));
1967 end if;
1969 if Nkind (Rhs) = N_Allocator then
1970 declare
1971 Target_Typ : constant Entity_Id := Etype (Expression (Rhs));
1972 C_Es : Check_Result;
1974 begin
1975 C_Es :=
1976 Get_Range_Checks
1977 (Lhs,
1978 Target_Typ,
1979 Etype (Designated_Type (Etype (Lhs))));
1981 Insert_Range_Checks
1982 (C_Es,
1984 Target_Typ,
1985 Sloc (Lhs),
1986 Lhs);
1987 end;
1988 end if;
1989 end if;
1991 -- Apply range check for access type case
1993 elsif Is_Access_Type (Etype (Lhs))
1994 and then Nkind (Rhs) = N_Allocator
1995 and then Nkind (Expression (Rhs)) = N_Qualified_Expression
1996 then
1997 Analyze_And_Resolve (Expression (Rhs));
1998 Apply_Range_Check
1999 (Expression (Rhs), Designated_Type (Etype (Lhs)));
2000 end if;
2002 -- Ada 2005 (AI-231): Generate the run-time check
2004 if Is_Access_Type (Typ)
2005 and then Can_Never_Be_Null (Etype (Lhs))
2006 and then not Can_Never_Be_Null (Etype (Rhs))
2008 -- If an actual is an out parameter of a null-excluding access
2009 -- type, there is access check on entry, so we set the flag
2010 -- Suppress_Assignment_Checks on the generated statement to
2011 -- assign the actual to the parameter block, and we do not want
2012 -- to generate an additional check at this point.
2014 and then not Suppress_Assignment_Checks (N)
2015 then
2016 Apply_Constraint_Check (Rhs, Etype (Lhs));
2017 end if;
2019 -- Ada 2012 (AI05-148): Update current accessibility level if Rhs is a
2020 -- stand-alone obj of an anonymous access type.
2022 if Is_Access_Type (Typ)
2023 and then Is_Entity_Name (Lhs)
2024 and then Present (Effective_Extra_Accessibility (Entity (Lhs)))
2025 then
2026 declare
2027 function Lhs_Entity return Entity_Id;
2028 -- Look through renames to find the underlying entity.
2029 -- For assignment to a rename, we don't care about the
2030 -- Enclosing_Dynamic_Scope of the rename declaration.
2032 ----------------
2033 -- Lhs_Entity --
2034 ----------------
2036 function Lhs_Entity return Entity_Id is
2037 Result : Entity_Id := Entity (Lhs);
2039 begin
2040 while Present (Renamed_Object (Result)) loop
2042 -- Renamed_Object must return an Entity_Name here
2043 -- because of preceding "Present (E_E_A (...))" test.
2045 Result := Entity (Renamed_Object (Result));
2046 end loop;
2048 return Result;
2049 end Lhs_Entity;
2051 -- Local Declarations
2053 Access_Check : constant Node_Id :=
2054 Make_Raise_Program_Error (Loc,
2055 Condition =>
2056 Make_Op_Gt (Loc,
2057 Left_Opnd =>
2058 Dynamic_Accessibility_Level (Rhs),
2059 Right_Opnd =>
2060 Make_Integer_Literal (Loc,
2061 Intval =>
2062 Scope_Depth
2063 (Enclosing_Dynamic_Scope
2064 (Lhs_Entity)))),
2065 Reason => PE_Accessibility_Check_Failed);
2067 Access_Level_Update : constant Node_Id :=
2068 Make_Assignment_Statement (Loc,
2069 Name =>
2070 New_Occurrence_Of
2071 (Effective_Extra_Accessibility
2072 (Entity (Lhs)), Loc),
2073 Expression =>
2074 Dynamic_Accessibility_Level (Rhs));
2076 begin
2077 if not Accessibility_Checks_Suppressed (Entity (Lhs)) then
2078 Insert_Action (N, Access_Check);
2079 end if;
2081 Insert_Action (N, Access_Level_Update);
2082 end;
2083 end if;
2085 -- Case of assignment to a bit packed array element. If there is a
2086 -- change of representation this must be expanded into components,
2087 -- otherwise this is a bit-field assignment.
2089 if Nkind (Lhs) = N_Indexed_Component
2090 and then Is_Bit_Packed_Array (Etype (Prefix (Lhs)))
2091 then
2092 -- Normal case, no change of representation
2094 if not Crep then
2095 Expand_Bit_Packed_Element_Set (N);
2096 return;
2098 -- Change of representation case
2100 else
2101 -- Generate the following, to force component-by-component
2102 -- assignments in an efficient way. Otherwise each component
2103 -- will require a temporary and two bit-field manipulations.
2105 -- T1 : Elmt_Type;
2106 -- T1 := RhS;
2107 -- Lhs := T1;
2109 declare
2110 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T');
2111 Stats : List_Id;
2113 begin
2114 Stats :=
2115 New_List (
2116 Make_Object_Declaration (Loc,
2117 Defining_Identifier => Tnn,
2118 Object_Definition =>
2119 New_Occurrence_Of (Etype (Lhs), Loc)),
2120 Make_Assignment_Statement (Loc,
2121 Name => New_Occurrence_Of (Tnn, Loc),
2122 Expression => Relocate_Node (Rhs)),
2123 Make_Assignment_Statement (Loc,
2124 Name => Relocate_Node (Lhs),
2125 Expression => New_Occurrence_Of (Tnn, Loc)));
2127 Insert_Actions (N, Stats);
2128 Rewrite (N, Make_Null_Statement (Loc));
2129 Analyze (N);
2130 end;
2131 end if;
2133 -- Build-in-place function call case. Note that we're not yet doing
2134 -- build-in-place for user-written assignment statements (the assignment
2135 -- here came from an aggregate.)
2137 elsif Ada_Version >= Ada_2005
2138 and then Is_Build_In_Place_Function_Call (Rhs)
2139 then
2140 Make_Build_In_Place_Call_In_Assignment (N, Rhs);
2142 elsif Is_Tagged_Type (Typ) and then Is_Value_Type (Etype (Lhs)) then
2144 -- Nothing to do for valuetypes
2145 -- ??? Set_Scope_Is_Transient (False);
2147 return;
2149 elsif Is_Tagged_Type (Typ)
2150 or else (Needs_Finalization (Typ) and then not Is_Array_Type (Typ))
2151 then
2152 Tagged_Case : declare
2153 L : List_Id := No_List;
2154 Expand_Ctrl_Actions : constant Boolean := not No_Ctrl_Actions (N);
2156 begin
2157 -- In the controlled case, we ensure that function calls are
2158 -- evaluated before finalizing the target. In all cases, it makes
2159 -- the expansion easier if the side-effects are removed first.
2161 Remove_Side_Effects (Lhs);
2162 Remove_Side_Effects (Rhs);
2164 -- Avoid recursion in the mechanism
2166 Set_Analyzed (N);
2168 -- If dispatching assignment, we need to dispatch to _assign
2170 if Is_Class_Wide_Type (Typ)
2172 -- If the type is tagged, we may as well use the predefined
2173 -- primitive assignment. This avoids inlining a lot of code
2174 -- and in the class-wide case, the assignment is replaced
2175 -- by a dispatching call to _assign. It is suppressed in the
2176 -- case of assignments created by the expander that correspond
2177 -- to initializations, where we do want to copy the tag
2178 -- (Expand_Ctrl_Actions flag is set False in this case). It is
2179 -- also suppressed if restriction No_Dispatching_Calls is in
2180 -- force because in that case predefined primitives are not
2181 -- generated.
2183 or else (Is_Tagged_Type (Typ)
2184 and then not Is_Value_Type (Etype (Lhs))
2185 and then Chars (Current_Scope) /= Name_uAssign
2186 and then Expand_Ctrl_Actions
2187 and then
2188 not Restriction_Active (No_Dispatching_Calls))
2189 then
2190 if Is_Limited_Type (Typ) then
2192 -- This can happen in an instance when the formal is an
2193 -- extension of a limited interface, and the actual is
2194 -- limited. This is an error according to AI05-0087, but
2195 -- is not caught at the point of instantiation in earlier
2196 -- versions.
2198 -- This is wrong, error messages cannot be issued during
2199 -- expansion, since they would be missed in -gnatc mode ???
2201 Error_Msg_N ("assignment not available on limited type", N);
2202 return;
2203 end if;
2205 -- Fetch the primitive op _assign and proper type to call it.
2206 -- Because of possible conflicts between private and full view,
2207 -- fetch the proper type directly from the operation profile.
2209 declare
2210 Op : constant Entity_Id :=
2211 Find_Prim_Op (Typ, Name_uAssign);
2212 F_Typ : Entity_Id := Etype (First_Formal (Op));
2214 begin
2215 -- If the assignment is dispatching, make sure to use the
2216 -- proper type.
2218 if Is_Class_Wide_Type (Typ) then
2219 F_Typ := Class_Wide_Type (F_Typ);
2220 end if;
2222 L := New_List;
2224 -- In case of assignment to a class-wide tagged type, before
2225 -- the assignment we generate run-time check to ensure that
2226 -- the tags of source and target match.
2228 if not Tag_Checks_Suppressed (Typ)
2229 and then Is_Class_Wide_Type (Typ)
2230 and then Is_Tagged_Type (Typ)
2231 and then Is_Tagged_Type (Underlying_Type (Etype (Rhs)))
2232 then
2233 Append_To (L,
2234 Make_Raise_Constraint_Error (Loc,
2235 Condition =>
2236 Make_Op_Ne (Loc,
2237 Left_Opnd =>
2238 Make_Selected_Component (Loc,
2239 Prefix => Duplicate_Subexpr (Lhs),
2240 Selector_Name =>
2241 Make_Identifier (Loc, Name_uTag)),
2242 Right_Opnd =>
2243 Make_Selected_Component (Loc,
2244 Prefix => Duplicate_Subexpr (Rhs),
2245 Selector_Name =>
2246 Make_Identifier (Loc, Name_uTag))),
2247 Reason => CE_Tag_Check_Failed));
2248 end if;
2250 declare
2251 Left_N : Node_Id := Duplicate_Subexpr (Lhs);
2252 Right_N : Node_Id := Duplicate_Subexpr (Rhs);
2254 begin
2255 -- In order to dispatch the call to _assign the type of
2256 -- the actuals must match. Add conversion (if required).
2258 if Etype (Lhs) /= F_Typ then
2259 Left_N := Unchecked_Convert_To (F_Typ, Left_N);
2260 end if;
2262 if Etype (Rhs) /= F_Typ then
2263 Right_N := Unchecked_Convert_To (F_Typ, Right_N);
2264 end if;
2266 Append_To (L,
2267 Make_Procedure_Call_Statement (Loc,
2268 Name => New_Occurrence_Of (Op, Loc),
2269 Parameter_Associations => New_List (
2270 Node1 => Left_N,
2271 Node2 => Right_N)));
2272 end;
2273 end;
2275 else
2276 L := Make_Tag_Ctrl_Assignment (N);
2278 -- We can't afford to have destructive Finalization Actions in
2279 -- the Self assignment case, so if the target and the source
2280 -- are not obviously different, code is generated to avoid the
2281 -- self assignment case:
2283 -- if lhs'address /= rhs'address then
2284 -- <code for controlled and/or tagged assignment>
2285 -- end if;
2287 -- Skip this if Restriction (No_Finalization) is active
2289 if not Statically_Different (Lhs, Rhs)
2290 and then Expand_Ctrl_Actions
2291 and then not Restriction_Active (No_Finalization)
2292 then
2293 L := New_List (
2294 Make_Implicit_If_Statement (N,
2295 Condition =>
2296 Make_Op_Ne (Loc,
2297 Left_Opnd =>
2298 Make_Attribute_Reference (Loc,
2299 Prefix => Duplicate_Subexpr (Lhs),
2300 Attribute_Name => Name_Address),
2302 Right_Opnd =>
2303 Make_Attribute_Reference (Loc,
2304 Prefix => Duplicate_Subexpr (Rhs),
2305 Attribute_Name => Name_Address)),
2307 Then_Statements => L));
2308 end if;
2310 -- We need to set up an exception handler for implementing
2311 -- 7.6.1(18). The remaining adjustments are tackled by the
2312 -- implementation of adjust for record_controllers (see
2313 -- s-finimp.adb).
2315 -- This is skipped if we have no finalization
2317 if Expand_Ctrl_Actions
2318 and then not Restriction_Active (No_Finalization)
2319 then
2320 L := New_List (
2321 Make_Block_Statement (Loc,
2322 Handled_Statement_Sequence =>
2323 Make_Handled_Sequence_Of_Statements (Loc,
2324 Statements => L,
2325 Exception_Handlers => New_List (
2326 Make_Handler_For_Ctrl_Operation (Loc)))));
2327 end if;
2328 end if;
2330 Rewrite (N,
2331 Make_Block_Statement (Loc,
2332 Handled_Statement_Sequence =>
2333 Make_Handled_Sequence_Of_Statements (Loc, Statements => L)));
2335 -- If no restrictions on aborts, protect the whole assignment
2336 -- for controlled objects as per 9.8(11).
2338 if Needs_Finalization (Typ)
2339 and then Expand_Ctrl_Actions
2340 and then Abort_Allowed
2341 then
2342 declare
2343 Blk : constant Entity_Id :=
2344 New_Internal_Entity
2345 (E_Block, Current_Scope, Sloc (N), 'B');
2346 AUD : constant Entity_Id := RTE (RE_Abort_Undefer_Direct);
2348 begin
2349 Set_Scope (Blk, Current_Scope);
2350 Set_Etype (Blk, Standard_Void_Type);
2351 Set_Identifier (N, New_Occurrence_Of (Blk, Sloc (N)));
2353 Prepend_To (L, Build_Runtime_Call (Loc, RE_Abort_Defer));
2354 Set_At_End_Proc (Handled_Statement_Sequence (N),
2355 New_Occurrence_Of (AUD, Loc));
2357 -- Present the Abort_Undefer_Direct function to the backend
2358 -- so that it can inline the call to the function.
2360 Add_Inlined_Body (AUD, N);
2362 Expand_At_End_Handler
2363 (Handled_Statement_Sequence (N), Blk);
2364 end;
2365 end if;
2367 -- N has been rewritten to a block statement for which it is
2368 -- known by construction that no checks are necessary: analyze
2369 -- it with all checks suppressed.
2371 Analyze (N, Suppress => All_Checks);
2372 return;
2373 end Tagged_Case;
2375 -- Array types
2377 elsif Is_Array_Type (Typ) then
2378 declare
2379 Actual_Rhs : Node_Id := Rhs;
2381 begin
2382 while Nkind_In (Actual_Rhs, N_Type_Conversion,
2383 N_Qualified_Expression)
2384 loop
2385 Actual_Rhs := Expression (Actual_Rhs);
2386 end loop;
2388 Expand_Assign_Array (N, Actual_Rhs);
2389 return;
2390 end;
2392 -- Record types
2394 elsif Is_Record_Type (Typ) then
2395 Expand_Assign_Record (N);
2396 return;
2398 -- Scalar types. This is where we perform the processing related to the
2399 -- requirements of (RM 13.9.1(9-11)) concerning the handling of invalid
2400 -- scalar values.
2402 elsif Is_Scalar_Type (Typ) then
2404 -- Case where right side is known valid
2406 if Expr_Known_Valid (Rhs) then
2408 -- Here the right side is valid, so it is fine. The case to deal
2409 -- with is when the left side is a local variable reference whose
2410 -- value is not currently known to be valid. If this is the case,
2411 -- and the assignment appears in an unconditional context, then
2412 -- we can mark the left side as now being valid if one of these
2413 -- conditions holds:
2415 -- The expression of the right side has Do_Range_Check set so
2416 -- that we know a range check will be performed. Note that it
2417 -- can be the case that a range check is omitted because we
2418 -- make the assumption that we can assume validity for operands
2419 -- appearing in the right side in determining whether a range
2420 -- check is required
2422 -- The subtype of the right side matches the subtype of the
2423 -- left side. In this case, even though we have not checked
2424 -- the range of the right side, we know it is in range of its
2425 -- subtype if the expression is valid.
2427 if Is_Local_Variable_Reference (Lhs)
2428 and then not Is_Known_Valid (Entity (Lhs))
2429 and then In_Unconditional_Context (N)
2430 then
2431 if Do_Range_Check (Rhs)
2432 or else Etype (Lhs) = Etype (Rhs)
2433 then
2434 Set_Is_Known_Valid (Entity (Lhs), True);
2435 end if;
2436 end if;
2438 -- Case where right side may be invalid in the sense of the RM
2439 -- reference above. The RM does not require that we check for the
2440 -- validity on an assignment, but it does require that the assignment
2441 -- of an invalid value not cause erroneous behavior.
2443 -- The general approach in GNAT is to use the Is_Known_Valid flag
2444 -- to avoid the need for validity checking on assignments. However
2445 -- in some cases, we have to do validity checking in order to make
2446 -- sure that the setting of this flag is correct.
2448 else
2449 -- Validate right side if we are validating copies
2451 if Validity_Checks_On
2452 and then Validity_Check_Copies
2453 then
2454 -- Skip this if left hand side is an array or record component
2455 -- and elementary component validity checks are suppressed.
2457 if Nkind_In (Lhs, N_Selected_Component, N_Indexed_Component)
2458 and then not Validity_Check_Components
2459 then
2460 null;
2461 else
2462 Ensure_Valid (Rhs);
2463 end if;
2465 -- We can propagate this to the left side where appropriate
2467 if Is_Local_Variable_Reference (Lhs)
2468 and then not Is_Known_Valid (Entity (Lhs))
2469 and then In_Unconditional_Context (N)
2470 then
2471 Set_Is_Known_Valid (Entity (Lhs), True);
2472 end if;
2474 -- Otherwise check to see what should be done
2476 -- If left side is a local variable, then we just set its flag to
2477 -- indicate that its value may no longer be valid, since we are
2478 -- copying a potentially invalid value.
2480 elsif Is_Local_Variable_Reference (Lhs) then
2481 Set_Is_Known_Valid (Entity (Lhs), False);
2483 -- Check for case of a nonlocal variable on the left side which
2484 -- is currently known to be valid. In this case, we simply ensure
2485 -- that the right side is valid. We only play the game of copying
2486 -- validity status for local variables, since we are doing this
2487 -- statically, not by tracing the full flow graph.
2489 elsif Is_Entity_Name (Lhs)
2490 and then Is_Known_Valid (Entity (Lhs))
2491 then
2492 -- Note: If Validity_Checking mode is set to none, we ignore
2493 -- the Ensure_Valid call so don't worry about that case here.
2495 Ensure_Valid (Rhs);
2497 -- In all other cases, we can safely copy an invalid value without
2498 -- worrying about the status of the left side. Since it is not a
2499 -- variable reference it will not be considered
2500 -- as being known to be valid in any case.
2502 else
2503 null;
2504 end if;
2505 end if;
2506 end if;
2508 exception
2509 when RE_Not_Available =>
2510 return;
2511 end Expand_N_Assignment_Statement;
2513 ------------------------------
2514 -- Expand_N_Block_Statement --
2515 ------------------------------
2517 -- Encode entity names defined in block statement
2519 procedure Expand_N_Block_Statement (N : Node_Id) is
2520 begin
2521 Qualify_Entity_Names (N);
2522 end Expand_N_Block_Statement;
2524 -----------------------------
2525 -- Expand_N_Case_Statement --
2526 -----------------------------
2528 procedure Expand_N_Case_Statement (N : Node_Id) is
2529 Loc : constant Source_Ptr := Sloc (N);
2530 Expr : constant Node_Id := Expression (N);
2531 Alt : Node_Id;
2532 Len : Nat;
2533 Cond : Node_Id;
2534 Choice : Node_Id;
2535 Chlist : List_Id;
2537 begin
2538 -- Check for the situation where we know at compile time which branch
2539 -- will be taken
2541 if Compile_Time_Known_Value (Expr) then
2542 Alt := Find_Static_Alternative (N);
2544 -- Do not consider controlled objects found in a case statement which
2545 -- actually models a case expression because their early finalization
2546 -- will affect the result of the expression.
2548 if not From_Conditional_Expression (N) then
2549 Process_Statements_For_Controlled_Objects (Alt);
2550 end if;
2552 -- Move statements from this alternative after the case statement.
2553 -- They are already analyzed, so will be skipped by the analyzer.
2555 Insert_List_After (N, Statements (Alt));
2557 -- That leaves the case statement as a shell. So now we can kill all
2558 -- other alternatives in the case statement.
2560 Kill_Dead_Code (Expression (N));
2562 declare
2563 Dead_Alt : Node_Id;
2565 begin
2566 -- Loop through case alternatives, skipping pragmas, and skipping
2567 -- the one alternative that we select (and therefore retain).
2569 Dead_Alt := First (Alternatives (N));
2570 while Present (Dead_Alt) loop
2571 if Dead_Alt /= Alt
2572 and then Nkind (Dead_Alt) = N_Case_Statement_Alternative
2573 then
2574 Kill_Dead_Code (Statements (Dead_Alt), Warn_On_Deleted_Code);
2575 end if;
2577 Next (Dead_Alt);
2578 end loop;
2579 end;
2581 Rewrite (N, Make_Null_Statement (Loc));
2582 return;
2583 end if;
2585 -- Here if the choice is not determined at compile time
2587 declare
2588 Last_Alt : constant Node_Id := Last (Alternatives (N));
2590 Others_Present : Boolean;
2591 Others_Node : Node_Id;
2593 Then_Stms : List_Id;
2594 Else_Stms : List_Id;
2596 begin
2597 if Nkind (First (Discrete_Choices (Last_Alt))) = N_Others_Choice then
2598 Others_Present := True;
2599 Others_Node := Last_Alt;
2600 else
2601 Others_Present := False;
2602 end if;
2604 -- First step is to worry about possible invalid argument. The RM
2605 -- requires (RM 5.4(13)) that if the result is invalid (e.g. it is
2606 -- outside the base range), then Constraint_Error must be raised.
2608 -- Case of validity check required (validity checks are on, the
2609 -- expression is not known to be valid, and the case statement
2610 -- comes from source -- no need to validity check internally
2611 -- generated case statements).
2613 if Validity_Check_Default then
2614 Ensure_Valid (Expr);
2615 end if;
2617 -- If there is only a single alternative, just replace it with the
2618 -- sequence of statements since obviously that is what is going to
2619 -- be executed in all cases.
2621 Len := List_Length (Alternatives (N));
2623 if Len = 1 then
2625 -- We still need to evaluate the expression if it has any side
2626 -- effects.
2628 Remove_Side_Effects (Expression (N));
2629 Alt := First (Alternatives (N));
2631 -- Do not consider controlled objects found in a case statement
2632 -- which actually models a case expression because their early
2633 -- finalization will affect the result of the expression.
2635 if not From_Conditional_Expression (N) then
2636 Process_Statements_For_Controlled_Objects (Alt);
2637 end if;
2639 Insert_List_After (N, Statements (Alt));
2641 -- That leaves the case statement as a shell. The alternative that
2642 -- will be executed is reset to a null list. So now we can kill
2643 -- the entire case statement.
2645 Kill_Dead_Code (Expression (N));
2646 Rewrite (N, Make_Null_Statement (Loc));
2647 return;
2649 -- An optimization. If there are only two alternatives, and only
2650 -- a single choice, then rewrite the whole case statement as an
2651 -- if statement, since this can result in subsequent optimizations.
2652 -- This helps not only with case statements in the source of a
2653 -- simple form, but also with generated code (discriminant check
2654 -- functions in particular).
2656 -- Note: it is OK to do this before expanding out choices for any
2657 -- static predicates, since the if statement processing will handle
2658 -- the static predicate case fine.
2660 elsif Len = 2 then
2661 Chlist := Discrete_Choices (First (Alternatives (N)));
2663 if List_Length (Chlist) = 1 then
2664 Choice := First (Chlist);
2666 Then_Stms := Statements (First (Alternatives (N)));
2667 Else_Stms := Statements (Last (Alternatives (N)));
2669 -- For TRUE, generate "expression", not expression = true
2671 if Nkind (Choice) = N_Identifier
2672 and then Entity (Choice) = Standard_True
2673 then
2674 Cond := Expression (N);
2676 -- For FALSE, generate "expression" and switch then/else
2678 elsif Nkind (Choice) = N_Identifier
2679 and then Entity (Choice) = Standard_False
2680 then
2681 Cond := Expression (N);
2682 Else_Stms := Statements (First (Alternatives (N)));
2683 Then_Stms := Statements (Last (Alternatives (N)));
2685 -- For a range, generate "expression in range"
2687 elsif Nkind (Choice) = N_Range
2688 or else (Nkind (Choice) = N_Attribute_Reference
2689 and then Attribute_Name (Choice) = Name_Range)
2690 or else (Is_Entity_Name (Choice)
2691 and then Is_Type (Entity (Choice)))
2692 then
2693 Cond :=
2694 Make_In (Loc,
2695 Left_Opnd => Expression (N),
2696 Right_Opnd => Relocate_Node (Choice));
2698 -- A subtype indication is not a legal operator in a membership
2699 -- test, so retrieve its range.
2701 elsif Nkind (Choice) = N_Subtype_Indication then
2702 Cond :=
2703 Make_In (Loc,
2704 Left_Opnd => Expression (N),
2705 Right_Opnd =>
2706 Relocate_Node
2707 (Range_Expression (Constraint (Choice))));
2709 -- For any other subexpression "expression = value"
2711 else
2712 Cond :=
2713 Make_Op_Eq (Loc,
2714 Left_Opnd => Expression (N),
2715 Right_Opnd => Relocate_Node (Choice));
2716 end if;
2718 -- Now rewrite the case as an IF
2720 Rewrite (N,
2721 Make_If_Statement (Loc,
2722 Condition => Cond,
2723 Then_Statements => Then_Stms,
2724 Else_Statements => Else_Stms));
2725 Analyze (N);
2726 return;
2727 end if;
2728 end if;
2730 -- If the last alternative is not an Others choice, replace it with
2731 -- an N_Others_Choice. Note that we do not bother to call Analyze on
2732 -- the modified case statement, since it's only effect would be to
2733 -- compute the contents of the Others_Discrete_Choices which is not
2734 -- needed by the back end anyway.
2736 -- The reason for this is that the back end always needs some default
2737 -- for a switch, so if we have not supplied one in the processing
2738 -- above for validity checking, then we need to supply one here.
2740 if not Others_Present then
2741 Others_Node := Make_Others_Choice (Sloc (Last_Alt));
2742 Set_Others_Discrete_Choices
2743 (Others_Node, Discrete_Choices (Last_Alt));
2744 Set_Discrete_Choices (Last_Alt, New_List (Others_Node));
2745 end if;
2747 -- Deal with possible declarations of controlled objects, and also
2748 -- with rewriting choice sequences for static predicate references.
2750 Alt := First_Non_Pragma (Alternatives (N));
2751 while Present (Alt) loop
2753 -- Do not consider controlled objects found in a case statement
2754 -- which actually models a case expression because their early
2755 -- finalization will affect the result of the expression.
2757 if not From_Conditional_Expression (N) then
2758 Process_Statements_For_Controlled_Objects (Alt);
2759 end if;
2761 if Has_SP_Choice (Alt) then
2762 Expand_Static_Predicates_In_Choices (Alt);
2763 end if;
2765 Next_Non_Pragma (Alt);
2766 end loop;
2767 end;
2768 end Expand_N_Case_Statement;
2770 -----------------------------
2771 -- Expand_N_Exit_Statement --
2772 -----------------------------
2774 -- The only processing required is to deal with a possible C/Fortran
2775 -- boolean value used as the condition for the exit statement.
2777 procedure Expand_N_Exit_Statement (N : Node_Id) is
2778 begin
2779 Adjust_Condition (Condition (N));
2780 end Expand_N_Exit_Statement;
2782 ----------------------------------
2783 -- Expand_Formal_Container_Loop --
2784 ----------------------------------
2786 procedure Expand_Formal_Container_Loop (N : Node_Id) is
2787 Loc : constant Source_Ptr := Sloc (N);
2788 Isc : constant Node_Id := Iteration_Scheme (N);
2789 I_Spec : constant Node_Id := Iterator_Specification (Isc);
2790 Cursor : constant Entity_Id := Defining_Identifier (I_Spec);
2791 Container : constant Node_Id := Entity (Name (I_Spec));
2792 Stats : constant List_Id := Statements (N);
2794 Advance : Node_Id;
2795 Blk_Nod : Node_Id;
2796 Init : Node_Id;
2797 New_Loop : Node_Id;
2799 begin
2800 -- The expansion resembles the one for Ada containers, but the
2801 -- primitives mention the domain of iteration explicitly, and
2802 -- function First applied to the container yields a cursor directly.
2804 -- Cursor : Cursor_type := First (Container);
2805 -- while Has_Element (Cursor, Container) loop
2806 -- <original loop statements>
2807 -- Cursor := Next (Container, Cursor);
2808 -- end loop;
2810 Build_Formal_Container_Iteration
2811 (N, Container, Cursor, Init, Advance, New_Loop);
2813 Set_Ekind (Cursor, E_Variable);
2814 Append_To (Stats, Advance);
2816 -- Build block to capture declaration of cursor entity.
2818 Blk_Nod :=
2819 Make_Block_Statement (Loc,
2820 Declarations => New_List (Init),
2821 Handled_Statement_Sequence =>
2822 Make_Handled_Sequence_Of_Statements (Loc,
2823 Statements => New_List (New_Loop)));
2825 Rewrite (N, Blk_Nod);
2826 Analyze (N);
2827 end Expand_Formal_Container_Loop;
2829 ------------------------------------------
2830 -- Expand_Formal_Container_Element_Loop --
2831 ------------------------------------------
2833 procedure Expand_Formal_Container_Element_Loop (N : Node_Id) is
2834 Loc : constant Source_Ptr := Sloc (N);
2835 Isc : constant Node_Id := Iteration_Scheme (N);
2836 I_Spec : constant Node_Id := Iterator_Specification (Isc);
2837 Element : constant Entity_Id := Defining_Identifier (I_Spec);
2838 Container : constant Node_Id := Entity (Name (I_Spec));
2839 Container_Typ : constant Entity_Id := Base_Type (Etype (Container));
2840 Stats : constant List_Id := Statements (N);
2842 Cursor : constant Entity_Id :=
2843 Make_Defining_Identifier (Loc,
2844 Chars => New_External_Name (Chars (Element), 'C'));
2845 Elmt_Decl : Node_Id;
2846 Elmt_Ref : Node_Id;
2848 Element_Op : constant Entity_Id :=
2849 Get_Iterable_Type_Primitive (Container_Typ, Name_Element);
2851 Advance : Node_Id;
2852 Init : Node_Id;
2853 New_Loop : Node_Id;
2855 begin
2856 -- For an element iterator, the Element aspect must be present,
2857 -- (this is checked during analysis) and the expansion takes the form:
2859 -- Cursor : Cursor_type := First (Container);
2860 -- Elmt : Element_Type;
2861 -- while Has_Element (Cursor, Container) loop
2862 -- Elmt := Element (Container, Cursor);
2863 -- <original loop statements>
2864 -- Cursor := Next (Container, Cursor);
2865 -- end loop;
2867 Build_Formal_Container_Iteration
2868 (N, Container, Cursor, Init, Advance, New_Loop);
2870 Set_Ekind (Cursor, E_Variable);
2871 Insert_Action (N, Init);
2873 -- Declaration for Element.
2875 Elmt_Decl :=
2876 Make_Object_Declaration (Loc,
2877 Defining_Identifier => Element,
2878 Object_Definition => New_Occurrence_Of (Etype (Element_Op), Loc));
2880 -- The element is only modified in expanded code, so it appears as
2881 -- unassigned to the warning machinery. We must suppress this spurious
2882 -- warning explicitly.
2884 Set_Warnings_Off (Element);
2886 Elmt_Ref :=
2887 Make_Assignment_Statement (Loc,
2888 Name => New_Occurrence_Of (Element, Loc),
2889 Expression =>
2890 Make_Function_Call (Loc,
2891 Name => New_Occurrence_Of (Element_Op, Loc),
2892 Parameter_Associations => New_List (
2893 New_Occurrence_Of (Container, Loc),
2894 New_Occurrence_Of (Cursor, Loc))));
2896 Prepend (Elmt_Ref, Stats);
2897 Append_To (Stats, Advance);
2899 -- The loop is rewritten as a block, to hold the element declaration
2901 New_Loop :=
2902 Make_Block_Statement (Loc,
2903 Declarations => New_List (Elmt_Decl),
2904 Handled_Statement_Sequence =>
2905 Make_Handled_Sequence_Of_Statements (Loc,
2906 Statements => New_List (New_Loop)));
2908 Rewrite (N, New_Loop);
2910 -- The loop parameter is declared by an object declaration, but within
2911 -- the loop we must prevent user assignments to it, so we analyze the
2912 -- declaration and reset the entity kind, before analyzing the rest of
2913 -- the loop;
2915 Analyze (Elmt_Decl);
2916 Set_Ekind (Defining_Identifier (Elmt_Decl), E_Loop_Parameter);
2917 Set_Assignment_OK (Name (Elmt_Ref));
2919 Analyze (N);
2920 end Expand_Formal_Container_Element_Loop;
2922 -----------------------------
2923 -- Expand_N_Goto_Statement --
2924 -----------------------------
2926 -- Add poll before goto if polling active
2928 procedure Expand_N_Goto_Statement (N : Node_Id) is
2929 begin
2930 Generate_Poll_Call (N);
2931 end Expand_N_Goto_Statement;
2933 ---------------------------
2934 -- Expand_N_If_Statement --
2935 ---------------------------
2937 -- First we deal with the case of C and Fortran convention boolean values,
2938 -- with zero/non-zero semantics.
2940 -- Second, we deal with the obvious rewriting for the cases where the
2941 -- condition of the IF is known at compile time to be True or False.
2943 -- Third, we remove elsif parts which have non-empty Condition_Actions and
2944 -- rewrite as independent if statements. For example:
2946 -- if x then xs
2947 -- elsif y then ys
2948 -- ...
2949 -- end if;
2951 -- becomes
2953 -- if x then xs
2954 -- else
2955 -- <<condition actions of y>>
2956 -- if y then ys
2957 -- ...
2958 -- end if;
2959 -- end if;
2961 -- This rewriting is needed if at least one elsif part has a non-empty
2962 -- Condition_Actions list. We also do the same processing if there is a
2963 -- constant condition in an elsif part (in conjunction with the first
2964 -- processing step mentioned above, for the recursive call made to deal
2965 -- with the created inner if, this deals with properly optimizing the
2966 -- cases of constant elsif conditions).
2968 procedure Expand_N_If_Statement (N : Node_Id) is
2969 Loc : constant Source_Ptr := Sloc (N);
2970 Hed : Node_Id;
2971 E : Node_Id;
2972 New_If : Node_Id;
2974 Warn_If_Deleted : constant Boolean :=
2975 Warn_On_Deleted_Code and then Comes_From_Source (N);
2976 -- Indicates whether we want warnings when we delete branches of the
2977 -- if statement based on constant condition analysis. We never want
2978 -- these warnings for expander generated code.
2980 begin
2981 -- Do not consider controlled objects found in an if statement which
2982 -- actually models an if expression because their early finalization
2983 -- will affect the result of the expression.
2985 if not From_Conditional_Expression (N) then
2986 Process_Statements_For_Controlled_Objects (N);
2987 end if;
2989 Adjust_Condition (Condition (N));
2991 -- The following loop deals with constant conditions for the IF. We
2992 -- need a loop because as we eliminate False conditions, we grab the
2993 -- first elsif condition and use it as the primary condition.
2995 while Compile_Time_Known_Value (Condition (N)) loop
2997 -- If condition is True, we can simply rewrite the if statement now
2998 -- by replacing it by the series of then statements.
3000 if Is_True (Expr_Value (Condition (N))) then
3002 -- All the else parts can be killed
3004 Kill_Dead_Code (Elsif_Parts (N), Warn_If_Deleted);
3005 Kill_Dead_Code (Else_Statements (N), Warn_If_Deleted);
3007 Hed := Remove_Head (Then_Statements (N));
3008 Insert_List_After (N, Then_Statements (N));
3009 Rewrite (N, Hed);
3010 return;
3012 -- If condition is False, then we can delete the condition and
3013 -- the Then statements
3015 else
3016 -- We do not delete the condition if constant condition warnings
3017 -- are enabled, since otherwise we end up deleting the desired
3018 -- warning. Of course the backend will get rid of this True/False
3019 -- test anyway, so nothing is lost here.
3021 if not Constant_Condition_Warnings then
3022 Kill_Dead_Code (Condition (N));
3023 end if;
3025 Kill_Dead_Code (Then_Statements (N), Warn_If_Deleted);
3027 -- If there are no elsif statements, then we simply replace the
3028 -- entire if statement by the sequence of else statements.
3030 if No (Elsif_Parts (N)) then
3031 if No (Else_Statements (N))
3032 or else Is_Empty_List (Else_Statements (N))
3033 then
3034 Rewrite (N,
3035 Make_Null_Statement (Sloc (N)));
3036 else
3037 Hed := Remove_Head (Else_Statements (N));
3038 Insert_List_After (N, Else_Statements (N));
3039 Rewrite (N, Hed);
3040 end if;
3042 return;
3044 -- If there are elsif statements, the first of them becomes the
3045 -- if/then section of the rebuilt if statement This is the case
3046 -- where we loop to reprocess this copied condition.
3048 else
3049 Hed := Remove_Head (Elsif_Parts (N));
3050 Insert_Actions (N, Condition_Actions (Hed));
3051 Set_Condition (N, Condition (Hed));
3052 Set_Then_Statements (N, Then_Statements (Hed));
3054 -- Hed might have been captured as the condition determining
3055 -- the current value for an entity. Now it is detached from
3056 -- the tree, so a Current_Value pointer in the condition might
3057 -- need to be updated.
3059 Set_Current_Value_Condition (N);
3061 if Is_Empty_List (Elsif_Parts (N)) then
3062 Set_Elsif_Parts (N, No_List);
3063 end if;
3064 end if;
3065 end if;
3066 end loop;
3068 -- Loop through elsif parts, dealing with constant conditions and
3069 -- possible condition actions that are present.
3071 if Present (Elsif_Parts (N)) then
3072 E := First (Elsif_Parts (N));
3073 while Present (E) loop
3075 -- Do not consider controlled objects found in an if statement
3076 -- which actually models an if expression because their early
3077 -- finalization will affect the result of the expression.
3079 if not From_Conditional_Expression (N) then
3080 Process_Statements_For_Controlled_Objects (E);
3081 end if;
3083 Adjust_Condition (Condition (E));
3085 -- If there are condition actions, then rewrite the if statement
3086 -- as indicated above. We also do the same rewrite for a True or
3087 -- False condition. The further processing of this constant
3088 -- condition is then done by the recursive call to expand the
3089 -- newly created if statement
3091 if Present (Condition_Actions (E))
3092 or else Compile_Time_Known_Value (Condition (E))
3093 then
3094 -- Note this is not an implicit if statement, since it is part
3095 -- of an explicit if statement in the source (or of an implicit
3096 -- if statement that has already been tested).
3098 New_If :=
3099 Make_If_Statement (Sloc (E),
3100 Condition => Condition (E),
3101 Then_Statements => Then_Statements (E),
3102 Elsif_Parts => No_List,
3103 Else_Statements => Else_Statements (N));
3105 -- Elsif parts for new if come from remaining elsif's of parent
3107 while Present (Next (E)) loop
3108 if No (Elsif_Parts (New_If)) then
3109 Set_Elsif_Parts (New_If, New_List);
3110 end if;
3112 Append (Remove_Next (E), Elsif_Parts (New_If));
3113 end loop;
3115 Set_Else_Statements (N, New_List (New_If));
3117 if Present (Condition_Actions (E)) then
3118 Insert_List_Before (New_If, Condition_Actions (E));
3119 end if;
3121 Remove (E);
3123 if Is_Empty_List (Elsif_Parts (N)) then
3124 Set_Elsif_Parts (N, No_List);
3125 end if;
3127 Analyze (New_If);
3128 return;
3130 -- No special processing for that elsif part, move to next
3132 else
3133 Next (E);
3134 end if;
3135 end loop;
3136 end if;
3138 -- Some more optimizations applicable if we still have an IF statement
3140 if Nkind (N) /= N_If_Statement then
3141 return;
3142 end if;
3144 -- Another optimization, special cases that can be simplified
3146 -- if expression then
3147 -- return true;
3148 -- else
3149 -- return false;
3150 -- end if;
3152 -- can be changed to:
3154 -- return expression;
3156 -- and
3158 -- if expression then
3159 -- return false;
3160 -- else
3161 -- return true;
3162 -- end if;
3164 -- can be changed to:
3166 -- return not (expression);
3168 -- Only do these optimizations if we are at least at -O1 level and
3169 -- do not do them if control flow optimizations are suppressed.
3171 if Optimization_Level > 0
3172 and then not Opt.Suppress_Control_Flow_Optimizations
3173 then
3174 if Nkind (N) = N_If_Statement
3175 and then No (Elsif_Parts (N))
3176 and then Present (Else_Statements (N))
3177 and then List_Length (Then_Statements (N)) = 1
3178 and then List_Length (Else_Statements (N)) = 1
3179 then
3180 declare
3181 Then_Stm : constant Node_Id := First (Then_Statements (N));
3182 Else_Stm : constant Node_Id := First (Else_Statements (N));
3184 begin
3185 if Nkind (Then_Stm) = N_Simple_Return_Statement
3186 and then
3187 Nkind (Else_Stm) = N_Simple_Return_Statement
3188 then
3189 declare
3190 Then_Expr : constant Node_Id := Expression (Then_Stm);
3191 Else_Expr : constant Node_Id := Expression (Else_Stm);
3193 begin
3194 if Nkind (Then_Expr) = N_Identifier
3195 and then
3196 Nkind (Else_Expr) = N_Identifier
3197 then
3198 if Entity (Then_Expr) = Standard_True
3199 and then Entity (Else_Expr) = Standard_False
3200 then
3201 Rewrite (N,
3202 Make_Simple_Return_Statement (Loc,
3203 Expression => Relocate_Node (Condition (N))));
3204 Analyze (N);
3205 return;
3207 elsif Entity (Then_Expr) = Standard_False
3208 and then Entity (Else_Expr) = Standard_True
3209 then
3210 Rewrite (N,
3211 Make_Simple_Return_Statement (Loc,
3212 Expression =>
3213 Make_Op_Not (Loc,
3214 Right_Opnd =>
3215 Relocate_Node (Condition (N)))));
3216 Analyze (N);
3217 return;
3218 end if;
3219 end if;
3220 end;
3221 end if;
3222 end;
3223 end if;
3224 end if;
3225 end Expand_N_If_Statement;
3227 --------------------------
3228 -- Expand_Iterator_Loop --
3229 --------------------------
3231 procedure Expand_Iterator_Loop (N : Node_Id) is
3232 Isc : constant Node_Id := Iteration_Scheme (N);
3233 I_Spec : constant Node_Id := Iterator_Specification (Isc);
3234 Id : constant Entity_Id := Defining_Identifier (I_Spec);
3235 Loc : constant Source_Ptr := Sloc (N);
3237 Container : constant Node_Id := Name (I_Spec);
3238 Container_Typ : constant Entity_Id := Base_Type (Etype (Container));
3239 I_Kind : constant Entity_Kind := Ekind (Id);
3240 Cursor : Entity_Id;
3241 Iterator : Entity_Id;
3242 New_Loop : Node_Id;
3243 Stats : List_Id := Statements (N);
3245 begin
3246 -- Processing for arrays
3248 if Is_Array_Type (Container_Typ) then
3249 Expand_Iterator_Loop_Over_Array (N);
3250 return;
3252 elsif Has_Aspect (Container_Typ, Aspect_Iterable) then
3253 if Of_Present (I_Spec) then
3254 Expand_Formal_Container_Element_Loop (N);
3255 else
3256 Expand_Formal_Container_Loop (N);
3257 end if;
3259 return;
3260 end if;
3262 -- Processing for containers
3264 -- For an "of" iterator the name is a container expression, which
3265 -- is transformed into a call to the default iterator.
3267 -- For an iterator of the form "in" the name is a function call
3268 -- that delivers an iterator type.
3270 -- In both cases, analysis of the iterator has introduced an object
3271 -- declaration to capture the domain, so that Container is an entity.
3273 -- The for loop is expanded into a while loop which uses a container
3274 -- specific cursor to desgnate each element.
3276 -- Iter : Iterator_Type := Container.Iterate;
3277 -- Cursor : Cursor_type := First (Iter);
3278 -- while Has_Element (Iter) loop
3279 -- declare
3280 -- -- The block is added when Element_Type is controlled
3282 -- Obj : Pack.Element_Type := Element (Cursor);
3283 -- -- for the "of" loop form
3284 -- begin
3285 -- <original loop statements>
3286 -- end;
3288 -- Cursor := Iter.Next (Cursor);
3289 -- end loop;
3291 -- If "reverse" is present, then the initialization of the cursor
3292 -- uses Last and the step becomes Prev. Pack is the name of the
3293 -- scope where the container package is instantiated.
3295 declare
3296 Element_Type : constant Entity_Id := Etype (Id);
3297 Iter_Type : Entity_Id;
3298 Pack : Entity_Id;
3299 Decl : Node_Id;
3300 Name_Init : Name_Id;
3301 Name_Step : Name_Id;
3303 begin
3304 -- The type of the iterator is the return type of the Iterate
3305 -- function used. For the "of" form this is the default iterator
3306 -- for the type, otherwise it is the type of the explicit
3307 -- function used in the iterator specification. The most common
3308 -- case will be an Iterate function in the container package.
3310 -- The primitive operations of the container type may not be
3311 -- use-visible, so we introduce the name of the enclosing package
3312 -- in the declarations below. The Iterator type is declared in a
3313 -- an instance within the container package itself.
3315 -- If the container type is a derived type, the cursor type is
3316 -- found in the package of the parent type.
3318 if Is_Derived_Type (Container_Typ) then
3319 Pack := Scope (Root_Type (Container_Typ));
3320 else
3321 Pack := Scope (Container_Typ);
3322 end if;
3324 Iter_Type := Etype (Name (I_Spec));
3326 -- The "of" case uses an internally generated cursor whose type
3327 -- is found in the container package. The domain of iteration
3328 -- is expanded into a call to the default Iterator function, but
3329 -- this expansion does not take place in quantified expressions
3330 -- that are analyzed with expansion disabled, and in that case the
3331 -- type of the iterator must be obtained from the aspect.
3333 if Of_Present (I_Spec) then
3334 Handle_Of : declare
3335 Default_Iter : Entity_Id;
3336 Container_Arg : Node_Id;
3337 Ent : Entity_Id;
3339 function Get_Default_Iterator
3340 (T : Entity_Id) return Entity_Id;
3341 -- If the container is a derived type, the aspect holds the
3342 -- parent operation. The required one is a primitive of the
3343 -- derived type and is either inherited or overridden.
3345 --------------------------
3346 -- Get_Default_Iterator --
3347 --------------------------
3349 function Get_Default_Iterator
3350 (T : Entity_Id) return Entity_Id
3352 Iter : constant Entity_Id :=
3353 Entity (Find_Value_Of_Aspect (T, Aspect_Default_Iterator));
3354 Prim : Elmt_Id;
3355 Op : Entity_Id;
3357 begin
3358 Container_Arg := New_Copy_Tree (Container);
3360 -- A previous version of GNAT allowed indexing aspects to
3361 -- be redefined on derived container types, while the
3362 -- default iterator was inherited from the aprent type.
3363 -- This non-standard extension is preserved temporarily for
3364 -- use by the modelling project under debug flag d.X.
3366 if Debug_Flag_Dot_XX then
3367 if Base_Type (Etype (Container)) /=
3368 Base_Type (Etype (First_Formal (Iter)))
3369 then
3370 Container_Arg :=
3371 Make_Type_Conversion (Loc,
3372 Subtype_Mark =>
3373 New_Occurrence_Of
3374 (Etype (First_Formal (Iter)), Loc),
3375 Expression => Container_Arg);
3376 end if;
3378 return Iter;
3380 elsif Is_Derived_Type (T) then
3382 -- The default iterator must be a primitive operation
3383 -- of the type, at the same dispatch slot position.
3385 Prim := First_Elmt (Primitive_Operations (T));
3386 while Present (Prim) loop
3387 Op := Node (Prim);
3389 if Chars (Op) = Chars (Iter)
3390 and then DT_Position (Op) = DT_Position (Iter)
3391 then
3392 return Op;
3393 end if;
3395 Next_Elmt (Prim);
3396 end loop;
3398 -- default iterator must exist.
3400 pragma Assert (False);
3402 else -- not a derived type
3403 return Iter;
3404 end if;
3405 end Get_Default_Iterator;
3407 -- Start of processing for Handle_Of
3409 begin
3410 if Is_Class_Wide_Type (Container_Typ) then
3411 Default_Iter :=
3412 Get_Default_Iterator (Etype (Base_Type (Container_Typ)));
3414 else
3415 Default_Iter := Get_Default_Iterator (Etype (Container));
3416 end if;
3418 Cursor := Make_Temporary (Loc, 'C');
3420 -- For an container element iterator, the iterator type
3421 -- is obtained from the corresponding aspect, whose return
3422 -- type is descended from the corresponding interface type
3423 -- in some instance of Ada.Iterator_Interfaces. The actuals
3424 -- of that instantiation are Cursor and Has_Element.
3426 Iter_Type := Etype (Default_Iter);
3428 -- The iterator type, which is a class_wide type, may itself
3429 -- be derived locally, so the desired instantiation is the
3430 -- scope of the root type of the iterator type.
3432 Pack := Scope (Root_Type (Etype (Iter_Type)));
3434 -- Rewrite domain of iteration as a call to the default
3435 -- iterator for the container type.
3437 Rewrite (Name (I_Spec),
3438 Make_Function_Call (Loc,
3439 Name => New_Occurrence_Of (Default_Iter, Loc),
3440 Parameter_Associations =>
3441 New_List (Container_Arg)));
3442 Analyze_And_Resolve (Name (I_Spec));
3444 -- Find cursor type in proper iterator package, which is an
3445 -- instantiation of Iterator_Interfaces.
3447 Ent := First_Entity (Pack);
3448 while Present (Ent) loop
3449 if Chars (Ent) = Name_Cursor then
3450 Set_Etype (Cursor, Etype (Ent));
3451 exit;
3452 end if;
3453 Next_Entity (Ent);
3454 end loop;
3456 -- Generate:
3457 -- Id : Element_Type renames Container (Cursor);
3458 -- This assumes that the container type has an indexing
3459 -- operation with Cursor. The check that this operation
3460 -- exists is performed in Check_Container_Indexing.
3462 Decl :=
3463 Make_Object_Renaming_Declaration (Loc,
3464 Defining_Identifier => Id,
3465 Subtype_Mark =>
3466 New_Occurrence_Of (Element_Type, Loc),
3467 Name =>
3468 Make_Indexed_Component (Loc,
3469 Prefix => Relocate_Node (Container_Arg),
3470 Expressions =>
3471 New_List (New_Occurrence_Of (Cursor, Loc))));
3473 -- The defining identifier in the iterator is user-visible
3474 -- and must be visible in the debugger.
3476 Set_Debug_Info_Needed (Id);
3478 -- If the container does not have a variable indexing aspect,
3479 -- the element is a constant in the loop.
3481 if No (Find_Value_Of_Aspect
3482 (Container_Typ, Aspect_Variable_Indexing))
3483 then
3484 Set_Ekind (Id, E_Constant);
3485 end if;
3487 -- If the container holds controlled objects, wrap the loop
3488 -- statements and element renaming declaration with a block.
3489 -- This ensures that the result of Element (Cusor) is
3490 -- cleaned up after each iteration of the loop.
3492 if Needs_Finalization (Element_Type) then
3494 -- Generate:
3495 -- declare
3496 -- Id : Element_Type := Element (curosr);
3497 -- begin
3498 -- <original loop statements>
3499 -- end;
3501 Stats := New_List (
3502 Make_Block_Statement (Loc,
3503 Declarations => New_List (Decl),
3504 Handled_Statement_Sequence =>
3505 Make_Handled_Sequence_Of_Statements (Loc,
3506 Statements => Stats)));
3508 -- Elements do not need finalization
3510 else
3511 Prepend_To (Stats, Decl);
3512 end if;
3513 end Handle_Of;
3515 -- X in Iterate (S) : type of iterator is type of explicitly
3516 -- given Iterate function, and the loop variable is the cursor.
3517 -- It will be assigned in the loop and must be a variable.
3519 else
3520 Cursor := Id;
3521 end if;
3523 Iterator := Make_Temporary (Loc, 'I');
3525 -- Determine the advancement and initialization steps for the
3526 -- cursor.
3528 -- Analysis of the expanded loop will verify that the container
3529 -- has a reverse iterator.
3531 if Reverse_Present (I_Spec) then
3532 Name_Init := Name_Last;
3533 Name_Step := Name_Previous;
3535 else
3536 Name_Init := Name_First;
3537 Name_Step := Name_Next;
3538 end if;
3540 -- For both iterator forms, add a call to the step operation to
3541 -- advance the cursor. Generate:
3543 -- Cursor := Iterator.Next (Cursor);
3545 -- or else
3547 -- Cursor := Next (Cursor);
3549 declare
3550 Rhs : Node_Id;
3552 begin
3553 Rhs :=
3554 Make_Function_Call (Loc,
3555 Name =>
3556 Make_Selected_Component (Loc,
3557 Prefix => New_Occurrence_Of (Iterator, Loc),
3558 Selector_Name => Make_Identifier (Loc, Name_Step)),
3559 Parameter_Associations => New_List (
3560 New_Occurrence_Of (Cursor, Loc)));
3562 Append_To (Stats,
3563 Make_Assignment_Statement (Loc,
3564 Name => New_Occurrence_Of (Cursor, Loc),
3565 Expression => Rhs));
3566 Set_Assignment_OK (Name (Last (Stats)));
3567 end;
3569 -- Generate:
3570 -- while Iterator.Has_Element loop
3571 -- <Stats>
3572 -- end loop;
3574 -- Has_Element is the second actual in the iterator package
3576 New_Loop :=
3577 Make_Loop_Statement (Loc,
3578 Iteration_Scheme =>
3579 Make_Iteration_Scheme (Loc,
3580 Condition =>
3581 Make_Function_Call (Loc,
3582 Name =>
3583 New_Occurrence_Of (
3584 Next_Entity (First_Entity (Pack)), Loc),
3585 Parameter_Associations =>
3586 New_List (New_Occurrence_Of (Cursor, Loc)))),
3588 Statements => Stats,
3589 End_Label => Empty);
3591 -- If present, preserve identifier of loop, which can be used in
3592 -- an exit statement in the body.
3594 if Present (Identifier (N)) then
3595 Set_Identifier (New_Loop, Relocate_Node (Identifier (N)));
3596 end if;
3598 -- Create the declarations for Iterator and cursor and insert them
3599 -- before the source loop. Given that the domain of iteration is
3600 -- already an entity, the iterator is just a renaming of that
3601 -- entity. Possible optimization ???
3602 -- Generate:
3604 -- I : Iterator_Type renames Container;
3605 -- C : Cursor_Type := Container.[First | Last];
3607 Insert_Action (N,
3608 Make_Object_Renaming_Declaration (Loc,
3609 Defining_Identifier => Iterator,
3610 Subtype_Mark => New_Occurrence_Of (Iter_Type, Loc),
3611 Name => Relocate_Node (Name (I_Spec))));
3613 -- Create declaration for cursor
3615 declare
3616 Decl : Node_Id;
3618 begin
3619 Decl :=
3620 Make_Object_Declaration (Loc,
3621 Defining_Identifier => Cursor,
3622 Object_Definition =>
3623 New_Occurrence_Of (Etype (Cursor), Loc),
3624 Expression =>
3625 Make_Selected_Component (Loc,
3626 Prefix => New_Occurrence_Of (Iterator, Loc),
3627 Selector_Name =>
3628 Make_Identifier (Loc, Name_Init)));
3630 -- The cursor is only modified in expanded code, so it appears
3631 -- as unassigned to the warning machinery. We must suppress
3632 -- this spurious warning explicitly. The cursor's kind is that of
3633 -- the original loop parameter (it is a constant if the domain of
3634 -- iteration is constant).
3636 Set_Warnings_Off (Cursor);
3637 Set_Assignment_OK (Decl);
3639 Insert_Action (N, Decl);
3640 Set_Ekind (Cursor, I_Kind);
3641 end;
3643 -- If the range of iteration is given by a function call that
3644 -- returns a container, the finalization actions have been saved
3645 -- in the Condition_Actions of the iterator. Insert them now at
3646 -- the head of the loop.
3648 if Present (Condition_Actions (Isc)) then
3649 Insert_List_Before (N, Condition_Actions (Isc));
3650 end if;
3651 end;
3653 Rewrite (N, New_Loop);
3654 Analyze (N);
3655 end Expand_Iterator_Loop;
3657 -------------------------------------
3658 -- Expand_Iterator_Loop_Over_Array --
3659 -------------------------------------
3661 procedure Expand_Iterator_Loop_Over_Array (N : Node_Id) is
3662 Isc : constant Node_Id := Iteration_Scheme (N);
3663 I_Spec : constant Node_Id := Iterator_Specification (Isc);
3664 Array_Node : constant Node_Id := Name (I_Spec);
3665 Array_Typ : constant Entity_Id := Base_Type (Etype (Array_Node));
3666 Array_Dim : constant Pos := Number_Dimensions (Array_Typ);
3667 Id : constant Entity_Id := Defining_Identifier (I_Spec);
3668 Loc : constant Source_Ptr := Sloc (N);
3669 Stats : constant List_Id := Statements (N);
3670 Core_Loop : Node_Id;
3671 Ind_Comp : Node_Id;
3672 Iterator : Entity_Id;
3674 -- Start of processing for Expand_Iterator_Loop_Over_Array
3676 begin
3677 -- for Element of Array loop
3679 -- This case requires an internally generated cursor to iterate over
3680 -- the array.
3682 if Of_Present (I_Spec) then
3683 Iterator := Make_Temporary (Loc, 'C');
3685 -- Generate:
3686 -- Element : Component_Type renames Array (Iterator);
3688 Ind_Comp :=
3689 Make_Indexed_Component (Loc,
3690 Prefix => Relocate_Node (Array_Node),
3691 Expressions => New_List (New_Occurrence_Of (Iterator, Loc)));
3693 Prepend_To (Stats,
3694 Make_Object_Renaming_Declaration (Loc,
3695 Defining_Identifier => Id,
3696 Subtype_Mark =>
3697 New_Occurrence_Of (Component_Type (Array_Typ), Loc),
3698 Name => Ind_Comp));
3700 -- Mark the loop variable as needing debug info, so that expansion
3701 -- of the renaming will result in Materialize_Entity getting set via
3702 -- Debug_Renaming_Declaration. (This setting is needed here because
3703 -- the setting in Freeze_Entity comes after the expansion, which is
3704 -- too late. ???)
3706 Set_Debug_Info_Needed (Id);
3708 -- for Index in Array loop
3710 -- This case utilizes the already given iterator name
3712 else
3713 Iterator := Id;
3714 end if;
3716 -- Generate:
3718 -- for Iterator in [reverse] Array'Range (Array_Dim) loop
3719 -- Element : Component_Type renames Array (Iterator);
3720 -- <original loop statements>
3721 -- end loop;
3723 Core_Loop :=
3724 Make_Loop_Statement (Loc,
3725 Iteration_Scheme =>
3726 Make_Iteration_Scheme (Loc,
3727 Loop_Parameter_Specification =>
3728 Make_Loop_Parameter_Specification (Loc,
3729 Defining_Identifier => Iterator,
3730 Discrete_Subtype_Definition =>
3731 Make_Attribute_Reference (Loc,
3732 Prefix => Relocate_Node (Array_Node),
3733 Attribute_Name => Name_Range,
3734 Expressions => New_List (
3735 Make_Integer_Literal (Loc, Array_Dim))),
3736 Reverse_Present => Reverse_Present (I_Spec))),
3737 Statements => Stats,
3738 End_Label => Empty);
3740 -- Processing for multidimensional array
3742 if Array_Dim > 1 then
3743 for Dim in 1 .. Array_Dim - 1 loop
3744 Iterator := Make_Temporary (Loc, 'C');
3746 -- Generate the dimension loops starting from the innermost one
3748 -- for Iterator in [reverse] Array'Range (Array_Dim - Dim) loop
3749 -- <core loop>
3750 -- end loop;
3752 Core_Loop :=
3753 Make_Loop_Statement (Loc,
3754 Iteration_Scheme =>
3755 Make_Iteration_Scheme (Loc,
3756 Loop_Parameter_Specification =>
3757 Make_Loop_Parameter_Specification (Loc,
3758 Defining_Identifier => Iterator,
3759 Discrete_Subtype_Definition =>
3760 Make_Attribute_Reference (Loc,
3761 Prefix => Relocate_Node (Array_Node),
3762 Attribute_Name => Name_Range,
3763 Expressions => New_List (
3764 Make_Integer_Literal (Loc, Array_Dim - Dim))),
3765 Reverse_Present => Reverse_Present (I_Spec))),
3766 Statements => New_List (Core_Loop),
3767 End_Label => Empty);
3769 -- Update the previously created object renaming declaration with
3770 -- the new iterator.
3772 Prepend_To (Expressions (Ind_Comp),
3773 New_Occurrence_Of (Iterator, Loc));
3774 end loop;
3775 end if;
3777 -- Inherit the loop identifier from the original loop. This ensures that
3778 -- the scope stack is consistent after the rewriting.
3780 if Present (Identifier (N)) then
3781 Set_Identifier (Core_Loop, Relocate_Node (Identifier (N)));
3782 end if;
3784 Rewrite (N, Core_Loop);
3785 Analyze (N);
3786 end Expand_Iterator_Loop_Over_Array;
3788 -----------------------------
3789 -- Expand_N_Loop_Statement --
3790 -----------------------------
3792 -- 1. Remove null loop entirely
3793 -- 2. Deal with while condition for C/Fortran boolean
3794 -- 3. Deal with loops with a non-standard enumeration type range
3795 -- 4. Deal with while loops where Condition_Actions is set
3796 -- 5. Deal with loops over predicated subtypes
3797 -- 6. Deal with loops with iterators over arrays and containers
3798 -- 7. Insert polling call if required
3800 procedure Expand_N_Loop_Statement (N : Node_Id) is
3801 Loc : constant Source_Ptr := Sloc (N);
3802 Scheme : constant Node_Id := Iteration_Scheme (N);
3803 Stmt : Node_Id;
3805 begin
3806 -- Delete null loop
3808 if Is_Null_Loop (N) then
3809 Rewrite (N, Make_Null_Statement (Loc));
3810 return;
3811 end if;
3813 -- Deal with condition for C/Fortran Boolean
3815 if Present (Scheme) then
3816 Adjust_Condition (Condition (Scheme));
3817 end if;
3819 -- Generate polling call
3821 if Is_Non_Empty_List (Statements (N)) then
3822 Generate_Poll_Call (First (Statements (N)));
3823 end if;
3825 -- Nothing more to do for plain loop with no iteration scheme
3827 if No (Scheme) then
3828 null;
3830 -- Case of for loop (Loop_Parameter_Specification present)
3832 -- Note: we do not have to worry about validity checking of the for loop
3833 -- range bounds here, since they were frozen with constant declarations
3834 -- and it is during that process that the validity checking is done.
3836 elsif Present (Loop_Parameter_Specification (Scheme)) then
3837 declare
3838 LPS : constant Node_Id :=
3839 Loop_Parameter_Specification (Scheme);
3840 Loop_Id : constant Entity_Id := Defining_Identifier (LPS);
3841 Ltype : constant Entity_Id := Etype (Loop_Id);
3842 Btype : constant Entity_Id := Base_Type (Ltype);
3843 Expr : Node_Id;
3844 Decls : List_Id;
3845 New_Id : Entity_Id;
3847 begin
3848 -- Deal with loop over predicates
3850 if Is_Discrete_Type (Ltype)
3851 and then Present (Predicate_Function (Ltype))
3852 then
3853 Expand_Predicated_Loop (N);
3855 -- Handle the case where we have a for loop with the range type
3856 -- being an enumeration type with non-standard representation.
3857 -- In this case we expand:
3859 -- for x in [reverse] a .. b loop
3860 -- ...
3861 -- end loop;
3863 -- to
3865 -- for xP in [reverse] integer
3866 -- range etype'Pos (a) .. etype'Pos (b)
3867 -- loop
3868 -- declare
3869 -- x : constant etype := Pos_To_Rep (xP);
3870 -- begin
3871 -- ...
3872 -- end;
3873 -- end loop;
3875 elsif Is_Enumeration_Type (Btype)
3876 and then Present (Enum_Pos_To_Rep (Btype))
3877 then
3878 New_Id :=
3879 Make_Defining_Identifier (Loc,
3880 Chars => New_External_Name (Chars (Loop_Id), 'P'));
3882 -- If the type has a contiguous representation, successive
3883 -- values can be generated as offsets from the first literal.
3885 if Has_Contiguous_Rep (Btype) then
3886 Expr :=
3887 Unchecked_Convert_To (Btype,
3888 Make_Op_Add (Loc,
3889 Left_Opnd =>
3890 Make_Integer_Literal (Loc,
3891 Enumeration_Rep (First_Literal (Btype))),
3892 Right_Opnd => New_Occurrence_Of (New_Id, Loc)));
3893 else
3894 -- Use the constructed array Enum_Pos_To_Rep
3896 Expr :=
3897 Make_Indexed_Component (Loc,
3898 Prefix =>
3899 New_Occurrence_Of (Enum_Pos_To_Rep (Btype), Loc),
3900 Expressions =>
3901 New_List (New_Occurrence_Of (New_Id, Loc)));
3902 end if;
3904 -- Build declaration for loop identifier
3906 Decls :=
3907 New_List (
3908 Make_Object_Declaration (Loc,
3909 Defining_Identifier => Loop_Id,
3910 Constant_Present => True,
3911 Object_Definition => New_Occurrence_Of (Ltype, Loc),
3912 Expression => Expr));
3914 Rewrite (N,
3915 Make_Loop_Statement (Loc,
3916 Identifier => Identifier (N),
3918 Iteration_Scheme =>
3919 Make_Iteration_Scheme (Loc,
3920 Loop_Parameter_Specification =>
3921 Make_Loop_Parameter_Specification (Loc,
3922 Defining_Identifier => New_Id,
3923 Reverse_Present => Reverse_Present (LPS),
3925 Discrete_Subtype_Definition =>
3926 Make_Subtype_Indication (Loc,
3928 Subtype_Mark =>
3929 New_Occurrence_Of (Standard_Natural, Loc),
3931 Constraint =>
3932 Make_Range_Constraint (Loc,
3933 Range_Expression =>
3934 Make_Range (Loc,
3936 Low_Bound =>
3937 Make_Attribute_Reference (Loc,
3938 Prefix =>
3939 New_Occurrence_Of (Btype, Loc),
3941 Attribute_Name => Name_Pos,
3943 Expressions => New_List (
3944 Relocate_Node
3945 (Type_Low_Bound (Ltype)))),
3947 High_Bound =>
3948 Make_Attribute_Reference (Loc,
3949 Prefix =>
3950 New_Occurrence_Of (Btype, Loc),
3952 Attribute_Name => Name_Pos,
3954 Expressions => New_List (
3955 Relocate_Node
3956 (Type_High_Bound
3957 (Ltype))))))))),
3959 Statements => New_List (
3960 Make_Block_Statement (Loc,
3961 Declarations => Decls,
3962 Handled_Statement_Sequence =>
3963 Make_Handled_Sequence_Of_Statements (Loc,
3964 Statements => Statements (N)))),
3966 End_Label => End_Label (N)));
3968 -- The loop parameter's entity must be removed from the loop
3969 -- scope's entity list and rendered invisible, since it will
3970 -- now be located in the new block scope. Any other entities
3971 -- already associated with the loop scope, such as the loop
3972 -- parameter's subtype, will remain there.
3974 -- In an element loop, the loop will contain a declaration for
3975 -- a cursor variable; otherwise the loop id is the first entity
3976 -- in the scope constructed for the loop.
3978 if Comes_From_Source (Loop_Id) then
3979 pragma Assert (First_Entity (Scope (Loop_Id)) = Loop_Id);
3980 null;
3981 end if;
3983 Set_First_Entity (Scope (Loop_Id), Next_Entity (Loop_Id));
3984 Remove_Homonym (Loop_Id);
3986 if Last_Entity (Scope (Loop_Id)) = Loop_Id then
3987 Set_Last_Entity (Scope (Loop_Id), Empty);
3988 end if;
3990 Analyze (N);
3992 -- Nothing to do with other cases of for loops
3994 else
3995 null;
3996 end if;
3997 end;
3999 -- Second case, if we have a while loop with Condition_Actions set, then
4000 -- we change it into a plain loop:
4002 -- while C loop
4003 -- ...
4004 -- end loop;
4006 -- changed to:
4008 -- loop
4009 -- <<condition actions>>
4010 -- exit when not C;
4011 -- ...
4012 -- end loop
4014 elsif Present (Scheme)
4015 and then Present (Condition_Actions (Scheme))
4016 and then Present (Condition (Scheme))
4017 then
4018 declare
4019 ES : Node_Id;
4021 begin
4022 ES :=
4023 Make_Exit_Statement (Sloc (Condition (Scheme)),
4024 Condition =>
4025 Make_Op_Not (Sloc (Condition (Scheme)),
4026 Right_Opnd => Condition (Scheme)));
4028 Prepend (ES, Statements (N));
4029 Insert_List_Before (ES, Condition_Actions (Scheme));
4031 -- This is not an implicit loop, since it is generated in response
4032 -- to the loop statement being processed. If this is itself
4033 -- implicit, the restriction has already been checked. If not,
4034 -- it is an explicit loop.
4036 Rewrite (N,
4037 Make_Loop_Statement (Sloc (N),
4038 Identifier => Identifier (N),
4039 Statements => Statements (N),
4040 End_Label => End_Label (N)));
4042 Analyze (N);
4043 end;
4045 -- Here to deal with iterator case
4047 elsif Present (Scheme)
4048 and then Present (Iterator_Specification (Scheme))
4049 then
4050 Expand_Iterator_Loop (N);
4052 -- An iterator loop may generate renaming declarations for elements
4053 -- that require debug information. This is the case in particular
4054 -- with element iterators, where debug information must be generated
4055 -- for the temporary that holds the element value. These temporaries
4056 -- are created within a transient block whose local declarations are
4057 -- transferred to the loop, which now has non-trivial local objects.
4059 if Nkind (N) = N_Loop_Statement
4060 and then Present (Identifier (N))
4061 then
4062 Qualify_Entity_Names (N);
4063 end if;
4064 end if;
4066 -- When the iteration scheme mentiones attribute 'Loop_Entry, the loop
4067 -- is transformed into a conditional block where the original loop is
4068 -- the sole statement. Inspect the statements of the nested loop for
4069 -- controlled objects.
4071 Stmt := N;
4073 if Subject_To_Loop_Entry_Attributes (Stmt) then
4074 Stmt := Find_Loop_In_Conditional_Block (Stmt);
4075 end if;
4077 Process_Statements_For_Controlled_Objects (Stmt);
4078 end Expand_N_Loop_Statement;
4080 ----------------------------
4081 -- Expand_Predicated_Loop --
4082 ----------------------------
4084 -- Note: the expander can handle generation of loops over predicated
4085 -- subtypes for both the dynamic and static cases. Depending on what
4086 -- we decide is allowed in Ada 2012 mode and/or extensions allowed
4087 -- mode, the semantic analyzer may disallow one or both forms.
4089 procedure Expand_Predicated_Loop (N : Node_Id) is
4090 Loc : constant Source_Ptr := Sloc (N);
4091 Isc : constant Node_Id := Iteration_Scheme (N);
4092 LPS : constant Node_Id := Loop_Parameter_Specification (Isc);
4093 Loop_Id : constant Entity_Id := Defining_Identifier (LPS);
4094 Ltype : constant Entity_Id := Etype (Loop_Id);
4095 Stat : constant List_Id := Static_Discrete_Predicate (Ltype);
4096 Stmts : constant List_Id := Statements (N);
4098 begin
4099 -- Case of iteration over non-static predicate, should not be possible
4100 -- since this is not allowed by the semantics and should have been
4101 -- caught during analysis of the loop statement.
4103 if No (Stat) then
4104 raise Program_Error;
4106 -- If the predicate list is empty, that corresponds to a predicate of
4107 -- False, in which case the loop won't run at all, and we rewrite the
4108 -- entire loop as a null statement.
4110 elsif Is_Empty_List (Stat) then
4111 Rewrite (N, Make_Null_Statement (Loc));
4112 Analyze (N);
4114 -- For expansion over a static predicate we generate the following
4116 -- declare
4117 -- J : Ltype := min-val;
4118 -- begin
4119 -- loop
4120 -- body
4121 -- case J is
4122 -- when endpoint => J := startpoint;
4123 -- when endpoint => J := startpoint;
4124 -- ...
4125 -- when max-val => exit;
4126 -- when others => J := Lval'Succ (J);
4127 -- end case;
4128 -- end loop;
4129 -- end;
4131 -- with min-val replaced by max-val and Succ replaced by Pred if the
4132 -- loop parameter specification carries a Reverse indicator.
4134 -- To make this a little clearer, let's take a specific example:
4136 -- type Int is range 1 .. 10;
4137 -- subtype StaticP is Int with
4138 -- predicate => StaticP in 3 | 10 | 5 .. 7;
4139 -- ...
4140 -- for L in StaticP loop
4141 -- Put_Line ("static:" & J'Img);
4142 -- end loop;
4144 -- In this case, the loop is transformed into
4146 -- begin
4147 -- J : L := 3;
4148 -- loop
4149 -- body
4150 -- case J is
4151 -- when 3 => J := 5;
4152 -- when 7 => J := 10;
4153 -- when 10 => exit;
4154 -- when others => J := L'Succ (J);
4155 -- end case;
4156 -- end loop;
4157 -- end;
4159 else
4160 Static_Predicate : declare
4161 S : Node_Id;
4162 D : Node_Id;
4163 P : Node_Id;
4164 Alts : List_Id;
4165 Cstm : Node_Id;
4167 function Lo_Val (N : Node_Id) return Node_Id;
4168 -- Given static expression or static range, returns an identifier
4169 -- whose value is the low bound of the expression value or range.
4171 function Hi_Val (N : Node_Id) return Node_Id;
4172 -- Given static expression or static range, returns an identifier
4173 -- whose value is the high bound of the expression value or range.
4175 ------------
4176 -- Hi_Val --
4177 ------------
4179 function Hi_Val (N : Node_Id) return Node_Id is
4180 begin
4181 if Is_OK_Static_Expression (N) then
4182 return New_Copy (N);
4183 else
4184 pragma Assert (Nkind (N) = N_Range);
4185 return New_Copy (High_Bound (N));
4186 end if;
4187 end Hi_Val;
4189 ------------
4190 -- Lo_Val --
4191 ------------
4193 function Lo_Val (N : Node_Id) return Node_Id is
4194 begin
4195 if Is_OK_Static_Expression (N) then
4196 return New_Copy (N);
4197 else
4198 pragma Assert (Nkind (N) = N_Range);
4199 return New_Copy (Low_Bound (N));
4200 end if;
4201 end Lo_Val;
4203 -- Start of processing for Static_Predicate
4205 begin
4206 -- Convert loop identifier to normal variable and reanalyze it so
4207 -- that this conversion works. We have to use the same defining
4208 -- identifier, since there may be references in the loop body.
4210 Set_Analyzed (Loop_Id, False);
4211 Set_Ekind (Loop_Id, E_Variable);
4213 -- In most loops the loop variable is assigned in various
4214 -- alternatives in the body. However, in the rare case when
4215 -- the range specifies a single element, the loop variable
4216 -- may trigger a spurious warning that is could be constant.
4217 -- This warning might as well be suppressed.
4219 Set_Warnings_Off (Loop_Id);
4221 -- Loop to create branches of case statement
4223 Alts := New_List;
4225 if Reverse_Present (LPS) then
4227 -- Initial value is largest value in predicate.
4229 D :=
4230 Make_Object_Declaration (Loc,
4231 Defining_Identifier => Loop_Id,
4232 Object_Definition => New_Occurrence_Of (Ltype, Loc),
4233 Expression => Hi_Val (Last (Stat)));
4235 P := Last (Stat);
4236 while Present (P) loop
4237 if No (Prev (P)) then
4238 S := Make_Exit_Statement (Loc);
4239 else
4240 S :=
4241 Make_Assignment_Statement (Loc,
4242 Name => New_Occurrence_Of (Loop_Id, Loc),
4243 Expression => Hi_Val (Prev (P)));
4244 Set_Suppress_Assignment_Checks (S);
4245 end if;
4247 Append_To (Alts,
4248 Make_Case_Statement_Alternative (Loc,
4249 Statements => New_List (S),
4250 Discrete_Choices => New_List (Lo_Val (P))));
4252 Prev (P);
4253 end loop;
4255 else
4257 -- Initial value is smallest value in predicate.
4259 D :=
4260 Make_Object_Declaration (Loc,
4261 Defining_Identifier => Loop_Id,
4262 Object_Definition => New_Occurrence_Of (Ltype, Loc),
4263 Expression => Lo_Val (First (Stat)));
4265 P := First (Stat);
4266 while Present (P) loop
4267 if No (Next (P)) then
4268 S := Make_Exit_Statement (Loc);
4269 else
4270 S :=
4271 Make_Assignment_Statement (Loc,
4272 Name => New_Occurrence_Of (Loop_Id, Loc),
4273 Expression => Lo_Val (Next (P)));
4274 Set_Suppress_Assignment_Checks (S);
4275 end if;
4277 Append_To (Alts,
4278 Make_Case_Statement_Alternative (Loc,
4279 Statements => New_List (S),
4280 Discrete_Choices => New_List (Hi_Val (P))));
4282 Next (P);
4283 end loop;
4284 end if;
4286 -- Add others choice
4288 declare
4289 Name_Next : Name_Id;
4291 begin
4292 if Reverse_Present (LPS) then
4293 Name_Next := Name_Pred;
4294 else
4295 Name_Next := Name_Succ;
4296 end if;
4298 S :=
4299 Make_Assignment_Statement (Loc,
4300 Name => New_Occurrence_Of (Loop_Id, Loc),
4301 Expression =>
4302 Make_Attribute_Reference (Loc,
4303 Prefix => New_Occurrence_Of (Ltype, Loc),
4304 Attribute_Name => Name_Next,
4305 Expressions => New_List (
4306 New_Occurrence_Of (Loop_Id, Loc))));
4307 Set_Suppress_Assignment_Checks (S);
4308 end;
4310 Append_To (Alts,
4311 Make_Case_Statement_Alternative (Loc,
4312 Discrete_Choices => New_List (Make_Others_Choice (Loc)),
4313 Statements => New_List (S)));
4315 -- Construct case statement and append to body statements
4317 Cstm :=
4318 Make_Case_Statement (Loc,
4319 Expression => New_Occurrence_Of (Loop_Id, Loc),
4320 Alternatives => Alts);
4321 Append_To (Stmts, Cstm);
4323 -- Rewrite the loop
4325 Set_Suppress_Assignment_Checks (D);
4327 Rewrite (N,
4328 Make_Block_Statement (Loc,
4329 Declarations => New_List (D),
4330 Handled_Statement_Sequence =>
4331 Make_Handled_Sequence_Of_Statements (Loc,
4332 Statements => New_List (
4333 Make_Loop_Statement (Loc,
4334 Statements => Stmts,
4335 End_Label => Empty)))));
4337 Analyze (N);
4338 end Static_Predicate;
4339 end if;
4340 end Expand_Predicated_Loop;
4342 ------------------------------
4343 -- Make_Tag_Ctrl_Assignment --
4344 ------------------------------
4346 function Make_Tag_Ctrl_Assignment (N : Node_Id) return List_Id is
4347 Asn : constant Node_Id := Relocate_Node (N);
4348 L : constant Node_Id := Name (N);
4349 Loc : constant Source_Ptr := Sloc (N);
4350 Res : constant List_Id := New_List;
4351 T : constant Entity_Id := Underlying_Type (Etype (L));
4353 Comp_Asn : constant Boolean := Is_Fully_Repped_Tagged_Type (T);
4354 Ctrl_Act : constant Boolean := Needs_Finalization (T)
4355 and then not No_Ctrl_Actions (N);
4356 Save_Tag : constant Boolean := Is_Tagged_Type (T)
4357 and then not Comp_Asn
4358 and then not No_Ctrl_Actions (N)
4359 and then Tagged_Type_Expansion;
4360 -- Tags are not saved and restored when VM_Target because VM tags are
4361 -- represented implicitly in objects.
4363 Next_Id : Entity_Id;
4364 Prev_Id : Entity_Id;
4365 Tag_Id : Entity_Id;
4367 begin
4368 -- Finalize the target of the assignment when controlled
4370 -- We have two exceptions here:
4372 -- 1. If we are in an init proc since it is an initialization more
4373 -- than an assignment.
4375 -- 2. If the left-hand side is a temporary that was not initialized
4376 -- (or the parent part of a temporary since it is the case in
4377 -- extension aggregates). Such a temporary does not come from
4378 -- source. We must examine the original node for the prefix, because
4379 -- it may be a component of an entry formal, in which case it has
4380 -- been rewritten and does not appear to come from source either.
4382 -- Case of init proc
4384 if not Ctrl_Act then
4385 null;
4387 -- The left hand side is an uninitialized temporary object
4389 elsif Nkind (L) = N_Type_Conversion
4390 and then Is_Entity_Name (Expression (L))
4391 and then Nkind (Parent (Entity (Expression (L)))) =
4392 N_Object_Declaration
4393 and then No_Initialization (Parent (Entity (Expression (L))))
4394 then
4395 null;
4397 else
4398 Append_To (Res,
4399 Make_Final_Call
4400 (Obj_Ref => Duplicate_Subexpr_No_Checks (L),
4401 Typ => Etype (L)));
4402 end if;
4404 -- Save the Tag in a local variable Tag_Id
4406 if Save_Tag then
4407 Tag_Id := Make_Temporary (Loc, 'A');
4409 Append_To (Res,
4410 Make_Object_Declaration (Loc,
4411 Defining_Identifier => Tag_Id,
4412 Object_Definition => New_Occurrence_Of (RTE (RE_Tag), Loc),
4413 Expression =>
4414 Make_Selected_Component (Loc,
4415 Prefix => Duplicate_Subexpr_No_Checks (L),
4416 Selector_Name =>
4417 New_Occurrence_Of (First_Tag_Component (T), Loc))));
4419 -- Otherwise Tag_Id is not used
4421 else
4422 Tag_Id := Empty;
4423 end if;
4425 -- Save the Prev and Next fields on .NET/JVM. This is not needed on non
4426 -- VM targets since the fields are not part of the object.
4428 if VM_Target /= No_VM
4429 and then Is_Controlled (T)
4430 then
4431 Prev_Id := Make_Temporary (Loc, 'P');
4432 Next_Id := Make_Temporary (Loc, 'N');
4434 -- Generate:
4435 -- Pnn : Root_Controlled_Ptr := Root_Controlled (L).Prev;
4437 Append_To (Res,
4438 Make_Object_Declaration (Loc,
4439 Defining_Identifier => Prev_Id,
4440 Object_Definition =>
4441 New_Occurrence_Of (RTE (RE_Root_Controlled_Ptr), Loc),
4442 Expression =>
4443 Make_Selected_Component (Loc,
4444 Prefix =>
4445 Unchecked_Convert_To
4446 (RTE (RE_Root_Controlled), New_Copy_Tree (L)),
4447 Selector_Name =>
4448 Make_Identifier (Loc, Name_Prev))));
4450 -- Generate:
4451 -- Nnn : Root_Controlled_Ptr := Root_Controlled (L).Next;
4453 Append_To (Res,
4454 Make_Object_Declaration (Loc,
4455 Defining_Identifier => Next_Id,
4456 Object_Definition =>
4457 New_Occurrence_Of (RTE (RE_Root_Controlled_Ptr), Loc),
4458 Expression =>
4459 Make_Selected_Component (Loc,
4460 Prefix =>
4461 Unchecked_Convert_To
4462 (RTE (RE_Root_Controlled), New_Copy_Tree (L)),
4463 Selector_Name =>
4464 Make_Identifier (Loc, Name_Next))));
4465 end if;
4467 -- If the tagged type has a full rep clause, expand the assignment into
4468 -- component-wise assignments. Mark the node as unanalyzed in order to
4469 -- generate the proper code and propagate this scenario by setting a
4470 -- flag to avoid infinite recursion.
4472 if Comp_Asn then
4473 Set_Analyzed (Asn, False);
4474 Set_Componentwise_Assignment (Asn, True);
4475 end if;
4477 Append_To (Res, Asn);
4479 -- Restore the tag
4481 if Save_Tag then
4482 Append_To (Res,
4483 Make_Assignment_Statement (Loc,
4484 Name =>
4485 Make_Selected_Component (Loc,
4486 Prefix => Duplicate_Subexpr_No_Checks (L),
4487 Selector_Name =>
4488 New_Occurrence_Of (First_Tag_Component (T), Loc)),
4489 Expression => New_Occurrence_Of (Tag_Id, Loc)));
4490 end if;
4492 -- Restore the Prev and Next fields on .NET/JVM
4494 if VM_Target /= No_VM
4495 and then Is_Controlled (T)
4496 then
4497 -- Generate:
4498 -- Root_Controlled (L).Prev := Prev_Id;
4500 Append_To (Res,
4501 Make_Assignment_Statement (Loc,
4502 Name =>
4503 Make_Selected_Component (Loc,
4504 Prefix =>
4505 Unchecked_Convert_To
4506 (RTE (RE_Root_Controlled), New_Copy_Tree (L)),
4507 Selector_Name =>
4508 Make_Identifier (Loc, Name_Prev)),
4509 Expression => New_Occurrence_Of (Prev_Id, Loc)));
4511 -- Generate:
4512 -- Root_Controlled (L).Next := Next_Id;
4514 Append_To (Res,
4515 Make_Assignment_Statement (Loc,
4516 Name =>
4517 Make_Selected_Component (Loc,
4518 Prefix =>
4519 Unchecked_Convert_To
4520 (RTE (RE_Root_Controlled), New_Copy_Tree (L)),
4521 Selector_Name => Make_Identifier (Loc, Name_Next)),
4522 Expression => New_Occurrence_Of (Next_Id, Loc)));
4523 end if;
4525 -- Adjust the target after the assignment when controlled (not in the
4526 -- init proc since it is an initialization more than an assignment).
4528 if Ctrl_Act then
4529 Append_To (Res,
4530 Make_Adjust_Call
4531 (Obj_Ref => Duplicate_Subexpr_Move_Checks (L),
4532 Typ => Etype (L)));
4533 end if;
4535 return Res;
4537 exception
4539 -- Could use comment here ???
4541 when RE_Not_Available =>
4542 return Empty_List;
4543 end Make_Tag_Ctrl_Assignment;
4545 end Exp_Ch5;